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Abstract
Two of the main goals of power management in modern

multicore processors are reducing the average power dissi-
pation and delivering the maximum performance up to the
physical limits of the system, when demanded. To achieve
these goals, hardware manufacturers and operating system
providers include sophisticated power and performance man-
agement systems, which require detailed information about
the current processor state. For example, Intel processors
offer the possibility to measure the power dissipation of the
processor. In this work, we are evaluating whether such power
measurements can be used to establish a covert channel be-
tween two isolated applications on the same system; the power
covert channel.

We present a detailed theoretical and experimental evalua-
tion of the power covert channel on two platforms based on
Intel processors. Our theoretical analysis is based on detailed
modelling and allows us to derive a channel capacity bound
for each platform. Moreover, we conduct an extensive experi-
mental study under controlled, yet realistic, conditions. Our
study shows, that the platform dependent channel capacities
are in the order of 2000bps and that it is possible to achieve
throughputs of up to 1000bps with a bit error probability of
less than 15%, using a simple implementation. This illustrates
the potential of leaking sensitive information and breaking a
systems security framework using a covert channel based on
power measurements.

1. INTRODUCTION

Multicore processors are increasingly used in general purpose
as well as embedded applications, despite two major problems
associated with current architectures: (i) the high maximal
power density may lead to overheating, and (ii) a low average
power dissipation is required, while delivering high quality
of service despite a large variability of the processing load.
To deal with these problems, different power management
schemes have been developed and implemented in comput-
ing systems. Implementations range from simple hardware
based Dynamic Thermal Management (DTM), which impose
a high performance penalty on the system, to more sophis-
ticated methods like sleep states and Dynamic Voltage and
Frequency Scaling (DVFS). Sleep states are specific power
saving modes that drastically reduce the power dissipation
using, for example, clock gating or flushing and turning off
the cache. DVFS allows the Operating System (OS) to change
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Figure 1: The source application (src) has access to restricted data,
while the sink application (snk) has access to the internet. Although
source and sink are isolated from each other, they manage to estab-
lish a covert channel by observing the processor power dissipation,
compromising the security paradigm of permission separation and
application isolation.

the operating frequency and operating voltage of the processor
cores according to the system utilization and can therefore re-
duce the power dissipation without a noticeable performance
impact. On some architectures, DVFS also allows overclock-
ing of the processor cores to deliver high performance for a
limited time. To allow such a control of the clock speeds of
the cores, without exceeding their physical limitations and
causing overheating, the power management needs more de-
tailed information than the common performance counters.
Such detailed information can be for example temperature or
power measurements, which are offered by many processor
architectures. In a system where many different applications
with different security clearances share the set of cores, these
measurements can be used to compromise the systems security
framework.

In this work, we investigate the potential security threat
that can arise from accessible processor power information,
by using power measurements on Intel cores. In particular,
we are considering a scenario similar to the one presented in
Figure 1. Here, a simple dual core system is only running
the basic OS services besides our two attack applications, the
source application src and the sink application snk. The
source application has access to highly sensitive information,
i. e. cryptographic keys, but it cannot use any communication
interfaces. Contrary, the sink application has no access to
highly sensitive information but it has access to the commu-
nication interfaces and can send data to third party servers.
The two applications are isolated from each other following
the security paradigm of privilege separation and application
isolation. In case of low system load, the source application
can take advantage of the power management and sleep states
to modulate the power dissipation. If the sink application
is capable of logging the power dissipation and forward the
data to a third party server for analysis, the source and sink
application can establish the so called power covert channel.



By establishing the power covert channel, the source and sink
application break the security paradigm of privilege separation
and application isolation.

Contribution. In this work, we present a detailed study on
a covert channel based on processor power information: the
power covert channel. We present the following contributions:
1. A generally applicable method to derive a tight channel

capacity bound for covert channels with similar charac-
teristics as the power covert channel. The results help to
estimate the security threat caused by the power covert
channel.

2. To the best of our knowledge, we are the first ones to show
an implementation of a communication scheme that proves
the functionality of the power covert channel on Intel-based
platforms.

Section 2 presents related work and Section 3 the basis of the
power management in Linux. The sections 4 and 5 outline the
channel and the threat model, which are the theoretical basis of
our channel analysis. The implementation of the power covert
channel is outlined in Section 6 and the derivation of the
channel capacity bound is presented in Section 7. In Section 8
we present the experimental analysis for two different Intel-
based platforms and we give concluding remarks in Section 9.

2. RELATED WORK

Lampson [8] first discussed privilege separation and the secu-
rity issues connected with it, defining the confinement problem
and identifying side and covert channels as main issues. While
side channels allow an attacker to infer sensitive information
by observing the system, covert channels are used for direct
communication of two entities without the knowledge of a
controlling entity, i. e. the OS. In this work, we study a covert
channel as the source and the sink application directly com-
municate with each other by modulating the power dissipation
of the core.

Architectural Side and Covert Channel. Modern multi-
core systems with their complex architecture have proven
to be especially prone to side channel and covert channel at-
tacks [4, 22]. Previous work showed that by exploiting shared
caches it is possible to disclose the existence of other vir-
tual environments via a side channel attack [20], or that it is
possible to establish covert channels between isolated appli-
cations [23, 24]. In more recent work, Rong et al. [18] pre-
sented an improved methodology to establish covert channels
in systems with shared cache, called Cloud Covert Channel
based on Memory Deduplication (CCCMD). These cache side
and covert channels have been refined [11, 16] or targeted to
compromise special hardware like the Intel SGX [5]. Other
security issues due to architectural characteristics have been
shown by Evtyushkin et al. [3]. The authors present how an
application can manipulate the shared branch predictor table
such that it is possible to establish a robust, noise-free, high-
capacity covert channel. Hunger et al. [7] introduced a mathe-

matical abstraction called the bucket model, which is capable
of capturing the common characteristics of different micro-
architectural side and covert channels and derive their capac-
ities. In a similar manner, we will also take advantage of an
architectural feature of our platforms and use a theoretical
model to analyse the power covert channel in detail.

Device Power Related Side and Covert Channels. Leaking
information by influencing the timing of a device by heating
it up (high power dissipation) or letting it cool (low power
dissipation) has been well studied. Murdoch [15] showed that
it is possible to use temperature induced changes in the clock
skew of the timestamps, in response packets of a server, to
identify servers within the Tor network. This technique was
later improved by Zander and Murdoch [25] by minimizing
the jitter in the clock skew using a synchronization mechanism,
and the capacity of this channel was quantified as 20.5 bits per
hour [26]. Similarly, Ristenpart et al. [17] used the changing
clock skew of a device due to temperature changes to identify
the physical infrastructure a Virtual Machine (VM) resides
on. Moreover, the authors could also use this information to
determine which VMs share this infrastructure. Power related
covert channels have been shown by Guri et al. [6]. The au-
thors established a covert channel between two air-gapped
systems by only using the temperature sensors on the two
systems. In a similar work, Masti et al. [10] showed the pos-
sibility of such a temperature based covert channel within a
processor, to establish a data transmission between different
application which are run sequentially on the same core or
between two different cores in a multicore system. Bartolini
et al. [2] later analysed these covert channels between multiple
cores in a processor in detail. The authors derived capacity
bounds for the different inter-core channels in the order of
300bits per second (bps) and presented an improved imple-
mentation of the covert channel that achieved a throughput
of up to 50bps with less than 1% error probability. Similar
to Bartolini et al. [2], we will also use a processor parameter
to establish a covert channel that allows applications on the
same device to communicate and therefore violate the security
paradigms enforced by the OS.

Side and Covert Channel based on Device Power. In more
closely related work, Michalevsky et al. [12] presented a
methodology that allows location tracking of a mobile de-
vice based on the power dissipation. The authors generated
a power-map of an area using power fingerprints for every
location. Using this map, the authors were able to reconstruct
the movement trajectory of a mobile device by analysing the
power trace. Spolaor et al. [19] showed that it is possible to
extract data from a charging phone by modulating the amount
of power which is taken in via the charger, by changing the
utilization of the mobile phones processor. The authors manip-
ulated the charger to measure the current input to the phone
and could reconstruct the leaked data stream by analysing the
recorded power trace. In contrast to Spolaor et al. [19], in
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Figure 2: The proposed system abstraction model for a power covert channel.

this work we will not use any external devices to establish the
covert channel but only rely on internal device measurements.
Further, we will directly transfer data from one application to
another within the device, which can leak the data later via
conventional communication interfaces.

3. POWER MANAGEMENT IN LINUX

The power covert channel depends on variations of the power
dissipation of the device cores. As we base our experimental
setup on Linux systems, we will give a brief insight into the
two main parts of the Linux power management important
for this work: the cpufreq and the cpuidle subsystem. We
have to note, that although we execute all our experiments on
Linux, Intel also provides power measurements on other OS’s
like Windows or Mac OS, which can be tested using the Intel
Power Gadget API1.

cpufreq. The cpufreq subsystem is responsible for the
power management during the active time. Its main purpose is
to scale the operating frequency and voltage according to the
system utilization, based on a so called governor policy [13].
In our experimental evaluation we will use the acpi-cpufreq
driver, which offers various governor policies. Among the
most notable governor policies are the conservative and the
userspace governor. While the conservative governor scales
the operating frequency of the cores stepwise up or down de-
pending on whether the utilization is above or below certain
thresholds, the userspace governor allows direct control of the
operating frequency from the userspace via sysfs nodes.

cpuidle. The cpuidle subsystem controls the sleep mech-
anisms of the device also based on governor policies [14].
Whenever a core is not utilized, cpuidle decides to which
sleep state, also called C-state, that core is sent. Deeper C-
states have a higher power saving effect but also have a higher
exit latency. The standard implementation of cpuidle of-
fers two governor policies, the ladder and the menu governor.
While the ladder governor selects the C-state with a step-wise
approach, moving down from the shallowest to the deepest
C-state, the menu governor is more sophisticated. The menu
governor selects the deepest possible C-state by evaluating
various parameters like the expected core sleep time, latency
requirements or the last C-state used by the core.

Power Measurements. In order to optimize the power dis-
sipation and maximize the performance of the processor up
to its physical limits, apart from system utilization, power

1https://software.intel.com/en-us/articles/

intel-power-gadget-20

measurements are also needed. As an example, the Intel Turbo
Boost allows processor overclocking in case of high perfor-
mance needs. The system can overclock the processor for a
certain amount of time without overheating if the processor
has sufficient overclocking budget. To determine the remain-
ing overclocking budget, the system uses power and thermal
measurements. The granularity of the power measurements
depends on the platform. For example the platforms used in
this work provide only one power measurement for the entire
multicore processor.

4. CHANNEL MODEL

The proposed system abstraction model in Figure 2 is com-
posed of three parts: the Input Stage, the power covert channel
and the Output Stage.

Input Stage. The encoder performs channel coding to convert
the input bitstream bi with bits bi[k] into the input symbol
trace x containing symbols x[k]. One symbol can, for example,
represent a specific power dissipation of the processor. The
set of feasible symbols depends on granularity of the power
measurements, i. e. the number of observable levels. The input
symbol trace x is transferred to the power covert channel.

Power Covert Channel. In the proposed system model, the
source and the sink applications, src and snk, are part of the
power covert channel. Input to src is the input symbol trace x
generated by the encoder component. The source application
src converts the input symbol stream x to an utilization trace
xU with core utilizations xU [k] and it applies these utilizations
at run-time. The power trace yp with power values yp[k] is
obtained as a result of the transformation h. In our model,
h depends on the platform configuration (i. e. the power
management) and power characteristics (hardware specific
parameters) and transforms the current system utilization to
the corresponding power value. The transformation h cannot
be determined easily, but in Section 7 we show that h can
be time-invariant or time-variant, depending on the platform
configuration. The sink application snk observes the power
changes and generates the corresponding output symbol trace y
with symbols y[k]. We can state that the power covert channel
has the following three characteristics: (i) It is time-discrete;
we can represent every channel usage as a single sample k
as the Model Specific Registers (MSRs) used for the power
measurements are just updated with a period of Tmsr. (ii) It is
value-discrete, as there is only a limited set of power values.
As we will show later in Section 7, the power trace represents
a sequence of discrete system states and can therefore be
considered to contain discrete values. A system state is defined
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by the number of active cores at a certain operating frequency.
(iii) It is noise-free. The power values are taken from noise-
free system power counters and any measurements artifacts
in the power trace are not visible in the output symbol trace
y, due to the conversion from power values to symbols by the
sink application. Due to those characteristics, one symbol
y[k] can, for example, directly represent a system state which
corresponds to the power dissipation of the cores.

Output Stage. A decoder converts the output symbol trace
y to a bitstream bo. In an error-free information transfer, the
output bitstream bo equals the input bitstream bi.

Our model enables us to better understand the power covert
channel and to determine a capacity bound (Section 7). We
also refer to this model when we design our test environment
and the experiments to evaluate the channel (Section 8).

5. THREAT MODEL AND TARGET SETUP

Our threat model is based on the scenario outlined in Figure 1.
Furthermore, we assume that the sink application can record a
power trace, which it can forward via the Ethernet interface
to a third party server. As presented in Section 3, the power
management is based on the current system utilization. We
assume that the device is idle during the time of the attack, i. e.
a Laptop in an office during a weekend or during the night.
Therefore, the utilization of the device is mainly controlled
by the source application. Besides the system utilization, the
source application cannot control any of the systems param-
eters, i. e. the cpufreq or cpuidle governors, as this would
require special permission. Compensating any influences of
these system parameters would require specific knowledge
about the attacked platform before the attack and/or calibra-
tion of the source and sink applications. We give a basic
assessment of some external influences on the power covert
channel and possible countermeasures in Section 8. However,
due to space constraints we cannot address all of these issues
in detail.

We demonstrate the power covert channel on the example
of Intel-based platforms. There are two reasons for our choice:
(i) they allow power measurements through energy estima-
tions provided by the system via MSRs, and (ii) Intel-based
processors are the most significant platform type in the server,
desktop and laptop market, with more than 80% market share
in each sector in 2014 reported by Forbes2. In this work, we
consider the following platforms:
1. A Lenovo ThinkPad T440p laptop based on a 4th generation

Intel Core i7-4710MQ quad-core processor. The CPU
supports two hyper-threads per core and allows operating
frequencies between 800MHz and 2.4GHz as well as turbo
boost of up to 3.5GHz.

2. A server rack based on a 3rd generation Intel Xeon E5-
2690 octa-core processor. This processor also features two

2https://www.forbes.com/sites/rogerkay/2014/11/25/

intel-and-amd-the-juggernaut-vs-the-squid/#327951fe2981

hyper-threads per core and allows operating frequencies
from 1.2GHz up to 2.9GHz and a turbo boost of up to
3.8GHz.

For the rest of this paper, we will refer to platform 1 as
Laptop, and platform 2 as Server. In favour of repeata-
bility of our experiments, we define a controlled scenario
which is used throughout all experiments, unless stated dif-
ferently. Both platforms are situated in a server room with
an average ambient temperature of ≈ 23C◦ and run Ubuntu,
version 16.04.02 on Laptop and version 14.04.2 on Server.
Also, both platforms use the cpuidle menu governor and
the cpufreq userspace governor, such that the operating
frequency is locked to the maximum. By locking the op-
erating frequency to the maximum we can perform an ini-
tial analysis of the power covert channel shown in Sec-
tion 7 and 8. Moreover, the source and the sink applica-
tion are pinned to specific cores during the experiments using
pthread_setaffinity_np() and are run with the highest
priority with SCHED_FIFO scheduling class to minimize the
scheduling artifacts using pthread_setschedparam(). Our
initial experiment showed that any further differentiation be-
tween C-states that are deeper than C1E is not possible; there-
fore, we set the maximum wakeup latency to 10 µs to limit the
maximum C-state to C1E3.

6. CHANNEL IMPLEMENTATION

The core of the power covert channel implementation consists
of two applications, source and sink.

Source Application. The source application needs a core list
and an execution trace as input. It creates as many threads as
cores specified in the input list and pins them to the defined
cores. Then it replays the execution trace by activating as
many threads as specified and sending the rest of the threads
to idle-state using usleep(). Active threads will execute a
tight loop similar to the cpuburn benchmark4 to ensure that
the cores are not sent to a C-state by the cpuidle subsys-
tem, while cores with idle threads will be sent to a C-state.
All timing checks are done using gettimeofday(), which
proves sufficiently lightweight and accurate for our task. In
addition, the application checks the overall timing and adapts
the execution trace to avoid timing drifts due to jitter in the
execution of the tight loop and usleep().

Sink Application. The sink application samples the MSR for
the PP0 power plane (MSR_PP0_ENERGY_STATUS) with a sam-
pling rate T and immediately converts the samples to power
values. These power values are then kept in an in-memory log
which is dumped to a file as soon as the execution is stopped.
Similar to the source application, the sink application uses
gettimeofday() to monitor the overall timing to adjusts T
to avoid a long term timing skew.

3The wakeup latencies can be read via the sysfs interface at
/sys/devices/system/cpu/cpui/cpuidle/state/n/latency.

4https://patrickmn.com/projects/cpuburn/

4

https://www.forbes.com/sites/rogerkay/2014/11/25/intel-and-amd-the-juggernaut-vs-the-squid/#327951fe2981
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Figure 3: The power dissipation does not correlate to increasing
utilization from 0% to 100% on a single core.

7. CHANNEL CAPACITY BOUND

Equation (1) shows how to calculate an upper bound C for
the capacity per channel use of a noise-free channel, see for
example MacKay [9, Chapter 17]. Here, N denotes the

C = lim
N→∞

1
N

logMN [bit] (1)

number of uses of the channel, and MN denotes the number of
distinct and feasible symbol series that could be sent by using
the channel N times.

Following the derivations, the constraints on feasible sym-
bol sequences can be used to determine MN . To this end, we
construct a state diagram, where the states S represent the
states of the channel. Every valid path in the state diagram
corresponds to a sequence of transitions. Consequently, every
state transition in the diagram can represent a symbol that is
forwarded to the channel. Starting from the initial state of the
channel, MN is equal to the number of distinct paths of length
N in the state diagram. The state diagram of the channel can
be derived from the results of a set of simple experiments, as
we illustrate here for Laptop.

First, we need an initial experiment to determine if the uti-
lization of a single active core influences the power measure-
ments. Therefore, we ramp up the utilization of one logical
core from 0% to 100% to check whether the resolution of the
power trace is fine enough to detect different utilization lev-
els. The results for Laptop are depicted in Figure 3 and show
some fluctuations for different utilizations. However, it is not
possible to draw a direct connection from the utilization trace
to the power trace, as long as the core is not in any C-state.
We can state that utilization changes may cause measurement
artifacts in the power trace, but do not have an influence on
the measured average power.

Next, we conduct an experiment to determine the number of
system states for a fixed frequency case, by using the highest
operating frequency. This allows us to determine the channel
performance in a static scenario, a time-invariant transforma-
tion from utilization to power h (see Section 4). In Figure 4,
the top plot (a) shows the set of fully utilized logical cores
(utilization is 100%) in a 10s time interval, (b) the power trace
with a sampling rate of 1ms, and (c) the power trace median
filtered with a window size of 8samples. The experiment
reveals that there is a high amount of measurement artifacts
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Figure 4: When setting a fixed operating frequency we are able to
identify 5system states depending on the number of fully utilized
cores (a), if we apply median filtering to the raw power trace (b) to
obtain the power trace (c).

which may cause errors at higher symbol rates and can be
explained by following MSR characteristics: (i) reading is de-
structive, this means that the value is set to 0 after reading, and
(ii) according to Intel® 64 and IA-32 Architectures Software
Developer’s Manual [1] the MSR is updated “approximately”
every 1ms. Due to these two characteristics, it can happen
that the sink application reads the MSR twice between two
updates, causing a 0 in the power trace. Moreover, two logical
cores are mapped to one physical core, for example logical
cores 0 and 1 are mapped to physical core 0. Therefore, we
can identify 5 system states in our power trace for the fixed
frequency case: (i) from time 0 to 10 s when no physical core
is utilized, (ii) from 10 to 30s when one physical cores is
utilized, (iii) from 30 to 50s with two utilized physical cores,
(iv) from 50 to 70s with three physical cores utilized, and
(v) from 70 to 90s where all four physical cores are utilized.
This equals NC + 1 = 5 states for Laptop, where NC is the
number of physical cores.

The usage of a different cpufreq governor makes the chan-
nel more complex as the power levels, respectively the system
state, also depend on the used processor frequency. Consid-
ering our channel model from Section 4, this means that the
transformation from utilization to power h is time-variant.
Therefore, we repeated the experiment illustrated in Figure 4
for every operating frequency of Laptop to exploit all possible
transformations h and the respective utilization to power trans-
formation. Figure 5 illustrates the identified system states for
different number of active physical cores and different operat-
ing frequencies, whereas one point equals the integer-rounded
mean of the power trace values within one system state, i. e.
the integer-rounded power mean of interval 0 to 10s from
Figure 4 is represented as point for 0 active physical cores at
frequency 2.4GHz in Figure 5. The right scale presents the
projection of all system states onto the power plane, as the
sink application cannot determine the operating frequency of
the cores. The sink application can only determine the power
trace. The power plane shows that there are 20distinguishable
system states in an variable frequency case where the oper-
ating frequency changes can be fully controlled. We do not
include the operating frequencies reachable through the Intel
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Figure 5: By varying the operating frequency more system states
can be exposed. Due to the lack of knowledge on the operating
frequency, the sink application can only distinguish 20system states,
as illustrated in the power plane to the right.

turbo boost into our analysis because these frequencies can
only be reached under certain conditions and cannot be forced
through the userspace governor.

From the results of the fixed frequency and variable fre-
quency case we can derive the state diagram and further the
S× S connection matrix A. An element As,s′ is 1 if there is
a transition from state s to s′ and 0 otherwise. For our two
cases fixed and variable frequency all elements of A are one.
In other cases where a real governor does not allow all kinds
of frequency changes, the size of A is still the same for the
variable frequency case. The difference between the variable
frequency case and a real governor case is that not all fre-
quency transitions are possible and therefore not all elements
of A would be 1, leading to a lower channel capacity bound.
As long as we know all possible state transitions, we can de-

c(n+1) = Ac(n) (2)

c(N) = ANc(0) (3)

lim
N→∞

c(N) = constant ·λ N
1 ·e1 (4)

MN = ∑
s

c(N)
s (5)

termine MN using A independent of the setup. To this end,
we count the transitions to a state by means of Equation (2)
and Equation (3). c(0) is the initial state vector consisting of
one 1, representing the initial state, and zero otherwise. c(n)
holds the number of paths that lead to a certain state after n
uses of the channel. In the limit, the principal eigenvalue of
A, i.e. the eigenvalue with the largest absolute value, starts
dominating the iteration in Equation (3). As a result, we obtain
Equation (4), which shows that the dominating term of c(N)

is λ N
1 . Here, λ1 is the principal eigenvalue of A and e1 is the

corresponding eigenvector. The number of possible paths is
calculated as shown in Equation (5), where c(N)

s is element s of
the vector c(N). We can now use Equation (4) and Equation (5)
in Equation (1) to obtain Equation (6). Inserting the param-

C = log2 λ1 (6)

eters for Laptop, we can derive the upper channel capacity
bound for the variable frequency case of 4.32bits per channel
use and a channel capacity bound of 2.32bits per channel use
for the fixed operating frequency case.

We also performed the same experiments and evaluation
on our second platform Server. This evaluation showed that
on Server we can identify NC + 1 = 9 states for the fixed
frequency case and 13 states for the variable frequency case.
We can derive the upper channel capacity bound of 3.17bits
per channel use for the fixed frequency case and a channel
capacity bound of 3.70bits per channel use for the variable
frequency case on Server.

Knowing the capacity bound and the update period of the
MSR Tmsr = 1ms, we can calculate the theoretical bandwidth
of the channel as shown in Equation (7). This yields a maxi-

B =
C

Tmsr
(7)

mum bandwidth of Bmax = 2322bps for Laptop and 3170bps
for Server considering a fixed operating frequency (time-in-
variant utilization to power transformation h). According to
the US department of defence 1985 Orange Book [21], “a
covert channel bandwidth that exceeds a rate of one hundred
(100) bits per second is considered high”. Based on this def-
inition, we can state that the power covert channel is a high
risk channel in terms of capacity.

8. EXPERIMENTAL ANALYSIS

To evaluate how close the throughput of a simple implementa-
tion of the power covert channel gets to the channel capacity
bounds, we deployed our channel setup (see Section 6) on the
two platforms Laptop and Server (see Section 5). The sink
application used a sampling rate T of 1ms, as oversampling of
the MSR did not improve signal quality without implementing
a sophisticated zero replacement and filtering scheme. All
data transmissions are initiated with a pulse with the maxi-
mum power difference, to synchronize the source and the sink
application. Furthermore, we used different source codes for
transmission, where each symbol is equal to a system state:
(i) the Binary code defines a zero as no active core and a one
as 4cores active, (ii) a Huffman code with 5states called Huff-
man 5, and (iii) a Huffman code with 9states called Huffman 9
for Server only. The Huffman codes exploit all of the available
states for the two platforms Laptop and Server, respectively.
The decoding is done according to the block diagram in Fig-
ure 6. We first filtered the signal with a moving median filter to
remove outliers. Equation (8) ensures that the window length

ωi = min
{

max
{

2·round
(

Ni

3

)
+1,1

}
,9
}

(8)

of the median filter decreases proportional to the samples per
symbol. The window length of the median filter ωi at bitrate
i was calculated according to Equation (8), where Ni is the
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Figure 7: Laptop (upper plot) shows better performance in terms
of error probability for rising bitrates than Server (lower plot) for
different source coding schemes.

number of samples per symbol. The minimum and maximum
filter length 1 and 9 as well as the proportionality factor of 3
where evaluated experimentally towards a minimal bit error
probability. After filtering, the signal is oversampled such that
there is an odd number, or at least 11samples per symbol. The
signal was interpolated using nearest-neighbour interpolation.
As last steps, the signal is quantized according to the known
platform specific power levels using a majority voter and then
decoded.

8.1. CONTROLLED ENVIRONMENT

Figure 7 shows the average error probability for eight runs
for both platforms Laptop and Server. Each run consists of a
5000bit random message transmitted at a specified bitrate, for
bitrates from 1 to 2200bps with a spacing of 10bps. Due to the
platform limitations, the Binary code only allows a maximum
bitrate of 1000bps (see Section 7).

The analysis of the results presented in Figure 7 shows that
in general Laptop performs better than Server. For Laptop
transmissions with an error probability of less than 15% are
possible with bitrates of almost 500bps using the Binary code
and bitrates of almost 1000bps using the Huffman 5 code. In
contrast, on Server the error probability already exceeds 15%
at bitrates of around 200bps for Binary and 100bps Huffman 5
coding. The experiments also show that the use of all 9 system
states on Server is not possible as the transmissions with the
Huffman 9 code always causes an error probability of around
40%. A detailed analysis of the experimental data of Server
shows that the majority of the errors on Server can be traced
back to architectural properties. Despite the fact that we limit
the wakeup latency for cores to return from C-states, the power
trace does not follow our input utilization trace fast enough.
This can be caused by higher latencies when waking up from,
and sending cores to C-states. Moreover, the power traces
collected from Server show that there is slow long term rise in

(a)Freq. Scaling Stable Freq.
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Figure 8: If the operating frequency is not stable, the data transmis-
sion is disturbed as the frequency scaling leads to a time-variant
utilization to power transformation h.

the power trace. This can be caused by the rising temperature
of the core, which also causes higher power dissipation. While
the latencies cannot be compensated in the symbol decoding,
de-trending methods can be used to nullify the long term rise
of the power traces.

Another problem of the power covert channel, which applies
to both platforms Laptop and Server, is the synchronization be-
tween source and sink application. Inaccurate synchronization
leads to higher error probabilities at higher bitrates as there
are less samples per symbol, but this could be handled with
a more sophisticated signal processing. Finally, experiments
have shown that the power measurements representing the
system states can vary slightly for repeated executions of the
same utilization trace. To compensate varying power mea-
surements, an improved implementation of the power covert
channel needs to be capable of adapting the power thresh-
old for system state detection according to the current trace.
Adaptive system state detection can be implemented using
a calibration header in the data transmission and threshold
detection during decoding.

8.2. ROBUSTNESS

To briefly evaluate the robustness of the power covert chan-
nel, we analyse two scenarios on Laptop: (i) the Variable
Frequency case where the conservative governor is used to set
the operating frequency of the cores, and (ii) the Application
Interference case where a second source application is used to
permanently keep all but one physical core active.

Variable Frequency. The usage of frequency governors adds
more disturbance to the channel as the transformation from
utilization to power h (see Section 4) is time-variant. Fig-
ure 8 illustrates the start of a data transmission in a system
using the conservative governor and Huffman 5 encoding at
100symbols per second. During the start of the transmission
power measurements increase as the system is scaling up the
frequency due to the high utilization generated by the source
application. At approximately 4500ms the system reaches the
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Figure 9: Binary encoding is more robust against interference as the
symbols (a) can be distinguished without (b) and with interference
(c), while a distinction of all symbols is not possible anymore for
Huffman 5 encoding.

maximum operating frequency and stays in that state. There-
fore, the system is now in a stable state during which h can be
considered time-invariant and the power measurements can be
properly mapped to the system states and decoded. We can
state that the effects of a governor on the power covert channel
can be compensated with a more sophisticated coding scheme,
i. e. for the widely used conservative governor presented in
this example, only a simple preamble and special message
coding is needed to ensure the system is in a stable state dur-
ing the transmission. A preamble that fully utilizes the cores
would force the system to scale to the highest frequency and
a message encoding that ensures that at least one core has a
utilization higher than the lower threshold of the conservative
governor will establish the same frequency configuration as in
the controlled environment scenario.

Application Interference. In this scenario, a second source
application is occupying all but one physical core. This pro-
hibits the occupied cores from entering C-states for power
saving and therefore some system states cannot be reached.
Figure 9 illustrates power traces for the controlled environ-
ment and the inference scenario for both encoding schemes
Binary and Huffman 5. The figures show that only a differenti-
ation between two states is possible, therefore the transmission
with Binary encoding is still possible while the transmission
with Huffman 5 is disturbed. These experiments show that a
transmission is viable whenever the number of states needed
by to transmit NT ≤ (NC−NI +1), where NC is the number of
physical cores available on the system and NI is the number of
physical cores occupied by interfering applications. Further-
more, an attacker can always use the power measurements to
detect when the platform utilization is sufficiently low to start
the transmission (see Section 5).

Our experiments show that compared similar cover chan-

nels, like the thermal covert channel [2], the power covert
channel channel allows a higher throughput but is less robust
to disturbances by other applications on the platform.

9. CONCLUDING REMARKS

In this work we present the power covert channel, a covert
channel based on processor power measurements. For our eval-
uation we chose broadly used Intel-based platforms, which
offer power measurements via a MSR, and therefore allow
power measurements. We present a detailed theoretical analy-
sis and derived a capacity bound for the power covert channel.
We considered a fixed operation frequency of the platform
during the transmission, which resulted in a capacity bound
of 2322bps for a platform with 4 physical cores and 3170bps
with 8 physical cores. Our methodology to derive the channel
capacity bound is generally applicable to other covert chan-
nels with similar characteristics as the power covert channel.
Moreover, we conducted a thorough experimental analysis to
exploit achievable throughputs under controlled conditions
and evaluated the robustness of the power covert channel
against external influences. Our experiments showed that
under controlled conditions we can achieve throughputs of up
to 1000bps with an error probability of less than 15% using a
very simple channel implementation.

For the power covert channel we present a high channel
capacity bound and high throughput for a simple implementa-
tion, which shows the channel’s potential to leak information.
Furthermore we found that the power covert channel is more
prone to disturbance than comparable covert channels and a
successful attack requires detailed knowledge about the at-
tacked platform utilization pattern, architecture and power
management.
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