
SF3P: A Framework to Explore and Prototype 
Hierarchical Compositions of Real-Time Schedulers

Andres Gomez, Lars Schor, Pratyush Kumar, Lothar Thiele

Intl. Symp. on Rapid System Prototyping
New Delhi, October 16-17, 2014



Motivation

 Highly integrated real-time systems are showing:
 Increasingly complex functionality
 Need for sophisticated scheduling techniques (mixed-criticality)

 Scheduler designers need to validate at early design stages

 Prototype schedulers on different HW platforms

 Prototyping platforms should:
 Offer a high level of abstraction (extendable)
 Have minimal system requirements
 Inexpensive to execute (low overhead)

Thursday, October 16th, 2014 2Gomez A, Computer Engineering Group



Software Options in Real-Time Systems
 Unix-like OS
High HW/SW compatibility
─ Limited scheduling options

 Modified Kernel Space
High HW compatibility
Customizable scheduling options
─ Limits SW compatibility/portability

 Custom RTOS
Finely tuned scheduler
─ Limited HW/SW compatibility

Our proposal:
 Add flexible scheduling layer on top of a standard kernel

Thursday, October 16th, 2014 3Gomez A, Computer Engineering Group

Faggioli, et al. (2009)

Asberg, et al. (2012)

Palopoli, et al. (2009)

Buttazzo, et al (1993)

Presenter
Presentation Notes
When designing the software for a real time system, there are several options:

Use a standard unix-like OS. There are many advantages, for example, high HW/SW compatibility. However, if the standard Linux scheduler does not fit your needs, you might think of modifying the kernel.
This was the approach taken by the Aquosa project, headed by Luca Abeni. They modified the standard linux scheduler so they can add a layer of QoS in the user space. This approach maintains the same HW compatibility from linux, but it ties you to the one kernel version that you modified.
The final approach is to go custom. The HARTIK kernel, developed by Giorgio Butazzo’s group, is just one of many examples. Naturally, when you develop your own OS, you can design it specifically to your needs. This, however, is a costly process.

Our approach is to build a new user-space framework that will sit on top of a standard linux environment, keeping all of the advantages of a standard environment, while giving us the freedom to choose what scheduler will run our tasks.




Our Scheduling Model

Thursday, October 16th, 2014 4Gomez A, Computer Engineering Group

Presenter
Presentation Notes
Brief review of scheduling:

The scheduler resides in the OS and it decides what task will execute. When several tasks arrive, they are stored in a queue, and the scheduler decides which task gets to run.



Scheduling in Unix-like Operating Systems

Thursday, October 16th, 2014 5Gomez A, Computer Engineering Group

Unix-like AQuoSA

Presenter
Presentation Notes
A typical unix system has a kernel (in gray) which sits on top of a HW layer. In the user space, you have a concurrency manager (like the pthread library) that will allow you run multiple tasks.

When you modify the kernel, you might also have to modify the concurrency manager to run with modified kernel. Once you have finished all those modifications, you will then be able to run your tasks.



Scheduling Framework for Fast Prototyping (SF3P)

Thursday, October 16th, 2014 6Gomez A, Computer Engineering Group

Unix-like Our Solution

SF3P

Presenter
Presentation Notes
Our approach is different. Our framework (HSF) will sit on top of a standard concurrency manager (the pthread library) and a standard linux kernel, and it will allow us to specify (in the user space) what schedulers will run our tasks.



Our Goals

Thursday, October 16th, 2014 7Gomez A, Computer Engineering Group

 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Presenter
Presentation Notes
Our design approach has many advantages. I will focus on the following 3:

Portability
Extendability
Low overhead



Our Goals

 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Thursday, October 16th, 2014 8Gomez A, Computer Engineering Group



SF3P – Concurrency Manager Interaction

Thursday, October 16th, 2014 9Gomez A, Computer Engineering Group

SF3P

SF3P

Presenter
Presentation Notes
HSF requires only two basic mechanism to run:

A priority setter and timers



Basic Concept – How does SF3P Schedule?

Thursday, October 16th, 2014 10Gomez A, Computer Engineering Group

SF3P

Presenter
Presentation Notes
The priority setting mechanism is used to enforce what task will run, and it works like this:

There is a scheduler that will always have a high priority, and tasks which can have one of two priorities: active, or inactive.

When a task arrives, it has an inactive priority. When the scheduler selects it, it raises the priority to active. Once the task finished, the scheduler lowers it once again to inactive.



Time Triggered Scheduling

Thursday, October 16th, 2014 11Gomez A, Computer Engineering Group

• Time Division Multiple Access

SF3P

Presenter
Presentation Notes
HSF requires timers to measure time. We need this in order to implement the family of schedulers known as time-triggered. Once such scheduling algorithm is TDMA.

At the beginning of the time slot 1, the scheduler activates task 1, sets a timer, and goes to sleep. When the timer goes off, the scheduler wakes up, deactivates task 1, and activates task 2. And the process repeats itself.



Our Goals

 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Thursday, October 16th, 2014 12Gomez A, Computer Engineering Group

Presenter
Presentation Notes
We have seen that HSF has minimal system requirements, which are offered by most operating systems in use today. We can thus conclude that our framework is portable.



 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Our Goals

Thursday, October 16th, 2014 11Gomez A, Computer Engineering Group



Adding a New Scheduler

 Generic Scheduler

Thursday, October 16th, 2014 14Gomez A, Computer Engineering Group

 Decoupled Insertion

 Implemented: FIFO, FP, EDF, RM, TDMA

SF3P

Presenter
Presentation Notes
When we began to design HSF, we first thought of a generic scheduler. We designed our selection, preemption, and removal mechanisms so they would be standard for all HSF schedulers.

This allowed us to decouple the insertion of a task into the queue. So once we had built all the groundwork, adding a new scheduler is as easy as deciding what criteria we would use to keep our queue sorted. 

A fixed priority scheduler, for example, would keep the queue order by the priority. An earliest deadline first scheduler would keep the queue ordered by the deadline in ascending fashion. 

This design approach allowed us to implement all of the following scheduling algorithms in a short amount of time. But now, with HSF, we can go one step further. We can now use these classical scheduling algorithms as building blocks, and connect them in a hierarchical fashion; which looks like this:



More Hierarchical Scheduling

Thursday, October 16th, 2014 15Gomez A, Computer Engineering Group

SF3P

Presenter
Presentation Notes
Here we have three task sets: 1, 2, 3. TS2 is handled by an EDF scheduler, TS3 by a FIFO scheduler. With HSF, we can now prioritize among tasks from these two sets by setting an arbitrary priority. In addition, we have a layer of time isolation between TS1 and the rest, given to us by the TDMA scheduler on top.

So now, we can view the combination of all of these classical schedulers as a new scheduler itself, with its own properties.

But before we could get a scheduler like this working, there were a few things we had to do first.



Criteria Inheritance

Thursday, October 16th, 2014 16Gomez A, Computer Engineering Group

SF3P

Presenter
Presentation Notes
The first is something we call Criteria inheritance.

Normally, as task from set 2 would only need a deadline to be scheduled by EDF. But now, since it is also underneath a fixed priority scheduler, we decided to associate both a deadline and a priority to a single task.
�Now, when T1 arrives at the edf queue, the deadline will be used to insert it into the ordered queue. Once the task has the earliest deadline in the queue, the EDF scheduler will forward it to the FP scheduler, who will now use the priority to insert it into its queue.

One of the challenges that we had was to design a preemption mechanism that will work with this kind of schedulers. So if a new task, T2, arrives with an earlier deadline than T1, the edf scheduler will first have to remove T1 from the FP queue, so it can then insert T2 into the FP queue.



 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Our Goals

Thursday, October 16th, 2014 12Gomez A, Computer Engineering Group

Presenter
Presentation Notes
We have seen that because of our modular design, and the high reusability of our code, it is fairly easy to add a new scheduler to our framework. In addition, we have seen that we can combine classical schedulers to produce a new type of hierarchical schedulers.
�We can thus conclude that our framework is easily extendable.



 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Our Goals

Thursday, October 16th, 2014 19Gomez A, Computer Engineering Group



Evaluation Mechanism

 Configuration File

 Specify schedulers, tasks, criteria

 Dispatcher Library

 Simulate task arrivals

 Analysis Tools

 Calculate metrics

Thursday, October 16th, 2014 20Gomez A, Computer Engineering Group

SF3P

Presenter
Presentation Notes
Before we could test our schedulers, we had to develop a few things first.

For starters, we needed a configuration file that would allow us to specify what schedulers we want to use, what tasks we want to run, and what their criteria will be.

We also had to develop a dispatcher library that would allow us to simulate task arrivals.

And finally, we also developed some analysis tools that would help us calculate some metrics from the execution of our tasks.



Experimental Evaluation

 Desktop Testing Environment

Thursday, October 16th, 2014 21Gomez A, Computer Engineering Group

Linux Kernel: 3.2

Processor: Intel i7 @ 3.4GHz

Memory: 16 GB RAM

Linux Runlevel: 1

SF3P

Presenter
Presentation Notes
We ran our framework on a desktop environment, with a standard linux kernel and an intel i7 processor. Even though the i7 has 8 cores, our framework runs only on one.

We also lowered the run level of the OS so we are only running essential services.



Experimental Evaluation (II)

 Embedded Testing Environment (Raspberry Pi)

Thursday, October 16th, 2014 22Gomez A, Computer Engineering Group

Linux Kernel: 2.6

Processor: ARM V6 @ 700MHz

Memory: 512 MB RAM

Linux Runlevel: 1

Presenter
Presentation Notes
DEMO



Schedulability Analysis

Thursday, October 16th, 2014 23Gomez A, Computer Engineering Group

 A schedule is feasible if tasks meet all of their deadlines

 In classical algorithms:

 Utilization test

 If U < ULUB then the schedule is feasible

 Generate (random) schedules and verify feasibility
 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 5,50 𝑈𝑈 ∈ 20,100 %
 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 40,50 𝑚𝑚𝑚𝑚 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 5,10 𝑚𝑚𝑚𝑚

Presenter
Presentation Notes
Our first experiment was to see if we could reproduce the theoretical results from schedulability analysis.



Rate Monotonic Schedulability (Desktop)

ULUB = ~88%

Thursday, October 16th, 2014 24Gomez A, Computer Engineering Group

Guaranteed

N
o G

uarantee

Presenter
Presentation Notes
With rate monotonic, our experimental LUB was 80%, which is higher than the theoretical one for ten tasks (71.8%). So far so good.



Guaranteed

EDF Schedulability (Desktop)

ULUB = 99.9%

Thursday, October 16th, 2014 26Gomez A, Computer Engineering Group

Presenter
Presentation Notes
With rate monotonic, our experimental LUB was 80%, which is higher than the theoretical one for ten tasks (71.8%). So far so good.



EDF Schedulability (RPI)

ULUB = ~60%

Thursday, October 16th, 2014 27Gomez A, Computer Engineering Group

Presenter
Presentation Notes
With rate monotonic, our experimental LUB was 80%, which is higher than the theoretical one for ten tasks (71.8%). So far so good.



SF3P Overhead

Thursday, October 16th, 2014 28Gomez A, Computer Engineering Group

Overhead: time spent executing anything other than tasks



SF3P Overhead

Thursday, October 16th, 2014 29Gomez A, Computer Engineering Group

scheduler
overhead

non-scheduler
overhead

Scheduler Overhead
• Algorithm-dependent

Non-Scheduler Overhead
• Platform-dependent

Presenter
Presentation Notes
We define our overhead to be the amount of time spent dispatching and scheduling. We define dispatching as the insertion of a task into a scheduler’s queue. Scheduling is the preemption, selection and removal of a task from the queue.

Since we ran our simulations for an arbitrary amount of time, we normalize the overhead by dividing it by the simulation time. Thus the units of our overhead are ms/s



Increasing the Levels of Hierarchy (L)

Thursday, October 16th, 2014 30Gomez A, Computer Engineering Group

]5,1[∈L

]40,10[∈C ms

32=N

]90,50[∈U %
T32T31

T32

T16 T17

SF3P

L=5L=2L=1

Presenter
Presentation Notes
When then proceeded to test the cost of increasing the levels of hierarchy. For this test, we set the number of tasks to 64, and once again, we generated thousands of random schedules with one level; two levels, all the way up to 5 levels.

And these were our results:



Thursday, October 16th, 2014 31Gomez A, Computer Engineering Group

Overhead vs Levels of Hierarchy 

Desktop RPI

N.Sched. Overhead is constant!Scheduler overhead increases linearly!

Non Scheduler overhead 

Scheduler overhead 

Fixed cost is 
dominant!

Presenter
Presentation Notes
As you can see the dispatching costs remain constant, because the number of tasks was kept constant. The scheduling cost, on the other hand, increases linearly. So even though the number of schedulers is increasing exponentially, the cost of using them only increases linearly.

Once again, the total system cost, even with 64 tasks and 7 levels of hierarchy, is < 6ms/s, well below out initial goal of 10ms/s (1%)



Re-running EDF with long (10x) Tasks on RPI

ULUB = ~60%

Thursday, October 16th, 2014 32Gomez A, Computer Engineering Group

ULUB = 99.1%

Presenter
Presentation Notes
When we expanded the execution times by a factor of 10, the fixed non-scheduling cost becomes so small that our least upper bound returns to our expected value, close to 100%



 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Our Goals

Thursday, October 16th, 2014 33Gomez A, Computer Engineering Group

Presenter
Presentation Notes
As we have seen, the total system cost, even when we increase the number of tasks, as well as the number of levels of hierarchy, remains low. So we can conclude that our framework does indeed have a low overhead



 We can add a scheduling layer in the User Space

1. Portable to different platforms with no cost

2. Extendable to new schedulers with low cost

3. Low Overhead

Our Goals

Thursday, October 16th, 2014 34Gomez A, Computer Engineering Group



SF3P Summary

Thursday, October 16th, 2014 35Gomez A, Computer Engineering Group

 Framework for fast prototyping of real-time schedulers
 Modular, extendable, composable

 New hierarchical schedulers
 Suitable for complex scheduling needs

 Low overhead

Available at: http://www.tik.ee.ethz.ch/~euretile/scheduling

Presenter
Presentation Notes
In conclusion, 

We have been able to add a scheduling layer, in the user space, in a way that it is portable, extendable, and low cost. We were able to do this because we decoupled the insertion, selection, and preemption mechanisms of our schedulers. 

In addition, with our framework, we now have the possibility to combine classical schedulers in order to create new hierarchical ones.

Thank you very much.


	SF3P: A Framework to Explore and Prototype Hierarchical Compositions of Real-Time Schedulers
	Motivation
	Software Options in Real-Time Systems
	Our Scheduling Model
	Scheduling in Unix-like Operating Systems
	Scheduling Framework for Fast Prototyping (SF3P)
	Our Goals
	Our Goals
	SF3P – Concurrency Manager Interaction
	Basic Concept – How does SF3P Schedule?
	Time Triggered Scheduling
	Our Goals
	Our Goals
	Adding a New Scheduler
	More Hierarchical Scheduling
	Criteria Inheritance
	Our Goals
	Our Goals
	Evaluation Mechanism
	Experimental Evaluation
	Experimental Evaluation (II)
	Schedulability Analysis
	Rate Monotonic Schedulability (Desktop)
	EDF Schedulability (Desktop)
	EDF Schedulability (RPI)
	SF3P Overhead
	SF3P Overhead
	Increasing the Levels of Hierarchy (L)
	Overhead vs Levels of Hierarchy 
	Re-running EDF with long (10x) Tasks on RPI
	Our Goals
	Our Goals
	SF3P Summary

