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ABSTRACT
Frequent sensor calibration is essential in sensor networks with
low-cost sensors. We exploit the fact that temporally and spatially
close measurements of different sensors measuring the same phe-
nomenon are similar. Hence, when calibrating a sensor, we ad-
just its calibration parameters to minimize the differences between
co-located measurements of previously calibrated sensors. In turn,
freshly calibrated sensors can now be used to calibrate other sen-
sors in the network, referred to as multi-hop calibration.

We are the first to study multi-hop calibration with respect to a
reference signal (micro-calibration) in detail. We show that ordi-
nary least squares regression—commonly used to calibrate noisy
sensors—suffers from significant error accumulation over multiple
hops. In this paper, we propose a novel multi-hop calibration al-
gorithm using geometric mean regression, which (i) highly reduces
error propagation in the network, (ii) distinctly outperforms ordi-
nary least squares in the multi-hop scenario, and (iii) requires con-
siderably fewer ground truth measurements compared to existing
network calibration algorithms. The proposed algorithm is espe-
cially valuable when calibrating large networks of heterogeneous
sensors with different noise characteristics. We provide theoretical
justifications for our claims. Then, we conduct a detailed analy-
sis with artificial data to study calibration accuracy under various
settings and to identify different error sources. Finally, we use our
algorithm to accurately calibrate 13 million temperature, ground
ozone (O3), and carbon monoxide (CO) measurements gathered by
our mobile air pollution monitoring network.

1. INTRODUCTION
Wireless sensor networks (WSNs) are increasingly used in a wide

range of application domains to gather information about the phys-
ical world. Nowadays, WSNs are embedded in real-world deploy-
ments that go beyond research prototypes. Examples include the
monitoring of permafrost in high-alpine regions [5], surveillance
of a heritage building in Northern Italy [10], and air pollution mon-
itoring in urban regions [28]. All these installations have been in
operation for multiple years. Such long-term deployments need
to function correctly over long time periods without requiring fre-
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quent maintenance phases. In addition, in many of these deploy-
ments, good quality data is vital. Data collected by WSNs are
used for adaptive lighting in road tunnels [9], data center monitor-
ing [29], and clinical patient surveillance [11]. In these application
scenarios, wrong or inaccurate sensing may lead to wrong decisions
with significant societal and economic impact.
Challenges. Achieving good data quality and preserving it dur-
ing the whole system lifetime is essential. However, in most ap-
plication scenarios this is a very challenging task. Deployment
specifics and limited budgets often constrain the choice of sensing
hardware. Typical limits apply to sensor size, price, and energy
consumption. Advances in sensor technology constantly widen
the spectrum of phenomena that can be captured with WSNs by
bringing small, cheap, and portable sensors onto the market. The
downside of this trend is a reduced accuracy, precision, and reli-
ability of many available sensors [23, 36]. One common example
are sensors produced for air quality monitoring. In recent years,
low-cost gas sensors (∼100 dollars) appeared on the market, which
are compact in size and suitable for mobile air pollution measure-
ments. However, compared to traditional instruments, many gas
sensors have a very limited accuracy, e.g., [2, 43]. Furthermore,
many low-cost sensors suffer from sensor drift, have limited sta-
bility, and are sensitive to changing environmental conditions [38].
Hence, low-cost sensors need to be frequently calibrated to pre-
serve a good data quality [4, 7, 31, 34]. Manual calibration is an
elaborate and time-consuming task [38, 47]. Automatic sensor cal-
ibration is essential but challenging, particularly in networks with
uncontrolled mobility.
Problem statement. In the context of this work, a fundamental ob-
servation is that two measurements taken in the spatial and tempo-
ral vicinity of each other are similar. The required spatio-temporal
closeness between two measurements depends on the locality of the
process monitored. If two sensors fulfill the vicinity requirements,
we term their meeting point a rendezvous. Rendezvous between
calibrated and uncalibrated sensors can be used to calibrate uncal-
ibrated sensors. These sensors in turn, can calibrate other uncali-
brated sensors. We refer to this as multi-hop sensor calibration.

One-hop calibration, i.e., the calibration between a high-quality
reference signal and an uncalibrated sensor, is common practice.
State-of-the-art network calibration algorithms designed for mo-
bile sensing networks only perform one-hop calibration [34, 35].
Hence, these algorithms can only calibrate sensors, which directly
pass by a high-quality reference sensor. This introduces a strong
constraint, requiring a high density of reference sensors, which is
not feasible for many application scenarios. Moreover, many large-
scale monitoring systems have constrained and uncontrollable mo-
bility patterns preventing sensors to frequently pass by a reference
sensor, e.g., sensors installed in private smartphones [33].



The only two pieces of work we know of that study multi-hop
calibration by leveraging meeting points between uncalibrated sen-
sors are [7, 22]. In our previous work, initial simulation results re-
veal a linear error accumulation with increasing network size [22].
Both previous work use ordinary least squares regression (OLS) to
calibrate a network of sensors. OLS is typically used to map uncali-
brated raw sensor readings to calibrated measurements if the depen-
dency between target signal and sensor response is linear [4,30,35].
In this paper, we show that despite the linear dependency between
target signal and sensor response, OLS is not appropriate for multi-
hop calibration. We propose a novel multi-hop calibration algo-
rithm, which distinctly outperforms existing work by considerably
reducing error propagation in the network.
Contributions and road-map. We are the first to study multi-hop
calibration with respect to a reference signal in detail. This work
presents a thorough theoretical analysis based on the assumptions
and models introduced in Sec. 2 and Sec. 3. We analyze the sources
of error propagation and propose a network calibration scheme,
which (i) considerably reduces error propagation in the multi-hop
setting, (ii) distinctly outperforms multi-hop calibration with OLS,
and (iii) compared to existing work does not require high density
of reference sensors. The algorithm proposed leverages geometric
mean regression (GMR) and one of its main properties: absence of
regression dilution bias, caused by noise in sensor readings [49].

In summary, this paper makes the following contributions:

• We analyze in Sec. 4 the OLS line fitting method—commonly
used to calibrate sensors—and introduce GMR line fitting,
the centerpiece of our multi-hop calibration algorithm.
• In Sec. 5, we present a detailed theoretical analysis of cali-

bration error accumulation in a network of uncalibrated sen-
sors. We prove that multi-hop calibration with GMR is opti-
mal under specific assumptions. Further, we show with sim-
ulations that GMR outperforms OLS in many scenarios.
• We show in Sec. 6 how to best choose calibration paths in

dense networks, where uncalibrated sensors can calibrate them-
selves to possibly multiple calibrated sensors.
• We run in Sec. 7 the proposed network calibration algorithm

on multiple real-world data sets, containing more than 13 mil-
lion air pollution measurements. We show the benefits of
calibrating real, noisy, low-cost sensors with our algorithm.

The algorithm proposed enables the multi-hop calibration of large,
heterogeneous, and mobile sensor networks, e.g., as found in par-
ticipatory sensing scenarios [6]. Until now, this has not been possi-
ble with existing network calibration algorithms. We survey related
work in Sec. 8, and conclude in Sec. 9.

2. ASSUMPTIONS AND MODELS
Let a monitoring system consist of a set of sensor nodes (or sen-

sors) U measuring a process P . A sensor node can be either static
or mobile. Each node knows its position and current time. A sensor
u ∈ U takes a time-ordered sequence of measurements and meets
other sensors from time to time. There are no constraints on the
sensor sampling rate and on the frequency of rendezvous between
any two sensors.
Process model. Let a process of interest P exhibit a continuous
measurable signal η: T × L→ D with time domain T ⊆ R+, lo-
cation domain L ⊆ R× R defined by latitude and longitude coor-
dinates, and domain of measurable values D ⊆ R. We assume that
the process change is upper bounded in both time and space, i.e.,
for any two locations (t, l), (t′, l′) ∈ T × L in time and in space, it
holds that

|η(t, l)− η(t′, l′)| ≤ γ(|t− t′|, |l − l′|), (1)

where γ is a monotonically non-decreasing function of temporal
and spatial distances |t− t′| and |l − l′|. The slower γ grows and
the smaller the distances |t− t′| and |l − l′| are, the more similar
are the values of η at the two locations (t, l) and (t′, l′).
Sensor model. A sensor u ∈ U takes a sequence of measurements
{mu(ti, li)} ∈ Du of a process of interest P from the domain of
values Du possibly aperiodically at discrete time-space locations
(ti, li) ∈ T × L, i ∈ N. We consider a measurement as point mea-
surement, that is, it has no duration. A sensor u is perfect if at any
point (t, l) ∈ T × L it holds that mu(t, l) = η(t, l). We call η the
phenomenon signal, as opposed to the sensor measured value mu.

Many low-cost sensors show a close to linear dependence be-
tween sensor values mu and phenomenon signal η, e.g., [2, 3, 43].
Thus, for all sensors ∀u ∈ U , we assume

η = αu + βumu + eu, (2)

where αu and βu are calibration coefficients of the first order poly-
nomial and eu is a noise component (or sensor error) with zero
mean [4, 7]. It includes all variations not explained by the cali-
bration curve [45]. We assume that the errors of any two sensors
are independent. The calibration parameters αu and βu describe
intercept (offset) and slope (gain) of the calibration curve used
to map R2 ×Du → D. We calibrate a sensor u ∈ U by assign-
ing it calibration parameters. A calibrated measurement is then
m̂u = αu + βumu.

We distinguish two types of sensors: reference sensors u∗ ∈ U∗,
which are calibrated at all times, and low-cost sensors v ∈ U \ U∗,
which require periodic calibration. We require (infrequent) ren-
dezvous between at least one reference sensor and one low-cost
sensor to calibrate a network of low-cost sensors.

3. RENDEZVOUS BETWEEN SENSORS
We perform sensor calibration by leveraging rendezvous between

sensors, defined as spatially and temporally close measurements of
two sensors. This section introduces the main concepts.
Definition of a rendezvous. Let u, v ∈ U be two sensors. Both
sensors take measurement sequences {mu} ⊂ Du, {mv} ⊂ Dv
and eventually meet, i.e., some measurements are in each other’s
vicinity. We define the set of spatially and temporally close pairs
of measurements Φ(u,v) between sensors u and v within a time
interval s as

Φ(u,v) = { (mu(ti, li),mv(tj , lj)) |
(ti, tj ∈ s) ∧ (|ti − tj | ≤ ∆t) ∧ (|li − lj | ≤ ∆d) }. (3)

The parameters ∆d and ∆t set temporal and spatial constraints on
the required closeness of the measurements and, thus, limit the pos-
sible change of the monitored process (see Eq. (1)). The choice
of ∆d and ∆t depends on the process of interest. For example,
the change of ozone concentration over short distances is insignif-
icant [41] in contrast to the concentration variability of fine parti-
cles [37]. We detail in Sec. 7 our choice of ∆d and ∆t for temper-
ature, ozone (O3), and carbon monoxide (CO) measurements.

The set Φ(u,v) represents a rendezvous between sensors u and v.
We refer to the measurement pairs (mu,mv) ∈ Φ(u,v) as calibra-
tion pairs (CPs) and use them to improve sensor calibration. We
use the projection operator "↓" to split the measurements belong-
ing to CPs according to the sensors by which the measurements
were made. For example, the measurements of rendezvous Φ(u,v)

can be split into the two sets Φ
(u,v)
↓u = {mu} and Φ

(u,v)
↓v = {mv}

denoting the measurements of sensor u and sensor v, respectively.
A rendezvous Φ(u,v) is characterized by the parameters ∆d and

∆t, which steer the number of CPs |Φ(u,v)| in the set. There is



an important trade-off when choosing the values of the rendezvous
parameters. On the one hand, high values of ∆d and ∆t result in
a high number of CPs |Φ(u,v)|, potentially giving calibration pos-
sibility to a larger set of uncalibrated sensors. On the other hand,
large ∆d and ∆t may lead to high values of γ in Eq. (1) and, thus,
to poor correlation of the measurements belonging to a rendezvous.
In this case, a rendezvous Φ(u,v) may include many dissimilar pairs
of measurements and result in high calibration errors.
Rendezvous connection graph. A rendezvous connection graph Γ
is an undirected graph with sensors U as set of nodes and set of
edges E = {(u, v) | u, v ∈ U, u 6= v,Φ(u,v) 6= ∅} between nodes
with co-located measurements in time interval s. We assign to each
edge in E the corresponding set of measurements. We introduce
set N(u) = {v | (v, u) ∈ E} to represent the direct neighbors of
sensor u in graph Γ, i.e., comprises sensors that have rendezvous
with sensor u.

Let sensor u be calibrated and consider a rendezvous connec-
tion graph Γ with edge (u, v) ∈ E. Sensor u can calibrate sen-
sor v (denoted as u→ v) by leveraging rendezvous Φ(u,v) to com-
pute calibration coefficients αv and βv for sensor v. We denote
the path in graph Γ used to calibrate a sensor as calibration path,
e.g., u→ v → . . .→ p→ q, and refer to sensor p, the immediate
parent of sensor q, as calibration parent of q.

Let Γ be an arbitrary rendezvous connection graph constructed
for a time interval s. A multi-hop calibration algorithm accepts Γ
as input and assigns calibration coefficients to every uncalibrated
sensor in Γ if the sensor is part of a connected component of the
graph including at least one reference sensor.

Our multi-hop network calibration algorithm consists of two parts:
a calibration method and a calibration parent selection strategy.
Given a calibrated and an uncalibrated sensor connected with an
edge in Γ, the calibration method defines how to compute cali-
bration parameters for the uncalibrated sensor, which best map the
uncalibrated raw sensor readings to calibrated measurements. The
parent selection strategy defines how to best choose the calibration
path between a reference sensor and an uncalibrated sensor in Γ. In
the following, we present an in-depth theoretical analysis of multi-
hop calibration, identify calibration error sources, and propose a
calibration method and a calibration parent selection strategy.

4. CALIBRATION METHODS
We start by introducing the calibration metric used throughout

this paper to (i) compare line fitting methods (Sec. 4.2), (ii) evaluate
their ability to suppress multi-hop error propagation (Sec. 5), and
(iii) quantify the goodness of sensor calibration (Sec. 7).

4.1 Calibration Metric
We use the root-mean-square error (RMSE)—a standard metric

to quantify calibration errors [4, 7]—to evaluate the calibration ac-
curacy. We compute the RMSE between calibrated measurements
m̂v of sensor v and the corresponding phenomenon signal η as

RMSEv =
( 1

|{m̂v}|
∑

(m̂v − η)2
) 1

2
. (4)

We know the true phenomenon signal for every generated sensor
reading, when evaluating calibration methods with artificial data.
For real data sets, we derive this from data collected with high-
quality instruments in the temporal and spatial vicinity of m̂v .

4.2 Line Fitting Methods
Let sensor u ∈ U be calibrated. Consider an uncalibrated sensor

v ∈ U , which meets u and forms a rendezvous Φ(u,v). In the
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Figure 1: OLS minimizes the sum of squared vertical residu-
als AB. GMR minimizes the sum of the areas of triangles ABC
formed by the vertical and horizontal residuals AB and AC.

following, we discuss line fitting methods that can be used to find
the calibration parameters αv and βv of uncalibrated sensor v.
Ordinary least squares regression. Ordinary least squares (OLS)
is a well-known standard method for line fitting, e.g., [4,22,30,35].
It is optimal with respect to RMSE as error metric. OLS chooses
the calibration parameters αv and βv such that the sum of squared
differences between calibrated measurements m̂v = αv + βvmv

of sensor v and measurements of calibrated sensor u is minimized:∑
(m̂u,mv)∈Φ(u,v)

(
(αv + βvmv)− m̂u

)2
=

∑
(m̂u,mv)∈Φ(u,v)

(
m̂v − m̂u

)2 → min . (5)

Hence, OLS minimizes the sum of squared vertical residuals, as
depicted with distance AB in Fig. 1.

OLS treats the measurements of uncalibrated sensor v and the
calibrated sensor u as independent and dependent variables, re-
spectively. Due to this distinction, two different lines regress v
on u (denoted as u→ v) and u on v (denoted as v → u). Fig. 2
shows both regression lines OLS(u→ v) and OLS(v → u) for a
sample set of measurements in Φ(u,v). The true parameters denote
the used calibration parameters for sensor v to generate the artifi-
cial data. As stated in Eq. (5), we regress v on u to compute the
slope βu→vOLS of the calibration curve (above denoted in short form
as βv):

βu→vOLS =
cov(Φ̂

(u,v)
↓u ,Φ

(u,v)
↓v )

var(Φ
(u,v)
↓v )

. (6)

The slope depends on cov(Φ̂
(u,v)
↓u ,Φ

(u,v)
↓v ), which is the covariance

between calibrated measurements of u and uncalibrated measure-
ments of v at rendezvous Φ(u,v) and on var(Φ(u,v)

↓v ), which is the
variance of the latter. The covariance is independent of sensor noise
eu and ev as they are independent variables (i.e., cov(eu, ev) = 0,
cov(Φ

(u,v)
↓u , ev) = 0, and cov(Φ

(u,v)
↓v , eu) = 0). However, the vari-

ance in the denominator in Eq. (6) depends on sensor noise ev of
the uncalibrated sensor v because

var(Φ
(u,v)
↓v ) = var(Φ

(u,v′)
↓v′ ) + var(ev), (7)

where Φ
(u,v′)
↓v′ denotes the noise-free measurements of sensor v.

Hence, sensor noise ev introduces a bias towards zero in the com-
puted slope βu→vOLS . The greater the noise of sensor v, the stronger
the estimated slope approaches zero instead of the true slope. This
is known as regression attenuation or regression dilution [8, 18].
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Figure 2: Using OLS, two different lines regress u on v and
v on u. With GMR there is only one line as it is symmetric.
The regression OLS (u→ v) is optimal with respect to the RMSE
when calibrating sensor v using sensor u.

It is in particular a problem if sensors are calibrated over multiple
hops as the bias towards zero increases with every hop. We discuss
this in detail in Sec. 5.

A number of methods tackle the regression dilution problem by
compensating the bias in slope estimates [18, 21]. Many of these
methods assume that the variance of the sensor noise is known in
advance, e.g., Deming regression [13] requires that the ratio of the
sensors’ noise variances is known. This is particularly difficult with
real sensors, which can change their characteristics over time, e.g.,
due to changing environmental conditions and aging effects. Using
imprecise sensor noise estimates for compensating the bias may
lead to worse results than not compensating at all [44].

Below, we present geometric mean regression, a line fitting method
that does not suffer from regression dilution and does not require
any knowledge on the sensor noise. It is frequently used in natural
sciences (e.g., astronomy and biology) and is known under differ-
ent names, such as reduced major axis [45], line of organic cor-
relation [26], Strömberg’s impartial line [15], and geometric mean
regression [39]. The latter name is used throughout this work.
Geometric mean regression. Geometric mean regression (GMR)
minimizes the sum of the areas of triangles formed by the devia-
tion of a point from the regression line in both axis directions. We
depict such a triangle in Fig. 1, encapsulated by the lines AB, AC,
and BC. The point A has coordinates (m̂u,mv) ∈ Φ(u,v). The
calibration m̂v = αv + βvmv maps raw measurements mv to cal-
ibrated values m̂v . Due to noise in sensor readings m̂v 6= m̂u. We
can convert the calibrated values m̂u of sensor u to the domain of
raw measurements of sensor v using−αv

βv
+ 1
βv
m̂u. Thus, the sum

of areas minimized by GMR is∑
(m̂u,mv)∈Φ(u,v)

(
(αv + βvmv)− m̂u

)(
mv − (

1

βv
m̂u −

αv
βv

)
)

=
1

βv

∑
(m̂u,mv)∈Φ(u,v)

(
m̂v − m̂u

)2 → min . (8)

The slope βu→vGMR of the calibration curve (above denoted in short
form as βv) is

βu→vGMR =

(
βv→uOLS

βu→vOLS

) 1
2

=

(
var(Φ̂

(u,v)
↓u )

var(Φ
(u,v)
↓v )

) 1
2

. (9)

The proof of this result is given in [49]. We show in Fig. 2 the GMR
line for a sample set of measurements. It is always located between
the regression lines OLS(v → u) and OLS(u→ v).

u a x y z. . .

Φ
(u,a)

Φ
(x,y)

Φ
(y,z)

Figure 3: Calibration path u→ a→ . . .→ x→ y→ z. The
sensors a, . . ., x, y, z are calibrated hop-by-hop starting from
the reference sensor u.

Both OLS and GMR are least squares methods, in that they op-
timize the sum of squared residuals using different definitions for
residuals. However, the following three properties make GMR more
attractive in the context of multi-hop sensor calibration:

• Symmetry. Regressing v → u and u→ v yields the same
regression line (i.e., βu→vGMR = 1

βv→u
GMR

), since switching the
axes does not affect the areas of triangles to be minimized.
Thus, GMR does not make a distinction between dependent
and independent variables.
• Scale-invariance. The GMR line is invariant to any linear

transformation of any of the variables, i.e., scaling measure-
ments of either sensor leads to an equivalent regression equa-
tion [27, 40].
• No bias towards zero. In contrast to OLS, GMR does not

suffer from regression dilution. This is essential to reduce
calibration error propagation in the network.

Next, we investigate the error accumulation of the two line fitting
methods discussed above. We investigate the worst-case scenario
when noisy sensors are calibrated along a line topology with one
reference sensor at one end of the line. We show that under the
given assumptions GMR does not suffer from error accumulation
and leads to accurate network calibration.

5. REDUCING ERROR ACCUMULATION
In the following, we provide a theoretical analysis of calibration

error accumulation over multiple hops using OLS and GMR. We
emphasize our findings with detailed simulation results. Our main
findings are:

• OLS suffers from significant multi-hop error accumulation
due to sensor noise.
• In contrast to OLS, GMR is optimal and does not suffer from

any multi-hop error accumulation if the variances var(Φ(p,q)
↓p ),

∀p ∈ U are accurately estimated.
• In the general case, GMR suffers from error accumulation but

at a distinctly lower rate than OLS.

5.1 Theoretical Analysis
We continue with a detailed theoretical analysis.

Setting. Assume a calibration path u→ a→ . . .→ x→ y → z
starting with a reference sensor u, as depicted in Fig. 3. The line
topology presented in the plot enforces sensor calibration hop-by-
hop from sensor u to sensor z using the available intermediate ren-
dezvous Φ(u,a), . . . ,Φ(x,y),Φ(y,z). All sensors but u and z have
two direct neighbors. For example, sensor y has two neighbors
N(y) = {x, z}, and the projections Φ

(x,y)
↓y and Φ

(y,z)
↓y are sets of

measurements of sensor y taken in the vicinity of its direct neigh-
bors x and z, respectively. In the general case, we can not control
sensor mobility patterns and can not choose when sensors meet.
Thus, the measurements in both sets have different means and vari-
ances. We use this setup to analyze multi-hop error accumulation
of the previously discussed line fitting methods.



OLS multi-hop error accumulation. We analyze the calibration
error of sensor z, which receives its calibration over multiple hops
starting from reference sensor u. We derive the slope of the cali-
bration curve βu→zOLS using Eq. (2) and Eq. (6) as

βu→zOLS =
cov(Φ̂

(y,z)
↓y ,Φ

(y,z)
↓z )

var(Φ
(y,z)
↓z )

=
cov(αu→yOLS + βu→yOLS · Φ

(y,z)
↓y ,Φ

(y,z)
↓z )

var(Φ
(y,z)
↓z )

= βu→yOLS ·
cov(Φ

(y,z)
↓y ,Φ

(y,z)
↓z )

var(Φ
(y,z)
↓z )

=
cov(Φ

(u,a)
↓u ,Φ

(u,a)
↓a )

var(Φ
(u,a)
↓a )

. . .

. . .
cov(Φ

(x,y)
↓x ,Φ

(x,y)
↓y )

var(Φ
(x,y)
↓y )

·
cov(Φ

(y,z)
↓y ,Φ

(y,z)
↓z )

var(Φ
(y,z)
↓z )

. (10)

The covariances are independent of sensor noise, as discussed in
the previous section. However, the denominators with the variances
of all sensors along the calibration path depend on sensor noise, as
denoted in Eq. (7). Every additional sensor in the calibration path,
introduces an additional term in the denominator, which increases
the bias towards zero. The total introduced bias is given by

var(Φ
(u,a′)
↓a′ )

var(Φ
(u,a)
↓a )

. . .
var(Φ

(x,y′)
↓y′ )

var(Φ
(x,y)
↓y )

·
var(Φ

(y,z′)
↓z′ )

var(Φ
(y,z)
↓z )

, (11)

where Φ
(u,a′)
↓a′ denotes the noise-free measurements of sensor a. In

the following, we show that GMR, in contrast to OLS, does not
accumulate errors over multiple hops under certain conditions.
GMR multi-hop error accumulation. We use the line topology
above to show that, in contrast to OLS fitting, GMR does not suf-
fer from error accumulation if all rendezvous sets of a sensor have
the same variance. For example, we require that the measurements
of sensor y in Fig. 3 have the same variance in the rendezvous in-
volving sensor x and sensor z, i.e., var(Φ(x,y)

↓y ) = var(Φ
(y,z)
↓y ).

We prove our statement by showing that the GMR calibration of a
sensor is independent of the calibration path. Later, we release the
above assumption of equal variances and analyze error propagation
in the general case. We show that the error obtained is distinctly
lower than with OLS.

THEOREM 1. Let us consider a rendezvous connection graph Γ
with a calibration path u→ a→ . . .→ x→ y → z. Let u be
a reference sensor. If var(Φ(p,r)

↓r ) = var(Φ
(r,q)
↓r ), ∀p, q ∈ N(r),

∀r ∈ U , then the calibration of sensor z is independent of the path
between reference sensor u and sensor z.

PROOF. It suffices to show that the statement of the theorem
holds for the calibration parameter βz , as this uniquely determines
the value of αz . We use Eq. (2) and Eq. (9) to derive the calibra-
tion slope βu→zGMR of sensor z, calibrated over multiple hops starting
from reference sensor u:

βu→zGMR =

(
var(Φ̂

(y,z)
↓y )

var(Φ
(y,z)
↓z )

) 1
2

=

(
var(αu→yGMR + βu→yGMR · Φ

(y,z)
↓y )

var(Φ
(y,z)
↓z )

) 1
2

= βu→yGMR ·

(
var(Φ

(y,z)
↓y )

var(Φ
(y,z)
↓z )

) 1
2

=

(
var(Φ

(u,a)
↓u )

var(Φ
(u,a)
↓a )

. . .
var(Φ

(x,y)
↓x )

var(Φ
(x,y)
↓y )

·
var(Φ

(y,z)
↓y )

var(Φ
(y,z)
↓z )

) 1
2

(12)

=

(
var(Φ

(u,a)
↓u )

var(Φ
(y,z)
↓z )

) 1
2

. (13)

We leverage in Eq. (13) the assumption of equal variances, i.e.,
var(Φ

(x,y)
↓y ) = var(Φ

(y,z)
↓y ). Since the calibration slope of z only

depends on the measurements of sensor u and z, i.e., on var(Φ(u,a)
↓u )

and var(Φ(y,z)
↓z ), it is independent of the choice of intermediate

sensors along the calibration path.

If the assumption of the theorem holds, calibration parameters
calculated with GMR are independent of the choice of calibration
paths and are optimal, since the minimization function of GMR
defined in Eq. (8) achieves its minimum.
Relaxing the assumption. The theorem assumption implies that
the variance of the phenomenon signal at rendezvous between any
pair of sensors must be the same. In reality this is hard to achieve,
since meeting points between sensors cannot be enforced. There-
fore, in many real systems the reduction used from Eq. (12) to
Eq. (13) does not apply and, thus,

βu→zGMR =

var(Φ(u,a)
↓u )

var(Φ
(y,z)
↓z )

·
∏

∀p→r→q
p,q∈N(r)

var(Φ
(r,q)
↓r )

var(Φ
(p,r)
↓r )


1
2

. (14)

In multi-hop calibration, GMR does not continuously introduce a
bias in one direction (like OLS towards zero), since both numerator
and denominator contain the sensor noise term (see Eq. (7)):

var(Φ
(r,q)
↓r )

var(Φ
(p,r)
↓r )

=
var(Φ

(r′,q)
↓r′ ) + var(er)

var(Φ
(p,r′)
↓r′ ) + var(er)

. (15)

This observation is essential to understand the small error propaga-
tion property of GMR. OLS continuously underestimates the sensor
slopes, and, hence, introduces an ever-increasing bias towards zero.
In contrast, GMR closely approaches the true slope (sometimes un-
derestimating and other times overestimating it) and, thus, does not
accumulate a bias towards one direction.

Next, we show through extensive simulations that GMR achieves
significantly lower calibration errors than OLS.

5.2 Simulation Results
In the following, we use a line topology graph Γ and artificially

generated rendezvous Φ between pairs of adjacent sensors to high-
light the differences between OLS and GMR. Generated data cor-
respond to typical carbon monoxide (CO) concentrations in urban
environments. Artificial data generation gives us three advantages:
we (i) can freely choose the topology of the rendezvous connection
graph, (ii) can precisely control sensor characteristics (e.g., noise
level, calibration parameters), and (iii) know for every generated
sensor reading the true phenomenon signal value, which allows us
to accurately evaluate calibration errors.
Setup. All generated line topologies comprise 21 sensors, with a
noise-free reference sensor at the beginning of the line, followed
by 20 noisy sensors. The sensor IDs denote the hop distance to
the reference sensor. A rendezvous Φ(u,u+1) between a pair of
sensors u and (u + 1) in Γ is constructed by uniformly sampling
1000 phenomenon signal values in the range [0.2, 2] ppm. This
range is typical for carbon monoxide concentrations in urban areas.
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Figure 4: Impact of measurement quantity and sensor noise on
the variance estimates. High noise and low number of measure-
ments impede the accurate estimation of the variance.
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Figure 5: Fixed phenomenon range (Theorem 1 holds). GMR
can accurately calibrate all sensor nodes of a 21-node line topol-
ogy with very small error propagation.

We randomly sample for each sensor u the calibration parame-
ters αu ∈ [0, 1] and βu ∈ [0.3, 2]. We use these parameters to con-
vert the generated phenomenon signal values to sensor-specific raw
measurements and add sensor noise eu to get uncalibrated sensor
measurements mu. The variance of the sensor noise is randomly
sampled from [0, 0.2] ppm for each sensor. The RMSE between
phenomenon signal and calibrated sensor measurements is used to
quantify calibration errors. All plots show average RMSEs over
100 randomly generated line topologies. For each sensor, optimal
parameters are obtained by computing OLS regression between
raw sensor data (including noise) and the known phenomenon sig-
nal. The optimal parameters represent the best calibration parame-
ters achieving the minimum possible RMSE between phenomenon
signal and calibrated sensor measurements.
Impact of sensor noise. We need to know the variances of the
sensor measurements to compute the sensors’ calibration slopes,
as described in the previous section. We estimate the variances
based on rendezvous Φ between pairs of sensors. However, both
(i) low number of measurements in rendezvous and (ii) sensor noise
make an accurate variance estimation difficult. We exemplify this
in Fig. 4 using artificial data. We show the fluctuation of the vari-
ance estimates for two noisy measurement sets depending on the
number of measurements in the set. As expected, variance esti-
mation exhibits less fluctuation as the number of measurements in-
creases. Moreover, we observe that higher sensor noise leads to
higher uncertainties in estimating the variance.
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Figure 6: Despite the 2x higher noise of sensor 8, GMR accu-
rately calibrates sensors 9–20. With GMR a sensor’s calibration
is mostly independent of the calibration parent’s sensor noise.
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Figure 7: Variable phenomenon range (Theorem 1 does not
hold). GMR has distinctly slower error accumulation than OLS
when calibrating sensors on a 21-node line topology.

In Fig. 5, we compare the calibration errors of OLS and GMR as-
suming that the values of the phenomenon signal for all rendezvous
are sampled from the same fixed interval (the statement of Theo-
rem 1 holds). Since the assumption of Theorem 1 holds, in theory
GMR should not accumulate any calibration errors. With noisy sen-
sor data, however, we observe an insignificant error accumulation
due to small inaccuracies in estimating the variance of the mea-
surements (for node 20 there is a small difference between optimal
parameters and GMR). Nevertheless, the RMSE of GMR is close to
the RMSE achieved with optimal parameters. In contrast, OLS suf-
fers from rapid error accumulation. This is the result of regression
dilution: due to sensor noise, the calibration slope of a sensor gets
a stronger bias towards zero with every additional calibration hop.

We make the impact of noise on the calibration error more ex-
plicit by increasing the noise of sensor 8 by a factor two. Naturally,
sensor 8 gets worse RMSE for any parameter setting, as depicted
in Fig. 6. We observe that OLS suffers from high error increase
for nodes 9–20, due to the high bias towards zero of the calibra-
tion slope of sensor 8. In contrast, the nodes calibrated by GMR
are mostly independent of the high noise of sensor 8. There is a
minor error increase due to an increased inaccuracy in estimating
the variance var(Φ(8,9)

↓8 ) of the measurements of sensor 8.
The above analysis shows that for GMR (i) calibration error of

a sensor mostly depends on the sensor’s noise, but the noise of the
calibration parent has minor impact, (ii) calibration error of a sen-
sor can be smaller than the calibration error of its calibration parent,
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Figure 8: The 3x smaller measurement range between sensor 8
and 9 results in lower range-to-noise ratios of the two sensors,
which influences the calibration error of all subsequent sensors.
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Figure 9: The 3x larger measurement range between sensor 8
and 9 results in higher range-to-noise ratios of the two sensors.
This does not influence the calibration of sensors 10–20.

and (iii) there is almost no multi-hop accumulation of errors. The
last two findings are crucial when calibrating a network of hetero-
geneous sensors with different noise characteristics.
Impact of phenomenon signal range. The assumption of Theo-
rem 1 rarely holds for real data sets, because rendezvous between
sensors might occur at different ranges of the phenomenon sig-
nal. In the following, we use the line topology above but randomly
choose for each rendezvous the maximum signal range in [1, 4] ppm.
The resulting RMSE of each sensor is plotted in Fig. 7. Both fitting
methods suffer from error accumulation as showed by the theoreti-
cal analysis, although GMR is less affected than OLS.

To better understand the source of error accumulation, we use
equal phenomenon signal ranges for all rendezvous, except be-
tween sensor 8 and 9, i.e., Φ̂(8,9). The latter range is decreased in
Fig. 8 and increased in Fig. 9 by factor three compared to the ren-
dezvous of all other sensors. This changes the respective range-to-
noise ratio (RNR). Decreasing the range lowers RNR, which means
that the noise has an increasing impact on the sensor measurements.
This, in turn, makes it more difficult to estimate the variance of the
measurements (see Fig. 4) and, hence, results in a higher calibra-
tion error of OLS and GMR. Moreover, the introduced error af-
fects any sensor that has sensor 9 in its calibration path, as Eq. (10)
and Eq. (14) suggest and Fig. 8 shows. By contrast, increasing the
range, raises the RNR. The calibration error of both fitting methods
increases because the calibration of sensor 8 is based on measure-

ments from the standard (small) range. However, in the rendezvous
with sensor 9, sensor 8 has to measure in a much larger (factor
three) range. This introduces with GMR only a small error, be-
cause GMR can accurately estimate the true slope of sensor 8, even
if it only has a small range of measurements available. However,
the bias introduced by OLS has a large impact on the calibration er-
ror when the range is increased. Hence, increasing the range has a
much larger impact on its calibration accuracy, as shown in Fig. 9.

We conclude that (i) varying the phenomenon signal range be-
tween rendezvous degrades the performance of both GMR and OLS,
although OLS is significantly more affected than GMR, and (ii) a
low RNR is particularly problematic, since the introduced calibra-
tion error propagates over multiple hops. Our findings suggest that
calibration parents need to be carefully selected to minimize error
propagation in the network.

6. NETWORK CALIBRATION
In this section, we present our calibration parent selection algo-

rithm and analyze it in combination with the OLS and GMR line
fitting methods on artificial topologies. Later, we evaluate their
performance on real data sets.

6.1 Selecting the Calibration Parent
We showed with our previous analysis that an efficient parent

selection algorithm must build on the following properties:

• Avoid calibration parents with low RNR to reduce multi-hop
error propagation.
• Maximize number of checkpoints with calibration parents to

reduce inaccuracies in estimating the variance.

Optimizing each of the above properties is not straightforward for
the following reasons: Given a noisy measurement, it is impos-
sible to split it into its noise-free and noise components, as done
in Eq. (7), without additional knowledge about the sensor noise.
Therefore, it is difficult to reliably identify parent candidates with
low RNR. Similarly, despite high number of calibration pairs, we
may have low correlation between paired values leading to a poor
regression line. In the worst case, the phenomenon signal has the
same value for all calibration pairs making them useless for sensor
calibration.

We propose to (i) use a combination of multiple calibrated sen-
sors as calibration parent to increase the number of measurements
involved in sensor calibration, and (ii) analyze the Pearson correla-
tion with the calibration parent to avoid sensors with low RNR.

Combining rendezvous of multiple calibrated sensors u, . . . , v
and using the combination as calibration parent results in the fol-
lowing slope computation:

βu,...,v→zGMR =

(
var(Φ̂

(u,z)
↓u ∪ . . . ∪ Φ̂

(v,z)
↓v )

var(Φ
(u,z)
↓z ∪ . . . ∪ Φ

(v,z)
↓z )

) 1
2

. (16)

Choosing multiple parents (i) maximizes the number of measure-
ments used to compute the calibration slope, and (ii) potentially
increases the phenomenon signal range and, thus, increases the
RNR. The latter holds with high probability if rendezvous occur
randomly at distinct values of the phenomenon signal. RNR is then
maximized as the result of the increased phenomenon range.

To minimize the chance of having a parent with low RNR, we
compute the Pearson correlation between measurements of differ-
ent sensors, i.e., between measurements in Φ

(u,z)
↓z ∪ . . . ∪ Φ

(v,z)
↓z

and Φ̂
(u,z)
↓u ∪ . . . ∪ Φ̂

(v,z)
↓v of Eq. (16), and use it as noise estimate.
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Figure 10: Comparison of OLS and GMR on a 35-node grid
topology. The hop-by-hop calibration algorithms use multiple
calibration parents and, thus, achieve a lower calibration error
than the single parent version.

We blacklist rendezvous between sensors if the correlation between
their measurements is below a given threshold.
Putting everything together. The last key piece is to tie all parts
together.

Calibration parameters may vary over time, since low-cost sen-
sors typically lose sensitivity over time and are influenced by envi-
ronmental conditions. This has significant influence on the sensor
measurements and results in the fluctuation of the calibration coef-
ficientsαu and βu. We introduce a periodic calibration approach by
partitioning the time domain T into a sequence of equally-spaced,
non-overlapping time intervals {sk} = S ⊆ T . We assume that the
calibration parameters of all sensors do not change within sk. For
each sk, we consider all meeting points that occurred between pairs
of sensors and construct a rendezvous connection graph Γsk , which
is used as input for the calibration algorithm.

Using the rendezvous connection graph Γsk , the calibration al-
gorithm calibrates the network of noisy sensors hop-by-hop start-
ing from a reference sensor. The calibration algorithm starts by
calibrating sensors that directly pass by reference sensors (first-hop
sensors). Once calibrated, the sensors can be used as references by
the second-hop sensors. The algorithm stops as soon as all sensors
in the network are calibrated. We use for the calibration of a sensor
u ∈ U \ U∗, all non-blacklisted previously calibrated sensors in
N(u) as calibration parent.

6.2 Simulation Results
We end this section by showing a comparison between hop-by-

hop calibration with OLS and GMR and demonstrating the benefit
of our parent selection strategy. We generate artificial data as de-
scribed in the previous section, but use a grid topology in order
to have multiple possible calibration parents for every sensor node.
We arrange 36 nodes on a grid with 35 uncalibrated sensors and one
reference node in the top left corner of the grid. The node IDs in-
crease with increasing hop-distance from the reference sensor, i.e.,
sensor 1 and 2 are the direct neighbors of the reference sensor.

Fig. 10 depicts the comparison between two versions of OLS
and GMR: hop-by-hop, using the parent selection scheme described
above and single parent, selecting as calibration parent the sensor
with the maximum number of measurement pairs. We see again
that OLS accumulates errors with a much faster rate than GMR and
that multiple parents help to reduce the calibration error.

Figure 11: Air quality sensor node installed on top of a street-
car of the local public transport network.

Data set Measurements Sampling interval
[in millions] [s]

Temperature 2.7 20
Ozone (O3) 2.1 20
Carbon monoxide (CO) 8.5 10

Table 1: Evaluated data sets of the mobile air pollution moni-
toring network collected from March to August 2014.

7. REAL-WORLD CASE STUDY:
AIR POLLUTION MONITORING

In this section, we use the proposed network calibration algo-
rithm to calibrate a large set of air pollution measurements collected
with mobile sensor nodes traversing a large urban area. Further,
we demonstrate on real measurements that Hop-by-hop GMR con-
siderably reduces error propagation and is able to more accurately
calibrate a set of low-cost gas sensors than Hop-by-hop OLS.

7.1 Mobile Air Pollution Monitoring Network
Starting in 2012, we gradually equipped ten streetcars of a public

transport network with air quality measurement stations, as shown
in Fig. 11. The sensor nodes cover a 100 km2 urban area on a reg-
ular schedule, depicted in Fig. 12, and monitor a wide range of
air pollutants and environmental parameters. The measurements
are stored locally in a database and transmitted in real-time over
GSM (cellular network) to the back-end server running Global Sen-
sor Network (GSN) [1], a software middleware that facilitates data
collection in sensor networks. The sensor readings are removed
from the local database once their reception is acknowledged by
the back-end server. All measurements are publicly available.1

Air quality sensor node. The core of the sensor node is a Gumstix
embedded computer with a 600 MHz CPU running an embedded
Linux operating system. A GPS receiver supplies the station with
precise geospatial information. The station supports bidirectional
communication over GSM and WiFi. GSM is used under regular
system operation while WiFi is used during debugging and mainte-
nance phases. While the streetcars are in operation, on average 20 h
per day, they supply the nodes with power. During the night, typ-
ically from 1:00 AM to 5:00 AM, the streetcars are in their depots
and the nodes are turned off.

1OpenSense data: http://data.opensense.ethz.ch

http://data.opensense.ethz.ch
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Figure 12: Measurement coverage of the ten sensor nodes de-
ployed on top of ten streetcars of the public transport network.
The two governmental stations provide highly accurate refer-
ence measurements.
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Figure 13: Number of meeting points among mobile sensors
and reference stations accumulated every ten days during three
months of operation.

To monitor air pollution, the sensor nodes are equipped with
a semiconductor ozone (O3) sensor [43], electrochemical carbon
monoxide (CO) and nitrogen dioxide (NO2) sensors [2, 3], and
a novel compact device to measure ultrafine particle concentra-
tions [17]. Additionally, the nodes monitor environmental parame-
ters, such as temperature and humidity [42]. In this work, we focus
on the calibration of the temperature, ozone, and carbon monoxide
data sets. We use 13 million measurements collected in six months
between March and August 2014, as summarized in Table 1.

7.2 Sensor Calibration
Traditionally, air pollutants are monitored by networks of fixed

measurement stations, which are highly reliable and able to accu-
rately measure many different pollutants. Two stations of the local
governmental measurement network are located in the city center,
as depicted in Fig. 12. The two stations are 4 m and 16 m apart
from the streetcar tracks. We use their high-quality measurements
to calibrate our low-cost sensors deployed on top of the streetcars.
Setup. We use all measurements to create every ten days a ren-
dezvous connection graph. We assume that the measurements from

Data set Average calibration error [RMSE]
Single calibration Periodic calibration

Temperature 2.3 ◦C 1.6 ◦C
Ozone (O3) 12.9 ppb 9.8 ppb
Carbon monoxide (CO) 0.23 ppm 0.08 ppm

Table 2: Calibration errors with GMR. Single calibration, only
calibrates sensors once at the beginning of the deployment,
compared to periodic calibration as described in this paper.

Number of mobile sensor nodes in calibration path [hop count]
2 3 4 5

N
u
m

b
e
r 

o
f 
c
a
lib

ra
ti
o
n
 p

a
th

s

×10
4

0

1

2

3

4

5

Figure 14: Number of calibration paths with 2–5 sensor nodes.

two different sensors are similar if their spatial and temporal dis-
tances are within ∆d = 50 m and ∆t = 5 min. We found through
extensive evaluations that this parameterization achieves a good
trade-off between number of meeting points and similarity of the
measured phenomena. On average, within a slot size of ten days,
the rendezvous connection graph of the ozone measurements com-
prises 4000 meeting points among mobile sensors and 500 meeting
points between reference stations and mobile sensors, as shown in
Fig. 13. We blacklist a rendezvous if the correlation of the sensors’
measurements is below 0.5.
Evaluation. We evaluate the calibration accuracy with a two-fold
cross-validation approach. We calibrate the network using one ref-
erence station and evaluate the calibration accuracy with the sec-
ond reference station. In every time slot, we repeat this approach
with both reference stations acting once as reference station. Ta-
ble 2 shows the average RMSE between calibrated measurements
of the mobile sensor nodes and the reference station using GMR.
The achieved accuracy is reasonable for the deployed low-cost sen-
sors and is considerably better than what is obtained if the sensors
are only calibrated once at the beginning of the deployment, also
listed in Table 2.

We illustrate the advantages of GMR by extracting specific cal-
ibration path lengths from the rendezvous connection graph. We
compare the calibration errors of GMR and OLS by analyzing more
than 100,000 different calibration paths composed of 2–5 sensor
nodes, as shown in Fig. 14. We show in Fig. 15 that on all three
pollution data sets the error accumulation of GMR is considerably
than with OLS. The difference between OLS and GMR increases
for longer path lengths. These results are in line with our previous
findings based on theoretical analysis and simulations. However,
the differences between OLS and GMR are lower than what has
been seen in simulations. This is due to the following two reasons:
(i) GMR reaches its full potential on large networks, while our net-
work is relatively small and (ii) the sensor data is very noisy, hence,
the RMSE is dominated by errors introduced due to noise and to a
lesser extent due to regression dilution.

Finally, we compare in Table 3 the number of sensors, which can
be calibrated with existing one-hop algorithms (i.e., only calibrat-
ing sensors directly passing by a reference sensor, e.g., [34]) to the
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(b) Ozone (O3).
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Figure 15: Dependency between calibration error and length
of the calibration path. Hop-by-hop GMR has a considerably
lower error accumulation than OLS for all three pollutants.

number of nodes reached with our multi-hop calibration approach.
Note that not all ten sensor nodes are equipped with all sensor
types. We observe that our multi-hop algorithm calibrates at least
34 % more sensors than its one-hop alternative. This is remark-
able, since our air pollution monitoring network is well-connected
with two reference stations located in the city center. We expect
an even higher benefit when using multi-hop calibration algorithms
for large-scale systems, e.g., in participatory sensing applications.

8. RELATED WORK
This section summarizes existing knowledge related to this work.

We overview line fitting methods in the context of sensor calibra-
tion, list state-of-the-art sensor calibration algorithms, and discuss
their differences to this work.

Data set Sensors calibrated Total
one-hop multi-hop sensors

Temperature 4.7 8.2 9
Ozone (O3) 3.8 6.2 7
Carbon monoxide (CO) 4.5 8.2 10

Table 3: Average number of sensors calibrated over a 10-day
period using one-hop and multi-hop calibration algorithms.

8.1 Line Fitting
Linear regression is a common statistical operation in many sci-

ences. Besides OLS and GMR, both discussed in detail in this work,
there is a broad range of line fitting methods, such as Theil-Sen
estimator [20], which chooses the median slope among all lines
through pairs of points, total least squares regression [32], which
optimizes the sum of squared orthogonal residuals to the regression
line, and Deming regression [13], which is the maximum likeli-
hood estimator. Each method was designed for a specific regression
model, that must match application requirements. In the context of
sensor network calibration, the following requirements are impor-
tant: we need to (i) account for errors in both variables, (ii) handle
both variables symmetrically, and (iii) be invariant to changes in
the scale. Our choice of line fitting method and its alternatives are
detailed below.

When calibrating a sensor using another noisy sensor, the cho-
sen regression method must account for measurement errors in both
variables. Standard OLS ignores the problem and thus suffers a
noise-driven bias in estimating the slope, known as regression dilu-
tion [8]. The bias can be compensated [18, 21], but requires addi-
tional knowledge about the errors, e.g., their variances or the ratio
thereof [13]. This knowledge is often not available, especially if
sensor noise depends on environmental conditions.

Many regression methods make a distinction between the predic-
tor (independent) variable and the response (dependent) variable,
because their optimization functions are asymmetric with respect
to the two variables, e.g., OLS and Theil-Sen estimator. Thus, these
regression methods derive two different regression lines depending
on the direction of regression. Using asymmetric regression meth-
ods poses a dilemma in many applications, when trying to iden-
tify a cause-effect relationship between the variables, e.g., if one
would want to find the dependency between body length and body
mass [45]. Thus, it is often desirable to have one regression line de-
scribing the relationship rather then two. A similar problem arises
in the context of sensor calibration: It is hard to fix the direction of
calibration for a pair of noisy sensors of the same type. In this case,
symmetric regression models, such as GMR and total least squares,
produce a more comprehensible fit.

Lack of scale invariance makes the regression dependent on the
range of raw measurements limiting its applicability for sensor cal-
ibration. For example, total least squares is not scale-invariant.

GMR is known under different names such as reduced major
axis [45], line of organic correlation [26], and Strömberg’s impar-
tial line [15]. It is the only linear regression method in the two-
dimensional space, which is simple (i.e., only based on the ratio of
the variables’ variances), symmetric, and scale-invariant [40].

8.2 Sensor Calibration
A great body of work is dedicated to calibrating low-cost sensors,

e.g., [12,19,31,34]. The existing literature on sensor calibration can
be classified into micro- and macro-calibration approaches [46,48].



Micro-calibration. Micro-calibration algorithms calibrate every
sensor in the network according to a high-quality reference sig-
nal [22, 34, 38, 47]. The goal is to have accurate absolute sensor
measurements of the phenomenon monitored.

Tolle et al. [47] and Ramanathan et al. [38] calibrate their sensors
in the laboratory before the deployment phase. Manual calibration
is an elaborate and time-consuming task and many sensors need
periodic re-calibrations to deliver measurements with a good data
quality during the whole system lifetime (see Table 2).

Miluzzo et al. [34] propose CaliBree, a self-calibration system
for mobile sensor nodes. CaliBree makes use of meeting points
between low-cost sensors and high-quality reference sensors to up-
date the calibration of low-cost sensors. Compared to the algorithm
proposed in this paper, it ignores all meeting points between low-
cost sensors and, thus, requires in general a high density of refer-
ence sensors to calibrate all sensors in a network (see Table 3).

In our previous work [22], we introduced a multi-hop calibration
algorithm applying OLS regression to calibrate a sensor network.
We showed with simulations a linear increase of calibration error
with increasing number of nodes in the calibration path. In this
paper, we show with our theoretical analysis, simulations, and real
pollution measurements a considerably smaller error accumulation.
Macro-calibration. Macro-calibration algorithms try to maximize
the similarity among the measurements of all sensor nodes in the
network [4,7,16,31,46]. In macro-calibration, the main goal is not
to adjust sensor calibration according to a reference signal but to
achieve a high similarity between sensors in the network. Hence,
most macro-calibration algorithms do not require access to refer-
ence measurements.

Bychkovskiy et al. [7] propose a two phase multi-hop calibration
algorithm. In the first phase, the algorithm derives relationships
between co-located sensors and in the second phase it maximizes
the consistency among groups of sensor nodes. The authors assume
that sensor noise can be filtered out. In general, this is very difficult
to achieve in mobile sensing networks.

Balzano and Nowak [4] and Lipor and Balzano [31] introduce
blind calibration algorithms to determine sensor gains by oversam-
pling the phenomenon signal. The authors compare different meth-
ods to derive calibration parameters: singular value decomposition
and OLS in [4], and total least squares in [31]. Blind calibration
methods depend on the assumption that the mean of the monitored
signal is zero (or the same for all sensors). This is in most real-
world deployments not the case, e.g., air pollution monitoring.

Xiang et al. [50] propose a collaborative sensor calibration and
placement approach using meeting points between mobile sensors
to adjust their calibration parameters and error estimates. The goal
is to compensate for sensor drift errors. The measurements from
our long-term, mobile air quality monitoring system indicate that
sensor drift has a minor effect on the fluctuation of calibration pa-
rameters. In contrast, dynamically changing environmental condi-
tions highly affect sensor performance. This observation is in line
with the findings published in [38].

Other macro-calibration algorithms improve target detection [46],
localization [48], and the calibration of light sensors [16].

In contrast to all above works, the distributed monitoring of phys-
ical phenomena (e.g., urban noise monitoring [33], air pollution
measurements [24,25], and earth-quake detection [14]) requires ac-
curate absolute sensor measurements. Hence, in these scenarios a
micro-calibration approach is needed, such as the calibration algo-
rithm proposed in this paper. Moreover, a good micro-calibration
algorithm also accomplishes the goals of macro-calibration, namely
a high consistency among measurements of co-located sensor nodes,
whereas the opposite is not true.

9. CONCLUSIONS
Wireless sensor networks (WSNs) are used in an increasing num-

ber of applications enabling the dense monitoring of the environ-
ment. Many sensors used in WSNs need to be frequently calibrated
to constantly deliver accurate measurements.

Calibrating a whole network of sensors based on a few high-
quality reference measurements is challenging. Error propagation
in the network hinders the accurate calibration of all sensor nodes.
In this paper, we propose a novel multi-hop calibration algorithm,
which distinctly reduces error accumulation in the network. In-
stead of using ordinary least squares—typically employed to cali-
brate noisy sensors—we use geometric mean regression and exploit
its robustness against regression dilution, which is caused by noisy
sensor readings. This is essential in order to reduce error propaga-
tion in multi-hop calibration systems.

We show the benefits of our algorithm by performing a detailed
theoretical analysis, conducting simulations under various settings,
and calibrating measurements from our mobile air pollution moni-
toring network. We demonstrate the following key features of our
calibration algorithm: (i) Very low hop-by-hop error propagation
in the network. Hence, the algorithm can handle long calibration
paths incorporating many sensors without accumulating large er-
rors. (ii) The calibration quality of a sensor is largely independent
of the calibration error of its calibration parent. A low-noise sensor
can be accurately calibrated despite having a high-noise calibration
parent. (iii) Due to multi-hop calibration, only a low number of ref-
erence sensors are required since meeting points between low-cost
sensors are also exploited as calibration opportunities.

Hence, the algorithm proposed is suitable for the accurate cali-
bration of large, mobile, and heterogeneous sensor networks, such
as found in participatory sensing scenarios.
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