
On platforms for CPS - adaptive, predictable and efficient

[Invited Presentation - Extended Abstract]

Lothar Thiele, Felix Sutton, Romain Jacob, Roman Lim, Reto da Forno, Jan Beutel
Dept. Information Technology and Electrical Engineering

Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland
firstname.surname@tik.ee.ethz.ch

CCS Concepts
•Networks → Cyber-physical networks; •Computer
systems organization → Sensor networks; Real-time
system architecture;

Keywords
cyber-physical systems; system design; predictability

1. CONTEXT
If visions and forecasts of industry come true then we will

be soon surrounded by billions of interconnected embedded
devices. We will interact with them in a cyber-human sym-
biosis, they will not only observe us but also our environ-
ment, and they will be part of many visible and ubiquitous
objects around us. The information that is collectively gath-
ered and analyzed is supposed to help us in our daily live,
in making faithful decisions, but it will also directly be used
for actuation and it will cause changes by means of local and
global control loops.
These systems can be regarded as massively distributed

embedded systems with sensing, processing, communica-
tion and actuation capabilities. Variations or subclasses
are known and have been thoroughly investigated under
keywords such as ”wireless sensor network (WSN)”, ”cyber-
physical system (CPS)”, and ”internet of things (IoT)”. Po-
tential application domains are too numerous to be listed
here, but some examples are in personal health and medicine
(measuring environment, context and physiological data and
providing information to various recipients), in environmen-
tal sensing (indoor and outdoor air pollution, environmental
status of our environment), building automation and con-
trol, large-scale energy distribution including micro-grids,
factory automation, logistics and surveillance.

2. REQUIREMENTS
In many of these applications we are faced with a set of

conflicting requirements. We will concentrate on the follow-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RSP’16, October 06-07, 2016, Pittsburgh, PA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4535-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2990299.2990308

ing three that are most important for developing platforms
for a large class of applications.

2.1 Resource Constraints
Many of the above mentioned application domains of

WSN, CPS or IoT systems impose fierce resource constraints
on the underlying distributed platform.

Looking at the expected number of electronic devices
around us, it becomes clear that frequently changing bat-
teries is not an option. Even if the devices are directly
connected to a sustainable power source, a high energy con-
sumption is prohibitive from an environmental protection
point of view. As a result, the average power should be below
certain bounds in order to allow for long-term autonomous,
maintenance-free, cost-effective and environment-friendly
behavior. This requirement is independent of whether
(rechargeable) batteries are used or whether a sustained op-
eration is achieved using energy harvesting.

In many application scenarios we are confronted with ad-
ditional constraints in terms of the available memory on
the various devices, computing capabilities, communication
bandwidth and responsiveness, device size and weight. Some
of these constraints are due to cost, others due to direct or
indirect application requirements such as limited available
space, unobtrusiveness of the intended devices, available fre-
quency bands and protocols for communication, or power
constraints.

2.2 Adaptive Behavior
The class of distributed embedded systems we are dis-

cussing is in a constant interaction with its environment. In
many scenarios, it is expected that the functionality adapts
due to (a) changes in the environmental context or due to
(b) requirement changes caused by user interactions. Typi-
cal examples are surveillance applications where as the result
of a change in the sensed environment a message should be
sent to some host application, the current situation will be
analysed based on the available data and as a result, other
sensor modalities may be switched on in the distributed sys-
tem. Thus, the necessary communication bandwidth as well
as the computation requirements will drastically change in
all or some of the devices. A similar change in usage sce-
narios can be found in early warning scenarios related to
environmental sensing, in building automation or in wear-
able medical/health devices.

But even if the application could be implemented without
the concept of different usage scenarios, they provide us with
an enormous potential for reducing the average power con-
sumption. Putting communication, computation, sensors

and actuators in deep sleep mode or duty-cycling/frequency-
scaling them with the right level of activity has the poten-
tial of reducing the average power without compromising
the overall functionality. As will be mentioned later, such a
mechanism imposes great challenges in the system design in
terms of predictability and reliability.

2.3 Reliability and Predictability
Scaling up the number of devices demands autonomous

operation. We have the legitimate expectation that the in-
dividual devices as well as the overall system behaves in a
reliable and predictable manner. This is an indispensable
requirement as it is infeasible to constantly maintain such
a large set of devices. In addition, there are many appli-
cation domains where we rely on a correct and fault-free
system behavior. We expect trustworthy results from sens-
ing, computation, communication and actuation due to eco-
nomic importance or even catastrophic consequences if the
overall system is not working correctly, e.g., in industrial
automation, distributed control of energy systems, surveil-
lance, medical applications, or early warning scenarios in
the context of building safety or environmental catastro-
phes. CPS and IoT will be an integral part of our society
and we will interact with the corresponding distributed de-
vices daily. Trustworthiness and reliability are mandatory
for the societal acceptance of this human-cyber interaction
and cooperation.
Predictablity and reliability concern the observable behav-

ior such as end-to-end functionality and timing, trustworthi-
ness of sensor values, expected system life-time (batteries)
or availability (energy harvesting), but they also concern all
system components including wireless communication, pro-
cessing, sensing, data-base/cloud operation, and actuation.

3. CHALLENGES
The above three requirements are in major conflict with

each other. The following observation appears to be well-
known to everyone designing this type of embedded systems:
The closer a system operates at its resource constraints the
less predictable and reliable it will behave, in general. The
reason for such a dependency between resource constraints
and reliability is quite obvious. The resource requirements
in terms of power, memory, computing and communication
change at run-time as applications typically have a time-
varying dynamic functionality. To make things worse, the
complexity of the implementation and the non-deterministic
behavior of the environment makes it very difficult to for-
mally provide correct and accurate upper bounds on the
resource usage. Design processes very often do not support
the use of formal methods that would allow to formally prove
the correctness of the design. Massive over-provisioning is
not an option either due to resource constraints. As a re-
sult, there may remain a substantial probability for non-
deterministic erroneous system behavior which is further de-
graded by the potentially enormous number of devices.
But the problem not only concerns malfunctioning in the

classical sense but also the predictability of behavior in
terms of non-functional properties such as reaction time,
real-time behavior or end-to-end timing constraints. One
application or part of an application may use resources dy-
namically that, as a consequence, are not available to other
applications. Even if this resource interference does not lead
to a system failure, it may lead to a delayed execution of

sensing, actuation, computation or communication tasks.
Besides this conflict between predictability and reliabil-

ity on the one hand and resource constraints on the other
hand, it appears that the adaptivity requirements makes
the problem even more challenging. Adapting the system
to changes in the environment at run-time requires efficient
network-wide coordination which again leads to increase re-
source usage and interference between application tasks.
The time to wake-up, turn-on components and/or consis-
tently change the operation rate adversely impacts respon-
siveness and adaptivity.

In addition, adaptivity substantially increases the non-
determinism in resource usage with negative effects on pre-
dictability and reliability as described above. One typical
example is the use of duty-cycling, different clock domains
or event-driven operation in order to increase the energy effi-
ciency. When incorporating power management techniques
in order to achieve low-energy-footprint, additional complex-
ity is added to the system, further exacerbating the effects
of resource interference.

4. APPROACH
We now present a prototyping and design process for

cyber-physical systems that attempts to overcome the above
difficulties. It is by no means the only possibility to solve
the above listed challenges. Related approaches are cited
and assessed in the referenced publications. The following
sections introduce the main underlying architectural princi-
ples and a possible testing infrastructure. All the elements
closely fit together and form a consistent design and proto-
typing process for cyber-physical systems.

4.1 FlockLab and Testing Environment
An essential part of the proposed prototyping and design

process is the availability of a suitable testing environment.
Unfortunately, distributed embedded systems are usually
hardly observable and controllable due to their resource con-
straints in terms of computing power and communication
bandwidth. On the other hand, simulation appears not to
be sufficient due to the missing system context and the high
degree of uncertainty in the system environment, e.g., qual-
ity of wireless links.

FlockLab [2] is a distributed testing and measurement in-
frastructure that is used by many research groups worldwide
to prototype new devices, nodes, communication protocols
as well as complete applications. It allows for the proto-
typing of distributed embedded systems in terms of various
functional and non-functional properties and enables realis-
tic and large-scale experiments. It combines the capability
of a logic analyzer, a serial data logger, a dynamic power
analyzer and a programmable power supply with deep lo-
cal storage and network synchronization [4]. It supports
multiple targets, and therefore allows the comparative and
explorative analysis of applications and protocols on a single
testbed.

Each FlockLab observer node is built using Linux running
on an embedded processor, an FPGA, and a SoC with an RF
core for high precision time synchronization. Event tracing
is possible with a time resolution of 0.5µs [3], a peak event
rate of 108 events/s, an average event rate of 3 ·105 events/s,
and concurrently recorded traces are aligned within 1µs with
an empirical probability of 99.9%.

4.2 Bolt and Interference Avoidance
As described above, one major difficulty is the interfer-

ence of hardware and software components in terms of time,
power and clock domains. A multitude of tasks such as read-
ing sensors, processing data, communicating over radio must
be executed concurrently and may lead to resource interfer-
ence. Tasks must compete for shared resources such as clock
cycles, memory and peripherals.
To overcome these difficulties, we propose a multi-

processor architecture whereby the tasks interact through
inter-processor communication using asynchronous message
passing [5]. This concepts allows to decouple system com-
ponents with respect to time, power and clock domains. It
enforces the principle of composability of components in or-
der to give the flexibility to select processors satisfying the
needs of the application. It ensures that the interconnection
of the processors does not change the properties of the inte-
grated parts. In stark contrast to classical approaches such
as shared memory or bus-based communication which vio-
late timing composability and the possibility of independent
design.
The main ingredient of the architecture is the ”Bolt” in-

terconnect which implements in hardware and software an
efficient communication via message queues that allows for a
combination of event- and time-triggered operation. It pro-
vides a well-defined interface semantics and formally proven
timing properties using modeling and formal verification
based on timed automata. The architectural concept has
been extensively tested using FlockLab to validate the cor-
rectness of the timing bounds as well as to confirm that the
power overhead of the stateful interconnect is negligible.
This way, we reduce the interference in terms of power do-

main, time and memory accesses to support composability,
and we leverage the very recent trend towards ultra low-
power multi-processor architectures that can be chosen to
match the needs of the application and the networking pro-
tocol in an efficient manner.

4.3 Event-Based Design and Adaptability
Adaptability of the overall system is enabled by means of

an event-driven system paradigm. In particular, the whole
system architecture including hardware and software is par-
titioned into logical components that are event-driven. Ex-
amples are event detection, event characterization and fil-
tering, and wireless multi-hop communication.
These components are characterized by a novel event-

triggered abstract model. Each component adheres to a
novel event-triggered interface specification that consists of
input and output event streams as well as data streams. The
functional behavior is specified by a non-deterministic finite
state machine that is used to (a) determine the timing be-
havior and power consumption and to (b) determine the sta-
tistical timing properties of the emitted event streams. The
design and implementation of each logical component follows
the guideline ”sleep whenever possible, wake-up quickly, and
operate efficiently in every mode”: Each component must be
able to rapidly switch between the various operation modes
and perform its designated tasks efficiently. The above men-
tioned component model and the associated interface allows
to estimate the average power consumption as well as the
end-to-end responsiveness of the system in a quantitative
manner.

4.4 End-to-end Guarantee and Predictability
If put together, the above architectural design principles

can be used to design systems with a guaranteed end-to-end
timing behavior, see [1]. In particular, it can be guaranteed
that messages that are received by the target application
interface do so before provided end-to-end deadlines. The
principles of ”Bolt” and the interference avoidance allows to
freely compose existing hardware and software components
to satisfy the application requirements, without altering the
properties of the integrated parts. To satisfy adaptivity re-
quirements, the architecture can adapt to dynamic changes
in the system and real-time traffic requirements.

On top of ”Bolt”, a novel distributed real-time protocol
has been designed which provably guarantees that message
buffers do not overflow and that all messages received by
the target application interfaces meet their end-to-end dead-
lines. The protocol dynamically establishes at run-time a
set of contracts depending on the current real-time traffic
demands in the system. Contracts define the mutual obliga-
tions between distributed devices and the networking proto-
col in terms of minimum service provided and maximum de-
mand generated. This enables end-to-end guarantees with-
out impairing the decoupling of communication from appli-
cation tasks.

Some of the above requirements, challenges and design
principles will be exemplified by design experiences in im-
plementing an ultra-low power distributed embedded sys-
tems for the detection of acoustic events, including the nec-
essary sensor interface, an event-triggered characterization
pipeline, and an event-based low-power multi-hop wireless
protocol.

Acknowledgements
The project XSENSE has been supported by the Nano-
tera.ch, a research program from the Swiss Confederation.

5. REFERENCES
[1] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and

L. Thiele. End-to-end real-time guarantees in wireless
cyber-physical systems. In 37th IEEE Real-Time
Systems Symposium (RTSS), November 2016.

[2] R. Lim, F. Ferrari, M. Zimmerling, C. Walser,
P. Sommer, and J. Beutel. Flocklab: A testbed for
distributed, synchronized tracing and profiling of
wireless embedded systems. In ACM/IEEE
International Conference on Information Processing in
Sensor Networks (IPSN), pages 153–165, 2013.

[3] R. Lim, B. Maag, B. Dissler, J. Beutel, and L. Thiele.
A testbed for fine-grained tracing of time sensitive
behavior in wireless sensor networks. In IEEE 40th
Local Computer Networks Conference Workshop
(LCN), pages 619–626, 2015.

[4] R. Lim, B. Maag, and L. Thiele. Time-of-flight aware
time synchronization for wireless embedded systems. In
Proceedings of the 2016 International Conference on
Embedded Wireless Systems and Networks (EWSN),
pages 149–158, 2016.

[5] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim,
T. Gsell, G. Giannopoulou, F. Ferrari, J. Beutel, and
L. Thiele. Bolt: A stateful processor interconnect. In
Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems (ENSS), pages 267–280,
2015.

