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While energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long
term, efficient manner, it has generally required large energy storage devices to mitigate the effects of the
source’s variability. The emerging class of transiently powered systems embrace this variability by perform-
ing computation in proportion to the energy harvested, thereby minimizing the obtrusive and expensive
storage element. By using an efficient Energy Management Unit (EMU), small bursts of energy can be
buffered in an optimally-sized capacitor and used to supply generic loads, even when the average harvested
power is only a fraction of that required for sustained system operation. Dynamic Energy Burst Scaling
(DEBS) can be used by the load to dynamically configure the EMU to supply small bursts of energy at its
optimal power point, independent from the harvester’s operating point. Parameters like the maximum burst
size, the solar panel’s area as well as the use of energy-efficient Non-Volatile Memory Hierarchy (NVMH)
can have a significant impact on the transient system’s characteristics such as the wake-up time and the
amount of work that can be done per unit of energy. Experimental data from a solar-powered, long-term
autonomous image acquisition application show that, regardless of its configuration, the EMU can supply
energy bursts to a 43.4 mW load with efficiencies of up to 79.7% and can work with input power levels as
low as 140µW. When the EMU is configured to use DEBS and NVMH, the total energy cost of acquiring,
processing and storing an image can be reduced by 77.8%, at the price of increasing the energy buffer size
by 65%.
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1. INTRODUCTION
Over the past decade, there has been a considerable research effort to reduce the en-
ergy consumption of electronic devices. While there has been considerable progress, the
lifetime of battery-based devices remains the bottleneck in their development. Broadly
speaking, the problem of how to supply low power embedded systems with the energy
they require in an efficient, low-cost, long-term, scalable, and self-sustainable manner
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has not yet been adequately solved. Over-provisioning with large energy harvesting
and storage elements is either infeasible or unnecessary in many application scenar-
ios such as wearable, autonomous, miniaturized or ”smart dust” systems. Fortunately,
a purely harvesting driven system can still meet application requirements in many of
these scenarios.

Transiently powered systems are supplied by volatile energy sources which can, at
most, directly power the system for only a limited amount of time. During this time,
the energy harvesting rate can be highly variable but not necessarily high enough
to complete even one atomic task execution, such as performing a sensor reading or
transmitting a radio packet. Consequently, such systems need to be able to buffer at
least the amount of energy needed to bridge this power deficit and thereby to guarantee
the completion of any single task to be executed.

1.1. Transient System Challenges
The design and optimization of transient systems must take into account some general
properties to be able to execute applications in an efficient and reliable manner. The
main properties we have identified are the following:

(1) Energy sources are variable and environmental conditions unknown
Micro-level energy harvesting, which is capable of powering low power Wireless
Sensor Network (WSN) nodes, has received considerable attention in recent
years. Interested readers can read [Bhatti et al. 2016] for a detailed survey on
existing energy harvesting and wireless energy transfer solutions. One important
characteristic to all of them, is the intermittent availability of harvested energy. In
many cases, harvesting the maximum power from a particular source (e.g. solar,
thermal, etc) requires an impedance matching circuit which dynamically adjusts
to changing environmental conditions. Since the system designer has no control
over the environmental conditions, no assumptions can be made about the evolu-
tion of source’s maximum power point. Unless the complete sensor node and its
peripherals are fully scalable in terms of voltage and current, a system which maxi-
mizes the input energy must decouple the source’s power point from that of the load.

(2) Loads have highly variable I/V characteristics and energy requirements
Typical low-power cyber-physical systems have components such as microcon-
trollers, memories and peripherals (e.g. sensors and wireless transceivers).
Microcontrollers usually have a wide operating voltage range, but on-chip convert-
ers operate most efficiently at lower supply voltages [Gomez et al. 2015]. External
peripherals such as sensors and radios can have substantially different voltage
requirements, but to minimize cost system designers avoid having multiple voltage
domains and simply choose the highest minimum voltage required to supply the
entire system. Different tasks, however, can have highly varying energy/voltage
requirements and current consumption since these are highly dependent on the
application, peripherals used, etc. In many cases, like ultra low power RFID-scale
devices or wearable TEG harvesters, the operating voltage is so low that high
voltage peripherals cannot be used [Salajegheh et al. 2013; Thielen et al. 2017]. In
order to design a flexible platform that is able to efficiently harvest energy from
different sources, it is necessary to decouple the source and load voltages, allowing
each to operate at their respective optimal power point.

(3) Storage element must be minimized
In many application domains, such as wearable systems, there are stringent form
factor restrictions, making storage devices such as batteries and supercapacitors
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particularly unsuited for long-term use. They are also expensive in terms of cost
and area, can have limited charge cycles and high self-discharge rates, impose cur-
rent peak limits and might not be easily integrated on board [Zhang et al. 2013].
Consequently, designing a system with an over-dimensioned buffer, if at all possible,
invariably leads to higher losses due to power harvesting costs, additional leakage
current, and converter inefficiencies [Hester et al. 2015]. It is thus indispensable
to optimize the energy buffer’s size according to application-specific parameters, in
order to limit these negative effects.

The aforementioned properties, when combined, form a veritable challenge from
the system design perspective. Conventional low power design dictates that any
harvesting-based system should, at all times, maximize the energy input and mini-
mize the energy output. To maximize the harvested energy in dynamic scenarios, the
sources’ maximum power point needs to be tracked. To minimize the load’s energy, its
power needs to be minimized by dynamically adjusting its operating voltage. These
two criteria can differ significantly, especially given the fact that environmental con-
ditions can exhibit great variability. This variability in turn demands that the design
use energy storage to provide some minimal energy guarantees, otherwise no program
progress can guaranteed. Designing an architecture that addresses these issues re-
quires innovative methods that combine both hardware and software aspects. In par-
ticular, the main challenge is to design a system that can still operate efficiently, have
minimized storage and wake-up times given these conditions.

1.2. Transient System Configurations
As has been previously discussed, the different properties of transiently powered sys-
tems require novel approaches to operate efficiently in such disadvantageous scenar-
ios. In this work, we argue that an additional Energy Management Unit (EMU), shown
in Fig. 1, is needed to maximize the harvested energy, minimize the load’s power, and
provide the load with the energy guarantees necessary for program progress. Due to
the limited energy intake in transiently powered systems, the unit should self-start
requiring as little time and energy as possible. During those periods of limited energy
intake, it maximizes the energy build-up by harvesting at the source’s optimal power
point. When powering the load with short energy bursts, it should provide a control
interface to the load such that the application circuit’s optimal power point can be
tracked.

Energy
Management Unit Load

Source
(Transducer)

harvests

@ MPP

provides

Eburst @ Vload

configures Eburst and Vload

control interface

Application Circuit

Non-Volatile Memory

Transient Node

FRAM Flash

Fig. 1: Superset of transient node configurations. Dashed lines indicate the components
or connections proposed in this work.

While existing works [Magno et al. 2012; Yakovlev 2011; Ahmed and Mukhopadhyay
2015; Lu et al. 2010] have looked at low power systems with energy harvesting and
storage capabilities, these are expensive in terms of harvesting and storage require-
ments for long-term, efficient functionality under transient power conditions. State of
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the art transient system design [Balsamo et al. 2015; Jayakumar et al. 2014], connects
the energy source directly to the load, without any other intermediaries. However,
these works only focus on non-atomic execution of processing tasks, and only work
when specific harvesting conditions generate a safe operating voltage on the solar
panel. In our previous work [Gomez et al. 2016], an Energy Management Unit (EMU)
was first proposed to decouple the operating point of the source from the load. Addi-
tionally, the EMU can apply Dynamic Energy Burst Scaling (DEBS) to track the load’s
optimal power point. The EMU allows a system to operate predictably and efficiently
with limited energy buffering, even under very low power harvesting conditions where
the harvested power is much lower than the load’s minimum power requirement. In
this work, we focus on specific design aspects of transient nodes which do long term
logging of rich data sensors. In particular, we consider the example of a solar-powered
vision sensors targeting life-logging applications. These transient sensor nodes have
the property of guaranteed information and energy availability, since darkness does
not provide neither energy nor information and light provides both.

1.3. Our Contributions
Rich data sensors such as cameras bring their own challenges to transient system de-
sign. Logging applications are particularly costly, due to the large volume of data that
rich data sensors produce. We thus propose a novel Non-Volatile Memory Hierarchy
(NVMH), which increases the energy efficiency of rich data sensor logging applications.
We will show how the addition of the NVMH introduces a trade-off between the energy
cost per stored byte and the minimum energy buffer size. Our proposed EMU-based
design uses an optimally sized capacitor which minimizes the required start-up time
and energy from zero, while maintaining a low cost, small form factor, high efficiency
and virtually unlimited charge cycles.

The main contributions of this work are summarized as follows:

— Energy Management Unit (EMU) that efficiently converts variable low power levels
to short, high power energy bursts.

— Feedback-based Dynamic Energy Burst Scaling (DEBS) technique to track the
load’s optimal power point.

— Non-Volatile Memory Hierarchy (NVMH) that reduces the energy cost of long-term
data logging.

— Accurate model to optimize system’s application-specific parameters for low input
power scenarios, including energy and data buffer sizes as well as harvester’s di-
mension.

— Experimental validation of the high energy efficiency and proportionality of the
proposed transfer scheme in long-term image acquisition application, as well as the
trade-off between energy cost per image stored and minimum buffer size.

The remainder of this work is organized as follows. In Sec. 2, we will give a detailed
overview of the state of the art in transient system design and commercially avail-
able non-volatile memory technologies. The model and architecture of the EMU are
presented and discussed in detail in Sec. 3. The main application scenario, long-term
logging of a rich data sensor, as well as the architecture of our baseline application
circuit is explained in Sec. 4. Our novel energy-efficient Non-Volatile Memory Hierar-
chy (NVMH), composed of both Flash and FRAM memories is presented in Sec. 5. The
optimized system design, which includes the NVMH for long-term logging, is described
in detail, along with its design trade-offs, in Sec. 6. The experimental evaluation of our
different load configurations and analysis of the energy efficiency and proportionality
are shown in Sec. 7. Lastly, we conclude our work in Sec. 8.
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2. RELATED WORK
Cyber-physical systems have traditionally been used in conjunction with energy har-
vesting and energy storing. When coupled with aggressive duty-cycling techniques,
they are able to significantly reduce their average power consumption, possibly to the
point of self-sustainability. Due to the prohibitive costs of storing energy, there is a new
trend to design systems with minimized storage capacity. As a consequence of this lim-
ited capacity and the variability of energy harvesting, Non-Volatile Memory (NVM)
is required to ensure data consistency. For long-term logging applications, this poses
a challenge to store large amounts of data. While there are many different memory
technologies, each has its own characteristics in terms of storage density, read/write
cycles, and power consumption. In this section, we will summarize the state of the art
of transient systems and non-volatile memory technologies.

2.1. Transient System Architectures
Broadly speaking, we can identify three types of architectures for transient systems:

Directly-Coupled. When the energy source has an I-V curve compatible with the load,
they can be directly connected. The authors of [Balsamo et al. 2015; Jayakumar et al.
2014] have proposed a combined HW/SW approach to perform computation when the
source can directly sustain the load during short periods of time. These works use
volatile logic that requires state-retention mechanisms. An approach to federating en-
ergy proposed in [Hester et al. 2015] increases the computational ability by using mul-
tiple independent capacitors, each dedicated to a specific peripheral. In [Lee and Chang
2015; Wang et al. 2015; Wang et al. 2014; Kim et al. 2010], the authors present storage-
less and converter-less harvesting systems in which the load uses frequency scaling to
track the maximum power point of the source.While frequency scaling can maximize
the energy input in CPU bounded applications, it does not minimize the load’s energy
consumption and is limited to a narrow active power range. Even though directly-
coupled systems avoid converter losses, if the power input is below this narrow active
range, the load cannot be powered and the system’s efficiency immediately drops to
0%. Unfortunately, this is often the case in typical transiently powered systems. When
the energy source and load have incompatible operating points, decoupling them with
converters becomes a necessity. In contrast to traditional battery-based systems, these
decoupled transient systems have a limited energy buffer between the source and load.

Boost-Only. In [Dallago et al. 2015a; Dallago et al. 2015b], the authors propose a low-
power management system that requires very low input voltage and current. Using a
large buffer capacitor at the converter input, they are able to start the energy conver-
sion at very low input power level. However, both approaches suffer from excessively
long cold-start times due to charging a large input capacitance, 140 mF, at a constant
low input power of 2.5µW. As will be explained in Sec. 3.2, our capacitance is chosen
to minimize the cold-start energy and time.

Boost-Buck. The authors of [Naderiparizi et al. 2015] also use a boost converter for
optimal power point tracking. However, their proposed system utilizes RF harvesting
to accumulate charge in a supercapacitor and then power a camera application with
a buck converter. The boost/buck converter topology with an energy buffer also serves
as basis for the approach presented in this work. While a charge-state model is used
to characterize the capacitor’s self-discharge rate, energy losses such as impedance
matching and converter inefficiencies are neglected. More importantly, the system has
a large startup cost and can only supply the load with bursts of a constant size and
voltage. In Sec. 7, it will be shown that this approach can lead to a substantially higher
energy consumption, larger storage elements and longer start-up times.
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2.2. Non-Volatile Memory Technologies
In the design of transient sensor nodes, one of the key considerations is the choice of
Non-Volatile Memory (NVM). Due to the inherent power cycling of transient nodes,
any data saved in volatile memory will be lost. Consequently, the choice of NVM tech-
nology is closely related to the application’s power envelope, reliability and storage
requirements.

One of the most mature non-volatile technologies used in cyber-physical systems
today is Flash Memory. While it offers one of the highest storage densities available, it
suffers from two main drawbacks: power consumption and reliability. SD Cards alone,
for example, can have a capacity in the order of 100’s of GB and a power consumption
in the range of 50-100 mW. Each memory block also has a restrictive read/write cycle
limit of 104 - 105 [Torres et al. 2013].

For many years, researchers have been actively searching for new NVM technologies
that can (ideally) offer ultra-low power consumption, unlimited read/write cycles, ultra
high densities, and compatibility to standard fabrication processes. Unfortunately, no
silver bullet has been found yet, and commercially available technologies offer different
trade-offs between these important parameters. We will not provide a summary of
recent advances in NVM technologies, though readers can find surveys in [Mittal and
Vetter 2016; Moreau 2013]. Instead, we will focus on one specific technology, Ferro-
electric Random Access Memory (FRAM), which is a promising candidate for unified
(instruction and data) memory due to its high endurance (1015 read/write cycles), and
its low power consumption [Texas Instruments 2015]. The main limitation of FRAM
for long-term logging of rich data sensors is its capacity, since the largest commercially
available capacity is in the order of 100’s of KB.

3. ENERGY MANAGEMENT UNIT (EMU)
In this section, we describe the model and architecture of the Energy Management
Unit (EMU), shown in Fig. 3. One of the main goals is to derive an analytical model
which can be applied to a wide variety of energy sources and loads. The model will
then be used to optimize important system parameters, namely the EMU’s start-up
costs and the load’s energy. The accuracy of the model will be experimentally validated
in Sec. 7.

3.1. Modeling Energy Buffering and Losses
The amount of energy buffered in the EMU depends on several parameters includ-
ing the input power and load powers, and the system’s non-idealities. The equation
governing the time-dependent energy level in a capacitor is as follows:

E′
cap(t) =

d

dt
Ecap(t) = ηboost (Vin(t), Iin(t))× Pin(t)

− Pload(Sj)/ηbuck(Vload(t), Iload(t))− Pleak(t)
(1)

In this equation, the positive term represents the energy intake, while the negative
ones represent the energy consumption.

Input Power. The system has only one power input, Pin(t), supplied by the harvester’s
transducer. This work focuses on the scenario where Pin < Pload. In order to maximize
the transducer’s efficiency, the maximum power point must be tracked to account for
variable harvesting conditions.

Load Power. In our model, the load can have two states (Sj): active or inactive.
When active, the load is characterized by three quantities: Eburst,i, Vload,i, Pload,i; where
Eburst,i defines the energy burst size required for one execution of task i, Vload,i its sup-
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Fig. 2: Start-up time and cold-start energy overhead.

ply voltage and Pload,i the power consumption during the execution of task i. These
parameters will be characterized experimentally. In the inactive state, the load is in
deep sleep, consumes very little power, and awaits the trigger from the energy man-
agement unit.

Converter Efficiencies. Since decoupled systems have the source and load operating at
different power points, voltage converters are used. This step, while necessary, intro-
duces non-negligible losses, which are represented by boost and buck converter effi-
ciencies ηboost(V, I) and ηbuck(V, I). The boost converter’s efficiency is particularly sen-
sitive to the operating voltage and current, meaning it must be parameterized. For
these efficiencies a look-up table is used for simulations. The overall system efficiency
of the EMU will be bounded by the product of the boost and buck converter efficiencies.
While this depends on both the input and output voltage/current, broadly speaking for
our application domain, it goes up to ∼75%, see our experimental results in Sec. 7.

Other Energy Losses. Unfortunately, converter inefficiencies are not the only sources
of energy losses. The maximum power point tracking unit and the control circuit also
consume energy. The consumption of the control circuit Ictrl and buck converter Ibuck
consists of a constant current and a resistive component and hence depends on Vcap.
For the energy buffer, a capacitor of size Ccap, a resistive leakage Rcap in parallel is
assumed. Considering these components, the system leakage is summarized as:

Pleak(t) = Vcap(t)× ( Ictrl (Vcap(t)) + Ibuck (Vcap(t)) ) + Vcap(t)2/Rcap. (2)

Equations (1) and (2) can accurately describe the time evolution of the system’s energy
levels, as will be shown in Sec. 7.4. They will be used in the remainder of this section
to estimate how different parameters impact the system’s losses, to then calculate the
optimal parameters that minimize these losses.

3.2. Optimizing Cold-Start Energy and Start-up Time
Given the system model presented above, we can start optimizing the cold-start energy
and start-up time. By definition this is the fixed start-up cost to turn a transient system
on. Fig. 2 shows that after a period of energy unavailability, the capacitance first needs
to be recharged to the level of Vload,min = mini{Vload,i}. In order to minimize these fixed
costs for a given input power, we need to minimize the start-up time defined as:

tstart-up =

t | Vcap(t) =

√
2
∫ t

0
E′

cap(τ) dτ

Ccap
= Vload,min

 (3)
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Fig. 3: Architecture of the Energy Management Unit (EMU).

However, the minimum capacitance is limited by the EMU’s maximum supported volt-
age swing, as shown in the following equation:

Cmin,i =
2Eload,i

ηbuck(V 2
max − V 2

load,i)
, (4)

where Eload,i and Vload,i are the energy and voltage required to execute task i, and
Vmax is the EMU’s maximum supported voltage. These values must be known at design
time, such that the optimal capacitor value can be selected as the highest Cmin,i among
all tasks i, i.e. Coptimal = maxi{Cmin,i}. For the implementation we selected the next
higher available capacitor size Cbuffer to guarantee task completion.

3.3. Minimizing Load Energy
To show the advantages of our EMU’s boost-buck architecture compared to the boost-
only architecture, let us consider the case of supplying a constant current load, con-
suming Iload. The harvesting power of a transiently powered system which is typically
much smaller than the load’s power consumption, therefore has a negligible impact
on the linear voltage decrease during the time in which the load is supplied with an
energy burst. Assuming the load has a maximum supply voltage tolerance from Vmax

down to Vmin, this results in the following power consumption: for the boost-only ar-
chitecture the average power of a task is PA = (Vmin + Vmax)/2× Iload, while the buck
converter provides a constant power of PB = (Vmin × Iload)/ηbuck to the load. By com-
paring these two power consumptions, it directly follows that a buck converter reduces
the load’s power consumption, if the following lower bound for its conversion efficiency
holds:

ηbuck >
2Vmin

Vmin + Vmax
(5)

To illustrate with a numerical example, suppose a load has a voltage tolerance of 3 to
5 V. This means that a system using a buck converter has a lower power consumption if
ηbuck > 75%. Furthermore, the use of a buck converter adds the possibility of tracking
the load’s optimal power point for all tasks by dynamically switching the voltage level.
When an application consists of multiple tasks with different voltage requirements,
we can use Dynamic Energy Burst Scaling (DEBS) to minimize the load’s energy.

3.4. EMU Architecture
The Energy Management Unit (EMU) controls the buildup of energy from the source,
and controls the energy transfer to the load, or application circuit. Its main components
can be seen in Fig. 3, which are discussed individually in the following subsections.
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Harvesting and Buffering. The harvesting part of the system is based on the commercial
bq25505 energy harvesting chip. This chip uses a boost converter to convert the input
voltage to a level that the energy can be stored in a storage device. Using its inte-
grated maximum power point tracking (MPPT), the boost converter adjusts the input
impedance such that the power source always operates at its optimal power point to
maximize the harvested energy. To provide the required output voltage to the load, the
TPS62740 buck converter is directly connected to the energy buffer.

The energy buffer between the input voltage boosting and output voltage regulation
guarantees complete separation of the harvesting and load supply unit and therefore
allows independent optimization of these parts. As was shown in Sec. 3.2, the storage
element minimization is application-specific. In this work, we will show that two dif-
ferent implementations of the same application can exhibit a trade-off between storage
size, and the amount of work completed with the same energy budget.

Control Circuit. The control circuit manages the burst size as well as the output volt-
age and oversees the energy accumulation in the buffer. For the first, the battery OK
signal of the bq25505 is used to trigger the activation of the load, once the capacitor
voltage reached a threshold level Vth. At this voltage the energy level is reached at
which enough energy has been accumulated to provide the requested energy burst to
the load. The variable burst size dependent threshold voltage Vth is configured using a
resistor network. This comparator threshold can be switched digitally from the control
circuit by selecting between different resistor networks. Beside very large resistor val-
ues, the bq25505 control circuit uses duty cycling to reduce the energy consumption of
the comparator and resistor network. The load supply voltage Vload can be controlled
directly using the TPS62740 buck converter’s digital input.

Requirements for EMU Operation. Thanks to its inherent decoupling of source and load
power points, the minimum requirements for EMU operation are conceptually inde-
pendent from the load and are only tied to the EMU’s circuit implementation. In our
case, the first requirement is a minimum input voltage of 330 mV, which is required to
turn on a diode in the BQ harvester. If this requirement is met, charge is transfered
from the solar panel to a small capacitance. After a certain voltage on this capacitance
is reached, the main boost converter is turned on. This transition requires a mini-
mum input current of ∼60µA. This means that so long as the input power is greater
than ∼20µW, the EMU is guaranteed to exit the cold-start phase and enter the energy
build-up phase. During this phase, the charge on the capacitor will increase as long as
Pin > Pleak,max, where

Pleak,max = {Pleak(t′) | Vcap(t′) = Vmax} . (6)

After some time, which depends on the input power, enough charge will be accumu-
lated in the capacitor to guarantee a task completion. This makes only the frequency
of task activations dependent on the harvesting conditions, but not the task itself.
Once triggered, the actual task execution is guaranteed regardless of the harvesting
conditions.

4. LONG-TERM LOGGING OF RICH DATA SENSORS
Up to now, we have discussed how energy can be efficiently buffered, even in low power
harvesting scenarios. How this energy is consumed, however, is a function of the load
itself. To highlight the flexibility and efficiency of our approach, we will focus on nodes
which do long-term logging of rich data sensors. More specifically, we focus on tran-
siently powered vision sensors, which acquire and store images in Non-Volatile Mem-
ory (NVM).
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Fig. 4: Transient Camera Architecture for Long-Term Logging.

4.1. Transient Node Architecture
The architecture of our proposed system can be seen in Fig. 4. The transiently powered
vision sensor is composed of an MSP430FR5969 microcontroller and a Centeye Stony-
man image sensor, both of which feature low power consumption and ultra-low power
deep sleep modes. The IO state lock mechanism and the microcontroller’s non-volatile
features are important to keep the interface state of the energy manager during deep
sleep and maintain the task configuration across periods of energy unavailability. In
order to store long-term data, external memories with high capacities are needed. One
of the most commonly used technologies for this purpose is an SD Card, which is based
on Flash. As will be highlighted in Sec. 5, SD Cards generally suffer from very high
power and energy consumption but offer the highest densities.

4.2. Energy Burst Configuration
In order to configure the EMU for correct operation, it is important to characterize the
application’s voltage and energy needs. For our rich data sensor logger, the baseline
application consists of three tasks: 1) image acquisition to read the sensor, 2) basic
image processing, and 3) image storage to copy data from volatile to non-volatile mem-
ory. Table I shows the energy burst configuration (Vload, Eburst) for each task. As was
previously mentioned in Sec. 3.2, the EMU’s capacitor has to be dimensioned accord-
ing to the largest task: transferring an image to the SD Card. The energy cost for this
transfer has two components, a constant initialization cost and a transfer cost which
depends on the amount of data transfered. For the baseline application using DEBS,
which acquires, processes and transfers a single image, the costliest task is the image
transfer which requires 11.67 mJ. The minimum available capacitance that can store
this energy between 5.1 V and 2.7 V is 1 470µF. If DEBS is not used then all tasks
would need to execute in a single burst at constant voltage, requiring a minimum ca-
pacitance of 2 200µF.

Table I: Baseline voltage requirements and energy costs for individual task execution.

Task Voltage (Vload) Energy (Eburst)
Acquire One Image 3.0 V 156µJ
Process One Image 2.0 V 527µJ

SD Card Initialization 2.7 V 10 536µJ
SD Card Data Transfer (per Image) 2.7 V 1 137 µJ
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Fig. 5: Load’s software execution flow.

4.3. Software Execution Flow
The execution flow of the load’s software is shown in Fig. 5. When the system exits
cold-start after a long period of energy unavailability, known as a Power-On-Reset
(POR), the microcontroller performs some basic initialization and immediately enters
deep sleep. With a measured power consumption of < 600 nW, it minimizes losses dur-
ing the buildup of energy for the next burst. When the next burst is generated, the
EMU triggers a control signal to wakeup the load. The system then reads the next
task configuration and starts its execution after initializing the peripherals needed for
that task. At the end of the task, the configuration is updated and the next required
burst is configured. Afterwards, the load enters deep sleep again and waits for the next
energy burst to build up. For all of our evaluated applications, all of the tasks will be
repeatedly executed in a static schedule. For example, the baseline application will
repeatedly execute the following tasks: 1) acquire one image, 2) process one image, 3)
store one image on the SD Card.

4.4. Feedback Control for Dynamic Energy Burst Scaling (DEBS)
As was discussed in Sec. 3.3, there are many application scenarios where the load has
a varying optimal power point. This occurs when tasks use peripherals with substan-
tially different voltage requirements. For this scenario, the EMU provides a control
interface to dynamically adjust the burst size and voltage. Our DEBS technique is
based on a feedback loop (Fig. 1) that allows the load to configure the EMU to sup-
ply the energy burst at the optimal operating point. This configuration takes so little
instructions that it is negligible with respect to simple tasks. Following our baseline
image acquisition example, when using DEBS the EMU generates three bursts, one
for each task. During the first burst, 156µJ at 3 V were requested. Once enough charge
has been built up, the EMU’s control circuit configures the buck converter’s digital in-
put to set the output to 3 V and triggers the load to acquire the image. Afterwards, the
load uses the EMU’s interface again and requests the second burst (image processing)
by setting the energy and voltage to 527 µJ and 2 V, respectively. Lastly, at the end of
the second burst, the load requests the third burst for storing an image with energy
and voltage set to 11.67 mJ and 2.7 V, respectively. So long as the EMU’s buffer has
energy, the buck converter will maintain this output voltage until the next burst is
generated, the next task executed, and the load requests the next energy burst size
and voltage.

Without DEBS, the EMU would only be able to generate bursts at a constant voltage
of 3 V. This results in an approach similar to the one proposed in [Naderiparizi et al.
2015], where one large burst would be used to acquire, process, and store one image.
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This approach leads to significantly larger burst sizes due to the grouping of tasks
with a non-optimal operating point. These two approaches, single burst and DEBS
based bursts, will be evaluated experimentally in Sec. 7.

5. ENERGY-EFFICIENT NON-VOLATILE MEMORY HIERARCHY
In order to make long-term logging of rich data sensors viable, the energy cost per unit
of data stored needs to be as small as possible. To this end, we propose the use of a
novel Non-Volatile Memory Hierarchy (NVMH) that combines the best characteristics
of different technologies. The use of a NVMH is independent from Dynamic Energy
Burst Scaling (DEBS). The former is an application-side optimization to reduce the
cost of storing data to non-volatile memory, while the latter is EMU-based feedback
technique to split a single transient application into task-based burst executions. Over
the following sections, we will discuss how to combine both techniques to optimize the
system design of a transient image sensor for long-term logging applications.

5.1. Non-Volatile Memories (NVM)
As was discussed in Sec. 2.2, Flash is the most mature NVM technology available and
boast very large storage capacities, but suffers from high energy consumption. Con-
trarily, Ferro-electric Random Access Memory (FRAM) offers ultra-low power/energy
consumption, but is limited to very low storage capacities.

Flash. While Flash memories can have a very large capacity (up to 100’s of GB), they
have a high power consumption during the initialization and write phases. The time-
consuming initialization procedure results in a very high constant energy overhead as
it is needed before the actual memory can be accessed. In burst-powered transient sys-
tems, this initialization has to be paid for every energy burst that requires SD Card
access and can lead to prohibitively large overheads. Furthermore, Flash memories
alone have low durability (around 100 000 read/write cycles) and typically use a con-
troller to spread the wear of individual memory cells evenly, also called wear-leveling
[Hu et al. 2013]. Unfortunately, wear-leveling leads to additional delays and energy
consumption and introduces additional variability in the total overhead.

FRAM. In recent years, FRAM has emerged as a viable alternative with very low
power consumption. FRAM provides ultra-low power read and write actions at high
read and write speeds. Beside high energy efficiency, FRAM also provides very high
durability. Unfortunately, due to the incompatibility with standard manufacturing pro-
cesses FRAM components have relatively low storage capacities (∼ 100’s KB).

In the following section, we show how these two memory technologies can be com-
bined in long-term logging applications to exploit the advantages of each technologies:
Flash’s high density and FRAM’s energy efficiency.

5.2. Non-Volatile Memory Hierarchy (NVMH)
Novel NVM technologies have not reached densities that allow them to replace Flash
in data-intensive applications. However, since they consume significantly lower energy
than traditional Flash, they open the door to reducing the energy requirements of long-
term logging.

We propose to use energy efficient FRAM to increase the efficiency of transiently
powered logging applications that rely on an SD Card as a large storage device for
long-term logging. More specifically, we introduce a small FRAM data cache before the
SD Card to distribute its high initialization cost among several image transfers. As
shown in Fig. 4, this can be added to the sensor node as an additional component on
the SPI bus. Thanks to the ultra-low energy read and write operations in FRAM, mul-
tiple images can be cheaply buffered before transferring them in one single batch to the
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SD Card. Compared to writing the images one by one on the SD Card, as described in
Sec. 4, the high SD Card initialization cost is required only once for writing all images
buffered in the FRAM to the SD Card. This reduces the SD Card initialization cost by
a factor determined by the FRAM buffer size. Because of the high energy overhead for
initialization, this non-volatile memory hierarchy allows significant reductions in the
energy needed to acquire, process and store one image. The experimental results de-
scribed in Sec. 7 will show that on average 294.8% more images can be stored in Flash
when the baseline application discussed in Sec. 4.2 uses a 10 image FRAM buffer,
compared to the same application without it.

It is important to note that the non-volatility property of the FRAM is a key re-
quirement in this memory hierarchy, because this buffer is only supplied with energy
when an acquired image is buffered or the full buffer is flushed to the SD Card. In be-
tween bursts with memory access, it is powered off to reduce leakage losses. Deploying
any volatile component in the memory hierarchy, like SRAM, is not be suitable for a
transiently powered system because the content would be lost at the point where the
memory is turned off, or when the system enters cold start due to low input power.

The proposed memory hierarchy combines the advantages of low energy consump-
tion available in novel NVM technologies with the high density of traditional Flash.
This allows building long-term rich data sensor logging applications with large storage
requirements and high energy efficiency.

5.3. Energy Cost vs Minimum Capacitor Size Trade-Off
The key design parameter of the proposed memory hierarchy is the size of its inter-
mediate FRAM buffer. The larger the buffer, the more images can be buffered before
flushing them to the SD Card. By distributing the initialization cost of the SD Card,
the average energy requirement per image decreases. The energy overhead for reading
and writing the image to the FRAM buffer is negligible compared to the SD Card: even
with a buffer of only 2 images, the energy saved for one initialization is larger than the
additional energy cost for the FRAM. However, because of the larger transfer size from
FRAM to the SD Card during the flush operation, the amount of energy that needs to
be guaranteed by the EMU also increases. This results in a trade-off between required
energy buffer size and energy cost of the storing data in NVM. In this work, which
focuses on long-term logging of rich data sensors, our primary concern is minimizing
the energy cost of non-volatile data. How one can select the optimal parameter values
at design time will be discussed in Sec. 6.1.

6. OPTIMIZED SYSTEM DESIGN
In this section we demonstrate how the Energy Management Unit (EMU) model with
Dynamic Energy Voltage Scaling (DEBS) presented in Sec. 3.1 is used during the de-
sign of a transient system for determining individual system parameters. For that, we
use the following two use-cases: 1) selecting the FRAM size in the Non-Volatile Mem-
ory Hierarchy (NVMH), and 2) dimensioning the solar panel for desired application
performance.

6.1. FRAM Buffer Size and Cost/Capacitance Trade-Off
As was previously mentioned, the main focus of this work is to minimize the total
energy cost Eimg required to acquire, process and store image data in non-volatile
memory for long-term logging applications. It has already been shown that for generic
applications, using DEBS reduces the load’s energy requirements through task-level
optimizations. Now we will focus on optimizing the non-volatile storage component
of Eimg through the use of both DEBS and NVMH. To design the NVMH, we will first
select the FRAM buffer size, since this has a direct impact on the energy cost reduction.
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As a second step, we will select the value for the capacitance such that all other costs
like form factor and start-up time/energy are minimized.

As long as Flash memory remains the cheapest and densest technology available for
embedded systems, it will always be required in long-term image logging applications.
In the transient application scenario, which involves duty-cycling the SD Card, it is
inevitable to pay the SD card’s initialization cost before transferring any data. Since
this initialization cost is constant, the main purpose of the NVMH is to divide this
cost, on average, over as many images as possible. Because of this, the first relevant
parameter is how large the FRAM buffer can be. Currently, the main limitation is
technology scaling, which has so far prevented FRAM to have capacities greater than
100’s KB. At the time of writing, the largest commercially available FRAM can only
buffer 10 images from our vision sensor.

Once the FRAM buffer size has been determined, the only remaining question is
how small the buffer capacitance can be such that the energy savings are as high as
possible for a given FRAM buffer size. To minimize the capacitance, it is important to
understand how much energy is needed to flush the entire FRAM buffer to Flash. To
simplify the discussion, we assume that once the FRAM buffer is full, the application
schedule ensures the buffer is fully flushed before acquiring new pictures. Depending
on the capacitor size, which limits the maximum burst size, flushing the entire buffer
might take one or more bursts. The data-dependent energy cost to transfer a block of
one or more images from the FRAM to the SD card is given by

Etrans(Nimg) = Nimg × (EFRAM,img + EFlash,img), (7)

where Nimg is the total number of images that can be buffered in FRAM before being
flushed to the SD card and Ex,img is the data-dependent cost of storing one image
in memory X. As mentioned earlier, if the EMU buffer capacitor is not big enough
to guarantee that the FRAM can be flushed in one single burst, then several bursts
will be needed for the complete data transfer. The number of bursts Nburst required to
complete the FRAM flush can be calculated as

Nburst(Nimg, Ebuff ) =

⌈
Etrans(Nimg)

Ebuff − Emem,init

⌉
, (8)

where Emem,init is the initialization cost of both FRAM and Flash memories, and
Ebuff = 1

2Cbuff (V 2
max − V 2

min) is the energy stored in the EMU buffer capacitor Cbuff

between the flush task’s lowest operating voltage of Vmin=2.7 V and the EMU’s high-
est buffer voltage of Vmax=5.1 V. Using (7) and (8), it is possible to calculate the total
energy Eflush required to flush the FRAM buffer of Nimg images as

Eflush(Nimg, Ebuff ) = Nburst(Nimg, Ebuff )× Emem,init + Etrans(Nimg). (9)

Fig. 6 plots the normalized energy per image stored transfer cost Ēflush =
Eflush/Nimg. Each line in the plot represents a specific EMU configuration with a dif-
ferent Cbuff . As discussed earlier, this has a direct influence on the number of bursts
required to flush the FRAM buffer. For a given capacitance value, the image cost de-
creases monotonically up until the point where the data flush needs to be split into
more than one burst. This step increase in Eflush,img is introduced by the need of an
additional Flash initialization for the subsequent bursts and decreases as the transfer
size becomes multiple of the specific buffer size. From (9) it follows that all Etrans min-
ima of a given Cbuff are equal, since the NVMH mechanism amortizes the SD Card
initialization cost by the same ratio. The optimized Cbuff is the minimum capacitance
that has not reached its first minimum for a given FRAM buffer size, since any larger
capacitance will not introduce higher savings but would require larger start-up costs.
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Fig. 6: DEBS+NVMH simulation results show how a given FRAM buffer size can have
very different energy cost per image stored if the capacitor size is not chosen appropri-
ately.

Optimized Burst Configuration. As mentioned earlier in Sec. 4.2 for the baseline DEBS
application, it is important to characterize the application’s voltage and energy needs
in order to guarantee correct operation of the EMU. With the introduction of the Non-
Volatile Memory Hierarchy (NVMH), the application scheduling needs to be modified
to 1) image acquisition to read the sensor, 2) basic image processing, 3) buffer processed
image in the FRAM, and 4) when the buffer is full, flush the entire buffer to the SD
Card. With respect to the energy costs presented in Table I, there is only the additional
task of buffering one image in FRAM. This task was characterized to require 32µJ at
2.0 V. Since the energy cost of transferring data to the SD card has a data proportional
term, the new cost of writing to Flash is much larger than without NVMH. This is
because a new transfer of 10 images is needed to flush the entire FRAM buffer, instead
of transferring a single picture to Flash. Compared to the DEBS Only configuration,
the minimum capacitance increases from 1 470µF to 3 300µF, while the energy cost
per stored image was lowered from 11.11 mJ to 2.73 mJ when using DEBS+NVMH.
This is the fundamental trade-off presented by NVMH: significantly reduced energy
costs of stored images at the expense of a larger capacitance.

Design Space. So far, three critical parameters for a transient vision sensor with
NVMH have been discussed: FRAM buffer size, EMU buffer capacitance, and energy
cost per image stored. Fig. 6 shows that when using DEBS+NVMH, the minimum en-
ergy cost and start-up time/energy is achieved when the FRAM buffer is maximized
and the capacitance minimized for that buffer size. Fig. 7 shows the energy cost per
image stored vs the minimum capacitor size of all four configurations in a Pareto plot.
It should be noticed that whenever DEBS is applied to a baseline configuration, the
result is a reduced capacitor and a reduced energy cost per image stored. In fact, the
Pareto front consists of all configurations that employ DEBS. By contrast, whenever
NVMH is added to a baseline application, the energy cost per image stored always
decreases, but at the expense of a larger buffer capacitor. This corresponds to the ex-
pected behavior from previously presented models and highlights the fact that there is
a trade-off between energy per image stored and buffer capacitance.
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Fig. 7: Pareto plot of the trade-off between minimal buffer size and energy used to
acquire, process and store an image. Regions dominated by the shown design points
are grayed out. The design goal is to minimize both the energy per image stored and
the capacitor size.

6.2. Minimum Harvester Size
In order to calculate the necessary size of the solar panel for an application, it is im-
portant to determine the desired performance. Depending on the lighting conditions
the sensor node will be exposed to, the size of the solar panel might need to be bigger
or smaller. Simulation can be used to optimize the solar panel area.

Four different PowerFilm flexible solar panels with sizes ranging from
12.7 mm×64 mm to 37 mm×114 mm, with corresponding areas from 8 cm2 to 42 cm2,
were considered as harvesting sources. We first evaluated the output power of the in-
dividual solar panels for illuminance levels in the range from 100 lx up to 2000 lx. To
do so, the solar panels were connected to the bq25505 harvester with maximum power
point tracking (MPPT). The buffer capacitor of the harvesting circuit was replaced by
a source meter (Keithley SMU 2450), which was configured to keep the buffer voltage
constant at the expected average capacitor voltage of 4 V. For measuring the actual
power extracted from the solar panel a small shunt resistor of 10 Ω was inserted be-
tween the solar panel and the bq25505 to measure the current. The power was then
calculated using the measured current and the solar panel voltage.

The input power derived from these measurements was then used to simulate the
application’s behavior under the given constant illuminance using the model presented
in Sec. 3.1. For this use-case the application configuration that includes both Dynamic
Energy Burst Scaling (DEBS) and the Non-Volatile Memory Hierarchy (NVMH) with
a FRAM buffer size of 10 images was used in the model. The application was simulated
for a time window of one hour and the output is then analyzed to determine the average
number of images that can be acquired, processed and stored per minute.

In Fig. 8, the results of these simulations are shown for solar panels with different
areas Apanel depending on the illuminance level. It can be seen that for a typical indoor
illuminances ranging from 250 lux to 1000 lux, a solar panel with an area of 42 cm2 can
acquire, process and store from 1 up to 11 images per minute. The dependency of the
application performance on the solar panel area Apanel is also clearly visible, with lower
areas the number of images acquired, processed and stored decreases. Considering an
example where the expected room illuminance is 750 lux and the application should
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Fig. 8: The application’s performance is shown as the average number stored images
per minute vs the illuminance level for different solar panel areas Apanel.

acquire 6 images per minute (one every 10 seconds on average), the results show that
the solar panel with Apanel = 42 cm2 should be used to get the desired performance.
This is also the solar panel that will be used for experimental evaluation in Sec. 7.

7. EVALUATION
This section evaluates the costs, performance and efficiency of an EMU-based tran-
sient vision sensor in four different configurations. These configurations represent all
the possible combinations of our two main contributions: Dynamic Energy Burst Scal-
ing (DEBS) and Non-Volatile Memory Hierarchy (NVMH). We will compare the per-
formance vs efficiency trade-offs that these different combinations introduce. For the
purposes of our sample life-logging application, our main goal is to minimize the en-
ergy costs/requirements since it will allow the transient camera to acquire, process and
store the greatest number of pictures during a day.

7.1. Experimental Setup
The performance of our wearable prototype will be tested for each configuration listed
in Table II using long-term measurements. Experiments will be done in both con-
trolled (constant) and real-world (variable) harvesting conditions. All evaluation re-
sults shown in this section were done with the same MP3-37 flexible solar panel from
PowerFilm, which has an area of 42 cm2. For the analysis of the system and applica-
tion performance, all the relevant voltages and currents in the source, EMU and load
were measured. To compare the experimental and simulation results, the input power
traces were also recorded and used as input to our Matlab model.

Table II: Description of the evaluated transient configurations.
Configuration Name Burst Size Execution Profile DEBS NVMH
Single Burst

∑
i Etask,i Entire Application X X

DEBS Only maxi{Etask,i} Single Tasks X
NVMH Only

∑
i{Etask,i} Entire Application X

DEBS + NVMH maxi{Etask,i} Single Tasks
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Transient Load Configurations. In order to identify the effect of both DEBS and NVMH,
different configurations will be individually tested for prolonged periods of time. The
performance of each configuration, under different harvesting conditions, is measured,
compared and contrasted.

Single Burst. This configuration is the baseline for all comparisons. It buffers the en-
ergy for one entire application execution and does it in a single burst with constant
voltage. This means that within a single burst, one picture is taken, processed and
stored in Flash directly.

DEBS Only. This configuration, described in Sec. 4.2, uses Dynamic Energy Burst
Scaling for each task. This means that the first burst does acquisition, the second
does processing, and the third saves to Flash. Each of these bursts is configured to
its optimal voltage.

NVMH Only. This configuration introduces the Non-Volatile Memory Hierarchy
(NVMH) with a FRAM buffer size set to ten, as was described in Sec. 6.1. This means
that, conceptually, each burst executes an application cycle. The first 9 bursts write
only to the FRAM buffer: each burst doing acquisition+processing+buffering. The
10th burst performs an additional SD card flush, which transfers the ten buffered
images from FRAM to Flash.

DEBS + NVMH. This configuration combines the previous two, but with one task ex-
ecuted per burst. This means that its takes 30 bursts (acquisition, processing and
buffering 10 times each) to fill up the FRAM buffer. One additional burst transfers
the buffered data to Flash. Again, each burst is executed at its optimal voltage.

Performance Metrics. In order to compare the performance of different transient con-
figurations, the following metrics are calculated for all experiments:

— Ein =
∫ Texp

0
Pin(t) dt, for the total input energy,

— Eapp,j =
∑Ntasks

i=1

∫
tactive,i,j

Pload(t) dt, for active energy consumed by the j-th applica-
tion execution,

— Eload =
∑

j Eapp,j , the total energy consumed by the load for all application execu-
tions,

— ηsys = Eload/Ein, the total system efficiency,
— Eimage = Eload/Nimage, the average energy cost for acquiring, processing and storing

one image in NVM, and
— Θapp = Nimage/Texp, the average number of images acquired, processed and stored

per time.

In the formulas above, tactive,i,j denotes the execution time of task i in j-th applica-
tion execution, Ntasks the number of tasks in the application, and Nimage the number
of images acquired, processed and stored in Flash memory during the experiment of
duration Texp.

7.2. Start-Up Time and Cold-Start Trade-Offs
As was discussed in Sec. 3.2, each configuration requires a different minimized capaci-
tor that guarantees the completion of its largest atomic task. This minimized capacitor
in turn minimizes the required energy and start-up time for each configuration’s cold-
start. To characterize these costs that occur after an input power loss and depletion of
the buffer capacitor, the buffer capacitor was completely discharged, and the flexible
solar panel was exposed to constant illuminance level until the cold-start phase ended.
The time measured to go through this cold-start phase as function of the input power
is shown in Fig. 9 for all four configurations. As expected, the start-up time for all con-
figurations decreases with higher input power. More specifically, a maximum start-up
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Fig. 9: The cold-start time vs the input power for the EMU with different storage
capacitor sizes.

time of 1055 s for the NVMH configuration (Cbuff = 4 300µF) was reached at the min-
imum measured input power of 110µW. For an input power higher than 1 000µW, all
start-up times decrease to values below 44 s.

The start-up time overhead analysis shows the need for a minimized buffer capac-
itor, since this also minimizes the time/energy overhead of a given configuration. So
long as the harvesting scenario provides enough energy, the transient node can exit
cold-start and begin executing its application. In our specific life-logging scenario, we
assume that typical human activities satisfy the requirements for EMU operation and
last long enough for the transient vision node to start storing images.

7.3. Constant Input Power
In this part of the evaluation, the solar panel was exposed to a constant illumina-
tion level, resulting in an energy management unit with constantly supplied power.
The experiments lasted for 10 min. For low input power levels of 200µW and lower
this time was extended to 15 min to observe a sufficient number of application trig-
gers. For each application configuration, Single Burst, DEBS only, NVMH Only and
DEBS + NVMH, the experiment was repeated for constant power levels ranging from
145µW up to 1875µW. Measuring the currents and voltages at the EMU’s input, out-
put and buffer capacitor, as well as the load supply, the system’s state and energy
flow can be tracked to later calculate the performance metrics of the experiment. With
these measurements, the previously introduced metrics system efficiency ηsys and the
number of images stored per time Θapp were calculated. The results of these metrics
are analyzed depending on the different input power levels and discussed in detail in
the following sections.

System Efficiency. The analysis of the system efficiency ηsys is shown in Fig. 10 for the
four configurations mentioned earlier. The results show a consistent behavior: despite
small variations between individual configurations, they all show a system efficiency
ηsys that reaches at least 70% when the input power is greater than 1 000µW. At the
higher end of the evaluated input power the efficiencies asymptotically approach the
maximum efficiency dictated by the product of the boost and buck converter efficien-
cies. During the experiments the highest observed efficiency reached a value of 78.6%
at 1 875µW, the highest input power for which the system was evaluated. Also common
for all configurations is the fact that the efficiency drops sharply for input power levels
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Fig. 10: Evaluation of the EMU’s system efficiency at different input power levels.

close to the minimum required input power of 140µW. During experiments below that
minimum input power level, no task executions were observed, resulting in a system
efficiency ηsys of 0%.

Number of Stored Images. While the results for the system efficiency are very consis-
tent, a large difference can be observed in the application performance that is char-
acterized by the average number of stored images per time Θapp. The results for this
metric as a function of the input power level are shown in Fig. 11. The most noticeable
difference is the increase in the number of images stored per minute when deploying
DEBS + NVMH instead of NVMH Only or DEBS only instead of Single Burst: in ei-
ther case, the inclusion of DEBS significantly increases the number of images stored
per minute. In the case of DEBS Only, the increase was 30.1% at an input power of
1 750µW, compared to Single Burst. Using the NVMH Only configuration offers a sig-
nificant performance boost of 294.8% on average compared to Single Burst. It is the
DEBS+NVMH combination, however, that clearly offers the highest number of stored
images per time, thanks both of the proposed enhancements. The properties that all
configurations have in common are the minimum input power of 140µW and, once
that power level is reached, the energy proportional increase of the number of stored
images. Comparing the slopes of Θapp for the individual configurations, it is visible
that deploying DEBS instead of using the very basic Single Burst configuration al-
ready results in an improvement of 26% on average. Making use of DEBS+NVMH has
the highest impact and increases the application performance by 268% or 365% when
compared to the DEBS only or Single Burst configuration, respectively.

These experiments show the performance gain of deploying not only a dynamic en-
ergy burst scheme, but also an efficient memory hierarchy design for transiently pow-
ered logging applications.

7.4. Variable Input Power
The experiments discussed in this subsection were performed in an indoor real-world
scenario, again for all three configurations. Each configuration was evaluated with a
15 min experiment that included walking around with the setup in the office hallway
illuminated by artificial light, walking in a dimly lit basement and sitting at an office
desk well illuminated by natural and artificial light.
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Fig. 11: Evaluation of the average number of images stored on the SD Card per time
at different input power levels.

Table III: Results for variable input power experiments: total number of images stored
per minute Nimg, average of energy cost per image Eimg and EMU efficiency ηsys.

Configuration Avg. Pin Cbuffer Metric Simulation Experiment

Single Burst 731.94µW 2 000µF
Θapp 2.39 min−1 2.13 min−1

avg. Eimg 12.06 mJ 12.58 mJ
ηsys 63.51% 60.93%

DEBS Only 706.98µW 1 470µF
Θapp 2.62 min−1 2.62 min−1

avg. Eimg 10.54 mJ 11.12 mJ
ηsys 64.48% 68.59%

NVMH Only 663.93µW 4 300µF
Θapp 5.96 min−1 6.28 min−1

avg. Eimg 4.28 mJ 4.35 mJ
ηsys 63.99% 68.65%

DEBS + NVMH 607.71µW 3 300µF
Θapp 7.78 min−1 8.29 min−1

avg. Eimg 3.27 mJ 2.79 mJ
ηsys 64.48% 63.53%

The experimental metrics for Single Burst, DEBS Only, NVMH only, and
DEBS + NVMH under variable input power conditions are shown in Table III. The first
thing to note is that adding DEBS to a baseline configuration reduces the average en-
ergy per image costs (Eimg). This is the case for DEBS Only, which is an enhancement
of the Single Burst configuration, as well as DEBS+NVMH, which is an enhancement
of the NVMH Only configuration. This is expected since DEBS optimizes the load’s op-
erating point to minimize its energy requirements per task, simultaneously reducing
the load’s energy requirements as well as the minimum required capacitance. Com-
paring the buffer capacitances of the configurations without NVMH we see that the
minimum required capacitor increases when NVMH is used. This is the fundamental
trade-off of NVMH, and it is expected since the improved energy performance requires
a larger energy guarantee for the SD Card flush task. Compared to the Single Burst
configuration, the DEBS+NVMH configuration uses a 65% larger capacitor, but is able
to reduce the average energy cost per stored image by 77.8%, down to only 2.79 mJ per
image. It should also be noticed that even though the average input power during the
DEBS + NVMH experiment was only 607.71µW, the average number of images stored
per minute was almost 4× that of Single Burst, up to 8.29 images per minute.
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Fig. 12: Comparison of the energy buffer state for experiment Eexp and simulation Esim

based on the same variable input power trace Pin.

Table III also compares the experimental results to the model simulation that takes
the measured harvested power as input. Here, the comparison to experimental values
shows that even in a real-world scenario with variable input power, the model is able
to predict the system behavior with a maximum error of ∼6% for most performance
metrics. This fact is also reflected in Fig. 12: it shows the input power, simulated and
measured energy level of the buffer capacitor during a 350 second sample time window
of the DEBS + NVMH experiment. Beside a small time drift in the energy accumula-
tion during very low input power, where not all effects can be represented accurately by
our model, it tracks the buffer’s energy level and bursts with high accuracy. This high
accuracy results only in small deviation in the time diagram, despite the accumulation
of simulation errors in the time domain.

8. CONCLUSIONS
In this work, we have shown an Energy Management Unit (EMU) that minimizes the
cold-start energy and start-up time for transiently powered systems. By accumulating
only the minimum amount of energy in an optimally-sized capacitance, the EMU is
able to supply generic loads predictably and efficiently, even when it harvests only a
small fraction of the load’s active power. Dynamic Energy Burst Scaling (DEBS) can be
used with the EMU to track the load’s optimal power point and minimize an applica-
tion’s energy. In long-term logging applications, where non-volatile memory can domi-
nate the application’s energy requirements, novel memory technologies such as FRAM
can be introduced to form a Non-Volatile Memory Hierarchy (NVMH) that reduces the
energy cost of storing data. Using a solar-powered camera example, we demonstrate
an important design trade-off between the energy cost per image and the minimum
required capacitance. By adding only a ten-image FRAM buffer, 77.8% of the energy
cost per image can be saved, though the minimum required capacitance grows 65%.
Furthermore, the EMU model can be used to dimension the solar panel to achieve a
minimum performance for a given lighting condition. Experimental results show that
a 42 cm2 solar panel under indoor lighting conditions of 870 lux can be used to ac-
quire, process, and store more than 11 images per minute on an SD Card. The EMU
powered the 43.4 mW load at 69.90% efficiency requiring only 746µW input power. We
believe that by minimizing an application’s energy cost and storage requirements, both
DEBS and NVMH significantly lower the current technology barriers for a new class of
transiently-powered rich data sensor nodes capable of reliable and efficient execution
of complex tasks.
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