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1
Introduction

In this thesis we elaborate a language description formalism called Montages.
The Montages formalism can be used to engineer domain specific languages
(DSLs), which are computer languages specially tailored and typically restricted
to solve problems of specific domains. We focus on DSLs which have some
algorithmic flavor and are intended to be used in corporate environments where
main-stream state-based programming and modeling formalisms1 prevail.

For engineering such DSLs it is important that the designs of the existing,
well known general purpose languages (GPLs) can be described as well, and
that this descriptions are easily reused as basic building blocks to design new
DSLs. Using the Montages tool support Gem-Mex, such a new designs can be
composed in an integrated semantics environment, and from the descriptions an
interpreter and a specialized visual debugger is generated for the new language.

We restrict our research to sequential languages and the technical part of
the thesis tries to contribute to the improvement of the DSL design process by
focusing on ease of specification and ease of reuse for programming language
constructs from well known GPL designs. For the sake of shortness we do
not present detailed case studies for DSLs and refer the reader to the literature.
Finally, we mainly look at exact reuse of specification modules, and we have
not elaborated the means for incremental design by reusing specifications in the
sense of object oriented programming. Of course these means are needed as
well and we assume the existence of such reuse features without formalizing
them. The technical part of the thesis provides the basic specification patterns
for introducing all features of an object oriented style of reuse, and applying
these patterns to Montages in order to make it an object-oriented specification

1Examples are state-machines, as found in UML or State-Charts, flow-charts, and imperative
as well as most object-oriented and scripting languages.
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formalism is left for future work.
The focus and contribution of this thesis is the design and elaboration of

a language engineering discipline based on widely-spread state-based intuition
of algorithms and programming. This approach opens the possibility to apply
DSL technology in typical corporate environments, where the beneficial proper-
ties of smaller, and therefore by nature more secure and more focused computer
languages are most leveraged. The thesis does not cover the equally impor-
tant topic how to formalize these beneficial properties by means of declarative
formalisms and how to apply mechanized reasoning and formal software engi-
neering to DSLs.

The thesis is structured in three parts. In the first part the requirements for
a language engineering approach are analyzed and the language definition for-
malism Montages is introduced. In the second part the formal semantics and
system architecture of Montages is given. The third part consists of a number of
small example languages, each of them designed to show the Montages solution
for specifying a well-known feature of main-stream object oriented program-
ming languages such as Java. The single description modules of these example
languages can be used to assemble a full object-oriented language, or a small
subset of them can be combined with some high-level domain-specific features
into a DSL.

In the following we summarize for each part and its chapters their content
and relation to each other.
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Part I: Engineering of Computer Languages
The first part of this thesis describes the problems we try to solve (Chapter 2),
and gives a tutorial introduction to Montages (Chapter 3).
Chapter 2: Requirements for Language Engineering
In this chapter we analyze the problem in the area of language engineering in
general, with a special focus on DSLs. A typical application scenario for a DSL
with algorithmic flavor is described, and the issue of designing DSLs is dis-
cussed. We motivate why the possibility to reuse existing language designs is
important even for simple language designs, and show how introducing DSLs
and especially language description formalisms allows one to split the develop-
ment cycle. After these discussions the resulting requirements for a language
requirement formalism are summarized and finally related work in the area of
language design, domain engineering, and domain specific languages is dis-
cussed.
Chapter 3: Montages
The purpose of this chapter is to introduce Montages, a language description
formalism we proposed with Pierantonio in 1996 and which has since then be
used for descriptions and implementations of GPLs and DSLs in academic and
industrial contexts. While a complete formal definition is delegated to Chap-
ter 8, we give here a tutorial introduction. Since for the static semantics we
use the well known technique attribute grammars (AGs), we focus on our novel
approach for describing dynamic semantics.

In short Montages define dynamic semantics by a mapping from programs
to tree finite state machines (TFSMs), a simple tree based state machine model
we designed for streamlining the semantics of Montages. The states of such a
machine are elements of the Cartesian product of syntax tree nodes, and states
in finite state machines (FSMs). The states of the FSMs are in turn associated
with action rules. If the TFSM reaches some state, the corresponding action
is executed in the environment given by the corresponding node in the syntax
tree. The tree structure is defined by traditional EBNF grammars, producing a
syntax tree, and the transitions from one node to another in the tree are speci-
fied by representing the structure of the tree as nested boxes within the FSMs.
The nodes in the tree, whose number can be infinitely large, is associated with a
finite number of different FSMs by defining one FSM per production rule in the
EBNF, and then associating each node with the FSM corresponding to the pro-
duction rule which generated the node. The TFSM definition is thus structured
along the EBNF rules.

The algorithms for constructing a global FSM from the TFSM, for the sim-
plification of TFSMs, and for the execution of TFSMs are given in an informal
way, then special features for the processing of lists, and for the specification
of non-local transitions are described. Finally previous results with Montages
are summarized and related work in the areas of formal semantics, abstract state
machines, and language description environments is discussed.
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Part II: Montages Semantics and System Architec-
ture

In the second part the formal semantics and system architecture of Montages
are given. The XASM formalism, being used for both giving the formal seman-
tics and implementing the system architecture, is introduced (Chapter 4), then
the extension of XASM with parameterizable signature is motivated (Chapter 5),
the details of attribute grammars in Montages are given (Chapter 7), and finally,
using the previous definition and examples, the formal semantics of Montages
is presented in the form of a meta-interpreter, a XASM program which reads
both the specification of a language, and a program written in the specified lan-
guage, and then executes the program according to the language’s semantics
(Chapter 8). The meta-interpreter can then be partially evaluated to specialized
interpreters of the language, and even into compiled code, a process which is
sketched in Chapter 5. In this context the parameterization of signatures is used
to control the form of the resulting code in order to meet developers require-
ments on simplicity and transparency of the generated code.

Chapter 4: eXtensible Abstract State Machines (XASM)
The content of this chapter is a motivation and definition of the imperative fast-
prototyping formalism eXtensible Abstract State Machines (XASM). The XASM

language has been devised by Anlauff as implementation basis for Montages.
Since XASM have not been defined formally up to now, we contribute here a de-
tailed denotational semantics of XASM. XASM is a generalization of Gurevich’s
ASMs, a state based formalism for specifying algorithms. The basic semantic
idea of both ASMs and XASM is that each step of a computation is given by set
of state-changes. The state itself is given by an algebra. While ASMs propose
a fixed update language, the XASM formalism generalized the idea by allowing
to introduce extension functions whose semantics can be freely calculated by
an other ASM or externally implemented functions. In addition XASM feature
a group of features building a pure functional sublanguage: constructor terms,
pattern matching, and derived functions. If these features are used together with
the imperative features an interesting mix of the imperative and the functional
paradigm is achieved. Another built in feature of XASM are EBNF grammars.
Such a grammar can be decorated with mappings into constructor terms, which
are then processed with pattern matching. At the end of the chapter ASM re-
lated work is discussed, and a possible challenge of the so called “ASM thesis”
is drafted.
Chapter 5: Parameterized XASM

The XASM extension Parameterized XASM (PXasm) is the topic of this chapter.
We designed the novel concept of PXasm in order to allow for freely parame-
terizing the signature of XASM declarations and rules.

We motivate the necessity of PXasm by showing that it is not possible to
generate the kind of syntax trees defined in Chapter 3 with traditional ASMs,
since the signature of the trees depends on the symbols in the EBNF. After in-
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troducing the new features, we show how the tree generation problem can be
solved; we introduce first techniques to navigate in the syntax tree, including
examples for specifying abrupt control flow and variable scoping of a simple
programming language. Then PXasm are used to define a self interpreter and
the use of this self interpreter for formalizing execution of the earlier introduced
TFSM is shown. Since the TFSM interpreter is the nucleus of the complete
Montages semantics, this formalization is the basic building block of the formal
semantics of Montages given later. On the example of the TFSM formalization
we show how partial evaluation can be used to implement Montages by special-
izing its semantics. The given partial evaluator for ASMs is a further example
for the use of PXasm.
Chapter 7: Attributed XASM

As mentioned, attribute grammars (AGs) are used in Montages for the speci-
fication of static semantics. In this chapter we propose a new variant of AGs,
which combines features of object-oriented programming and traditional AGs
to a new AG variant which features reference-values, attributes with parameters,
and more liberal control-flow, e.g. no classification in synthesized and inherited
attributes. The new variant is based on a further extension of XASM, called
attribute XASM (AXasm).

After motivating the design and initial examples for AXasm we give formal
semantics to them in three different ways. First we show that AXasm can be
translated easily into derived functions of XASM, then we extend the denota-
tional semantics of XASM to the new features, and finally we give a self inter-
preter for AXasm. This self interpreter will be used in the Montages semantics
to evaluate terms and rules.

Using AXasm, the complete specification of the object-oriented type system
of the Java programming language is given in Appendix D. Although the exam-
ple is relatively long, it shows that the approach scales to real-world languages.
Finally we discuss related work in the field of AGs and specifications of Java.
Chapter 8: Semantics of Montages
Based on the previously proposed extensions of XASM, this chapter gives a
formal semantics of Montages. We shortly discuss the choices for defining se-
mantics of a meta-formalism like Montages. A parameterized, attributed XASM

is then given, which processes, validates, and executes programs and Montages
in 5 steps. First the abstract-syntax tree is generated, then the static semantics
conditions are checked for each node. If all conditions are fulfilled, the states
and transitions of the Montages are used to construct a TFSM which gives the
dynamic semantics. Finally the TFSM is simplified, and then executed.



6 Chapter 1. Introduction

Part III: Programming Language Concepts
In this part we use Montages to specify programming language concepts. We
try to isolate each concept in a minimal example language. The executability
of each of these languages is tested carefully using the Gem-Mex tool, and we
invite the reader to use the prepared examples and the tool to get familiar with
the methodology. The standard Gem-Mex distribution contains the examples
and is available at www.xasm.org.

The language ExpV1 (Chapter 9, Models of Expressions) is a simple ex-
pression language. The remaining example languages are extensions of ExpV1.
The first imperative language ImpV1 extends ExpV1 by introducing the concept
of statements, blocks of sequential statements and conditional control flow. The
concept of global variables is introduced in example language ImpV2.

The purpose of languages ImpV1 and ImpV2 is to introduced features of
a simple imperative language. In a series of refinements, the primitive vari-
able model of ImpV2 is now further developed into ImpV3, and finally ObjV1.
Language ObjV2 is an extension of ObjV1 with classes and dynamically bound
instance fields, and ObjV3 is an extension of ObjV1 with recursive procedure
calls. The languages FraV1 , FraV2 , and FraV3 feature iterative constructs,
exception handling, and a refined model of procedure calls, respectively.

The presented example languages are an extract from a specification of se-
quential Java. The Java specification mainly differs from the here presented
languages by a complex object-oriented type system, many exceptions and spe-
cial cases, and a number of syntax problems. We have given the specification
of the complete Java type system as example in Appendix D. Unfortunately the
scope of this thesis does not allow the inclusion of a full description of Java and
we refer the reader to the description given by Schulte, Börger, Schmidt, and
Stärk. In Appendix C we show how their model can be directly mapped into
Montages. Other complete descriptions of object-oriented programming lan-
guages which can be mapped into Montages without major modifications are
the specification of Oberon by the author and Pierantonio, and the specification
of Smalltalk by Mlotkowski.
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2
Requirements for Language Engineering

Information hiding (175) is a root principle motivating most of the mechanisms
and patterns in programming and design that provide flexibility and protection
from variations (142)1. One of the most advanced tools for information hiding is
a programming language. A general purpose language (GPL) hides the details
of how machine code is generated from more abstract descriptions of general
algorithms. More hiding can be achieved by a domain-specific language (DSL)
(217), which allows one to use a domain’s specialized terminology to describe
domain problems, and which allows one to hide the general programming tech-
niques used to implement these problems efficiently.

The process of designing, implementing, and using a new, specialized com-
puter language is often considered as part of the history of computer science.
In contrast, the DSL approach aims at creating a repeatable software engineer-
ing process supporting information hiding by means of creating new languages.
Most existing techniques supporting this process are too complex to be applied
for people outside the software and hardware area. An important part of the DSL
approach is therefore computer language engineering, the discipline of design-
ing and implementing computer languages as tools for the software, hardware,
and - most importantly - business engineers. The purpose of this thesis is to
propose a simple, integrated approach, especially suitable for business related
problem domains, such as finance, commerce, and consulting.

In this chapter we analyze the requirements for a language description for-
malism which can be used to reengineer the designs of existing, well-known
GPLs, and to reuse those designs as basis for engineering new DSLs. The

1Data encapsulation, which is often used as synonym of information hiding, is only one of
many mechanisms to support information hiding, other well known mechanisms are interfaces,
polymorphism, indirection, and standards.
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main issues with design and use of specialized computer languages are ana-
lyzed in Section 2.1. A typical application scenario for a DSL is presented in
Section 2.2. The design process of DSLs is further analyzed in Section 2.3.
Later in Section 2.4 we discuss the impact of reusing existing language designs,
in Section 2.5 we sketch how part of the safety, progress, and security require-
ments of a system can be guaranteed on the language level, and in Section 2.6
is is shown how language description frameworks can be used to simplify lan-
guage implementation. Finally in Section 2.7 the requirements for a language
description formalism are formulated.
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2.1 Problem Statement
The DSL approach exploits the design, implementation, and use of a new lan-
guage, which is tailored for the needs of the domain at hand. Restriction to
fewer, specialized features is considered as an advantage, since it allows one to
hide more internal information. DSLs increase productivity not only through
information hiding, but also by providing better scope for software reuse, pos-
sibilities for automatic verification, and their ability to support programming
by a broader range of domain-experts. Often all these advantages are however
shadowed by the cost incurred in designing and implementing a new language.
Additionally, DSLs also involve relatively high maintenance costs since knowl-
edge about the underlying domain usually grows with experience, and changing
requirements lead to frequent revisions in the language. Resolving these issues
is critical in making the DSL approach feasible, since otherwise it amounts to
shifting the entire complexity of program development into the implementation
and maintenance of the DSL. The situation is further aggravated by the fact that
many small DSLs have an extremely limited number of potential users, some-
times also a brief life-span, and therefore do not justify too much effort from
outside the group using the language. Designing a DSL is an important problem
in itself and is a topic of research. However, it is not difficult to imagine a sce-
nario where this problem is subsumed by the complexity in its implementation,
and even more by maintenance, which involves specialized skills (in compiler
technology, for example) usually not available with the domain experts who use
the language.

From this situation we identify two main problems, which hinder the wide
use of the DSL approach despite a long list of successful examples in the liter-
ature. The problems which faces every new DSL can be formulated as follows:

1. Users of the DSL are not familiar with the design of the new language.

2. Designers of the new language are often not experienced with techniques for
implementing a new language.

The first problem hinders the use of a new language, while the second prevents
successful implementation of the new language. A systematic approach for the
solution of these two problems could be provided by a language engineering
method which allows for

� a library of major existing language designs,

� the definition of new languages by reusing the design library, and

� the generation of language implementations directly from the language defini-
tions.

Providing a library of existing language designs contributes to the solu-
tion of both problems, users can see existing language designs, which they al-
ready know and understand the language description style used, and designers
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can start with working descriptions and learn the description style by example.
Reusing the design of existing languages not only simplifies the job of the de-
signer but also helps the user to quickly understand the new language based on
the reused existing one. Finally, if implementations can be generated from the
descriptions, the problem of implementing the language can be reduced to the
problem of defining the language in the given language definition style.

In order to follow this approach, the form of language definitions is of ut-
most importance. Most existing language definition formalisms are based on
declarative techniques and are most suited to define languages with a declara-
tive flavor. Since we understand the use of a DSL as a mechanism for infor-
mation hiding of complex imperative and object oriented software systems, we
need a language description formalism that allows one to map DSL programs
directly into imperative, state-based algorithms. Those domain experts which
are currently solving successfully domain-problems using main stream impera-
tive and object oriented languages should be able to transfer their programming
knowledge and experience directly into the design of a DSL. The DSL is thus
a means to reuse their experience in a way where low level details about the
implementation are hidden from the user and where implementation knowledge
is moved into the language definition.

Our view on DSLs is in stark contrast to most of the existing DSL liter-
ature, which focuses on static, declarative DSLs. The most interesting paper
which compares a declarative with an algorithmic DSL for the same applica-
tion domain is the paper of Ladd and Ramming (137). They show how in an
industrial context the development of software for telecommunication switches
has been moved from C to an algorithmic, imperative DSL, and then further to
a declarative DSL. Their case study shows clearly the advantages of the later
declarative solution over the imperative one. One possible objection to their
argumentation is that it may have been possible to define a more abstract imper-
ative DSL, which would have shared most of the properties of the declarative
language. Further at several places they are assuming that imperative, algorith-
mic languages are automatically ”general purpose” or ”Turing-complete” and
further they take for granted, that an algorithmic, imperative DSL cannot be
used as starting point to generate different software artifacts or to do analysis.
Typically, algorithmic, imperative DSLs have reduced expressivity with respect
to general-purpose languages, they have often an elaborated declarative static
semantics, and besides the intuitive execution there are typically other things
one can generate from them.

Even for clearly declarative DSLs, an additional dynamic semantics can be
useful. If the declarative DSL specifies some sort of computation, it may be
useful to add a dynamic execution semantics which is only used as an intuitive
example of a possible execution behavior. Such a dynamic semantics would
be given just for the purpose of delivering to the DSL user a state-based intu-
ition. Another situation where adding imperative or object oriented features to
a declarative DSL may make sense is scripting. If scripting is needed, it may
be useful to extend a declarative core language with algorithmic features for



2.1. Problem Statement 13

scripting. This integrated scripting will certainly lead to simpler semantics than
combining the declarative language with some general purpose scripting lan-
guage. Since there are not many algorithmic DSLs described in the literature,
we sketch in the next section a typical application scenario.
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2.2 Typical Application Scenario
The most beneficial applications for DSLs exist, when two different groups of
people must influence the behavior of a system. In such cases there is no clear
separation between developers and users of a system. For instance, in the fi-
nance industry it is very common that both IT-experts and domain experts code
part of the application. More complex IT tasks are solved by a high-level team
of computer scientists, providing for instance a sophisticated data-base archi-
tecture and methods how to manipulate the data-base in a consistent way. The
financial domain experts apply so called “office tools” like “Excel” or “Access”
to “program” their own small applications on top of that infrastructure. This
process is called “end user programming” (105).

The problem with using “Excel” or “Access”‘ for end user programming is
their unrestricted expressiveness. The user is for instance not prevented from
doing domain specific errors like calculating the sum of revenue and earning
of a company in her/his spreadsheet calculations. A small DSL, allowing only
for programming with domain specific, restricted expressiveness could make
the process less error prone. We are convinced that a large part of the knowl-
edge built into complex financial application suites could be leveraged into the
semantics of a financial DSL.

As a concrete example we look at trading strategies. In today’s financial
markets it is more and more common to use systematic trading strategies rather
than buying and selling financial products in a non systematic, intuitive way.
Because of their algorithmic nature, trading strategies are good candidates for
automatization. The presented case study is based on an actual need of broker-
age departments in large Swiss banks to automatize trading strategies.

In Section 2.2.1 we describe why automating trading strategies is important
in the brokerage department of a bank, in Section 2.2.2 we analyze the problems
using traditional GPLs or office tools. In Section 2.2.3 we show why using a
DSL for their automatization is better than using a traditional PL and in Section
2.2.4 we conclude that DSLs are especially appropriate for the financial sector,
since the requirements are changing very fast in this industry (53; 215; 109).

2.2.1 Situation

In a large bank, almost all transactions are finally executed by the brokerage
department. The traders try to optimize their actions using systematic trading
strategies. Three examples are given here.

� The traders must execute large amounts of orders generated by various other
departments. Certain techniques can be applied to predict the development of
the price of a financial product for the next few minutes and based on this as-
sumptions the brokerage department may optimize its role as a buffer between
the orders flowing in from other departments and the real market.

� For certain financial instruments, the bank is a market-maker, constantly offer-
ing to buy at a certain price, the bid price, and to sell at a slightly higher price,



2.2. Typical Application Scenario 15

the ask price. If there are more sellers than buyers, the market-maker is lowering
the prices until the market balance is reestablished. In the case of more buyers
than sellers, the prices are increased. This process is called spread trading.

� It may be possible that a large client wants to execute a systematic, repetitive
pattern of trades. This may serve, for instance, to hedge the client’s risks result-
ing from other, non liquid investments.

A number of systems are supporting the traders in this activities, but because of
the volatile requirements many tasks have to be executed by hand. The factors
which constantly change the requirements are regulations coming from outside,
internal management decisions, competition, and specific requirements from
clients. If in the current situation some repetitive tasks are identified, the bro-
kerage department may specify an application which helps them automating
those tasks. The IT department is subsequently trying to implement the soft-
ware according to the specification. In a large bank, the production cycle from
the specification to the working software takes typically about three months. In
this time, both security and usefulness of the new application are tested, and
possible technical problems are identified and solved. After the production cy-
cle, the software can be used by the traders.

This process may be too slow for the problem to be solved. Thus in many
cases, the brokerage department will prefer to continue executing the tasks with-
out automation. Since the costs for brokerage work-force are very high, and
since even highly-trained experts tend to make more errors if they do repetitive
tasks, the bank may lose money. Alternatively, the domain experts develop their
own application using an office tool like “Excel”. Experience shows that such
an ad-hoc solution is creating often more problems than it solves (39; 23).

2.2.2 Problem

It is relatively easy to write a program implementing the described trading
strategies. The problem is not the coding of the algorithm, but the fact that the
production cycle of three months makes the strategy to be implemented often
obsolete. If we analyze what happens in those three months to a trading strategy
software, we find a number of necessary activities which cannot be skipped.

� It must be tested whether the software correctly implements the strategy defined
by the trader. An informal specification is always a source of misunderstand-
ings. Often some information is lost between the know-how of the trader, and
the implementation done by IT specialists.

� The software must be checked to behave always in a friendly way, not trying to
use too many system resources, or to enter trades which would result in non-
controllable situations.

� The risk-monitoring system of the bank must be used in a proper way. If a
certain situation leads to an exposure which is pulling the trigger of the risk
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measures, the software must stop executing the trading strategy and a rescue
scenario must be triggered.

� The internal regulations determine which authorizations are needed for certain
trades. In some situations, the software must thus interact with the traders to get
digital signatures for the authorization.

If several trading strategies are implemented, many problems have to be
solved repeatedly. Each resulting application has to pass the production cycle.
If a general problem in the trading-strategy domain is detected, this problem can
only be solved for the currently developed application. Older trading-strategy
applications which may have the same error cannot be easily adapted and often
the faulty behavior will show up in several applications.

Since the initial requirements are often ambiguous, and since problems with
the application are most often fixed on the code level, the applications are often
no longer consistent with their documentation at the end of the process. In a
competitive environment, there will as well be no time to document the applica-
tion properly. There is thus a danger that the resulting applications are not well
specified, and cannot be maintained over a longer time period.

2.2.3 DSL Solution

A possible solution to this problem is to design a DSL for the specification of
trading strategies. We call this DSL TradeLan. The elements of TradeLan are
actions to enter, buy, and sell orders in the system, to “hit” orders being listed in
the system, and to evaluate various indicators (including bid and ask price of the
financial instrument to be traded as well as responses from the risk monitoring
tool) as basis to decide when and how to execute certain actions.

Using the DSL approach, it is possible to tailor TradeLan such that

� only well-behaving trading strategies can be specified,

� the risk-monitor-system is automatically used in an intelligent way for any spec-
ified strategy; strategies which are not implementing the risk regulations cannot
be defined,

� authorization checks are executed where necessary; there is no way to turn this
feature on or off.

The specific problems for trading strategies are thus solved generically for
all strategies written with TradeLan. The TradeLan programmer does not need
to think how to solve these problems; she/he may concentrate on what the trad-
ing strategy is intended to do. The implementation of TradeLan adds all other
necessary actions.

The implementation of this DSL will go through the three month production
cycle. Probably it will even take some time longer since a DSL application is
more complex than a simple trading strategy application. After the implementa-
tion went through the production cycle, the traders are faced with a completely
new IT situation.



2.2. Typical Application Scenario 17

� A trader can now specify her/his trading strategy using TradeLan. For a pro-
grammer, writing a TradeLan specification will not look much simpler, but for
the trader, a TradeLan program looks like an informal description of his ideas
using trader terminology.

� From such a specification the implementation is generated, and the trader can
immediately see whether the application is doing what she/he wants. Most im-
portantly, additional trading strategies do not have to pass the production cycle
any more. They can be implemented using TradeLan, and TradeLan specifica-
tions are just input to the TradeLan implementation which passed the production
cycle already.

� Another advantage is that the people who defined the trading strategies can
maintain them on their own. The TradeLan specifications look like informal
specification documents, and they can be managed like other documents. Since
they are understandable by the traders, they serve as documentation of the trad-
ing knowledge built up in the bank.

These advantages are offset by the typically high costs of designing, imple-
menting, maintaining, and introducing a new DSL, if a suitable approach for
engineering such languages is not available.

2.2.4 Conclusions and Related Applications

Time to market is the most important factor in the financial industry (63). If a
new business opportunity is found, a quick implementation of the corresponding
IT solution decides over the commercial success. However, the financial risks
with each transaction imply that software must be deployed carefully (195). The
above described solution shows that it is a good idea to generate the applications
from explicit descriptions of the business rules, rather than implementing each
repetitive problem by hand. Main reasons are the long production cycles and
the problem that a lot of domain-knowledge is lost at banks, since the traditional
applications do not force the user to keep specifications consistent. Knowledge
flows into application source code, from where it can only be retrieved with
difficulty. For these reasons we expect that DSL techniques will establish them-
selves faster in the finance industry than in other more static business domains.

An application area related to trading strategies is the specification of finan-
cial instruments or contracts. The problem of defining contracts is becoming
increasingly acute as the number and complexity of instruments grows (118).
Probably the first publicly known implementation of a financial product spec-
ification has been created by JP Morgan in the context of their Kapital sys-
tem (179), which was the first environment where the DeAddio’s and Kramer’s
Bomium architecture (53) for specifying complex financial instruments has been
applied. During his research Van Deursen has introduced Rislan (214; 215), a
formal and exact language for specifying financial contracts. This language has
subsequently been used by CapGemini in their Financial Product System soft-
ware (218). Later the company LexiFi Technologies has introduced mlFi (109;
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62), a similar language which has been initially formulated as DSL. Such lan-
guages not only enable traders to be more precise in constructing deals, but
such a contract definition can provide the basis for valuing contracts, as well as
automating and managing their processing trough the transaction live-cycle.

The trading strategy application described in this chapter would become
even more interesting, if trading strategies could be defined not only over a fixed
set of existing financial contracts, but over freely defined types of contracts,
using a language such as Rislan or mlFi for the contract specification. The static
information of a financial contract specification could then be used as parameter
for the dynamic semantics of a trading strategy language like TradeLan.

Another promising area for applying DSLs in finance is the tailoring of re-
search articles to specific market and client situation. The company A4M (135)
has used Montages to develop for a small financial service provider a technol-
ogy where three specially tailored DSLs are used to generate research reports
for complex structured financial instruments. The first DSL, called InstruLan
is used to describe the structure and semantics of the analyzed financial in-
struments, the second one, called IndiLan is used to define the calculation and
naming of financial indicators derived from the available data, and the third lan-
guage, called FinTex is used to give text fragments as well as the logic how to
compose them to full-blown, natural-language financial-analysis texts, which
may be personalized for specific clients, interest groups, risk profiles, e.t.c.

In contrast to Rislan and and especially mlFi, A4M’s InstruLan is not a
fixed, full blown language for specifying all kind of contracts, but InstruLan
is a minimal language adapted to the clients existing set of products and ter-
minology. Experience with using InstruLan for a large international bank in
Zürich shows that in practice a family of minimal DSLs for specifying financial
products, adapted to the needs of different clients may serve them better than
a one-fits-all solution. On the other hand, an industry-proven product speci-
fication approach such as Bomium is a perfect basis to explore new types of
financial instruments.
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2.3 Designing Domain Specific Languages

Early in the history of programming language design, the idea arose that small
languages, tailored towards the specific needs of a particular domain, can sig-
nificantly ease building software systems for that domain (24). If a domain is
rich enough and program tasks within the domain are common enough, a lan-
guage supporting the primitive concepts of the domain is called for, and such a
language may allow a description of few lines to replace many thousand lines
of code in other languages (94). A good starting point for designing a domain-
specific language (DSL) is a program-family (176). This idea is elaborated in
the FAST (227) 2 process for designing and implementing DSLs.

Central to FAST is the process to identify a suitable family of problems,
and to find abstractions common to all family members. Traditional software
development methods would use the knowledge about a family of problems and
common abstractions as well, but in a more informal way. In FAST, as well
as other DSL processes, one tries to use these abstractions to produce imple-
mentations of family members in an orthogonal way. Rather than crafting an
implementation for each problem at hand, one designs an implementation pat-
tern for each abstraction, in such a way that implementations of single problems
can be obtained by composing the patterns. Typically such implementation pat-
terns are therefore developed with a GPL supporting generic programming in
some way. To this point, FAST is very similar to most reuse methodologies.

We visualize the situation as follows. In Figure 1 the problem family con-
tains members m1, m2, and m3. The common abstractions a1, a2, and a3 are
depicted as shapes, which occur repeatedly in the family members. The im-
plementation patterns i1, i2, and i3 are then developed for for each abstraction.
In Figure 2 the process to construct an implementation is represented by the
triangle. The input to the process is a member of the problem family and the
implementation patterns of the abstractions. The output is an implementation
solving the problem.

In the next step of the FAST process a language is designed for specify-
ing family members. The syntax of the language is based on the terminology
already used by the domain experts, and the semantics is developed in tight
collaboration with them. The goals are to bring the domain experts into the pro-
duction loop, to respond rapidly to changes in the requirements, to separate the
concerns of requirement determination from design and coding, and finally to
rapidly generate deliverable code and documentation.

The design process of the language consists of introducing syntax for de-
noting the abstractions we identified in the first step and defining the allowed
constructions of complete sentences in the new language. This definition should
capture the knowledge gained from the implementation patterns and exclude all
non-correct combination of the abstractions. The possibility to define exactly
in which way the syntax and the semantics of the language allow us to com-
bine the basic abstraction is the big advantage over traditional ways of reusing

2Family oriented Astraction Specification and Translation
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abstractions, such as libraries or component frameworks. In none of the later
two the user can be forced to use an abstraction in the right way: either the user
is allowed to use the function or component, or not. By means of a language,
the complete context of applying an abstraction is known, and the use of an
abstraction can be allowed for certain contexts only.

As visualization, in Figure 3 we schematize a DSL definition and the rela-
tion of its syntactical productions feature 1 . . . feature 3 to the corresponding
abstractions. The bottom left corner contains a number of DSL programs spec-
ifying the problem family members in the bottom right corner. The arrow from
the problems to the abstractions and the one from the DSL definition to the DSL

DSL

feature 3 ::=

feature 2 ::=

feature 1 ::=

DSL

DSL

DSL
DSL programs

DSL definition abstractions

problems

Fig. 3: Design of DSL for family member specification
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programs depict the engineering process as it is described up to now: deriving
abstractions from the problem domain, defining a DSL for specifying over such
abstractions, and using the DSL to specify the problems in the domain.

We would like to note the difference between the GPL program resulting
from the orthogonal process in Figure 2 and the DSL program in Figure 3.
While both are related to the same problem, the GPL program is directly exe-
cutable, while the compiler or interpreter of the newly designed DSL has to be
implemented. In fact the implementation costs for a new DSL can be very high,
if no specialized language implementation method is available.

This leads to the last step in the FAST process, the implementation of the
DSL. One possibility is to use a meta-formalism to formally define syntax and
semantics of the introduced DSL, and to generate the implementation from this
definition. Alternatively traditional compiler or interpreter construction tools
can be used.

The DSL implementation process is shown in Figure 4. This figure corre-
sponds directly to Figure 2 but the informal description of the family members
has been replaced by the formal DSL descriptions, and the implementation pat-
terns have been combined with the specification of the DSL (production rules
feature 1, feature 2, feature 3 on the right), resulting in a full specification of the
DSL.

GPL

problem abstraction

solution

feature 2 ::=

feature 3 ::=

GPL

GPL

GPL

DSL

DSL

feature 1 ::=

Fig. 4: Implementation of a DSL
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2.4 Reusing Existing Language Designs
It is often a concern that the broad use of technologies for the introduction of
DSLs would lead to a confusing number of different languages. The worst
situation would be the coexistence of languages, where

� slightly different kind of syntax and semantics are used for features being func-
tionally identical, and

� the same syntax is used for features being completely unrelated.

Most confusing gets the situation, when the exactly same task needs to be
done in different languages, but the languages solve the task in different ways.
For instance in the Centaur tool-set (35) the two DSLs for specifying pretty-
printing and dynamic semantics processing of parse tree are providing different
syntax for accessing the leaves of the tree, although both DSLs work on the
same tree-representation in the Centaur-engine. Our experience with using the
system (124) shows that such a situation has a negative impact on productivity.

Instead of designing new languages from scratch, as done in many existing
DSL methodologies, we propose reusing designs of existing languages. This
approach allows us to engineer the set of languages being used, rather than con-
sidering them as unrelated, incompatible entities. Our approach is to start with
a library of existing, well-known language designs and to create new languages
by applying the following four language-design reuse patterns:

� restriction Take an existing language and restrict its expressiveness. This can be
done by removing features, or by fixing the possible choices for some features
in a context dependent way.

� extension Add a new feature to an existing language by combining existing
features under a new name, or by adding a new kind of semantics3.

� composition The synthesis of a larger languages as a combination of small
sublanguages. This pattern allows the designer to describe, test, and teach small
subsets of language features, and combine them later to real-live languages.

� refinement Change the semantics of an existing construct. This is the most dan-
gerous pattern. Typically it is applied in such a way, that the intuitive semantics
remains the same for the user, but some details are adapted to a special situation.

If a language is designed based on existing well know languages there are
more users which are familiar with part of the design, and a language description
methodology which supports synthesis of new languages trough the actions of
restricting, extending, composing, and refining existing descriptions simplifies

3Technically, the extension-pattern can be considered as a special case of the combination
pattern. From the language user’s point, they are very different, since the extension pattern in-
volves only one existing language, while the combination pattern combines at least two different
languages.
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the task of the language designer to implement the language easily. Further,
some of the advantages of DSLs as listed in Table 1, can be combined with the
advantages of GPLs with respect to DSLs are listed in Table 2.
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Tab. 1: Advantages of DSLs
Compactness Features are focused on problems to be solved. Fewer

concepts have to be learned to master the language. A
larger group of people can use the language.

Abstractness Since the specific application domain is known in ad-
vance, abstractions can be found, and many details
can be hidden in those abstractions.

Self Documentation Systematic use of the established terminology in the
problem domain results in good self documentation.

Safety Absence of a feature in a DSL guarantees its absence
in all programs written with that DSL.

Progress Transactions consisting of a number of actions can be
encapsulated in the semantics of specific constructs.

Security Correct authorization of each action can be guaran-
teed by the language definition.

Tab. 2: Advantages of GPLs
Stability The language design has proven its consistency and

will not change too much over time.
Existing Solutions Many problems have been solved with the language.

Not everything has to be done from scratch, and many
examples of how to use the language exist.

Education Many programmers know how to use the language and
it is easy to find experienced developers.

Available Tools Typically GPLs GPLs are supported by compilers, in-
terpreters, debuggers, and other tools which are inte-
grated in one, versatile development environment.
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2.5 Safety, Progress, and Security
The systematic introduction of new languages as extensions, restrictions, com-
positions, or refinements of existing languages can be used to guarantee some of
the safety, progress, and security requirements of a system. Following Szyperski
and Gough (206) these properties can be defined as follows:

Safety Nothing bad happens.

Progress The right things do happen.

Security Things happen under proper authorization.

Using language design for guaranteeing some of these properties is a common
technique (206). For GPLs only general properties like strong typing can be
embedded. In a relatively narrow domain, many more requirements are known.
Restricting, extending, and refining existing languages can be used to guarantee
safety, progress, and security on the language level, rather than on the code level.
The pattern to using language restriction for safety is already described (200)
, but the idea to use language extension for progress, and language refinement
for security have not been discussed earlier. As a disclaimer for the following
discussion we would like to note that all of this problems can and are solved with
traditional programming means as well. We try to highlight some advantages if
the problems are solved on the language level rather than on the implementation
level.

The first idea is to achieve safety by reducing expressivity of the program-
ming language used for the critical components of a system. Reducing ex-
pressivity can be done by removing language-features, or by fixing the possible
choices for some features in a context dependent way: for instance one could re-
move features to interact with external computers from pieces of code that serve
for internal calculations only. In this way it is possible to guarantee safety con-
ditions on the language level, allowing source code developers to concentrate
on non-security-critical details. We call this technique safety through reduced
expressiveness. An example is a safer subset of C presented in (64). Although
reducing expressivity of languages is not a general solution to safety problems,
a framework in which language features could be turned off individually would
allow the developers to solve some safety problems. For instances computer
viruses relying on certain language features could be stopped by allowing those
features only in parts of the system which are completely write-protected from
the network.

Security may be achieved by refining the semantics of an existing language
feature such that correct authorization is guaranteed. As an example, consider a
situation where a central security server has to be informed before each security
critical call to a given library. This problem can be solved with a standard
application programming interface (API) for the library. The problem with the
API approach is, that changes in the library must be correctly reflected in the
API, and each time a new function is added, there is the danger someone forgets
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to implement all API rules, such as the above mentioned rule that a security
server has to be informed.

Our approach would be to change the programming language which is used
such that the central security server is informed automatically, whenever the
critical library is called. Like this it is guarantees that all authorization is done
correctly, independent of how the application and the library are developed.

A typical example related to progress is a requirement that after opening a
transaction, either all parts of the transaction are executed successfully, lead-
ing to a commit of the transaction, or a roll-back is triggered. Our idea is to
guarantee this requirement by encapsulating the complete process in one new
language construct. Of course such a construct has to be added to a language
that has been restricted such that the transaction cannot be started otherwise.
Another issue applying this approach could be performance problems.

Reuse of existing language designs and the subsequent restriction, exten-
sion, composition, and refinement of their definitions, both syntactically and
semantically, are basic building blocks for a realistic application scenario for
engineering of computer languages. An example for defining a DSL by first
restricting to a subset and then extending with domain-specific features can be
found in (20) where a protocol construction language is defined as extensions
on top of a subset of C. We illustrated that achieving safety, progress, and secu-
rity on the language level may be the conceptual motivations for introducing a
DSL.
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2.6 Splitting Development Cycles

From a high-level viewpoint every software development cycle can be presented
as in Figure 5. A system is specified, a suitable architecture is designed, the
software is implemented, tested against the specification, and finally brought
into a form suitable for deployment. The platform for such a cycle is typi-
cally a GPL with its support tools, visualized in the figure as the innermost
box labeled “platform”. The result of going through the cycle is the creation of
an application, which serves as the “platform” for the user to solve her or his
daily problems. The user provides positive and negative feedback on the cor-
rectness, efficiency, general usefulness of the application. This feedback, along
with additional requirements, triggers a new development cycle, resulting in a
new version of the application.

Using a process like FAST the development of a system is split into two in-
dependent development cycles, as shown in Figure 6. In a first development cy-
cle, a DSL is designed and implemented. The “application” resulting from this
cycle is the DSL being used in the second cycle to specify and implement end-
user applications. Users of the application provide feedback for the application-
developers, and application-developers, who are also DSL-users, provide feed-
back to the DSL developers. This situation allows for an interesting split of
maintenance tasks. Fine tuning and solution space exploration of the problem
is done in the application development cycle working with the DSL, while im-
proving performance and porting to other software and hardware architectures
is typically done by refining the DSL definition. Similarly, reuse of algorithms
happens on the level of DSL programs, while reuse of interfaces to underlying
hardware and software architectures happens on the DSL-definition level.

The crucial software development problem in such projects is often the im-
plementation of the DSL. This stems from the fact that in many cases the iden-
tified problem family is intricately structured, but each single family member
is quite a simple problem. The implementation of such a family member can
thus be relatively simple, compared to the costs for implementing the DSL. For
a successful application of a DSL, the additional implementation costs for the
DSL must be offset by the reduced costs of repeatedly using the DSL to solve
problems of the problem family.

Methods that minimize the costs for design and implementation of DSLs
increase considerably the number of useful and feasible DSL applications. Re-
cently a lot of research was dealing with the problem how to minimize the costs
for implementing a DSL (90; 21; 68; 163; 209; 200). The main idea behind
most approaches is to define a language definition formalism which can be used
to define the DSL, and to generate an implementation from such a definition.
Having such a formalism and tool at hand, it is possible to split the develop-
ment process into three development cycles, as shown in Figure 7.

While in the above described two cycle model a GPL is used in the develop-
ment cycle of the DSL-definition, in the three cycle model, a language definition
formalism (LDF) is used for the DSL-definition. The third development cycle,
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shown on the left side of the graphic, is concerned with the development of the
language definition formalism . The “application” generated by this cycle is
the language development tool. The second cycle now uses the LDF as plat-
form for the development of the DSL. Interfaces to existing hardware and soft-
ware architectures as well as program generators for parser and other language
technologies like attribute grammars are provided by the language definition
formalism, allowing the DSL-designer to concentrate on efficiency, integration,
and extensibility issues in the problem domain.

We hope that in this way the costs for DSL implementations can be split
over many domains. However in the three-cycle model one has to consider
the costs of learning the LDF as well as the costs for defining the DSL with
the LDF. The sum of learning an LDF and implementing a DSL for the first
domain may be larger than the costs to implement a DSL from scratch. Once the
LDF method is learned, its application to new domains can be done with little
costs. Restriction of the LDF to well known techniques such as EBNF, Attribute
Grammars and Flow Charts avoids creating a new problem of understanding
language definitions.
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2.7 Requirements for a Language Description Formal-
ism
In order to solve the stated problems, a language description formalism and
the corresponding language design method should fulfill the following require-
ments.

� The techniques used for defining languages should be well known. The typical
background of a programmer should be sufficient to understand the descriptions.
EBNF and flow charts are typically the “specification tools” of a programmer.

� Languages should be described in a “compact” form. This is important since
many users deal with large software projects and do not have the additional
resources to create and maintain huge language descriptions. The size of a
language specification should evolve linearly with the number of production
rules in the grammar.

� A language description should be built with small, independent building blocks.
Reusing the features of a language should involve a minimal interface with other
components of the language. A mechanism for the modularization of language
specifications is therefore needed.

� A library of specifications of major programming language concepts should be
available. This library should cover both concepts for programming in the small,
which can be reused to synthesize efficiently a DSL without reinventing details
such as expressions, as well as concepts for programming in the large, which
can be used to extend a DSL with state of the art modularization concepts, such
as object orientedness. Most important, the modules of the library should have
a high level of decoupling.

� Tool support should provide a comfortable development environment for the
specified languages. Not only an interpreter or compiler should be generated
from the specifications, but as well a number of support tools, such as debug-
gers, program animators, and source analysis tools.
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2.8 Related Work

It may be correct to say that the concept of DSLs has not been invented but
observed. One of the earliest references to DSLs is Landin (141). The large
problem space to which software systems may be applied has caused a pro-
liferation of such specialized languages. There has never been agreement on
whether a multitude of different languages should be supported and managed
by appropriate tools, or whether one should try to define languages like Ada or
C++ which can be used to cover all problems.

One solution to combine advantages of specialized languages and general
purpose languages is to provide programming languages which are extensi-
ble with domain-specific features. Research on extensible programming lan-
guages, as summarized by Standish (202), has led to insight both in techniques
to allow for extensibility and problems related with extensibility. Extensibil-
ity as language feature has often led to more maintenance problems than it has
solved. Altering the semantics of existing languages has been identified as espe-
cially harmful. Examples of successful extensible programming languages are
CLOSE (119), an object-oriented Lisp language, and Galaxy (22), an efficient
imperative language. In both cases, the extension features have been used to
bootstrap the implementation of the languages.

The general problem of tailoring a programming language to the application
domain forms part of language design research (230; 228; 96). With respect to
the design of DSLs, the discussions about how to decide on feature inclusions
are interesting. Knuth (121) argues that the inclusion and exclusion of features
should be based upon observed usage in addition to theoretical principles. This
idea has led to research on feature set usage analysis; a good summary can
be found in the text of Weicker (226). The large amount of available material
has even led to statistical investigations (196). The use of different DSLs with
comparable definitions may lead to new applications of such work.

An interesting paper looking at the use of DSLs for software engineering
is the work of Spinellis and Guruprasad (201). The paper investigates typical
software engineering problems, which can be nicely solved by introducing a
DSL and shows a list of representative examples. The most interesting exam-
ple deals with the use of about 10 DSLs for the development of a CAD system
in civil engineering (199). A software engineering discipline for which DSLs
are especially well suited is rapid application development. Boehm notes that
portions of certain application domains are sufficiently bounded and mature so
that you can simply use a specialized language to define the information pro-
cessing capability you want (26). He further highlights that individual users
with relatively little programming expertise can, in hours or days, generate an
application that once took several months to produce.

Looking at DSLs from a broader perspective, they are most naturally con-
sidered as part of domain engineering (165; 14; 166). The FAST process dis-
cussed earlier is an example for a domain engineering process focusing on DSL
design. The method is based on previous work about program families (176).
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FAST has been used by Weiss’s group at Lucent and now at Avaya for over
twenty different projects in software production. Experience reports and a de-
tailed description of the approach can be found in (16; 227; 15; 50). A related
approach being developed before FAST is the Reuse-driven Software Process
(or Synthesis) approach by Campbell (37; 36). This approach has been adopted
by many companies such as Rockwell International, Boeing, Lockheed-Martin,
and Thomson-CSF.

The programming language C++ has turned out to be a good platform for
the development of sophisticated domain-specific frameworks. Very often these
frameworks are of generic nature. Recent work (48; 51) shows how DSLs can
be used to make such frameworks accessible to domain experts, and how to
combine DSL based processes like FAST with generic frameworks.

Another very promising approach is the Sprint method (210; 47). It follows
the view that a DSL is a good parameterization for a domain-specific frame-
work. Having efficient C++ frameworks at hand, using denotational-semantics
for the language definition, one achieves both efficient implementations and
nice formal semantics.

Combining generic frameworks with DSLs is further pursued in the Jts ap-
proach (21). This approach provides a set of tools which allow mainstream lan-
guages to be extended with domain-specific constructs. The implementation of
existing language designs is directly reused and not generated from a language
definition. The DSL technique is used only for new constructs. This approach
is very realistic, since the description of existing languages and the generation
of tools for this languages is very hard.

Methods based on established compiler construction tools like Coctail (77)
and Eli (76) include full descriptions of existing languages and the generation
of a state-of-the-art compiler. Since construction of an efficient compiler is a
complex task, some of this complexity cannot be fully hidden, and the use of
such tools is not very easy. In (180) the complexity of Eli is managed by allow-
ing typical language features to be turned on and off, but this approach hides
those details which would be needed to access the definitions of the existing
languages. In general, all approaches for DSL implementation show that one
has to make a trade off between ease of use and quality of the generated code.

Focusing on the support tools, rather than the actual language compiler
or interpreter, the mid and the late-eighties saw a proliferation of different
programming environment generators, some of the best known among them
being the Synthesizer Generator (189), Centaur (35), Pan (19), Mentor (61),
PSG (18), IPSEN (66), Pecan (188), Mjolner (147), Yggdrasil (38), GIPE (91)
and ASDL (123). The current work on DSLs has renewed the interest in these
frameworks. For example, the ASF+SDF Meta-Environment (120; 213) has
been used to successfully implement several DSLs being used in the indus-
try (214; 216). Other work is concerned with generation of tools from attribute
grammar description of languages (93).

The flexibility associated with generating a language implementation from
its specification results in significantly improving the ease in maintenance,
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which is important in the DSL context (216). In contrast to previous work on
programming environment generators where the main focus was on the gener-
ation of a language-based editing system, current interests, however, are more
related to issues like generating efficient compilers, interpreters, debuggers, and
above all, ease in specification. Some of these tools can be generated only if the
runtime behavior of a program is contained in the language description. As a re-
sult of this the specification of dynamic semantics has gained more importance
than in the past.

While most existing applications in industry focus on small, declarative lan-
guages without dynamic semantics (44; 45), the abstract specification of dy-
namic semantics is an important topic of formal programming languages se-
mantics, such as Denotational Semantics (192), Structural Operational Seman-
tics (182), or Natural Semantics (110). Applying programming language se-
mantics tools allows for high level specification of languages. A discussion on
existing approaches for language definition formalisms tailored towards DSLs is
presented by Heering and Klint (92). The main problem with applying program-
ming language semantics approaches for DSLs is that they take advantage of a
number of mathematical techniques like rewriting systems, algebraic specifica-
tions, or category theory which are not known to a typical computer-science en-
gineer, let alone to the different kinds of domain engineers. Schmidt calls for a
“popular semantics” (191) combining the formality of existing approaches with
ease of use. Unfortunately many practical approaches cannot satisfy Schmidt’s
requirements for a “popular semantics” since they are not based on a calculus
allowing directly for correctness proofs. Among the classical programming lan-
guage semantics approaches the Action Semantics (158) approach has been spe-
cially tailored for combining a traditional language semantics style with ease of
use. The problem of modularity with respect to language descriptions has been
investigated by Mosses and Doh (159; 160; 60).

Besides the use of many mathematical concepts, another source of complex-
ity in classical programming language semantics approaches is their common
property to consider each parse tree as a syntactic entity. Two equivalent sub-
trees are represented as the same entity, and it is not possible to decorate the
parse tree with attributes or intermediate results, and control/data-flow graphs
must be encoded with tables or continuations. In newer approaches like (70; 80;
167; 183) each parse tree is formalized as a tree of objects, which can be deco-
rated with attribute values, intermediate results, and direct links to other objects,
representing the control/data flow edges. Poetzsch-Heffter defines occurrence
algebras (186) which allow to combine the newer approaches with traditional
techniques.

Since one of the main problems with DSLs is language implementation
costs, different implementation patterns have been investigated by Spinel-
lis (200). He discusses both the language extension and the language restric-
tion, or specialization pattern. The importance of language specialization for
safety has been recognized clearly by him, but the relation of progress to lan-
guage extensions is not discussed, since the focus of the paper is on language
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implementation rather than language design. We also propose to add a lan-
guage refinement pattern for security. The language composition pattern, which
we use repeatedly, is not mentioned in (200) since language combination is
not possible with most existing language implementation techniques. At this
point it is important to note that our composition notion is only informal and
based on empiric results from a certain class of applications. An example for a
state-based framework providing formal compositionality are Especs (177).

In this text we are not focusing on the problem of how to describe the syn-
tax of a language, but in practical applications of DSL design, the definition of
syntax is the first, and thus most critical task. Many successful DSL applica-
tions show very simple, sometimes line based syntax styles. Another approach
for avoiding syntax problems is to use XML for the representation of programs.
Cleaveland discusses different DSL scenarios with XML-syntax and explains
them carefully (45). An earlier, related approach are Lucent’s Jargons (163;
107; 161), and their support tool InfoWiz. InfoWiz is the major language imple-
mentation tool used in the FAST approach. Jargons build a family of DSLs with
similar syntax on top of a host language called FIT (162). The variable part of
a jargon is declared with WizTalk, a meta-language similar to XML.

For the reuse of existing GPL designs including the original syntax, a full
scale parser generator such as Lex/Yacc (143; 104) is needed. Already in 1988
the parser generator TXL (49) was proposed for the definition of dialects of
existing languages. In general the syntax problem is much harder if existing
languages should be reused. According to Jones at least 500 programming
languages and dialects are available in commercial form or in the public do-
main (106). Lämmel and Verhoef propose a sophisticated methodology to ef-
ficiently derive parsers by reusing existing grammars (138; 139). The syntax
problem is very hard, and at the same time very well investigated. We are there-
fore referring to the literature and concentrate mostly on semantics.

Our treatment of characteristic and synonym productions allows an auto-
matic generation of an abstract syntax tree (AST) from the concrete EBNF-
syntax, as defined by Odersky (167). This choice is on one hand restricting the
application of the current implementation to real-live programming languages
with simplified syntax only, but on the other hand it simplified both the imple-
mentation of the tool, and the specification work with the tool. If we would
have chosen a full fledged solution with completely independent treatment of
concrete and abstract syntax, as featured by most of the mentioned attribute
grammar and formal semantics systems, we would not have been able to de-
sign, implement, test, and validate a new programming language prototyping
environment from scratch.

One of the most successful language specification technique, Attribute
Grammars (122) is not discussed in detail here, but later in the related work
Sections 3.5 and 7.3. At this point we would like to mention only the work of
Mernik et al. on reusable and extendable language specifications (153; 154).
The authors discuss how to use object-oriented programming features to allow
for incremental programming language development. Adding such features to
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a specification environment is a very useful step, and the usability of many ap-
proaches, including the later introduced Montages approach, would benefit from
such features.



3
Montages

In the Chapter 2 we analyzed specific requirements for a language description
formalism. These requirements have been used as design principles for Mon-
tages, a meta-formalism for the specification of syntax, static analysis, static
semantics, and dynamic semantics of programming languages.

� An introduction to Montages is given in Section 3.1.

� After a short description of syntax related aspects in Section 3.2,

� in Section 3.3 it is shown how Montages define dynamic semantics by making
the syntax trees directly executable. To formalize executable trees, we introduce
the concept of Tree Finite State Machines (TFSM).

� The details of Montages related to lists, and non-local control flow are explained
in Section 3.4.

� Finally in Section 3.5 related approaches are discussed and the results of Mon-
tages related work are reviewed.
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3.1 Introduction

New languages are defined passing through a number of stages, from initial
design to routine use by programmers, forming the so–called programming lan-
guage life cycle. During this process, designers need to keep track of already
taken decisions and the design intentions must be conveyed to the implemen-
tors, and in turn to the users. Therefore, as for other software artifacts, accurate,
consistent and intellectually manageable descriptions are needed. So far, the
most comprehensive description of a programming language is likely its refer-
ence manual, which is mainly informal and open to misinterpretation. Formal
approaches are therefore sought.

Montages is a new proposal for such a formal approach, which can be seen
as a combination of EBNF, Attribute Grammars, Finite State Machines and a
simple imperative prototyping language called XASM. All of these techniques
except XASM are in some form part of the typical university curriculum of a
programmer and we hope that the resulting descriptions are thus easy to under-
stand by language designers, compiler constructors, programmers, as well as
domain engineers.

One of the main achievements of Montages is a new way to modularize the
design of languages. Our library of existing language designs contains small
specification modules, each of them capturing a language feature, such as scop-
ing, sub-typing, or recursive method calls. In the current state, the library con-
tains all features needed to assemble a modern object-oriented language such
as Java. Most interestingly we managed to achieve a high level of decoupling
among the modules. For instance we can treat exception handling indepen-
dently from method calls or break/continue semantics. The library of language
features is shown in part II of this thesis.

Figure 8 illustrates the relationships between language specification and lan-
guage instances, e.g. programs. On the left-hand side the syntax and semantics
related components of a language specification are shown, and on the right-
hand-side, the corresponding process on language instances is shown.
Syntax
Syntax of a programming language is specified by means of EBNF productions.
The EBNF productions define a context free grammar (42), and can be used to
generate a parser. In Section 3.2 we specify the exact kind of syntax rules, as
well as a canonical construction of compact abstract syntax trees (AST). The
corresponding phase 1 of Figure 8 refers to the transformation of programs into
ASTs.
Static Semantics
Static Semantics of programming languages is described by means of attribute
grammars (122) and predicate logic. All static information, such as static typ-
ing, constant propagation, or scope resolution can be specified with attribution
rules. The resulting attribute values of the AST are both used during dynamic
semantics, and for the evaluation of the static semantics condition of each con-
struct. In phase 2 the attribution rules are evaluated transforming the AST into
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an attributed AST. The static semantics is given by means of predicates associ-
ated with the EBNF productions, so called static semantics conditions. Only if
the static semantics condition of each node in the AST evaluates to true, the pro-
gram is considered valid, otherwise it is rejected and not considered as a valid
program of the specified language. In phase 3 the static semantics conditions
are checked in order to validate the AST. Since attribute grammars and pred-
icate logic are well-known formalisms, we do not explain them further in this
chapter. The exact type of attribute grammars used by Montages is described
formally in Section 7 and the formal description of static semantics definitions
are deferred to Section 8.3.
Dynamic Semantics
Dynamic semantics defines the execution behavior of a program. Montages
gives dynamic semantics by mapping each program of a described language
into a finite state machine, whose states are decorated with actions which are
fired, each time a state is visited. With other words, during execution control
flows along transitions whose firing conditions evaluate to true, and at every
state visited, the corresponding action rule is executed.

Instead of giving a transformation from programs into state machines,
we introduce a novel kind of state machines, called Tree Finite State Ma-
chines(TFSMs) (phase 4 of Figure 8). TFSMs are derived from an XML based
DSL formalism developed by the author (126). By means of TFSM we can
directly execute an AST, without transforming it into another structure. The ex-
ecution behavior of the program is then given by executing the TFSM (phase 5
of Figure 8). In short, the TFSM semantics of an AST is defined by giving a lo-
cal state machine for each EBNF production rule. The local state machines and
their embedding into the TFSM are given by means of Montages Visual Lan-
guage (MVL). MVL allows to define control flow both inside a local state ma-
chine, and between machines associated with different productions, both those
of the symbols denoting siblings in the AST1 and those of arbitrary symbols2.
Entry and exit points of a MVL machine are marked by the special states ”I”
(initial) and ”T” (terminal). Execution of a program starts by visiting the ”I”-
state of the AST’s root, and stops either by reaching the ”T”-state of the AST’s
root or by being terminated by the action rules. Many interesting programs are
not terminating at all. The introduction to TFSMs and their specification by
means of MVL are given in Section 3.3.
Vertical Structuring
Unlike most other language description formalisms, in Montages the phases are
not used to structure the specification horizontally in modules. Instead, for each
production rule of the grammar a specification module, called a “Montage”3

is given, containing The EBNF-definition, the attributions, the static semantics

1This corresponds to so called “structural” control flow into the sub-components of a lan-
guage construct.

2This corresponds to more liberal ways of control flow such as goto-constructs.
3Montage: The process or technique of producing a composite whole by combining several

different pictures, pieces of music, or other elements, so that they blend with or into one another.
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conditions, and the MVL-machine. Each Montage describes like this the seman-
tics of a production rule, and can be considered in some sense a “BNF extension
to semantics”(192; 191). A language definition consists of a set of Montages.

Examples
As an abstract example of a Montage containing all five parts take Figure 9. The
first part contains an EBNF rule defining the context-free syntax, here a syntac-
tic component � contains among others components � and �. The second part
is the attribution rules. Here an attribute � with parameters ��, � � �, �� is defined
by term ��. The third part, the static semantics condition is the predicate �. In
the fourth part we see a first example for MVL. It is an abstract example, con-
taining references to the � and � components, states �� of the �-component,
state �� of the �-component, and state �� of the �-Montage itself, as well as
transitions with firing conditions ��, ��, and ��. It is missing the specification
of the entry point ”I” and the exit point ”T”. The fifth part is the action rule 	
associated with state ��.

A more intuitive example of a Montage containing ”I” and ”T” states is
given in Figure 10. A while statement is specified, being different from a typi-
cal while by having a special action rule profile which is used to count how often
a program loops. In fact, it is a global counter that counts iterations of all loops.
The example is chosen since the state and action for profile makes the example
more interesting, but also to show how a well known language construct can
be slightly altered, for instance in order to support program profiling. The syn-
tax of the while-construct is well known from typical imperative programming
languages, such as Algol (164) or Pascal (231). The syntactic components are
an expression, and a list of statements. The attribute staticType is used to guar-
antee that the expression component is of type BooleanType. The well known
intention of the while-construct is to evaluate the expression, and then, if and
only if it evaluates to true, to execute the statement list. After the execution
of the statement list, the whole process is repeated. In our special version of
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EBNF

profile

S-Stm

Attribution Rules

Static Semantics Condition

MVL descriptions
(local finite state machines)

XASM transition rules

While ::= ”while” Expr ”do” Stm ”end”

attr staticType == S-Expr.staticType

condition staticType = BooleanType

I TS-Expr

S-Expr.value

@profile:
LoopCounter := LoopCounter + 1

LIST

Fig. 10: The while example

the while-statement, a counter LoopCounter is increased each time before the
statement-list is executed.

The local finite state machine specifies exactly this behavior. The control
enters the machine at the special, initial ”I” state. The ”I”-state leads immedi-
ately into the expression. We assume that the visit of the expression results in
its evaluation, and that the result of the evaluation can be accessed as attribute
value of the expression. After the evaluation of the expression, there are two
possibilities. Either the expression evaluated to true and therefore transition
with the firing condition S-Expr.value to the profile-state is chosen, or otherwise
the transition is to the special state ”T” is chosen. This second special state
marks the terminal or final state of the local machine.

Transitions like the one going to ”T”, having no firing condition are con-
sidered to fire in the default case. The default case is defined to happen, if no
other transition exists whose firing condition evaluates to true. The Montages
state machines first try to choose a transition with firing condition evaluating to
true, else they choose a default transition. If there are several transitions, one
is chosen nondeterministically. In our example, there are two transitions from
the expression, one with firing condition going to the profile state, and one with
default condition, going to the T state.

If the transition to profile is chosen, the profile state is visited next. The cor-
responding action rule increases the value of LoopCounter by one. Afterwards
the statement-list is visited. List elements are visited by default sequentially.
After the execution of the last statement in the list, the transition from the list to
the expression is chosen, and the expression is reevaluated.

In a program a language construct is typically used several times. For in-
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x = 0;
...

x < 100

fin()

...
y = 0;

y < x

y = x;

y > 0

x = x+1;

plotR(x,y);
...

y = y−1
end

...
plot(x,y);
z = 0;

y = y+1;

z < x* y

...
draw(x,y);

z = z+1

while_1 do

while_2

while_4

do

do

end

while_3 do

end

Fig. 11: Program

stance in the program shown in Figure 11 we see four instances of while, which
are numbered. The instances two and four are part of the statement-list of the
first instance, and instance three is part of the statement-list of the second in-
stance. This nesting is depicted as nested boxes.

An alternative, more traditional representation of the programs structure is
the syntax tree shown in Figure 12. In order to keep the representation compact,
we represent lists as dotted boxes, and show only the parent-child relation from
while-instances to their expression and statement siblings. The selectors S-Expr
and S-Sum are used to label these relations.

While the transitions in the While-Montage form an intuitive circle, repre-
senting loop behavior, it is less trivial to understand how this loop is applied to
a complete program. Therefore we show how each transition in the Montages
is instantiated in the syntax tree. The first transition in the While-Montage goes
from the ”I”-state to the expression. In the program it connects the last state-
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LIST

LIST

LIST

LIST

LIST

x = 0;
...

while_1 fin()

x < 100

...
y = 0; while_2 y = x; while_4 x = x+1;

S−Expr

S−Expr

...

...

y < x

plot(x,y);
z = 0; y = y+1;

z < x* y

draw(x,y);

S−Expr

S−Expr

S−Stm

y > 0

plotR(x,y);
...

while_3

z = z+1

y = y−1

S−Stm

S−Stm

S−Stm

Fig. 12: Parse tree

ment before a while loop with the expression-component of a while loop. In
Figure 13 the corresponding transitions are shown for all four instances of the
while, being numbered accordingly. Correspondingly the transition from the
expression-component to the profile state connects the expression of a while-
statement with the first following statement, as depicted in Figure 14. The ”I”
and ”T” states are thus used to plug the state machine of each while-loop into
the state machine of the program.

Inside a while-statement, a transition with firing condition src.value goes
from the expression to the profile state and a default transition links the profile-
state to the statement-list. For each instance of a while the profile-state and the
connecting transitions are drawn in Figure 15. Finally in Figure 16 the transi-
tion from the statement-list back to the expression is visualized. The complete
transition graph is shown in Figure 17. The presented state machine is executed
starting with the first statement in the topmost list, following lists sequentially if
there are now explicit transitions, otherwise following the given transitions. In
this way the program has been transformed in a state machine structure over the
parse tree which is directly executable. Starting with the first statement, the vari-
able 
 is set to �. Then the transition leads us to the evaluation of 
 � ���. From
this program fragment, two possible transitions can be chosen. One, assuming
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LIST

LIST

LIST

LIST

LIST

3

4

2

1

x = 0;
...

while_1 fin()

x < 100

...
y = 0; while_2 y = x; while_4 x = x+1;

S−Expr

S−Expr

...

...

y < x

plot(x,y);
z = 0; y = y+1;

z < x* y

draw(x,y);

S−Expr

S−Expr

S−Stm

y > 0

plotR(x,y);
...

while_3

z = z+1

y = y−1

S−Stm

S−Stm

S−Stm

Fig. 13: Parse tree with I-arrows

that the value of the expression evaluates to true, leads to the first profile-state,
the second leads back to the topmost list of statements. Since 
 � �, the fist
transition to profile is chosen, and the counter LoopCounter is increased by one.
Then the list of statements within the first while instance is visited. After the
update of � to �, a transition leads us to the expression-component � � 
 of the
second while component. Like this, the complete program can be executed.

The main part of this chapter contains a more detailed overview of how
Montages specify execution behavior of programs by making the parse tree an
executable state machine. In Section 3.3 we give an intuitive definition of the
execution behavior related aspects of Montages. It is shown how the MVL de-
scriptions given for each language construct and the nodes of the AST define to-
gether the state-space and transitions of a special kind of state machines, called
Tree Finite State Machines (TFSMs). In these machines, the states are pairs of
MVL-states and AST-nodes. Each MVL-transition specifies TFSM-transitions
for each AST-node associated with the Montage it is contained in. The defi-
nition of dynamic semantics by means of TFSMs is given in Section 3.3. In
Section 3.4 the TFSM model is used to give the definitions of list processing
and to explain how non-local transitions are defined in Montages. In order to
make these descriptions more precise than the previous while-example, we start
with a closer look on syntax definitions and the construction of the AST.
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LIST

LIST

LIST
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x = 0;
...

while_1 fin()

x < 100

...
y = 0; while_2 y = x; while_4 x = x+1;

S−Expr

S−Expr

...

...
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S−Stm

S−Stm
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Fig. 14: Parse tree with T-arrows
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x = 0;
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while_1 fin()
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...
y = 0; while_2 y = x; while_4 x = x+1;

S−Expr

S−Expr
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y < x

plot(x,y);
z = 0; y = y+1;

z < x* y
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y > 0

plotR(x,y);
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S−Stm

S−Stm

Fig. 15: Parse tree with profile action and arrows
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...
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Fig. 16: Parse tree with the back arrow

LIST

LIST

LIST

LIST

LIST

profile

src.val

profile

src.val
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x = 0;
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while_1 fin()
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...
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S−Expr

...

...
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Fig. 17: Parse tree with all arrows
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3.2 From Syntax to Abstract Syntax Trees (ASTs)
In this section, the transformation from a program into an AST is described.
This also forms the basis for classifying the nodes with characteristic and syn-
onym universes and for navigating trough the AST using selector functions.

3.2.1 EBNF rules

The syntax of the specified language is given by the collection of all the EBNF
rules defined in the different Montages. Following the approach of Uhl (212),
we assume that the rules are given in one of the two following forms:

� ��� � �  

� � � � � � �

The first form declares that � contains the components �, �, , and again  in
that order whereas the second form defines that � has exactly one of the alter-
native components � , �, or � . Rules of the first form are called characteristic
productions4 and rules of the second form are called synonym productions. It
is then possible to guarantee that each non-terminal symbol appears in exactly
one rule as the left-hand-side. Non-terminal symbols appearing on the left of the
first form of rules are called characteristic symbols and those appearing on the
left of synonym productions are called synonym symbols. EBNF also features
lists and options which may be used in right-hand-sides of productions and are
going to be introduced in Section 3.4.

3.2.2 Abstract syntax trees

The treatment of characteristic and synonym productions described above al-
lows an automatic generation of an abstract syntax tree (AST) from the concrete
EBNF-syntax, as defined by Odersky (167). The resulting ASTs are relatively
compact. The idea for making the tree compact is to create nodes only for
parsed characteristic symbols, and to represent synonym symbols by adding ad-
ditional labels. Each node is thus labeled by exactly one characteristic symbol
and zero or more synonym symbols. Labeling of nodes is done by declaring a
set or universe for each symbol. Adding a label � to a node � is done by putting
� into universe �. As a consequence, the characteristic universes partition the
universe of AST nodes. For each characteristic universe � a Montage is given,
specifying syntax and semantics of � ’s elements. Given a node, the associated
Montage is referred to as ”its Montage”, and given a Montage, the elements of
the corresponding characteristic universe are called the ”instances of the Mon-
tage”.

4In the original publications (212; 167) the name of ”characteristic production” is ”generator
production”, since only these productions generate a new node in the AST. We have chosen the
name characteristic production, because they can be used to characterize the nodes as described
above.
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Fig. 18: Instances of universe �, definitions of selectors S-B, S-C, S1-D, S2-D

The so called selector functions can be used to navigate through the AST.
Selector functions are defined as follows. Each node � in the AST has been
generated by some characteristic rule

� ��� ���� � � � ��

For each symbol �� appearing only once on the right-hand-side of the rule, the
selector function

S-Z� � ����� ����

maps � to its unique ��-sibling. For each symbol �� appearing more then once,
the selector functions

S1-Z� � ����� ����

S2-Z� � ����� ����

� � � � � �

Sm-Z� � ����� ����

map � to its first, second, ..., m-th ��-sibling. Given for instance the rule A :=
B C D D, Figure 18 visualizes the situation for two � instances �� and ��.

In order to allow to traverse a tree in arbitrary ways we define in addition
the function Parent which links each node with its parent-node in the tree.
Example
As a running example we give a small language �. For the moment, we can
abstract from the meaning of � programs and consider them as examples for
the construction of ASTs. The start symbol of the grammar is Expr, and the
production rules are

Gram. 1: Expr = Sum � Factor
Sum ::= Factor “+” Expr
Factor = Variable � Constant
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Digits

Name = 2
4

Parent

Ident

Name = "x"
7

Parent

S−Factor S−Expr

S−ExprS−Factor
S−Digits

Expr

Factor Expr

Sum

Expr

Constant
Factor

Constant

S−Ident
S−Digits

Digits

Name = 1

Sum

Factor

Variable

2 3

1

5

8

6

Parent Parent

Parent

ParentParent

Fig. 19: The abstract syntax tree for 2 + x + 1

Variable ::= Ident
Constant ::= Digits

The following term is an �-program:

2 + x + 1

As a result of the generation of the AST we obtain the structure represented
in Figure 19. The labels indicate to which universes a node belongs, and the
definitions of the selector functions are visualized as edges. The leaf nodes
contain the definition of the attribute Name, which in turn contains the micro-
syntax of the parsed Digits- and Ident-values. The function Parent is visualized
with the edges going from the leaves towards the root of the tree.



3.3. Dynamic Semantics with Tree Finite State Machines (TFSMs) 51

3.3 Dynamic Semantics with Tree Finite State Machines
(TFSMs)

In Montages, dynamic semantics is given by Tree Finite State Machines (TF-
SMs), a special kind of state machines which we deviced for allowing AST’s
being executed without transforming them. The states of a TFSM are tuples
consisting of an AST-node, and a state of the local state machine given for each
node by means of its Montage. Execution of programs can be understood and
visualized by highlighting the current node CNode in the AST and the current
state CState in the corresponding Montage. If the state (CNode, CState) is vis-
ited, the action rule associated with CState is executed, using attributes and
fields of CNode to store and retrieve intermediate results.
Notational Conventions
As mentioned, a language definition consists of a set of Montages, which de-
fines a mapping from EBNF productions to local state machines, and indirectly
from AST nodes to local state machines. Given these mappings, the states of
a TFSM are tuples consisting of an AST-node and a state of its associated lo-
cal state-machine. Throughout this text we are saying that a TFSM is “in state
S of node N”, rather than the more precise formulation in the state being the
tuple formed by state S, node N. Further we use the notion “state of a node’s
Montage”, rather than the more precise, but lengthy formulation “state of the
local state machine associate with a node via the Montage associate with the
EBNF production which created the node. The local state machines and their
embedding into the TFSM are given by means of Montages Visual Language
(MVL). in the descriptions we will use the terms “local (finite) state machine”
and “MVL-machine” to denote the machines associated with AST nodes, and
we will use the terms “(finite) state machine” and “TFSM” for the global ma-
chine representing the dynamic semantics of an AST.
TFSM transitions
Transitions in TFSMs change both the current node CNode and the current state
CState. A TFSM-transition � is defined to have five components, the source
node sn, the source state ss, the condition �, the target node tn, and the target
state ts.

� � ���� ��� �� ��� ���

In the condition expression �, the source node sn can be referred to as bound
variable src, and the target node tn as bound variable trg. Typically conditions
depend on attributes of the source and/or target node. The source state and target
state cannot be referred to in the condition. A transition can be activated if its
source node sn is equal to the current node CNode, its source state ss is equal to
the current state CState, and if its condition � evaluates to true; if a transition is
activated, in the next state the current node CNode is equals the target node tn
and the current state CState equals the target state ts.
Montages Visual Language (MVL)
The state machine of a Montages is given in Montages Visual Language(MVL).
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Transitions in MVL are specifications for one or many TFSM-transitions. MVL
defines how MVL-transitions of the Montages are instantiated with TFSM tran-
sitions. In Section 3.3.2 we give the corresponding definitions in form of the
algorithm InstantiateTransition. Later in Section 3.3.3 this algorithm is used to
construct a TFSM, in Section 3.3.4 the simplification of TFSMs is discussed,
and finally in Section 3.3.5 their execution is described. More advanced fea-
tures, allowing to specify families of transitions by means of references to lists
and sets of nodes are introduced later in Section 3.4.

Isomorphism between “flat” view and TFSM view
In the following examples, as already in the while-example (Figures 11, 12, 13,
14, 15, 16, and 17), the MVL-machines are drawn repeatedly for each AST-node
and therefore the states of these figures corresponds directly to TFSM-states.
This visualization is called the “flat” view on TFSM, and is mathematically
isomorphic with the TFSM model. In Figure 20 the isomorphism between the
“flat” view and the TFSM view is illustrated. On both sides of the figure, the
same AST with three nodes is shown, a parent node, and two sibblings. We
assume that both sibblings are produced by the same EBNF rules, and conse-
quently they are associated with the same MVL-machine. In the given example,
this machine consists of exactly one MVL-state labeled a and a transition sourc-
ing in a. The target of the transition is not specified in the current context. On
the left-hand-side the “flat” intuition is shown, where the MVL machine is in-
stanciated for each corresponding AST node. As a consequence, there are two
instances of the same state a, and the transitions sourcing in a are departing
from these instances. On the right hand side, the corresponding TFSM view
is shown. The MVL machine is existing only once, and not instanciated. The
states of the TFSM are not the states of the MVL machine, but tuples consisting
of an AST node, and an MVL state of the corresponding machine. In our figure
there are two such tuples, visualized as dotted double-headed arrows, labeled
� � �. The MVL transitions sourcing in the MVL-state � correspond now to the
two TFSM transitions sourcing in the TFSM tuple-states.

a a
a

(_,_) (_,_)

Fig. 20: Isomorphism between “flat” view and TFSM view
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3.3.1 Example Language �

Throughout this Section we use the previously introduced examples A, While,
and the Montages presented here for the language � whose grammar has been
introduced in Section 3.2. We show now informally how the MVL-state ma-
chines of the Montages together with the AST can be used to execute a program
by intrepreting it as a TFSM. The same example will be used in the following
sections as examples for the formal TFSM definitions.

The programs of language � are arithmetic expressions which may have side
effects and are specified to be evaluated from left to right. The atomic factors
are constants and variables of type integer.

The Montage for Sum is shown in Figure 21. The topmost part of this Mon-
tage is the production rule defining the context-free syntax consisting of a Fac-
tor and an Expr right-hand-side symbol. The second part defines the states and
transitions of this construct by means of a MVL description. All transitions are
labeled with the empty firing condition. The control enters the state machine at
the ”I”-state, visits the state machine corresponding to the Factor-sibling, then
the state machine corresponding to the Expr-sibling and finally the ”add”-state
is visited, resulting in the execution of its action rule. The XASM action rule,
which is given in the third part accesses the value-attributes of the siblings of a
Sum-instance, and assigns their sum to the value-attribute of the Sum-instance.
Finally, the ”T”-state is visited being the final state of the Sum state machine.

The Montages Variable and Constant are shown in Figure 22. Both of them
contain exactly one state, the Variable-Montage’s state triggers a rule reading
the value of the referenced variable from the CurrentStore, and the constant
Montage’s state triggers a rule reading the constant value. Both actions set the
value-attribute to the corresponding result.

In Figure 23 we represents the MVL sections of these Montages as they
are associated with the corresponding nodes of the AST we showed already in
Figure 19. Visiting a state � in Figure 23, the current state CState is state � in
the corresponding Montage, and the current node CNode is the node associated
by the dotted line.

Based on this “flat” representation, the boxes in the state machines can be re-
placed with the state machine corresponding to the sibling referenced by the box

S-ExprS-Factor addI T

EBNF

@add:
value := S-Factor.value + S-Expr.value

Sum ::= Factor ”+” Expr

MVL description
(local state machine)

XASM transition rule

Fig. 21: Montage components.
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Variable ::= Ident

lookupI T

@lookup
value := CurrentStore(S-Ident.Name)

Constant ::= Digits

setValueI T

@setValue:
value := S-Digits.Name

Fig. 22: The Montages for the language � .

1

2 3

4
5 6

7 8

setValue TI

S−Factor TS−Expr addI

TsetValueI

TlookUpI

S−Factor TS−Expr addI

S−Factor S−ExprS−Digits

S−DigitsS−Ident

S−Factor S−Expr

Fig. 23: The finite state machines belonging to the nodes.
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label. The S-Expr box of the state machine associated with node 1 in Figure 23
is for instance replaced by the state machine associated with node 3, being the
S-Expr sibling of node 1. In Figure 24 the resulting hierarchical state machine
is represented. The AST-nodes associated with the states are here directly sur-
rounding the states. In Figure 24 the hierarchy of the AST is visualized as
nested boxes, labeled by the selector functions. This visualization corresponds
to a MVL-description of the complete program.

Tadd

add

3

6

T

S−Expr

I

5

setValue
TI

S−Expr

S−Factor

I lookUp T

1

I
I setValue T

2S−Factor

Fig. 24: The constructed hierarchical finite state machine.

We can even go one step further, transforming the hierarchical state machine
into a flat one. Since we know that execution entry and exit points for each
language construct are marked by the special states ”I” and ”T”, we replace
each transition whose target is a box representing an AST node �, by a transition
whose target is (n, ”I”), and correspondingly we replace each transition whose
source is a box representing an AST node �, by a transition whose source is
(n, ”T”). The resulting visualization is given in Figure 25. Each oval, I, and T
represents directly a state in the TFSM, whose node component is given by the
dotted arrow into the AST, and whose state component is given by the label.

Since the ”I” and ”T” states are not associated with action rules, and since
all transitions are labeled by the empty condition, the state machine of Figure 25
can be simplified into the one shown in Figure 26.
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S−Factor S−Expr

1

2 3

5 6

setValue add add

S−Expr

setValue lookUp T

S−Factor

I

I

I T I T I T T

Fig. 25: The flat finite state machine and its relation to the AST.

S−Factor S−Expr

1

2 3

5 6

setValue add add

S−Factor S−Expr

setValue lookUpI T

Fig. 26: The simplified finite state machine and its relation to the AST.
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At this point, we can understand the dynamic semantics of the program by
executing the state machine. First, the initial state of the root node is visited.
Then the following steps are repeated.

1. The action rule associated with the visited state is executed.

2. A control arrow whose firing condition evaluates to true is chosen, and the state
it points to is visited next. If there is more than one possible next state, one
of them is chosen nondeterministically. If there is no arrow with a predicate
evaluating to true, an arrow with the default-condition is chosen. If there is no
arrow with the default-condition either, the same state is visited again.

3. Goto step 1.

Coming back to our example, assuming that CurrentStore maps 
 to 4, the
execution of the state machine in Figure 26 sets the value of node two to the
constant 2, sets the value of node five to 4, sets the value of node six to 1, sets
the value of node three to the sum of 4 and 1, and finally sets the value of node
one to the sum of 2 and 5.

3.3.2 Transition Specifications and Paths

Montages define a TFSM for each program of the specified language by giving
the context-free grammar and a local state machine for each characteristic sym-
bol in the grammar. The local state machine, given by means of MVL, consists
of a set of states, associated with action rules, and a set of MVL-transitions.

As mentioned, the states of the TFSM range over the Cartesian product of
AST-nodes and MVL-states, and transitions have five components, the source,
consisting of a source AST-node and a source MVL-state, the condition, and
the target, consisting of a target node, and a target state. The MVL-transitions
are considered to be transition specifications which are instantiated as TFSM-
transitions. In this refined view an MVL-transition specification has three com-
ponents, the source path, the condition, and the target path. The MVL visu-
alization of a transition specification is an arrow from the visualization of the
source path to the visualization of the target path. The condition of the transition
specification is used as the label of the arrow.

The MVL-elements for visualizing paths are boxes and ovals. A state of the
MVL-machine is a special case of a path. With respect to an instance � of the
Montages containing the MVL-elements, their semantics can be described as
follows:

� The oval nodes are the states. The states are labeled with an attribute. It serves
to identify the state, for example if it is the target of a state transition or if it is
associated with an action rule. If a state is visited, the associated action rule is
executed, such that intermediate results are saved and retrieved as attributes of
� and its siblings.
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� There are two special kind of states denoting the entry and exit points of the
MVL state machine. The initial state � , represented by the letter ”I”, denotes
the first state visited, if the machine is entered. The terminal state ”T” denotes
the last state visited.

� The rectangular nodes or boxes represent siblings of �. They are labeled with
the corresponding selector function. Boxes may contain other boxes and ovals.
Boxes contained in other boxes represent siblings of siblings. Ovals in boxes
represent the corresponding state of the node represented by the surrounding
box.

Later in Section 3.4 we will introduce special boxes referencing all elements in
a lists of siblings as well as boxes referencing all elements of characteristic and
synonym universes.

A path can be represented visually by means of nested boxes and ovals,
as discribed above, or textually. The textual representation of a path is a
term which is recursively built up by the following operators siblingPath and
statePath.

� siblingPath(Ident, Int, Path)

The arguments of a siblingPath are Ident, the symbol of the sibling, Int, its
occurrence, and Path, the relative path from the denoted sibling to the target
of the full path. The relative path is never empty, since the target of a full
path needs to denote a state. Occurrence undef is used for unique symbols in
the right-hand-side of a grammar rule. The paths siblingPath(”A”, undef, N),
siblingPath(”B”, 2, N), siblingPath(”C”, undef, siblingPath(”D”, undef, N)) are
visualized as follows. The box N stands for an arbitrary relative path.

siblingPath(”A”, undef, N) siblingPath(”B”, 2, N)

siblingPath(”C”, undef, siblingPath(”D”, undef, N))

S-A

N
S2-B

N

S-E

S-C

N

� statePath(Ident)

The argument of a state path is the name Ident of the state. The paths
statePath(”e”), statePath(”I”), statePath(”T”), siblingPath(”A”, undef, statePath(”f”)),
siblingPath(”B”, 2, statePath(”g”)), siblingPath(”C”, undef, siblingPath(”D”,
undef, statePath(”h”))) are visualized as follows.
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statePath(”e”)

siblingPath(”A”, undef, statePath(”f”))

statePath(”I”)

siblingPath(”C”, undef, siblingPath(”D”, undef, statePath(”h”)))

siblingPath(”B”, 2, statePath(”g”))

statePath(”T”)

e

S-A

f

I

S-E

S-C

h

S2-B

g

T

A special short-hand notation is allowed in the visual notation. If the source of
a transition is not a state, but a box referencing a node, the transition is assumed
to source in the ”T”-state of the corresponding node. Correspondingly, if the
target of a transition is a box, the transition is assumed to target the ”I” state of
the referenced node. The short-hand notation is allowed, since the ”I”-state is
considered as a collector of all transitions incoming to a node, and the ”T”-state
is considered as a starting point of all transitions leaving a node.

According to the given definitions, we can now represent the MVL-
transitions in the abstract A-Montage (Figure 9) as the following triples.

Term 1: (siblingPath("B", undef, statePath("s1")),
C1,
siblingPath("C", undef, statePath("s2")))

(siblingPath("C", undef, statePath("T")),
C2,
statePath("s3"))

(statePath("s3"),
C3,
siblingPath("B", undef", statePath("I")))

The source of the C2 transition, being a box, has been completed in the
textual representation with state ”T”, whereas the target of the C3 transition
has been completed with state ”I”. Another example is given by the following
textual representations of the transitions in the While Montage (Figure 10).

Term 2: (statePath("I"),
default,
siblingPath("Expr", undef", statePath("I")))

(siblingPath("Expr", undef, statePath("T")),
src.value,
statePath("profile"))
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(siblingPath("Expr", undef, statePath("T")),
default,
statePath("T"))

(statePath("profile"),
default,
siblingPath("Stm", undef, statePath("LIST")))

(siblingPath("Stm", undef, statePath("LIST")),
default,
siblingPath("Expr", undef", statePath("I")))

Please note, that the special treatment of lists, together with the state ”LIST”
will be discussed later in Section 3.4.

3.3.3 Construction of the TFSM

The construction of a TFSM for a given AST is done by instantiating for each
instance of a Montage all transition specifications given in its MVL state ma-
chine.

The instantiation of the MVL-transition specifications with TFSM transi-
tions is done by the algorithm InstantiateTransition. Given a node � of the
AST, and a transition specification �

� � �SourcePath�Condition� TargetPath�

of the corresponding Montage, � is instantiated as a TFSM transition �� which is
constructed as follows.

The four global variables SourceNode0, SourcePath0, TargetNode0, and
TargetPath0 are initialized such that SourceNode0 and TargetNode0 equal node
�, SourcePath0 is initialized with the SourcePath parameter of �, and Target-
Path0 is initialized with the TargetPath parameter of �.

SourceNode0 � �

SourcePath0 � SourcePath

TargetNode0 � �

TargetPath0 � TargetPath

At each step, InstantiateTransition checks, whether SourcePath0 (or Tar-
getPath0) is matching a term like siblingPath(Symbol, Occ, Path0). If so, the
corresponding selector function for Symbol is applied to the SourceNode0 (re-
spectively TargetNode0) resulting in node ��; the corresponding global vari-
able SourceNode0 (respectively TargetNode0) is updated with the new node ��

and the global variable SourcePath0 (respectively TargetPath0) is updated with
Path0. In the following pseudo-code "=˜" is used to denote ”matches a term
like”, corresponding to pattern matching in functional languages. The pattern
variables are marked with a &-sign.

if SourcePath0 =˜ siblingPath(&Symbol, &Occ, &Path0) then
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let n’ = (selector function (&Symbol, &Occ)
applied to SourceNode0) in

SourceNode0 := n’
SourcePath0 := &Path0

if TargetPath0 =˜ siblingPath(&Symbol, &Occ, &Path0) then
let n’ = (selector function (&Symbol, &Occ)

applied to TargetNode0) in
TargetNode0 := n’
TargetPath0 := &Path0

After a number of steps, SourcePath0 matches a term like statePath(&srcS)
and TargetPath0 matches a term like statePath(&trgS). At this point Instantiate-
Transition generates the TFSM transition �� defined as follows.

�� � �SourceNode0�&srcS�Condition� TargetNode0�&trgS�

Coming back to our running example, the transition specifications of the
Montages Sum can be textually represented as follows.

Term 3: Montage Sum:
(statePath("I"),
true,
siblingPath("Factor", undef, statePath("I")))

(siblingPath("Factor", undef, statePath("T")),
true,
siblingPath("Expr", undef, statePath("I")))

(siblingPath("Factor", undef, statePath("T")),
true,
statePath("add"))

(statePath("add"),
true,
statePath("T"))

Transitions to and from boxes are directly represented as arrows to or from
the corresponding I or T state. The corresponding textual representation of the
transition specifications in Montages Variable and Constant is given below.

Term 4: Montage Variable:
(statePath("I"),
true,
statePath("lookup"))

(statePath("lookup"),
true,
statePath("T"))

Montage Constant:
(statePath("I"),
true,
statePath("setValue"))
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(statePath("setValue"),
true,
statePath("T"))

The instantiation of the transition specifications for all nodes ��� ��� � � � � �� in
AST of the program example 2 + x + 1 results into the following list of TFSM
transitions.

(n1, "I", true, n2, "I")
(n2, "I", true, n2, "setValue")
(n2, "setValue", true, n2, "T")
(n2, "T", true, n3, "I")
(n3, "I", true, n5, "I")
(n5, "I", true, n5, "lookup")
(n5, "lookup", true, n5, "T")
(n5, "T", true, n6, "I")
(n6, "I", true, n6, "setValue")
(n6, "T", true, n3, "add")
(n3, "add", true, n3, "T")
(n3, "T", true, n1, "add")
(n1, "add", true, n1, "T")

In fact, these transitions correspond exactly to the transitions in Figure 25, tak-
ing as source and target of a transition the combination of the states together
with the nodes referenced by the dotted arrows.
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3.3.4 Simplification of TFSM

The simplification resulting in Figure 26 can now be described as follows. If
there exists two transitions

�� � ���� ��� ��� ��� ���

�� � ���� ��� ��� ��� ���

such that �� equals ”I” or ”T”, then �� and �� can be replaced by transition

�� � ���� ��� �������� ��� ���

This simplification algorithm only works if there is exactly one ”I” and one
”T” arrow in a Montage and if ”I” and ”T” states are not associated with ac-
tions. Otherwise a more general simplification algorithm removes all states not
having an action associate and combines incoming and outgoing transitions. In
the upper part of Figure 27 we see a state/node pair (s, n) of a TFSM which
is a candidate for removal from the TFSM transition graph. If the state � in
the MVL-graph of the Montage associated with node � is not associated with
an action rule, the ��� �� pair can be removed, and the incoming and outgoing
transitions can be combined as visualized in the lower part of Figure 27.

after simplification:

before simplification:

��� ��

���� ���
��

��

��

����� �
�
��

��
�

��
�

��
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�
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����� �
�
��

�� � �
�
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�

�� � ��
	

���� ���

���� ���

����� �
�
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����� �
�
��

...

... ...... ...

... ...

Fig. 27: A TFSM fragment before and after simplification
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3.3.5 Execution of TFSMs

Execution of the program is now done by an algorithm Execute, which has two
global variables, CNode, the current node, and CState, the current state. At the
beginning, CNode is the root of the AST, and CState is ”I”.

CNode � root of AST

CState � ���

The core of Execute has two steps, which are repeated until the machine ter-
minates. Termination criteria depend on the environment of the machine, e.g.
whether the environment can change part of the machine’s state.

1. In the first step, the action rule of the state CState in the MVL state machine
corresponding to CNode is executed.

2. In the second step, a TFSM transition

�CNode�CState� �� ��� ���

is chosen, whose source node equals CNode, whose source state equals CState,
and whose condition � evaluates to true. If such a transition exists, CNode is set
to tn and CState is set to ts.

3. Then repeat the process, starting at step 1.

This general execution algorithm corresponds to the process described at the
end of the example given in Section 3.3.1. This “core” algorithm is going to be
formalized later in Section 6.1, in Section 6.4 it will serve as example for the
new Montages tool architecture, and finally in Section 8.4.6 it is used as part of
the formal semantics of the Montages formalism itself.
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3.4 Lists, Options, and non-local Transitions
We have omitted up to now the treatment of lists and options in the EBNF rules,
as well as non-local transition specifications in MVL. Both lists and non-local
transition specifications can be used to specify a transition which corresponds to
a set of TFSM transition instances, rather than a single instance. In the presence
of lists and non-local transitions, the algorithm InstantiateTransitions generates
from one transition specification in MVL a set of transitions in a TFSM.

In Section 3.4.1 we show the EBNF features to specify lists and options,
as well as the way how the AST is constructed for such grammars, and how
MVL-transitions from and to lists are instantiated in a TFSM with a family of
transitions. The visual and textual representation of non-local transitions by
means of so called global paths as well as the instantiation of transition specifi-
cations involving such paths is given in Section 3.4.3. In Section 3.4.2 we give
the full specification of the algorithm instantiating the transitions by combining
the definitions from Section 3.4.3 and Section 3.3.3. Finally in Section 3.4.5 we
use a goto-language as example how a family of TFSM transition is generated
for each transition specification in MVL.

3.4.1 List and Options
In characteristic rules, the right-hand-side symbols can be in curly repetition
brackets, denoting a list of zero to many instances, or in square option brack-
ets, denoting an optional instance. An optional B instance can be specified as
follows:

A ::= ... [B] ...

A possibly empty list of B instances has the following form

A ::= ... {B} ...

A comma separated list of B instances with at least one member can be specified
as follows.

A ::= ... B {"," B} ...

The same kind of list with zero or more members can be given using a combi-
nation of curly and square brackets.

A ::= ... [B {"," B}] ...

The mapping into ASTs is defined such, that each of the above right hand
sides is mapped into a list of B instances. Further the EBNF list

{ C D }

parses sequences of C followed by D, but represents them as a list of C’s and a
list of D’s, which are accessible with the corresponding selector functions. For
instance a production

L ::= { C D }

parsing ”���������” results in two lists,
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��

��

�� LIST

S-E

a

LIST

S-F

b

Fig. 28: Examples for MVL-Transitions connecting lists.

[C1, C2, C3], [D1, D2, D3]

which are accessible via selectors S-C and S-D5.
The construction of the AST for lists and options works as follows. From the

list or option operators the production creates an ordered sequence of zero, one,
or more instances of the respective symbol enclosed in the operator is returned.
This sequence is then transformed into an AST representation as follows. If it
is

� of length 0, it is represented in the AST with a specially created node, which
is an instance of universe NoNode. Consequently in the AST it cannot be seen
whether an instance of NoNode has been generated by an option operator, or by
a list operator.

� of length 1, it is represented in the AST as the node representing the unique
member. In the AST we can therefore not see any difference between a list
of length one, an instance produced from an optional symbol, or an instance
produced from a normal symbol.

� of length 2 or longer, it is not transformed and represents itself in the AST.

There are two ways to refer to a list with a path. The first possibility is
to refer to the elements of the list. In the first case, a transition specification
from or to a path denoting a list of nodes is instantiated with a family of TFSM
transitions, one for each element in the node.

Besides referring to elements of a list, it is possible to refer to the list it-
self, by using the LIST-box as source or target of a transition. In the textual
representation the references to lists is represented by a special state LIST.

As example we show in Figure 28 MVL-transitions between lists. The visual
representation of paths denoting lists is the visual representation of the denoted
element, surrounded by a special box labeled with LIST which visualized the
list itself. Such list boxes can only contain a single symbol, and represent a
list of instances of that symbol, as described above. The visualization of the
involved paths relate to two lists, one of E-instances, and one of F-instances.
As mentioned above, they can occur on the right-hand-side of the characteristic

5A more flexible treatment of lists and options in Montages has been elaborated by Den-
zler (55)
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production in any of the following forms, not changing anything in their visu-
alization in MVL or representation in the AST. The list of possibilities is not
complete.

� ... �E� ... �F� ...

� ... �F� ... �E� ...

� ... �E F� ...

� ... E ”,” �E� ... F ”,” �F� ...

� ... [E ”,” �E�] ... [F ”,” �F�] ...

� ... E F ”,” �E F� ...

The ��-transition in the figure connects the LIST-boxes. It specifies one TFSM
transition, from the ”T”-state of the last element in the E-List to the ”I”-state
of the first element in the F-list. The ��-transition connects the actual elements
of the lists. It specifies a family of transitions, connecting the ”T”-state of each
E-list element with the ”I”-state of each F-list element. Finally, the ��-transition
specification connects the ”a”-state of each E-list element with the ”b”-state of
each F-list element.

In the textual representation the references to lists is represented by a special
state LIST resulting in the following textual representation of the three MVL-
transitions.

Term 5: (siblingPath("E", undef, statePath("LIST")),
c1,
siblingPath("F", undef, statePath("LIST")))

(siblingPath("E", undef, statePath("T")),
c1,
siblingPath("F", undef, statePath("I")))

(siblingPath("E", undef, statePath("a")),
c1,
siblingPath("F", undef, statePath("b")))

3.4.2 Extension of InstantiateTransitions
The instantiation of transitions involving lists and options can be done by re-
fining the algorithm InstantiateTransition of Section 3.3.3 with two cases, one
for source nodes being lists and one for target nodes being lists. In both cases
the algorithm InstantiateTransition is called recursively for each element in the
list. In order to make the definition clearer, we assume that the initial values
of the global variables are given as four parameters SourceNode, SourceState,
TargetNode, and TargetState. The header of the algorithm is thus

algorithm InstantiateTransition(SourceNode,
SourcePath,
TargetNode,
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TargetPath)

variables SourceNode0 <- SourceNode
SourcePath0 <- SourcePath
TargetNode0 <- TargetNode
TargetPath0 <- TargetPath

loop
...

and in the loop part, the source and target paths are simplified as described at
the end of Section 3.3. The new cases for list processing are given as follows.

if SourceNode0 = list L with more than 2 elements then
for all elements l in list L

call InstantiateTransition(l, SourcePath0,
TargetNode0, TargetPath0)

if TargetNode0 = list L with more than 2 elements then
for all elements l in list L

call InstantiateTransition(SourceNode0, SourcePath0,
l, TargetPath0)

The processing of the special LIST-states by the algorithm InstantiateTran-
sition has to handle the special cases of NoNode-instances and normal nodes,
since as we discussed, only lists with the minimal length two are represented in
the AST as actual lists. If a MVL transition targets to a LIST-state of some path,
there are thus two possibilities for the instantiation with a TFSM transition:

� If the target node is a list of nodes, the transition is instantiated with a transition
going to the ”I” state of the first element in the list.

� Otherwise the transition is instantiated with a transition going to the ”I” state of
the target node itself.

The instantiation of MVL-transition whose source path is a LIST-state is treated
correspondingly.

� If the source node is a list of nodes, the transition is instantiated with a transition
starting at the ”T” state of the last element in the list.

� Otherwise the transition is instantiated with a transition starting at the ”T” state
of the source node itself.

The algorithm InstantiateTransition is now refined with two cases which are
checked before the resulting TFSM-transition is generated.

if SourcePath0 =˜ statePath("LIST") then
SourcePath0 := "T"
if SourceNode0 = list L with more than 2 elements then

SourceNode0 := last element of L
if TargetPath0 =˜ statePath("LIST") then
TargetPath0 := "I"
if TargetNode0 = list L with more than 2 elements then

TargetNode0 := first element of L
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(... , ..., ��, ”I”, ��)

�� ��

(... , ..., ��, ”I”, ��)

(... , ..., ��, ”I”, ��) (��, ”T”, ��, ... , ...)

(��, ”T”, ��, ... , ...)

(��, ”T”, ��, ... , ...)

Factor Factor

Fig. 29: Examples for MVL-Transitions involving global-paths.

Implicit Transitions
A last important aspect of lists and options are implicit transitions in the TFSM.
Implicit transitions are TFSM-transitions with the default-conditions which are
added in order to provide for sequential data-flow in lists, and in order to guar-
antee, that control flows through the NoNode-instances. For each element in a
list, except the last one, an implicit transition with default-condition is added
from the ”T”-state of the element, to the ”I”-state of the next element in the list.
For each NoNode-instance, an implicit transition from its ”I” to its ”T” state is
added.

3.4.3 Global Paths

For certain programming constructs like procedure calls, goto’s, and exceptions
we need a way to specify a transition from or to nodes which are not siblings, but
ancestors of the Montage. The nesting of boxes with selector functions allows
us to access direct and indirect siblings. In order to allow for transitions from or
to arbitrary nodes in the AST, we introduce the global path. The global path is
visualized by a box labeled with a characteristic or synonym symbol. This box
represents all instances of said symbol.

Besides the already introduced path operators siblingPath and statePath we
introduce thus a third one called globalPath. The parameters of a global path
are the name of a characteristic or synonym symbol and a path. Control arrow
to or from a global path denote a family of arrows to or from all corresponding
instances. As in the case of boxes labeled with selector functions, incoming
arrows are connected with the ”I”-state and outgoing arrows are connected with
the ”T”-state.

As an example consider again the AST from Fig. 19. A global path Factor
would refer to nodes 2, 4, and 6 whereas a global path Sum would refer to nodes
1 and 3. In this constellation a MVL-transition into a global path Factor would
denote 3 control arrows ending in the initial states of nodes 2, 4, and 6, a MVL-
transition departing from the same global path would denote 3 control arrows
departing from the terminal states of nodes 2, 4, and 6. The situation is depicted
in Figure 29. A transition targeting and a transition sourcing in a global path
Factor is shown, together with the instantiation as TFSM transitions.

In order to process global paths, the algorithm InstantiateTransitions has to
be refined again, this time with two cases calling InstantiateTransitions for each
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instance of a universe. The new cases look as follows:

if SourceNode0 =˜ globalPath(&Universe, &Path0) then
for all elements n in universe &Universe

call InstantiateTransition(n, &Path0,
TargetNode0, TargetPath0)

if TargetNode0 =˜ globalPath(&Universe, &Path0) then
for all elements n in universe &Universe

call InstantiateTransition(SourceNode0, SourcePath0,
n, &Path0)

3.4.4 Algorithm InstantiateTransition

We have now covered all aspects of InstantiateTransitions and can collect the
combine the initial definition and the refinements to the following final version.
Since we have not introduced a formal algorithmic notation yet, the code is
given in an informal way, referring to well known concepts like calling proce-
dures, updating variables, or ranging over lists. Later in Section 8.4.3, the fully
formalized algorithm is given as ASM 57. Interestingly the fully formalized
algorithm is neither longer nor more complex.
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algorithm InstantiateTransition(SourceNode,
SourcePath,
TargetNode,
TargetPath)

variables SourceNode0 <- SourceNode
SourcePath0 <- SourcePath
TargetNode0 <- TargetNode
TargetPath0 <- TargetPath

loop
if SourceNode0 = list L with more than 2 elements then

for all elements l in list L
call InstantiateTransition(l, SourcePath0,

TargetNode0, TargetPath0)
exit

if TargetNode0 = list L with more than 2 elements then
for all elements l in list L

call InstantiateTransition(SourceNode0, SourcePath0,
l, TargetPath0)

exit
if SourcePath0 =˜ siblingPath(&Symbol, &Occ, &Path0) then

let n’ = (selector function (&Symbol, &Occ)
applied to SourceNode0) in

SourceNode0 := n’
SourcePath0 := &Path0

if TargetPath0 =˜ siblingPath(&Symbol, &Occ, &Path0) then
let n’ = (selector function (&Symbol, &Occ)

applied to TargetNode0) in
TargetNode0 := n’
TargetPath0 := &Path0

if SourcePath0 =˜ statePath("LIST") then
SourcePath0 := "T"
if SourceNode0 = list L with more than 2 elements then

SourceNode0 := last element of L
if TargetPath0 =˜ statePath("LIST") then

TargetPath0 := "I"
if TargetNode0 = list L with more than 2 elements then

TargetNode0 := first element of L
if SourceNode0 =˜ globalPath(&Universe, &Path0) then

for all elements n in universe &Universe
call InstantiateTransition(n, &Path0,

TargetNode0, TargetPath0)
if TargetNode0 =˜ globalPath(&Universe, &Path0) then

for all elements n in universe &Universe
call InstantiateTransition(SourceNode0, SourcePath0,

n, &Path0)
else

let SourcePath0 =˜ statePath(&srcS),
TargetPath0 =˜ statePath(&trgS) in

create TFSM transition
(SourceNode0, &srcS, Condition, TargetNode0, &trgS)

exit



72 Chapter 3. Montages

3.4.5 The Goto Language

As an example language for transitions involving lists and global paths, we give
a simple extension of the expression language ��� we introduced in the previous
sections. In addition to expressions, the extended language features print, goto,
and labeled statements. The new EBNF rules are given as follows.

Gram. 2: Prog ::= Statement “;” � Statement �
Statement = Print � Goto � Labeled
Print ::= “print” Expr
Goto ::= “goto” Ident
Labeled ::= Label “:” Statement
Label = Ident

In Figure 30 we show two alternative, but equivalent Montages for the Prog-
construct. The first solution introduces a list of statement by using a recursive
EBNF rule and the square brackets denoting an option. Alternatively the second
solution uses the curly list brackets to express directly a list.

Prog ::= Statement
[”;” Prog]

S-Statement

S-Program

I

T

Prog2 ::= Statement
�”;” Statement�

LIST

S-StatementI T

Fig. 30: The Montages Prog and Prog2.

In the first case the sequential control has to be given explicitly, in the second
case we use a special box for lists. Such LIST-boxes define as default sequential
control flow.

The print statement (Figure 31) fires an action using the XASM syntax for
printing to the standard output. Its use is to test the behavior of the other state-
ments. The Labeled statement (Figure 31) is composed by a label and a state-
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ment. It sends control directly to the statement-part, and has no further behavior
attached. Label is a simple synonym for an identifier.

Print ::= ”print” Expr

print

S-ExprI

T

@print:
stdout := S-Expr.value

Labeled ::= Label ”:”
Statement

Label = Ident

S-Statement TI

Fig. 31: The Montages Print and Labeled.

The interesting Montage is the Goto Montage which is shown in Figure 32.
The box labeled with “Labeled” is a global-path referencing all instances of the
EBNF-symbol Labeled. The MVL-transition from the go-state to the exit-state
within the Labeled reference denotes a family of TFSM transitions from the
“go” state going to the ”I”-state of each Labeled-statement. The firing-condition

��� �S-Label����� � ����S-Ident�����

of these transitions depends from the source node src and the target node trg.
The condition guarantees that the label of the target matches the identifier-
component of the goto statement. If each label is used only once, this guarantees
that the conditions are mutually exclusive for each Goto-instance.

An example program in our language is

A: print 1;
goto B;

C: goto A;
B: print 2;

goto C;

the corresponding states and nodes of the TFSM are given in Figure 33. The
result of executing the TFSM is the sequential printing of 1, 2, 1, 2, 1, 2, � � �.



74 Chapter 3. Montages

Goto ::= ”goto” Ident

go

Labeled

I

trg.S-Label.Name = src.S-Ident.Name

Fig. 32: The Goto Montage.

I go

initial

initial

B

2

C

Labeled Goto

PrintLabel Ident

Const

setValue print go

C

A

Label A

1

B

Program

Labeled Goto Labeled

Print Goto

setValue

Ident Label

Const Ident

print

go

Fig. 33: The nodes and states of the TFSM.
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3.5 Related Work and Results
The work on Montages was originally motivated by the formal specification of
the C language (85)6, which showed how the state-based Abstract State Machine
formalism (ASMs) (80; 81; 97) is well-suited for the formal description of the
dynamic behavior of a full-fledged main-stream programming language. At the
risk of oversimplifying somewhat, we can describe some of these models (85;
224; 130) as follows. Program execution is modeled by the evolution of two
variables7 CT and S. CT points to the part of the program text currently in
execution and may be seen as an abstract program counter. S represents the
current value of the store. Formally one defines the initial state of the functions
and specifies how they evolve by means of transition rules.

Some of the ASM models of programming languages assume that the repre-
sentation of the program’s control and data flow in the form of (static) functions
between parts of the program text is given. Others like the Occam model de-
scribed in (27) use ASMs for the construction of the control and data flow graph.
All of them use informal pictures to explain the flow graph. These pictures have
been refined and formalized as the Montages Visual Language.

3.5.1 Influence of Natural Semantics and Attribute Grammars

Another important experience before the definition of Montages was the use of
Kahn’s Natural Semantics (110) for the dynamic semantics of the programming
language Oberon (124). Although we succeeded due to the tool support by
Centaur (34), the result was less compact and more complex then the ASM
counterpart given by Haussmann and the author in (130); one reason is that one
to carry around all the state information in the case of Natural Semantics. An
important empirical result of this experiment was the fact that treatment of lists
produced a relatively large number of repetitive rules. Therefore the definition
of Montages included from the beginning a special treatment of lists, being part
of the Montages Visual Language.

The input from the Verifix project (73; 88) has helped to see the necessity
of using attribute grammars (AGs) (122) for the definition of static semantics.
Montages use AGs for the specification of static properties. Among the several
mechanisms proposed for defining programming languages, AG systems have
been one of the most successful ones. The main reason for this lies in the fact
that they can be written in a declarative style and are highly modular. However,
by itself they are unsuitable for the specification of dynamic semantics. The
work of Kaiser on action equations (111; 112) addresses this problem by aug-
menting AGs with mechanisms taken from action routines proposed by Medina-
Mora in (151) for use in language based environments. In Appendix A we give a
detailed comparison of Montages with action equations. Later Poetzsch-Heffter
designed the MAX system (184; 185; 186) being the first system taking advan-

6Historically the C case-study was preceded and paralleled by work on Pascal (80), Mod-
ula2 (157), Prolog (30), and Occam (28).

7These variables are called dynamic functions in ASM terminology.
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tage of combining ASMs with AGs. Further references to MAX will be given
in Section 7.3. Action Equations and MAX can be considered as direct prede-
cessors of Montages. In contrast to them Montages is a graphical formalism.

3.5.2 Relation to subsequent work on semantics using ASM

While the Montages approach can be considered as a systematization of the
existing ASM descriptions of programming languages (80; 157; 85; 224; 130;
156) a newer thread of ASM specifications is started by Schulte and Börger (33),
braking among others with the tradition to using visual descriptions for control
flow. This new thread uses a style similar to structural description methods
such as Natural Semantics (110) and SOS (182), but the resulting ASM models
are isomorphic to the kind of models defined by earlier ASM formulations of
programming languages or by a Montages description. The combination of a
declarative specification style and a formal model based on abstract syntax trees
and control flow graphs can be unintuitive for the experts in structural seman-
tics formalisms, which expect models where programs are formalized as terms,
rather than trees, and where control flow is given over the term structure. At the
same time the chosen mixture of two different styles make the resulting descrip-
tions unfriendly for programmers, which have typically no background in struc-
tural description methods. A more promising approach in this direction is the
MAX approach of Poetzsch-Heffter, where parse-trees are formalized as occur-
rence algebras (186), which allows to combine ASMs directly with a structural
description method. The work of Poetzsch-Heffter contains as well a precise
definition of upwards pattern-matching, which allows to access nodes further
up in the tree. A similar technique is used by Schulte and Börger in the form
of patterns with program points which are ”visualized” by tiny, prefixed Greek
letters.

Nevertheless, the new style of language descriptions by Schulte and Börger
which has been further elaborated by Stärk for teaching in a theoretical com-
puter science lecture at ETH Zürich (203) has led to an interesting correctness
proof of translation from Java to the Java Virtual Machine (204).

As an experiment we have reengineered with Montages a reproduction of
the model of the imperative core of Java as given by Stärk. In our reproduc-
tion the textual rules are shortened from the original 85 lines to 29 lines, and
the complete control flow is specified graphically. The given reproduction can
be directly executed using the Gem-Mex tool and has been presented to the
students of the ETH classes. Our reproduction of Stärks model is given in Ap-
pendix C. In Chapter 14 we show a corresponding state-of-the art Montages
description of the same features and explain why our version is better with re-
spect to compositionality.

3.5.3 The Verifix Project

A further systematization of the traditional thread of ASM and Montages de-
scriptions of programming languages has been developed by Heberle et al. (88;
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87) in the context of the Verifix project (73; 88) which aims at a systematic ap-
proach for provably correct compilers. The Verifix approach uses a variant of
Montages for the specification of source languages, and allows to use state-of-
the-art compiler technology. The Verifix variant of Montages is a combination
of Montage’s style for dynamic semantics with traditional well-proven variants
of attribute grammars, while our definition of Montages uses a more experimen-
tal version of attribute grammars which is described in Chapter 7. Heberle de-
scribes a method for correct transformations in compiler-construction and uses
the Verifix variant of Montages as formal semantics for the source languages.
In order to make the resulting proofs modular and repeatable, he defines the
domain-specific language AL for giving action rules. AL is a specialized ver-
sion of ASM, resulting from his analysis of existing ASM and Montages spec-
ifications of imperative and object-oriented languages. As a result, two inde-
pendently developed specifications for the same programming language will
typically be equivalent, if Heberle’s approach is followed, whereas Montages
and traditional ASMs allow for many different specifications of the same set of
constructs. On the other hand, if domain-specific languages are developed, the
approach of Heberle can be more complex than the here presented approach.

The proposal of Heberle can as well be generalized to a new way of structur-
ing language descriptions based on Montages. Instead of using a fixed language
such as XASM for defining action rules, one could allow to plug in an arbitrary
language. A DSL could then be developed by first defining an action DSL, such
as AL, which is used to define action rules in the specification of the final DSL.
The interface in order to use one language to define action rules of the spec-
ification of another language is relatively lean, in essence providing means to
navigate the AST, and to read and write the attributes of the AST. A special
case of this language specification structuring mechanism arises if some action
rule executes recursively code of the specified language. This case has been
implemented in the Gem-Mex tool and used by the author in some of the later
referenced industrial case studies.

3.5.4 The mpC Project

Another compiler project using Montages is the mpC parallel programming en-
vironment (69). Montages in used in this project in two different ways: first, the
most sophisticated part of the language, the sublanguage of expressions for par-
allelization, is modeled using the Gem-Mex environment, second, the obtained
formal specification is used for test suite generation (115; 114; 113).

Modeling of mpC expressions in Montages framework helped to find several
inconsistencies in the mpC language semantics and gave a lot of useful ideas for
the code generation part of the compiler. The Montages specification of mpC
expressions is used for three different purposes:

� Test cases generation. The static semantics part of the specification (syntax
productions, constraints) is used to generate both a set of statically correct, and
a set of statically incorrect programs, which constitute a positive and a negative
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test suite, respectively.

� Test oracle generation. The dynamic semantics part of the specification, e.g.
the execution behavior, is used for generating trustable output of a test program.
The test oracle compares actual and trustable outputs for a particular test case.
If the results are not identical the verdict is failure.

� Providing test coverage criteria. The specification coverage analysis demon-
strates whether all parts of the specification are exercised by the test suite. If
the coverage criteria are satisfied then no more test cases are needed, otherwise
additional test programs should be added to the test suite. Several coverage
Montages-oriented coverage criteria were developed.

With help of the generated test suites the mpC team found more then 30
errors in the current compiler implementation, as a result the quality of the
compiler was significantly improved (187). This case study demonstrated that
Montages specification is a powerful tool for developing language test suites,
which is an important part of the compiler development process.

3.5.5 Active Libraries, Components, and UML

Montages together with the support environment Gem-Mex (9) can as well be
seen as an active library as defined by Czarnecki and Eisenecker (51). Accord-
ing to the given definition, active libraries extend traditional programming envi-
ronments with means to customize code for program visualization, debugging,
error diagnosis and reporting, optimization, code generation, versioning, and so
on. Gem-Mex provides such a meta-environment based on Montages, covering
program-visualization, debugging, code generation, and versioning. Another
example of an active library is the intentional programming system (197; 198).
While fixed programming languages (both GPLs and DSLs) force us to use a
certain fixed set of language abstraction, active libraries, such as Montages or
intentional programming allow us to use a set of abstractions optimally config-
ured for the problem at hand. They enable us to provide truly multi-paradigm
and domain-specific programming support.

Unfortunately Microsoft decided to keep details of the intentional program-
ming system confidential, until they release it for commercial use. A direct
comparison of Montages and intentional programming must thus be delayed to
the official launch of intentional programming. From the existing publications
we understand that intentional programming relies on pure transformation ap-
proaches for giving dynamic semantics, while Montages make the parse trees
directly executable.

The practical experience with Gem-Mex opened early the discussion on the
need for a component based implementation of Montages. XASM features a
component system, which is used for this purpose. In Denzler’s dissertation (55)
the use of component technology for Montages is explored in detail, and led to
an alternative implementation based on Java Beans.
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The disadvantage of Denzler’s approach is that it makes it more difficult to
realize efficient implementations by means of partial evaluation. Further the
low abstraction level of Java w.r.t. XASM may permit less reuse, and it is more
difficult to apply formal transformations such as partial evaluation.

Nevertheless we belive that future industrial applications will follow the ap-
proach to use a main-stream host language and implement Montages as a pattern
for language engineering on top of this language. Actions would be formu-
lated directly in the host language, and the whole abstract syntax tree and tree
finite-state machine would be provided as a framework for using the Montages
pattern. At the moment we think the emerging executable Action Language for
UML state machines (2; 229) is the best candidate, especially since it has many
similarities with XASM, and since a harmonization of Montages with UML ter-
minology for state machines and actions would allow us to reposition Montages
as a tool for Model Driven Architectures (25; 170), the OMG group’s variant of
domain engineering and DSL technology (43; 148).

3.5.6 Summary of Main Results

The following list summarizes the main results of Montages related applications
and research.

� The language definition formalism Montages has been defined and elaborated
over the last six years. The first version, published by Pierantonio and Kutter in
1996 (131; 133) has been step-wise refined, and simplified since then. Shortly
after these publications Anlauff joined the Montages core team.

The original formulation of Montages was strongly influenced by a case study
where the Oberon programming language was specified (130; 132). The ear-
liest case studies outside the Montages team were a specification of SQL by
di Franco (58) and a specification of Java by Wallace (225). Other more recent
case studies include the use of Montages as a front-end for correct compiler con-
struction in the Verifix project (73; 88), applications of Montages to component
composition (13), and its use in the design and prototyping of a domain-specific
language (134). These have led to several improvements in the formalism which
have been reported in (12).

The here presented final version of Montages and its semantics has been influ-
enced by a pure XML based semantics description formalism (126), which has
been developed by the author for the company A4M applied formal methods
AG (135).

� Three general purpose programming languages, Oberon (132), Java (225) and
C (98), have been specified using Montages. These case studies have led to
constant improvements of the tool and methodology such that all three language
can now be described easily, with exception of certain syntax-problems. For
example we cannot solve the dangling if problem. Another example of syntax-
problems is that we need to introduce more explicit naming conventions for
classes and variable names in Java. It is fair to say, that Montages can and
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has been used to specify real-world programming languages, if the syntax (not
semantics) is simplified.

The syntax problem can be solved by basing Montages on abstract syntax, as
shown in the examples of Appendix A, or by using XML syntax (126).

� As final case study for this thesis, the Java language has been described again.
The work of Wallace (225) has shown several deficiencies of Montages, if a
language with the complexity of Java is described. Among other improvements,
Wallace proposed to replace the original use of data-flow arrows with a much
more general mechanism. Nevertheless we decided to replace data-flow arrows
completely with AGs, which allows as well to solve the problems found by
Wallace. The very detailed work of Wallace has then been partly adopted by
Denzler, and later completed to a full Java description by the author.

The most complex part of Java proved to be the specification of subtyping, name
resolution, and dynamic binding. This part of the specification is shown in Ap-
pendix D as an example. It must be noted that the limited parsing capability of
the current Montages implementation has forced us to introduce explicit syntax
for resolving whether an identifier is a class, a method, or an attribute. Therefore
one can argue that our specification does not completely cover name resolution.

Although the length of the resulting Java specification has led to its exclusion
from the text, it showed that such a description is feasible. All sequential fea-
tures of Java have been specified such that they can be used in isolation, and
reused in small sub-languages. The complete specification of Java has been
split up in a total of fourteen sub-languages. Typically one language extends its
predecessors. The extensions are very small, typically two to three new spec-
ification modules and half a dozen new definitions, and can often be reused in
later stages without adaption.

� A library of reusable language concept descriptions has been elaborated from
the new Java case study. This library is presented in Part III of this thesis.
The semantic features of major object-oriented GPLs are covered in principle
by these components and a full object-oriented language can be described by
combining and adapting them. In fact, the library is structured again as a number
of small languages, reusing each others specification modules.

It will be difficult to model the exact syntax and semantics of other existing
object-oriented GPL such as C++ without further adapting the library but for our
purpose of having building blocks of GPL concepts reusable for DSL designs
the library is very useful.

� Several DSLs have been developed with and applied by different industrial part-
ners. The executed case studies are

– The design and implementation of the data model mapping language CML
for the bank UBS (134). This work has been done jointly with Lothar
Thiele and Daniel Schweizer.
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– The specification and implementation of the hybrid system descriptions
language HYSDEL for the Automatics Institute at ETH Zurich (6). This
work has been done jointly with Samarjit Chakraborty.

– The design and implementation of three DSLs for a financial analysis gen-
eration software system of a small financial service provider. These lan-
guages have been shortly described at the end of Section 2.2 and are cur-
rently in productive use at one of Switzerland’s largest banks.

– The specification and implementation of the SMS application language
Eclipse for the company Distefora Mobile.

The last two case studies have been executed by the author and Matthias Anlauff
for A4M AG.

� Besides GPLs and DSLs the basic notation of another language description for-
malism called Action Semantics (158) has been described (7). This work has
been done jointly with Lothar Thiele and Samarjit Chakraborty.

� The imperative prototyping language XASM (5) has been designed, imple-
mented, and tested by Anlauff and the author for the company A4M applied
formal methods AG which is supporting and further developing the language
under an open source license (8). XASM is a generalization of the mathematical
Abstract State Machine (ASM) formalism. XASM is used not only for the def-
inition of semantic actions but for the formalization and implementation of the
complete Montages approach.

The initial, non-formal definition of XASM by Anlauff has now been formalized
by the author, and a number of additional features and reusable techniques have
been developed. The formalization and the newly designed features are pre-
sented in Chapter 4. Further a pure object oriented version of XASM has been
developed and specified by the author and an executable Montages description
of this new language can be downloaded (128).

� XASM has been used by Anlauff as DSL for the implementation of the Montages
tool support Gem-Mex8. Gem-Mex allows the language designer to generate
for each specified language an interpreter, a graphical debugger, and language
documentation (10). The design of these tools has been driven by the case
studies. The use of XASM for the implementation allowed a quick adoption of
the environment to changes. Further the author has been able to influence the
development of Gem-Mex on the XASM level, without knowing the details of
the underlying C-code.

By using the DSL XASM to implement the language description formalism
Montages (respectively its tool set Gem-Mex), the development process of our
team is a refined version of the three cycle process (Section 2.6, Figure 7). In

8The current Gem-Mex implementation has been preceeded by work of Sèmi (193) on using
Centaur for the tool support of Montages, and by a first Montages implementation based on
Sather.
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fact our process is a four-cycle process, resulting as a combination of the three
cycle process with the two-cycle process (Figure 6), which are both embedded
in our actual development process.

– The two-cycle process is built by the GPL C which we use to develop the
DSL XASM, which in turn is used to develop the application Gem-Mex.

– The three-cycle process is overlapping these cycles: XASM is considered
the GPL used to develop the language description formalism Montages,
which is then used to develop an arbitrary DSL, which is used to develop
applications.

With other words, in the two-cycle aspects of our development process, Gem-
Mex is considered the resulting application, and in the three cycle aspect, the
very same software, also know as Montages, is considered as the language de-
scription formalism, being the central building block of the three cycle process.
Our four cycle process is visualized in Figure 34.

� Both the Montages meta-formalism, and the XASM formalism have been spec-
ified and tested using Gem-Mex. The Gem-Mex meta-formalism description
of Montages has been partly derived from a description of an XML based
meta-formalism developed by the author for A4M Applied Formal Methods
AG (126). The Montages- and XASM-implementations generated by Gem-Mex
from their Montages descriptions are fully functional, but cannot compete yet
with hand written implementations. Their main purpose at the moment is the
documentation of the design process of Montages and XASM.

In this thesis, an alternative XASM definition of Montages is given in Chap-
ter 8. This new semantics is specially designed to allow for a relatively efficient
implementation by means of partial evaluation.

In parallel we work on using Montages for bootstrapping XASM in the con-
text of the XASM open-source project. The bootstrapping process for XASM is
visualized in Figure 35.
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Part II

Montages
Semantics and System Architecture
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In the first part we discussed requirements for language definition for-
malisms, and introduced our language definition formalism Montages trying
to fulfill the formulated requirements. The requirements discussed in Part I
are all related to the needs of DSL designers, implementors, and users. As a
consequence we have been able to report positive results about usability and
expressivity of our approach.

On the other hand, discussions with software developers and system engi-
neers in the financial industry and in networking companies showed that our
approach needs to fulfill various requirements related to the form, transparency,
and quality of the resulting code, if it ever should have a chance for serious in-
dustrial applications, let alone for entering main-stream technologies. In other
words, it is not enough to deliver a DSL with a very simple design. The develop-
ers which are responsible to support the DSL for the domain experts expect that
not only the DSL is easy to understand and maintain, but as well the generated
code.

It is difficult to explicitly formulate these kinds of requirements, since they
will largely depend on the environment in which the code is going to be used. In
order to be able to meet as many as possible of the possible requirement which
will show up in concrete situations, our approach should allow

� to influence the structure of the generated code,

� to influence the naming of identifiers in the generated code, and

� to clean the code from those parts which are only needed to make the approach
general, but are not relevant or used in a concrete situation.

As example, assume a DSL which features global variables and updates,
and where x := x + 1 is an admissible program. The developers require
that the system generates the code they are expecting: x := x + 1 At least
for simple examples they need this kind of ”validation”, indicating whether the
system is doing what they expect. As indirect requirement simple language
descriptions and simple programs, such as the above x := x + 1 should
result in simple generated code. The current implementation of Montages (10)
generates for each specified DSL an interpreter, the complexity of the generated
code is therefore independent of the complexity of the DSL programs.

In order to improve the current implementation we are going to develop
in this part a formal, executable semantics of Montages which serves directly
as building block for a new system architecture. For the formalization of the
semantics as well as for the other parts of the system architecture we use the
ASM-language XASM which is described in Chapter 4. For the sake of simplic-
ity we abstract from the problem of implementing XASM and present everything
on the level of XASM assuming that a transparent and relatively efficient imple-
mentation of XASM exists9.

9The XASM Open Source project www.xasm.org is working on XASM implementations.
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The here presented system architecture replaces the current implementation,
where the specification of a language �, written with Montages, from which a
program generator creates an �-interpreter. In Figure 36 these components are
visualized, the generated interpreter is represented with a dashed box, and the
user supplied language specification and program are solid line boxes. The in-
terpreter works as usual, taking as input an �-program � which is then executed.
The program � does not influence the complexity of the generated interpreter.
As stated above, the resulting problem is that we cannot expect simple code for
simple programs.

The current program generator is further designed as a proof-of-concept for
the feasibility of complex Montages description, such as the description of gen-
eral purpose languages. The implementation has not been tuned towards sim-
plification of the generated code, and the generated interpreters are relatively
complex, independent of the complexity of the described language.

For our new architecture we developed with XASM a meta-interpreter of
Montages, reading both a specification of a language � (syntax and semantics)
and a program � written in the described language �, parsing the program ac-
cording to the given syntax-description, and executing the program according
to the given semantics description. By assuming that the language specification
is fixed, we can partially evaluate (46) the meta-interpreter to a specialized in-
terpreter of the specified language. Assuming in addition that the program is
fixed, we can further specialize the interpreter into code implementing the pro-
gram. In Figure 37 the specification of �, written in Montages and the program
� , written in �, are shown as boxes on the left side. Both the � specification
and � are input to the meta-interpreter which is written in XASM, and visual-
ized on the right side. The box below the meta-interpreter is a �-interpreter,
obtained by partially evaluating the meta-interpreter assuming that the specifi-
cation of � does not change. The �-interpreter box is dashed, showing that it
has been generated by the system, rather than provided by the user. As usual,
the interpreter takes as input the program � and executes it. Finally, from the
interpreter a specialized � -implementation is obtained by partially evaluating
the interpreter, assuming that the program � is not changing. Again the box is
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Fig. 37: New Architecture of Montages System

drawn with dashed lines, since it does not have to be provided by the user. The
detailed definition of the meta-interpreter is given in Chapter 8. A more detailed
sketch of the partial evaluation process is given in Chapter 5.

Using only partial evaluation would create the problem that the generated
code inherits the more abstract signature of the language-specification level. As
an example consider again a DSL with global variables and destructive updates.
The syntax of an assignment may be given as:

Assignment ::= Ident ":=" Expression

and the semantics of the construct is given by an action in the XASM language.
We refer to the micro-syntax of the global variable as S-Ident.Name and to
the value of the previously evaluated expression as S-Expression.value As-
suming a hash-table Global( ) which holds the values of global variables, the
following XASM rule gives the semantics of the Assignment feature:

Global(S-Ident.Name) := S-Expression.value

Obviously, even if the variable and the expression partially evaluate to the values
of the initial example, ”x” and ”x + 1”, the generated code will never be simpler
than

Global("x") := Global("x") + 1

In order to achieve the desired outcome, we need to parameterize the signature
of the semantics rule. We extended our formalism such, that the signature of
variables and functions can be given by a string-value in $-signs. This variant of
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XASM is called parameterized XASM (PXasm) and is introduced in Chapter 5.
In our example, we can now use a global variable with parameterized signature,
rather than the hash-table. The new semantics of the Assignment feature is now:

$S-Ident.Name$ := S-Expression.value

On the left hand side the $-signs are used to refer to a global variable
whose signature is given by the expression S-Ident.Name. Once the value of
S-Ident.Name is fixed to ”x” the left-hand side can be simply specialized to
global variable ”x”, and the code generated for our initial example is now the
desired

x := x+1

In Section 11.1 the detailed Montages semantics of an example language
ImpV2 having this semantics is presented, and we invite the reader to consult
this section for further details about our above example showing why not only
partial evaluation but as well parameterized signatures are needed for our new
architecture.

Combining partial evaluation and parameterization of signature results in a
techniques which works similar to template languages used for program gen-
eration (44; 45). In our case the actual “generation” of the program happens
only if the partial evaluation results in a complete evaluation of the signature-
parameters, whereas in traditional template languages the content of the tem-
plates can always be evaluated. Further our parameterization of signature is
integrated with our development language XASM in such a way, that programs
can be executed even if partial evaluation did not completely evaluate the pa-
rameterized signature. In contrast, unevaluated templates are typically not valid
programs.

Another advantage of the new architecture is that the fixed meta-interpreter
is much easier to test and maintain than the original interpreter generator. In
the software development process of Gem-Mex, as visualized in Figure 34, the
maintenance of the generator showed to be the most difficult part, since it was
difficult to test whether the generator is really implementing the semantics of
Montages. In contrast the meta-interpreter written in XASM is very compact
and serves both as semantics and implementation, there is thus no problem
of mismatch between semantics and implementation. Although execution the
meta-interpreter is far too slow for real applications, it can still be used to test.
Once a problem is solved successfully with the meta-interpreter, one has con-
fidence on the functionality of the system. The result of the partial-evaluation
can then be tested against the existing reference implementation given by the
meta-interpreter.

Further we found that the partial evaluator gives us a lot of freedom to iden-
tify variable and static aspects of a system in a late stage, or even dynamically.
We can choose freely which parts of the system should be interpreted, allowing
them to be changed dynamically, and which parts are partially evaluated, result-
ing in specialized code. In Section 9.1.2 we show for instance how Montages
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can be specialized and transformed using partial evaluation. The traditional
choices of DSL interpreter or DSL compiler are only special cases of the possi-
ble choices: they assume that the language specification is fixed. In some cases
it is beneficial to leave part of the language specification interpreted, or to as-
sume part of the program input to be fixed. Often the partial evaluator must be
called at run-time, for instance after a number of configuration files are read.

The following chapters are building up the tools which are needed to define
the new system architecture in a formal way. In Chapter 4 we introduce the
specification language XASM, in Chapter 5 XASM is extended with features
allowing for parameterized signature and partial evaluation, in Chapter 6 we
apply the introduced techniques to simplify and compile TFSMs, in Chapter 7
the kind of attribute grammars used by Montages is formalized, and finally in
Chapter 8 we give the Montages meta-interpreter serving in the new architecture
both as semantics and implementation of Montages.
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4
eXtensible Abstract State Machines (XASM)

eXtensible Abstract State Machines (XASM) (4; 11; 5) has been designed and
implemented by Anlauff as formal development tool for the Montages project.
Recently XASM has been put in the open source domain (8). Unfortunately a
formal semantics of XASM has not been given up to now. We streamline An-
lauff’s original design and present a denotational semantics, complementing the
existing informal description. In fact we found that XASM implement a seman-
tic generalization of Gurevich’s Abstract State Machines (ASMs) (79; 80; 81;
82). The initial idea for this generalization came from May’s work (150) which
is the first paper formalizing sequential composition, iteration and hierarchical
structuring of ASMs. May notes that his approach complements

.. the method of refining Evolving Algebras1 by different abstraction lev-
els (31). There, the behavior of rules performing complex changes on data
structures in abstract terms is specified on a lower level in less abstract
rules, and the finer specification is proven to be equivalent. For execu-
tion, the coarser rule system is replaced by the finer one. In contrast, in
the hierarchical concept presented here, rules specifying a behavior on a
lower abstraction level are encapsulated as a system which is then called
by the rules on the above level. (150), Section 6, page 14, 29ff

XASM embeds this idea in the form of the “XASM call” into a realistic pro-
gramming language design. The XASM call allows to model recursion in a very
natural way, corresponding directly to recursive procedure calls in imperative
programming languages. Arguments can be passed “by value”, part of the state
can be passed “by reference”, the “result” of the call is returned as value allow-
ing for functional composition, and finally the “effects” of the called machine

1Evolving Algebras is the previous name of ASMs.
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are returned at once, maintaining the referential transparency property of non-
hierarchical ASMs. Börger and Schmidt give a formal definition of a special
case of the XASM call (32) where sequentiality, iteration, and parameterized,
recursive ASM calls are supported.

In their framework a so called “submachine” is not executed repeatedly until
it terminates, but only once. The XASM behaviour of repeated execution can
be simulated by explicit sequentiality, but unfortunately they are excluding the
essential feature of both Anlauff’s and May’s original call to allow returning
from a call not only update sets, but as well a value. This restriction hinders
the use of their call for the modeling of recursive algorithms. Of course one
could argue again, that returning a result from their “submachine” call can be
simulated by encoding the return value in some global function, but the essence
of ASM-formulations is to give a “direct, essentially coding free model” (81).

The full XASM call leads to a design where every construct (including ex-
pressions and rules of Gurevich’s ASMs) is denoted by both a value and an
update set. This is a generalization of Gurevich’s definition of ASMs, where
the meaning of an expression is denoted by a value and the meaning of a rule is
denoted by an update set (82).

In the context of this thesis, XASM are used for defining actions and fir-
ing conditions of the Montages formalism, and the XASM extensions defined in
later chapters will be used to give formal semantics to Montages. In Section 4.1
ASMs are introduced from a programmer’s point of view looking at them as
an imperative language, which can be used to specify algorithms on various
abstraction levels. The denotational semantics of ASMs, as defined by Gure-
vich (82), is given in Section 4.22. Based on a unification and generalization
of this semantics, the XASM extension of ASMs is motivated and formalized
in Section 4.3. The complete XASM language is a full featured, component
based programming language. The features of a pure functional sublanguage
of XASM, including constructor terms, pattern matching, and derived functions
are given in Section 4.4, and the support for parsing in XASM is described in
Section 4.5. Finally, in Section 4.6 we discuss related work.

2The formalization of choose and extend chosen by Gurevich (82) are not standard deno-
tational semantics and it may be argued that they are ambiguous. An inductive definition can
solve this problem, but we wanted to build our definitions on Gurevich’s original formulation.
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4.1 Introduction to ASM

ASMs are an imperative programming language. An imperative program is built
up by statements, changing the state of the system, given by the current values
of data-structures. A data structure is an abstract view of a number of storage
locations. Typical Examples of data-structures are variables, arrays, records,
or objects. Execution of statements results in a number of read and write ac-
cesses to visible and hidden storage locations. The higher the abstraction level
of an imperative programming language, the more happens behind the scene for
each statement. Ousterhout analyzes the increase of work done per statement
for imperative languages of different abstraction levels, starting from machine
languages, over system programming languages, reaching up to scripting lan-
guages (173). On average, each line of code in a system programming language
such as C or Java translates to about five machine instructions, which handles
directly read and write accesses to the physical machines. Scripting languages,
such as Perl (223; 222), Python (219; 146), Rexx (71; 169), Tcl (172; 171),
Visual Basic (which was ”created” as a combination of Denman’s MacBasic
and Atkinson’s HyperCard (67)), and the Unix shells (145) feature statements
which execute hundreds or thousands of machine instructions.

4.1.1 Properties of ASMs

Unlike the statements of the mentioned programming languages, ASM state-
ments are not executed sequentially, but in parallel. It is therefore difficult to
compare ASMs with these formalisms, or to fit them in Ousterhout’s taxonomy.
Rather than triggering a number of sequential steps of a given physical machine,
the parallel rules define a new, tailored abstract machine. Therefore ASMs are
very well suited to describe semantics of programming systems on various ab-
straction levels. The parallel execution of ASM statements allows to bundle an
arbitrary amount of functionality into one state-transition of a system. In tra-
ditional imperative languages, regardless of whether they are machine, system,
or scripting languages, the amount of work done in one step is fixed by the
functionality of the statements featured by the language. In ASM it is therfore
relatively easy to tailor a parallel block of statements, whose repeated execution
results in a run of states corresponding exactly to the states of the algorithm to
be modeled.

Another important difference of ASMs with respect to the mentioned imper-
ative formalisms is the absence of specialized value-types, data-structures, and
control-statements. In ASMs there exist no integer, real, or boolean as value-
types; the usual variables, arrays, or record data-structures are missing; neither
while, repeat, nor loop statements are available. Instead the following solutions
are chosen in the ASM formalism:

value-types ASMs feature only one type of value, the elements. A typical implementa-
tion of ASMs provides a number of predefined elements, like numbers, strings,
booleans, as well as elements which can be at runtime created using the extend
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construct of ASMs; examples for such dynamically created elements include
objects, as well as abstract storage locations. All of them are considered being
elements.

data-structures ASM feature a unique, universal, n-dimensional data structure that corresponds
to an n-dimensional hash table. This data-structure is called n-ary dynamic
function. A dynamic function f can be evaluated like a normal function,

 ���� � � � ���

where �� � � � � �� are ASM elements. However it can also be updated,

 ���� � � � ��� �� ��

where �� denotes the new value of f at the point ���� � � � ���. The resulting defini-
tions of the dynamic functions represent the state of an ASM, similar to the way
how values of variable, arrays, and records represent the state of an imperative
program. The single locations, consisting of function name and argument tuple
can as well be considered to be the storage locations of an underlying abstract
machine.

0-ary functions are used to model variables, unary functions are used to model
arrays and records. A set or universe is modeled by its characteristic function,
mapping all members of the universe to true, and all other elements to false.
Functions mapping all arguments either to true or false are called relations.
Universe is a synonym of unary relation.

control-statements Instead of explicit loop or iteration constructs an ASM program is automatically
repeated until it terminates. Termination condition is a fix point of state changes,
i.e. if a rule generates no more updates, it terminates.

To control the repeated execution of an ASM rule modeling an algorithm, ASMs
feature an if-then-else statement, allowing to execute statements conditionally,
and a number of statement-quantifiers, allowing to construct sets of statements
depending on the current state.

While these features look exotic for most programmers, they have shown
to be useful in our context. Programming an algorithm in ASM allows to con-
centrate on the conceptual structure of the state, and the evolution of that state
in a granularity which is completely controllable. Gurevich proves, that every
sequential algorithm can be modeled by an ASM which makes exactly the same
steps as the modeled algorithm is intended to do (84). The last property has
been formulated in the ASM-thesis (79), and a large number of case studies
have been elaborated for giving evidence to the thesis, not only with respect to
sequential, but as well with respect to distributed algorithms. A summary of all
case studies has been published (29) and further discussion of related work is
found in Section 4.6.
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4.1.2 Programming Constructs of ASMs

ASM statements are built by six different rule constructors.

Update Rule
The basic update rule is used to redefine an n-ary function at one point. Given
the rule

f(t1, ...., tn) := t0

first the terms t0, ..., tn are evaluated to elements ��� ���� ��, and then the function
f is redefined such that in the next state

 ���� ���� ��� � ��

holds. Please note that the equation  ���� ����� ��� � �� may never hold, since
in parallel to the given redefinition of f, the functions used to build terms t0, ...,
tn may be redefined as well, such that in the next state they evaluate to different
elements. For instance the rule

x := x + 1

will never result in a situation where 
 � 
 	 � holds. But if before the
execution of the rule 
 � ��, then after the execution 
 � �� � � holds.

Parallel Composition
ASM rules are composed in parallel. There are thus no intermediate states, if a
block of ASM code is executed, and the order of ASM statements in the block
does not influence the behavior. Further the same expression has the same value,
independent where in the block it appears. This property is known as referential
transparency (RT) from functional programming. If a language has RT, then the
value of an expression depends only on the values of its sub-expressions (and
not, for instance, on how many times or in which order the sub-expressions are
evaluated). These properties influence considerably the style of the resulting
descriptions.

The standard example showing the effect of parallel composition of rules is
the following swap of two variables3 x and y.

x := y
y := x

If this rule is executed, the values of x and y are exchanged. In contrast to
sequential programming languages, there is no need to use a help variable, as
done in the following minimal sequential version:

tmp := x;
x := y;
y := tmp;

Unlike the sequential version, the above parallel rule will never terminate,
since it updates x and y in each step, and a state fix-point is thus never reached.
The following example shows a terminating parallel rule.

3Variables are 0-ary functions in ASM terminology.
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Consider the situation, where we have three variables, 
�, 
�, and 
�. All of
them are initially set to the value undef. In each step of the algorithm, 
� takes
the value 1, 
� takes 
�’s value of the previous step, and 
� takes 
�’s value of
the previous step. It will thus take three steps, until the value 1 is propagated to

�. The ASM program AP corresponding to our algorithm is

ASM 1: asm AP is
functions x1, x2, x3

x1 := 1
x2 := x1
x3 := x2

endasm

The variables are declared as dynamic functions with arity 0. By default, at
the beginning all dynamic functions evaluate to undef. The requirements how
values are propagated are directly expressed as the three parallel updates.

After the first step of AP, 
� equals 1, but the remaining functions still equal
undef. After the second step, both 
� and 
� equal 1, but 
� is still undef.
After the third and all following steps, all three functions evaluate to 1. The
system terminates after the fourth step, since the state of the system is no more
changing, e.g. a fixed point has been reached.
Consistency
At this point we would like to raise the issue of inconsistent rules. If the
same variable is updated to different values in parallel, for instance by the
rule x := 1 x := 2, then an inconsistent state is reached and the calculation is
aborted. Throughout the thesis we assume consistent rules, although it has to be
noted that in general consistency of a rule cannot be guaranteed statically.

Conditional Rules
The conditional rule allows execution to be guarded with predicates. One spe-
cial application of the conditional rule is to model sequential execution with
ASMs. Typically a 0-ary function is used to model an abstract program counter
mode. For instance the following sequential algorithm

var x = 1, length = 10
array a, f

1 x := x + 1;
2 a(x) := f(x);
3 if x < length goto 1
4 end

can be modeled as the following ASM.

ASM 2: asm ModeTest is
functions mode <- 1,

x, length a(_), f(_)

if mode = 1 then
x := x + 1
mode := 2
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elseif mode = 2 then
a(x) := f(x)
mode := 3

elseif mode = 3 then
if x < length then

mode := 1
else

mode := 4
endif

endif
endasm

In fact most ASMs given in the literature follow more or less this pattern to
model sequentiality. The advantage of ASMs is, that they allow us to abstract
from low level intermediate steps. In typical ASM applications the number
of sequential steps is relatively small and therefore the presented solution is
acceptable.
Do-for-all Rules
The do-for-all rule allows to trigger an ASM rule for a number of elements
contained in a universe and fulfilling a certain predicate. Given a universe U
containing three elements e1, e2, e3 and the predicate Q over the dynamic func-
tions and the bound variable u, the rule
do forall u in U: Q(u)
f(u) := 3

enddo

corresponds exactly to
if Q(e1) then
f(e1) := 3

endif
if Q(e2) then
f(e2) := 3

endif
if Q(e3) then
f(e3) := 3

endif

where Q(e) is Q(u) with the bound variable u replaced by the element e.
As a further do-forall example, consider a generalization of algorithm AP

( ASM 1) to n variables instead of three. We number the variables and use
a unary dynamic function x( ) mapping the number of a variable to its value.
This corresponds to an array of variables. To trigger the updates, we use a rule
quantifier, triggering the update x(i - 1) := x(i) for each i ranging from 2
to n. The argument n is passed as parameter to the ASM that looks as follows.

ASM 3: asm AP’(n) is
function x(_)

do forall i in Integer: i >= 2 and i <= n
x(i-1) := x(i)

enddo

This algorithm will terminate after n steps.
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Choose Rules
The choose rule works similar to the do forall rule, but the rule is only instan-
tiated once for an element of the universe fulfilling the predicate. The ifnone
clause of the choose-rule allows to give an alternative rule, if there is no such
element.

Given again a universe U containing three elements e1, e2, e3 and the pred-
icate Q over the dynamic functions and the bound variable u, the rule

choose u in U: Q(u)
f(u) := 3

endchoose

corresponds to the empty rule, if neither Q(e1), Q(e2), nor Q(e3) holds, other-
wise to the rule

f(e) := 3

where e is nondeterministically chosen from those elements in U for which Q
holds, e.g. from �!�! � � �"�!��.

As an example consider a situation where messages have been collected in
a universe MessageCollector. A predicate ReadyToProcess( ) decides which of
these messages can be processed. Processed messages are removed from uni-
verse MessageCollector. Please remember that universes are modeled by their
characteristic function. An element e is therefore removed from the declared
universe by the rule MessageCollector(e) := false. If there is no message
remaining to be processed, the function mode is set from its initial value un-
def to ”ready”. For simplicity we give no details on Process( ) and predicate
ReadyToProcess( ).

ASM 4: asm ProcessMessages
is
universe MessageCollector
function mode

...

choose m in MessageCollector: ReadyToProcess(m)
Process(m)
MessageCollector(m) := false

ifnone
mode := "ready"

endchoose
endasm

Extend Rules
Extend rules allow us to introduce new elements. The rule

extend C with o
x := o

endextend
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extends a universe C with a new element. This element is accessible within
the extend-rule as bound variable o. The element is implicitly added to C by
triggering C(o) := true. Further in the example, the new element is assigned
to variable x. Intuitively this corresponds to a

x := new C

statement known from object oriented languages.

These examples only give a rough overview of the existing programming
constructs in ASM. The detailed definition and formal semantics are given in
the next section.
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4.2 Formal Semantics of ASMs
The mathematical model behind an ASMs is that a state is represented by an
algebra or Tarski structure (207) i.e. a collection of functions and a universe
of elements, and state transitions occur by updating functions point wise and
creating new elements. Of course not all functions can be updated. The basic
arithmetic operations (like add, which takes two operands) are typically not re-
definable. The updatable or dynamic functions correspond to data-structures of
imperative programming languages, while the static functions correspond to tra-
ditional mathematical functions whose definition does not depend on the current
state. All functions are defined over the set � of elements. In ASM parlance �
is called the superuniverse. This set always contains the distinct elements true,
false, and undef. Apart from these � can contain numbers, strings, and possibly
anything – depending on what is being modeled. Subsets of the superuniverse
�, called universes, are modeled by unary functions from � to true, false. Such
a function returns true for all elements belonging to the universe, and false oth-
erwise. The universe Boolean consists of true and false. A function f from a
universe U to a universe V is a unary operation on the superuniverse such that
for all � � � ,  ��� � # 	 �!��� � and f(a) = undef otherwise.

Functions from Cartesian products of � to Boolean are called relations. By
declaring a function as a relation, it is initialized for all arguments with false. A
universe corresponds to a unary relation. Both universes and relations are spe-
cial cases of functions. The dynamic functions not being relations are initially
equal to undef for all arguments.

Formally, the state $ of an ASM is a mapping from a signature 
 (which is
a collection of function symbols) to actual functions. We use  � to denote the
function which corresponds to the symbol f in the state $.

As mentioned above, the basic ASM transition rule is the update. An update
rule is of the form

 ���� � � � � ��� �� ��

where  ���� � � � � ��� and �� are closed terms (i.e. terms containing no free vari-
ables) in the signature 
. The semantics of such an update rule is this: evaluate
all the terms in the given state, and redefine the function corresponding to f
at the value of the tuple resulting from evaluating ���� � � � � ��� to the value ob-
tained by evaluating ��. Such a point wise redefinition of a function is called
an update. Rules are composed in a parallel fashion, so the corresponding up-
dates are all executed at once. Apart from the basic transition rule shown above,
there also exist conditional rules, do-for-all rules, choose rules and lastly extend
rules. Transition rules are recursively built up from these rules. The semantics
of a rule is given by the set of updates resulting from composing updates of
rule components. This so called update denotation of rules is formalized in the
following.
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Def. 1: Update denotation. The formal semantics of a rule R in a state $ is given by
its update denotation

Upd�	� $�

which is a set of updates.

The resulting state-transition changes the functions corresponding to the
symbols in 
 in a point wise manner, by applying all updates in the set. The
formal definition of an update is given as follows.

Def. 2: Update. An update is a triple

� � ���� � � � � ���� ���

where f is a n-ary function symbol in 
 and ��� � � � � �� are elements of �.

Intuitively, firing this update in a state $ changes the function associated
with the symbol f in $ at the point ���� � � � � ��� to the value ��, leaving the rest
of the function (i.e. its values at all other points) unchanged. Firing a rule is
done by firing all updates in its update denotation.

Def. 3: Successor state. Firing the updates in Upd�	� $�� in the state $� results in its
successor state $���. For any function symbol f from 
, the relation between  ��
and  ���� is given by

 �������� � � � � ��� �

�
�� % � � ���� � � � � ���� ��� � Upd�	� $��

 ������ � � � � ��� ��&�'(%��

There are two remarks concerning this definition. First, if there are two up-
dates which redefine the same function at the same point to different values, the
resulting equations are inconsistent, and the next state  ���� cannot be calcu-
lated. Consistency of rules cannot be guaranteed in general, and an inconsistent
rule results in a system abort.

The second remark is about completeness of the successor-state relation.
The above complete definition of the next state (Definition 3) could be relaxed
to a partial definition as follows:

Def. 4: Partial successor state. Firing the updates in Upd�	� $�� in the state $� re-
sults in its successor state $���. For any function symbol f from 
, the relation
between  �� and  ���� must be a model for the following equations:

 �������� � � � � ��� � �� % � � ���� � � � � ���� ��� � Upd�	� $��

The advantage of the partial definition is that the evolution of the part of
the state which does not change is not specified at all, and therefore it is easier
to combine such definitions. This advantage becomes visible in approaches
where ASM rules are modeled as equation systems, for instance if ASMs are
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modeled with Algebraic Specifications (125; 136; 177; 178). The complete
definition results in an exploding number of equations (125; 136) while the
partial definition allows to solve this problem elegantly (178). Further the partial
definition Definition 4 allows to compose the equations of the subrules, whereas
the complete definition does not allow for such a composition.

The different forms of rules are given below. We use �)��� to denote the
usual term evaluation in the state $. In all definitions, ��� � � � � �� are terms over

.
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Def. 5: Update denotations of ASM rules.

Basic Update
if 	 �  ���� � � � � ��� �� ��
then Upd�	� $� � � � ��)�������� � � � � �)��������� �)��������

Parallel Composition
if 	 � 	� � � � 	�
then Upd�	� $� �

�
����������� Upd�	�� $�

Conditional Rules
if R = if � then 		
�� else 	���� endif

then Upd�	� $� �

�
Upd�		
��� $� % �)������ � �'!�

Upd�	����� $� ��&�'(%��

Do-for-all
if R = do forall x in U : Q(x)

R’
enddo

then Upd�	� $� �
�
��� � Upd�	�� $ 	 �
 
� ���

where

� � � � ��� �)�������� �"����� are U elements fulfilling Q.

� $ 	 �
 
� �� is state $ with x interpreted as e.

Choose
if R = choose x in U : Q(x)

R’
ifnone

R”
endchoose

then

Upd�	� $� �

���
��

Upd�	�� $ 	 �
 
� ORACLE��

% �� � �)�������� �"����

Upd�	��� $� ��&�'(%��

where ORACLE is a nondeterministically chosen element � � ��
4, ful-

filling Q(e).

Extend
if R = extend U with x

R’
endextend

then Upd�	� $� � Upd�	�� $ 	 �
 
� ��� 	 ���� ���� �'!���,
where e does not belong to the domain or the co-domain of any of the
functions in state $, i.e. is a new, unused element.

4As mentioned, �
 is the definition of U in state �.
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4.3 The XASM Specification Language

Due to the fact that the ASM approach defines a notion of executing specifica-
tions, it provides a perfect basis for a language, which can be used as a specifica-
tion language as well as a high-level programming language. However, in order
to upgrade to a realistic programming language, such a language must – besides
other features – add a modularization concept to the core ASM constructs in or-
der to provide the possibility to structure large-scale ASM-formalizations and to
flexibly define reusable specification units. XASM realizes a component-based
modularization concept based on a unification and generalization of ASM’s rule
and expression semantics. The unification of rules and expressions is done by
considering each ASM construct, whether rule or expression, to have both an
update set denotation, and to evaluate to a result, the so called value denotation.

In addition to the existing ASM constructs, we introduce a new feature,
so called external functions5. External functions can be evaluated like normal
functions, but as a result, both a value, and an update set are returned. For
each external function, we need to specify its update denotation and its value
denotation. Both denotations can be freely defined. The formal definition of
external functions, their denotations, and the propagation of these denotations
through the existing ASM term and rule constructors is given in Section 4.3.1.

While external functions make the calculation of rule sets, and thus the se-
mantics of XASM rules extensible, we introduce a second new construct called
environment functions in order to make XASM open to the outside computations.
Environment functions are special dynamic functions whose initial definition is
given as a parameter to an ASM. After an ASM terminates, the aggregated up-
dates of the environment functions are returned as update denotation of the a
complete ASM run. The formalization of ASM runs, environment functions,
the update denotation of an ASM run in terms of state-delta, and the value de-
notation of an ASM run are given in Section 4.3.2.

For intuition, it is a good idea to think about environment functions as
dynamic-functions passed to an ASM as reference parameters, and about ex-
ternal functions as locally declared procedures. Having both concepts we can
plug the two mechanisms together by defining update and value denotation of
an external function by means of an ASM run. Thus the evaluation of such
an external function corresponds to running, or calling another ASM. The en-
vironment functions of the called ASM are given as functions of the calling
ASM. The details how an external function can be realized as ASM are given in
Section 4.3.3. The formalization is given by using the definition of update and
value denotations of an ASM, as defined in Section 4.3.2 as the definition of the
update and value denotations of the realized external function.

5In the context of ASMs the term ”external function” has been used in a different way. For
the sake of simplicity we are using the term ”external function” only in connection with XASM,
and not with ASMs and we are always referring to the XASM definition of ”external function”.
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4.3.1 External Functions

In Section 4.2 the denotation of each ASM rule construct has been given as a
set of updates. Denotation of terms has been formalized by means of the usual
�)��� term evaluation. The denotation of each existing ASM construct is thus
either a set of updates or an element, the result of its evaluation. The ASM
constructs denoted by updates are the rules, and the ASM constructs denoted
by values are the terms.

The idea of eXtensible ASMs (XASM) is to unify rules and terms, by con-
sidering each construct to have both an update and a value denotation. In pure
ASMs rules would have the value denotation undef and expressions have the
empty set as update denotation. In XASM external functions are introduced as a
new construct having both denotations.

In order to avoid confusion with the standard �)��� function, we introduce
a new function which gives the value-denotation.

Def. 6: Value denotation. The value denotation of each rule or expression R in a state
$ is defined to be an element of � given by

Eval�	� $�

The external functions are declared using the keyword external function.
Syntactically the external functions are used like normal functions. Function
composition which involves external functions may thus result in updates, and
we need therefore to redefine the update denotations of all rule constructions
involving expressions, by refining Definition 5.

In order to simplify the presentation of semantics, we denote the external
function symbols with underlined symbols, for instance f. These symbols are
grouped in the set 
��	 of external symbols.

Def. 7: Extended signature. The signature 
 is extended with the symbols 
��	 of
external functions to signature 
�.


� � 
 	 
��	

Since the external functions are not part of an ASM’s state, the definition of state
$ is not affected, it is still a mapping from signature 
 of dynamic functions to
the actual definitions of these functions. However, terms can be built over the
extended signature 
�.

Def. 8: Denotations of external functions. For each external function  � 
��	 their
updates and value denotations in state $ are given by

ExtUpd� � ���� � � � � ���� $�

and
ExtEval� � ���� � � � � ���� $�
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XASM features interfaces allowing to give these definitions in arbitrary ex-
ternal languages, which leads to a non-formal system, or in XASM itself, which
leads to a formal system which is described in Section 4.3.3.

In the following we give the definition of Upd and Eval for function compo-
sition of dynamic functions  � 
, external functions  � 
��	, and all six rule
constructors.

Def. 9: Update and value denotations of XASM constructs. Assume in all following
definitions

� ��� � � � � �� are terms over 
�,

� �� � Eval���� $� and � � � and �� � Eval���� $� are the elements these terms
evaluate to,

�  � 
 is the symbol of a dynamic function, and

�  � 
��	 is the symbol of an external function.

Function Composition
if 	 �  ���� � � � � ���
then

Upd�	� $� �
�
����������� ������� $�

Eval�	� $� �  ����� � � � � ���

External Function Composition
if 	 �  ���� � � � � ���
then

Upd�	� $� � ExtUpd� � ���� � � � � ���� $� 	
�
����������� ������� $�

Eval�	� $� � ExtEval� � ���� � � � � ���� $�

Basic Update
if 	 �  ���� � � � � ��� �� ��
then

Upd�	� $� � �� � ���� � � � � ���� ���� 	
�
����������� ������� $�

Eval�	� $� � undef

Conditional Rules
if R = if � then 		
�� else 	���� endif
then

Upd�	� $� �

�
Upd�		
��� $� 	 Upd��� $� % Eval��� $� � �'!�

Upd�	����� $� 	 Upd��� $� ��&�'(%��

Eval�	� $� �

�
Eval�		
��� $� % Eval��� $� � �'!�

Eval�	����� $� ��&�'(%��
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Parallel Composition
if 	 � 	� � � � 	�
then

Upd�	� $� �
�
����������� Upd�	�� $�

Eval�	� $� � !��� 

Do-for-all
if R = do forall x in U : Q(x)

R’
enddo

then

Upd�	� $� �
�
���� � Upd�	�� $ 	 �
 
� ����
	

�
�����

����"����� $�
Eval�	� $� � !��� 

where

� � � � ��� Eval����� �"���� $�� are U elements fulfilling Q.

� $ 	 �
 
� �� is state $ with x interpreted as e.

Choose
if R = choose x in U : Q(x)

R’
ifnone

R”
endchoose

then

Upd�	� $� �

��������
�������

Upd�	�� $ 	 �
 
� ORACLE��

	 Upd�"�ORACLE�� $�

% �� � Eval����� �"���� $�

Upd�	��� $�

��&�'(%��

Eval�	� $� �

�����
����

Eval�	�� $ 	 �
 
� ORACLE��

% �� � Eval����� �"���� $�

Eval�	��� $�

��&�'(%��
where

ORACLE is a nondeterministically chosen element � � � ,
fulfilling Q(e) in $.

Extend
if R = extend U with x

R’
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endextend
then

Upd�	� $� � Upd�	�� $ 	 �
 
� ��� 	 ���� ���� �'!���,
Eval�	� $� � !��� 

where
e does not belong to the domain or the co-domain of any of the
functions in state $.

4.3.2 Semantics of ASM run and Environment Functions

We have given the semantics of ASM rules and expressions in terms of defining
the relation of one state to the next. In this section we formalize how the state
of an ASM is initialized, by means of parameters and so called environment
functions, and what is an ASM run. We give both value and update denotations
of ASM runs.

We mentioned earlier that dynamic functions are initialized everywhere with
undef, except for relations, which are initialized everywhere with false. Pa-
rameters and environment functions allow to initialize functions with different
values. As example we take the following ASM.

ASM 5: asm InitializationExample(p1, p2)

updates function f(_,_)
accesses function g(_,_)

is
function h(_,_)
R
endasm

The example shows two parameters, p1 and p2, two environment functions,
f and g, and one normal dynamic function h. If the ASM is started, or called,
actual values for the parameters have to be given, as well as definitions for the
environment functions. Parameters result in normal, 0-ary dynamic functions,
which are initialized with the actual value. Environment functions are used to
initialize functions of arity higher than zero. As we can see, there are two ways
to declare environment functions, one for read-only access as ”accesses” and the
other for read-write access as ”updates”. In addition to such declared functions
there is the special 0-ary function result which is used to return values from an
ASM run.

Intuitively environment functions correspond to reference parameters passed
to an ASM call. The aggregated updates to these functions constitute the update
denotation of an ASM run. In contrast parameters can be considered call-by-
value arguments. Updates to such arguments are possible in Xasm, but they
have only local effects.

The signature 
 of the state of an ASM consists thus of the normal dynamic
functions, the 0-ary dynamic functions initialized by actual parameters, the en-
vironment functions, and the special function result.
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Def. 10: Local and environment functions. The signature 
 of dynamic functions is
built by a set of locally defined functions 
���, the set of parameter functions

��
, the set of environment functions 
��� and the special function result. All
of them must be pairwise disjoint.


 � 
��� 	 
��� 	 
��
 	 �'��!���

�


��� � 
��� � 
��
 � �'��!��� � ��

An ASM can now be called by providing it with actual parameters, and an
initial state for the environment functions.

Def. 11: ASM call. An ASM with rule R parameters ��� � � � � �� and environment func-
tions 
��� is called by the following triple

�	� ���� ���� ���� $
��

where ���� � � � � ��� are actual values for the parameters of the ASM, and $�

is a mapping from the function symbols of 
��� to actual definitions for these
functions.

Given an ASM call, we can define the initial state of the called ASM as
follows.

Def. 12: Initial state. Given an ASM call �	� ���� ���� ���� $
�� with parameters ��� � � � �

�� the initial state $� of the called ASM is defined as follows.

$� � $� 	 ��� 
� ��� � � � � �� 
� ���

Given the definition of the initial state and of the next state relation we can
define the fixpoint semantics of an ASM run as follows.

Def. 13: Fixpoint semantics. Given an ASM call �	� ���� ���� ���� $
��, the definition of

the initial state $� of such a call, according to Definition 12, and the relation of
state $� to $���, according to Definition 3, we define the fixpoint semantics � as
a mapping from ASM calls to final states or  if there is no fixpoint.

��	� ���� ���� ���� $
�� �

�
$� % $� � $���� �����* � * � % � $� � $����

 % �����% �� $� � $����

where  denotes a non-terminating call.

Given the fixpoint semantics of an ASM call, we can define the update and
value denotation of such a call. The value denotation is simply the value of
function result in the final state of the call.
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Def. 14: Value denotation of ASM call. Given an ASM call �	� ���� ���� ���� $
��, and the

fixpoint semantics, according to Definition 13, the value denotation CallEval is
the value of result in the final state of the call.

CallEval�	� ���� ���� ���� $
�� � result��������������	���	

The update denotation CallUpd of a call is given by the aggregated updates
to environment functions. The aggregated updates are calculated by comparing
the initial state and the terminal state of these functions. The comparison of
states is done by state subtraction

Def. 15: State subtraction. Given two states $� and $� over the same signature 
, the
formal definition of state subtraction is

$� � $� � �� � ���� � � � � ���� ����

 � 
 � ��� � � � � �� � �

�  ������ � � � � ��� � ��

�  ������ � � � � ��� �� ��

�

Using this definition, the update denotation of an ASM call is defined as
follows.

Def. 16: Update denotation of ASM call. Given an ASM call �	� ���� ���� ���� $
��, the

signature 
��� of environment functions, the fixpoint semantics, according to
Definition 13, and the definition of state subtraction according to Definition 15,
the update denotation CallUpd is the environment part of the final state minus
the initial state $� of the environment functions.

CallUpd�	� ���� ���� ���� $
�� � ��	� ���� ���� ���� $

���
��� � $�

4.3.3 Realizing External Functions with ASMs

After we specified both external functions, for which we need to give value and
update denotations ExtEval and ExtUpd, and as well ASM calls, for which we
defined value and update denotations CallEval and CallUpd, the next natural
thing to do is to use the denotations of an ASM call as definitions of the denota-
tions of an external function. With other words, we realize an external function
with an ASM. The environment functions of the called ASM are naturally taken
from the dynamic functions of the called ASM, and the resulting updates to
these functions fit thus naturally in the update set of the calling ASM.

The definition of update set and value denotations of an external function re-
alized by ASM can now be given by using CallUpd and CallEval as definitions
of ExtUpd and ExtEval.

Def. 17: Denotations of ASM call. Assume the external function  to be implemented
by the following ASM:
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asm _f(p1, ..., pn)
updates functions SIGMA_ENV
is
functions SIGMA_LOC
R
endasm

where SIGMA ENV is the signature
���� of environment functions of the called
ASM, and SIGMA LOC is the signature 
���� of locally declared dynamic func-
tions of the called ASM.

Given a state $ of the ASM calling  , the denotations ExtUpd and ExtEval
are defined as follows.

ExtUpd� � ���� � � � � ���� $� � CallUpd� � ���� � � � � ���� $�
����

ExtEval� � ���� � � � � ���� $� � CallEval� � ���� � � � � ���� $�
����

Examples
Consider our previous example the ASM AP. An ASM AQ, can refer to AP, by
declaring it as external “ASM” function, or short external function.

ASM 6: asm AQ is
function i <- 0
external function AP

if i < 10 then
i := i+1
AP

endif
endasm

In AQ there is a local 0-ary function i, and the external function AP, which
is realized as ASM. The if-clause in the rule of AQ guarantees that AP is called
10 times. Each time, AP is called, it runs until its termination, the final state of
AP is interpreted as an update set, and the value of the function return in AP is
used as return value. The update set generated by each run of AP is

��
�� ��� ��� �
�� ��� ��� �
�� ��� ���

Since all of the updated functions are local to AP, the generated update set has
no effects on the state of AQ. Further, in this simple case, the value of return
is undef, since there is no update to return in AP. Thus the value denotation of
calling AP is undef.

As second example consider two ASMs A and B. We abstract from concrete
rules and consider A to execute the parallel composition of a rule Ra and a call
to B, while B is considered to execute a rule Rb. A has locally defined functions
��� � � � � �� and B has locally defined functions +�� � � � � +�.

ASM 7: asm A is
functions a1, ...., an
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external function B
Ra
B

endasm

ASM 8: asm B
updates functions a1, ..., an

is
functions b1, ..., bm

Rb
endasm

. . .

asm step call as function

A A

B B B

. . .

Fig. 38: ASM A calls ASM B

The interface of B determines that ASM calling B must provide dynamic
functions ��� � � � � �� which are allowed to be updated by B.

The situation of A calling B is visualized in Fig. 38. In each step of A, the
rule Ra as well as ASM B are executed. If B is called, the current state of A’s
functions is passed to B as the initial state of the environment functions. From
this state, B runs until its termination, updating the state of its local functions as
well as the state of the environment functions. After termination, the state of the
local functions of B, is discarded, and the state of the environment functions is
compared with their initial state, passed by the environment. The changes with
respect to the initial state are returned as the update-denotation of the B-call.

The updated-denotation of the B-call is combined with the update-
denotation of the Ra-rule, and applied to the current state of A. Only now A’s
locally defined functions are really updated. The internal steps of B are not vis-
ible to A. From A’s perspective, calling B is considered an atomic action. The
XASM call provides thus an abstraction from sequentiality.

Returning values We have mentioned several times the special role of the
function result, but we have not shown its use and examples. Based on the
above definitions, result must be declared as local function and updated like any
other function. The termination of an ASM does not a priori depend on the state
of result. A typical “factorial”-program would look as follows.
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ASM 9: asm factorial(n) is
function result

if result != undef then
if n = 0 then

result := 0
else

result := n * factorial(n-1)
endif

endif
endasm

For convenience a shorthand notation allows the user to skip the explicit decla-
ration of the variable ”result”, as well as the outer ”if result != undef”-clause,
and it introduces the more intuitive syntax ”return x” instead of ”result := x”.
Applied to the previous example, the shorthand notation results into the follow-
ing formulation.

ASM 10:asm factorial(n) is
if n = 0 then

return 0
else

return n * factorial(n-1)
endif

endasm

As a last example of this section, we would like to show a formulation of “fac-
torial” which avoids call-recursion.

ASM 11:asm factorial(n) is
function n0 <- n, r <- 1

if n0 > 0 then
r := n0 * r
n0 := n0 - 1

else
return r

endif
endasm

Every tail-recursive algorithm can be reformulated in this iterative style. We
will use this stile throughout the thesis, since it shows clearer how ASMs work.
In the following variant of factorial we use the fact, that the parameters of an
ASM can be used as normal 0-ary dynamic functions.

ASM 12:asm factorial(n) is
function r <- 1

if n > 0 then
r := n * r
n := n - 1

else
return r

endif
endasm
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4.4 Constructors, Pattern Matching, and Derived Func-
tions
Most theoretical case studies using ASMs start with a mathematical model of
some static system, formalized as a fixed set of statically defined functions and
elements, and add a number of dynamic functions on top of this algebra. With
the up to now discussed features, the static models must be either provided by
an external implementation, or simulated with dynamic functions as well.

4.4.1 Constructors

While experimenting with early versions of XASM, we identified one mathe-
matical concept which is on one hand often used, and on the other hand very
awkwardly simulated with dynamic functions. The identified concept is free-
generated-terms. Unlike terms over dynamic functions, evaluating initially all
to the same element undef, free-generated-terms, or constructors are expected to
map to the same element, if and only if all their arguments are equal. This con-
cept corresponds to free-data-types in functional programming languages like
Standard ML (155; 40) or term algebras in algebraic specifications (65). XASM

features an untyped variant of classical constructor terms, as well as pattern
matching and derived functions. These three features form a pure functional
subset of XASM. In Section 4.4 we give the details of these features.

In functional languages, typically each element of a constructor is typed
with some free-data-type. In contrast, the XASM constructors take arbitrary ar-
guments, even dynamically allocated elements, and construct a unique element
from each unique sequence of arguments.

The definition of the two constructors

constructors zero, successor(_)

is thus not only creating the elements �zero, successor(zero), successor( suc-
cessor( zero), . . .� , but as well unexpected elements like successor(true) or
successor(��), where �� is an element created by an extend-rule; since such dy-
namically elements elements do not correspond to any symbol for built-in con-
stants, XASM allows the user to define constructor-terms having no syntactical
representation.

4.4.2 Pattern Matching

In combination with constructors, it is very useful to have pattern matching and
derived functions. As an example for pattern matching, consider an abstract-
data-type stack, being specified by the following equations.

�����!�&��� )� � �

�����!�&��� )� � )

�����,���� � !��� 

�����,���� � �,���
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Two constructors empty and push( , ) are used to build stacks in the usual
way. top( ) and pop( ) are declared as external functions and realized as ASMs.
Within these ASMs, pattern matching is used.

ASM 13:constructors empty, push(_,_)
external functions top(_), pop(_)

asm top(s)
accesses function push(_,_)

is
if s =˜ push(&, &v) then

return &v
else

return undef
endif

endasm

asm pop
accesses functions empty, push(_,_)

is
if s =˜ push(&s, &) then

return &s
else

return empty
endif

endasm

We see the pattern matching symbol “=˜” and the pattern variables, which
all start with the symbol &. The plain symbol & is a placeholder for pattern
variables, whose value is not used anymore. The matching-expression is given
as condition of an if-then-else rule. If a match happens, the pattern-variables
can be used, otherwise they cannot. Thus pattern-variables can only be used in
the then-clause of an if-then-else rule.

4.4.3 Derived Functions

A third construct which is useful in combination with constructors and pattern-
matching is the derived function. The value of derived function is defined by an
expression. The derived function

derived function f(p1, ..., pn) == t

where t is a term build over 
 and the parameters ��� � � � � ��, is semantically
equivalent to an external function defined as follows.

external function f(p1, ..., pn)

asm f(p1, ..., pn)
accesses ...

is
return t

endasm
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Tab. 3: Properties of XASM function types
Function Types updatable? initial value generate updates?
dynamic function yes undef no
constructor no free-generated no
derived function no calculated yes
external function yes calculated yes
asm yes calculated yes

Using derived functions, the above example ASM 13 can be reformulated as
follows:

ASM 14:constructors empty, push(_,_)
derived function top(s) ==
(if s =˜ push(&, &v) then &v else undef)

derived function pop(s) ==
(if s =˜ push(&s, &) then &s else empty)

4.4.4 Relation of Function Kinds

Using only constructors, pattern-matching, and derived functions, XASM can be
used as a pure functional language. An arbitrary part of an XASM specification
can thus be written in the functional paradigm.

However, if derived functions are defined over dynamic functions, their
value depends on the state, and if derived functions are used in combination
with extension functions, they may even produce updates. Table 3 lists the dif-
ferent types of functions in XASM, as well as the information

� whether they can be updated,

� what is their initial value, and

� whether they generate new updates if they are evaluated6.

We marked both external functions, as well as locally defined ASMs as up-
datable. This feature is useful to refine models, by replacing dynamic functions
with external functions, for instance data-bases. The XASM implementation is
organized such, that first all read accesses to external functions are done, and
then all updates.

4.4.5 Formal Semantics of Constructors

The concept of terms built up by constructors can be mapped to the ASM ap-
proach as follows: each of the function names may be marked as constructive,
expressing that constructor functions are one-to-one and total.

6New updates are those resulting from the function evaluation itself, and not from the eval-
uation of the functions argument.
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Let 
� � 
 be the set of all constructive function symbols. If  � 
�, be
of arity n, - � 
�, be of arity m, and ��� � � � ��� ��� � � � � �� be terms over 
�, then
the following condition hold for all states $� of the ASM:

(i)
 ���� � � � � ��� � -���� � � � � ���

iff
� � -� and �� � ,� and ��	�
������ � �	�
�������

for all � � . � � where �	�
����� stands for the evaluation of the term t in state
$� of the ASM. Informally speaking it means that each constructive function is
total with respect to � and injective.

(ii) For all * / %� �� � ��� � � � � � �� � ���

 ������ � � � � ��� �  �� ���� � � � � ���

This means that constructive functions do not change their values with time, but
whenever a new element is created, the domain of all constructive functions is
automatically extended to the new element; from that moment on, all elements
constructed from the newly defined element do not change in time either.

If  � 
�, then f is called a constructor, and terms  ���� � � � � ��� built only
over 
� are called constructor terms. In the following, we use the constructor
term t as a synonym for its unique value �	�
 ����.
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4.5 EBNF and Constructor Mappings
XASM features specialized programming constructs to define EBNF grammars,
to parse strings according to these grammars, and build during the parsing a con-
structor term representing the AST. In this section we introduce these program-
ming language related features which have been integrated into the XASM lan-
guage as a means to support the implementation of various meta-programming
algorithms, such as the later presented self-interpreter (Section 5.4), type-
checkers, attribute grammar engine (Section 7), partial-evaluators (Section 5.5),
as well as the specification and implementation of Montages in Section 8.

The existing XASM implementation features a relatively direct integration
with the Lex/Yacc tool-set, supporting only BNF rules, instead of EBNF, and
forcing the user to program the construction of constructor terms or other struc-
tures during the parsing. We introduce here a refined version where full EBNF
rules can be specified, and where the construction of the terms representing the
AST is done with a declarative mapping from EBNF productions into construc-
tor terms. The purpose of our refined definitions is to allow for a complete
specification of the parsing and AST construction process of Montages, without
having to code the detailed construction, and especially without having to sim-
ulate EBNF with BNF rules. We abstract here from the problems of integrating
our refined features with a specific parser generator.

4.5.1 Basic EBNF productions

As mentioned in Section 3, the EBNF production rules are used for the context-
free syntax of the specified language L, and allow the generation of a parser
for programs of L. Given an L program, a parser reconstructs the (recursive)
applications of the EBNF productions such that the generated string corresponds
to the program.

The result of parsing is a syntax-tree, being formalized in our framework
as a constructor-term built up during the parsing. The mapping from programs
into constructor terms can be given by denoting for each EBNF production a
constructor, and defining how the constructor-representations of the parsed sym-
bols on the right hand side are embedded into the constructor term. Basic EBNF
productions and the difference between characteristic and synonym productions
have been given in Section 3.2.1.
Characteristic productions
References to the right-hand symbols in characteristic productions are done via
their names, possibly marked by their number of occurrence. Assume �� � � � �
is a 4-ary XASM constructor. A characteristic production

A ::= B C D D

extended with mapping

=> a(B, C, D.1, D.2)

returns a constructor-term ���'-�� �'-�� �'-�� �'-��, whose arguments �'-� are
the constructor-terms returned by the parsed right-hand sides symbols.
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Micro syntax
In the case of variable terminals, the term Name returns the micro-syntax. For
brevity we are not giving here the details how to define variable terminals, but of
course we use the standard technique of regular expressions. For instance, the
definition of a typical Ident symbol returning its micro-syntax could be given as
follows.

Ident = [A-Za-z][A-Za-z0-9]* => Name

In all other cases, Name returns a string representation of the left-hand-side
symbol. For instance, the following mapping of the above characteristic rule

A ::= B C D D
=> characteristic(Name, B, C, D.1, D.2)

results in a constructor term

�&�'����'%��%������ �'-�� �'-�� �'-�� �'-��

where again arguments �'-� are the constructor-terms returned by the parsed
right-hand sides symbols.
Synonym productions
For synonym productions, the chosen right-hand side is accessible as term rhs.
A synonym production

E = F | G | H => e(rhs)

returns the term
��
�

where x is the chosen right-hand side. As an alternative one can return only the
right-hand side, e.g. the production

E = F | G | H => rhs

returns directly the chosen right-hand side. Returning a constructor from a syn-
onym rule allows to keep information which synonym rules have been triggered,
while returning directly rhs allows to compactify the resulting terms.

A third alternative is to map the results of the synonym-production into a
special constructor synonym and to use the Name term to store which synonym
rule has been used. The production

E = F | G | H => synonym(Name, rhs)

returns a constructor term

������,����� �'-��

where �'-� is the constructor term returned from parsing one of the right-hand
side symbols.
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Example
As an example we extend the syntax rules of language � (Gram. 1 in Section
3.2.2) with a mapping from parsed programs into constructor terms.

Later in Section 4.5.3 the same grammar is used with an alternative map-
ping, using the above solutions with the ”characteristic” and ”synonym” con-
structors. The interested reader is invited to consult these examples already
now.

Gram. 3: Expr = Sum � Factor
�/ expr(rhs)

Sum ::= Factor “+” Expr
�/ sum(Factor, Expr)

Factor = Variable � Constant
�/ factor(rhs)

Variable ::= Ident
�/ variable(Ident)

Constant ::= Digits
�/ constant(Digits)

Ident = [A-Za-z][A-Za-z0-9]*
�/ ident(Name)

Digits = [0-9]+
�/ digits(Name.strToInt)

If a ”Sum” is parsed, the constructor sum( , ) is returned, having as first argu-
ment the constructor returned for the parsed ”Factor”, and as second argument
the constructor returned for the parsed ”Expr”. If one of the synonyms is parsed,
the chosen right-hand side is returned as unique argument of the constructor
corresponding to the synonym. For instance an instance �� of symbol Expr is
returned as term expr(��). If a ”Variable” is parsed, constructor variable( ) with
the representation of the Ident as argument is returned, and finally, if a ”Con-
stant” is parsed, the constructor constant( ) with the representation of the Digits
is returned. Finally, Ident and Digits return constructors with their micro-syntax
as arguments.

Considering again the example program ”2 + x + 1” of Section 3.2.2, the tex-
tual version of the constructor term resulting from applying the above mapping
is given as follows.

Term 6: expr(sum(factor(constant(digits(2))),
expr(sum(factor(variable(ident("x"))),

expr(factor(constant(digits(1))))
)

)
))

A visualization of this term can be seen on the left-hand side of Figure 40.

4.5.2 Repetitions and Options in EBNF
On the right-hand side of characteristic productions, not only non-terminal sym-
bols, but repetitions and options are allowed. Repetitions and options are treated
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similar to the way how they are treated in Montages, as described in Section 3.4.
Symbols within curly repetition brackets return a list of representations of the
corresponding symbol. The EBNF list

{ A B }

parses sequences of AB, but returns as A a sequence of A, and as B a sequence
of B. For instance a production

L ::= { A B } => l(A, B)

parsing ”������������” results in constructor term

l([A1, A2, A3], [B1, B2, B3])

Further, a single symbol, followed or preceded by a list containing the same
symbol and possibly some terminals is collected in one list. The EBNF clause

A {";" A} {A ";"} A

are both parsing sequences like A;A or A;A;A, and return as A one list of A
instances.

Symbols within square option brackets return an empty list, if the optional
symbol is not present and the representation of the symbol otherwise. This
is especially practical in combination with the above feature, since an EBNF
clause

["(" A {";" A} ")"]

is returning as A an empty list, if nothing is present (as defined by the rule for
square brackets), a single A, if one A is present, and a list of A’s, if two or more
A’s are present (as defined by the rule for curly brackets.)

4.5.3 Canonical Representation of Arbitrary Programs

In addition to the possibility of defining custom mappings, we define a default,
canonical mapping into a generic term representation using the above men-
tioned constructors characteristic and synonym. This canonical mapping is later
used as starting point to construct ASTs like those introduced in Section 3.2.

� Given a characteristic EBNF rule

A ::= B C D D

the generic mapping is

=> characteristic(Name, [B,
C,
D.1,
D.2])

� Given a synonym rule

E = F | G | H
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the generic mapping is

=> synonym(Name, rhs)

where rhs is an operator allowing to access what comes back on the right-hand
side.

� Given a terminal ”x”, the generic mapping is omitting the terminal.

� Given a right-hand side symbol within a list, the mapping is that symbol. For
instance the Rules

K ::= { L }
K ::= L {"," L}
K ::= ["(" L {’;" L} ")"]

all result in the mapping

=> characteristic(Name, L)

� Correspondingly, if a symbol is in option brackets, the mapping is the symbol.

Following this rules it is possible to write a generator, taking as input a term
representation of EBNF rules, and outputting a term representation of the same
EBNF decorated with constructor mappings according to the above description
of a canonical mapping. This generator is called GenerateEBNFmapping( ).
For the sake of brevity, we are not giving the full definition of this generator.
Example
Given again the grammar � (Grammar 1 in Section 3.2.2) the result of applying
GenerateEBNFmapping( ) is the following grammar.

Gram. 4: Expr = Sum � Factor
�/ synonym(Name, rhs)

Sum ::= Factor “+” Expr
�/ characteristic(Name, [Factor, Expr])

Factor = Variable � Constant
�/ synonym(Name, rhs)

Variable ::= Ident
�/ characteristic(Name,[Ident])

Constant ::= Digits
�/ characteristic(Name, [Digits])

Ident = [A-Za-z][A-Za-z0-9]*
�/ terminal(”Ident”, Name)

Digits = [0-9]+
�/ terminal(”Digits”, Name.strToInt)
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Fig. 39: The canonic constructor term and the abstract syntax tree for 2 + x + 1

As we can see, in contrast to the customized mapping of Grammar3 in Sec-
tion 4.5, the canonical mapping uses only the generic constructors synonym and
characteristic.

Considering once again the example program ”2 + x + 1” of Section 3.2.2,
the textual version of the resulting constructor term is given as follows.

Term 7: synonym("Expr",
characteristic("Sum",

[synonym("Factor",
characteristic("Constant",[terminal("Digits",2)])),

synonym("Expr",
characteristic("Sum",

[synonym("Factor",
characteristic("Variable", [terminal("Ident","x")])),

synonym("Expr",
synonym("Factor",
characteristic("Constant", [terminal("Digits", 1)])))

]))
]))

Compared to the customized version Term 6 the above term is longer, but it
is easier to process this kind of generic terms, using only a fixed set of construc-
tors, in a generic way. In Figure 39 we show on the left-hand side a visualization
of the constructor term, resulting from the application of the new, canonic map-
ping. The mentioned customized mapping (Grammar3 in Section 4.5) is visual-
ized in Figure 40. The right-hand side of both figures show the parse tree which
needs to be created for the Montages models. The advantage of the canonical
mapping is, that a generic XASM formalization of the parse tree creation can be
given more easily.
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4.6 Related Work and Results

ASMs are a combination of parallel execution, treatment of data-structures as
variable functions, and implicit looping. Parallel execution is well know from
Hardware description languages like VHDL (144). The treatment of data struc-
tures as variable functions is known from early work on axiomatic program
verification (95; 59) and has been stated explicitly in (190). While existing
work aimed at modeling concrete memory- or data-structures in hardware or
software, Gurevich’s ASM are defined as dynamic versions of Tarsky struc-
tures (207). Based on the fact, that Tarsky structures are the most common
tool of mathematicians to describe static systems, they are logical candidate to
represent in a most general way a single state of a dynamic computation. An-
other field using structures to describe static systems are algebraic specifications
(72). As well in that field it has been observed that the absence of state makes
many interesting applications infeasible. This lead to work proposing extension
of algebraic specifications with state (52; 17; 181). Unlike these approaches,
ASMs allow to define evolution of the state in the most direct form: by explicit
enumeration of the pointwise difference from one state to the next. All other
approaches try to reduce the allowable state-updates to a minimum, in order to
guarantee the preservation of certain properties from one state to the next. In
contrast to this, ASMs allow to make arbitrary many changes from one state to
the next.

Still Gurevich’s initial program for ASMs is pure mathematical: a mathe-
matically defined dynamic system, which would allow to model arbitrary algo-
rithms. His thesis (79) is that unlike Turing machines (211) his machines would
allow to model algorithm without encoding data-structures and splitting execu-
tion steps. He observed that every conceivable data-structure can be modeled
as a Tarsky structure, and every possible state change of the algorithm can be
modeled by a set of explicit, pointwise changes to the structure. A proof of the
thesis for sequential algorithms is given (83; 84).

This pure mathematical program, has been implicitly transformed in a com-
puter science project, by defining a concrete rule-language for constructing the
update sets. While in earlier publications (79; 80) Gurevich is investigating the
concept of dynamically changeable Tarsky structures, later he defines a set of
fixed, minimal languages for defining rules (81). ASMs are then defined to cor-
respond to this rule-programming-language, and under this interpretation the
thesis has subsequently provoked a lot of polarization among computer scien-
tists. The lack of modularization and reuse feature in the proposed languages is
for computer scientists not compatible with the claim, that arbitrary algorithms
can be modeled on their natural abstraction level. While the initial mathemat-
ical meaning of this sentence makes a lot of sense, it contradicts computer sci-
entist’s experience, if “algorithm” is interpreted as software or hardware, and
“modeled” is interpreted as “prototyped” or even “implemented” in a feasible
and maintainable way.

However, the debate on ASMs in computer science has led to an impres-
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sive collection of case studies, each of them using ASMs to model a system
which is considered to be complex. Examples are referenced in the annotated
bibliography (29). While most models try to restrict the used rule-languages to
the predefined ones, in many cases additional machinery has been used in order
to manage the complexity. Such machinery reuses typically common concepts
from programming languages.

The functional programming paradigm has been considered as the best can-
didate for extending the minimal rule-languages. The reason is, that many the-
oretical ASM case studies use a considerable amount of higher mathematics to
describe the static part of algorithms. Functional programming is ideal to model
higher mathematics and it uses modularization concepts based on mathematical
concepts. This approach has led to a number of ASM implementations based on
functional languages (220; 54). Odersky (168) proposes the opposite way, e.g.
to use variable functions as an additional construct in functional programming
languages. In both cases a functional type system is proposed. The introduction
of such a type system is helpful for cases where the described algorithms fits
well into the type system. On the other hand, Gurevich’s original untyped def-
inition of ASMs still provides the highest level of flexibility. We do not know
of an ASM implementation based on functional languages which provides an
implementation of the original, untyped definition of ASMs.

Today’s software systems reached a level of complexity leading to use of
multiple paradigms (48). Our experience shows that untyped ASMs are useful
to use different paradigms in parallel. The idea behind XASM is to start with
Gurevich’s untyped definition of ASMs (80) and to make it extensible. The ex-
act mechanisms have been discussed before. Unlike other extensions of ASMs,
the XASM approach does not alter the semantics idea of Tarsky structures and
update sets. The only difference of XASM to Gurevich’s ASMs is, that we allow
extensible rule languages. Since the means for extension are again ASMs, the
XASM call can be seen as well as a way to structure ASMs.

An algebraic view of a similar structuring concept has been given by May in
(150). The XASM call is a special case of notions defined in (150). While May
applies the state of the art in algebraic specification technologies to ASMs, the
idea of XASM is to generalize the original idea of Gurevich, resulting in a more
practical specification and implementation tool. Unlike many other proposals
for extending ASMs, the XASM approach tries to follow Gurevich’s style to
introduce as few concepts as possible. In fact, the XASM call, which is a simple
generalization of Gurevich’s denotational semantics of ASMs (82), is the only
new concept and can be used to define all other extensions.

Another field using structures to describe static systems are algebraic spec-
ifications (72). As well in that field it has been observed that the absence of
state makes many interesting applications infeasible. This lead to work propos-
ing extension of algebraic specifications with state (52; 17; 181). Unlike these
approaches, ASMs allow to define evolution of the state in the most direct form:
by explicit enumeration of the pointwise difference from one state to the next.
All other approaches try to reduce the allowable state-updates to a minimum,
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in order to guarantee the preservation of certain properties from one state to the
next. In contrast to this, ASMs allow to make arbitrary many changes from
one state to the next. Some newer work on modeling transition systems with
algebraic specifications (125; 136; 177; 178) led to the Especs formalism which
allows to map full ASMs into their framework, combining their power with the
structuring and refinement techniques of algebraic specifications.

Based on our experience we would like to challenge the ASM thesis as fol-
lows. Agreeing on the choice of Tarsky structures and update set for modeling
algorithms, we claim that the current choice of ASM constructs is not able to
fulfill the ASM thesis. There are two problems with the current rule-language.

� Although theoretically every update set can be denoted by an appropriate ASM
rule, the abstraction level how the update set is calculated is fixed.

� Although theoretically an arbitrary signature can be chosen, the abstraction level
for defining this signature is fixed.

We propose to remedy these problems by extending ASM such, that both the
update sets, and the definitions of signatures can be calculated by means of
another ASM. The XASM call is a way to calculate updates sets with other
ASMs, and Mapping Automata (101) (Appendix B) or parameterized XASM

(Chapter 5) are proposals how to use ASMs to calculate the signature. It would
go beyond the scope of this thesis to discuss whether this is a real challenge of
the ASM thesis or whether it is only an indication that the choice of a fixed rule
language should be reconsidered.

The XASM language is fully implemented and available as Open Source (8).
The system is used as the basis for the Montages/Gem-Mex, where generated
XASM code is translated into an interpreter for the language specified using
Montages. Other case studies are an application to microprocessor simula-
tion (208) and the application of XASM as gluing code in legacy systems (13).

Additional theoretical applications outside the ASM area are possible, since
ASMs can be considered as an instance of so called transitions system mod-
els (194), which form as well the basis for other popular formalisms such as
UNITY (41), TLA (140), SPL (149) and the SAL intermediate language (194).
Using Montages, both syntax and semantics of new or alternative XASM con-
structs can be developed in the integrated development environment Gem-Mex.
Such an extensible system architecture allows to tailor XASM as a tool for one
of the above mentioned formalisms based on transition systems.
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Parameterized XASM

The purpose of this chapter is to extend XASM with features for parameteriza-
tion of their signature. Parameterization allows us to ”program” the signature
of an algorithm. This possibility is especial useful if abstract algorithms are de-
fined, which are intended to operate on concrete data-structures. As an example
imagine an XASM-algorithm INTERP which interpretes textual representation
of XASM-rules in such a way, that the interpretation of a rule has exactly the
same effects as the direct execution of it. The algorithm INTERP needs thus
to access and update functions which are given by the signature of the inter-
preted XASM-rule. This is only possible if we can parameterize the signature of
INTERP with the signature of the interpreted rule. Another example is partial
evaluation of interpreters, where it is often desirable that the resulting special-
ized program has a signature similar to the signature of the interpreted program.
Otherwise the author of the program cannot validate the specialized code with
respect to her/his original formulation. In our context, we aim at using parame-
terization to give an XASM semantics of Montages which can be specialized to
a simple XASM for each program in the described language.

In Section 5.1 we motivate parameterized XASM (PXasm), by showing that
they are needed for a generic algorithm constructing the abstract syntax trees
(ASTs) used in Montages. The new programming-features of PXasm are intro-
duced in Section 5.2. The design principle of these new features is that if an
ASM � is called by an ASM �, the information dynamically calculated by �
before the call can be used to defined the signature of �. From �’s point of
view, the signature is still static, but it is instantiated differently at each time
� is called. Therefore our design of parameterized XASM can be seen as an-
other conservative extension to standard ASMs. In the run of a parameterized
ASM, the state is still a Tarski structure, and the transition rule can be easily
specialized to a traditional ASM rule.
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In order to avoid confusion we use the term ASM to refer to an abstract
machine given by the XASM construct asm ... is ... endasm , and we
say traditional ASM if we mean Abstract State Machines as defined by Gure-
vich (82). Parameterized XASM are referred to as PXasm.

The construction of ASTs for Montages, which serves as a motivating ex-
ample for PXasm, is formalized with the new features in Section 5.3. An-
other example for the use of the new features is the definition of an XASM

self-interpreter, which executes rules and evaluates terms (Section 5.4). In Sec-
tion 6.1 of the next Chapter this self-interpreter will be applied to give a tree
finite state machine (TFSM) interpreter, which later serves as core of our Mon-
tages semantics.

Finally in Section 5.5 we come to partial evaluation, the main application
of PXasm. We define a partial evaluator for the PXasm formalism written in
PXasm. In the next Chapter we will show in detail how the previously given
TFSM interpreter can be specialized in compiled code by assuming that a given
TFSM is static. This process of specializing the TFSM interpreter corresponds
directly to the process of specializing the Montages meta-interpreter into com-
piled code. Since the details of the full process are not given, this section serves
as a more detailed description of the Montages system architecture described in
Figure 37.

Throughout the chapter we define and explain in detail a number of longer
and more complex XASM programs for constructing canonic trees (ASM 18),
finding enclosing instances of tree nodes (ASM 20), doing self-interpretation of
XASM rules (ASM 25). We include the full definitions because they are integral
parts of the formal Montages semantics given in Chapter 8.
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Fig. 40: The constructor term and the abstract syntax tree for 2 + x + 1

5.1 Motivation

In Section 3 we have given an example and an informal model of a language
specification in the Montages style. Since the signature of rules and actions of
such a model depends on the specific EBNF of the described language, it is not
possible to give a standard XASM modeling Montages of different languages
with one fixed signature. Since defining a different XASM for each language
described is too much overhead, we need additional features which allow to
parameterize the signature of an XASM model.

As an example consider the XASM model for the ASTs of the presented ex-
ample language � in Section 3. The model features special universes for each
symbol in the EBNF of � and selector functions with names derived from the
symbols in the EBNF. The rule Sum ::= Factor “+” Expr, for instance, in-
troduces universes Sum, Factor, and Expr, as well as unary selector functions
S-Factor and S-Expr. Formal semantics of the parse-tree construction can now
be given based on the representation of programs as constructor terms. A pos-
sible mapping of � to constructors has been defined in Section 4.5.1. In Figure
40 we show on the left-hand side a visualization of the constructor term Term 6,
resulting from the application of the mapping, and on the right-hand side the cor-
responding parse tree as shown already in Figure 19 of Section 3.2.2. The ASM
ConstructTree which will be given below implements the construction of parse
trees from constructor terms. While it is easy to write such an ASM for each
possible EBNF, we cannot easily give a conventional ASM taking a constructor-
term generated for an arbitrary EBNF, and constructing a corresponding AST
along the guidelines of Section 3.2.2. Even if the mapping into constructor
terms is the same for each EBNF productions, for instance using the canonical
mapping as described in Section 4.5.3, we still would have to solve the problem
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how to parameterize the signature of universes and selector functions with the
symbols existing in a specific EBNF grammar.

ASM 15:asm ConstructTree(t)
accesses constructors sum(_,_), expr(_), factor(_),

variable(_), constant(_)
updates universes Expr, Sum, Factor, Constant, Variable
updates functions S-Factor(_), S-Expr(_),

S-Digits(_), S-Ident(_)
is

if t =˜ sum(&l, &r) then
extend Sum with n

n.S-Factor := ConstructTree(&l)
n.S-Expr := ConstructTree(&r)
return n

endextend
elseif t =˜ expr(&a) then

let n = ConstructTree(&a) in
Expr(n) := true
return n

endlet
elseif t =˜ factor(&a) then

let n = ConstructTree(&a) in
Factor(n) := true
return n

endlet
elseif t =˜ variable(&a)

extend Variable with n
n.S-Ident := ConstructTree(&a)
return n

endextend
elseif t =˜ constant(&a)

extend Constant with n
n.S-Digits := ConstructTree(&a)
return n

endextend
elseif t =˜ ident(&a)

extend Ident with n
n.Name := &a
return n

endextend
elseif t =˜ digits(&a)

extend Digits with n
n.Name := &a
return n

endextend
endif

endasm
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5.2 The $, Apply, and Update Features
For situations where the needed signature is not known in advance, we allow
to declare and use functions by referencing them with a string-value, using the
$, Apply, and Update features of PXasm1. The design principle of the new
features is that if an ASM B is called by an ASM A, the information dynamically
calculated by A can be used to define the signature of B. From B’s point of view,
the signature is still static, but it is instantiated differently at each time of B’s
call.

Because of the design principle, the string references to functions are re-
solved at different times for the declaration part and the rule part of an ASM.
The occurrences in the declaration part are resolved at the time when the ASM
is called, and the occurrences in the rule are resolved at execution time. The
rules have dynamic signature, depending on the evaluation of the terms refer-
ring to functions. Nevertheless, the signature of such an ASM is not dynamic,
but determined at call time. In the rule evaluation they are checked each time to
be consistent with the signature determined at call time. If a term evaluates to
an undeclared signature, an inconsistent state is reached. With this mechanism,
the user of XASM is forced to put redefinitions of signatures at the beginning of
an ASM call. During the execution of one ASM, the signature is static, as in
traditional ASMs2.

5.2.1 The $ Feature
The $-feature is explained best by means of an example. Using the $-feature,
instead of the declaration and rule

function f(_)
f(3) := 5

we can write equivalently

function $"f"$(_)
$"f"$(3) := 5

As a more complex example, we show ASM Partition (ASM 16), an algorithm
to partition a set of nodes in different universes. Consider as read-only environ-
ment functions a universe N of nodes and a unary function Name( ) denoting the
kind of each node3. Kinds are simply given as strings. Now ASM Partition de-
clares for each kind a universe and partitions the set of nodes in these universes.
The derived universe function K( ) calculates the set K of all kinds. Then for

1In fact the system would also work with arbitrary values, resulting in a system similar to
Mapping Automata (101), see Appendix B. For our purposes it is general enough to allow only
string-values.

2In contrast to parameterized XASM, mapping automata allow the user to calculate and
change the signature completely dynamically. In fact, mapping automata are defined such that
every element is both a value, and a function symbol.

3Please remember that ”universe” is the same as a unary relation, and a relation is the same
as a function ranging over Boolean, initially defined to produce false for each argument.
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each string in K a universe with that name is declared, using the $-feature. The
actual partition is done by the “do forall” rule. Please note that for this example,
absence of runtime-errors due to dynamic signature mismatch can be proved,
while in the general case this cannot be done.

ASM 16:asm Partition
accesses universe N
accesses function Name(_)
is

derived universe K(k) ==
(exists n in N: n.Name = k)

(forall k in K
universe $k$

)

do forall n in N
$Name(n)$(n) := true

enddo
endasm

5.2.2 The Apply and Update Features
Another problem which has to be solved for parameterized XASM is how to
feed an unknown number of arguments to a function. For this purpose we intro-
duce the Apply construct, having as arguments a function symbol and arguments
represented as a tuple or list. For instance the function application

f(t1, t2, t3)

can be equivalently written as

Apply("f", [t1, t2, t3])

or as well as

Apply("f",(t1, t2, t3))

The reason we allow both kind of syntax is that we want to have a flexible
way of passing arguments available in form of lists or tuples to functions whose
signature is given using the $-feature.

The rule

Apply("f", [t1, t2, t3]) := t

is equivalent to

f(t1, t2, t3) := t

To increase readability we allow as well the following alternative syntax.

Update("f", [t1, t2, t3], t)

For convenience, Apply can also be used in combination with all built-in
functions, as well as unary and binary operators, for instance ”+”, ”-”, e.t.c.
The term 1 + 2 can thus be written as Apply(”+”, [1,2]).
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5.3 Generating Abstract Syntax Trees from Canonical
Representations
In Section 5.1 we motivated the need for parameterized XASM by showing that
they are needed for an algorithm constructing abstract syntax trees (ASTs) as
described in Section 3.2. In this section we give such an algorithm based on the
canonical mapping described in Section 4.5.3. The presented AST construction
algorithm will be used directly as part of the formal semantics of Montages in
Section 8.

5.3.1 Constructing the AST

We assume that a given EBNF has been decorated with canonical mappings
as defined in Section 4.5.3 and that the EBNF has been analyzed to define the
universe CharacteristicSymbols containing all strings corresponding to charac-
teristic symbols in the EBNF, and to define the universe SynonymSymbols con-
taining all strings corresponding to synonym symbols in the EBNF. We define
the following generic ASM ConstructCanonicTree which constructs the corre-
sponding universes, nodes, and selector functions for all possible EBNF defini-
tions. For the sake of simplicity we ignore the ”S1-” and ”S2-” selectors and
treat only the ”S-” selectors.
Interface of ConstructCanonicTree
The constructors characteristic and synonym are used to decompose the argu-
ment �, being a canonic representation of the program. The mentioned sym-
bol universes, selector functions, and the Parent function must be ”update” ac-
cessed, in order to create the AST. This accesses are declared in the following
interface of ConstructCanonicTree.

ASM 17:asm ConstructCanonicTree(t)
accesses constructors characteristic(_,_), synonym(_,_)
accesses universes CharacteristicSymbols, SynonymSymbols
(for all c in CharacteristicSymbols:

updates universe $c$
updates function $"S-"+c$(_)

)
(for all s in SynonymSymbols:

updates universe $s$
updates function $"S-"+s$(_)

)
is
...

endasm

Processing of Synonyms
If the argument � matches the constructor synonym, it constructs a tree for the
right-hand-side �'&� of the synonym, adds the resulting root-node � to the
corresponding synonym-universe, and returns � as result of the construction.

...
if t =˜ synonym(&s, &rhs) then
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let n = ConstructCanonicTree(&rhs) in
$&s$(n) := true
return n

endlet
...

Processing of Characteristics
If � matches constructor characteristic, the corresponding characteristic uni-
verse is extended with a new node �, a node child is constructed for all elements
�� in the list of right-hand-sides ��, the attribute Parent of each child is set to
node �, and the selector functions of � are defined according to the informations
in the right-hand-side terms ��.

...
elseif t =˜ characteristic(&c, &l) then

extend $&c$ with n
n.Name := &c
do forall t’ in list &l

let child = ConstructCanonicTree(t’) in
child.Parent := n
if t’ =˜ characteristic(&c, &l) then

n.$"S-" + &c $ := child
elseif t’ =˜ synonym(&s, &rhs) then

n.$"S-" + &s $ := child
endif

endlet
enddo
return n

endextend
...

Lists and Options
In Section 4.5.3 we explained that symbols in square option bracket or in curly
list-brackets are returning a (possibly empty) list of instances. In Section 3.4
we defined that a list of length 0 is represented in the AST with a specially
created node, which is an instance of universe NoNode4, lists with length 1 are
represented in the AST with the node representing the unique member, and lists
with length 2 or longer are represented in the AST as lists. A list with length
one would be treated exactly like its member.

The parts needed to process lists, and options are given as follows. In order
to simplify later processing of the tree, a universe ListNode containing all lists
being part of the AST, and the attribute Parent are defined as well. The Interface
of ConstructCanonicTree is extended with update accesses to universe NoNode
and ListNode. The interface of ASM 17 is refined to the following definition

ASM 18:asm ConstructCanonicTree(t)

...

4This subtle details results from the fact, that we use constructor terms to represent lists in
the AST. As long as we have at least one node inside the list, this works perfectly, but if we
have an empty list, it does not have its own identity and would destroy the structure of the AST
immediately.
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updates universe NoNode, ListNode
is
...

endasm

and the processing of synonyms and characteristics as described before remains
unchanged.

The processing of an empty list creates an element of NoNode and returns it
as result.

...
elseif t =˜ [] then

extend NoNode with n
return n

endextend
...

Otherwise a derived function ProcessList is used to construct a tree for each
element in the list of constructor terms, and the resulting list of root-nodes is
added to universe ListNode and returned as result. The Parent attribute of each
list element is set to the list itself.

...
elseif t =˜ [& | &] then

let res = ProcessList(t) in
ListNode(res) := true
do forall e in list res

e.Parent := res
enddo
return res

endlet
endif

The ASM ProcessList is given as follows. It constructs for each element of the
list a canonic tree, and appends the root of that tree to the local variable '. If the
complete list is processed, the list of root-nodes ' is returned.

ASM 19:asm ProcessList(l: [NODE])
accesses function ConstructCanonicTree(_)

is
function r <- []

if l =˜ [&hd | &tl] then
r := r + [ConstructCanonicTree(&hd)]
l := &tl

else
return r

endif
endasm

5.3.2 Navigation in the Parse Tree

A very important feature for modeling various structural programming concepts
is the possibility to access the least enclosing instance of a certain kind of pro-
gramming language constructs.
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The following ASM enclosing takes as arguments a node of an AST, and
a set of strings, being names of node-universes, and returns the least enclosing
node, which is an instance of a universe corresponding to one of the node-
universe-names.

ASM 20:asm enclosing(node, setOfUniverseNames)
(forall s in set setOfUniverseNames

accesses universe $s$
)
accesses function Parent

is
if node.Parent = undef then

undef
else

if (exists s in setOfUniverseNames:
$s$(node.Parent))

then
node.Parent

else
node.Parent.enclosing(setOfUnivNames)

endif
endif

endasm

The function enclosing is a very powerful tool for static semantics definition,
since it allows to access directly enclosing statements. The enclosing function
is used for name resolution, break/continue statements, exception handling, as
well as many aspects of an object oriented type system, such as our Java typing
specification in Section D.

Typically, information such as declaration tables or visibility predicates are
defined as attributes of the corresponding node, and all enclosed statements for
which the information is valid can access it directly via enclosing. Interest-
ingly, the same function enclosing is already used by Poetzsch-Heffter in the
MAX system (184; 186). In the MAX case studies this feature is very impor-
tant to specify all kinds of scoping and name resolution aspects of a language.
Both in MAX and in our system, the enclosing function allows to simplify the
specification of such features by being able to point directly to the least enclos-
ing instance of a certain feature, or the the least enclosing instance of a set of
features. In Part III we will use the enclosing-function together with sets of uni-
verse names for scopes of variable visibility (Chapter 11) and frames represent-
ing jump targets of all kind of abrupt control flow features, such as continues,
exceptions, but as well returns from procedure calls (Chapter 14). Simplified
versions of such applications are given in the next section.

5.3.3 Examples: Abrupt Control Flow and Variable Scoping

Our first example for navigation in the AST is abrupt control flow. Abrupt
control flow is a term used for all kinds of control flow not being sequential, but
leaving a statement abruptly. Examples of abrupt control flow are breaks and
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continue jumps out of loops, exceptions, but as well certain aspects of the return
from a procedure call. Leaving the statement means climbing up the syntax tree
towards the root, resuming the sequential flow in some enclosing statement. For
instance, the break statement leaves a loop, in order to terminate it and continue
after the loop, the continue statement leaves a loop in order to start again at the
beginning of the loop, exception statements try to find a matching catch clause.
Variable Scoping
The first example is scoping. Different constructs like procedure declarations
and blocks define a new scope. A scope typically opens a new name space,
and references to functions and variables are resolved first in the least enclosing
scope, then in the next outer, and so on. By defining a derived function Scope
being a set of strings being the scoping-constructs of the described language,
the function enclosing(n, Scope) can be used to access the least enclosing scope,
and typically a binary function declTable(Node, Ident) is defined for each scope,
mapping the names in the scope’s name space to the corresponding entities.

The following ASM lookUp(Node, Ident) is following this pattern to look
up definitions through the scopes. The first parameter is the reference, and the
second the identifier to be looked up.

ASM 21:asm lookUp(node, ident)
accesses functions Scope, enclosing(_,_), declTable(_,_)

is
let scopeNode = node.enclosing(Scope) in

if scopeNode = undef then
return undef

else let decl = scopeNode.declTable(ident) in
if decl = undef then
node := scopeNode

else
return decl

endif
endlet

endif
endlet

endasm

Break and Continue
In the case of breaks and continue, the enclosing function can be used to find the
least enclosing loop statement, having a matching label. Consider the following
grammar of Java loops, coming from Chapter 14:

Gram. 5: stm = ... � continueStm � breakStm �
iterationStm � labeledStm

iterationStm = whileStm � doStm
continueStm ::= “continue” [ labelId ] “;”
breakStm ::= “break” [ labelId ] “;”
labelId = id
whileStm ::= “while” exp body
doStm ::= “do” body “while” exp “;”
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labeledStm ::= labelId “:” iterationStm

If a break or continue statement is executed, the following function get-
Loop(Node) takes as parameter a break or continue statement and returns the
least enclosing while or do statement, whose label matches the second argu-
ment of the function. If the first argument is a continue or break statement
whose label is not defined, the least enclosing loop is returned.

ASM 22:asm getLoop(node)
accesses functions enclosing(_,_), Name(_),

S-labelId(_), S-iterationStm(_)
is
function label <- node.S-labelId.Name

if label = undef then
return node.enclosing({"whileStm", "doStm"})

else
let e = node.enclosing({"labeledStm"}) in

if e = undef then
return undef

else if e.S-labelId.Name = label then
return e.S-iterationStm

else
node := e

endif
endif

endlet
endif

In Montages such a solution is typically combined with non-local transitions,
like the ones showed in the goto-example of Section 3.4.5. In Chapter 14 the
control flow of break and continue statements of the imperative core of Java is
specified by combining enclosing with non-local transitions. This solution leads
to a high level of decoupling. Additional iteration statements can be added with-
out changing the specifications of break, continue, and labeled statement. Other
types of abrupt control flow, such as exception handling and procedure calls can
be added without changing the specifications. Most interestingly, statements
which do not know the concept of abrupt control flow, need not be adapted.
The detailed specifications providing this empirical findings are given in Chap-
ters 14.3 and 14.4.



5.4. The PXasm Self-Interpreter 141

5.4 The PXasm Self-Interpreter

In this section we present an PXasm interpreter INTERP, written in PXasm. The
special property of this interpreter is, that while interpreting a rule 	 it accesses
and updates the same functions as the direct execution of 	 does. Given an
XASM rule 	, the rules 	 and INTERP(R) are equivalent in the sense that given
a longer rule � , of which 	 is a part, the result of replacing 	 by INTERP(R)
does not affect the outcome of executing � . This program equivalence property
is known as full abstraction (78).

We use the introduced techniques to represent PXasm rules as constructor
terms, and use the signature of the represented rule to parameterize the inter-
preter’s signature. The interpreter function INTERP( ) executes XASM rules
according to their semantics. The definition of the constructor term representa-
tion of PXasm rules and expression is given in Section 5.4.1. Using this repre-
sentation the self-interpreter definition is given in Section 5.4.3. As an example
for the use of the self-interpreter we refer to Section 6.1 where the definition of
a TFSM interpreter is given.

5.4.1 Grammar and Term-Representation of PXasm

To transform PXasm rules into constructor terms, we give the EBNF of PXasm
together with a mapping into constructor terms. For the sake of simplicity we
completely neglect parsing problems and operator precedence.

Gram. 6: Rule ::= � BasicRule �
�/ BasicRule

BasicRule = DoUpdate � Conditional � Let
� DoForAll � Choose � Extend � Application

�/ rhs
DoUpdate ::= Symbol [ Arguments ]“:=” Expr

�/ update(Symbol, Arguments, Expr)
Arguments ::= “(” Expr � ”,” Expr � “)”

�/ Expr
Symbol = Meta � Ident

�/ rhs
Meta ::= “$” Expr “$”

�/ meta(Expr)
Ident = [A-Za-z][A-Za-z0-9]*

�/ Name
Conditional ::= “if” Expr “then” Rule

[“else” Rule] “endif”
�/ conditional(Expr, Rule.1, Rule.2)

DoForAll ::= “do” “forall” Symbol “in” Symbol [“:” Expr]
Rule “enddo”

�/ doForall(Symbol.1, Symbol.2,
(if Expr = [] then constant(true) else Expr), Rule)
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Choose ::= “choose” Symbol “in” Symbol [“:” Expr]
Rule
“ifnone”
Rule “endchoose”

�/ choose(Symbol.1, Symbol.2,
(if Expr = [] then constant(true) else Expr),
Rule.1, Rule.2)

Extend ::= “extend” Symbol “with” Symbol
Rule “endextend”

�/ extendRule(Symbol.2, Symbol.1, Rule)
Expr = Unary � Binary � CondExpr

� Application � Constant � Let
�/ rhs

Constant = “true” � “false” � String � Number
�/ constant(...corresponding ASM constant...)

Unary ::= Op Expr
�/ apply(Op, [Expr])

Binary ::= Expr Op Expr
�/ apply(Op, [Expr.1, Expr.2])

Application ::= Symbol [ Arguments ]
�/ apply(Symbol, Arguments)

Let ::= “let” � LetDef �
“in” Both “endlet”

�/ letClause(LetDef, Both)
LetDef Symbol “=” Expr

�/ letDef(Symbol, Expr)
Both = Rule � Expr

�/ rhs

Examples The rule of the first example, ASM 1 is represented as follows,

Term 8: [update("x1", [], constant(1)),
update("x2", [], apply("x1", [])),
update("x3", [], apply("x2", []))]

Accordingly, the rule of example ASM 3 can be rewritten in the following form:

ASM 23: doForall("i",
"Integer",
apply("and",

[apply(">=", [apply("i",[]),
constant(2)]),

apply("<", [apply("i",[]),
apply("n",[])])]),

[update("x",
[apply("-",[apply("i",[]),

constant(1) ] ) ],
apply("x",[apply("i",[])])

)
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]
)

Finally consider the above ASM 16. Its rule represented with constructors looks
as follows.

Term 9: doForall("n", "N", constant(true),
update(meta(apply("Name",

[apply("n",
[])

] ) ),
[apply("n",[])],
constant(true)))

5.4.2 Interpretation of symbols

A symbol in the EBNF grammar is either an identifier, or a meta-constructor,
which represents the application of the $-feature. Since Symbols are not XASM

rules or expressions, we define a special XASMSymbolINTERP which deals
only with the Symbol-case.

ASM 24:asm SymbolINTERP(t)
accesses function INTERP(_)
accesses constructor meta(_)

is
if t =˜ meta(&s) then

return INTERP(&s)
else

return t
endif

endasm

5.4.3 Definition of INTERP( )

The interface of INTERP is calculated from the parameter � using the functions

� MaxArity(t), calculating the maximal arity of functions accessed or updated in
�,

� UpdFct(n,t) providing a comma-separated string listing all �-ary functions up-
dated by �, and finally

� AccFct(n,t) providing a comma-separated string listing all �-ary functions ac-
cessed by �.

Given these informations, the interface to the 3-ary updated functions can be
given as

updates functions with arity 3 $UpdFct(3, t)
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Interface of INTERP
The interface of INTERP are its parameter �, being the rule or expression to
be interpreted, and its access to the functions contained in the lists AccFct, the
constructors used to represent XASM rules, as well as its update of functions in
the lists UpdFct. The ASM SymbolINTERP is an external function.

ASM 25:asm INTERP(t: Rule | Expr)
accesses functions UpdFct(_, _), AccFct(_, _), MaxArity(_)
(forall n in {0 .. MaxArity(t)}:
updates functions with arity n $UpdFct(n, t)$
accesses functions with arity n $AccFct(n,t)$

)
accesses constructors update(Symbol, [Expr], Expr),

conditional(Expr, Rule, Rule),
doForall(Symbol, Symbol, Expr, Rule),
choose(Symbol, Symbol, Expr, Rule),
extendRule(Symbol, Symbol, Rule),
constant(Value),
apply(Symbol, [Expr]),
letClause([LetDef], Rule),
letDef(Symbol, Expr)

is
external function SymbolINTERP(_)

...

Interpretation of rules
The interpretation of the XASM rules is relatively straightforward. The com-
ponents of the rule are evaluated by using recursively the interpreter INTERP.
Then depending on the result, the main construct is executed using the corre-
sponding XASM construct. The conditional rule and parallel rule blocks are
interpreted as follows.

...
if t =˜ [&hd | &tl] then

return [INTERP(&hd) | INTERP(&tl)]
elseif t =˜ conditional(&e, &r1, &r2) then

if INTERP(&e) then INTERP(&r1) else INTERP(&r2) endif
return true
...

For the update- rule the Update-operator is used and as result the constant true
is returned.

...
elseif t =˜ update(&s, &a, &e) then

Update(SymbolINTERP(&s), INTERP(&a), INTERP(&e))
return true

...

In the case of doForall, choose, and extend, the name of the bound variable and
the universe are evaluated using SymbolINTERP( ) and then the $-operator is
used to transform the names into the corresponding symbols.

...
elseif t =˜ doForall(&i, &s, &e, &r) then
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do forall $SymbolINTERP(&i)$
in $SymbolINTERP(&s)$ : INTERP(&e)

INTERP(&r)
endo
return true

elseif t =˜ choose(&i, &s, &e, &r1, &r2) then
choose $SymbolINTERP(&i)$ in $SymbolINTERP(&s)$ : INTERP(&e)

INTERP(&r1)
ifnone

INTERP(&r2)
endchoose
return true

elseif t =˜ extendRule(&i, &s, &r) then
extend $SymbolINTERP(&s)$ with $SymbolINTERP(&i)$

INTERP(&r)
endextend
return true

...

Interpretation of expressions
The interpretation of constants is done by removing the constant-constructor.
Please note that the constant-constructor is needed, since a constructor term
representing an XASM rule is as well a constant, and it is thus necessary to
encapsulate real constants with the constant-constructor.

...
elseif t =˜ constant(&c) then

return &c
...

The interpretation of an application is done with the built-in Apply operator.

...
elseif t =˜ apply(&o, &a) then

return Apply(SymbolINTERP(&o), INTERP(&a))
...

Interpretation of let-clauses
Finally, the parallel let-clause is interpreted, by first interpreting the terms in all
let clauses, and then building up recursively a structure of lets. Since we first
evaluate all terms, our constructed recursive let-structure correctly interprets the
parallel one.

...
elseif t =˜ letClause(&defList, &r) then

if &defList =˜ [letDef(&p, &t)|&tl] then
return INTERP(letClause(INTERP(&defList), &r))

elseif &defList =˜ [(&p, &o) | &tl] then
let $&p$ = &o in
return INTERP(letClause(&tl, &r)

endlet
else return INTERP(&r)
endif

elseif t =˜ letDef(&p, &t) then
return (SymbolINTERP(&p), INTERP(&t))

else return "Not matched"
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endif
endasm

We claim that every XASM rule or expression 0 is equivalent to the XASM

rule ����	� �0 �� where 0 � is the term-representation of 0 . The rule (ex-
pression) 0 and INTERP(X’) are equivalent in the sense that given a longer rule
(expression) 1 , of which 0 is a part, the result of replacing 0 by INTERP(X’)
does not affect the outcome of executing (evaluating) 1 . This program equiv-
alence property is known as full abstraction (78). The proof of this property
would involve a structural induction over rule constructors, and their interpreted
versions, calculating their rule and value denotations, and showing that they are
the same for both the rule and its interpreted version.



5.5. The PXasm Partial Evaluator 147

5.5 The PXasm Partial Evaluator

Partial evaluation (108; 46) allows us to specialize PXasm descriptions if some
of the access functions in the interface are known to be static. For instance, an
interpreter together with a fixed program can be specialized to compiled code.
The same technique can be applied to implement Montages. An abstract meta-
algorithm is given as semantics of Montages. Applying partial evaluation to this
algorithm results in specialized interpreters for the specified languages and, sub-
sequently, for compiled, transparent XASM code for programs written in these
languages. This process has already been visualized in Figure 37, and discussed
in the introduction of Part II. Parameterization of signature can be used to ob-
tain compiled code whose signature corresponds to terminology introduced by
either the language semantics or the program code, allowing us to tailor the
readability of the generated code.

In this Section we give some details on how to define partial evaluators using
parameterized XASM (Section 5.5.1), and later on in Section 6.4 we show how
to apply it to TFSM interpretation.

5.5.1 The Partial Evaluation Algorithm

We give a partial evaluator PE, whose arguments are an ASM rule � to be par-
tially evaluated, and a set sf of those function symbols which are considered
static. For simplicity we assume that sf always contains the built in functions
and all used constructors, which are static by nature. The decision whether
an external function is static can be made by the user under the condition that
external functions marked as static are always producing an empty update deno-
tation. If an external function is marked as static, it will be pre-evaluated by our
PE-algorithm, independent whether it is really independent from dynamic func-
tions or not. We do not discuss here how external functions could be analyzed,
and marked as static by the PE-algorithm. Such analysis would be possible and
interesting in the case of external function realized as XASM.

In order to simplify the algorithm, we define PE such that partial evaluation
of a rule always returns a list of rules, whereas partial evaluation of expressions
returns an expression. In the extreme case, the partial evaluation algorithm re-
duces a rule to an empty list of rules, and an expression to a constant. Typi-
cally the outcome is an ASM where the parameterization features are not used
anymore and where do-forall and choose rules are replaced with a finite set of
simpler rules.

Partial Evaluation of Symbols
We give a special ASM SymbolPE covering the partial evaluation of symbols.
A symbol is either a string, or the meta-constructor representing the $-operator.
Partial evaluation of a symbol tries to partially evaluate the argument of the meta
constructor, and if the result is a constant constructor containing a string, this
string is returned.

ASM 26:asm SymbolPE(s: Symbol, sf: set of String)
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accesses function PE(_)
accesses constructors meta(_), constant(_)
is
if s =˜ meta(&t) then

let tPE = PE(&t, sf) in
if tPE =˜ constant(&symb) then
return &symb

else
return meta(tPE)

endif
endlet

endif
endasm

Interface of PE
The interface of PE are its access to the constructors used to represent XASM

rules. External functions are the above mentioned ASM SymbolPE, and later
introduced ASMs ArgumentPE, RemoveConstant, and InstantiateRules.

ASM 27:asm PE(t: Rule, sf: set of String)
accesses constructors update(Symbol, [Expr], Expr),

conditional(Expr, Rule, Rule),
doForall(Symbol, Symbol, Expr, Rule),
choose(Symbol, Symbol, Expr, Rule),
extendRule(Symbol, Symbol, Rule),
constant(Value),
apply(Symbol, [Expr]),
letClause([LetDef], Rule),
letDef(Symbol, Expr)

is
external functions SymbolPE(_,_),

ArgumentPE(_,_),
RemoveConstant(_),
InstantiateRules(_,_,_,_)

...

Partial Evaluation of Constants
This first case is the simplest case at all. It returns the constant as it is. Thus the
following fragment is added to ASM 27:

...
if t =˜ constant(&c) then

return t
...

Partial Evaluation of Function Application
As a second case function applications are processed. The idea behind partial
evaluation of a function application is to partially evaluate the symbol, and the
arguments (using ASM ArgumentPE), and then to check whether

� the partially evaluated symbol is a string,

� this string is in the set sf of static functions, and
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� all arguments partially evaluated to constants.

If all this conditions hold, the RemoveConstant function is used to transform
the argument-list of constant constructors into a list of values, and the Apply
function is used to calculate the result of applying the corresponding function.
This result is then wrapped into a constant-constructor and returned as result of
the partial evaluation.

...
if t =˜ apply(&op, &a) then
let opPE = SymbolPE(&op, sf),

aPE = ArgumentPE(&a, sf) in
if opPE isin sf andthen

(forall a in list aPE: a =˜ constant(&)) then
let argList = RemoveConstant(aPE) in

return constant(Apply(opPE, argList))
endlet

else ...

In all other cases an apply constructor with partially evaluated arguments is
returned.

... else
return apply(opPE, aPE)

endif
endlet
...

The above rule uses the ASM ArgumentPE to partially evaluate argument lists,
and the ASM RemoveConstant to remove the constant constructor from list of
constant arguments. The definitions are given now.

ASM 28:asm ArgumentPE(l: [Expression], sf: set of String)
accesses function PE(_)
is
function r <- []
if l =˜ [&hd | &tl] then

r := r + [PE(&hd, sf)]
l := &tl

else
return r

endif
endasm

ASM 29:asm RemoveConstant(l: [Constant])
is
function r <-[]

if l =˜ [constant(&hd) | &tl] then
r := r + [&hd]
l := &tl

else
return r

endif
endasm
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Partial Evaluation of Rules
The partial evaluation of updates, rule lists, conditional rules, and extend rules
is straightforward. In order to allow for homogeneous processing, our algorithm
always returns a list or rules.The following fragment is added to ASM 27.

...
elseif t =˜ update(&s, &a, &e) then

let sPE = PE(&s, sf),
aPE = ArgumentPE(&a, sf),
ePE = PE(&e, sf) in

return [update(sPE, aPE, ePE)]
elseif t =˜ [&hd | &tl] then

return PE(&hd, sf) + PE(&tl, sf)
elseif t =˜ conditional(&e, &r1, &r2) then

let ePE = PE(&e, sf),
r1PE = PE(&r1, sf),
r2PE = PE(&r2, sf) in

if ePE = constant(true) then
return r1PE

elseif ePE = constant(false) then
return r2PE

else
return conditional(ePE, r1PE, r2PE)

endif
endlet

elseif t =˜ extendRule(&i, &s, &r) then
let iPE = SymbolPE(&i, sf),

sPE = SymbolPE(&s, sf),
rPE = PE(&r, sf) in

if rPE = [] then
return []

else
return extendRule(iPE, sPE, rPE)

endif
endlet

...

Partial Evaluation of Choose
The partial evaluation of choose can only simplify the rule, if the bound vari-
able, and the universe are not meta, if the universe is static, and if for each
element of the universe the guarding predicate partially evaluates to either con-
stant(true) or constant(false). If there is exactly zero or one elements for which
the guard partially evaluates to constant(true), the rule can be simplified. Oth-
erwise, a static set of the elements for which the guard evaluated to true could
be constructed. This last simplification is not given here.

...
elseif t =˜ choose(&i, &s, &e, &r1, &r2) then

let iPE = SymbolPE(&i, sf),
sPE = SymbolPE(&s, sf) then

if sPE isin sf and not iPE =˜ meta(&) and
(forall $iPE$ in $sPE$:

(let ePE = PE(&e, sf + {iPE}) in
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ePE = constant(true)
or ePE = constant(false))) then

if not (exists $iPE$ in $sPE$:
PE(&e, sf + {iPE}) = constant(false)) then

return PE(&r2, sf)
elseif (exists unique $iPE$ in $sPE$:

PE(&e, sf + {iPE}) = constant(true)) then
let i0 = (choose $iPE$ in $sPE$:

PE(&e, sf + {iPE}) = constant(true)) in
return (let $iPE$ = i0 in PE(&r1, sf + {iPE}))

endlet
else
return choose(iPE,

sPE,
PE(&e,sf),
PE(&r1,sf),
PE(&r2,sf))

endif
else

return choose(iPE,
sPE,
PE(&e,sf),
PE(&r1,sf),
PE(&r2,sf))

endif
...

Partial Evaluation of Parallel Let Definitions
The partial evaluation of parallel let definitions tries to find a let definition,
where the let-symbol partially evaluates to a string, and where the definition
partially evaluates to a constant. If such a let definition is found, consisting of
symbol �, defining constant �, and a rule ', the rule can be partially evaluated
with the set � of static function symbol extended by �:

let $s$ = c in
PE(r, sf + {s})

endlet

Subsequently the let definition for � can be removed. This is the core of the
partial evaluation of let. The remaining parts are concerned with processing the
list of let definitions, and reassembling those lets, which cannot be removed.

The first if checks, whether the list of letDef constructors is empty. If the
list is empty, the partially evaluated rule is returned. Otherwise, in the “then”
part of the first if construct, the symbol and the term of the first let are partially
evaluated to pPE and tPE, respectively. If as result from the partial evaluation
the symbol is no more meta, and the term did evaluate to a constant, the let
clause is removed by partially evaluating the rule, extending the set of static
functions sf with the symbol pPE, and setting the value of pPE to the constant
tPE by a simple let-construct:

...
if (not pPE =˜ meta(&)) and tPE =˜ constant(&tConst) then

return PE(letClause(&tl,
(let $pPE$ = &tConst in
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PE(&r1, sf + {pPE}))),
sf)

...

Otherwise, the non-constant pPE and tPE are remembered, the rule is partially
evaluated with the remaining lets, and at the end the let-definition with pPE and
tPE is added to the rule again. Adding the let definition is done by appending
it to the list of parallel lets, if the rule returned from partial evaluation is a let-
construct, otherwise a new let-clause with the single let-definition (pPE,tPE) is
created:

...
let rPE = PE(letClause(&tl, &r1), sf) in
if rPE =˜ letClause(&defList2, &r2) then

return letClause([letDef(pPE, tPE)|
&defList2],

&r2)
else

return letClause([letDef(pPE, tPE)],
rPE)

endif
endlet

...

The full PE-definition for parallel lets is given as follows.

...
elseif t =˜ letClause(&defList1, &r1) then

if &defList1 =˜ [letDef(&p, &t)|&tl] then
let pPE = SymbolPE(&p, sf), tPE = PE(&t, sf) in
if (not pPE =˜ meta(&)) and tPE =˜ constant(&tConst) then

return PE(letClause(&tl,
(let $pPE$ = &tConst in

PE(&r1, sf + {pPE}))),
sf)

else
let rPE = PE(letClause(&tl, &r1), sf) in
if rPE =˜ letClause(&defList2, &r2) then

return letClause([letDef(pPE, tPE)|
&defList2],

&r2)
else

return letClause([letDef(pPE, tPE)],
rPE)

endif
endlet

endif
endlet

else
return PE(&r1, sf)

endif
endif
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Partial Evaluation of Forall Rules
The partial evaluation of a forall rule does a kind of parallel loop unrolling, if
the universe of elements is static.

...
elseif t =˜ doForall(&i, &s, &e, &r) then

let iPE = SymbolPE(&i, sf),
sPE = SymbolPE(&s, sf),
ePE = PE(&e, sf),
rPE = PE(&r, sf) in

if ePE = constant(false) then
return []

else
if sPE isin sf and not iPE =˜ meta(&) then

return InstantiateRules(iPE, sPE, ePE, &r)
else

return doForall(iPE, sPE, ePE, rPE)
endif

endif
endlet

...

The ASM InstantiateRules has four arguments, the bound variable %, the uni-
verse �, the rule ' and the set of static functions sf. A local universe SetCollec-
tor is used to collect an ASM rule for each element in universe �, and a variable
ListCollector is then used to construct a parallel rule-block from these rules. A
variable trigger is used to sequentialize the phases for collecting the rules and
then building the list representing the rule-block. The interface of the ASM is
given as follows.

ASM 30:asm InstantiateRules(i: String,
s: String,
e: Expr,
r: Rule,
sf: set of Strings)

accesses function PE(_,_)
is

relation trigger
universe SetCollector
function ListCollector <- []
if not trigger then
...

The collection of rules is done by a ”do forall”-rule, which ranges % over uni-
verse �, and partially evaluates rule ' in an environment where % is bound to an
element of � and the set of static functions is extended with %.

...
do forall $i$ in $s$

let ePE = PE(e, sf+{i}),
rPE = PE(r, sf+{i}) in

...
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Depending on whether the guard condition � partially evaluates to a constant
or not, the partially evaluated rule is either returned, skipped, or embedded into
a conditional-constructor. Having processed each $i$ in $s$, the trigger is set
to true, and the next mode is entered in the else-branch of the outermost if-
construct is entered.

...
if ePE = constant(false) then
elseif ePE = constant(true) then

SetCollector(rPE) := true
else

SetCollector(conditional(ePE,
rPE,
[]) := true

endif
enddo
trigger := true

else
...

Once relation trigger is set to true, a choose rule is fired, which selects an el-
ement of universe SetCollector, appends it to list ListCollector and removes
it from SetCollector. This choose-rule is repeated until SetCollector is empty,
then ListCollector is returned as result.

...
choose r0 in SetCollector

SetCollector(r0) := false
ListCollector := [r0|ListCollector]

ifnone return ListCollector
endchoose

endif
endasm

Our algorithm does not check whether the set of static symbols makes sense.
A more sophisticated version of the algorithm would try to deduce itself which
functions could be static by analyzing which functions are updated, and which
are not. Such an analysis, and the partial evaluation of XASM call would result
in a more powerful partial evaluator.

5.5.2 The do-if-let transformation for sequentiality in ASMs

In Section 4.1.2 we have shortly discussed how sequentiality is typically mod-
eled in ASM by means of a variable holding the “program counter”. We call
such a variable a sequentialization variable. Besides the initial example, we
have seen many ASMs using such variables. In simple cases such functions
could be replaced with a simple sequentiality operator. More interesting are
cases where several such variables exist, and the sequential steps are not within
a one-dimensional space, but within a space having as many dimensions as there
are sequentialization variables. An example for such a more complex case is
TFSM interpretation where the variables holding the current node and the cur-
rent state span a two dimensional space.
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We present here a transformation of XASM rules, which takes advantage of
information about sequentialization variables, and reformulates an XASM rule
in such a way that partial evaluation of the resulting rule will result in a high
portion of pre-evaluation, and remarkably simplified rules.

Def. 18: do-if-let transformation of ASM rules. Given the sequentialization variables
)�� � � � � )� ranging over universes #�� � � � � #� and an ASM rule

	�)�� � � � � )��

the do-if-let transformation is defined to be

do forall ) �� � #�� � � � )
�
� � #�

if �)�� � � � � )�� � �)��� � � � � )
�
�� then

let )� � )��� � � � � )� � )�� in
	�)�� � � � � )��

endlet
endif

enddo

The idea behind this transformation is to enumerate all possible states of the
sequentialization-variables in an outermost do-for all. If this do-forall is par-
tially evaluated, the rule is instantiated for each such state. Now by introducing
the guard of the if, it is guaranteed, that always only one of the instantiated rules
is executed. Thus a flat structure of rules, which are guaranteed to be visited in
some sequential order has been created. This rule can then easily be transformed
into sequential fast code.

As last step of the transformation a let is introduced, which overrides the
definition of the sequentialization-variables, by introducing bound let-variables
with the same names. The values of these variables are set to the bound variables
of the do-forall loop.

The PE algorithm can now extend the set of static function-symbols sf with
all bound variables )��� � � � � )

�
�, and by means of the let-clause, they are renamed

into )�� � � � � )�, and finally the rule 	�)�� � � � � )�� can be partially evaluated at
each instance with static definitions of the sequentialization variables.

In Section 6.4 we will show how the do-if-let transformation is applied to
compilation of TFSMs .
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5.6 Related Work and Conclusions

We have motivated and introduced PXasm by showing that they are needed
for situations where a family of related problems exists, but the most natural
models for the family members do not share one unique signature. Introducing
a unique signature may lead to a natural model of the problem family, but if
we are interested in models of the family members, a unique signature is often
inappropriate. PXasm are a means for constructing the signature of each family
member, as soon as the exact member is determined.

PXasm can therefore be seen as another approach to domain engineering,
which we discussed in Section 2.8. In contrast to the domain-specific languages
(DSL) approach, PXasm does not allow us to introduce new language features,
having a specialized syntax and static semantics. PXasm allows us to mirror
with the signature the terminology of the problem-domain. We use this tech-
nique in this thesis to describe the meta-formalisms Montages for DSLs, where
each problem is a specific DSL which is using the terminology of the corre-
sponding domain.

For a meta-formalism like Montages there are four implementation patterns.
The four choices result from the fact that for both the language-description and
the program written in the language we have to decide whether a compilation
approach, or an interpretation approach is chosen. Even more complexity has
to be handled if additional configuration information exists. Again the config-
uration information can be interpreted at runtime, or compiled into specialized
code. If we continue categorizing the full problems, we end up with eight dif-
ferent implementation patterns.

Using partial evaluation all of these patterns can be implemented. Those
parts which should be compiled are marked as static, and those which should be
interpreted are marked as dynamic. The detailed discussion of partial evaluation
and its use to generate interpreters and compilers from Montages descriptions
would go beyond the scope of this thesis and we refer to the literature (46;
108). Nevertheless we would like to refer to the work of Bigonha, Di Iorio,
and Maia (57; 56) who investigated the general problem of partial evaluation
for language interpreters written with ASMs. Combining their advanced partial
evaluation techniques with our relatively simple problem of partially evaluating
TFSMs may result in very good code.

Since the aim of PXasm is to parameterize the signature of traditional
ASMs, we restrict the possible values for the signature-parameters to strings.
Partial evaluation can then be used to reduce them back to traditional ASMs.
Mapping Automata (MA) (101) allow one to use arbitrary elements as signa-
ture. While traditional ASMs and PXasm view each dynamic function as set of
mappings from locations to values, MA views dynamic functions as objects as-
sociated with mapping from attributes to values. Therefore in MA the signature

 is equivalent to the superuniverse � . The extend rule can be used to create
a new element, and at the same time a new dynamic function is created. The
details of MA are given in Appendix B. In contrast to MA, in PXasm the signa-
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ture 
 is still a static collection of function symbols, but the collection may be
calculated while initializing the PXasm. A PXasm is thus an MA, where the sig-
nature is restricted to a collection of symbols (string values) which is calculated
at initialization and remains static during execution.

As presented, XASM rules must be transformed into constructor terms be-
fore they can be interpreted or partially evaluated. A further improvement could
be achieved by allowing one to use XASM rules directly as values. Instead of
writing the rather unreadable ASM 23 we could then write:

ASM 31:asm P’ is
function x(_)
accesses universe Integer

INTERP( "" do forall i in Integer: i >= 2 and i < n
x(i - 1) := x (i)

endo
""

)

where the quadruple quotes ”” are used to indicate that a rule value is used.
Since these rule values correspond to the constructor terms representing the
rules, it makes sense to allow pattern matching on such rules. For instance
the rather clumsy formulation of partial evaluation of the conditional rule in
Section 5.5.1 could be given as follows:
...
elseif t =˜ "" if &e then &r1 else &r2 endif "" then

let ePE = PE(&e, sf),
r1PE = PE(&r1, sf),
r2PE = PE(&r2, sf) in

if ePE = "" true "" then
return r1PE

elseif ePE = "" false "" then
return r2PE

else
return "" if #PE# then #r1PE# else #r2PE# endif ""

endif
endlet

...

where the # operator is used within quadruple quotes to evaluate rule-values,
similar to the way how the $-operator evaluates strings to symbols. The term
within the #-operator must evaluate to a rule, which has previously been created
with the quadruple quotes, and it is checked that the result is a correct PXasm
rule. The double quotes together with the # feature build a so called template
language, as described by Cleaveland (44; 45). Cleaveland discusses in detail
the advantages of a full featured template language. The implementation and
design of the above sketched XASM template language, possibly integrating
Cleaveland’s XML template language, remains for future work.

As well the combination of partial evaluation and parameterized signature
can be considered to work like a template language (127). The actual “gener-
ation” of the program happens only if the partial evaluation results in a com-
plete evaluation of the signature-parameters, whereas in traditional template
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languages or the case of the above discussed ””/# features, the content of the
templates can always be evaluated. Further our parameterization of signature is
integrated with our development language XASM in such a way, that programs
can be executed even if partial evaluation did not completely evaluate the pa-
rameterized signature. In contrast unevaluated templates are typically not valid
programs. Therefore the combination of parameterized signature with partial
evaluation could be described as a template-language, which allows for incre-
mental and partial instantiation of templates, and which allows one to execute
templates which are fully instantiated, but as well partially instantiated, and not-
instantiated templates. The combination of ””/# works more like a conventional
template language

XASM has shown to be well suited to our approach to code generation via
partial evaluation and signature parameterization, since it has a very simple de-
notational semantics, and everything is evaluated dynamically. As discussed,
in XASM the semantics of the available programming constructs is composed
by combining the update-sets and values of sub-constructs; this system is fully
referentially transparent, and does not suffer from the side-effects problem in
normal imperative languages. Based on such a model, it is easier to use partial
evaluation and to add parameterization of signatures, than implementing them
on top of an existing language such as C or Java.



6
TFSM: Formalization, Simplification, Compilation

In this section we show in detail the TFSM interpreter (corresponding to the al-
gorithm Execute we have given in Section 3.3.5) and how it can be specialized in
compiled code by assuming that a given TFSM is static. The partial evaluation
of a full Montages meta-interpreter works in a similar way, but the details for
the full problem are left for future work. Nevertheless this section serves as well
as a more detailed description of the Montages system architecture described in
Figure 37.

In Section 6.1 the TFSM interpreter is given in two versions, one for de-
terministic, and one for non-deterministic TFSMs. The following two sections
show how to simplify TFSMs, by eliminating transitions without action rules
(Section 6.2, and by partially evaluating action rules and transitions, once a
TFSM is built (Section 6.3). Finally in Section 6.4 compilation of TFSMs is
discussed, and in the last section of the chapter some conclusions are drawn.

6.1 TFSM Interpreter

In Section 3.3 we have given the construction of TFSMs and in Section 3.3.5 we
sketched how they are executed. Given the formalization of the AST we can give
now an ASM Execute which executes a TFSM. Later in Section 6.4 it will serve
as example for the new Montages tool architecture, and finally in Section 8.4.6
it is used as part of the formal semantics of the Montages formalism itself. We
repeat the major definitions from previous sections.

The state of TFSM execution is given by two 0-ary, dynamic functions, the
current node CNode and the current state CState. If the state (n0, s0) is visited,
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or in other words if

����� � ��

������ � ��

then the action rule associated with CState is executed, using fields of CNode
to store and retrieve intermediate results. Fields are modeled unary dynamic
functions. The function

function getAction(Node, State) -> Action

is defined such, that for each node �, and state � the term n.getAction(s) returns
the corresponding XASM action represented as constructor term.

Transitions in TFSMs change both the current node and the current state. A
TFSM-transition � is defined to tuples having five components, the source node
��, the source state ��, the condition �, the target node ��, and the target state
��.

� � ���� ��� �� ��� ���

In the condition expression �, the source node �� can be referred to as bound
variable src, and the target node �� as bound variable trg. All TFSM transitions
are contained in the universe Transition.

In the following two sections we give now two variants of a TFSM inter-
preter, one which can execute non-deterministic TFSMs, e.g. a TFSM where it
is possible that several transitions can be triggered, and therefore one has to be
chosen nondeterministically, and one interpreter which is specialized for deter-
ministic TFSMs.

6.1.1 Interpreter for Non-Deterministic TFSMs

The interface of ASM Execute(n,s) consists of

� the parameters � and � used to initialize the variables CNode, and CState, re-
spectively,

� the access to universes CharacteristicSymbols and SynonymSymbols, and sub-
sequently the accesses to the node-universes and selector functions defined by
these universes, and finally

� the access to universe Transitions containing all transitions of the TFSM, and
the access to function getAction( , ) associating all TFSM-states with the corre-
sponding action-rule.

The declaration part defines a boolean variable (or 0-ary relation, in ASM
terminology) fired, which is switched between true and false, indicating whether
we are in step 1 or 2 of the algorithm given in Section 3.3.5. The interpreter
INTERP is defined as external function, and the two variables CNode and CState
are declared.
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ASM 32:asm Execute(n,s)
accesses universes CharacteristicSymbols,

SynonymSymbols,
(forall c in CharacteristicSymbols:

accesses universe $c$)
accesses function $"S-"+c$(_))

(for all s in SynonymSymbols:
accesses universe $s$
accesses function $"S-"+s$(_))

accesses universe Transitions
accesses function getAction(_, _)

is
relation fired
functions CNode <- n, CState <- s
external function INTERP(_)
...

The rule of ASM Execute has two parts which are executed in alternation. If
fired equals false, the first part is executed, interpreting the action rule of the
current state, using the INTERP function, and providing the correct binding of
the self variable using a let construct. The first part redefines fired to true such
that in the next step the second part if executed.

...
if not fired then

let self = CNode in
INTERP(getAction(CNode, CState))

endlet
fired := true

else ...

The second part tries to choose a transition, whose source node and state match
the current state (CNode, CState) and whose condition evaluates to true, if the
src and trg variables are defined to be the current node CNode, and the target
node of the transition, respectively.

...
else

choose t in Transitions:
t =˜ (CNode, CState, &c, &tn, &ts) and
(let src = CNode in

(let trg = &tn in
INTERP(&c)))

CNode := &tn
CState := &ts

ifnone ...

If no transition with valid condition is found, a transition with a default condi-
tion is chosen, and activated. Subsequently the relation fired is set to false.

... ifnone
choose t in Transitions:

t =˜ (CNode, CState, default, &tn’, &ts’)
CNode := &tn’
CState := &ts’
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endchoose
endchoose
fired := false

endif
endasm

6.1.2 Interpreter for Deterministic TFSMs

For the later sections reusing the TFSM interpretation algorithm, it is advanta-
geous to transform the non-deterministic form using the choose-construct into a
deterministic form using the do-forall-construct. Such a transformation is pos-
sible if the provided TFSM is deterministic, thus if

� conditions on transitions from the same node/state pair are mutually exclusive
and

� there is exactly one transition with default condition sourcing in each node/state
pair,

Given such a deterministic TFSM we can replace each default condition with
the negation of the conjunction of all other transitions sourcing in the same
node/state pair. The ASM TransformTransitions replaces each transition with
default condition with a transition whose condition is calculated by the ASM
NegateConjunction( , ).

ASM 33:asm TransformTransitions
updates universe Transitions

is
external function NegatedConjunction(_,_,_,_)
forall t1 in Transitions:

t1 =˜ (&sn, &ss, default, &tn, &ts)
Transition(t1) := false
let c’ = NegatedConjunction(&sn, &ss)
Transition((&sn, &ss, c’, &tn, &ts)) := true

endforall
return true

endasm

The ASM NegateConjunction( , ) takes as argument a node sn and a state ss.
The ASM has two modes, in the first, where function trigger is equal to false, a
universe SetCollector is filled with all transitions whose source node and state
are (sn, ss) and whose condition is not default. If the universe is built up, the
algorithm changes in the second mode by setting trigger to true.

ASM 34:asm NegateConjunction(sn, ss)
accesses relation Transition

is
relation trigger
universe SetCollector
function ListCollector <- []

if not trigger then
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do forall t in Transitions:
t =˜ (sn, ss, &c, &, &)

andthen &c != default
SetCollector(&c) := true

enddo
trigger := true

else ...

In the second mode, the transitions in the SetCollector are transformed into a
list, and then as result of NegateConjunction the constructor corresponding to
the negated conjunction of this list is returned as result of NegateConjunction.

...
else

choose r0 in SetCollector
SetCollector(r0) := false
ListCollector := [r0|ListCollector]

ifnone
return apply("not", [apply("and",ListCollector)])

endchoose
endif

endasm

Given the preconditions and after applying the above transformations, we
eliminated all default transitions and we know that for every TFSM state, at
most one transition can be triggered. Under these circumstances the following
deterministic ASM can be used, instead of the above non-deterministic ASM 32.
The interface is not changed and directly reused from ASM 32.

ASM 35:asm Execute(n,s)
...
if not fired then

let self = n0 in
INTERP(getAction(n0, s0))

endlet
fired := true

else
do forall t in Transitions:

t =˜ (n0, s0, &c, &tn, &ts)
if (let src = n0 in

(let trg = &tn in
INTERP(&c)))

then
CNode := &tn
CState := &ts
fired := false

endif
enddo

endif
endasm
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6.2 Simplification of TFSMs
The simplification phase applies the TFSM simplification algorithm of Sec-
tion 3.3.4. The following ASM SimplifyTFSM removes all states with empty
action rules, as visualized in Figure 27.

The algorithm tries to find two transitions �� and ��, such that �� goes from �
to +, and �� goes from + to �, and such that intermediate state + is not associated
with an action rule. In this case the conditions of �� and �� can be combined,
and the two transitions can be replaced with a transition from � to �.

The condition of the new transition is the conjunction of the conditions of
�� and ��. Since these transitions have different src and trg nodes, the right src
and trg definitions are fed to them via let-clauses.

ASM 36:asm SimplifyTFSM
updates universe TRANSISTIONS
accesses function getAction(_,_)

is
choose t1, t2 in Transitions:

t1 =˜ (&n, &s, &cond1, &n’, &s’)
andthen t1 =˜ (&n’,&s’,&cond2, &n’’,&s’’)
andthen &n’.getAction(&s’) = []

Transitions(t1) := false
Transitions(t2) := false
Transitions(&n, &s,

apply("and",
[letClause([letDef("src",constant(&n)),

letDef("trg",constant(&n’))],
&cond1),

letClause([letDef("src",constant(&n’)),
letDef("trg",constant(&n’’))],

&cond2)
]),

&n’’,&s’’) := true
endchoose
endasm

The above algorithm works only if there are no default conditions1, e.g.
deterministic TFSMs where the above ASM 33 has been applied

6.3 Partial Evaluation of TFSM rules and transitions
Show how to apply PE to rules and transitions, taking advantage from the fact
that self for the rules, and src/trg for the transitions are static. Further we assume

1A second problem is, if there are states where the control may remains for ever, or cycles
among nodes without transition rules. Such cycles may again arise the problem that the control
may reside there for ever. Since such a cycle has never occurred in our examples, and since we
never experimented with examples where it is important that the ”ever remains at same state”
behavior is maintained, we do not further treat these cases.
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that the selector functions and universes are static. In order to simplify the
algorithms we skip the parts which are defining the access interfaces to selector
functions, node universes, and which are adding these functions to the sets of
static functions provided to the PE-algorithm.

The first ASM PartialEvaluateTFSMrules(sf) replaces each action rule with
its partially evaluated version, taking as set of static functions those given as
argument and self. The argument sf will typically contain the selector-functions,
the node-universes, as well as some static functions defined by the environment.
The decision which functions are static, and when to call the partial evaluation
is again with the user.

ASM 37:asm PartialEvaluateTFSMrules(sf)
updates function getAction(node)
(for all f in set sf

accesses function $f$
)

is
external function PE(rule,staticSet)

for all n in NODE
n.getAction :=

let self = n in
PE(n.getAction, sf + {"self"})

endlet
enddo

endasm

The second ASM PartialEvaluateTFSMtransitions replaces each transition with
a variant where the condition has been partially evaluated, assuming that the
term src statically evaluates to the source node of the transition, and assuming
that the term trg statically evaluates to the target node of the transition.

ASM 38:asm PartialEvaluateTFSMtransitions(sf)
updates universe Transitions
(for all f in set sf

accesses function $f$
)

is
external function PE(rule,staticSet)

for all t in Transitions: t =˜ (&sn, &ss, &c, &tn, &ts)
Transitions(t) := false
let cPE = let src = &sn,

trg = &tn in
PE(&c, sf + {"src", "trg"}) in

Transitions((&sn, &ss, cPE, &tn, &ts))
endlet

enddo
endasm
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6.4 Compilation of TFSMs

In this section we show the compilation of TFSMs in specialized ASM code.
We apply partial evaluation to the the transition rule of Execute, given in Sec-
tion 6.1.2, ASM 35.

As a first step of the compilation we reformulate the original formulation
of Execute (ASM 35) using the do-if-let transformation (Definition 18, Sec-
tion 5.5.2), taking CNode and CState as sequentialization variables.

ASM 39:asm Execute(n,s)
...

is
relation fired
functions CNode <- n, CState <- s
external function INTERP(_)
do forall n0 in NODE, s0 in STATE

if (CNode, CState) = (n0, s0) then
let CNode = n0,

CState = s0 in
if not fired then

let self = CNode in
INTERP(getAction(CNode, CState))

endlet
fired := true

else
do forall t in Transitions:

t =˜ (CNode, CState, &c, &tn, &ts)
if (let src = CNode in

(let trg = &tn in
INTERP(&c)))

then
CNode := &tn
CState := &ts
fired := false

endif
enddo

endif
endlet

endif
enddo

endasm

We take the TFSM defined in Section 3.4.5, Figure 33 representing the ex-
ample program of the goto language given by Grammar 2 and the Montages in
Figures 31, 30, and 32. We assume that the TFSM of the example program as
well as the rules associated with the states are static. Further, we can see that if
the simplification algorithm of Section 3.3.4 is applied consequently, the TFSM
of Figure 33 can be further reduced such that all ”initial” and ”go” states dis-
appear. As a consequence the transition relation of our example in Figure 33 is
simplified. Introducing the names Program, Const1, Print1, Const2, and Print2
for the remaining AST nodes, a visual representation of the TFSM is given in
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Figure 41, and the textual representation of the relation Transition is given as
the following set, containing five quintuples.

Term 10: {(Program, "I", true, Const1, "setValue"),
(Const1, "setValue", true, Print1, "print"),
(Print1, "print", true, Const2, "setValue"),
(Const2, "setValue", true, Print2, "print"),
(Print2, "print", true, Const1, "setValue")}

C

A

Label A B

Program

Labeled Goto Labeled

Print1 Goto

setValue

Ident Label

Const1 Ident

print

go

B C

Labeled Goto

Print2Label Ident

Const2

setValue printI

Fig. 41: The simplified version of Figure 33

According to our assumptions, all functions in the interface of ASM Execute
are static. Now we apply PE to the rule of ASM 39. As a result the outermost
do-forall is unrolled, the first case being given as follows.

if (CNode, CState) = (Const1, "setValue") then
let CNode = Const1, CState = "setValue" in

if not fired then
let self = CNode in
INTERP(getAction(CNode, CState))

endlet
fired := true

else
do forall t in Transitions:

t =˜ (CNode, CState, &c, &tn, &ts)
if (let src = CNode in

(let trg = &tn in
INTERP(&c)))

then
CNode := &tn
CState := &ts
fired := false

Based on the fact that Const1 and “setValue” are constants, the PE-algorithm
is now pushing these constants into the static-let variables CNode and CState
which are overriding the dynamic functions CNode and CState. As a result the
above case is partially evaluated to

if (CNode, CState) = (Const1, "setValue") then
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if not fired then
let self = Const1 in

INTERP(getAction(Const1, "setValue"))
endlet
fired := true

else
do forall t in Transitions:

t =˜ (Const1, "setValue", &c, &tn, &ts)
if (let src = Const1 in

(let trg = &tn in
INTERP(&c)))

then
CNode := &tn CState := &ts fired := false

As a simplification, we assume that the actions returned by getAction match the
signature, and that the partial evaluation of INTERP(a) for all involved actions
� results in rule �����.

The final result of partial evaluation of the above discussed case is

if (CNode, CState) = (Const1, "setValue") then
if not fired then

value(self) := "1"
fired := true

else
CNode := Print1
CState := "print"
fired := false

endif

End the complete result is the following version of ASM Execute, ASM 40.

ASM 40:asm Execute(n,s)
...

is
relation fired
functions CNode <- n, CState <- s
external function INTERP(_)
if (CNode, CState) = (Const1, "setValue") then

if not fired then
value(self) := "1"
fired := true

else
CNode := Print1
CState := "print"
fired := false

endif
elseif (CNode, CState) = (Print1, "print") then

if not fired then
stdout := Const1.value
fired := true

else
CNode := Const2
CState := "setValue"
fired := false



6.5. Conclusions and Related Work 169

endif
elseif (CNode, CState) = (Const2, "setValue") then

if not fired then
value(self) := "2"
fired := true

else
CNode := Print2
CState := "print"
fired := false

endif
elseif (CNode, CState) = (Print2, "print") then

if not fired then
stdout := Const2.value
fired := true

else
CNode := Const1
CState := "setValue"
fired := false

endif
endif

endasm

6.5 Conclusions and Related Work

While our intention is to use PXasm for the semantics of Montages, we have
shown in this chapter their usefulness for a TFSM interpreter and the compila-
tion of TFSMS. The presented TFSM interpreter is the nucleus of the later pre-
sented Montages semantics, and the described compilation of TFSMs by means
of partial evaluation shows the principles behind the new implementation of
Montages. Using the same approach the later presented Montages semantics
can be reduced to a specialized interpreter, and a program can be compiled to
specialized XASM code.

The presented simplification and compilation allow for an efficient imple-
mentation of Montages based on our novel concept of TFSM. Further other meta
formalisms can use TFSM as their virtual machine. In fact the basic ideas for
TFSMs have been developed by the author while designing a different, XML
based meta-specification formalism for the company A4M (126).

A very interesting field of development related to TFSMs are model driven
architectures, proposed by the OMG group as successor of UML (25; 170).
These architectures, which are driven by a model of the problem to be solved,
are closely related to domain-engineering. DSLs are considered an important
part in such architectures, and many UML based ways for defining such DSLs
are discussed (43; 148). Montages, which combines ASTs of DSLs, and state-
machines whose states are decorated with actions, may be a good candidate for
such definitions: UML already uses such state machines for defining methods
of classes, and using the same notation for defining semantics of DSL con-
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structs may be natural. In order to examine this possibility we will redefine
Montages based on UML’s variant of state-machines and action-languages. The
precise definition of such UML action-languages allows for executable variants
of UML (152; 205) and integrating these technologies with Montages will help
to move Montages into the domain of practicable software-engineering tools.
Interestingly the proposed action languages (2; 229) have many similarities with
XASM.



7
Attributed XASM

The description of main-stream programming languages with Montages (225;
98) has shown the need for a feature corresponding to attribute grammars (AG)
(122). In fact, the experiments showed that the complexity of static seman-
tics of a language like Java or C cannot be handled with a methodology less
powerful than AGs. The simplicity of Montage’s initially proposed one-pass
technique (133), earlier combinations of AGs with ASMs (184; 186), and a pro-
posal for extending AGs with reference values (89) have inspired us to design a
new kind of AGs using XASM. The definition of this attribute grammar variant
is based on a very simple mechanism called Attributed XASM or short AXasm.

The motivation for and introduction of AXasm is given in Section 7.1. In
Section 7.2 Formal semantics of AXasm is given in three ways,

� by translating attributions into derived functions (Section 7.2.1),

� by extending the denotational semantics of XASM with attribution features (Sec-
tion 7.2.2), and finally

� by extending the self-interpreter to full AXasm (Section 7.2.3).

The self-interpreter of AXasm is later used in Chapter 8 as part of the Montages
semantics. Finally in Section 7.3 we shortly compare AXasm with traditional
attribute grammars, and refer to related work. As example we combine in Ap-
pendix D attributions with abstract syntax trees, specifying an attribute grammar
for the type system of the Java Programming Language.
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7.1 Motivation and Introduction

If we compare object-oriented (OO) programming with procedural program-
ming and attribute grammars (AGs) with functional programming, we find some
interesting commonalities of the two relations. Both OO programming and AGs
feature some sort of dynamic binding which allows to associate code with data,
and to use this association to choose dynamically the right code for each kind
of data. In OO programming the code comes in form of procedures changing
the state, and in AGs, the code comes in form of function definitions calculating
a result from the arguments. In both cases, the code is not directly associated
with the data elements, but with types of data. In OO programming the types are
called classes, and the procedures associated with classes are called methods. In
the case of AGs, the types are the labels of the abstract syntax tree (AST) nodes,
and the functions are called attributions.

This section contains a motivation of the AXasm design based on the com-
parison of the mentioned paradigms, object-orientedness, functional program-
ming, and attribute grammar. The only purpose of our discussion is the moti-
vation of AXasm, for the more in depth discussion of the topic we refer to the
existing literature (174).

In Section 7.1.1 we compare OO programming to procedural programming
and in Section 7.1.2 AGs and functional programming are related to each other.
The commonalities of OO programming and attribute grammars are analyzed
in Section 7.1.3, and in Section 7.1.4 we introduce AXasm, which achieves
some of the same advantages as the other two approaches by adding dynamic
binding to derived functions of XASM. Some features make AXasm look more
like OO programs than AGs: attributes may have several parameters, and the
values of attributes can be other elements having attributes. Further, using the
extend construct, it is in principle possible to create new instances dynamically.
Nevertheless in the context of Montages we will mainly use AXasm to simulate
the behavior of traditional AGs.

For simplifying the presentation we define only dynamically bound derived
functions, and do not introduce dynamically bound functions of other kinds.
Therefore in our definition of AXasm, the elements have no local state. We do
not forbid that attributes are evaluated at runtime, but we concentrate on the case
that attributes are evaluated before runtime in order to check static semantics.
Partial evaluation of Montages specification is more effective in the case of
attributions evaluated before run time, and typical optimization of programming
language implementations, such as static typing rely on pre run-time evaluation
of attributes.

7.1.1 Object-Oriented versus Procedural Programming

The transition from procedural programming to OO programming has led to an
increased productivity in software development. One of the reasons for this is
that OO programming supports directly the modeling of a system as a number
of object-classes whose instances share behavior and state structure. The be-
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havior is given by methods, which may be differently implemented for different
classes. If a method is applied to some value, the type of this value determines
dynamically which method implementation is bound to the call. This feature is
called dynamic binding

More detailed, the objects in a class are called its instances. The class of
which an object is an instance is called its type. Each class has a number of
variables associated, as well as a number of procedures. The variables of a class
are called its fields and the procedures of a class are called its methods. Two
classes may share the same fields and methods names, but each of them may
define them differently. Given a method m, classes �, and �, the , definition
of � typically fits �-instances, and the , definition of � fits �-instances. If
, is applied to some variable which may hold � or � objects, the type of the
actual object determines which definition is applied. The following OO pseudo
code shows a call of method , on variable �. Depending on the type of the
value of �, either the � or � definition of , is executed.

class A
method m
begin

m-definition of A
end

endclass

class B
method m
begin

m-definition of B
end

endclass

call o.m

The same result can of course be achieved using a procedural programming
language. The following procedure , executes the �-definition of , if the
parameter ��� of , is an �-instance, and the �-definition if the parameter is a
�-instance. The call m(o) will thus result in the execution of either the � or �
definition of ,, depending whether � evaluates to an � or to a � instance.

procedure m(self: OBJECT)
begin
if self is A-instance then

m-definition of A
elseif self is B-instance then

m-definition of B
endif

end

call m(o)

The power of OO programming comes into play, if a third class � is added.
In the procedural implementation, the definition of the unique , procedure has
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to be extended with the cases covering � instances. Thus the full source code
has to be changed. In the OO style, simply a third class � is added to the system,
and classes � and � are not touched. This is a little advantage, if we look at toy
examples, but it is crucial, if realistic software systems are developed. Typically
in realistic software system it is very hard to change existing code, since many
other system components may rely on it.

Before we show how to add dynamic binding to XASM, we analyze func-
tional programming and attribute grammars. It will be shown that attribute
grammars can be considered a dynamically bound version of functional pro-
gramming.

7.1.2 Functional Programming versus Attribute Grammars
Programs represented in the form of ASTs can be conveniently analyzed by
decorating their nodes with properties of the corresponding programming con-
struct. Many of such node-properties, such as static type, arguments, or constant
value can be expressed as expressions over properties of other nodes in the AST.
If the grammar is stable, and if the existing rules are known, a solution using
functional programming, where each property is modeled as a function can be
given as follows. Consider for instance a grammar with symbols �, �, and �
and corresponding expressions defining the property staticType. The following
functional definition of staticType can then be applied to calculate the static type
of a node :

staticType(self: NODE) ==
(if self is A node then staticType-definition of A
else

(if self is B node then staticType-definition of B
else

(if self is C node then staticType-definition of C
else
undef)))

staticType(n)

Depending whether � is an �, �, or � node, the corresponding definition of
staticType is evaluated. Unfortunately this solution is only feasible, if the gram-
mar and rules are known, and if the grammar is not changing over time. This
assumption is not realistic for real-world languages, or for the design process of
new domain-specific languages. Therefore a notation which allows to add new
definitions without changing the existing ones is needed.

A solution to our problem is provided by AGs, which allow to give the
property definitions for each grammar symbol. Similar to OO programming,
dynamic binding is used to evaluate the attributes. A formulation of the above
property or attribute staticType in AG style is given as follows.

rule A ....
attribute staticType == staticType-definition of A

rule B ...
attribute staticType == staticType-definition of B
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rule C ...
attribute staticType == staticType definition of C

n.staticType

If a new kind of nodes  is added to the definition, the AG style allows
to simply add the rule for , while the functional style urges us to change the
definition of the unique function staticType.

7.1.3 Commonalities of Object Oriented Programming and Attribute Grammars

If we try to analyze the commonality of both OO programming and AGs, we
can identify the following points:

� The involved elements (objects or nodes) are typed by universes of elements
(object-classes or nodes with the same label). The type of an element is deter-
mined at its creation (instance creation or production rule application) and is
never changed.

� Expressions are dynamically typed by the element they evaluate to.

� The same function (method or attribute) can be differently defined for each of
the type-universes; definitions are associated with these universes.

� The dynamic type of the first argument of a function-call (method-call or
attribute-evaluation) is used to dynamically bind the call to the corresponding
function definition (method definition, attribution).

� The first argument of a function which is used for dynamic binding is written
before the function, using the dot notation, and within the function-definition
this argument can be uniformly accessed with the symbol self1.

In the next section these common features of OO programming and attribute
grammars are added to the semantics of derived functions in XASM resulting in
AXasm.

7.1.4 AXasm = XASM + dynamic binding

Dynamic binding allows to give specialized implementations of the same
method for different classes, or of the same attribute for different node types. If
a method is called, or an attribute evaluated, the type of the first argument, the
so called self or context object, determines which implementation is chosen. In
order to make the syntax more explicit, this first argument is typically written

1This is a simplification, since in each formalism this element is accessed with a different
syntax, for instance this instead of self, and in many formalism it is even considered as an
implicit argument.
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in front of a dot. Given an attribute or method  , parameters ��� � � � � ��, the call
or evaluation of  , with context given by expression ��, is written as follows:

��� ���� ���� ���

The type of �� determines dynamically which implementation is chosen for  ,
and within the code of  , the term self can be used to refer to the value of ��.
A subtle detail is that the arguments ��� � � � � �� are not expected to be evaluated
with respect to the new context, but with respect to the outermost context, in
which �� has also been evaluated. Therefore not only the context-object cc,
but as well the outermost context object (oc) must be known to evaluated such
terms.

As motivation consider the following term.

��� ����� � ���� ����� ����� � ���� ����

The two attributes  � and  � are naturally evaluated with respect to the context
object defined by the terms before the ”dot”. On the other hand, it seems more
natural that the arguments ��� � � � � � ��� � ��� � � � � � ��� should be evaluated in the
same context as the initial term ��. Therefore the ”outermost” context-object
must be passed through the calculations, and used whenever parameters are
evaluated.

In order to introduce dynamic binding in XASM, we need a typing of el-
ements. The idea of AXasm is to use an arbitrary set of disjoint universes to
”type” elements. Given such a partition, the type of an element is given by its
membership in one of the universes. The type of an expression is dynamically
determined by evaluating the expression. For each of these universes we allow
the definition of attributes, a special kind of derived functions.

One possibility to guarantee disjointness of universes is to use only the ex-
tend function to populate them. For instance the ASM ConstructCanonicTree
(ASM 17, Section 5.3.1) uses only extend-rules to populate the characteristic
universes. Therefore these universes are disjoint and build a partition called the
characteristic partition. This partition is used to combine AXasm with ASTs,
resulting in the AG system of Montages.

An example for attribute definitions is the following declaration of universe
U 0, given in concrete syntax.

ASM 41:universe U_0
attr a_1(p_1_1, p_1_2, ..., p_1_n1) == t_1_1
attr a_2(p_2_1, p_2_2, ..., p_2_n2) == t_1_2
...
attr a_m(p_m_1, p_m_2, ..., p_m_nm) == t_1_m

As mentioned the interpretation of each rule or expression of an attributed
XASM is depending on a context-object (cc) and an outermost context object
(oc). A function 2 maps context objects to the corresponding context universe
definitions. The context-object itself is always accessible as function self.
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Evaluating a function application

 ���� � � � � ���

with respect to ���� ���, first the parameters are evaluated with respect to
���� ���, resulting in elements ��� � � � � ��; then the attribute  is searched in the
definitions of the context 2����. If such an attribute definition is present, and
the numbers of formal parameters match, the definition is evaluated with actual
parameters ��� � � � � ��, where during the evaluation of f the symbol self refers
to ��, and terms are evaluated with respect to ���� ���. Otherwise a function
in the global context is searched, where all global dynamic functions, ASMs,
constructors, and derived functions reside.

The dot-notation can be used to interpret an expression in the context given
by another expression. Evaluating

�����

with respect to (cc, oc), the term �� is evaluated with respect to the same ob-
jects, evaluating to element ��, and then �� is evaluated with respect to the new
context-object �� and the old outermost context-object ��. The result of this
second evaluation is the result of the complete dot-term.

7.1.5 Example
As an Example consider the following definitions, introducing global functions
�, 
, universe � , having attributes �, +, and a rule extending � .

function a <-1, x

universe U
attr a == 3
attr b == x.a

extend U with u
x := u
a := a+ u.b

endextend

First step
The rule within the extend clause updates the global function 
 to the new ele-
ment !. In the next update the global function � is updated to it’s value 1 plus
the value of + in the context of !. Since ! is created as element of � , the context
of ! is � , and therefore + is identified as an attribute of � . The definition of
attribute + is 
��. Since 
 is initially undef, the � of 
�� is initially evaluated in
the global context. In the global context, � is initially 1, thus the result of 
��
and thus of attribute + of ! is 1. Thus the global � is updated to 2.
Second step
After this first step, the value of 
 is the newly create � instance, the value of � is
2. In the second step, again a new instance of � is created. The global function
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� is incremented with the value of attribute + of the new element. In contrast to
the first step, this time the attribute + evaluates to �, since 
 is no more undef but
evaluates to an element being member of universe � . The evaluation of term

�� results thus in evaluation of � in the � context, where � is an attribute with
constant value �. After the second step, the global � is set to 5, and 
 is set to
the second newly created element.

In all following steps, new � instances are created, and � is incremented
with 3.



7.2. Definition of AXasm 179

7.2 Definition of AXasm
In this section the formal semantics of AXasm is given in three ways. Sec-
tion 7.2.1 explains AXasm by translating the dynamically bound derived func-
tions into standard derived functions of XASM, following the pattern in Sec-
tion 7.1.2 where the functional counterpart of an attribute grammar has been
shown. A semantics without the help of a syntactical transformation is given in
Section 7.2.2 where the denotational semantics of XASM, presented in Defini-
tion 9, Section 4.3 is extended to AXasm. Finally in Section 7.2.3 we extend
the XASM self-interpreter of Section 5.4 to a self-interpreter of AXasm. Such a
self interpreter will be used in situations where the attributions are not known in
advance, for instance the definition of the Montages meta-interpreter needs an
AXasm self-interpreter.

7.2.1 Derived Functions Semantics

We look at a more general example of attributions and explain their meaning by
expressing them as an equivalent derived function. In the following attributed
XASM, symbols ��� � � � � �� are used for universes, symbols ��� � � � � �� are used
for attributes, the terms ��� are defining the attributes, and finally 	 is the tran-
sition rule.

ASM 42:universe U_1
attr a_1 == t_1_1
attr a_2 == t_1_2
...
attr a_m == t_1_m

universe U_2
attr a_1 == t_2_1
attr a_2 == t_2_2
...
attr a_m == t_2_m

...

universe U_n
attr a_1 == t_n_1
attr a_2 == t_n_2
...
attr a_m == t_n_m

R

The given definitions of attributes ��� � � � � �� can be transformed into an
equivalent non-attributed XASM with , derived functions ��� % � ��� � � � � ,�.
The definition of this function applies the attribute definitions, depending on
the value of the context-object self. Instead of the dot-notation �����, an explicit
Dot( , ) function must be used. ������ ��� evaluates first �� and then makes the
result of this evaluation available as context object self in the evaluation of ��.
The result of this �� evaluation is the result of ������ ���.
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derived function Dot(t1, t2) == (let self = t1 in t2)

Following this approach standard XASM declarations being equivalent to
the above attributed XASM can be given as follows.

universes U_1, U_2, ..., U_n
function self

derived function a_1 ==
(if U_1(self) then t_1_1
else (if U_2(self) then t_2_1
...
else (if U_n(self) then t_n_1
else undef ) ...))

derived function a_2 ==
(if U_1(self) then t_1_2
else (if U_2(self) then t_2_2
...
else (if U_n(self) then t_n_2
else undef ) ...))

derived function a_m ==
(if U_1(self) then t_1_m
else (if U_2(self) then t_2_m
...
else (if U_n(self) then t_n_m
else undef ) ...))

R

where all dot-applications in 	 and the terms ��� are rewritten using the derived
function Dot, e.g. ����� is replaced by Dot(t1, t2)

7.2.2 Denotational Semantics

From a denotational point of view, an attributed XASM (AXasm) describes an
XASM where elements have local signatures, and the dot-notation can be used to
evaluate a term in an other elements signature. Binding of function evaluation is
thus done dynamically. The purpose of this section is to extend the denotational
semantics of XASM, as given in Definition 9, Section 4.3.

At this moment we would like to note that we have chosen the definitions
such, that they are suited as well for object based ASM (102), or even fully
object oriented ASMs (128). Here we will restrict us to Attributed XASM, where
objects have local signatures, but no local states.

On the other hand, since we formally introduced derived functions as special
kinds of XASM calls (see Section 4.4.3), we will cover full ASM call functional-
ity for the attributes. These correspond semantically to methods of OO systems,
but to avoid confusions we call them attributions. A real OO system would be
obtained by introducing local states, as in ObASM (102) and by introducing
inheritance. Although these features would help to structure further the case
studies, we decided to abstract from them in order to shorten the material.
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In AXasm the elements of the superuniverse are typed by the so called
classes, represented as universes.

Def. 19: Element Partition and Class Association. Each element 
 � � has an associ-
ated universe 2�
� from a set � of disjoint universes. The element 
 is member
of 2�
� and not member of any other universe in �. We call the universe 2�
�
the class of 
, and 
 is said to be an instance of 2�
�. The elements undef,
true and false, as well as other built in constants, and constructor terms are the
members of the so called global or main class main .

Since the elements have no local state, the signature 
 of dynamic func-
tions is not split into local signatures, the state is still a mapping from 
 to
actual definitions of the functions. The class � of an element determines a local
extended signature 
�. The global extension signature is considered to be the
local extension signature of the global class main.

Def. 20: Local Extended Signature and Classes. Associated with each class � is a set

ext��� of attributions defined within the definition of �. The global extension
signature 
ext corresponds to 
ext�,�%��.

The extended signature 
� with respect to an object � is


���� � 
 	 
ext�2����

Terms in AXasm can be built over the union of all extended signatures, but
in the context of an object �, only terms over 
���� can be defined, all others are
undefined.

The attributions are derived functions defined locally for each class �. For-
mally, a derived function can be represented as a tuple of an expression, and the
formal parameters.

Def. 21: Attributions. The attributions are given by a family � of mappings. For each
class �, ���� maps the n-ary symbol  of 
ext��� to a (n+1) tuple

 ���	 � ��� ��� ���� ���

where � is an expression, and ��� � � � � �� are the formal parameters.

In concrete syntax, the definition of  in � would be given as follows.

universe c
...
derived function f(p1, ..., pn) == E
...

universe...

In summary, an AXasm is given by a transition rule 	, signature 
 of dy-
namic functions, a set of disjoint universes � � 
 whose interpretation in each
state builds a partition of the elements in �, a family of attributions (local exter-
nal functions) 
ext��� for each class � and a family of mappings � giving the
definitions of the attributions.
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Def. 22: AXasm. An AXasm is given by a quintuple,

�	�
���
ext���

� the transition rule 	,

� signature 
 of dynamic functions,

� a set of disjoint universes � � 
 whose interpretation in each state builds a
partition of the elements in �,

� a family of attributions (local external functions) 
ext��� for each class �, and

� a family of mappings� giving the definitions of the attributions.

Given an AXasm, the mapping 2�
� from elements to classes can be calcu-
lated in each state $ by

2�
� � � where 
 � $�

Current and outermost context
In AXasm rules and terms are evaluated with respect to a context given by two
elements. The first element is the current context, referred to as cc, and the
second one is the outermost context, referred to as oc. In the initial state of an
AXasm, both cc and oc are equal to undef, and since undef is member of the
main class, rules and terms are evaluated with respect to the main, or global
context. Global external functions are considered the attributes of this global
context, and in the global context, the behavior of an AXasm is the same as the
behavior of a normal XASM.
Update and value denotations of AXasm constructs
In order to extend XASM’s denotational semantics to full AXasm, the signature
of value denotation (Definition 6) and update denotation (Definition 1), as well
as external update and value denotations (Definition 8) must be extended with
two additional arguments, the current context cc and the outermost context oc.

Def. 23: Denotations with Context. With respect to the current context cc and the out-
ermost context oc, the update and value denotation of a rule R in a state $ is
given by

Upd�	� $� ��� ���

Eval�	� $� ��� ���

and the denotations of an external function  with actual parameters ���� � � � � ���
are given by

ExtUpd� � ���� � � � � ���� $� ���

ExtEval� � ���� � � � � ���� $� ���
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Semantics of self
The update denotation of term self is the empty set, and the value denotation of
term self is the current context object cc.

Def. 24: AXasm self evaluation. if R = self
then

Upd�	� $� ��� ��� � ��
Eval�	� $� ��� ��� � ��

Semantics of attributions
If an external function is realized with an ASM (Definition 14 and 16), the new
argument is added to the state as value of self, and it is used as initial current and
outermost context objects of the ASM2. The denotations ExtUpd and ExtEval
are given as follows.

Def. 25: Update and Value Denotations of Attributions. Given current context cc and
n-ary attribute  � �%-,�ext�2�����, and the definition

 ������		 � ��� ��� ���� ���

the ExtUpd and ExtEval functions are given as follows:

ExtUpd� � ���� � � � � ���� $� ��� �

Upd��� $ 	 �self 
� cc� �� 
� ��� � � � � �� 
� ���� ��� ���

ExtEval� � ���� � � � � ���� $� ��� �

Eval��� $ 	 �self 
� cc� �� 
� ��� � � � � �� 
� ���� ��� ���

Semantics of function application
If a function application

 ���� ���� ���

is evaluated with respect to ���� ���, the arguments of the application are evalu-
ated with respect to ���� ���, and the function  itself is evaluated with respect
to the single context element ��. The class 2���� determines the local signature
of external functions (attributes) 
ext�-�,,������. If  � 
ext�-�,,������
the definition of this external function (attribute) is applied, as defined above,
otherwise the dynamic function  � 
 is evaluated.

Within the evaluation of  , the current context �� can be referred to as term
self.

Def. 26: AXasm Function Evaluation.
if 	 �  ���� � � � � ���

where ��� � � � � �� are terms
and �� � Eval���� $� ��� ��� and � � � and �� � Eval���� $� ��� ���

2Since for our purpose we purpose we use AXasm only with attributions being derived
functions, we are not giving the details of the refined definitions for the general ASM call.
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then
if  � 
ext�2�����
then
����	� $� ��� ��� � �
����� � ���� � � � � ���� $� ���

	
�
����������� ������� $� ��� ���

Eval�	� $� ��� ����	� � �
��)��� � ���� � � � � ���� $� ���
else

Upd�	� $� ��� ��� �
�
����������� ������� $� ��� ���

Eval�	� $� ��� ��� �  ����� � � � � ���

Semantics of dot application
The dot notation is used to change the current context and allows to evaluate
external functions of other classes. For instance the term

�����

is evaluated with respect to ���� ���, evaluates first �� with respect to ���� ��� to
element ��, and then evaluates �� with respect to ���� ���.

Def. 27: AXasm Dot Term Evaluation. if 	 � �����
where ��� �� are terms
and �� � Eval���� $� ��� ���

then
����	� $� ��� ��� � ������� $� ��� ��� 	 ������� $� ��� ���
Eval�	� $� ��� ��� � Eval���� $� ��� ���

In all other cases the definitions of Definition 9 remain valid, except that the
additional arguments cc and oc are passed as well.

7.2.3 Self Interpreter Semantics

In this section the formal semantics of AXasm is given by extending the defini-
tion of the PXasm self-interpreter INTERP such that it takes the context-object
as additional argument, and evaluates both normal functions and references to
attributes. We assume that the current list of attributions is available as construc-
tor term, being assigned to the global 0-ary function AttrDefs. In Section 7.2.3.1
the mapping from attribute definitions in constructor terms is defined. Then we
explain first an interpreter for attributions without parameters (Section 7.2.3.2)
and then we extend the definitions to a self interpreter for attributions with pa-
rameters (Section 7.2.3.3).

7.2.3.1 Constructor Term Representation of Attributes
The attributions are provided in the form of constructor terms, built up from the
constructors

attrDefs(Ident,[Attribute])

whose first argument is the name of the universe, and whose second argument
is a list of attributions valid for that universe. Each attribution is a three-ary
constructor

attribute(Ident, [Ident], Expr)
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whose arguments are the name of the attribute, a list of parameters, as well
as a term-representation of the XASM-expression defining the attribute. The
initial example of an attribution, ASM 41 is represented using the introduced
constructors as follows,

Term 11:attrDefs("U_0",
[attribute("a_1",

[p_1_1, p_1_2, ..., p_1_n1],
MOD(t_1_1)),

attribute("a_2",
[p_2_1, p_2_2, ..., p_2_n2],
MOD(t_1_2)),

...
attribute("a_m",

[p_m_1, p_m_2, ..., p_m_nm],
MOD(t_1_m))])

where MOD( ) denotes a function transforming an XASM expression or rule
into its constructor term representation. Correspondingly the representation of
the previously defined attributes in ASM 42 is given in Term 12.

Term 12:[attrDefs("U_1",
[attribute("a_1", [], MOD(t_1_1)),
attribute("a_2", [], MOD(t_1_2)),
...
attribute("a_m", [], MOD(t_1_m))]),

attrDefs("U_2",
[attribute("a_1", [], MOD(t_2_1)),
attribute("a_2", [], MOD(t_2_2)),
...
attribute("a_m", [], MOD(t_2_m))]),

attrDefs("U_n",
[attribute("a_1", [], MOD(t_n_1)),
attribute("a_2", [], MOD(t_n_2)),
...
attribute("a_m", [], MOD(t_n_m))])

]

The above representation is generated by extending the EBNF of PXasm
(Grammar 6, Section 5.4.1) with the following productions and constructor
mappings.

Gram. 7: UniverseDef ::= “universe” Symbol � AttrDef �
�/ attrDefs(Symbol, AttrDef)

AttrDef ::= “attr” Symbol [ Arguments ] “==” Expr
�/ attribute(Symbol, Arguments, Expr)

The constructor representations of the XASM constructs dot and self expressions
are given by the following definitions.

Gram. 8: Expr = ... � Dot � Self
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�/ rhs
Dot ::= Expr “.” Expr

�/ dot(Expr.1, Expr.2)
Self ::= “self”

�/ selfSymb

7.2.3.2 Extending the Self-Interpreter for Attributions without Parameters
The definition of the self interpreter of such an attribution system is relatively
complex. We try to simplify understanding by first concentrating on non-
parametric attributions, which are nearer to classical attribute grammars. Later
in Section 7.2.3.3 we come back to attributions with parameters. This allows
us to abstract in this section from the outermost context object, which is only
used for evaluating parameters. The signature of the self interpreter given in
this section is A INTERP( , ), the first argument being a term-representation of
the ASM rule to be executed, the second being the current context-object.

The following function EvalAttribute(cc,a) is used to evaluate an attribute
� with respect to a context-object cc. The attribute definitions are available as
a list of their constructor term representation which is assigned to variable At-
trDefs. If the attribute is not defined for the given context-object, the constant3

notDeclared is returned, otherwise the result of evaluating the attribute defini-
tion by means of A INTERP is returned. The derived universe

derived function UniverseSet(u) ==
(exists a in list AttrDefs: a=˜ attrDefs(u, &))

denotes a set of all universes for which attributes are defined. The following
ASM chooses a universe ! in the set of universes UniverseSet, such that the
argument cc is in !. Then it chooses u’s attribute definitions ATTR DEFS in the
list AttrDefs, and in the list ATTR DEFS is chosen the attribution ATTR corre-
sponding to the ident �. The defining expression of ATTR is then interpreted
with respect to context object cc. If one of the three choose operators does not
succeed, the element notDeclared is returned.

ASM 43:asm EvalAttribute(cc: Object, a: Ident)
accesses function A_INTERP(_,_)
accesses function AttrDefs
accesses constructor notDeclared, meta(_)
accesses universe UniverseSet
(forall u in UniverseSet

accesses universe $u$)
is
choose u in UniverseSet: $u$(cc)

choose ATTR_DEFS in list AttrDefs:
ATTR_DEFS =˜ attrDefs(u, &DefList)

choose ATTR in list &DefList:
ATTR =˜ attribute(a, [], &e)

A_INTERP(&e, cc))
ifnone
return notDeclared

3Constants are modeled as 0-ary constructors.
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endchoose
ifnone

return notDeclared
endchoose

ifnone
return notDeclared

endchoose
endasm

Interpretation of Symbols
For non-parametric attributions, the arguments of the AXasm self interpreter
A INTERP are an XASM rule � and the context object cc. The same arguments
are needed for the interpretation of symbols, which is similar to the interpre-
tation of symbols without attributes (ASM 24), except that the context object
must be passed as well.

ASM 44:asm SymbolA_INTERP(t, cc)
accesses function A_INTERP(_,_)

is
if t =˜ meta(&s) then

return A_INTERP(&s, cc)
else

return t
endif

endasm

Interpretation of Rules: Structure
The interpreter for attributed XASM needs to update all functions mentioned in
the term �, and accesses the mentioned functions EvalAttribute, AttrDefs, as well
as the constructor notDeclared, and the universe UniverseSet. The signature of
the ASM is almost identical to the corresponding ASM 25 of the PXasm self-
interpreter.

ASM 45:asm A_INTERP(t, cc)
asm INTERP(t: Rule | Expr)
(forall n in {0 .. MaxArity(t)}:
updates functions with arity n $UpdFct(n, t)$
accesses functions with arity n $AccFct(n,t)$

)
accesses constructors update(Symbol, [Expr], Expr),

conditional(Expr, Rule, Rule),
doForall(Symbol, Symbol, Rule),
extendRule(Symbol, Symbol, Rule),
constant(Value),
apply(Symbol, [Expr]),
letClause([LetDef], Rule),
letDef(Symbol, Expr)

accesses function AttrDefs
accesses constructor notDeclared
accesses universe UniverseSet

is
external function EvalAttribute(obj,par)
external function SymbolA_INTERP(_,_)
...



188 Chapter 7. Attributed XASM

Interpretations which do not change considerably
There are a number of rules whose interpretation is not changing its main func-
tionality with respect to the PXasm self-interpreter. This rules are update, lists,
conditionals, doForall, extendRule, and constant. The only difference of the in-
terpretation for these rules is, that the additional context object cc is passed as
argument to each interpretation of their components.
Interpretation of Apply
The interpretation of apply has now to take into consideration the context object
cc. The interpreter calls ASM EvalAttribute to see whether in the context of cc
an attribute is defined, which matches the symbol to be interpreted. First, it is
tested whether context object cc is undef, e.g. if we are in the global context. If
yes, a global dynamic function is evaluated, otherwise an attribute is assumed,
or if later no such attribute is defined, the cc is added as first argument to a
global function evaluation.

Since we assume attributes to have no parameters, the parameters are simply
skipped in the call of EvalAttribute. If there is no attribute found, the function
EvalAttribute returns notDeclared and the function is evaluated as global func-
tion using the built in Apply operator.

...
elseif t =˜ apply(&op, &a) then

let opINT = SymbolA_INTERP(&op, cc),
aINT = A_INTERP(&a, cc) in

if cc = undef then
return Apply(opINT, aINT)

else
let r = EvalAttribute(cc, opINT) in

if r = notDeclared then
return Apply(opINT, [cc | aINT])

else
return r

endif
endlet

endif
endlet

...

Interpretation of dot
The dot operator is used to change the context object cc. In the case of attributed
XASM without parameters this is easily done by replacing the argument cc with
the newly created object.

...
elseif t =˜ dot(&t1, &t2) then

let lhs = A_INTERP(&t1, cc) in
return A_INTERP(&t2, lhs)

endlet
...
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Interpretation of self
The term self refers to the context object, thus to the object cc.

...
elseif t =˜ selfSymb then

return cc
...

Interpretation of let clauses
Finally we have to treat the let clauses. For this purpose we calculate first the
value of each let definition and build then recursively the let rules. Since we
first evaluate all let definitions, the used recursive let construction is equivalent
to the intended parallel one of the interpreted term.

...
elseif t =˜ letClause(&defList, &r) then

if &defList =˜ [letDef(&p, &t)|&tl] then
return A_INTERP(letClause(A_INTERP(&defList,

cc),
&r),

cc)
elseif &defList =˜ [(&p, &o) | &tl] then

let $&p$ = &o in
return A_INTERP(letClause(&tl, &r), cc)

endlet
else return A_INTERP(&r, cc)
endif

elseif t =˜ letDef(&p, &t) then
return (SymbolA_INTERP(&p, cc), A_INTERP(&t, cc))

...

7.2.3.3 Attributions with Parameters
Parametric attributions extend attributes with parameters. If such attributions
are evaluated, the parameters are evaluated in the outermost context, and only
the context of the attribute evaluation is changed by the ”dot”-notation. There-
fore two context objects (cc, oc) must be passed as arguments of the evaluation
function, one for the parameters, and one for the attribute. As a consequence, all
of the above rules have to be extended with a second context-object parameter.

As an exception, the ASM EvalAttribute still only needs access to one con-
text object, but we need to pass the already evaluated arguments to the attributes.
Further, the arity of the accessed A INTERP has changed with respect to the old
definition ASM 43. The ASM CreatePairs is needed to transform the lists of
actual and formal parameters into a list of pairs, consisting of formal name and
actual value, which then can be interpreted as a list of let-clauses, thereby using
the self-interpretation of let-clauses to give self-interpretation of attributes with
parameters.

ASM 46:asm EvalAttribute(cc: Object, a: Ident, actual: [Object])
accesses function A_INTERP(_,_,_)
accesses function AttrDefs
accesses constructor notDeclared
accesses universe UniverseSet
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(forall u in UniverseSet
accesses universe $u$)

is
choose u in UniverseSet: $u$(cc)

choose ATTR_DEFS in list AttrDefs:
ATTR_DEFS =˜ attrDefs(u, &DefList)

choose ATTR in list &DefList:
ATTR =˜ attribute(a, &formal, &e)

A_INTERP(letClause(CreatePairs(&formal,
actual),

&e),
cc, cc))

ifnone
return notDeclared

endchoose
ifnone

return notDeclared
endchoose

ifnone
return notDeclared

endchoose
endasm

asm CreatePairs(l1, l2)
is
if l1 =˜ [&hd1 | &tl1] then

if l2 =˜ [&hd2 | &tl2] then
return [(&hd1, &hd2) | CreatePairs(&tl1, &tl2)]

endif
else

return []
endif
endasm

With respect to the formulation without parameters, ASM 45, the ASM
A INTERP has a third argument, the outermost object, and the referred func-
tion EvalAttribute is now 3-ary.

ASM 47:asm A_INTERP(t: Rule, cc: Object, obj_outermost: Object)
...
is
external function EvalAttribute(_,_,_)

...

For almost all rules, the third parameter is simply passed to the interpretation of
the components.

The only place where the outermost context is used is in the fragment deal-
ing with applications. There the parameters are evaluated in the context of the
outermost object, while the attribute is evaluated with respect to the context-
object. If there is no attribute defined, the Apply-operator is used to evaluate the
function. The self is set to the context object.

...
elseif t =˜ apply(&op, &a) then
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let opINT = SymbolA_INTERP(&op,
obj_outermost,
obj_outermost),

aINT = A_INTERP(&a,
obj_outermost,
obj_outermost) in

let r = EvalAttribute(cc, opINT, aINT) in
if r != notDeclared then
return r

else
let self = cc in

return Apply(opINT, aINT)
endlet

endif
endlet

...

The complete A INTERP ASM looks as follows.

ASM 48:asm SymbolA_INTERP(t, cc, obj_outermost)
is
if t =˜ meta(&s) then

return A_INTERP(&s, cc, obj_outermost)
else

return t
endif

endasm

asm A_INTERP(t, cc, obj_outermost)
updates *
accesses function EvalAttribute(obj,att,par)
accesses function AttrDefs

accesses constructor notDeclared
accesses universe UniverseSet

is
if t =˜ update(&s, &a, &e) then

Update(SymbolA_INTERP(&s, cc, obj_outermost),
A_INTERP(&a, cc, obj_outermost),
A_INTERP(&e, cc, obj_outermost))

return true
elseif t =˜ [&hd | &tl] then

return [A_INTERP(&hd, cc, obj_outermost)
| A_INTERP(&tl, cc, obj_outermost)]

elseif t =˜ conditional(&e, &r1, &r2) then
if A_INTERP(&e, cc, obj_outermost) then

A_INTERP(&r1, cc, obj_outermost)
else A_INTERP(&r2, cc, obj_outermost) endif
return true

elseif t =˜ doForall(&i, &s, &e, &r) then
do forall $SymbolA_INTERP(&i, cc, obj_outermost)$

in $SymbolA_INTERP(&s, cc, obj_outermost)$:
A_INTERP(&e, cc, obj_outermost)

A_INTERP(&r, cc, obj_outermost)
endo
return true
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elseif t =˜ choose(&i, &s, &e, &r1, &r2) then
choose $SymbolA_INTERP(&i, cc, obj_outermost)$

in $SymbolA_INTERP(&s, cc, obj_outermost)$:
A_INTERP(&e, cc, obj_outermost)

A_INTERP(&r1, cc, obj_outermost)
ifnone

A_INTERP(&r2, cc, obj_outermost)
endchoose
return true

elseif t =˜ extendRule(&i, &s, &r) then
extend $SymbolA_INTERP(&s, cc, obj_outermost)$

with $SymbolA_INTERP(&i, cc, obj_outermost)$
A_INTERP(&r, cc, obj_outermost)

endextend
return true

elseif t =˜ constant(&c) then
return &c

elseif t =˜ apply(&op, &a) then
let opINT = SymbolA_INTERP(&op,

obj_outermost,
obj_outermost),

aINT = A_INTERP(&a, obj_outermost, obj_outermost) in
let r = EvalAttribute(cc, opINT, aINT) in
if r != notDeclared then
return r

else
let self = cc in

return Apply(opINT, aINT)
endlet

endif
endlet

elseif t =˜ dot(&t1, &t2) then
let lhs = A_INTERP(&t1, cc, obj_outermost) in

return A_INTERP(&t2, lhs, obj_outermost)
endlet

elseif t =˜ selfSymb then
return cc

elseif t =˜ letClause(&defList, &r) then
if &defList =˜ [letDef(&p, &t)|&tl] then

return A_INTERP(letClause(
A_INTERP(&defList, cc, obj_outermost), &r),
cc, obj_outermost)

elseif &defList =˜ [(&p, &o) | &tl] then
let $&p$ = &o in
return A_INTERP(letClause(&tl, &r), cc, obj_outermost)

endlet
else return A_INTERP(&r, cc, obj_outermost)
endif

elseif t =˜ letDef(&p, &t) then
return (SymbolA_INTERP(&p, cc, obj_outermost),

A_INTERP(&t, cc, obj_outermost))
else return "Not matched"

endif
endasm
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7.3 Related Work and Results

We have discussed the relation of Montages with Attribute Grammar based for-
malisms for dynamic semantics in Section 3.5 and we concentrate now on the
comparison of AXasm and traditional Attribute Grammars (AGs) for the speci-
fication of static semantics of programming languages.

The application of AGs for specifying static semantics of programming lan-
guages has produced a large number of approaches. A good survey of the ob-
tained results can is given by Waite and Goos (221). The actual algorithms for
the semantic analysis are simple but will fail on certain input program if the un-
derlying AG is not well-defined. Testing if a grammar is well-defined, however,
requires exponential time (103). A sufficient condition for being well-defined
can be checked in polynomial time. This test defines the set of ordered AGs as
being a subset of the well-defined grammars (117). However, there is no con-
structive method to design such grammars. These problems have led to a num-
ber of alternative approaches based on predicate calculus (212; 167; 183) which
avoid these problems, but do not allow for the generation of efficient semantics
analyzer which can be used in practical compilers. Since AXasm allow both the
use of arbitrary complex AGs and predicate calculus, they are not solving the
traditional problems of AG research. The only purpose of AXasm is to simplify
the specification of static semantics and they are not providing any solution for
the problem of generating efficient semantics analysis tools. With other words,
AXasm are not an alternative for AGs since AXasm are only reusing the ease of
specification features of AGs, but not preserving the efficiency features of AGs.

In contrast to AXasm, traditional Attribute Grammars make the connection
to the grammar explicit and declare not only the signature of attributes, but as
well their typing and the direction of the information flow.

� Synthesized Attributes Attributes whose value is calculated from attributes of
their siblings are called synthesized attributes. Information for the calculation
of these attributes flows thus from the leafs of the tree towards the root.

� Inherited Attributes Those attributes whose value is calculated from the value
of their parent’s attributes are called inherited attributes. Information for these
calculations flows from the root towards the leaves of the tree.

In AXasm only synthesized attributes are defined traditionally, inherited at-
tributes are simulated using a special attribute Parent which links nodes in the
parse tree to their parent node. The attribute Parent has been introduced in
Section 3.2.2 and formalized in Section 5.3.1. We see clear limitations of not
having inherited attributes, but on the other hand this allows us to considerably
simplify the syntax of attribute definitions and to have the definitions look and
feel like method declarations in object oriented programming.

On the other hand the existence of the Parent attribute and the enclosing
function (Section 5.3.2) together with the fact that values of AXasm attributes
can be references to other nodes in the tree allows in certain situation for a much
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more compact specification style. Instead of locally moving information from
parent to sibling, using inherited attributes, the information can be directly ac-
cessed by using the enclosing function. For instance name resolution, a feature
typically specified with inherited attributes, is covered in AXasm by directly
accessing the declaration table of the least enclosing scope. Interestingly, the
same function enclosing is already used by Poetzsch-Heffter in the MAX sys-
tem (184; 186). Both in MAX and in our system, the enclosing function allows
to simplify the specification of such features by being able to point directly to
the least enclosing instance of a certain feature, or the the least enclosing in-
stance of a set of features.

In summary the main differences of AXasm with respect to attribute gram-
mars are the following.

� Arbitrary Structure AXasm can be defined over a number of object sets, which
are not building a parse tree. In fact, AXasm do not start with a grammar, but
with an arbitrary partition of the involved objects, independent whether they are
nodes of a parse tree or not. For simplicity we still use the notion node for those
objects which have attributes

� Untyped The terms defining attributions of AXasm are not typed.

� Global References While in traditional attribute grammars the definition of an
attribute only depends from the attributes of its siblings or its parent, in AXasm
attributes can be calculated by referring to any other object. Both the MAX
system (186) and Hedin’s reference attribute grammars (89) provide a similar
feature.

� Reference Values In traditional attribute grammars, the values of attributes are
restricted to constants, such as strings and numbers, or mappings. In XASM, the
value of one attribute can be another node of the AST. Again the MAX system
and reference AG provide a similar feature.

� Parameterized Attributes In XASM, an attribute can have additional parameters.
Like this, it is not necessary to return higher order data-structures like mappings.

By further generalizing the idea and extending it with a mechanism for in-
heritance, an OO version of XASM would be obtained, but the definition of a
full OO version of XASM is beyond the scope of this thesis and we refer the
reader to the executable specification of OO XASM (128).
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Semantics of Montages

In this section we give a formal semantics of Montages using parameterized,
attributed XASM as introduced in Chapters 5 and 7. For simplicity we refer to
them as XASM. The presented algorithms are based on code which has been
implemented and carefully tested with the Gem-Mex tool. The running code
has ten been rewritten for the thesis using the novel XASM features introduced
in the last chapters. Testing the final version of the algorithms has not been
possible since the new features are not yet implemented.

In Section 8.1 we reevaluate the meta-interpreter semantics of Montages by
discussing different alternatives for giving semantics for a meta-formalism. As
mentioned at the beginning of Part II the advantage of the given formalization
are that it is executable, serves directly as implementation of Montages, and is
easy to maintain, since it is based on one, fixed XASM specification. Based
on TFSMs, we have shown in Chapter 6 how the meta-interpretation specifi-
cation allows to use partial evaluation to transform language descriptions into
specialized interpreters and to compile programs of the described language into
specialized XASM code. The resulting specialized code is in both cases not only
more efficient, but as well easier to understand and validate.

In this Chapter we abstract from partial evaluation and other efficiency and
code transparency related issues and give algorithms building non-optimized
and non-simplified TFSMs from Montages. The techniques of Chapter 6 can
then be applied to get a maintainable and efficient implementation of Montages
from the here presented meta-interpreter. In Section 8.2 the Montages meta-
interpreter is structured, and then the details of processing Montages aspects re-
lating to static semantics (Section 8.3), and to dynamic semantics (Section 8.4)
are given.

Finally in Section 8.5 we conclude that the given meta-interpreter can be
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used to meta-bootstrap the XASM language, given a Montages description of
XASM, and point to ongoing work on bootstrapping the complete Montages
system.

8.1 Different Kinds of Meta-Formalism Semantics

A complete specification of a language is given by defining its syntax, its static
semantics, and its dynamic semantics. A meta-formalism like Montages is used
to give such language definitions.

Typically a language definition is given by means of a mathematical mech-
anism which takes as input a program in the given syntax, checks static se-
mantics, and simulates dynamic semantics. If the language to be defined is a
meta-formalism, e.g. a formalism to define other formalisms, the situation is
more complex. Of course, as well a meta-formalism is given by defining its
syntax and semantics. But each “program” written with the meta-formalism
defines another formalism. The “programs” written with a meta-formalism are
thus called language-definitions, and we use the term program for the programs
written in the formalism specified by a language-definition. The specification
of a meta-formalism defines thus syntax and semantics of language-definitions,
and defines syntax and semantics for each language defined.

There are two different choices to formulate the specification of a meta-
formalism. Either one gives a mathematical mechanism which takes both,
the program and the language-definition as input, or one gives a mathematical
mechanism, which transforms a language-definition into a mathematical mech-
anism being a definition of the described language.

The first choice, which takes as input both the program and the semantics
definition is called meta interpretation. In our context, a meta-interpreter is an
ASM which reads Montages descriptions of a language L plus an L-program P,
and interpretes P according to the L-semantics. In Figure 37 we show a meta-
interpreter, its input, and how it can be specialized to interpreters and compiled
code for the specified language.

Alternatively, one can define a program generator, taking Montages descrip-
tions of L as input and generating a specialized XASM model. This choice,
which corresponds to the current architecture of the Gem-Mex tool, is visu-
alized in Figure 36. The advantage of this approach is the simplicity of the
resulting XASM model. The signature and structure of the model can be spe-
cialized for the given Montages. A simple language described by a few simple
Montages results in a simple, specialized XASM model of the language. The
disadvantage of this approach is that it is not trivial to formalize the generator.
Further our experience with implementing this approach showed that the soft-
ware generator can be a considerable maintenance problem. Because of this
maintenance problem, and because we can achieve the advantages of the gener-
ator approach with partial evaluation of meta-interpreters, we decided to follow
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the meta-interpreter approach.
Following the meta-interpretation approach, we have the problem, that the

signature of the terms used in Montages is specialized to the EBNF of the de-
scribed language. One possibility to solve this problem is to transform the Mon-
tages descriptions into descriptions using a more generic signature, and give a
meta-interpreter processing such generic Montages definitions. Like this we
have the possibility to give a single, fixed ASM as semantics of Montages. The
disadvantage of this solution is that the existing Montages modules must be
transformed in a complex and context-dependent way. Another disadvantage
is, that the complex, generic signature has to be understood even for simple
Montages examples.

The author has experimented with this solution, described it for an XML
based meta-formalism (126), and subsequently implemented it for Montages
with the Gem-Mex tool. Although this results in a very small, highly abstract
model, the outcome tends to be hard to understand. The reasons are that the
complexity of the model is independent from the language described, and the
terminology of the described language is not used for its description. The se-
mantics given by such an abstract model can thus not be easily understood by
the domain-experts.

Instead of transforming the Montages, we propose thus to use parameterized
XASM to ”program” the specialized signature of the Montages. In the introduc-
tion to Part II we have already shown a simple example for this process. A
meta-interpreter using this approach is as complex as one over a fixed signa-
ture. But using partial evaluation, the given parameterized meta-interpreter can
be specialized into an interpreter or even a compiled program, using a signature
corresponding to the terminology introduced by the EBNF rules of the described
language. A meta-interpreter approach using parameterized XASM allows thus
to take advantage of end-user terminology, and fits perfectly a framework for
domain-specific languages. The resulting specialized XASM descriptions corre-
spond both in signature and structure to the given Montages.

In the following sections one fixed parameterized ASM MontagesSeman-
tics is given as semantics of the Montages meta-formalism. Given a language
description, the signature-parameters of MontagesSemantics can be instantiated
and the parameterized ASM is easily reduced to a simple specialized ASM,
whose size and complexity is directly related to the complexity of the described
language.
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8.2 Structure of the Montages Semantics

To define the semantics of Montages, we give the meta-interpreter ASM Mon-
tagesSemantics which receives as parameters

mtg the list of Montages, and

prg the program to be analyzed and executed.

MontagesSemantics generates from these parameters an AST, collects the attri-
bution rules from the Montages, checks the static semantics condition for each
node, decorate the AST with states and transitions, and finally execute the re-
sulting TFSM.

8.2.1 Informal Typing

Until now we have given no typing information, since XASM has no static
type system. To make the descriptions of constructor-term representations more
readable, we use an informal notation for typing. The following declaration

constructor c3(T1, T2, T3) -> T4

denotes that constructor �� takes arguments of type ��, ��, �� and produces
constructor terms of type �. As a convention we assume that constructor sym-
bols are given with lower case letters, and that types start with a capital letter.
The notion [T] denotes a list-type of T-instances, �T� denotes a corresponding
set-type. The synonym notation known from the EBNF rules can be used to
denote union types. For instance, the rule

Gram. 9: Expr = Unary � Binary � CondExpr
� Application � Constant � Let

from the grammar of XASM rules induces an informal typing definition of union
type Expr built by the types on the right-hand-side. In general we will treat
upper-case EBNF symbols from the XASM and attribution grammars as types
of the corresponding constructor-terms.

8.2.2 Data Structure

Both mtg and prg are passed to MontagesSemantics as constructor terms. The
program prg to be executed is passed as a constructor term built up by the
constructor characteristic, representing applications of characteristic produc-
tion rules, and the constructor synonym, representing applications of synonym
productions. Section 4.5.3 gives the details of this canonical representation.

The elements of a Montage represented as constructor are its name, being
an Ident, a list of Attributes, an XASM expression being the static semantics
condition, a list of States, and a list of MVL transitions.
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constructor montage(Symbol,
[Attributes],
Expr,
[State],
[Transition])

Examples of Montages containing all these parts are the A-Montage in Figure
9 and the While Montage in Figure 10. The transitions of these Montages have
already been given as Term 1 and 2 in Section 3.3.2. The representation of the
A-Montage as constructor term, modulo the free variables �� �� ��� ��� ��,
and 	 looks as follows.

Term 13:montage("A",
[... , attribute("a", ["p1", ..., "pn"], T), ...],
C,
[ ..., state("s3", R), ...],
[transition(siblingPath("B", undef, statePath("s1")),

C1,
siblingPath("B", undef, statePath("s2"))),

transition(siblingPath("B", undef, statePath("T")),
C2,
statePath("s3")),

transition(statePath("s3"),
C3,
siblingPath("B", undef, statePath("I")))]

)

The corresponding constructor term for the while is:

Term 14:montage("While",
[attribute("staticType", [],

dot(apply("S-Expr",[]),
apply("staticType",[])))],

apply["=", [apply("staticType",[]),
apply("BooleanType,[])]],

[state("profile",update("LoopCounter",
[],
apply("+",

[apply("LoopCounter",[]),
constant(1)])))],

[transition((statePath("I"),
default,
siblingPath("Expr", undef", statePath("I")))

transition(siblingPath("Expr", undef, statePath("T")),
src.value,
statePath("profile")),

transition(siblingPath("Expr", undef, statePath("T")),
default,
statePath("T")),

transition(statePath("profile"),
default,
siblingPath("Stm", undef, statePath("LIST"))),

transition(siblingPath("Stm", undef, statePath("LIST")),
default,
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siblingPath("Expr", undef", statePath("I")))
]

8.2.3 Algorithm Structure

The ASM MontagesSemantics processes program and semantics in different
phases. Starting with the construction of the parse tree, the next step is collec-
tion of attribution rules, and then follows the check of static semantics condi-
tions. After this phase, a program is said to be valid. If the program is not valid,
the string ”Program is not valid” is return and the process is stopped.

Parse trees of valid programs are then decorated with control-flow informa-
tion and then executed. The current phase of this process is given by a dynamic
function mode which changes its value from construct to collect, validate, then
if the program is valid to decorate and finally to execute. In Figure 8 of Section 3
these phases have already been mentioned. Phase 1 of that figure is concerned
with initialization and construction of the AST. Phase 2 relates to collection and
phase 3 to validation. Finally the phase 4 of the referenced figure relates to
decoration, and phase 5 to execution. The overall structure of the ASM Mon-
tagesSemantics looks as follows.

ASM 49:asm MontagesSemantics(prg, mtg)
...

is
constructors construct, collect, validate,

notValid, decorate, execute
function mode <- construct

if mode = init then
... construct tree ...
mode := collect

elseif mode = collect then
... collect attributions ...
mode := validate

elseif mode = validate then
if ... check static semantics ... = true then

mode := decorate
else return "Program is not valid."
endif

elseif mode = decorate then
... decorate tree ...
mode := execute

elseif mode = execute then
... execute ...

endif
endasm

In Section 8.3 we give all details of the Montages semantics concerned with
static semantics of described programming languages and in Section 8.4 the
formalization of the dynamic semantics aspects are given.
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8.3 XASM definitions of Static Semantics
After the construction of the AST, which is described in Section 8.3.1, the attri-
butions of each Montages are collected and assembled to an attributed XASM.
This collection phase is described in Section 8.3.2. As the last phase of static
semantics processing, the static semantics conditions are checked for all nodes
of the abstract syntax tree. This process is described in Section 8.3.3.

8.3.1 The Construction Phase

In the construction phase, the abstract syntax tree is constructed from the given
term representation of the program. The definition of ASM ConstructCanon-
icTree has been given as ASM 17 in Section 5.3. The universes and selector
functions updated by ConstructCanonicTree are declared here, such that they
are available by in later phases. Further a dynamic function root is declared,
and the root of the constructed AST is assigned to it. The corresponding frag-
ment of MontagesSemantics is given as follows, refining ASM 49.

ASM 50:asm MontagesSemantics(prg, mtg)
accesses constructors synonym(_,_), characteristic(_,_), ...
accesses universess CharacteristicSymbols, SynonymSymbols, ...

is
external function ConstructCanonicTree(Term), ...
universe NoNode, ListNode
(for all c in CharacteristicSymbols:

universe $c$
function $"S-"+c$(_)

)
(for all s in SynonymSymbols:

universe $s$
function $"S-"+s$(_)

)
function mode <- construct
function root, ...
constructors construct, collect ...
...

if mode = construct then
root := ConstructCanonicTree(prg)
mode := constructed

...
endasm

8.3.2 The Attributions and their Collection
The list of attributes is a list of attribute constructors, as introduced in Sec-
tion 7.2.3.1. The typing of the attribute constructor is

constructor attribute(Ident, [Ident], Expr) -> Attribute

where the first Ident is the name of the attribute, the list of Idents denotes the ar-
guments of the attribute and the expression Expr is an XASM expression whose
evaluation determines the value of the attribute.
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The list of attributions is collected by the following ASM. The parameter
mtgList is the list of montage-terms representing a language specification. The
algorithm extracts from each montage-constructor the first and the second ar-
gument, and builds up a corresponding list of attributions, using the attrDefs-
constructor.

ASM 51:asm CollectAttributions(mtgList)
accesses constructors montage(_,_,_,_,_),

attrDefs(_,_)
is
function a <- []
if mtgList =˜ [montage(&Symbol, &Attrs, &, &, &) | &tl] then

a := a + [attrDefs(&Symbol, &Attrs)]
mtgList := &tl

else return a
endif

endasm

In the collect phase of the Montages semantics, the attributions are collected and
assigned to function AttrDefs. The details of MontagesSemantics with respect
to the collect phase are given as the following refinement of ASM 50

ASM 52:asm MontagesSemantics(prg, mtg)
...

is
...
external function CollectAttributions(Mtgs)
function AttrDefs
...
constructors ..., collect, validate, ...

...
elseif mode = collect then
AttrDefs := CollectAttributions(mtg)
mode := validate

...
endasm

8.3.3 The Static Semantics Condition

The third element of a Montage is the static semantics condition. It is a normal
XASM expression, which will be checked in the context of each instance of the
Montage. For the evaluation of the conditions, the ASM 48, A INTERP from
Section 7.2.3 is used.

The derived function getMontage(Ident), returns the Montage constructor
having the name given with the argument, and the derived function getCondi-
tion(Montage) returns the static semantics condition from a Montage construc-
tor.

derived function getMontage(id) ==
(choose m in list mtg: m =˜ montage(id, &,&,&,&))

derived function getCondition(m) ==
(if m =˜ montage(&, &, &Cond, &,&) then &Cond else undef)
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The following ASM CheckSemantics evaluates for all instances � of a charac-
teristic symbol � the corresponding static semantics condition

��getMontage�getCondition

The ASM accesses the AXasm interpreter A INTERP, the functions getMon-
tages and getCondition, as well as the universe of characteristic functions. The
body calculates the conjunction of all static semantics conditions of all nodes in
the AST. The nodes are enumerated by ranging over all node-universes, given
by the characteristic functions.

ASM 53:asm CheckSemantics
accesses function A_INTERP(Term, Obj, Obj)
accesses functions getMontage(Symbol)
accesses function getCondition(Montage)
accesses universe CharacteristicSymbols
is
return
(forall s in CharacteristicSymbols:

(let mtg0 = s.getMontage in
(let cond0 = mtg0.getCodition in

(forall n in $c$:
A_INTERP(cond0, n, n)))))

endasm

The corresponding fragment of MontagesSemantics is given below. Together
with ASM 49 and refinement ASMs 50 and 52 it covers the static aspects of a
Montages specification.

ASM 54:asm MontagesSemantics(prg, mtg)
...

is
...

derived function getMontage(Symbol) ==
(choose m in list mtg: m =˜ montage(Symbol, &,&,&,&))

derived function getCondition(Mtg) ==
(if Mtg =˜ montage(&, &Cond, &,&) then &Cond else undef)

external function CheckSemantics
external function A_INTERP(Term, Obj, Obj)
...
constructors ..., validate, decorate, ...

...
elseif mode = validate then
if CheckSemantics then

mode := decorate
else

return "Program is not valid."
endif

...
endasm
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8.4 XASM definitions of Dynamic Semantics
Once the static semantics conditions are checked, the lists of states and transi-
tions are used to build a tree finite state machine as described in Section 3.3.

� In Section 8.4.1 the association of states and actions is pre-calculated,

� in Section 8.4.2 the form of transitions is recapitulated,

� in Section 8.4.3 the instantiation of explicit transitions, and

� in Section 8.4.4 the creation of implicit transition are described.

In Section 8.4.6 the semantics of execution is given. Most material in this sec-
tion is a refinement of algorithms introduced in Sections 3.3 and 6.1.

8.4.1 The States
A state has two elements, its name, being an identifier, and an XASM rule, its
action.

constructor state(Ident, Rule)

The structure of rules has been given in Section 5.4 grammar Grammar 6. A
dynamic function

function getAction(Node, State) -> Action

is defined such, that for each node �, and state � the term n.getAction(s) returns
the corresponding action-rule. The same function has been used in the TFSM
interpreter of Section 6.1. Now we can give an ASM DecorateWithStates which
defines function getAction for all nodes.

The derived function getStates extracts the state component from the
montage-constructor

derived function getStates(Mtg) ==
(if Mtg =˜ montage(&, &, &, &States,&) then &States else undef)

and the derived function getMontages returns the right Montage constructor.

ASM 55:asm DecorateWithStates
updates function getAction(_,_)
accesses constructor state(_,_)
accesses function getMontage(_), getStates(_)
accessse universe CharacteristicSymbols

is
do forall c in CharacteristicSymbols:

let mtg0 = c.getMontage in
let states0 = mtg0.getStates in
do forall n in $c$:

do forall s in list states0:
s =˜ state(&name, &action)

n.getAction(&name) := &action
enddo

enddo
endlet

enddo
endasm



8.4. XASM definitions of Dynamic Semantics 205

8.4.2 The Transitions

A MVL transition consists of three parts, the source of the transition, its fir-
ing condition, and the target of the transition. The ASM InstantiateTransitions
instantiates MVL-transitions with TFSM transitions. In Section 3.3.2 we have
defined basic paths, in Section 3.4.1 we introduced paths from and to lists, and
an Section 3.4.3 paths to non-local target have been explained. Throughout
these sections the algorithm InstantiateTransitions has been explained, and fi-
nally in Section 3.4.4 the complete definition was given. Later in Section 6.1 we
have formalized the TFSM transitions as five-tuples in XASM which are added
to a universe Transitions.

The differences between the informal version in Section 3.4.4 and the XASM

counterpart are relatively small. We use dynamic functions instead of variables,
and the outer explicit loop can be skipped, since XASM loop implicitly. For the
application of the selector functions, the AXasm interpreter A INTERP is used,
and TFSM transitions are created by adding them to the relation Transition.

The previous XASM definitions are refined such that for each instantiated
transition the node triggering its creation is remembered. In the condition of
the transition, this create-node or context-node can be accessed as self in the
the condition. The reason for this refinement is, that like this, all terms in a
Montages, both the action rules and the conditions on transitions refer to the
same self-object, if they are evaluated. Like this, a higher level of decoupling
among different Montages is achieved.

As a consequence, in the refined version TFSM transitions are six-tuples,
rather than five-tuples. Adding a transition

� from node/state pair (��3��),

� being created in under condition �,

� targeting to (��3��), and

� being created by node ��

is done by the following update.

Transitions((sn, ss, cn, c, tn, ts)) := true

8.4.3 The Transition Instantiation

Algorithm InstantiateTransitions instantiates each MVL-transition with a num-
ber of TFSM-transitions.

In the so called decoration phase of MontagesSemantics the MVL-
transitions of each Montage are instantiated for all instances of that Montage.
The ASM DecorateWithTransitions instantiates for all nodes � all transitions �
being part of its Montage mtg0. Formally, this is done by a number of let and
do-forall constructs as follows.

do forall c in CharacteristicSymbols:
let mtg0 = c.getMontage in
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let trans0 = mtg0.getTransisions in
do forall n in $c$:
do forall t in list trans0:

...

The actual instantiation of the MVL-transition � is done by an external function
InstantiateTransitions. The arguments passed are twice the start-node �, and
the source and target paths.

...
if t =˜ transition(&sp, &c, &tp) then
let cond = &c in

InstantiateTransition(n, &sp, n, &tp)
endlet

endif
enddo

enddo
endlet

endlet
enddo

The ASM InstantiateTransitions processes the start nodes and paths and creates
the corresponding TFSM transitions. The derived function getTransitions is
defined as follows:

derived function getTransitions(Mtg) ==
(if Mtg =˜ montage(&, &, &, &Trans) then &Trans else undef)

The complete ASM DecorateWithTransitions is given as follows.

ASM 56:asm DecorateWithTransitions
updates universe Transitions
accesses functions CharacteristicSymbols,

getMontage(_),
getTransitions(_)

accesses constructors transition(_,_,_),
siblingPath(_,_,_),
globalPath(_,_),
statePath(_)

is
external function InstantiateTransitions(_,_,_,_)
do forall c in CharacteristicSymbols:

let mtg0 = c.getMontage in
let trans0 = mtg0.getTransisions in

do forall n in $c$:
do forall t in list trans0:

if t =˜ transition(&sp, &c, &tp) then
let cond = &c in
InstantiateTransition(n, &sp, n, &tp)

endlet
endif

enddo
enddo

endlet
endlet

enddo
endasm
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The ASM InstantiateTransitions has four arguments, updates universe Tran-
sition, and accesses the functions cond and n from ASM DecorateWithTransi-
tions.

ASM 57:asm InstantiateTransition(srcNode, srcPath, trgNode, trgPath)
accesses function n, cond
updates universe Transitions
accesses constructors transition(_,_,_),

siblingPath(_,_,_),
globalPath(_,_),
statePath(_)

is
...

endasm

Sibling Paths
The cases where source or target paths are sibling paths have been discussed
already in Section 3.3.3. If the source path srcPath (respectively target path
trgPath) is a sibling path, the corresponding sibling of the source node src-
Node (respectively target node trgNode) is calculated and assigned to srcNode
(respectively trgNode) and the remaining path-component is assigned to srcPath
(respectively trgPath). In contrast to the informal version given in Section 3.3.3,
we use the $-feature to construct the syntax of the selector function. As in earlier
sections, we abstract from S1- and S2- type selector functions.

...
elseif srcPath =˜ siblingPath(&name, 1, &path) then
srcNode := srcNode.$"S-"+&name"$
srcPath := &path

elseif trgPath =˜ siblingPath(&name, 1, &path) then
trgNode := trgNode.$"S-"+&name"$
trgPath := &path

...

With this rules, each time if either the source or target path is a sibling path, the
corresponding sibling is calculated and the path simplified.

Global Paths
The processing of global paths has also been discussed before in Section 3.4.3.
If srcPath (respectively trgPath) is a global path, InstantiateTransitions is called
recursively for each instance of the universe denoted by the global path. Again
the $-feature is used for the new formulation.

...
elseif srcPath =˜ globalPath(&name, &path) then
do forall n0 in $&name$

InstantiateTransition(n0, &path, trgNode, trgPath)
enddo

elseif trgPath =˜ globalPath(&name, &path) then
do forall n0 in $&name$

InstantiateTransition(srcNode, srcPath, n0, &path)
enddo

...
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List Processing
Processing of lists has already been discussed in Section 3.4.1. If due to the
processing of a sibling or global path either the source or target node is a list,
InstantiateTransitions is recursively called for each element of the list.

...
elseif srcNode =˜ [&hd | &tl] then
...

do forall n0 in list srcNode
InstantiateTransition(n0, srcPath, trgNode, trgPath)

enddo
...

elseif trgNode =˜ [&hd | &tl] then
...

do forall n0 in list srcNode
InstantiateTransition(n0, srcPath, trgNode, trgPath)

enddo
...

There are two exceptions to these processing rules, reflecting transitions starting
and ending at special ”LIST” boxes representing the whole list rather than its
instances. For a detailed discussion we refer again to Section 3.4.1.

The first exception, concerning transitions departing from such boxes is as
follows. If the source node srcNode is a list and at the same time, the source path
srcPath is equal to a special path statePath(”LIST”) then the source of the tran-
sition is the ”T”-state of the last element in the list. The second exception covers
transitions ending at the List-box. If the target node trgNode is a list and at the
same time, the target path trgPath is equal to a special path statePath(”LIST”)
then the target of the transition is the ”I”-state of the first element in the list.
Those exceptions are reflected by the following refinement of the above rule
fragment processing source and target node lists.

...
if srcNode =˜ [&hd | &tl] then
if srcPath = statePath("LIST") then

if &tl = [] then
InstantiateTransition(&hd, statePath("T"),

trgNode, trgPath)
else
InstantiateTransition(&tl, statePath("LIST"),

trgNode, trgPath)
endif

else
do forall n0 in list srcNode

InstantiateTransition(n0, srcPath,
trgNode, trgPath)

enddo
endif

elseif trgNode =˜ [&hd | &tl] then
if trgPath = statePath("LIST") then

InstantiateTransition(srcNode, srcPath,
&hd, statePath("I"))

else
do forall n0 in list srcNode
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InstantiateTransition(n0, srcPath,
trgNode, trgPath)

enddo
endif

...

In order to guarantee a correct processing, the list rules must be applied
first, before the sibling and global rules. In none of the described rules matches
anymore, we have the guarantee, that both the source and target node are normal
nodes of the syntax tree, and that both the source and target path are state paths.
The components of the state paths are dispatched, and the corresponding entry
into the transition relation is created. The node � and the condition cond are
functions accessed from the DecorateWithTransitions ASM.

...
elseif srcPath =˜ statePath(&srcState) then
if trgPath =˜ statePath(&trgState) then

Transition((srcNode,
&srcState,
n,
cond,
trgNode,
&trgState)) := true

endif

The above explained single rules for InstantiateTransitions give together the
following complete XASM definition, corresponding to the informal algorithm
in Section 3.4.4. It is interesting to see that the formal version is neither larger
nor more complex than the informal one.
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ASM 58:asm InstantiateTransition( srcNode, srcPath, trgNode, trgPath)
accesses function n, cond
updates universe Transitions
accesses constructors transition(_,_,_), siblingPath(_,_,_),

globalPath(_,_), statePath(_)
is
if srcNode =˜ [&hd | &tl] then
if srcPath = statePath("LIST") then

if &tl = [] then
InstantiateTransition(&hd, statePath("T"),

trgNode, trgPath)
else
InstantiateTransition(&tl, statePath("LIST"),

trgNode, trgPath)
endif

else
do forall n0 in list srcNode

InstantiateTransition(n0, srcPath,
trgNode, trgPath)

enddo
endif

elseif trgNode =˜ [&hd | &tl] then
if trgPath = statePath("LIST") then

InstantiateTransition(srcNode, srcPath,
&hd, statePath("I"))

else
do forall n0 in list srcNode

InstantiateTransition(n0, srcPath,
trgNode, trgPath)

enddo
endif

elseif srcPath =˜ siblingPath(&name, 1, &path) then
srcNode := srcNode.$"S-"+&name"$
srcPath := &path

elseif trgPath =˜ siblingPath(&name, 1, &path) then
trgNode := trgNode.$"S-"+&name"$
trgPath := &path

elseif srcPath =˜ globalPath(&name, &path) then
do forall n0 in $&name$

InstantiateTransition(n0, &path, trgNode, trgPath)
enddo

elseif trgPath =˜ globalPath(&name, &path) then
do forall n0 in $&name$

InstantiateTransition(srcNode, srcPath, n0, &path)
enddo

elseif srcPath =˜ statePath(&srcState) then
if trgPath =˜ statePath(&trgState) then

Transitions((srcNode, &srcState,
n,
cond,
trgNode, &trgState)) := true



8.4. XASM definitions of Dynamic Semantics 211

8.4.4 Implicit Transitions

In addition to the explicit transitions, there are implicit default transitions, link-
ing list elements sequentially, and connecting ”I” and ”T” state of each NoNode-
instance. The implicit transitions have already been discussed at the end of Sec-
tion 3.4. The ASM DecorateWithImplicitTransitions generates these implicit
transitions.

ASM 59:asm DecorateWithImplicitTransitions
accesses universe ListNode, NoNode
updates universe Transitions

is
external function InstantiateListTransitions(_)
do forall l in ListNode:

InstantiateListTransitions(l)
enddo
do forall n in NoNode:

Transitions((n, "I", n,
default,
n,
"T")) := true

enddo
endasm

The ASM InstantiateListTransitions creates the implicit transitions for lists.

ASM 60:asm InstantiateListTransitions(l)
updates universe Transitions

is
if l =˜ [&hd0 | [&hd1 | &tl]} then

Transitions((&hd0, "T", &hd0,
default,
&hd1,
"I")) := true

InstantiateListTransitions([&hd1 | &tl])
endif
return true

endif

8.4.5 The Decoration Phase

The XASM MontagesSemantics has been given till the state when the static se-
mantics condition is checked. The next step is to decorate the parse tree with
the states and transitions resulting in a TFSM. The following fragment of Mon-
tagesSemantics refines ASM 54.

ASM 61:asm MontagesSemantics(prg, mtg)
...

is
...
universe Transitions
external functions DecorateWithStates,

DecorateWithTransitions,



212 Chapter 8. Semantics of Montages

DecorateWithImplicitTransitions
...
constructors ..., decorate, execute, ...

...
elseif mode = decorate then
DecorateWithStates
DecorateWithTransitions
DecorateWithImplicitTransitions
mode := execute

...
endasm

8.4.6 Execution

The execution of the program is done in the execution phase. The following def-
inition of ASM Execute(Node, State) refines the earlier nondeterministic version
of Execute, ASM 32 of Section 6.11.

The state of the execution is hold by two functions, CNode denoting the
current node of the syntax tree, where control of the execution is, and CState,
the current state of this node being visited.

The firing of the current action is done by the following rule.

A_INTERP(CNode.getAction(CState), CNode, CNode)

and the condition of a transition � is evaluated by providing to the self interpreter
not only the values for src and trg but as well by feeding the create-object as
context of the evaluation.

t =˜ (CNode, CState, &cn, &c, &tn, &ts) andthen (let src = CNode in
(let trg = &tn in

A_INTERP(&c, &cn, &cn)))

Further we declare the self-interpreter A INTERP as an access function, rather
than an external function. With this choice, the characteristic/synonym symbols,
universes and selector functions must not be included in the interface of Execute.

1Other earlier sections of this thesis relating to the Execute algorithm are Section 3.3.1,
introducing the algorithm with an example and Section 6.4, showing how to apply partial eval-
uation to this algorithm.
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ASM 62:asm Execute(n,s)
accesses functions getAction(_, _),

A_INTERP(_,_,_)
accesses universe Transitions

is
relation fired
functions CNode <- n, CState <- s

if not fired then
A_INTERP(CNode.getAction(CState), CNode, CNode)

else
choose t in Transitions:

t =˜ (CNode, CState, &cn, &c, &tn, &ts)
and (let src = CNode in

(let trg = &tn in
A_INTERP(&c, &cn, &cn)))

CNode := &tn
CState := &ts

ifnone
choose t in Transitions:

t =˜ (CNode, CState, &, default, &tn’, &ts’)
CNode := &tn’
CState := &ts’

endchoose
endchoose

endif
endasm

As a last refinement of the ASM MontagesSemantics we can now give the
fragment refining ASM 61 with the fragment for execution.

ASM 63:asm MontagesSemantics(prg, mtg)
...

is
...
external function Execute(_,_)

...
elseif mode = execute then
Execute(root, "I")

endif
endasm

We have now given the complete definition of the semantics of Montages.
In total the definition has a size of about 377 lines of XASM code, counting
every line in the way we presented the algorithms, including lines with “end”
constructs, and lines with closing brackets. An efficient implementation needs
in addition the algorithms for partial evaluation and simplification of TFSM,
which are about 268 lines of code, following the same conventions.
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8.5 Conclusions and Related Work

The given Montages meta-interpreter together with an XASM-semantics al-
lows to meta bootstrap both the existing XASM language definition and meta-
interpreter, as well as future versions of the XASM definition and meta-
interpreter. Since the meta-interpreter corresponds to the definition of Mon-
tages, we are therefore able to meta-bootstrap future versions of both Montages
and XASM with the presented process.

In Figure 42 we show what we understand under meta-bootstrapping (129),
by applying the architecture presented in Figure 37 to the semantics of XASM

and the Montages meta-interpreter. The input to the system are a Montages-
specification of XASM, and the meta-interpreter 4�. Please note that the same
XASM-program 4� is both used as meta-interpreter, and as program serving
as input to the partial-evaluation process. 4� is first specialized to an XASM-
interpreter, and then to an implementation of 4�, which we call 4�. Meta-
boots-trapping is done by tuning the specification, the partial evaluator, and the
meta-interpreter such, that 4� equals 4� modulo pretty-printing. Like normal
bootstrapping, this procedure cannot guarantee correctness, but allows to make
the system more robust.

In Figure 35 the meta-bootstrapping has been visualized from a different
perspective. The two cycles on the right are again shown in Figure 43, adapting
them to the terminology of Figure 42. The meta-interpreter, being Montage’s
implementation and semantics, is developed in the left cycle on development
platform XASM. In the right cycle, Montages is used as development platform
to further develop the specification of XASM. If a new XASM-specification is
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released from the right cycle, the process of Figure 42 is used to bootstrap the
existing meta-interpreter to the new version of XASM.
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Fig. 43: The bootstrapping of XASM and Montages

Open problems and current areas of investigation are how to map object
oriented XASM effectively into main-stream languages like C++ and Java, and
how to port not only the interpreter/compiler from the old to the new architec-
ture, but as well the graphical debugger and animation tool, which is currently
generated for each described language (10).
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Programming Language Concepts
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In this part we use Montages to specify programming language concepts.
We try to isolate each concept in a minimal example language. Each of these
languages is tested carefully using Gem-Mex, and we invite the reader to use
the prepared examples and the tool to get familiar with the methodology. The
standard Gem-Mex distribution contains the sources.

The material is structured along two dimensions. The first is the already
mentioned dimension of programming language concepts. We start with simple
expressions, and then cover control statements like if and while, introduce the
notions of variables and updates. Finally we show more advanced programming
constructs like procedure calls, exceptions, and classes.

The second dimension is the dimension of applied specification patterns.
Besides the Montages built in pattern of tree finite state machines, we use four
identifiable patterns:

� Declarator-Reification A pattern common to most presented example language
is to reuse tree-nodes being declarations as objects representing the type, vari-
able, class, field, or method they are declaring. Attribution of the nodes is used
to specify further properties, and dynamic fields are used to store the current
value or state, e.g. the value of a variable or field, or the state of a class being
initialized. Advantages of this pattern are compactness of the resulting model,
since the existing nodes are reused, ease of animation of the specification, since
the nodes correspond to areas in the program text which can be high-lighted,
and ease of specification for features like scoping, overriding, and reloading of
classes and modules, since different declaration-nodes with the same name can
coexist. We call this pattern Declarator-Reification since the parse tree nodes
being only declarations of objects like variables, procedures, classes, or mod-
ules are reificated into the very same objects.

� Tree-Structural-Approach A second major pattern is the use of the tree struc-
ture, by means of the universes, selector functions, the parent function, and the
ASM enclosed, which have been defined in Section 5.3. As discussed in Sec-
tion 5.3.3 the tree structure is used for both static scope resolution and dynamic
binding to associate type, variable, and procedure (respectively class, field, and
method) uses with the right declaration and to guide abrupt control flow through
the program structure2. The advantages of this pattern are ease of animation,
since the structure of the program text is used, as well as simplicity of under-
standing the idea to move up the tree, until a matching value is found. We call
this pattern Tree-Structural-Approach since instead of traditional structural ap-
proaches, where constructors are used, in this pattern we use the structure of
the tree. In contrast to the traditional structural approach, this allows to move
not only down the tree, but as well up until the root is reached. Some techni-
cal aspects of this pattern, namely the ASMs enclosing and lookUp have been
discussed already in Section 5.3.3

2The abrupt control flow features use this pattern in combination with the later discussed
frame-result-controlflow pattern.
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� Field-Of-Object-Mapping The third specification pattern is the use of one bi-
nary dynamic function fieldOf to model the mapping of an object’s field to its
value. Given object � and field  , the value of the field is given by the term

 �fieldOf���

Different language features are unified under this view, for instance

– global variables are considered to be fields of a constant Global,

– local variables are considered to be fields of an object being the current
call incarnation,

– static fields are considered to be fields of the class containing the field, and

– instance fields are of course fields of the object instance.

We decided to name this pattern Field-Of-Object-Mapping since it uses one
mapping to unify several related features under the view of a object/field model.

� Frame-Result-Controlflow The fourth and last specification pattern is a special
case of the Tree-Structural-Approach pattern, combined with a global variable
RESULT which is used to return various results from non-sequential control
flow. Examples for such results are

– a return-value produced by a function/method call,

– a target-label produced by a break or continue statement, or

– an exception-object produced by a throw statement or error condition.

All of this constructs have in common that their “results” are passed up the
structure tree, and that there is only one such result at the time. Therefore a
global variable RESULT can be used to model the current value of the result.

The pattern works such that as soon as a result is generated, control is passed
up the tree, rather than along the control-flow arrows. If the type of RESULT
matches the frame-node, thus if

– a return-value reaches a call-statement

– a target-label matches a labeled-statement

– an exception-object triggers a catch-statement

then the frameHandler processes the result, and resets RESULT to undef, other-
wise the control is passed further up the tree to the next least enclosing frame-
node.

Each frame-node only needs to check whether the type of RESULT matches its
own kind, and otherwise it passes control further up the tree. Therefore, such
a specification will not change depending on what are the other cases of non-
sequential control flow. This allows us to give completely independent models
and to compose them easily for a full fledged language. A more technical de-
scription of the frame-result-controlflow pattern is given in Section 14.1.
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language L2 extends language L1
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Fig. 44: The example languages of Part III
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In Figure 44 the presented languages are depicted. The variable models
of the first group are introducing stepwise the use of the first two pattern for
reusable specifications of different kind of variables. The second group of
object-field models shows how to specify object orientedness and recursive
function-calls. In the third group different kinds of abrupt control flow are
modeled with the frame-result-controlflow pattern. Each language and group
is labeled by the chapter in which it is discussed.

The material is ordered such that each language can be formulated as an
extension or refinement of its predecessor. An arrow from L1 to language L2
denotes that the definition of L2 extends or refines the definition of L1. The
leave languages of the resulting tree are specified such, that they can be easily
combined to one big language with all introduced features. This is an indication
that Montages allow to specify common language technology in a modular and
composable way.

The language ExpV1 is a simple expression language similar to the lan-
guage introduced in Section 3. In contrast to its predecessor, this language
features a rich choice of operators, as known from realistic programming lan-
guages. The remaining example languages are extensions of ExpV1, as denoted
by the arrows in the figure. The first imperative language ImpV1 extends ExpV1
by introducing the concept of statements, blocks of sequential statements and
conditional control flow. At this point we take advantage to give simple spec-
ifications of while and repeat loops, as well as a more advanced specification
of the switch-statement. The concept of global variables is then introduced in
example language ImpV2.

The purpose of languages ImpV1 and ImpV2 is to introduced features of
a simple imperative language. In a series of refinements, the primitive, name
based variable model of ImpV2 is the further developed into the more sophisti-
cated versions ImpV3, and finally ObjV1. Language ObjV2 is an extension of
ObjV1 with classes and dynamically bound instance fields, and ObjV3 is an ex-
tension of ObjV1 with recursive procedure calls. The languages FraV1 , FraV2 ,
and FraV3 feature iterative constructs, exception handling, and a refined model
of procedure calls, respectively.

The presented example languages are an extract from a specification of se-
quential Java. The Java specification mainly differs from the languages pre-
sented here by a complex OO-type system, many exceptions and special cases,
and a number of syntax problems. We have given the specification of the com-
plete Java OO-type system as example in Appendix D.
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Models of Expressions

In this chapter, we show an expression language ExpV1, where the intermediate
results are computed during the execution of the program. The language works
exactly like the example language � of Section 3.2 but features more operators
and more different kinds of expressions. In addition, ExpV1 has a simple type
system, features lazy evaluation of disjunction and conjunction, and detects run-
time errors such as division by zero. The grammar is given as follows, leaving
away details on available unary and binary operators:

Gram. 10: Program ::= exp
exp = lit � uExp � bExp � cExp
lit = Number � Boolean
uExp ::= “(” uOp exp “)”
bExp ::= “(” exp bOp exp “)”
cExp ::= “(” exp “?” exp “:” exp “)”

In ExpV1 only constant expressions such as the following can be formulated:

Ex. 1: (((((3 - 2) * 7) > 2) and true) or false)

The result of executing this program is that ”true” is printed to the standard
output.

9.1 Features of ExpV1
The start symbol of the language is Program, and each program consists of
an expression, whose value is printed after the execution. The expressions are
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evaluated by storing the value of each subexpressions in an attribute val, which
is modeled as a dynamic unary function.

Declarations
The signature of the global declarations consist of the single dynamic function
val( ), together with the derived function defined(n) == (n != undef) and the
declaration of ASM handleError( , ) which is used to handle run-time errors
such as division by zero..

Decl. 1: function val(_)
derived function defined(n) == ( n != undef)
external function handleError(_,_)

The Montage Program in Figure 45 specifies the semantics of the start-
symbol of the ExpV1-language. The execution of such a program visits first
the exp-component and then the PrintIt-state is visited. The PrintIt-action out-
puts the attribute val of the exp-component to the standard output stdout.

Program ::= exp

PrintIt TS-expI

@PrintIt:
stdout := S-exp.val

Fig. 45: Montage Program of language ExpV1

9.1.1 The Atomar Expression Constructs

The atomar expression constructs Number (Figure 46) and Boolean (Figure 47)
use both a derived attribute constantVal to calculate their constant values.
The definition of constantVal in the Number-Montage uses the built-in Name-
attribute to get the parsed string-value of the Digits-token, and then applies the
built-in strToInt-function to transform the string-value in an integer. The cor-
responding definition for the Boolean-Montage transforms the strings “true” or
“false” in the corresponding elements true and false. The dynamic semantics
of both constructs consists of the unique state setVal whose action updates the
val-attribute to constantVal.

9.1.2 The Composed Expression Constructs

The unary expression uExp is specified in Figure 48. The components of a unary
expressions are a unary operator uop and an expression. The local definitions of
uExp contain the derived function Apply( , )
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Number = Digits

setValI T

attr constantVal == Name.strToInt
attr staticType == ”int”

@setVal:
val := constantVal

Fig. 46: Montage Number of language ExpV1

Boolean = ”true” �”false”

setVal TI

attr constantVal ==
(if Name = ”true” then true else false)

attr staticType == ”boolean”

@setVal:
val := constantVal

Fig. 47: Montage Boolean of language ExpV1
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Decl. 2: derived function Apply(op, arg) ==
(if (arg = undef) then undef
else (if op = "+" then arg
else (if op = "-" then 0 - arg
else (if op = "!" then not arg
else undef
))))

which is used in the action setVal to calculate the result of the expression and to
set the val-attribute to said result.

uExp ::= ”(” uop exp ”)”
uop = ”+” �”-” �”!”

S-exp setValI T

attr staticType == S-exp.staticType

@setVal:
val := Apply(S-uop.Name, S-exp.val)

Fig. 48: Montage uExp of language ExpV1

Binary Expression
The binary expression Montage is shown in Figure 49. For standard operations,
control flows through the two expressions, and then the setVal-action sets the
val-attribute to the calculated value of the binary expression. The arguments to
calculate the value are in the val-attributes of the left and right expression, re-
spectively. This standard case is visualized in Figure 50 and corresponds exactly
to the Sum Montage in Section 3.3.1, Figure 21.

Before we explain the other cases of control flow, we give the definition of
the Apply function.

Decl. 3: derived function Apply(op, arg1, arg2) ==
(if op = "and" then

(if arg1 = false then false else arg2)
else (if op = "or" then

(if arg1 = true then true else arg2)
else (if (arg1 = undef) or

(arg2 = undef) then undef
else (if op = "+" then arg1 + arg2
else (if op = "-" then arg1 - arg2
else (if op = "*" then arg1 * arg2
else (if op = "/" then arg1 / arg2
else (if op = "%" then arg1 / arg2
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bExp ::= ”(” exp bop exp ”)”
bop = arithOp �relOp �”and” �”or”
relOp = ”�” �”�=” �”�” �”�=” �”==” �”!=”
arithOp = divOp �”*” �”+” �”-”
divOp = ”/” �”%”

S1-exp S2-exp setVal

(op = ’and’) and (S1-exp.val = false)

(op = ’or’) and (S1-exp.val = true)

TI

divisionBy0
(S-bop.divOp) and (S2-exp.val = 0)

attr op == S-bop.Name
attr staticType ==

CalculateType(op, S1-exp.staticType,S2-exp.staticType)

condition staticType.defined

@setVal:
val := Apply(S-bop.Name, S1-exp.val, S2-exp.val)

@divisionBy0:
handleError(”ArithmeticException”)

Fig. 49: Montage bExp of language ExpV1
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sumExp ::= ”(” exp ”+” exp ”)”

S1-expI S2-exp setVal T

attr staticType ==
CalculateType(”+”, S1-exp.staticType,

S2-exp.staticType)

condition staticType.defined

@setVal:
val := S1-exp.val + S2-exp.val

Fig. 50: Montage sumExp of language ExpV1

else (if op = "==" then arg1 = arg2
else (if op = "!=" then arg1 != arg2
else (if op = "<" then arg1 < arg2
else (if op = ">" then arg1 > arg2
else (if op = "<=" then arg1 <= arg2
else (if op = ">=" then arg1 >= arg2
else undef
))))))))))))))

Lazy evaluation of conjunction
In the flow specification of Figure 49 we see several control arrows, in addition
to the described standard way. The first of them, departing from the S1-exp
component directly to the setVal-action is labeled with the condition

(op = “and”) and (S1-exp.val = false)

This arrow guarantees that for the and operation the second argument is only
evaluated if the first argument evaluates to true. This behavior is called “lazy
evaluation” of conjunction, and is important, if the evaluation of the second
argument has side-effects.
Lazy evaluation of disjunction
Similarly, the flow arrow labeled with

(op = “or”) and (S1-exp.val = true)

specifies lazy evaluation of disjunction.
Division by zero
The arrow departing from the second expression to the divisionBy0-action
catches the case when the operand is a division, and the second expression
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evaluates to zero. The action divisionBy0 calls the ASM handleError. In this
language the definition of handleError simply prints error messages to the stan-
dard output. If in a later stage, the same Montage is reused in connection with
exception handling, the definition of ASM handleError can be refined to a rule
triggering a “division by 0” exception.

Coming back to the concept of partial evaluation, as discussed in Section
5.5 it is interesting and instructive to look at specialized Montages resulting
from considering the binary operators to be static and to partially evaluate all
expressions with this information. Examples for Montages resulting from such
a specialization of Montage bExp are Montage sumExp (Figure 50), Montage
orExp (Figure 51), and Montage divExp (Figure 52).

orExp ::= ”(” exp ”or” exp ”)”

S1-exp S2-exp setVal

(S1-exp.val = true)

TI

attr staticType ==
CalculateType(”or”, S1-exp.staticType,

S2-exp.staticType)

condition staticType.defined

@setVal:
if S1-exp.val then

val := true
else

val := S2-exp.val
endif

Fig. 51: Montage orExp of language ExpV1

Conditional Expression
The conditional expression cExp is specified in Figure 53. The control enters
initially the first expression, and if it evaluates to true true, control flows along
the upper arrow to the second expression; otherwise control flows along the
lower arrow to the third expression. From those expressions control flows in the
setVal-action. This action updates the attribute val.
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divExp ::= ”(” exp ”/” exp ”)”

S1-exp S2-exp setVal TI

divisionBy0
(S2-exp.val = 0)

attr staticType ==
CalculateType(”/”, S1-exp.staticType,

S2-exp.staticType)

condition staticType.defined

@setVal:
val := S1-exp.val / S2-exp.val

@divisionBy0:
handleError(”ArithmeticException”)

Fig. 52: Montage divExp of language ExpV1

cExp ::= ”(” exp ”?” exp ”:” exp ”)”

S1-exp

S2-exp

setVal

S3-exp

S1-exp.val = true

S1-exp.val = false

I T

attr staticType == lcst(S2-exp.staticType, S3-exp.staticType)

condition staticType.defined AND S1-exp.staticType
= ”boolean”

@setVal:
val := (if S1-exp.val then S2-exp.val else S3-exp.val)

Fig. 53: Montage cExp of language ExpV1
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Fig. 54: Roaster of ExpV1 features and their introduction (i), refinement (r), and use (u) in the
different languages

9.2 Reuse of ExpV1 Features
Figure 54 displays the so called ”feature roaster” of ExpV1 showing which lan-
guages are reusing and refining the ExpV1-features. In the first column, the
symbols of the features are listed. After a short description, there is one column
per language, and for each feature it is marked whether it is

(i) introduced,

(r) refined, or

(u) used

by a language. The column of ExpV1 shows of course an (i) for each feature,
since ExpV1 is the first language we define. The remaining columns show that
all features with exception of exp and Program are used without refining them
by all other languages. The symbol exp is a synonym for expressions, and is of
course refined each time a new expression is introduced. The symbol Program
is only used to make each example language a testable, complete language. It is
therefore different for each language.

The feature roaster is shown for each example language in order to visualize
the high level of exact reuse and modularity of our specifications.
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10
Models of Control Flow Statements

In this chapter we introduce the concept of statements and their sequential ex-
ecution. We start with an example language ImpV1 featuring a simple print
statement, and the if-then-else statement.

The basic concept of a statement is a program construct that can be executed,
and through its execution it has effects or changes the state, while, in contrast,
an expression is a program construct that can be evaluated, and through its eval-
uation delivers a result. Thus programming languages without state, e.g. pure
functional languages do not feature statements. On the other hand in most im-
perative and object oriented languages the evaluation of expressions may change
the state as well, thus the evaluation of expressions in such languages delivers
a result and changes the state. Montages is especially well suited for languages
with such “un-pure” expression concepts.
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In Section 10.1 we show the grammar, an example program, the Montages,
and the feature roaster of language ImpV1. A number of additional control
statements are shown in Section 10.2: switch, while, repeat, and for statements.
Later in Chapter 14 the while and repeat statements will be refined with versions
allowing for break and continue

10.1 The Example Language ImpV1

We use again a small example language to explain the new constructs. The
language is called ImpV1 and its grammar is

Gram. 11: Program = block
block ::= “�” stm “�”
stm = “;” � printStm � ifStm � block
printStm ::= “print” exp “;”
ifStm ::= “if” exp block

[ “else” block ]
exp = (see Gram. 10)

where the definitions for the expressions are inherited from ExpV1 in Chapter 9,
Grammar 10 and the Montages in Figures 46 through 53.
The Block Statement
The Montage for the block statement of ImpV1 is given in Figure 56. The list of
stm-components is represented graphically by the special list-box. By default
the components of the list are connected sequentially by flow arrows. Thus the
control flow enters the list at the first element and traverses it sequentially.

block ::= �stm�

LIST

S-stmI T

Fig. 56: Montage block of language ImpV1

The Print Statement
The print statement is specified by the printStm-Montage (Figure 57). The dy-
namic semantics of the print statement evaluates first the exp-component, and
then in the printIt state the val-attribute of the exp-component is sent to standard
output.
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printStm ::= ”print” exp ”;”

S-exp printItI T

@printIt:
stdout := ”Printing: ” + S-exp.val + ” ”

Fig. 57: Montage printStm of language ImpV1

The If-Then-Else Statement
The if-statement of our example language is specified in Figure 58. In order
to avoid the usual “dangling-if” problem the if-syntax of ImpV1 forces the user
to give each time a block included in curly brackets. The else-part is made
optional.

The control-flow specification is similar to that found in the cExp-Montage,
Figure 53. The control enters the if construct at the exp-component, and then,
depending whether the expression evaluates to true or false, control flows to the
first or the second block.

ifStm ::= ”if” exp block
[”else” block]

S-expI o

S1-block

S2-block

S-exp.val = true

S-exp.val = false

T

condition S-exp.staticType = ”boolean”

Fig. 58: Montage ifStm of language ImpV1
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10.2 Additional Control Statements
The following statements are sketched in order to demonstrate the compactness
and ease of readability of Montages of different control flow statements.
The While and Repeat Statements
In Figure 59 we present a simplified version of the while-statement of Sec-
tion 3.1, Figure 10, where the domain specific action is left away, and ExpV1
style typing is added. This Montages is closely related to the ”repeat...until”-
or ”do..while”-statement shown in Figure 60. Comparing the two Montages
we see how a subtle difference in the semantics of while and repeat is visually
documented.

whileStm ::= ”while” exp block

S-exp

S-block

I T

S-exp.val = true

condition S-exp.staticType = ”boolean”

Fig. 59: Montage whileStm of language ImpV1

doStm ::= ”do” block ”until” exp ”;”

S-exp

S-blockI

S-exp.val = true

T

condition S-exp.staticType = ”boolean”

Fig. 60: Montage doStm of language ImpV1
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A Simple For Statement
In Figure 61 a very simple for-statement is shown. Two integer expressions are
given and then the block is repeated x times, where x is the difference between
the two expressions. The val-attribute is used to remember how many times the
loop has already been executed.

This example is given to show how easy a new iteration construct can be
specified, and how near the specification techniques for the semantics are to
common programming techniques. The way how the var-field is used to count
the repetitions is very similar to the way a programmer would solve the same
problem.

forStm ::= ”for” exp ”to” exp block

initValI S-block

decVal

val � 0

T

condition (S1-exp.staticType = ”int”)
andthen (S2-exp.staticType = ”int”)

@initVal:
if S1-exp.val � S2-exp.val then

val := S1-exp.val - S2-exp.val
else

val := S2-exp.val - S1-exp.val
endif

@decVal:
val := val - 1

Fig. 61: Montage forStm of language ImpV1

The Switch Statement
The switch statement is a kind of more powerful conditional-statement. De-
pending on the value of an expression, the statement ”switches” to one of
different statements marked by labels. The statements following the selected
statement are executed as well, a behavior called ”fall through”. The following
EBNF productions extend Grammar 11 with a switch-statement.

Gram. 12: (refines Grammar 11)
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stm = � � � � switchStm
switchStm ::= “switch” exp “�” � switchLabelOrStm � “�” “;”
switchLabelOrStm = stm � defaultLabel � caseLabel
defaultLabel ::= “default” “:”
caseLabel ::= “case” Number

In Figure 62, 63, and 64 the Montages for switchStm, defaultLabel, and case-
Label are given.

The components of the switchStm-Montage are an expression, the exp-
component, and a list of components being statements, or labels. Some control
arrows in this Montage use the src and trg functions, which denote in arrow-
labels the origin and target nodes of the arrow. Further two arrows go not to
the list-node, but the node inside the list-node. These arrows denote a family of
arrows, one to each component of the list.

The control flows first through the exp-component. From there, a family
of flow-arrows labeled trg.hasLabel(src.val) leads to the components in the list.
Such a label evaluates to true, only if the target of the corresponding arrow is a
caseLabel and if that label has a constant value equivalent to the just evaluated
exp-component. If the control cannot flow along any of these arrows, it flows to
the default-action. From there sources another family of arrows leading to the
components of the list. The flow condition trg.isDefault on these arrows leads
control directly to the default label in the list. If there is no such label, control
flows to the T-action. If any of the discussed arrows led control into the list,
all remaining components of the list are executed sequentially. This property is
called “fall-through” and typically it is expected to use in most cases an explicit
“jump”1 to break out of the switch without falling through all the remaining
cases. In our little language, jumping out is not possible.

1Break or continue.
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switchStm ::= ”switch” exp ”�” �switchLabelOrStm�
”�” ”;”

switchLabelOrStm = stm �defaultLabel �caseLabel

S-expI

LIST

S-switchLabelOrStm

default

trg.isDefault

trg.hasLabel(src.val)

T T

Fig. 62: Montage switchStm of language ImpV1

defaultLabel ::= ”default” ”:”

oI T

attr constantVal == ”default”
attr isDefault == true

Fig. 63: Montage defaultLabel of language ImpV1
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caseLabel ::= ”case” Number ”:”

oI T

attr constantVal == S-Number.constantVal
attr staticType == S-Number.staticType
attr hasLabel(l) == constantVal = l

condition constantVal.defined

Fig. 64: Montage caseLabel of language ImpV1



11
Models of Variable Use, Assignment, and
Declaration

Unlike a mathematical variable, which serves as placeholder for values, a vari-
able in imperative and object oriented programming languages is a kind of box
which is used to store a value. The value stored in the box is called the value
of the variable. The action to exchange the content of the box is called variable
update or variable assignment. After a variable 
 has been updated with value
), the content, or value of 
 remains ) until the next update of 
. In expressions
a variable can be used like a constant.

Modeling variables in XASM can be done in a number of different ways.
The simplest, but most inflexible choice is to model each variable as a 0-ary
dynamic function. This solution has already been explained in the introduction
of Part II where we as well discussed the advantages of using this model in
combination with partial evaluation. In Section 11.1 we present a full example
language with global variables ImpV2 based on this solution.

The disadvantage of this first solution is that two incarnations of a variable
named ”x” cannot coexist, since the name of the variable is used as it’s identity.
A pattern to solve this problem is the Declarator-Reification patter, which uses
the declaration of a variable as its identity. Combining this pattern with the
Tree-Structural-Approach pattern allows then to easily introduce several nested
scopes. This solution to variable use and declaration is presented in form of the
example language ImpV3 in Section 11.2. This language features nested blocks
of statements with nested scopes of variable names.

The advantages of this second model are ease of animation and ease of spec-
ification. Further it may be an advantage that parameterized XASM are not
needed for this kind of model. In general, PXasm are used in the rules and
declarations if a special kind of production code has to result, and they are not
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needed for an abstract model serving as prototype and documentation of the
language.

Finally, in Section 11.3 the variable model is refined using the Field-Of-
Object-Mapping pattern. The declarations of the variables are interpreted to
be fields of a constant element Global. In addition we extend the specification
of the assignment construct such that it can model both assignments to simple
variables, as well as assignments to variables calculated by expressions. Such
assignable expressions are called use, and if they are evaluated they evaluate
not only their value, or right value, but as well the variable, or left value. The
same pattern is then used in the next two chapters to model an object oriented
example language and recursive procedure calls.

11.1 ImpV2: A Simple Name Based Variable Model
In this Section we define the example language ImpV2 by extending ImpV1 with
simple, name based models for variable update and use.

Using the symbol asgnStm for the variable-update, and the symbol use for
the variable-use in expressions we extend the grammar rules stm and exp as fol-
lows, reusing the other definitions of Grammar 11. The ... notation in synonym
productions denotes that all choices of the predecessor language are reused, and
extended with some additional synonyms1.

Gram. 13: (refines Grammar 11)
stm = ... � asgnStm
exp = ... � use
asgnStm ::= id “=” exp
use = id

An overview on the features and their reuse/refinement is given in ImpV2’s
feature roaster, Figure 65. The two new constructs use and assign are going to
be refined twice in ImpV3 and in ObjV1.
Declarations
Variables in ImpV2 must not be declared, and each used or assigned variable
is directly modeled as an 0-ary dynamic XASM function which is initialized as
0. The PXasm declaration of those functions for all used variables is given as
follows.

Decl. 4: (for all s in String:
(exists a in asgnStm: a.S-id.Name = s) or
(exists u in use: u.Name = s)

function $s$ <- 0
)

1As we mentioned in the introduction, we would need to extend Montages with inheritance
mechanisms to formalize the notion of “reused” and “extended” but have not done this.
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Assignment Statement
The specification of syntax and semantics of asgnStm is shown in Figure 66.
The attribute signature is introduced for readability, and denotes the identifier
representing the variable to be updated.

The control flows through the asgnStm by first evaluating the expression,
and then triggering the doAsgn-action, doing the update by updating the func-
tion named after the string value of signature. The $ operator is used to refer to
the 0-ary function corresponding to the value of signature.

asgnStm ::= id ”=” exp ”;”

S-exp doAsgnI T

attr signature == S-id.Name

@doAsgn:
$signature$ := S-exp.val

Fig. 66: Montage asgnStm of language ImpV2

Use Expression
The use-Montage in Figure 67 consists mainly of the readVar-action, which sets
the val-attribute of the use-expression to the value of the 0-ary function whose
signature corresponds to the value of the signature-attribute.
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use = id

readVarI T

attr signature == Name

@readVar:
val := $signature$

Fig. 67: Montage use of language ImpV2

11.2 ImpV3: A Refined Tree Based Variable Model

In this section we define the language ImpV3 featuring a refined tree based
model for variable declaration, use, and update. Variable must be declared
prior to their use. The feature-roaster in Figure 68 shows that in addition block
and the block-statements bstm are introduced and reused without further refine-
ment by all following languages. The grammar of ImpV3 is given by extending
and refining the definitions of Grammar 13.

Gram. 14: (refines Grammar 13)
stm = ... � block
block ::= “�” �bstm � “�”
bstm = var � stm
var ::= type id “;”
type = “int” � “boolean”

A declaration consists of the keyword var, the type and the name of the
variable. Variables are represented by the node being their declaration in the
program. Blocks can contain variable declarations and can be nested, e.g. a
block can contain another block. The nesting of blocks defines so called scopes
or name spaces.

The var-Montages (Figure 69) and the type-Montage (Figure 70) contain
only attribute definitions. In the var-Montage, for instance, the signature-
attribute returns the name of the variable, and the staticType-attribute returns
the static type of the type-nodes. These attributes are used for basic type checks
in ImpV3-programs. The dynamic semantic of var does nothing, a situation
which is here explicitly specified with a state “skip” having no action associ-
ated. This “skip” behavior is the default behavior of a Montages if no states and
arrows are given.
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different languages

var ::= type id ”;”

skipI T

attr signature == S-id.Name
attr staticType == S-type.staticType

Fig. 69: Montage var of language ImpV3

type = ”int” �”boolean”

attr staticType == Name

Fig. 70: Montage type of language ImpV3
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As mentioned, the block-statement may contain not only statements, but as
well variable declarations. The block-Montage in Figure 71 links the execu-
tion of the mixed statement and variable list sequentially. The unary attribute
declTable( )

Attr. 1: attr declTable(n, id) ==
(choose v in sequence n.S-bstm:

(v.var) AND (v.signature = id))

returns a var-component of the bstm-list, whose signature equals the argument
of declTable( ); is no such component exists, it returns undef.

block ::= ”�” �bstm� ”�”
bstm = stm �var

LIST

S-bstmI T

attr declTable(n) ==
(choose v in sequence S-bstm:

(v.var) AND (v.signature = n))

Fig. 71: Montage block of language ImpV3

The attribute declTable is used by the function lookUp( , ) which has been
introduced in Section 5.3.3, as ASM 21, and which uses the ASM 20, enclos-
ing( , ). The ASM enclosing in turn relies on an appropriate definition of
Scope, being a set of Montages-names serving as scopes. For our Grammar
14 the correct definition of Scope is

Decl. 5: derived function Scope == {‘‘block’’}

the set consisting of the single string element “block”.
The new versions of the use and asgnStm Montages in Figure 72 and 73 both

contain the attribute definition

Attr. 2: attr decl == lookUp(signature)

for accessing the identity of the variable. Read and write accesses to the variable
are then done by updating and reading the unary dynamic function val( ). With
other words expressions and variable declarations in the abstract syntax tree are
interpreted as objects whose value is given by the attribute val. The difference is
that expressions values are only implicitly updated during their evaluation, and
variable values are explicitly updated using an assignment statement.
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use = id

readVarI T

attr signature == Name
attr decl == lookUp(signature)
attr staticType == decl.staticType

condition lookUp(Name).defined

@readVar:
val := decl.val

Fig. 72: Montage use of language ImpV3

asgnStm ::= id ”=” exp ”;”

S-exp doAsgnI T

attr signature == S-id.Name
attr decl == lookUp(signature)

condition (S-exp.staticType) = (decl.staticType)

@doAsgn:
decl.val := S-exp.val

Fig. 73: Montage asgnStm of language ImpV3
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11.3 ObjV1: Interpreting Variables as Fields of Objects
A further refinement of the model in the last section is given by language ObjV1
which uses directly the Field-Of-Object-Mapping pattern, modeling the global
variables, e.g. the reification of their declarations as fields of a constant Global.
The grammar remains unchanged. The new declarations for val, fieldOf, and
Global are given as follows

Decl. 6: function fieldOf(_,_)

constructor Global

derived function val(n) == n.fieldOf(Global)

Through the redefinition of val as field of the constant Global we can reuse the
existing use and asgnStm Montages (Figures 72 and 73) without any change.
During the whole specification process we found that there are many instances
of exact reuse in Montages, and therefore we have neglected more advanced
reuse features such as inheritance.

To enable exact reuse in later languages we introduce now two equivalent,
refined definitions of use and asgnStm. The new definition of the use-Montage
(Figure 74) is semantically equivalent to the old one, but defines explicitly two
attributes lObject and lField. These attributes serve as interface for accessing
left values of expressions. The right-value is given by the already given defini-
tion of the val-attribute.

The refined specification of the assignment Montage is given in Figure 75.
This version of the assignment works with arbitrary complex use-expressions
on the left, as long as the evaluation of this expression results in defining its
lObject and lField attributes. The action

ASM 64:let o = S-use.lObject
f = S-use.lField

in
f.fieldOf(o) := S-exp.val

endlet

is then generically working for assignments to global variables, local variables,
and instance variables. In the feature roaster of Figure 68 we see that the refined
versions of use and asgnStm are reused as they are in all remaining languages,
with exception of ObjV2, which is a successor of ObjV1, but not a predecessor
for the other languages.

In the next two Chapters we show other applications of the Field-Of-Object-
Mapping pattern, one for modeling classes, instances, and instance fields, and
one for modeling procedures, recursive-calls, parameters, and variables.
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use = id

readVarI T

attr decl == lookUp(Name)
attr staticType == decl.staticType
attr lObject == Global
attr lField == decl

condition decl.defined

@readVar:
val := lField.fieldOf(lObject)

Fig. 74: Montage use of language ObjV1

asgnStm ::= use ”=” exp ”;”

S-exp doAsgn TS-useI

condition (S-exp.staticType) = (S-use.staticType)

@doAsgn:
let o = S-use.lObject

f = S-use.lField
in

f.fieldOf(o) := S-exp.val
endlet

Fig. 75: Montage asgnStm of language ObjV1
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12
Classes, Instances, Instance Fields

In this chapter we present the language ObjV2 a simple “object oriented” lan-
guage, featuring classes, inheritance, instance-fields, and their dynamic binding.
Many main-stream languages like Java feature only dynamic binding of meth-
ods, and instance-fields are statically bound; our choice to present a language
without methods but dynamically bound instance fields allows us to present key
features of object oriented languages in a minimal setting.

To specify ObjV2 we extend ObjV1, by refining two out of 17 existing Mon-
tages and adding six new Montages. Four Montages are introduced to build the
syntax for class and field declaration, two to define the new kind of types. The
use- and a asgnStm-Montages are refined in order to take into consideration the
differences of variable and field accesses and updates. Finally we define two
new expressions, the newExp for creating objects, and a cast for casting the dy-
namic type of an object, in order to allow access to the overridden fields of its
super-classes.

The grammar of ObjV2 is given as follows.

Gram. 15: (refines Grammar 14)
Program ::= � classDeclaration � body
classDeclaration ::= “class” id � “extends” superId �

“�” � fieldDeclaration � “�”
superId = id
fieldDeclaration ::= type id “;”
type = primitiveType � typeRef
primitiveType = “int” � “boolean”
typeRef = id
...
exp = ... � newExp � cast
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Fig. 76: Roaster of ObjV2 features and their introduction (i), refinement (r), and use (u) in the
different languages

newExp ::= “new” typeRef
cast ::= “cast” “(” typeRef “,” use “)”

12.1 ObjV2 Programs
The start symbol Program of ObjV2 is given in Figure 77. The attribute de-
clTable( ) of this Montage maps identifiers to the corresponding class declara-
tion node, which are modeling the classes. The control enters directly the block
of statements, the list of class declarations needs not to be visited.

Program ::= �classDeclaration� block

S-blockI T

attr staticType == Name

Fig. 77: Montage Program of language ObjV2

The possible scopes used by lookUp and enclosing are now including Pro-
gram in addition to the block. Therefore Declaration 5 is refined as follows.

Decl. 7: derived function Scope == {‘‘block’’, ‘‘Program’’}
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12.2 Primitive and Reference Type

In language ImpV3 we introduced built-in types, namely integers and booleans.
We defined the attribute staticType for expressions and introduced simple type
checks. In object-oriented languages the definition of classes or reference types,
allows the user to introduce new types. The existing built in types are called
primitive types, since the values of these types have no internal structure. In
ObjV2 there exist the primitive, built-in types integer and boolean, and the user-
defined classes.

The existence of different kind of types rises the question how they can be
treated in a uniform way, in order to make type checking and variable decla-
rations simple. In ObjV2 we model all types as elements, the primitive types
are represented by the string-values corresponding to their name, and the ref-
erence types are represented by their declaration-node in the syntax tree. The
type-production has two synonyms, primitiveType as specified in Figure 78, and
typeRef as specified in Figure 79. The attribute staticType of the first points
to the name of the primitive types, and the staticType definition of the sec-
ond points to the corresponding class-declaration, which is retrieved using the
lookUp function.

primitiveType = ”int” �”boolean”

attr staticType == Name

Fig. 78: Montage primitiveType of language ObjV2

typeRef = id

attr signature == Name
attr staticType == lookUp(signature)

condition staticType.defined AND (staticType.classDeclaration)

Fig. 79: Montage typeRef of language ObjV2

Type references are specified in Figure 79. Their static semantics guarantees
that their staticType attribute refers to a class declaration. The definition of
staticType of type references uses the lookUp function introduced earlier.
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classDeclaration ::= ”class” id [”extends” superId]
”�”
�fieldDeclaration�
”�”

superId = typeRef

attr signature == S-id.Name
attr superType == S-superId.staticType
attr declTable(n) ==

(choose f in sequence S-fieldDeclaration:
f.signature = n)

attr fieldTable(n) ==
(if declTable(n).defined then declTable(n)
else (if superType = undef then undef

else superType.fieldTable(n)))

Fig. 80: Montage classDeclaration of language ObjV2

12.3 Classes and Subtyping
Classes are specified in Figure 80. The first component of a class is an identifier,
denoting the name of the class. This name is accessible as attribute signature.
The second component is an optional type reference to the super type of the
class. The attribute superType of a class refers directly to the static type of the
type reference to the super type, e.g. to the class declaration of the super type.

Again based on the definition of the attribute superType, we can now
define the sub-typing relation subtypeOf( , ).j The term subtypeOf(a,b) or
a.subtypeOf(b) evaluates to true if either � and + are equal, or if a.superType
is defined and this super type is a subtype of the second argument.

Decl. 8: derived function subtypeOf(t1, t2) ==
(t1 = t2) OR

(t1.superType.defined AND
t1.superType.subtypeOf(t2))

Finally, the last component of a class is a list of field declarations. Each
field, as specified in Figure 81 has two attributes, the signature attribute refer-
ring to the field’s name, and the staticType attribute referring to the field’s type.
Coming back to the class declaration, there are two attributes to refer to the
fields, both taking the field-name as argument. The first, declTable( ), returns a
field-declaration node from the class’s list of field-declarations, if one of these
declarations matches a given field-name, otherwise it returns undef.

The attribute fieldTable( ) is collecting field declarations from the class and
its super-classes. It tries to find a field-declaration using the previously defined
declTable. If there is no field found in the declTable of the class itself, the field
table of the super-type is evaluated, if a super-type exists. Otherwise undef is
returned.
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fieldDeclaration ::= type id ”;”

attr signature == S-id.Name
attr staticType == S-type.staticType

Fig. 81: Montage fieldDeclaration of language ObjV2

12.4 Object Creation and Dynamic Types
As mentioned earlier, we model objects as ASM-elements. A universe Objec-
tID( ) of all elements being objects in the specified language is introduced, and a
dynamic function dynamicType( ) is used to keep track of the type of the created
objects.

Decl. 9: univers ObjectID
function dynamicType(_)

In the newExp-Montage (Figure 82) the specification of the object creation
construct is given. The “createObject”-action creates a new member � of the
ObjectID universe, sets the dynamic type of � to the static type of the new-
clause, and sets the val-attribute of the new-clause to �.

newExp ::= ”new” typeRef

createObjectI T

attr staticType == S-typeRef.staticType

@createObject:
extend ObjectID with o

o.dynamicType := staticType
val := o

endextend

Fig. 82: Montage newExp of language ObjV2

12.5 Instance Fields
The instance fields of objects in ObjV2 are modeled as the field-declarator-
nodes, being linked to the dynamic type of the object via the fieldTable attribute.



256 Chapter 12. Classes, Instances, Instance Fields

The values of such fields are modeled using the dynamic function fieldOf( , ).
Once the field-declarator node lField is known of an object lObject, the value of
that field is read as the following expression

lField.fieldOf(lObject)

and it is set to a new value ) by the following update

lField.fieldOf(lObject) := v

12.6 Dynamic Binding
Which field of an object is read or written is determined dynamically, de-
pending on the dynamic type of an object �, being determined by expression
o.dynamicType. Given field-name  , and object �, the field is determined by

o.dynamicType.fieldTable(f)

In the following each Montage of an assignable expression, e.g. an expression
that can be on the left-hand-side of an assignment, has attribute definitions lOb-
ject, denoting the so called left object, and lField, the left field. Assigning a
value ) to such an assignable expression � is done by

e.lField.fieldOf(e.lObject) := v

The use construct
The specification of the use-construct, which serves for variable uses and field
accesses and as left part of assignments, is complicated since it covers both
simple variable accesses and the above sketched accesses to object fields. The
complete specification is given in Figure 83. To simplify the explanations, we
deduce by partial evaluation two specialized versions of the use-Montages, one
for simple variable accesses and one for instance-field accesses.

In the case of a simple variable use, the useOrCast-component and the “.”
are not present and the attribute notNested evaluates to true. The specialized
Montage for this case is called useVar and is given in Figure 84. Control flows
directly to the setValAndType action. This action sets the val-attribute to the
value of the referenced variable. The value of variables is stored as a field of
left-object Global, and the left-field is looked up by lookUp(signature). The
action uses the term lField.fieldOf(lObject) to read the value of the variable.

The case of field access is visualized by the Montage useField in Figure 85,
which is again obtained by specializing the use-Montage. The attribute neste-
dUse points directly to the useOrCast-component, which is always present in
this case. Control flows first into the useOrCast component, being either again
a use, or alternatively a cast. If after the evaluation of this component either
it’s dynamic type is undefined, or there results no value, control flows into the
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use ::= [useOrCast ”.”] id

S-useOrCastII

undefinedFieldAccess

(src.dynamicType = undef ) OR (src.val = undef)

setValAndType T

notNested

attr signature == S-id.Name
attr notNested == S-useOrCast.NoNode
attr nestedUse == S-useOrCast
attr lObject ==
(if notNested then Global

else nestedUse.val)
attr lField ==
(if notNested then lookUp(signature)

else lType.fieldTable(signature))
attr lType == nestedUse.dynamicType

condition (if notNested then lookUp(signature).defined
AND lookUp(signature).var

else true)

@setValAndType:
let v = lField.fieldOf(lObject) in

val := v
if not notNested then

dynamicType := v.dynamicType
endif

endlet

@undefinedFieldAccess:
handleError(”Access of undefined field.”)

Fig. 83: Montage use of language ObjV2
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useVar ::= id

setValAndTypeI T

attr signature == S-id.Name
attr notNested == true
attr nestedUse == undef
attr lObject == Global
attr lField == lookUp(signature)
attr lType == undef

condition lookUp(signature).defined
AND lookUp(signature).var

@setValAndType:
let v = lField.fieldOf(lObject) in

val := v
dynamicType := v.dynamicType

endlet

Fig. 84: Montage useVar of language ObjV2
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useField ::= useOrCast ”.” id

S-useOrCast

undefinedFieldAccess

(src.dynamicType = undef ) OR (src.val = undef)

setValAndType TI

attr signature == S-id.Name
attr notNested == false
attr nestedUse == S-useOrCast
attr lObject == nestedUse.val)
attr lField == lType.fieldTable(signature))
attr lType == nestedUse.dynamicType

condition true

@setValAndType:
let v = lField.fieldOf(lObject) in

val := v
dynamicType := v.dynamicType

endlet

@undefinedFieldAccess:
handleError(”Access of undefined field.”)

Fig. 85: Montage useField of language ObjV2
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undefinedFieldAccess-action, triggering a “Access of undefined field”-error. We
do not further specify how such an error is handled. If the error does not occur
control flows into the setValAndType-action. lObject is the object, and lField
the field to be accessed. As mentioned at the beginning of this section, lField
is looked up in the field table of the dynamic type of the accessed object. To
increase readability, the attribute lType is introduced, denoting the above used
dynamic type of the field access.
The assignment statement
The asgnStm-Montage is given in Figure 86. As we can see, it is not needed
to differentiate between variable and field use in this Montage. Further it is
possible to assign values both to the above described use Montages, respectively
it’s special cases useVar and useField, and the later described cast Montage.
This property is achieved by using the definitions of lObject and lField attributes
as interface for left values, as discussed earlier in Section 11.3.

First control flows through the exp-component, resulting in the evaluation
of its val-attribute, and then into the use or cast component, resulting in the
evaluation of their lObject and lField attributes. Then the assignment is done
in action doAsgn, or, if the types of left and right side are not assignable, the
control flows to action wrongAssignment. The exact definition for assignability
in ObjV2 is that the dynamic type of the expression is assignable to the static
type of the field or variable we are assigning to. In detail, the field or variable
to which we assign is lUse.lField, thus the type of the left side, lType is defined
as lUse.lField.staticType. The attribute rType denotes the dynamic type of the
exp-component, if defined, otherwise the static type. The condition for a correct
assignment is that all instances of the rType are instances of the lType, with
other words, the rType must be a subtype of the lType. This condition is given
as label of the control-arrow from the “S-exp”-box to the “doAsgn”-oval. In
the case of correct dynamic types, the same action as in the ObjV1 version of
asgnStm (Figure 75) is triggered, assigning to the lField of the lObject of the
left-hand-side the value of the right-hand-side expression.
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asgnStm ::= useOrCast ”=” exp ”;”

S-useOrCast doAsgnI

wrongAsignment

T

S-exp

rType.subtypeOf(lType)

attr lUse == S-useOrCast
attr lType == lUse.lField.staticType
attr rType ==
(if S-exp.dynamicType.defined then

S-exp.dynamicType
else S-exp.staticType)

@doAsgn:
let o = lUse.lObject

f = lUse.lField
in

f.fieldOf(o) := S-exp.val
endlet

@wrongAsignment:
handleError(

”This asignment is not valid, due to ”+
”dynamic type missmatch.”)

Fig. 86: Montage asgnStm of language ObjV2



262 Chapter 12. Classes, Instances, Instance Fields

12.7 Type Casting
With the type-casting expression it is possible to change the dynamic type of
an object to one of it’s super-types. This is needed for instance, if a field of
a subtype hides the definition of a field of a super-type. Hiding in this sense
happens if the names of these fields are equal. Using the cast expression, the
hidden field of the super-type can be read or written.

The specification of the cast-expression is given in Figure 87. The dynamic
type check in this Montage ensures, that no field accesses happen on null ob-
jects, and that assignments are type correct with respect to the static type of the
variable of the field which one is assigning to. The values of attributes lObject
and lField are copied from the corresponding fields of the use-component.

cast ::= ”cast” ”(” typeRef ”,” use ”)”

castError
setValAndType

S-useI

T

S-use.dynamicType.subtypeOf(staticType)

attr staticType == S-typeRef.staticType
attr lObject == S-use.lObject
attr lField == S-use.lField

@setValAndType:
val := S-use.val
dynamicType := staticType

@castError:
handleError(”CastError”)

Fig. 87: Montage cast of language ObjV2
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Procedures, Recursive-Calls, Parameters, Variables

In this chapter we introduce example language ObjV3, featuring function calls,
recursion, and call-by-value parameters, as well as local variables. The lan-
guage is defined by extending and refining the definitions of ObjV1 (Section
11.3), the grammar is given as follows.

Gram. 16: (refines Grammar 14)
Program ::= � functionDecl � block
exp = ... � call
stm = ... � returnStm
functionDecl ::= “function” id “(” � var � “)”

“:” type body
call ::= id “(” [ actualParam

� “,” actualParam � ] “)”
actualParam = exp
returnStm ::= “return” exp “;”

13.1 ObjV3 Programs
The start-symbol of the grammar, Program, produces a list of function declara-
tions and a block. The execution of an ObjV3 program is done by executing the
block. This behavior is given in Figure 89. The same specification defines as
well the declaration table for accessing the functions, allowing to access func-
tion  from any point � in the program as

��enclosing��“Program”���declTable� �
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Fig. 88: Roaster of ObjV3 features and their introduction (i), refinement (r), and use (u) in the
different languages

Program ::= �functionDecl� block

S-blockI T

attr declTable(n) ==
(choose c in sequence S-functionDecl:

c.signature = n)

Fig. 89: Montage Program of language ObjV3
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13.2 Call Incarnations
The semantics of the function calls is based on modeling function-call incar-
nations as elements of universe INCARNATION. After creation, the current call
incarnation is assigned to the dynamic function Incarnation. The new current
incarnation is linked to the previous one by the dynamic function lastInc.

Decl. 10: universe INCARNATION
function Incarnation
function lastInc(_)

The most simple semantics based on this model calls a function by executing

extend INCARNATION with i
i.lastInc := Incarnation
Incarnation := i

endextend

and returns from the call by restoring the old value of Incarnation.

Incarnation := Incarnation.lastInc

From these actions we omitted the details how the call-statement is found, once
the called function terminated, how the parameters are passed, and how the
result is returned.

Before we come to these details we continue to investigate the properties
of languages with recursive calls. In contrast to languages without recursion,
expressions may have different values in different function-call incarnations,
and therefore, the definition of the attribute val is refined to the derived function

Decl. 11: derived function val(n) == n.fieldOf(Incarnation)

which stores and retrieves values of a program-expression � as the value of field
� of object Incarnation, where � is the AST-node representing �, and Incarna-
tion is the previously introduced current incarnation. Like this expressions have
distinct values in distinct function-call incarnations and at the same time, the old
val syntax can be used to calculate expressions within the current incarnation.

On the other hand, the val-attribute cannot be used to pass information from
one function-call incarnation to the next one, e.g. for passing formal parameter
and returning call-results. This will be done by using a simple variable RESULT
which is just a 0-ary dynamic ASM function.

13.3 Semantics of Call and Return
As mentioned there are two points when information must be passed across in-
carnations, once when call is triggered and the formal parameters of the function
declaration must be actualized, and once when the result of the terminating call
is returned.
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For passing information from one incarnation to another we use a simple
0-ary dynamic function called RESULT. The RESULT function is used in the
current example language and in following languages whenever information is
passed along the control flow.

In the Montage for the call construct (Figure 90) we can see the action pre-
pareCall which executes both the above outlined rule for creating a new call
incarnation, and which sets the RESULT to the actual parameters. As last com-
ponent the current call-node self is assigned to the field ReturnPoint of the newly
created function-call incarnation.

Then the call-Montage sends control to a function-declaration. The control
flows to the function declaration being denoted by the decl-attribute of the call-
Montage. If control entered the function-declaration Montage (Figure 91) the
actual parameters are passed to the formal ones, and the RESULT-function is
reset to undef.

If in the body of the function declaration a return statement (Montage in
Figure 92) is reached, the RESULT-function is set to the value of the returned
expression, and control is send to the finishCall-action of the call-instance being
stored in the field ReturnPoint of the current incarnation.

The XASM declarations for the described processes are given as follows.

Decl. 12: function RESULT
constructor ReturnPoint

external function PassParameters(_,_)

derived function Scope == {"block", "functionDecl"}
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call ::= id ”(” [actualParam �”,” actualParam�] ”)”
actualParam = exp

LIST

S-actualParam prepareCall

functionDecl

trg = decl

setVal TfinishCall

I

attr signature == S-id.Name
attr decl == enclosing(�”Program”�).declTable(signature)
attr staticType == decl.staticType

@prepareCall:
RESULT := S-actualParam.combineActualParams
extend INCARNATION with i

ReturnPoint.fieldOf(i) := self
i.lastInc := Incarnation
Incarnation := i

endextend

@finishCall:
Incarnation := Incarnation.lastInc

@setVal:
val := RESULT
RESULT := undef

Fig. 90: Montage call of language ObjV3
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functionDecl ::= ”function” id ”(” �var� ”)” ”:” type body

passActualToFormal S-bodyI

noReturnError

attr staticType == S-type.staticType
attr signature == S-id.Name
attr declTable(pStr) == (choose p in sequence S-var :

p.signature = pStr)

@passActualToFormal:
val := PassParameters(RESULT, S-var)
RESULT := undef

@noReturnError:
handleError(”Exiting without return error”)

Fig. 91: Montage functionDecl of language ObjV3

returnStm ::= ”return” exp ”;”

S-exp setRESULTI

call
finishCall

trg = ReturnPoint.val

@setRESULT:
RESULT := S-exp.val

Fig. 92: Montage returnStm of language ObjV3
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13.4 Actualizing Formal Parameters
Before we can pass the actual parameters via the RESULT function, we need
to transform the list of expressions of the call-syntax into the list of the actual
values of these expressions. This is done by the following derived function.

Decl. 13: derived function combineActualParams(al) ==
(if al =˜ [&hd | &tl] then

[&hd.val | &tl.combineActualParams]
else
al

)

In the prepare-action of the call-Montage the resulting list of assigned to the
RESULT function, and the new incarnation is created. Then control flows into
the corresponding functionDecl-node where the list is retrieved from RESULT
and passed together with the list S-Var of formal parameter declarations to the
ASM PassParameters which is given in the following. The algorithm traverses
the list of values and the list of parameter declarations in parallel and sets the
val attribute of each parameter in the second list to the corresponding value in
the first list.

ASM 65: PassParameters.xasm

asm PassParameters(a, f)
-- a is sequence of values, f sequence of parameter instances
updates function val(_)
is
function a0 <- a, f0 <- f
if a0 =˜ [&ahd | &atl] then

if f0 =˜ [&fhd | &ftl] then
&fhd.val := &ahd
a0 := &atl
f0 := &ftl

else return "length mismatch of actual and formal parameters"
endif

else
return true

endif
endasm
-- a is sequence of values, f sequence of parameter instances
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14
Models of Abrupt Control

In this chapter we introduce example languages FraV1 (Section 14.2), FraV2
(Section 14.3), and FraV3 (Section 14.4) featuring iteration constructs, excep-
tion handline, and a revised version of recursive function calls. All of this lan-
guages use the concept of frames which is explained in the next section.

A main result of this thesis is the fact the here presented specifications are
compositional and provide the same degree of modularity for abrupt control
flow features as the normal Montages transitions provide for sequential, regular
control flow.
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14.1 The Concept of Frames

For the specification of FraV1, and its relatives FraV2 (exception handling) and
FraV2 (procedure calls) we use the frame-result-controlflow or short frame pat-
tern introduced in the introduction to Part III for modeling abrupt control flow.
Abrupt control flow is a term for all kind of non-sequential control flow such as
breaking out of a loop, throwing an exception, or calling a procedure. A frame
is a node in the syntax tree which is relevant for abrupt control.

By defining the set of universe names Frame to contain all symbols rele-
vant to abrupt flow, we can jump to the least enclosing frame using the earlier
introduced enclosing function. The information relevant for controlling abrupt
control flow is passed via the RESULT function, and each frame has an action
frameHandler which handles the information, if it is relevant for the frame, and
otherwise passes the information further up to the next enclosing frame.

In Figure 93 an abstract Montage framePattern visualizes the principle how
abrupt control flow is specified with frames. The normal, sequential control
flow enters the Montage at the I-edge, and triggers normal processing of the
components of the Montage, such as the abstract body component, and then
leaves the Montages via the T-edge.

Within the body, control follows the sequential transitions, until a state-
ment initiating abrupt control is reached. As an abstract example we show the
abruptPattern-Montage in Figure 94. The setRESULT-action of this Montage
updates RESULT with the information needed to control the abrupt control, and
then sends control to the FrameHandler-action of the least enclosing frame,
leading us back to Figure 93.

From the reached FrameHandler-state depart two transition. The first is
followed if the RESULT is relevant and can be processed by this Montage1 In
this case, the abrupt processing is done, RESULT is reset to undef, and control
is led back into the regular sequential flow. If the RESULT is not relevant for
the Montage, the control is sent further up to the FrameHandler-action of the
next enclosing frame.

Since this pattern works for all kinds of abrupt control flow and a certain
frame can pass arbitrary information to the next enclosing frame, such defini-
tions are compositional and allow the same degree of modularity for abrupt con-
trol flow as the normal transitions do for sequential control flow. In Appendix C
a non-compositional model of abrupt control flow is shown.

In the following frames are applied to iteration constructs, where the in-
stances of the abrupt pattern are continue and break statements, and where the
instances of the frame pattern are the different kinds of loops and the labeled
statement. In the next chapter we show exception handling, where the abrupt
pattern is used for the throw statement, and the frame pattern is used for try,
catch, and finally clauses. As a third example in Chapter 14.4 we reformulate
recursive calls using the abrupt pattern for the return-statement and the frame

1As an example, an exception would be a relevant result to the frame handler of an exception-
construct, but a continue would not be a relevant result for the same construct.



14.1. The Concept of Frames 273

framePattern ::= ... body ...

normal processing S-bodyI T

frameHandler abrupt processing
RESULT is relevant

Node
frameHandler

trg = enclosing(Frame)

unsetRESULT

@unsetRESULT:
RESULT := undef

Fig. 93: Montage framePattern of language FraV1

abruptPattern ::= ... exp ...

S-expI setRESULT

Node
frameHandler

trg = enclosing(Frame)

@setRESULT:
RESULT := ... process(S-Exp.val) ....

Fig. 94: Montage abruptPattern of language FraV1
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pattern for the function call and declaration.
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14.2 FraV1: Models of Iteration Constructs
FraV1 features while, repeat, continue, break, and labeled statements. FraV1
extends the earlier while example in Section 3.1 and the control statements of
Section 10.2 with continue and break mechanisms. A first model for reaching
targets of break and continue statement directly has already been shown in Sec-
tion 5.3.3. In contrast, the here presented model uses the frame-pattern and is
compositional with other kinds of abrupt control flow.

The grammar of FraV1 is defined as extension and refinement of the ObjV1
grammar.

Gram. 17: (refines Grammar 14)
stm = ... � continueStm � breakStm �

iterationStm � labeledStm
iterationStm = whileStm � doStm
continueStm ::= “continue” [ labelId ] “;”
breakStm ::= “break” [ labelId ] “;”
labelId = id
whileStm ::= “while” exp body
doStm ::= “do” body “while” exp “;”
labeledStm ::= labelId “:” iterationStm

The exact definition of the Frame constant together with the declaration of
break and continue constructors is given as follows.

Decl. 14: derived function Frame ==
{"whileStm", "doStm", "labeledStm"}

constructors break(_), continue(_)

The Montages of FraV1 are mostly direct instantiations of the abrupt and
frame patterns explained above. The labeled break and continue (Figures 95
and 96) follow the abrupt pattern and set the RESULT to the corresponding
constructor term. If this term has the label undef it is catched by the while
and do statements (Figures 97 and 98) which are both following the frame pat-
tern. In both Montages we see how the frame-handler sends continue-results
back inside the loop, and break-results to a program point after the loop. If
the RESULT term has a label �, it is catched by the least enclosing instance of
Montage labeledStatement (Figure 99), another instance of the frame pattern.
This Montage analyzes at the frameHandler-action whether the label in the RE-
SULT matches its own label. If there is a match, the labeled break/continue
constructor terms are replaced by their un-labeled versions and control is send
to the frameHandler-action of the statement after the label. The static seman-
tics of labeledStm guarantees that this statement is a frame and therefore has a
frameHandler-action. The un-labeled break and continue are then catched by a
while or do, as mentioned above.
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continueStm ::= ”continue” [labelId] ”;”

Node

setRESULTI T T

frameHandler

trg = enclosing(Frame)

attr signature == S-labelId.Name

condition (if not noLabel then
enclosing(�”labeledStm”�) �� undef

else
true)

@setRESULT:
if noLabel then

RESULT := continue(undef)
else

RESULT := continue(signature)
endif

Fig. 95: Montage continueStm of language FraV1
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breakStm ::= ”break” [labelId] ”;”

Node

setRESULTI T T

frameHandler

trg = enclosing(Frame)

attr noLabel == S-labelId.NoNode
attr signature == S-labelId.Name

condition (if not noLabel then
enclosing(�”labeledStm”�)��undef

else
true)

@setRESULT:
if noLabel then

RESULT := break(undef)
else

RESULT := break(signature)
endif

Fig. 96: Montage breakStm of language FraV1
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whileStm ::= ”while” exp body

S-exp

S-body

I T

(src.val = true)

I T

frameHandler

RESULT = continue(undef)

RESULT = break(undef)

Node

frameHandler
trg = enclosing(Frame)

@I:
RESULT := undef
@T:
RESULT := undef

Fig. 97: Montage whileStm of language FraV1
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doStm ::= ”do” body ”while” exp ”;”

S-body

S-expI T

(srcd.val = true)

T

frameHandler

RESULT = continue(undef)

RESULT = break(undef)

Node

I

frameHandler
trg = enclosing(Frame)

@I:
RESULT := undef
@T:
RESULT := undef

Fig. 98: Montage doStm of language FraV1
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labeledStm ::= labelId ”:” stm

S-stm

frameHandler

Node

I T

frameHandler

(RESULT = break(undef)) or

frameHandler

o

(RESULT = continue(undef))

trg = enclosing(Frame)

attr signature == S-labelId.Name

condition S-stm.Name isin Frame

@frameHandler:
if RESULT = break(signature) then

RESULT := break(undef)
elseif RESULT = continue(signature) then

RESULT := continue(undef)
endif

Fig. 99: Montage labeledStm of language FraV1
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Fig. 100: Roaster of FraV2 features and their introduction (i), refinement (r), and use (u) in the
different languages

14.3 FraV2: Models of Exceptions

Example language FraV2 features exception throws and try-catch-finally con-
structs. It is directly formulated as an extension and refinement of ObjV1.

Gram. 18: (refines Grammar 14)
stm = ... � throwStm � tryCatchFinallyStm
throwStm ::= “throw” exp “;”
tryCatchFinallyStm ::= tryCatchClause [ “finally” block ]
tryCatchClause ::= “try” block � catch �
catch ::= “catch” “(” exp “)” block

The semantics of FraV2 is basically given using the frame pattern of Sec-
tion 14.1, and therefore the given Montages can be freely combined with other
languages based on the frame pattern. The exact definition of Frame and the
declaration of the constructor exception are given as follows.

Decl. 15: derived function Frame ==
{"tryCatchClause", "tryCatchFinallyStm", "catch"}
constructor exception(_)

Exceptions in FraV2 are triggered using the throwStm construct (Figure
101), an instance of the abrupt-pattern. In our simplified setting the information
within the exception( ) constructor are arbitrary values, and exception catching
(Figure 102) is based on equality of the exception information and the value
in the catch clause. In object oriented languages, exceptions are typically in-
stances of a special exception-class, and catching is done by checking for types,
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rather than values. The presented Montages have been applied to this situa-
tion as well, in fact they are taken directly from the specification of exception
handling in Java.

The following three Montages catch, tryCatchFinallyStm, and tryCatch-
Clause (Figures 102, 103, and 104) are refining the frame pattern by introducing
a second action execFinally, which is used to guarantee that the control executes
the block after the “finally” keyword in tryCatchFinallyStm even if any excep-
tion or other abrupt control has been triggered.

Assume normal control enters the tryCatchFinallyStm (Figure 103), which
leads directly into the tryCatchClause (Figure 104), and then into the block.
If no abrupt control is triggered in the block, the tryCatchClause is then left,
control flows back in the tryCatchFinanllyStm-Montage, and then the block af-
ter the “finally”-keyword is entered. If again no abrupt control is triggered,
tryCatchFinallyStm is terminated normally. There are now two possible places
where abrupt control can be triggered, in the block of the tryCatchClause, and
in the block after the “finally”. We call the first block try-block and the sec-
ond block finally-block, and we assume that the triggered abrupt control is an
exception throw.

If an exception is thrown in the try-block, control is send to the frame han-
dler of the tryCatchClause and the list of catches is entered. Each catch-clause
(Figure 102) checks after its o-state whether the value of the exception matches
its catch-value.

RESULT = exception(S-exp.val)

If not, control is sent to the next catch-clause in the list, and if none of the
clauses catches the exception, control leaves the list of catch-clauses, exits the
tryCatchClause, executes the finally-block, and since RESULT is still set to the
unmatched exception, control is passed up to the frame handler of the least
enclosing frame.

If the catch clause matches the exception, control is sent to the resetRESULT-
state, RESULT is set to undef the block of the catch is executed, and control is
sent out of the list to the finally-block. For this purpose the action execFinally is
introduced, which sends control straight up to the finally-block. Thus after the
block of the catch is executed, control is sent to the execFinally-action of the
least enclosing frame.

Besides this main scenario, there are three more subtle cases, which result
from abrupt-control triggered in the finally-block, the expression or block of a
catch clause. We discuss here the case of exceptions triggered in these places.

� If an exception is triggered in the finally-block, the frame handler of the
tryCatchFinallyStm sends control to the least enclosing frame.

� If an exception is triggered in the expression or block of a catch clause, the
newly triggered exception must not be catched by the catch-list of the enclosing
tryCatchClause-frame, but control must be sent to the finally-block directly.
Therefore the frame handler of the catch sends control to the execFinally-action
of the enclosing frame.
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throwStm ::= ”throw” exp ”;”

S-expI setRESULT

Node

T T

frameHandler

trg = enclosing(Frame)

@setRESULT:
RESULT := exception(S-exp.val)

Fig. 101: Montage throwStm of language FraV2
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catch ::= ”catch” ”(” exp ”)” block

o

frameHandler

S-block

Node

resetRESULT

S-expI T

RESULT = exception(S-exp.val)

execFinally

trg = enclosing(Frame)

trg = enclosing(Frame)

@resetRESULT:
RESULT := undef

Fig. 102: Montage catch of language FraV2

tryCatchFinallyStm ::= tryCatchClause [”finally” block]

S-tryCatchClause S-block

execFinally

frameHandler

Node

I T

frameHandler
trg = enclosing(Frame)

RESULT.defined and
trg = enclosing(Frame)

Fig. 103: Montage tryCatchFinallyStm of language FraV2
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tryCatchClause ::= ”try” block �catch�

S-block

frameHandler LIST

S-catch
RESULT = exception(&)

T T

execFinally

Node
execFinally

I

trg = enclosing(Frame)

Fig. 104: Montage tryCatchClause of language FraV2
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Fig. 105: Roaster of FraV3 features and their introduction (i), refinement (r), and use (u) in the
different languages

14.4 FraV3: Procedure Calls Revisited

The example language FraV3 is a revised, frame-pattern version of ObjV3
which can be composed with the definitions of FraV1 and FraV2. The declara-
tion of the frame-universe consists only of “functionDecl”, and the constructor
callResult( ) is needed to wrap the call results, similar how the exception values
or break/continue labels have been wrapped in the last two chapters.

Decl. 16: function RESULT
derived function Frame ==
{"functionDecl’’}
constructor callResult(_), ReturnPoint

The given Montages work like the ones of ObjV3 in Chapter 13, with the
following differences.

� In the returnStm-Montage (Figure 106) the result ) is not directly assigned to
RESULT, but as constructor term callResult(v).

Further control is not sent directly to the caller, but to the frameHandler of the
least enclosing frame.

� In the call-Montage (Figure 107) the frameHandler-action is introduced, and
sends control only to the setVal-action if the returned result is a callResult-term.
Otherwise it sends control to the least enclosing frame. The finishCall-action
has been removed, its work is taken over by the frame-handler in the function-
declaration.

In addition the setVal-action must unwrap the result from the callResult-term.
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� Finally in the functionDecl-Montage (Figure 108) a frameHandler-action is
added, which resets the incarnation to the last one, and sends control to the
caller which is stored as value of the ReturnPoint-constant.

A subtle change to the previous specification in ObjV3 is that the call-node
where one has to return is no more stored as ReturnPoint-field of the new incar-
nation, but as ReturnPoint-field of the old incarnation.

This change may seem unnecessary, but it turned out to be the only choice
due to the following situation. Since we want to allow any kind of abrupt con-
trol flow exiting a call correctly, we need to reset the incarnation in the frame-
handler of the function declaration. All other choices are not correct:

� if the incarnation is reset in the frame handler of the call, wrong behavior results
from abrupt control triggered in the actual parameters of the call2

� if the incarnation is reset in a special finishCall-action which is located between
the frame-handler and the setVal-action of the call-Montage, we obtain the op-
posite error: abrupt control returning from the call, but not being a call-result is
not triggering the reset of the incarnation and therefore leads to wrong behavior.

Since we therefore need to reset the incarnation in the frame-handler of the
function-declaration, it is not possible to access the ReturnPoint-value on the
new incarnation, which has been lost for ever by reseting the current incarnation
to the old one. Therefore it is mandatory in this new situation to store the call-
node to which we have to return in the old incarnation.

2In fact, if we assume a very generalized language design, where return-statements can be
used as expressions, then we would need to further refine the semantics in order to avoid the
error that a call-result issued by an actual parameter would be interpreted as result of the not
yet called function. Our solution works perfectly if the only abrupt control we expect from the
actual parameters are exceptions. Since this is the case in all main-stream language we know,
we are not further refining the specification at this point.
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returnStm ::= ”return” exp ”;”

S-exp setRESULT T TI

Node

frameHandler

trg = enclosing(Frame)

@setRESULT:
RESULT := callResult(S-exp.val)

Fig. 106: Montage returnStm of language FraV3
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call ::= id ”(” [actualParam
�”,” actualParam�] ”)”

actualParam = exp

LIST

S-actualParam prepareCall

!decl

setVal

I

frameHandler

RESULT = callResult(&)

Node

T

frameHandler

trg = enclosing(Frame)

attr signature == S-id.Name
attr decl ==
enclosing(�”Program”�).declTable(signature)
attr staticType == decl.staticType

@prepareCall:
RESULT := S-actualParam.combineActualParams
extend INCARNATION with i

ReturnPoint.val := self
i.lastInc := Incarnation
Incarnation := i

endextend

@setVal:
if RESULT = callResult(&r) then

val := &r
RESULT := undef

endif

Fig. 107: Montage call of language FraV3
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functionDecl ::= ”function” id ”(” �var� ”)”
”:” type body

passActualToFormal S-bodyI

noReturnError
frameHandler

Node

frameHandler

trg = ReturnPoint.val

attr staticType == S-type.staticType
attr signature == S-id.Name
attr declTable(pStr) ==
(choose p in sequence S-var :

p.signature = pStr)

@passActualToFormal:
val := PassParameters(RESULT, S-var)
RESULT := undef

@frameHandler:
Incarnation := Incarnation.lastInc

@noReturnError:
handleError(”Exiting without return error”)

Fig. 108: Montage functionDecl of language FraV3
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A
Kaiser’s Action Equations

Unpublished joint work with Samarjit Chakraborty.
Among the several mechanisms proposed for specifying programming en-

vironments, attribute grammar systems have been one of the most successful
ones. The main reason for this lies in the fact that they can be written in a
declarative style and are highly modular. However, by itself they are unsuitable
for the specification of dynamic semantics. The work of Gail Kaiser on ac-
tion equations (AE) (111; 112) addresses this problem by augmenting attribute
grammars with mechanisms taken from action routines proposed by Medina-
Mora in (151) for use in language based environments. In this appendix, action
equations are described and compared with Montages.
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A.1 Introduction

Action routines are based on semantic routines used in compiler generation sys-
tems such as Yacc, in which the semantics processing is written as a set of
routines in either a conventional programming language or a special language
devised for this purpose (3). Each node in the abstract syntax tree (AST) is asso-
ciated with such actions and the execution of a construct is triggered by calling
the corresponding action routine. In contrast to this, actions in AE are given by
a set of rules similar in form to semantic equations of attribute grammars. Such
equations are embedded into an event-driven architecture. Events occurring at
any node of the AST activate the attached equations in the same sense in which
in the action routines paradigm commands trigger the associated action rou-
tines. Equations which are not attached to any events correspond exactly to the
semantic equations of attribute grammars. Equations in this framework can be
of five types: assignments, constraints, conditionals, delays and propagates. As-
signments and constraints are exactly similar in form, with the difference being
that constraints are not attached to events and hence are active at all times. The
propagate equations propagate an event from one node of the AST to another
after evaluating the equations in that node. Thus the control flow is modeled by
propagation of events from one node to the other.

This appendix reevaluates the problem of specifying dynamic semantics in
an attribute grammar framework for language definitions in an environment gen-
erator, by comparing AEs with Montages.

Montages can be seen as a combination of Attribute Grammars and Action
Routines. For giving the actions, Montages use Abstract State Machine (ASM)
rules. There exist a number of case studies applying ASMs to the specifica-
tion of programming languages. In the case of imperative and object oriented
languages, these applications work in the same way as Action Routine specifica-
tions, but they have a formal semantics. Montages adapt and integrate the ASM
framework for specifying dynamic semantics with attribute grammars, and a
visual notation for specifying control-flow as state transitions in a hierarchical
finite state machine (FSM).

In short the differences between AE and Montages can be summarized as
follows. In AE, the semantic processing at each node of the abstract syntax tree
(AST) is given by sets of equations which are attached to particular events. The
triggering of an event at a node leads to a reevaluation of these equations. Mon-
tages on the other hand uses ASM rules to specify such semantic processing,
which is strictly different from the concept of using equations.

As a second difference, control flow in AEs is specified by propagating
an event from a source to a destination node, thereby activating the equations
associated with this event in the destination node. In contrast to this, control
flow in Montages is specified by state transitions in a finite state machine, which
is described using graphical notation.

Section A.2 describes how control flow is specified using action equations.
Section A.3 contains a description of a number of different control-structures
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specified using Montages which are found in any imperative or object-oriented
language. These are compared to the corresponding specifications written us-
ing AE. In order to simplify comparison, we base the Montages direct on the
abstract syntax definitions.

In one example (Example 6) we show a programming construct whose
ASM-action cannot be given as AE equation and in other example (Example 3)
we show that our visual notation makes it substantially easier to understand a
specification. In the process of describing with Montages the control structures
corresponding to AE examples in the literature, an error was discovered in Ex-
ample 3 of Kaiser’s article in ACM transactions on programming languages and
systems (112). The same error would have been hard to overlook in the graphi-
cal Montages description.

A.2 Control Flow in Action Equations

As described above, the AE paradigm is based on the concept of attaching a set
of equations with non-terminals of the grammar, and thereby with the instances
of the non-terminals as the nodes of the AST. The occurrence of an event at a
node of the AST leads to an evaluation of the equations attached to that particu-
lar event in that node. Events, like attributes in attribute grammars, can be either
synthesized or inherited. The events associated with the left-hand non-terminal
of a production, as shown below, are synthesized.

Example 1
production

event� �
equation���

� � �
equation���

� � �
event��

equation���
� � �
equation���

Here �5!��%����� through �5!��%����� are attached to �)����, and similarly for
the other events. Inherited events with their attached equations are associated
with the right-hand non-terminals of a production. In (112) the left-hand non-
terminal is referred to as the goal-symbol, the non-terminals on the right as the
components of the goal symbol, and the context-free grammar notation is the
same as that introduced in Example 1. Using this notation the inherited events
are given as
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Example 2
goal symbol ::=

component�: type
� � �
component�: type

event� On component� �
equations

event� On component� �
equations

� � �

event� On component��
equations

The On keyword is used to denote that the inherited event is associated with
the named component. It was also mentioned that the propagate equation is
used to propagate an event from a source to a destination node of the AST. This
has the effect of activating the equations at the destination node attached to the
named event. Formally the equation is stated as

Propagate event To destination

Using these equations at each step of the computation, set of equations is dy-
namically determined and activated. The reevaluation of these equations results
in the redefinition of a number of attributes. This redefinition of attributes is
used for side-effects. The next Section shows the AE specifications for com-
mon control constructs and compares these with Montages specifications for
the same constructs. Throughout the Section, sequential control flow is mod-
eled with two kind of events, Execute and Continue.

A.3 Examples of Control Structures
Example 3
As first example how to model dynamic semantics with AE we take the if state-
ment, as it is described in (112). The ifStm has two children, the condition-part
being an expression, and the thenpart, being a statement.

ifStm ::= condpart: EXPRESSION
thenpart: STATEMENT

When the Execute event occurs at an instance of ifStm, the Execute is propagated
to the condpart.

Execute ->
Propagate Execute To condpart
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ifStm ::= condpart: EXPRESSION
thenpart: STATEMENT

condpartI

thenpart

condpart.value

o T

Fig. 109: The ifStm Montage

After any semantics processing involving the condpart are completed (includ-
ing, for example, the setting of its value attribute), then the condpart propagates
the Continue event to itself. A Continue on the condpart activates the following
pair.

Continue On condpart ->
If condpart.value
Then Propagate Execute To thenpart
Else Propagate Continue To self

If the value-attribute evaluates to true, Execute is propagated to the thenpart.
If not, the if statement has completed execution, and Continue is propagated to
itself.

After the thenpart terminates, the Continue is correspondingly propagated
to the ifStm.

Continue On thenpart ->
Propagate Continue To self

Figure 109 we see how the same mechanism is given in terms of a FSM. It the
ifStm is executed, the first visited state is the condpart. The semantics process-
ing involving the condpart is given by the related FSM, whose actions set for
instance its value attribute. The condpart has then two outgoing control edges
along which the processing of the ifStm continues. One of the edges is labeled
by

������'��)��!�

and the other has no label. In such cases, the non-labeled edge is assumed to
represent the else-case, e.g. the case when all labels of other edges evaluate
to true. Consequently, if the condpart.value is true, control continues to the
thenpart, otherwise control leaves the ifStm through the terminal T. When the
semantic processing of the thenpart terminates, control leaves the ifStm along
the unique outgoing arrow.

The advantage to have an explicit visual representation of the control flow
is that it is much easer to understand and validate the semantics of a construct
like the ifStm. This is even indicated by the fact that while we entered the above
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boolAnd ::= operand1: EXPRESSION
operand2: EXPRESSION

operand1I operand2 set T

operand1.value = false

@set:
if operand1.value then

value := operand2.value
else

value := false
endif

Fig. 110: The boolAnd Montage

example we found that the “Continue On thenpart” rule is missing in (112).
This rule corresponds to the unique outgoing arrow from the thenpart, and it
the user would forget this arrow it would be immediately clear that something
is missing.
Example 4
The following AE description gives the semantics of a lazy evaluated boolean
and as available for instance in Pascal. The second operand must not be evalu-
ated, if the first operand evaluates to false. This is important for the semantics,
since expressions may have side effects. After the evaluation of the operands,
the value is equal to the value of operand2, if the value of operand1 is true,
otherwise it is equal to false.

boolAnd ::= operand1: EXPRESSION
operand2: EXPRESSION

Execute ->
Propagate Execute To operand1

Continue On operand1 ->
If operand1.value
Then Propagate Execute To operand2
Else Propagate Continue To self

Continue On operand2 ->
Propagate Continue To self

Continue ->
If operand1.value
Then value := operand2.value
Else value := false
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loop ::= initialization: STATEMENT
condition: EXPRESSION
body: STATEMENT
reinitialization: STATEMENT

initializationI condition

body

condition.value

reinitialization

T

Fig. 111: The loop Montage

In Figure 110 we see the equivalent Montage. While the form of the value
calculation remains the same, the visualization of the control flow shortens the
length of the textual elements considerably.
Example 5
Another example is the following loop construct. After initialization, the control
loops until the condition evaluates to false. In each cycle, the reinitialization is
executed. While in Figure 111 the cyclic control structure is explicitly visible,
in the following AE description it is encoded using the events.

loop ::= initialization: STATEMENT
condition: EXPRESSION
body: STATEMENT
reinitialization: STATEMENT

Execute ->
Propagate Execute To initialization

Continue On initialization, reinitialization ->
Propagate Execute To condition

Continue On condition ->
If condition.value
Then Propagate Execute To body
Else Propagate Continue To self

Continue On Body ->
Propagate Execute To reinitialization

Example 6
In a last example we consider a simple construct that repeats a statement n-
times, where n is a constant, positive integer.
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constRepeat ::= constant: DIGITS
body: STATEMENT

dec ibody

i � 0

Tinit iI

@init i:
i := constant

@dec i:
i := i - 1

Fig. 112: The constRepeat Montage

constRepeat ::= constant: DIGITS
body: STATEMENT

In a Montages specification we would introduce an attribute %, initialize it with
constant, and after each time we executed the body we decrease the value of % by
one. If after this % is still larger than 0, the body is reevaluated, else constRepeat
terminates. In Figure 112 the complete Montage is given, using the name init i
and dec i for the two states doing the initialization and the decreasing.

Naively one would model this in a similar way with AEs:

constRepeat ::= constant: DIGITS
body: STATEMENT

Execute ->
i := constant
Propagate Execute To body

Continue On body ->
if (i - 1) > 0 then

Propagate Execute To body
i := i - 1

else
Propagate Continue To self

But using the AE framework, the formalization of


 � 
� �

is not possible with one equation. There is an intrinsic circular dependency in
such an equation and the try to evaluate it would not lead to a solution.

The only possible solution is to introduce a help-attribute &, and to activate
in a first step the equation

& � 
� �
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and then in a next step to activate the equation


 � &

In order to introduce an intermediate step, one needs to introduce a new event
helpEvent. Using this the complete AE solution is:

constRepeat ::= constant: DIGITS
body: STATEMENT

Execute ->
i := constant
Propagate Execute To body

Continue On body ->
if (i - 1) > 0 then

h := i - 1
Propagate helpEvent To self

else
Propagate Continue To self

helpEvent ->
i := h
Propagate Execute To body

This solution introduces an additional complexity which makes the de-
signer’s task more tedious and specifications more verbose, respectively. In
this respect, being Montages based on ASM, which is a Dynamic Abstract Data
Type framework, presents the advantage that one can express directly the fol-
lowing update


 �� 
� �

requesting that the original value of the �-ary function 
 can be discarded and
replaced by a new one without an intermediate step, i.e. by means of a non
homomorphic transformation of the algebra modeling the state before the mod-
ification.

A.4 Conclusions
This appendix compared two different paradigms which extend the attribute
grammar framework in different ways, for the specification of dynamic seman-
tics in a programming environment generator. Most of the previous work on en-
vironment generators were more concerned with the generation of a language-
based editing system. The design of the AE paradigm followed this line, the
main focus being incremental semantic processing during editing. In contrast
to this, the Montages framework is concerned with the rapid prototyping of a
language and focuses on issues like ease of specification.

It is understandable that the event oriented view is helpful and probably even
necessary for the specification of a system which has to do some interactive pro-
cessing. Apart from the Execute and the Continue events of AE described in this
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paper which models the control flow, other events arising from the functionality
required in an editor include events like Create, Delete, Clip, etc. Although an
editor is currently not generated in the Gem-Mex tool-suite for Montages, we
do not foresee any difficulties in doing so.

The event-based framework of AE can result in triggering a set of rules from
different nodes of the AST. As a result of this equations in different nodes can be
active at the same time. Such a system is highly distributed and well suited for
situations other than dynamic semantics of sequential languages. In this paper
we consider only the application of the event-mechanism to situations with a
single sequential tread of control. For these situations we are able to present
the sequential control flow in terms of FSMs. For distributed situations FSMs
would have to be replaced with PetriNets or StateCharts.
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Mapping Automata

Joint work with Jörn Janneck, published as technical report (101)
In this appendix we describe Mapping Automaton (MA), a variant of Gure-

vich’s Abstract State Machines (GASM). The motivation for this work is three-
fold. First we want to make the MA view explicit in a formal way. Second the
MA and the mapping from GASM to MA serve as implementation base for a
GASM interpreter written in Java (100). And finally the definition of MA sim-
plifies the syntactic aspect as well as the structure of a state by removing the
concept of ’signature’.

Removing signature and the induced structure from the specification lan-
guage and the state, respectively, makes state and specification completely or-
thogonal, only connected by an interpretation of the basic syntactic constants.
These constants play the role of syntax (vocabulary), which are independent
from the structure of the semantics (objects, and the interpretation of 6).

In effect, any specification may be interpreted in any state (that has certain
basic properties, such as being ’big’ enough to allow sufficiently many objects
to be allocated), which in turn means that different specifications may be inter-
preted on the same state.

We believe that this will allow us to compose specifications much easier than
was possible in GASM, an interesting aspect of this improved compositionality
possibly being the easy integration of object-based constructs into the concept
with a view of making it a practical specification and prototyping method in
such environments (99).
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B.1 Introduction
The motivation for MA starts with Gurevich’s claim that in dynamic situations,
it is convenient to view a state as a kind of memory that maps locations to
values (82). A location is a pair of an '-ary function name and an '-tuple of
elements. Such a memory is partitioned in different areas each consisting of the
locations belonging to one function. We believe that it is often more appropriate
to view a state as a collection of objects, each associated with a mapping from
attributes to values. In this view the notions of attribute, value, and object are
unified. This allows to model a large number of commonly used data structures,
e.g. records with pointer attributes, arrays with dynamic length, stacks, or hash-
tables.

For the moment we restrict our interest to completely untyped object sys-
tems. Such systems can be modeled with a Tarski structure having only one
binary function, encoding the objects and their associated mapping. We fix the
name of this function to 6. Mapping Automaton (MA), is a name for the com-
bination of the above explained object-view on state with GASM whose vocab-
ulary contains only the binary 6 and a set of static constants. We define and
investigate MA as a mathematical object, by adopting the definition of GASM
over mapping-structures to the MA view, i.e. the 6 function is made part of the
formal definition of MA states. Finally we give a formal mapping from GASM
to MA.

In the next section, the used static structures are described, then MA are
defined formally. In Section B.4 the definition of transition rules is adopted
to MA. In the last section of this chapter the mapping from GASM to MA is
formalized.

B.2 Static structures
Before we present MA as describing the dynamic transition from one state to the
next, we first make precise our notion of state. For MA, this notion is completely
independent of any syntactical concepts and indeed of the existence of any MA
defined for it.

B.2.1 Abstract structure of the state

Our intuitive concept of state is that of a structure between objects of a set. This
set, the set of all admissible objects that may ever occur in the computation to
be modeled, we will subsequently call our universe � . We will not make any
assumptions about its nature, except that it be big enough (cf. section B.4.5 for
details on this) and contain a special element . We will refer to the elements
of � as objects.

Given such as universe we can now define our concept of state as follows:
Intuitively, we may think of a state as a mapping 6, that assigns each element
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of � a unary function over � . Many common data structures can be directly
conceptualized in this way: records (mapping field names to field values), arrays
(indices to values), hash-tables (keys to values), etc. Of course, higher arities
may be modeled by successive application of unary functions or with tuples.1

Alternatively, and equivalently, a state may be regarded as a mapping of
pairs of objects to objects, i.e. as a two dimensional square table with objects as
entries. Formally,

Def. 28: State space.. Given a universe � , we define the state space of � to be


 � � � �

Note that the equation

�� � �� �� � � � �� ��

supports the alternative views of the state as either a square table populated by
objects or a mapping of objects to mappings.

Since these are two equivalent manners of speaking, we will freely alternate
between these two conceptions of a state, talking about a mapping associated
with an object, or equivalently refer to an object as being an index to a row in
the state table (assuming here and in the following that a row corresponds to a
mapping).

B.2.2 Locations and updates

The structure of such a state is changed in one atomic action by a set of point-
wise updates, which specify a location to be set to a new value. However, MA
locations are somewhat simpler than those in GASM, since they basically spec-
ify a place in the two-dimensional position in the state table, i.e. they are a pair
of objects.

Def. 29: Location and update.. Given a universe � , a location is a pair in � , the set of
all locations is � � � � � . An update is a pair consisting of a location and an
element in � , the set of all updates is thus defined as � � �� � .

Applying a set of such updates results in a new state, with the entries in the
square table changed to the values given in the update set:

Def. 30: Application of update set.. Given a state 6 � 
 and an update set � � �,
applying � to 6 yields the successor state 6 � – symbolically 6

�
�� 6� – that is

defined as follows:

6� � + �

�
) ���� +�� )� � �

6 � + otherwise

1See also the discussion in section B.5.2 for more details.
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Clearly, the above definition only yields a well-defined function if the update
set contains at most one new value for a given location. This condition is called
consistency.

Def. 31: Consistency.. An update set � is called consistent, iff

��$�� )��� �$�� )�� � � � $� � $� �� )� � )�

In the following, we assume an update set to be consistent. Since there are
several possible ways of defining the effects of the application of inconsistent
update sets, each with its respective merits and drawbacks, we will not commit
ourselves to one particular version and choose to leave this point open for further
discussion.

B.3 Mapping automata
Mapping Automata (MA) describe the evolution of a state as defined above.
Although its structure differs slightly from GASM, where it is an algebra of
a given signature, the evolution is still described by a rule, that computes an
update set for a given state and the application of this update set to the state it
was computed for, resulting in the successor state.

Formally, we define MA as follows:

Def. 32: Mapping automaton.. A mapping automaton is a pair �����, with � � ����
a set of constant symbols and � a rule.

The constant symbols �� are similar in function to the signature in GASM in
that they serve as anchor points for interpretation and also term evaluation, as
will be seen below.2

Such an MA is related to some state universe by an interpretation as follows:

Def. 33: Interpretation.. Given a universe � and a mapping automaton� � �����,
we call a function � � � �� � an interpretation of�.

Without going into the details of how such a rule may be described (this
will be the task of section B.4, this is what it does: Given an interpretation, it
computes an update set from some state. Formally,

Def. 34: Rule.. Given an MA and an interpretation of its constant symbols, its rule �
maps states to update sets:

� � 
 �� �

2In fact, as will become clear in section B.4, these symbols not only serve as constants, but
also as the namespace for quantified and other variables. However, since the interpretation �
is never updated during the execution of an MA, and since even when some variable binding
shadows a constant in the scope of a rule, this at least is not destructively modified in its scope,
we will stick to this name.
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Now we can make precise the ’dynamics’ of an MA, by defining a run start-
ing from some state 6:

Def. 35: Run.. A run of an MA ����� starting from some initial state 6 is a sequence
�6����� such that

� 6� � 6

� 6�
����	
�� 6���

Of course, a run terminates iff ex . such that 6� � 6��� for all % / ..

B.4 A rule language and its denotation

In the following we will suggest a notation for MA rules, which parallels the
one suggested for GASM in (82). Following (82), we will give the denotation
of each construction in our notation in terms of the update set that it represents
given an interpretation and a state – according to definition 34. First, however,
we will develop the notion of term, which are basic constituents in most rule
constructs.

B.4.1 Terms

Terms are some kind of syntactic structure that we use to refer to objects of the
universe. Some objects of the universe we can refer to directly using constant
symbols and an interpretation of them. For others we form compound terms and
use the state. Therefore, we will define the evaluation in a given state 6 � 

and under some interpretation �.

MA terms are very simple structures:3 They are either constant symbols,
or pairs of terms. The latter can be intuitively thought of as signifying the
application of the mapping that is bound to the value of the first term to the
value of the second - which is the intuition that is responsible for the name of
mapping automata.4 Since we also need a basic predicate testing for the equality
(i.e. identity) of two objects, this is also a term.

Def. 36: Terms.. Let � be a set on constant symbols. Then the set of all terms �� of �
is defined to be the smallest set such that

� � � ��

� �� � � �� �� �� �� � ��

3However, see. section B.4.3.2 for an extension that complicates things somewhat.
4Making application left-associative, one can write the term ��� �� �� in the more familiar

for � � �.
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� �� � � �� �� � � � � ��

They are assigned a value in a given state in a most straightforward way:
constants are mapped to their interpretation, while pairs are evaluated by ap-
plying the map associated with the first element to the value of the second, or,
equivalently, simply applying the state 6 to the pair of values of the two terms.
The identity test is  if the two terms to not yield the same object. If they do,
however, this test must produce some other element, which we will call� here,
but which has no special significance other than being different from .

Def. 37: Term evaluation.. Given a set of constant symbols�. Then we define the value
)����� ��� of a term � in a state 6 � 
 under interpretation � recursively as
follows:

)����� ��� � ���� for � � �

)����� ��� ��� � 6 )����� ��� )����� ���

)����� �� � �� �

�
� )����� ��� � )����� ���

 otherwise

B.4.2 Basic rules constructs

Now we will outline a few basic rule constructs and give their meaning by the
rule they denote.

The skip construct
�.%�

has no effect on the state. Its denotation is accordingly the empty set for any
state:

����skip��6� ��� �

The most fundamental non-empty rule construct is the single atomic update,
which we denote as

�� �� �� �

Given a state 6, it denotes an update set consisting of one update:

��� ��� �� �� ���6� ��� ���)���������� )����� ������ )����������

The conditional rule construct decides which of two rules to fire according
to the value of a term:

if � then 	� else 	� endif

Its denotation is therefore:

��� �if � then 	� else 	� endif��6� ���

�
��� �	���6� )����� ��� �� 

��� �	���6� otherwise
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We also define the parallel composition of two rule descriptions, written as5

	� 	�

Its denotation is simply the union of the update sets:

��� � 	� 	���6� ��� ��� �	���6� 	��� �	���6�

B.4.3 First-order extensions

As shown by Gurevich (82), one can add first-order constructs to describe both
rules and terms. We will start with rule constructs and then turn to first-order
terms.

B.4.3.1 Do-forall rule
The do-forall rule construction allows to compute the update set of a rule de-
scription 	 with some constant symbol bound to each element of some set. Its
syntax is as follows:

do forall � in � � 	 enddo

� is a constant symbol, 	 a rule description, and � specifies the set the elements
which � will be bound to in 	.

Clearly, we must somehow restrict the sets that may thus be iterated upon,
not only for practical reasons.6 We choose to restrict � to constructions of the
form ��, � or '�� �, where � is any term. These then denote the domain and
range, respectively, of the mapping associated with the value of �.7

Def. 38: Domain and range of mappings.. Given an � � � , we define its domain and
range (equivalently the domain and range of the mapping associated with it) as

��,� � ��� �
 � � � 6 � 
 �� �

'��� � ��� �
 � � � �� � �� � � � 6 � � � 
�

With this, the denotation of the above set constructions becomes

������ ���, �� ��� ��,� )����� ���

������ �'�� �� ��� '��� )����� ���

Now we can define the denotation of the do-forall rule construct as the union
of all updates resulting from the body for each individual element of the speci-
fied set bound to the constant symbol:

����do forall � in � � 	 enddo��6� ���
�

����	��� ���

����� �����	��6�

5Since at this point we have no notion of blocks as in (82), we need no do in-parallel syntax
that except for inconsistencies, this rule notation is otherwise equivalent to.

6From a theoretical point of view, allowing, a rule to iterate on, say, � would potentially
make the entire universe accessible, and thus the reserve empty – see section B.4.5 for details.

7Further constructions might be useful here and harmless in the sense discussed in the pre-
vious footnote, such as a range of integers (if these are available) etc. However, without making
any assumptions about the structure of � , the above seem to be most natural.
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B.4.3.2 First-order terms
First-order terms extend the definitions of the set �� of terms for a set of
constant symbols � (see definition 36 by the following clauses, assuming
� ��� ���, � � � � ��� 	 �'�� � � � � ��� the set of set-expressions:

� � � � � � � � � � � �� �� � �'��� � %� � � �� � ��

� � � � � � � � � � � �� �� ��
%��� � %� � � �� � ��

The forall-term evaluates to� iff � evaluates to something else than for all
elements of the set denoted by � bound to the symbol �, and to otherwise. The
exists-term is  if � is  for all elements of that set, and � otherwise. Binding
an object to a constant symbol � is tantamount to changing the interpretation at
point � to this new value, which we will write as ��� 
� ��.

)����� ��forall � in � � ��� ���

�
� �� � ������ ��� � )�������������� �� 

 otherwise

)����� ��exists � in � � ��� ���

�
� �� � ������ ��� � )�������������� �� 

 otherwise

B.4.4 Nondeterministic rules

The basic nondeterministic construction is

choose � in � � 	 endchoose

Intuitively, this nondeterministically selects one of the values in the set denoted
by �, binds it to � and evaluates 	. In order to capture this intuition we must
introduce a nondeterministic denotation ���� �	��6� of a rule description 	,
which is a set of alternative update sets. For the choose-construct above, its
(nondeterministic) denotation would be as follows:

���� �choose � in � � 	 endchoose��6� ���

��
�
��� ������ ��� � ��
����	��� ���

�����������	��6� otherwise

Of course, we now have to give nondeterministic denotations for the other
rule constructs as well, which can be done as follows:
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���� �skip��6� ���

���� �skip��6��

���� ����� ��� �� ���6� ���

���� ����� ��� �� ���6��

���� �if � then 	� else 	� endif��6� ����
���� �	���6� )����� ��� �� 

���� �	���6� otherwise

���� � 	� 	���6� ���

��� 	 �� � �� � ���� �	���6� � �� � ���� �	���6��

���� �do forall � in � � 	 enddo��6� �����
�

�
����	��� ���

�� � �� � �����������	��6�

��
	

Except for the do-forall case (and the parallel composition case, which can
be considered a special case of the former), the nondeterministic denotation is
very similar to the deterministic case, except that we talk about a set of up-
date sets. For the do-forall construct, one has to consider all combinations of
nondeterministic choices at each instance of the rule and build the union over
these.

The notion of a run is of course also affected by non-deterministic construc-
tions. If a rule yields a set of update sets instead of just one, a non-deterministic
run then is defined like this:

Def. 39: Non-deterministic run.. A non-deterministic run of an MA ����� starting
from some initial state 6 is a sequence �6����� such that

� 6� � 6

� 6�
�
�� 6��� such that � � ��6��

B.4.5 Creating new objects

Even though the universe is a static collection of objects, in specifications we
often wish to refer to hitherto unused or fresh objects. Therefore, instead of
creating new objects and extending the universe itself, we make objects that
have so far been unaccessible to the MA accessible by picking them from a part
of the universe that we could not refer to. This part, which we will make more
precise below, is called our reserve.

B.4.5.1 Accessibility and allocation
We will define the set of all objects ���� (or just �� if the interpretation is un-
derstood) that a rule can refer to and depend on in a given state 6 under and
interpretation �. The definition will inductively include all elements that can be
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reached by the constructions of the language, starting from the elements which
are the interpretation of the constant symbols:

Def. 40: Accessibility.. Given constant symbols �, we define the set ���� of all accessi-
ble elements of � in state 6 under interpretation � to be the smallest set such
that:

� �� � � � � � � ����

� �� + � ���� �� 6 � + � ����

� � � ���� �� ��,� � � ����

� � � ���� �� '��� � � ����

Clearly, the result of any rule cannot depend on any object and its surround-
ing structure that is not in ���� . In this sense, the accessibility criterion is similar
to the rules that govern garbage collection in programming language implemen-
tations.8

So in any state 6 and interpretation �, we can only talk about the accessible
objects in ���� . If we allow arbitrary ’construction’ of new objects (as we do
in the rule language in section B.4), we have to provide a sufficiently large
universe so that we can guarantee that we can recruit new objects from the
hitherto ’unused’ (i.e. irrelevant) portion of the universe, which we will call our
reserve:

Def. 41: Reserve. The set � � � ���� is called the reserve (of state 6).

The requirement for a meaningful execution of an MA is therefore that its
reserve be non-empty in any reachable state. Clearly, this rules out constructions
that allow iteration and updates on the entire universe, such as

do forall 
 in � � ��
� �� � enddo

If � is a constant symbol interpreted as any non- value, applying the denota-
tion of this rule to any state leads to a state where the entire universe becomes
accessible.

Of course, the notion of accessibility is strongly connected to the construc-
tions of the rule notation. If some constructs do not occur in a given MA, we

8However, this definition of global accessibility is far too loose for many practical applica-
tions to be used as a basis for storage allocation. Consider for example a situation where � is
the set of all integer numerals, all strings, and all identifiers. A useful interpretation will sup-
posedly map all these infinitely many symbols to infinitely many different objects, which thus
become globally accessible, while any sensible implementation will only create those number
objects as they are needed during the computation process. It might make sense, therefore, to
restrict the globally accessible objects for a given MA to those which can be reached by terms
formulated only in constant symbols actually occurring in the MA rules. We will not further
elaborate this point here.
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may adapt the accessibility definition accordingly. This is of particular impor-
tance when we restrict the language by imposing some kind of static structuring
on the rules – then the set of visible elements in this kind of automaton may be
quite different from the one we must assume for general MA. See section B.5.2
for an example and an application of this principle.

B.4.5.2 The import-rule
Constructing the reserve in the above way allows us to give meaning to the
notion of importing new or fresh elements into our visible part of the universe.
The basic rule to pick an object from the reserve looks like this:

import � 	 endimport

This rule actually does three things: it first picks an element from the reserve,
binds it to the symbol � and then executes the rule body 	 in the new context,
i.e. in an interpretation that is identical to � except at point �, which is mapped
to the new object instead. If we call the new object chosen from the reserve
�, we can write the new interpretation as ��� 
� ��, and the deterministic and
non-deterministic denotation, respectively, then become

��� �import � 	 endimport��6� ��� ����������	��6� � �  

���� �import � 	 endimport��6� ��� �����������	��6� � �  

As in (82) we assume that different imports choose different reserve ele-
ments. Furthermore, we assume that for any new element �, 6 � 
 �  for all

 � � . Note also, that the new object does not automatically become a member
of �����: although it is in ����������, the rule body has to manipulate the state so
that it can be accessed outside the rule in the next state.

B.5 Comparison to traditional ASMs
In this section we will first shed some light on what we perceive as one of
the basic differences between MA and GASM, and then proceed to show their
fundamental equivalence (as far as computational expressibility and level of
abstraction are concerned). This will serve to document our claim that MA are
basically a slightly different way of doing very similar things.

B.5.1 State and automata

A key difference between traditional ASMs and MA is the relation between a
state (and the set of all states) and the automaton: A GASM state is always a
state of a vocabulary, i.e. a signature containing some function names of various
arities that impose a certain structure on the state. Also, an ASM operating
meaningfully on this state must in a sense ’know’ about this structure, i.e. share
its vocabulary.
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In MA, the situation is somewhat simpler. First, the a state can be mean-
ingfully defined without any recourse to syntactical elements such as function
names, or their MA-counterparts, constant symbols. A state is a simple struc-
ture imposed on the elements of some universe, indeed, there need not even be
an MA, constant symbols, or any other syntactical conventions to be able to talk
about a state.

However, when we want to refer to particular parts of such a structure, say,
individual objects, we must have a way of identifying them so we can investigate
the structure ’around’ them. It was felt that the most straightforward way of
doing this was to simply give them names, i.e. to provide a set of names and a
mapping between these names and their denotations.

These names and their interpretation, however, to not in any way introduce a
structure into the system – unlike function names of various fixed arities.9 They
are basically a flat collection of distinguishable identifications of elements in
the universe. The structure, therefore, is completely separated from the naming.

This separation of concerns, leaving structure to the state and naming to the
automaton (and its interpretation) that describes the evolution of such a struc-
ture, can be leveraged in various ways. For instance, there is no problem in
applying several automata (each with its own interpretation and even different
sets of constant symbols) to the same state - concurrently, independently, alter-
natively. This can be used to promote a much higher degree of compositionality
of automata.

When composing a specification of a set of automata, it might make sense to
require them to share the same set of constant symbols. For GASM, sharing the
same signature over a large number of automata would seem like a somewhat
unnatural requirement, and possibly even involve a good deal of renaming, pre-
fixing, etc. to actually make it work, but for MA this might be a sensible choice
for the standard case: for instance, a conceivable set of constant symbols could
consist of all identifiers plus all representations of some primitive data types,
such as numbers and strings.

B.5.2 Equivalence of MA and traditional ASM

In this section we show how to map a GASM into an MA and vice versa. The
translation from MA to GASM is already given by the fact that MA are defined
as a GASM with a special kind of structure. The translation from GASM into
MA allows to use the MA tool for GASM tool support, since the translation
does not change the abstraction level. In fact the translation deals only with
some semantical details, e.g. the adaption of the different views on boolean and
relations, and the modeling of n-ary functions with tuples.

Before we start describing the translation between GASM to MA we re-
member the different ways booleans and partial functions are treated. In GASM
booleans are modeled by two distinct elements true and false and partial func-

9Of course, the names themselves become structured by the way they relate to the different
or identical elements of the universe.
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tions are modeled by mapping to a third element undef. The carrier set of each
GASM needs thus at least three distinct elements, true, false, and undef. Differ-
ently, in MA exist only two distinct elements, called bottom  and top �.  is
used for partial functions, and as interpretation of false, true is represented by
� or any other element in the carrier set. Both GASM and MA are not strict.
Mapping a GASM state into an MA state.
In general the universe � of objects in a MA consist of at least two elements,
one denoted by  and the other by �. Since the GASM super-universe � con-
tains at least three elements (true, false, and undef ) we need to start with a �
containing a third element. The set of constant symbols � of an MA modeling
a GASM contains at least the three constants true, false, and undef, and each
interpretation � maps undef to the element, true to the element ���, and false
to the third default element in � . We will no more make a difference between
the symbols � undef, true, false � and the tree objects representing them, and
for our convenience.

Tuples are modeled in MA by free generated elements with a static mapping
as follows:

� the associated mapping of the 0-ary tuple () is given by:

��� �� ! ���

where ��� is the free generated one-tuple.

� the associated mapping of a one-tuple is given by:

�������� ! ���� ���

where ���� ��� is a free generated two-tuple.

� for each n " 1 the mapping of an n-tuple is given by:

����� � � � � �������� ! ���� � � � � ��� �����

If mapping a concrete GASM � into a MA �, all elements of � are in-
cluded into � and all symbols of the vocabulary of � are included into the
constant symbols � of �, and for each of them a new element being its inter-
pretation is included into � . In other words, � consists of the disjoint union of
���� false�, the super-universe �, the elements interpreting the GASM func-
tions, and the above introduced tuples.

We need to make a case distinction between functions and relations in
GASM. The interpretation of each n-ary function  in structure �, i.e.  �,
is reflected in ��� interpretation of 6, i.e. 6 :

� ����� � � � � ��� � ���# �6 �� � ���� � � � � ��� � ���
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An n-ary relation ' in a GASM is returning either true or false. To make every-
thing fit together we reflect the interpretation of each ' as follows:

�'����� � � � � ��� � false� # �6 ��'� ���� � � � � ��� � �

�

�'����� � � � � ��� � true� # �6 ��'� ���� � � � � ��� � ��

Now we need two different wrappings. One is needed to get back the orig-
inal true,false results of a relational term. The second is needed to map such
results back into the ,� model in MA.

Lets thus assume two constants 7� and 7� such that:

�7� � ! false

�7� 
� ! 
� where 
 �� 

�7� false� ! 

�7� 
� ! 
� where 
 �� false

For equality, the usual MA equality can be used, the logical operations in
GASM are mapped into MA like normal binary relations.
Remark on reachability
of course the mappings associated with the tuples and the wrappings 7� and
7� must be excluded from the definition of reachability.
Mapping a GASM rule into an MA rule
We define now a transformation � from GASM rules to MA rules. For nota-
tional convenience we leave away the � and � whenever the situation is clear.

Terms For all function symbols  , the subterms must be transformed:

� � ���� � � � � ���� ���  �� ����� � � � � � �����

For all relation symbols ', in addition the term is wrapped with 7�:

� �'���� � � � � ���� ��� �7� �' �� ����� � � � � � �������

Updates For all function symbols  , the subterms must be transformed::

� � ���� � � � � ��� �� ��� ��� � � ���� � � � � ���� �� � ����

For all relation symbols ', in addition the righ-hand-side is wrapped with
7�:

� �'���� � � � � ��� �� ��� ��� � �'���� � � � � ���� �� �7� � �����

Conditional

� �if � then 	� else 	� endif� ��� if �7� �� then � �	�� else � �	�� endif
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Do forall

� �do forall % in � Rule enddo�

���

do forall % in dom � � �Rule� enddo

Choose

� �choose % in � Rule endchoose�

���

choose % in dom � � �Rule� endchoose
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C
Stärk’s Model of the Imperative Java Core

In this appendix we reproduce with Montages the specification of the imperative
core of Java as given by Stärk (203), which is based on Schulte and Börgers Java
model (33). Our reproduction shows that their style of describing languages
with ASM can be directly used with Montages. Using our framework, the re-
sulting specification is shorter and more visual than the original ASM model. In
the Montages solution the textual rules are shortened from 85 lines to 29 lines
and the complete control flow is specified graphically. The given reproduction
can be directly executed using the Gem-Mex tool.

In the following we only provide the minimal description, in order to allow
for a comparison with our alternative, more compositional specification we give
in Chapter 14. The descriptions are an extract from a hand-out given to the
students.
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C.1 Functions
The universe Abr contains the unary constructors break( ) and continue( ) de-
noting the set of reasons for abrupt completion.

universe Abr = {break(_), continue(id)}

The universe Nrm is the set of normal values, including booleans, integer, ...,
and the constant normal.

In (203) a dynamic, 0-ary function pos and a universe Pos are used to keep
track of the control. These functions are not needed in our reproduction, since
we use FSMs. pos corresponds to the current state in the FSM, and Pos corre-
sponds to the set of states in the FSM.

function loc(_)

The dynamic, unary function loc assigns values to variables. It is updated in
an assignment statement. It is also updated as a side effect during evaluation of
assignment expressions. We will refer to loc as the local environment.

attr val

The dynamic attribute val is used to store intermediate values of expressions
and results of the execution of statements. It assigns normal or abrupt values to
the nodes of the AST.

C.2 Expressions
exp = lit � id � uExp � bExp � cExp � asgn

The reproduced specification contains literals, identifiers, unary-, binary,
conditional-, and assignment-expressions. The dynamic semantics of these con-
structs is given by rules that evaluate the expression and assign the result to the
attribute val.

lit = Boolean � Number

For simplicity only the literal numbers and booleans are considered. Their
val attribute is statically initialized with their constant value. Their FSM con-
sists of one state without action.

The semantics of a unary expression is given by the Montage in Figure 113
First the exp-component is visited resulting in its evaluation. The result is ac-
cessed as S-exp.val and used to calculate the value of the unary expression.
According to (203) the JLS-function contains the Java Language Specification
(74) definitions for operators.



C.2. Expressions 321

uExp ::= ”(” uop exp ”)”
uop = ”+” �”-” �”!” �cast

S-expI eval T

@eval:
val := JLS(S-uop.Name, S-exp.val)

Fig. 113: The uExp Montage.

In a similar way binary expressions are evaluated, see Figure 114. In the case
of division by zero, the firing condition guides the FSM in the exit state, other-
wise the eval-state is reached. In the exit state execution is stopped abruptly.

bExp ::= ”(” exp bop exp ”)”
bop = ”*” �”/” � ”+” �”-” �...

S1-exp S2-exp evalI T

exit

S-bop.Name = ”/” and S2-exp.val = 0

@eval:
val := JLS(S-bop.Name, S1-exp.val, S2-exp.val)

@exit:
RAISE EXPRESSION

Fig. 114: The bExp Montage.

The condition expression cExp is given in Figure 115. After the evaluation
of the first expression, depending on their value, control is passed either to the
second or third expression. The three different expressions are referenced as
S1-expr, S2-expr, and S3-expr, respectively. The condition whether to choose
the second or third expression is formalized as src.val. The term src denotes the
source of a control arrow. Thus in Figure A115 the firing-condition src.val is
equivalent to S1-val.val. As a very convenient feature the term src can as well
be used within transition rules. In the later case, src denotes the source of the
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control arrow that has been used to reach the current state. This fact is used in
the copy transition rule

val := src.val

where the value of the evaluated expression is copied as value of the condi-
tional expression.

cExp ::= ”(” exp ”?” exp ”:” exp ”)”

S1-exp

S2-exp

S3-exp

copy

src.val

I T

@copy:
val := src.val

Fig. 115: The cExp Montage.

The Montage of an assignment is given in Figure 116. The do-action updates
the value of the variable S-id.Name in the local environment to the value of
S-exp. Further the value of of the assignment is set to the value of S-exp.

asgn ::= ”(” id ”=” exp ”)”

S-exp doI T

@do:
loc(S-id.Name) := S-exp.val
val := S-exp.val

Fig. 116: The asgn Montage.
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C.3 Statements
A total of 8 different statements is given:

stm = skipIt � asgnStm � ifStm � whileStm �
labeledStm � breakStm � continueStm � block

The Montages for the skip (Figure 117), the if- (Figure 118), and the assign-
ment statement (Figure 119) are self explaining. The edges in the while state-
ment (Figure 120) repeated the execution of the statement-component, as long
as the value of the expression-component evaluates to true. Another possi-
bility to exit the loop is, if the value of the statement-component evaluates to
an abrupt-constructor. If the loop is left, the copy-action sets the value of the
while-statement to the value of the last executed construct. In the norm-state,
non-abrupt values are reset to normal.

skipIt ::= ”;”

normI T

@norm:
val := normal

Fig. 117: The skipIt Montage.

ifStm ::= ”if” ”(” exp ”)” stm ”else” stm

S-exp

S1-stm

S2-stm

copy

src.val

TI

@copy:
val := src.val

Fig. 118: The ifStm Montage.
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asgnStm ::= id ”=” exp ”;”

S-exp doI T

@do:
loc(S-id.Name) := S-exp.val
val := S-exp.val

Fig. 119: The asgnStm Montage.

whileStm ::= ”while” ”(” exp ”)” stm

S-exp

S-stm

I copy

S-exp.val

Abr(S-stm.val)

norm T

@copy:
val := src.val

@norm:
if not Abr(val) then

val := normal
endif

Fig. 120: The whileStm Montage.

The Montages for the break and the continue statements correspond to the
literal expressions. Their value is statically initialized with the corresponding
constructor terms. The EBNF rules are

breakStm ::= “break” id “;”
continueStm ::= “continue” id “;”

The value of the break-statement is initialized to break(S-id.Name) and value of
the continue-statement is initialized to continue(S-id.Name).
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In Figure 121 a block-statement for a fixed block length of 3 is shown. In
case of an abrupt completion, for instance break( ) or continue( ), the default
flow is overruled by the control arrows with the condition Abr(src.val). In the
copy-state the the value of the last executed statement is passed as value of the
block.

blockOf3 ::= ”�” stm stm stm ”�”

S1-stm S2-stm S3-stm copyI T

Abr(src.val)

Abr(src.val)

Abr(src.val)

@copy:
val := src.val

Fig. 121: The blockOf3 Montage.

In Figure 122) the Montages for the block-statement with variable length is
given, using the List box. The previously shown fixed-length block is an exam-
ple how such a List box works: the members of the list are linked sequentially
be default-arrows. An arrow leaving from the element inside a list corresponds
to a family of arrows, one for each member.
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block ::= ”�” � bstm � ”�”
bstm = stm �var

LIST

S-bstmI copy

Abr(src.val)

T

@copy:
val := src.val

Fig. 122: The block Montage.

The labeled statement (Figure 123) is used to catch the abrupt completions
of its statement component. In case of a continue-completion matching the
label, and the statement component being a while loop, control is passed again
to the statement component. This case is covered by the arrow leaving and
entering the S-stm box. Otherwise the usual copy-state recovers the value of
the statement-component. In the norm-state, the value is reset to normal, if the
statement-value was a break with a matching label.
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labeledStm ::= id ”:” stm

S-stmI

whileStm(S-stm) and

S-stm.val = continue(S-id.Name)

copy norm T

@copy:
val := src.val

@norm:
if S-stm.val = break(S-id.Name) then

val := normal
endif

Fig. 123: The labeledStm Montage.
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D
Type System of Java

As example for the use of static semantics technology we show the type system
of the Java programming language. For examples we refer to the Java language
specifications, editions 1 (74) and 2 (75). The following descriptions are min-
imal extracts from an executable version running on the Gem-Mex system. A
detailed discussion would include a detailed discussion of Java typing, a topic
which goes beyond the scope of this thesis.
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D.1 Reference Types
In Java there are primitive types and reference types. Reference types are
classes, interfaces, and arrays. Here we introduce classes and interfaces.

Our Java model identifies class and interface types with the syntax-tree
nodes being the declarations of them. The same technique has been used in
a number of ASM models of object-oriented languages (130) and will be used
in Section 12. This approach has several advantages, among others the ease of
animating typing annotations, and the possibility to ”reload” new versions of
a class, without stopping the program; in that case one has simply two copies
of the same class, one AST being the old version, used as type of all existing
instances of the class, and a new version, a second AST, which will be used
as type for new instances to be created. Further its the ideal bases to model
advanced features like inner classes.

Gram. 19: program ::= � unit � body
unit ::= � classModifier � classOrInterface
classOrInterface = classDeclaration � interfaceDeclaration
classModifier = “public” � “abstract” � “final”
classDeclaration ::= “class” typeId [“extends” superId]

[“implements” interfaceId �“,” interfaceId �]
“�”
�memberDeclaration�
“�”

superId = typeRef
interfaceId = typeRef
typeRef = Ident
interfaceDeclaration ::= “interface” typeId

[“extends” interfaceId “,” interfaceId]
“�”
�interfaceMemberDeclaration�
“�”

The start symbol program produces a list of units and a body. A unit is
a class or interface declaration together with a list of modifiers. The attribute
signature is used to unify access to the names of units.

Attr. 3: unit:
attr signature == S-classOrInterface.signature

classDeclaration:
attr signature == S-typeId.Name

interfaceDeclaration:
attr signature == S-typeId.Name

Within a class or interface declaration, the function enclosing( , ) (ASM 20,
Section 5.3.2) together with the derived set TypeDecl can be used to refer to the
enclosing type.
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Decl. 17: derived function TypeDecl ==
{"classDeclaration","interfaceDeclaration"}

The term n.enclosing(TypeDecl) denotes the least enclosing reference type.

Static Typing
The attribute staticType is defined for types, where its definition is the identity,
type references being used in different declarations, statements, and expressions
of Java. Further each Java expression has a static type, which is used as basis
for type checking and for evaluating dynamic typing.

Attr. 4: classDeclaration:
attr staticType == self

interfaceDeclaration:
attr staticType == self

Instances of program have the attribute declTable( ) for looking up the class and
interface declarations, given their name.

Attr. 5: program:
attr declTable(uRef) ==
(choose u in sequence S-unit:

u.signature = uRef).S-classOrInterface

Type references can determine their static type looking up the declTable of the
least enclosing program or package instance. Here we abstract from packages.

Attr. 6: typeRef:
attr staticType ==

enclosing({’’program’’}).declTable(signature)
attr signature == Name

Modifiers
Instances of unit, classDeclaration, memberDeclaration, fieldRest, method-
Rest, interfaceDeclaration and interfaceMemberDeclaration can have modi-
fiers. Possible modifiers for classes and interfaces are public, final, and abstract.
Methods and fields may as well be protected or private, and finally fields may
have the modifier static. The attribute hasModifier( ) is used to test for modifier.
Its definition contains some parts related to the implicit abstract modifier.

Attr. 7: hasModifier( )

unit:
attr hasModifier(mStr) ==

(exists M in sequence S-classModifier: M.Name = mStr)

classDeclaration:
attr hasModifier(mStr) ==

Parent.hasModifier(mStr)
OR ( (mStr = "abstract") AND isAbstract)

interfaceDeclaration:
attr hasModifier(mStr) ==

mStr = "abstract"
OR Parent.hasModifier(mStr)
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A special case is the modifier abstract Class declaration are implicitly ab-
stract, if they have at least one abstract member, or if there is a visible abstract
method, which is not implemented by another visible method overriding the
first one.

Attr. 8: isAbstract

attr isAbstract ==
( (exists mDec in sequence S-memberDeclaration:

(mDec.methodDeclaration)
AND (mDec.hasModifier("abstract")))

OR (exists mDec in NODE:
mDec.methodDeclaration

AND mDec.hasModifier("abstract")
AND visible(mDec)
AND (not (exists m2Dec in NODE:

m2Dec.methodDeclaration
AND m2Dec.signature = mDec.signature
AND (not (m2Dec.hasModifier("abstract")))
AND

m2Dec.enclosing(Scope).subtypeOf(mDec.enclosing(Scope))
AND visible(m2Dec)))))

Accessibility
A type � is accessible from another type �, if either � has modifier “public”,
or both types are defined in the same program. The attribute accessibleFrom( )
is defined as follows.

Attr. 9: accessibleFrom( )

unit:
attr accessibleFrom(tDec) ==

(enclosing({"program"})) = (tDec.enclosing({"program"}))
OR hasModifier("public")

classDeclaration:
attr accessibleFrom(tDec) == Parent.accessibleFrom(tDec)

interfaceDeclaration:
attr accessibleFrom(tDec) == Parent.accessibleFrom(tDec)

D.2 Subtyping

The subtyping relation is based on the direct super classes and direct interfaces.
The direct super class is denoted in the “extends”-clause and the direct interfaces
are denoted by the “implements”-clause. A class without extends clause has the
direct super class Object.

Decl. 18: constructor Object
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The definitions for direct super class and direct interfaces are given as follows.

Attr. 10: classDeclaration:
attr directSuperClass == --JLSv1, 8.1.3;line1-2

(if S-superId.NoNode
then Object
else S-superId.staticType)

attr directInterface(iDec) ==
(exists iRef in sequence S-interfaceId:

iDec = iRef.staticType)

interfaceDeclaration:
attr directInterface(iDec) ==

(exists iRef in sequence S-interfaceId.Children:
iDec = (iRef.staticType))

Subtyping is basically the transitive closure over the relations directSuper-
Class and directInterface.

Attr. 11: subtypeOf( )

classDeclaration:
attr subtypeOf(tDec) ==

(self = tDec)
OR
((directSuperClass != Object) AND
directSuperClass.subtypeOf(tDec))

OR
(exists iDec in interfaceDeclaration:

(directInterface(iDec)
AND iDec.subtypeOf(tDec)))

interfaceDeclaration:
attr subtypeOf(tDec) ==
--SPECIALIZATION FROM classDeclaration

(self = tDec)
OR
(exists iDec in interfaceDeclaration:

directInterface(iDec)
AND iDec.subtypeOf(tDec))

D.3 Members
Classes and interfaces are characterized by a number of members. Members can
be fields or methods. Here we use a dummy definition for methods to shorten
the definitions.

Gram. 20: memberDeclaration ::== �modifier� returnType idOrMethId
fieldOrMethodRest
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interfaceMemberDeclaration
::= returnType id fieldOrMethodRest

modifier = “public” � “protected” � “private”
� “final” � “static” � “abstract”

returnType = voidType � type
idOrMethId = Ident � methId
fieldOrMethodRest = fieldRest � methodRest
fieldRest ::= [“=” exp] �“,” additionalFieldDeclaration�“;”
additionalFieldDeclaration

::= Ident [“=” exp]
methodRest ::= “(”“)” body

The attributes fieldDeclaration and methodDeclaration are used to check
whether a member is a field or a method.

Attr. 12: memberDeclaration, interfaceMemberDeclaration:
attr fieldDeclaration == S-fieldOrMethodRest.fieldRest
attr methodDeclaration == S-fieldOrMethodRest.methodRest

Static Typing
staticType denotes the type of the member, envType the enclosing class or inter-
face declaration.

Attr. 13: memberDeclaration:
attr staticType == S-returnType.staticType
attr envType == enclosing(TypeDecl)

interfaceMemberDeclaration:
attr staticType == S-returnType.staticType
attr envType == enclosing(TypeDecl)

Modifiers
As in the case of types, modifiers of members denote special properties of them.
Some of them are given explicitly, by the modifier-sequence, and others, like
“abstract”, may be derived.

Attr. 14: hasModifier( )

memberDeclaration:
attr hasModifier(mStr)==

(exists m2Str in sequence S-modifier:
m2Str.Name = mStr)

OR S-fieldOrMethodRest.hasModifier(mStr)

interfaceMemberDeclaration:
attr hasModifier(mStr) ==

(mStr isin {"public","final"})
OR (mStr = "abstract"

AND S-fieldOrMethodRest.methodRest)
OR (mStr = "static"
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AND S-fieldOrMethodRest.fieldRest)

fieldRest:
attr hasModifier(mStr) == false

methodRest:
attr hasModifier(mStr) ==

(mStr = "abstract") AND (S-body.empty)

Accessibility
Accessibility determines whether a member , is accessible from a type �. For-
mally this fact is written as

,�accessibleFrom���

Accessibility of members is a precondition for visibility, which is in turn a con-
dition for a member being present in the declaration table declTable of a Java
type.

A member is accessible, if it is public, or if it is private and the type from
which it is accessed is the same as the type in which it is declared, or if it is not
private, and the types it is accessed from and where it is declared in are in the
same package, or it is protected, and the type it is accessed from is a subtype of
the type it is declared in.

Attr. 15: accessibleFrom( )

memberDeclaration, interfaceMemberDeclaration:
attr accessibleFrom(tDec) ==

hasModifier("public")
OR (hasModifier("private") and

(envType = tDec))
OR ((not hasModifier("private")) and

(tDec.enclosing({"package"})
= enclosing({"package"})))

OR ( hasModifier("protected")
AND (tDec != Object)
AND (tDec.subtypeOf(envType)))

D.4 Visibility and Reference of Members

A member , is visible in type �, formally ��visible�,�, if it is a direct member or
the following three conditions hold. First, , is accessible from type �, second1

there exists no other member with the same name, being a direct member of �,
and third, either , is visible in the direct super-class of �, or there exists a direct
interface of � where , is visible.

1The third condition in the formula Attr. 16.
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Attr. 16: visible( )

classDeclaration:
attr visible(mDec) ==

directMember(mDec)
OR ( mDec.accessibleFrom(self)

AND ( (directSuperClass != Object
AND directSuperClass.visible(mDec))

OR (exists iDec in interfaceDeclaration:
directInterface(iDec)

AND iDec.visible(mDec)))
AND ( not (exists m2Dec in NODE:

directMember(m2Dec)
AND m2Dec.signature = mDec.signature)))

interfaceDeclaration:
attr visible(mDec) ==

directMember(mDec)
OR ( mDec.accessibleFrom(self)

AND (exists iDec in interfaceDeclaration:
directInterface(iDec)

AND iDec.visible(mDec))
AND ( not (exists m2Dec in NODE:

directMember(m2Dec)
AND m2Dec.signature = mDec.signature)))

D.5 Reference of Static Fields
For the reference to static fields the above function visible is now used. A static
field  is in the declTable of a type � if there exists a unique member among all
members of all types with the name  being visible in �. For the reference to
methods, the definition of visible is enough.

Attr. 17: declTable( )

classDeclaration, interfaceDeclaration:
attr declTable(mRef) ==

-- only needed for fields, for methods, visible is enough
(choose unique mDec in NODE:

(mDec.memberDeclSet)
AND (mDec.signature = mRef)
AND visible(mDec))
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