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Minimising Access Conflicts on Shared Multi-Bank Memory
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A common multi-core pattern consists of processors communicating through shared, multi-banked on-chip

memory. Two approaches exist: Interleaved address mapping, which spreads consecutive data over all banks,

and contiguous address mapping, which stores consecutive data on a single bank.

In this work, we compare both approaches on the Kalray MPPA-256 platform. For contiguous mapping,

we propose an algorithm, based on graph colouring techniques, to automatically perform the assignment of

data blocks to memory banks with the goal of minimising access collisions and delays. Experiments with

representative, parallel real-world benchmarks show that 69% of the tested configurations, when optimised

for contiguous mapping by our algorithm, run up to 86% faster on average than with interleaved mapping.
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1 INTRODUCTION

Communication over shared memory has become a prevalent concept in embedded multi- and
many-core systems on chip. Many platforms group middle-ranged numbers of processing cores
to clusters with one common memory space. To allow multiple simultaneous accesses from the
different cores, these memory architectures typically consist of multiple banks with indepen-
dent interfaces. Commonalities end, however, when it comes to the question of how to distribute
the data between the banks, as Figure 1 illustrates: While some architectures (like the Adapteva
Epiphany [23]) provide explicit access to the individual banks and leave the storage concept to the
programmer (contiguous memory address mapping), others (like the P2012 [2] or the PULP [9]) opt
for a strict word-granularity spreading of the entire data over all the banks (interleaved memory
address mapping).

The latter option has several advantages: All the cores see a uniform memory space, in which
the programmer can accommodate any code or data without having to think of its particular
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Fig. 1. Examples for different memory address mapping types. For each of the first three banks, the ad-

dresses of the first three words stored therein are shown and optically illustrated by darker colors for higher

addresses.

placement. The bank access pattern of each core is essentially random and collisions approxi-
mately follow a probabilistic distribution [34]. As a result, the memory space can be treated like a
single bank and the standard compilers and linkers can be used without any necessary adaptions
while still achieving good performance.

At the same time, contiguous mapping has its advantages as well. Firstly, the performance of
many low-latency implementations of interleaved mapping is vulnerable to memory access pat-
terns which repeatedly access the same bank (e.g. operations on matrices having dimensions of
powers of two). This can be avoided by contiguous mapping with appropriate data placement.
Secondly, worst-case delays are harder to determine on interleaved memory systems, and calcu-
lated bounds are usually far from tight. This is why recent publications in that domain focus on
contiguous mapping, see e.g. [1, 3, 22, 25, 36].

When average case performance is more important than worst case execution, there is no such
clear preference. It would therefore be desirable to have a direct comparison between both ap-
proaches, which up to now does not exist. However, to perform such a comparison, one would
also need to find a solution to the question of data placement in the case of contiguous mapping,
i.e., on which bank which data should be placed. Currently, this has to be decided manually by the
programmer, which constitutes a significant obstacle to the application of contiguous mapping.
Finding a way of automatically partitioning data between the memory banks would thus not only
allow a comparison between the different mapping approaches, but it would also demonstrate the
practical feasibility of using contiguous mapping.

Several approaches and algorithms have been proposed to tackle the data placement issue for
single-processor multi-bank systems, in particular VLIWs and DSPs. Unfortunately, the corre-
sponding optimisation problem significantly differs from the multi-core problem, since compiler
backends for individual cores can easily detect simultaneous memory access on instruction level.
On multi-core systems, in contrast, the individual cores are independent and only loosely synchro-
nised. Access conflicts happen non-deterministically. As a result, existing single-core solutions
cannot be directly applied to multi-processor systems.

In this work, we try to close the aforementioned gaps with a two-fold contribution: Firstly, we
propose a heuristic algorithm to automate data placement, such that every data block is assigned
a memory bank for contiguous mapping. The proposed approach was designed to find mappings
that minimise access conflicts as well as other delays, and thus the application runtime. Secondly,
with the help of and as an evaluation for the newly introduced algorithm, we compare the av-
erage case performance of contiguous and interleaved memory mapping, theoretically as well as
experimentally, on the Kalray MPPA platform [10]. This platform is very well-suited for this com-
parison, since it allows the programmer to choose between interleaved and contiguous memory
mapping. To obtain meaningful results in a wider context, we have conducted dedicated, synthetic
experiments on the MPPA and we have run real world benchmarks.
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With a memory bank assignment optimised using the proposed algorithm, 96.7% of the tested
benchmark configurations perform at least as well as with interleaved memory mapping. In 54.5%
of the cases, the runtime is even significantly shorter.

In Section 3, we describe our generic models of the applications to be implemented and of the
target platforms. On this basis, we formally define the bank assignment problem for the contiguous
memory mapping scenario. We then introduce an algorithm for solving this generic bank assign-
ment problem in Section 4. Section 5 gives detailed information about the MPPA and its memory
architecture. Based on the results of synthetic benchmarks revealing the platform’s characteristics,
we show how the generic bank assignment algorithm can be adapted to this particular platform.
Section 6 finally shows the results of the experimental comparison of contiguous and interleaved
mapping on the Kalray MPPA, using the proposed bank assignment algorithm for the case of con-
tiguous memory address mapping.

2 RELATED WORK

Various works address the problem of mapping data to memory banks for single-processor sys-
tems. In particular, there are many works on VLIW (in particular DSP) systems with dual-bank
memories, e.g. by Saghir et al. [29], Leupers and Kotte [18], Cho et al. [6], Sipkova [31], Ko and
Bhattacharyya [17] and Murray and Franke [21]. All of these works try to enable two simulta-
neous memory accesses by mapping the corresponding variables (or arrays) to different memory
banks. While [29], [18] and [6] propose implementations as compiler backends, [31], [17] and [21]
analyse the code on higher levels.

Zhang et al. [39] and Soto et al. [32] extend this optimisation to a variable number of memory
banks. Conversely, Shyam and Govindarajan [30] try to minimise energy consumption in such a
system by setting assigning the banks such that some of them can be brought to sleep mode as
often as possible. [39] also supports this optimisation.

Most of the works discussed until now make use of so-called conflict or interference graphs, as
we do in this work. The typical solution approaches are greedy algorithms, other heuristics, or
integer linear programming. [32] and [21] treat the assignment task as a graph colouring problem,
like it is done in this work. However, all these works consider single processor systems and rely on
conflict analysis techniques that are not applicable to multi-processor systems as discussed earlier.

Kim and Kim [15] propose a method to improve performance of multiple DRAM banks con-
nected to a single processor. Their approach is to maximise spatial access locality within each
memory bank, thus avoiding costly row opening operations required on this memory architec-
ture. In our work, we consider platforms with on-chip SRAMs, on which access locality has no
influence.

In the area of multi-core systems, [16] and [20] propose heuristics for mapping data of different
application threads to DRAM banks to reduce the average thread execution times. Kim et al. [16]
present a compiler approach targeting coarse grain reconfigurable architectures. Our approach is
more general, since it is applicable to any homogeneous shared-memory architecture. Mi et al. [20]
introduce a software/hardware scheme for static DRAM bank partitioning. Purely hardware-based
solutions include the works of Reineke et al. [27] and Wu et al. [37], which rely on DRAM con-
trollers to implement bank privatisation schemes. Such approaches require special hardware, while
we propose compiler techniques that are applicable to commercial off-the-shelf platforms.

Other works implement software approaches to completely eliminate bank-level conflicts. Liu
et al. [19] implement a custom page-colouring algorithm inside the memory management of the
Linux kernel for this purpose. Jeong et al. [14] propose a combination of bank partitioning and
memory sub-ranking, implemented through an extension of the OS physical frame allocation al-
gorithm. Yun et al. [38] implement a DRAM bank-aware memory allocator to allocate memory
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Fig. 2. Representation of a simple image edge detection algorithm in the application model from Section 3.1.

It reads an image into memory, numerically computes its gradients in x and y direction and then computes

the edge intensity as the euclidean norm of both. The upper part shows the tasks, the lower part the memory

blocks.

pages of different applications to private banks. Chandru et al. [5] implement a user space bank-
aware and controller-aware allocator, which enables binding a core to a specific bank and con-
troller in a cluster-based architecture. Pan et al. [24] enable frame allocation on thread-specific
cache, memory controller and memory bank combinations through an according modification to
the Linux kernel. All these works try to cleanly (or at least largely) separate the banks accessed by
the different applications or cores. In contrast, we assume that bank sharing is indispensable for
communication between cores and that each core will thus need regular access to multiple banks.

Closer to our work lies the approach of Giannopoulou et al. [12], which also tries to minimise
bank conflicts through optimized data-to-bank mapping. However, their method aims at minimis-
ing the worst-case execution time of real-time applications and is bound to specific scheduling
policies, whereas we address the average-case execution time of a wider class of applications.
Rihani et al. [28] propose a solution for single-producer single-consumer process networks by as-
signing each consumer a bank for all its input FIFOs. This works well for the selected application
model, which, however, necessitates large amounts of data copying and is therefore inherently
inefficient on shared memory platforms [35]. Finally, Goens et al. [13] employ a buffer allocation
approach similar to this paper. While they use a more general platform model and a more de-
tailed application model, this comes at the price of longer optimisation time (hours as compared
to milliseconds). Also, their model does not cover the particularities of the MPPA platform (cf.
Section 5.2).

3 CONSIDERED MEMORY BANK ASSIGNMENT PROBLEM

As discussed earlier, in the case of contiguous memory mapping, each buffer or piece of data ac-
cessed by the application must be assigned to a memory bank on which it will reside. This assign-
ment should be done in such a way that interferences between different threads are minimised.
This section gives a detailed definition of the problem, showing how we model the application
and the target platform. All models are kept as generic as possible, and an algorithm to solve the
assignment problem for the generic case will be given in the next section. Later sections will then
discuss how the generic models may or may need to be adapted to concrete target platforms such
as the Kalray MPPA.

3.1 Application Model

Figure 2 illustrates how we model the applications that are executed on a cluster.
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Fig. 3. Exemplified illustration of the generic type of platform considered in this work.

Definition 3.1. An application is a tuple (T ,D,M,a) of a setT =
{
t1, . . . , tnT

}
of tasks, a setD ⊂

T ×T of dependencies, a set M =
{
m1, . . . ,mnM

}
of memory blocks and an access function

a : T → P (M ).
Each task t executes exactly once and accesses only the memory blocks contained in a(t ) ⊆ M .

Each dependency (ti , tj ) ∈ D enforces that tj can only start once ti has finished. Each memory
blockm ∈ M has a distinct size s (m), with s : M → N.

This model resembles process networks or dataflow models, where dependencies determine
the (partial) execution order of the tasks. Dependencies do, however, not signify data exchange.
Instead, all data operations are modelled as accesses to explicitly specified memory regions – the
blocks. Copying of data does not take place unless it is modelled as a task in the application.
The purpose of modelling dependencies is only to ensure correct execution order, to prevent race
conditions and to guarantee the correctness of the results. Note that no assumptions are made as
to how or in what pattern a task t accesses the memory blocks given by a(t ).

The model is a simplified representation of the OpenVX execution model [11] and the Memory
Interference Graph [12], but it is intentionally generic to be applicable to a broad class of different
execution models, for instance mechanisms like Deterministic Memory Sharing in Kahn Process
Networks [35] or traditional custom multi-threading with manual thread synchronisation.

In this work, we use the concept of memory blocks to model data inputs and outputs of the tasks
as well as local data/intermediate storage. We do not model instruction fetches with it. While the
latter could be done as well without changing the methods we propose, we consider these effects
to be negligible. For instance, MPPA cores can draw on instruction caches that are large enough to
hold the complete code required for a typical task. On multi-core platforms, these tasks typically
consist of loops, which are once loaded into the cache and then executed a large number of times
without any further instruction fetch from memory.

3.2 Platform Model

Figure 3 gives an (abstract) example of the kind of target platform considered in this work. It can
be formalised in the following, even more generic model.

Definition 3.2. A platform is a tuple (P ,B, c ), with P = {p1, . . . ,pnP
} a set of processing elements

(PEs) that share access to a set of memory banks B = {b1, . . . ,bnB
}. c : B → N gives the capacity

of each memory bank.

We make the following assumptions about a platform:

• The banks are configured for contiguous address mapping.
• Each PE takes the same time to access each bank.
• All banks can be accessed in parallel, but each bank can only be accessed by one PE at a

time, e.g. by a crossbar communication structure between PEs and banks.
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• The arbitration between bank accesses is fair, e.g. Round Robin.
• The PEs do not perform task preemption.

This model fits to many existing multi-core multi-bank platforms, for instance the NXP LPC family
or the Kalray MPPA (details will be given later). It would fit to the P2012 and the PULP architec-
tures as well if they supported a contiguous memory address layout. Also, it comes very near to
platforms like the Adapteva Epiphany chips. Since the latter have a non-uniform memory access
architecture (different access times to different banks), certain adaptions would be necessary, but
entirely feasible.

3.3 Problem Description

The problem to be solved now is assigning memory blocks to banks. With the previous definitions,
it can be described as follows.

Let (T ,D,M,a) be an application to run on a platform (P ,B, c ). Let there further be a given
mapping T → P and a schedule for execution of the tasks.

Find a mapping f : M → B that assigns each memory block to a bank such that:

• All memory blocks fit into the banks they are assigned to, i.e. for each b ∈ B
∑

m∈Mb

s (m) ≤ c (b) with Mb =
{
m ∈ M �

� f (m) = b
}
.

• The time between the execution start of the first and the execution end of the last task in
the schedule is minimised. In this context, “time” denotes average values, as run-times can
vary due to synchronisation and data dependencies, for example.

4 GENERIC MEMORY BANK ASSIGNMENT ALGORITHM

This section describes the approach proposed for solving the problem defined in the previous
section, i.e., for assigning memory blocks to memory banks in the generic case with the generic
platform model. First, the challenges of conceiving such an algorithm are discussed, and a gen-
eral overview of the proposed method is given. Then the algorithm itself is presented and simple
optimisations are discussed.

4.1 Overall Approach

A simple idea for solving the problem might be a heuristic that follows the idea of static load bal-

ancing, i.e., that distributes the blocks evenly among the banks. This heuristic would assign banks
to all blocks in the order of their size, starting from the largest block. For each block, it would se-
lect the bank which, at the current state of assignment, has the most free space. Such an algorithm
attempts to find a valid bank assignment if one exists and to distribute the access bandwidth over
the banks. However, it is fully agnostic to program semantics and cannot detect possible access
collision hotspots. For instance, in the application example from Figure 2, the most promising opti-
misation would be to assign Grad1 and Grad2 to different banks. With a load balancing algorithm,
however, in case of resource scarcity, whether this happens or not is coincidence.

A good bank assignment algorithm therefore needs to model possible access collisions between
two tasks. These depend on multiple factors, such as whether the execution times of the tasks
overlap, how often they access the memory blocks, in what pattern they do so, etc. Note that there
exist cyclic dependencies between the timing of the tasks (overlaps) and the bank assignments.
Also, there may be conflicting optimisation criteria on particular platforms. For instance, in order
to avoid access collisions between different cores on the MPPA platform, one would often like
to place memory blocks on different banks. On the other hand, if these blocks are later accessed

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 135. Publication date: September 2017.



Minimising Access Conflicts on Shared Multi-Bank Memory 135:7

Fig. 4. Flow chart diagram of the iterative approach proposed for assigning memory blocks to banks.

simultaneously by one core, it may be advantageous to place them on the same bank, as will be
shown later.

For modelling access collisions and the aforementioned related problems, many different analy-
sis methods have been proposed and could be successfully applied here. For reasons of simplicity,
however, we choose a heuristic approach: We take the time that two tasks execute in parallel as an
indication for the occurrence of access collisions on their associated memory blocks. This time is
determined by measurements. By cumulating the execution time overlaps from all pairs of tasks,
we obtain pairwise access conflict potentials between all the memory blocks. Whether these con-
flicts materialise depends on the bank assignment of the blocks, which we try to optimise.

ALGORITHM 1: Graph Colouring Based Bank Assignment.

input : Application (T ,D,M,a), platform (P ,B, c ),
task execution times start : T → N, end : T → N

output : Bank assignment colours : M → B
(V ,E) ← CreateCollisionGraph((T ,D,M,a), start , end )
for i ← 1 . . . |M | do

Ri ← SelectRemoveCandidate((V ,E), (T ,D,M,a))
(V ,E) ← RemoveNode(V ,E,Ri )

for i ← |M | . . . 1 do
(V ,E) ← ReinsertNode(V ,E,Ri )
colours[Ri ]← ChooseColour((V ,E), (P ,B, c ), colours,Ri )

This leads to the iterative approach shown in Figure 4. First, the application is executed in an
initial implementation, measuring the start and finish times of all tasks. This initial implementation
could either be with interleaved memory address mapping if the platform allows it, or contiguous
memory mapping with a bank assignment obtained by a simple heuristic like the load-balancing
based method mentioned previously. Based on these times, a bank assignment is obtained by our
algorithm. Application execution with this new assignment yields new timings, which are then
used for a refined bank assignment as the execution leads to different assumptions on overlapping
accesses to shared memory banks. This is continued until the assignment converges or for a fixed
number of iterations. In our experiments, ten iterations proved to be sufficient to get a steady-state
behaviour or a limit cycle.

The following section will present the above described algorithm that assigns banks to memory
blocks.

4.2 Basic Bank Assignment Algorithm

As already mentioned, we need an algorithm that, given the execution times for all tasks from
an application, finds a bank assignment that minimises access conflicts between different tasks.
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Fig. 5. Conflict graph for the sample application from Figure 2.

To attain this goal, we express the problem as a graph colouring problem. In the graph to be
coloured, each memory block is represented by a node and an edge is inserted between two nodes
when the corresponding memory blocks are accessed in parallel by different tasks. The banks
are represented by colours, so the number of colours is fixed. A fundamental difference to classic
graph colouring is that the latter does not allow two neighbouring nodes to have the same colour.
For bank assignment, this case would mean possible access conflicts on the concerned bank, but
the program would still execute correctly. It is therefore allowed but will yield a performance
penalty.

The algorithm has been inspired by a well known graph colouring based solution to the register
allocation problem [4] and is shown in Algorithm 1. It consists of constructing a collision graph,
gradually removing all nodes from it and re-inserting and colouring them in reverse order. The
idea of the node removal phase is to fix an order in which the nodes are coloured: Since each
colouring decision reduces the degrees of freedom for the remaining nodes, it is important on the
one hand to colour those nodes first for which conflicts would have the greatest impact and on
the other hand those that have a low degree of freedom already from the start. The details of the
different phases shall be layed out in the following.

ALGORITHM 2: Function CreateCollisionGraph

input : (T ,D,M,a), start , end
output : Collision graph (V ,E)
(V ,E) ← (M, {pairs(M ) → 0})
foreach pair t1 � t2 ∈ T do

o ← min (end (t1), end (t2)) −max (start (t1), start (t2)) //calculate execution time overlap o
if o > 0 then

foreachm1 ∈ a(t1),m2 ∈ a(t2),m1 �m2 do
E[{m1,m2}]← E[{m1,m2}] + o

(a) Construction of the collision graph: Given an application (T ,D,M,a), the collision graph is an
undirected, weighted graph with the memory blocks in M as the nodes. Its construction (function
CreateCollisionGraph) is given in Algorithm 2. For each pair of tasks t1 � t2 ∈ T that execute
in parallel, an edge is inserted between each pair of blocksm1 ∈ a(t1),m2 ∈ a(t2),m1 �m2. These
are the blocks that are accessed in parallel by both tasks. The weight of the edge is equal to the
time that t1 and t2 execute in parallel and multiple edges between the same nodes are combined
to one edge with the sum of the weights.

Figure 5 shows the conflict graph for the case of the example application from Figure 2. It is
assumed that GradientX and GradientY execute in parallel for τ cycles. As a result, the graph
contains three edges between the blocks Img, Grad1 and Grad2, each with the weight τ .

(b) Node removal: In this step, repeatedly a node will be chosen and removed from the graph, until
the graph is empty.

The node to be removed from is determined by SelectRemoveCandidate, which can be de-
scribed by the function
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r ((V ,E), (T ,D,M,a)) =

arg max
v ∈V

⎡
⎢
⎢
⎢
⎢
⎣

λ3 · |{t ∈ T |v ∈ a(t )}| − λ2 · ��{v ′ ∈ V |E[{v,v ′}] > 0}�� − λ ·
∑

v ′ ∈V
E[{v,v ′}] − s (v )

⎤
⎥
⎥
⎥
⎥
⎦

.

(1)

In this notation, λ is considered to be a symbolic constant that is very large compared to all other
numbers in the formula. The function will thus return that node v ∈ V for which the λ3 term is
the largest. Only if there are multiple nodes with the same λ3 term, the node with the smallest λ2

term will be returned (smallest because of the negative sign). Only in case of another draw will
lower power terms of λ be taken into consideration.

The function can be described as follows. It selects the nodes to be removed first and later
coloured last, i.e., the nodes with lower priority. For this purpose, it performs a multi-criteria com-
parison, where the first criterion is the most important and later ones are only considered in case
of a tie. The criteria for this comparison of the nodes are explained below, ordered from high to
low priority. The node to be removed is that node with

The highest number of tasks accessing the block. The reasoning behind this somewhat
counter-intuitive criterion is that blocks accessed by only few tasks yield a high optimisa-
tion potential as opposed to blocks accessed by many tasks, which are anyway susceptible
to access collisions.

The lowest number of neighbours. This is known as an important criterion also in reg-
ister allocation, essentially because a high number of neighbours means a lower degree
of freedom when trying to avoid conflicts. Therefore, we try to colour nodes with many
neighbours first to still have a higher number of colours left for them. Note that the re-
moval of nodes influences the number of neighbours left for the other nodes, often un-
covering further nodes with high degrees of freedom. This is the essential idea behind the
removal procedure.

The lowest cumulative weight of all adjacent edges. This is again an indicator for the
optimisation potential of a block.

The lowest size of the memory block. This is only a minor criterion meant to improve
the algorithm reliability (cf. Section 4.3).

For the example graph from Figure 5, this would result in Edges being coloured first, then Grad1
and Grad2, then Img. While this seems unintuitive for this simple example application, it does make
sense in more complex scenarios with more simultaneous tasks and more memory blocks involved.
If a node (like Edges in this example) has no neighbours in the conflict graph, there is a chance
that it can be accessed by the corresponding tasks without any conflicts. Colouring such a node
first increases the probability that this chance is exploited.

(c) Node re-insertion and colouring: The graph is reconstructed by re-inserting and colouring the
nodes in the reverse order of their removal before. The colour for a node and thus the bank as-
signment of a memory block is given by ChooseColour, which can be described by the function

x ((V ,E), (P ,B, c ), colours,v ) = arg max
b ∈B∗ (v )

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−λ ·
∑

v ′ ∈V |colours[v ′]=b

E[{v,v ′}] + free(b)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where

free(b) = c (b) −
∑

v ∈V |colours[v]=b

s (v )
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gives the free space on b and B∗ (v ) = {b ∈ B | free(b) ≥ s (v )} is the set of banks with enough free
space to accommodate memory block v . λ is again used like in (1).

This is again a multi-criteria comparison, in which those banks are chosen that have (in that
order):

The least sum of weights on adjacent edges leading to nodes of the same colour. As dis-
cussed previously, we regard the weights of the edges as an indicator for the occurrence
of simultaneous accesses and thus for the conflict potential between two memory blocks.
If we decide to assign two adjacent nodes to the same bank, the conflict potential of the
connecting edge will materialise.

The most space left on the bank. The idea behind this criterion is load balancing.

If there is no bank with enough space left to accommodate a block, the algorithm fails.
For the conflict graph from Figure 5, if we assume that only two memory banks are available,

the colouring would take place as follows.

(1) Edges would be assigned to any of the two banks; in the following, we assume it is to the
first one.

(2) Grad1 would be assigned to the second bank, since the latter has more free space left.
(3) Grad2 would be assigned to the first bank, since Grad1 is assigned to the other one and

there is an edge between the two nodes in the conflict graph.
(4) Img has edges to Grad1 and Grad2, each of which is mapped to one of the two banks.

Therefore, the penalty is equally high for both banks, and Img is assigned to the second
bank, again because of free space.

If there were three banks, Edges and Img would be mapped to one bank, Grad1 and Grad2 to
the other two. This would completely avoid access conflicts.

4.3 Improving Algorithm Reliability

The algorithm as described above fails if at one point no bank has enough space left to accommo-
date the block to be assigned. This can happen if smaller blocks are distributed first, not leaving
sufficient space for the larger blocks. In this case, the algorithm is re-run, with a special correction

factorγ . For this purpose, an additional term λ3 · γ · s (v ) is added in (1). It enforces a higher priority
for the block size during the node removal phase. γ is small in the beginning, but if the algorithm
fails again, it is increased exponentially until bank assignment succeeds. This drastically reduces
the rate of algorithm-induced failures. In our experiments, they were no longer an issue.

5 PLATFORM SPECIFIC ADAPTIONS

The previous sections presented a memory bank assignment approach for a generic platform. This
section now shows how the method proposed earlier can be adapted to concrete platforms, which
may slightly deviate from the assumptions made before.

The Kalray MPPA is going to be used as an example for such a platform. First, its architecture
is described and some of its characteristics are derived from experiments. In particular, the effects
of interleaved vs. contiguous memory address mapping and those of the cache will be examined.
Then, the generic bank assignment algorithm is adapted to deal with the platform’s special
properties.

5.1 MPPA-256 Memory Architecture

The Kalray MPPA-256 Andey processor [10] integrates 256 PEs, which are grouped into 16 compute
clusters. All PEs implement the same VLIW architecture.
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Fig. 6. Illustrations of an MPPA cluster.

Figure 6(a) illustrates the architecture of a cluster. It has a local on-chip memory with 2 MB
capacity, which is organized in 16 independent SRAM banks. These are arranged in two sides (left

and right). The PEs are organised in 8 pairs. Each pair has two memory buses (one for each side),
which can be utilised in parallel by the two cores. Figure 6(b) shows the arbitration hierarchy for
a PE that wants to access a certain memory bank. A first conflict arises when the other core of
the pair wants to access a memory bank from the same side. A second possibility for a conflict
is that another pair tries to access the same bank. All these conflicts are resolved by round robin
arbitration.

The memory model is von Neumann; however, each core has two private, two-way set associa-
tive caches, one for instructions and one for data. While the instruction cache is always enabled,
the data cache can be enabled or disabled as needed by the programmer. Cache coherency is not
supported and is a responsibility of the programmer.

Within a compute cluster, the memory address mapping can be configured either as interleaved
or as contiguous. In the contiguous mapping, each bank spans 128 kB consecutive addresses. In
interleaved mode, the data is distributed over all banks with a granularity of 64 byte blocks. The
blocks are placed on left and on right banks in alternation.

5.2 Synthetic Memory Benchmarks

The MPPA platform has a number of properties that are important to know for achieving optimal
performance in a cluster. The following experiments will demonstrate these properties.

In a first experiment, a single core reads 128 bytes individually from memory. The addresses
of the bytes increase linearly with a constant stride. Figure 7 shows the time needed for reading
all the bytes, as a function of the stride. The experiment was conducted with caches enabled and
disabled, and with interleaved and contiguous memory configuration. The contiguous configura-
tion shows the expected behaviour, i.e., the access time is constant and independent of the target
bank. In particular, since SRAM is used, the access time is constantly low also for bigger strides.
The interleaved configuration, in contrast, needs some explanation. With a stride of one byte, 64
consecutive accesses are made to the same bank before the core needs to read from a different
bank. With a stride of 64 bytes, each access is to a different bank. A delay for switching banks thus
explains the different timings. Assuming an additional delay caused by switches between bank
sides (left to right or vice versa), one can explain the lower runtime for strides of 128 bytes, which
always access banks on the same side. Overall, the measurements from this experiment perfectly
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Fig. 7. Runtime for reading 128 bytes with different stride.

Fig. 8. Runtime for consecutive memory accesses with contention.

match a model that assumes 4 cycles for one access, 3 cycles for switching banks and 4 additional
cycles for switching the side.

Another finding is that in this experiment, enabling the cache clearly worsens performance.
The reason for this is that since there is no memory access locality in the code, the caches do not
bring a benefit, but on the contrary, with increasing strides, lead to continuously loading entire
32 byte cache lines for only one byte that is accessed. This effect is not limited to this particular
experiment but could occur for any code with little locality.

Contention effects between multiple cores have been evaluated in a second experiment. As be-
fore, one core reads data from a buffer and measures the time needed for it in contiguous mode.
However, between 0 and 7 other cores access the same memory block simultaneously such as to
create contention. Note that simultaneous accesses from more than 8 cores cannot occur in an
MPPA cluster due to the PE pair architecture. Figure 8 shows the run-times depending on the
amount of data read for different numbers of contending cores. While for less than five cores in
total, the effects of contention are not significant, a large impact can be observed for more cores.

These results lead to the following general conclusions:

• For code with little memory access locality, enabling data caches can substantially decrease
performance.

• With ideally partitioned data, the performance potential is higher for contiguous than for
interleaved mode.

• In interleaved mode, due to the bank switching delays, even programs with data-
independent control flow can have data-dependent execution times when they have mem-
ory accesses at data-dependent addresses.
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Fig. 9. Conflict graph for the sample application from Figure 2, with the MPPA-specific algorithm extensions.

With regards to contiguous memory organisation, these rules of thumb can be derived: (i) Simul-
taneous accesses from large numbers of cores to the same bank should be avoided. (ii) All memory
accesses of one core should, if possible, be on a single memory bank to avoid bank switching de-
lays. If multiple banks need to be used, all of them should be on the same side (left/right) to at least
avoid side switching delays. (iii) The two PEs in a pair should access banks from opposing sides
(this follows directly from the architecture).

5.3 Adaption of the Bank Assignment Algorithm

From the point of view of the high-level architecture, an MPPA cluster, when configured for con-
tiguous memory layout, clearly fits the generic platform model described earlier in Section 3.2.
Looking at the results of the previous experiments on the platform, however, some deviations
from the assumptions made there can be spotted. The main reasons for these deviations are the
organisation in PE pairs and the delays for switching banks or sides in consecutive memory ac-
cesses. These architectural specifics lead to the fact that when the system is in a particular state,
accesses to some banks will take longer than to others. This, however, contradicts the assumption
made before that each PE takes the same time to access each bank.

While the generic bank assignment algorithm can still be used for the MPPA platform, its results
will not be optimal, since it does not take account of the platform’s particularities. To obtain better
assignments, the algorithm therefore needs to be adapted. The following paragraphs will show
how this can be achieved.

The adapted conflict graph, again for the sample application from Figure 2, is given in Figure 9.
It is assumed that the task GradientY is mapped to the second PE of a PE pair, all other tasks to
the first PE of the same pair.

(a) Collisions within PE pairs: The two PEs in a pair should not access two banks from the same
side simultaneously. To achieve this, we add a second type of weighted edges, the side penalty

edges. Their weight is calculated like the weights of the other edges, except that only those task
pairs mapped to the two PEs of a PE pair are taken into consideration. In Figure 9, there is only
one such edge between Grad1 and Grad2.

During the node re-insertion step, these weights are summed up for both bank sides, resulting in
two side penaltieswright andwleft. The edge weight sums for each bank are then complemented with
the corresponding side penalty, which corresponds to adding an additional term −λ ·wside(b ) in (2).

(b) Banks accessed by one task: Switching between different banks takes time, so the memory
blocks accessed by a task should be distributed over as few banks as possible. We approach this
demand by inserting another type of (unweighted) edges in the collision graph, the reward edges.
Such edges are inserted for each task; they are inserted between all the memory blocks it accesses.
In Figure 9, the reward edges connected to Img come from the tasks GradientX and GradientY.
All other edges come from the task Abs.

The reward edges are only considered in the node re-insertion step as the second criterion after
the other edges: If two banks have the same sum of weights, the bank with the higher number of
reward edges to adjacent blocks of the same colour is chosen. This corresponds to extending (2)
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with an additional term +λ0.5 · nreward (v,b), where nreward (v,b) is the number of reward edges
between node v and other nodes with colour b.

(c) Bank sides accessed by one task: Switching between banks takes even more time if they be-
long to different sides. Therefore, if a task needs to access multiple banks, these should be on the
same side (left or right). We account for this in the node re-insertion step when a node is to be
coloured: We count the number of adjacent reward edges going to nodes assigned to left banks
(nreward, left) and those going to nodes assigned to right banks (nreward,right). The results are added
(with a weighting factorω) to the reward edge count for each bank of the corresponding side. This
corresponds to adding an additional term +λ0.5 · ω · nreward,side(b ) in (2). Empirically,ω = 0.375 has
turned out to be a good choice.

(d) Cache indices: Since the data cache on the MPPA is two-way set associative, no more than
two memory blocks accessed by the same task should have similar cache indices. Otherwise, if the
blocks are accessed in alternation, frequent cache misses would occur. For this reason, a mecha-
nism that aligns the memory blocks within each bank was added as a second step after the bank
assignment. It adds free spaces between the memory blocks such that the base addresses of all
memory blocks accessed by a task have different cache indices. Again, an algorithm based on
graph colouring is used for this purpose. The nodes are the memory blocks as before, edges are
inserted between two blocks if they are used by the same task, and the colours are given by all pos-
sible cache indices. In the node removal phase, those nodes are removed first (and later coloured
last) that have the most free space on the banks they have been assigned to. The nodes are re-
inserted filling banks from their base address upwards with memory blocks. Cache indices of the
blocks are adjusted by placing “gaps” between the blocks. These gaps must be small enough to still
fit into the bank.

6 PERFORMANCE COMPARISON OF INTERLEAVED VS. CONTIGUOUS MAPPING

To compare application performance of interleaved and contiguous memory configurations, we
executed different applications on one cluster of a Kalray MPPA developer board, model Andey,
using toolchain 1.4.2, with a bare-metal configuration. The applications comprise six different,
parametrised benchmarks:

• Matrices of different sizes were multiplied, one matrix per core. Powers of two were chosen
as the matrix dimensions in some cases (denoted as “matrix2”) and other, random numbers
in other cases (denoted as “matrix”).

• The Fast Fourier Transform (FFT) of different signals in different lengths was calculated
using a benchmark from [33], one FFT per core.

• A Canny edge detection filter was applied to images of different sizes. The images were split
into different numbers of blocks, with one PE working on one block.

• Using convolutional neural networks taken from the CConvNet library [7, 8], up to four
hand-written digits were simultaneously recognised out of images, with four PEs working
together for one recognition.

• Floating point number arrays of different sizes were sorted using a merge sort algorithm.
All involved cores worked in parallel for one array.

• Sparse matrices of different shapes and sizes were multiplied with dense vectors (experi-
ment denoted as SpMV). The matrices were split into different blocks with the same size of
non-zero entries, with one PE per block.

Variation of the mentioned parameters as well as of the number of active PEs (between 2 and 16)
yielded a total of 345 different configurations. Note that some of the benchmarks have regular
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memory access patterns (e.g. Canny), while others show data-dependent control flow (e.g. merge
sort or SpMV). Usually, the former is advantageous for interleaved address mapping.

For all the benchmarks, the tasks were assigned to the different PEs by hand following regular
patterns. Dynamic scheduling was used. To exclude performance influences of the binding of the
tasks to the PEs, the latter was kept constant in that the same task was always assigned to the
same PE in all configurations of each benchmark. Bank assignment optimisation, code generation
and benchmarking were conducted in an automated process. Each configuration was implemented
with the local data-caches enabled and disabled. All benchmarks were executed in three ways:

• With interleaved mode,
• With contiguous mode, optimised using the algorithm proposed in this paper,
• With contiguous mode and a bank assignment obtained using the load balancing based

approach discussed in Section 4.1.

The results shall be presented in the following.
Figure 10(a) compares the run-times of the benchmarks in contiguous mode to those in inter-

leaved mode, for the optimised bank assignment algorithm proposed in this work as well as for
the load-balancing based solution. Data caches are disabled. Using the assignments determined
by the proposed algorithm, the applications run equally fast or faster with a contiguous mem-
ory configuration for 95.1% of all configurations. The speed-ups are significant (more than 5%) for
75.1% of all configurations. Only in the Canny experiment, 14% of configurations performed worse
with contiguous mapping; in the worst case, the runtime was 9.0 % longer than with interleaved
mapping.

Figure 10(b) shows the results of the same experiments with the data caches enabled. In this
case, 87.8% of all configurations run at least equally fast with contiguous memory, while speed-
ups are significant in still 20.3% of the configurations. A moderate performance degradation can
be seen for the SpMV benchmark. It is due to the fact that all the PEs access with a highly irregular
pattern the vector to be multiplied with the sparse matrix. This results in a 14.4% longer runtime
in the worst case.

Deeper insight into one of the different configurations is provided in Figure 11 in an exemplary
way for the Canny experiment. The figure shows details about the absolute runtimes for one par-
ticular configuration, but with a varying number of active PEs. With enabled data cache, in-built
performance monitoring counters of the MPPA platform were used to measure the number of stall
cycles due to cache misses as a reference of the memory access overhead. Since the work is split
between the active PEs, an increasing number of the latter yields a smaller part of the memory to
be accessed by each PE; as a result, the caches get more efficient.

Both with caches enabled and disabled, the matrix2 and fft benchmarks perform significantly
worse in interleaved mode. This is because the Kalray MPPA uses sequential interleaving, i.e.,
the bank a memory address is assigned to is given by a number of lower-order bits of the address.
Consecutive accesses with address offsets of powers of 2 (as they occur frequently in the applica-
tions mentioned before) therefore all go to the same bank, in the case of a collision causing multiple
subsequent collisions as well. This problem is well known and can be solved by pseudo-random

interleaving [26]. While the latter technique is frequent with off-chip memory systems, to our
best knowledge no on-chip memory architecture is organised in this fashion. One can conclude
from this that sequential memory interleaving is also not the ideal solution for memory-agnostic
programming.

Figure 12 compares the run-times with enabled caches to those with disabled caches. In 86.9% of
the configurations, enabling the cache yields a speed-up. Exceptions are the “matrix2” benchmarks
and few configurations of the FFT benchmark; these applications only show little locality. For all
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Fig. 10. Ratio of runtime in contiguous mode (rseq) and runtime in interleaved mode (rint), with data cache

enabled or disabled. The results are shown as Tukey box plots: Each box describes their distribution for all

different configurations of the corresponding benchmark. The bounds of the box mark the first and third

quartiles, the band inside marks the median value. The whiskers extend to the most extreme results still

within 1.5 times the inter-quartile range from the box. Results outside that range are marked separately as

outliers.

Fig. 11. Measured runtime and cache miss stalls of the Canny benchmark for a 338 × 258 pixel image, de-

pending on the number of blocks it was split into (i.e. the number of PEs involved). Cache was enabled.
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Fig. 12. Ratio of runtimes with cache enabled and disabled. The ratio is shown for interleaved mapping, for

contiguous mapping optimised with the proposed algorithm and for contiguous mapping with the simple,

load-balancing based method. The results are again shown as Tukey box plots like in Figure 10. For most

configurations, this ratio is below 100 %, i.e., the runtime is shorter with cache enabled. One can also see

that the speed-up potential of the cache is lower for configurations that already profit from an optimised

bank assignment when the cache is disabled (cf. Figure 10(a)).

configurations, it holds that enabling the cache yields a speed-up either in both contiguous and
interleaved mode or in none of them. The figure also shows that the optimisation potential of
enabling the cache in general is lower for contiguous memory with optimised bank assignment.
This is because in interleaved mode, memory accesses have a higher cost due to performance-
degrading patterns like switching between different banks. Since the cache reduces the number of
memory accesses, its impact is determined by that cost.

In summary, it can be stated for many applications that while the cache is able to hide certain
issues like access conflicts or bank switch latencies, still better performance can be attained by
avoiding these problems altogether through the choice of an appropriate, contiguous memory
mapping. Particularly, in cases of low locality, only contiguous mapping boosts performance.

Independently of the aspect of performance improvement, contiguous mapping allows for better
static analysability [1, 3, 22, 25, 36]. As the results show, this analysability comes at a very moderate
price, the possible average performance degradation being low in most of the cases.

The runtime of the mapping algorithm itself was in the order of tens of milliseconds on an Intel
Core i7-3820 CPU based machined clocked at 3.60 GHz. This makes it very short as compared to
the overhead for code generation, compiling the code for the target platform etc.

7 CONCLUDING REMARKS

In this work, we compared contiguous and interleaved memory configurations on the Kalray
MPPA. Synthetic benchmarks showed important characteristics for the memory access delays on
this platform.

For the contiguous memory configuration, we presented a relatively simple optimisation algo-
rithm for assigning memory banks to memory blocks. This algorithm only needs little information
about the application; in particular, fine-grained profiling or in-depth static analysis are not re-
quired. Still, in real-world benchmarks we were able to attain speed-ups of up to 86 % as compared
to the interleaved configuration, while significant degradation in speed only was only observed in
a minority of the cases.
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This shows that using contiguous memory mapping is a worthwhile alternative to interleaved
mapping. With the presented algorithm, it is feasible in terms of programming effort and on the
MPPA it is at least comparable in terms of average performance. Being clearly better suited for
worst-case timing analysis is what makes it particularly attractive.

At the same time, the potential of this optimisation method has not been fully exploited yet.
In particular, the algorithms could be clearly enhanced by adding static analysis, for instance for
determining the actual accesses the tasks perform to memory blocks.
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