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ABSTRACT
Detecting the amount of people occupying an environment is an
important use case for surveillance in public spaces such as airports,
stations and squares, but also for smaller environments such as class-
rooms (e.g. to track occupation of classrooms). Using visible imaging
for this task is often suboptimal because 1) it potentially violates
user privacy 2) to have a good �nal count, high resolution cameras
are required. Long-wave infrared imaging is a viable solution to
both these issues. In this paper, we developed a people counting
algorithm on thermal images based on convolutional neural net-
works (CNNs) small enough that they can run on a limited-memory
low-power platform. We created a dataset with 3k manually tagged
thermal images and developed a fast and accurate CNN that is able
to provide a completely error-free detection on 53.7% of the test
images and an error bound within ±1 detection in 84.4% of the
images, using only 308 kilobytes of system memory in a Cortex M4
platform.
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1 INTRODUCTION
As human environments become more crowded, estimating the
number people within a given area becomes an increasingly im-
portant problem to solve. Buildings can regulate room parameters
like light, heating and ventilation according to the occupancy of a
certain room, supermarkets can monitor queue lengths and train
stations and bus stops report the currently required transportation
capacity, all by estimating the number of people in a certain area. In
many of these scenarios, communication and power infrastructure
is either non-existent of expensive to use. Consequently, there has
been a trend towards compact sensor nodes one can deploy and
forget. For long-term operation, in particular with harvesting-based
systems, it is important to minimize the average power consump-
tion [1]. Ultra-low power devices are commonly used for simple
tasks like sensing environmental data and thus have very limited
resources in terms of processing power and data memory. Though
accurate people recognition is a fairly complex computer vision task,
being able to count them with ultra-low power devices would bring
new possibilities in many application scenarios.

Convolutional Neural Networks (CNN’s) [2], are a popularmethod
for many image recognition tasks. CNN’s use a set of �lter kernels
which are convoluted with the input image to extract certain fea-
tures from it in a succession of multiple layers, each convolving
its own �lter kernels with the output of the previous one, thus ex-
tracting increasingly higher-level features. CNN’s have successfully
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achieved better-than-human performance in a variety of computer
vision problems in the visible light spectrum. Due to their high spa-
tial resolution, these images contain texture details consistent with
the human visual system [3]. For this reason, visible image recog-
nition tasks are usually deployed on high performance hardware
with an abundance of memory and computing power.

By contrast, thermal or infrared imaging can make objects stand
out due to their temperature, making themmore immune toweather,
lighting conditions or body pose. These properties have made them
relevant for pedestrian detection in driver assistance systems [4].
These systems, however, require high performance and throughput
with frame-rates of 30-60 Hz. In more speci�c applications like
face recognition, both thermal and visible imagery have been in
conjunction with data-fusion algorithms in order to increase the
recognition performance [5]. For an ultra-low power scenario, how-
ever, it is imperative to choose only one type of camera, so as to
minimize cost and energy consumption. Infrared images typically
have much lower resolutions than normal cameras, so their process-
ing and memory requirements are much lower than comparable
visible images. To the best of our knowledge, there is no quantita-
tive comparison of their recognition accuracy in ultra-low power
systems.

In this work, we show that a tiny CNN with limited memory
footprint (<500 kB) can be successfully trained to build a low-energy
people recognition system, which can be deployed on a low-power
low-cost Cortex-M4F class microcontroller. Furthermore, we evalu-
ated and compared the CNN’s accuracy when recognizing people
based on thermal and visual images. To this end, we created and
tagged our own dataset of ∼3000 images, both visual and thermal.
The thermal-image CNN-based algorithm can process 84.4% of low-
resolution thermal images with an accuracy of ±1 person on the full
test set – whereas the visual-based algorithm fails to discriminate
between backgrounds and people due to the the amount of visual
clutter in the input image and its small size. The average power
consumption during one full image recognition was 34.4mW, and
execution timewas 63 s. These results show that it is feasible to have
reasonably accurate, ultra-low power people recognition based on
thermal images.

2 RELATEDWORKS
Due to the importance recognizing people, the computer vision
community has studied this problem for a long time. It is a complex
problem with many possible applications. Facial recognition, for ex-
ample, can widely range in complexity from “just” determining if a
face is present in an image to detecting a speci�c person for biomet-
ric authentication [6]. Similarly, human sensing can range from: 1)
detecting if there is at least one person present, 2) counting people,
3) determining their location, 4) tracking their position through
time, and 5) who is each person [7]. Generally speaking, people
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(and pedestrian) detection can be classi�ed based on the type of im-
agery used. The most common types of images have either visible
spectrum, thermal spectrum, or a combination (multispectral).

Visible Imaging-Based Recognition. Due to the prevalence of vis-
ible image cameras, these methods are very common in the lit-
erature. When estimating the number of people in an image, the
ideal scenario would be high-resolution, simple background and
contrasting humans. Researchers have studied people counting in
low-resolution images with complicated scenes [8], people articu-
lation and posture estimation in crowded streets [9] . In Teixeira
et al. [10], a lightweight, motion histogram-based people counting
algorithm was designed and evaluated on a iMica2 camera sensor
node. Though this is a low power platform, it is still high perfor-
mance boasting an Intel XScale processor running at 414 MHz as
well as abundant 32 MB of �ash plus an addition 32 MB of SDRAM.
As smartphones have become more powerful, they have also been
used for people detection. In Conti et al. [11], the authors propose
two di�erent CNNs to estimate the occupancy of classrooms, an
8-layer one performing a direct image-to-count regression and a
5-layer indirect one classifying and counting heads. This CNN was
deployed on an ARM big.LITTLE platform, and achieved a RMS
error of 6.46 people with an energy cost of 3.97 J/image. Due to the
abundance of resources (eight cores, maximum frequency of 1.6
GHz, and 2 GB of RAM) this algorithm is not compatible with an
ultra-low power Cortex M4 platform.

Thermal Imaging-Based Recognition. As miniaturized thermal
sensors have become more widely available, they have received
increased attention in recent years. Though their monetary cost per
pixel is still much larger than in vision-based cameras, they o�er
several advantages like increased privacy and improved immunity
to weather conditions. Furthermore, they can detect humans based
on their thermal signature. Portmann et al. [12] studies the problem
of detecting and tracking people from aerial views. Their framework
uses thermal images with a resolution of 324×256 and achieves real-
time performance of 16Hz with a desktop-class Intel i5@3.3Ghz.
In [13], the authors propose a HOG-based pedestrian detection
algorithm which achieves a frame rate of 12.2 fps. Their platform
uses a Flir Lepton with 80×60 resolution thermal images, as this
work does. However, their processing takes place on a raspberry pi
3 model b single board computer with 1 GB memory and 1.2GHz
maximum frequency. Other systems, use a combination of ultra low
resolution (16×16) thermal sensors and PIR sensors for occupancy
estimation [14]. Commercial solutions such as the Irisys Gazelle [15]
also exist, but they are closed proprietary systems. Though these
works use thermal images and have lower resolutions compared
to visible-imaging work, they still require relatively large system
with abundant memory and computing resources.

Multispectral-Based Recognition. Visible imaging can o�er high-
resolution feature-rich information in favorably lighting conditions.
Thermal imaging can o�er privacy-enabled human detection at low-
resolution regardless of the lighting conditions. Multispectral-based
recognition tries to merge both sources of information to increase
the accuracy of human detection in a wide variety of scenarios.
Though multispectral recognition is costlier than vision and ther-
mal recognition individually, it is used in critical application where
its performance increase is justi�ed. One such example is pedes-
trian detection for driving assistance. Gonzales et al. [4] compares

the detection accuracy during day and nighttime for all combina-
tions of vision and thermal images. They conclude that using the
combination of both images is indeed better than each individually,
though the improvements vary by from daytime to nighttime. For
low-resolution sensors, Amin et al. [16] study the fusion of thermal
and vision images to count people. Their models reach an accu-
racy within 3% over a wide range of lighting conditions, but was
evaluated using Matlab in a desktop environment.

Compared to existing works, we will focus on designing a low-
memory CNN for estimating occupancy rates in closed spaces like
o�ces and classrooms. In particular, we aim for ultra-low power
operation (sub 100mW). Though general purpose visual image
datasets like [17] are common, training models with thermal im-
ages can require new datasets, since thermal camera cameras are
expensive and their use more limited. Datasets for pedestrian detec-
tion [18, 19], video analysis [20] and aerial views [12] are available,
they are not applicable to room occupancy estimation. For this
reason, we built and tagged our own dataset with both thermal and
visual images for people recognition.

3 PEOPLE DETECTION ALGORITHM
3.1 Dataset collection and tagging
In order to e�ectively train any Neural Network, a large set of
tagged training data is required. We collected a dataset targeted at
people recognition in the context of a classroom by setting up �ve
Raspberry Pi single-board computers in a student work room.Each
of the Rasperry Pi’s was �t with both a thermal and a visible light
camera and set up to capture the room from di�erent angles.

The low-power thermal camera[21] encodes each image pixel as
a 16-bit value between 0 and 65536 proportional to the impinging
amount of infrared radiation; each thermal image has 80×60 pixel
resolution, considerably smaller than typical visual cameras. To
collect the dataset, we coupled the low-power thermal camera with
an o�-the-shelf visual camera, whose collected output was scaled to
80×60 to allow for a fair comparison between the two approaches.

We developed a small Python tool to aid with the manual tagging
of these images, which was performed based on the visual images,
which are much better recognizable from a human’s perspective.
The tagged dataset was then shu�ed and divided in a training set
with 2089 images, a validation set with 446 images and a test set
with 450 images. Due to the di�erent image resolutions, aspect
ratios and possible slight di�erences in camera orientation, the tags
from visual images cannot directly be used for the corresponding
thermal image. To achieve this, we �t a transformation of the form(
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=
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to a list of coordinates (x ,y) on the visual image and (x ′,y′) on the
thermal image corresponding to the same point. Using the resulting
transformation matrix T , we were able to reconstruct accurate
thermal tags out of the visual ones.

3.2 Head detection and counting
The detector we developed focused on detecting people in a stu-
dent’s work room, where people are often partially occluded by
the desk they are sitting at. This occlusion of body parts makes
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Figure 1: Overview of the proposed thermal head detection algorithm.

it unreasonable to try a full-body detection but favours detecting
only the heads. This can be justi�ed by the fact that the head is
usually the most visible body part in such a setting, and also one
which radiates a high amount of heat that makes them even more
visible through a thermal camera.

We decided to detect each head individually by sliding a win-
dowed classi�er on top of the input image and classifying each
window as a head or background rather than use a direct regres-
sion approach on the full image. This approach adds robustness, is
easier to train and has overall lower memory footprint. The lower
memory footprint originates from the fact that only small portions
(windows) of the input image are fed to the CNN, which greatly
reduces the size of the feature maps that have to be held in memory.
The simplicity of a binary head or background classi�cation also
implies a simpler overall structure for the employed CNN, mean-
ing less layers and smaller convolution kernels, thus reducing the
number of weights needed.

The CNN topology we developed CNN is fed a 12×12 detection
window of the input image and predicts whether it contains a head
or not, performing binary classi�cation. A similar kind of binary
classi�cation problem is also at the core of visual face detection,
a task found in wide area of applications ranging from consumer
cameras (autofocus on faces) to Facebook (detection and recognition
of your friend’s faces, going even one step further). Due to its
very wide range of applications, face detection is well researched
and state of the art face detection algorithms perform very well.
This makes it worthwhile to start from an existing face detection
architecture and adapt it to the head detection task.

The general topology of the applied CNN was thus inspired
by the work of Li et al. [22]. Their CNN consists of a total of six
stages, where calibration stages follow detection stages to correct
the position of windows classi�ed as faces. These corrected or
calibrated windows are then passed to the next classi�cation stage
which has a more complex topology and analyses the window at a
higher resolution than the previous one. In our work, we build on
the �rst and simplest CNN they propose, using 12-pixel images as
input and 3×3 convolution kernels.

At the native 80×60-pixel resolution, 12×12 already covers an
area larger then the biggest expected head size on the image pro-
duced by the thermal camera. To be able to detect smaller details
without increasing the size of the window, during detection we
upscale the input image, creating a pyramid of three images sized
80×60, 120×90 and 160×120 pixels, respectively. To increase nu-
merical stability during the training procedure, the images in the
pyramid are normalized to a range of [0, 1], using maximum and
minimum values collected from the entire training set.

A 12×12 detection window is slid along each of the pyramid
images using a stride of 2 pixels in each direction. The collected de-
tection windows are then fed to the CNN-based classi�er. Similarly
to Li et al [22], the network uses the ReLU activation function, max
pooling after the convolutional layer and a �nal softmax activation1
for the output. Figure 1 shows the overall methodology illustrated
in this section, from the dataset images up to the proposed classi�er
topology.

The output of the sliding window classi�er is an array of con�-
dence values ranging in [0, 1], each indicating how con�dent the
CNN is that the corresponding image patch contains a head. Thresh-
olding can be used to �lter out uncertain matches, as detailed in
Section 4. However, one particular head on the image will usu-
ally still be detected by multiple windows at di�erent positions
and scales making it necessary to determine the most con�dent
one of all of these overlapping windows. This is done by applying
non-maximum suppression as de�ned in Felzenszwalb et al. [23].
It greedily takes the detection with the highest con�dence and
eliminates all others with signi�cant overlap, then proceeds to the
next highest until only the local maxima are left. One example
for the detections before and after the application of non-maximal
suppression is shown in Figure 2. After this step, only the correct
detections remain, so the remaining windows can be counted to
obtain the �nal people count in the image.

For the purpose of training the CNN head detector, the presented
people counting algorithm was implemented in Python targeting

1The softmax function converts a number of output values to values in the range (0, 1)
that add up to one and can be interpreted as a probablility distribution. It is de�ned as
σ (z)j = ezj∑K

k=1 e
zk

where z is a vector of N output values.
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Figure 2: Example of non-maximum suppression reducing
the initial 45 detections on the left to the 6 ones on the right.

the Keras [24] deep learning framework with the TensorFlow [25]
backend. The CNN training set was created using 4203 head patches
cut out from the full training dataset and 5000 randomly selected
backgrounds, while a CNN validation set using all patches from
the full validation dataset was used to select the “best” result from
the training. Batch normalization was used after each convolu-
tional layer and dropout layers were inserted before the two fully
connected ones to aid with training and minimize over�tting.

We used two distinct strategies to discourage over�tting to the
training set. First, we employed an L2 penalty of 0.05 on all con-
volutional layers for regularization. Second, we built a validation
set composed of 5000 randomly selected backgrounds from the
full-image validation set, plus 850 heads from the validation set and
other 4250 heads built using data augmentation techniques, such as
slightly varying contrast, adding a gradient and/or noise to the 850
original heads. We evaluated the CNN on the validation set after
each training epoch and used the best result on this validation set
over the full training as our �nal CNN.

3.3 Embedded Implementation
The platform on which we deployed the people counting algorithm
was chosen to be small, low-power and cheap; it consists of two
main components: an LPC54102 microcontroller and a FLIR Lepton
thermal camera, the same which was used to collect the dataset as
reported in Section 3.1. In Figure 3 we show a simpli�ed diagram of
the full platform, which is battery powered. The LPC54102 contains
an ARM Cortex-M4F core with 512 kB of Flash memory and 104 kB
of on-chip SRAM, with no data caches. This poses severe memory
constraints for the embedded CNN implementation, which must
be able to �t all weights within the 512 kB of Flash and all data
(including intermediate results between CNN layers) within the
104 kB of local memory.

Both the LPC54102 microcontroller and the Lepton camera oper-
ate on the same 2.8 V supply (the minimum required by the Lepton)
provided with a battery and a regulator. To facilitate interfacing
with peripherals, the platform runs at a frequency of 80MHz. The
image acquisition is done using the DMA controller, loading each
9.6 kB thermal frame from the camera by means of an SPI interface
and moving it in the embedded SRAM.

We implemented the full algorithm described in Section 3.2 in
bare-metal embedded C targeted at the deployment on the LPC54102.
The head detection CNN is run directly on the SRAM-stored data,
with no data transfers for intermediate results to minimize en-
ergy consumption. The CNN itself uses a pure C implementation
of convolutional and densely connected layers, without machine-
dependent optimizations or special instructions.

Figure 3: Architecture of the ultra-low power people recog-
nition system.

4 RESULTS
4.1 Accuracy
Similar to many of the image recognition challenges out there,
like the Face Detection Data Set and Benchmark (FDDB) [26], the
bounding boxes produced by the detection algorithm were com-
pared to the original annotations (tags) by calculating their overlap.
If a detection overlaps with a tag by more than 30%, it is accepted
as correct, otherwise it is counted as a false positive. This enables
the creation of a realistic accuracy statistic over all the full images
in the validation dataset. We trained the topology described in the
previous section and shown in Figure 1 for 300 epochs, using the
Adam optimizer with learning rate 5 × 10−5. We reached a �nal
validation accuracy of 97.6%. As the validation set is used during the
training phase, a new “untouched” test set is built using 67540 back-
ground windows and 872 head windows from the full-image test
set. The CNN achieves 95.9% accuracy on this set; non-maximum
suppression with a hard con�dence threshold calibrated at 0.9997
yields a net improvement to accuracy up to 99%.

While this �nal post-training error is low (∼1%), the CNN is
applied many times to each image, and even a single error can drop
the overall algorithmic accuracy. To quantify this phenomenon, we
evaluated the overall counting accuracy on the full image test set.
The algorithm predicts the correct count on 53.7% of all the test
images, and in 84.4% of the images the error is bound within±1. The
non-maximum con�dence threshold was calibrated so that false
positives are of similar cardinality as false negatives. In Figure 4
these will be shown in red and blue, respectively.

As a point of comparison, we also trained a similar CNN to that
shown in Figure 1 using the collected visual images as input (in
full-color, but downscaled to 80×60). We used the same training
methodology and parameters as in the thermal case. Our results
have shown that the features are typically too small and the images
too cluttered for the CNN to be able to converge to a decently dis-
criminating model; in fact, in most iterations they simply converge
to a local minimum where all patches, regardless of their content,
are predicted as backgrounds.

Figure 4 shows a histogram of all counting predictions performed
by the algorithm presented in Section 3 on both the thermal and
visual test sets. To highlight the di�erences between the two results
in terms of discrimination between heads and backgrounds and
of correct overall count, we split the two test sets in a subset for
empty rooms, where the correct prediction is always 0 people, and
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Figure 4: Histogram of errors on head counting and detection algorithm for the thermal/visible algorithms (left/right) and
empty/occupied rooms test sets (top/bottom). Red bars indicate more predictions than real heads, blue bars indicate the oppo-
site, and the green bar indicates correct predictions.

one for occupied ones where the number of people varies from
image to image. Ideally, both the thermal-based and visual-based
algorithms should perform well on either subset. Instead, while
the two algorithms perform similarly on pure backgrounds, their
results are dramatically di�erent on the occupied rooms. Whereas
the thermal-based algorithm is able to discriminate between heads
and backgrounds leading to a correct count in 45% of the images
and an error bound within ±1 head for 81% of the predictions, the
visual-based algorithm can identify the correct number of people
only in ∼10% of the subset images.

4.2 Evaluation on the LPC54102
In this section, we report experimental results measured from the
embedded deployment of the people counting algorithm on the
platform described in Section 3.3. The two �gures of merit we are
most interested in are the memory and energy requirements of the
target application.

Memory. There are three key data elements: the image itself, the
weights of the CNN and the intermediate results. The Lepton sensor
produces an 80×60 matrix of the type int16_t, while the weights
and intermediate results are �oat . The code was compiled with the
−Os optimization �ag to minimize its size. The memory breakdown
of the compiled application can be seen in the left column of Table 1.
It should be noted that the biggest section, Text, contains all of the

constants for the CNN �lters. The BSS section is almost one fourth
the Text size, and �ts comfortably in the available 104 kB SRAM.

Performance & Energy. For our embedded people recognition
application, we consider only two tasks: acquiring and process-
ing the image. Since low-power embedded systems are typically
duty-cycled to reduce the average power consumption, we also
characterized the system initialization overhead. For these mea-
surements, we used a 2.8 V voltage supply, which is the minimum
voltage required by the Lepton camera. The load current and voltage
were measured using the open-source RocketLogger platform [27].
The energy breakdown of the compiled application can be seen
in the right column of Table 1. The system initialization incurs an
initial high energy cost of almost 120mJ, due to start-up of the
Lepton sensor. The actual cost of acquiring a single image is one
tenth of the start-up cost, however in our case these two costs can
be counted together as the Lepton is used to acquire only a single
image and then shut down. The system operates within a peak
power envelope of ∼180mW in this mode.

The execution of the CNN has a computational complexity of
∼50k multiply-accumulate operations for each window in the input
pyramid, for a total of 16k windows for the 2×2 stride considered
in Section 4.1; ∼7300 windows if we consider a bigger 3×3 stride.
In this mode, the system consumes 34.4mW on average. Table 1
shows the execution time and energy necessary to perform the
full algorithm including the bulk of CNN computation as well as
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the pyramid construction, the non-maximum suppression and the
�nal thresholding. Once an image has been acquired, estimating the
number of people takes approximately ∼ 2.3 minutes (equivalent to
a throughput of ∼5.8 MMAC/s); however it comes at a very reduced
cost in terms of energy: acquiring and processing a thermal image
requires only 4.8 J, which (when running at 2.8 V) are equivalent
to ∼0.48mAh. This is more then enough for the target application,
as it allows one recognition every 10 minutes for 8 hours a day for
almost half a year (156 days) on a single o�-the-shelf 3600mAh
battery, without any human intervention.

Table 1: Breakdown of the memory and energy require-
ments for people recognition running on the LPC54102. A
single acquisition/processing cycle is considered.

Memory Breakdown Energy Breakdown

Section Size [B] Task Energy Exec. Time
[J] [s]

Text 245×103
start-up 0.1 1.3

+ acquisition

BSS 63×103
CNN 4.7 138.0

stride 2×2

Data 186 CNN 2.2 63.0
stride 3×3

4.2.1 CMSIS-NN performance projection. E�cient CNN imple-
mentations for Cortex-M microcontrollers have recently been pub-
lished by Lai et al. [28]. When scaled to the same frequency of
80MHz, the baseline performance that is reported in [28] (e.g., 6.46
MMAC/s for the �rst layer of CIFAR-10) is comparable with our
results. Using their improved implementation would yield a net
performance and e�ciency boost of ∼4.5×; even keeping a safety
margin, such an implementation could allow executing the 2×2
stride head detection in less then 35 s and 1.2 J, making it possible
to run for more than a year on the same 3600mAh battery.

5 CONCLUSIONS
We have presented a thermal image-based CNN for people recogni-
tion deployed on a resource constrained, ultra-low power system.
Our methodology, which is designed to �t in less than 500 kB of
memory and operate on a tiny Cortex-M class microcontroller, can
detect heads and count people in a classroom environment with
a classi�cation accuracy up to 99%, which translates to an over-
all error of ±1 person in 84.4% of the images of the collected test
set, consuming less than 0.48mAh per inference - an amount of
energy which could be reduced by up to 4.5× by switching to a
more e�cient convolution library such as the recently presented
CMSIS-NN [28]. Our future work includes both further re�nements
to the base algorithm, to reduce its computational requirements
and further decrease the number of errors due to missing matches
and false positives, and a more advanced implementation targeting
an advanced library such as CMSIS-NN or faster, more e�cient
ultra-low power computing platforms.
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