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Abstract—The recent growth of applications in the emerging
Internet of Things field is posing new challenges in the long-
term deployments of sensing devices. Currently, system designers
rely on energy harvesting to reduce battery size and extend
system lifetime. While some system functions need constant
power supply, others can have their service adapted dynamically
to available harvested energy. In this work we propose Torpor,
a power-aware HW scheduler which continuously monitors
harvesting power and in combination with its software runtime,
dynamically activates system functions depending on the avail-
able energy. By performing a few key functions in HW, Torpor
incurs a very low power overhead during continuous monitoring,
while the software runtime provides a high degree of flexibility to
enable different scheduling policies. We implemented Torpor on
a FPGA-based prototype and demonstrated that with a sample
power-aware dynamic scheduling policy, we can have a 2x or
more improvement in execution rates compared to static (power-
ignorant) policies. The power consumption of Torpor’s always-
on hardware integrated on chip is estimated to be less than
4 uW, making it a very promising power-management add-on
for microprocessors used in IoT nodes.

I. INTRODUCTION

In recent years, energy harvesting has been explored as a
promising lifetime extension option for wireless sensor nodes.
Compared to battery-only designs, energy harvesting nodes
require less energy storage capacity for continuous, long-term
operation. Energy harvesting, however, can be subject to great
variability [1]. In the most extreme case, this can mean no
energy is harvested for long periods of time. To cope with
harvesting variability, the system’s service is typically reduced
as the available energy decreases [2]. Certain applications,
however, require an always-on domain for specific tasks which
are fundamentally incompatible with service degradation. One
example is a sensing system that needs to continuously record
data but can defer the processing and transmission of the
recorded data for periods of high energy availability.

When an energy source exhibits periodic behavior, e.g.
outdoor solar [3] or thermal [4], designers can optimize
their design for continuous, energy-neutral operation. This is
achieved by dimensioning the battery to supply energy for at
most one period since it is the worst-case unavailability of a
periodic source. When the energy source has no regularity or
cannot be gauged at design time, this methodology inevitably
falls back to over-dimensioned, battery-based design.

For this reason, there has been a recent trend towards
batteryless, or transient systems [5], [6]. These systems are
entirely energy driven: they can operate only when harvested
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energy is available —whenever that may be. To use this
harvested energy efficiently, task energies must be known and
operation must be duty-cycled [7]. This can limit the system’s
supported tasks as transition costs, between active and sleep
states, must be low. While these devices minimize cost (no
expensive battery needed), they cannot support always-on
tasks unless the environment guarantees energy continuity,
which is hardly ever the case.

The problem of designing a system for long-term operation
without predictable energy sources nor service degradation
is an open challenge. A combination of primary battery and
harvesting-based solutions is necessary to provide guarantees
on the system’s lifetime and still be able to tap into the
abundance of available environmental energy [8], [9]. Tradi-
tional design methods use harvesting to recharge a secondary
battery, as shown in fig. 1A. Only if accurate models of (high-
power) periodic energy sources are available, can harvester and
secondary battery sizes be minimized.
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Fig. 1. A) Traditional harvesting-based nodes combine harvested with stored
energy. B) Torpor-based nodes switch between battery and harvesting powered
operating modes.
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In this work, we propose Torpor, shown in fig. 1B, that does
not require any assumptions on the source periodicity for long-
term operation. It is enough for energy to be produced, even
irregularly; its consumption will be opportunistic. Whenever
the harvester is not producing any power, the system is
powered by primary battery and can thus provide guarantees
for low-power, always-on tasks. When the harvester produces
enough energy, the system switches to harvesting-powered
mode and additional high-power tasks can be supplied from
cheap harvested energy. To use harvested energy efficiently,
the system needs to monitor its input power and schedule
high-power tasks carefully. To this end, we develop a low-
overhead HW scheduler that can support different scheduling
strategies. In highly variable harvesting scenarios, we show
that, compared to static scheduling policies, dynamic ones can
double the execution rate of high-power energy-driven tasks
and still guarantee continuity of always-on tasks. Furthermore,
our system helps designers pre-characterize their task energies,
using an external source, before deployment. In summary, the



contributions of this paper are the following:

o A system architecture that efficiently combines guaran-
teed always-on functionality with energy-driven tasks.

o A configurable HW unit that continuously monitors har-
vested energy availability and can implement both static
and dynamic scheduling policies for energy-driven tasks.

o A sample dynamic scheduling policy that improves task
execution rates by over 2x under variable harvesting
conditions.

o A complete system prototype where Torpor is imple-
mented in a FPGA for verification.

o An extensive experimental evaluation, comparing the
performance of static and dynamic scheduling policies.

II. RELATED WORK

Wireless sensor and actuator systems have been designed to
be battery-powered for many decades [10]. In certain specific
applications, like implantable devices [11], they will remain
battery-powered for many years in the foreseeable future. In
many other, typically outdoor scenarios, energy harvesting
has been successfully introduced to reduce costs and extend
battery lifetimes. Let us assume that a system has a harvester
and an initially charged energy storage connected in series. If
we break down the energy consumed by the system during its
lifetime, there are basically two possibilities:

1) Storage-dominated energy flow: If the majority of the
load’s energy originates from the (initially charged) storage
device, it will dominate the system lifetime. This can happen
when the harvesting power is significantly smaller than load
power. There is so little uncertainty that it is easy, albeit
costly, to guarantee long lifetimes at design time. Classical
design techniques for these systems include dynamic power
management [12], [13], and low power design [14], [15].

2) Harvesting-dominated energy flow: If the storage device
cannot supply the load by itself, the system can be considered
to be transient or completely harvesting-driven. These systems
can either be designed for reliable or greedy operation. In the
former, the storage can be dimensioned either for a single
application iteration [5] or a single task [16]. In the latter,
tasks are not executed atomically and thus require state reten-
tion techniques [6], [17]. Though transient systems are cost-
effective and can operate in an energy efficient manner, they
cannot guarantee continuous operation with volatile sources.
By contrast, if the storage device is large enough to “filter
out” the source’s energy variability, continuous operation can
be sustained. However, these systems require high-energy,
periodic sources (i.e. the sun) to keep harvesters and storage
elements cost effective [18]. Furthermore, these systems need
advanced power management techniques [19] with state-of-
charge estimation [20] to adapt the system’s service [21].

In this work, we propose Torpor, a hybrid approach that
combines the benefits of both: low costs of harvesting-based
secondary cell whenever it is available, and a primary cell for
a guaranteed, worst-case lifetime. To maximize the energy ef-
ficiency during harvesting-driven operation, we propose novel

power-aware scheduling algorithms, which can be executed in
hardware with little overhead.

III. PRELIMINARIES

Typically, IoT applications executed in Wireless Sensor
Nodes (WSN) can be seen as a sequence of tasks beginning
with sensing some environmental information, processing it in
a number of steps and finally transmitting the results to a base
station. We consider applications with two types of tasks: 1)
always-on tasks which have, on average, constant low-power
but require continuity and 2) energy-driven tasks which can be
high-power but are also deferrable. We consider applications
that have always-on tasks running in the background and a
chain of N energy-driven tasks with data buffers in-between.
As each task may require data produced by the previous task
in chain and produce results needed for the next task, these
dependencies must always be observed. Each energy-driven
task has its own duration and power consumption, and for
simplicity, we restrict them to atomic execution.

Supporting applications with always-on and energy-driven
tasks requires managing different types of energy sources. Pri-
mary batteries can easily guarantee the continuity of always-
on tasks for a specified lifetime. Harvesters can supply high-
power, energy-driven tasks with cheap energy. Torpor switches
between these two sources depending on the availability of
harvesting power, as shown in fig. 2.
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Fig. 2. When there is no harvesting power (P}, = 0), Torpor supplies always-
on tasks with battery power. As harvesting power becomes available, Torpor
uses burst-generation schemes for power-hungry, energy-driven tasks.

A. Battery-driven mode

The system enters this mode of operation whenever the
harvester produces energy at an insufficient rate. Similar to the
biological state of forpor, the system is in a state of decreased
activity, limiting itself to running always-on tasks. Their
continuity is guaranteed by the battery, which has been sized
to guarantee a specified worst-case lifetime. Since always-on
tasks are meant to be low power (in the uW range), multi-year
operation can be easily reached with a small primary cell.



B. Harvesting-driven mode

The execution of energy-driven tasks is supplied, as the
name implies, solely by harvesting power. During this time the
battery is switched out, thus prolonging its lifetime. To enter
this mode, it is only necessary that the harvesting power (F})
be larger than the load’s always-on power. If this condition
is met, we can utilize the burst generation schemes presented
in [5], [16]. These schemes can work with very little input
power and still supply power-hungry, energy-driven tasks. This
is achieved by accumulating the energy necessary for only one
activation. The energy is buffered in a small capacitor, and its
consumption due to a load activation is referred to as an energy
burst.

Since there are many possible scheduling policies to deter-
mine when the load should start a burst and how big it should
be, any scheduler implemented in HW should be configurable
to support this.

C. Burst Scheduling Policies

The simplest scheduling policy is to accumulate enough
energy to execute all energy-driven tasks together in a single
energy burst of size Eyur = Eqpp. This policy will be referred
to as single burst, similar to the approach presented in [5].
Single burst schedules are simple and could be implemented
by a single comparator reading the capacitor voltage Vi . But
waiting always for a high capacitor voltage can be inefficient
since the load discharge power will increase as the voltage
increases.

Another approach is to split the application into multiple
bursts. As such, each individual task is executed as soon as
there is enough energy to execute it. As first proposed in [16],
the order in which the individual tasks are executed is static
and defined at compile time. While split execution requires
less buffered energy than single burst, they are both static
scheduling techniques.

Independent of the scheduling policy, the buffering capacitor
charges or discharges, with rate:

dEru(t)

dt

where Ply,g is power consumed by the load, S; is the system
state and PTorpor is the average power consumed by Torpor.
The system state reflects what the load is executing, whether
always-on functions only or also energy-driven tasks. The state
is updated by the scheduler, when it makes a decision to trigger
a new energy-driven task, or when a task is completed. If there
is only one possible decision, as is the case in the single burst
approach, then scheduling only depends on Fj,,¢. When multi-
ple choices are available, the scheduler also needs to know the
application state, e.g. buffer states and task dependencies, to
choose among available tasks. We argue that static schedules
may still lead to inefficient use of the harvesting power when
this exhibits highly variable behavior. To alleviate this, we
propose that execution of tasks be activated in a dynamic order,
according not only to application state and FEyg, but also Pj,.

= Ph(t) - -Pload(si) - pTorpor (1)

IV. SYSTEM ARCHITECTURE
A. Top-Level Architecture

The top-level system architecture of a proposed Wireless
Sensor Node (WSN) with Torpor is depicted in fig. 3. Two
power sources, a battery and a harvester, (e.g. a solar cell
or an electro-mechanical generator), are available to supply
the node’s load. The load contains the node’s system-on-chip
(SoC) to run the application as well as external peripherals to
interact with the outside world (e.g. sensors, radio).
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Fig. 3. Top-Level Architecture: An overview of the blocks present in a WSN
that uses Torpor. A control logic manages the state of the Load, which is
either powered by harvested energy or by battery. (*) The external power
source is only used for characterization before WSN deployment.

B. Torpor Functions

As proposed earlier, Torpor distinguishes between periods
of no harvested energy, where always-on tasks are guaranteed
to run with a battery, and periods of energy harvesting, where
all tasks (always-on and energy-driven tasks) can be supplied
with harvesting power. To support this operation, Torpor must
provide the following functions:

o A switch-over mechanism between the battery-supply and
harvester power source.

e A mechanism which ensures that energy-driven tasks
run reliably. This means buffering sufficient energy to
complete a task after starting it.

o The scheduling capability to decide what, if any, energy-
driven task should be launched based on the buffered
energy FEuur(t) the input power Pp,(t) and the task
availability due to the software application state.

o The required always-on monitoring capabilities to esti-
mate Fu,(t) and Py (t).

« An easy-to-use interface to the application developer that
can characterize the task energies.

C. Torpor Architecture

Torpor should support various applications and be con-
figurable. Additionally the implementation of Torpor must
consume very little power and introduce negligible energy
overheads - ideally, the added power cost should be much
smaller than what is consumed by the always-on tasks. For
this reason, Torpor’s implementation is split in a Torpor-
HW part and a Torpor-Software-Runtime, running on the



SoC’s processor. This split makes the solution configurable,
extensible and user-friendly without inflating the hardware and
keeps the power consumption of Torpor’s HW low.

1) Torpor-Software-Runtime: The runtime allows the user
to specify tasks and make use of a scheduler with a priority
mapping function. This function, depending on the application
state, specifies which tasks are executable and assigns an
execution priority. The runtime then abstracts this schedul-
ing information (scheduler behaviour, task executability and
priority) and passes it to the HW.

The actual scheduling decision is then done by the control
logic in Torpor-HW while the processor can go to Idle state.
Every time the HW makes a decision, it triggers the core and
notifies the Runtime, which then launches the energy-driven
task and updates the abstracted scheduling information in HW.

2) Torpor-HW: The hardware part of Torpor does not
only perform the scheduling decision, but also provides the
required hardware components to supply energy to the load in
a controlled manner. Moreover, it provides the monitoring of
Euwuie(t) and Py, (t) to enable dynamic power-aware scheduling.
The Torpor-HW (fig. 3) consists of the following blocks:

e An energy controller, that uses harvesting power to buffer
energy and delivers it at the load’s operating voltage.

o A power switch and a battery to ensure that the load has
enough power to perform its always-on tasks even when
there is not enough harvested energy available.

e An ADC that measures Viui(t)and estimates Eyyg(t) and
Py, (t).

o A characterization power switch used by Torpor to switch
over to an external power source. This is used before the
deployment of the WSN to automatically measure the
required energy of the application tasks (see section V-D).

o The Torpor control logic that performs the actual schedul-
ing decision based on the ADC values and decides when
and what energy-driven task is executed.

V. TORPOR IMPLEMENTATION

To achieve maximal design density and cost efficiency,
it would be desirable to integrate the entire Torpor-HW on
the WSN SoC. However, the Torpor-HW contains several
power-electronic blocks which are not easy to co-integrate
in advanced technology nodes. Therefore we propose to keep
most of the Torpor-HW external and implement it with discrete
components — except the ADC and control logic (purple in
fig. 3), which we suggest to be integrated in the SoC. This
avoids I/O power dissipation for the communication between
the control logic and runtime running on the SoC. Addition-
ally, the proposed external part of Torpor is mainly powered
by harvesting power, so its consumption is less critical.

To verify Torpor in a real-world scenario we implemented
a complete system prototype as a proof of concept. We did
not fabricate the SoC with integrated Torpor logic, but we
built the system with discrete components and emulated the
control logic on a low-power FPGA. Our prototype is based
on a solar-powered WSN equipped with a microcontroller
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Fig. 4. Simplified state diagram of Torpor’s Software-Runtime. Following
the initial configuration, the Software-Runtime updates on every iteration the
task priorities and waits on its idle state until the HW signals a task to be
executed.

(LPC54102, NXP) and the control logic implemented on a
low-power FPGA (IGLOO nano, Microsemi).

A. Torpor-Software-Runtime

The Runtime running in the LPC core provides the main
execution loop of the system, which is illustrated in fig. 4.
After the initial boot, the application’s tasks are declared
with the API provided by Runtime and a scheduling strategy
is selected. Then, the main loop is started. First, the task
priorities are calculated according to the data buffer states and
scheduling policy. The hardware is configured accordingly and
the system then enters its low-power Idle state, where only its
always-on functions are active. The hardware is monitoring
the Viur and triggers the core when a energy-driven task is
to be executed.The Runtime then reads the chosen task and
executes it, updates the priorities, passes them to the hardware,
signals its activation and goes again to its Idle state.

B. Torpor-HW

The Energy Controller consists of a boost converter, an
energy storage element and a buck converter (see fig. 3).
When the transducer produces energy, an ultra low-power
boost charger for harvesting application (BQ25505, TI) is used
to charge a 330 uF ceramic capacitor!. An ultra low-power
step-down buck converter (TPS62740, TI) delivers the energy
stored in the capacitor to the load at the required voltage
(1.8 V). This step-up and step-down topology is commonly
found in micro-energy harvesting systems [22], [5], [23], [24]
since decoupling allows simultaneous maximum power point
tracking (MPPT) on the transducer side and minimum power
point tracking on the load.

The Battery Switch (TPS3610, TI) automatically switches
the load’s power source to the Battery when low harvesting
power input causes Vjoag to drop below a threshold. The
switch has a low on-resistance of 0.6 {2 and thus introduces a
negligible loss.

The Torpor control logic and the ADC as depicted in
fig. 5 are to be integrated in the node’s SoC. This logic is
always-on, monitors Vi, and signals to the core when to
execute which task. In our prototype, an external ultra low-
power ADC component (ADS7040, TI) is used and the control
logic is implemented in a low power FPGA (IGLOO nano,
Microsemi). The FPGA connects to the ADC and the SoC over
two separate Serial Peripheral Interfaces (SPI). Over the SPI
interface the SoC core can set Torpor’s configuration registers

IThe size of the capacitor was chosen to provide sufficient energy storage
for the most energy-intensive energy-driven task we evaluated.



and read the status registers. An IRQ line allows Torpor to
trigger the core to execute an energy-driven task.

As part of the control logic a block called Sampling Unit
manages the interfacing with the ADC. It allows to sample
Viute With a configurable sampling rate, filters those samples
and estimates the input power P(t) from their rate of change.

The control logic provides () abstract task slots, which are
ordered in descending priority and configured by the Runtime.
For each task slot, the corresponding task energy execution
threshold (Vipes;) is stored in a configuration register. The
thresholds are expressed in voltage to be directly comparable
to the ADC samples. A bit-mask (Execution Mask), stored in a
configuration register, marks which slots are active. The mask
is set by the Runtime depending on the application state to
indicate which energy-driven tasks are currently available for
execution.

This information, i.e. the threshold comparison results
masked by the execution mask and the P}, (¢) estimate, is
fed to the control logic’s Finite State Machine (FSM). The
FSM checks if the highest-priority task can be executed
or alternatively, when the input power P(t) drops below a
configurable threshold, if any other lower-priority task could
be launched instead. When the FSM comes to a decision, it
writes the slot ID of the task to launch in a status register and
sends an interrupt to the microcontroller.

Note that the abstract task slots of the control logic allow
the execution of either one or more tasks per burst. As an
example, the Runtime can merge all tasks in a single abstract
task and configure the control logic accordingly to implement
conventional single burst scheduling.

A Voo Task Execution Thresholds, ordered |
from 1st priority to last

|

) | T
! FSM
| (Select task to be Get next low-prio '
1 | executed if feasible) executable task |
I
! l Wake-up signal

> Interface to SoC Core

Low Power Clk

Execution Mask

Configuration Registers

I
' ‘ Status Registers

Fig. 5. Simplified block diagram of the HW logic to be integrated.

C. Generic Scheduling Policy Implementation

As just explained, Torpor’s control logic allows implement-
ing different scheduling policies by configuring the Runtime
accordingly. We explain now in detail how an exemplary
power-aware dynamic scheduling policy can be implemented
with Torpor. This policy will be used in our evaluations later.

To implement a scheduling policy we need to define a
scheduler as well as a priority mapping function. As elaborated

in the section III, we focus on applications that are modeled
as a task-chain where data is exchanged through FIFO buffers.

With our exemplary power-aware policy we follow a simple
strategy to maximize the throughput of the application: we
program the priority mapping function to assign the highest
priority to the task closest to the end of the chain, while
considering the eligibility of the task depending on the FIFO
fill states. This mapping favors throughput as it prefers to
keeps FIFO fill states low. The rest of the tasks are prioritized
according to their energy requirements, with the mapping
favoring the more demanding ones.

For the scheduler we select a strategy that follows different
policies depending on the available input power P, (t): If the
input power is above a configurable threshold P, (t) > Pj high,
the scheduler aims to execute the task with the highest priority.
It waits for Viug to reach Vipgesi, the voltage threshold of the
task with the currently highest-priority task. The Runtime will
assign this task to the first (highest priority) abstract task slot
Ty in the HW control logic. The rest of the tasks are mapped
to the remaining priority slots by descending order based
on their energy requirements. When the input power is low
P (t) < P nigh, the scheduler tries to launch any task possible
to minimize energy losses by using the available energy for
whatever it can be used. To do so, the scheduler first checks
which tasks can be run (enough energy and mask bit) and then
launches the one with highest priority.

D. Task Characterization

To ensure that energy-driven tasks run reliably, Torpor
checks if there is sufficient buffered energy to execute a
task before scheduling this task for execution. In order to
do this, all task energies need to be known. This information
could be obtained through manual trial-and-error engineering
or by complex energy estimations, one being time-consuming
and the other potentially inaccurate or overly pessimistic.
To alleviate this effort, Torpor provides an automatic task
characterization feature to determine the required values?.

During automatic task characterization, each task is charac-
terized sequentially. To do so, as depicted in fig. 3, an external
power source is connected to the energy controller through
a controllable power switch. First, a large test capacitor is
charged to its maximum, Vi, then the input power is cut
off and the task to be characterized is executed. When the
task is completed, the remaining voltage across the buffering
capacitor Vieasi is measured. Repeating the procedure with
smaller capacitors will reach the minimum functional capacity.
While we can estimate the consumed energy by the task with

3 1 2 1 2

Etask,i = EC : Vmax - 50 ’ Vmeas,i ’ 2)
ultimately, the HW logic needs the corresponding voltage
threshold Viyesi to compare to the current Viue(t) in order

2While we generally assume and observe that WSN tasks exhibit little varia-
tion, worst-case execution could be artificially enabled during characterization
to ensure that worst-case energy consumption figures are obtained, which are
required for reliable operation.



to determine whether sufficient energy is available to execute
a task. As an additional constraint, during task execution,
Voute may not fall below the set output voltage Vigq of the
buck converter in the energy controller. Otherwise, the battery
switch will jump in and the load will start draining the battery.
To prevent this, we compute the threshold in a way such that
a minimal residual voltage Vi, is guaranteed to be present on
Viutr after task execution’. By adding some additional margin
to Vinin, overheads and safety margins are taken into account.
Given these constraints, we set the voltage threshold to

meas,i min  ° (3)

Vawesi = 1/ Vi = Vi + Vi3

Finally, the voltage thresholds are stored within Torpor’s
always-on domain to access them with low energy overhead.

VI. EVALUATION

With Torpor we propose to add additional hardware com-
ponents to the WSN in order to increase its overall energy
efficiency. In this section, we will evaluate what can be gained
with Torpor in terms of power efficiency and what the power
overhead is for the added functionality.

First, we will evaluate the power consumption of the always-
on parts of Torpor. For this evaluation, we will investigate the
final target implementation with the control logic and ADC co-
integrated on the SoC as proposed in section V. Afterwards,
we will experimentally verify and evaluate Torpor on our
FPGA-based prototype and quantify the achieved gains. The
node will be powered with a solar panel placed in a controlled
lighting environment for reproducible experiments.

A. Estimation of Torpor’s Power Consumption

For this estimation, we consider only the parts of Torpor
that can be powered from the battery. These are the integrated
parts (control logic, ADC) and the power switch. The power
consumption of the booster and buck converter were omitted as
they are powered only by harvested energy and their overhead
will be considered when computing the achieved gains.

The implemented Torpor hardware control logic was syn-
thesized in a 22 nm FDX technology (0.65V, TT, 25 C) and its
power consumption was estimated in PrimeTime using activity
vectors derived from ModelSim. The logic requires 1700 um?
of area and consumes 1.57-1.96 yW depending on the activity.
The operating frequency used for the idle state was 32 KHz
while the configuration and sample fetching was simulated
with clock bursts of 2.4 MHz. The lower bound indicates the
idle state while the upper the maximum momentary consump-
tion. The power consumption is dominated by leakage and
could be further optimized with using special low leakage
gates, which have longer channel transistor and/or thicker
gate oxide. Commercially available components (TPS3610,
ADC7040) were measured in order to deduce the power
required by the switch and the ADC.

3We make the reasonable assumption that the energy consumed by the task
is independent of Vi by neglecting the voltage-dependent buck-converter
efficiency

TABLE I
TORPOR POWER ESTIMATION FOR THE PROPOSED INTEGRATED SOLUTION

Module Consumption
Torpor Logic ~ 1.57 - 1.96 yW
ADC 02 - 1pW
Power switch 800 nW
Total under 4 uW

The estimation results are summarized in table I. It shows
that for the proposed partially integrated solution the power
consumption of Torpor (<4 uW) can be neglected compared
to the power of the load (600 uW-90 mW) present in our WSN.

As the ADC and the control logic are meant to be co-
integrated on the SoC and their consumption is negligible, we
power their discrete implementation on our concept prototype
(ADC7040, FPGA) with an external power supply.

B. Experimental Setup

To evaluate the benefits of Torpor, the implemented setup
was configured to execute a number of synthetic applications
under different input power conditions using different execu-
tion strategies (fig. 6).

A solar panel was placed inside a solar test-bed, an isolated
environment where the illuminance levels can be set. The
solar panel was connected to the input of our booster circuit,
providing a controlled and reproducible way of specifying the
input power to our system. The voltage and current at various
points of interest were measured using a Rocketlogger [25],
an open-source measurement device meant for the character-
ization of harvesting powered IoT devices. Rocketlogger not
only supports the measurement of multiple voltage and current
channels but also has a wide range and high accuracy. This
enabled the calculation of several figures of merit, the main
being:

o The energy efficiency factor E.g, indicating the percent-
age of the harvested energy was used by the load while
in its active or idle state

o The execution rate, indicating the number of application
executions per minute

o The average power consumed by the load Plyg
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Fig. 6. For repeatable experiments of Torpor’s harvesting-driven mode, the
solar panel was placed in a controlled environment. The harvesting and load
power were recorded for analysis. The ADC and FPGA were externally
powered.



Fig. 7. Photo of FPGA-based Torpor prototype. The blue pcb (left) is a
commercial fgpa evaluation kit, the purple-pcb (right) is custom-made and
includes all other discrete components used for the evaluation.

C. Scheduler Evaluation

In order to evaluate different Torpor scheduling policies,
synthetic applications will be executed under several input
power conditions. Applications are composed of a low power
always-on task, and two types of energy-driven tasks: medium
power and high power. The power consumption is approxi-
mately 600 uW for always-on tasks, 7mW for medium power
tasks and 90 mW when executing additional high power tasks.
These power levels represent sense and transmit tasks typically
found in WSN applications. Static schedulers are evaluated
under constant harvesting power and then contrasted with
a dynamic scheduler under variable harvesting power. The
evaluation took place for time long enough for the system
to reach steady state.

1) Constant Harvesting Power (Pp)- Single-burst vs Split
execution: We consider two corner cases of static schedulers.
Single executes all energy-driven in a single energy burst,
while split schedules one burst per task. For this experiment,
a synthetic application with five medium power tasks was
chosen. Two constant harvesting levels were tested: 1.3 mW
and 3.2mW. The application execution rate per minute and
the energy efficiency are presented in table II and the voltage
of the buffering capacitor for the case of P, = 1.31mW is
depicted in fig. 8.

TABLE IT
EVALUATION OF STATIC SCHEDULERS WITH CONSTANT F,.

P, =13[mW] P, =3.2[mW]
scheduler . scheduler .
. . ratio . . ratio

single split single split
exec/min 26 69 x2.6 312 39.1 x1.3
FEegr [%] 552 67.0 x1.2 58.0 66.7 x1.2
Ploag [MW] 0.71 0.87 x1.2 1.84 216 x1.2

2) Variable Harvesting Power (Pp) - Static vs Dynamic
execution: To evaluate the benefits of dynamic scheduling
strategies, the input power was variable but periodic, alter-
nating between low and high energy availability. In the first
evaluated case (Case I), the illuminance was set to provide a
low base of available input power, with periodic (every 57 s)
peaks of high available input power (every 3s). In the second
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Fig. 8. The voltage on the buffering element when using single and split
schedulers under constant harvesting power (P, = 1.3mW). The single
scheduler results in Ploag = 0.71 mW while split in Pioag = 0.87 mW.

case (Case II), the peaks were shorter (0.5s) and provided
very high available input power. The average P}, for each case
is reported in table III. Two synthetic applications consisting
of medium and high power tasks were chosen, with 5 tasks
for Case I and 3 tasks for Case II. The dynamic scheduling
strategy, as explained in section V-C evaluated and presented
in table III. The voltage across the buffering capacitor in Case
IT is presented in fig. 9.

TABLE III
EVALUATION OF DIFFERENT SCHEDULERS WITH HIGHLY VARIABLE F},.

Case 1 Case 1I
scheduler? : b scheduler? b
. . ratio . . ratio
split dynamic split dynamic
Py, [mW] 133 1.32 x1.0 .15 129 1.1
exec/min 3.0 37 x1.3 2.8 6.2 x2.2
Eetr [%] 60.6 66.4 x1.1 61.2  69.7 x1.1
Pioag [mW] | 0.80 0.88 x1.1 0.70  0.90 x1.3

2 Both schedulers run one energy-driven task per burst. Split has
a static order while dynamic depends on harvesting power and
application state.

b Ratio refers to the dynamic scheduler evaluation metric over the
split scheduler evaluation metric.

D. Discussion

The dynamic scheduler improvement in both execution rate
and energy efficiency stems mainly from two different effects.
The first one is the reduction of the load power consumption.
Since the load behaves like a current sink, a lower Vg also
reduces the power dissipation from the buffering capacitor.
The saved energy is then translated into useful load energy
and therefore leads to more application executions. Prolonged
stays in high Vi, levels are mitigated by static schedulers only
when a low-energy task gets its turn for execution. By contrast,
dynamic schedulers prioritize low-energy tasks whenever the
input power is low. The second effect is the avoidance of Fyyus
saturation when using dynamic schedulers. If, for example,
an application consists of a low-power and high-power task
and the harvesting power falls in between, a static scheduler
can saturate Fi,, when running the low-power task. Dynamic
schedulers can mitigate this by matching time periods of low
input power to less demanding tasks and time periods of high
input power to the most demanding tasks. Since the dynamic
scheduler in Case II can avoid saturation of FEj, it manages
to harvest more input energy. This is why the improvement
ratio of its Fg differs from the improvement ratio of its Ploaq-
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Fig. 9. Traces from Case II experiments of split and dynamic schedulers.
A) Harvesting power B) Vi and C) Zoomed in Vg to show saturation.
The dynamic schedulers can reduce the energy losses and avert the saturation
effect on short moments of high input power.

Dynamic schedulers behave exactly as static split schedulers
when harvesting power is constant, or when all energy-
driven tasks are of equal power and energy. In these cases,
both dynamic and static schedulers have the same choice of
available tasks. The results show that the execution rate of
energy-driven tasks can be easily doubled when using split
scheduling as opposed to single burst scheduling. It can be
further doubled by using power-aware, dynamic scheduling
when there is enough diversity at the input power levels and
available tasks. The energy efficiency is also improved, but
its improvement follows a different trend, depending on the
amount of energy that the node is using for its always-on
tasks as opposed to its energy-driven tasks. It should be noted
that even though the harvesting power was, on average, less
than 4 mW for all experiments, the load was able to execute
power-hungry tasks of up to 90mW. This is thanks to the
burst-generation scheme that efficiently reduces the average
power of energy-driven tasks to match the harvesting power,
while still guaranteeing always-on tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented Torpor, a power-aware
hardware scheduler that enables IoT nodes to efficiently
execute part of their applications using irregular harvesting
power, while still guaranteeing their always-on required
functionality with a battery. Torpor supports both static and
dynamic scheduling policies and is highly configurable,
offering an interface to the application designer and an
automatic task characterization procedure. As demonstrated
by a complete system prototype based on discrete components,
Torpor’s power-aware dynamic schedulers can improve the
energy efficiency and execution rate of energy-driven tasks by
1.2x and 2.6x, respectively. The power overhead introduced
by Torpor’s hardware when integrated in a SoC is estimated
to be under 4puW, making it suitable for a wide range
of IoT applications. This work opens up the potential
of future extensions in various directions, such as more
sophisticated dynamic schedulers and support for non-atomic
(i.e. interruptible) tasks.
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