Dynamic Energy Burst Scaling for Transiently Powered Systems

Andres Gomez¹, Lukas Sigrist¹, Michele Magno¹,², Luca Benini¹,², Lothar Thiele¹

¹D-ITET, ETH Zurich, Switzerland ²DEI, University of Bologna, Italy
Design Trends

Battery-based → Batteryless

What are Transiently Powered Systems?

Energy-harvesting based systems with limited energy storage capacity

Why harvesting based?

- Low-cost
- Long-term
- Environmentally friendly

Why limit energy storage?

- Batteries (and supercaps) self-discharge, limited cycles
- Storage is expensive in terms of cost, form factor
- Storage requires energy surplus
Transient System Design Goals

Energy-driven embedded systems that:

- Have low cost
- Operate efficiently
- Guarantee program progress

Challenging Scenario:

- Low power harvesting conditions
Directly Coupled Systems

“Checkpointing” for MCU’s:

Federating Energy:

Advantage:
- Simplicity, no additional sources of leakage/losses

Disadvantage:
- Source must have the same operating power point as the load
Boost-Buck Converter Topology

- Decoupled voltages:

Source | Storage | Load

Source: $P_{\text{in}}, V_{\text{in}}$
Boost Converter
Buck Converter: $P_{\text{load}}, V_{\text{load}}$
Load

Advantages:
- Source at Maximum Power Transfer Point
- Load has regulated voltage

Disadvantage:
- Introduces new sources of losses (converter inefficiencies, leakage, etc)
- No tracking of load’s optimal operating point

WispCam: [Naderiparizi2015]
Our Proposed System

Energy Management Unit (EMU):

- Based on the Boost-Buck topology
- Optimized storage element
 - Minimized wake-up time, cold-start energy
- Tracks load’s optimal operating point
 - Feedback-based Dynamic Energy Burst Scaling
How can we design transient applications?

Basic Sense (S) and Process (P) Application

• Consists of two atomic tasks: S and P
 • Known energies (E_S, E_P) and operating voltage (V_{load})
 • Two burst-based ways of executing this application: together, individually

Single Burst @ V_{load}

- Higher buffer sizes
- Longer timing constants
- Application-level optimization

Multiple Bursts @ V_{load}

- Minimized buffer sizes
- Minimum start-up time
- Task-level optimization
Minimizing the Storage Element

- For a single-capacitor system, C_{min} ensures functionality

\[
C_{\text{min}} = \frac{2 \max(E_{\text{task},i})}{\eta_{\text{buck}} \cdot (V_{\text{max}}^2 - V_{\text{load}}^2)}
\]

- C_{min} also minimizes cold-start energy and start-up time

\[
t_{\text{start-up}} = \left\{ t \mid V_{\text{cap}}(t) = \sqrt{\frac{2 \int_0^t E_{\text{cap}}' \, d\tau}{C_{\text{cap}}}} = V_{\text{load}} \right\}
\]
Dynamic Energy Burst Scaling:

+ Minimizes task energy

- Requires control mechanism!
Dynamic Energy Burst Scaling

Feedback Loop:

• Minimizes task energy required to execute application

• Load configures EMU to provide $E_{\text{burst}} @ V_{\text{load}}$

• Task execution is triggered by EMU interrupt
Energy Burst-Based Flow

After a long period of energy unavailability, the system triggers an energy management unit. Following this, the system transitions from off to power up. If the power-on reset (POR) is confirmed, the system enters the deep sleep mode. Otherwise, the system reads the configuration and performs tasks like initialization (Task_init), execution (Task_exec), and deinitialization (Task_deinit). After a task is completed, the system updates the configuration.

The figure shows the relationship between the voltage across the capacitor (V_{cap}) and the load power (P_{load}) over time (t). The voltage across the capacitor (V_{cap}) is shown to increase as the load power (P_{load}) is active. At certain points, the system enters deep sleep mode, and the load power decreases to a low level. When the system wakes up, the load power increases to a higher level, and the system performs tasks and updates configurations.

Key equations:
- $E_{stored}(t) = E_S$ for deep sleep mode.
- $E_{stored}(t) = E_P$ for active mode.

Load power levels:
- $P_{load} = 60$ nW
- $P_{load} = \sim 4$ mW
- $P_{load} = 60$ nW
- $P_{load} = \sim 3$ mW
Modeling Transient Applications

Discrete-Time Simulation:

- Calculate voltage changes in capacitor (with non-ideal converters, leakage, etc)
- Verify understanding of EMU behavior

Inputs:
- Source’s power trace
- E_{task}, V_{task}, P_{task}

Output:
- Energy Efficiency
- Total Executions

\[P_{in}(t) \rightarrow \text{EMU Model} \rightarrow V_{cap}(t) \rightarrow E_{load} / E_{harvested} \rightarrow P_{load}(t) \]

\[\text{task set} \rightarrow \text{capacitance} \rightarrow \text{power consumption} \]
Experimental Set-Up

Energy Management Unit

- **Optimal Cap**: 80 μF
- **Control Circuit**
- **Buck**: TPS62740

Control Interface

- **Load**: $P_{EMU} \approx 10\ \mu W$

Load:
- Sensor: Centeye Stonyman (3V)
- Processor: MSP430 (2V)

Metrics:
- Energy harvested
- Energy consumed by the load
- Application execution rate
Constant Bursts - Characterization

Energy Stored

\[E_{\text{stored}} = V_{\text{load}} \cdot \frac{1}{2} \cdot \text{Time} \cdot \text{Voltage} \]

\[E_{S+P} = 401.2 \mu J \]

\[P_{\text{avg}} = 3.98 \text{ mW} \]

Table: Energy Burst Characterization

<table>
<thead>
<tr>
<th>Stage</th>
<th>Voltage [V]</th>
<th>Time [ms]</th>
<th>Energy [μJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot</td>
<td>3.0</td>
<td>3.20</td>
<td>6.4</td>
</tr>
<tr>
<td>Sense</td>
<td>3.0</td>
<td>47.0</td>
<td>174.0</td>
</tr>
<tr>
<td>Process</td>
<td>3.0</td>
<td>50.6</td>
<td>220.8</td>
</tr>
<tr>
<td>Total</td>
<td>100.8</td>
<td></td>
<td>401.2</td>
</tr>
</tbody>
</table>
Dynamic Bursts - Characterization

\[E_{\text{stored}} \]

\[E_{\text{S+P}} = (190 + 146.8) \, \mu J = 336.8 \, \mu J \]

\[P_{\text{avg,S+P}} = \sim 3.34 \, \text{mW} \]

1st Burst = Sense

<table>
<thead>
<tr>
<th>Phase</th>
<th>Voltage [V]</th>
<th>Energy [\mu J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot</td>
<td>3.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Sense</td>
<td>3.0</td>
<td>183.9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>190.0</td>
</tr>
</tbody>
</table>

2nd Burst = Process

<table>
<thead>
<tr>
<th>Phase</th>
<th>Voltage [V]</th>
<th>Energy [\mu J]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Process</td>
<td>2.0</td>
<td>143.7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>146.8</td>
</tr>
</tbody>
</table>

Constant Bursts: 401.2 \(\mu J \) required per execution

Dynamic Bursts: 336.8 \(\mu J \) required per execution
Experimental Evaluation

Harvesting Scenarios:

- Constant/variable input power
- Low power ranges: $0 - 400 \, \mu W$

EMU Testing Methodology:

- Constant Bursts Experiment
- Dynamic Bursts Experiment
- Run simulations with recorded input power traces
- Compare measured/simulated outputs
Dynamic Bursts

Constant Bursts

Efficiency is bounded by converter efficiencies (~78%)
Application Execution Rate

Dynamic Bursts

- Model: ~50 exec/min @ 400 uW
- Experimental: ~50 exec/min @ 400 uW

Constant Bursts

- Model: ~40 exec/min @ 400 uW
- Experimental: ~40 exec/min @ 400 uW
Variable Input Power Experiment

Camera worn around the lab for 15 mins. in various lighting conditions

Experiment 1:

<table>
<thead>
<tr>
<th>Avg. P_{in}</th>
<th>Metric</th>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>111.9 μW</td>
<td>Exec. Rate</td>
<td>9.87 min$^{-1}$</td>
<td>9.93 min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>η_{system}</td>
<td>67.76 %</td>
<td>68.01 %</td>
</tr>
</tbody>
</table>

Experiment 2:

<table>
<thead>
<tr>
<th>Avg. P_{in}</th>
<th>Metric</th>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.3 μW</td>
<td>Exec. Rate</td>
<td>9.93 min$^{-1}$</td>
<td>10.33 min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>η_{system}</td>
<td>66.11 %</td>
<td>68.82 %</td>
</tr>
</tbody>
</table>
Summary

Proposed Energy Management Unit (EMU):

- *Large* operating ranges (source/load decoupling)
- *Minimized* storage element, wake-up time, cold-start losses
- *Optimized* Power Point Tracking for source and load
- Feedback-based technique (Dynamic Energy Burst Scaling)