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Recent industrial trends favor the adoption of multi-core architectures for mixed-criticality applications. Al-

though several mixed-criticality multi-core scheduling approaches have been proposed, currently there are

few implementations on hardware that demonstrate efficient resource utilization and the ability to bound in-

terference on shared resources. To address this necessity, we develop a mixed-criticality runtime environment

on the Kalray MPPA-256 Andey many-core platform. The runtime environment implements a scheduling

policy based on adaptive temporal partitioning. We develop models, methods and implementation princi-

ples to implement the necessary scheduling primitives, to achieve high platform utilization and to perform

a compositional worst-case execution time analysis. The bounds account for scheduling overheads and for

the inter-task interference on the platform’s shared memory. Using realistic benchmarks from avionics and

signal processing, we validate the correctness and tightness of the bounds and demonstrate a high platform

utilization.

CCS Concepts: • Computer systems organization → Embedded software; Real-time operating systems;

Real-time system architecture;

Additional Key Words and Phrases: multi-core, mixed-criticality, adaptive temporal partitioning, MPPA-256

ACM Reference format:

Roman Trüb, Georgia Giannopoulou, Andreas Tretter, and Lothar Thiele. 2017. Implementation of Partitioned

Mixed-Criticality Scheduling on a Multi-Core Platform. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 122

(September 2017), 21 pages.

https://doi.org/10.1145/3126533

1 INTRODUCTION

The prevalence of multi-core architectures in the electronic market has led to an ongoing shift from
single-core to multi-core designs even in safety-critical domains, such as avionics and automotive.
Safety-critical systems are often mixed-criticality systems, in which applications with different
safety criticality levels are hosted on a common platform.

Although theoretic aspects of mixed-criticality multi-core scheduling have been studied, there
is a lack of implementations on hardware that demonstrate efficient resource utilization and the
ability to bound interference on shared resources. In this work, we describe models, methods
and implementation principles that enable the deployment of mixed-criticality applications on
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multicores with a high degree of predictability and efficiency, such that real-time guarantees are
provided for all applications and a high utilization of the platform resources is possible. We ac-
complish this based on three key design factors:

Adaptive temporal partitioning. Our multi-core scheduling approach reduces the complex-
ity of interference analysis by applying global temporal partitioning, i.e. by allowing only appli-
cations of the same criticality to utilize the platform resources at any time [4, 11, 13]. For efficient
resource utilization, the schedule of the temporal partitions can be dynamically adapted at runtime
to react to occasionally higher resource demand (from high-criticality applications). Timing pre-
dictability is enabled by (i) eliminating interference among applications with different criticality
by construction, (ii) restricting interference to statically known task sets, (iii) avoiding complex
scheduling primitives with potentially high overheads, like task migrations.

Efficient implementation of scheduling primitives. The successful deployment of mixed-
criticality applications on multi-core architectures depends on the ability to implement scheduling
primitives, such as inter-core synchronization and dynamic scheduling adaptations, with bounded
and low overhead. Sigrist et al. showed that the overhead of mixed-criticality mechanisms can have
a substantial influence on schedulability [20]. To avoid this, we describe efficient and predictable
primitives for the implementation of adaptive temporal partitioning on the MPPA-256 Andey [7],
such as synchronization across cores and time-triggered execution.

Bounded interference on shared resources. Bounding the tasks’ mutual delays due to inter-
ference on shared resources is highly complex, see [6]. We show how implementing adaptive tem-
poral partitioning on the MPPA-256 Andey can lead to a tight bounding of such delays. In addition,
we experimentally validate the usefulness and correctness of the underlying system abstractions.

The adaptive temporal partitioning has been addressed in the work of Giannopoulou et al. [11].
Our work mainly focuses on the last two design factors, the efficient implementation of sched-
uling primitives and the bounded interference on shared resources. Note that although existing
mixed-criticality policies [4, 11] implement adaptive temporal partitioning, so far there has been
insufficient empirical evidence on whether these two goals can be achieved on available multi-
cores. By presenting the first deployment of adaptive temporal partitioning on a timing-predictable
many-core platform, we show that this approach is indeed a viable solution to mixed-criticality
scheduling. Our main contributions can be summarized as follows:

• We propose and compare different implementations of scheduling primitives on the MPPA-
256 Andey platform. Based on measurements, we bound the overhead of the different im-
plementations and select the ones with minimal overhead.

• We present a worst-case timing analysis which accounts for the runtime overheads and
the worst-case interference on the memory paths of the MPPA-256 Andey platform. This
allows us to provide real-time guarantees for scheduled task sets with bounded execution
time and resource access requirements.

• With a set of industrial-representative benchmarks, we perform a case study with measure-
ments to demonstrate the efficient implementation of our scheduling framework as well as
to evaluate the bounds of the worst-case timing analysis.

2 RELATED WORK

The deployment of mixed-critical applications on multicores remains challenging due to the inter-
core interferences on shared platform resources and the difficulty in bounding their effect on the
execution time of real-time applications.

One approach is to extend the notion of strict temporal and spatial partitioning of the ARINC-
653 standard for single-core systems to multicores. Several works [14, 24] attempt this. Fisher [10]
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proposed a (certified) operating system for partition scheduling. Such approaches are restricted to
platforms with hardware and OS support for partitioning, unlike adaptive temporal partitioning
which achieves it through scheduling, and they often result in resource under-utilization.
Anderson et al. [5, 15, 16] implemented the MC2 framework with different scheduling policies for
different criticality levels. This framework allows partitions with different criticality to run in par-
allel, however interference on shared platform resources is not formally bounded like in our work.

Another line of research allows applications of different criticalities to execute in parallel, but
imposes restrictions on resource arbitration to bound the delays that tasks suffer due to con-
tention. Yun et al. proposed software-based memory throttling and a memory bandwidth reserva-
tion scheme with online reclamation support [28]. Hardware modifications to shared memory
controllers for mixed-criticality systems were proposed in [12]. The authors of [9, 27] imple-
mented data partitioning to disjoint DRAM banks to minimize inter-core interference on bank
arbiters. Furthermore, Kim et al. combined bank partitioning with shared last-level cache partition-
ing [15]. Such mechanisms ensure bounded interference among criticality levels. However, some
approaches suffer from limited flexibility, e.g. [28], many require hardware support, e.g. [12], and
finally, most approaches target bus-based systems-on-chip rather than hierarchical cluster-based
architectures, like the MPPA-256.

A third approach for bounding interference on mixed-criticality multi-core designs is Isolation
Scheduling (IS) [13]. The key idea is, instead of fine-grained resource arbitration, to only permit
tasks of the same criticality to execute concurrently. This way, IS policies [4, 11, 13] avoid inter-
criticality interference, while exploiting parallelism. Adaptive temporal partitioning is a special
IS case, where task preemptions and migrations are not permitted. To the best of our knowledge,
we present the first implementation of adaptive temporal partitioning on a many-core platform
designed for timing predictability. From an implementation perspective, close to our work are
the scheduling frameworks of [3, 19]. Unlike our work, the authors eliminate all possible sources
of interference on shared resources by adopting spatial and temporal partitioning of cores and
memory banks [19] and/or by dedicated execution models with computation and resource access
phases [3]. Although the scope of these works is more general, as they utilize several compute
clusters of the MPPA-256, eliminating contention on shared resources can have a significant effect
on schedulability. Our work shows that a high utilization is feasible by allowing contention among
same-criticality applications.

3 SYSTEM AND SCHEDULING MODEL

First, we present the considered application model in general without any constraints on the tem-
poral partitioning. We continue with an explanation of the adaptive temporal partitioning sched-
uling policy and summarize the task mapping optimization used in this work.

3.1 Mixed-Criticality Task Model

We consider a mixed-criticality task set τ = {τ1, . . . ,τn } executed on a shared-memory multi-core
architecture. We define for simplicity a dual-criticality system, where the criticality levels are de-
noted as high (HI) and low (LO) [2], although our scheduling framework supports more than two
criticality levels. Each task τi ∈ τ is characterized by a tuple τi = {Ti ,Di , χi ,Ci (LO),Ci (HI)}, where
Ti ,Di ∈ N+ denote the period and relative deadline, χi ∈ {LO,HI} the criticality level and Ci , the
execution profile. Ci = (ei , μi ) consists of an upper bound on the task’s execution time (ei ) and
the number of shared memory accesses (μi ). The execution time ei is specified when τi runs in
isolation, i.e. without considering the delay it may experience due to contention on the shared
memory. The two parameters of the execution profile (ei and μi ) can be obtained by static analysis
tools [1] or estimated by profiling and measurement [18]. Each task has two execution profiles, at
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different assurance levels [25]. For high-criticality tasks, the HI execution profile Ci (HI) is more
conservative compared to the LO execution profile Ci (LO) since at a higher assurance level more
stringent safety guarantees need to be provided.

The dual-criticality system can operate in two modes. In LO (default) mode of the system, all
tasks are scheduled according to their LO execution profile Ci (LO). If at least one high-criticality
tasks runs according to its HI-level profileCi (HI), e.g. because the functionality requires more com-
putation time or memory accesses, from then on the system switches (temporarily or permanently)
to HI mode. In HI mode, high-criticality tasks require more resources, i.e. if χi =HI: ei (HI) ≥ ei (LO)
and μi (HI) ≥ μi (LO). Low-criticality tasks may need to execute in degraded mode, i.e. with reduced
functionality, to preserve the system schedulability if the system is in HI mode. Execution in de-
graded mode is specified by Ci,deд = Ci (HI), i.e. if χi = LO: ei (HI) ≤ ei (LO) and μi (HI) ≤ μi (LO).

In this work, the tasks of one criticality level are grouped together and are executed separated
from tasks of different criticality level(s) (explained in more detail in Section 3.2). For simplicity,
we assume that the first job (task instance) of all tasks is released at time 0 and that the relative
deadline of τi is equal to its period, i.e., Di = Ti . Precedence constraints may exist among tasks
with equal periods and criticality levels as long as the resulting dependencies are acyclic. Finally,
we define the total utilization of a periodic dual-criticality task set τ as the maximum utilization
across LO and HI execution mode:

U = max
{
U LO

LO (τ ) +U LO
HI (τ ),U HI

LO (τ ) +U HI
HI (τ )

}
(1)

where U
y
x (τ ) represents the total utilization of the tasks with criticality level x for their y−level

execution time (in isolation), i.e. U
y
x (τ ) =

∑
χi=x ei (y)/Ti .

3.2 Adaptive Temporal Partitioning

Adaptive temporal partitioning is a special case of Isolation Scheduling (IS) [13] for co-hosting
tasks of different criticality levels, e.g. mixed-criticality task sets on shared-resource multicores,
such that no timing interference among tasks of different criticality levels exists [4, 11, 13]. The
rest of the paper is based on a representative policy for adaptive temporal partitioning, namely
Flexible Time-Triggered and Synchronization-based (FTTS) scheduling [11], as it is one of the few
non-preemptive IS policies and hence can be implemented on the MPPA-256 whose cores do not
support context switching/multitasking.

An FTTS schedule repeats over a scheduling cycle P equal to the hyperperiod of the tasks in τ .
A simple example with two scheduling cycles is depicted in Figure 1. Each cycle consists of fixed-
size frames (set F ) which start periodically at predefined time points. Each frame is divided further
into two flexible-length sub-frames, the first containing only high-criticality tasks (HI sub-frame)
and the second containing only low-criticality tasks (LO sub-frame). The beginning of frames and
sub-frames is synchronized among all cores. Within a frame, the HI sub-frame begins immediately.
The LO sub-frame begins once all tasks of the HI sub-frame complete execution across all cores.
Synchronization for switching from the HI to the LO sub-frame is achieved dynamically via a
barrier mechanism, for efficient resource utilization. Namely, if the HI sub-frame completes earlier
than statically expected, the platform can be used by the tasks of the following criticality level,
without wasting resources. Within the sub-frames, tasks are scheduled sequentially on each core
following a predefined order. The mapping of tasks to cores and sub-frames is determined offline,
see Section 3.3.

We use sfLength( f ,k, LO) (resp. sfLength( f ,k,HI)) to denote the worst-case length for the k-th
sub-frame of frame f ∈ F , when the tasks execute in their LO (resp. HI)-level execution profile.

At runtime, the FTTS scheduler monitors the actual length of the sub-frames. If the length
of the HI-criticality sub-frame does not exceed sfLength( f , 1, LO), it triggers normal execution
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Fig. 1. Two consecutive FTTS scheduling cycles (P = 100), with 2 frames (Lf1
= Lf2

= 50) divided into flexible-
length HI and LO sub-frames. Frame f1 runs in LO mode in the first cycle and in HI mode in the second cycle.
(For the ease of illustration, we chose to only have 2 frames in each scheduling cycle in this figure.)

of tasks in the LO-criticality sub-frame (LO mode). However, if the length of the HI-criticality
sub-frame exceeds sfLength( f , 1, LO), the tasks of the LO sub-frame are triggered in degraded
mode (HI mode). A LO to HI mode switch affects the execution of LO-criticality tasks only for the
current frame. Note that if an overrun of a single task in the HI-criticality sub-frame occurs but
the HI-criticality sub-frame does not exceed sfLength( f , 1, LO), the HI-criticality sub-frame does
not overrun and it therefore does not affect the execution mode of the following LO-criticality
sub-frame. After the completion of all tasks in the LO-criticality sub-frame the cores remain idle
until the next frame starts.

We consider a schedule feasible, i.e. all tasks are guaranteed to meet their deadlines, if in every
frame f ∈ F (with fixed length Lf ), the last sub-frame completes by the end of the frame in either
LO or HI mode (result from [11]), i.e. if ∀f ∈ F :

max

{
sfLength( f , 1, LO) + sfLength( f , 2, LO),
sfLength( f , 1,HI) + sfLength( f , 2,HI)

}
≤ Lf (2)

Finding a feasible FTTS schedule for a given task set τ can be performed by the optimization frame-
work of [11] which we summarize in Section 3.3. A method to determine sfLength is presented in
Section 6.

Note that the deployment of FTTS on a multi-core platform requires support for global time
synchronization for time-triggered frame activation, inter-core barrier synchronization, inter-core
communication for the implementation of dynamic scheduling decisions and static per-core sched-
ule tables. Efficient and predictable implementations of scheduling primitives are examined in this
paper.

3.3 Task Mapping Optimization

In this section, we shortly review the optimization framework that is used to determine the FTTS
schedules offline and which has been presented in [11]. The input of the optimization framework
consists of the specification of the following components: task set (period, deadlines, criticality
levels, worst-case execution profiles (LO and HI)1 when the tasks run in isolation) of all tasks in
the task set, memory interference model (including bounds) of the shared memory architecture,
bound on the scheduling overheads (see Section 5), and number of active cores.

1See Section 7.1 for an exemplary definition of the execution profile parameters which we use in our case study.
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Fig. 2. The two methods of the optimization framework to generate variations of the current solution.

As a result, the optimizer provides FTTS schedules which define the spatial and temporal par-
titioning of the tasks. The spatial partitioning specifies the mapping of each task to a core and
the temporal partitioning defines the mapping of each job to a sub-frame and the execution order
of all jobs inside a sub-frame. We use the resulting schedules to execute the task sets in our case
study in Section 7.

The optimization targets a solution which satisfies the real-time requirements of all the tasks
in both LO and HI mode, respects the dependencies between tasks, and for which the workload
is balanced among the cores. Thus, the main objective is to minimize the worst-case sub-frame
length of all sub-frames.

The FTTS cycle length and the FTTS frame length can be determined by three methods: (i) they
can be chosen by the developer, (ii) they can be determined based on the input of the optimizer or
(iii) they can be subject to optimization themselves. For simplicity, in our work, we use the second
method, i.e. the FTTS cycle length is equal to the hyperperiod (the least common multiple of the
periods) of the tasks. The frame length is the greatest common divisor of the periods of the tasks.

Technically, the optimization is based on simulated annealing. First, a random solution that
satisfies the constraints is generated. Starting with this first solution, the design space is explored.
For this, a variation of the current solution is generated by using randomly one of the following
two methods (depicted in Figure 2):

• Task re-mapping: All jobs of a randomly selected task are re-mapped to a randomly se-
lected different core.

• Job re-mapping: One job of a randomly selected task is re-mapped to a different sub-frame
or to a different position in the same sub-frame.

The final solution is the solution with minimal worst-case sub-frame length out of all solutions
explored in the simulated annealing process. It is not guaranteed that the final solution actually
satisfies the real-time requirements. Therefore, the optimization framework marks the solution as
feasible or infeasible, as defined by Equation (2).

4 KALRAY MPPA-256

We present an overview of the Kalray MPPA-256 with emphasis on the memory system, which
is important for the timing analysis in Section 6. More details on the MPPA-256 architecture and
runtime environment can be found in [7].
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Fig. 3. Memory path from one processing pair to one memory bank on the left or right side of an MPPA-256
Andey compute cluster.

Architecture: The Kalray MPPA-256 Andey processor integrates 256 processing cores (PE) and
32 resource management (RM) cores, which are distributed across 16 compute clusters and four
I/O sub-systems. Inter-cluster communication is supported by a network-on-chip (NoC).

A compute cluster includes 16 processing cores and one resource management core, each with a
private instruction and data cache. Each of the caches is 2-way set associative and has a size of 8 KB.
All cores implement the same VLIW architecture and execute at 400 MHz. Each cluster has a local
2 MB SRAM memory, which is organized in 16 independent banks with a dedicated access arbiter
for each bank. The memory banks are arranged in two sides (left, L and right, R) of 8 banks. Each
memory bank arbiter is connected to 12 masters: the NoC Rx interface, the NoC Tx DMA engine,
a debug support unit (DSU), the resource management core and 8 processing pairs. A processing
pair consists of two neighboring processing cores. As shown in Figure 3 (for simplicity, only for
processing pair 1), the access path from a processing core to a memory bank passes through three
request arbiters. The path starts with a bus shared by the cores of the processing pair. Access to this
bus is arbitrated round-robin among the two data caches (DC) and the two instruction caches (IC)
of the cores. Each processing pair has two buses, one for each side. This means that if the two cores
of the processing pair need to access simultaneously two memory banks on different sides, there
is no interference on the bus level. The buses of the processing pairs, along with all other masters
are connected to the bank arbiters, which implement a non-preemptive round-robin arbitration
scheme with higher priority for NoC Rx (illustrated by the two-stage arbitration on Figure 3).

Runtime Environment: The runtime environment used in this work (Accesscore 1.4) sup-
ports two programming modes for the cores of a compute cluster. OS mode features a light-weight
operating system and precompiled POSIX libraries for thread management and synchronization.
Bare-metal mode (BM) offers complete low-level control of the platform to the programmer, yet
at the cost of increased programming effort. In OS mode, the code is launched on processing core
PE1 of a cluster. This core can then spawn POSIX threads on the remaining 15 compute cores, PE2
to PE16 (maximum one thread per core). The resource manager of each cluster hosts the operating
system and is involved in the management of interrupts, NoC access requests and system calls. In
BM mode, the code is automatically launched on the resource management core of the cluster, so
all 16 processing cores PE1 to PE16 can be used for application execution.

5 IMPLEMENTATION OF FTTS SCHEDULING PRIMITIVES

The first goal for a successful deployment is to implement the scheduling primitives with bounded

and low overhead. In this section, we first discuss the basic components and properties of our
runtime environment followed by an evaluation of different methods to implement the scheduling
primitives.
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Table 1. Overview of the Different Implementation Approaches for the Three
Scheduling Primitives

OS BM
Time-triggered activation nanosleep custom busy–wait

cond_timed_wait
custom busy–wait

Barrier synchronization pthread_barrier_wait custom barrier sync
Communication of pthread_barrier_wait custom barrier sync
scheduling decision + shared variable + shared variable

5.1 Overall Structure

Our runtime environment is implemented in the OS as well as in BM programming mode in order
to investigate the overhead of each mode. The runtime environment features a scheduler thread,
mapped on processing core 1 (PE1) of a compute cluster in OS programming mode (resp. on the
resource management core in BM mode), and 1 to 15 (resp. 1 to 16) worker threads, mapped on
processing cores PE2 to PE16 in OS mode (resp. PE1 to PE16 in BM mode). The scheduler thread
is responsible for enforcing the time pattern (starting times of FTTS frames and cycles) of an
FTTS schedule (timekeeping), synchronizing the beginning of each FTTS frame with the worker
threads, performing dynamic decisions at runtime and communicating them to the worker threads.
The FTTS schedule is stored in the shared memory of the cluster and can be read by all threads
running on the cores of the cluster.

The worker threads are responsible for executing sequentially the functions that implement
the task functionality in each FTTS sub-frame and synchronizing with the scheduler thread when
all functions are executed. Each worker thread has access to its schedule table, hence activation
of individual task functions is managed without involving the scheduler. The execution of every
task function is followed by a data cache flush to ensure cache coherence. The memory address
mapping is interleaved, since all threads share libraries and scheduling information and shared-
memory inter-task communication is supported, thus making the benefits of bank privatization
under sequential address mapping unattainable.

The runtime environment, including a generic empty task, occupies approximately 890 KB out
of 2 MB of the cluster memory (OS or BM). The remaining 1150 KB can be used by the tasks that
run on the worker threads.

Adaptive temporal partitioning, such as FTTS, is based on three main primitives: (i) the en-
forcement of a predefined time pattern within a scheduling cycle, (ii) the dynamic synchroniza-
tion among all cores, e.g. upon completion of their tasks in a partition, (iii) the communication
of dynamic decisions of the scheduler to all cores. In the following, we examine different imple-
mentations on the MPPA-256 and the corresponding overheads for each of the three necessary
scheduling primitives. Table 1 provides an overview of the different implementation approaches.

5.2 Time-Triggered Activation of FTTS Frames

In general, timekeeping can either be done by a scheduler which notifies the worker threads, when
to start the execution using barrier synchronization, or timekeeping is done by the individual
worker threads which start the next frame independently, based on their schedule. The second
approach exhibits less overhead since it does not need barrier synchronization. On the other hand,
the clocks of the worker thread cores need to be synchronized and it is more challenging to handle
frame overruns. In our implementation we use a scheduler that does timekeeping. In case of a frame
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overrun the activation of the next frame is automatically delayed with the barrier synchronization
until the overrun task completes execution.

During the time period starting with the end of the last sub-frame of the previous frame until
the beginning of the new frame, the scheduler has to wait. We examined the following methods
to do this:

OS: For OS mode we examined (i) the POSIX function nanosleep, which is called after the
completion of the last sub-frame with the remaining time until the end of the frame as input argu-
ment, (ii) the POSIX function cond_timed_wait which is configured at the beginning of the frame
with an absolute value indicating its exact completion time, and (iii) a custom busy-wait function
which is called upon completion of the last sub-frame and performs assembler nop operations for
the remaining time until the next frame starts.

BM: In BM mode the POSIX functions are not available and therefore we only implemented the
custom busy-wait function.

The call of the POSIX functions often leads to the scheduler “waking up” hundreds of cycles
later than expected. In contrast, the custom busy-waiting approach is highly accurate, resulting in
negligible offsets (in the order of tens of clock cycles as estimated based on measurements) from
the expected frame completion time. Therefore, we use the custom busy-wait implementation for
OS and BM programming mode.

5.3 Barrier Synchronization

We use barrier synchronization to synchronize between the scheduler and the worker threads.
In our case, a thread has to stop at a barrier until all other threads, i.e. scheduler and worker
threads, have reached the barrier. A barrier synchronization is performed at the beginning of the
HI-criticality sub-frame and upon completion of each sub-frame. Our runtime environment sup-
ports two alternative implementations:

OS: In OS mode we make use of the POSIX function pthread_barrier_wait.
BM: In BM mode, we implemented a custom function using hardware event lines which connect

every processing core directly to the resource management core of a cluster.
Figure 4(a) and Figure 4(b) depict the statistical distribution (box-plot) of the overhead of the

two implementations as a function of active cores, based on measurements. For the measurements
we used an FTTS schedule, consisting of two frames, with two sub-frames each. In each sub-frame,
one or two instances of a single task run on every worker thread. The task performs busy waiting
for 2 μs. The FTTS schedule was executed on the MPPA-256 for 100,000 scheduling cycles (in total
200,000 frames). For each FTTS sub-frame, we measured the interval between the completion of the
last task of the sub-frame and the completion of barrier synchronization as seen by the scheduler
thread (osync in Figure 5). Repetitions of the experiment with other schedules (with different busy
waiting interval or different tasks from Section 7) produced similar results. Therefore, we consider
it a realistic upper bound for the barrier synchronization overhead in our experiments. Note that
the overhead of the custom implementation (BM) is an order of magnitude lower than that of the
POSIX function call (OS).

5.4 Communication of Scheduling Decision

This operation is performed upon completion of the HI sub-frame in a frame. After barrier syn-
chronization, the scheduler checks the elapsed time since the beginning of the HI sub-frame. If
the sub-frame duration surpasses a statically determined value (function sfLength), the scheduler
notifies all worker threads to run the tasks of the following LO sub-frame in degraded mode. Our
runtime provides two alternative implementations for this notification:
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Fig. 4. Runtime overheads of scheduling primitives on MPPA-256 (200,000 measurements). On each box,
the central mark, bottom and top edges indicate the median, 25th and 75th percentiles, respectively. The
whiskers extend to 10 times the interquartile range. Outliers are denoted with circles.

Fig. 5. Timing diagram for one FTTS schedule frame.
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OS: In OS mode, we use the POSIX function pthread_cond_wait along with conditional vari-
ables and mutex locks for blocking the worker threads until a decision is made by the scheduler.

BM: In BM mode, we implement the functionality using a custom function which makes use of
the hardware event lines. The same mechanism is used as for barrier synchronization in BM mode.

The scheduler writes the decision in a global variable in memory and broadcasts a signal to
all processing cores afterwards. Due to the lack of hardware support for cache coherence, the
data structures that are shared between the scheduler and the worker threads as well as other
data structures that can be modified at runtime are non-cachable, i.e. they are loaded/stored by
bypassing the local cache.

The statistical distribution (box-plot) of the overhead of the two implementations for the same
experiment as before (over 100,000 scheduling cycles of the FTTS schedule), is depicted in Fig-
ure 4(c) and Figure 4(d). The overhead is defined as the measured interval between the completion
time of barrier synchronization at the scheduler thread and the latest starting time of a task in the
LO sub-frame (ocomm in Figure 5).

The difference is significant, with the OS implementation having up to 52 times higher maximal
overhead than the BM implementation. One possible factor for the higher overhead is related to
the data cache flush, which automatically follows the call of POSIX synchronization functions
due to the lack of hardware cache coherence protocols. In BM mode, such a flush operation is
unnecessary since the scheduler writes explicitly its decision in shared memory (bypassing the
cache) and similarly, the worker threads read it directly from the memory. Note also the variance
of the measured OS overhead, spanning a range of more than 9000 clock cycles for 16 active cores.

6 WORST-CASE TIMING ANALYSIS

The previous section focused on the first goal which is addressed in this work, i.e. the ability to
(experimentally) bound the overhead of scheduling primitives. In this section, we investigate also
the second goal, i.e. the ability to bound the worst-case delays that tasks experience due to memory
contention. The fact that MPPA-256 fulfills [7] the property of timing compositionality [26] enables
bounding the delays due to contention on the shared cluster memory.

In the following, we propose a method for the computation of function s f Lenдth, i.e. for the of-
fline estimation of the worst-case sub-frame lengths of a given FTTS schedule. The timing analysis
accounts for the runtime overheads of the scheduling primitives and for the task execution delays
on the shared memory path of an MPPA-256 cluster. In order to determine the s f Lenдth function,
the following parameters are required to be known: the tasks’ profiles (measured in isolation), the
worst-case delay of the memory path and the scheduling overheads.

6.1 Impact of Runtime Scheduling Overheads

Figure 5 presents a timing diagram of an FTTS schedule for a single frame with two sub-frames. The
thick lines indicate the start and the completion of barrier synchronization as seen by the scheduler
thread at the beginning of the frame, at the end of each sub-frame and at the end of the frame. We
identify the following runtime overheads that have an impact on the actual length of the FTTS sub-
frames: (1) barrier synchronization denoted as osync and (2) communication of scheduling decision

denoted as ocomm . Barrier synchronization overhead must be considered in both sub-frames, since
barrier synchronization is used to signal the start (HI sub-frame only) and to detect the completion
of the task execution (HI and LO sub-frame). The communication overhead includes the time to
compute and store the scheduling decision in a shared variable, the time to signal the start of the
task execution and the time to read the scheduling decision by all computing threads. It has be
considered only in the LO sub-frame.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 122. Publication date: September 2017.



122:12 R. Trüb et al.

Let WCETi (�) denote the worst-case execution time of a task at profile � ∈ {LO,HI}, when it
executes in parallel with other tasks (considering all possible interference delays), m the number
of active cores in an FTTS schedule, and S (c, f ,k ) ⊆ τ the set of tasks executing on core c in the
k-th sub-frame of frame f . The worst-case length of sub-frame k ∈ {LO,HI} in f can be expressed
as:

sfLength( f ,k, �) = o(k ) + max
1≤c≤m

⎧⎪⎪⎨⎪⎪⎩
∑

τi ∈S (c,f ,k )

WCETi (�)
⎫⎪⎪⎬⎪⎪⎭

(3)

where the overhead o(k ) is defined by

o(k ) =

{
2 · osync if k ≡ HI
osync + ocomm if k ≡ LO

6.2 Impact of Interference on Shared Memory

The problem of bounding the worst-case execution time of tasks under FTTS scheduling and mem-
ory contention on the MPPA-256 was investigated in [11]. However, their shared memory model
differs from the model of Section 4 by not accounting for timing interference on the shared bus
between the cores of a processing pair. Here, we extend the timing analysis of [11] to account for
this additional source of interference and guarantee safe execution time bounds (assuming that the
task execution profiles are safe, too). Note that Skalistis et al. [21] used a similar memory model as
in Section 4 for WCET analysis, yet assuming dataflow-based scheduling, where certain tasks can-
not interfere due to precedence constraints. For our analysis, we assume enabled data caches and
interleaved memory address mapping, which is the default configuration in our runtime environ-
ment. The latter leads to conservative WCET bounds, which can be refined if sequential address
mapping is applied with a known allocation of data to memory banks. Additionally, we assume
that there are no memory access requests generated by the NoC Rx, NoC Tx, the debug support
unit or the resource management core of a compute cluster during the task execution phase. In
our framework we achieve this by not using the corresponding components.

Under these assumptions and given the memory model of the MPPA-256 Andey architecture,
every memory access request of a task can be delayed at two points: (i) on the shared bus of the
processing pair where the task is executed, by pending requests from the other three caches (in
the worst-case, all requests target banks on the same side), (ii) on the round-robin arbiter of the
target bank, by pending requests from the other seven processing pairs (see Figure 3).

Following the previous discussion, the WCETi (�) of task τi which runs in processing pair 1 ≤
p ≤ 8 can be upper-bounded by:

WCETi (�) = ei (�) + μi (�) · ��Ncaches (p) ·
8∑

j=1

active (j ) − 1
��
�Tacc (4)

where the first term is the worst-case execution time and the second term specifies the worst-case
delay due to interference on the memory path. Ncaches (p) denotes the number of active caches
(data and instruction caches) in the processing pair p to which τi is mapped. If there is at least
one task running on the neighboring core in the same sub-frame as τi , then Ncaches (p) = 4, oth-
erwise Ncaches (p) = 2. Function active (p) returns 1 if there is at least one task running in pro-
cessing pair p in the same sub-frame as τi . Ncaches (p) and active (p) are derived based on the
FTTS schedule which is obtained by the task mapping optimizer. On the MPPA-256, in the worst-
case all four caches of the processing pair are active (Ncaches (p) = 4) and at least one core is ac-
tive (active (p) = 1) in each of the seven interfering processing pairs. In this case, the term in the
brackets in Equation (4) evaluates to 31 which means that a memory access is delayed by 31 other
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memory accesses until it can be served in the worst-case. Finally, Tacc is an upper bound on the
latency of a single memory access (under no contention).

Recall that the execution profile Ci (�) of a task τi contains its worst-case execution time ei (�)
when τi runs in isolation and the maximum number of memory access requests μi (�) that it can
generate. The corresponding numbers for the different execution profiles of our benchmark tasks
are discussed in Section 7.1.

If several jobs of τi are scheduled in different sub-frames of an FTTS schedule, then multiple
WCETi (�) values exist depending on the tasks that run in parallel in each sub-frame. By using these
values in Equation (3), we can bound the worst-case sub-frame lengths in LO and HI execution
mode and validate the feasibility of any given schedule according to Equation (2).

Empirical Estimation of Single Memory Access Latency. In order to derive the memory
access latency boundTacc on the Kalray-MPPA 256 Andey processor, different assembly code snip-
pets were executed in bare-metal mode with interleaved memory address mapping. The execution
time of the code was measured using a hardware cycle counter. All experiments were run twice in
a row, with a first run to load all code into the instruction cache and the second run for the actual
measurement.

We conclude from the performed benchmark that a memory access has a latency of 10 cycles,
however loading an entire cache line requires 14 cycles. If the accesses are executed too quickly
in a row (less than 4 cycles between two accesses), the processor stalls until the last cache line
operation is finished, i.e. for 14 cycles. In this way, we derived the memory access latency Tacc =

14 cycles, which is used in the empirical evaluation (Section 7).

7 CASE STUDY

This section presents the experiments that were performed on the MPPA-256 to empirically val-
idate the worst-case timing analysis of Section 6 and to evaluate the schedulability loss due to
the temporal partitioning (FTTS) constraints, the scheduling overheads and the mutual delays of
co-running tasks on the shared memory.

The experimental framework enables: (1) specification of a mixed-criticality application, (2) au-
tomatic generation of a feasible FTTS schedule, as defined by Equation (2) (if one exists), (3) de-
ployment of the FTTS schedule on an MPPA-256 cluster for a given number of scheduling cycles,
(4) post-processing and statistical analysis of collected profiling data. The framework that executes
the FTTS schedule repeatedly on the MPPA-256 and collects and post-processes profiling data has
been built upon an existing C++ runtime environment for static dataflow applications [22].

The timestamps for profiling are collected by the scheduler thread at the beginning and end of
each frame and sub-frame and by the worker threads at the beginning and end of each executed
task. The timestamps are obtained by using the performance and monitoring counter (PMC). The
offset which the PMC counters of the different cores exhibit among each other is compensated by
measuring and subtracting the offset from the obtained timestamps.

7.1 Benchmark Applications

For the evaluation, we used the following four different sets of benchmarks:

• The flight management system (FMS) [8] is a safety-critical application. We used an
industrial-representative implementation of an FMS sub-set, consisting of one task
(sens_c1) which periodically reads (hard-coded) sensor data and four tasks (loc_cx) which
compute the current aircraft location based on the data. The tasks communicate through
shared memory, but their read/write operations are non-blocking. This means that they
read the previous data if no new data is available.
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Table 2. Specification and Execution Profiles of the Benchmark Tasks

App Task τi
Crit. Period Execution DCache
χi Ti (ms) Cycles ei misses μi

FM
S

sens_c1 HI 5 14803 105
loc_c1 HI 5 8335 85
loc_c2 HI 40 2361 43
loc_c3 HI 40 11134 95
loc_c4 HI 40 2241 53

R
O

SA
C

E

engine HI 5 1294 9
elevator HI 5 1280 11

aircraft_dynamics HI 5 9232 34
h_filter HI 10 1302 13
az_filter HI 10 1341 12
Vz_filter HI 10 1334 12
q_filter HI 10 1289 12

Va_filter HI 10 1321 12
altitude_hold HI 20 1269 9
Vz_control HI 20 1275 12
Va_control HI 20 1303 11

St
re

am
It

matmult LO 5 56477 157
fft LO 5 19668 103

bitonic_sort LO 5 200198 95
insertion_sort LO 5 77203 135
dct_2D_coarse LO 5 59833 138
idct_2D_coarse LO 5 56222 168

fm LO 5 36726 889
filter_bank LO 5 1540483 240

autocorrelation LO 5 2896 13

Synth.
busy_wait_HI HI 5 80079 7
busy_wait_LO LO 5 1600061 7

• The ROSACE application [17, 19] is an open-source avionic benchmark, implementing a
longitudinal flight controller. It consists of three tasks that perform environment simulation
(pilot instructions) and eight tasks that implement the controller logic.

• For the class of lower-criticality applications, we used nine benchmarks from the StreamIt
suite [23] since most of them represent computation- and memory-intensive applications.

• Finally, we implemented two synthetic tasks, which simply perform busy waiting for 200 μs
and 4 ms, respectively.

All benchmarks were implemented such that their code and data fit into the memory of a com-
pute cluster, without the need to access the memory space of other compute clusters or I/O sub-
systems. Their inputs are set during an initialization phase prior to their first execution.

The specification of all tasks is presented in Table 2. The task periods were assigned according
to their specification for high-criticality tasks (the FMS periods being down-scaled in order to get
hyperperiods of acceptable length) or randomly for low-criticality tasks. The execution profiles
were obtained through measurements on the MPPA-256. Table 2 presents the maximum execution
time and cache misses over 10,000 executions of each benchmark in isolation. The statistical

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 122. Publication date: September 2017.



Implementation of Partitioned Mixed-Criticality Scheduling on a Multi-Core Platform 122:15

distribution of the measured values is presented in Section 7.2. The worst-case parameters specify
the LO-level execution profile Ci (LO) of all tasks. For high-criticality tasks (χi = HI), we assume
Ci (HI) = Ci (LO) and for low-criticality tasks (χi = LO), we assume Ci (HI) = (ei = 0 and μi = 0).

7.2 Profiling of Benchmarks

For the derivation of the execution profiles of the benchmarks used in Section 7, we performed
extensive measurements of the tasks’ execution times and data cache misses, with the tasks run-
ning in isolation. Specifically, we used FTTS schedules, where either a single task or a sequence
of tasks under analysis ran in every sub-frame on a single core. Every execution is followed by a
cache flush. The assumption that the tasks start with an empty cache is realistic since the cache is
flushed during the schedule execution in the experiments in Section 7.3, too.

When constructing the FTTS sub-frames, we took into account that some of the tasks exhibit
their worst-case execution time depending on the output of previously executed tasks (implicit
data dependencies) by considering all possible execution scenarios. The FTTS schedules were ex-
ecuted for at least 10,000 scheduling cycles, and the maximum observed execution time and data
cache misses in Table 2 were extracted from the collected profile data. Figure 6 presents the sta-
tistical distribution of the execution time and cache miss measurements over 10,000 executions in
the form of a box-whisker-plot. Note that the measured execution times include the cost of data
cache flush, which takes place at the end of each task execution, for data coherence. This operation
costs approximately 1100 cycles. Execution time variance is relatively low for all benchmarks ex-
cept “fm”, which executes for 4.53 times its mean execution time on every 1000th execution. Cache
miss variance is also low or zero for most benchmarks, with the exception of “idct2DCoarse” and
“fm”. The large number of iterations, over which the profiling data was collected, and the consid-
eration of different inputs for tasks with input-dependent functionality provides confidence that
the obtained maximal values represent reliable upper bounds.

7.3 Metrics

In the following, we experiment with several combinations of the benchmarks with a two-fold
objective: (i) to validate whether the timing analysis of Section 6 bounds the FTTS sub-frame
lengths at runtime, and (ii) to investigate the practical limits of our scheduling approach in terms of
maximum achievable utilization. We evaluate every deployed FTTS schedule based on two criteria:

Number of frame violations: It is defined as the portion of FTTS frames in which the last
sub-frame was not completed by the end of the frame. If a frame violation happens for a feasible

schedule, this implies that either our worst-case timing analysis is incorrect or the considered up-
per bounds for scheduling overheads, single memory access latency, task execution and accessing
parameters are not safe. With our experiments, we cannot guarantee safe parameters since all of
them were acquired through measurements. For the deployment of a safety-critical system, more
rigorous methods, such as static analysis, need to be applied.

Availability: It expresses how many computational resources are available, if needed for incre-
mental design, and it is defined as:

A = (16 − Na ) + Na ·
∑
∀f ∈F

(
Lf −

∑2
k=1 sfLength( f ,k, LO)

)
P

(5)

where Na is the number of active cores (implementing the schedule) out of the 16 processing
cores of an MPPA-256 cluster and P is the period of the FTTS scheduling cycle. Availability is
a combined expression of the number of currently inactive cores and the aggregate portion of
time when all active cores are idle, which happens in each frame between the completion of the
last sub-frame and the frame end. In an ideal 16-core platform, without scheduling or memory
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Fig. 6. Profiling of benchmarks: Statistical distribution of measured values over 10,000 executions in isola-
tion. On each box, the central mark, bottom and top edges indicate the median, 25th and 75th percentiles,
respectively. The whiskers extend to 10 times the interquartile range. Outliers are denoted with circles.

interference overheads and without the constraint of temporal partitioning, A = 16 −U should
hold for any application with utilizationU as defined by Equation (1). By comparing the availability
of our deployed FTTS schedules to the “ideal” availability, we get a measure of the schedulability
loss due to the temporal partitioning constraint and the overheads of implementation on a real
platform.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 122. Publication date: September 2017.



Implementation of Partitioned Mixed-Criticality Scheduling on a Multi-Core Platform 122:17

Table 3. Benchmark Configurations and Deployment on the MPPA-256. The FTTS Schedules with (*)
were Deemed Infeasible at Design Time

Conf.
Task

U
Active cores Active cores Frame Frame

instances OS BM Viol. OS Viol. BM
C1 69 0.02 2 1 0% 0%
C2 141 1.05 3 2 0% 0%
C3 282 2.10 4 3 0% 0%
C4 399 3.09 5 4 0% 0%
C5 532 4.12 6 5 0% 0%
C6 665 5.15 7 6 0% 0%
C7 798 6.18 9 8 0% 0%
C8 931 7.20 11 9 0% 0%
C9 1064 8.23 12 11 0% 0%
C10 1197 9.26 15 13 0% 0%
C11 1213 10.10 16 15 0% 0%
C12 1229 10.94 16 (*) 16 0% 0%
C13 1245 11.78 16 (*) 16 0% 0%
C14 1261 12.62 16 (*) 16 (*) 0% 0%
C15 1277 13.46 16 (*) 16 (*) 100% 100%

7.4 Configurations

We consider 15 experimental configurations, with different combinations and number of instances
(replications) of the benchmarks. With every configuration, we increase the number of task in-
stances in order to gradually increase the utilization of the system. We do this to evaluate the
maximum achievable utilization with our framework. The goal of the task selection was to obtain
configurations which include tasks with varying execution and communication demands as well
as a large range of periods. Configuration 1 (C1) contains only the high-criticality benchmarks,
FMS and ROSACE. Configurations 2 and 3 contains the FMS, ROSACE and StreamIt benchmarks,
with one and two instances of each benchmark, respectively. Configurations 4–10 contain the
FMS, ROSACE and StreamIt benchmarks except “fm”, with three to nine instances of each bench-
mark. “fm” has been excluded due to its large memory footprint. Configurations 11–15 contain
nine instances of the FMS, ROSACE, StreamIt benchmarks and respectively {1, 2, 3, 4, 5} instances
of the synthetic benchmarks, which have a very low memory footprint. The total number of task
instances and the ideal utilization (as defined by Equation (1)) of each specific configuration are
listed in Table 3. Columns 4 and 5 of the same table show the number of active cores which have
been used as input for the FTTS optimization framework. The FTTS optimizer was able to find
feasible FTTS schedules for configurations C1 to C11 for OS deployment and C1 to C13 for BM
deployment. For the remaining configurations, it returned the best found solutions even if feasi-
bility under the timing analysis of Section 6 could not be guaranteed. All FTTS schedules have
a cycle period P = 40 ms, consisting of 8 frames with a fixed length of 5 ms each. Note that the
OS schedule employs one more active core compared to the corresponding BM schedule. This is
because in OS mode processing core PE1 is used exclusively by the scheduler thread, whereas in
BM mode this core can be used for task execution.

Using the MPPA-256 runtime environment, we deployed the best found FTTS schedule (even if
it was deemed infeasible by the optimizer) for each configuration and each execution mode (OS or
BM) on one compute cluster.
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Fig. 7. Availability of different configurations on the MPPA-256.

7.5 Experimental Results

The last two columns of Table 3 show the ratio of frame violations detected during deployment. Fig-
ure 7 illustrates the availability metric. For comparison purposes, three computations of availabil-
ity are depicted: (i) the “ideal” availability, considering no overheads, interferences or partitioning
constraints, which is equal to 16 −U , (ii) the “analytic” availability of an FTTS schedule, computed
by the FTTS optimization framework Equation (5) based on our worst-case timing analysis, and
(iii) the “measured” availability which corresponds to the minimum availability of a deployed FTTS
schedule, based on the profile data of our runtime environment after 10,000 scheduling cycles. In
the last case, Lf and

∑
∀f ∈F sfLength( f ,k, LO) in Equation (5) are substituted by the actual frame

length and the completion time of the last sub-frame of a frame in each scheduling cycle.
Frame Violations: For the FTTS schedules that were deemed feasible offline, i.e. up to C11

(OS) and up to C13 (BM), there was no frame violation at runtime. Frame violations occurred only
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for infeasible schedules at high utilizations (C14, C15 in Table 3). For feasible BM schedules, we
detected in total 9 HI sub-frame overruns over 130,000 scheduling cycles (1,040,000 frames), leading
to 9 skipped LO sub-frames (0.009‰). Sub-frame overruns occurred only in BM mode. We consider
an unusually high overhead of the scheduling primitives in BM mode as the most probable cause.
Note that the runtime reaction to the HI sub-frame overruns prevented frame violations.

By comparing the analytic versus measured availability in Figure 7, we observe that the pes-
simism of the timing analysis increases with increasing utilization, especially for OS schedules.
Note that no feasible FTTS schedules could be found for configurations C12, C13 and C14 (OS), al-
though the best found solutions were deployed successfully without any frame violations. Namely,
the maximum achievable utilization with guaranteed schedulability is 10.10 (63.1%, C11), while a
utilization of 12.62 (78.9%, C14) is practically possible without frame violations.

The pessimism in our timing analysis can stem from the over-estimation of (i) task execution
parameters, (ii) task memory accesses, (iii) scheduling overheads or (iv) memory interference. We
suspect that the scheduling overhead contributes a major part since the variance of the scheduling
overheads is high. The increasing pessimism with increasing number of active cores can be ex-
plained partly by the increasing variance of the overhead parameters and the increasing memory
interference.

Maximum Achievable Schedulability: In order to evaluate the schedulability loss that is
caused by temporal partitioning and the runtime overheads/interferences, we compare the “ideal”
to the empirical availability in Figure 7. As expected, the difference between the two metrics is
higher for OS than for BM schedules. This is because in BM mode, there is one more processing
core available for running a worker thread and the worst-case runtime scheduling overheads are
significantly lower. These two factors lead to a higher availability of the platform, closer to the ideal
bound. The maximum achievable utilization of 11.78 (73.6%, C13) with guaranteed schedulability
or 12.62 (78.9%, C14) for a practically feasible solution is a significant result.

8 CONCLUSION

We presented a runtime environment for adaptive temporal partitioning on many-core platforms.
Applicability was demonstrated based on the flexible time-triggered and synchronization-based
(FTTS) scheduling policy for periodic mixed-criticality applications. We proposed alternative im-
plementations of the scheduling primitives and evaluated them w.r.t. runtime overhead. Addition-
ally, we proposed a worst-case timing analysis methodology for evaluating the feasibility of FTTS
schedules, by accounting for scheduling overheads and the interference of co-running tasks on the
shared resources of a compute cluster. Using industrial-representative benchmarks, we were able
to validate runtime adherence to the analytic worst-case execution time bounds. We also showed
that by optimizing the implementation of the scheduling primitives, an effective utilization of
73.6% (analytically guaranteed) or 78.9% (empirically feasible) can be achieved on the 16 cores of
an MPPA-256 cluster. Adaptive temporal partitioning seems, therefore, a promising solution for
efficient and predictable safety-critical many-core systems by enabling sufficient isolation among
applications with different criticality, yet at a low schedulability cost.
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