
Andres Gomez Francesco Conti Luca Benini

ETH Zurich, University of Bologna

Low-Power Embedded Systems workshop @ CF’18, Ischia, Italy – 9 May 2018

Thermal Image-Based CNN’s

for Ultra-Low Power People Recognition

2People Recognition

source: Lavi Industries

Smart buildings:

• Occupancy estimation

• Queue management

• HVAC systems

Energy autonomy:

• Low maintenance sensors

• Leave in the field

3Embedded people recognition: examples

CNN

head detection or

density estimation

high resolution

visible imaging

low resolution

thermal imaging

(top view)

count estimation

blob

detection

[F. Conti et al. 2014]

[M. Berger et al. 2010]

4Ultra-low-power people recognition

From the implementation side:

• Limited memory

• Limited processing power

From the computer vision side:

• Many dependencies (perspective, lighting conditions, scenario/background)

• Proper datasets (ground truth)

• Privacy concerns

5Research question

1. Collected a dataset of 3000+ manually tagged thermal and visible images

2. Developed an algorithm to count the number of people with sliding windows and NMS

3. Compared head counting and detection errors on both thermal and visible images

4. Provided a implementation on the low-power LP54110 platform

Can we achieve people counting functionality on a resource-constrained embedded system?

Contributions

Dataset Acquisition and Pre-Processing

7
Image Capturing Hardware:
Thermal

• FLIR Lepton Thermal Camera

• Long-wave infrared: 8 – 14 μm

• Thermal information isolates warm objects
from background

• Low resolution (80x60 pixel) compared to
classic computer vision

8
Image Capturing Hardware:
Visual

• Raspberry Pi Camera

• Images recorded at 720x480p

• Artificially blurred (privacy)

• Useful for reference/cross check

9Dataset collection

• We deployed Raspberry Pi boards equipped with the two
cameras in several ETH classrooms

• The full-image dataset collected consists of ~3000 images
in thermal and visual version (70% training, 15% validation,
15% test)

• All images have been tagged manually based on the visual
version, using an empirical transformation to derive the
thermal tags

10Visual vs Thermal

Visible Image Thermal Image

Privacy low high

Resolution high low

Cost low high

Accuracy ? ?

Prototype in Python Framework Keras

People Counting Algorithm

12How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

13How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

• Apply CNN to input image?

CNN 4 people

14How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

• Apply CNN to input image? ✘ Problems:

 High memory use

 Needs many training images

 Possible overfitting to scene

CNN 4 people

15How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

• Sliding detection window?

CNN head / not head

16How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

• Sliding detection window? ✓ Binary classification problem:

 fed with a small 12x12 patch

 can be trained efficiently

 size of head to look for can be

reduced by upscaling input image

CNN head / not head

17How can we count people?

• In order to count, we need to detect first: use a CNN
• known to be effective on visual problem; popular; efficient

libraries are starting to appear

• Sliding detection window? ✓ Binary classification problem:

 fed with a small 12x12 patch

 can be trained efficiently

 size of head to look for can be

reduced by upscaling input image

CNN head / not head

Targeting embedded platform

 COTS LPC microcontroller

 ~500kB memory constraint

 80MHz

18
Convolutional Neural Network
Topology

19Training methodology

• CNN input sliding window dataset for training built from all

head cuts + random background cuts:

• training set with 4203 head cuts + 5000 random backgrounds

built from full-image training set in the three scales

• validation set with 850 head cuts + 5000 random

backgrounds from full-image validation set, + 4250 heads

constructed with data augmentation (noise / gradient)

• test set with 872 head cuts + 67540 background cuts

• CNN is trained with backpropagation

• using Keras/Tensorflow as backend

• Adam optimizer with lr = 5e-5, L2 penalty of 0.05 on Conv

layers

• validation loss is used to select the best result over 300

epochs

20Training methodology

• CNN input sliding window dataset for training built from all

head cuts + random background cuts:

• training set with 4203 head cuts + 5000 random backgrounds

built from full-image training set in the three scales

• validation set with 850 head cuts + 5000 random

backgrounds from full-image validation set, + 4250 heads

constructed with data augmentation (noise / gradient)

• test set with 872 head cuts + 67540 background cuts

• CNN is trained with backpropagation

• using Keras/Tensorflow as backend

• Adam optimizer with lr = 5e-5, L2 penalty of 0.05 on Conv

layers

• validation loss is used to select the best result over 300

epochs

reduce overfitting

21Training methodology

• CNN input sliding window dataset for training built from all

head cuts + random background cuts:

• training set with 4203 head cuts + 5000 random backgrounds

built from full-image training set in the three scales

• validation set with 850 head cuts + 5000 random

backgrounds from full-image validation set, + 4250 heads

constructed with data augmentation (noise / gradient)

• test set with 872 head cuts + 67540 background cuts

• CNN is trained with backpropagation

• using Keras/Tensorflow as backend

• Adam optimizer with lr = 5e-5, L2 penalty of 0.05 on Conv

layers

• validation loss is used to select the best result over 300

epochs

• Non-maximum suppression

• removes duplicate matches

reduce overfitting

22Evaluating Accuracy
• Test accuracy on head cuts dataset: 95.9%, up to 99.0% with NMS

• Test accuracy on full images test set hit by two separate mechanisms

• many sliding windows taken into account -> even a small percentage of classification error results in

significant counting error

• false positives (red bars)

• missed predictions (blue bars)

• For empty rooms, only false positives are relevant -> both visual and thermal achieve good accuracy

23Evaluating Accuracy
• Test accuracy on head cuts dataset: 95.9%, up to 99.0% with NMS

• Test accuracy on full images test set hit by two separate mechanisms

• many sliding windows taken into account -> even a small percentage of classification error results in

significant counting error

• false positives (red bars)

• missed predictions (blue bars)

• For occupied rooms, also missed predictions are relevant -> our tiny CNN cannot generalize on visual

data!

24Evaluating Accuracy
• Test accuracy on head cuts dataset: 95.9%, up to 99.0% with NMS

• Test accuracy on full images test set hit by two separate mechanisms

• many sliding windows taken into account -> even a small percentage of classification error results in

significant counting error

• false positives (red bars)

• missed predictions (blue bars)

• Overall, correct people count with thermal images for 45% of test images, error within ±1 for 81%

images

• Visual counting is ~garbage: 10% of correct counts (mainly empty images!)

• the visual image is “noisy” -> a bigger CNN would be required

25Embedded deployment

Custom-built evaluation board

• Energy harvesting (beyond this work)

• BLE (beyond this work)

• FLIR lepton camera

• LPC54110 @ 80 MHz, 2.8 V

Figures of merit

• Power consumption of the LPC microcontroller

• Processing time (frame rate)

• Memory breakdown

26Experimental Results

• Can we run on this platform at all?

27

Memory Breakdown Energy Breakdown

Section Size [B] Task Energy [J] Exec. Time

[s]

Text 245x103 start-up +

acquisition
0.1 1.3

BSS 63x103 CNN

stride 2x2
4.7 138.0

Data 186
CNN

stide 3x3
2.2 63.0

Experimental Results

• Can we run on this platform at all? ✓

28

Memory Breakdown Energy Breakdown

Section Size [B] Task Energy [J] Exec. Time

[s]

Text 245x103 start-up +

acquisition
0.1 1.3

BSS 63x103 CNN

stride 2x2
4.7 138.0

Data 186
CNN

stide 3x3
2.2 63.0

Experimental Results

• Can we run on this platform at all? ✓

• How fast / how good is the deployment?

29

Memory Breakdown Energy Breakdown

Section Size [B] Task Energy [J] Exec. Time

[s]

Text 245x103 start-up +

acquisition
0.1 1.3

BSS 63x103 CNN

stride 2x2
4.7 138.0

Data 186
CNN

stride 3x3
2.2 63.0

Experimental Results

• Can we run on this platform at all? ✓

• How fast / how good is the deployment?

30

Memory Breakdown Energy Breakdown

Section Size [B] Task Energy [J] Exec. Time

[s]

Text 245x103 start-up +

acquisition
0.1 1.3

BSS 63x103 CNN

stride 2x2
4.7 138.0

Data 186
CNN

stride 3x3
2.2 63.0

Experimental Results

• Can we run on this platform at all? ✓

• How fast / how good is the deployment?

• ~2.3 minutes, 4.8 Joules

• Near-autonomy is achievable:

• assume 1 inference every 10 minutes for 8 hours a day

• 156 days of autonomy on a standard 3600 mAh battery

31Summary & Future work

• Developed a CNN-based, head-detection algorithm with <500kb footprint

• can be deployed on a LPC54110 COTS microcontroller

• Trained CNN with thermal and visible images

• Evaluated the accuracy of head detection on thermal and visible images

• achieved 99% classification error and error bound of ±1 on 81% of full images

• Implemented the final algorithm on the LPC54110 platform

• 5.8 MMAC/s on custom code, 4.8 J/image

• achieves near-autonomy

32Summary & Future work

• Developed a CNN-based, head-detection algorithm with <500kb footprint

• can be deployed on a LPC54110 COTS microcontroller

• Trained CNN with thermal and visible images

• Evaluated the accuracy of head detection on thermal and visible images

• achieved 99% classification error and error bound of ±1 on 81% of full images

• Implemented the final algorithm on the LPC54110 platform

• 5.8 MMAC/s on custom code, 4.8 J/image

• Currently working on several improvements

• using CMSIS-NN library (up to 4.5x speedup possible)

• bigger CNN topology adapted to embedding via quantization / binarization

• deployment on more advanced low-power architectures

33

Thanks for your
attention.

Questions?

