
Diss. ETH No. 15093

System-Level Timing Analysis
and Scheduling for

Embedded Packet Processors

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences

presented by
SAMARJIT CHAKRABORTY

M.Tech. Computer Science & Engg.,
Indian Institute of Technology Kanpur, India

born December 25, 1972
citizen of India

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Rolf Ernst, co-examiner

2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 54

Samarjit Chakraborty

System-Level Timing
Analysis and Scheduling

for Embedded Packet Processors

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 15093

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Rolf Ernst, co-examiner

Examination date: April 14, 2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 54

Samarjit Chakraborty

System-Level Timing
Analysis and Scheduling

for Embedded Packet Processors

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Diss. ETH No. 15093

System-Level Timing Analysis
and Scheduling for

Embedded Packet Processors

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences

presented by
SAMARJIT CHAKRABORTY

M.Tech. Computer Science & Engg.,
Indian Institute of Technology Kanpur, India

born December 25, 1972
citizen of India

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Rolf Ernst, co-examiner

2003

Examination date: April 14, 2003

Abstract

Packet processors are high-performance, programmable devices with special
architectural features that are optimized for network packet processing. They
are mostly embedded within network routers and switches and are designed to
implement complex packet processing tasks at line speed.

In this thesis we study several issues related to the system-level timing anal-
ysis and scheduling for such embedded packet processors. Our work is moti-
vated by the fact that designing and analysing, both, the architecture and the
software for packet processors require new models and methods which do not
fall within the preview of traditional embedded systems design.

Both, timing analysis and scheduling have been widely studied in the con-
text of system-level design of embedded systems. But most of these studies
have largely focussed on data-dominated applications like digital signal process-
ing and developed techniques which do not directly hold for control-dominated
applications like packet processing. We identify the main differences between
these two classes of applications, and also the architectures used in these two
cases, and based on these differences propose new models for tasks and archi-
tectures which are especially suited to capture the characteristics of control-
dominated applications and focus on one particular class, viz. network packet
processing. Based on these models, we then propose several algorithms for
analysing the hardware/software-architectures of packet processors. In this con-
text, the different problems addressed in this thesis and our main contributions
can be summarized as follows.

• Packet processors usually consist of a collection of heterogeneous processing
elements. We pose the problem of determining the feasibility of a mapping of
the different packet processing tasks onto the different processing elements, as
a schedulability analysis problem. It turns out that for the model we consider,
this schedulability analysis problem is intractable (NP-hard) and therefore can
not be solved within any reasonable time. To get around this, we introduce
a novel concept called “approximate schedulability analysis”, using which the
problem can be solved in polynomial time if a small error in the decisions made
by the algorithm is allowed. Using this concept, we demonstrate that in spite
of the intractability result, a schedulability analysis can nevertheless be done in
reasonable time for all practical purposes. We also show that this concept is
not only restricted to our particular model in the context of packet processing,
but is applicable to a wide variety of other real-time task models for which only

ii

exponential or pseudo-polynomial time algorithms were known till now.

• We study an analytical framework for system-level timing analysis for packet
processors, which generalizes many scheduling-theoretic results from the real-
time systems area, and also matches results that could previously be obtained
only using detailed cycle-accurate simulations. Based on this, we propose a new
methodology for the design space exploration of packet processors to tackle the
large design space involved. It is based on conducting the exploration in several
stages, each at a different level of abstraction, and using a different performance
evaluation scheme in each stage.

• Traffic management is one of the main functions of any packet processor, espe-
cially in the case of routers, where the goal is to meet the real-time constraints
of QoS sensitive flows and at the same time provide a reasonable service to
best-effort packets. In this context we propose a novel scheduler which gives
theoretical guarantees on the service that can be provided to best-effort flows.
The theoretical framework behind this scheduler generalizes a number of ser-
vice schemes developed in the real-time systems area for integrating soft-real-
time jobs into a hard-real-time environment. Further, our experimental results
also suggest clear improvements over previously known schemes.

The above problems are concerned with three very general issues related to
scheduling and timing analysis, which arise in many different real-time embed-
ded system scenarios. Given a set of jobs with a set of constraints on these
jobs, and a goal (such as deadlines) to be met, the first problem asks “does there
exist an execution order or schedule for the jobs which satisfies the constraints
and meet the specified goal?” The second problem is concerned with answering
“given a schedule or an execution order for the jobs, what timing properties do
the jobs satisfy if they are executed according to this schedule?” Finally, the
third problem is concerned with “finding a schedule for the jobs which satisfies
the constraints and meets the goal”. The results corresponding to these problems
that we derive in this thesis either extend or generalize previously known results
from the real-time systems area, and also integrate concepts from scheduling
theory, system-level design, and computer networking.

Kurzfassung

Paketprozessoren sind programmierbare Hochleistungsbausteine mit speziellen
Architekturmerkmalen; sie sind für Paketverarbeitung in Datennetzen optimiert
und meistens in Netzrouter und -switches eingebettet. Paketprozessoren werden
für die verzögerungsfreie Implementation komplexer Paketverarbeitungsaufga-
ben entworfen.

In dieser Dissertation werden verschiedene Aspekte der Timing-Analyse
und des Scheduling für solche eingebetteten Paketprozessoren auf Systemebe-
ne untersucht. Die Arbeit ist motiviert durch die Tatsache, dass der Entwurf und
die Analyse sowohl der Architektur als auch der Software für Paketprozesso-
ren neue Modelle und Methoden erfordern, welche nicht Teil des traditionellen
Entwurfs eingebetteter Systeme sind.

Sowohl Timing-Analyse als auch Scheduling sind im Kontext des Entwurfs
von eingebetteten Systemen auf Systemebene umfassend untersucht worden.
Die meisten dieser Untersuchungen haben sich jedoch auf datendominierte An-
wendungen wie digitale Signalverarbeitung konzentriert, und Techniken ent-
wickelt welche nicht direkt in kontrolldominierten Anwendungen wie der Pa-
ketverarbeitung anwendbar sind. Wir identifizieren die Hauptunterschiede zwi-
schen diesen beiden Anwendungskategorien und der entsprechenden Architek-
turen; auf diese Unterschiede gestützt, schlagen wir neue Modelle für Tasks und
Architekturen vor, welche besonders geeignet sind, die Merkmale kontrolldomi-
nierter Anwendungen zu erfassen. Dabei konzentrieren wir uns auf eine spezi-
elle Anwendungskategorie, nämlich Paketverarbeitung in Datennetzen. Auf der
Grundlage dieser Modelle schlagen wir dann mehrere Algorithmen zur Analy-
se der Hardware-/Software-Architekturen von Paketprozessoren vor. In diesem
Zusammenhang können die verschiedenen in dieser Dissertation behandelten
Fragestellungen und unsere Hauptbeiträge wie folgt zusammengefasst werden:

• Paketprozessoren bestehen typischerweise aus einer Ansammlung von hetero-
genen Verarbeitungselementen. Wir behandeln dabei das Problem, die Mach-
barkeit einer Zuordnung der verschiedenen Paketverarbeitungsaufgaben zu den
verschiedenen Verarbeitungselementen zu ermitteln, als Zeitplanbarkeitsanaly-
seproblem. Es stellt sich heraus, dass dieses Problem für das von uns betrachtete
Modell unlösbar (NP-hart) ist und daher nicht in vernünftiger Zeit gelöst werden
kann. Um dieses Problem zu umschiffen, führen wir ein neues Konzept namens
“approximative Zeitplanbarkeitsanalyse” ein, mit welchem das Problem in po-
lynomieller Zeit gelöst werden kann, sofern ein kleiner Fehler in den vom Al-

iv

gorithmus getroffenen Entscheidungen erlaubt wird. Unter Zuhilfenahme die-
ses Konzepts zeigen wir, dass trotz des Unlösbarkeitsresultats eine Zeitplanbar-
keitsanalyse dennoch für alle praktischen Zwecke in vernünftiger Zeit gemacht
werden kann. Wir zeigen auch, dass dieses Konzept nicht auf unser besonde-
res Modell im Kontext der Paketverarbeitung beschränkt ist, sondern auf eine
Vielzahl anderer Echtzeit-Taskmodelle angewendet werden kann, für die bis-
lang nur Algorithmen mit exponentieller oder pseudo-polynomieller Laufzeit
bekannt waren.

• Wir untersuchen ein analytisches Rahmenwerk für die Timing-Analyse von Pa-
ketprozessoren auf Systemebene, welches viele Resultate aus der Zeitplanungs-
theorie im Bereich der Echtzeitsysteme verallgemeinert; weiterhin stimmt es
mit Ergebnissen überein, die zuvor nur mit detaillierten zyklengenauen Simula-
tionen erzielt werden konnten. Basierend hierauf schlagen wir eine neue Metho-
dologie für die Exploration des Entwurfsraums von Paketprozessoren vor, mit
der der grosse Entwurfsraum in Angriff genommen werden kann. Sie gründet
auf der stufenweisen Durchführung der Exploration, wobei auf jeder Stufe ei-
ne verschiedener Abstraktionsgrad und ein anderes Leistungsevaluationssche-
ma zur Anwendung kommt.

• Die Netzverkehrsabwicklung ist eine der Hauptfunktionen jedes Paketprozes-
sors, besonders im Fall von Routern, bei denen das Ziel in der Erfüllung
der Echtzeitvorgaben QoS-empfindlicher Datenflüsse und der gleichzeitigen,
vernünftigen Abarbeitung von Best-Effort-Paketen besteht. In diesem Zusam-
menhang schlagen wir einen neuen Scheduler vor, welcher theoretische Ga-
rantien auf die für Best-Effort-Datenflüsse zur Verfügung stehende Leistung
gibt. Das theoretische Rahmenwerk hinter diesem Scheduler verallgemeinert
eine Reihe von Service-Schemata, die im Bereich der Echtzeitsysteme für die
Integration von Soft-Real-Time-Jobs in eine Hard-Real-Time-Umgebung ent-
wickelt wurden. Weiterhin legen unsere experimentellen Ergebnisse deutliche
Verbesserungen gegenüber zuvor bekannten Schemata nahe.

Die obigen Fragestellungen behandeln drei sehr allgemeine Themen im
Zusammenhang mit Scheduling und Timing-Analyse, welche in vielen ver-
schiedenen Echtzeitszenarien mit eingebetteten Systemen auftauchen. Ge-
geben eine Menge von Jobs mit einer Menge von Einschränkungen so-
wie ein zu erreichendes Ziel (etwa Deadlines), lautet die erste Frage “Gibt
es eine Ausführungsreihenfolge für die Jobs, welche die Einschränkungen
erfüllt und das gesetzte Ziel erreicht?” Die zweite Frage lautet “Gege-
ben eine Ausführungsreihenfolge für die Jobs, welche Timing-Eigenschaften
erfüllen die Jobs bei Ausführung gemäss der vorgegebenen Reihenfolge?”
Zuletzt beschäftigt sich die dritte Fragestellung mit dem “Finden einer
Ausführungsreihenfolge für die Jobs, welche die Einschränkungen erfüllt und
das gesetzte Ziel erreicht”. Die Antworten auf diese Fragestellungen, die wir in
dieser Dissertation herleiten, erweitern oder verallgemeinern zuvor gefundene

v

Ergebnisse aus dem Bereich der Echtzeitsysteme, und integrieren Konzepte der
Zeitplanungstheorie, des Entwurfs auf Systemebene, und der Datennetze.

vi

Contents

1 Introduction 1
1.1 Packet processing functions . 2

1.1.1 Processing task chains 3
1.1.2 Control- versus data-plane 6
1.1.3 Services and protocols 7

1.2 Packet processing hardware . 8
1.2.1 Programmable packet processors 10
1.2.2 Organization of packet processors in routers 11

1.3 System-level design of embedded packet processors 12
1.3.1 System-level design: Issues and trends 12
1.3.2 The case of packet processors 14
1.3.3 Issues in timing analysis and scheduling 16

1.4 Thesis contributions . 19
1.5 Related work . 21
1.6 Organization and bibliographic notes 24

2 Fundamental abstractions:
Modeling algorithms, architectures and packet flows 27
2.1 Characteristics of packet processing applications 28
2.2 Organization of processing and memory units 30
2.3 Specifying bounds on packet flows 34
2.4 Scheduling disciplines . 38

3 Schedulability analysis 43
3.1 Background . 45
3.2 The task model . 49

3.2.1 Rationale . 51
3.2.2 Task sets and schedulability analysis 51
3.2.3 Dynamic- and static-priority scheduling 52

3.3 The complexity of schedulability analysis 53
3.4 Basic algorithms . 57

3.4.1 Dynamic-priority schedulability analysis 57
3.4.2 Static-priority schedulability analysis 60
3.4.3 Computing the demand- and request-bound functions . . 62
3.4.4 Improved static-priority schedulability analysis 64

viii Contents

3.5 Algorithms for a restricted task model 66
3.5.1 Pseudo-polynomial time dynamic-priority schedulabil-

ity analysis . 66
3.5.2 Pseudo-polynomial time static-priority schedulability

analysis . 68
3.6 Schedulability with bounds on preemptions 69
3.7 Approximate schedulability analysis 74

3.7.1 An abstract model of task systems 76
3.7.2 Algorithms for approximate schedulability analysis . . . 83
3.7.3 Other task models . 90

3.8 Experimental results . 90
3.9 Summary . 98

4 An analytical framework for timing analysis 99
4.1 Analytical frameworks in design space exploration 102

4.1.1 Performance evaluation in the context of design space
exploration . 103

4.2 Existing approaches . 104
4.3 Modeling packet flows and resource capacities 108
4.4 A model for timing analysis and performance evaluation 110

4.4.1 Analysis using a scheduling network 112
4.4.2 Scheduling network construction 115
4.4.3 Approximating the arrival and service curves 116
4.4.4 Improved approximations 117

4.5 Generalizing standard event models 120
4.6 The simulation setup . 125

4.6.1 Modeling environment and software organization 126
4.6.2 Component Modeling 127

4.7 A comparative study . 129
4.7.1 Reference architecture and parameters 130
4.7.2 Evaluation method and comparisons 132
4.7.3 Evaluation results . 134

4.8 The role of multiple evaluation frameworks in a design flow . . 143
4.8.1 Accuracy and evaluation times in the context of design

space exploration . 143
4.8.2 A design flow for packet processors 144

4.9 Summary . 145

5 Scheduling a mix of real-time and best-effort traffic 147
5.1 Traffic characterization . 150
5.2 Designing schedulers for a mix of real-time and best-effort tasks 151

5.2.1 EDF versus proportional share 151
5.3 Optimal deadline assignment for best-effort packets 152

5.3.1 An alternative interpretation 155
5.4 Approximating the effective residual link capacity 160

Contents ix

5.4.1 With a straight line passing through the origin 160
5.4.2 With a straight line cutting t = δ 161
5.4.3 With a combination of two line segments 162
5.4.4 With a combination of two line segments, shifted by δ . 168

5.5 Experiments . 168
5.5.1 Network traffic characteristics 169
5.5.2 Results . 171

5.6 Summary . 172

6 Concluding remarks 175
6.1 Future work . 177

Bibliography 179

x Contents

1
Introduction

The primary components of any communication network are hosts and routers.
Applications running on different hosts communicate with each other by send-
ing packets. Any large network, including what is referred to as the Internet is
organized in a hierarchical manner. At the lowest level, a number of hosts are
connected together to form a network. Routers are hosts within such a network,
which have interfaces to more than one network. A packet originating from an
application running on a host and destined to a host in a different network, ar-
rives at a router and is forwarded by it to the appropriate network on the basis of
the destination address in the packet’s header. A number of networks connected
together by routers in such a manner form a larger network and the next level of
hierarchy.

Routers, even with this basic “store-and-forward” functionality can be con-
sidered as “packet processors”, and this is still their default behaviour in IP
(or the Internet Protocol based) networks. However, with networks extensively
growing in size, and the Internet slowly shifting from a research network into
one being used for commerce, banking, communication, entertainment and in-
formation dissemination, routers became more and more complex and incor-
porated new packet processing functionality. Functions implemented within a
router now include firewalls, network address translaters, means for implement-
ing quality-of-service (QoS) guarantees to different packet flows, and also pric-
ing mechanisms. Until recently, such a router used to be implemented entirely
in software, running on a general purpose processor within a host computer.
However, such implementations are increasingly becoming infeasible because
of two reasons. Firstly, during the last couple of years the available network
bandwidth has been on the rise, and with the advent of optical fibers being de-
ployed for networking, network bandwidth has increased exponentially. This

2 Chapter 1. Introduction

has lead to very stringent performance requirements from routers since they
have to process packets at line speed. Secondly, in spite of the increased us-
age of the Internet, its structure is still relatively simple, with the underlying
network providing basic communication between end-systems. All the com-
plex services and features are therefore either implemented on the end-systems
(such as those pertaining to guaranteed communication), or on the routers (such
as features which need network support and can not be implemented solely by
the end-systems). Additionally, any new service to be supported by a network
is implemented by extending or modifying the routers.

The real-time packet processing constraints imposed on routers to support
high line speeds indicate hardware-based solutions, where the router function-
ality is implemented on application-specific integrated circuits (ASICs). The
requirements for flexibility and the complex nature of many of the processing
functions, on the other hand, favour software based implementations on gen-
eral purpose processors. To address these two conflicting issues, recently a
new class of devices called network processors have emerged. These are high-
performance, programmable devices with special architectural features that are
optimized for packet processing.

Such specialized packet processors for implementing router functionality
are commercially being developed only very recently. There is still a lot of ef-
fort to be spent in quantitatively understanding many system issues related to
the architecture of these devices and also those related to designing the soft-
ware running on them. This thesis analyses a number of such issues pertaining
to timing analysis and scheduling for such packet processors, and towards this
proposes appropriate models and algorithms. It was motivated by the fact that
designing and analysing, both, the architecture for such processors and the as-
sociated software requires new models and methods which do not fall under
the domain of traditional embedded systems design. Throughout this thesis, the
term “packet processor” is used in the most generic sense and is supposed to
encompass all kinds of network processors, task-specific packet processors, and
routers made up of both network processors and general purpose processors.

1.1 Packet processing functions

There are several possibilities of classifying network packet processing func-
tions, each providing a different insight into the requirements from the architec-
ture on which such functions may be implemented. In this section we briefly
describe such functions that may be implemented within an IP router, and three
approaches towards classifying them. The first is based on the different packet
processing tasks constituting a packet processor and the sequence in which such
tasks process a packet, the second approach is based on the functionality of the
different protocols and packet processing functions, and the third is on the basis
of different services/protocols that routers might be required to support.

1.1. Packet processing functions 3

1.1.1 Processing task chains

In any IP based network, every network interface has a 32-bit identifier called
the IP address. Host computers with more than one network interface have more
than one IP address. To send data from a source computer to a destination host
accross the Internet, the source splits the data into blocks and each such block
forms the data portion of a packet. To each such block is attached an IP header
which contains all the routing information required to send the block from the
source to the destination in a hop by hop manner, by traversing several hosts
in the network. The data block together with the header is called an IP packet.
The packet is encapsulated into a link-layer packet (for example, as an Ethernet
frame) such that it is appropriate for transmission over the network.

For guaranteed delivery of the packet, on each host, that the packet traverses
on its way from the source to the destination, different packet processing al-
gorithms and protocols are implemented. These algorithms implement packet
processing starting at the network layer of the Transmission Control/Internet
Protocol (TCP/IP) stack. This is the lowest layer from which end-to-end packet
transmission between two hosts is distinguishable.

With the packet arriving at a router, a decision is to be made concerning
the network interface to which the packet will be forwarded. This decision is
based on the information stored in the IP packet header and also several state
informations in the router. Additionally, all packets undergo some amount of
transformation when they pass through the router. The minimum amount of pro-
cessing that a packet might undergo is decrementing the time-to-live (or TTL)
field in the packet header and recomputing the header checksum. But many
packets would undergo more complex processing than this. Lastly, there might
be packets which are not to be forwarded and are meant for the router itself (for
example, a routing protocol packet). What is referred to as “packet processing”
includes all the tasks involved in the above mentioned processing.

Since all packets passing through a router do not require the same process-
ing, it is meaningful to divide the entire packet processing functionality of a
router into a number of separate tasks. Depending on the performance and the
QoS requirements of the packets to be processed, the different tasks may be dis-
tributed over multiple heterogeneous processors. Apart from making software
development easy and facilitating reuse, this view of splitting packet process-
ing into a number of tasks also opens up different implementation possibilities
which might have significant impact on performance. The sequence in which
different tasks process an incoming packet results in a packet processing task
chain. If such chains for several packet flows are combined, the resulting task
graph might have branches when packets from different flows require to be pro-
cessed by different tasks (as an example, see Figure 1).

Basic packet processing tasks at a router include header parsing, packet clas-
sification to assign the packet a QoS class, determination of the outgoing net-
work interface (i.e. forwarding), checking Service Level Agreements (i.e. polic-
ing), queuing, and link scheduling. Which among these tasks process any given

4 Chapter 1. Introduction

voice processing

security Possible task chain corresponding

to a single packet processing function

In
p

u
t

p
o

rt
s

H
e
a
d

e
r

P
a
rs

in
g

&

C
la

s
s

if
ic

a
ti

o
n

F1

F2

F3

Fn

Packet processing function

L
in

k
S

c
h

e
d

u
li

n
g

O
u

tp
u

t
p

o
rt

Real-time flows

Best-effort flows

Decrypt
AH

Verify

ESP

Decaps

Classify

AH

Calc

ESP

Encaps
Encrypt

IP fragm

entation

Calc

Check

sum

Route

LookUp

IPHeader

Modify

UDP Tx

ARP

LookUp

Voice

Decoder
RTP Rx

Build IP

Header

Route

LookUp
Voice

Encoder

UDP Rx Dejitter

RTP Tx

voice processing

security Possible task chain corresponding

to a single packet processing function

In
p

u
t

p
o

rt
s

H
e
a
d

e
r

P
a
rs

in
g

&

C
la

s
s

if
ic

a
ti

o
n

F1

F2

F3

Fn

Packet processing function

L
in

k
S

c
h

e
d

u
li

n
g

L
in

k
S

c
h

e
d

u
li

n
g

O
u

tp
u

t
p

o
rt

Real-time flows

Best-effort flows

Decrypt
AH

Verify

ESP

Decaps

ClassifyClassify

AH

Calc

AH

Calc

ESP

Encaps

ESP

Encaps
EncryptEncrypt

IP fragm

entation

IP fragm

entation

Calc

Check

sum

Calc

Check

sum

Route

LookUp

Route

LookUp

IPHeader

Modify

IPHeader

Modify

UDP TxUDP Tx

ARP

LookUp

ARP

LookUp

Voice

Decoder

Voice

Decoder
RTP RxRTP Rx

Build IP

Header

Build IP

Header

Route

LookUp

Route

LookUp
Voice

Encoder

Voice

Encoder

UDP RxUDP Rx DejitterDejitter

RTP TxRTP Tx

Fig. 1: Tasks in a packet processor. After the basic classification, a flow might still be an
aggregate of several flows which are classified in later stages. Each node labeled as
“packet processing function” can be made up of several tasks, resulting in a conditional
task graph. Such a conditional task graph corresponding to one node is shown in the
top of the figure.

packet, and how complex each task is, depends on the services that the router
implements. Below, we describe each of these basic tasks and briefly discuss
their possible manifestations and the range of their complexity.

• Header parsing: The header of an incoming packet is parsed to extract infor-
mation based on which further processing of the packet is carried out. The
information extracted might include source and destination addresses, check-
sums, packet length, protocol specifiers and the type of service the packet is
destined to receive. It may be noted that the header parsing need not be limited
to the network layer header and might include headers of higher layers of the
protocol stack. As an example, IP routers often use the source and destination
port numbers of the transport layer to classify packets. Based on the outcome
of the header parsing, a packet may be immediately dropped, or passed on to
further processing stages. In the later case, a classification task uses the ex-
tracted header information to assign the packet its context information, such as
the corresponding QoS class.

1.1. Packet processing functions 5

• Classification and routing: Based on the destination address and other infor-
mation extracted by the header parsing task, the packet is either forwarded to
an appropriate outgoing link, or is passed to other processing tasks. A packet
needs to be processed by other processing tasks either if the destination of the
packet is reached, or if some higher protocol layers need to be processed. This
additional processing might be implemented by several sequential tasks, and
packets from different flows might pass through different task chains. Func-
tions implemented here might include access control (by blocking certain pack-
ets from entering the network), network address translation, QoS differentiation
(where real-time traffic might be separated from best-effort traffic and treated
separately), policy-based routing, etc.

Since it is possible to distinguish between different packet flows only after the
header parsing and packet classification stages, both these tasks should be im-
plemented such that they are able to process packets at line speed. This is to en-
sure that packets from high-priority flows receive a preferential treatment over
lower priority flows during later processing/link scheduling stages. Depending
on which implementation options are available, full packet clasification need
not be done at this stage itself. What is implemented as “classification” at this
stage, might be limited to the processing that can be completed within a fixed
number of processor cycles, which is determined by the line rate. To implement
application-level classification and processing, which might take an arbitrary
length of time, an incoming packet might only be partially classified at the first
stage. After the preliminary QoS distinction is done, packets from lower QoS
classes might even be dropped if there are not sufficient processing resources
available.

• Policing: Packets to be forwarded to the outgoing link are processed by a task
which implements policing. Based on the flow information assigned by the clas-
sifier, the policer checks whether a packet conforms to the specified traffic pro-
file for that flow. Traffic profiles are determined by Service Level Agreements
(SLAs) between customers and the service provider for a flow, and specifies
properties like the maximum allowable burstiness and the rate of incoming traf-
fic. If a packet conforms to the specified profile, then it is guaranteed a certain
minimum amount of service and is processed further without any restriction.
However, if a packet does not conform to the specified profile, then the amount
of service it gets might depend on the resources (i.e. it is given a “best-effort
service”), or it might even be dropped. In many cases, a packet might be de-
layed before the policing stage, to shape the flow to which the packet belongs to
the predefined profile. Details about specifying traffic profiles and shaping are
described in detail in the next chapter.

• Queuing and link scheduling: Before a packet is finally put out into the outgo-
ing link, it is queued until the link scheduler chooses it for transmission or is
dropped in case the link is congested. Since the space for storing such packets
is usually limited, it is the job of the queue manager to manage the packet stor-

6 Chapter 1. Introduction

age space, and isolate packets from different flows which have different QoS
requirements (as shown in Figure 1).

Finally, the link scheduler decides the ordering among the packets stored in the
queue(s) for transmission into the outgoing link. This scheduling may be based
on factors such as real-time constraints of the different flows, the traffic profiles
associated with the flows, fairness requirements, efficiency requirements of the
scheduler, etc.

Clearly, the exact nature and the complexity of each of the above tasks vary
from case to case, and to a large extent is also constrained by the implementation
choices available. As already mentioned, each of these tasks also have different
performance requirements. The hardware and the software implementation of
a packet processor therefore involves several tradeoffs between cost, efficiency
and flexibility.

1.1.2 Control- versus data-plane

From a functionality perspective, packet processing can be divided into two
classes—functions constituting the control-plane of a router and those consti-
tuting the data-plane. Each of these two classes has different characteristics
and performance requirements. Typically, control-plane functions and proto-
cols are complex and have long code paths, but do not have very high perfor-
mance requirements or real-time constraints (i.e. they need not be executed at
the full line speed). Examples of these include the resource reservation protocol
(RSVP) which is used to allocate resources in routers for IP flows and the open
shortest path first (OSPF) protocol which is used to establish and update routing
tables. Generally, control-plane functions are concerned with the overall system
management and are best implemented on general purpose processors because
of their inherent complexity.

Data-plane functions and protocols are mostly responsible for packet for-
warding. These are performance critical since they must be performed at high
speed to avoid packet dropping, and to meet QoS requirements. Further, they
typically require the same functionality to be applied to a large number of pack-
ets, with each packet getting a small amount of processing time. Therefore,
such functions are suited for parallel execution and may be implemented on spe-
cialized processors since they are generally simple and have short code paths.
Many currently available network processors provide special hardware support
for common data-plane functionality. A common solution is to have a data-
plane processor with a number of multi-threaded packet processing engines,
which offer the required parallelism for implementing data-plane functions. For
example, Intel’s IXP family of network processors consist of eight to sixteen
packet processing engines (commonly referred to as “microengines”), each of
which contains eight hardware threads, special queues for receiving and trans-
mitting packets, hardware state machines that specifically read from and write
to the transmit and receive queues, and other hardware elements.

1.1. Packet processing functions 7

The distinction between data- and control-plane protocols becomes fuzzy
as we move up the TCP/IP protocol stack. As an example, the transmission
control protocol (TCP), which is a Transport layer protocol (responsible for
end-to-end transmission of aggregated packets), exibits both control- and data-
plane functionality and is relatively complex. As a result, designing packet
processors for implementing functions and protocols belonging to higher levels
of the protocol stack becomes relatively complex.

1.1.3 Services and protocols

Lastly, we list below a number of services and protocols, which require network
packet processing at the routers for their implementation (i.e. they can not be
implemented solely by applications running on end-systems). Here we give a
high-level view of these services. Typically, they would be implemented by a
sequence of tasks (as described in Section 1.1.1), some of which would be a
part of the control-plane of a router and others need to be implemented in the
data-plane.

• Firewalls: These are components used to block the flow of packets between two
networks and in the process implement security features. The filtering rules used
to block packets (where certain classes of packets might be selectively blocked),
either from or into the network, are defined by network administrator and might
be numerous and very complex. They might also involve examining the packet
body (or payload) and therefore be computationally intensive. Since, in many
cases, this processing has to be done in line speed, implementing firewalls might
be complex.

• Network address translators (NATs): Due to the limitation in the number of
IP addresses available (an IP address being only 32-bits wide), NATs allow
multiple hosts in an internal network to appear as a single host to the outside
world by using a single IP address. Packets passing between such an internal
network and the Internet are modified by the NAT. A router supporting NAT
modify the source address of outbound packets and the destination address of
inbound packets.

• Transcoding media gateways: With the increase in the number of Internet-
connected devices such as pagers, cellular phones, and personal digital assis-
tants (PDAs)—many of them of them supporting streaming audio and video—
there is a need for efficiently delivering web-based content to such devices.
Since most of these devices have constraints on network bandwidth and also
processing capability, they are unable to receive and process data that a normal
computer would be able to do. Transcoding media gateways are specialized
routers that convert such high-bandwidth and high-resolution data into lower
bandwidth (which might be possible to transfer over wireless links, for example)
or lower resolution data (which might be suitable for, say, handheld displays).

It is possible to enlist several such services that are supported by networks
today. The routers in question therefore have to perform complex packet pro-

8 Chapter 1. Introduction

System bus

ProcessorProcessor DMACDMAC MemoryMemory

Line

interface
Line

interface

Switch

interface
Switch

interface
Network Switch

fabric

Fig. 2: Software based packet processor, built around a single general purpose processor.

cessing tasks. For hardware based solutions, as new services get introduced, the
hardware needs to be updated, or the new services need to be implemented in
software. Purely software based solutions on the other hand do not meet up to
the stringent performance requirements enforced by the high line speeds. The
present trend, as mentioned in begining of this chapter, is to have specialized de-
vices to perform packet processing—which are programmable and at the same
time some of the tasks are implemented in hardware. In the next section we
briefly review the development of this class of devices.

1.2 Packet processing hardware

As mentioned in the begining of this chapter, early routers were built around a
general purpose processor inside a host computer. Even today, such purely soft-
ware based routers are commonly used and provide an economical and flexible
way of adding router functionality to a server. From a hardware perspective, in
these systems there is no differentiation between control- and data-plane func-
tions (or what is also referred to as slow path and fast path functions)—both
being handled by a single processor. The architecture of such a system is shown
in Figure 2. There are interfaces to the network and the switch fabric. The
general purpose processor is supported by a direct memory access controller
(DMAC) and simple input/output devices. Packets are transferred between the
memory and the switch interface or the line interface. The processor accesses
the packets from the memory, processes them and programs the peripheral de-
vices to transfer them to the outgoing link.

With the increase in network bandwidth and the complexity of the packet
processing functions, such architectures reached their performance and scala-
bility limits. To cope with this problem, as a first solution, some of the router

1.2. Packet processing hardware 9

System bus

ProcessorProcessor

ASIC as packet

processor
ASIC as packet

processor

MemoryMemory

Line

interface
Line

interface

Switch

interface
Switch

interface

MemoryMemory

Network
Switch

fabric

Fig. 3: A packet processor with the fast-path packet processing implemented in ASICs.

functionality was distributed to the line interface cards. The host processor han-
dled functions related to system control and the network management interface,
which are relatively time-insensitive. Processors on the line cards performed
the time-critical functions. The exact distribution of functions were largely de-
pendent on vendor specific implementations, but distributing functions among
multiple processors became the common way to acclerate packet processing.
The second solution was to use Ethernet switches. These are high-performance,
multiport versions of Ethernet bridges, which forward frames based on layer-
2 MAC address information. Using Ethernet switches at the edges of a LAN,
and routers at the network core, results in traffic going to a router only if the
destination address is unknown or outside the LAN. By eliminating all the
complex processing required to route traffic, Ethernet switches could achieve
high throughput by implementing packet processing in application-specific in-
tegrated circuits (ASICs), thereby avoiding software execution in the fast path.

It was natural to also combine the two above solutions, resulting in layer-2
switches that can perform routing, or routers with switching line cards. The
architecture of such a system is shown in Figure 3, where most of the packets
can be transferred without passing over the system bus and through the general
purpose processor. In such systems, ASICs handled all the layer-2 processing
in the fast path. The general purpose processor, on the other hand, handled all
the packet processing at layer-3 and higher layers.

With the advent of layer-3 switching, the distinction between switches and
routers became even more fuzzy. Because of the standardization of the of IP as
the layer-3 protocol in local- and wide-area networks, layer-3 switching made
it possible to do classification and forwarding of packets based on their layer-

10 Chapter 1. Introduction

3 address, without resorting to complex routing algorithms. Since IP packets
make up the major portion of traffic in any switch or router, many system ven-
dors offered solutions where IP classification and forwarding were hardwired
into ASICs. These represented a simpler subset of more complex routing code
that were executed in general purpose processors.

This line of development, however, did not stop at layer 3 in terms of the
depth of packet classification. With the growth of the World Wide Web and the
standardization of the associated protocols, it became possible to do even deeper
packet classification and processing in the fast path, based on information avail-
able at layer 4 (such as the TCP port number) and layer 5 (such as the URL
address). As a result, such processing also became candidates for ASIC-based
implementation.

1.2.1 Programmable packet processors

With more and more packet processing functions moving up the protocol stack,
a greater degree of variability was encountered relative to the layer-2 and layer-
3 specifications. As a result, ASIC-based implementations faced limitations
when it came to adding new protocols and applications, or modifying old ones.
Web server switches and IP service platforms are two good examples which had
serious problems with ASIC-based implementations.

The flexibility limitations of ASIC-based implementations and the per-
formance bottlenecks of purely software-based implementations led to the
development of “programmable packet processors”, which are commonly
referred to as “network processors”. The architecture of network processor
based line card is primarily characterized by replacing the fixed-function “ASIC
as packet processor” in Figure 3, with one or more programmable processors
along with specialized coprocessors for certain tasks.

1.2.1.1 Architectural characteristics
The main architectural characteristics of network processors over general pur-
pose processors or ASICs are the following.

Firstly, the programmable processor cores in most network processors are
based on modified versions of standard RISC instruction sets. The degree of
modification, however, varies from product to product. Usually there are addi-
tional instructions which are tailored to speed up operations which might ap-
pear in portions of the application code having real-time constraints. Examples
of these are bit manipulation instructions and instructions for searching and ad-
dressing specialized data structures.

Secondly, the programmable processor cores are supported by additional
hardwired function blocks, so that the performance of functions which are
common across many applications are acclerated. Examples of this are ded-
icated processors for encryption and decryption. Thirdly, to exploit the par-
allelism in terms of independently processing packets belonging to different
flows, most network processor architectures have appropriate features. Parallel

1.2. Packet processing hardware 11

and pipelined processors allow packets from different flows to be processed in-
dependently, thereby allowing more processing time per packet. Lastly, packet
processing typically involves a number of table lookups to match fields in the
packet against values stored in lookup tables, and also buffer management as
packets usually have to be stored before and after processing. To effectively
support these, packet processors usually have distributed and shared memory
architectures.

To give an example of the above characteristics—the Intel IXP line of pro-
cessors have a general purpose 32-bit RISC processor for slow-path process-
ing and control plane operations. Additionally, there are a number of RISC
processing engines called microengines for fast-path processing (the IXP2400,
for example, has eight microengines), where each microengine has eight hard-
wire threads. Since all the microengines can operate in parallel, assigning one
packet to each thread on a microengine allows the processing of several packets
in parallel. The microengines are fully programmable, general-purpose engines
and can be programmed to implement any arbitrary packet processing function.
Additionally, there are on-chip special-purpose hardware units for hashing and
CRC compution. The distributed memory architecture of the IXP consists of
support for two different types of external memories—QDR SRAM for low-
latency accesses to smaller data structures used in lookup operations and DDR
SDRAM for larger storage needed for packet buffers and bulk data transfers.
Both the SRAM and SDRAM address spaces are shared among all the micro-
engines and the data in these memories is accessible to each microengine thread
on an equal basis. Additionally, the processor includes an on-chip SRAM that
is shared among all the microengines and a small amount of local memory per
microengine. The on-chip SRAM is used for providing fast access to the pro-
cessing state, packet headers, or code running on the different microengines.
The local memory in the microengines is meant for caching data needed by the
different threads within a microengine.

1.2.2 Organization of packet processors in routers

There are several ways in which packet processors may be organized within a
router. Typically they are put on line cards such that there is a processor at each
router port. This organization is shown in Figure 4. At the other extreme, there
is a shared pool of processors which can be used to process packets from any
port. This is shown in Figure 5. There may be several variations and com-
binations of these two categories. For example, some ports might have such
processors on their line cards, and at the same time, there might be a shared
pool of processors as well to augment the processing power of ports with high
demands.

Clearly, the first organization is appropriate for high forwarding require-
ments, where packets coming from all the ports require processing. Here, the
forwarding throughput is based on the amount of parallelism and the number
of non-blocking paths through the switch fabric. The second organization is

12 Chapter 1. Introduction

SwitchSwitch

Line interface,

Framing, etc. Packet

Processing

Memories

Line interface,

Framing, etc. Packet

Processing

Memories

Other

Line Cards

Other

Line Cards

General purpose host processorGeneral purpose host processor
Packets in/out

Line Card

Fig. 4: A router architecture with packet processors at each port.

meaningful when the aggregate throughput requirement of the system is rela-
tively less. In such cases, there may be one or more packet processors in the
pool, which may be organized either in parallel or as a pipelined array.

In either of the two organizations, packets can be processed on the input
port, the output port, or the processing might be distributed between the two
ports. The advantage of the first approach is that the processing requirements
are limited to the link speed of the connected link. When multicasting is used,
the processing requires to be done only once. The drawback, on the other hand,
is that in the case of congestion on the output link, packets that are already
processed need to dropped, thereby wasting processing resources. In practice,
parts of the processing is done at the input port and the remaining processing
is done at the outport port. For example, to enable QoS distinction between
different flows, some basic classification always needs to be done at the input.
The abstract task chain shown in Figure 1, therefore, is partially implemented
at the input port and partially at the output.

1.3 System-level design of embedded packet processors

1.3.1 System-level design: Issues and trends

Most of today’s embedded systems are implemented as a system-on-a-chip
(SoC). In the context of network packet processors, the architecture of such sys-
tems consist of a heterogeneous combination of different hardware and software
components. As mentioned in the last section, the hardware components consist
of CPU cores, dedicated hardware blocks, different kinds of memory modules
and caches, various interconnections and I/O interfaces. All of these are inte-
grated on a single chip and run specialized software to perform packet process-
ing. The process of determining the optimal hardware and software architecture
for such processors includes issues involving resource allocation, partitioning,
and design space exploration. These are issues that are typical in most embed-
ded systems design. To tackle the complexity of such designs, and also to meet

1.3. System-level design of embedded packet processors 13

SwitchSwitch

Line interface,

Framing, Basic

Classification

Packet

Processing

Packet

Processing

Queue MemoryQueue Memory

Other

Line Cards

Other

Line Cards

General purpose host processorGeneral purpose host processor
Packets in/out

Line Card

Packet

Processing

Packet

Processing

O
ff
-c

h
ip

M
e
m

o
ry

O
ff
-c

h
ip

M
e
m

o
ry

Fig. 5: A router architecture with a pool of shared packet processors.

demands for short time-to-market and low cost, several new design paradigms
like platform-based design [92] have evolved.

All of these design methodologies are based on the idea of concurrent design
of hardware and software, and the design flow starts with an abstract specifica-
tion of the application and some performance requirements. These specifica-
tions are used to drive a system-level design space exploration [118], which it-
erates between modeling, verification, performance evaluation and exploration
steps. Once an appropriate system architecture and hardware-software parti-
tioning has been identified, it is followed by a hardware and software synthesis
step using high-level synthesis tools. Cosimulation can then evaluate system
properties like timing, memory requirements, etc., with abstract models used
for the nonimplemented parts. Results from this step can be used to go through
the whole process once again with a refined specification. An overview of this
process, with an outline of the state-of-the-art in system-level design can be
found in [57].

To speedup this entire process, increase design productivity, and reduce
costs, designers today increasingly rely on the use of intellectual property (IP)
blocks or “cores”, with the goal of rapidly realizing a system by assembling a
network of these cores. This makes hardware design more abstract and similar
to the way software is currently designed using resuable software components.
Core libraries, such as the IBM Blue Logic Library [80] contain a number
of verified cores that provide functions for special applications like signal
processing, data compression, encryption, and several functions for networking
applications. Additionally, there are also programmable processor cores. Such
core libraries are supported by standard bus architectures, such as the IBM
CoreConnect [81] and AMBA [7] from ARM, for interconnecting the cores.

14 Chapter 1. Introduction

Since the cores are predesigned and verified, a designer can concentrate on
the overall system design rather than the correctness or the preformance of the
individual components. This makes system-level design more effective.

The reality: In practice, the above goal in the context of SoC based embedded
systems design is however far from being realised. System design is still a dif-
ficult, error prone, and time consuming process. This is mostly due to the lack
of established analysis tools. Computer-aided-design tools have traditionally
focussed on low-level design issues such as synthesis, gate-level timing analy-
sis, layout and simulation. It is only during the last few years that high-level
languages [140, 73], and modeling and verification frameworks like Polis [12],
Ptolemy [97, 24], MOSES [108, 82, 83] and COSYMA [112] are being devel-
oped. Very recently, there has been some effort towards developing system-level
design and analysis tools for core-based SoC design [21, 50].

Typically, the analysis questions faced by a designer during a system-level
design process are: Which functions should be implemented in hardware and
which in software (partitioning)? Which hardware components should be cho-
sen (allocation)? How should the different functions be mapped onto the chosen
hardware (binding)? Do the system-level timing properties meet the design re-
quirements? What are the different bus utilizations and which bus or processor
acts as a bottleneck? Then there are also questions related to the on-chip mem-
ory requirements, off-chip memory bandwidth, expected power consumption of
the system, and layout and floorplanning issues of the design on the available
chip area.

1.3.2 The case of packet processors

Although the same questions, posed above, arise in the context of designing the
hardware and software for packet processors, answering them requires models
and methods which do not entirely fall within the domain of traditional embed-
ded systems design. This is because there are several characteristics specific
to the packet processing domain, which do not arise in other application areas
such as classical digital signal processing. In this section we point out some
of these specific characteristics which necessitate looking at packet processors
differently, and developing new models and analysis methods for their design.

• New task model: The task model underlying packet processing applications is
fundamentally different from the task structure in other applications which are
traditionally implemented as embedded systems. Packet processing applica-
tions process a large (or virtually infinite) stream of data items (packets). The
packets from different flows are interleaved. They enter a program from an ex-
ternal source and are processed for a very limited time before being discarded.
For each flow, there is a certain sequence of tasks which are executed, where
the tasks are of high granularity and are often scheduled dynamically at run-
time. This is in contrast to applications where there are recurrent or iterative
computations, or where a fixed input set is manipulated with a large degree of

1.3. System-level design of embedded packet processors 15

data reuse.

• Widely varying computation and memory requirements: Some packet process-
ing applications process only a limited amount of data within the protocol head-
ers of the packet, and their processing requirements are independent of the
packet’s overall size. But such applications might require the maintainance of
large tables or complex data structures that need to be searched or accessed on a
per packet basis. Examples of this class of applications are IP forwarding, NAT,
TCP connection management (for example by shaping to reduce congestion),
etc.

Other applications need computation over all the data contained in a packet
and therefore require significant processing resources to process packets at line
speed. Examples of this class include encryption, authentication, IP security
(IPSec), data transcoding (i.e. converting multimedia data stream from one for-
mat to another within the network), etc.

• Heterogeneous architecture: As mentioned before, the architecture of packet
processors are usually very heterogeneous and consist of a mix of different
types of programmable cores and fixed-function hardware blocks implementing
functions like encryption/decryption and header parsing. Therefore, issues like
hardware-software partitioning, allocation, and binding of tasks to processors
become more complicated and there are more design choices available com-
pared to typical embedded system designs.

Further, the heterogeneity makes any analysis during the system-level design
phase more complicated since different models and abstractions are now nec-
essary. For example, the different buses and processors might use different bus
arbitration mechanisms and scheduling strategies, making formal timing analy-
sis very dificult.

• Multiple conflicting application scenarios: In contrast to most embedded sys-
tems which are designed for a single fixed application, packet processors might
be used in applications scenarios having very different requirements. For exam-
ple, packet processors deployed in backbone networks can be characterized by
very high throughput demands but relatively simple processing requirements per
packet. On the other hand, those used in access networks have lower throughput
demands but high computational requirements for each packet. The design of
such processors therefore involves more complex tradeoffs than is encountered
in many other application areas.

• Large design space: For the design space exploration of most embedded proces-
sor architectures, it is possible to formulate a parameterized architecture tem-
plate. The design space exploration is restricted to finding appropriate values
of the parameters associated with the template. These include parameters such
as bus width, cache associativity, cache size, etc. The resulting design space is
therefore relatively small and it is feasible to exhaustively evaluate all the possi-
ble designs by simulation. The choice of the different architectural components

16 Chapter 1. Introduction

is also fixed (see for example [3, 128], where the system always consists of a
VLIW processor, a systolic array and cache subsystem, and the design space ex-
ploration consists of identifying appropriate parameters for each of these com-
ponents). However, in the context of packet processing, the heterogeneity of
the processor architecture makes the design space substantially larger. It is usu-
ally not possible to identify a parameterizable template architecture. The search
for such a template architecture involves a combinatorial aspect, in addition to
traversing the parameter spaces of the different components. To account for this
large design space, new design methodologies are required.

1.3.3 Issues in timing analysis and scheduling

One of the fundamental design challenges in the context of packet processors
is to process incoming packets at line speed. Consider, for example, a line
speed of 10 Gbps, with the simplifying assumption that there is no interpacket
gap. Under this setup, a stream of minimum-sized packets of 64 bytes will
result in a packet arrival approximately every 50 ns. Assuming a single-issue
embedded RISC processor to process the packets, that executes an instruction
every clock cycle and operates at 500 MHz, each instruction executes in 2 ns.
This gives at most 25 instructions per packet. Considering the complexity of
most packet processing functions, this is certainly not enough. To deal with
this, most processors today have an array of pipelined or parallel processors to
increase the allowable processing time per packet. Nevertheless, processor time
is an extremely important commodity and needs to be managed itelligently.

System designers therefore need to break up the entire functionality of a
packet processor into individual tasks (as described in Section 1.1.1) and evalu-
ate possible mappings of these onto the different architectural components. For
each of these mappings, by taking into account the processing and the commu-
nication times, a schedulability analysis needs to be performed to check if all
the timing constraints are met.

The two main functions of a packet processor are packet processing (mod-
ifying packets) and traffic management. Intelligently managing the processing
resources and the link bandwidth to support the QoS requirements of the dif-
ferent flows and to keep up with the line speed requires scheduling of these
two resources. Further, there must be interactions between these two sched-
ulers since, for example, dropping of already processed packets to handle link
congestion results in wasting precious processing resources.

All of these above issues give rise to several problems, which we believe
have not been adequately addressed in the literature, particularly due to the
different characteristics of the packet processing domain as outlined in Sec-
tion 1.3.2.

• Traditionally, schedulability analysis for real-time embedded systems is carried
out by first modeling the system under question as some standard task model and
then performing a schedulability analysis for that model. The various parame-
ters required for the model such as different execution times and other temporal

1.3. System-level design of embedded packet processors 17

dependencies are extracted from the application using high-level design tools.
In this process, the system designer is faced with two questions while choos-
ing the model: Does the model accurately reflect all the characteristics of the
application? Is the model efficiently analyzable?

We believe that most of the well known models available in the literature, such
as the periodic task model [101], the sporadic task model [105], and the dif-
ferent multiframe models [106, 16] do not capture the essential characteristics
of packet processing applications as described in Section 1.3.2. Therefore, new
models are necessary which are suitably expressive and at the same time are
efficiently analyzable, the two generally being contradictory concerns.

• System timing analysis in the context of packet processing architectures is a
challenging problem. In traditional hardware design, system timing is usually
derived by hierarchical composition of the individual component timings. This
is relatively simple when component controls are single threaded and follow a
fixed control sequence which only depends on input patterns. This is the usual
approach in behavioral synthesis [95].

Two main problems arise in the case of packet processors: The architecture
of such systems, as already mentioned, is highly heterogeneous—the different
architectural components are designed assuming different input event models
and use different arbitration and resource sharing strategies. This makes any
kind of compositional analysis difficult. Secondly, packet processing relies on a
high degree of concurrency. Therefore, there are multiple contol threads, which
additionally complicates timing analysis. Currently, the analysis of such het-
erogeneous systems is therefore only limited to simulation based approaches
(using tools like VCC [149] and Seamless [124]). Apart from suffering high
running times, these approaches also have the limitations of incomplete cover-
age and failure to identify corner cases. To guarantee certain timing properties
within reasonable analysis times, static formal analysis based on abstract system
models are required.

The process of splitting up the entire packet processing application into a num-
ber of tasks and assigning them to different processors involves a large num-
ber of implementation choices, with each of them having a different impact on
performance. Often these impacts are not entirely obvious. They can only be
investigated using high-level tools to analyse the interactions between the differ-
ent tasks in terms of their timing behaviour and the number of packets flowing
through them, and also by analysing the utilization or load on the different pro-
cessors or buses due to each of these tasks. Most of the current tools for packet
processors that can enable such analysis are based on simulation and operate
at a very low level, focussing on assembly instructions (an example being the
environment for Intel’s IXP 2xxx, called the “Transactor”). There is therefore
a need for models and methods to analyse packet processing architectures and
applications on a higher level of abstraction, to deduce properties like the la-
tencies of each task (without having to delve into the low level details of its

18 Chapter 1. Introduction

implementation) and whether all the pipeline stages of a processor are equally
balanced.

• An important function of any packet processor is traffic management. Commer-
cially available network processors either have specialized hardware to assist
software with traffic management functions, or traffic management is entirely
implemented in software. It may be noted that there are also a number of ASIC-
based traffic management solutions available today [37].

The aim of traffic management in packet processors is to provide QoS quaran-
tees for a diverse range of user traffic [126]. Different traffic classes have differ-
ent arrival characteristics which are specified using traffic contracts and require
different QoS guarantees (provided they conform to the traffic contracts). One
of the main challenges here is to devise intelligent schedulers which would sup-
port a diverse range of QoS requirements for different traffic classes. Broadly,
real-time flows (voice, video, etc.) have strictly specified flow characteristics
(such as maximum burst size, peak rate, long-term rate, etc.) and packets from
these flows require worst case delay guarantees. On the other hand, flows aris-
ing from applications such as ftp, http, etc. do not have well specified arrival
characteristics, and at the same time do not require strict delay guarantees, but
may have requirements on throughput.

There is a large body of work in the real-time systems area on integrating
best-effort or soft real-time tasks into a hard real-time environment, with the
goal of providing a low-delay service to best-effort tasks after satisfying the
deadline constraints associated with the real-time tasks. However, all of this
work pertains to the processor scheduling domain and the equivalent problem
in the packet scheduling (or network traffic management) domain has remained
largely ignored. In the packet scheduling area there is an extensive amount of
work related to advanced buffer management and scheduling algorithms to pro-
vide QoS guarantees to real-time continuous media traffic. But relatively little
has been done to exploit these algorithms to better support a wider range of traf-
fic classes, and specifically best-effort or non-real-time traffic. In the presence
of a mix of real-time and best-effort packet flows, the most widely followed
scheme blindly gives higher priority to real-time packets (without considering
how large are the deadlines associated with them) and best-effort packets are
served only when no real-time packets are present at the scheduler. This is in
spite of the fact that a major portion of Internet traffic today is still composed of
non-real-time flows.

One of the possible reasons for the lack of schedulers which support a wider
range of traffic classes or which attempt to provide a better service to non-real-
time flows is that the scheduling overhead for such schedulers is relatively high.
We believe that with the advent of network packet processors, such schedulers
can have feasible implementations and this therefore opens up this area for fur-
ther research.

1.4. Thesis contributions 19

1.4 Thesis contributions
In this thesis we are concerned with developing models and algorithms to aid
the system-level design of network packet processors. The results derived here
might influence both the hardware and the software architectures of packet pro-
cessors. Here we focus on system-level timing analysis and scheduling issues.
More specifically, we address the three problems outlined in the last section (i.e.
Section 1.3.3) and make the following main contributions:

• We identify the main characteristics of packet processing applications, and mo-
tivate the use of a new task model for the purpose of system-level schedulability
analysis. This model is based on the recurring real-time task model which was
very recently proposed in [15]. The recurring real-time task model captures the
notion of conditional branches in a block of code, where the branch taken can
not be determined at compile time and is known only at run time. This is an
essential characteristic of packet processing applications, especially in the for-
warding path, where packet classification needs to be done in several stages as
we show later in this thesis. This model generalizes several well known real-
time task models such as the periodic [101], sporadic [105, 17], multiframe
[106], generalized multiframe [16] and recurring branching [13] models. How-
ever, the complexity of the schedulability analysis problem for this model was
unknown (until recently, see [29]) and all the known algorithms had exponential
complexity.

In this thesis we show that the schedulability analysis problem for this model
is NP-hard, but nevertheless can be solved in polynomial time for all practi-
cal purposes. Towards this, we introduce a new concept called “approximate
schedulability analysis”. It is based on the observation that if a small amount
of error in the decisions made by a schedulability analysis algorithm is accept-
able, then it is possible to design such algorithms to run in polynomial time and
hence can be used for formal verification in any system-level design tool. We
also show that this idea is fairly general and can be applied to many other task
models in contexts beyond packet processor design (i.e. for general real-time
embedded system designs).

Lastly, we show that for any packet processing scenario, due to constraints on
memory and also due to efficiency reasons, the number of preemptions of a
task graph needs to be bounded. Towards this, for the first time, we derive the
exact necessary and sufficient conditions for schedulability for this class of task
models under bounded number of preemptions, and show that the concept of
approximate schedulability analysis is applicable to this case as well.

We validate our analytical results by experimental evidence, based on
data from packet processing applications and using parameters from
processors/architecture-blocks which are typically used to implement packet
processors.

• In order to perform a system-level timing analysis of a heterogeneous packet

20 Chapter 1. Introduction

processing architecture, where different parts of the application are mapped to
different kinds of processing elements, we propose a novel analytical frame-
work. It consists of a task model (for the application), a resource model (to
model the underlying hardware i.e. the processing and the communication ar-
chitecture), a model for network traffic, and a “real-time calculus” to reason
about the packet flows and their processing. We show that this framework can
be used to analyse arbitrarily complex and heterogeneous architectures and an-
swer questions related to timing and also various other system properties (like
the load on various processors and buses) in a single unified way. One of the
main theoretical contributions of this work is that it generalizes most of the
previous work on formal analysis of timing properties for heterogeneous archi-
tectures (see, for example, [122] and [121]) and shows that many results from
the real-time systems area turn out to be special cases of the results that can be
derived within this framework.

Since our scheme is based on abstract models of applications/algorithms and
architectures, any given problem can be analysed within fractions of a second.
This is in sharp contrast to simulation based approaches which require hours of
simulation time. We also show that the results obtained by our formal analysis
match those obtained by detailed cycle accurate simulations. By leveraging this
we propose a new methodology for the design space exploration of SoC based
packet processing architectures, where different stages of the exploration are
based on different levels of abstractions of the architecture.

• As mentioned before, a significant portion of processing resources in any packet
processor is spent on traffic management. Towards this, we propose a new
scheduler to handle a mix of real-time and best-effort traffic flows, which typ-
ically passes through any router. We give theoretical guarantees that all the
real-time packets would meet their deadlines and at the same time the best-
effort packets would experience the shortest possible delay. Our experiments
with a realistic mix of real-time and best-effort packets show that the maxi-
mum delay experienced by best-effort packets using our scheduler improve by
as much as 66%, when compared to the commonly used method of serving
best-effort packets only when no real-time packets are present at the scheduler.
The average delay experienced by best-effort packets also improve by as much
as 45%. In the case of access networks, for best-effort flows such as sporadic
http requests (where response times experienced by an user are important), such
improvements are clearly perceptible.

Most of the previous work in the packet scheduling domain, to support a range
of traffic classes, rely on resource reservation schemes and focus more on guar-
anteeing fairness. Our scheduler, on the other hand, guarantees fair sharing of
the link bandwidth among the best-effort flows and also provides a low-delay
service without disrupting the delay bounds associated with the real-time flows.

From a theoretical perspective, we show that some of the well known ser-
vice mechanisms from the real-time systems area, for integrating best-effort

1.5. Related work 21

tasks into a real-time environment, turn out to be special cases of our scheme.
However, the main downside of our scheduler compared to reservation based
schemes is that it requires computations on a per packet basis, and can hence be
computationally expensive to implement on traditional purely software based
routers. We believe that application-specific packet processors can therefore be
a suitable platform for implementing this and other schedulers which could not
be previously deployed due to implementation overheads.

This thesis shows that the study of network packet processors, on one hand,
gives rise to several interesting theoretical models and methods, and on the other
hand integrates many concepts from real-time and embedded systems with ideas
from computer networking, system design and computer architecture. The com-
plex requirements of packet processors and their possibly diverse architectures
provide the ideal platform for investigating methodologies for embedded sys-
tems design. We believe that all the three contributions of this thesis, as listed
above, introduce concepts which apart from being interesting in their own right,
also generalize previous results from system-level design, real-time systems and
scheduling theory.

1.5 Related work

In this section we briefly review the state-of-the-art in research related to net-
work packet processors. Work related to each of the three specific problems
addressed in this thesis (as described in Section 1.3.3) is discussed in the re-
spective chapters.

It is only recently that a considerable volume of research is being done on
various issues related to network packet processor design. Introductory articles,
containing a survey of commercially available network processors and their
target application areas are [42] and [65]. [47] contains a reasonably in-depth
discussion of the architectures and the associated programming environments
of a number of network processors, including those from IBM, Cisco, Intel and
Motorola. A comparison of the architectures of different network processors,
in terms of their application domain and the position in the network where they
would be used (for example, whether they would be used for low, medium, or
high bandwidth communications) is done in [70]. Different architectural issues
in network processors for backbone networks, related to packet processing and
fast switching are discussed in [27]. Similar discussions about fundamental
characteristics of network processor architectures and their implications on
programability and benchmarking can be found in [117] and [8].

Architecture performance evaluation and design space exploration: There
has been a number of studies related to determining the optimal architecture
of network processors for various application scenarios. This includes work

22 Chapter 1. Introduction

related to both performance evaluation and design space exploration. For ex-
ample, [70] introduces a new service scheme motivated by the requirements
of multi-service access networks. Based on simulation (of both hardware and
software), it then evaluates different combinations of algorithms (for policing,
queuing and link scheduling) along with different hardware building blocks and
memory architectures, for the design of a packet processor to support the pro-
posed service scheme. Other purely simulation based approaches, with models
for, both, the application using Click [93, 94] and the hardware architecture us-
ing SimpleScalar [25] can be found in [43]. In contrast to this, SystemC [73]
models of a network processor architecture, with an emphasis on the commu-
nication subsystem and the memory architecture are considered in [155]. A
simulation environment for exploring multiprocessor network processing archi-
tectures that is being developed at ST Microelectronics is reported in [116].

An analytical performance model for network processors was proposed in
[59, 151, 153]. Different network processor architectures can be evaluated on
benchmark workloads [152] using this analytical model. We believe that this
model may be classified under what can be called as a “static analytical model”.
Here, the computation, communication, and memory resources of a processor
are all described using algebraic equations, and its performance is evaluated
using traffic traces from networking benchmarks. In contrast to this class of ap-
proaches, the models presented in this thesis may be classified under “dynamic
analytical models”, where the dynamic behaviour of the computation and com-
munication resources (such as the effects of different scheduling or bus arbitra-
tion schemes) are also modeled. Such dynamic models may either be based on
statistical methods such as queuing theory, or may be based on theories deal-
ing with deterministic worst case bounds. A more detailed comparison of the
different performance models is done later in this thesis.

There has also been a couple of studies investigating the suitability of
different classes of processor architectures (such as speculative super-scaler
processors, fine-grained multithreaded processors, simultaneous multithreaded
processors, and single-chip multiprocessors) for network packet processing
applications [44, 46]. All of these studies are based on simulations. [45]
explores the properties of different workloads in network interfaces and their
execution characteristics on several high-performance processor architectures.

Programming and benchmarking: A number of papers have considered is-
sues related to programming and benchmarking of packet processors. See
[78] for an introductory article on programming of network processors. [150]
gives an overview of Intel’s IXP2400 network processor, focussing on its multi-
threaded processing and distributed memory architecture. It then describes the
programming issues related to such architectures and develops a programming
model for generic network applications that uses software pipelines. Based
on this model, it shows how two different applications (an ATM based traffic
management algorithm and an ATM AAL2-based media gateway application)
can be mapped/implemented on multithreaded architectures such as the Intel’s

1.5. Related work 23

IXP2400 processor. [129] also considers Intel’s network processor (IXP1200)
and reports the experiences in implementing a router using it. Here, the packet
processing hardware infrastructure consisted of an Intel Pentium processor aug-
mented with the IXP network processor. This work gives insights into how the
parallelism available in a set of multiprocessors may be fully utilized when all
the resources may be shared. The key technique discovered is how to stati-
cally partition the processing capacity of the microengines in the IXP for dif-
ferent functions, thereby avoiding the overhead involved in dynamically allo-
cating tasks. Related to this work is [88, 89], which also describes a high-
performance, distributed router implementation using general-purpose proces-
sors and network processor based programmable line cards. Similar to the work
presented in [150], [5] and [75] review IBM’s PowerNP network processor ar-
chitecture and present the corresponding programming model. Based on this
model, it is then showed how different applications related to guaranteeing QoS
(by active queue management and traffic engineering), header processing (in a
Genaral Packet Radio Service tunneling protocol), intelligent forwarding (us-
ing load balancing among multiple processors), payload processing, etc. can be
efficiently implemented on a network processor.

Benchmarking of network packet processors has attracted considerable
attention. The main complications arise out of the fact that network processors
from different vendors are widely different and use varying hardware architec-
tures and programming models. The application areas of network processors
and the requirements out of them, as already mentioned before, also vary a
lot—processors deployed in access networks have very different functions com-
pared to those in backbone networks. This also makes benchmarking difficult.
To address these issues most of the research has proposed either hierarchical
benchmarking schemes, with each level having a different abstraction (system,
function, micro and hardware) [34], or schemes which separate the different
concerns like functionality, environment and the measurement methodology
[147]. A couple of benchmarking suites targeted towards network processors
have been used mostly for academic research. These include CommBench
[152] and NetBench [104]. The Network Processing Forum (NPF) also has a
Benchmarking Working Group (NPF-BWG) [10] working on various issues
related to network processor benchmarking.

Scheduling and load balancing: Recently a few papers have dealt with
scheduling and load balancing issues in network packet processors. In par-
ticular, the authors of [154] study a problem very similar to the one we study
in Chapter 3. They consider the fact that the processor execution time associ-
ated with the processing of a packet is generally unknown and is variable. This
time is dependent on the particular code that is executed, which is not known
at the time the packet arrives, and also depends on the contents of the packet
(in the case of payload processing applications) and the state of the processor
(for example, on the cache states). This makes scheduling a difficult problem.
To get around this, they hypothesize that network processing workloads tend to

24 Chapter 1. Introduction

be predictable in nature and design scheduling algorithms based on processing
time predictions. In contrast to this, we study this problem from a more theo-
retical perspective, and propose algorithms to handle this unpredictable nature
of the code in packet processing applications. Whereas, the results in [154] are
founded on experimental evidence, our algorithms have provable guarantees. In
practice, it might be possible to combine these two approaches since we do not
take into account the characteristics of the workload.

Lastly, [55] and [91] study a load balancing problem, where the goal is to
distribute packets from a high-speed link among multiple lower-speed network
processors. [55] presents a set of algorithms based on heuristics and their ex-
periments show that the proposed load balancer reduces the associated buffer
requirements to the extent that an on-chip memory would suffice. The scheme
proposed in [91] is based on an adaptive deterministic mapping of the flows to
the different processors. The presented simulation results show that it achieves a
high processor utilization and that compared to other schemes, a larger number
of router interfaces can be supported for the same processing power.

1.6 Organization and bibliographic notes

Whereas this chapter sets up the background for the work described in this the-
sis, the discussions in Chapter 2 are more formal and motivate the models for
packet processing algorithms and architectures, and models for packet flows
that are used in the later chapters.

In Chapter 3 we present the results corresponding to the first problem de-
scribed in Section 1.3.3. Here we introduce a task model corresponding to
packet processing applications and present several schedulability analysis algo-
rithms for this model. The results pertaining to the complexity of schedulability
analysis for this model have appeared in [29]. The conditions for schedulability
under a bounded number of preemptions have appeared in [28], and the general
framework for approximate schedulability analysis appeared in [31].

Chapter 4 addresses the second problem described in Section 1.3.3. The
framework presented in this chapter is based on the theory of real-time calculus
which was first introduced by Thiele et al. in [145]. The application of this
theory to analyse system properties of network packet processing architectures
was first shown by Thiele et al. in [144], and subsequently more detailed results
were presented in [142] and [143]. This chapter shows that the results that
can be derived within this framework generalize many results from the real-
time systems area, and this work has been reported in [32]. The second part
of this chapter shows that in the specific context of network packet processing
architectures, the analytical results from this framework match reasonably well
the results that can be obtained by detailed cycle-accurate simulations. Based
on this, a methodology for the design-space exploration of packet processing
architectures is also proposed. These results have appeared in [33].

1.6. Organization and bibliographic notes 25

Lastly, Chapter 5 contains the results corresponding to the third problem
described in Section 1.3.3 and these results have appeared in [30].

26 Chapter 1. Introduction

2
Fundamental abstractions: Modeling algorithms,
architectures and packet flows

This chapter is intended to bridge the gap between the informal discussions in
Sections 1.1 and 1.2 of Chapter 1 about applications and architectures charac-
terizing network packet processors, and the formal models used in the next three
chapters.

In particular, we identify the main characteristics of packet processing ap-
plications or algorithms and their computation demands. Based on this, a task
model is proposed in the next chapter, which forms the basis for our schedulabil-
ity analysis algorithms. Such algorithms can then be used to determine the fea-
sibility of a mapping of an algorithm to a given architecture. Next, we describe
the two main organizations of processing elements within a packet processor—
the parallel and pipelined models—and describe their relative advantages and
disadvantages. This motivates our architecture model introduced in Chapter 4,
which forms the basis of our analytical framework for system-level timing anal-
ysis and for determining other system properties. Lastly, we describe a traffic
model for specifying packet flows, which is used both in Chapter 4 for the ana-
lytical framework, and in Chapter 5 for describing our scheduler to handle a mix
of real-time and best-effort traffic classes. We conclude this chapter by briefly
outlining the basic principles and properties of different scheduling disciplines
which are used in the rest of the thesis. But before continuing further, we define
below a few terms in the context of this thesis.

Def. 1: (Flow) A flow is a sequence of packets that are treated similarly by a network
node/router. This means that all packets belonging to the same flow are pro-
cessed in the same way (i.e. the same processing functions are applied to them)
and they have the same QoS requirements. A flow may be an aggregation of

28 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

packets from different applications or transport layer sessions which have to be
processed similarly, or depending on how packets are processed, it might also
be the collection of packets belonging to the same input and output port pairs.
For the purpose of this thesis, we might refer to an aggregation of different flows
also as a “flow”. This depends on which stage of the application a packet of
the flow is in. In a later processing stage of the application, the different flows
which formed the “aggregate flow” might be distinguished.

Def. 2: (Stream) We refer to a sequence of packets as a “packet stream” when we are
not concerned with the flow-identifications of these packets.

2.1 Characteristics of packet processing applications
We list below a number of typical characteristics of packet processing applica-
tions, which along with the nature of their computation demands motivate the
study of new task models for representing them.

• Computations over packet streams: The input to any packet processing applica-
tion is a virtually infinite stream of packets, each of which has to be processed
within a limited amount of time, probably on multiple distributed processors,
before being discarded. For each packet entering the packet processor, depend-
ing on the flow to which this packet belongs, a sequence of packet processing
tasks act on it. These tasks are usually of high granularity and are often sched-
uled dynamically at runtime. In contrast to many other applications, there is no
recurrent or iterative computation where a fixed input data set is manipulated
throughout the lifetime of the computation.

• Collection of independent tasks: The entire packet processing functionality or
computation pattern can be represented by a collection of tasks. Each task reads
one or more packets from the input packet stream, either modifies them or per-
forms some computation using them, and writes them out to be processed by the
next task (example tasks, where more then one packet may be read by a task at
a time, or where multiple packets might be written out by processing one packet
are IP reassembly and IP fragmentation tasks respectively). The different tasks
are generally self-contained and independent of each other, and therefore can
be implemented on different processors with the only communication between
them restricted to packet transfers. It is therefore possible to view a packet
processor as a composition of the tasks with the output of each task serving as
the input to another task. It will later be shown that this view enables a com-
positional timing analysis, where the properties of an input packet stream are
modified by task and the modified properties serve as input to the next task.

• Fixed computation pattern: For any given flow, the set of tasks through which
any packet of this flow pass is more or less fixed. Therefore, all packets of a

2.1. Characteristics of packet processing applications 29

flow are subjected to the same regular, predictable sequence of tasks. However,
it may be noted that the flow to which a packet belongs is not known immedi-
ately when the packet enters the packet processor. The flow information is only
known after the classification stage. Moreover, to keep up with line speeds, a
packet need not be fully classified at the very begining and classification might
be divided into several stages. The tasks corresponding to the different flows
may be joined together to form a task graph. An example task graph processing
five different flows is shown in Figure 6. Based on the results of the classifica-
tion, a packet takes some path through the task graph.

Apart from Classify-tasks, there might also be a few other tasks, after crossing
which a packet might take one or the other path through the task graph. An
example of this in Figure 6 is the Process IP Header task. Depending on the
outcome of the header processing, a packet might either be sent to the Classify-
task or to the IP reassembly-task. The IP reassembly-task combines several
packets to a single packet before sending it out for classification. Therefore, the
path of any packet through the task graph is not known immediately when the
packet enters the packet processor, but is dynamically determined as the packet
progresses through the graph.

The underlying task graph for a packet processor can hence be considered to be
an arbitrary directed acyclic graph, where some tasks nodes result in the control-
flow to split among several other tasks nodes. Similarly, the control-flow from
several tasks nodes might also join into a single task node. Given a mapping
of this task graph onto an architecture, the tasks corresponding to the different
nodes might execute concurrently.

• Occasional modification of the task graph: Although the path through the task
graph for all packets belonging to the same flow is predetermined, there might
be occasional changes in this path to handle special situations like packet drop-
ping due to a congestion avoidance algorithm running for some time.

• Out of path communications: Apart from the packets flowing through the task
graph, tasks corresponding to different nodes of the graph might communicate
with each other to pass several kinds of control information. For example, a
Scheduler-task might inform a Queue Manager-task (possibly implemented on
a different processing element) to drop packets belonging to certain flows in
response to a link congestion situation.

• Real-time performance constraints: To keep up with the incoming line-speed
and also to satisfy the QoS requirements of certain flows, there would be real-
time constraints that need to be satisfied when implementing/mapping the task
graph on an architecture. Additionally, some flows might also have demands on
the minimum throughput.

30 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

A H
Verify

Link Rx

Verify IP
Header

Process IP
Header

Dejitter Voice
Decoder

RTP RxUDP Rx

Voice
Encoder

Classify

RTP Tx UDP Tx Build IP
Header

Route
Look Up

IP header
Modify

ESP
Encaps

A H
Calc

Route
Look Up

Decrypt

Encrypt

ESP
Decaps

Calc Check
Sum

ScheduleARP
Look Up

Link
Tx

Voice Processing

Encryption/Decryption

Flow RT Recv

Flow RT Send

Flow NRT IP Forward

Flow NRT Encrypt

Flow NRT
Decrypt

IP re-
assembly

IP frag-
mentation

Individual Flow

Control Flow

RT = Real-Time

NRT = Non-Real-Time

Fig. 6: A task graph for processing five different real-time and non-real-time flows. Here, there
is only one Classify task, but in general classification might be implemented in several
stages using different Classify-tasks. The solid arrows indicate the control-flow through
the task graph, and the dotted lines show the path followed by packets belonging to
different flows.

2.2 Organization of processing and memory units

As already mentioned in Chapter 1, packet processing architectures generally
consist of multiple programmable processing elements along with dedicated
coprocessors and different types of memory units. The first step towards
implementing a packet processing application is to split the application into
a number of tasks as described in the last section. The second step is then
to map these tasks to individual processing elements or coprocessors, taking
into account the performance requirement of each task—the main criteria
to be satisfied is that any task mapped onto a processing element or copro-
cessor should complete the processing of a packet before the next packet arrives.

Multithreading: Apart from the presence of multiple processing elements, each
individual element might be multithreaded, with hardware support for mul-
tithreading (for example, by automatic thread switching when the execution
stalls). The commonly used practice of exploiting multithreading on a process-
ing element is to perform the same task or set of tasks that are mapped on the
processing element, in parallel on different packets. As each packet arrives,
it is mapped on one thread, which executes the packet processing task on that
packet. When the execution of that thread stalls, waiting for an I/O operation or

2.2. Organization of processing and memory units 31

memory access, another thread executes the same task on the next packet.
Let tmin be the amount of time (in the worst case) that can be spent in pro-

cessing one packet on a processing element, before the next packet arrives at that
processing element. Let f be the clock frequency with which the processing el-
ement works and I be the number of instruction cycles that must be executed
corresponding to the task that is mapped onto that processing element. Then,
the task fits on the processing element if tmin ≥ I/f . Now assume that there
are n threads on the processing element. Then, with each thread processing a
packet, a thread can take upto ntmin time to complete the task execution on one
packet. This includes both, the active execution time and the time spent in wait-
ing for I/O or memory accesses. The active execution time is however limited
to tmin.

As a side remark, it may be noted that although multithreading increases
processor utilization, it might introduce jitter in the output packet stream
emerging out of the processor. This is because of the variability in time
involved in thread switching. Secondly, since a packet stays longer in a
processing element in the case of multithreading, more system buffer space is
required. These might be important factors to consider, at least in the case of
real-time traffic.

Organization of processing elements: There are two basic organizations of the
multiple processing elements within a packet processor: parallel and pipelined.

In the parallel case, the processing elements are organized in a multipro-
cessor configuration with each processing element executing all the packet pro-
cessing tasks on a packet, from begining till completion. The different pro-
cessing elements work in parallel, processing different packets (see Figure 7).
The packet dispatcher is responsible for assigning packets, as they arrive, to
the processing elements, taking into account issues like load balancing among
the different processing elements and preserving packet sequence within a flow
(see [91], [55] and [154] for more details). If there are m parallel processing
elements in a packet processor, and as before, each processing element has n
threads and the minimum interarrival time between two packets is tmin, then the
time that can be spent in processing a packet is mntmin. Of this, the permit-
ted time for the active execution of each thread within a processing element is
mtmin.

In the pipelined organization of processing elements, different tasks of the
packet processing application are mapped to different processing elements. The
processing elements are organized in a pipelined fashion, with each pipeline
stage consisting of one or more processing elements. A packet passes from one
stage to the next downstream stage, getting processed on the way (as shown in
Figure 8). The processing elements in any pipeline stage may be optimized for
specific packet processing tasks. Such processing elements are often referred
to as “task-oriented processing elements”. If there are m pipeline stages with
one processing element per stage, which is multithreaded with n threads, then
in contrast to the parallel organization, the time that each processing element

32 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

Packet Dispatcher

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Parallel Bus

MemoryMemory CoprocessorsCoprocessors

Packet Flow

Fig. 7: Parallel organization of multiple processing elements within a packet processor with a
shared memory model.

Packet Flow
Processing

Element
Processing

Element

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Parallel Bus

MemoryMemory

CoprocessorsCoprocessors

MemoryMemory MemoryMemory

Fig. 8: Pipelined organization of multiple processing elements within a packet processor with
a distributed memory model.

can spend on a packet is ntmin. The total processing time on a packet for the
pipeline with n stages, however, as before, is mntmin.

Therefore, the parallel and the pipelined models are equivalent in terms of
the total processing time that can be allowed for a packet. However, in the par-
allel model the processing budget per packet for a single processing element
is bigger and the throughput requirement is lower. But the main advantages
of using a parallel model are: (a) The state of each packet can be held locally
within a processing element, which allows all the packet processing functions
local access to the packet state, thereby eliminating the latency of communicat-
ing this state between processing elements. (b) The different tasks of a packet
processing application need not require equal time. Executing the entire appli-
cation within one processor eliminates the need to break it up into several tasks,
thereby avoiding questions related to partitioning, communication, etc. On the
other hand, the disadvantages of the parallel model are: (a) If the entire packet
processing application is too big, then the program memory space associated

2.2. Organization of processing and memory units 33

with a processing element might become the bottleneck. (b) The task states that
are persistant across packets need to be kept in an external memory, making
accesses to these states and maintaining state coherency a costly problem.

The main advantages of the pipelined model are: (a) The state of any packet
processing task that is persistant across packets (for example, routing tables)
can be held locally within a processing element, thereby eliminating the latency
involved in accessing this state from an external memory, and also eliminating
complex access/sharing mechanisms. (b) The program memory available for
each task is relatively large, this being especially helpful when a task has sev-
eral variations, leading to a large program memory footprint. The disadvantages
of this organization are: (a) The state that is local to a packet (for example, mod-
ified packet header) must be communicated from one processing element to the
next, possibly leading to a large communication overhead. (b) The mapping of
the entire packet processing application onto several processing elements lead
to complexities involving partitioning—each task mapped onto a processing el-
ement must be of a size that fits within a processing budget, and the different
pipeline stages must also be properly balanced to maximize utilization.

Both, the parallel and the pipelined organizations therefore have their
relative merits and demerits, and typically the two organizations would be
combined depending on the application requirements. This would give rise to
either a pipelined organization with a parallel bus, or a parallel organization
with pipelined capability, depending on which requirements are more pressing
for the given application.

Organization of memory units: A network packet processor typically needs
three different kinds of memory. These are used for storing program or in-
struction code, control data and packets. Instruction memories are usually high-
speed SRAMs and are organized in a way such that all the processing elements
can be simultaneously fed. They can either be internal to the processor when
only a small amount of code needs to be stored, or can be external in the case
of code corresponding to higher-layer processing functions. Control data (such
as routing tables) are stored in the control memory, which also needs to be a
high-speed SRAM. For many packet processing tasks, several fields in a packet
might be used for searching through tables containing routing or QoS infor-
mation. Therefore, the control memory access time and bandwidth are critical
factors for high-speed packet processing. Lastly, packets are stored in the packet
memory. The choice of the packet memory and its organization depends, to a
large extent, on the packet processing application. As an example, the require-
ments from a packet memory subsystem will be very different in the case of
only IP-forwarding, compared to the case of TCP termination. In many cases, a
packet needs to be read and written back into the packet memory several times,
especially in applications involving payload processing.

There are three principal ways in which memory is organized within a packet
processor: shared, distributed and hybrid. Although the shared memory model
has the advantage that it offers a simple programming model, its main drawback

34 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

Packet Dispatcher

Parallel Bus

Packet Flow

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Cluster

Memory
Cluster

Memory
CoprocessorsCoprocessors

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Cluster

Memory
Cluster

Memory
CoprocessorsCoprocessors

Shared

Memory
Shared

Memory
CoprocessorsCoprocessors

Packet Dispatcher

Parallel Bus

Packet Flow

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Cluster

Memory
Cluster

Memory
CoprocessorsCoprocessors

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Cluster

Memory
Cluster

Memory
CoprocessorsCoprocessors

Processing

Element
Processing

Element

Processing

Element
Processing

Element

Cluster

Memory
Cluster

Memory
CoprocessorsCoprocessors

Shared

Memory
Shared

Memory
CoprocessorsCoprocessors

Fig. 9: A hybrid memory organization, with each cluster of processing elements having a local
memory. The shared memory can be accessed by processing elements belonging to
different clusters.

is that it is not scalable. Figure 7 is an example of this memory model, where a
number of processing elements share a single memory unit over a shared parallel
bus. An example of a distributed memory model, with each processing element
having its own memory is shown in Figure 8. Although this organization is
more scalable, it is also more difficult to program.

Naturally, it is possible to combine the two models to obtain a hybrid mem-
ory model. Such an organization is shown in Figure 9. Here, the processing ele-
ments are partitioned into different clusters, with each cluster having its shared
cluster memory. This memory can be used to serve as an instruction and packet
memory, with the instruction code replicated in all the clusters to avoid inter-
cluster memory accesses. If the packet dispatcher is programmed to dispatch all
packets belonging to the same flow to a single cluster, then processing elements
within a cluster can also share the control memory, with at least some of the
control data being stored in the cluster memory. In such cases, only control in-
formation like large routing tables need to be stored in the shared memory that
can be accessed by processing elements belonging to different clusters.

2.3 Specifying bounds on packet flows

In order to provide any form of service guarantee on the processing of packets
on a per-flow basis (such as the maximum allowable packet drop rate, or that
packets from all real-time flows would meet their deadlines), it is required that
the packet arrivals from each flow are bounded in some way. As is apparent from

2.3. Specifying bounds on packet flows 35

the preceding discussions, a simple bound on the aggregate of all flows can be
obtained from the link speed and the minimum packet size. This can be specified
in the form of the minimum packet interarrival time. In this section we describe
means for specifying more detailed bounds on a per-flow basis. Typically, such
bounds on each flow are specified as Service Level Agreements (SLAs) between
a customer and a service provider. By measuring a flow’s actual traffic profile,
it is possible to verify whether a flow is within the specified bound. Typically,
such verification is done by a policer after one or more classification stages. If
some packets from a flow do not conform to the profile specified by the bound,
then they may either be dropped or be provided a degraded service depending
on the availability of resources. Additionally, packets might also be delayed to
shape a flow according to a profile.

There are various means of providing bounds on the incoming traffic profile.
They can broadly be classified as either statistical methods based on queuing
theory or theories based on worst-case deterministic bounds. In this thesis, we
concentrate on the latter. The deterministic bounds on traffic flows considered
here are based on the application of min-max algebra to flow problems, and
are widely used in the communication networks area for specifying SLAs. The
theory behind this approach, now commonly referred to as “Network Calculus”
was developed by Chang [35] and Cruz [48, 49] and found its final form through
work by several authors. Further details can be found in two textbooks devoted
to this subject ([22] and [36]). The following description mostly relies on the
nomenclature used in [22].

Def. 3: (Arrival function) The arrival function af (t) of a packet flow f is defined as
the number of bits or packets belonging to the flow that has arrived at a defined
place in the time interval [0, t]. Whether af (t) refers to the number of bits or the
number of packets is either specified, or is clear from the context.

Def. 4: (Arrival curve) A packet flow f is said to be constrained by an arrival curve
αf(∆), if and only if its arrival function af (t) satisfies the following inequality.

af(t) − af (s) ≤ αf (t − s) for all 0 ≤ s ≤ t

If f is constrained by the arrival curve αf(∆), then f is also referred to as
αf -smooth.

The arrival curve αf(∆) of a flow f can therefore be interpreted as the
maximum number of bytes or packets (as the case may be), belonging to f ,
that can arrive within any time interval of length ∆. Later in this thesis, we
will distinguish between upper and lower arrival curves, where an upper arrival
curve is as described above and a lower arrival curve would give a lower-bound
on the number of bytes or packets that can arrive from a flow within any
specified length of time.

Below we give some concrete examples of specifying bounds on traffic profiles
based on the concept of arrival curves.

36 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

α

t

M + pt

TSpecb

M

b + rt

Fig. 10: Arrival curve α(t) of a TSpec-constrained flow.

• (σ, ρ)-model [48]: If the maximum burst size (i.e. the number of bits that can
arrive at any instant in time) of a flow is given by σ and its long-term bounding
rate is given by ρ, then the flow is said to be constrained by the arrival curve
α(t) = σ + ρt.

• TSpec [125]: This model was introduced in the context of QoS reservations in
the Internet, and can be seen as a combination of two (σ, ρ) specifications. The
parameters used here to specify the maximum traffic from a flow are the peak
rate p, the average rate r, burstiness b, and the maximum packet size M . A flow
bounded by these parameters is given by the arrival curve α(t) = min{M +
pt, b + rt} (see Figure 10). An additional parameter m with m ≤ M is used
to specify that packets smaller than m should be treated as packets of size m.
Therefore, m determines the minimum traffic unit which needs to be policed.
Note from Figure 10, that the TSpec specification can be seen as the lower
envelope of two (M, p) and (b, r) specifications.

Verifying that a flow is within its specified profile: To verify that a given
flow conforms to the specified SLA, metering is used. A typical means for
metering a flow is by using a token bucket. A token bucket can be specified
using two parameters, a capacity B and a fill rate R, and works as follows. The
bucket is continuously filled at the rate R using tokens which represent units of
Bytes, upto the level B. The bucket is initially filled up with tokens and traffic is
allowed to pass the token bucket in the presence of a sufficient number of tokens.
With each packet passing the token bucket, the number of tokens equal to the
length of the packet is taken away from the bucket and the packet is marked as
conforming to the profile specified by the token bucket. If sufficient number of
tokens are not present when a packet arrives, then the packet is marked as non-
conforming and no tokens are removed from the bucket. Therefore, the token
bucket with parameters (B, R) ensures that a flow can have a burstiness of only
up to size B. Since the bucket is filled at a rate R, conforming traffic is also
guaranteed to be bounded in the long term by R. The conforming traffic can

2.3. Specifying bounds on packet flows 37

hence be described using the (σ, ρ)-model described above, with σ = B and
ρ = R. An example of a metering algorithm based on a token bucket is the
ATM’s generic cell rate algorithm (GCRA) [9].

Rather than having a single token bucket, it is also possible to have multiple
token buckets running in parallel and a packet being marked as conforming
when it conforms to all the buckets. A flow conforming to a TSpec specification
can be metered using such a conjunction of two parallel token buckets—one
bucket has a size M and is filled at rate p (where p is the peak rate in the TSpec),
and the other bucket has size b and is filled at rate r (where r is the average rate in
the TSpec). A packet passing this combination of two token buckets is marked
as conforming only when there are sufficient tokens in both the buckets, and in
this case tokens are removed from both the buckets. It can trivially be seen that
this combination can check if a flow conforms to a TSpec with the arrival curve
min{M + pt, b + rt}.

Other combinations of token buckets include the nesting of two token
buckets [77]. If the two buckets have parameters (b, r) and (B, R) with b ≤ B
and r ≤ R, a packet is marked as conforming to the nested combination of the
buckets if there are enough tokens in both the buckets. In this case, a number
of tokens corresponding to the packet size is taken out from both the buckets
and the packet is marked for the highest class of service (or premium service).
However, if the packet does not conform to the (b, r)-bucket, but conforms to
the (B, R)-bucket, then the packet is marked for a lower quality (or degraded)
service and tokens are taken out only from the (B, R)-bucket. If there are
not enough tokens even in the (B, R)-bucket, then the packet is marked as
non-conforming and no tokens are taken out from any of the two buckets. Such
a nested combination of two token buckets can therefore be used to check if
the arrival curve of a flow lies between two arrival curves specified using the
(σ, ρ)-model.

Shaping a flow to conform to a specified profile: Rather than dropping packets
belonging to a flow when it does not conform to a specified profile, it is also
possible to hold them in a buffer so as to delay them, and then release the packet
when it conforms to the profile. All the mechanisms for metering, described
above, can also be used to shape a flow. For example, in the case of a single
token bucket, a non-corforming packet will be held in the buffer until there are
enough tokens in the bucket.

Apart from token buckets, a leaky bucket can also be used as a shaper. The
model underlying a leaky bucket can be described as follows: Incoming network
traffic is assumed to be pouring into a bucket with capacity B. The outgoing
shaped traffic continuously leaks out of the bucket through a hole at the bottom
(assuming a fluid model for the traffic), at a constant bit rate r, provided there is
traffic (fluid) in the bucket. Packets from the incoming flow are lost if the bucket
overflows. A leaky bucket can therefore tolerate a certain burstiness in the in-
coming traffic, but only to the extent till which the bucket does not overflow.
The outgoing traffic is always generated at a constant bit rate, provided there is

38 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

some backlog. In contrast to this, the output in the case of a token bucket shaper
can be bursty since it allows traffic to pass whenever there are enough tokens in
the bucket.

2.4 Scheduling disciplines

This thesis is concerned with both, link scheduling (in Chapter 5) and the
scheduling of processing and communication resources such as buses (in Chap-
ters 3 and 4). Nevertheless, the distinction between link and processor schedul-
ing in the context of this thesis is relatively fuzzy, because in both the cases,
a stream of packets arrive at a scheduler which manages either processing re-
sources (which process the packets) or the link (which is used to transmit the
packets). The only distinction between the two cases is the following. In the
case of link scheduling, the link bandwidth required to transmit the packet is
known in advance, since the packet size can immediately be determined when
the packet enters the packet processor. However, this need not be the case with
processor (or communication resources) scheduling. The flow-identification of
a packet may be done in several stages, and hence the processor bandwidth de-
mand for a packet can not be determined apriori when the packet enters the
packet processor. After some processing is done on a packet, only then can it
be determined, how much more processing needs to be done. This gives rise to
some new scheduling issues which are the subject of Chapter 3.

In this section we briefly review some scheduling disciplines which are re-
ferred to throughout the rest of the thesis. As mentioned above, since we are
concerned with scheduling a stream of packets belonging to different flows (be
it in the context of processor or link scheduling), our setup bears more resem-
blance with traditional link scheduling. Hence, the description in this section is
mostly done from this perspective.

• First come first served (FCFS): This is possibly the simplest among all schedul-
ing disciplines. Incoming packets from all the flows are stored in a single queue
and are served in the order of their arrival. The only advantage is that it is sim-
ple to implement: insertion, deletion from the queue, and scheduling decisions,
all require only O(1) time. Additionally, unlike other scheduling disciplines,
no per-flow state needs to be maintained. This scheduling disciplile also does
not readily lend itself to providing any delay or rate guarantees. It also does
not provide any isolation to the different flows, and does not have any fairness
properties. However, one way to provide a delay bound is to limit the size of the
queue of waiting packets. But packets need to be dropped when the queue is full.
Nevertheless, because of its inherent simplicity, FCFS is one of the most widely
used scheduling policies. When combined with sophisticated queue/buffer man-
agement policies which retain per-flow states, it can also provide some isolation
properties [74, 139].

2.4. Scheduling disciplines 39

• Static priority: In this case, the different packet flows are classified into a fixed
number of static priority levels. The scheduler maintains a separate queue for
each priority level, and queues up packets from all flows belonging to a certain
priority in the corresponding queue. A packet from a lower priority queue is
served only when all the higher priority queues are empty. Each queue is served
in a FCFS manner. Therefore, selecting a packet for transmission only depends
on the number of priority levels and is independent of the number of flows being
scheduled. Since the number of priority levels is a fixed constant, this operation
takes O(1) time. Similarly, queuing a packet also takes constant time.

While this scheduling discipline does offer some form of service differentiation
among the different flows—the high priority flows being protected from the
lower priority flows—it does not does not allow any end-to-end performance
guarantees on a per-flow basis. It only allows flows belonging to some classes
to receive better service than flows belonging to some other classes. However,
end-to-end delay guarantees for the different flows can be given when the flows
are constrained by arrival curves of the form mentioned in Section 2.3. With
all flows belonging to the same priority level having the same delay bound, but
different arbitrary delay bounds being associated with the different priority lev-
els, necessary and sufficient conditions for schedulability under static priority
scheduling with the flows being constrained by concave arrival curves was de-
rived in [48]. For schedulability conditions with flows bounded by a different
form of arrival curve, see [156, 157]. The necessary and sufficient conditions
for schedulability with the different flows being constrained by arbitrary arrival
curves were derived in [100]. Theoretically, such delay guarantees with the
flows constrained by arrival curves, should also be possible to derive in the case
of FCFS scheduling. But it seems that in the case of FCFS, deriving any tight
bounds (or necessary and sufficient conditions for schedulability) is substan-
tially difficult, and this is still a topic open for research [22].

• Fair queuing (WFQ, GPS, etc.): In contrast to static priority algorithms, where
the priority of each flow always remains constant, dynamic priority algorithms
change the priorities of the flows at run-time. The fair queuing class of algo-
rithms fall under such dynamic priority algorithms and have many properties
related to end-to-end delay guarantees and isolation among flows, which are not
present in static priority based algorithms.

Most fair queuing algorithms are based on the Generalized Processor Sharing
(GPS) scheduler, which is a theoretical construct based on the notion of proces-
sor sharing. The basic idea of GPS was introduced in [53] under the name “fair
queuing” and was analysed in [113, 114, 115]. The operation of this scheduler is
defined in terms of a fluid model of the traffic and tight end-to-end delay bounds
can be computed for the different flows when they traverse multiple links, each
of which is served by a GPS scheduler. The scheduler works as follows. Each
flow i, i = 1, . . . , N , is assigned a weight (positive real number) φi, and the
available link capacity at any point in time is shared among the backlogged (or
active) flows in direct proportion to their weights. Packets from the different

40 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

flows are queued up in different FIFO (first in first out) queues. During any
time interval (t1, t2], let B(t1, t2) ∈ {1, . . . , N} denote the set of flows that are
continuously backlogged during this time interval. The fluid server simultane-
ously serves the packets from the heads of these backlogged queues, such that
each backlogged queue i is served at a rate ri(t) which is given as

ri(t) =
φi∑

j∈B(t1,t2)
φj

R(t), i ∈ B(t1, t2), t ∈ (t1, t2]

where R(t) denotes the (possibly variable) link speed at time t.

This implies that each flow i (i ∈ {1, . . . , N}) at any time instant t is guaranteed
a minimum service rate of φiR(t)/

∑N
j=1 φj. Moreover, if some flows do not

have any backlogged traffic, then the unutilized link capacity from these flows
is distributed among the backlogged flows in direct proportion to their weights.
The most important feature of GPS is that it handles the excess traffic from the
different flows in a fair manner, irrespective of the amount of the excess traffic.
If i and j are any two flows backlogged during the time interval (t1, t2], let
Wi(t1, t2) and Wj(t1, t2) denote the amount of traffic from i and j respectively,
that are served during this time interval. Then GPS ensures that the following
relation holds.

Wi(t1, t2)

φi

=
Wj(t1, t2)

φj

A bound on |Wi(t1, t2)/φi − Wj(t1, t2)/φj| for any two flows that are continu-
ously backlogged over the interval (t1, t2] is often used to compare the relative
fairness of different scheduling disciplines [68]. Therefore, the fairness measure
of GPS using this approach is equal to zero.

As mentioned above, GPS is only a theoretical construct since packets from
different flows can not be sent out simultaneously on a single link. The Packe-
tized Generalized Processor Sharing (PGPS) [114], which is also referred to as
the Weighted Fair Queuing (WFQ) [53] algorithm, uses GPS as the reference
model. Here, the arrival of a packet is modeled as the arrival of a certain volume
of fluid in the reference GPS system. The packet is considered to have com-
pleted transmission when the corresponding fluid volume is completely served
by the GPS scheduler. The WFQ algorithm simulates the reference GPS sched-
uler as we just described and computes the departure times of the packets in
the GPS system. At any point in time when a scheduling decision needs to be
made, the algorithm selects for transmission, the packet that would have de-
parted the earliest in the GPS system, and serves this packet. It has been shown
in [114] that the packetized system, in the worst case, can only be one packet
length behind the service provided by the ideal GPS system. However, WFQ
suffers from a large scheduling overhead and a number of variants of this al-
gorithm have been proposed which involve a tradeoff between the complexity
of the scheduling algorithm, the offered fairness measure, and the associated
delay bounds that can be derived. These include Self-Clocked Fair Queuing
(SCFQ) [68], Start-time Fair Queuing (SFQ) [69], Minimum Starting-tag Fair

2.4. Scheduling disciplines 41

Queuing (MSFQ) [41], the Rate-Proportional Servers (RPS) [137] such as the
Starting Potential-based Fair Queuing (SPFQ) and Frame-based Fair Queuing
(FFQ) [136], and algorithms such as the Worst-case Fair Weighted Fair Queuing
(WF2Q) [19, 20].

• Round-Robin: This class of schedulers are intermediate in complexity compared
to static priority schedulers and WFQ based scheduling algorithms. In the for-
mer class of schedulers, a high priority flow can starve a low priority flow for
an indefinite amount of time. One possibility of bounding this time interval is
to limit the amount of time for which any priority level can be served. After the
queue belonging to a certain priority level is served for a predefined amount of
time, the scheduler proceeds to the next lower priority level and serves the flows
belonging to this level if there is any backlog. After having served the lowest
priority level, it again begins with the queue of the highest priority level. This
way, a certain share of the link bandwidth is guaranteed to all priority levels
even in the presence of excess traffic from some flows. By adjusting the time
quantum for which flows of a certain priority are served, this method provides a
flexible, but low complexity means of sharing the link bandwidth. However, the
fairness properties or the delay bounds are not as attractive as those in the case
of WFQ.

This idea behind designing schedulers was introduced in [76, 109]. Other, more
flexible varieties of Round-Robin schedulers are the Hierarchical Round-Robin
(HRR) [87] and the Deficit Round-Robin (DRR) [127]. Round-Robin sched-
ulers have also been extended with ideas from the WFQ class of algorithms.
DRR can be considered to fall in this class, the other algorithm being the Vir-
tual Time-based Round-Robin (VTRR) [40].

• Earliest Deadline First (EDF): Here a deadline is assigned to each packet as it
arrives, which is the sum of the packet’s arrival time and the delay guarantee
associated (i.e. the maximum time the packet can spend waiting to be served)
with the flow to which the packet belongs. Whenever a scheduling decision
needs to be made, the scheduler selects the packet with the smallest deadline
and serves it. EDF based scheduling has the property that it is optimal in terms
of minimizing the maximum lateness of packets [63], where lateness is defined
as the difference between the time a packet is completely served and the as-
signed deadline of the packet (lateness being equal to zero when this quantity is
negative).

GPS based algorithms, as mentioned above, also provide tight delay guarantees.
By choosing suitable weights corresponding to the different flows, it might be
possible to meet a specific set of deadlines associated with the flows. However,
these weights are tightly coupled with the arrival rates of the flows. Therefore,
to guarantee a small end-to-end delay to a flow, it will be necessary to assign a
relatively large rate to this flow. This might lead to inefficient usage of resources
and a smaller schedulability region [63], especially when a low bandwidth flow
requires a small end-to-end delay guarantee. EDF overcomes this problem since

42 Chapter 2. Fundamental abstractions: Modeling algorithms, architectures and packet flows

the delay guarantees and the bandwidth requirements of a flow are decoupled in
this case.

The complexity of implementing EDF is relatively high (the scheduling over-
head is higher than static priority based schedulers), because at any time the
scheduler needs to pick up the packet with the smallest deadline. However,
since packets belonging to the same flow are always served in a FCFS order,
if there are N flows with deadlines being associated with the flows, then in
O(logN) time it can be determined which packet is to be served next. The
schedulability condition for EDF (i.e. if all packets can meet their deadlines),
when all the flows are constrained by arrival curves, has been derived in [100].
A comprehensive survey of different aspects of the EDF scheduling discipline
can be found in [134].

3
Schedulability analysis

In this chapter we study the feasibility of mapping the different tasks (in the
sense described in Section 2.1) of a packet processing application onto the dif-
ferent architectural components of a packet processor.

We consider the general setup where the processor might be connected to
several input ports through which packets flow in, possibly at different line
speeds, and after being processed they are put out on the appropriate output
ports. The stream of packets through each input port is an aggregate of several
flows, and the flow-identification of a packet is determined as it passes through
the different classification tasks of the packet processing application. Corre-
sponding to each input port is a block of code implementing the packet pro-
cessing application that handles all the packets flowing through that port, and
all such blocks of code execute concurrently. The packet processing application
running at each input port typically depends on the source of the packets (or the
constituent flows that make up the input packet stream), and its high-level task
structure would be similar to the task graph shown in Figure 6. As described
in Section 2.1, the vertices of such a graph represent different packet process-
ing tasks which get triggered by incoming packets, or by preceding vertices
when they complete execution and are ready to forward the packet for further
processing. All the vertices of the concurrently executing task graphs for each
input port are mapped onto the different processing elements (and also possi-
bly to different communication resources, depending on whether the task graph
contains “communication tasks”) available on the packet processor. These pro-
cessing resources, as explained in Sections 1.2 and 2.2, would typically include
one or more general purpose processors, several processing engines (such as
RISC cores) and special purpose hardware assists for tasks like classification,
encryption, etc.

44 Chapter 3. Schedulability analysis

In the process of choosing a particular mapping of the vertices of the task
graphs onto the different processing elements, a system designer is usually faced
with several choices. One primary requirement out of any feasible mapping is
that the different real-time constraints associated with the task graphs need to
be satisfied. These real-time constraints can be computed from the input line
speeds and the average or minimum packet sizes (as explained in Section 1.3.3),
and they set an upper bound on the total time that can be spent in processing
any packet. Additionally, many flows, such as those arising from voice or video
processing applications, have QoS requirements which give rise to deadlines
being associated with the packets.

The work in this chapter results in formal models and algorithms which
can be used to quantitatively determine whether, for a givel mapping of the
vertices of the task graphs onto different processing elements, all the associated
real-time constraints can be satisfied or not. This question is posed as a
schedulability analysis problem for a task model which captures the essential
characteristics of packet processing applications. The model we study here is
based on the recurring real-time task model recently proposed in [15], which
generalizes many well known task models from the real-time systems area.

In attempting to answer the schedulability analysis question, we make the fol-
lowing contributions.

• We show that the schedulability analysis problem for the proposed model is in-
tractable under both, earliest deadline first (EDF) and static priority scheduling,
even for a very restricted setup. Apart from being of independent interest in
the context of the problem studied in this thesis, our model forms the core of
the recurring real-time task model. Our intractability result also establishes the
NP-hardness of the preemptive uniprocessor version of schedulability analysis
for the recurring real-time task model, under both dynamic and static priorities.
Till now, no complexity results for this model were known and all the existing
algorithms had exponential complexity [15].

• However, for both the scheduling disciplines, we show that it is possible to
derive pseudo-polynomial time algorithms. In view of the NP-hardness result,
this is the best that can be obtained in terms of exact algorithms (“exact” or
“optimal” algorithms are in contrast to “approximation algorithms” [79]).

• We introduce a new concept called “approximate schedulability analysis” us-
ing which it is possible to obtain a polynomial time algorithm if a small and
bounded error in the decisions made by the algorithm is acceptable. The maxi-
mum allowable error can be given as an input to the algorithm, and the smaller
the value of this error, the higher is the running time of the algorithm. We also
show that this concept is fairly general and can be applied to a wide variety
of task models known from the real-time systems literature. All the previously
known algorithms for schedulability analysis for these task models either had
exponential complexity or at best could be solved in pseudo-polynomial time.

3.1. Background 45

The notion of approximate schedulability analysis results in these problems be-
ing efficiently solvable for all practical purposes.

• Since due to memory constraints and efficiency reasons, the number of task pre-
emptions in any packet processing application needs to be bounded, we derive
the exact necessary and sufficient conditions for schedulability for the studied
task model under a bounded number of preemptions. These conditions are sub-
stantially more complex compared to the preemptive case, and no such condi-
tions were known either for the recurring real-time task model or for any other
related model. Further, we show that the concept of approximate schedulability
analysis can be used to test these conditions as well.

The rest of this chapter is structured as follows. In the next section we point
out the main difficulty behind designing an algorithm for schedulability analy-
sis for the proposed task model and why the known techniques for other task
models from the real-time systems area prove to be inadequate. The task model
is described in Section 3.2, which is followed by the hardness results in Sec-
tion 3.3. In Section 3.4 we present the basic (exponential time) algorithms for
preemptive schedulability analysis under EDF and static priority. In Section 3.5
we introduce a restricted task model to illustrate our pseudo-polynomial time
algorithms, which form the basis for approximate schedulability analysis. The
conditions for schedulability under a bounded number of preemptions are intro-
duced in Section 3.6. Finally, in Section 3.7 we present the general framework
for approximate schedulability analysis, and give our experimental results in
Section 3.8 based on the running times of different packet processing tasks on
processing elements which are typically used to implement packet processors.
These results illustrate the tradeoffs between the running times of a schedula-
bility analysis algorithm and the accuracy, for different values of the input error
parameter.

3.1 Background

Starting with the periodic task model of Liu and Layland [101], a number of
different models were proposed in the real-time systems literature over the
last years to correctly represent real-time systems, verify timing constraints
and answer scheduling-theoretic questions arising in these systems. The
different models represent tradeoffs between being as general as possible (so
that the characteristics of the underlying system can be accurately captured)
and being efficiently analyzable. However, all of these models are based on an
abstract framework in which a real-time system is modeled as a collection of
independent tasks. Each task generates a sequence of jobs, each of which is
characterized by a ready-time, an execution requirement, and a deadline (for the
ease of exposition, we sometimes refer to a job as a task, when it is clear from

46 Chapter 3. Schedulability analysis

the context which task generated the job). The sequence of jobs that can be
generated is typically constrained by some rule specific to the task model, and
the differences among the various models are in terms of the task structure and
the rules according to which jobs are generated. The schedulability analysis of
such a system is concerned with determining whether, for all possible sequences
of jobs that can be generated, it is possible to assign to each job a processor
time equal to its execution requirement, between its ready-time and its deadline.

Complexity of schedulability analysis: As an example, in the context of a
real-time embedded system, a task might model an event-driven block of code
running within an infinite loop, which gets triggered by external events and is
required to be executed within a given deadline. The system consists of a collec-
tion of such code blocks representing different event handlers and the schedula-
bility analysis is required to answer whether under all possible event-triggering
sequences, the code blocks can be executed so that all real-time constraints are
met. Such a scenario is commonly encountered during the system-level de-
sign step of embedded systems. To support this step, system-level design tools
need to implement efficient algorithms for schedulability analysis for the task
models supported by the tool. Unfortunately, for most realistic task models
the schedulability-analysis problem is intractable (usually NP-hard) and there-
fore known algorithms either have exponential complexity, or at best can be
solved in pseudo-polynomial time. Under these circumstances, current research
in the real-time systems area has focussed either on obtaining efficient pseudo-
polynomial time algorithms for these models, or on finding polynomial time
algorithms for special cases of these models. Either of these solutions never-
theless largely restricts the use of such models for the design and analysis of
realistic systems.

In the context of the problem studied in this thesis, i.e. system-level
design of network packet processors, apart from the high complexity of the
schedulability analysis algorithms for known task models, there are other
problems related to modeling which result in the known task models being
inadequate. This is explained below in further details.

Task structure: Recall from the discussion at the begining of this chapter,
that corresponding to each input port there is a block of code responsible
for processing all packets flowing in through that port. The high-level task
structure for such a block of code would generally be similar to Figure 6. Let
the stream of packets flowing in through a given port be composed of two
flows f and f ′ and let the tasks to be executed on any packet belonging to
flow f be t1, t2, t3, t4, t5, and the tasks corresponding to flow f ′ be t′1, t

′
2, t

′
3, t

′
4.

Typically, the case is that some of the tasks belonging to the two different
flows are identical, while the others are different, i.e. say, t1, t2 and t5 are
identical to t′1, t

′
2 and t′4 respectively, while t3, t4 and t′3 are different. The

task graph corresponding to the code which processes f and f ′ therefore
consists of seven tasks (t1, t2, t3, t4, t′3 and t5), with a conditional branch after

3.1. Background 47

the task t2 (where the branch taken depends on whether the packet belongs to
f or f ′), and the control flows from t4 and t′3 merge to t5. Such conditional
branches and merging of the control flow is a primary characteristic of task
graphs representing control-dominated applications. This is in contrast to
data-dominated applications like digital signal processing (DSP), which are
characterised by long computation sections following a straight-line flow of
control between relatively few control-flow boundaries or branches. Task
graphs for control-dominated applications like packet processing, on the other
hand, consist of mainly conditional branchs and control-flow-merges with
relatively little computations in between. This can be seen in the task graph
shown in Figure 6, and many other examples can also be found in [93] where
task graphs of packet processing applications constructed out of Click modules
have been shown. Most of the models and algorithms developed in the real-time
systems area have focussed only on data-dominated applications like DSP,
primarily because control-dominated applications like packet processing have
emerged only very recently.

Timing constraints: In addition to the separate paths in the control flow graph
that are taken by packets belonging to different flows, generally the timing con-
straints associated with these packets are also different. For example, because
of strict QoS requirements, packets belonging to voice or video flows have hard
deadlines within which they have to be processed. Packets belonging to a http
flow, on the other hand, may not have any deadline requirements at all. Appar-
ently it might seem that it is possible to assign a single end-to-end deadline to
a task graph (which is equal to the smallest deadline associated with any flow),
or assign a deadline to each end-to-end path in the task graph corresponding
to the different flows (where a path is assigned the deadline equal to the dead-
line associated with the corresponding flow), and then use these deadlines for
schedulability analysis. However, since the complete flow-identification of a
packet need not happen until the packet passes through a number of tasks of the
task graph, both these approaches are overly pessimistic and do not accurately
capture the timing constraints associated with a task graph. To understand this,
consider once again the example in the previous paragraph. Let t1 and t2 de-
note a header parsing and a classification task respectively. To keep up with
the line speed, both these tasks should complete processing a packet within a
fixed deadline from the packet arrival (i.e. before the arrival of the next packet),
which therefore results in a deadline being associated with them. Now, if the
flow f is related to a voice processing application and f ′ is an http flow with
no deadline requirements, then any packet from f should be processed by t3,
t4 and t5 within a fixed deadline (which would generally be different from the
deadlines associated with t1 and t2). However, the processing of packets from
f ′ by t′3 and t5 need not happen within any fixed deadline. Clearly, all of these
constraints can not be captured by either a single end-to-end deadline, or by
two deadlines associated with the different flows. Note that this situation would
not change even if there would have been a finite deadline associated with the

48 Chapter 3. Schedulability analysis

processing of packets from f ′ by t′3 and t5. Here the deadline associated with t1
and t2 would be determined by, say, the line speed and the average packet size,
whereas the deadlines associated with t′3 and t5 would be determined by other
factors like the QoS requirements of f ′, and whether packets from f ′ are being
buffered after being classified. These different deadlines can not be combined
into one end-to-end deadline for packets from f ′.

Typically, in data-dominated applications, processing starts with the
receiving of a data sample and ends with sending out of a processed sample.
The data stream is not constituted from an interleaved set of flows with
different deadline requirements [103]. Hence, it is sufficient to have a single
end-to-end deadline constraint from the start to the end of the processing and
such systems can be naturally represented by known real-time task models
like periodic [101], sporadic [105, 17], multiframe [106, 107] and generalized
multiframe tasks [16]. However, it is now being recognized that in contrast
to this, control-dominated real-time systems like packet processors have more
fine-grained timing constraints [54, 56], which can not be accurately captured
by the traditional real-time task models mentioned above [14]. To overcome
this shortcoming, of late, new models like the recurring real-time task model
[15] are being proposed. Following the same approach as in this model, for
the purpose of schedulability analysis of packet processing tasks, we annotate
the vertices of a task graph representing a packet processing application with
execution requirements and deadlines. The schedulability analysis problem is
then to determine whether all such deadlines can be met or not.

To illustrate the main difficulty involved in the schedulability analysis of a col-
lection of task graphs whose vertices are annotated with execution requirements
and deadlines, consider the following example.

while (new packet arrival) do
execute code block B0 {(e0, d0)}
if (C) then

execute code block B1 {(e1, d1)}
else

execute code block B2 {(e2, d2)}
end if

end while

In the above code excerpt, for each code block Bi, the tuples (ei, di) en-
closed within the comments indicate the execution requirement and the dead-
line of Bi. Now, if the condition C depends on the contents of a packet or on
some state of the system which can not be determined at compile time, then
the worst case branch here would depend on the other blocks of code executing
concurrently with this one. Let e1 = 2, d1 = 2, e2 = 4 and d2 = 5. If another
code block is simultaneously executing with e = 1 and d = 1 then the (e1, d1)
branch corresponds to the worst case, whereas if e = 2 and d = 5 then the
(e2, d2) branch corresponds to the worst case. Traditionally, the schedulability

3.2. The task model 49

analysis of code in the presence of conditional branches is done by identifying
the worst case path in the code, i.e. the path which makes the most rigorous
demand on the processing resources, and approximating the code by this worst
case path. However, such an approach does not work in the case of our exam-
ple, as shown above. The alternative, which involves enumerating all possible
execution paths in the control flow graph leads to exponential complexity and is
therefore computationally infeasible.

The schedulability analysis algorithms for the recurring real-time task
model, as presented in [15], have a running time which is exponential in the
number of vertices of the task graphs. It was remarked that this problem is likely
to be intractable and in contrast to the algorithms for previous (less general)
models like sporadic [105, 17], multiframe [106, 107, 16] and branching [13],
the presented algorithms do not run in pseudo-polynomial time. Our results in
this chapter settle the complexity of this problem by showing that schedulabil-
ity analysis for this model is indeed intractable (NP-hard), but can be solved in
pseudo-polynomial time.

3.2 The task model

In this section we formally introduce the task model which was motivated in
the last section. This model then forms the basis for the schedulability analysis
algorithms presented later in this chapter.

The code corresponding to a packet processing application is assumed to be
composed of a number of packet processing tasks, whose task graph is of the
form shown in Figure 6. More examples of such task graphs constructed out of
different packet processing tasks can be found in [93]. We consider any such
task graph T to be a directed acyclic graph with a unique source and a unique
sink vertex. Each vertex of the task graph T represents the code corresponding
to a packet processing task, and in case a unique source and a sink vertex do not
naturally exist in a graph, then dummy vertices are added to act as source and
sink vertices and these are joined by directed edges to the previous (multiple)
original source and sink vertices.

Associated with each vertex v is its worst case execution requirement e(v)
(which can be determined prior to the run-time, i.e. say, at the compile-time
of the code), and deadline d(v). Whenever the vertex v is triggered, the code
corresponding to it has to be executed (which takes e(v) amount of time) within
the next d(v) time units. In the preemptive version of the problem, a vertex
can be preempted at any point during its execution, in favour of another ver-
tex belonging to a different graph. Whereas in the non-preemptive version of
the problem, once the code corresponding to a vertex has started execution, it
can not be preempted and continues executing till completion. After it com-
pletes, another vertex which has already been triggered, possibly belonging to
a different task graph, can be scheduled for execution. This formulation of the

50 Chapter 3. Schedulability analysis

non-preemptive version of the problem is motivated by the fact that once a task
starts processing a packet, it might be too expensive to preempt it in favour of
another packet. However, once a task has completed execution, then a different
packet (possibly even from a different input port) may be processed. The tasks
therefore are considered to represent the natural execution boundaries. After
the processing of a packet by a task, it might be stored in the memory for some
time before being processed by the next task in the task graph, possibly even
on a different processing element. The alternative option of non-preemptively
processing a packet by all the tasks in a task graph is overly restrictive.

Each directed edge (u, v) in the graph is associated with a minimum inter-
triggering separation p(u, v), denoting the minimum amount of time that must
elapse before the vertex v can be triggered after the triggering of the vertex u.
This can be used to model a possible communication delay between u and v,
which is explained in more details later in this section.

The semantics of the execution of such a task graph state that the source
vertex can be triggered at any time, and once a vertex u is triggered then the
next vertex v can be triggered only if there exists a directed edge (u, v) and
at least p(u, v) amount of time has elapsed since the triggering of u. If there
are directed edges (u, v1) and (u, v2) from the vertex u then only one among
v1 and v2 can be triggered, after the triggering of u. Since the task graph is
used to model a block of code which runs in a loop and processes a virtually
infinite stream of packets, the triggering of the sink vertex is followed by the
triggering of the source vertex, indicating the arrival of the next packet. Two
such consecutive triggerings of the source vertex should however be separated
by at least P (T) units of time, called the period of the task graph.

Therefore, a sequence of vertices v1, v2, . . . , vk getting triggered at time in-
stants t1, t2, . . . , tk is legal if and only if there are directed edges (vi, vi+1) and
ti+1 − ti ≥ p(vi, vi+1) for i = 1, . . . , k − 1. The only exception is that vi+1

can also be the source vertex and vi the sink vertex. In this case, if there exists
some vertex vj , j < i, in the sequence, such that vj is also the source vertex
then ti+1 − tj ≥ P (T) must be additionally satisfied. The real-time constraints
require that the task corresponding to vertex vi be executed within the time in-
terval (ti, ti + d(vi)].

Note that the above conditions on their own do not guarantee that a vertex
u is always executed before a vertex v whenever there is a directed edge from
u to v. This is because a vertex can be triggered before the deadline of the last
triggered vertex has elapsed. To guarantee this property, either of the following
conditions must hold: p(u, v) ≥ d(u), which guarantees that the vertex v can be
triggered only after the task corresponding to vertex u has completed execution,
or that d(u) ≤ p(u, v)+d(v), which guarantees that the absolute deadline of the
task corresponding to vertex v is larger than or equal to the absolute deadline of
the task corresponding to vertex u. In the real-time systems literature the first
condition is referred to as the frame separation property [141] and the second
as the localized Monotonic Absolute Deadlines property (l-MAD) [16]. Since
the tasks to be executed on a packet should strictly be in the order specified

3.2. The task model 51

by the task graph, throughout this chapter we assume either one of these two
conditions to hold.

3.2.1 Rationale

As mentioned in Sections 1.2 and 2.2, network packet processors typically con-
sist of multiple processing elements. The different tasks (or vertices) of the
task graph are therefore mapped to different processing elements, with possibly
multiple tasks mapped onto the same processor. Now consider a fragment of a
task graph consisting of three vertices as shown in Figure 11(a). Let the tasks
corresponding to the first and the third vertices be implemented on a processor
P and the second vertex be mapped to a different processor P ′. The execu-
tion requirement and the deadline for each vertex is also indicated in the figure
along with the intertriggering separations. For the schedulability analysis on
processor P , the subgraph to be considered is shown in Figure 11(b). If all such
subgraphs (implemented on different processors) of any task graph pass the
schedulability test on the concerned processors, then the overall graph is also
guaranteed to be schedulable. In this context, there are two points to be noted
regarding the task model. Firstly, for this scheme to work, it is necessary to as-
sociate a separate deadline with each vertex of a task graph. In Figure 11(b), it
is not possible to assign a single (execution requirement, deadline)-tuple equal
to (e1 + e3, p1 + p2 + d3) with the graph. This is because a continuous block
of processor time equal to e1 + e3 just at the end of a time interval of length
p1 + p2 + d3 would satisfy this deadline constraint, leaving no “space” to ac-
comodate the sequential execution of the second vertex on the processor P ′ in
between the execution of the first and the third vertices. However, the separate
deadlines assigned to each vertex as shown in the figure satisfy this requirement
involved in any distributed implementation. Secondly, The intertriggering sep-
arations can be used to model a communication delay in such distributed imple-
mentations. Note that, to account for the implementation of the second vertex
on a different processor P ′, the intertriggering separation between the first and
the second vertex has been adjusted in the task graph seen by the processor P
(see Figure 11(b)). If two vertices u and v, connected by a directed edge, are
mapped onto the same processor, it might be sufficient to assign p(u, v) to be
equal to d(u). To model a communication delay, in case u and v are mapped
onto different processors, a larger value might be assigned to p(u, v).

3.2.2 Task sets and schedulability analysis

A task set T = {T1, T2, . . . , Tk} consists of a collection of task graphs, the
vertices of which can get triggered independently of each other. A triggering
sequence for such a task set T is legal if and only if for every task graph Ti, the
subset of vertices of the sequence belonging to Ti constitutes a legal triggering
sequence for Ti. In other words, a legal triggering sequence for T is obtained
by merging together (ordered by triggering times, with ties broken arbitrarily)
legal triggering sequences of the constituting tasks graphs.

52 Chapter 3. Schedulability analysis

(a) (b)

p1 + p2

(e3, d3)

(e1, d1)(e1, d1)

(e3, d3)

p2

(e2, d2)

p1

Fig. 11: (a) A task graph where vertices 1 and 3 are implemented on a processor P and vertex 2
on a different processor P′, (b) The subgraph seen by processor P .

The schedulability analysis of a task set T is concerned with determining
whether for all possible legal triggering sequences of T , the codes correspond-
ing to the vertices of the task graphs can be scheduled such that all their asso-
ciated deadlines are met. As mentioned before, in this chapter we shall address
both preemptive and non-preemptive (in the sense described above) versions of
this problem. For an implementation involving multiple processing units, if the
schedulability test holds for the subgraphs on the individual processors then it
holds for the collection T of the original graphs as well.

3.2.3 Dynamic- and static-priority scheduling

Scheduling algorithms are generally implemented by assigning priorities at each
time instant (according to some criteria), to all jobs (where a task, or in our
context, a vertex of a task graph, when triggered generates a job) that are ready
to execute and then allocating the processor to the highest priority job. Based
on this, scheduling algorithms can be broadly classified into either dynamic-
priority or static-priority (also known as fixed-priority) algorithms. Dynamic-
priority algorithms allow the switching of priorities between tasks. This means
that for two tasks, both having ready jobs at two time instants, at one instant
the first task’s job might have a higher priority than the second task’s job, while
at the other instant the priorities might switch. Static-priority algorithms, in
contrast to this, do not allow such priority switching.

This classification of algorithms based on priorities leads to two different
schedulability analysis questions. Given a task set T , the dynamic-priority
schedulability analysis asks whether it is possible to schedule jobs generated
by any legal triggering sequence of T , using any dynamic-priority scheduling
algorithm such that all deadline constraints are met. The static-priority schedu-
lability analysis question is analogous, asking the same question for any static-
priority scheduling algorithm.

An example of a static-priority algorithm is the rate-monotonic scheduling
algorithm [101] for a set of periodic tasks, where all tasks generate jobs period-

3.3. The complexity of schedulability analysis 53

ically with their deadlines equal to the periods. The scheduling algorithm then
assigns each task a priority inversely proportional to its period, i.e. the smaller
the period, the higher is the priority, with ties broken arbitrarily but in some
consistent manner. An example of a dynamic-priority scheduling algorithm is
the earliest deadline first (EDF) policy. It has been proved that EDF is an op-
timal dynamic-priority preemptive scheduling algorithm in a general setup (i.e.
this result is not restricted to our particular model). This means that if a set of
jobs can be scheduled to meet their deadlines using any preemptive dynamic-
priority algorithm, then they will also be scheduled to meet their deadlines using
EDF [101]. Further, in the non-preemptive case EDF is known to be optimal for
independently executing jobs if the scheduler is work conserving or non-idle
(i.e. if a job is ready then it has to be scheduled if the processor is empty). Be-
cause of these results, the dynamic-priority schedulability analysis question in
our case is equivalent to asking if it is possible to schedule using EDF, the jobs
generated by all possible legal triggering sequences of T . In this chapter we
address both, dynamic- and static-priority schedulability analysis, for the task
model described in this section.

3.3 The complexity of schedulability analysis
In this section we prove that both the dynamic- and the static-priority schedula-
bility analysis problems for the task model described in Section 3.2 are NP-hard.
We consider only the preemptive uniprocessor version of the problem, where all
the tasks are mapped onto a single processor. Both the proofs show that even the
very restricted case of the problem with only two task graphs where one graph
consists of just a single vertex is NP-hard. Our results also establish the NP-
hardness of the preemptive uniprocessor version of dynamic- and static-priority
schedulability analysis for the recurring real-time task model [15]. Our proofs
rely on a reduction from the knapsack problem [62] which is known to be NP-
complete.

An instance of the knapsack problem is defined as follows: a finite set U ,
with a size s(u) ∈ Z

+ and a profit p(u) ∈ Z
+ for each element u ∈ U , a size

constraint (or knapsack size) C ∈ Z
+, and a profit goal P ∈ Z

+. The decision
problem is: does there exist a subset U ′ ⊆ U such that∑

u∈U ′

s(u) ≤ C and
∑
u∈U ′

p(u) ≥ P

Thm. 1: The dynamic-priority schedulability analysis problem for the task model (con-
sidered in Section 3.2) in a preemptive uniprocessor environment is NP-hard.

Proof: Given a knapsack problem instance, we transform it in polynomial time
into a task set consisting of two tasks with the property that there is a solution

54 Chapter 3. Schedulability analysis

T3

d = C
e = C − P

s1

sn

s2

e = p1, d = s1

e = pn, d = sn

e = p2, d = s2

T2

1

T1

1

sn − 1

s2 − 1

s1 − 1

e = 1, d = 1

e = p1, d = 1
1

1

e = pn, d = 1

e = p2, d = 1

e = pn, d = sn

e = p2, d = s2

T4

e = p1, d = s1

e = p∞, d = ∞

s1

sn

s2

Fig. 12: Task graphs used for proving different hardness results.

to the knapsack problem achieving the specified profit goal if and only if the
task set is not dynamic-priority feasible. This shows that the dynamic-priority
schedulability analysis problem is NP-hard.

The knapsack problem instance specifies n items with integral sizes si and
profits pi, i = 1, . . . , n, and an integral size constraint C and profit goal P ,
and asks if there exists a subset of items, the sum of whose profits is > P and
the sum of their sizes ≤ C. To transform this into our problem we first scale
all the profits pi, i = 1, . . . , n, and the profit goal P such that the new pis and
P satisfy the following three inequalities (this could be done, for example, by
dividing all the pis and P by max{

∑n
i=1 pi, P} + 1). It may be noted here that

instead of scaling down the profits pi and the profit goal P , it is also possible to
construct a proof where the sizes si and the size constraint C are scaled up so
that the constructed instance has integral e and d values.

(i) pi < 1, i = 1, . . . , n
(ii)

∑n
i=1 pi < 1

(iii) P < 1

We then construct two task graphs T1 and T2, where T1 consists of a single
vertex with an execution requirement e = C − P and a deadline d = C, and T2

is as shown in Figure 12.
For each item in the knapsack problem instance, having a size si and profit

pi, there is a vertex in T2 having an execution requirement e = pi and deadline
d = si, and the outgoing edge from each such vertex is labelled with si, denot-
ing the minimum intertriggering separation between the two vertices connected
by the edge. All the unlabelled vertices and edges have their execution require-

3.3. The complexity of schedulability analysis 55

ments, deadlines and intertriggering separations equal to zero. The periods of
both the task graphs are equal to infinity, which means that there can be at most
one run from the source to the sink vertex (both of which are the same for T1.

The claim is that the task set T = {T1, T2} is not dynamic-priority schedu-
lable if and only if there exists a subset of items from the knapsack instance, the
sum of whose sizes does not exceed C and the sum of whose profits is greater
than P . To see this, let us first consider the if-part. This implies that there
is a valid execution of a set of vertices of T2 having an execution requirement
greater than P within a time interval of length C, if all the deadlines associated
with the vertices are to be met. Within this same time interval the task T1 can
have an execution requirement equal to C − P . Therefore, the total execution
requirement of T within a time interval of length C exceeds C, implying that T
is not dynamic-priority schedulable.

For the proof in the other direction, it is to be noted that T will not be
dynamic-priority schedulable only in the following two cases.

(i) Within a time interval of length C, T2 has an execution requirement greater
than P .
(ii) Within any time interval of length t such that

C + 1 ≤ t = si1 + si2 + . . . + sik

where all the i1, . . . , ik are from {1, . . . , n}, T1 has an execution requirement
exceeding t − (pi1 + . . . + pik).

Case (ii) can not occur because within any such time interval of length t, T1

has an execution requirement of less than C and pi1 + pi2 + . . . + pik < 1.
Case (i) implies that there is a solution to the knapsack problem satisfying the
size constraint C and having a profit greater than P . ��

The following results show that the static-priority schedulability analysis
problem is also NP-hard. The pseudo-polynomial time algorithm and also the
approximate decision algorithms that we present later for this problem, are
based on testing whether a given task from a task set is “lowest-priority schedu-
lable”. A task T ∈ T is lowest-priority schedulable if and only if all the vertices
of T can always meet their deadlines with T assigned the lowest priority and
all the remaining tasks of T having any arbitrary priority assignment. The ex-
istence of a lowest-priority schedulable task in any static-priority schedulable
task set is given later in Theorem 5.

The next theorem says that testing whether a task set is lowest-priority
schedulable is NP-hard, and as a corollary of this (see Cor. 1) it follows that
static-priority schedulability analysis is also NP-hard.

Thm. 2: The problem of determining whether a given task is lowest-priority schedulable
is NP-hard.

56 Chapter 3. Schedulability analysis

Proof: Given a knapsack problem instance as described in the proof of Theo-
rem 1, we scale the profits and the profit goal to meet the three conditions also
mentioned in that proof. Then we construct two task graphs T and T3, where
T consists of a single vertex with an execution requirement e = C − P and
a deadline d = C + 1, and T3 is as shown in Figure 12. Here, for each item
in the knapsack problem instance, having size si and profit pi, there is a vertex
in T3 having an execution requirement e = pi and deadline d = 1, and there
is one incoming edge to such a vertex labelled with a minimum intertriggering
separation of si − 1 and an outgoing edge labelled with 1. The source vertex of
T3 has e = 1, d = 1, and an outgoing edge labelled with 1. As in the previous
proof, all the unlabelled vertices and edges have their execution requirements,
deadlines and intertriggering separations equal to zero.

We claim that the task T is not lowest-priority schedulable if and only if
there is a solution to the knapsack instance satisfying the size constraint C and
having a profit greater than P . If there is such a solution to the knapsack prob-
lem, then the vertices in T3 corresponding to the items constituting the solution
define an execution sequence in which T3 within a time interval of length C
can occupy the processor for an amount of time greater than P . Therefore, an
execution sequence defined by the source vertex of T3 along with these vertices,
can occupy the processor for an amount of time greater than P + 1 within an
interval of length C + 1, implying that T is not lowest-priority feasible.

For the other direction, it should be noted that for T3 to occupy the processor
for an amount of time greater than P + 1, the source vertex must always be
triggered because the sum of the execution requirements of all the other vertices
is less than 1. Any such execution sequence defines a solution to the knapsack
instance satisfying the size constraint C and having a profit greater than P . To
see this, let the sequence of vertices having non-zero execution requirements
and deadlines, in such an execution sequence be the source vertex, followed by
(pi1, 1), (pi2, 1), . . . , (pik , 1) (where any tuple (pij , 1) denotes the vertex having
execution requirement equal to pij and deadline equal to 1). Then this clearly
corresponds to a knapsack solution in which items having (profit, size) equal
to (pi1, si1), (pi2, si2), . . . , (pik , sik − 1 + pik) satisfy the size constraint C and
the profit goal P . However, since C and all the item sizes are integers, C ≥
si1 + si2 + . . . + sik − 1 + pik implies that C ≥ si1 + si2 + . . . + sik . Hence
the execution sequence mentioned implies the desired solution to the knapsack
problem instance. ��

Cor. 1: The static-priority schedulability analysis problem is NP-hard.

Proof: In the proof of Theorem 2, clearly T3 is not lowest-priority schedulable,
implying that the task set {T, T3} is static-priority schedulable if and only if
T is lowest-priority schedulable. By Theorem 2, the problem of determining
whether T is lowest-priority schedulable is NP-hard. ��

3.4. Basic algorithms 57

3.4 Basic algorithms
In this section we state the basic conditions and algorithms involved in the pre-
emptive version of the schedulability analysis. The algorithms described here
run in exponential time, but form the basis for the pseudo-polynomial time ex-
act and polynomial time approximate decision algorithms presented in the later
sections.

3.4.1 Dynamic-priority schedulability analysis

The necessary and sufficient condition for testing whether a given task set is
dynamic-priority schedulable, is based on an abstraction of a task, represented
by a function called the “demand-bound function”. The demand-bound func-
tion of a task T , denoted by T.dbf(t), takes as an argument a real number t
and returns the maximum possible cumulative execution requirement by ver-
tices of T that have been triggered by a legal triggering sequence and have both
their ready times and deadlines within a time interval of length t. Intuitively,
T.dbf(t) denotes the maximum possible execution requirement that can possi-
bly be demanded by T within any time interval of length t, if all its vertices
are to meet their deadlines. As an example, consider the task graph T shown in

Fig. 13: The demand-bound function T.dbf(t) for a task graph T . T.dbfv(t) denotes the
demand-bound function due to triggering sequences ending at vertex v.

Figure 13. For this graph, T.dbf(2) = 1 because the vertex having an execution
requirement of 1 and deadline 2 can get triggered at the beginning of any time
interval of length 2 and has an execution requirement of 1 if it has to meet its
deadline. Similarly, T.dbf(20) = 10 because of a possible triggering of the two
shaded vertices in the graph within any interval of length 20.

In addition to T.dbf(t), for the purpose of non-preemptive dynamic-priority
schedulability analysis (described in Section 3.6), we make use of a similar
function which we denote using T.dbf v(t). For a task graph T and any ver-
tex v belonging to this graph, T.dbf v(t) is equal to the maximum execution
requirement that can be demanded by T within any time interval of length t if

58 Chapter 3. Schedulability analysis

all the triggered vertices have to meet their deadlines, due to any triggering se-
quence ending at the vertex v. Therefore, for the vertex v marked in Figure 13,
T.dbf v(2) = 1 due to the vertex v itself, T.dbf v(7) = 4 due to a possible trig-
gering of the source vertex followed by the triggering of vertex v five time units
after the source vertex is triggered (giving rise to an execution requirement of 4
within a time interval of length 7). Finally, for any t > 7, T.dbf v(t) is trivially
equal to 7, because of the same sequence of triggerings as described in the case
of t = 7.

Using the demand-bound function, the condition for dynamic-priority
schedulability analysis is given by the following theorem.

Thm. 3: A task set T is dynamic-priority schedulable in a preemptive environment if and
only if for all t ≥ 0,

∑
T∈T T.dbf(t) ≤ t.

Proof: First we prove that the condition is necessary (i.e. the ‘only if’ part).
This states that the task set T being dynamic-priority schedulable implies that
for all t ≥ 0,

∑
T∈T T.dbf(t) ≤ t, which is equivalent to the proposition that if

there exists some t ≥ 0 for which
∑

T∈T T.dbf(t) > t then the task set T is not
dynamic-priority feasible. We will prove the second proposition.

Let for some t > 0, T1, T2, . . . , Tk be all tasks of T for which Ti.dbf(t) > 0
for all i = 1, 2, . . . , k. At time zero, let the triggering sequence of the vertices
of the task graphs corresponding to each of these tasks, which result in the
computation of dbf(t), be started. Then for all the vertices occurring in this
triggering sequence, to meet their associated deadlines, an amount of processor
time equal to

∑k
i=1 Ti.dbf(t) has to be allocated within time t. This will not be

possible if
∑k

i=1 Ti.dbf(t) > t.
Now we give the proof for sufficiency i.e. for all t ≥ 0,

∑
T∈T T.dbf(t) ≤ t

implies that T is dynamic-priority schedulable. To prove this let us assume that
for all t ≥ 0,

∑
T∈T T.dbf(t) ≤ t and still T is not dynamic-priority schedula-

ble. If this is the case then let in some execution sequence, a vertex of T ∈ T be
the first vertex that misses its deadline, when the triggered vertices of the tasks
of T are scheduled according to the EDF policy. Recall from the discussion
in Section 3.2.3 that EDF is known to be an optimal scheduling policy, in the
sense that if there is any feasible schedule then EDF will also schedule the ver-
tices such that all deadlines are met. Assume that the vertex which missed its
deadline was generated at time tr and its deadline was at time td. Clearly, dur-
ing the entire time interval [tr, td] the processor was always occupied, because
otherwise this vertex could have been executed during such a free time. Now let
us look back in time before tr and stop immediately before the instant at which
either the processor was idle or we encounter some vertex being executed whose
deadline is beyond td. Let us call the time instant at which we stopped as t′r.

Clearly t′r is a time at which some vertex of a task graph was just triggered,
and all the vertices that were executed during the time interval [t′r, td] were trig-
gered on or after t′r and had their deadline before or at td (by our definition of
t′r). Let these vertices belong to the tasks T1, T2, . . . , Tk and T of T . The proces-
sor was always occupied during the time interval [t′r, td], which implies that the

3.4. Basic algorithms 59

summation of the execution requirements of T1, T2, . . . , Tk and T during this in-
terval exceed (td−t′r). Hence,

∑k
i=1 Ti.dbf(td−t′r)+T.dbf(td−tr) > (td−t′r)

contradicting our assumption that for all t ≥ 0,
∑

T∈T T.dbf(t) ≤ t. ��
The next theorem shows that the problem of computing T.dbf(t) for a task

T is NP-hard. The proof of this theorem is based on an argument similar to
what was used to prove Theorem 1.

Thm. 4: The problem of computing T.dbf(t) is NP-hard.

Proof: Given a knapsack problem instance consisting of n items, a profit goal
P and a size constraint C, as described in the proof of Theorem 1, construct
the task graph T2 shown in Figure 12 and described in the same proof. Clearly,
T2.dbf(C) > P if and only if there is a solution to the knapsack problem satis-
fying the size constraint C and having a profit greater than P . ��

It may therefore be noted that any algorithm for dynamic-priority schedu-
lability analysis based on the test given in Theorem 3 is faced with two prob-
lems which are computationally difficult. Firstly, the problem of computing
the demand-bound function T.dbf(t) for any t involves exponential complex-
ity, and secondly the test involves a universal quantification over an unbounded
set, and is hence not practical.

Recall from Section 3.2 that for any task graph T , P (T) denotes the period
of this graph, i.e. the minimum time interval between two consecutive trig-
gerings of the source vertex of T . Let E(T) denote the maximum cumulative
execution requirement arising from a sequence of vertices on any path from
the source to the sink vertex of the task graph T , i.e. if a sequence of vertices
v1, . . . , vk of T be such that v1 is the source vertex, vk is the sink vertex, and
there are no other source or sink vertices in v2, . . . , vk−1 and there is a directed
edge from vi to vi+1, 1 ≤ i ≤ k − 1, then E(T) denotes the maximum of
e(v1) + . . . + e(vk) from among all such vertex sequences.

It may now be observed that for any t, T.dbf(t) ≤ 2E(T) + tE(T)/P (T).
To understand this, note that any legal triggering sequence of vertices vi, . . . , vj

of a task graph T can be considered to be composed of three subsequences:
vj, . . . , vsink followed by vsource, . . . , vsink and finally vsource, . . . , vj , where
vsource is the source vertex of T and vsink is the sink vertex of T . If this se-
quence of vertices are triggered such that their triggering time and deadline
fall within a time interval of length t, then the execution demand within this
time interval arising out of the subsequence vsource, . . . , vsink is bounded by
tE(T)/P (T). The execution demand within this time interval arising out of
each of the two subsequences vj , . . . , vsink and vsource, . . . , vj is bounded by
E(T). Hence, T.dbf(t) ≤ 2E(T) + tE(T)/P (T).

Using this inequality in conjunction with Theorem 3, we obtain that if a task
set T is not dynamic-priority schedulable, then there exists some t > 0 such
that

∑
T∈T T.dbf(t) > t, which is equivalent to t <

∑
T∈T 2E(T)

1−
∑

T∈T
E(T)
P (T)

. Using this

inequality, we obtain the following corollary of Theorem 3.

60 Chapter 3. Schedulability analysis

Cor. 2: A task set T is dynamic-priority schedulable in a preemptive environment if and
only if for all t <

∑
T∈T 2E(T)

1−
∑

T∈T
E(T)
P (T)

,
∑

T∈T T.dbf(t) ≤ t.

Note that it may be assumed that the quantity
∑

T∈T
E(T)
P (T)

is a priori bounded
by a constant strictly less than one, because otherwise, the task set T is anyway
not schedulable. E(T)

P (T)
for any task T can be referred to as its utilization. There-

fore, using this corollary, although the number of tests to check if the sum of the
demand-bound functions for any value of t exceed t, is bounded, it is pseudo-
polynomial in the size of the input specification. This scheme for bounding the
number of tests in a schedulability analysis algorithm is fairly standard, and has
been applied to other task models as well (see also [15] and [16]).

3.4.2 Static-priority schedulability analysis

The conditions for static-priority schedulability analysis that we present in this
section are based on those derived in [15] for the recurring real-time task model.
In Section 3.4.4 we present a new condition for schedulability analysis which
is tighter than those presented in [15] and which then forms the basis for the
pseudo-polynomial and approximate decision algorithms in the later sections.
In contrast to the conditions presented in Section 3.4.1 for dynamic-priority
schedulability analysis, the conditions present here are only sufficient and not
necessary.

As defined in Section 3.2.3, the static-priority schedulability analysis of a
task set T is concerned with determining whether there exists an assignment of
priorities to the tasks of T under which they can be scheduled by a static-priority
run time scheduler so that all deadlines are met even in the worst case triggering
sequence. Any such priority assignment is defined to be a good static-priority
assignment for T . As mentioned in Section 3.3, solving this schedulability
analysis problem is based on testing whether a given task T ∈ T is lowest-
priority schedulable. Clearly, if there is a procedure for testing lowest-priority
schedulability, and the task set T is static-priority schedulable, then |T | calls to
this procedure will be sufficient to identify a lowest-priority schedulable task of
T . Therefore, if |T | = n then with O(n2) calls to this procedure a good static-
priority assignment for T can be determined based on the following theorem.

Thm. 5: (Audsley, Tindell, Burns [11]) Suppose a task T ∈ T is lowest-priority schedu-
lable. Then there is a good static-priority assignment for T if and only if there
is a good static-priority assignment for T \{T}.

An algorithm for static-priority schedulability analysis therefore reduces to de-
vising an algorithm for lowest-priority schedulability testing. An algorithm im-
plementing a sufficient condition for lowest-priority schedulability was given
in [15] for the recurring real-time task model, which is also applicable to the
task model we consider in Section 3.2. It is also based on an abstraction of a
task, similar to the demand-bound function presented in Section 3.4.1, and uses

3.4. Basic algorithms 61

a function called the “request-bound function”. The request-bound function of
a task T , denoted by T.rbf(t), takes as an argument a real number t and returns
the maximum possible cumulative execution requirement by vertices of T that
have been triggered according to some legal triggering sequence and have their
ready times within any time interval of length t. Intuitively, T.rbf(t) is an up-
per bound on the maximum amount of time, within any time interval of length
t, for which T can deny the processor to all lower-priority tasks. Based on
this function, the following sufficiency condition was given for lowest-priority
schedulability testing in [15].

Thm. 6: (Baruah [15]) A task T ∈ T is lowest-priority schedulable if ∀t : ∃t′ ≤ t such
that (t′ −

∑
T ′∈T \{T} T ′.rbf(t′)) ≥ T.dbf(t).

Now, based on similar arguments that we used to prove that computing T.dbf(t)
is NP-hard, we next show that computing the request-bound function T.rbf(t)
for any t is also NP-hard.

Thm. 7: The problem of computing T.rbf(t) is NP-hard.

Proof: Consider a knapsack problem instance as described in the proof of The-
orem 1 with an additional item having a very large profit (for example greater
than the sum of the profits of all the other items), which we denote by p∞, and
zero size. Now construct the task graph T4 as shown in Figure 12. This is sim-
ilar to the task graph T1 in the same figure with the only difference being that
the last vertex is labelled with an execution requirement of e = p∞ and deadline
d = ∞. It may be noted that any solution to the knapsack problem will include
this item with profit p∞. The rest of the proof is based on similar arguments as
given in the proof of Theorem 4. ��

Lastly, based on exactly similar arguments as used in Section 3.4.1 for
bounding the value of T.dbf(t) for any t, it is possible to show that for any
t, T.rbf(t) ≤ 3E(T) + tE(T)/P (T). Using this in conjunction with Theo-
rem 6 and the upper bound on T.dbf(t), the following can be obtained as a
corollary of Theorem 6.

Cor. 3: A task T ∈ T is lowest-priority schedulable if ∀t <
3

∑
T ′∈T E(T ′)

1−
∑

T ′∈T
E(T ′)
P (T ′)

: ∃t′ ≤ t

such that (t′ −
∑

T ′∈T \{T} T ′.rbf(t′)) ≥ T.dbf(t).

As in Section 3.4.1, assuming that
∑

T ′∈T
E(T ′)
P (T ′) is a priori bounded by a

constant strictly less than one, this corollary bounds the number of tests for
lowest-priority schedulability to be pseudo-polynomial in the size of the input
specification. Nevertheless, the algorithm for static-priority schedulability using
this scheme is still of exponential complexity because of the computation of
T.rbf(t). Our results in the following sections show how to get around this
problem.

62 Chapter 3. Schedulability analysis

3.4.3 Computing the demand- and request-bound functions

The last two sections introduced two abstractions of any task T—the demand-
bound function T.dbf(t) and the resource-bound function T.rbf(t)—and based
on them gave the conditions for dynamic- and static-priority schedulability of
a task set. In this section we give the formal algorithms for computing these
two functions. Both the algorithms are of exponential complexity, but some of
the techniques introduced here will be used in the later sections while deriving
pseudo-polynomial time algorithms for computing these functions.

Given a task graph T , let v1, v2, . . . , vk getting triggered at time instants
t1, t2, . . . , tk, be a legal triggering sequence in the sense described at the very
begining of Section 3.2. Now consider some time length t ≥ tk + d(vk) − t1.
Clearly, the triggering of v1, v2, . . . , vk generates a sequence of jobs whose
ready-times and deadlines fall within a time interval of length t. Further assume
that from all possible legal triggering sequences of the vertices of T whose
resulting jobs have their ready times and deadlines within a time interval of
length t, v1, . . . , vk getting triggered at t1, . . . , tk is the sequence for which the
sum of the execution requirements of the vertices (i.e. e(v1) + . . . + e(vk)) is
maximized. Then by definition, T.dbf(t) = e(v1)+ . . .+ e(vk). T.rbf(t) is de-
fined exactly in the same manner, with the only difference being that instead of
t ≥ tk +d(vk)− t1, we require the condition t ≥ tk − t1 to hold. This is because
here only the ready times of the jobs must lie within a time interval of length t.
To compute T.dbf(t) and T.rbf(t), two different procedures are used depend-
ing on whether t is small or large. We describe below what small and large
exactly means in this context and then describe how the functions are computed.

3.4.3.1 T.dbf(t) and T.rbf(t) for small values of t

These are values of t, for which the sequence of vertices that contribute towards
computing dbf(t) or rbf(t), contain the source vertex at most once. In other
words, if T.dbf(t) is computed as a result of the triggering of a sequence of
vertices v1, v2, . . . , vk of T , then either the source vertex never occurs, or occurs
exactly once in the multiset {v1, v2, . . . , vk}. Note that there may be vertices
other than the source vertex which occur twice (can not be more, because that
would necessitate the source vertex getting triggered more then once). To obtain
such sequence of vertices, we construct a new task graph by taking two copies
of the task graph T and adding an edge from the sink vertex of the first graph
to the source vertex of the second graph and finally replacing the source vertex
of the first graph with a dummy vertex with execution requirement and dead-
line both equal to zero. The intertriggering separations on all edges outgoing
from this source vertex is also made equal to zero. The execution requirements
and deadlines associated with all the other vertices, and the intertriggering sep-
aration times associated with the other edges are retained from T , and the new
edge added from the sink to the source vertex is labelled with an intertriggering
separation equal to the deadline of the sink vertex.

Now note that corresponding to any path in this new graph, there is a trig-

3.4. Basic algorithms 63

gering sequence of the vertices in T in which the (original) source vertex of
T is triggered at most once, and vice versa. If v1, v2, . . . , vk be the sequence
of vertices corresponding to some path π, then let tπ =

∑k−1
i=1 p(vi, vi+1) and

eπ =
∑k

i=1 e(vi). Then clearly eπ is a lower bound on both T.dbf(tπ + d(vk))
and T.rbf(tπ). The path π is a witness to this. Now we enumerate all possible
paths in the new graph and corresponding to each such path π, we compute tπ

and eπ . Then for any small value of t (in the sense described above),

T.dbf(t) = max
π

{eπ : tπ + e(vk) ≤ t} and T.rbf(t) = max
π

{eπ : tπ ≤ t}

where the max operation is over all possible paths π in the new graph and vk

denotes the last vertex in any such path. We point out here that since in general
there can be an exponential number (in the number of vertices of T) of paths in
such a graph, the worst case running time of this procedure has an exponential
complexity.

3.4.3.2 T.dbf(t) and T.rbf(t) for large values of t
Here we consider values of t for which the sequence of vertices that re-
sult in the computation of dbf(t) or rbf(t) contain the source vertex two or
more times. Given such a t, let the triggering sequence that results in the
computation of T.dbf(t) be v1, v2, . . . , vk getting triggered at time instants
t1, t1 + p(v1, v2), . . . , t1 +

∑k−1
i=1 p(vi, vi−1). Let tk = t1 +

∑k−1
i=1 p(vi, vi+1).

Note that here the set {v1, . . . , vk} is a multiset with some vertices being present
more than once. Now within the time interval [t1, tk], let tf and tl respectively
denote the time instants at which the source vertex was triggered for the first
and the last time, and let these be denoted by vf and vl. The execution require-
ment of the jobs generated as a result of the triggering of v1, . . . , vk can now
be represented as a sum of three different terms: execution requirement of jobs
generated by

(v1, . . . , vf−1) + (vf , . . . , vl−1) + (vl, . . . , vk) (3.1)

As before, E(T) denotes the maximum cumulative execution requirement
among all possible paths from the source to the sink vertex of the task graph
T , and let us denote this path by π = u1, . . . , un. Let tπ =

∑n−1
i=1 p(ui, ui+1) +

d(un). Now assuming that the period of the task graph P (T) ≥ tπ (which
follows from both, the frame separation property and the localized Monotonic
Absolute Deadlines property described in Section 3.2), the duration of the time
interval [tf , tl) is clearly a multiple of P (T). Hence the maximum possible ex-
ecution requirement of T over this time is (tl − tf)E(T)/P (T), which is also
equal to the execution requirement of the jobs generated by vf , . . . , vl−1.

Next, consider the triggering sequence of the vertices of T in which
v1, . . . , vf−1, vl, vl+1, . . . , vk are triggered at time instants t1, . . . , tf−1, tl− (tl −
tf), tl+1 − (tl − tf), . . . , tk − (tl − tf). The execution requirement of the jobs
resulting out of this triggering is the same as that generated by the first and the
third terms of Expression (3.1), and is exactly equal to T.dbf(t − (tl − tf)).

64 Chapter 3. Schedulability analysis

Note that this sequence of vertices contain the source vertex at most once and
hence the interval of length t − (tl − tf) is small. T.dbf(t − (tl − tf)) can
therefore be computed by the procedure for computing dbf(t) for small values
of t. This gives us a procedure for computing T.dbf(t) for any general value of
t, provided we know the value of (tl − tf). Since we know that the sequence of
vertices that result in computing T.dbf(t − (tl − tf)) contain the source vertex
at most once, t − (tl − tf) must be strictly less than 2P (T). Further, tl − tf is
an integral multiple of P (T). These together imply that t − (tl − tf)) is either
equal to t mod P (T) or P (T) + t mod P (T). Hence,

T.dbf(t) = max{
t/P (T)�E(T) + T.dbf(t mod P (T)),
(
t/P (T)� − 1)E(T) + T.dbf(P (T) + t mod P (T))} (3.2)

T.rbf(t) = max{
t/P (T)�E(T) + T.rbf(t mod P (T)),
(
t/P (T)� − 1)E(T) + T.rbf(P (T) + t mod P (T))}

Hence, the functions T.dbf(t) and T.rbf(t) can be computed for any value of
t, using the procedure in Section 3.4.3.1 for computing these functions for small
values of t, without iterating over the task graph T multiple times.

3.4.4 Improved static-priority schedulability analysis

The conditions for static-priority schedulability analysis presented in Sec-
tion 3.4.2 are based on the resource-bound function T.rbf(t) as described in
[15] in the context of the recurring real-time task model. In this section we give
a modified definition of this function and show that it leads to a new sufficiency
condition for testing lowest-priority schedulability which is tighter than the test
given by Theorem 6 in the following sense. For any task set T , if a task T ∈ T
is returned as lowest-priority schedulable by the test in Theorem 6 then it is also
returned as lowest-priority schedulable by our test, and there exist task sets T
and tasks T ∈ T which although being lowest-priority schedulable, fail the test
in Theorem 6 but are returned as lowest-priority schedulable by our test. Lastly,
we show that for any task set consisting of exactly two tasks, our test is both a
necessary and sufficient condition.

Our modified definition of the resource-bound function, which we denote by
T.rbf ′(t) is similar to T.rbf(t) and returns the maximum possible cumulative
execution requirement by vertices of T within any time interval of length t, that
have been triggered by a legal triggering sequence. To illustrate the difference
between the two functions, consider a task graph T consisting of a single ver-
tex having an execution requirement of 5 and any arbitrary deadline. Whereas
T.rbf(t) = 5 for any t ≥ 0 (since the ready time of T is at time 0), T.rbf ′(t) = t
for t ≤ 5 and is equal to 5 for any t > 5. Our new sufficiency condition for
lowest-priority schedulability is based on the lemma and the theorem given be-
low.

Lem. 1: Let T ∈ T and the task graph corresponding to T have n vertices v1, . . . , vn.
If each of these vertices vi is lowest-priority schedulable in the task set
T \{T}

⋃
{vi}, then T is also lowest-priority schedulable.

3.4. Basic algorithms 65

Proof: If the vertex vi has an execution requirement of e(vi) and deadline equal
to d(vi) and is lowest-priority schedulable in the task set T \{T}

⋃
{vi} then

within any time interval of length d(vi), tasks of T \{T} never occupy the pro-
cessor for an amount of time exceeding d(vi) − e(vi). Clearly, if this is true
for all vertices of T then no matter how they are triggered, they can always be
executed to meet their deadlines, implying lowest-priority feasibility of T . It is
trivial to see that the lemma is true even for the other direction. ��

Thm. 8: A task T ∈ T is lowest-priority schedulable if for all vertices v belonging to the
task graph of T , ∃0 ≤ t ≤ d(v) for which t −

∑
T ′∈T \{T} T ′.rbf ′(t) ≥ e(v).

Proof: To prove the sufficiency of this test, we are required to prove that if
∃0 ≤ t ≤ d(v) for which t−

∑
T ′∈T \{T} T ′.rbf ′(t) ≥ e(v) for all vertices v of T

then T is lowest-priority schedulable. Assume that t−
∑

T ′∈T \{T} T ′.rbf ′(t) ≥
e(v) and still the vertex v is not lowest-priority schedulable. Then let v miss
its deadline at time td when being scheduled by a static-priority scheduler and
let it be the case that v was triggered at time tr. Therefore, within the time
duration td − tr = d(v), the processor was occupied for more than d(v) − e(v)
amount of time by the higher priority tasks, contradicting the assumption that
t −

∑
T ′∈T \{T} T ′.rbf ′(t) ≥ e(v). The proof follows from the above argument

along with Lemma 1. ��
It is easy to see that if a task T ∈ T is returned as lowest-priority schedu-

lable by the test given by Theorem 6 then it also passes the test of Theorem 8.
Additionally, if T is returned as lowest-priority schedulable, then it is really so.
To show that this represents a tigher test, consider a task set consisting of two
task graphs T1 and T2. T1 is a simple chain of three vertices with the first two
vertices having their execution requirements equal to 1 and deadlines equal to
2, and the third vertex having an execution requirement of 3 and deadline equal
to 6. The intertriggering separation on any directed edge (u, v) is equal to the
deadline of u. T2 consists of a single vertex having an execution requirement
of 1 and deadline equal to 4. It can be seen that T2 is indeed lowest-priority
schedulable and passes the test of Theorem 8, but fails the test given by Theo-
rem 6. Lastly, we show that for any set of exactly two task graphs, the test given
by Theorem 8 is both a necessary and sufficient condition.

Thm. 9: For any task set T consisting of exactly two task graphs, a task T ∈ T is lowest-
priority schedulable if and only if it satisfies the test given by Theorem 8.

Proof: Let T consist of two task graphs T1 and T2. By Lemma 1, we assume
that T1 consists of a single vertex with an execution requirement of e and dead-
line equal to d. T2 is an arbitrary task graph. We want to test whether T1 is
lowest-priority schedulable. The claim is that T1 is lowest-priority schedulable
if and only if ∃t ≤ d for which (t − T2.rbf

′(t)) ≥ e.
To prove that the condition is necessary, it is sufficient to prove that if ∀t ≤

d, (t − T2.rbf
′(t)) < e then T1 is not lowest-priority feasible. The proof of this

is straightforward and hence we omit the details. ��

66 Chapter 3. Schedulability analysis

3.5 Algorithms for a restricted task model

In this section we consider a restricted form of the task model described in
Section 3.2—we do not consider the recurring behaviour of the task graphs.
The task graphs considered here can therefore be referred to as “one-shot” task
graphs, where the control flows from the source to the sink vertex of a graph
only once. For a collection of such one-shot task graphs, we show that the
schedulability analysis problem can be solved in pseudo-polynomial time, and
for the special case where all the vertices of a task graph have equal execution
times, this problem can be solved in polynomial time. These results are then
used to derive polynomial time approximate decision algorithms in Section 3.7.

3.5.1 Pseudo-polynomial time dynamic-priority schedulability analysis

Given a task graph T , we first give a pseudo-polynomial time algorithm for com-
puting T.dbf(t) for any t ≥ 0, based on dynamic programming. Let there be n
vertices in T denoted by v1, . . . , vn, and without any loss of generality we as-
sume that there can be a directed edge from vi to vj only if i < j. Following our
notation described in Section 3.2, associated with each vertex vi is its execution
requirement e(vi) which here is assumed to be integral (a pseudo-polynomial
algorithm is meaningful only under this assumption), and its deadline d(v i).
Associated with each edge (vi, vj) is the minimum intertriggering separation
p(vi, vj).

Let ti,e be the minimum time interval within which the task T can have an
execution requirement of exactly e time units due to some legal triggering se-
quence, considering only a subset of vertices from the set {v1, . . . , vi}, if all
the triggered vertices are to meet their respective deadlines. Let ti

i,e be the mini-
mum time interval within which a sequence of vertices from the set {v1, . . . , vi},
and ending with the vertex vi, can have an execution requirement of exactly e
time units, if all the vertices have to meet their respective deadlines. Lastly, let
E = maxi=1,...,n e(vi). Clearly, nE is an upper bound on T.dbf(t) for any t ≥ 0.
It can be shown by induction that Algorithm 1 correctly computes T.dbf(t), and
has a running time of O(n3E), and is hence a pseudo-polynomial time algorithm
for computing the demand-bound function.

Theorem 3 along with Algorithm 1 implies a pseudo-polynomial time
algorithm for dynamic-priority schedulability analysis. To see this, let for any
task T ∈ T , tTmax denote the maximum amount of time elapsed among all
execution sequences starting from the source vertex of T and ending at the
sink vertex, if every vertex is triggered at the earliest possible time (respecting
the minimum intertriggering separations). Let tmax = maxT∈T tTmax. It
follows from Theorem 3 that T is dynamic-priority schedulable if and only
if

∑
T∈T T.dbf(t) ≤ t for all t = 1, . . . , tmax. T.dbf(t) for any t can be

determined in pseudo-polynomial time by Algorithm 1 and clearly, tmax is
pseudo-polynomially bounded, implying a pseudo-polynomial time algorithm
for dynamic-priority schedulability analysis for our restricted (one-shot) task
model.

3.5. Algorithms for a restricted task model 67

Algorithm 1 Computing T.dbf(t) in pseudo-polynomial time
Require: Task graph T , and a real number t ≥ 0

for e ← 1 to nE do

t1,e ←
{

d(v1) if e(v1) = e
∞ otherwise

t11,e ← t1,e

end for
for i ← 1 to n − 1 do

for e ← 1 to nE do
Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

ti+1
i+1,e ←




min{tijij ,e−e(vi+1)
− d(vij) + p(vij , vi+1)

+d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

ti+1,e ← min{ti,e, ti+1
i+1,e}

end for
end for
T.dbf(t) ← max{e | tn,e ≤ t}

Vertices with equal execution requirements: We now show that for the spe-
cial case where for every (one-shot) task graph T belonging to a task set T , all
the vertices of T have equal execution requirements, the schedulability analysis
problem for T can be solved in polynomial time, in contrast to the pseudo-
polynomial time algorithm given above. This result holds even when all execu-
tion requirements and deadlines take values over the reals.

We denote the vertices of a task graph T by v1, . . . , vn and assume that there
can be a directed edge from vi to vj only if i < j. Let ti,k denote the minimum
time interval within which exactly k vertices of T from the set {v1, . . . , vi} (ob-
viously k ≤ i) need to be executed as a result of some legal triggering sequence,
if they have to meet their associated deadlines. Let ti

i,k denote the minimum
time interval within which exactly k vertices of T consisting of vi and any other
k − 1 vertices from {v1, . . . , vi−1} need to be executed as a result of some legal
triggering sequence, if they have to meet their associated deadlines.

Given any vertex vi of T , let there be directed edges from the vertices
vi1 , . . . , vil to vi. Then for any k ≤ i,

tii,k = min{tijij ,k−1 − d(vij) + p(vij , vi) + d(vi) | j = 1, . . . , l}
(and equal to d(vi), if k = 1)

ti,k = min{ti−1,k, t
i
i,k}

Using the fact that t1,1 = t11,1 = d(v1), it is now possible to compute any ti,k

within at most O(n3) time, where n is the number of vertices in the task graph.
Now, if each task graph T ∈ T has nT vertices then let us consider the set S =⋃

T∈T
⋃

i=1,...,nT
{tnT ,i for task graph T}. If each vertex of task graph T has an

68 Chapter 3. Schedulability analysis

execution requirement of e, then for ant t ≥ 0, T.dbf(t) = max{ie | tnT ,i ≤ t}.
Clearly, the task set T is schedulable if and only if

∑
T∈T T.dbf(t) ≤ t for

all t ∈ S. Computing all the necessary T.dbf(t) values for each task graph
T and storing them in a table takes O(n3) time if the number of vertices in T
is bounded by O(n). Since there are |T | task graphs, this whole process takes
O(|T |n3) time. For each value of t, verifying whether the sum of the demand-
bound functions exceeds t requires a search through the previously computed
tables and takes O(|T | log n) time. Since there are O(|T |n) values of t for
which this has to be verified, this takes O(|T |2n log n) time. Hence the total run
time is bounded by O(|T |n3 + |T |2n log n) which is polynomial in the size of
the input specification.

3.5.2 Pseudo-polynomial time static-priority schedulability analysis

Based on our new definition of the resource-bound function T.rbf ′(t), which we
introduced in Section 3.4.4, in this section we give a pseudo-polynomial time
algorithm for static-priority schedulability analysis for our restricted one-shot
task model. This algorithm is based on a pseudo-polynomial time algorithm for
computing T.rbf ′(t), similar to Algorithm 1 given in Section 3.5.1.

Following the notation used in Section 3.5.1, given a task graph T , let ti,e de-
note the minimum time interval within which T can have an execution require-
ment of exactly e time units due to some legal triggering sequence, considering
only a subset of vertices from the set {v1, . . . , vi}. Let tii,e be the minimum time
interval within which any execution sequence consisting of vertices from the set
{v1, . . . , vi−1} and ending with the vertex vi can have an execution requirement
of exactly e time units. Now recall the definition of ti

i,e as used in Section 3.5.1
for computing T.dbf(t), which is the minimum time interval within which a
sequence of vertices from the set {v1, . . . , vi}, and ending with the vertex vi can
have an execution requirement of exactly e time units, if all the vertices have to
meet their respective deadlines. This we denote here by dbf i

i (e). We assume, as
in Section 3.5.1, that T consists of n vertices v1, . . . , vn and that there can be a
directed edge from vi to vj only if i < j, and that all the execution requirements
are integral. If E = maxi=1,...,n e(vi), then Algorithm 2 correctly computes
T.rbf ′(t) and has a running time of O(n3E2).

It now follows from Theorem 5, Algorithm 2 and Theorem 8, that there
exists a pseudo-polynomial algorithm for static-priority schedulability analysis
for a sollection of one-shot task graphs, that implements the sufficiency con-
dition stated by Theorem 8. Lastly, in the case where all the vertices of a task
graph have equal execution times, this problem can also be solved in polynomial
time following exactly the same approach as used in Section 3.5.1 for dynamic-
priority schedulability analysis.

3.6. Schedulability with bounds on preemptions 69

Algorithm 2 Computing T.rbf ′(t) in pseudo-polynomial time
Require: Task graph T , and a real number t ≥ 0

for e ← 1 to nE do

t1,e ←
{

e if e ≤ e(v1)
∞ if e > e(v1)

t11,e ← t1,e

end for
Computing ti+1,e:

Let there be directed edges from the vertices vi1 , vi2, . . . , vik to vi+1

Let t
ij ,i+1
i+1,e (l) ← dbf

ij
ij

(e− e(vi+1) + l)− d(vij) + p(vij , vi+1) + e(vi+1)− l

Let t
ij ,i+1
i+1,e ← min{tij ,i+1

i+1,e (l) | l = 0, . . . , e(vi+1) − 1}
ti+1
i+1,e ← min{tij ,i+1

i+1,e | j = 1, . . . , k}
ti+1,e ← min{ti,e, ti+1

i+1,e}
T.rbf ′(t) ← max{e | tn,e ≤ t}

3.6 Schedulability with bounds on preemptions

The conditions presented in Sections 3.4.1 and 3.4.2 test the schedulability of
a task set in a preemptive setup, i.e. the execution of a vertex in a task graph
might be preempted at any time, in favour of a vertex belonging to a different
task graph. Although non-preemptive scheduling is more restrictive, in many
embedded system scenarios the advantage obtained using by using a preemptive
scheduler is offset by the overheads involved in terms of more memory require-
ments and greater implementation complexity. This is especially true in the
context of the problem studied in this thesis, because preempting the process-
ing of a packet is generally too costly both in terms of memory and the context
switching time and hence the advantage of preemption can not be exploited.
Most network packet processors rather use hardware-supported multithreading.

In this section we present the conditions for schedulability under a non-
preemptive setup, in the sense described in Section 3.2, i.e. once the vertex of
a task graph starts executing, it can not be preempted, but when it completes
execution then a vertex from a different graph can be scheduled for execution.
As in Section 3.5, here too we consider the restricted version of the task model
where the control flow in any task graph is only from the source to the sink
vertex and the recurring behaviour of a task graph is not considered. The con-
ditions derived here for this restricted model can be extended using the same
techniques described in Section 3.4.3.

We first give a necessary and sufficient condition for the schedulability of a
set of task graphs under EDF scheduling which, as described in Section 3.2.3,
is an optimal dynamic-priority non-preemptive scheduling policy if the sched-
uler is work conserving. Not surprisingly, we show that for our task model,
EDF is also an optimal non-preemptive scheduler. The condition derived here
is substantially more complex compared to the one for schedulability under un-
bounded number of preemptions (given by Theorem 3), and is specified by Al-

70 Chapter 3. Schedulability analysis

gorithm 3. This algorithm uses the demand-bound function T.dbf(t), and a
similar function T.dbf v(t) which was introduced in Section 3.4.1. The correct-
ness of the algorithm is given by Theorem 10.

Algorithm 3 Algorithm for schedulability analysis under non-preemptive EDF
Require: Task set T

1: decision ← SCHEDULABLE
2: for all tasks Ti ∈ T and for all vertices v ∈ Ti and for all τ̂ ≥ 0 do
3: Let T̃ ← T \{Ti}
4: Tdbf=0 ← {T ∈ T̃ | T.dbf(τ̂ + d(v)) = 0}
5: emax ← maxv′{e(v′) | v′ is a vertex of a task T ∈ Tdbf=0}
6: Let Tdbf>0 ← {T ∈ T̃ | T.dbf(τ̂ + d(v)) > 0} and q ← |Tdbf>0|
7: index ← 0
8: for p ← 1 to q do
9: Let e′max ← max{e(v′) | v′ ∈ Tp, d(v′) > τ̂ + d(v)}

10: if index = 0 then
11: if e′max > (Tp.dbf(τ̂ + d(v)) + emax) then
12: emax ← e′max

13: index ← p
14: end if
15: else
16: if e′max + Tindex(τ̂ + d(v)) > (Tp.dbf(τ̂ + d(v)) + emax) then
17: emax ← e′max

18: index ← p
19: end if
20: end if
21: end for
22: if index
= 0 then
23: T̂ ← Tdbf>0\{Tindex}
24: end if
25: if τ̂ +d(v) < (Ti.dbf v(τ̂ +d(v))+

∑
T∈T̂ T.dbf(τ̂ +d(v))+ emax) then

{Condition (†)}
26: decision ← NOT SCHEDULABLE
27: end if
28: end for
29: return decision

Thm. 10:A task set T is non-preemptively schedulable under EDF if and only if Algo-
rithm 3 returns SCHEDULABLE.

Proof: Let v be any vertex of a task graph Ti ∈ T . The vertex v has an execution
requirement of e(v) and a deadline equal to d(v). Let v be triggered at time t
and it completes execution at time t + δ.

Let R≤d
T [t, t+τ] denote the sum of the execution requirements of the vertices

of any task graph T ∈ T which have been triggered in the time interval [t, t+ τ]

3.6. Schedulability with bounds on preemptions 71

and which have their deadlines less than or equal to d. Let W v,t(t + τ) (0 ≤
τ ≤ δ) denote the total execution requirement at time t + τ that was generated
by all the tasks in T , and which must be met by the processor (under EDF
scheduling) before the vertex v that was triggered at time t can complete its
execution. W v,t(t + τ) includes the execution requirement e(v) of the vertex v
as well. We assume that the processor was idle before time 0.

If we look back in time, let t − τ̂ be the first time before the time instant
t when the processor does not have any vertex to execute with deadline less
than or equal to t + d(v) (i.e. the deadline of the vertex v). Hence, during the
entire interval [t−τ̂ , t+δ), the processor always has some vertex to execute with
deadline less than or equal to t+d(v). W v,t(t+τ) for any 0 ≤ τ ≤ δ is therefore
composed of the following: (1) The remaining execution requirement of the
vertex that is in execution at time t− τ̂ , denoted by P (t− τ̂). By our assumption
of τ̂ , the deadline of this vertex is greater than t + d(v). (2) The execution
requirement generated by the vertices of the task Ti during the time interval
[t − τ̂ , t]. This includes the vertex v. Clearly, all these vertices have a deadline
less than or equal to t+d(v). Therefore, this equals to R

≤t+d(v)
Ti

[t− τ̂ , t]. (3) The
execution requirement generated by vertices with deadlines less than or equal to
t+d(v), from all tasks belonging to a set, say T̂ , where T̂ ⊆ T \{Ti}, during the
time interval [t−τ̂ , t+τ]. Therefore, this is equal to

∑
T∈T̂ R

≤t+d(v)
T [t−τ̂ , t+τ].

(4) The execution requirement served by the processor during the time interval
[t − τ̂ , t + τ].

Since we are considering a non-preemptive environment, the vertex which
is in execution at the time t− τ̂ has to finish executing before any vertex having
a deadline less or equal to t + d(v) can be executed. Therefore, the processor
always executes some vertex having a deadline less than or equal to t + d(v)
during the interval [t − τ̂ + P (t − τ̂), t + τ]. Hence,

W v,t(t + τ) = P (t − τ̂) + R
≤t+d(v)
Ti

[t − τ̂ , t] +∑
T∈T̂

R
≤t+d(v)
T [t − τ̂ , t + τ] − (τ̂ + τ) (3.3)

Now, note that if there exists a τ (0 ≤ τ ≤ d(v)) such that W v,t(t + τ) = 0,
then the vertex v completes execution on or before its deadline. Substituting
τ = d(v) in Equation (3.3), we obtain:

W v,t(t + d(v)) = P (t − τ̂) + R
≤t+d(v)
Ti

[t − τ̂ , t] +∑
T∈T̂

R
≤t+d(v)
T [t − τ̂ , t + d(v)] − τ̂ − d(v)

Following our definition of the demand-bound functions (dbf and dbf v), clearly,

W v,t(t + d(v)) ≤ P (t − τ̂) + Ti.dbf v(τ̂ + d(v)) +∑
T∈T̂

T.dbf(τ̂ + d(v)) − τ̂ − d(v) (3.4)

72 Chapter 3. Schedulability analysis

To compute an upper bound on W v,t(t + d(v)) we would like to maximize
the right hand side of the above inequality (3.4). For this, note that if a vertex v ′

of a task T contributes to the term P (t− τ̂), then T can not belong to the set T̂ .
Following this constraint, for any task Ti and any vertex v ∈ Ti, Algorithm 3
computes P (t − τ̂) = emax and the task set T̂ which maximizes the right hand
side of Inequality (3.4). Therefore, if the algorithm returns SCHEDULABLE,
then we have (from Condition (†) of the algorithm),

W v,t(t + d(v)) ≤ τ̂ + d(v) − (τ̂ + d(v)) = 0

Hence, there exists a τ ≤ t + d(v) such that W v,t(t + d(v)) ≤ 0 and therefore
the vertex v completes execution before its deadline.

Now we give the proof of necessity. Suppose that for some task Ti ∈ T̂
and for some vertex v ∈ Ti and for some τ̂ , the Condition (†) in Algorithm 3
holds. We claim that in this case the task set T is not feasible. The term emax

in Condition (†) is due to some vertex v ′ of some task in T (not equal to Ti)
and d(v′) > d(v) + τ̂ . Assume that the processor is empty before time t − τ̂
and just before t − τ̂ the vertex v′ is triggered. Starting from time t − τ̂ all
the tasks T ∈ T̂ generate an execution requirement due to a sequence of ver-
tex triggerings which are the same as those which result in the computation
of T.dbf(τ̂ + d(v)) in Condition (†) of Algorithm 3. The task Ti also gener-
ates an execution requirement due to a sequence of triggerings that result in
Ti.dbf v(τ̂ + d(v)) in Condition (†), starting from the time t− τ̂ , with the vertex
v being triggered at time t.

Therefore, the execution requirement that has still to be met by the processor
at time t + d(v), before the vertex v can complete execution, is given by:

W v,t(t + d(v)) = emax + Ti.dbf v(τ̂ + d(v)) +∑
T∈T̂

T.dbf(τ̂ + d(v)) − (τ̂ + d(v))

Hence, from Condition (†) in Algorithm 3, we obtain that W v,t(t + d(v)) >
τ̂ + d(v) − (τ̂ + d(v)) = 0. Since apart from vertex v′ (which can not be
preempted), all the vertices of Ti and all the vertices of the tasks in T̂ that have
been triggered have a deadline of less than or equal to t + d(v), some vertex
misses its deadline at t + d(v). ��

The optimality of EDF as a dynamic-priority non-preemptive work conserv-
ing scheduler follows from the fact that the proof of necessity makes no assump-
tions about the scheduling discipline.

We next show that using the pseudo-polynomial time algorithm for com-
puting the demand-bound function (i.e. Algorithm 1), Algorithm 3 also runs in
pseudo-polynomial time. Note that Algorithm 1 can also be used to compute
the function T.dbf v(t). Following the same notation as used in this algorithm,
for any vertex vi of a task graph T , T.dbf vi(t) = max{e | tii,e ≤ t}.

As in Section 3.5.1, let for any task T ∈ T , tT
max denote the maximum

amount of time elapsed among all execution sequences starting from the source

3.6. Schedulability with bounds on preemptions 73

vertex of T and ending at the sink vertex, if every vertex is triggered at the
earliest possible time (respecting the minimum intertriggering separations). Let
tmax = maxT∈T tTmax. Clearly, it is sufficient to test the Condition (†) in Algo-
rithm 3 only for τ̂ = 1, . . . , tmax. Both T.dbf(τ̂ + d(v)) and T.dbf v(τ̂ + d(v))
in the Step 25 of the algorithm for any τ̂ , (and the values of T.dbf(t) in other
steps of the algorithm) can be determined in pseudo-polynomial time by Algo-
rithm 1 and clearly, tmax is pseudo-polynomially bounded, implying a pseudo-
polynomial algorithm for schedulability analysis.

We next present a condition for schedulability, for non-preemptive static-
priority schedulers. As described in Section 3.4.2, here, a priority is assigned
to each task graph, and among the ready vertices the scheduler always selects
a vertex belonging to the highest priority task. Unlike the case with EDF, the
schedulability test that we derive here is only a sufficient but not a necessary
condition (as was the case in the preemptive setup described in Sections 3.4.2
and 3.4.4). Further, it only gives a means for testing whether a given static-
priority assignment to the different tasks results in the task set being schedu-
lable. This is unlike the conditions given in Sections 3.4.2 and 3.4.4, which
gave a means for testing “whether there exists any static-priority assignment
to the tasks under which the task set is static-priority schedulable”. Here the
test is based on the request-bound function T.rbf(t) as defined in Section 3.4.2,
and is given by Theorem 11. Using the same technique as used in computing
the modified request-bound function T.rbf ′(t) in Algorithm 2, T.rbf(t) for any
t can also be computed in pseudo-polynomial time, thereby giving a pseudo-
polynomial time algorithm for testing the condition given by Theorem 11.

Thm. 11:Given a task set T = {T1, . . . , Tk}, where the task Tp has priority p (1 ≤
p ≤ k) and p < q indicates that Tp has a higher priority than Tq. The task
set T is static-priority schedulable if for all tasks Tp the following condition
holds: for all vertices v belonging to the task graph of Tp, and for all t ≥ 0,
∃ 0 ≤ τ ≤ d(v) − e(v) for which

t + τ ≥ Tp.rbf(t) +

p−1∑
q=1

Tq.rbf(t + τ) − e(v) + emax
>p

where emax
>p = max{e(v′) | v′ is a vertex in any of the task graphs Tl, l =

p + 1, . . . , q}

Proof: Let v be any vertex of the priority-p task graph Tp. The vertex v has an
execution requirement of e(v) and a deadline equal to d(v). Let v be triggered
at time t and it completes execution at time t + δ.

Let W v,t(t + τ) (0 ≤ τ ≤ δ) denote the total execution requirement at time
t + τ that was generated by all the task in T , and which must be met before the
vertex v that was triggered at time t can complete its execution. W v,t(t + τ)
therefore includes the execution requirement e(v) of the vertex v as well.

Now if we look back in time, let t − τ̂ be the first time before the time
instant t when the processor did not have any vertex of any task graph of priority

74 Chapter 3. Schedulability analysis

≤ p to execute. Clearly, t − τ̂ is the time instant at which some vertex of
a task graph having priority ≤ p was triggered. The processor at this time
was either executing some vertex of a task graph having priority > p or was
idle. W v,t(t + τ) is therefore composed of the following: (1) The remaining
execution requirement of some vertex of a task graph having priority > p, (2)
The execution requirement generated by vertices of the task graph Tp (including
the vertex v) during the time interval [t − τ̂ , t], (3) The execution requirement
generated by vertices of task graphs ∪p−1

q=1{Tq} during the time interval [t −
τ̂ , t+ τ], (4) The execution requirement served by the processor during the time
interval [t − τ̂ , t + τ].

Therefore,

W v,t(t + τ) ≤ emax
>p + Tp.rbf(τ̂) +

p−1∑
q=1

Tq.rbf(τ + τ̂) − (τ̂ + τ) (3.5)

From the condition given in the theorem, we obtain that for τ̂ , ∃ 0 ≤ τ ′ ≤
d(v) − e(v) for which

τ̂ + τ ′ ≥ Tp.rbf(τ̂) +

p−1∑
q=1

Tq.rbf(τ̂ + τ ′) − e(v) + emax
>p

Using this in the Expression (3.5) implies that ∃ 0 ≤ τ ′ ≤ d(v)−e(v) for which

W v,t(t + τ ′) ≤ (τ̂ + τ ′) + e(v) − (τ̂ + τ ′) = e(v)

Now since W v,t(t + τ ′) includes e(v), the execution requirement of the ver-
tex v, either v is in execution at time t+τ ′ or it has already completed execution
by this time. Hence v meets its deadline. ��

3.7 Approximate schedulability analysis
All the algorithms for schedulability analysis presented till now are either of
exponential complexity, or at best run in pseudo-polynomial time (except in
very special cases with all the vertices in a task graph having the same execution
requirement, where the algorithm runs in polynomial time). In view of the
hardness results presented in Theorem 1 and Corollary 1, pseudo-polynomial
time algorithms are the best that can be obtained in terms of exact decision
algorithms. However, the run times of these algorithms are still prohibitive
for even reasonably sized problems (as we show in Section 3.8), making them
infeasible for use within any design or verification tool.

The work presented in this section remedies this situation to a large extent. It
is based on the observation that if a small amount of error in the decisions made

3.7. Approximate schedulability analysis 75

by a schedulability analysis algorithm is acceptable, then it is possible to design
approximate decision algorithms, which run in polynomial time. This idea is
similar in spirit to obtaining approximation algorithms for NP-hard optimiza-
tion problems [79]. Algorithms for approximate schedulability analysis are of
the following form: If a task set is schedulable then the algorithm is guaranteed
to return the correct answer SCHEDULABLE. But if a task set is not schedulable
then in some cases the algorithm might incorrectly return SCHEDULABLE as
well. However, in such cases, it is guaranteed that no job can miss its dead-
line by a time interval which is “too large”. The maximum length of time
by which a job can miss its deadline (in case the algorithm incorrectly returns
SCHEDULABLE) is bounded and is parameterized by an input error parameter
ε. The smaller the value of ε, the smaller is this time interval and the higher is
the running time of the algorithm. Therefore, ε represents a tradeoff between
the maximum error that can be incurred and the running time of the algorithm.

In contrast to such optimistic algorithms, it is also possible to design pes-
simistic algorithms which always return the correct answer if a task set is not
schedulable. However, if a task set is schedulable then the algorithm might
err and incorrectly return NOT SCHEDULABLE. As in the previous case, the
error incurred by such wrong decisions is bounded and is parameterized by
ε. This means that task sets for which the algorithm incorrectly returns NOT
SCHEDULABLE can load the processor “heavily”, in the sense that there exists
time intervals over which the processor might be almost always occupied if the
deadline of all jobs are to be met. Here, the length of time, within such time
intervals, for which the processor can be idle is a measure of the error incurred.
As before, the smaller the value of ε, the smaller is the error, but at the expense
of increasing the running time.

We also show that it is possible to give a third class of algorithms which
can incur a double-sided error, meaning that both SCHEDULABLE and NOT
SCHEDULABLE answers can be wrong. However, for such algorithms the max-
imum error in either direction is less than the error incurred for the equivalent
optimistic and pessimistic algorithms.

In addition to polynomial time algorithms for approximate schedulability
analysis for the task model described in Section 3.2 (and also for the recur-
ring real-time task model [15]), it is also possible to design such algorithms
for various other well known task models such as the sporadic model due to
Mok [105, 17], the multiframe model of Mok and Chen [107] and the general-
ized multiframe model of Baruah et al. [16]. The known algorithms for (exact)
schedulability analysis for all of these models have either pseudo-polynomial or
exponential running time. Besides this, the other rationale behind approximate
schedulability analysis is that in many embedded system scenarios, including
the case of network packet processors, it is difficult to evaluate the worst-case
execution times of tasks accurately. This is due to factors such as caching and
pipelining in embedded processors. In such cases, either the worst-case execu-
tion times of tasks are overestimated, or it is acceptable for jobs generated by
these tasks to miss their deadlines by small amounts of time. In either case,

76 Chapter 3. Schedulability analysis

an approximate schedulability analysis, in the sense we described above, would
suffice for all practical purposes. In other domains such as multimedia appli-
cations, although the execution requirements of tasks may be accurately deter-
mined, if a job misses its deadline by a small amount of time then the perfor-
mance of the system (quality of audio or video) does not deteriorate too much.

This section is organized as follows. In the next subsection, we outline an
abstract model for task systems. All taks models which fit into this abstract
model are amenable to approximate schedulability analysis. We then describe
the algorithms for approximate schedulability analysis for the task model stud-
ied in this chapter (as described in Section 3.2), following which we briefly
outline how these algorithms extend to other task models such as the sporadic,
multiframe, and generalized multiframe. In this section, we only address the
dynamic-priority schedulability analysis problem. The results presented here
also extend to the static-priority case, but to avoid being repetative we do not
detail them here.

3.7.1 An abstract model of task systems

Here we present an abstract model of task systems based on certain task-
independence assumptions given in [16]. These assumptions are extremely gen-
eral and are satisfied by many task systems encountered in practice, including
the one studied in this chapter. We then show that it is possible to derive poly-
nomial time algorithms for approximate schedulability analysis for all such task
systems. To show this, first we outline a generic framework for (exact) schedula-
bility analysis for task models satisfying the conditions imposed by the abstract
model, and based on this framework we then outline two basic building blocks
which make up our algorithms for approximate schedulability analysis. Con-
crete examples of these two building blocks given in the context of the our task
model in Section 3.7.2.

A task in this abstract model generates a (possibly infinite) sequence of jobs.
Each job is characterized by a ready-time, an execution requirement, and a dead-
line (in the same sense as descrined in the begining of Section 3.2). A task set
consists of a collection of such tasks, all of which are to be executed on a single
shared processor and jobs are preemptable. The extension to a multiprocessor
system can be done following the same techniques described in Section 3.2.1.
The generation of jobs by a task is constrained by a set of rules, which for exam-
ple might be that there is a minimum separation in time between the generation
of two consecutive jobs by a task. Jobs generated according to these constraints
are said to be legal. The schedulability analysis of a given task set, as described
in Section 3.2.2, is concerned with determining whether it is possible to assign
to each job a processor time equal to its execution requirement between its ready
time and its deadline, for all possible legal job sequences generated by tasks of
the task set.

The rules that govern the generation of jobs by a task can be stated in the
form of the following two task independence assumptions. (i) The runtime be-

3.7. Approximate schedulability analysis 77

havior of a task is independent of any other tasks in the system. (ii) The con-
straints according to which legal job sequences are generated can be specified
without any references to absolute time. Assumption (i) states that each task
generates jobs independently of the jobs generated by other tasks in the system.
Therefore, it is not permissible, for example, to require a task to generate a job
in response to a job generated by another task. Assumption (ii) states that all
temporal specifications defining the rules according to which jobs are generated
by a task can only be relative to the time at which the task begins execution, or
can be relative to the ready-time another job of the same task. Therefore, a con-
straint like the ready-times of two consecutive jobs of a task must be separated
by at least p time units, conforms to this requirement. Lastly, the time at which
a task begins execution (i.e. the first job is generated) is not a priori known. For
example, a task can begin execution in response to some external event.

Note that although the task independence assumptions restrict the job gen-
eration process of a task (for example, by specifying the minimum separation
between the generation of two jobs), they make no assumptions about the inter-
actions between the jobs once they are generated. Once a job is generated, it
executes independently of any other job in the system, including those generated
by the same task.

Given a sequence of jobs generated by a task set T , [(Ti, ai, ei, di),
(Tj, aj , ej, dj), . . .] (Ti ∈ T refers to a task, ai is the ready time of a job, ei is its
execution requirement, and di is its deadline), the task independence assump-
tions imply that the sequence is legal if and only if all subsequences formed by
jobs from the individual tasks are also legal (follows from Assumption (i)). As-
sumption (ii) implies that if [(a1, e1, d1), (a2, e2, d2), . . .] is a legal sequence of
jobs generated by a task, then the sequence [(a1− t, e1, d1− t), (a2− t), e2, d2−
t), . . .] is also legal, where t is any real number.

It may be verified that these assumptions are followed our task model
described in Section 3.2 and also by a wide variety of other task models such as
the sporadic model, the multiframe model, the generalized multiframe model,
and the recurring real-time task model.

Exact schedulability analysis: For this abstract task model, it may be seen that
the condition for schedulability under preemption as given by Theorem 3 holds
(because, the proof of this theorem does not make use of any feature which is
specific to the task model described in Section 3.2 , and which does not hold for
the abstract task model).

Therefore, a task set T is not schedulable if and only if there exists
some t̂ for which

∑
T∈T T.dbf(t̂) > t̂. The schedulability analysis algo-

rithms for task models such as sporadic, generalized multiframe, and the re-
curring real-time task model are based on identifying an upper bound tmax,
such that if T is not schedulable then there exists some t̂ ≤ tmax for which∑

T∈T T.dbf(t̂) > t̂. Hence, a schedulability analysis algorithm is based on
checking if

∑
T∈T T.dbf(t) is greater than t for all t ≤ tmax. If

∑
T∈T T.dbf(t)

is less than or equal to t for all such values of t then the algorithm returns

78 Chapter 3. Schedulability analysis

SCHEDULABLE, else it returns NOT SCHEDULABLE. Recall from Corollary 2
that for our task model, tmax is equal to

∑
T∈T 2E(T)

1−
∑

T∈T
E(T)
P (T)

, where E(T) and P (T) are

as described in Section 3.4.1.
However, for all of the above models, tmax turns out to be pseudo-

polynomial in the size of the input specification. Additionally, in our task
model, the problem of computing the value of T.dbf(t) for any t is NP-hard
and also requires pseudo-polynomial time. Hence, the overall algorithm for
schedulability analysis for all these models run in pseudo-polynomial time.

3.7.1.1 A framework for approximate schedulability analysis
In its most general form, our framework for approximate schedulability analysis
relies on the following two building blocks (see Figure 14) (i) Obtaining an
approximation algorithm to compute the demand-bound function T.dbf(t) for
any task graph T and time interval of length t in polynomial time. (ii) Instead
of checking the value of

∑
T∈T T.dbf(t) for all t ≤ tmax (which can be pseudo-

polynomial number of checks), only a polynomial number of checks are done.
Both the above two steps result in some error. The main contribution of the

work in this section is to show that if an appropriate polynomial time approx-
imation algorithm exists for the first step then the total error incurred by the
approximate schedulability analysis from the two steps is bounded (in a sense
that we describe later) and it is possible to obtain a tradeoff between this error
and the running time of the algorithm.

Let us assume that an approximation algorithm for computing the demand-
bound function T.dbf(t) exists and it takes as an input an error parameter ε
and in polynomial time returns for any t an approximate value of the function
denoted by T.dbf ′(t), such that

T.dbf(t) ≥ T.dbf ′(t) ≥ f(ε)T.dbf(t)

where f is some function of ε. Hence, we have

1

f(ε)
T.dbf ′(t) ≥ T.dbf(t) ≥ T.dbf ′(t) (3.6)

For example, if the approximation algorithm is a fully-polynomial time ap-
proximation scheme (FPTAS) [79] then

T.dbf ≥ T.dbf ′(t) ≥ (1 − ε)T.dbf(t)

and hence the above Inequality (3.6) takes the form

1

1 − ε
T.dbf ′(t) ≥ T.dbf(t) ≥ T.dbf ′(t)

If the size of the input specification of the task T is O(n) and 0 < ε < 1,
then such an FPTAS for computing T.dbf ′(t) for any t runs in poly(n, 1

ε
) time

(where poly denotes some polynomial function) and the smaller the value of ε

3.7. Approximate schedulability analysis 79

Calculate
T2.dbf’(t)

Calculate
T1.dbf’(t)

Calculate
T3.dbf’(t)

C
h

e
c
k

if
th

e
s
u

m
o

f
th

e
d

b
f’
s

e
x
c
e

e
d

s
t

S
C
H
E
D
U
L
A
B
L
E
/

N
O
T
S
C
H
E
D
U
L
A
B
L
E

� �
Approximate

dbf

T1

T2

T3

In
p

u
t
T
a

s
k
s

Building Block 1 Building Block 2

Fig. 14: A framework for approximate schedulability analysis. Building Block 1 approximately
computes the demand-bound function. Building Block 2 performs a polynomial num-
ber of checks to verify if the sum of the demand-bound functions for any t exceeds t. ε

and δ are error parameters given as input to the algorithm.

the less is the error in estimating T.dbf(t), however, at the cost of increasing
the running time.

Hence, for any t ≥ 0, 1
f(ε)

T.dbf ′(t) and T.dbf ′(t) can be used as upper
and lower bounds for T.dbf(t) and such bounds can be computed in polyno-
mial time. Our approximate schedulability analysis is based on using either this
upper or lower bound for T.dbf(t) to check if the sum of the demand-bound
functions for all the tasks in the task set T exceeds t for any value of t ≤ tmax.

Let us first suppose that we use the lower bound T.dbf ′(t), and for
any t ≤ tmax return NOT SCHEDULABLE if

∑
T∈T T.dbf ′(t) > t. If∑

T∈T T.dbf ′(t) ≤ t, for all t ≤ tmax then we return SCHEDULABLE. Such an
algorithm is overly optimistic in the sense that if a task set T is schedulable then
the algorithm is guaranteed to return the correct answer. However, for some task
sets the algorithm might incorrectly return SCHEDULABLE even if they are not.
In such cases, for some t ≤ tmax,

∑
T∈T T.dbf(t) > t but

∑
T∈T T.dbf ′(t) ≤ t.

Therefore, the error incurred is equal to∑
T∈T

T.dbf(t) −
∑
T∈T

T.dbf ′(t)

≤
∑
T∈T

T.dbf(t) − f(ε)
∑
T∈T

T.dbf(t)

= (1 − f(ε))
∑
T∈T

T.dbf(t)

80 Chapter 3. Schedulability analysis

Hence, for such a value of t, a job can miss its deadline by at most (1 −
f(ε))

∑
T∈T T.dbf(t) time units (in the case of an FPTAS for approximating

T.dbf(t), this is equal to ε
∑

T∈T T.dbf(t)). For small values of ε, such an al-
gorithm can therefore make an error only for task sets in which jobs can miss
their deadlines only by small intervals of time.

Alternatively, it is possible to design a pessimistic algorithm, which for a
task set T returns SCHEDULABLE if

∑
T∈T

1
f(ε)

T.dbf ′(t) ≤ t, for all t ≤ tmax,

else it returns NOT SCHEDULABLE. Since 1
f(ε)

T.dbf ′(t) is an overestimate of
T.dbf(t), such an algorithm always returns the correct answer if a task set is
not schedulable. However, for certain task sets which are not schedulable, this
algorithm might return an incorrect answer. In such cases, for some t ≤ tmax,∑

T∈T T.dbf(t) ≤ t but
∑

T∈T
1

f(ε)
T.dbf ′(t) > t. The error incurred is there-

fore equal to

∑
T∈T

1

f(ε)
T.dbf ′(t) −

∑
T∈T

T.dbf(t) ≤ 1 − f(ε)

f(ε)

∑
T∈T

T.dbf(t)

Therefore, task sets for which this algorithm can err are those which
over some time interval of length t can load the processor for at least t −
1−f(ε)

f(ε)

∑
T∈T T.dbf(t) time units (which in the case of the FPTAS for approxi-

mating T.dbf(t) is t− ε
1−ε

∑
T∈T T.dbf(t)). Hence, for small values of ε these

are task sets which in a sense can “heavily” load the processor.
The above algorithms by themselves do not result in a polynomial time al-

gorithm for approximate schedulability analysis if tmax is pseudo-polynomial in
the size of the problem specification, since then a pseudo-polynomial number of
checks have to be done. To avoid this, if there are m tasks in T then we instead
perform a check only for t = K, 2K, . . . , (
 tmax

K
� + 1)K, where K = δtmax

poly(m)
.

Here δ is an input error parameter to the algorithm (similar to ε in the case
of approximating the demand-bound function) and poly(m) is any polynomial
function of m. Hence, the total number of checks is now O(poly(m)

δ
), which is

polynomial in the size of the input.
We now bound the error incurred by such an algorithm. Consider the algo-

rithm where we check the value of
∑

T∈T T.dbf(t) at t = K, 2K, . . . , (
 tmax

K
�+

1)K and return NOT SCHEDULABLE if for any of these values of t,∑
T∈T T.dbf(t) > t and else we return SCHEDULABLE. If T is schedula-

ble, then clearly such an algorithm always returns the correct answer. But for
some task sets which are not schedulable, the algorithm might incorrectly re-
turn SCHEDULABLE as well. However, in such cases a job from such a task set
might miss its deadline by at most K time units.

The idea behind the algorithm is that since
∑

T∈T T.dbf(t) is a non-
decreasing function of t, if its value at some t′ exceeds t′ by a large number
then even with a polynomial number of checks it would be possible to come
across some t close to t′ at which the value of the function exceeds t. To see
this, consider some time interval [iK, (i+1)K]. If

∑
T∈T T.dbf(iK) ≤ iK and∑

T∈T T.dbf((i+1)K) = (i+1)K (and hence the condition for schedulability

3.7. Approximate schedulability analysis 81

is met at these two points), then in the worst case
∑

T∈T T.dbf(iK + ∆) =
(i + 1)K, where ∆ → 0, and hence a job from T can miss its deadline by
at most K time units. This argument applies to all intervals, the end points of
which are only checked by the algorithm.

As in the case of the previous approximate schedulability analysis based on
approximating the demand-bound function, here, too, it is possible to design a
pessimistic algorithm. For this we check the value of

∑
T∈T T.dbf(t) at t =

K, 2K, . . . , (
 tmax

K
� + 1)K and return NOT SCHEDULABLE if for any of these

values of t,
∑

T∈T T.dbf(t) > t − K and else we return SCHEDULABLE.
If T is not schedulable then this algorithm always returns the correct answer.

To see this, suppose that T is not schedulable. Then there exists an interval
[iK, (i+1)K] such that for some t ∈ [iK, (i+1)K],

∑
T∈T T.dbf(t) > t. Since∑

T∈T T.dbf(t) is a non-decreasing function,
∑

T∈T T.dbf((i + 1)K) > iK
and hence our algorithm returns NOT SCHEDULABLE. For task sets T which
are schedulable, this algorithm can return an incorrect answer and clearly the
error in these cases is bounded by K, i.e. for such T there exist time intervals
of length t over which the processor can be occupied for at least t − K time
units. Since K = δtmax

poly(m)
, a smaller value of δ reduces the maximum error that

can be incurred by both the optimistic and the pessimistic algorithms, at the
cost of increasing the number of checks to be performed and hence the running
time of the algorithm.

3.7.1.2 Bounding the total error
Now we present the algorithms obtained by combining the two steps described
above (i.e. approximating the demand-bound function, and performing a
polynomial instead of a pseudo-polynomial number of checks to verify whether
the sum of the demand-bound functions for any t exceeds t). As before, we
present two classes of algorithms—optimistic and pessimistic—and give a
bound on the maximum error that can be incurred in both the cases. Both of
these algorithms perform an approximate schedulability analysis in polynomial
time, and the total error incurred depends on the values of the input error
parameters ε and δ. The smaller these values, the less is the error but at the cost
of the running time increasing appropriately.

Optimistic algorithms: For algorithms of this class, we check the value
of

∑
T∈T T.dbf ′(t) at t = K, 2K, . . . , (
 tmax

K
� + 1)K and return NOT

SCHEDULABLE if for any of these values of t,
∑

T∈T T.dbf ′(t) > t and else re-
turn SCHEDULABLE. As before, T.dbf ′(t) is an approximate value of T.dbf(t)
such that T.dbf(t) ≥ T.dbf ′(t) ≥ f(ε)T.dbf(t) for any t. Note that this algo-
rithm takes as input two error parameters ε and δ.

If T is schedulable then
∑

T∈T T.dbf(t) is less than or equal to t for all
values of t at which this sum is checked, and since T.dbf(t) ≥ T.dbf ′(t), our
algorithm is guaranteed to return SCHEDULABLE.

Now consider the case where T is not schedulable. Here our algorithm can
return an incorrect answer, and there are two sources of possible error. Consider

82 Chapter 3. Schedulability analysis

any t at which the value of
∑

T∈T T.dbf ′(t) is checked by our algorithm. If
for any such t,

∑
T∈T T.dbf(t) > t but

∑
T∈T T.dbf ′(t) ≤ t then we incur

a maximum error of (1 − f(ε))
∑

T∈T T.dbf(t) which is less than or equal to
1−f(ε)

f(ε)

∑
T∈T T.dbf ′(t).

Secondly, consider any interval [iK, (i + 1)K] such that the value of∑
T∈T T.dbf ′(t) is checked at t = iK and t = (i + 1)K and for both

these values of t, the sum is less than or equal to t. The worst case error
incurred in such a case occurs when

∑
T∈T T.dbf ′(iK + ∆) = (i + 1)K

where ∆ → 0, and therefore this error is equal to K. Taking into account
that

∑
T∈T T.dbf(iK) ≤ 1

f(ε)

∑
T∈T T.dbf ′(iK), the total error incurred by

the algorithm within this interval is equal to K + 1
f(ε)

∑
T∈T T.dbf ′(iK) −∑

T∈T T.dbf(iK) ≤ K + 1−f(ε)
f(ε)

∑
T∈T T.dbf ′(iK).

Since for t = K, 2K, . . . , (
 tmax

K
� + 1)K, the value of T.dbf ′(t) is maxi-

mized at t = (
 tmax

K
� + 1)K, the maximum possible total error incurred by the

algorithm is equal to

K +
1 − f(ε)

f(ε)

∑
T∈T

T.dbf ′((
tmax

K
� + 1)K)

Pessimistic algorithms: Here we check the value of
∑

T∈T
1

f(ε)
T.dbf ′(t) at

t = K, 2K, . . . , (
 tmax

K
� + 1)K and return NOT SCHEDULABLE if for any of

these values of t, 1
f(ε)

∑
T∈T T.dbf ′(t) > t − K. Clearly, this algorithm is

guaranteed to return the correct answer if T is not schedulable. But it might err
if T is schedulable. To bound the error in such cases, suppose that for some iK,
1 ≤ i ≤ (
 tmax

K
� + 1), 1

f(ε)

∑
T∈T T.dbf ′(iK) > (i − 1)K (and therefore our

algorithm returns NOT SCHEDULABLE) but
∑

T∈T T.dbf(iK) ≤ iK. Hence,
the error incurred at iK is equal to

K +
1

f(ε)

∑
T∈T

T.dbf ′(iK) −
∑
T∈T

T.dbf(iK)

≤ K +
1

f(ε)

∑
T∈T

T.dbf ′(iK) −
∑
T∈T

T.dbf ′(iK)

= K +
1 − f(ε)

f(ε)

∑
T∈T

T.dbf ′(iK)

Hence, the maximum error incurred by this algorithm is also equal to

K +
1 − f(ε)

f(ε)

∑
T∈T

T.dbf ′((
tmax

K
� + 1)K)

The running times of both the optimistic and the pessimistic algorithms
are polynomial, assuming that there exists a polynomial time approximation
algorithm for computing T.dbf(t) for any task T and time interval of length

3.7. Approximate schedulability analysis 83

t. For example, if the later algorithm is an FPTAS, and the specification of
any task is of the size O(n) and T contains m such tasks, then the total run-
ning time of any of the algorithms for approximate schedulability analysis is
O(poly(m, n, 1

δ
, 1

ε
)).

3.7.2 Algorithms for approximate schedulability analysis

Now we apply the results obtained in Section 3.7.1.1 to our task model
described in Section 3.2, and derive algorithms for approximate schedula-
bility analysis for this model. Towards this, we first show that there exists
a fully-polynomial time approximation scheme (FPTAS) for computing the
demand-bound function T.dbf(t) for any time interval of length t and for
any task graph T in our task model. We then combine this algorithm with
the scheme for checking the sum of the demand-bound functions only for
polynomially bounded different values of t. Finally, we show that the resulting
algorithm runs in polynomial time and derive the maximum error values
incurred for the optimistic and the pessimistic versions of this algorithm.

3.7.2.1 Approximating the demand-bound function
The algorithms given in this section constitute the Building Block 1 shown in
Figure 14. First, let us only consider task graphs in our restricted model given
in Section 3.5, i.e. the control flows from the source to the sink vertex only
once and there is no recurring execution of the task graphs. Now, consider Al-
gorithm 1 in Section 3.5.1, for computing the value of the demand-bound func-
tion T.dbf(t) for any task graph T in this restricted model. As in Section 3.5.1,
we assume that a given task graph T has n vertices denoted by v1, . . . , vn and
there can be a directed edge from vi to vj only if i < j. Further, associated
with each vertex vi is its execution requirement e(vi) which is assumed to be
integral, and its deadline d(vi). Associated with each edge (vi, vj) is the min-
imum intertriggering separation p(vi, vj). Given Algorithm 1, any t ≥ 0, and
an 0 < ε ≤ 1, let Tt be the subgraph of T consisting only of those vertices vi

for which d(vi) ≤ t, and let Et denote the maximum execution requirement of
a vertex from among all vertices of Tt. Now we scale all the execution require-
ments associated with the vertices of Tt by K = εEt/n i.e. e′(vi) =
e(vi)/K�
and run the algorithm with the new e′(vi)s and the graph Tt. Let V be the set
of vertices (with the scaled execution requirements) that result in the computa-
tion of T.dbf(t) in this algorithm. We claim that the summation of the original
(unscaled) execution requirements of these vertices is greater than or equal to
(1−ε) times the actual demand-bound function for the task graph for this value
of t. Further, since this algorithm now runs in time O(n4/ε), (with the scaled
execution requirements), it is an FPTAS for computing T.dbf(t). We denote
this approximate value of T.dbf(t) computed by this algorithm by T.dbf ′(t).

Thm. 12:There exists a fully polynomial-time approximation scheme for computing
T.dbf(t). For any ε the algorithm runs in O(n4/ε) time, where n is the number
of vertices in the task graph T .

84 Chapter 3. Schedulability analysis

Proof: Given a task graph T with n vertices and any time interval t, consider
the subgraph of T which consists of only those vertices vi for which d(vi) ≥ t.
Let E = maxi e(vi) among these nodes. Clearly, T.dbf(t) ≥ E. For any
0 < ε ≤ 1, let K = εE/n. Now scale the execution requirements of all the
vertices of this subgraph as follows: e′(vi) =
e(vi)/K�. Then clearly,

e(vi)

K
− 1 ≤ e′(vi) ≤

e(vi)

K

This implies that

e(vi) ≥ Ke′(vi) (3.7)

Ke′(vi) ≥ e(vi) − K (3.8)

We run the dynamic programming algorithm (Algorithm 1) with the scaled ex-
ecution requirements e′(vi) on this subgraph. Let some path π = v1, . . . , vk be
the output of the dynamic programming algorithm (which results in the compu-
tation of T.dbf(t) by Algorithm 1). Let πOPT be the path in the task graph T
which results in the computation of the exact T.dbf(t). Then,∑

v∈π

e(v) ≥ K
∑
v∈π

e′(v) (from Inequality (3.7))

≥ K
∑

v∈πOPT

e′(v) (since π is optimal with the e′(v)s)

≥
∑

v∈πOPT

(e(v) − K) (from Inequality (3.8))

=
∑

v∈πOPT

e(v) − K|πOPT |

≥
∑

v∈πOPT

e(v) − Kn =
∑

v∈πOPT

e(v) − εE

≥ T.dbf(t) − εT.dbf(t) = (1 − ε)T.dbf(t)

Therefore, if we denote the sum
∑

v∈π e(v) by T.dbf ′(t) then T.dbf(t) ≥
T.dbf ′(t) ≥ (1 − ε)T.dbf(t). The running time of Algorithm 1 with the un-
scaled execution requirements is O(n3E). But, since the maximum execution
requirement E is now n/ε, the running time of this fully polynomial-time ap-
proximation scheme is O(n4/ε). ��

Approximate schedulability analysis for the restricted task model: We
now show that using this approximate value of the demand-bound function
T.dbf ′(t), it is possible to obtain polynomial time approximate decision algo-
rithms for testing schedulability in our restricted task model. Note that in this
restricted model, the Building Block 2 of Figure 14 is not required, since as we
show below, the number of checks of the sum of the demand-bound functions

3.7. Approximate schedulability analysis 85

can be polynomially bounded if an approximate value of the demand-bound
function (i.e. T.dbf ′(t)) is used. First let us consider the preemptive case, for
which already gave a pseudo-polynomial time algorithm in Section 3.5.1. To
obtain the approximate decision algorithm, note that for all t ≥ 0, there can be
at most n distinct values of Et for any task graph. For each such Et, we consider
the corresponding subgraph that gives rise to this Et as described above, and
scale the execution requirements of the vertices of this subgraph by K = εEt/n.
In each such subgraph Tt, the number of values of time intervals t′ at which
the value of Tt.dbf ′(t′) changes is bounded by O(n2/ε), and hence the num-
ber of values of time intervals t at which the value of

∑
T∈T T.dbf ′(t) changes

is bounded by O(|T |n3/ε). The approximate decision algorithm for dynamic-
priority preemptive schedulability analysis is now given as Algorithm 4.

Algorithm 4 Approximate decision algorithm for schedulability analysis
Require: Task set T and a real 0 < ε ≤ 1

decision ← SCHEDULABLE
for all values of t at which T.dbf ′(t) changes for any T ∈ T do

if 1
1−ε

∑
T∈T T.dbf ′(t) > t then {Condition (∗)}

decision ← NOT SCHEDULABLE
end if

end for
return decision

Thm. 13:If a task set T is not schedulable then Algorithm 4 always returns the correct
answer. If T is schedulable and t ≥ 1

1−ε

∑
T∈T T.dbf ′(t) for all values of t, then

the algorithm always returns the correct answer SCHEDULABLE, otherwise it
might return NOT SCHEDULABLE. SCHEDULABLE answers are always cor-
rect. The running time of the algorithm is O(|T |2n5ε−2 log n), if all task graphs
have O(n) vertices.

For each task T , computing the tn,e (following the same notation as used in Sec-
tion 3.5.1) values for each of its subgraphs Tt, using Algorithm 1 and the scaled
execution requirements requires O(n4/ε) time, and these values are stored in
a table. Hence computing all such values for all the task graphs in T takes
O(n5|T |/ε) time. For each value of t for which

∑
T∈T T.dbf ′(t) changes, com-

puting T.dbf ′(t) for any T ∈ T requires a binary search to identify the appro-
priate table corresponding to a subgraph Tt, and then a linear search through
the table. Therefore, computing the value of

∑
T∈T T.dbf ′(t) for any value of

t takes O(|T |n2ε−1 log n) time. Hence the total running time of Algorithm 4
is O(|T |2n5ε−2 log n). The algorithm is overly pessimistic in the sense that for
certain schedulable task sets it might return NOT SCHEDULABLE. However,
for task sets which can be in some sense comfortably scheduled even in the
worst case, leaving some idle processor time (which can be parameterized by
ε), the algorithm always returns SCHEDULABLE. Therefore, any ε characterizes

86 Chapter 3. Schedulability analysis

a class of task sets for which the algorithm errs. As described in Section 3.7.1.1,
decreasing ε reduces this class of such task sets for which the algorithm errs, at
the cost of increasing the running time quadratically in 1/ε, thereby giving a
fully polynomial-time approximate decision scheme for approximate schedula-
bility analysis.

It may be noted that changing Condition (∗) in Algorithm 4 to

if
∑

T∈T T.dbf ′(t) > t then
decision ← NOT SCHEDULABLE

end if

will result in an overly optimistic algorithm which might incorrectly return
SCHEDULABLE for certain classes of not schedulable task sets. For all schedu-
lable task sets it always returns SCHEDULABLE, and NOT SCHEDULABLE an-
swers are always correct. The task sets for which the algorithm might err are
those in which the cumulative execution requirement by tasks of T within any
time interval of length t exceeds the maximum execution requirement that can
be feasibly scheduled, by an amount of less than ε

∑
T∈T T.dbf(t) time units.

Again, decreasing ε reduces the class of such task sets, at the cost of the running
time increasing linearly in 1/ε.

In the non-preemptive case, i.e. in Algorithm 3, we can follow the same
arguments as in the preemptive case and design approximate decision algo-
rithms for testing schedulability using the approximate values T.dbf ′(t) and
T.dbf ′v(t). The only difference compared to the preemptive case, is that the
running time of this algorithm is different, and this is derived below.

Following the same notation as in the preemptive case, in each subgraph Tt

of T , the number of values of time intervals t′ at which the value of Tt.dbf ′(t′)
changes is also bounded by O(n2/ε), and hence the number of values of
time intervals t at which the value of

∑
T∈T T.dbf ′(t) changes is bounded by

O(|T |n3/ε).

It follows that in Step 2 of Algorithm 3, it is sufficient to run the loop only
for O(|T |n3/ε) values of τ̂ , since the value of

∑
T∈T T.dbf ′(τ̂) can change at

most these many number of times. Therefore, the loop in Step 2 executes for a
total of O(|T |2n4/ε) times.

Again, as in the preemptive case, computing all tn,e values for all the task
graphs in T takes O(n5|T |/ε) time. The Step 25 in Algorithm 3 dominates the
running time among all the steps inside the loop (Steps 3-27), and requires a
computation of Ti.dbf ′v(t) +

∑
T∈T̂ T.dbf ′(t + emax) where t = τ̂ + d(v). As

in the preemptive case, computing T.dbf ′(t) for any T ∈ T requires a binary
search to identify the appropriate table corresponding to a subgraph Tt, and
then a linear search through this table. Therefore, this requires O(n2ε−1 log n)
time. The exactly same time is required for computing T.dbf ′v(t). Hence,
computing the value of Ti.dbf ′v(t) +

∑
T∈T̂ T.dbf ′(t + emax) for t = τ̂ + d(v)

in Step 25 requires a total of O(|T |n2ε−1 log n) time. Therefore, the total run
time of Algorithm 3 using approximate values of the demand-bound function is
O(|T |3n6ε−2 log n).

3.7. Approximate schedulability analysis 87

The general task model: Now we consider general task graphs, in which the re-
curring behaviour in their execution is taken into account. For these task graphs,
we give a scheme for computing an approximate value of the demand-bound
function T.dbf(t) for any t. First, let us consider the problem of computing
an approximate value of T.dbf(t) for a “small” value of t, where small has the
same meaning as described in Section 3.4.3. Towards this, we take two copies
of a task graph T and join them as in Section 3.4.3.1. Let us call this new task
graph T ′. If T has n vertices, then T ′ has 2n vertices. Now, using Algorithm 1
with scaled-down execution requirements of the vertices of T ′ (as described in
the begining of this section), it may be seen that for any ε, the algorithm out-
puts T ′.dbf ′(t) in O(n4/ε) time. Moreover, as in the case of the restricted task
model, T ′.dbf ′(t) for any t and ε, is greater than or equal to (1 − ε) times the
value of T ′.dbf(t).

Since E(T) (defined in Section 3.4.1) for any task graph T with n vertices
can be computed in O(n2) time, using the above scheme for computing
T ′.dbf ′(t) for small values of t along with Equation 3.2, the demand-bound
function T.dbf(t′) for a task graph T can be approximated for any gen-
eral t′ in O(n4/ε) time. As before, we denote this approximate value of
T.dbf(t′) by T.dbf ′(t′), and the following inequality holds for any t′ and ε:
T.dbf(t′) ≥ T.dbf ′(t′) ≥ (1 − ε)T.dbf(t′).

3.7.2.2 Checking the sum of the demand-bound functions
This section describes the Building Block 2 of Figure 14 in the context of our
task model. Recall from Section 3.4.1 that the exact algorithm for schedula-
bility analysis for this model requires a pseudo-polynomial number of checks
of the sum of the demand-bound functions. Following our framework for ap-
proximate schedulability analysis described in Section 3.7.1.1, we now show
that combined with the approximate demand-bound function computed in the
last section, a polynomial number of checks result in a bounded error. As
in Section 3.7.1.1, we present an optimistic and a pessimistic algorithm, and
in addition present a third algorithm where both SCHEDULABLE and NOT
SCHEDULABLE answers can be wrong. However, we show that the worst case
error incurred in either of these wrong decisions is less than the error incurred
by the previous two algorithms.

The bounds on the error we obtain here for all the algorithms are tighter
than the bounds derived in Section 3.7.1.1 for the abstract model. Given the
FPTAS described in the last section for approximating the value of T.dbf(t),
it is possible to obtain the following bounds on the approximate value of the
demand-bound function T.dbf ′(t) (see proof of Theorem 12).

T.dbf ′(t) + εET ≥ T.dbf(t)

where ET is the maximum execution requirement of any vertex in the task graph
T . Further, since 1

1−ε
T.dbf ′(t) ≥ T.dbf(t), we have

T.dbf(t) ≤ min{ 1

1 − ε
T.dbf ′(t), T.dbf ′(t) + εET} (3.9)

88 Chapter 3. Schedulability analysis

Algorithm 5 Optimistic algorithm (tmax, δ)
Require: tmax, δ, m = number of task graphs in T , for each task graph T , ET

is the maximum execution requirement of any vertex in T
K ← δtmax

poly(m)

error ← 0
decision ← SCHEDULABLE
for t ← 1 to
 tmax

K
� + 1 do

if
∑

T∈T T.dbf ′(tK) > tK then
decision ← NOT SCHEDULABLE

else
error in this interval ← max{min{ 1

1−ε

∑
T∈T T.dbf ′(tK),∑

T∈T T.dbf ′(tK) + ε
∑

T∈T ET} − (t − 1)K, 0}
error ← max{error, error in this interval}

end if
end for
return(decision, error)

which gives the better of the two bounds on T.dbf(t) for any value of t.
For any task set T , Algorithm 5 always returns the correct answer if T is

schedulable but might err if T is not schedulable. Hence, whenever this algo-
rithm returns NOT SCHEDULABLE, the decision is guaranteed to be correct.
But SCHEDULABLE answers might be wrong. From Section 3.7.1.2, we obtain
that the maximum possible error that can be incurred by the algorithm is equal
to K + ε

1−ε

∑
T∈T T.dbf ′((
 tmax

K
� + 1)K). However, using Inequality (3.9) we

can obtain a tighter bound on the error, which is given by

K + min{ ε

1 − ε

∑
T∈T

T.dbf ′((
tmax

K
� + 1)K), ε

∑
T∈T

ET}

Clearly, for any given problem instance, the maximum error that is incurred
will be lower than this theoretical worst case bound. Algorithm 5 computes
this theoretical worst case error for each problem instance. To understand this,
consider any interval [iK, (i + 1)K] such that

∑
T∈T T.dbf ′(t) is checked at

t = iK and t = (i + 1)K. If at t = (i + 1)K, the computed upper bound on∑
T∈T T.dbf(t) (computed using inequality (3.9)) is less than or equal to iK

then the error incurred in the interval (iK, (i+1)K] is equal to 0, since then for
any t ∈ (iK, (i + 1)K],

∑
T∈T T.dbf(t) is guaranteed to be less than or equal

to t. Alternatively, if the computed upper bound on
∑

T∈T T.dbf(t) is greater
than iK then the maximum possible error in the interval [iK, (i + 1)K] is equal
to the difference between this bound and iK. Algorithm 5 computes this error
at each interval and outputs the maximum among the computed error values.

Algorithm 6 states the corresponding pessimistic algorithm in
which SCHEDULABLE answers are guaranteed to be correct and NOT
SCHEDULABLE answers might be wrong, and the maximum error is the
same as in the case of Algorithm 5. Finally, Algorithm 7 uses the upper

3.7. Approximate schedulability analysis 89

Algorithm 6 Pessimistic algorithm (tmax, δ)
Require: tmax, δ, m = number of task graphs in T , for each task graph T ,

ET is the maximum execution requirement of any vertex in T and dT is the
minimum deadline associated with any vertex in T
K ← δtmax

poly(m)

decision ← SCHEDULABLE
for t ← 1 to
 tmax

K
� + 1 do

if min{ 1
1−ε

∑
T∈T T.dbf ′(dT + tK),

∑
T∈T T.dbf ′(dT + tK) +

ε
∑

T∈T ET} > dT + (t − 1)K then
decision ← NOT SCHEDULABLE

end if
end for
return(decision)

Algorithm 7 Algorithm with double sided error
Require: tmax, δ, m = number of task graphs in T , for each task graph T , ET

is the maximum execution requirement of any vertex in T
K ← δtmax

poly(m)

decision ← SCHEDULABLE
for t ← 1 to
 tmax

K
� + 1 do

if min{ 1
1−ε

∑
T∈T T.dbf ′(tK),

∑
T∈T T.dbf ′(tK) + ε

∑
T∈T ET} > tK

then
decision ← NOT SCHEDULABLE

end if
end for
return(decision)

bound on the value of T.dbf(t) as given by Inequality (3.9), along with the
optimistic version of the checking procedure given by our Building Block 2
in Figure 14. This algorithm incurs a double sided error—SCHEDULABLE
answers can be wrong, but the maximum error in this case is bounded by K.
NOT SCHEDULABLE answers can be wrong too, but the error in this case is
bounded by min{ ε

1−ε

∑
T∈T T.dbf ′((
 tmax

K
� + 1)K), ε

∑
T∈T ET}. Hence, the

maximum error in either case is smaller than the maximum error incurred by
the optimistic and the pessimistic algorithms.

Running Times: Following the same reasoning as in Section 3.7.2.1 for the
restricted task model, it can be shown that computing all possible values of
T.dbf ′(t) for small values of t and for all task graphs T ∈ T , takes O(n5m/ε)
time, where each task graph in T contains O(n) vertices and T contains m
task graphs. All of these values are first computed and stored in a table. Dur-
ing the second phase of the algorithm (when the sum of the demand-bound
functions are checked to determine if they exceed t), for any t, computing the
value of

∑
T∈T T.dbf ′(t) needs a table lookup which takes O(n2mε−1 log n)

90 Chapter 3. Schedulability analysis

time. Since the sum of the demand bound functions is checked for O(poly(m)
δ

)
values of t, the running time of any of the three algorithms described above is
O(n5mε−1+n2mε−1δ−1poly(m) log n). Hence, the approximate schedulability
analysis algorithm for our task model runs in polynomial time.

3.7.3 Other task models

Our results in Section 3.7.1.1 also imply polynomial time algorithms for approx-
imate schedulability analysis for models such as sporadic, multiframe and the
generalized multiframe. All of these models can be considered as special cases
of the recurring real-time task model (for which, the results of Section 3.7.2.1
and 3.7.2.2 directly hold). Nevertheless, we especially point them out here since
the resulting algorithms for approximate schedulability analysis are consider-
ably simpler compared to those for the recurring real-time task model. The
reason for this is that in all of these models the demand-bound function for
any t can be computed (exactly) in polynomial time. Therefore, the pseudo-
polynomial running times of the known algorithms for schedulability analysis
for all of these models are attributed to the pseudo-polynomial number of tests
to verify if for any t the sum of the demand-bound functions exceeds t.

If tmax is the number of tests to be performed, then as shown in Sec-
tion 3.7.1.1, an algorithm for approximate schedulability analysis for any of
these models performs only O(tmax

K
) tests where K, as before, is equal to δtmax

poly(|T |)
(δ is the input error parameter to the algorithm). The error, in the case of both
optimistic and pessimistic algorithms is bounded by K = δtmax

poly(|T |) . Since the
demand-bound function for any t in these models can be computed in polyno-
mial time, and the number of tests is bounded by O(poly(|T |)

δ
), this implies a

polynomial time algorithm for approximate schedulability analysis.

3.8 Experimental results

In this section we report some experimental results obtained by testing Algo-
rithm 5 on a set of randomly generated task graphs. The parameters used for
generating these graphs are motived by a typical packet processing scenario—
we take into account the running times of common packet processing tasks on
processing elements that are commonly found in any network packet processor.

In spite of the theoretical guarantees (both in terms of the running time,
and the maximum error that can be incurred) associated with the algorithms
presented in this chapter, these results are interesting because of two reasons.
Firstly, many approximation schemes (and many of them for different schedul-
ing problems) are difficult to implement and in practice might have running
times which are comparable or even worse than the equivalent, simpler expo-
nential time algorithms, for all practical input instances. It turns out that this is
not the case for our problem. Secondly, there are two input error parameters in

3.8. Experimental results 91

0

50000

100000

150000

200000

250000

300000

350000

1 6 11 16 21 26 31 36 41

Number of Vertices

T
im

e
[m

s
]

exact

� � ���

� � ���

� � ���

� � ��	

Fig. 15: Running times for computing the demand-bound function T.dbf(t) for a single task
graph with E = 200. The different values of the error parameter ε correspond to
the respective approximation algorithms, and exact refers to the running time of the
pseudo-polynomial time algorithm (Algorithm 1).

our algorithms—ε and δ—which represent a tradeoff between running time and
the quality of the results obtained. Therefore, it is interesting to identify suitable
combinations of these two parameters for any realistic input instance.

The results reported here are only for the preemptive dynamic-priority
schedulability analysis algorithm. The algorithms for the non-preemptive case,
and those for static-priority would give similar results both in terms of quality
and running time, since they are based on similar underlying principles. How-
ever, it may be pointed out here, that it would be difficult to verify the quality
of the results obtained in the case of the static-priority algorithms since only
a sufficient condition for schedulability is known—unless of course the graphs
are simple enough.

We have implemented an exact schedulability analysis algorithm, based on
the dynamic programming algorithm (Algorithm 1) for computing the demand-
bound function and testing if the sum of the demand-bound functions for all the
task graphs exceed t for all t ≤ tmax. This algorithm runs in pseudo-polynomial
time. We compare the running time of this algorithm against the algorithm for
approximate schedulability analysis.

For our experiments, the synthetic task graphs were randomly generated us-
ing two parameters. The first is the maximum execution requirement associated
with any vertex of the graph, which we denote by E. Both, the running time of
the pseudo-polynomial exact algorithm and the quality of the results obtained
by the approximate schedulability analysis depend on this parameter. We call
the second parameter the connectivity factor. If v1, . . . , vn are the vertices of a
task graph such that there is an edge from vi to vj only if j > i, then while gen-

92 Chapter 3. Schedulability analysis

0

200000

400000

600000

800000

1000000

1 6 11 16 21 26 31 36 41

Number of Vertices

T
im

e
[m

s
]

exact

� � ���

� � ���

� � ���

� � ��	

Fig. 16: Running times for computing the demand-bound function T.dbf(t) for a single task
graph with E = 200.

erating the graph, for each vertex vj we construct an edge from vi to vj with a
probability equal to the connectivity factor of the graph, for all i = 1, . . . , j−1.

Figures 15 and 16 show the running times involved in computing the de-
mand bound function for a single task graph using the exact pseudo-polynomial
algorithm (i.e. Algorithm 1) and the FPTAS for four different values of ε, when
the number of vertices in the graphs is gradually increased. In Figure 15, the
maximum execution requirement of a vertex is set to 200, while in Figure 16 it
is equal to 600.

The connectivity factor used for generating all the graphs was set to 0.4.
To get an impression about the effect of the connectivity factor on the structure
of a randomly generated graph, in Figure 17 we show some typical randomly
generated graphs using different values of the connectivity factor. We decided
to use a value of 0.4 because the generated graphs then have a realistic mixture
of branches and consecutive tasks.

It may be noted from Figures 15 and 16 that the optimal choice of ε de-
pends on E and the number of vertices in the task graph. For example in case
of E = 200, the exact algorithm is better than the FPTAS for ε = 0.2 when the
number of vertices in the graph increase beyond 40. To give an example of the
values of E, that occur in a typical network packet processor, Table 3.8 states
the approximate execution requirements of the different tasks involved in pro-
cessing the voice flow (labelled as Flow RT Send) shown in Figure 6 of Chap-
ter 2. Note that although these execution requirements are given in nanosec-
onds, were are of course only concerned with the absolute values (which we
refer to as “time units”). Here we assume that RISC1 is a RISC processor like
PowerPC, RISC2 is a processor like the ARM9TDMI, the µ-Engine is assumed
to be similar to the ones present on the Intel IXP1200 and the DSP is like the

3.8. Experimental results 93

0.2 0.4 0.6

Connectivity Factor

Fig. 17: Typical randomly generated task graphs for connectivity factors equal to 0.2, 0.4, 0.6.

TMS320C620x. Following the values in this table, we believe that the choice
of the maximum execution requirement associated with any vertex (E) set to
a value around 600 is well motivated. The experiments with E = 200 have
been shown here to illustrate the influence of the value of this parameter on the
running time of the algorithms.

Figure 18 shows the exact value of the demand-bound function T.dbf(t)
computed by the pseudo-polynomial algorithm, and its upper and lower bounds
(T.dbf ′(t) + εE and T.dbf ′(e) respectively) computed by the approximation
scheme. It should be noted that the value of T.dbf ′(t) for all values of t is almost
equal to T.dbf(t), and this is better than the worst case theoretical bound. The
values shown in this graph are for a task graph with E = 1000, ε = 0.6 and
the number of vertices in the task graph being equal to 30. Figure 19 shows the
error incurred in approximating T.dbf(t) for the same graph.

In Table 2 we show the running times involved in performing the test to
determine if the sum of the demand-bound functions for any t, exceeds t (i.e.
the Building Block 2 in Figure 14). For the exact case, tmax tests are performed
and in the case of approximate schedulability analysis, different values of the
error parameter δ are used. Here the task set consists of three task graphs with
30 vertices per graph and the maximum execution requirement associate with
any vertex is equal to 200, and K = δtmax

m6 (where m = 3 is the number of tasks
in the task set). Note that the running times reported here do not involve the
time required to compute the demand-bound functions. These are precomputed
and stored in a table.

Lastly, in Figure 20 we show the percentage of wrong answers returned by
the algorithm for different values of ε and δ. For this we have averaged the
results obtained from a set of 600 task sets, each, as before, consisting of three

94 Chapter 3. Schedulability analysis

Task Name RISC 1 RISC 2 µ-Engine DSP
Voice Encoder 119460 119200 132200 11300
RTP Tx 100 110 110 160
UDP Tx 310 270 280 300
Build IP Header 130 130 110 190
Route Look Up 370 420 290 640
Calc Check Sum 200 180 150 110
ARP Look Up 300 330 230 500
Schedule 270 310 400 490

Tab. 1: Possible execution requirements (in ns) associated with the vertices involved in pro-
cessing the voice flow, in the task graph shown in Figure 6 of Chapter 2.

Fig. 18: The (exact values of the) demand-bound function T.dbf(t) and the upper and lower
bounds on its approximation, for different values of t.

δ →
exact 0.2 0.4 0.6 0.8

exact 775 36 18 11 9
ε 0.2 781 35 17 11 9
↓ 0.4 759 34 17 11 8

0.6 749 34 16 11 8
0.8 728 33 16 11 8

Tab. 2: Running times (in ms) of Building Block 2 in Figure 14 for K = δtmax
m6

3.8. Experimental results 95

Fig. 19: The error incurred in approximating T.dbf(t) for different values of t, for the example
shown in Figure 18.

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

5

10

15

20

25

30

35

% wrong

answers

�
�

Fig. 20: Percentage of wrong answers averaged over 600 task sets, with K = δtmax
m4 , for different

values of ε and δ. The maximum execution requirement associated with any vertex of
a task graph (E) is equal to 200, and the number of task graphs in any task set (m) is
equal to 3.

96 Chapter 3. Schedulability analysis

exact

0.4

0.8

0.2
0.4

0.6
0.8

0

100

200

300

400

500

600

Error

�

�

Fig. 21: Maximum error incurred by the decisions returned by the schedulability analysis algo-
rithm, corresponding to the results shown in Figure 20.

task graphs with 30 vertices in each graph and maximum execution requirement
of any vertex equal to 200. Here K = δtmax

m4 (where m = 3 is the number of
tasks in a task set). Figure 20 shows the corresponding maximum error values
obtained for different choices of ε and δ, again averaged over the 600 task sets.

Figures 22 and 23 show the results obtained with the same input but with
K set to δtmax

m6 . Note that as expected, because of the higher degree polynomial
(m6 instead of m4), both the maximum error incurred and the percentage of
wrong results decrease compared to the previous case. But now, more values of
t are tested and hence the running time increases. All the task sets considered
in the experiment were generated such that they either fully load the proces-
sor, or when not schedulable, the vertices miss their deadlines only by small
amounts of time. Therefore, these represent most difficult cases for the approxi-
mate schedulability analysis algorithm. If the task sets are either “comfortably”
schedulable, leaving the processor idle for a long intervals of time, or if they
overload the processor in the sense that jobs miss their deadlines by long inter-
vals of time, then the percentage of wrong results returned by the approximate
schedulability analysis algorithm decrease. If the load-factor of a task set T is
defined as max{t = 1, . . . , tmax |

∑
T∈T T.dbf(t)

t
}, then the load-factor of all the

task sets considered in our experiments were between 0.93 and 1.11. Lastly,
among the 600 task sets considered around 50% were schedulable and the rest
not.

All the CPU times reported here were measured on a a moderately loaded
Sunblade 1000 running SunOS 5.8 with 750 MHz CPU and 2 GB RAM, and all
the algorithms were implemented in Java.

3.8. Experimental results 97

0
0.2

0.4
0.6

0.8

0
0.2

0.4
0.6

0.8

0

5

10

15

20

25

% wrong

answers

Fig. 22: Percentage of wrong answers averaged over 600 task sets, with K = δtmax
m6 , for different

values of ε and δ. The maximum execution requirement associated with any vertex of
a task graph (E) is equal to 200, and the number of task graphs in any task set (m) is
equal to 3.

0
0.2

0.4
0.6

0.8

0.2
0.4

0.6
0.8

0

50

100

150

200

250

300

350

400

450

500

error

Fig. 23: Maximum error incurred by the decisions returned by the schedulability analysis algo-
rithm, corresponding to the results shown in Figure 22.

98 Chapter 3. Schedulability analysis

3.9 Summary
In this chapter we introduced a task model for network packet processing ap-
plications. This model can be used to evaluate the feasibility of a mapping of
different packet processing tasks onto the different processing elements of a
packet processor. This problem was posed as a schedulability analysis question
for the proposed task model. However, it turns out that schedulability analy-
sis for the proposed model is intractable (NP-hard). The main contribution of
this work is that we are able to demonstrate that in spite of the intractability
of this problem, for all practical purposes it can be solved in polynomial time.
Towards this, we have introduced a novel scheme called approximate schedula-
bility analysis, which is also applicable to a number of other task models from
the real-time systems area, for which the known algorithms for schedulability
analysis either have exponential or at best pseudo-polynomial running time.

The problem of designing efficient false-negative schedulability tests for
the generalized multiframe task model was stated as a possible future research
direction in [16]. False-negative tests always identify task sets which are not
schedulable, but occasionally return the wrong answer in the case of schedulable
task sets. Our work addresses a much more generalized version of this problem.
Apart from being of theoretical interest, the experimental results presented in
this chapter suggest that the algorithms are implementable and lead to clear
benefits in terms of running time.

4
An analytical framework for timing analysis

As mentioned in Chapter 1, a packet processor typically consists of a collection
of heterogeneous processing elements onto which the different packet process-
ing tasks are mapped. In Chapter 3 we addressed the feasibility of any such
mapping. In this chapter we are concerned with the overall timing behaviour
of a packet processor—as packets flow through the system and get processed
in the different processing elements, for any given procesing element, what are
the timing characteristics of the packet stream flowing out of this element in
relation to the input packet stream? How can these input-output relations for
the different processing elements be combined in a compositional manner to
derive the timing properties of the whole system? Answers to these questions
lead to several insights about the system properties. These include the deter-
mination of the on-chip buffer-memory requirements and the off-chip memory
bandwidth, which can be computed from the maximum number of packets that
can be inside the system at any point in time. Other such properties include the
utilization of different buses and processors, which can be determined from the
maximum and minimum number of packets that cross any of these resources
within a specified amount of time.

The main difficulties which any analysis method faces while attempting to
answer the above questions stem from the following facts. Packet processors
are heterogeneous in nature, where different processing and communication ele-
ments have different interfaces and implement different scheduling and resource
sharing strategies, thereby making it difficult to design any compositional anal-
ysis scheme. Secondly, there is a large degree of parallelism in the system
because the different processing elements work concurrently, and as explained
in Chapter 2, the input packet stream being processed is composed of several
interleaved flows where packets from any flow need to be processed differently

100 Chapter 4. An analytical framework for timing analysis

and concurrently with packets from the other flows. Modeling this concurrency
and the interfering effects of the different flows on any processing or commu-
nication resource calls for new task and system models compared to those used
in traditional application domains of real-time embedded systems like digital
signal processing. Moreover, as packets from different flows traverse from one
processing resource to the next, there might be intermediate bursts and packet
jams depending on how the different flows are scheduled on a resource, mak-
ing the computation of input-output timing characteristics of a flow nontrivial
and dependent on the other flows in the system. A detailed discussion of the
differences between the packet processing domain and traditional application
domains for embedded systems (data-dominated applications) can be found in
Chapter 2.

Most of the currently available methods and tools for analysing and evaluat-
ing such systems rely on simulation and hence suffer from high running times,
incomplete coverage, and failure to identify corner cases. To guarantee certain
timing properties using analysis schemes that have reasonable running times, it
is necessary to develop static formal analysis methods based on abstract system
models. In this chapter we take this approach and study an analytical framework
for system-level timing analysis for packet processors having a heterogeneous
architecture, in which the different packet processing tasks corresponding to
the different flows have already been mapped onto the different processing re-
sources. The framework is based on an abstract model of the architecture, a
model for packet processing tasks which is essentially similar to the one in-
troduced in Chapter 3, a model for packet flows which is based on the model
introduced in Chapter 2, and a calculus for reasoning about such systems. This
calculus, which we refer to as real-time calculus, was introduced by Thiele et al.
in [145]. The application of this calculus to analyse packet processing architec-
tures was first shown by Thiele et al. in [144], and subsequently more detailed
results were presented in [142] and [143]. However, it was not shown how the
results from this framework compare with the theoretical results that can be
derived using already known techniques from the real-time systems area (i.e.
whether this framework generalize previous results in any sense, or whether
it gives rise to new results not known from the real-time systems literature).
Secondly, it is not clear how closely these results match those which can be
obtained using detailed system-level or cycle-accurate simulations. Without a
clarification of these two issues, the applicability of this framework to analyse
any realistic system is not clear. In this context, we make the following contri-
butions in this chapter.

• We show that the results that can be obtained within this framework generalize
many results from the real-time system area which are based on standard event
models (like periodic, sporadic, etc.) and scheduling disciplines. Using these
known results from the real-time systems literature, the packet arrivals at any re-
source would typically be modeled by a periodic or sporadic event model which
would be an approximation of a real packet trace. The event model used in our

101

framework, on the other hand, is a generalization of any of these standard event
models, where any real packet trace can be accurately modeled without resorting
to approximating the packet arrival times. Secondly, in contrast to current prac-
tice, where different analysis techniques are used for different combinations of
event models and scheduling disciplines, we show that our framework provides
a unified way of analysing any combination of event model and scheduling pol-
icy. Further, it also provides a method for extending the timing analysis results
to determine other system properties in a single coherent way and hence serves
as a general framework for the performance evaluation of packet processing
(hardware/software) architectures.

• Through a realistic case study, we also show that the results obtained from this
framework compare well with those obtained by detailed cycle-accurate simu-
lations. Whereas the former takes only fractions of a second to determine the
properties of an architecture, simulation based approaches usually run in time
in the order of several hours.

• Based on the above finding, we propose a new methodology for the design space
exploration of system-on-a-chip (SoC) based network packet processors. Cur-
rently, most SoC based embedded system architectures rely on simulation as
a means for performance evaluation. The design of such systems usually start
with a parameterizable template architecture, where the design space explo-
ration is restricted to identifying the suitable parameters of the architectural
components (like cache sizes and associativity, and bus widths). The design
space exploration of packet processing architectures however involves a com-
binatorial aspect (arising from questions like which architectural components
should be chosen and how should they be interconnected, how should tasks be
mapped, etc.), which increases the design space. To cope with this, we hypoth-
esize that any automated or semi-automated design space exploration in this
case should be separated into multiple stages, each having a different level of
abstraction. Further, it would be appropriate to use an analytical performance
evaluation framework, such as the one studied in this chapter, during the initial
stages and resort to simulation only when a relatively small set of potential ar-
chitectures is identified. We support this hypothesis based on the results of the
case study that we present in this chapter.

The rest of this chapter is organized as follows. In the next section we mo-
tivate the need for analytical frameworks for timing analysis and performance
evaluation in the context of design space exploration of hardware/software ar-
chitectures of packet processors, which is followed by a review of the existing
work in this area in Section 4.2. In Section 4.3 we give a model for characretiz-
ing packet flows and processing resources by extending the basic models pre-
sented in Section 2.3 of Chapter 2. Based on this, we present in Section 4.4
the analytical framework for timing analysis and show how it can be used for
the performance evaluation of packet processors. The results pertaining to a

102 Chapter 4. An analytical framework for timing analysis

comparison of this framework with the results that can be derived from classi-
cal scheduling theory is given in Section 4.5. Finally we compare the results of
evaluating a realistic packet processing architecture using this framework, with
detailed cycle accurate simulations. Towards this, we first describe the simula-
tion setup in Section 4.6, and Section 4.7 presents the results of the comparison.
Finally, in Section 4.8 we propose a new methodology for the design space ex-
ploration of packet processing architectures based on the results learnt from the
comparative study.

4.1 Analytical frameworks in design space exploration

Because of the new and different requirements of packet processors as outlined
in Chapters 1 and 2, the design and analysis of the hardware/software architec-
ture of a packet processor calls for specialized modeling techniques and frame-
works which do not fall under the preview of traditional embedded processor
design. As a result, recently there has been a number of proposals for perfor-
mance models and design frameworks specific to network packet processing
architectures (see [43, 44, 59, 70, 71, 72, 142, 143, 153, 155]). The goal of
these frameworks and models is to aid a designer in understanding the perfor-
mance tradeoffs involved in a design and come up with an optimal architecture
that suits the application scenario at hand.

Realizing these goals in the context of traditional embedded processor de-
sign typically involves two issues: a method for performance evaluation or anal-
ysis of any specified architecture, and means for covering the design space or
design space exploration (through which all the possible architectures need to
be identified). An evaluation of all the possible architectures during the explo-
ration lead to the optimal design. In most cases it is possible to formulate a
parameterized architecture template, where the design space exploration is re-
stricted to finding appropriate values of the parameters such as bus width, cache
associativity and cache size. The resulting design space is therefore reason-
ably small and it is usually feasible to exhaustively evaluate all the possible
designs by simulation. When the design space is relatively larger, techniques
such as partitioning the architecture into disjoint subsystems and using inde-
pendent design space explorations for the different subsystems have been used
[67, 90, 120]. Even in such cases, the choice of the different architectural com-
ponents is usually fixed (for example, see [3, 128], where the system always
consists of a VLIW processor, a systolic array and a cache subsystem and the
design space exploration consists of identifying appropriate parameters for each
of these components), and the possible mappings of different tasks onto the pro-
cessing elements are also either fixed or are very restricted in number. This is
unlike the case with packet processing architectures where the number of al-
locations of the processing elements and the possible mappings of tasks onto
these elements can potentially be very large. Design space exploration in this

4.1. Analytical frameworks in design space exploration 103

context therefore assumes a different complexity.
Packet processing architectures are very heterogeneous in nature and usu-

ally it is not possible to define a parameterizable template architecture. As a
result the design space is larger compared to those in the case of typical em-
bedded processor architectures and involves a combinatorial aspect in addition
to traversing the parameter spaces of the different components. These proces-
sors might also be used in multiple application scenarios (such as core or ac-
cess networks), might require to support different traffic classes (where some
classes might have quality-of-service requirements and others have minimum
throughput requirements), and at the same time should be flexible to be able to
incorporate new functionality. In order to account for all of these issues in the
design phase, we believe that new design methodologies are required. In par-
ticular, resorting to exhaustive simulations of all possible designs is no longer
a feasible option for automated design space exploration. Hence, using other
means of performance evaluation such as appropriate analytical models, which
should be fast as well as reasonably accurate, is necessary,

4.1.1 Performance evaluation in the context of design space exploration

It is known that typically the design flow of complex systems-on-a-chip (SoC)
architectures starts with an abstract description of the application and some
performance requirements, which are then used to drive a system-level design
space exploration for identifying a suitable architecture. This involves evalu-
ating many prospective architectures on a system-level and an iteration loop
between the exploration and the evaluation steps. Once the main architectural
decisions have been made, the resulting architectures are then more accurately
evaluated, possibly on the basis of many other criteria which were not consid-
ered previously. The design space exploration at this stage, in contrast to the
previous, might only involve tuning the parameters of different cores in a core-
based SoC design.

Here we argue that in the case of heterogeneous SoC architectures, this sep-
aration of the design space exploration into multiple stages is all the more im-
portant in order to tackle the large and the different nature of the design space.
In particular, we hypothesize that in the context of packet processors, the un-
derlying framework for performance evaluation should vary depending on the
stage of the design space exploration—it will be more appropriate to use analyt-
ical methods during the initial stages and resort to simulation when a relatively
small set of promising alternatives has been identified. None of the known
performance evaluation frameworks for network packet processors have been
evaluated or positioned from this perspective. From a designer’s point of view
it would be useful to know if any of the known modeling techniques are more
suitable for a particular stage of the architecture design.

In any of the design phases, for a potential architecture at hand, the per-
formance evaluation needs to answer questions such as: Does this architecture
meet the required line speeds and maximum allowable delays experienced by

104 Chapter 4. An analytical framework for timing analysis

packets? What are the limits to the improvement in processor or bus utilization
as the number of processor cores is increased? How do the cache/memory orga-
nization impact these limits? Will a given hardware assist improve the system
performance compared to a software implementation? We believe that the exact
nature of these questions, how accurately they need to be answered, and what
is the allowable computation/simulation time required to answer them strongly
depend on the design phase. For packet processors many of these can be ad-
equately answered with a system-level model, and we show that the analyti-
cal framework studied in this chapter is suitable for this purpose. Its analy-
sis/evaluation time is orders of magnitude faster when compared to simulation
based frameworks and it is hence appropriate for a system-level design space
exploration when the design space is very large.

In support of our hypothesis, we compare the results obtained by this frame-
work with detailed cycle accurate simulations of a realistic architecture. Based
on the timing analysis results, we consider three performance metrics: (i) the
line speed or the end-to-end throughput that can be supported by the architec-
ture, which is measured using the utilization of its different components (pro-
cessors, buses, etc.) and thereby also identifying which component acts as the
bottleneck, (ii) the end-to-end packet latencies, (iii) the on-chip cache/memory
requirement of the architecture. Many important questions that arise in the con-
text of packet processors pertain to these metrics. The usefulness of the re-
sults obtained from the analytical framework should be evaluated with respect
to their relative accuracy when compared with the simulation results, and the
time it takes to compute these results compared to simulation times (under the
assumption that there is a high confidence in the simulation results).

One of the major criticisms of the analytical framework we consider here,
has been that although it is sufficiently general, it still remains to be seen if it
can be applied to analyse any realistic network packet processor architecture
(see, for example, [151]). Our work in this chapter addresses this issue and
additionally places this framework in an appropriate stage of a design flow.

4.2 Existing approaches

There is a large body of work devoted to system-level performance analysis of
SoC architectures (see [61] and the references therein). For the evaluation of
more specific aspects of an architecture, such as the on-chip communication
infrastructure, see [96] and the references therein. However, in this section we
focus on the work done specifically in the context of packet processors.

As mentioned in the last section, lately there has been a number of pro-
posals for performance analysis techniques specifically targetted towards archi-
tectures for packet processing. These can be broadly classified into (i) purely
simulation-based approaches, which include both system-level simulations and
cycle-accurate simulations, (ii) trace-based performance analysis, (iii) analy-

4.2. Existing approaches 105

sis frameworks using “static analytical models”, and (iv) frameworks based on
“dynamic analytical models”.

Purely simulation-based approaches evaluate an architecture by executing
one or more packet processing applications on some executable model of the
architecture and then use some defined set of stimuli (usually in the form of
packet traces) to trigger or drive the applications. Since the chosen set of stimuli
can activate only a fixed set of “execution paths”, both in the architecture as
well as in the application, this set must be so chosen that it represents some
typical scenario (rather than a special case) in the execution. This turns out
to be one of the main drawbacks of simulation-based evaluation or analysis.
The evaluation results obtained using any given set of input traces are often
difficult to interpret in a more broad setting. Further, as we already pointed
out, in the context of design space exploration, obtaining meaningful simulation
results usually call for detailed models which involve complex simulation setups
and high simulation times. When the underlying architecture design space is
relatively large, such detailed and time consuming simulations are therefore not
feasible. Lastly, another major problem with simulations is the need for an
executable model. For many architectural components such models may not be
available.

However, the main advantage of using simulation as a means for perfor-
mance evaluation is that many dynamic and complex interactions in an archi-
tecture can be taken into account, which are otherwise difficult to model an-
alytically. As a result, if the executable model being simulated is sufficiently
detailed, then there can be a high confidence in the results obtained.

A performance evaluation scheme using system-level simulations of the ar-
chitecture of a packet processor is described in [70]. This work focusses on
packet processors to be used in access networks where a customer’s traffic enters
the network of a service provider. The simulations take into account the differ-
ent packet processing tasks, the memory architecture, the different architectural
components or building blocks such as processors, hardware assists, etc., and
the dynamic behavior of the different packet flows as packets traverse from one
resource to the other. Therefore, the backlog in the queues in front of differ-
ent resources resulting from packets waiting to get processed, the burstiness of
packet flows inside the processor, how fairly the different flows are served by
the different resources, and the effects of different scheduling and arbitrations
schemes on these can be measured.

The modeling framework presented in [43] is based on cycle accurate mod-
els of the different programmable processing elements that constitute a packet
processor. The approach is to approximate the packet processing application
characteristics statistically, based on simulation and instruction profiling and
then use those approximations to form system resource usage and contention
estimates.

The framework is composed of independent application, system and traffic
models. The application is modeled using the Click modular router from MIT
[94]. Click consists of a collection of software modules for describing various

106 Chapter 4. An analytical framework for timing analysis

router functionality. Such modules in Click are called elements, and by putting
together different elements in the form of a graph (which is called a configura-
tion) it is possible to construct applications such as IP routers, firewalls, QoS
routers, etc. The architecture to be evaluated is simulated using SimpleScalar
[25] and it implements the Alpha instruction set [6]. Click modules are com-
piled for the Alpha ISA and the compiled modules are then executed on this
architecture. By simulating this execution using different traffic traces, the pro-
filed code yields various information such as instruction count, details regard-
ing cache behavior, etc. These are then used to compute various performance
metrics for the architecture being evaluated, related to packet latency, band-
width and resource utilization. It may be noted that results such as execution
times, obtained directly from the simulation, form only a part of the overall
packet processing/forwarding times. These must later be adjusted to account
for contention for the shared resources and the costs of synchronization over-
heads since they can not be modeled in the SimpleScalar toolkit. Moreover, for
elements which do not have any executable model or software implementation
(such as dedicated hardware units) and hence can not be simulated, the profile
and external dependencies need to be provided manually by the user.

In contrast to this approach, the work done in [155] models an architecture
in SystemC [73]. This work mostly focuses on the communication subsystem
and the memory organization of an architecture. The models are then simulated
on packet traces and performance metrics such as bus utilization, memory fill
levels, and packet delays are evaluated. This work forms the basis of the simu-
lations results that we present in this chapter and further details on it are given
in Section 4.6.

These two approaches as they exist now are complementary to each other.
[43] uses an accurate processor model but a very elementary model of the com-
munication subsystem of an architecture (such as buses, bridges, etc.). On the
other hand, the framework in [155] implements cycle-accurate models for buses
and bridges, but has a very simple processor and application model.

Clearly, there exists an opportunity to combine the above frameworks which
will then consist of a detailed model of processors as well as other components
of the communication subsystem, such as buses, for which SystemC models
already exist. In the same way as there exists a SimpleScalar model of the
Alpha processor, there already exists a SystemC model of PowerPC which can
be simulated on executable code. This opens the possibility of integrating this
model with the SystemC models of the communication subsystem used in [155],
and then use detailed application models by compiling Click modules for the
PowerPC instruction set as is done in [43].

In order to reduce the simulation times, many approaches gather execution
characteristics of applications which do not change from one one architecture
to another, based on a single initial simulation. These are then used to evalu-
ate different architectures without resorting to further detailed simulations. In
particular, such trace-based approaches simulate the execution of a program
on an abstract model of an architecture and collect statistics such as the num-

4.2. Existing approaches 107

ber of memory and bus accesses. These statistics are then used to evaluate
the performance of any concrete architecture. The performance of this class
of approaches, both in terms of the running time involved and the quality of
the results obtained, is usually intermediate between detailed simulations and
approaches based on anytical models which perform a static analysis of the sys-
tem.

An example of this method in the context of evaluating the communication
architecture of a SoC design can be found in [96]. Here an initial cosimulation
of the system is performed with the communication described in an abstract
manner (as events or abstract data transfers), and a set of traces is extracted
from the simulation which contain the details of the communication between
the different architectural components. This information is represented in the
form of a “communication analysis graph” (CAG) which is manipulated based
on the concrete architecture (its topology, the mapping of different tasks onto
the processors, and the arbitration scheme used in each communiation channel).
The result of manipulating the CAG is an estimate of the system performance
and provides various statistics about the communication in the concrete archi-
tecture. As in the case of any usual system simulation, the derived results are
specific to the input stimuli used, and hence this must be carefully chosen.

In the context of packet processors, the work described in [59], in some
sense, can be considered to fall into this category of trace-based approaches.
The performance analysis requires an initial characterization of a set of bench-
marks (related to packet processing applications and workloads) using detailed
exhaustive simulation runs for a range architecture organizations (such as or-
ganizations of the cache/memory subsystem). The information extracted from
these runs such as instruction and data miss rates, load/store instruction shares,
etc. is then fed into analytical models of the different architectures being evalu-
ated, to calculate the utilization of different resources, layout area requirements
of the architectures, and the performance of the architectures. This framework
has been extended in [60] to also reason about the power requirements of an
architecture.

In the architecture model considered in [59], the different components that
make up the architecture and the interconnection among these components (the
so called architecture template) is fixed. The architecture template consist of a
number of multithreaded processors organized in clusters. Each cluster consists
of a number of processors, each having its own cache, and the cluster communi-
cates with an off-chip memory using its own memory interface. The parameters
that can be changed while deriving different concrete architectures from the ar-
chitecture template are the number of threads running in each processor, the
cache sizes, the number of processors in each cluster, the number of clusters
in the network processor, the width of the memory channels, etc. For evalu-
ating an architecture with a given set of parameters, an analytical model for
multithreaded processors which was proposed in [4] is used. The benchmark
workload and applications which are used to derive the inputs to the analytical
model are based on the CommBench benchmark suite [152] and consists of a

108 Chapter 4. An analytical framework for timing analysis

mix of header-processing and payload-processing applications. Since the ar-
chitecture template which forms the basis of this framework is fixed, the main
focus of this work can be considered to be the cache/memory subsystem of a
packet processing architecture.

The underlying analytical model used in [59] (which is based on the model
in [4]) can be considered to be a “static analytical model”. Such models describe
the computation, communication and memory resources using purely algebraic
equations whose parameters are static data transfer rates between different ar-
chitectutal components and also static processing capacities of the different pro-
cessing elements. Typically these models do not take into account the variations
of the processing capacities of a resource over time (possibly due to interrupts
or bursts of packets arriving from a flow) and the dynamic interactions between
different packet flows on a shared resource. Therefore, although they are sim-
ple and provide a fast estimation, the generated results are either overly pes-
simistic or provide only a poor approximation of the performance of the real
system and can differ widely from simulation results. In contrast to these ap-
proaches, the model we study in this chapter may be termed as a “dynamic
analytical model” since it extends static models to account for the interactions
between the different packet flows on a shared resource and the resulting non-
determinism in processing packets from any given flow. Such dynamic ana-
lytical models may either be based on statistical methods and queuing theory
which typically does an average-case analysis, or they may be based on a de-
terministic worst-case analysis using methods such as network calculus [22] or
real-time calculus [144, 145]. The framework studied in this chapter follows the
later approach of a worst-case analysis. It uses analytical models for both, the
hardware/software architecture of a packet processor which takes into account
the different scheduling and arbitration policies at the different processing and
communication resources, and the different packet flows that are processed by
the architecture. Moreover, in contrast to the work in [59], the architecture
template or topology is not assumed to be fixed, and therefore different com-
binations of processors and buses and interconnections between them can be
evaluated. The details of this framework are presented in the next two sections.

4.3 Modeling packet flows and resource capacities

Recall from Section 2.3 of Chapter 2 the model for specifying bounds on packet
arrivals from any flow using the concept of arrival curves. In this section we ex-
tend this model to characterize packet flows entering a packet processor. Based
on similar concepts, we also introduce a model for describing the computa-
tion/communication capacities of the different architectural elements that are
used to process/transmit the packets entering these elements.

Let f be a flow entering a given resource. The resource is either a com-
putation resource such as a processor on which some packet processing task is

4.3. Modeling packet flows and resource capacities 109

implemented, or it is a communication resource such as a bus that is used to
transmit packets between two computation resources or a computation resource
and a memory module. Let Rf (t) denote the number of packets from f arriving
at the resource during the time interval [0, t]. The maximum number of packets
arriving at the resource is assumed to be bounded by a right-continuous subad-
ditive function called the upper arrival curve denoted by αu

f . Similarly, a lower
bound on the number of packets arriving at the resource is given by a lower
arrival curve denoted by αl

f . αl
f and αu

f together can be referred to as the traffic
constraint functions and they satisfy the following inequality.

αl
f(t − s) ≤ R(t) − R(s) ≤ αu

f(t − s), ∀0 ≤ s ≤ t

For any ∆ ≥ 0, αl
f (∆) ≥ 0 and αl

f(0) = αu
f (0) = 0. Therefore, αl

f(∆) gives
a lower bound on the number of packets that can arrive at the resource from the
flow f within any time interval of length ∆. αu

f (∆) gives the corresponding
upper bound.

Similar to the arrival curves describing packet flows, the computation or
communication capability of a resource is described using service curves. Given
a resource r, let Cr(t) denote the number of packets (or the number of bytes,
depending on the resource) that can be processed by r during the time inter-
val [0, t]. Then the upper and lower service curves βu

r and βl
r describing the

processing capabilities of the resource satisfy the following inequality.

βl
r(t − s) ≤ Cr(t) − Cr(s) ≤ βu

r (t − s), ∀0 ≤ s ≤ t

Further, for any ∆ ≥ 0, βl
r(∆) ≥ 0 and βl

r(0) = βu
r (0) = 0. Therefore, βl

r(∆)
is a lower bound on the number of packets that can be processed by r (or the
number of bytes that can be transmitted in case r is a communication resource)
within any time interval of length ∆. Likewise, βu

r (∆) is the corresponding
upper bound. Hence, the processing capability of r over any time interval of
length ∆ is always greater then or equal to β l

r(∆) and less than or equal to
βu

r (∆).
As mentioned above, the arrival curves of a flow f entering a resource r

is described in terms of either the number of bytes entering r within any time
interval of length ∆ or the number of packets within any time interval of length
∆. This depends on the packet processing task implemented on r. For a task
such as packet header processing, where the load on r depends on the number
of packets entering and not on the sizes of the packets, the arrival curves are
defined in terms of number of packets. On the other hand, if r is a communi-
cation resource such as a bus, or a payload processing task such as encryption
is implemented on r, then the arrival curves are defined in terms of number of
bytes.

Now suppose that for each packet (or each byte, as the case maybe) entering
the resource r, w units of processing resource have to be spent by r to process
the packet. This might be described as the number of processor cycles, bus
cycles, or processor instructions. Then if a flow f has arrival curves ᾱl

f and ᾱu
f

110 Chapter 4. An analytical framework for timing analysis

described in terms of number of packets, these may be transformed as follows
to represent the processing request demanded by f from the resource r.

αl
f = wᾱl

f , αu
f = wᾱu

f

Hence, αl
f and αu

f now describe the arrival curves of flow f in terms of the
processing request (for example, number of processor cycles) demanded from
r. If βl

r and βu
r describe the processing capability of r in terms of the same units

(i.e. processor cycles) then the maximum delay and maximum backlog suffered
by packets of flow f at the resource r can be given by the following inequalities.

delay ≤ sup
t≥0

{
inf{τ ≥ 0 : αu

f (t) ≤ βl
r(t + τ)}

}
(4.1)

backlog ≤ sup
t≥0

{αu
f (t) − βl

r(t)} (4.2)

A physical interpretation of these inequalities can be given as follows: the de-
lay experienced by packets waiting to be served by r can be bounded by the
maximum horizontal distance between the curves αu

f and βl
r, and the backlog is

bounded by the maximum vertical distance between them.
The packets of flow f , after being processed by the resource r, emerge out

of this resource. Let αu
f
′ and αl

f
′

be the upper and lower arrival curves of this

processed flow. Similarly, let βu
r
′ and βl

r
′

be the upper and lower remaining
service curves of the resource r, denoting the remaining processing capability
of r after processing packets of flow f . Then these can be given as follows (see
[144] for further details and proofs).

αl
f

′
(∆) = inf

0≤t≤∆

{
αl

f(t) + βl
r(∆ − t)

}
(4.3)

αu
f
′(∆) = inf

0≤t≤∆
{sup

v≥0

{
αu

f (t + v) − βl
r(v)

}
+βu

r (∆ − t), βu
r (∆)} (4.4)

βl
r

′
(∆) = sup

0≤t≤∆

{
βl

r(t) − αu
f(t)

}
(4.5)

βu
r
′(∆) = sup

0≤t≤∆

{
βu

r (t) − αl
f (t)

}
(4.6)

The maximum utilization of the resource r due to the processing of flow f
is given by:

utilization ≤ lim
∆→∞

βu
r (∆) − βl

r
′
(∆)

βu
r (∆)

(4.7)

4.4 A model for timing analysis and performance eval-
uation
The modeling concepts used in the last section are known from work done in
the area of communication networks. The results derived on the basis of these

4.4. A model for timing analysis and performance evaluation 111

models (see also [144]) have their background in network calculus [22] which
use the concept of arrival and service curves in a network theoretic context. In
this section we show how these results can be used to formulate an analytical
performance evaluation model for network processors. The results here were
originally derived in [142] and [143] and we refer the reader to these papers for
additional details.

Here we view a network processor as a collection of different processing
elements (such as CPU cores, micro-engines, and dedicated units like hardware
classifier, cipher, etc.) and memory modules connected to each other by com-
munication buses. On each of these processing elements one or more packet
processing tasks are implemented. Depending on the sequence in which these
tasks process a packet, and the mapping of these tasks on to the different pro-
cessing elements of the network processor, any packet entering the network
processor follows a specific sequence through the different processing elements.
The flow to which this packet belongs is associated with its arrival curves. Sim-
ilarly all the resources have their associated service curves. As the packets of
the flow move from one processing element to the next, and also cross com-
munication resources such as buses, both, the arrival curves of the flow and the
service curves of the resources get modified following the Equations (4.3)-(4.6)
given in Section 4.3. Given this, the maximum end-to-end delay experienced
by any packet, the on-chip memory requirement of the network processor, and
the utilization of the different resources (both computation and communication)
can now be computed using Equations (4.1), (4.2) and (4.7).

To formally state the above procedure, consider that for the set of flows F
entering the network processor, there is a task graph G = (V, E). Any vertex
v ∈ V denotes a packet processing (or communication) task. For any flow
f ∈ F , let V (f) ⊆ V denote the set of packet processing tasks that have to be
implemented on any packet from F . Additionally, a subset of directed edges
from E defines the order in which the tasks in V (f) should be implemented
on any packet from f . Therefore, if u, v ∈ V (f) represent two tasks such that
for any packet belonging to f , the task v should be implemented immediately
after task u, then the directed edge (u, v) belongs to the set E. Hence, for each
flow f there is a unique path through the graph G starting from one of its source
vertices and ending at one of its sink vertices. The vertices on this path represent
the packet processing tasks that are to be implemented on packets from f .

Figure 24 shows a hypothetical network processor architecture built out of
blocks from an existing core library [80, 81]. Here PPC refers to the PowerPC
440 core, and PLB and OPB refer to two buses called the Processor Local Bus
and the On-chip Peripheral Bus provided by the CoreConnect [81] architecture
for interconnecting cores and custom logic. The numbers on the arrows in this
figure either indicate actions that are to be performed by the different blocks as
a packet flows through the architecture, and they are ordered according to the
numbering.

From Figure 24 it is possible to construct a task graph considering the appro-
priate packet transfers from one resource to another. This task graph can then

112 Chapter 4. An analytical framework for timing analysis

PPC SDRAM

PLB

OPB

EMAC EMAC

Bridge

1

3

4 2

5

6

7
8

9

10
11

12

Packet in Packet out

Separate read

and write busSideband

signals

Fig. 24: A system-level model of a network processor. The figure shows the path that a packet
follows through the architecture. The numbers on the arrows indicate the different
actions involved (which are explained in Table 3) while the packet travels through the
architecture, and specify the order in which these actions are executed. Further details
of this model can be found in Section 4.7.

be used to compute the load on the different buses (such as the OPB and the
PLB), the on-chip memory requirement of this architecture to store the buffered
packets in front of each resource, and the end-to-end packet delays.

4.4.1 Analysis using a scheduling network

In Section 4.3 we described how to compute the delay and backlog experienced
by a flow passing through a single resource node processing the flow. For this
we characterized the flow using its arrival curves and the resource node using
its service curve and also derived formulas for the maximum utilization of this
resource and the outgoing arrival and resource curves. Now we extend these
results to consider the case where the flow passes through multiple resource
nodes as shown in Figure 24.

The outgoing arrival curve capture the characteristics of the processed
packet flow (for example its burstiness and long term rate), which might be
different from the characteristics the flow has before entering the resource. Sim-
ilarly the outgoing service curve indicates the remaining process capability of
the resource after processing the flow. The idea now is to use this outgoing ar-
rival curve as an input to another resource node (more precisely, the resource
node where the next packet processing task as given by task graph described
above is implemented). In the same way, the outgoing service curve of the first
resource is used to process packets from a possibly second flow. This procedure
can be illustrated using a scheduling network. For example, Figure 25 shows
the scheduling network corresponding to the packet traversal through the archi-

4.4. A model for timing analysis and performance evaluation 113

Step Action

1 Sideband signal from EMAC to bridge
(indicating that a new packet has arrived)

2 Bridge gets a ”buffer descriptor”(BD) from the SDRAM
3 Packet is sent from EMAC to bridge over the OPB
4 Packet is sent from bridge to SDRAM over the PLB write bus
5 Sideband signal from Bridge to PPC

(indicating that the new packet has been stored)
6 CPU get buffer descriptor over the PLB read bus
7 CPU gets packet header over the PLB read bus
8 CPU processes header, and stores it back to SDRAM over the PLB write bus
9 Sideband signal from bridge to CPU

(indicating that the packet can be sent out)
10 Bridge gets buffer descriptor over the PLB read bus
11 Bridge gets packet over the PLB read bus
12 Packet sent out to specified a EMAC over the OPB

Tab. 3: Sequence of actions for every processed packet in the architecture model shown in
Figure 24.

tecture shown in Figure 24.
In general, multiple flows enter a network processor and are processed by

the different resources in the order specified by the task graph described above.
As packets from several flows arrive at a resource, they are served in an order
determined by the scheduling policy implemented at the resource. For example,
many buses use a fixed priority bus arbitration scheme. Other scheduling poli-
cies might be FCFS and round robin. We illustrate the analytical model here
assuming that all the resources use fixed priority. However, the model can be
extended to incorporate other scheduling policies as well.

Let us assume that there are n flows f1, . . . , fn arriving at a resource r, which
serves these flows in the order of decreasing priorities, i.e. f1 has the highest pri-
ority and fn the lowest. For each packet of the flow fi, some packet processing
task ti implemented on r processes the packet and this requires w(ti, r) pro-
cessing units from r. For example, w(ti, r) might be the number of processor
instructions, or bus cycles in case r is a communication resource. We hence-
forth denote w(ti, r) by wi when it is clear which resource is being referred to.
Each flow fi arriving at r is associated with its upper and lower arrival curves
ᾱu

i and ᾱl
i respectively and receives a service from r which can be bounded by

the upper and lower service curves βu
i and βl

i respectively. The service available
from r in the unloaded state (i.e. before any of the flows f1, . . . , fn are served)
is bounded by the upper and lower service curves βu and βl respectively.

In the fixed priority scheme r services the flows in the order of decreas-
ing priorities and the remaining service curve after processing a flow is used to

114 Chapter 4. An analytical framework for timing analysis

in

OPB

target resource nodes (output service curves),

used to compute remaining processing/communication capability

source resource nodes (input service curves)

in

out

source and target

packet nodes

input arrival

curves
(derived from traces)

final ouput

arrival curves

PLB read

in

out

Get BD

Transfer Packet

to Memory

Get Buffer-

Descriptor (BD)

PLB write

in

out

Transfer Packet

to Memory

out

Transfer

Packet Header

Store Modified

Packet Header

Get BD

Transfer Packet

to EMAC

Transfer Packet

to EMAC

Memory Status

Update

Fig. 25: The scheduling network for the architecture given in Figure 24.

serve the lower priority flows. The resulting arrival curves and the remaining
service curves can be computed using Equations (4.3)-(4.6) given in Section 4.3.
Since packets from different flows might have different processing requirements
given by w1, . . . , wn, the arrival curves first need to be scaled as described in
Section 4.3. Similarly, the outgoing arrival curves need to be scaled back as fol-
lows. If αu

i
′ and αl

i
′
are the outgoing arrival curves from a resource node calcu-

lated using Equations (4.3) and (4.4), then αu
i
′ = �αu

i
′/wi� and αl

i
′
=
αl

i
′
/wi�.

The floor/ceiling functions are used since a subsequent resource node can start
processing a packet only after the task implemented on r finishes processing it.

Finally, given the service curves for the unloaded resource βu and βl, and
the arrival curves ᾱu

i , ᾱl
i, i = 1, . . . , n, we show how the service curves βu

i and
βl

i for i = 1, . . . , n can be determined. As described before,

αu
i = wiᾱ

u
i , αl

i = wiᾱ
l
i, i = 1, . . . , n

αu
i
′ = �αu

i
′/wi�, αl

i

′
=
αl

i

′
/wi �, i = 1, . . . , n

βu
1 = βu, βl

1 = βl

βu
i = βu

i−1
′, βl

i = βl
i−1

′
, i = 2, . . . , n

where βu
i−1

′ and βl
i−1

′
for i = 2, . . . , n are determined from βu

i−1, βl
i−1, αu

i−1

and αl
i−1 by applying Equations (4.5) and (4.6) from Section 4.3. Lastly, the

4.4. A model for timing analysis and performance evaluation 115

remaining service curve after processing all the flows is given as follows.

βu′ = βu
n
′, βl′ = βl

n

′

These can be used to compute the maximum utilization of the resource using
the inequality (4.7). The processed flows with their resulting arrival curves αu

i
′

and αl
i
′
now enter other resource nodes for further processing.

4.4.2 Scheduling network construction

Using the results in the last section we now describe the procedure for construct-
ing a scheduling network. This can then be used to determine properties of the
architecture such as the on-chip memory requirement, the end-to-end delay ex-
perienced by packets and the utilization of the different on-chip resources such
as processors and buses.

The inputs necessary for constructing such a network are the task graph
which denotes for each flow the sequence of packet processing tasks that are to
be executed on any packet of the flow and the target architecture on which these
tasks are mapped.

The scheduling network contains one source resource node and one target
resource node for each resource used in the architecture. Similarly, for each
packet flow there is a source packet node and a target packet node. For each
packet processing task of a flow there is a node in the network marked with the
task and the resource on which this task is implemented. For two consecutive
tasks u and v of a flow, if u is implemented on a resource ru and v on a resource
rv then there is an edge (drawn horizontally in the Figure 25) in the scheduling
network from the node (u, ru) to (v, rv). For a given flow, if u and v are two
tasks implemented on the same resource r and u precedes v in the task graph,
then there is an edge (drawn vertically in the Figure 25) from the node (u, r) to
the node (v, r).

The arrival curves of the flows and the service curves of the resources pass
from one node to the next in the scheduling network and get modified in the
process, following Equations (4.3)-(4.6).

For a given flow f , let αu
f be its upper arrival curve before entering the

network processor. Suppose this flow passes through nodes of the scheduling
network which have their input lower service curves equal to β l

1, . . . , β
l
m. Then

the accumulated lower service curve β l used to serve this flow can be computed
as follows.

β̄l
1 = βl

1

β̄l
i+1 = inf

0≤t≤∆

{
β̄l

i(t) + βl
i+1(∆ − t)

}
, i = 2, . . . , m − 1

βl = β̄l
m

Now the maximum end-to-end delay and the total backlog experienced by

116 Chapter 4. An analytical framework for timing analysis

upper curve

 �()u

 �()l

�

r

s

p

lower curve

�

r

s

q

pu

u

u

l
l

l

l

qu

2

qu

1

1

q
l

2

1

pl
2

Fig. 26: Piecewise linear approximations of the upper and lower (arrival and service) curves.

packets from the flow f can be given by:

delay ≤ sup
t≥0

{
inf{τ ≥ 0 : αu

f(t) ≤ βl(t + τ)}
}

(4.8)

backlog ≤ sup
t≥0

{αu
f (t) − βl(t)} (4.9)

Compared independently deriving the delay and backlog at single resources
using inequalities (4.1) and (4.2) from Section 4.3 and adding them, the inequal-
ities (4.8) and (4.9) give tighter bounds.

4.4.3 Approximating the arrival and service curves

The Equations (4.3)-(4.6) are clearly expensive to compute for general arrival
and service curves. Moreover, these equations need to be computed for all the
nodes of a scheduling network. Additionally, if these curves are to be mean-
ingfully derived out of packet traces (as shown later in this chapter), then the
resulting curves can be described by a few parameters such as the maximum
packet size, the short-term burst rate, and the long-term packet arrival rate. In
view of this, we propose a piecewise linear approximation of all arrival and
service curves. Using these approximations, the Equations (4.3-(4.6) can be ef-
ficiently computed, thereby avoiding the computational bottleneck involved in
dealing with general curves.

Each curve in this case is approximated using a combination of three straight
line segments. This allows us to exactly model an arrival curve in the form of
a T-SPEC [125], which is widely used in the area of communication networks.
Figure 26 shows the resulting form of the upper and lower curves (both arrival
and service). Here qu

1 represents the maximum possible load on a resource for
processing one packet. The slope ru of the middle segment of the upper curve
can be interpreted as the burst rate, and the slope su as the (load on a resource
due to the) long term packet arrival rate. In the case of communication re-
sources, qu

1 represents the maximum packet size. The values of pu and pl
1, p

l
2

can be computed from these parameters.

4.4. A model for timing analysis and performance evaluation 117

upper curve

 �()u

 �()l

�

r

s

p

lower curve

�

r

s

q

pu

u

u

l
l

l

l

qu

2

qu

1

1

q
l

2

1

pl
2

Fig. 27: Improved approximation of upper and lower curves.

Any upper (say γu) and lower (say γl) curves can now be written as the
following.

γu(∆) = min{qu
1 + ru∆, qu

2 + su∆}
γl(∆) = max{ql

2 + sl∆, ql
1 + rl∆, 0}

where,
qu
2 ≥ qu

1 ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu
1 = qu

2

ql
2 ≤ ql

1 ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql
1 = ql

2

Using these curves, the Equations (4.3)-(4.6) as well as maximum delay and
backlog can be evaluated efficiently using symbolic techniques.

4.4.4 Improved approximations

In this section we show that it is possible to obtain improved approximations of
the remaining arrival and service curves, by approximating these curves using
three line segments instead of two as in Section 4.4.3. The resulting calculations
however become more involved in this case. Figure 27 shows the resulting
arrival and service curves. This allows us to exactly model an arrival curve in
the form of a T-SPEC [125]. In the case of an arrival curve, qu

1 may represent
the maximum possible workload involved in processing a single packet, ru can
be interpreted as the burst rate and su the long term arrival rate. In the case of
communication resources, qu

1 represents the maximum size of a packet.
The upper and the lower curves in this case can be written as:

γu(∆) = min{qu
1 + ru∆, qu

2 + su∆}
γl(∆) = max{ql

2 + sl∆, ql
1 + rl∆, 0}

where,
qu
2 ≥ qu

1 ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu
1 = qu

2

ql
2 ≤ ql

1 ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql
1 = ql

2

The values of pu and pl
1, p

l
2 (see Fig. 27) can be calculated as:

pu =

{ qu
2−qu

1

ru−su if ru > su

0 if ru = su

118 Chapter 4. An analytical framework for timing analysis

pl
1 =

{
− qu

1

rl if rl > 0
0 if rl = 0

, pl
2 =

{
ql
2−ql

1

rl−sl if rl < sl

pl
1 if rl = sl

We denote the curves γu and γl in this case by U(q1, q2, r, s) and
L(q1, q2, r, s) respectively.

Thm. 14:Given the upper arrival and lower service curves αu = U(q1α, q2α, rα, sα) and
βl = L(q1β , q2β , rβ, sβ) respectively, the approximate remaining service curve
βl′ = L(q1, q2, r, s) can be given by the following four cases.

1: There exists a ∆′ > 0, such that q2β + sβ∆′ = q2α + sα∆′, and for all ∆ < ∆′,
αu(∆) > βl(∆). In this case, r = 0, s = sβ − sα and q1 = 0, q2 = q2β − q2α

2: There exists a ∆′ > 0, such that q1β + rβ∆′ = q2α + sα∆′, and for all ∆ < ∆′,
αu(∆) > βl(∆). In this case, r = rβ −sα, s = sβ −sα and q1 = q1β −q2α, q2 =
q2β − q2α

3: There exists a ∆′ > 0, such that q1β + rβ∆′ = q1α + rα∆′, and for all ∆ < ∆′,
αu(∆) > βl(∆). In this case, r = rβ −rα, s = sβ −sα and q1 = q1β −q1α, q2 =
q2β − q2α

4: There exists a ∆′ > 0, such that q2β + sβ∆′ = q1α + rα∆′, and for all ∆ < ∆′,
αu(∆) > βl(∆). In this case, r = sβ −rα, s = sβ −sα and q1 = q2β −q1α, q2 =
q2β − q2α

If αu(∆) ≥ βl(∆) for all ∆ ≥ 0 then r = s = 0 and q1 = q2 = 0

Proof: To prove that β l′ = L(q1, q2, r, s) is a valid lower remaining service
curve, we shall as before show that L(q1, q2, r, s)(∆) ≤ sup0≤u≤∆{βl(u) −
αu(u)} for all ∆ ≥ 0.

Firstly, it may be noted that β l(∆) and αu(∆) are convex and concave re-
spectively. Therefore, β l(∆)−αu(∆) and sup0≤u≤∆{βl(u)−αu(u)} are convex.
However, in contrast to our approximations with two segments in Section 4.4.3,
here we have to consider four different cases.

Case 1 is when the last segment of β l(∆) intersects the last segment of
αu(∆), at say ∆ = ∆′ (see Figure 28(a)). Therefore, for all ∆ < ∆′,
βl(∆) < αu(∆). Hence, sup0≤u≤∆{βl(u) − αu(u)} ≤ 0 for all ∆ ≤ ∆′,
and therefore r = 0 and q1 = 0. When ∆ → ∞, sup0≤u≤∆{βl(u) − αu(u)}
= sup0≤u≤∆{q2β + sβu − q2α − sαu}. Therefore, we have s = sβ − sα and
q2 = q2β − q2α.

Case 2 is when the middle segment of β l(∆) intersects the last segment of
αu(∆). If this intersection is at ∆ = ∆′, then for all ∆ < ∆′, βl(∆) < αu(∆)
and sup0≤u≤∆{βl(u) − αu(u)} ≤ 0 for all ∆ ≤ ∆′. This case is shown in
Figure 28(b). Clearly, r = rβ−sα, s = sβ−sα, q1 = q1β−q2α and q2 = q2β−q2α.

Case 3 is when the middle segment of β l(∆) intersects the middle segment
of αu(∆) (see Figure 28(c)). In this case, sup0≤u≤∆{βl(u) − αu(u)} is made
up of four linear segments. But we approximate it using L(q1, q2, r, s)(∆),

4.4. A model for timing analysis and performance evaluation 119

p1β p2β

αu

∆

sα

sβ

rβ

q2α

q1α

q1β

rα

pα

βl

βl′

p1β

q2α

q1α

q1β

pα p2β

sα

rβ

sβ

βl

αu

βl′

q2α

q1α

q1β

rα

rβ

p1β pα p2β

sβ

βl

αu

pαp1β

βl′
αu

q2α

q1α

q1β
∆

rα

rβ

sβ

p2β

βl

sα

∆

∆
(a)

(c) (d)

(b)

rα

sα

βl′

Fig. 28: Approximate remaining lower service curves. Figures (a), (b), (c) and (d) represent the
cases 1, 2, 3 and 4 respectively in Theorem 14

which is made up of three segments. There can be two possible subcases, the
first is when p2β ≥ pα (as shown in Figure 28(c)), and the second is when
p2β < pα. If βl(∆) and αu(∆) intersect at ∆′, then the four segments that make
up sup0≤u≤∆{βl(u)−αu(u)} span the intervals ∆ ∈ [0, ∆′), [∆′, pα), [pα, p2β),
[p2β,∞) (as shown in Figure 28(c)) or ∆ ∈ [0, ∆′), [∆′, p2β), [p2β , pα), [pα,∞)
(in the case when p2β < pα). To obtain L(q1, q2, r, s)(∆), we neglect the seg-
ment of sup0≤u≤∆{βl(u) − αu(u)} corresponding to the interval [pα, p2β) in
Figure 28(c) and the interval [p2β , pα) when p2β < pα, and instead approx-
imate this segment by the segments preceding and following it. It may be
noted that L(q1, q2, r, s)(∆) is a valid lower curve, since L(q1, q2, r, s)(∆) ≤
sup0≤u≤∆{βl(u)− αu(u)} for all ∆ ≥ 0. Therefore, r = rβ − rα, s = sβ − sα,
q1 = q1β − q1α, q2 = q2β − q2α.

Case 4 is when the last segment of β l(∆) intersects the middle segment of
αu(∆) (see Figure 28(d)). It can be seen that r = sβ − rα, q1 = q2β − q1α, and
as before, s = sβ − sα and q2 = q2β − q2α.

Lastly, if β l(∆) ≤ αu(∆) for all ∆ ≥ 0, then sup0≤u≤∆{βl(u)−αu(u)} ≤ 0
for all ∆ ≥ 0. Hence, r = s = 0 and q1 = q2 = 0. ��

The approximations for all the remaining curves can be derived on the basis
of similar techniques, and hence we omit them here.

120 Chapter 4. An analytical framework for timing analysis

p

p

p+jp−j

2j

∆

α

α

p

p

l

u
events

Fig. 29: The upper and lower arrival curves of the class of event streams with period p and jitter
j.

4.5 Generalizing standard event models
Recall from Section 4.3 that αl(∆) and αu(∆) can be interpreted as the mini-
mum and maximum number of events arriving within any time interval of length
∆, respectively. Standard event models can be represented in our model by an
appropriate choice of αl and αu. For example, a periodic event stream with pe-
riod p can be represented by an αl and αu, both of which are staircase functions
of step width p and height 1, with αl(∆) = 0 for all 0 ≤ ∆ < p and αu(∆) = 1
for all 0 < ∆ ≤ p. This is because within any time interval of length less than
p, the minimum number of events that can be seen is zero, and within any time
interval of length p+, the minimum number of events that can be seen is equal
to one. Similarly, the maximum number of events that can be seen within any
time interval of length p and p+ is one and two respectively.

Following the same reasoning, the class of event streams with period p and
jitter j can be represented by an upper and a lower arrival curve of the form
shown in Figure 29. Given any particular instance of such a periodic with jitter
event stream, the corresponding upper and lower arrival curves would lie within
the arrival curves shown in Figure 29, and therefore these curves represent the
upper and lower bounds on the maximum and minimum number of events that
can arrive within any time interval for any event stream with period p and jitter
j. Alternatively, given the upper and the lower arrival curves of the class of
event streams periodic with jitter, then it is possible to uniquely determine the
period and the jitter values. Note that in Figure 29, if j = 0 then the upper and
the lower arrival curves coincide and represent a purely periodic event stream
with period p. Formally, these results can be stated as follows:

The upper and the lower arrival curves representing the entire class of event
streams with period p and jitter j are unique.

Similar representations in terms of the upper and the lower arrival curves
can be given for standard (abstract) event models like sporadic and periodic
with bursts, or for other event streams with a known analytical behavior. At the
same time, given any finite length arbitrary event trace (from measurements or

4.5. Generalizing standard event models 121

from simulation) and a real number ∆, it is possible to determine the values
of αl(∆) and αu(∆) corresponding to the event trace, by sliding a window of
length ∆ over the trace and recording the minimum and maximum number of
events lying within the window respectively. The upper and the lower arrival
curves corresponding to the trace can be determined by following this procedure
for different values of ∆.

Now, in contrast to Equations (4.3) - (4.6) of Section 4.3 which were con-
cerned with event streams that have a fixed starting time (say t = 0), the follow-
ing equations hold for event streams which span over t = −∞ to t = +∞ and
therefore accurately capture event models like periodic, sporadic, etc., which do
not have any specific starting time. The results given in this section are based
on these equations

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ≥0

{αl(µ + λ) − βu(λ)}

+βl(∆ − µ)}, βl(∆)} (4.10)

αu′(∆) = min{sup
λ≥0

{ inf
0≤µ<λ+∆

{αu(µ) +

+βu(λ + ∆ − µ)} − βl(λ)}, βu(∆)} (4.11)

βl′(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)} (4.12)

βu′(∆) = max{ inf
λ≥∆

{βu(λ) − αl(λ)}, 0} (4.13)

We now give two examples to show that in the case of heterogeneous sys-
tem architectures, results from classical scheduling theory, that can be used to
analyse standard event models (like periodic, sporadic, etc.), can also be derived
within our framework. The work in [122] considered a number of examples of
heterogeneous platform architectures involving standard event models and dif-
ferent scheduling strategies and answered various questions related to timing
analysis using a compositional approach. By the use of some examples, it will
be shown that similar and more general questions can be answered using the
new unifying approach described in this chapter.

Ex. 1: Consider a periodic event stream entering a resource which requires a maximum
of emax and a minimum of emin time units to process an event. The outgoing
(processed) event stream is still periodic, but has a jitter equal to emax − emin.

Let t0 be some sufficiently small time instance where all events that arrived
before t0 have been processed. Let R[t0, t) and R′[t0, t) denote the number of
arrived and processed events in the interval [t0, t) for t0 < t, respectively. Then
we can derive R[t0, t − emax) ≤ R′[t0, t) ≤ R[t0, t − emin) if t0 < t − emax

. Using these inequalities, we find for s < t the relation R′[s, t) ≤ R[t0, t −
emin)−R[t0, s−emax) = R[s−emax, t−emin) ≤ αu((t−s)+(emax −emin)).
In a similar way, we have R′[s, t) ≥ R[t0, t− emax)−R[t0, s− emin) = R[s −
emin, t − emax) ≤ αl((t − s) − (emax − emin)) for t − s > emax − emin.

122 Chapter 4. An analytical framework for timing analysis

Rate Monotonic

e1

e2

Proportional

Share

e3

e4

CPU1
CPU2

Rate Monotonic

e1

e2

Rate Monotonic

e1

e2

Proportional

Share

e3

e4

Proportional

Share

e3

e4

CPU1
CPU2

Periodic events

P1=7

P2=11

?

?

Fig. 30: The system described in Example 2.

As a first result, we find the feasible lower and upper curves of the processed
events as αu′(∆) = αu(∆ + (emax − emin)) for ∆ > 0 and αl′(∆) = αl(∆ −
(emax − emin)) for ∆ > emax − emin and αl′(∆) = 0 otherwise.

Hence, the number of events that can be seen at the output within any time
interval of length ∆ is greater than or equal to the number of events that can
be seen at the input over any time interval of length ∆ − (emax − emin), and is
less than or equal to the number of events that can be seen at the input within
any time interval of length ∆ + (emax − emin). This implies that the jitter of the
output event stream increases by (emax − emin) over the jitter of the input event
stream. If the input stream is purely periodic with a period p, then the output
stream is periodic with period p and jitter equal to (emax − emin).

Ex. 2: A system consists of two processors CPU1 and CPU2, on each of which two
processes are implemented, as shown in Figure 30. Two purely periodic event
streams 1 and 2, with periods p1 = 7 and p2 = 11 respectively are processed
by the two processes implemented on CPU1. The per event processing time for
both the event streams is equal to 2. CPU1 schedules the two processes pro-
cessing streams 1 and 2 according to rate monotonic scheduling, and therefore
stream 1 has higher priority over stream 2. The two outgoing, processed event
streams are then processed by the two processes implemented on CPU2, where
the per event processing time is again equal to 2. CPU2 implements propor-
tional share scheduling and gives equal processor share to both the processes.
Both CPU1 and CPU2 implement preemptive scheduling. What are the char-
acteristics of the two processed event streams coming out of CPU2?

We use the arrival curves of the input event streams entering CPU1 and from
them compute the arrival curves of the final processed event streams coming out
of CPU2. These are then used to deduce the timing behaviour of the processed
event streams. Figure 31 shows the scheduling network corresponding to the
system. The entire processing capability of CPU1 is available to stream 1 since
this has the higher priority. This is represented by βu = βl, both being straight
lines of slope 1 passing through the origin. Figure 32 shows the arrival curves

4.5. Generalizing standard event models 123

Rate Monotonic
Proportional

Share

e1

e2

CPU1 CPU2

e3

e4

ul

11 ,��

ul

22 ,��

'

1

'

1 , ul ��

'

2

'

2 , ul ��

ul

11 ,

ul

22 ,

'

3

'

3 , ul ��

'

4

'

4 , ul ��

Fig. 31: The scheduling network for the system described in Example 2.

� �� �u l’ , ’

�
10 20 30 40

2

10

4

6

8

12

� �� �u l,

�
10 20 30 40

12

2

4

6

8

10

Fig. 32: The upper and lower arrival curves of the incoming event stream 1 and the arrival curves
of the processed stream coming out of CPU1 (dotted line show the upper curve and the
solid line shows the lower curve).

124 Chapter 4. An analytical framework for timing analysis

� �2u 2l’ , ’

10 20 30 40

2

4

6

8

�
10 20 30 40

5

10

15

20

25

30

1u 1l’ , ’

�

Fig. 33: The service curves used to process stream 2 in CPU1 and the arrival curves of the
processed stream coming out of CPU1.

of the stream 1 and those of the processed stream. Note that the processed
stream is still periodic with period 7. In Figure 32, the arrival curves of the
input event stream represent the discrete stream, but since the Equations (4.10–
4.13) hold for continuous streams, to interpret the right hand figure in Figure 32
as a discrete stream, a floor function should be applied to the lower curve and a
ceiling function to the upper curve.

The remaining processing capability of CPU1 that is available to stream 2
can be obtained by using Equations (4.12) and (4.13). These resulting service
curves and the arrival curves of the processed stream are shown in Figure 33.
The arrival curve of stream 2 is shown on the left hand side of Figure 35. As
can be seen from this figure, the processed stream is still periodic with period
11, but now has a jitter smaller than or equal to 2.

In the case of CPU2, βu
2 and βl

2 represent the total unloaded proces-
sor capacity (see Figure 31) and are given by straight lines of slope 1 pass-
ing through the origin. Because of the proportional share scheduling, both
the incoming streams into CPU2 are guaranteed at least 50% of the avail-
able resource. But if one stream does not fully use its allocated resources,
then the resulting leftover is available to the other stream. Therefore, the up-
per and lower service curves for stream 3 (i.e. the processed stream 1) are
equal to βu(∆) = 0.5 · βu

2 (∆) + max{infλ≥∆{0.5 · βu
2 (λ) − αl

4(λ)}, 0} and
βl(∆) = 0.5 · βl

2(∆) + sup0≤λ≤∆{0.5 · βl
2(λ) − αu

4(λ)} respectively. Here, αl
4

and αu
4 (which are equal to αl

2
′

and αl
2
′
, respectively) are the arrival curves of

stream 4. The service curves available to stream 4 can similarly be computed
from βu

2 , βl
2, αl

3 (= αl
1
′
) and αu

3 (= αu
1
′).

Based on these service curves, the arrival curves of the processed streams 3
and 4 (by CPU2) are given in (the right hand of) Figures 34 and 35. From these
curves, it can be deduced that the processed stream 1 (after passing through
CPU1 and CPU2) has period 7 and a jitter smaller than or equal to 2 and the
processed stream 2 (after passing CPU1 and CPU2) has the period 11 and jitter
smaller than or equal to 4. These values exactly conform to those that can be

4.6. The simulation setup 125

�3u’ , �3l’

10 20 30 40

2

4

6

8

10

12

�
10 20 30 40

�
5

10

15

20

25

30

,
u l

Fig. 34: The service curves used to process stream 1 coming out of CPU1 (indicated as stream
3) and the arrival curves of the processed stream (by CPU2).

10 20 30 40

� �2u 2l,

2

4

6

8

�

� �4u 4l’ , ’

�
10 20 30 40

2

4

6

8

Fig. 35: The arrival curves of the incoming event stream 2, and those of the finally processed
stream coming out of CPU2 (i.e. after being processed at CPU1 and CPU2).

obtained using classical scheduling theoretic results.

4.6 The simulation setup
Even in cases where analytical models exist, performance evaluation of pro-
cessor architectures using simulation still continues to be the most widely used
procedure. This is primarily motivated by the accuracy of the results that can
be obtained using simulation, and the second reason being flexibility. In many
cases analytical models can not capture all the aspects of an architecture and are
often restricted to one particular level of abstraction.

In this section we outline the methodology for model composition and per-
formance evaluation of network processor architectures based on simulation,
which forms the basis for comparing the results obtained from the analytical
framework presented in the last two sections. This section is based on the work
presented in [155] and more detailed explanations concerning the models can be

126 Chapter 4. An analytical framework for timing analysis

EMAC OPB
PLB-OPB

Bridge
PLB Memory

Component Monitoring

Processor
Core

S
y

s
te

m
S

y
s

te
m

M
o

n
it

o
ri

n
g

M
o

n
it

o
ri

n
g

W
o

rk
lo

a
d

W
o

rk
lo

a
d

Fig. 36: System evaluation and component evaluation of a network processor architecture.

found there. Here the primary goal is to illustrate the abstraction level at which
the different components of the architecture are modeled. Section 4.7 presents
the results obtained by evaluating a reference network processor architecture
using this simulation method along with the results obtained by the analytical
model on the same architecture.

4.6.1 Modeling environment and software organization

The overall approach is based on using a library of reusable component models
written in SystemC [73, 140]. These include models for buses, different inter-
faces, processor cores, etc. Each of these models can be an abstract match of an
already existing hardware component which can be found from a core library
[80], or can also be a model of a new component which does not exist yet. In an
architecture composition step the selected component models are combined into
a system model which is then evaluated by simulation. The workload used to
drive the simulation can either be synthetically generated, or be obtained from
real traffic traces. During simulation, the model execution performance data can
be collected which can then be evaluated later.

It is not necessary that every component model is implemented on the same
level of abstraction. But all models are implemented in the form of a black-
box having well defined abstract interfaces and allow for component-specific
local refinements. This supports easy exchangeability among different models
of the same component. Every component model is separated into two layers—
a so called abstract functional layer and a data collection layer. The functional
layer describes the functional behavior of a component and defines the compo-
nent interfaces, while the data collection layer exclusively deals with gathering
statistics which are used to evaluate different performance metrics. This separa-
tion enables independent and selective refinements on the functional layer and
also flexible customization of the data collection mechanisms.

The performance evaluation done using the data collected during simulation
can be distinguished into either a component level evaluation or a system evalu-
ation. These are illustrated in Figure 36 (note that this shows the organization of

4.6. The simulation setup 127

Model Library
Architectural

Level

Architecture Composition Environment

Architecture Editor
Model Editor for new models
Functional Validation

Simulation
Debugging

Data Collection

Monitored Data

System Level Evaluation
Rx/Tx rate
Throughput

Component Level Evaluation
Utilization
Memory Fill Level
Queue Length

Evaluation Results

Manual Modeling

SystemC & C++ Environment

Matlab Environment

Performance Evaluation Environment

Workload
Suit

Document
Library

Fig. 37: Overview of the simulation framework that is used for comparing the results obtained
by the analytical method.

the framework, the models of the different architectural components might vary
in their level of abstraction and details). The component evaluation is based on
the data collected through the data collection layer of each component model.
Examples of such evaluation metrics can be memory fill levels, bus rearbitration
counts, and the load on the different components. System specific aspects of an
architecture like the overall system throughput, or end-to-end packet delays are
evaluated using system evaluation mechanisms. In contrast to the component
evaluation approach, the data in this case is not gathered within a specific com-
ponent but is collected using the workload traveling through the entire system.

An overview of the entire simulation framework is given in Figure 37. Based
on specification documents of already existing components, a set of abstract
models are created and combined with component- and system-specific data
collection metrics. Such models constitute, what is referred to in the figure as
the “Model Library”. The architectural models from this library can be com-
posed together and then simulated on a workload.

4.6.2 Component Modeling

In this section we briefly describe how each component of the reference
network processor architecture that is evaluated in Section 4.7 is modeled
in the simulation. This would enable a meaningful comparison between the
results obtained by simulation and those obtained from the analytical model.
The models usually available from core libraries are in the form of hard or soft
cores, whereas SystemC models used in the simulation were created for the
work done in [155]. The discussion below refers to these SystemC models.

128 Chapter 4. An analytical framework for timing analysis

Bus models: The bus models used in the reference architecture are based on
the CoreConnect bus architecture [81], designed to facilitate core based de-
signs. CoreConnect involves three buses: The Processor Local Bus (PLB) is
for interconnecting high performance cores with high bandwidth and low la-
tency demands, such as CPU cores, memory controllers and PCI bridges. The
On-Chip Peripheral Bus (OPB) hosts lower data rate peripherals such as serial
and parallel ports and UARTs. The PLB is fully synchronous, has decoupled
address, read and write data lines and transfers on each data line are pipelined.
Different masters may be active on the PLB address, read and write data lines
and access to the PLB is granted through a central arbitration mechanism that
allow masters to compete for bus ownership.

The models used for the PLB and the OPB are both cycle accurate. Both
these models do not transfer any data nor consider any address, but model the
signal interchanging according to the bus protocol.

There is a third bus in CoreConnect, which we do not use in our study. This
is called the Device Control Register (DCR) bus, and is used for reading and
writing low performance status and configuration registers.

The features of the PLB that are modeled for our study include the arbitra-
tion mechanism, the decoupled address and read and write lines, a fixed length
burst protocol, and a slave enforced arbitration mechanism. The OPB is much
less sophisticated compared to the PLB and most of its features are modeled.
For both the buses, the arbitration algorithm uses a round robin strategy among
the requesting masters on a given priority level, and typically there are four
priority levels.

Ethernet core (EMAC) model: The Ethernet core or EMAC is a generic im-
plementation of the Ethernet media access control (MAC) protocol, supporting
both half-duplex (CSMA/CD) and full duplex operations for Ethernet, Fast Eth-
ernet and Gigabit-Ethernet. The EMAC has two large FIFOs to buffer packets,
and two OPB interfaces—one for providing access to its configurations and sta-
tus registers, and the other is a bidirectional interface to transfer data to and
from the PLB-OPB bridge.

The model of the EMAC only contains receiving and transmitting channels,
where a receive channel can be considered as an input port and a transmit chan-
nel as an output port.

The set of receiving channels constitutes the traffic input to the network
processor. Each one reads packet information from a real traffic trace at a
parameterizable rate. Within a receive channel there are two threads of activity.
The first one reads the input packet traces, and writes each resulting packet into
a FIFO. The second thread implements the communication protocol with the
PLB-OPB bridge and transfers packet to memory as long as the FIFO is not
empty. The transmit path consists only of a transmit packet thread, which is
active as long as packets are waiting to be transferred for the appropriate port.

4.7. A comparative study 129

PLB-OPB bridge model: The PLB-OPB Bridge is a specialized module which
combines pure bridge functionality with DMA capability, and it can effectively
handle packet transfer overheads. An EMAC communicates with a PLB through
the PLB-OPB bridge. Since as an OPB slave, the EMAC can not inform the
bridge of its willingness to transfer a packet, the EMAC to PLB-OPB bridge
interface has sideband signals to meet this purpose. These do not form a part
of the OPB bus, and nearly all signals are driven by the EMAC and sampled by
the bridge.

The PLB-OPB bridge is modeled as two independent paths, receive and
transmit, and both offer the bridge functionality and arbitrate among active
channels. Each path implements the PLB-OPB bridge to EMAC communica-
tion protocol by driving the required sideband signals and accessing buses. Bus
accesses are concurrent and therefore both paths can contend for their access,
especially on the OPB.

Memory model: The memory is accessed via the PLB and can either be
on-chip or off-chip. It is modeled in a high level way, where only parameters
like average or worst case transfer latency are considered.

Software application and timing: A simple high-level model of software ap-
plication is used. It primarily consists of the following. For each packet the
software can cause a pure delay without generating any PLB load, representing
processing time in the CPU. Second, there can be a PLB load generated by the
software (for example, this might consist of reading and writing packets by the
CPU to and from the memory). Lastly, the timing model is based on using the
PLB clock as the system time.

4.7 A comparative study

This section presents the main result of this chapter—a comparison of the per-
formance evaluation data obtained by the analytical framework presented in
Sections 4.3 and 4.4 on a reference network processor architecture, with the
results obtained by detailed simulations based on the models discussed in Sec-
tion 4.6. This comparative study is based on the assumption that there is a high
confidence in the simulation results. We do not compare the results obtained by
either the analytical method or the simulations with any real hardware imple-
mentation because of two reasons: (i) During a design phase an actual hardware
does not exist, and the best one can do is to validate the results obtained from
an analytical model against those obtained using simulation, and vice versa,
(ii) Simulations are widely used in practice, and assuming that the processor
model being simulated is accurate and detailed enough, the results are expected
to match the real hardware with high confidence.

130 Chapter 4. An analytical framework for timing analysis

Our choice of the reference architecture which is the basis of the compari-
son is a hypothetical system-level model of a network processor which can be
matched by many existing network processors (such as the family of proces-
sors described in [119]). The architectural components modeled in this study
are from an existing core library [80]. Since the particular system-level model
we study here is sufficiently general, we believe that the conclusions based on
the results obtained from this study would hold for many other models. This
enables us in making the general claim that it is possible (and more appropriate
in terms of the benefits in running time) to use analytical modeling frameworks
during the early stages of architecture design space exploration in the context of
network processors, in order to tackle the design complexity.

We evaluate the reference architecture using three different performance
metrics: (i) The line speed or the end-to-end throughput that can be supported by
the architecture. This is measured using the utilization of the different compo-
nents of the architecture and hence also identifies the component which acts as
the bottleneck. During a design space exploration, identifying the utilization of
the different components goes beyond measuring the overall throughput of the
system because a designer in generally interested in identifying whether all the
components in the architecture have a moderately high utilization at the maxi-
mum supported line speed, or whether it is one single component that acts as a
bottleneck. (ii) The maximum end-to-end delay that is experienced by packets
from the different flows being processed by the architecture. (iii) The total on-
chip buffer/memory requirements, or in other words, the on-chip memory fill
level. The results of the analytical framework should be judged on the basis of
how closely the data related to these performance metrics for the reference ar-
chitecture match those obtained using simulation. Rather than absolute values,
it is more interesting to analyse the behaviour of the architecture (for example
with increasing line speeds, or increasing packet sizes for the same line speed),
and see if the same conclusions can be drawn from both the evaluation tech-
niques. The second axis for our comparisons is the time it takes to compute the
evaluation data by the analytical framework, compared to the simulation time
required to generate this data.

4.7.1 Reference architecture and parameters

The system-level model of a network processor that is used for this study is
shown in Figure 24. The different actions that are executed while each packet
travels through this architecture, and the order in which they are executed is
given in Table 3. The model effectively deals with the communication subsys-
tem of the architecture, and the software application running on the CPU core
(indicated by PPC - PowerPC) is modeled as simply performing two reads from
the SDRAM and one write to the SDRAM for every processed packet. The
amount of data read or written (and hence the traffic generated on the PLB),
however, depends on the packet size and this is appropriately modeled.

As seen in Figure 24, the architecture is composed of two Ethernet media

4.7. A comparative study 131

access controllers (EMACs), a slow on-chip peripheral bus (the OPB), a fast
processor local bus (the PLB) consisting of separate read and write lines, a
PLB-OPB bridge, a SDRAM and a processor core (PPC). Each EMAC consists
of one receive and one transmit channel, and is capable of reading packets at
parameterizable input rates.

In the simulation, the entire path of a packet through the modeled architec-
ture can be described as follows. First a receive channel of an EMAC reads a
packet from a file containing the packet traces (only packet lengths are used, and
all packets arrive back-to-back with a fixed interframe gap; this is described in
further details later), and allocates a packet record which contains the packet
length and the source EMAC identification. This packet record models the
packet inside the processor architecture and generates a load equivalent to the
size of the packet. The channel then requests service to the PLB-OPB bridge via
a sideband signal, which is served following a bridge internal arbitration pro-
cedure. The PLB-OPB bridge fetches a buffer descriptor for the packet (which
is a data structure containing a memory address in the SDRAM, where the re-
ceived packet is to be stored). This fetching operation involves the SDRAM
and generates traffic on the PLB read bus, equal to the size of the buffer de-
scriptor. Following this, the received packet is stored in the SDRAM at the
location specified by the buffer descriptor. This involves the packet travers-
ing through the OPB to the PLB-OPB bridge, and then through the PLB write
bus to the SDRAM. This generates a load equal to the size of the packet, on
both the buses. Since data on the PLB is sent in bursts, the PLB-OPB bridge
schedules a PLB transfer only when sufficient data is gathered. As the EMAC
channel is served over and over again, the packet is written part by part into the
SDRAM. After the packet transfer is complete, the bridge informs the EMAC
receive channel via a sideband signal, and also notifies the application software
running on the processor core (again by a sideband signal) that the packet is
now available in the memory. It is then processed by the software as soon as
the processor becomes available. This processing involves a buffer descriptor
transfer from the SDRAM to the processor core via the PLB read bus, followed
by a packet header transfer, again from the SDRAM to the processor core via
the PLB read bus. The packet header is then processed in the processor core
(for example implementing some lookup operation) and written back into the
SDRAM over the PLB write bus.

After the completion of this processing, the software notifies the bridge (via
a sideband signal) that the packet is now processed and is ready to be sent out
through the chosen transmit channel of the EMAC. As in the receive path of the
packet, the bridge gets the buffer descriptor of the packet from the SDRAM via
the PLB read bus, and then the packet traverses over the PLB read bus and the
OPB to an EMAC transmit channel. After the completion of the packet transfer
the EMAC notifies the bridge via a sideband signal, which then reads certain
status information and releases the buffer descriptors.

This entire process happens concurrently for two packet flows entering
through the two EMACs of the architecture. All the components involved also

132 Chapter 4. An analytical framework for timing analysis

work concurrently and the two buses (the PLB and the OPB) use first-come-
first-serve as a bus arbitration policy. The main complexity in the analysis of
this system is due to concurrent operation of the different components. Hence
it is non-trivial to evaluate how the system behaves with increasing line speeds,
variations in packet sizes, and what is the maximum line speed that it can
support without packet dropping.

Parameters: As already mentioned, the EMAC can read packets at different
input line speeds. The line speeds used for the evaluation range from 100 Mbps
to 400 Mbps, the former representing a nominal load situation and the later a
loaded situation.

The OPB modeled has a width of 32 bits and a frequency of 66.5 MHz. The
read and the write data paths of the PLB are of 128 bits and operate at 133 MHz.
The size of a PLB burst is limited to a maximum of 64 Bytes. Therefore, the
PLB-OPB bridge gathers up to 64 Bytes (which is only one OPB burst transfer)
before scheduling the PLB transfer. There are two different kinds of buffer
descriptors, small and large ones. The small buffer descriptors refer to memory
locations/buffers with 64 Bytes of size, while the large ones refer to buffers with
a size of 1472 Bytes. As a consequence, 64 Byte packets require only one small
buffer descriptor and packets larger than 64 Bytes require an additional large
buffer descriptor. Both small and large buffer descriptors are of size 64 Bytes
each. Therefore, the traffic generated by a packet on any of the buses depends
not only on its own size, but also on the buffer descriptors associated with it.
All packets and the buffer descriptors reside in the SDRAM described above.

4.7.2 Evaluation method and comparisons

The reference architecture described above is evaluated using simulation and
the analytical framework using two different workload types—synthetic traces
with same-sized packets, and real traces from NLANR [102]. For the synthetic
traces, packet sizes of 64, 128, 512, 1024, 1280 and 1500 are used. The real
traces are used only to exploit the impact of real world packet size distributions
on the system performance. They are time compressed and adjusted and only
the packet sizes are retained. Therefore, in both the cases packets arrive back-
to-back (to exert the maximum stress on the architecture) with an interframe
gap equal to 20 Bytes.

The overall scheme for comparing the results obtained using the analytical
framework with those obtained from simulation is shown in Figure 38. The
different components of the architecture are modeled in either SystemC in the
simulation based evaluation, or analytically using the model presented in Sec-
tion 4.3. To compute the required parameters of an analytical component model
(such as the transfer time of a single packet over an unloaded bus), either simu-
lation results are used or data sheets of the component are used. The component
models are then composed together (using the methods described in Section 4.4
in the case of the analytical framework, and using standard SystemC compo-

4.7. A comparative study 133

Hardware Components

(bus, bridge, memory, processor)

Hardware Components

(bus, bridge, memory, processor)

SystemC

Component Models

SystemC

Component Models
Analytical

Component Models

Analytical

Component Models

Parameters

Simple

workloads

SystemC

System Model

SystemC

System Model
Analytical

System Model

Analytical

System Model

Arrival CurvesArrival CurvesTracesTraces

ComparisonComparison

Complex

workloads

Performance Evaluation

Fig. 38: The overall scheme for comparing the results from the analytical framework with those
obtained by simulation.

sition techniques in the case of simulation) to obtain a system model of the
architecture.

Recall that the analytical model considered here does not use real packet
traces, but instead uses arrival curves modeling the traces in terms of their max-
imum packet size, burstiness, and long term arrival rate. These parameters were
extracted from the traces as shown in Figure 39 and fed into the model for eval-
uation. For the upper arrival curve, the maximum number of bytes that can
arrive (at the network processor) at any time instant is given by the largest sized
packet, the short-term burst rate is given by the maximum number of largest
sized packets that can be seen occurring back-to-back in the trace, and the long-
term arrival rate is given by the total length (in Bytes) of a trace divided by the
time interval over which all the packets in this trace arrive.

Similarly, for the lower arrival curve, the maximum time interval over which
no traffic can arrive is equal to the inter-frame gap in the trace (equal to 20
Bytes), the bound on the minimum number of packets that can arrive over a time
interval is given by the maximum number of minimum sized packets occurring
back-to-back in the trace, and the long-term arrival rate is equal to that in the
upper arrival curve.

Given any packet trace, arrival curves such as those shown in Figure 39 can
be derived from the trace and they capture the traffic arrival pattern given by
the trace. Note that here we restrict each arrival to be made up of a combina-
tion of three line segments in order to simplify the computations involving these
curves. However, in general they can be arbitrarily complex to capture the exact
details of a trace (albeit, at the cost of increasing the computational complex-
ity). As mentioned in Section 4.4 the analytical model composes the different
component models, resulting in a scheduling network. For the architecture we
study here (Figure 24), such scheduling network is given in Figure 25.

134 Chapter 4. An analytical framework for timing analysis

Trace:

cycles

packet

Arrival Curve:

cycles

Bytes

max. packet size

only largest packets

average rate

only smallest packets

longest gap

Fig. 39: Obtaining arrival curves from packet traces in the analytical framework.

4.7.3 Evaluation results

Table 4 gives the utilization values of the three buses (the OPB, and the PLB
read and write bus) when the model is fed with synthetic traces consisting of
fixed sized packets. Here, six different packet sizes have been used, from 64
Bytes to 1500 Bytes. For each packet trace and bus combination, the table
compares the results obtained from the analytical method with those resulting
out of simulation for different line speeds. To give an impression of how the
utilization of the different buses increase with the line speed for the same packet
size, in Figure 40 we plot the utilization values for the trace containing 512 Byte
sized packets. As can be seen from Table 4, the results for the other traces are
very similar, and hence we do not plot them.

There are two things to be noted from these values. First, with increasing
line speeds the utilization of the different buses also increase, and as expected,
this increase is proportional to the increase in the line speed. Second, the results
from the analytical method and the simulation match very well for the utiliza-
tion. In Figure 40, for each line speed there are three bars, each corresponding
to the OPB, the PLB read and the PLB write bus. It may be noted from the
figure that the maximum line speed that this architecture can sustain is in the
range of 400 Mbps and the OPB acts as a bottleneck (as most of the traffic is
generated on it).

In Figure 41 we show how the utilization values of the PLB read bus for
fixed line speeds, as the packet size is increased. For a fixed line speed, as the
packet size is increased, the component of the utilization that comes from the
packet traversal increases, since there is less total interframe gap in the whole
trace (assuming that the trace size in bytes remains the same). This is because
the number of packets in the trace decrease. However, because of this the num-
ber of buffer descriptor and packet header traversals also decrease and therefore

4.7. A comparative study 135

Packet Size 64 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 18 18 14 13 6 5
150 Mbps 27 28 20 19 9 8
200 Mbps 36 37 27 25 12 10
250 Mbps 45 46 34 31 15 13
300 Mbps 54 55 41 37 17 15
350 Mbps 63 65 48 40 20 17
400 Mbps 72 76 55 47 23 20

Packet Size 128 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 19 19 15 14 5 5
150 Mbps 29 28 22 21 7 7
200 Mbps 38 38 30 28 10 10
250 Mbps 48 47 37 35 12 12
300 Mbps 57 56 45 42 15 15
350 Mbps 69 66 52 48 17 16
400 Mbps 79 75 59 53 20 18

Packet Size 512 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 7 7 3 3
150 Mbps 30 29 11 11 5 4
200 Mbps 40 39 15 15 7 6
250 Mbps 50 49 19 19 8 7
300 Mbps 60 59 22 22 10 8
350 Mbps 71 69 26 26 12 10
400 Mbps 82 79 30 30 13 11

Packet Size 1024 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 15 15 7 6
300 Mbps 60 59 18 18 9 7
350 Mbps 71 69 21 21 10 8
400 Mbps 83 79 25 24 12 9

Packet Size 1280 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 15 15 7 6
300 Mbps 60 60 18 18 9 7
350 Mbps 71 69 20 21 10 8
400 Mbps 83 79 23 24 12 9

Packet Size 1500 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 14 15 7 6
300 Mbps 61 60 17 18 9 7
350 Mbps 72 70 20 21 10 8
400 Mbps 83 80 23 24 12 9

Tab. 4: The utilization values of the OPB, and the PLB read and write buses, when the model
is fed with six different synthetic traces consisting of fixed sized packets (ranging from
64 to 1500 Bytes). For each trace and for each bus, the first column (marked as AnM -
analytical method) gives the results obtained using the analytical model, and the second
column (marked as Sim) gives the results obtained by simulation.

136 Chapter 4. An analytical framework for timing analysis

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti

li
z
a
ti

o
n

[%
]

Simulation

Analytical Method

O
P

B

P
L

B
re

a
d

P
L
B

w
ri
te

Fig. 40: Utilization values for different line speeds for the trace containing 512 byte packets.
In this bar graph, for each line speed, the first bar indicates the utilization of the OPB,
the second bar shows the utilization of the PLB read bus and the third bar corresponds
to the PLB write bus. For each bus, the white bar gives the result computed by the
analytical method, and the black bar gives the result obtained from simulation.

the component of the bus utilization that comes from these also decrease. These
effects can be seen in Figure 41. As the packet size is doubled from 64 to 128
Bytes, the first component mentioned above plays a dominating role and hence
the utilization slightly increases. Thereafter, the effect of the second component
dominates and the utilization falls, and then remains almost constant since there
is no significant change in the number of packets as the packet size is increased
from 1024 to 1280 Bytes and then from 1280 to 1500 Bytes. The same results
for the OPB is shown in Figure 42. However, in this case the utilization in-
creases with increasing packet size because these are no packet header or buffer
descriptor transfers over this bus.

It is to be noted that the match between the analytical results and the simula-
tion is always close enough to deduce the above conclusions from the analytical
results itself (with significant savings in evaluation time).

For the fixed size packet traces, we do not consider the end-to-end packet
latencies and the memory fill levels, since for all low load situations they remain
constant and do not depend on the input line speed.

Next we consider the results generated by real traces obtained from NLANR
[102]. Use three different traces—FL (traces from a number of Florida univer-
sities), SDC (traces collected from the San Diego Supercomputer Center) and
TAU (traces from the Tel Aviv University). Each trace is made up of traffic
patterns for two different lines and these are fed into the two EMACs in our

4.7. A comparative study 137

0

5

10

15

20

25

30

35

40

64 128 512 1024 1280 1500

Packet Size [Bytes]

U
ti

li
z
a

ti
o

n
[%

] 250 Mbps

200 Mbps

150 Mbps

100 Mbps

Simulation

MethodAnalytical

Fig. 41: The variation of the PLB read bus utilization with increasing packet size for four differ-
ent line speeds.

0

10

20

30

40

50

60

64 128 512 1024 1280 1500

Packet Size [Bytes]

U
ti

li
z
a

ti
o

n
[%

]

100 Mbps

Simulation

Analytical Method 250 Mbps

200 Mbps

150 Mbps

Fig. 42: The variation of the OPB utilization with increasing packet size for four different line
speeds.

138 Chapter 4. An analytical framework for timing analysis

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti

li
z
a
ti

o
n

[%
]

Simulation

Analytical Method

OPB

PLB read

PLB write

Fig. 43: The utilization of the OPB and the PLB read and write buses under different line speeds
for the FL packet trace.

architecture). The main motivation behind using these traces is to see the effect
of real-life packet size distributions on the architecture. The line speeds used
for all the traces vary from 100 Mbps to 400 Mbps as before.

Figures 43, 44 and 45 show the variation in the utilization of the three dif-
ferent buses for the different line speeds. It may be noted that, as before, there is
a close match between the results from the simulation and the analytical frame-
work. Secondly, the architecture behaves almost identically for the different
traces.

Recall that the bus arbitration mechanism used in our reference architecture
is always first-come-first-serve (FCFS). Unfortunately, for FCFS there does not
yet exist tight bounds for delay and backlog in the analytical framework that
we consider here (there does exist tight bounds for static priority, round-robin,
time division multiplexing, etc.). To get around this problem, we use fixed pri-
ority based arbitration mechanisms in the analytical model and compare them
with FCFS used in the simulation. Towards this, one of the packet flows (recall
that each trace is made up of two flows) in a trace is assigned a higher priority
over the other in all the buses. For computing the end-to-end packet latency,
the maximum delay experienced by the lower priority flow now gives an upper
bound on the maximum delay experienced by any packet when FCFS is used.
Similarly, we use the maximum delay experienced by the higher priority flow as
a lower bound on the maximum delay experienced by any packet in the case of
FCFS. These results are shown in Figures 46, 47 and 48 for the three different
traces. Note that in all the three cases, the delay values obtained through sim-
ulation lie in between the delay values (obtained from the analytical method)

4.7. A comparative study 139

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti

li
z
a
ti

o
n

[%
]

Simulation

Analytical Method

OPB

PLB write

PLB read

Fig. 44: The utilization of the OPB and the PLB read and write buses under different line speeds
for the SDC packet trace.

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti

li
z
a
ti

o
n

[%
]

Simulation

MethodAnalytical

OPB

PLB write

PLB read

Fig. 45: The utilization of the OPB and the PLB read and write buses under different line speeds
for the TAU packet trace.

140 Chapter 4. An analytical framework for timing analysis

0

5000

10000

15000

20000

25000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

Analytical Method

Upper Bound

Analytical Method

Lower Bound
Simulation

Fig. 46: The maximum end-to-end delays experienced by packets of the FL trace under different
line speeds. For the two flows that make up this trace, the analytical results show the
delay experienced by the higher and the lower priority flows when using priority based
arbitration at the buses. The simulation results are based on FCFS implemented at all
the buses.

for the high and the low priority flows. These results indicate that the archi-
tecture is sufficiently provisioned for one flow, even for high line speeds, since
the maximum delays experienced by packets from the high priority remain con-
stant with increasing line speeds for all the three buses. For the low priority
flow, as expected, the delay values increase with increasing line speeds. When
FCFS arbitration policy is used, the delays suffered are more than those suffered
by packets from the high priority flow, but less than those suffered by the low
priority flow.

In Figure 49, for each trace we first assign a high and a low priority to the
two flows and measure the maximum delay experienced under this priority as-
signment using the analytical method. Then we reverse this priority assignment
and again measure the maximum delay, and finally average the two maximum
delays for each flow. Figure 49 shows this averaged maximum delay (we choose
the flow for which this averaged maximum delay has a higher value) for the an-
alytical method and the simulation results, as before, are based on FCFS at all
the buses.

Lastly, Figure 50 shows the on-chip memory requirements (measured in
terms of the backlog) obtained by the analytical method and by simulation. In
the analytical case, as before, we use priority based arbitration at the different
buses and the simulation results are based on FCFS.

It may be noted that although the analytical and the simulation results for the

4.7. A comparative study 141

0

5000

10000

15000

20000

25000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

Analytical Method

Upper Bound

Analytical Method

Lower Bound
Simulation

Fig. 47: The maximum end-to-end packet delays experienced by packets of the SDC trace under
different line speeds.

0

5000

10000

15000

20000

25000

30000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

Analytical Method

Upper Bound

Analytical Method

Lower Bound
Simulation

Fig. 48: The maximum end-to-end packet delays experienced by packets of the TAU trace under
different line speeds.

142 Chapter 4. An analytical framework for timing analysis

0

2000

4000

6000

8000

10000

12000

14000

16000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

FL

SDC

TAU

Analytical Method

Simulation

Fig. 49: The maximum end-to-end packet delays experienced by packets of all the traces un-
der different line speeds. The plots corresponding to the analytical method shows the
average of the maximum delays experienced by packets from the low and the high pri-
ority flows, when using priority based arbitration at the different buses. The simulation
results are based on using FCFS at all the three buses.

0

2000

4000

6000

8000

10000

12000

100

Mbps

150

Mbps

200

Mbps

250

Mbps

300

Mbps

350

Mbps

400

Mbps

Linespeed

M
e
m

o
ry

[B
y
te

s
]

Analytical Method

Simulation

FL

SDC

TAU

Fig. 50: The buffer memory requirements/memory fill levels for the different traces under dif-
ferent line speeds.

4.8. The role of multiple evaluation frameworks in a design flow 143

end-to-end packet delays and the memory fill levels do not match as closely as
the results for the utilization values, the “trends” indicated by both the methods
do match. We believe that such trends, to a large extent, would suffice to make
the architectural decisions that are involved in any system-level design space
exploration. One of the reasons why there is a mismatch between the values
obtained by the analytical method and those obtained by simulation is that the
former computes worst case delays and backlogs. In any particular simulation
run, such worst case results may not occur. Additionally, the results obtained
using the analytical framework to a very large extent depend on how tight are
the different bounds for calculating the delay, backlog and resource utilization
for the different scheduling policies. There is still a significant amount of work
to be done in this direction (see e.g. [22]), and we hope that there will be more
results in the future to improve this framework.

For all the results reported here, the simulations run in time in the order
of a few minutes to several hours. In contrast to these, the analytical proce-
dure completes execution in time less than a second for all the traces and is the
only feasible option for performance evaluation in any automated design space
exploration process.

4.8 The role of multiple evaluation frameworks in a de-
sign flow

4.8.1 Accuracy and evaluation times in the context of design space exploration

Traditionally, design flows for embedded processors involve architecture ex-
ploration by iterative improvement. In this approach, an initial target architec-
ture is generated and specified in a machine description language following an
analysis of the applications. Application code is then compiled for this target
architecture and executed on an instruction level simulator. The performance
data and statistics gathered from such a simulator is then fed into a hardware
model of the target architecture to derive values of performance metrics such as
power consumption, die size, etc. These values help in evaluating the architec-
ture, identify bottlenecks and make improvements. New architectures generated
through these improvements are again evaluated following the same steps and
this cycle is repeated until no further improvements are possible. This whole
iteration process is largely manual and ad-hoc.

However, modern embedded systems are increasingly becoming more com-
plex and heterogeneous, and are additionally programmable. Network proces-
sors are certainly a good showcase for such trends. This makes predicting
performance behavior more difficult since designing accurate simulators and
performance evaluation tools for such heterogeneous systems are difficult and
expensive. Further, high simulation times make automatic design space explo-
ration impractical even during very early stages of the design.

144 Chapter 4. An analytical framework for timing analysis

To address these problems, new approaches to explore the design space of
such systems are being considered (see for example [118]). Here, the goal is
to determine an appropriate system-level architecture template during the initial
phase of the design space exploration. This involves answering questions such
as: Which architectural components are to be chosen? How should they be
interconnected? Which tasks should be mapped to which components? Once
such an architecture template is determined, further details of this template, to
convert it into a detailed architecture, can then be considered. This process
involves different performance evaluation techniques for the different levels of
abstraction. Performance evaluation at multiple abstraction levels enable the
desired speed for a design space exploration during the early stages of a design,
and the accuracy required at the later stages. Modeling platforms and system-
level languages such as SystemC are being developed to address these issues
(see [140]).

A second possibility is to make use of fast analytical performance evalu-
ation methods during the early stages of a design, where designers only need
rough performance estimates of a template architecture and therefore a lot of
architectural details can be abstracted away, making good analytical models rel-
atively easy to construct. Once a reasonably small region of the architecture de-
sign space (captured by the template) is identified, architectures from this space
can be subjected to a more extensive evaluation using cycle accurate simulation
techniques. Our study in this chapter, comparing the results obtained from a
system-level analytical performance evaluation method with those obtained by
simulation, suggests this possibility in the context of network processors. The
analytical framework considered here, to a large extent can be adapted to vari-
ous abstraction levels. This depends on what each vertex in the underlying task
graph described in Section 4.4 is used to model. In the experiments reported
in Section 4.7, the vertices in this task graph modeled relatively low level de-
tails of an architecture such as bus communication. Nevertheless, most of the
performance values obtained at this level of abstraction match fairly well with
the results obtained using detailed simulation, and within a time which is orders
of magnitude faster. For example, the utilization values of the different buses
obtained using the analytical method match simulation results very closely. For
the other performance metrics, the analytical method provides results based on
which similar conclusions about the architecture can be drawn, as those from
detailed simulations.

4.8.2 A design flow for packet processors

Based on the above results, one can meaningfully conclude that currently there
exists analytical performance evaluation models for network processor archi-
tectures which can enable an automatic system-level design space exploration
during the early to intermediate phases of a design. Since the design space at
these stages can be fairly large due to the combinatorial nature of the decisions
concerning the architecture that are to be made, such models can help in evalu-

4.9. Summary 145

Detailed Processor Models

Pipelining

Multithreading

Detailed Cache/Memory Design

System Level Model

L
e

v
e

l
o

f
A

b
s

tr
a

c
ti

o
n

High

Low

C
o

s
t

o
f

E
v
a

lu
a

ti
o

n

High

Low

D
e

s
ig

n
F

lo
w

Space of possible architectures

Abstract system level model

-accurate model

VHDL model

Simulation

Analytical Models

Cycle

Fig. 51: Different stages of design space exploration and the associated evaluation technique.

ating a large number of designs within a short span of time. Once an interesting
region of the design space is identified, in the form of one or more parameteriz-
able template architectures, one can then resort to simulation based techniques
to obtain accurate performance values of these architectures where all the lower
level details are also taken into account.

This proposed design trajectory can be visualized as Figure 51. It is pri-
marily based on the above argument that during the later stages of a design,
some form of architectural template already exists—for example, it is known
how many processor cores and other dedicated hardware units are to be used
and how they are interconnected using the on-chip communication infrastruc-
ture, and which tasks are mapped to which processors. Design issues at this
stage mostly concern the tuning of different component parameters such as bus
width, cache sizes, etc., or optimally determining where various packet related
data structures need to be stored. These possibilities can be exhaustively simu-
lated to determine the optimal configuration.

4.9 Summary

We presented a detailed comparison study of an analytical performance eval-
uation framework for network processor architectures with a simulation based
technique. The underlying assumption here has been that there is a high con-
fidence in the simulation results. But obtaining these results is time intensive

146 Chapter 4. An analytical framework for timing analysis

because of the high simulation times involved, thereby rendering simulation
based models to be inappropriate for early staged of automated design space
exploration. The main contribution of this work is a validation of the analyt-
ical model against simulation results. We believe that such cross-checking is
required to establish the usefulness of such models, and also helps in identify-
ing the appropriate design phase where such models can be used and where it is
necessary to use detailed simulation to obtain meaningful results. Based on the
results obtained, we proposed a design flow for network processors which relies
on different classes of performance evaluation frameworks, and the two models
studied here can be considered to be representatives of these classes.

We also believe that the two models considered here lie at two different
extremes of a spectrum of possibilities. For evaluating different aspects of an
architecture, different models might be more suitable. We envisage a suitable
combination of analytical and simulation based frameworks not only across
different abstraction levels of a design flow, but also within the same abstraction
level, for evaluating network processor architectures. For example, it might be
more suitable to use simulation to evaluate the cache/memory subsystem of an
architecture, while it might be sufficient to use an analytical model to evaluate
the on-chip communication architecture. The essential ingredients for such a
hybrid framework in the context of network processors are already available.
But more work needs to be done in this area to devise ways for meaningfully
combining them.

5
Scheduling a mix of real-time and best-effort traffic

The problem of integrating jobs with soft deadlines into a hard real-time en-
vironment has been well studied in the real-time systems area (see [26] and
[1] and the references therein). The motivation behind this is that multimedia
tasks such as audio and video require some form of quality of service (QoS)
guarantees, but their worst case execution times can vary widely. Therefore,
treating them as hard real-time tasks would result in wasting a lot of processing
resources, and underestimating their execution requirement might jeopardize
other real-time tasks. Treating them as soft real-time tasks might result in some
of their deadlines getting missed, but this usually does not adversely affect their
quality and on the other hand improves the overall system utilization. If d is the
deadline assigned to such a job and f is its finishing time, then the goal here
is to minimize the mean tardiness (max{0, f − d}) of all such jobs, without
any of the hard real-time jobs missing their deadlines. Alternatively, when such
jobs do not have explicit deadlines associated with them, the goal is to minimize
their average response time.

All the work on this problem, however, pertains to the processor schedul-
ing domain, and the equivalent problem in the packet scheduling domain has
remained largely ignored. In the packet scheduling area, there has been an ex-
tensive amount of work on advanced buffer management and scheduling algo-
rithms to provide QoS guarantees to real-time continuous media traffic. But
relatively little has been done to exploit these algorithms to better support best-
effort traffic. In the presence of a mix of real-time and best-effort traffic, the
most widely followed scheme blindly gives higher priority to the real-time pack-
ets and serves the best-effort packets only if no real-time packets are present at
the scheduler.

Motivated by the work done in the real-time systems area, in this chapter
we attempt to address the above shortcoming by proposing a packet scheduling

148 Chapter 5. Scheduling a mix of real-time and best-effort traffic

algorithm to provide a low delay service to best-effort packets without violating
any of the delays associated with the real-time flows. Apart from improving
the delays experienced by best-effort flows in general, the need for such a
low delay best-effort service class arises in the context of serving special
packets carrying, for instance, network control information such as routing
table updates. Another example belonging to this class would be sporadic http
requests. Since the number packets belonging to such classes are usually very
small, the overhead involved in designating a distinct flow for these packets and
explicitly reserving a network bandwidth to serve them is very high. As a result,
such packets are treated as best-effort packets but at the same time they have
a short time-to-live. Our proposed scheduler although continues to treat such
packets as best-effort packets, would guarantee that they are delivered as early
as possible without jeopardizing the deadlines associated with real-time packets.

The problem, our results and relation to previous work: The problem of in-
tegrating soft real-time or best-effort tasks into a hard real-time environment has
very different manifestations and concerns in the context of processor schedul-
ing and packet scheduling. Most of the real-time systems literature in the con-
text of processor scheduling assume the hard real-time tasks to be periodic, with
a specified period and a worst case execution requirement within each period.
In several approaches based on executing the periodic tasks using a Rate Mono-
tonic scheduling algorithm, the best-effort tasks are served using server mecha-
nisms such as the Priority Exchange Server [99], the Sporadic Server [130], and
the Deferrable Server [138]. All of these are based on the abstract framework of
designating a special server process, whose capacity is equal to the remaining
processor bandwidth after serving the periodic hard real-time tasks. This server
capacity is used to service the best-effort tasks. Alternatively, slack stealing
techniques under Rate Monotonic scheduling have been used in [51, 98, 146].
To better utilize system resources, dynamic priority algorithms such as the Ear-
liest Deadline First (EDF) was used in [38, 39]. Server mechanisms under EDF
were proposed in [66], where dynamic versions of the Deferrable and Sporadic
Servers called the Deadline Deferrable Server and the Deadline Sporadic Server
were presented. The Deadline Sporadic Server was then extended to an algo-
rithm called the Deadline Exchange server. Lastly, five different algorithms
with varying performance and complexity, for serving soft aperiodic tasks un-
der EDF were proposed in [131, 132]. One of these algorithms, called the Total
Bandwidth Server was extended to handle overload situations in [133], and an
optimal algorithm for deadline assignment to soft aperiodic tasks under this
scheme was proposed in [26].

All the above schemes are based on computing the remaining processor
bandwidth after serving the periodic hard real-time tasks, and using this re-
maining bandwidth to schedule best-effort tasks. This remaining bandwidth (or
utilization factor in the case of server mechanisms) is invariant over time and
can therefore be specified as a single number. This is even the case when real-
time tasks are not strictly periodic but their jobs are constrained by a minimum

149

interarrival separation, or by other mechanisms different from the minimum in-
terarrival time, such as that in the Rate-Based Execution task model [84, 85].

The setup in the case of packet scheduling is very different. Here packet
arrivals from any real-time flow are constrained by arrival curves, which are de-
scribed by general subadditive functions, each specifying the maximum amount
of traffic that can arrive within any given time interval [48, 114]. For example,
the (σ, ρ)-model [48] describes the worst case traffic from a flow j by a burst
parameter σj and a long-term rate parameter ρj . This can be policed by a leaky
bucket mechanism [148] and guarantees that within any time interval of length
t, the maximum amount of traffic from flow j is bounded by σj + ρjt.

If with each such real-time flow j, a deadline dj is associated with the
interpretation that any packet from this flow has to be transmitted within dj

time units after its arrival, then it is possible to calculate the link capacity used
for serving all such real-time flows. However, the remaining link capacity
which can be used for serving best-effort flows is not invariant over time (as
in the case of the remaining processor bandwidth) and can not be specified
as a single number. It turns out to be a function (over time interval lengths)
dependent on the arrival curves and deadlines of the real-time flows. None of
the known algorithms from the processor scheduling domain extend to this case
in a straightforward manner.

Deadline assignment for best-effort packets: Our algorithm is based on EDF
scheduling. The real-time flows are specified using their arrival curves and a
deadline is associated with each such flow. We assume that there is a single best-
effort flow. This might be an aggregated flow combining multiple flows (see
Section 5.5.1 for further clarifications on this). The proposed algorithm assigns
a deadline to each best-effort packet (on a packet by packet basis), and schedules
this packet along with the other real-time packets using EDF. Central to our
algorithm is this deadline assignment, and we prove that the overall system
always remains schedulable and the deadline assignment is optimal (in the sense
that with a shorter deadline, some packet might miss its deadline).

The first algorithm we present, although optimal, is not feasible in practise
since for any best-effort packet it requires the history of all the previous best-
effort packets that arrived at the scheduler. However, based on this algorithm we
propose several approximations which represent tradeoffs between the amount
of computation that is required for each best-effort packet and the delay assigned
to it. We show that the well known Total Bandwidth Server due to Spuri and
Buttazzo [132] turn out to be one of these approximations. Our results with
realistic traffic mixes consisting of audio, video, real-time transactions and best-
effort flows like ftp, http and mail show between 25–45% improvements on the
average in the delays experienced by the best-effort flows, without any of the
real-time packets missing their deadlines.

In the next section we formally describe the model for characterizing real-
time traffic in terms of arrival curves and deadlines; this forms the basis for all
our algorithms. In Section 5.2 we briefly review the main concept behind the

150 Chapter 5. Scheduling a mix of real-time and best-effort traffic

Total Bandwidth Server and other related server mechanisms. Its connection to
our algorithm is established in Section 5.4.1. We also point out the different
concerns existing while designing algorithms for processor scheduling, in con-
trast to packet scheduling, and motivate the design issues behind our algorithm.
Section 5.3 describes our optimal algorithm, following which we present our
different approximation schemes in Section 5.4. Our experimental results are
presented in Section 5.5.

5.1 Traffic characterization

We denote by RT the set of real-time flows with traffic arrivals to the packet
scheduler, and we have one best-effort flow which might be an aggregate of sev-
eral best-effort flows. Packet arrivals from the real-time flows are constrained
by arrival curves [48, 114] which specify an upper bound on the amount of
traffic that can arrive from a flow within any specified time interval. Packet ar-
rivals from the best-effort flow are not constrained in anyway, and are queued
up, waiting to be served.

If aj(t) denotes the traffic that arrives at the scheduler from a real-time flow
j at time t, then Aj [t, t + τ] =

∫ t+τ

t
aj(t)dt denotes the traffic arrivals from the

flow j in the time interval [t, t + τ]. The maximum traffic arrival from any flow
j ∈ RT to the packet scheduler is bounded by a right-continuous subadditive
traffic constraint function A∗

j such that for all times t > 0 and for all τ ≥ 0 we
have:

Aj [t, t + τ] ≤ A∗
j(τ)

where A∗
j(t) = 0 for all t < 0 and A∗

j (t) ≥ 0 for t ≥ 0.
There are usually two mechanisms to ensure that the traffic from a flow j

entering the scheduler conforms to the traffic constraint function A∗
j . The first

is a traffic policer placed at the entrance of a network node, which rejects any
traffic from a flow j that does not comply to A∗

j . The second mechanism is a
rate controller which temporarily buffers packets to ensure that the traffic from
the flow j conforms to A∗

j . Example constraint functions such as that given by
the (σ, ρ)-model [48] can be policed by a leaky bucket mechanism [148].

Each real-time flow j has an associated deadline dj, and any packet from this
flow must be completely transmitted within dj time units after its arrival. We
denote the deadlines assigned to (by our scheduling algorithm) the best-effort
packets by δk, where δk is the (relative) deadline assigned to the k-th best-effort
packet. If rk is the arrival time of this packet then its absolute deadline is equal
to rk + δk. Throughout this chapter, we refer to both absolute deadlines and
relative deadlines, by the word deadline. It should be clear from the context
which one we are referring to. Lastly, we denote the maximum packet size
(from packets belonging to any flow) by smax, and the transmission rate of the
scheduler is equal to one.

5.2. Designing schedulers for a mix of real-time and best-effort tasks 151

5.2 Designing schedulers for a mix of real-time and best-
effort tasks
In contrast to static priority based schemes such as those mentioned in the begin-
ing of this chapter, server mechanisms based on EDF (such as [26, 1]) achieve
full processor utilization. In the Total Bandwidth Server [132] algorithm it is
assumed that the processor utilization due to periodic hard real-time tasks is Up,
and the remaining capacity Us = 1 − Up is assigned to serve best-effort tasks.
Whenever a best-effort job arrives at the scheduler, it is assigned a deadline and
scheduled using EDF along with the real-time jobs. If the k-th best-effort job
arrives at time rk, then it receives a deadline:

dk = max{rk, dk−1} + ck/Us

where ck is the worst case execution requirement of the job. It can be shown
that with this deadline assignment, the whole system remains schedulable at all
points in time [132].

Note that here the schedulability of the system heavily relies on an accurate
estimation of the worst case execution requirement ck. Underestimating this
might lead to some real-time job missing its deadline. Since estimating worst
case execution times of jobs is considerably difficult in the context of proces-
sor scheduling, several papers have proposed means for isolating real-time jobs
from best-effort jobs served in this manner using a global EDF scheduler. Well
known among these is the Constant Bandwidth Server due to Abeni and But-
tazzo [1]. However, note that in the context of packet scheduling, this prob-
lem does not arise since packet lengths are known upon their arrival at the link
scheduler and therefore real-time packets do not run into the risk of missing
their deadlines.

5.2.1 EDF versus proportional share

Our algorithm presented in this chapter is based on EDF and is similar in spirit
to the Total Bandwidth Server. However, as mentioned in the begining of this
chapter, the remaining link capacity available for serving best-effort packets
is no longer a single number, but a function of the traffic constraint functions
A∗

j (described in Section 5.1) and deadlines associated with the real-time flows.
Therefore, the simple deadline calculation as done in the case of the Total Band-
width Server does not extend to this case.

Several algorithms based on resource reservations, sometimes with dynamic
feedback, have been proposed in the context of processor scheduling to support
a mix of real-time and best-effort tasks [86, 111, 135, 52, 18]. Indeed, a com-
peting alternative to our proposed scheduler, would be one based on the idea of
proportional share resource allocation (such as the generalized processor shar-
ing or any of its packetized versions) [114]. Given the arrival curves A∗

j and the
deadlines dj for each real-time flow, it is possible to deduce the minimum link
bandwidth required to serve each such flow such that its deadline is satisfied,

152 Chapter 5. Scheduling a mix of real-time and best-effort traffic

and assign the remaining bandwidth to the best-effort flow. However, sched-
ulers based on proportional share are primarily motivated by the need for fair
sharing of surplus link bandwidth between different flows. On the other hand,
our primary goal is to greedily allocate the maximum possible link bandwidth
to the best-effort flow to improve its response time, subject to the constraint that
the real-time packets do not miss their deadlines. In a deterministic setup, this
is the only concern since real-time packets getting served much ahead of their
designated deadlines do not improve the system performance.

Our choice of EDF as a scheduling discipline is also motivated by the fact
that it is known to have a larger schedulability region compared to general-
ized processor scheduling [64]. It has also been shown in [64] that the RSVP
parameters in an IntServ framework [23] can be mapped to EDF reservations.
This guarantees the conformance of our algorithm with IntServ, which happens
to be one of the widely accepted service disciplines for guaranteeing real-time
constraints in the Internet. Further, it was also shown in [2] that for support-
ing hybrid real-time multimedia applications, deadline based schemes are more
appropriate compared to proportional sharing.

5.3 Optimal deadline assignment for best-effort packets

In this section we present our main algorithm. As mentioned before, it is similar
to the Total Bandwidth Server of Spuri and Buttazzo [132] in the sense that
best-effort packets are assigned a deadline on a packet-by-packet basis and are
scheduled with the real-time packets using an EDF scheduler. However, the
mechanism for deadline assignment in our case is considerably more involved
and is a generalization of the algorithm for the Total Bandwidth Server.

In this section we make use of the traffic characterization defined in Sec-
tion 5.1. Before describing our algorithm we need to define a few additional
terms. For this, consider a mix of real-time and best-effort packets being served
by the simple scheme in which real-time packets are served non-preemptively
using EDF, and a best-effort packet is served only when no real-time pack-
ets are present at the scheduler. Then it can be shown using the results from
[100] that the set of all real-time flows RT is schedulable if and only if for all
t ≥ min{dj | j ∈ RT}:

t ≥
∑

k∈RT

A∗
k(t − dk) + smax

Based on this result, we define the residual link capacity over any time interval
of length t, available to serve the best-effort flow, by a function RRT (t) where

RRT (t) = t − (
∑

k∈RT

A∗
k(t − dk) + smax)

5.3. Optimal deadline assignment for best-effort packets 153

Recall from Section 5.1 that A∗
k is the traffic constraint function and dk is the

delay associated with the real-time flow k. smax is the maximum packet length
of packets belonging to any flow. We define ERT (t) to be the effective residual
link capacity available within any time interval of length t to serve best-effort
packets. This is given by

ERT (t) = min
t′≥t

RRT (t′)

Based on these two functions and the specifications of the real-time flows,
our scheme for assigning deadlines to the best-effort packets is given by Algo-
rithm 8.

Algorithm 8 Computing Deadlines for the Best-Effort Packets
Given a set RT of real-time flows and one aggregated best-effort flow.
The residual link capacity RRT (t) to serve the best-effort flow, over any time
interval of length t is RRT (t) = t − (

∑
k∈RT A∗

k(t − dk) + smax).
Effective residual link capacity ERT (t) = mint′≥t RRT (t′).

Computing the deadline δn of the n-th best-effort packet:
The n-th best-effort packet arrives at time rn and has a transmission time

of wn

δn
n = min{t | ERT (t) ≥ wn}

for i = 1 to n − 1 do
δn−i
n = min{t | ERT (t) ≥

∑n
j=n−i wj} − (rn − rn−i)

end for
δn = max{δi

n | i = 1, 2, . . . , n}

Theorem 15 states that with the deadline assignment given by Algorithm 8,
the order in which an EDF scheduler serves them is the same as the order in
which they arrive at the scheduler. Therefore, Algorithm 8 does not disrupt the
order of the best-effort packets.

Thm. 15:For any n ≥ 1, if δn and δn+1 are the deadlines assigned to the n-th and the
(n + 1)-th best-effort packets by Algorithm 8 then rn+1 + δn+1 > rn + δn.

Proof: It follows from Algorithm 8 that for all i = 0, 1, . . . , n − 1, δn−i
n is the

minimum possible value for which

ERT (δn−i
n + rn − rn−i) ≥

n∑
j=n−i

wj

Similarly, for all i = 0, 1, . . . , n, δn+1−i
n+1 is the minimum possible value for

which

ERT (δn+1−i
n+1 + rn+1 − rn+1−i) ≥

n+1∑
j=n+1−i

wj

154 Chapter 5. Scheduling a mix of real-time and best-effort traffic

Now, for any k (0 ≤ k ≤ n − 1), consider the following two values δn−k
n

and δn−k
n+1 , defined respectively by the following two inequalities:

min{δn−k
n | ERT (δn−k

n + rn − rn−k) ≥
n∑

j=n−k

wj}

min{δn+1−(k+1)
n+1 | ERT (δ

(n+1)−(k+1)
n+1 + rn+1 − rn+1−(k+1)) ≥

n+1∑
j=n+1−(k+1)

wj}

Since ERT (t) is non-decreasing, it follows from the above that δn−k
n + rn <

δn−k
n+1+rn+1 for k = 0, 1, . . . , n−1. Hence, max{δn−k

n +rn | k = 0, 1, . . . , n−1}

< max{δn−k
n+1 + rn+1 | k = 0, 1, . . . , n − 1}

≤ max{δn−k
n+1 + rn+1 | k = 0, 1, . . . , n}

Therefore, δn + rn < δn+1 + rn+1. ��
To informally explain Algorithm 8, we introduce a family of functions

αn(t), n = 1, 2, . . ., where αn(t) denotes the service demand within any time
interval of length t due to a sequence of best-effort packets 1, 2, . . . , n, ending
with the n-th packet. It means that within any time interval of length t, a se-
quence of best-effort packets from the set ordered {1, . . . , n} and ending with
packet n would require a total transmission time equal to αn(t) if they have to
meet their assigned deadlines. Algorithm 8 assigns to each best-effort packet n
the shortest possible deadline, maintaining the constraint that the curve αn(t)
always lies below the effective residual link capacity curve ERT (t). We for-
mally prove this idea below in Theorems 16 and 17. Theorem 16 states that
with the deadline assignment due to Algorithm 8, the overall system (consisting
of real-time and best-effort packets) still remains schedulable, and Theorem 17
proves the optimality of the deadline assignment.

Based on the above idea of service demand functions αn(t), if the first best-
effort packet arrives at time r1 and is assigned a (relative) deadline δ1 (i.e. it has
an absolute deadline equal to r1 + δ1), then within an interval of length δ1 the
service demand due to this best-effort packet is equal to w1. Hence α1(δ1) = w1,
and α1(δ) = 0 for all δ < δ1. Now if the second best-effort packet arrives at
time r2 and is assigned a deadline δ2, then within an interval of length δ2, the
service demand is w2 and within an interval of length δ2 + r2 − r1 the service
demand is w1+w2. These two constraints are captured in α2(t), and the deadline
δ2 is chosen so that α2(t) for all values of t ≥ 0 lies below ERT (t). This
procedure is followed for any subsequent packets (see Figure 52). Therefore,
for the n-th packet, the service demands within an interval of length—δn is wn,
δn+rn−rn−1 is wn−1+wn, . . . , δn+rn−r1 is w1+. . .+wn (see Figure 53). As
before, δn is chosen by Algorithm 8 such that within any of these intervals the
service demands is below the effective residual link capacity available within
the interval.

5.3. Optimal deadline assignment for best-effort packets 155

r
2

r
3

r
4

r
1

δ1 δ3

δ2 δ4

Fig. 52: A possible sequence of best-effort packet arrivals and the corresponding packet dead-
lines.

w

w ++ w

w + w +.....+w

n

n−1

2 n

1 2 n

nw + w

r r r r r +r + 1 1 n−1 n n−1 nδ δδn−1 n

Fig. 53: Service demands arising out of the n-th best-effort packet.

5.3.1 An alternative interpretation

If we list all the above constraints for each packet, we get (see also Figure 52):

α1(δ1) = w1

α2(δ2) = w2

α2(δ2 + r2 − r1) = α2(δ1 + (r2 + δ2) − (r1 + δ1)) = w1 + w2

α3(δ3) = w3

α3(δ3 + r3 − r2) = α3(δ2 + (r3 + δ3) − (r2 + δ2)) = w2 + w3

α3(δ3 + r3 − r1) = α3(δ1 + (r2 + δ2) − (r1 + δ1) + (r3 + δ3) − (r2 + δ2))

= w1 + w2 + w3

.

156 Chapter 5. Scheduling a mix of real-time and best-effort traffic

t

α n (t)
α n (t)

r − (r +)n+1 n δn

t

α n+1(t)

δ n+1

wn+1

(b)(a)

Fig. 54: Constructing the service demand curve αn+1(t) from the curve αn(t). (a) The service
demand curve αn(t). (b) The service demand curve αn+1(t).

It follows from the above list of constraints that, given the curve αn(t), and
rn+1, δn+1, wn+1, it is possible to construct the curve αn+1(t) by shifting αn(t)
horizontally by (rn+1 + δn+1)− (rn + δn), vertically by wn+1, and appending a
step function to it as shown in Figure 54. Note that the segment (in the middle)
of length rn+1 − (rn + δn) might be positive or negative in length. In the later
case, a part of the last segment of αn(t) gets deleted.

With this observation, Algorithm 8 can be alternatively interpreted as fol-
lows. Given the service demand curve αn(t), δn+1 is the smallest possible
value assigned by Algorithm 8 such that the resulting curve αn+1(t) lies below
the curve ERT (t). With this deadline assignment the overall system remains
schedulable, and with a deadline smaller than δn+1 some packet (either real-
time or best-effort) might miss its deadline. This is proved next in Theorems 16
and 17.

Thm. 16:Given a set RT of schedulable real-time flows, under the deadline assignment
for best-effort packets as given by Algorithm 8, the set RT still remains schedu-
lable and all best-effort packets are transmitted by their assigned deadlines.

Proof: Consider a packet from a real-time flow k ∈ RT that arrives at the
scheduler at time t and is completely transmitted at time t+δ. Our proof is based
on bounding the workload that has to be transmitted by the scheduler before this
packet is completely transmitted. For any real-time flow j ∈ RT , we denote by
A≤x

j [t, t + τ] the traffic arrival from flow j during the time interval [t, t + τ]
with deadlines less than or equal to x. We denote by W ≤x(y) the workload in
the scheduler at time y due to packets with deadlines less than or equal to time
x, i.e. W≤x(y) is equal to the total transmission time that is required to deliver
the packets waiting at the scheduler at time y, and having deadlines less than
or equal to x. Lastly, let us denote by W k,t(t + τ) (0 ≤ τ ≤ δ) the workload
in the scheduler at the time t + τ , that must be served before the packet that
arrived at time t from the real-time flow k can be completely transmitted (note
that W k,t(t, τ) includes the transmission time of this packet). Now let t − τ̂

5.3. Optimal deadline assignment for best-effort packets 157

(τ̂ ≥ 0) be the last time before time t when the scheduler does not contain any
traffic with a deadline less than or equal to the deadline of this packet, i.e. t+dk.
In other words, in the time interval [t− ˆtau, t+δ), the scheduler always contains
some packet with deadline less than or equal to t + dk.

W k,t(t + τ) is then composed of the following terms:

• The remaining transmission time of the packet that was in transmission at time
t− τ̂ . Let us denote this by R(t− τ̂). By our assumption of t− τ̂ , the deadline
of this packet is greater than t + dk.

• Transmission times of packets arriving in the time interval [t − τ̂ , t + τ], from
real-time flows with deadlines less than or equal to t + dk. This is equal to∑

j∈RT A≤t+dk
j [t− τ̂ , t+ τ], and includes the packet from the real-time connec-

tion k that arrived at time t.

• Transmission times of best-effort packets that arrive in the time interval [t −
τ̂ , t + τ] and have deadlines less than or equal to t + dk. Let us denote this by
BE≤t+dk [t − τ̂ , t + τ].

• The length of the time interval [t − τ̂ , t + τ], i.e. τ̂ + τ .

Since packet transmissions can not be preempted, during the time interval
[t−τ̂ , t−τ̂+R(t−τ̂)), the packet with deadline greater than t+dk is transmitted,
and during the time interval [t− τ̂ + R(t− τ̂), t− τ̂] all the packets transmitted
have a deadline less than or equal to t + dk. Hence, W k,t(t + τ) (0 ≤ τ ≤ δ) is
given as follows:

W k,t(t+τ) =
∑
j∈RT

A≤t+dk
j [t−τ̂ , t+τ]+BE≤t+dk [t−τ̂ , t+τ]+R(t−τ̂)−(τ̂+τ)

When τ = dk, the above equality becomes:

W k,t(t+dk) =
∑
j∈RT

A≤t+dk
j [t−τ̂ , t+dk]+BE≤t+dk [t−τ̂ , t+dk]+R(t−τ̂)−(τ̂+dk)

(5.1)
Since any packet from a real-time connection j, that arrives after the time

t + dk − dj has a deadline greater than t + dk, Equation (5.1) can be written as:

W k,t(t+dk) =
∑
j∈RT

Aj [t−τ̂ , t+dk−dj]+BE≤t+dk [t−τ̂ , t+dk]+R(t−τ̂)−(τ̂+dk)

Now we would like to bound the workload W k,t(t + dk). For this, we first
compute an upper bound on BE≤t+dk [t − τ̂ , t + dk]. Let the first best-effort
packet that has an arrival time of greater than or equal to t − τ̂ and a deadline
less than or equal to t + dk, be the m-th best-effort packet (starting from the
very first best-effort packet that was received by the scheduler), i.e. rm ≥ t− τ̂
and rm + δm ≤ t + dk. Similarly, let the last such best-effort packet be the n-th

158 Chapter 5. Scheduling a mix of real-time and best-effort traffic

(n ≥ m) packet, i.e. rn ≥ t − τ̂ and rn + δn ≤ t + dk. Then it follows from
Algorithm 8 that:

ERT (δn + rn − rm) ≥ wm + wm+1 + . . . + wn

Clearly,
BE≥t+dk [t − τ̂ , t + dk] = wm + wm+1 + . . . + wn

Hence,
BE≥t+dk [t − τ̂ , t + dk] ≥ ERT (δn + rn − rm)

Therefore we have:

W k,t(t+dk) ≤
∑
j∈RT

Aj[t−τ̂ , t+dk−dj]+ERT (δn+rn−rm)+R(t−τ̂)−(τ̂+dk)

Since R(t − τ̂) ≤ smax and ERT (δn + rn − rm) ≤ ERT (τ̂ + dk) (because
δn + rn − rm ≤ τ̂ + dk), we have:

W k,t(t + dk) ≤
∑
j∈RT

A∗
j(τ̂ + dk − dj) + ERT (τ̂ + dk) + smax − (τ̂ + dk)

=
∑
j∈RT

A∗
j(τ̂ + dk − dj) + min

t′≥(τ̂+dk)
RRT (t′) + smax − (τ̂ + dk)

≤
∑
j∈RT

A∗
j(τ̂ + dk − dj) + RRT (τ̂ + dk) + smax − (τ̂ + dk)

= 0

Hence, there exists a τ ≤ t + dk such that W k,t(t + τ) = 0, implying that
the packet from the real-time connection k, that arrived at time t, is completely
transmitted on or before time t + dk, thereby meeting its deadline. Using very
similar arguments it is possible to show that all best-effort packets also meet
their assigned deadlines. ��

Thm. 17:If any best-effort packet is assigned a deadline smaller than that assigned by
Algorithm 8, then some packet (either from a real-time or from the best-effort
flow) might miss its deadline.

Proof: Let the deadline assignment for the n-th best-effort packet be less than
the deadline δn calculated by Algorithm 8. Let this be δ ′

n (δ′n < δn). This implies
that there exists some i, such that the sum of the transmission times of the best-
effort packets n, n−1, . . . , i (i.e. wn+wn−1+. . .+wi) that have to be transmitted
within an interval of length δ ′

n+(rn−ri) exceeds ERT (δ′n+(rn−ri)). Since for
all time intervals of length t ≥ 0, ERT (t) = mint′≥t RRT (t′), the above implies
that there exists some j ≤ i, such that the sum of the transmission times of the
best-effort packets n, n−1, n−2, . . . , j (i.e. wn +wn−1 + . . .+wj) that have to
be served within a time interval of length δ ′

n +(rn−rj), so that all deadlines are
met, exceeds RRT (δ′n + (rn − rj)). Starting from the time rj , the scheduler has

5.3. Optimal deadline assignment for best-effort packets 159

to transmit the best-effort packets j, j + 1, . . . , n within the next δ ′
n + (rn − rj)

time units, if all the assigned deadlines have to be met.
Assume that the scheduler is empty before the time rj, and at time r−j a

maximum sized packet (of size equal to smax) from either a real-time flow l
with dl > δ′n + (rn − rj), or from a best-effort flow with the deadline of the
packet greater than δ′n + (rn − rj) arrives. Starting from time rj , packets from
the real-time flows k with dk ≤ δ′n + (rn − rj) arrive according to their max-
imum arrival rate A∗

k. Additionally, packets from the best effort flow arrive at
times rj , rj+1, . . . , rn. They are assigned deadlines δj , δj+1, . . . , δn−1 according
to Algorithm 8, with the exception that the n-th packet is assigned the deadline
δ′n < δn as discussed above.

Since the scheduler is non-preemptive, the packet of size smax that arrived
at time r−j has to be transmitted first, before any other packet. Therefore, the
total transmission time of the packets that have to be transmitted within a time
interval of length δ′n + (rn − rj) starting from the time rj , if all deadlines have
to be met is equal to:

smax +
∑

k∈RT

A
≤rj+δ′n+(rn−rj)
k [rj , rj + δ′n + (rn − rj)] + wn + wn−1 + . . . + wj

Hence, W≤δ′n+(rn−rj)(rj + δ′n + (rn − rj))

> smax +
∑

k∈RT

A∗
k(δ

′
n + (rn − rj) − dk) + RRT (δ′n + (rn − rj))

−(δ′n + (rn − rj))

= 0

Hence, at the time instant rj + δ′n +(rn − rj), the scheduler contains traffic with
deadline less than or equal to rj + δ′n + (rn − rj), implying a deadline violation
for some packet. ��

It follows from the schedulability guarantee given by Theorem 16, and also
the discussion in Section 5.3.1 that the deadlines assigned to the best-effort
packets are dependent on their arrival rate. If too many best-effort packets arrive
back-to-back and the effective residual link capacity is not too large to serve
them, then the deadlines assigned to them grow larger and larger, but the real-
time packets are never jeopardized. An overload situation created by best-effort
traffic only increases their average response time. Lastly, it is clear that our
scheme is never worse compared to the simple scheme of serving best-effort
packets only when no real-time packets are present at the scheduler.

Note that the deadline assignment for any best-effort packet requires the
entire history of all the previous packets that arrived at the scheduler. As an
implementation hint (which is as well obvious to note), we point out that this
history can be reset whenever the scheduler is idle, i.e. there are no real-time
or best-effort packets with already assigned deadlines waiting to be served. The
next packet arriving after such a rest can be treated as the first best-effort packet.
For any realistic traffic flow, such resets of the scheduler will be fairly common.

160 Chapter 5. Scheduling a mix of real-time and best-effort traffic

5.4 Approximating the effective residual link capacity

Algorithm 8 in spite of being optimal in terms of the response time experienced
by best-effort packets, is infeasible for all practical purposes. This is because
it requires maintaining the history of all the best-effort packets that arrived at
the scheduler, to assign a deadline to the next packet. The reason for this is that
the effective residual link capacity ERT (t) can in general be arbitrarily shaped.
Combined with the fact that packet sizes can also be arbitrary, to fit the service
demand functions αn(t) as tightly as possible below ERT (t), the full structure
of αn(t) is required. The complexity of the algorithm can be reduced either by
approximating the effective residual link capacity ERT (t) by a simple function,
or by approximating the packet size to allow only a fixed number of distinct
sizes. In this section we consider the former approach. It should be possible
to derive the approximations based on later approach from the ideas that we
present in this section. For the deadline assignment for any best-effort packet,
the algorithms that we present in Sections 5.4.1 and 5.4.2 require the arrival
times and deadlines of the previous packet only (in contrast to all the previous
packets). The algorithm presented in Section 5.4.3 is more involved and re-
quires the history of a bounded number of packets, and not all. Each of these
algorithms represent a tradeoff between the complexity involved in the deadline
assignment and the length of the deadline assigned.

5.4.1 With a straight line passing through the origin

In this section we approximate the effective residual link capacity ERT (t) after
serving the set of real-time flows RT , by a single straight line of slope γ pass-
ing through the origin (see Figure 55). To satisfy the schedulability condition
given by Theorem 16, the slope γ is chosen to be the largest possible value such
that this line lies below the exact ERT (t) calculated from the traffic constraint
functions (or arrival curve) A∗

j(t) of the real-time flows j ∈ RT , and the maxi-
mum packet size smax. Therefore, γ = max{γ′ | γ′t ≤ ERT (t) ∀t ≥ 0}. The
deadlines of the best-effort packets are now computed with Eapprox

RT (t) = γt as
the effective residual link capacity available for transmitting the best-effort flow.
We show that under this approximation, the deadline of any best-effort packet
can now be optimally calculated by using parameters (such as arrival times and
deadlines) belonging to the previous packet only. This is in contrast to our exact
algorithm which required the arrival times of all the previous best-effort pack-
ets.

Consider the (n+1)-th best-effort packet which arrives at the time rn+1 and
has a transmission time equal to wn+1. It follows from Algorithm 8 that for the
system to be schedulable the deadline assigned to this packet should satisfy:

δn+1 ≥ wn+1/γ (5.2)

Let αn(t) be the service demand due to the best-effort packets 1, 2, . . . , n
and (x, y) be the point on αn(t) which is closest to Eapprox

RT (t) = γt. Then it

5.4. Approximating the effective residual link capacity 161

E
approx

RT

t

γ

Fig. 55: Approximating ERT (t) with a single line passing through the origin.

follows from our discussion in Section 5.3.1 that the new coordinates of this
point in αn+1(t) become:

(x + rn+1 + δn+1 − (rn + δn), y + wn+1)

For the system to be still schedulable, we require that:

(x + rn+1 + δn+1 − (rn + δn))γ ≥ y + wn+1

Since (x, y) was closest to Eapprox
RT (t) = γt, if (x, y) lies below this line then all

other points on αn(t) are also guaranteed to lie below it.
Assuming that the system was schedulable with the deadline assignment for

the n-th packet, i.e. xγ ≥ y, we have:

(rn+1 + δn+1 − (rn + δn))γ ≥ wn+1

or,

δn+1 ≥ wn+1/γ + (rn + δn) − rn+1 (5.3)

From inequalities (5.2) and (5.3), we get the deadline assignment for the
n + 1-th best-effort packet to be:

δn+1 = wn+1/γ + max{0, (rn + δn) − rn+1}

Therefore, rn+1 + δn+1 = wn+1/γ + max{rn+1, rn + δn} which is exactly
the same as the deadline assignment in the case of the Total Bandwidth Server.
This follows from the fact, that our straight line with slope γ approximating
the effective residual link capacity is equivalent to a server with an utilization
factor of γ. The Total Bandwidth Server therefore reduces to a special case of
our Algorithm 8.

5.4.2 With a straight line cutting t = δ

Here we approximate the effective residual link capacity ERT (t) again by a sin-
gle straight line with slope γ, but crossing the t-axis at t = δ instead of passing

162 Chapter 5. Scheduling a mix of real-time and best-effort traffic

E RT

approx

t

γ

δ

Fig. 56: Approximating ERT (t) with a single line cutting t = δ.

through the origin as in our last approximation (see Figure 56). Therefore, it re-
duces to our last case if δ = 0. The approximate effective residual link capacity
is now given by:

Eapprox
RT (t) =

{
0 if t ≤ δ
(t − δ)γ if t > δ

The values γ and δ are chosen such that Eapprox
RT (t) ≤ ERT for all t ≥ 0. Now

consider the (n + 1)-th best-effort packet that arrives at time rn+1 and has a
transmission time of wn+1. If δn+1 is the deadline assigned to this packet then
we require that:

δn+1 ≥ δ + wn+1/γ (5.4)

Let, as before, αn(t) be the service demand due to the best-effort packets
1, 2, . . . , n and (x, y) be the point on αn(t) which is closest to Eapprox

RT . For
the new coordinate of (x, y) in αn+1(t) to lie below Eapprox

RT , after the deadline
assignment δn+1 to the (n + 1)-th packet, we require:

(x + rn+1 + δn+1 − (rn + δn) − δ)γ ≥ y + wn+1

Assuming that the system was schedulable with the deadline assignment of the
n-th packet, i.e. (x − δ)γ ≥ y, we have:

(rn+1 + δn+1 − (rn + δn))γ ≥ wn+1

or,
δn+1 ≥ wn+1/γ + (rn + δn) − rn+1 (5.5)

From inequalities (5.4) and (5.5) we have,

δn+1 = wn+1/γ + max{δ, (rn + δn) − rn+1}

5.4.3 With a combination of two line segments

To more accurately approximate the effective residual link capacity, in this sec-
tion we approximate it using a combination of two line segments (instead of one

5.4. Approximating the effective residual link capacity 163

E RT

approx

t

s

r

pp’

Fig. 57: Approximating ERT (t) with a combination of two line segments of slope r and s (r <

s).

as in the previous cases), one of slope r passing through the origin and the sec-
ond of slope s (s > r). The line segments intersect at a point whose t-coordinate
is equal to p (see Figure 57). Hence, it is given by:

Eapprox
RT (t) =

{
rt if t < p
(t − p′)s if t ≥ p

The t-intercept p′ of the line with slope s can be calculated to be equal to p −
pr/s. Eapprox

RT reduces to the case in Section 5.4.1 if r = s, and to the case in
Section 5.4.2 if r = 0 and p = δ. As before, r, s and p are chosen such that
Eapprox

RT (t) ≤ ERT for all t ≥ 0.
Algorithm 9 gives the deadline assignment under this approximation. In

contrast to the previous two algorithms, it requires the history of all the packets
which constitute the portion of the service demand curve αn(t) that lies to the
left of t = p. This algorithm is based on the idea of maintaining the curve
αn(t) for any n only till the point t = p. Beyond t = p only the point which
is closest to the curve Eapprox

RT (t) is maintained. With the (n + 1)-th packet,
the deadline δn+1 is chosen such that the part of αn(t) that lies to the left of
t = p still continues to be below Eapprox

RT (t) in αn+1(t), and the point on αn(t)
which is closest to Eapprox

RT (t) and lies to the right of t = p also continues to lie
below Eapprox

RT (t). Because of the horizontal shift of αn(t) due to the deadline
assignment to the (n + 1)-th packet, some points on αn(t) which were to the
left of t = p would now cross this point and one of them might become the
new nearest point to Eapprox

RT (t) beyond t = p. For each packet, the algorithm
therefore checks whether any new points crossing from the left to right of t = p
become the new nearest point to Eapprox

RT .

5.4.3.1 Approximating the deadline
In the last section, the deadline assignment for any best-effort packet required
the arrival and the transmission times of multiple previous packets. More pre-
cisely, for all the packets which constitute the portion of the service demand
curve αn(t) which was to the left of t = p (i.e. αn(t) for t < p). This was in

164 Chapter 5. Scheduling a mix of real-time and best-effort traffic

Algorithm 9 Computing the approximate deadline δn+1 of the (n + 1)-th best-
effort packet based on approximating ERT (t) by a combination of two line seg-
ments

Given Sn
≤p = set of all packets {i | i ≤ n and (δn + rn − ri) ≤ p} (i.e. the set

of all packets which lie to the left of t = p on the curve αn(t).
Given k>p (1 ≤ k>p ≤ n), such that the k>p-th packet does not belong to the
set Sn

≤p and the point (δn + rn − rk>p,
∑n

j=k>p
wj) on αn(t) is closest to the

approximate effective residual link capacity curve Eapprox
RT (t), among all the

points on αn(t) to the right of t = p.
The (n + 1)-th best-effort packet arrives at time rn+1 and has a transmission
time of wn+1.

{Compute the minimum deadline to fit αn+1(t) below Eapprox
RT (t), taking into

account only the portion of αn(t) to the left of t = p}
Let δmin = min{t | Eapprox

RT (t) ≥ wn+1}
for all i ∈ Sn

≤p do
Let δ = min{t | Eapprox

RT (t) ≥
∑n+1

j=i wj} − (rn+1 − ri)
if δ > δmin then δmin = δ end if

end for
δn+1 = δmin

{Compute the minimum deadline such that the point closest to E approx
RT (t)

among all the points to the left of t = p in αn(t), continues to lie below
Eapprox

RT (t) in αn+1(t)}
Let δ = min{t | Eapprox

RT (t) ≥
∑k>p

j=n+1 wj} − (rn+1 − rk>p)
if δ > δmin then δmin = δ end if

{Find if a new point in αn+1(t) beyond t = p, becomes closer to Eapprox
RT (t)}

for all i ∈ Sn
≤p do

if (rn+1 + δn+1 − ri) > p then
Sn
≤p = Sn

≤p\{i}
if (δn+1+rn+1−ri,

∑n+1
j=i wj) is closer to the Eapprox

RT (t) curve compared

to (δn+1 + rn+1 − rk>p,
∑n+1

j=k>p
wj) then k>p = i end if

end if
end for

{Check if the point (δn+1, wn+1) on αn+1(t) lies to the left of t = p, and
update Sn+1

≤p }
if δn+1 ≤ p then

Sn+1
≤p = Sn

≤p ∪ {n + 1}
else

Sn+1
≤p = Sn

≤p

end if

5.4. Approximating the effective residual link capacity 165

n

t

s

r

nδ

w’

nw

(t)nαRT
approxE

Fig. 58: Approximating the service demand curve αn(t) for all n, by assuming that it coin-
cides with Eapprox

RT (t). The bold line indicates the approximated effective residual link
capacity, and the dashed line indicates a possible (real) service demand curve corre-
sponding to the packet arrivals 1 to n and deadline assignments for them. The solid line
in between the bold and the dashed lines indicate the approximate (or assumed) service
demand curve αn(t), which coincides with Eapprox

RT (t).

contrast to our previous two approximation schemes where the deadline calcu-
lation for any packet required the arrival time and deadline of only one previous
packet. While in many cases the number of packets that constitute the portion
of the service demand curve lying on the left of t = p can be small (and in any
case it is bounded), there might be situations where the number of such packets
are very large. In the later case, computing the deadline of an incoming best-
effort packet will involve an amount of computation and storage requirement
which might be infeasible in practice, as in the case of our exact algorithm in
Section 5.3.

In this section, apart from approximating the effective residual link capacity
ERT (t) using a combination of two line segments, we also approximate the (op-
timal) deadline that can be assigned using Eapprox

RT (t) as the effective residual
link capacity. Since we want to guarantee schedulability, the deadline assigned
to any best-effort packet will now be greater than or equal to the deadline assign-
ment with Eapprox

RT (t) as the effective residual link capacity, using Algorithm 9.
Our approximation is based on the idea of assuming that the service demand
curve αn(t) at all points of time coincides exactly with the approximate effec-
tive residual link capacity Eapprox

RT (t). This is shown in Figure 58. Here, for the
deadline assignment to the (n+1)-th packet, the service demand curve αn(t) is
assumed to be what is shown by the solid line.

If δn+1 is the deadline assigned to the n + 1-th best-effort packet, for the
point (δn+1, wn+1) in αn+1(t) to lie below Eapprox

RT (t), the following must hold:

δn+1 ≥
{

wn+1/r if wn+1 < rp
(wn+1 − pr)/s + p if wn+1 ≥ rp

(5.6)

166 Chapter 5. Scheduling a mix of real-time and best-effort traffic

Algorithm 10 Approximating the deadline δn+1

The (n + 1)-th best-effort packet arrives at time rn+1 and has a transmission
time of wn+1.
The effective residual link capacity is given by Eapprox

RT (t).
if δn ≥ p then

{Let w′
n = (δn − p′)s, which implies that w ′

n + wn+1 > pr}
if (wn+1 < pr) then δn+1 = max{wn+1

r
, wn+1

s
+ rn + δn − rn+1}

else δn+1 = wn+1

s
+ max{p − pr

s
, rn + δn − rn+1} end if

else {i.e. if δn < p}
Let w′

n = δnr
if w′

n + wn+1 ≥ pr then
if (wn+1 < rp) then δn+1 = max{wn+1r,

(wn+1+δnr−pr)
s

+rn−rn+1 +p}
else δn+1 = (wn+1−pr)

s
+ p + max{0, δnr

s
+ rn − rn+1} end if

else {i.e. (w′
n + wn+1) < rp, which implies that wn+1 < rp}

δn+1 = wn+1

r
+ max{0, δn + rn − rn+1}

end if
end if

If δn is the deadline assigned to the n-th packet and wn is its required transmis-
sion time, then we approximate the (real) service demand curve for this packet
by a service demand curve αn(t) which coinsides with Eapprox

RT (t) (as shown in
Figure 58). αn(t) is given as follows:

αn(t) =




0 if t < δn

w′
n if t = δn

Eapprox
RT if t > δn

(5.7)

where, w′
n = δnr if δn < p and w′

n = (δn − p′)s if δn ≥ p. In other words,
Equation (5.7) is equivalent to αn(t) = 0 if t < δn and αn(t) = Eapprox

RT other-
wise.

With δn+1 as the deadline assigned to the (n + 1)-th best effort packet, any
point (x, y) on αn(t) is shifted to the point (x′, y′) on α′

n+1(t), where α′
n+1(t) is

the (real) service demand curve which is then approximated by αn+1(t) for the
deadline assignment to the (n + 2)-th packet. (x′, y′) is given by,

(x + rn+1 + δn+1 − (rn + δn), y + wn+1)

Since all points on αn(t) get displaced by the same amount in α′
n+1(t), the

deadline δn+1 should be large enough to guarantee that the point (δn, wn) on
αn(t) when shifted to a point in α′

n+1(t), lies below Eapprox
RT (t). Along with

Expression (5.6), this would guarantee that the entire curve α′
n+1(t) lies below

Eapprox
RT (t). This follows from the fact that Eapprox

RT (t) is convex (since s ≥ r).
The deadline assignment following this scheme is given by Algorithm 10.

To understand this algorithm, note that there are two different cases to be
considered when computing δn+1: (1) δn ≥ p, and therefore w′

n = (δn − p′)s,

5.4. Approximating the effective residual link capacity 167

which implies that w ′
n + wn+1 > pr, (2) δn < p, and therefore w′

n = δnr. For
schedulability, in Case (1) we require that,

(rn+1 + δn+1 − rn − p′)s ≥ w′
n + wn+1

Substituting w′
n by (δn − p′)s, this is equivalent to

δn+1 ≥ wn+1/s + rn + δn − rn+1

From Expression 5.6, it now follows that

δn+1 =

{
max{wn+1/r, wn+1/s + rn + δn − rn+1} if wn+1 < rp
wn+1/s + max{p − pr/s, rn + δn − rn+1} if wn+1 ≥ rp

In Case (2), the condition for schedulability depends on whether w ′
n + wn+1

is less than (Case (2a)) or greater than and equal to (Case (2b)) pr. If w′
n +

wn+1 < rp, then for schedulability we require that,

(rn+1 + δn+1 − rn)r ≥ w′
n + wn+1

Substituting w′
n by δnr, this is equivalent to

δn+1 ≥ wn+1/r + rn + δn − rn+1

Since in this case wn+1 < rp,

δn+1 = wn+1/r + max{0, rn + δn − rn+1}

If w′
n + wn+1 ≥ rp, for schedulability we require that,

(rn+1 + δn+1 − rn − p′)s ≥ w′
n + wn+1

Substituting w′
n by δnr, the above inequality is equivalent to

δn+1 ≥ wn+1/s + δnr/s + rn − rn+1 + p′

Combined with the two possible cases as given by Expression 5.6, δn+1, for this
subcase is given by

δn+1 =

{
max{wn+1/r, (wn+1 + δnr)/s + rn − rn+1 + p′} if wn+1 < rp
(wn+1 − pr)/s + p + max{0, δnr/s + rn − rn+1} if wn+1 ≥ rp

Following the same approach, for the deadline assignment to the (n + 2)-th
packet, α′

n+1(t) (which is obtained from αn(t), δ(n + 1), and wn+1) is approxi-
mated by αn+1(t), which is assumed to exactly coincide with Eapprox

RT .

168 Chapter 5. Scheduling a mix of real-time and best-effort traffic

δ

r

s

pp’ t

approx

RTE

Fig. 59: Approximating ERT (t) with a combination of two line segments of slope r and s (r <

s), shifted by δ.

5.4.4 With a combination of two line segments, shifted by δ

As the last case, we approximate the effective residual link capacity by a com-
bination of two line segments, but in this case, shifted by δ. This is shown in
Figure 59. The first segment has a slope equal to r, and the second has slope s,
with s > r. The two segments meet at a point whose t-coordinate is equal to p.

The effective residual link capacity is therefore given as follows.

Eapprox
RT (t) =




0 if t ≤ δ
(t − δ)r if δ < t < p
(t − p′)s if δ ≥ p

The t-intercept of the second line segment with slope s, as shown in Figure 59,
is equal to p′, which can be calculated to be equal to p − r(p−δ)

s
. Eapprox

RT there-
fore reduces to the case in Section 5.4.1 if δ = 0 and r = s, to the case in
Section 5.4.2 if r = s, and to the case in Section 5.4.3 if δ = 0. Again, the as-
sumption here is that δ, r, s and p are so chosen, such that Eapprox

RT (t) ≤ ERT (t)
for all t ≥ 0, and Eapprox

RT (t) is as close to ERT (t) as possible.
Algorithm 9 in the form

5.5 Experiments
In this section we describe our results from simulations modeling a 10MBit/sec
access link with six different traffic classes. Three real-time (RT) flows require
about two thirds of the link capacity. The single aggregated best-effort flow
is obtained from three additional non real-time flows (NRT) which fairly share
the residual link capacity by passing through a Weighted Fair Queuing (WFQ)
based scheduler before our deadline assignment for best-effort traffic is applied.
A detailed description of this mechanism along with the traffic flows, their cor-
responding link bandwidth requirements, and the approximations used for the
deadline assignment of best-effort traffic is given below. The experimental re-
sults are presented in Section 5.5.2.

5.5. Experiments 169

...

...

best-effort deadline
assignment

{

{
outgoing link

non real-time

real-time (RT) flows

(NRT) flows

packets

WFQ

EDF

Fig. 60: Hierarchical configuration of RT and NRT schedulers.

5.5.1 Network traffic characteristics

5.5.1.1 Arrival curves and scheduling parameters
The traffic generators used for our simulations greedily generate packets as soon
as they comply to a given TSpec-constrained [125] arrival curve as sketched
in Figure 10 of Chapter 2. The parameters for our set of flows are given in
Table 5. We distinguish three real-time and three non real-time flows. The real-
time transactions class resembles traffic with a low bandwidth but hard deadline
requirement to communicate with bandwidth brokers, bank applications, etc.
Contrary to that, the video class models a high-bandwidth video with frame
sizes considerably larger than the maximum packet length of 1536 Byte. A
particular burstiness is caused by varying frame lengths due to predictive inter-
or intraframe coding. Finally, the real-time voice class aggregates a couple of
constant-bit-rate voice sources. The three non real-time classes can also be
distinguished by varying burstiness and bandwidth requirements. For instance,
the NRT mail class forms the counterpart of the RT transactions class in the set
of non real-time flows since the mail class also generates moderately average
rates.

Table 5 also specifies the deadlines associated with real-time flows. Our
main EDF scheduler is hierarchically combined with a WFQ scheduler into
which the different best-effort flows are first fed (see Figure 60). The WFQ
scheduler as a result creates an ordering of the packets belonging to the differ-
ent best-effort flows and results in an aggregated best-effort flow. Our deadline
assignment for best-effort traffic is applied to packets belonging to this aggre-
gated flow, after the WFQ scheduler has determined the ordering. These packets
are then injected into the EDF part of the scheduler where they are scheduled
along with the other real-time packets. The effective residual link capacity is
therefore shared in a fair manner by scheduling the non real-time flows with the
WFQ-based scheduler. The corresponding weights used by the WFQ scheduler
are also stated in Table 5. The minimum packet length is bounded by 40 byte.
The link capacity is set to 10 MBit/sec to model a next-generation access link
from a home or an office to a service provider. Based on the parameters in
Table 5 we can now derive the effective residual link capacity as shown in Fig-

170 Chapter 5. Scheduling a mix of real-time and best-effort traffic

0.0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

effective
residual link

capacity

sum of reservations
by real-time flows

shifted line approximation:
0.015 sec shift, 370530 byte/sec slope

two line approximation:
358530 byte/sec and 450000 byte/sec slopes,
change at 0.463 sec

service
[byte/sec]

link service

time interval length [sec]

Fig. 61: Deadline assignment approximations for best-effort traffic.

ure 61. In addition, the two different approximations of the effective residual
capacity used for our simulations are also sketched in this figure.

Tab. 5: TSpec description of traffic flows, see parameters in Fig. 10.

flow class b [byte], r [byte/sec] M [byte], p [byte/sec] deadline [msec]
RT transactions 45000, 50000 700, 150000 20
RT video 15000, 600000 1536, 800000 30
RT voice 300, 150000 100, 250000 5

flow class b [byte], r [byte/sec] M [byte], p [byte/sec] WFQ weight
NRT ftp 30720, 150000 1536, 250000 0.5
NRT http 50000, 100000 1536, 150000 0.2
NRT mail 12288, 46080 1536, 100000 0.1

5.5.1.2 Traffic generators
Since our sources generate traffic greedily according to TSpec descriptions,
some more parameters are required so that we do not quickly end up in the
steady section of the TSpec curve but see some burstiness at the output. We

5.5. Experiments 171

therefore consider periods when a generator is idle and not producing any pack-
ets and when the generator is enabled. We call the corresponding intervals burst
length and burst spacing periods respectively. The parameters used for our sim-
ulations are given in Table 6. N(avg, dev) stands for a normal distribution with
mean avg and standard deviation dev and U(l, r) denotes a uniform distribu-
tion in the interval [l, r). Packet lengths are rounded to the next integer. Packet
lengths below 40 Byte are rounded up to 40 Byte and lengths above 1536 Byte
are round off to 1536 Byte. The fact that we use sources with a mean packet
length above the maximum packet length leads to sequences of packets with
maximum length followed by just a single or a couple of packets of smaller
length. This behavior imitates the transmission of files larger than the maximum
packet length which are therefore distributed over several packets. Moreover,
we allow all non real-time flows to excessively use the maximum packet length
to increase the negative effect on real-time flows due to non-preemptive link
scheduling.

Tab. 6: Traffic generator parameters.

flow class packet length [byte] burst length [ms] burst spacing [ms]
RT transactions N(300, 50) U(5, 35) U(50, 800)
RT video N(1700, 200) U(50, 100) U(10, 20)
RT voice 100 U(2, 4) U(6, 10)
NRT ftp N(1700, 200) U(10, 700) U(100, 300)
NRT http N(1700, 200) U(50, 400) U(50, 200)
NRT mail N(1700, 200) U(5, 50) U(100, 300)

5.5.2 Results

The results for the maximum and the average delay experienced by packets of
the flows are given in the Tables 7 and 8. We have simulated the network node
through which the traffic flows are passing, for a period of six minutes, which
corresponds to about 5 × 105 processed packets. The first column shows the
results for a plain best-effort (BE) scheme where best-effort traffic is transmit-
ted only if the EDF scheduler is idle (i.e. there is no backlog from real-time
flows). This column is used as a reference for a comparison with our two ap-
proximations. The second column states the results for a deadline assignment
for best-effort traffic using our simple approximation of the effective residual
link capacity by a shifted straight line (from Section 5.4.2). The third column
shows the delay values corresponding to the more involved approximation using
two line segments (from Section 5.4.3).

From the simulations it is obvious that a noticeable benefit can be gained
even from the application of the very simple linear approximation of the effec-
tive residual link capacity that was presented in Section 5.4.2 to improve the

172 Chapter 5. Scheduling a mix of real-time and best-effort traffic

Tab. 7: Maximum delay experienced by flows within 360sec period, given in msec.
flow class plain BE scheme shifted line approx. two line approx.
RT transactions 2.11 / 100% 3.36 / 159% 5.73 / 272%
RT video 3.48 / 100% 9.95 / 286% 13.97 / 401%
RT voice 1.31 / 100% 1.31 / 100% 2.54 / 194%
NRT ftp 21.95 / 100% 14.25 / 65% 7.56 / 34%
NRT http 21.29 / 100% 16.14 / 76% 11.14 / 52%
NRT mail 28.82 / 100% 22.84 / 79% 16.69 / 58%

Tab. 8: Average delay experienced by flows within 360sec period, given in msec.
flow class plain BE scheme shifted line approx. two line approx.
RT transactions 0.77 / 100% 0.86 / 117% 1.00 / 130%
RT video 1.52 / 100% 1.83 / 120% 1.88 / 124%
RT voice 0.53 / 100% 0.53 / 100% 0.62 / 117%
NRT ftp 2.50 / 100% 1.87 / 75% 1.73 / 69%
NRT http 2.61 / 100% 1.93 / 74% 1.78 / 68%
NRT mail 3.61 / 100% 2.28 / 63% 1.97 / 55%

response time for best-effort traffic. If we are able to afford the more involved
approximation using two segments, then further improvement in the delays ex-
perienced by the best-effort traffic can be achieved. From the results, it is also
possible to recognize that the real-time traffic with the most loose deadline (RT
video) experiences the largest slow down. Of course, in spite of the injection of
the best-effort traffic with deadlines into the EDF scheduler, none of the dead-
lines associated with the real-time traffic are missed. This is because we only
exploit the inherent mobility (in time) of the real-time packets due to the unused
link capacity. The representations of the simulation trace in Figures 62 and 63
underpins the positive effect of our algorithm on the responsiveness for the non
real-time flows. For readability reasons, only two selected flows are displayed.

Note that the maximum delay experienced by some of the best-effort traffic
improves by almost 65%, whereas the average delay improves by almost 45%
in some cases. In the case of best-effort flows like sporadic http requests such
benefits can be immediately perceived, proving the effectiveness of our sched-
uler.

5.6 Summary
In this chapter we presented a packet scheduling algorithm to improve the re-
sponse time of best-effort packets in the presence of real-time traffic flows. Al-
though this algorithm is infeasible to implement in practise, we presented sev-

5.6. Summary 173

end-to-end
packet delay
[sec]

x 10
-2

x 10
-2

2x 10 2x 10
simulation time [sec] simulation time [sec]

approximation with two segmentsapproximation with a single segment

plain best effort + EDF scheme

NRT ftp flow

RT video flow

NRT ftp flow

RT video flowRT video flow

a)

b) c)

Fig. 62: Comparison of the delay experienced by two (out of the six) selected flows using our
different approximation schemes for best-effort service. (a) The delays experienced
by a RT and a NRT flow when NRT packets are served only when no RT packets are
present at the scheduler. (b) The delays experienced when our approximation scheme
in Section 5.4.2 is used. (c) Further improvement in the delay experienced by the NRT
flow using our approximation scheme in Section 5.4.3.

eral approximations based on this optimal algorithm, which represent tradeoffs
between complexity and performance. All of our algorithms exploit the mobil-
ity in time of real-time packets with deadlines relatively far in the future to inject
best-effort packets into the scheduler without violating any real-time deadlines.
Thus, we reduce the delay experienced by non real-time flows since we do not
require the EDF scheduler to be idle before best-effort traffic is eligible for ser-
vice. Our experiments used a combination of WFQ and EDF schedulers. WFQ
was used to fairly distribute the remaining link bandwidth among the different
best-effort flows, and EDF was used as an overall scheduling strategy to benefit
from its larger schedulability region compared to WFQ.

We are aware of improved EDF-based scheduling disciplines such as service
curve-based EDF (SCED [123]) and would like to point here that our deadline
assignment for best-effort traffic can also be applied to this case by calculating
the effective residual link capacity based on the schedulability test of SCED
(eq. (14) in [123]). In the same way it is possible to refine the definition of fair
shares for best-effort flows by using the Fair Service Curve approach in [110].

174 Chapter 5. Scheduling a mix of real-time and best-effort traffic

end-to-end
packet delay
[sec]

x 10
-2

x 10
-2

simulation time [sec] simulation time [sec]

approximation with a single segment approximation with two segments

plain best effort + EDF scheme

RT video flow

NRT ftp flow

NRT ftp flow

NRT ftp flow

RT video flowRT video flow

c)b)

a)

Fig. 63: Comparison of the delay experienced by the two selected flows shown in Figure 62
Here an excerpt from the simulation trace given in Figure 62 is shown.

6
Concluding remarks

In this thesis we looked into several issues related to timing analysis and
scheduling for embedded packet processing devices. These devices have
emerged only very recently, to manage the growing complexity of packet pro-
cessing tasks and to support high line speeds. Both these aspects—timing analy-
sis and scheduling—have already been widely studied in the context of system-
level design of traditional embedded systems. However, these studies have
largely focussed on data-dominated applications like digital signal processing
and the developed techniques do not directly hold for control-dominated appli-
cations like packet processing. We have identified the main differences between
these two classes, and motivated by these differences we proposed a model for
tasks and architectures, especially suited to capture the characteristics of one
particular class of control-dominated applications: network packet processing.

Based on these models, we then proposed several algorithms for analysing
the hardware and software architectures of packet processors. In this regard, the
main results that we have obtained can be summarized as follows.

• We posed the problem of determining the feasibility of a mapping of the dif-
ferent packet processing tasks onto the different architectural components of
a packet processor, as a schedulability analysis problem. This was motivated
by the fact that any feasible mapping should (i) be able to process packets at
line speed, and (ii) the QoS requirements associated with the different real-time
packet flows (such as those arising from voice or video processing applications)
show be satisfied.

Our underlying model for the schdulability analysis problem was based on
a very recently proposed real-time task model called the recurring real-time
task model [15]. However, known the schedulability analysis problem for this
model had exponential complexity and no hardness results for this problem was

176 Chapter 6. Concluding remarks

known. We showed that the schedulability analysis problem in our model is
NP-hard, but can be solved in pseudo-polynomial time. These results also carry
over to the recurring real-time task model and answer several questions that
were raised in [15].

Further, we introduced a novel concept called approximate schedulability anal-
ysis, using which the schedulability problem can be solved in polynomial time
if a small error in the decisions made by the algorithm is allowed. Using this
concept, we were able to demonstrate that in spite of the intractability of schedu-
lability analysis for the proposed model, it can nevertheless be solved in reason-
able (polynomial) time for all practical purposes. We also showed that this
concept is not only restricted to the proposed model, but is applicable to a wide
variety of other real-time task models for which only exponential or pseudo-
polynomial time algorithms were known till now.

One of the most important “plus-points” of our theoretical results is that, in con-
trast to many approximation algorithms developed in the context optimization
algorithms [79], our algorithms are implementable and lead to clear improve-
ments in running time by several factors when compared to the exponential or
pseudo-polynomial time algorithms.

• For system-level timing analysis, we have considered the theory of real-time
calculus, which was first proposed by Thiele et al. in [145], and used for
analysing packet processing architectures in [142, 143]. Using this theory, along
with a model of tasks, architectures and packet flows, it is possible to answer
questions about system-level timing, which in turn lead to insights about dif-
ferent system properties of a packet processor, such as the on-chip and off-chip
memory requirements and the load generated on the different processing and
communication resources.

We extended this work in two ways. Firstly, we showed that the results de-
rived with the framework composed of the task, resource, and flow models,
and the real-time calculus, generalizes many results from the real-time systems
area. Secondly, using detailed experiments we showed that the results from this
framework also compare well with detailed cycle-accurate simulations. Based
on this, we then proposed a methodology for the design space exploration of
packet processing architectures to take into account the large design space in-
volved.

• Traffic management is one of the main functions of any packet processor, es-
pecially in the case of routers. Often, the requirement is that the link scheduler
show be so designed, that the packets from all real-time flows are sent out in a
timely fashion, but at the same time, the best-effort flows also maintain a rea-
sonable throughput. In this context, we proposed a novel scheduler which takes
into account the time constraints associated with packets belonging to real-time
flows, but at the same time provides the “best-possible service” to non-real-time
or best effort flows. We formalized this concept of “best-possible service” and
showed that in the context of the proposed scheduler, there can be theoretical

6.1. Future work 177

guarantees gives on this. It turned out that the theory behind our scheduler gen-
eralizes a number of service schemes developed in the real-time systems area for
integrating soft-real-time jobs into a hard-real-time environment, in the context
of processor scheduling.

The experimental results obtained by implementing the proposed scheduler on
a realistic mix of different classes of traffic showed that it leads to significant
improvements in the service received by best-effort packets, when compared to
the usual policy of simply assigning all best-effort traffic classes the lowest pri-
ority. In the context of access networks, where there can be flows comprised of
sporadic http requests, the improvements achieved by our scheduler are clearly
perceivable.

All of the above results apart from being interesting in the context of net-
work packet processors, also integrate and generalize models and algorithms
existing in the areas of real-time systms, networking, and system-level design.

6.1 Future work
Our work also gives rise to several new questions, and there also exist possibil-
ities for improving some of the results we have presented. A few of these are
listed below.

• The algorithms for schedulability analysis that we presented did not make any
special assumptions about the task graphs—they were considered to be gen-
eral directed acyclic graphs. Although, be believe that this is not an over-
generalization, since task graphs arising in the context of packet processing
applications can be arbitrarily complex, it might nevertheless be interesting to
see if more efficient algorithms can be designed for restricted classes of task
graphs. One reasonable possibility would be to assume that the different pos-
sible branches are annotated with probabilities, each indicating the probability
that the branch is taken. Such probabilities can be derived from profiling the
code corresponding to the application being analysed. The question here would
then be to find if the complexity of the schedulability analysis can be improved,
if we can tolerate some vertices missing their deadlines with low probability.
This is in contrast to the nature of the error our algorithms currently make—
some vertices can miss their deadlines, but not by a large amount of time.

There might also be other possibilities for improvement. For example, the
(pseudo-polynomial) upper bound on the maximum number of tests to check
if the sum of the demand-bound functions for any time interval of length t,
exceed t, is a worst-case bound. For any given problem instance, the num-
ber of changes in the sum of the demand-bound function can actually be much
smaller. We showed this in the context of a restricted task model, where the re-
curring behaviour of the task graphs were not taken into account. But it would
be interesting to investigate this possibility and exploit it in the general setup.

178 Chapter 6. Concluding remarks

• There are several open issues to be investigated in the context of the framework
for timing analysis that we considered in Chapter 4. Firstly, the bounds that are
currently known for specifying the output characteristics of a packet stream in
terms of its input characteristics, are not tight for many scheduling disciplines—
policies like FCFS can not be reasonably modeled because the known bounds
are too loose.

Secondly, in the current setup, the characteristics of an output packet stream in
terms of its input characteristics is determined from the scheduling discipline
and the other packet streams that are also being processed by the resource. It
would be interesting to see if a more more general system-theoretic approach
can be developed, where the processor characteristics are specified as a function
which transform an input packet stream into an output stream.

In the context of the framework for design space exploration presented in the
same chapter, there are several possibilities for extension. Firstly, in the case
of any heterogeneous architecture, not all architectural components might be
amenable to analysis using the analytical method. This is especially true for
caches, since the performance in this case is dependent on data locality which
is difficult to model in our framework. It would therefore be natural to have
a performance evaluation framework where some architectural components are
evaluated using simulation based approaches, while others are evaluated using
analytical models. In connection to this, it should also be investigated how a
design space exploration methodology should incorporate such a hybrid evalu-
ation framework.

Secondly, it might be noted that the framework considers abstract models of
network traffic—each arrival curve captures an entire class of trafic flows, all
of which have certain properties which are same and are captured by the pa-
rameters in the arrival curve. This is in contrast to simulation based approaches
where only traffic traces are used. Based on the performance of an architecture
on one trace, no theoretical guarantees about the architecture can be given in
terms of an entire class of traces. Following this same approach, it might be in-
vestigated if it is possible to formulate such an abstraction for the architectures
as well, and then perform a symbolic design space exploration.

• In the context of the integrated scheduling of real-time and best-effort traffic,
one possible direction for further work would be to put the algorithms in a more
general framework. Presently, the top level scheduler is based on EDF, and the
basic principle behind the algorithm is to exploit the deadline-slack for the real-
time packets and insert best-effort packets by postponing the transmission of
real-time packets.

In [58], a framework was presented for general deadline-ordered service dis-
ciplines (EDF is one particular case of a deadline-ordered service discipline).
Using this framework, it might be possible generalize our proposed algorithm,
such that it would be possible to compute the slack in the case of any deadline-
ordered scheduling policy and then use this slack to serve best-effort packets.

Bibliography

[1] L. Abeni and G.C. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proc. 19th IEEE Real-Time Systems Symposium,
pages 4–13. IEEE Computer Society Press, 1998.

[2] L. Abeni, G. Lipari, and G.C. Buttazzo. Constant bandwidth vs propor-
tional share resource allocation. In Proc. IEEE International Conference
on Multimedia Computing and Systems, volume 2, pages 107–111, 1999.

[3] S.G. Abraham, B.R. Rau, and R. Shreiber. Fast design space exploration
through validity and quality filtering of subsystem designs. Technical
Report HPL-2001-220, Compiler and Architecture Research Program,
Hewlett Packard Laboratories, August 2000.

[4] A. Agarwal. Performance tradeoffs in multithreaded processors.
IEEE Transactions on Parallel and Distributed Systems, 3(5):525–539,
September 1992.

[5] J. Allen, B. Bass, C. Basso, R. Boivie, J. Calvignac, G. Davis,
L. Freléchoux, M. Heddes, A. Herkersdorf, A. Kind, J. Logan, M. Peyra-
vian, M. Rinaldi, R. Sabhikhi, M. Siegel, and M. Waldvogel. PowerNP
network processor: Hardware, software and applications. IBM J. Res. &
Dev., 2003 (to appear).

[6] Alpha Architecture Reference Manual, Digital Press, 1992.

[7] AMBA specification overview, ARM.
http://www.arm.com/pro+peripherals/amba/.

[8] F. Arts, P. Barri, I. Clemminck, A. Niemegeers, B. Pauwels, G. Tailde-
man, and M. Vrana. Network processor requirements and benchmarking.
Computer Networks, 41(5):549–562, April 2003.

[9] ATM Forum Technical Committee. ATM user-network interface (UNI)
specification version 3.1, September 1994.

[10] S. Audenaert and P. Chandra (NPF Benchmarking Work-
ing Group co-chairs. Network processors benchmark framework.
http://www.npforum.org/.

180 Bibliography

[11] N.C. Audsley, K.W. Tindell, and A. Burns. The end of the line for static
cyclic scheduling? In Proc. Euromicro Conf. on Real-Time Systems,
Finland, 1993. IEEE Computer Society Press.

[12] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara. Hardware-Software Co-Design of Embedded Systems: The
Polis Approach. Kluwer Academic Publishers, 1997.

[13] S. Baruah. Feasibility analysis of recurring branching tasks. In Proc.
10th Euromicro Workshop on Real-Time Systems, pages 138–145, Berlin,
Germany, 1998.

[14] S. Baruah. Personal communication, Department of Computer Science,
University of North Carolina at Chapel Hill, February 2002.

[15] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time
tasks. Real-Time Systems, 24(1):93–128, January 2003.

[16] S. Baruah, D. Chen, S. Gorinsky, and A.K. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999.

[17] S. Baruah, A.K. Mok, and L.E. Rosier. The preemptive scheduling of
sporadic, real-time tasks on one processor. In Proc. 11th IEEE Real-Time
Systems Symposium (RTSS), pages 182–190, Orlando, Florida, 1990.
IEEE Computer Society Press.

[18] A. Bavier and L.L. Peterson. BERT: A scheduler for best effort and
real-time tasks. Technical Report TR-602-99, Department of Computer
Science, Princeton University, 2001.

[19] J.C.R. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair
queueing. In Proc. IEEE INFOCOM, volume 1, pages 120–128, 1996.

[20] J.C.R. Bennett and H. Zhang. Hierarchical packet fair queueing algo-
rithms. IEEE/ACM Transactions on Networking, 5(5):675–689, October
1997.

[21] R.A. Bergamaschi, S. Bhattacharya, R. Wagner, C. Fellenz, M. Muhlada,
W.R. Lee, F. White, and J-M. Daveau. Automating the design of SoCs
using cores. IEEE Design & Test of Computers, 18(5):32–45, 2001.

[22] J.-Y. Le Boudec and P. Thiran. Network Calculus - A Theory of Deter-
ministic Queuing Systems for the Internet. Lecture Notes in Computer
Science 2050, Springer Verlag, 2001.

[23] B. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet
architecture: an overview. Request for Comments 1633, Internet Engi-
neering Task Force (IETF), June 1994.

Bibliography 181

[24] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt. Ptolemy: A frame-
work for simulating and prototyping heterogeneous systems. Intl. Jour-
nal of Computer Simulation, 4:155–182, 1994.

[25] D.C. Burger and T.M. Austin. The SimpleScalar tool set. Technical
Report CS-TR-1997-1342, University of Wisconsin, Madison, 1997.

[26] G.C. Buttazzo and F. Sensini. Optimal deadline assignment for schedul-
ing soft aperiodic tasks in hard real-time environments. IEEE Transac-
tions on Computers, 48(10):1035–1052, October 1999.

[27] W. Bux, W.E. Denzel, T. Engbersen, A. Herkersdorf, and R.P. Luijten.
Technologies and building blocks for fast packet forwarding. IEEE Com-
munications Magazine, 39(1):70–77, January 2001.

[28] S. Chakraborty, T. Erlebach, S. Künzli, and L. Thiele. Schedulability
of event-driven code blocks in real-time embedded systems. In Proc.
39th Design Automation Conference (DAC), pages 616–621, New Or-
leans, LA, June 2002. ACM Press.

[29] S. Chakraborty, T. Erlebach, and L. Thiele. On the complexity of schedul-
ing conditional real-time code. In Proc. 7th International Workshop on
Algorithms and Data Structures (WADS), Lecture Notes in Computer
Science 2125, pages 38–49. Springer Verlag, 2001.

[30] S. Chakraborty, M. Gries, and L. Thiele. Supporting a low delay best-
effort class in the presence of real-time traffic. In Proc. 8th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 45–54, San Jose, California, September 2002. IEEE Press.

[31] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability
analysis. In Proc. 23rd IEEE International Real-Time Systems Sym-
posium (RTSS), pages 159–168, Austin, Texas, December 2002. IEEE
Press.

[32] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Proc. 6th Design, Automation and Test in Europe (DATE), Munich,
Germany, March 2003.

[33] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.
Performance evaluation of network processor architectures: Combining
simulation with analytical estimation. Computer Networks, 41(5):641–
665, April 2003.

[34] P.R. Chandra, F. Hady, R. Yavatkar, T. Bock, M. Cabot, and P. Mathew.
Benchmarking network processors. In Crowley et al. [47], chapter 2,
pages 11–25. A preliminary version of this paper appeared in the Proc.

182 Bibliography

1st Workshop on Network Processors, held in conjunction with the 8th
International Symposium on High-Performance Computer Architecture,
Cambridge, Massachusetts, 2002.

[35] C.S. Chang. Stability, queue length and delay, Part 1: Deterministic queu-
ing networks. Technical Report RC 17708, IBM, 1992.

[36] C.S. Chang. Performance Guarantees in Communication Networks.
Springer-Verlag, 2000.

[37] H.J. Chao and J.S. Hong. Design of an ATM shaping multiplexer with
guaranteed output burstiness. Int. J. Comput. Syst. Sci. & Eng., (Special
issue on ATM Switching), 12(2):131–141, 1997.

[38] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling
algorithm. IEEE Transactions on Software Engineering, 15(10):1261–
1269, 1989.

[39] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of real-
time tasks under precedence constraints. Real-Time Systems, 2:181–194,
1990.

[40] K.-H. Cho and H. Yoon. Design and analysis of a fair scheduling algo-
rithm for QoS guarantees in high-speed packet-switched networks. In
Proc. IEEE International Conference on Communications (ICC), vol-
ume 3, pages 1520–1525, 1998.

[41] Y.-P. Chu and E-H. Hwang. A new packet scheduling algorithm: min-
imum starting-tag fair queueing. IEICE Transactions on Communica-
tions, E80-B(10):1529–1536, October 1997.

[42] N. Cravotta. Network processors: The sky is the limit. EDN-Magazine,
US-edition, 44(24):108–119, November 1999.

[43] P. Crowley and J-L. Baer. A modeling framework for network processor
systems. In Crowley et al. [47], chapter 8, pages 167–188. A preliminary
version of this paper appeared in the Proc. 1st Workshop on Network
Processors, held in conjunction with the 8th International Symposium on
High-Performance Computer Architecture, Cambridge, Massachusetts,
2002.

[44] P. Crowley, M. Fiuczynski, and J.-L. Baer. On the performance of
multithreaded architectures for network processors. Technical Report
2000-10-01, Department of Computer Science, University of Washing-
ton, 2000.

[45] P. Crowley, M.E. Fiuczynski, J-L. Baer, and B.N. Bershad. Workloads for
programmable network interfaces. In Proc. 2nd Annual IEEE Workshop
on Workload Characterization, Austin, TX, October 1999. Also appears

Bibliography 183

as Chapter 7, in Workload Characterization for Computer System Design,
Kluwer Academic Publishers, 2000.

[46] P. Crowley, M.E. Fiuczynski, J-L. Baer, and B.N. Bershad. Character-
izing processor architectures for programmable network interfaces. In
Proc. International Conference on Supercomputing, pages 54–65, Santa
Fe, 2000.

[47] P. Crowley, M.A. Franklin, H. Hadimioglu, and P.Z. Onufryk, editors.
Network Processor Design: Issues and Practices, Volume 1. Morgan
Kaufmann Publishers, San Francisco, CA, 2003.

[48] R.L. Cruz. A calculus for network delay, Part I: Network elements in iso-
lation. IEEE Transactions on Information Theory, 37(1):114–131, 1991.

[49] R.L. Cruz. A calculus for network delay, Part II: Network analysis. IEEE
Transactions on Information Theory, 37(1):132–141, 1991.

[50] J.A. Darringer, R.A. Bergamaschi, S. Bhattacharya, D. Brand, A. Herk-
ersdorf, J.K. Morrell, I.I. Nair, P. Sagmeister, and Y. Shin. Early analysis
tools for system-on-a-chip design. IBM J. Res. & Dev., 46(6):691–707,
November 2002.

[51] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed
priority preemptive systems. In Proc. Real-Time Systems Symposium,
pages 222–231, 1993.

[52] D. de Niz and R. Rajkumar. Chocolate: A reservation-based real-time
java environment on windows/nt. In Proc. 6th IEEE Real Time Technol-
ogy and Applications Symposium, 2000.

[53] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. Internetworking: Research and Experience, 1(1):3–
26, September 1990.

[54] G. Dittmann. Personal communication, IBM Zürich Research Labora-
tory, Switzerland, November 2002.

[55] G. Dittmann and A. Herkersdorf. Network processor load balancing for
high-speed links. In Proc. International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS),
pages 727–735, San Diego, California, July 2002.

[56] G. Dittmann and A. Herkersdorf. Design methodology for control-
dominated ASIPs, 2003. Unpublished manuscript.

[57] R. Ernst. Codesign of embedded systems: Status and trends. IEEE De-
sign & Test of Computers, pages 45–54, April 1998.

184 Bibliography

[58] N.R. Figueira and J. Pasquale. A schedulability condition for deadline-
ordered service disciplines. IEEE/ACM Transactions on Networking,
5(2):232–244, 1997.

[59] M.A. Franklin and T. Wolf. A network processor performance and de-
sign model with benchmark parameterization. In Crowley et al. [47],
chapter 6, pages 117–140. A preliminary version of this paper appeared
in the Proc. 1st Workshop on Network Processors, held in conjunction
with the 8th International Symposium on High-Performance Computer
Architecture, Cambridge, Massachusetts, 2002.

[60] M.A. Franklin and T. Wolf. Power considerations in network processor
design. In Proc. 2nd Workshop on Network Processors, held in conjunc-
tion with the 9th International Symposium on High-Performance Com-
puter Architecture, USA, March 2003.

[61] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design
of Embedded Systems. Prentice Hall, Englewood Cliffs, N.J., 1994.

[62] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[63] L. Georgiadis, R. Guérin, and A.K. Parekh. Optimal multiplexing on a
single link: delay and buffer requirements. IEEE Transactions on Infor-
mation Theory, 43(5):1518–1535, September 1997.

[64] L. Georgiadis, R. Guérin, V. Peris, and Kumar N. Sivarajan. Efficient
network QoS provisioning based on per node traffic shaping. IEEE/ACM
Transactions on Networking, 4(4):482–501, August 1996.

[65] L. Geppert. The new chips on the block [network processors]. IEEE
Spectrum, 38(1):66–68, January 2001.

[66] T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling
environment. Real-Time Systems, 9(1):31–67, 1995.

[67] T. Givargis, F. Vahid, and J. Henkel. System-level exploration for pareto-
optimal configurations in parameterized system-on-a-chip. In Proc. In-
ternational Conference on Computer-Aided Design (ICCAD), San Jose,
2001. Also to appear in the IEEE Transactions on Very Large Scale Inte-
gration Systems.

[68] S.J. Golestani. A self-clocked fair queueing scheme for broadband ap-
plications. In Proc. IEEE INFOCOM, volume 2, pages 636–646, June
1994.

Bibliography 185

[69] P. Goyal, H.M. Vin, and H. Cheng. Start-time fair queuing: a scheduling
algorithm for integrated services packet switching networks. Computer
Communication Review, 26(4):157–168, October 1996.

[70] M. Gries. Algorithm-Architecture Trade-offs in Network Processor De-
sign. PhD thesis, Computer Engineering and Networks Laboratory, Swiss
Federal Institute of Technology (ETH) Zürich, 2001.

[71] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Comparing analyti-
cal modeling with simulation for network processors: A case study. In
Proc. of the Designer’s Forum at the 6th Design, Automation and Test in
Europe (DATE), Munich, Germany, March 2003.

[72] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Exploring trade-offs
in performance and programmability of processing element topologies
for network processors. In Proc. 2nd Workshop on Network Proces-
sors, held in conjunction with the 9th International Symposium on High-
Performance Computer Architecture, USA, March 2003.

[73] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with Sys-
temC. Kluwer Academic Publishers, Boston, May 2002.

[74] R. Guérin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS provi-
sion through buffer management. Computer Communication Review,
28(4):29–40, October 1998.

[75] R. Haas, C. Jeffries, L. Kencel, A. Kind, B. Metzler, R. Pletka, M. Wald-
vogel, L. Freléchoux, and P. Droz. Creating advanced functions on net-
work processors: Experience and perspectives. manuscript, November
2002.

[76] E.L. Hahne and R.G. Gallager. Round robin scheduling for fair flow
control in data communication networks. In Proc. IEEE International
Conference on Communications, volume 1, pages 103–107. IEEE, New
York, NY, USA, 1986.

[77] J. Heinanen and R. Guérin. A two rate three color marker. Request
for Comments 2698, Internet Engineering Task Force (IETF), September
1999.

[78] D. Herity. Network processor programming. Embedded Systems Pro-
gramming, 14(8):33–52, 2001.

[79] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Prob-
lems. PWS Publishing Company, Boston, MA, 1997.

[80] Blue Logic technology, IBM.
http://www.chips.ibm.com/bluelogic/.

186 Bibliography

[81] Coreconnect bus architecture, IBM.
http://www.chips.ibm.com/products/coreconnect/.

[82] J.W. Janneck. Syntax and Semantics of Graphs: An approach to the
specification of visual notations for discrete-event systems. PhD thesis,
Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zürich, Switzerland, June 2000.

[83] J.W. Janneck and M. Naedele. Modeling hierarchical and recursive struc-
tures using parametric petri nets. In Proc. High Performance Computing
(HPC), pages 445–452, San Diego, 1999.

[84] K. Jeffay and D. Bennett. A rate-based execution abstraction for mul-
timedia computing. In Proc. 5th International Workshop on Network
and Operating System Support for Digital Audio and Video, LNCS 1018,
pages 64–75, 1995.

[85] K. Jeffay and S. Goddard. Rate-based resource allocation models for
embedded systems. In Proc. 1st Workshop on Embedded Software (EM-
SOFT), LNCS 2211, pages 204–222. Springer-Verlag, 2001.

[86] M.B. Jones, D. Rosu, and M-C. Rosu. CPU reservations and time con-
straints: Efficient, predictable scheduling of independent activities. In
Proc. 16th ACM Symposium on Operating System Principles, pages 198–
211, 1997.

[87] C.R. Kalmanek, H. Kanakia, and S. Keshav. Rate controlled servers for
very high-speed networks. In Proc. GLOBECOM, volume 1, pages 12–
20. IEEE, New York, NY, USA, 1990.

[88] S. Karlin. Embedded Computational Elements in Extensible Routers.
PhD thesis, Department of Computer Science, Princeton University, Jan-
uary 2003.

[89] S. Karlin and L. Peterson. VERA: An extensible router architecture.
Computer Networks, 38(3):277–293, February 2002.

[90] V. Kathail, S. Aditya, R. Schreiber, B.R. Rau, D.C. Cronquist, and
M. Sivaraman. PICO: Automatically designing custom computers. IEEE
Computer, 35(9):39–47, September 2002.

[91] L. Kencel and J-Y. Le Boudec. Adaptive load sharing for network pro-
cessors. In Proc. IEEE INFOCOM, June 2002.

[92] K. Keutzer, S. Malik, R. Newton, J.M. Rabaey, and A. Sangiovanni-
Vincentelli. System level design: Orthogonolization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design,
19(12), 2000.

Bibliography 187

[93] E. Kohler. The Click Modular Router. PhD thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 2000.

[94] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek. The Click
modular router. ACM Transactions on Computer Systems, 18(3):263–
297, 2000.

[95] D.C. Ku and G. De Micheli. High-level Synthesis of ASICs under Timing
and Synchronization Constraints. Kluwer Academic Publishers, Boston,
MA, 1992.

[96] K. Lahiri, A. Raghunathan, and S. Dey. System level performance anal-
ysis for designing on-chip communication architectures. IEEE Trans. on
Computer Aided-Design of Integrated Circuits and Systems, 20(6):768–
783, 2001.

[97] E.A. Lee. Overview of the ptolemy project. Technical Memorandum
UCB/ERL M01/11, March 2001. University of California, Berkeley.

[98] J.P. Lehoczsky and S. Ramos-Thuel. An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems. In Proc.
Real-Time Systems Symposium, pages 110–123, 1992.

[99] J.P. Lehoczsky, L. Sha, and J.K. Strosnider. Enhanced aperiodic respon-
siveness in hard real-time environments. In Proc. Real-Time Systems
Symposium, pages 261–270, 1987.

[100] J. Liebeherr, D.E. Wrege, and D. Ferrari. Exact admission control for
networks with a bounded delay service. IEEE/ACM Transactions on Net-
working, 4(6):885–901, 1996.

[101] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[102] National Laboratory for Applied Network Research (NLANR), Traces
collected in June 2000, http://pma.nlanr.net/pma/.

[103] H. De Man, I. Bolsens, B. Lin, K. van Rompaey, S. Vercauteren, and
D. Verkest. Co-design of DSP systems. In G. De Micheli and M. Sami,
editors, Hardware/Software Co-Design, pages 75–104. Kluwer Aca-
demic Publishers, 1996.

[104] G. Memik, W. Mangione-Smith, and W. Hu. NetBench: A benchmarking
suite for network processors. In Proc. Intl. Conference on Computer
Aided Design (ICCAD), pages 39–42, 2001.

188 Bibliography

[105] A.K. Mok. Fundamental Design Problems of Distributed Systems for
the Hard-Real-Time Environment. PhD thesis, Laboratory for Computer
Science, MIT, 1983. Available as Technical Report No. MIT/LCS/TR-
297.

[106] A.K. Mok and D. Chen. A multiframe model for real-time tasks. In Proc.
17th Real-Time Systems Symposium (RTSS), Washington, D.C., 1996.
IEEE Computer Society Press.

[107] A.K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE
Transactions on Software Engineering, 23(10):635–645, 1997.

[108] The Moses project: Modeling, Simulation, and Evaluation of
Systems, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH) Zürich, Switzerland.
http://www.tik.ee.ethz.ch/∼moses.

[109] J.B. Nagle. On packet switches with infinite storage. IEEE Transactions
on Communications, 35(4):435–438, April 1987.

[110] T. S. E. Ng, D. Stephens, I. Stoica, and H. Zhang. Supporting best-effort
traffic with Fair Service Curve. In GLOBECOM’99, pages 1799–1807,
December 1999.

[111] J. Nieh and M.S. Lam. The design, implementation and evaluation of
SMART: A scheduler for multimedia applications. In Proc. 16th ACM
Symposium on Operating System Principles, pages 184–197, 1997.

[112] A. Österling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, and W. Ye.
Hardware/Software Co-Design: Principles and Practice, chapter The
COSYMA System. Kluwer Academic Publishers, 1997.

[113] A.K. Parekh. A Generalized processor sharing approach to flow control
in integrated services networks. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1992. Number LIDS-TH-2089.

[114] A.K. Parekh and R.G. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: The single-node
case. IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

[115] A.K. Parekh and R.G. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: The multiple
node case. IEEE/ACM Transactions on Networking, 2(2):137–150, April
1994.

[116] P.G. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A system-level
exploration platform for network processors. IEEE Design & Test of
Computers, pages 17–26, November–December 2002.

Bibliography 189

[117] M. Peyravian and J. Calvignac. Fundamental architectural considerations
for network processors. Computer Networks, 41(5):587–600, April 2003.

[118] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and E.F.
Deprettere. Exploring embedded-systems architectures with Artemis.
IEEE Computer, 34(11):57–63, November 2001.

[119] IBM PowerNP NPe405 Embedded Processors.
http://www-3.ibm.com/chips/techlib/techlib.nsf/
products/PowerNP NPe405 Embedded Processors.

[120] B.R. Rau and M.S. Schlansker. Embedded computer architecture and
automation. IEEE Computer, 34(4):75–83, April 2001.

[121] K. Richter and R. Ernst. Model interfaces for heterogeneous system anal-
ysis. In Proc. 6th Design, Automation and Test in Europe (DATE), Mu-
nich, Germany, March 2002.

[122] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition
for scheduling analysis in platform design. In Proc. 39th Design Automa-
tion Conference (DAC), New Orleans, LA, June 2002. ACM Press.

[123] H. Sariowan, R.L. Cruz, and G.C. Polyzos. SCED: A generalized
scheduling policy for guaranteeing Quality-of-Service. IEEE/ACM
Transactions on Networking, 7(5):669–684, October 1999.

[124] Seamless Hardware/Software Co-Verification, Mentor Graphics.
http://www.mentor.com/seamless/.

[125] S. Shenker and J. Wroclawski. General characterization parameters for
integrated service network elements. Request for Comments 1633, Inter-
net Engineering Task Force (IETF), September 1997.

[126] H. Shimonishi and T. Murase. A network processor architecture for flex-
ible QoS control in very high speed line interfaces. In Proc. IEEE Work-
shop on High Performance Switching and Routing, pages 402–406, May
2001.

[127] M. Shreedhar and G. Varghese. Efficient fair queuing using Deficit
Round-Robin. IEEE/ACM Transactions on Networking, 4(3):375–385,
June 1996.

[128] G. Snider. Spacewalker: Automated design space exploration for embed-
ded computer systems. Technical Report HPL-2001-220, Compiler and
Architecture Research Program, Hewlett Packard Laboratories, Septem-
ber 2001.

190 Bibliography

[129] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a robust
software-based router using network processors. In Proc. ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 216–229, Banff,
Alberta, Canada, October 2001.

[130] B. Sprunt, L. Sha, and J.P. Lehoczsky. Aperiodic task scheduling for hard
real-time systems. Real-Time Systems, 1:27–60, 1989.

[131] M. Spuri and G.C. Buttazzo. Efficient aperiodic service under earli-
est deadline scheduling. In Proc. IEEE Real-Time Systems Symposium,
1994.

[132] M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dynamic pri-
ority systems. Real-Time Systems, 10(2):179–210, 1996.

[133] M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic scheduling
under dynamic priority systems. In Proc. 16th IEEE Real-Time Systems
Symposium, pages 210–221, 1995.

[134] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C. Buttazzo. Dead-
line Scheduling for Real-Time Systems: EDF and Related Algorithms,
volume 460 of Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, 1998.

[135] D.C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole.
A feedback-driven proportion allocator for real-rate scheduling. In Proc.
3rd USENIX Symposium on Operating Systems Design and Implementa-
tion, pages 145–158, 1999.

[136] D. Stiliadis and A. Varma. Efficient fair queueing algorithms for packet-
switched networks. IEEE/ACM Transactions on Networking, 6(2):175–
185, April 1998.

[137] D. Stiliadis and A. Varma. Rate-proportional servers: a design methodol-
ogy for fair queueing algorithms. IEEE/ACM Transactions on Network-
ing, 6(2):164–174, April 1998.

[138] J.K. Strosnider, J.P. Lehoczsky, and L. Sha. The deferrable server algo-
rithm for enhanced aperiodic responsiveness in hard real-time environ-
ments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[139] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhury. Buffer
management schemes for supporting TCP in gigabit routers with per-
flow queueing. IEEE Journal on Selected Areas in Communications,
17(6):1159–1169, June 1999.

[140] SystemC homepage. http://www.systemc.org.

Bibliography 191

[141] H. Takada and K. Sakamura. Schedulability of generalized multiframe
task sets under static priority assignment. In Proc. 4th International
Workshop on Real-Time Computing Systems and Applications (RTCSA),
pages 80–86, 1997.

[142] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for
evaluating design tradeoffs in packet processing architectures. In Proc.
39th Design Automation Conference (DAC), pages 880–885, New Or-
leans, LA, June 2002. ACM Press.

[143] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space explo-
ration of network processor architectures. In Crowley et al. [47], chap-
ter 4, pages 55–90. A preliminary version of this paper appeared in the
Proc. 1st Workshop on Network Processors, held in conjunction with the
8th International Symposium on High-Performance Computer Architec-
ture, Cambridge, Massachusetts, 2002.

[144] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert.
Embedded software in network processors – models and algorithms. In
Proc. 1st Workshop on Embedded Software (EMSOFT), Lecture Notes in
Computer Science 2211, pages 416–434, Lake Tahoe, CA, USA, 2001.
Springer Verlag.

[145] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. IEEE International Sympo-
sium on Circuits and Systems (ISCAS), volume 4, pages 101–104, 2000.

[146] T-S. Tia, J.W-S. Liu, and M. Shankar. Algorithms and optimality of
scheduling soft aperiodic requests in fixed-priority preemptive systems.
Real-Time Systems, 10(1):23–43, 1996.

[147] M. Tsai, C. Kulkarni, N. Shah, K. Keutzer, and C. Sauer. A bench-
marking methodology for network processors. In Crowley et al. [47],
chapter 7, pages 141–165. A preliminary version of this paper appeared
in the Proc. 1st Workshop on Network Processors, held in conjunction
with the 8th International Symposium on High-Performance Computer
Architecture, Cambridge, Massachusetts, 2002.

[148] J.S. Turner. New directions in communications (or which way to the
information age?). IEEE Communications Magazine, 25(8):8–15, 1986.

[149] The Cadence Virtual Component Co-design (VCC).
http://www.cadence.com/products/vcc.html.

[150] M. Venkatachalam, P. Chandra, and R. Yavatkar. A highly flexible, dis-
tributed multiprocessor architecture for network processing. Computer
Networks, 41(5):563–586, April 2003.

192 Bibliography

[151] T. Wolf. Design and Performance of a Scalable High-Performance Pro-
grammable Router. PhD thesis, Department of Computer Science, Wash-
ington University in St. Louis, May 2002.

[152] T. Wolf and M. Franklin. CommBench - A telecommunications bench-
mark for network processors. In Proc. IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 154–162,
Austin, Texas, 2000.

[153] T. Wolf, M.A. Franklin, and E.W. Spitznagel. Design tradeoffs for em-
bedded network processors. Technical Report WUCS-00-24, Department
of Computer Science, Washington University in St. Louis, 2000.

[154] T. Wolf, P. Pappu, and M. Franklin. Predictive scheduling of network
processors. Computer Networks, 41(5):601–621, April 2003.

[155] F. Worm. A performance evaluation of memory organizations in the
context of core based network processor designs. Master’s thesis, In-
stitut Eurécom, Sophia-Antipolis, France, This work was done at IBM
Research Laboratory Zürich, 2001.

[156] H. Zhang and D. Ferrari. Rate-controlled static-priority queuing. In Proc.
IEEE INFOCOM, volume 1, pages 227–236, 1993.

[157] H. Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of
High-Speed Networks, 3(4):389–412, 1994.

Curriculum Vitae

Samarjit Chakraborty

Date of Birth:

December 25, 1972

Place of Birth:

Calcutta, India

Education:

since 11/98 Research assistant and Ph.D. student at the Computer Engineering
and Networks Lab (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Switzerland (Advisor: Prof. Lothar Thiele)

7/96 – 7/98 Graduate studies towards a Master’s degree at the Computer Sci-
ence and Engineering Department of the Indian Institute of Tech-
nology Kanpur, India, and also worked as a Teaching Assistant.
Graduated with M.Tech. (Master of Technology) in Computer Sci-
ence and Engineering;
Thesis: Approximation Algorithms for 3-D Common Substructure
Identification in Drug and Protein Molecules
(Advisor: Prof. Somenath Biswas)

8/92 – 6/96 Undergraduate studies at Jadavpur University, Calcutta, India.
Graduated with B.E. (Bachelor of Engineering) in Computer Sci-
ence and Engineering, and obtained a First Class with Honours.

Practical Experience:

Worked as a Summer Intern at the Indian Statistical Institute Cal-
cutta, India, during the Summers of 1994 and 1995.

