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Abstract—State-of-the-art wearable systems are typically
performance-constrained, battery-based devices which can, at
most, reach self-sustainability using energy harvesting and ag-
gressive duty-cycling. In this work, we present a wearable vision
sensor node which can reliably execute computationally-intensive
computer-vision algorithms in an energy-opportunistic fashion.
By leveraging a burst-generation scheme, the proposed system can
efficiently provide the energy guarantees required for tasks with
temporal dependencies, even under highly variable harvesting
conditions. By mounting the node on a user’s glasses, the node
is able to acquire a sequence of images and determine the user’s
walking speed, requiring only a small solar panel and capacitor.
Both hardware and software have been fully optimized for ultra-
low power consumption and high performance. Extensive experi-
mental results show the energy node’s energy proportionality and
the accuracy of its walking speed estimation.

I. INTRODUCTION

Over the past decade, there has been a substantial research
effort to reduce the power consumption of electronic devices.
Many techniques have been developed to reduce the average
power consumption of battery-powered devices in an attempt
to prolong their lifetimes. Energy harvesting, though a mature
technology, has only been successfully deployed in large scale
systems where size is not a limiting factor. In the wearable
domain, however, a source’s physical dimensions are just as
important, if not more, than its harvesting capacity. Furthermore,
wearable sources such as kinetic, piezoelectric and photovoltaic
are subject to very rapidly changing environmental conditions
and harvesting rates, making efficient operation a veritable
challenge [3]. Traditional approaches that use large storage
elements are not feasible in this domain because they are
expensive, have short lifetimes and cannot easily scale with
power hungry applications such as computer vision. Hence,
innovative energy harvesting concepts are needed to power the
increasing number in the Internet of Things (IoT) and wearable
devices in an efficient, low-cost, long-term, self-sustainable
manner.

Transiently powered systems operate efficiently in adverse
harvesting conditions, requiring only limited storage capacity
and input power to reliably execute power-hungry applications.
The recently-proposed Energy Management Unit (EMU) [8]
allows a transient system to operate in an energy-proportional
manner. As opposed to traditional duty-cycling, an EMU-based
system is energy driven, meaning that as the available energy
increases, so does application’s execution rate. This would allow
devices to operate reliably and efficiently in the wide input
power range found in typical wearable sources. Furthermore,

they do not require expensive and bulky storage devices that
would render them unwearable.

Vision sensors, which acquire and process images, are
typically power-hungry devices which require substantial com-
putational resources. For this reason it was not until recently
that it became feasible to have batteryless vision sensors in
a wearable form factor, thanks to new paradigms in energy
harvesting systems. Wearable vision sensors are a nascient
field, because compared to traditional low power sensors like
accelerometers, vision sensors offer much more information
which could be used to accurately determine not only the step
count, but other variables as well. In [13], for example, authors
partly use vision data to determine the user’s context.

Vision sensors have been studied for many years, and there
has been a significant research effort to use them for optical
navigation of unmanned aerial vehicles (UAV) or robots. V.
More et al. proposed a visual navigation system for UAVs based
on optical flow estimation using the Lucas-Kanade method and
an ultrasonic sensor [15]. To account for the high computational
effort for the Lucas-Kanade method, the system runs on a on-
board linux computer (Odroid-U3), which consumes up to 10 W.
Computing the optical flow with the Lucas-Kanade method can
also be done on computationally constrained microcontrollers
such as the Atmel ATmega2560. K. Schneider et al. [17] took
this approach and used the same Stonyman vision chip from
Centeye as in this work. However, low power microcontrollers
have very limited memories and in their case it could only
handle camera resolutions up to 28 × 28 pixels due to the
memory intensive Lucas-Kanade method.

In general, vision sensors either require too much power
or offer too little performance to design functional batteryless
devices. In [16], for example, a stereo vision system for a
micro aerial vehicle capable of processing 640x480 frames at
60 fps, requiring 5 W and 50 grams for the FPGA subsystem
alone. In [9], the authors use a PX4FLOW optical flow sensor
to provide velocity and position estimation at high update rates
for mobile robot navigation. The system is not only vision-
based, but also includes a gyroscope and an ultrasonic sensor.
The power consumption of this system is specified as 575 mW.
To design a batteryless system with these power requirements
would require a solar panel with an area of 100’s cm2, which
is no longer wearable.

In this work, we describe the design and implementation of
an energy-opportunistic, wearable vision sensor node capable
of executing computationally intensive tasks with temporal



dependencies. Thanks to its EMU-based design, it can reliably
and efficiently acquire and process images to estimate the
user’s walking speed in a wide variety of harvesting scenarios.
Our proposed vision sensor has an average active power
consumption of 6.85 mW, but requires only 100’s of µW’s
to begin making velocity estimations. Furthermore, it can reach
up to 5.8 velocity estimations per second, and has a motion
estimation error of 1.4 % of the distance traveled.

II. PRELIMINARIES

Transiently powered systems are energy harvesting-based
systems which can operate reliably with very limited energy
storage and very adverse harvesting conditions. They are also
called batteryless because their energy storage is required to
be as small as possible and their behavior is entirely energy-
driven. How big the storage element is depends entirely on
the application and its energy needs, but as opposed to battery-
based designs, the system cannot buffer the energy required for
100’s or even 1000’s of iterations. The challenges to build such
systems are many, especially given that volatile energy sources
might never be able to directly power the system. In the recently
proposed energy harvesting scheme called Dynamic Energy
Burst Scaling (DEBS), it is argued that for these systems
to operate reliably and efficiently, they have to accumulate
harvested energy until enough is available for the execution
of one single atomic task, also called a burst. Afterwards, the
system must be shut down completely until enough energy is
accumulated for the next burst execution. The time interval
between two bursts depends on the currently available input
power. This type of operation directly leads to three challenges
for the design of transiently powered systems:

Constraint (1) Minimum Energy Guarantee: The energy
harvester cannot directly power the system. To guarantee the
execution of atomic tasks, the storage device should provide
this minimum energy availability.

Constraint (2) Temporal Independence: There is no control
over the length of the time interval between two bursts, since
this only depends on the currently available input power. The
application needs therefore to be split into separate bursts with
no temporal dependencies.

Constraint (3) Non-Volatility: Between two bursts, the
system is completely shut down and all peripherals are powered
off. Therefore, if an application cycle is split among different
bursts, there is a need for using non-volatile memory (NVM)
technologies to retain the system’s state between bursts. Even
if an application cycle fits in a single burst, long-term logging
requires NVM.

To the best of our knowledge, these constraints have
prevented system designers from building reliable harvesting-
based wearable image vision sensors. In our walking speed
estimation scenario, we overcome these restrictions with DEBS,
and we can obtain accurate, high performance vision sensing
by leveraging existing motion estimation algorithms. The rest
of this section gives a brief overview of the two areas that are
combined in our proposed system.

A. Dynamic Energy Burst Scaling (DEBS)

Typical cyber-physical systems consist of a microcontroller
with its peripherals like memories, sensors or transceivers.

Microcontrollers can usually operate in a wide voltage range,
but they are most efficient at minimum supply voltages. The
peripherals can have completely different voltage requirements.
Often, the highest minimum voltage is then taken for the whole
application design to avoid converter losses for multiple voltage
domains. If the application is divided into several tasks in which
only some of the peripherals are used, each task has its own
optimal supply voltage for lowest energy consumption. The
idea of Dynamic Energy Burst Scaling (DEBS) is to supply
each task with its optimal supply voltage, or in other words to
track the load’s optimal power point in order to minimize its
energy consumption [8].

The advantage of DEBS is that the power point of the load
and the source are completely decoupled. This allows harvesting
the maximal possible power from the energy harvesting source,
whereas each task is supplied with the lowest possible supply
voltage to minimize the energy consumption for each task.

B. Motion Estimation

Optical flow is a fundamental concept in visual perception
firstly described by Gibson in 1950 [7]. The optical flow
describes the apparent velocities of movements of brightness
patterns in the perceived image [10]. Those movements of
brightness patterns may be caused by relative motion between
the captured objects and the observer or by motion of single
objects within the scenery. Expressing the optical flow in an
image sequence in an appropriate mathematical way can be a
very useful tool for many applications like flow measurements
of fluids [2], motion segmentation [6] or video compression
[1]. In this work, the concept of optical flow is used to extract
information about the movement of the observer while capturing
a static scenery.

III. TRANSIENT VISION SENSOR

We propose a transiently powered vision sensor to be
attached to a user’s glasses to estimate and log the walking
speed of the person. Figure 1 shows the generic function of a
visual velocity estimation sensor node, which can be divided
into three parts: Image Acquisition, Processing and Storage.

1) Image Acquisition and Compensation: If the vision
sensor is attached to someone’s glasses, a camera needs to
face down onto the floor to capture the area in front of the
person. According to Constraint (1), it is not possible to acquire
a continuous sequence of images, since the system is not
continuously powered. But the smallest number of images for
being able to recover a displacement is two. This means that
at the very least, each burst needs to guarantee at least the
energy required to acquire and compensate two pictures in
sequence. Therefore, two images with a well-known, constant
time difference need to be acquired within the same burst to
meet the temporal condition formulated in Constraint (2).

2) Processing: Motion Estimation: Using the two acquired
image frames, a velocity estimation needs to be calculated.
This is done using a motion estimation algorithm which will be
discussed below. The result of the motion estimation algorithm
is a so-called optical flow field, a vector field in which every
vector indicates the displacement of the corresponding part of
the image between the two frames. This optical flow field is
then reduced to one single displacement vector indicating the



Fig. 1: Overview of the proposed energy-opportunistic walking speed estimation sensor.

displacement between the two frames. Together with the user’s
height, camera view angle and image acquistion times, this
displacement can be scaled to a final velocity estimation.

In this work, we implement a block-based algorithm.
This heuristic estimates the motion between two images by
comparing them for all possible displacements and determining
where the images "fit best". Such a method only works, if
there is a pure translation and only a negligibly small rotation
between the images. To relax this condition, one could think
of dividing the image into blocks and then search for each
block the position in the next image where the block "fits
best". The smaller the block size, the more robust the method
is to rotations. The result of the algorithm is an independent
translation vector for each block, which represents an estimate
for the optical flow of the pixels within the considered block.
Block-based methods are not restricted to small displacements
like the differential methods and are therefore able to recognize
displacements of many pixels.

3) Storage: The final velocity estimation will be im-
mediately saved to the external FRAM memory, following
Constraint (3). Though rich data sensors produce large volumes
of data, due to the limited power budget and available FRAM,
we will only save the processing results. This reduces the
storage requirements from 200 Kbits for two image acquisitions
to only 2 Bytes to hold the displacement vector. This means
that a 4 Mbit FRAM memory, which at the time of writing is
the largest commercially available, would last 30 days when
performing one velocity estimation every 10 seconds.

IV. SYSTEM ARCHITECTURE

Figure 2 shows an overview of the hardware implementation
of the wearable vision sensor. The hardware can be divided into
two parts according to their functionalities. First, an Energy
Management Unit (EMU) is responsible for energy harvesting
and power management. The EMU accumulates the harvested
energy from a solar panel in an energy buffer and controls
the energy burst generation for the transiently powered vision
sensor. The second part is an Image Processing Unit (IPU),
which can acquire images, process the captured images and
store data in Non-Volatile Memory.

A. Image Processing Unit (IPU)

Microcontroller: Due to the computationally intensive
nature of the velocity estimation and low power requirements,
the Cortex M4F family of processors was selected. In this work,
we use the MSP432P401R (MSP432) [11]. The MSP432 can
be clocked up to 48 MHz and is currently the lowest powered
MCU featuring the ARM Cortex-M4F architecture [12].

Centeye Stonyman Vision Chip: The Stonyman vision chip
from Centeye [4] was chosen as the image sensor. Its ultra-low
power consumption (around 2mW at 3V supply voltage [18])
makes it unique amongst comparable commercially available
image sensors and makes it a popular choice for ultra-low-
power vision sensing projects. Examples using the Stonyman
vision chip are iShadow (a wearable, real-time mobile gaze
tracker [14]), KinetiSee (a wearable camera acquisition system
with a kinetic harvester [18]) or a vision-based space landing
control for a miniature tailed robot [19].

FRAM Chip: FRAM chips are ideal for non-volatile
memory applications that require frequent and fast read/write
operations of small amounts of data. The FRAM chip FM25V10
with 1 MBits storage capacity is used in this project [5]. The
memory chip can be accessed over SPI with clock frequencies
of up to 40 MHz.

B. Energy Management Unit (EMU)

The Energy Management Unit (EMU), first proposed in
[8], harvests energy from a source (e.g. a solar panel), stores
it in an energy buffer and controls the energy burst generation
for the vision sensor. The heart of the EMU is a BQ25505
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Fig. 2: Architecture of the wearable vision sensor.



energy harvesting chip, which features a built-in boost converter
that can accumulate the harvested energy in a capacitor
independently from the source’s voltage. The input impedance
of the chip is continuously adjusted to track the source’s optimal
power point. The load is supplied with the desired voltage by
a buck converter (TPS62740) with digitally adjustable output
voltage. Hence, the power points of the source and the load
are completely decoupled.

The EMU is designed for use in transiently powered systems.
The energy burst generation is implemented as follows. The
load (in this case the IPU) needs to configure the size of the
next energy burst, as well as the current optimal output voltage
level. The output voltage level can directly be adjusted digitally
by the load using the interface at the buck converter. Between
two energy bursts, the output voltage is kept at the minimal
operating voltage of the load MCU in deep sleep. If the MCU
is woken up to execute the next task, the minimal voltage level
for the current task is set by the MCU. The EMU needs to know
the size of the next energy burst for triggering the wake-up of
the load MCU and therefore the execution of the next task. For
that, the EMU uses a power_OK signal to trigger the load. It
changes to high as soon as a configurable voltage threshold at
the energy buffer is reached. The load MCU can configure this
voltage threshold according to the requested size of the next
energy burst. The power_OK signal of the energy harvesting
chip is then used to wake up the load MCU by a GPIO interrupt.
To power our vision node, the capacitor’s voltage level Vcap
must stay within Vmin = 3.0V and Vmax = 5.1V, which are
the limits imposed by the harvesting chip and the buck converter.
The amount of energy stored between Vmin and Vmax, which
guarantees a burst’s energy, depends on the capacitance as
follows:

Eburst =
1

2
C(Vmax − Vmin)

2 (1)

Using this formula, the size of the energy buffer capacitor was
determined to be 150 µF such that it can guarantee an energy
burst of 1.3 mJ. This total energy corresponds to one complete
velocity estimation, including all of the tasks characterized in
Sec. V-A.

C. Firmware

1) Image Acquisition: The MSP432 uses PWM timers to
generate specific control signals optimized for ultra-low-power
acquisition. The ADC runs in parallel and continuously samples
and digitizes the analog output signal for each pixel. The CPU
is used to copy the digitized pixel values from the ADC memory
to SRAM, using an interrupt that is triggered every time an
ADC cycle is completed. An ADC clock frequency of 8 MHz
and a CPU frequency of 24 MHz are needed to achieve a frame
rate of 37.5 fps. The internal reference voltage Vref is set to
the lowest possible value of 1.2V and an ADC resolution of
10 bits is used. Because the voltage level of the analog output
signal is between 0V and 0.3V for indoor light conditions, the
two most significant bits of the sampled pixel values can be
truncated. This leads to a 8-bit resolution of the pixel values
between 0V and 0.3V and has the advantage that every pixel
value can be stored in an unsigned integer variable with a
length of 8 bits.

Fig. 3: Image of the wearable, batteryless vision sensor
prototype with a flexible solar panel mounted on conventional
glasses.

FPN Compensation on the MSP432: Illuminating the whole
vision chip with an uniform intensity should theoretically
produce the same analog output voltage for all pixels. Due to
process variations, each pixel exhibits an individual, constant
offset in the output voltage, also called Fixed Pattern Noise
(FPN) [4]. In our particular case, the FPN is constant, which
means a mask Imask needs to be characterized only once and
can then be stored for future use. The FPN can be removed
from a raw image Iraw after the acquisition, by subtracting
Iraw from the mask Imask. While this could possibly be done
during acquisition, it will be shown empirically in Sec. V-A
that doing so will consume more energy than when doing it
sequentially.

2) Power Management: The vision sensor shall be powered
transiently, driven by energy bursts from the EMU. Between two
bursts, all peripherals must be shut down and the microcontroller
must go into the deepest sleep mode to minimize the losses
between energy bursts. The Stonyman vision chip supports a
software shut-down and can be connected directly to the supply
voltage. The FRAM chip is connected to the supply voltage
via a load switch (TPS22960) controlled by GPIO pins of the
MSP432. This allows the MCU to activate the memory only
when needed.

The MSP432 is optimized for low-power applications and
features various low-power modes (LPMs) [12]. In the deepest
low-power mode (LPM4.5), all peripherals including the CPU
and the SRAM bank are disabled. During deep sleep, the GPIOs
can be configured to lock their previously configured state
which will be kept as long as there is power. This important
feature guarantees a consistent interface between EMU and
IPU also during deep sleep and further allows waking up the
IPU by toggling a appropriately configured GPIO pin besides
the usual the reset pin. The current consumption in LPM4.5 is
only 25 nA [11]. Therefore, this LPM is ideal for the use in a
transiently powered system. Because also the volatile internal
SRAM banks are disabled in LPM4.5, the system state has to
be restored after wakeup. In our implementation, the system
state is stored in the FRAM chip. The state basically consists of
a simple finite state machine to keep track of the next available
FRAM memory location.

In order to wake up the MSP432 from LPM4.5, the EMU
toggles a power_OK signal, causing a GPIO interrupt on the
MCU. Four digital lines are used for configuring the buck
converter in the EMU. Voltages from 1.8 V to 3.3 V in steps



of 100 mV can be requested. Two additional digital lines are
used to configure the next burst size. The EMU uses this
information for setting the energy threshold for sending the
power_OK signal. All these six digital lines are driven by GPIO
pins of the MSP432.

V. EXPERIMENTAL EVALUATION

In this section, we will present the experimental evaluation
of our batteryless, wearable vision sensor prototype. The
evaluation is organized as follows: first, the energy consumption
and the execution time of all tasks are characterized. Those
measurements are used to optimize the tasks for lowest energy
consumption and for configuring the Energy Management Unit.
The energy proportionality and efficiency is tested under low
power harvesting scenarios. Next, the accuracy of the block-
based motion estimation algorithm is also evaluated. Finally,
the velocity estimation sensor is tested in a real-world scenario.

A. Task Characterization

Image Acquistion: The image acquisition task acquires two
images in a sequence and compensates for the fixed pattern
noise (FPN). For minimizing the computational effort of the
motion estimation algorithm, the time difference between the
two acquired images should be minimal. Therefore, the vision
sensor’s maximal frame rate of 37.5 frames per second was
chosen for this application. To achieve this frame rate, the CPU
frequency has to be at least 24 MHz. Using a CPU frequency
of 48 MHz even allows to compensate for the FPN on-line
during acquisition, while still achieving the same frame rate.
The time and energy characterization can be see in Table I.
The evaluation reveals that configuration with the lower CPU
frequency is beneficial in a transiently powered system, since
the overall energy consumption is 42% lower.

TABLE I: Energy consumption and execution time of the image
acquisition task with compensation.

FPN compensation CPU Freq. Executions Etask,avg ttask,avg

on-line 48 MHz 1152 930 µJ 53 ms
sequential 24 MHz 1829 537 µJ 61 ms

Image Processing: The processing task estimates the
displacement between the two previously captured images by
applying the block-matching algorithm to get an optical flow
field, which is then further processed to estimate the final
displacement value. For the task characterization, the block
size of the block-matching algorithm is set to 48px and the
search area to ±3 and ±8 in x- and y-direction respectively.
The power supply voltage should be chosen as low as possible,
which is 2.2 V in this case, since this is the minimal supply
voltage for the MSP432 when using high clock frequencies. The
only remaining variable parameter for the processing task is thus
the CPU frequency. Table II compares the energy consumption
and the execution time of the processing task for different
CPU frequencies. As expected, higher CPU frequencies lead to
shorter execution times. However, shorter execution times do
not necessarily result in lower energy consumption, because
the MSP432 MCU consumes much more power for higher
clock frequencies [11]. As the results in Table II show, the
energy consumption of the processing task is lowest at a CPU
frequency of 24 MHz.

TABLE II: Energy consumption, execution time and power
consumption of the processing task.

CPU Freq. Executions Etask (mean) ttask (mean) Ptask (mean)
48 MHz 1079 757 µJ 56 ms 13.5 mW
24 MHz 1254 635 µJ 110 ms 5.8 mW
12 MHz 770 1371 µJ 388 ms 3.5 mW

Storage Task: For the storage task, the energy consumption
of saving the motion estimation results to FRAM. Since the
output of the motion estimation is only 2 B per iteration, this
means that it takes 16µs and 96 nJ to save one result.

B. Energy Efficiency and Proportionality

In order to evaluate the vision sensor’s energy efficiency and
proportionality, it is operated as a transiently powered system,
using the Energy Management Unit (EMU) and the Image
Processing Unit (IPU). The EMU harvests energy from a solar
panel (flexible MP3-37 solar panel from PowerFilm with an area
of 42 cm2) that is exposed to constant illumination by a lamp.
The experiment runs several times for different illumination
levels. Each experiment lasts between 300 s (for high input
powers) and 900 s (for low input powers) to ensure capturing a
representative number of burst executions. The energy efficiency,
calculated by measuring the energy harvested by the EMU and
consumed by the vision sensor, can bee seen in Fig. 4. The
same plot also shows the average number of estimations per
minute which were recored during each experiment.
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Fig. 4: Measured energy efficiency and execution rate as a
function of the input power.

As expected, both velocity estimations per minute and the
system’s energy efficiency increase for higher input power
levels. The number of velocity estimations is proportional to
the input power, and the slope is determined by the average
energy needed for one velocity estimation. The product of
the efficiencies of the boost and the buck converters on the
EMU limits the maximally achievable efficiency, measured to
reach up to 78.7%. For input power levels above 600 µW, the
efficiency is higher than 70%. The lowest input power level
in the experiment is 198 µW and achieves an efficiency of
43% when suppling the vision sensor with an average power
consumption of 6.85 mW.



C. Motion Estimation Accuracy

To find an optimal value for the block size, a sample image
data set was first acquired from a development prototype with
an SD card to continuously record images of a controlled
displacement. These images were then post-processed to
compare the estimated and the measured displacements. A
Matlab model of the block-matching algorithm tested different
block sizes between 96 pixels (using the whole image as one
single block) and 16 pixels (dividing the whole image into 36
blocks). The size of the search area was set to ±8px in x- and
y-direction. A block size of 48px showed the best combination
of sensitivity against rotations and high x-direction accuracy.
After a traveled distance of 42 m, its estimated position deviates
only 57 cm from the reference value, which corresponds to only
1.4% of the traveled distance. Though this accuracy does depend
on the type of floor surface, we assume it also holds for our
real-world experiment, which has an equivalent experimental
set-up.
D. Real-World Velocity Estimation

In order to demonstrate the velocity estimation in a typical
wearable scenario, the wearable vision sensor prototype was
attached to the glasses (see Fig. 3), such that the Stonyman
vision chip faces downwards and captures the floor in front of
the person. For this experiment, the user tested a stand-walk
pattern for a few seconds each and with different walking
speeds. The prototype was continuously powered to acquire as
much data as possible.

The vision sensor executes a loop of acquiring two images,
estimating the displacement between two images and writing
the images and the results onto the NVM. Because changing
the clock frequencies during runtime causes some overheads
and for optimizing the application for speed, a CPU frequency
of 48 MHz is used for the whole application. The search area
of the block-matching algorithm is configured to ±3 pixels in
x-direction and ±8 pixels in y-direction. The block size of the
block-matching algorithm is set to 48px, which was found to
be optimal according to the pre-characterization.

Fig. 5: Velocity of the walking person estimated by the vision
sensor prototype (blue crosses) and post-processed in Matlab
using a low-pass filter (red line).

Fig. 5 presents the walking speed estimations depicted
as blue crosses, as well as the low-pass filtered data using
a moving-average FIR filter in Matlab (solid line). The
different phases of the experiment can clearly be recognized.
Furthermore, the velocity estimation sensor is able to distinguish
between different walking speeds.

VI. CONCLUSIONS

In this work, we have proposed a wearable prototype of
a visual velocity estimation sensor that is able to operate
without any battery. The vision sensor can be attached to
someone’s glasses to estimate the walking speed. It harvests
energy from a solar panel to produce opportunistic velocity
estimations, making the sensor reading rate a function of the
input power. The hardware and firmware of the vision sensor
has been highly optimized for ultra-low power consumption,
high performance and satisfies the constraints of transiently
powered systems. Different motion estimation algorithms were
investigated for calculating a velocity estimation using visual
information. Experimental evaluations show that the final vision
sensor prototype can produce reliable velocity estimations in
an energy-proportional manner. The concept of transiently
powered systems is thus a promising approach for designing
purely harvesting-based devices with significant form factor
and cost restrictions. With the vision sensing prototype we have
demonstrated that even computationally expensive applications
can be efficiently and reliably executed in this context.
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