

Wearable, Energy Opportunistic Vision Sensing for Walking Speed Estimation

14.03.2017

Andres Gomez, Lukas Sigrist, Thomas Schalch,

Luca Benini, Lothar Thiele

Sensor Application Symposium Glassboro, NJ, USA

Design Trends

Battery-based

Batteryless

http://senseonics.com/product/the-sensor

//www.electronicsweekly.com/new

ttp://www.pinewswire.com/news-releases/gypassed i=news/device-runssco-rucestroduces-the-worlds-lowest-power-energy-ganiwatidgr-sensor-nodes-uses-cortex ower-management-ics-for-battery-free-wire/gs-2010-002/ odes-300130529.html

When is a system "batteryless"?

If it can buffer, *at most*, the energy required for <u>one atomic operation</u>

Why minimize storage?

- Storage is expensive (cost, form factor, self-discharge, limited cycles)
- Storage requires energy surplus

Where does the energy come from?

- Harvesting from surroundings (light, temperature, vibration, movement)
 - Low-cost, long-term, environmentally friendly
- Energy harvesting suffers from volatile / low power levels

Transiently Powered Sensor Node

First published at DATE '16:

- Based on the Boost-Buck topology
- Optimized storage element
 - Minimized wake-up time, cold-start energy
- Tracks load's optimal operating point
 - Feedback-based Dynamic Energy Burst Scaling (DEBS)

Challenges for Transiently Powered Logging Applications

- 1. Minimum Energy Guarantee
 - Atomic task execution
- 2. Temporal Independence
 - Application correctness
- 3. Non-Volatility
 - Long-term logging

Single Burst Application:

Burst 1: Sense + Store Burst 2: Sense + Store

Multi-Burst Application:

Burst 1: Sense Burst 2: Store

System Design: Visual Velocity Estimation

- attach vision sensor to glasses
- camera is facing down

System Design: Image Acquisition

Image Acquisition	Processing	Storage

acquire two images in the same burst

Image Acquisition

System Design: Velocity Estimation

Processing

Block-Matching Algorithm

- divide image into blocks
- search position of block in next image for which a cost function is minimized
- ➔ optical flow field
- Displacement Estimation
 - average over all non-zero vectors of optical flow field
- Velocity Estimation
 - using distance to ground and time difference between images

System Design: Non-Volatile (Long-Term) Storage

Image Acquisition	Processing	Storage	
	SD Card (flash)	FRAM	
density	high (~ GiB)	low (~ 256	6 KiB)
power consumption	high (~ 100mW)	low (~ 1mW)	
initialization overhead	large & unpredictable	minimal	

How can we store pictures efficiently?

Non-Volatile Memory Hierarchy (NVMH)

Recently published in TECS journal

If we only save walking speed estimation (2 B):

• FRAM alone can last for 128K samples

Hardware Design: Overview

Implementation: Wearable Prototype

Transient System Evaluation

Experimental Set-up

- Constant input power
- Low power ranges: 0 2500 μW

Metrics:

- Energy harvested
- Energy consumed by load
- Execution Rate

Evaluation: Velocity Estimation Algorithm

continuously powered vision sensor

Visual Odometry

- track position of the moving sensor
- integrate velocity estimations

Evaluation: Velocity Estimation Algorithm

Evaluation: Real-World Experiment

continuously powered vision sensor

→ context recognition

Evaluation: Real-World Experiment

Evaluation: Real-World Experiment

➔ distinguish between different walking speeds

Evaluation: Real-World Experiment

→

P_{in} = P_{load} = 40 mW

~ 480 estimations per minute

Simulation: Reduced Input Power

• $P_{in} = P_{load} / 5 = 8 \text{ mW}$ \rightarrow ~ 94 estimations per minute

Simulation: Reduced Input Power

• $P_{in} = P_{load} / 10 = 4 \text{ mW} \rightarrow \sim 46 \text{ estimations per minute}$

Simulation: Reduced Input Power

• $P_{in} = P_{load} / 20 = 2 \text{ mW} \rightarrow \sim 22 \text{ estimations per minute}$

Computer Engineering and Networks Laboratory

Summary

Transiently Powered Vision Sensing

- Reliable application execution
- Energy efficient design
- Accurate walking speed estimation

Open Hardware/Software:

To be released in March 2017

Advanced Power Management

Transient Node

- Digital Core: scales with V_{dd} and F Peripherals: do not scale

How can we supply power to a transient node?

- Direct Coupling minimize error between I_{in} I_{load}
- Energy Bursts minimize energy requirement per task ۲

Evaluation: Task Characterization

Image acquisition:

FPN compensation	CPU Freq.	Executions	$E_{task,avg}$	$t_{task,avg}$
on-line	48 MHz	1152	930 µJ	53 ms
sequential	24 MHz	1829	537 µJ	61 ms

Image processing:

CPU Freq.	Executions	Etask (mean)	t_{task} (mean)	Ptask (mean)
48 MHz	1079	757 μJ	56 ms	13.5 mW
24 MHz	1254	635 µJ	110 ms	5.8 mW
12 MHz	770	1371 µJ	388 ms	3.5 mW

Storing walking speed estimation:

2 Bytes per estimation requires 16 µs and 96 nJ

Computer Engineering and Networks Laboratory

Stonyman Vision Chip: Fixed Pattern Noise

I_{compensated} = I_{mask} - I_{raw}

Raw Image

Mask

FPN compensated Image

Thomas Schalch