
Torpor: A Power-Aware HW Scheduler

for Energy Harvesting IoT SoCs

02.07.2018

2Internet-of-Things SoCs

How can we power our devices in a way that: is cheap, maintenance-free

guarantees a minimum service

~1 cm2

~20 cm2

3Two basic energy supplies:

Pros: Continuous energy availability

Low leakage current

Cons: Not scalable (expensive)

Embedded System

Primary

Supply

Load

Environment

Light

Embedded System

Load

Secondary

Supply

Pros: Scalable energy supply

Lower energy storage needs

Cons: Variable energy availability

Limited recharge cycles

4Third option: hybrid

Primary supply:

Expensive but guaranteed

reduce load onsumption

Secondary supply:

“Free” but limited and variable

minimize costs

maximize efficiency

 no additional batteries

if then

use

else

use

Basic algorithm:

Embedded System

Environment

Light

5

Primary supply:

Expensive but guaranteed

reduce load consumption

Secondary supply:

“Free” but limited and variable

minimize costs

maximize efficiency

 no additional batteries

if then

use

else

use

Basic algorithm:

Third option: hybrid

Embedded System

Volatile

Environment

Light

Task

Model

System architecture

HW scheduler

Contributions

6About the authors

Patroklos Anagnostou 1

Andres Gomez 1

Pascal Alexander Hager 1

Hamed Fatemi 2

Jose Pineda de Gyvez 2

Lothar Thiele 1

Luca Benini 1,3

1

2

3

System Model & Design

8Application Model

1) Always-on tasks

Continuous and low-power

e.g. SRAM retention, timekeeping, ULP receiver

2) Energy-driven tasks

Short duration but high-power

e.g. sensing, processing, transmitting

𝑷𝒂𝒍𝒘𝒂𝒚𝒔−𝒐𝒏

N energy-driven tasks, each with its own 𝑷𝒊 , 𝒕𝒊

1 2 3 4𝑷

𝒕

9The Torpor Approach

Primary ($$$ - reliable)

always-on tasks

reduced service
(torpor)

full service
(energy proportional)

Secondary ($ - unreliable)

always-on tasks

energy-driven tasks

Balance the load between two supplies:

Opportunistic use of harvested energy: low-cost, efficient and scalable

requires energy (or power) aware hardware

10System Design

Still unsolved:

determine task energies

automated characterization

choose which task(s) to execute

 dynamic scheduling

Energy Controller: [Gomez2016] Dynamic Energy Burst Scaling for Transiently Powered Systems.

11Harvesting subsystem dynamics

If 𝑷𝒉 𝒕 is constant:

Energy controller has voltage-dependent efficiency: lower Vbuff is better

If 𝑷𝒉 𝒕 is variable:

All comparable schedulers perform equally well

Schedulers can improve on time-dependent parameters

12Scheduling Algorithms

static

Ph

t

dynamic

Ebuff

t

1
22

1

Ebuff

t

1
2 2

1

Two energy-driven tasks:

1 – low energy

2 – high energy

Static scheduling:

Determined offline

Requires only voltage threshold

Dynamic scheduling:

Determined online

Requires monitoring voltage history

inefficient

efficient

13Generalized scheduling

Torpor implements priority-based scheduling

Simplified algorithm:

maximize throughput

if Ph < Pcritical

minimize spent energy

Torpor can adjust priority according to buffer states

1 2 1 2

1 11 1

Experimental
Evaluation

15Experimental Setup

Performance evaluation :

Executions/minute

Average Pload

Energy efficiency

4 different input power traces

2 constant, 2 variable

3 different schedulers

2 static, 1 dynamic

3 different synthetic task-sets

Energy driven: 7-90 mW (S+P+T applications)

Always on: 600 μW (LPM0)

𝐸𝑙𝑜𝑎𝑑
𝐸ℎ

*externally powered

16Experimental Setup

Solar Testbed

HTVNv2 board

FPGA Board

RocketLogger

Solar Panel

18Static vs Dynamic Schedulers

Static split Dynamic Improvement

Case 1 60.6 66.4 x1.1

Energy Efficiency [%]

Static Split Dynamic Improvement

Case 1 3.0 3.7 x1.3

Execution Rate [execs/min]

Case 2 2.8 6.2 x2.2

Case 2 61.2 69.7 x1.1

Dynamic scheduling adjusts better to highly variable environments

19Avoiding Saturation

Even though 𝑷𝒉 < max(𝑷𝒍𝒐𝒂𝒅), for a short time 𝑷𝒉 > 𝑷𝒍𝒐𝒂𝒅

Static order leads to saturation

Dynamic order does not

Highly variable task sets need power-aware scheduling

20Torpor Overheads

• Torpor logic was synthesized

• GF 22nm technology, 0.65V, TT case, 25oC

• Operational frequency: 32 KHz – 2.4 MHz

• Estimated area (control only): 1700 μm2

• Clock, ADC, Switch deduced from components

Torpor Module Power

Control 1.57 – 1.96 μW

Clock 42 nW

ADC 0.2 – 1 μW

Power switch 800 nW

Total < 4 μW

comparable to deep sleep modes

21Summary

Torpor: reduced service mode during energy unavailability

Static schedulers work well when harvested power is constant

Dynamic schedulers keep working well under volatile harvesting conditions

HW implementation consumes < 4 μW

can double execution rate (compared to static schedulers)

BACKUP

23Task Characterization

To find voltage thresholds for each task

• theoretical formulas

• manual trial & error attempts

Torpor aids empirical characterization:

1. Charge the capacitor to maximum

2. Cut-off input power and execute task

3. Measure voltage through ADC

4. Repeat and average measurements

5. Calculate the thresholds required

24Static schedulers

25Variable input power

26Scheduling in HW and SW

HW

 Voltage monitoring (Ebuff, Ph)

 Wake-up logic

 Tasks selection according to

priorities, Ebuff, Ph

Always on, must be efficient

SW

 Task declaration

 Configuration (Policy, Thresholds, etc)

 Task priorities update according to policy

and state of software

Configurable, extensible, user-friendly

27Torpor Logic

HW SW

Boot, Specify Tasks &

Strategy, Write to HW

Calculate & Write Task

Priorities

Activate HW

Idle State

Read & Execute Next

Task

Wake-Up IRQ

Clk

Sample Unit
Comparison and

Task Selection

Config Regs

Status Regs

Wake-Up IRQ

ADC

28Harvesting subsystem dynamics

𝑑

𝑑𝑡
𝐸𝑏𝑢𝑓𝑓(𝑡) = 𝑷𝒉 𝒕 − 𝑷𝒍𝒐𝒂𝒅 𝑺𝒊 − 𝑷𝒕𝒐𝒓𝒑𝒐𝒓

environment

scheduler

hardware

If 𝑷𝒉 𝒕 is constant:

Energy controller has voltage-dependent efficiency: lower Vbuff is better

If 𝑷𝒉 𝒕 is variable:

All comparable schedulers perform equally well

Schedulers can improve on time-dependent parameters

