ETHzürich

Self-Sustainability in Nano Unmanned Aerial Vehicles: A Blimp Case Study

D. Palossi^a, A. Gomez^a, S. Draskovic^a, K. Keller^a, L. Benini^{ab}, L. Thiele^a ^aETH Zürich, ^bUniversity of Bologna

Introduction

- Current nano-size (i.e., Ø ~10cm, ~50g) UAVs require few Watts (~10W) to fly
- Current battery technology has limited capacity \rightarrow few minutes of flight (~15*min*)

Can we have nano-UAVs with extended lifetimes?

- There are many potential applications for self sustainable nano-UAVs
 - Surveillance
 - Smart Buildings
 - Agriculture
 - Assisted Living
- We focus on indoor scenarios

Nano-UAV Power Requirements

[1] Wood et al., "Progress on 'pico' air vehicles", International Symposium on Robotics Research (invited paper), Aug. 2011.

 [2] P. Oettershagen et al.t, "Long-Endurance Sensing and Mapping Using a Hand-Launchable Solar-Powered UAV," Springer Tracts in Advanced Robotics Field and Service Robotics, 2016.
 D. Palossi et al. | 16.05.2017 | 3

 [3] Experimental testing
 [3] Experimental testing

E *H* zürich

Nano-UAV Power Requirements

[1] Wood et al., "Progress on 'pico' air vehicles", International Symposium on Robotics Research (invited paper), Aug. 2011.

[2] P. Oettershagen et al.t, "Long-Endurance Sensing and Mapping Using a Hand-Launchable Solar-Powered UAV," Springer Tracts in Advanced Robotics Field and Service Robotics, 2016.
 [3] Experimental testing

Self-sustainable UAV blimp

Can we increase runtime, possibly reach self-sustainability?

Target capability: Hovering

- Hovering: keep the desired altitude over time
- Hovering is a basic building block for complex autonomous navigation
- The required thrust can be dynamically adjusted (inertial, visual, ultra-sound, etc.). Not in this work
- Design choice: heavier-than-air

E *zürich*

Maximize Lifetime: Duty-Cycling Rotors

Nano-Blimp + Harvesting + Duty-Cycling

In this work we will evaluate both continuous and duty-cycled hovering

ETH zürich

Outline

System Model

- Power requirements and lifetime
- Weight distribution
- Blimp Prototype
 - Prototype
 - Hardware/Firmware Design
- Experimental Evaluation
 - Initial Characterization
 - Experimental Results
- Conclusion

ETH zürich

Lifetime Evaluation: Power Model

- Power modeled as Markov process
- States represent discrete energy levels
- Model time step: 1 duty cycle
- Consumption: it consumes 2 quantum of energy
- Harvesting: it produces [0-3] quantum of energy

Charging/Discharging Probabilities

- Discharging rate is determistic
 - Continuous: 0.576 W
 - Duty Cycle: 0.198 W
- *Charging* rate is probabilistic
 - Not only mean value → better environment characterization
 - It includes low insulation that may leads to error state
 - P_{IN} > 0 (i.e., no night)

Log-normal distribution, mean 0.1W and σ = 0.5.

Power Model: Outcomes

- Predict lifetime for a given configuration
- Determine input power / battery capacity requirements for a desired lifetime

Battery/Panel Trade-Off: Weight Distribution

Limited payload \rightarrow maximize lifetime solving the weight distribution problem

Parameters:

- Lifetime (τ)
- Illuminance (intensity, variance and duration)
- W_{MAX} 55 g, Payload 40 g

$$\tau \cdot \mathsf{P}_{\mathsf{load}} \leq \mathsf{E}_{\mathsf{in}} \left(\mathsf{W}_{\mathsf{panel}} , \mathsf{Light} \right) + \mathsf{E}_{\mathsf{batt}} \left(\mathsf{W}_{\mathsf{batt}} \right)$$
$$\mathsf{W}_{\mathsf{tot}} \leq \mathsf{W}_{\mathsf{max}}$$

Our configuration

Battery/Panel Trade-Off: Weight Distribution

Limited payload \rightarrow maximize lifetime solving the weight distribution problem

Parameters:

- Lifetime (τ)
- Illuminance (intensity, variance and duration)
- W_{MAX} 55 g, Payload 40 g

$$\tau \cdot P_{load} \le E_{in} (W_{panel}, Light) + E_{batt} (W_{batt})$$
$$W_{tot} \le W_{max}$$

ETHzürich

Outline

- System Model
 - Power requirements and lifetime
 - Weight distribution

Blimp Prototype

- Prototype
- Hardware/Firmware Design
- Experimental Evaluation
 - Initial Characterization
 - Experimental Results
- Conclusion

Prototype

Configuration: only one rotor (hovering), solar panel 25x9 cm, balloon Ø 91 cm

Electronics Architecture

Device	Task	Power Consumption
NRF51	Power distribution	20 mW
STM32	Motor speed control	180 <i>mW</i>

Introducing Duty-Cycling to Nano-Blimps

Dynamic Power Management

Duty-Cycle: T_{ON} , T_{OFF}

Power Consumption

- ON: ~ 4 W
- OFF: ~ 5 μW

Continuous Mode:

Disabled the timer interrupt in the NRF51

ETHzürich

Outline

- System Model
 - Power requirements and lifetime
 - Weight distribution
- Blimp Prototype
 - Prototype
 - Hardware/Firmware Design
- Experimental Evaluation
 - Initial Characterization
 - Experimental Results
- Conclusion

Rotor Activation Overhead

Single burst of 2 sec, 100% rotor intensity

Peak at 5.75W, after 220ms steady 4.1W (Avg.)

Rotor Activation Overhead

Single burst of 2 sec, 100% rotor intensity

Peak at 5.75W, after 220ms steady 4.1W (Avg.)

Duty-Cycle Characterization (T_{ON}, T_{OFF})

Duty-Cycle Selection Max height deviation (ΔY): ±25 cm 150 Ŀ Y Displacement Displacement [cm] With T_{ON} of 250 ms it rises to ~ 50 cm 125 **Cycle Energy** Linear Regression **Duty-Cycle Energy** 0 100 Linear Regression 75 1.5 50 +25 $\Delta Y = 0$ Duty-(25 0.5 -25 > 0 Time **Continuous Rotor** 0.2 0.3 0.5 0.1 0.4 0.6 t_{on} [s] ▲ Height $\Delta Y > 0$ Time **Duty-Cycle Rotor**

Duty-Cycle Characterization (T_{ON}, T_{OFF})

Max height deviation (ΔY): ±25 cm

With T_{ON} of 250 ms it rises to ~ 50 cm

 T_{OFF} long enough to reach the max height (+25) and returning to the initial position (-25) \rightarrow 5 seconds

Mode	Rotor Intensity	T _{on}		Power Consumption	Energy per Period
Continuous	9%	Always	Never	0.576 W	3.024 J
Duty-Cycle	100%	250 <i>ms</i>	5 s	0.198 W	1.04 J

Experimental Results

- Setup: constant energy harvesting vs. probabilistic energy harvesting
- *Battery:* ideal storage

Experimental Results

- Setup: constant energy harvesting vs. probabilistic energy harvesting
- *Battery:* ideal storage

Experimental Results

- Setup: constant energy harvesting vs. probabilistic energy harvesting
- Battery: ideal storage
- Probabilistic Model
- Constant Model
- Constant Measurements

- Continuous Mode ~600mW
- Duty-Cycle Mode
 ~200mW

Model Comparison

Mode	P _{IN} = 0 (i.e., only battery)	P _{IN} constant	P _{IN} probabilistic				
Continuous	1.5 <i>h</i>	2.3 h	2.2 h				
Duty-Cycle	3.9 h	151 h	127 h				
Lifetime							

- Duty-Cycle extends the lifetime of 2.6x
- Energy Harvesting extends the lifetime of 1.5x and 38.7x, respectively for Continuous and Duty-Cycle (P_{IN} constant)

Conclusion

Nano-Blimp + Solar Harvesting + Duty-Cycling

- We have introduced duty-cycling in nano-UAVs to save energy
- Extended lifetime, up to 39x with harvesting and duty-cycling
- Self sustainability P_{IN} :
 - ~200*mW* for Duty-Cycle mode
 - ~600mW for Continuous mode

Extended Lifetime - Self Sustainability not yet indoor

Future Work:

- Dynamic Duty-Cycle based on on-board sensors
- 3D movements and on-board computation

ETH zürich

Thank you for your attention.

Questions?

Backup: Helium Leakage & Rotor Configuration

- Constant helium leakage (~10g/month)
- Increased lifetime → we will need a backwards configuration (A)
- We avoid weight overhead with backwards configuration and Heavier-than-air configuration

Backup: Brushless DC Electric Motor (Efficiency vs. Input Current)

Motor efficiency example [4]

TH zürich

Backup: Weight Distribution

Average: 🔆 🌾

Duty-Cycle Constant Input Power @ 39 kLux

Duty-Cycle Constant Input Power @ 19.5 kLux

