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Introduction

 Current nano-size (i.e., Ø ~10cm, ~50g) UAVs require few Watts (~10W) to fly
 Current battery technology has limited capacity → few minutes of flight (~15min)

Can we have nano-UAVs with extended lifetimes?

 There are many potential applications for self sustainable nano-UAVs
 Surveillance
 Smart Buildings
 Agriculture
 Assisted Living

We focus on indoor scenarios
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Nano-UAV Power Requirements

Fixed Wing [2] Blimp [3]

Electronics

Motors

High energy requirements → short lifetime Reduced energy 
requirements 

Rotorcraft [1]

[1] Wood et al., “Progress on 'pico' air vehicles”,  International Symposium on Robotics Research (invited paper), Aug. 2011.
[2] P. Oettershagen et al.t, “Long-Endurance Sensing and Mapping Using a Hand-Launchable Solar-Powered UAV,” Springer Tracts in Advanced Robotics Field and Service Robotics, 2016. 
[3] Experimental testing 
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Blimp is the
best candidate
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Self-sustainable UAV blimp

Can we increase runtime, possibly reach self-sustainability? 

Proposed Nano UAV System 

Rotor MCU

Balloon
Solar Panel

 Harvest power + battery

Nano UAV System 

 Battery powered

Rotor MCU

Balloon
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Target capability: Hovering

 Hovering: keep the 
desired altitude over 
time

 Hovering is a basic 
building block for 
complex autonomous 
navigation

 The required thrust 
can be dynamically 
adjusted (inertial, 
visual, ultra-sound, 
etc.). Not in this work

 Design choice: 
heavier-than-air 
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Maximize Lifetime: Duty-Cycling Rotors

Nano-Blimp + Harvesting + Duty-Cycling
In this work we will evaluate both continuous and duty-cycled hovering 

Blimp

Low energy 
due to large 

ΔY

Quadcopter

High energy 
due to small 

ΔY 
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Outline

 System Model
 Power requirements and lifetime
 Weight distribution

 Blimp Prototype
 Prototype
 Hardware/Firmware Design

 Experimental Evaluation
 Initial Characterization
 Experimental Results

 Conclusion 
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Lifetime Evaluation: Power Model 

 Power modeled as Markov process
 States represent discrete energy levels
 Model time step: 1 duty cycle
 Consumption: it consumes 2 quantum of energy
 Harvesting: it produces [0-3] quantum of energy

0       1      2      3
0.1  0.15  0.5  0.25

n-2   n-1    n    n+1
0.1  0.15  0.5  0.25

FullError ......
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Charging/Discharging Probabilities

 Discharging rate is determistic
 Continuous: 0.576 W

 Duty Cycle: 0.198 W

 Charging rate is probabilistic          
 Not only mean value → better 

environment characterization

 It includes low insulation that
may leads to error state

 P
IN

> 0 (i.e., no night) 

Log-normal distribution, mean 0.1W and σ = 0.5. 
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Power Model: Outcomes

 Predict lifetime for a given configuration
 Determine input power / battery capacity requirements for a desired lifetime

Power ModelPower Model

Input Power

Output Power

Lifetime

Battery 
Capacity

Battery State 
(probabilistic)
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Battery/Panel Trade-Off: Weight Distribution

Limited payload → maximize lifetime solving the weight distribution problem

Not 
feasible

Our configuration

Parameters:
 Lifetime (τ)
 Illuminance (intensity, 

variance and duration)
 W

MAX
 55 g, Payload 40 g

τ · P
load

 ≤ E
in
 (W

panel
 ,Light ) + E

batt
 (W

batt
 )

W
tot

 ≤ W
max
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Battery/Panel Trade-Off: Weight Distribution

Limited payload → maximize lifetime solving the weight distribution problem

Parameters:
 Lifetime (τ)
 Illuminance (intensity, 

variance and duration)
 W

MAX
 55 g, Payload 40 g

τ · P
load

 ≤ E
in
 (W

panel
 ,Light ) + E

batt
 (W

batt
 )

W
tot

 ≤ W
max

Battery
Solar Panel
Connections
Rotorcraft

Component Weight

Battery 6 g

Solar Panel 31 g

Connections 4 g

Rotorcraft 11 g

59%

8%

21%
12%
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Prototype

Configuration: only one rotor (hovering), solar panel 25x9 cm, balloon  Ø 91 cm 

Original CrazyFlie 2.0

Blimp's core frame
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Electronics Architecture

Device Task Power Consumption

NRF51 Power distribution 20 mW

STM32 Motor speed control 180 mW
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Introducing Duty-Cycling to Nano-Blimps

Dynamic Power Management

Duty-Cycle: T
ON

 , T
OFF

Power Consumption
 ON: ~ 4 W
 OFF: ~ 5 μW

Continuous Mode:
Disabled the timer interrupt in the NRF51
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Rotor Activation Overhead

Single burst of 2 sec, 100% rotor intensity

Peak at 5.75W, after 220ms steady 4.1W (Avg.)

Rotor ON Rotor ON Rotor ON

Rotor ON

...

Activation Overhead

  

T
ON T

OFF
T

ON
T

ON

Duty-Cycle Mode

Continuous Mode
Activation Overhead
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Rotor Activation Overhead

Single burst of 2 sec, 100% rotor intensity

Peak at 5.75W, after 220ms steady 4.1W (Avg.)

220ms

1.65W
Activation
Overhead:

0.18J

● Negligible for continuous mode
● Extra cost for each duty-cycle period
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Duty-Cycle Characterization (T
ON

, T
OFF

)

Max height deviation (∆Y): ±25 cm

With T
ON

 of 250 ms it rises to ~ 50 cm

Duty-Cycle Selection

+25

-25

∆Y = 0

Time

∆Y > 0

Time

Height

Continuous Rotor

Duty-Cycle Rotor
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Duty-Cycle Characterization (T
ON

, T
OFF

)

Max height deviation (∆Y): ±25 cm

With T
ON

 of 250 ms it rises to ~ 50 cm

T
OFF

 long enough to reach the max 
height (+25) and returning to the initial 
position (-25) → 5 seconds

Mode Rotor Intensity T
ON

T
OFF

Power Consumption Energy per Period

Continuous 9% Always Never 0.576 W 3.024 J

Duty-Cycle 100% 250 ms 5 s 0.198 W 1.04 J

Duty-Cycle Selection

+25

-25
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Experimental Results

 Setup: constant energy harvesting vs. probabilistic energy harvesting
 Battery: ideal storage

 Probabilistic Model
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Experimental Results

 Setup: constant energy harvesting vs. probabilistic energy harvesting
 Battery: ideal storage

 Probabilistic Model
 Constant Model

Self-sustainable at:
 Continuous Mode

 ~600mW 
 Duty-Cycle Mode

 ~200mW 
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Experimental Results

 Setup: constant energy harvesting vs. probabilistic energy harvesting
 Battery: ideal storage

 Probabilistic Model
 Constant Model
 Constant Measurements

Self-sustainable at:
 Continuous Mode

 ~600mW 
 Duty-Cycle Mode

 ~200mW 
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Model Comparison

P
IN

 constant 193 mW (~39kLux                           ), P
IN

 probabilistic mean 193 mW

 Duty-Cycle extends the lifetime of 2.6x
 Energy Harvesting extends the lifetime of 1.5x and 38.7x, respectively for Continuous and Duty-

Cycle (P
IN

 constant)

Mode P
IN

 = 0 (i.e., only battery) P
IN

 constant P
IN

 probabilistic

Continuous 1.5 h 2.3 h 2.2 h

Duty-Cycle 3.9 h 151 h 127 h

Lifetime



16.05.2017D. Palossi et al. 27| |

Conclusion

Nano-Blimp + Solar Harvesting + Duty-Cycling

 We have introduced duty-cycling in nano-UAVs to save energy
 Extended lifetime, up to 39x with harvesting and duty-cycling
 Self sustainability P

IN
 :

 ~200mW for Duty-Cycle mode
 ~600mW for Continuous mode

Extended Lifetime - Self Sustainability not yet indoor

Future Work:
 Dynamic Duty-Cycle based on on-board sensors
 3D movements and on-board computation



Thank you for your attention.

Questions?



16.05.2017D. Palossi et al. 29| |

Backup: Helium Leakage & Rotor Configuration 

A B C

 Constant helium leakage (~10g/month)

 Increased lifetime → we will need a 
backwards configuration (A)

 We avoid weight overhead with 
backwards configuration and 
Heavier-than-air configuration 

Backwards Upwards Back/Upwards
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Backup: Brushless DC Electric Motor (Efficiency vs. Input Current)

Intensity: 9% Intensity: 100%

Motor efficiency example [4]

[4] „Breakthrough 96% Electric Motor Efficiency“, H. Kimura et al., Department of Electrical and Electronic Engineering, School of Engineering at Tokai University. 2009



16.05.2017D. Palossi et al. 31| |

Optimistic: Average:

Backup: Weight Distribution
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