EHzürich

Thermal Image-Based CNN's for Ultra-Low Power People Recognition

Andres GomezFrancesco ContiLuca BeniniETH Zurich, University of Bologna

Low-Power Embedded Systems workshop @ CF'18, Ischia, Italy – 9 May 2018

People Recognition

Smart buildings:

- Occupancy estimation
- Queue management
- HVAC systems

Energy autonomy:

- Low maintenance sensors
- Leave in the field

Embedded people recognition: examples

CNN

head detection or density estimation

[M. Berger et al. 2010]

[F. Conti et al. 2014]

(top view)

low resolution thermal imaging

high resolution

visible imaging

count estimation

Ultra-low-power people recognition

From the computer vision side:

- Many dependencies (perspective, lighting conditions, scenario/background)
- Proper datasets (ground truth)
- Privacy concerns

From the implementation side:

- Limited memory
- Limited processing power

Research question

Can we achieve people counting functionality on a resource-constrained embedded system?

Contributions

- 1. Collected a dataset of 3000+ manually tagged thermal and visible images
- 2. Developed an algorithm to count the number of people with sliding windows and NMS
- 3. Compared head counting and detection errors on both thermal and visible images
- 4. Provided a implementation on the low-power LP54110 platform

EHzürich

Dataset Acquisition and Pre-Processing

Image Capturing Hardware: Thermal

- FLIR Lepton Thermal Camera
- Long-wave infrared: $8 14 \ \mu m$
- Thermal information isolates warm objects from background
- Low resolution (80x60 pixel) compared to classic computer vision

Image Capturing Hardware: Visual

- Raspberry Pi Camera
- Images recorded at 720x480p
- Artificially blurred (privacy)
- Useful for reference/cross check

Dataset collection

• We deployed **Raspberry Pi** boards equipped with the two cameras in several ETH classrooms

- The *full-image dataset* collected consists of ~3000 images in thermal and visual version (70% training, 15% validation, 15% test)
- All images have been tagged manually based on the visual version, using an empirical transformation to derive the thermal tags

Visual vs Thermal

	Visible Image Thermal Ima	
Privacy	low	high
Resolution	high	low
Cost	low	high
Accuracy	?	?

ETH zürich

ush(a[c]); gged +(?=)/

People Counting Algorithm

Prototype in Python Framework Keras

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear
- Apply CNN to input image?

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear
- Apply CNN to input image? X

- Problems:
 - High memory use
 - Needs many training images
 - Possible overfitting to scene

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear
- Sliding detection window?

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear
- Sliding detection window? \checkmark

Binary classification problem:

- fed with a small 12x12 patch
- can be trained efficiently
- size of head to look for can be reduced by upscaling input image

→ <u>head</u> / not head

CNN

- In order to count, we need to detect first: use a CNN
 - known to be effective on visual problem; popular; efficient libraries are starting to appear
- Sliding detection window? \checkmark

Binary classification problem:

- fed with a small 12x12 patch
- can be trained efficiently
- size of head to look for can be reduced by upscaling input image

→ <u>head</u> / not head

CNN

Targeting embedded platform

- COTS LPC microcontroller
- ~500kB memory constraint

• 80MHz

Convolutional Neural Network Topology

Training methodology

- CNN input sliding window dataset for training built from all *head cuts* + random background cuts:
 - training set with 4203 head cuts + 5000 random backgrounds built from full-image training set in the three scales
 - validation set with 850 head cuts + 5000 random backgrounds from full-image validation set, + 4250 heads constructed with data augmentation (noise / gradient)
 - *test set* with 872 head cuts + 67540 background cuts
- CNN is trained with backpropagation
 - using Keras/Tensorflow as backend
 - Adam optimizer with Ir = 5e-5, L2 penalty of 0.05 on Conv layers
 - **validation loss** is used to select the best result over 300 epochs

Training methodology

- validation set with 850 head cuts + 5000 random backgrounds from full-image validation set, <u>+ 4250 heads</u> constructed with data augmentation (noise / gradient)
- *test set* with 872 head cuts + 67540 background cuts
- CNN is trained with backpropagation
 - using Keras/Tensorflow as backend
 - Adam optimizer with Ir = 5e-5, <u>L2 penalty of 0.05 on Conv</u> layers
 - validation loss is used to select the best result over 300 epochs

Training methodology

- CNN input sliding window dataset for training built from all *head cuts* + random background cuts:
 - training set with 4203 head cuts + 5000 random backgrounds built from full-image training set in the three scales
 - validation set with 850 head cuts + 5000 random backgrounds from full-image validation set, <u>+ 4250 heads</u> constructed with data augmentation (noise / gradient)
 - *test set* with 872 head cuts + 67540 background cuts
- CNN is trained with backpropagation
 - using Keras/Tensorflow as backend
 - Adam optimizer with Ir = 5e-5, <u>L2 penalty of 0.05 on Conv</u> layers
 - validation loss is used to select the best result over 300
 <u>epochs</u>
- Non-maximum suppression
 - removes duplicate matches

Evaluating Accuracy

- Test accuracy on *head cuts* dataset: 95.9%, up to 99.0% with NMS
- Test accuracy on *full images* test set hit by two separate mechanisms
 - many sliding windows taken into account -> even a small percentage of classification error results in significant counting error
 - false positives (red bars)
 - missed predictions (blue bars)
- For *empty rooms*, only false positives are relevant -> both visual and thermal achieve good accuracy

Evaluating Accuracy

- Test accuracy on *head cuts* dataset: 95.9%, up to 99.0% with NMS
- Test accuracy on *full images* test set hit by two separate mechanisms
 - many sliding windows taken into account -> even a small percentage of classification error results in significant counting error
 - false positives (red bars)
 - missed predictions (blue bars)
- For *occupied rooms*, also missed predictions are relevant -> our tiny CNN cannot generalize on visual

Evaluating Accuracy

- Test accuracy on *head cuts* dataset: **95.9%**, up to **99.0%** with NMS
- Test accuracy on *full images* test set hit by two separate mechanisms
 - many sliding windows taken into account -> even a small percentage of classification error results in significant counting error
 - false positives (red bars)
 - *missed predictions* (blue bars)

- Overall, correct people count with thermal images for 45% of test images, error within ±1 for 81% images
- Visual counting is ~garbage: **10%** of correct counts (mainly empty images!)
 - the visual image is "noisy" -> a bigger CNN would be required

Embedded deployment

Custom-built evaluation board

- Energy harvesting (beyond this work)
- BLE (beyond this work)
- FLIR lepton camera
- LPC54110 @ 80 MHz, 2.8 V

Figures of merit

- Power consumption of the LPC microcontroller
- Processing time (frame rate)
- Memory breakdown

• Can we run on this platform at all?

• Can we run on this platform at all? ✓

Memory Breakdown			
Section	Size [B]		
Text	245x10 ³		
BSS	63x10 ³		
Data	186		

- Can we run on this platform at all? \checkmark
- How fast / how good is the deployment?

Memory Breakdown			
Section	Size [B]		
Text	245x10 ³		
BSS	63x10 ³		
Data	186		

- Can we run on this platform at all? ✓
- How fast / how good is the deployment?

Memory Breakdown		Energy Breakdown		
Section	Size [B]	Task	Energy [J]	Exec. Time [s]
Text	245x10 ³	start-up + acquisition	0.1	1.3
BSS	63x10 ³	CNN stride 2x2	4.7	138.0
Data	186	CNN stride 3x3	2.2	63.0

- Can we run on this platform at all? ✓
- How fast / how good is the deployment?

Memory Breakdown		Energy Breakdown			
Section	Size [B]	Task	Energy [J]	Exec. Time [s]	
Text	245x10 ³	start-up + acquisition	0.1	1.3	
BSS	63x10 ³	CNN stride 2x2	4.7	138.0	
Data	186	CNN stride 3x3	2.2	63.0	

- ~2.3 minutes, 4.8 Joules
- Near-autonomy is achievable:
 - assume 1 inference every 10 minutes for 8 hours a day
 - 156 days of autonomy on a standard 3600 mAh battery

Summary & Future work

- Developed a CNN-based, head-detection algorithm with <500kb footprint
 - can be deployed on a LPC54110 COTS microcontroller
- Trained CNN with thermal and visible images
- Evaluated the accuracy of head detection on thermal and visible images
 - achieved 99% classification error and error bound of ±1 on 81% of full images
- Implemented the final algorithm on the LPC54110 platform
 - 5.8 MMAC/s on custom code, 4.8 J/image
 - achieves near-autonomy

Summary & Future work

- Developed a CNN-based, head-detection algorithm with <500kb footprint
 - can be deployed on a LPC54110 COTS microcontroller
- Trained CNN with thermal and visible images
- Evaluated the accuracy of head detection on thermal and visible images
 - achieved 99% classification error and error bound of ±1 on 81% of full images
- Implemented the final algorithm on the LPC54110 platform
 - 5.8 MMAC/s on custom code, 4.8 J/image
- Currently working on several improvements
 - using CMSIS-NN library (up to 4.5x speedup possible)
 - bigger CNN topology adapted to embedding via quantization / binarization
 - deployment on more advanced low-power architectures

Thanks for your attention.

Questions?