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Abstract

Safety-critical sensor networks are pervasively embedded in our sur-
roundings. Such networks impose strong requirements in terms of relia-
bility and latency of sensor readings and do for instance allow to monitor
buildings for detecting fires and intrusions. The network requires a costly
and cumbersome installation of wires for connecting the distributed sen-
sors, which is sometimes not even possible. This suggests adopting the
emerging technology of wireless sensor networks (WSN) to be used in
a safety-critical context. With this technology, the wires connecting the
sensors can be replaced by a radio and a battery pack.

A WSN is a collection of embedded sensor nodes with wireless net-
working capabilities. Collectively the sensor nodes establish a wireless
ad-hoc network for transferring, processing and monitoring the sensed
data. In order to ensure a small form factor, the sensor nodes are highly in-
tegrated and provide minor processing capabilities and limited memory.
More stringent, the battery-powered nodes have to carefully orchestrate
the power-hungry radio device if a yearlong independent operation is
targeted. To make matters even worse, wireless communication is inher-
ently unreliable and limited in range. Altogether this makes it a very
demanding task to ensure a reliable, timely and energy efficient transport
of the sensed data over possibly multiple hops.

Reliability is of utmost importance in a safety-critical environment.
Additionally, there are often regulations imposing strong demands in
terms of message latency and the availability of the sensor nodes. In
particular, this thesis refers to the exemplary case of a wireless fire-alarm
application, in which an alarm must be reported to a control station within
10 seconds, and a failed node has to be detected by the network within 5
minutes. These requirements are exacerbated by the fact that the nodes
have to power off the radio more than 99% of the time, in order to enable
an independent operation for several years with a small battery.

This thesis contributes towards adopting WSN technology for safety-
critical applications. It focuses on communication aspects, and makes the
following major contributions:

• The novel communication strategy, Dwarf, ensures a robust and
timely forwarding of alarm messages, despite having the sensor
nodes powered off most of the time. The maintenance protocol
DiMo allows the monitoring of the nodes and the network topology
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with minimal communication overhead. In conjunction, Dwarf and
DiMo enable safety-critical networking.

• This thesis contributes an analytical framework for analyzing and
comparing WSN MAC protocols. The framework provides deep
insight into the behavior of WSN MAC protocols and provides the
first available solution for benchmarking. This provides the means
for selecting the most suitable MAC protocol for an application at
hand.

• This thesis contributes the NoSE protocol enhancement. NoSE al-
lows for considerable energy savings while maintaining the sensor
network and allows for a swift and dependable initialization. NoSE
is beneficial for specialized applications and protocols like Dwarf
and DiMo that are optimized for yearlong operation, but exhibit a
reduced energy efficiency and responsiveness during maintenance
and initialization.



Zusammenfassung

Sicherheitskritische Sensornetzwerke sind allgegenwärtig und werden
beispielsweise eingesetzt um Brände oder Einbrüche zu detektieren. Sol-
che Netzwerke erfordern eine zuverlässige Übermittlung der Sensormes-
sungen mit einer minimalen zeitlichen Verzögerung. Bisher erforderte
das eine aufwändige und kostspielige Verdrahtung der verteilten Senso-
ren. Es liegt daher auf der Hand, die neu entstehende Technologie der
drahtlosen Sensornetzwerke auch für sicherheitskritische Anwendungen
zu nutzen. Mit dieser Technologie können die Verbindungskabel der Sen-
sorenknoten durch ein Funkmodul und eine Batterie ersetzt werden.

In einem drahtlosen Sensornetzwerk wird im Verbund ein Netzwerk
aufgebaut, damit die Sensordaten transferiert und verarbeitet werden
können. Um die Grösse und den Energieverbrauch zu minimieren sind
die Sensorknoten hochintegrierte Systeme und verfügen daher nur über
eingeschränkte Rechenleistung und Speicher. Zusätzlich ist es zwingend
notwendig das Funkmodul als Hauptenergieverbraucher nur zu geziel-
ten Zeitpunkten einzuschalten, um einen jahrelangen und unabhängigen
Betrieb zu ermöglichen. Erschwerend kommt die Unzuverlässigkeit und
limitierte Reichweite der drahtlosen Kommunikation dazu. Es ist daher
eine äusserst schwierige Aufgabe einen zuverlässigen und energieeffizi-
enten Datentransport innerhalb der vorgegebenen Zeit zu gewährleisten.

Zuverlässigkeit ist für sicherheitskritische Anwendungen von höch-
ster Bedeutung. Zudem gibt es Vorschriften die Mindestanforderungen
an die Latenz und Verfügbarkeit des Netzwerkes stellen. Diese Arbeit
bezieht sich konkret auf das Beispiel eines Feuermeldenetzwerks mit der
Vorgabe, ein detektiertes Feuer innert 10 Sekunden und einen beschä-
digten Sensorknoten innerhalb von 5 Minuten bei einer Kontrollstation
zu melden. Diese Anforderungen werden verschärft, da das Funkmodul
mehr als 99% der Zeit ausgeschaltet sein muss, um einen jahrelangen
Betrieb ohne Batteriewechsel sicherzustellen.

Diese Dissertation befasst sich mit offenen Problemen, die es für die
Anwendung drahtloser Technologie auf dem Gebiet von sicherheitskri-
tischen Sensornetzwerke zu lösen gilt. Die Arbeit fokussiert sich auf das
Themengebiet der Kommunikation und leistet folgende Hauptbeiträge:
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• Mit der Kommunikationsstrategie Dwarf kann ein robustes und
rechtzeitiges zustellen von Alarmnachrichten sichergestellt werden,
auch wenn die Sensorknoten überwiegend ausgeschaltet sind. Das
Überwachungsprotokoll DiMo stellt die kontinuierliche Überwa-
chung der Knoten und der Netzwerktopologie sicher. Im Zusam-
menspiel ermöglichen Dwarf und DiMo sicherheitskritische draht-
lose Sensornetzwerke.

• Diese Arbeit stellt ein analytisches Instrument für die Analyse und
den Vergleich von MAC Protokollen für drahtlose Sensornetzwerke
vor. Es ermöglicht einen tiefen Einblick in das Verhalten der Proto-
kolle und bietet die erste verfügbare Lösung für Benchmarks. Damit
ist es möglich das passende MAC Protokoll für eine bestimmte An-
wendung auszuwählen.

• Mit der NoSE Protokollerweiterung kann das Sensornetzwerk ener-
gieeffizient unterhalten und zudem schnell und zuverlässig in Be-
trieb genommen werden. NoSE ist von besonderem Vorteil für spe-
zialisierte Applikationen und Protokolle wie Dwarf und DiMo, die
für einen langjährigen Betrieb optimiert sind, aber während dem
Unterhalt und der Inbetriebnahme eine reduzierte Energieeffizienz
und Ansprechverhalten zeigen.
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1
Introduction

Safety-critical sensor networks are deeply embedded in our environment.
Such networks allow airplanes to fly, nuclear power plants to produce en-
ergy and smoke detectors to raise alarms. These networks have in com-
mon that a so called control station is regulating the system by observing
a network of attached sensors. The distributed sensors are connected to
the control station by a wire that powers the sensors and allows for a
reliable and immediate communication.

In a wireless sensor network (WSN) the wire connecting the sensor
with the control station is replaced by a radio device and a set of batter-
ies. Consequently the sensor becomes an autonomous unit (mote) that
has to forward its data by means of radio communication. Without the
necessity of the (costly) wiring, the WSN can be deeply embedded in our
surroundings and for instance remotely gather environmental data such
as temperature and humidity. If a wide sensor range needs to be covered,
the motes build a multi-hop topology and collectively forward the data.
The motes run on batteries and hence the power consumption needs to be
minimized for a prolonged lifetime. With the radio device as the mote’s
major energy consumer, the radio has to be switched off (duty cycled)
most of the time. This however greatly increases the delay of the sensor
readings, in particular in a multi-hop environment.

Adopting WSN technology for implementing safety-critical applica-
tions such as fire- and burglar-alarm systems is a big challenge because
of the real-time constraints imposed by their users. Typically, alarms
detected by sensor nodes have to be reported reliably, and within a few
seconds to at least one sink node, even in case that some of the nodes and
communication links fail. Additionally, safety-critical applications are re-
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quired to observe the status of the network and report node failures within
a specified time. A complicating factor is that maintenance costs have to
be very low to make an application economically feasible. This requires
energy-efficient operation, since batteries should not be replaced more
often than once every couple of years. With current-generation sensor
node hardware built out of commercial off-the-shelf (COTS) components,
the radio consumes the most power, and the above lifetime requirement
translates into a radio duty cycle of well below 1%.

Mandatory requirements for a wireless fire-alarm system [Eur08]:

1. Report a detected fire within 10 s at the sink.

2. Report a failed node within 5 min at the sink.

3. A network lifetime of 3-5 years.

Section 1.1 provides a broad overview of today’s WSNs technology,
highlighting in Section 1.2 that the state-of-the-art in WSN is not suited
for safety-critical operation. The thesis’ main contributions are presented
in Section 1.3, providing the fundamentals for enabling safety-critical
WSNs. The thesis is outlined in Section 1.4.

1.1 WSN – State of the Art
Kahn et al.’s vision of Smart Dust [KKP99] is commonly seen as the origin
of wireless sensor networks (WSNs). According to this vision, minuscule
sensor motes, consisting of a small circuitry for data processing, a sensor
and means for wireless communication are deployed in our surroundings.
The motes would then build an ad-hoc network and monitor the environ-
ment and for instance report the sensed data regularly to a central station.
Realizing this vision requires, among others, solving the most crucial fac-
tors of energy-efficient operation for longevity and the networking on a
distributed, resource limited and deeply embedded system.

Pilot deployments of wireless sensor networks, such as the Great Duck
Island [MPS+02] or ZebraNet [JOW+02], proofed the feasibility of such
systems, even though their performance still left ample room for im-
provement. Especially the energy consumption did not scale well with
the network size and the message delivery rate was far from being sat-
isfying. For instance the Great Duck Island gathered 58% of the data, a
deployment in a redwood tree [TPS+05] less than 50%, or a deployment
in a potato field [LBV06] only resulted in a data recovery of as little as 2%.
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Although the application domains vary, these deployments typically
fall into the class of remote data gathering, where rather soft constraints
on performance (e.g., latency, throughput, and lifetime) allow for straight-
forward engineering solutions. The experience gained with these pilots is
being incorporated into second-generation software that is better tuned,
more robust, and offers the potential for enlarging the scope to more de-
manding applications such as for permafrost measurements in exposed
alpine conditions [BGH+09].

1.1.1 WSN Hardware

State of the art WSN hardware is still following the line of Smart Dust’s
original proposal, i.e., having means for communication, a sensing de-
vice, a data processing unit and a battery for power supply. Despite
its superior energy efficiency, the original idea of having optical means
for communication is generally discarded due to its very limiting line
of sight requirement and is replaced with radio frequency (RF) technol-
ogy. Nowadays, the motes are assembled with COTS components and
consist of a low-power microprocessor (µC), a RF radio and antenna, a
sensing unit and a power supply. However it is only a matter of time,
before system-on-a-chip (SoC) designs, such as the WiseNET [EEHDP04]
prototype platform, will emerge on the market allowing for an increased
performance for a reduced price.

Various mote like platforms were developed in the last years, e.g., BTn-
ode [BKM+04], Imote [KAH+04], Mica family [HC02, HSW+00], Smart-
Its [BG03], Sun SPOT [Sun], TinyNode [DFFMM06], Tmote family [PSC05]
etc. Even though being assembled of similar components, the difference
in terms of computing power, available memory, and radio bandwidth
can be quite substantial, which in turns allows selecting the platform that
suits the requirements [Beu06].

Energy

Energy is commonly provided by a battery and is often the most limiting
factor for sensor networks. This makes it very attractive to use energy
scavenging technologies for harvesting environmental energy such as solar
power, wind or vibration [RWR03, RSF+04]. Scavenging technology is
still in its beginnings, yet is very promising for some WSN applications.
Many deployments however cannot benefit from these technologies, as
such environmental energy is not always available in a sufficient amount
(e.g., a node placed in a dark closet), or the costs for equipping the node
with a scavenging device are not affordable.
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The sink is commonly less resource constraint than the source nodes.
In particular the sink is often line powered or has a battery with a largely
increased capacity attached. This can be exploited in protocol design,
increasing the sink’s energy drain for a reduced energy consumption of
the (resource limited) nodes neighboring the sink.

Microcontroller

The sensor data is processed with a (microcontroller) µC, such as the AT-
mega128L or MSP430C111, integrating a data processing unit, memory,
timers, analog-to-digital converters (ADC). For selecting a suitable µC,
the energy consumption is most crucial. Besides a minimized power con-
sumption while processing or being idle, it is essential that so called sleep
states are supported. During sleep, most modules of the µC are powered
off (set to sleep), which greatly reduces the energy consumption. De-
pending on the sleep state, the system can only be woken up by a timer
or an external interrupt (e.g., clock).

The µCs provide limited processing power and memory in turn for
low fabrication costs and the low-power operation. For instance the AT-
mega128L (MSP430) provides 8 MHz (8 MHz) clock speed, 64 kB (10 kB)
of RAM and 128 kB (48 kB) of ROM. These resource constraints require
that no processing and memory intensive calculations are performed.

Radio

The radio transceiver is by far the greatest energy consumer of the system,
independent of whether the radio is sending, receiving or just idle. Hence
minimizing the payload does not necessarily translate in a minimized en-
ergy consumption. Duty cycling the radio, that is, repeatedly switching
it off for some time, is the only way to achieve the required two orders of
magnitude reduction in energy consumption for extending lifetime from
days to years. By putting the radio into (deep) sleep, the energy con-
sumption reduces to zero (i.e., from mW to µW range), which is the task
of the Medium Access Control (MAC) layer driving the radio hardware.
Often neglected but essential are the radio’s switching times, essentially
increasing the energy drain by prolonging the radio’s on time. The duty
cycling effectively reduces the available bandwidth. This however is a
minor concern due to the commonly low data rates in the WSN.

Most transceivers operate in the license free ISM bands, e.g., 433 MHz,
868 MHz and 2.4 GHz, and usually provide a communication range in the
order of ten to hundreds of meters if the line of sight is not blocked. WSNs
are usually spread over a larger area, requiring a multi-hop network
architecture. Furthermore, the node’s sensing range is commonly much
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smaller than its communication range, resulting in dense deployments.
Hence there are many possible neighbors available of which a substantial
part provide a poor and unpredictable link quality [ZG03, RHL04, SKH06,
SL06] and therefore should not be used for routing. This effect is especially
severe in indoor settings yet most essential when doing safety-critical
communication and is further detailed in Chapter 2.

Two kinds of radios are typically being used and are distinguished by
their level of abstraction, in particular whether the access is stream (byte)
or packet based. Stream-based radios, such as the TI CC1000 and the
RFM TR1001 allow to control every single bit that is put on the channel
allowing to greatly optimize the MAC’s performance, however introduc-
ing substantial overhead for the µC. On the other hand, a packet based
radio, like the TI CC2420 or TI CC2500, provides a packet interface for
transceiving messages. Hence it is the radio that deals with the particu-
lars of handling the single bits, which trades off flexibility for a greatly
minimized overhead of the µC.

Sensors

There are two types of sensors: analog and digital ones. For converting
analog sensor signals, the analog-to-digital converter (ADC) of the µC is
commonly used. This conversion needs to be performed very carefully,
as the ADC is very susceptible to noise due to the low-power voltage
reference. In particular the node should turn the radio off and suspend
processing if highly accurate measurements are required.

The sensing can account for a substantial part of the motes overall
energy budget and price [BGH+09]. However, emerging technologies
like micro-electro-mechanical systems (MEMS) might reduce both the
cost and the energy consumption for sensing in the near future [RSF+04].

1.1.2 WSN Software
The WSN software is running on the mote’s µC and arbitrates the system.
In particular the software ensures regular sensor readings, processes data
and communicates with neighboring motes. All this needs to be per-
formed on a very resource limited, deeply embedded and distributed
system. This makes the following paradigm of utmost importance when
designing WSN software:

The limitations of the motes processing capabilities and the dis-
tributed nature of the network suggest minimizing the complexity,
in particular in the protocol design.
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Operating System

WSN applications usually run on top of a lightweight operating system
(OS), including a communication stack especially optimized for the ap-
plication at hand. The OS is trimmed to its fundamentals for running a
sensor node and many functionalities of a general purpose OS such as
multi-user operation, file system, graphical user interface and memory
swapping are not required. On the other hand services like concurrent
tasks, energy management, interrupts, a small memory footprint, periph-
eral access and modularity are most essential.

A very lightweight operating system is the most widely used
TinyOS [HSW+00, LMP+05] framework providing an event-driven model
for handling concurrency. Internal and external events, such as a timer or
an incoming packet, are sent to the appropriate event handler that can post
a task to a queue for being scheduled some time later. Contiki [DGV04]
enhances this event handler with so called protothreads. For a minimized
overhead, these lightweight threads without stack requirements provide
most of the advantages of a threaded architecture. Preemption however
is not possible and local variables are not supported due to the missing
stack. BTnut [BBDM05] and t-kernel [GS06] on the other hand provide a
truly threaded architecture with all its flexibility, yet imposing quite some
processing and memory overhead for the system. t-kernel is even going a
step closer towards a more general OS design, providing OS protection,
which allows accessing the node even if the application crashes.

Communication Stack

For communication purpose the OS usually incorporates a small commu-
nication stack, similar to the ISO/OSI reference model, however without
the layers 4–6. Basically there is the radio, the medium access control
(MAC), a network layer and the application. Traditional communica-
tion protocols such as IEEE 802.11 or TCP/IP provide a lot of flexibility
and maximized performance (e.g., throughput), but are not well suited
for low-power operation of a deeply embedded wireless systems due to
the imposed overhead. Should a TCP/IP stack be a necessity for the ap-
plication, the so called uIP stack [Dun03] minimizes the overhead while
maintaining interoperability and RFC standards compliance with TCP/IP.

In traditional internetworks, such as TCP/IP in the heterogeneous
Internet, issues like latency, fairness, congestion control and maximized
throughput are integral parts. WSNs on the other hand focus primarily
on maximizing the network’s lifetime, having these ”traditional” issues
as a secondary goal, e.g., maximize the throughput for a certain energy
budget. This unique requirement lead to a large set of MAC and routing
protocols specifically designed for being used in WSNs. These protocols
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on the different layers are not necessarily strongly detached from each
other (as proposed by the ISO/OSI model) and cross-layer functionalities
are often introduced for an improved performance [HC02]. For instance,
Dozer [BvRW07] combines the MAC and routing into one rather complex
building block, resulting in a very energy-efficient operation in return for
a reduced flexibility.

Medium Access Control

It is the MAC protocol that arbiters the radio state and in particular duty
cycles the radio for an largely minimized energy consumption, trading
off bandwidth and latency [LH05]. In the ideal case, the sender switches
the radio on, quickly sends the packet(s) and switches the radio off im-
mediately, whereas the receiver’s radio is only switched on to receive the
packet. Otherwise, energy is wasted by either one of the following five
reasons: (1) idle listening occurs if the node is listening but not receiving
data, (2) missing results if a node is sending but the intended recipient is
not listening, (3) overhearing happens if a node receives a message meant
for another node, (4) collisions usually result in multiple messages being
lost, or (5) protocol overhead such as for medium reservation or synchro-
nization.

A multitude of different MAC protocols especially designed for
WSNs emerged in recent years. Many general purpose ones, such
as S-MAC [YHE02], B-MAC [PHC04], WiseMAC [EHD04], yet most
of them are designed for specific application scenarios such as
Crankshaft’s [HL07] dense networks, LMAC’s [HH04] minimized inter-
ference or D-MAC’s [LKR04] optimized latency. The imposing question
of how to select the most suitable protocol for a particular application is
discussed in detail in Chapter 3.

Networking

Generally, it cannot be assumed that all source nodes are in communica-
tion range with a sink, requiring a multi-hop operation for forwarding
the data. This multi-hop architecture commonly results in an increased
load and energy consumption for nodes close to the sink. If latency is
not an issue, data aggregation [KEW02] techniques can be introduced for
minimizing this effect.

Routing in wireless network can often benefit of assumption given by
the application at hand:

• The traffic pattern is well defined, e.g., every node samples data
every 10 min and sends this data immediately.



8 Chapter 1. Introduction

• Peer-to-peer communication is rarely required. Instead, the com-
munication strategies are many-to-one (nodes report to the sink)
and one-to-many (sink notifying nodes).

• The packet size is usually very small, i.e., in the order of tens of
bytes compared to the Internet’s thousands of bytes. This makes
the protocol header a substantial part of the overall message size
and suggests minimization.

• The nodes are resource limited and favor simple protocols with
little processing overhead and memory requirements, e.g., no huge
routing tables.

• Due to the low data rates, the protocol overhead, e.g., routing bea-
cons, can account for a substantial part of the overall message count
and should be sent cautiously.

These special characteristics resulted in various different routing
strategies for WSNs. Some of the most prominent examples are
Mintroute [WTC03], which builds a tree with a cost metric based on the
link quality, Rumor Routing [BE02], which uses random gossiping, and
Directed Diffusion [IGE00] being based on a publish/subscribe scheme.
These routing strategies however do not provide a reliable data trans-
fer to the sink, which requires more elaborate approaches as discussed
subsequently.

1.2 Reliable Data Transfer in WSNs
If reliability is essential for the application, the network needs to han-
dle errors in the wireless channel (short-term packet loss, long-term link
failures) and the possibilities of node failures. Similar to traditional inter-
networks, this can be achieved on different layers, distinguishing between
single-hop reliability and end-to-end reliability.

Single hop reliability is a common feature of WSN MAC protocols.
This single-hop reliability is usually achieved by sending an immediate
acknowledgement packet (ACK) after a successful reception of a data packet.
Hence the sending node will immediately switch the radio to reception
mode, waiting awhile for the ACK. Is the ACK missing, the message is
either retransmitted at a later point, or the message is dropped and a
signal is sent to the network layer. However, the missing of the ACK
does not necessarily indicate the failure of the data packet, since the ACK
message can get lost as well. Rerouting in case of a link failure is not
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possible for the MAC protocol since the network topology is unknown in
this layer.

This task of rerouting data packets in case of a failure is part of the
network layer. However, surprisingly little research has been done on
providing reliable end-to-end message delivery. The transport proto-
cols that do address link failures (e.g., ESRT [SAA03], RMST [SH03],
and PSFQ [WCK02]) include techniques like retransmissions and path
diversity to overcome the errors on individual links, but do not provide
end-to-end reliability. Advanced protocols like MMSPEED [FLE06] pro-
vide probabilistic bounds on end-to-end delivery ratios, i.e., offering QoS
guarantees on reliability and latency, but ignores energy consumption.

If the amount of data is known at the receiver, e.g., periodic traffic, a
complementary end-to-end acknowledgement scheme with retransmis-
sion can increase the delivery quality of the transport protocols as im-
plemented in [DHS+07]. Specialized protocols like Flush [KFD+07] for
bulky data or RCRT [PG07] for concurrent streams already incorporate
such a retransmission scheme. While the end-to-end acknowledgement
scheme increases the reliability, it suffers greatly from high costs and
long (multi-hop) latencies, making it unsuitable for time-critical wireless
sensor networks.

An effective, but expensive, approach to handle communication er-
rors is to use flooding [TG01]. Quite often network-wide redundancy is
not needed and partial flooding suffices. For example, the GRAB proto-
col [YZLZ05] uses a credit mechanism to specify how many additional
hops may be made to reach the destination, effectively creating a ”wide-
path”. GRAB requires the set-up and maintenance of a gradient field
towards the destination, hence, is only applicable to a few, popular desti-
nations like the sink(s) in an alarm system. The DFRF framework [Mar04]
generalizes this idea and allows for easy creation of tailor-made partial-
flooding protocols. Unfortunately, DFRF and GRAB do not integrate well
with the underlying MAC layer making it difficult to control latency and
energy consumption.

Multi-path routing [LG01, Ban96], that is having k node or link dis-
tinct routes to the sink increases the robustness by sending the messages
over multiple routes. However, the distributed setup of these routes is
expensive, in particular since the scheme has to adapt to changes in the
topology.

An issue of particular importance for safety-critical systems is the de-
tection of failed nodes, which compromise the integrity of the system. A
straightforward solution is to make use of heart-beat style failure detec-
tors where nodes periodically send out a message notifying neighbors
of their status. Wang and Kuo extend this idea to a two-phase gossip-
ing protocol suited for ad-hoc networks [WK03]. Although very robust,
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information propagates slowly and at high cost. Recent work by Rost
and Balakrishnan shows that more-advanced failure detectors help in
reducing the message overhead [RB06], but latency remains an issue.

Ensuring a reliable detection of failed nodes (or permanent link fail-
ures), which compromise the integrity of the system, is an issue of particu-
lar importance for safety-critical applications. A straightforward solution
is to make use of heart-beat style failure detectors where nodes period-
ically send out a message notifying neighbors of their status [WK03].
Although very robust, information propagates slowly towards the sink
and at high cost. Advanced failure detectors and monitoring tools like
Memento [RB06] and NUCLEUS [TC05] do address these issues, but in
return raise the number of false alarms. This is acceptable for debugging
purposes, but not for safety-critical systems as it significantly raises the
operational costs.

1.3 Contributions
Safety-critical networking demands a timely and robust message delivery
despite the limited energy resources. However, these strong demands
cannot be met with current state-of-the-art communication schemes. This
thesis provides the necessary fundamentals for enabling safety-critical
WSNs. In particular, this thesis makes the following main contributions
ordered by their importance:

1. Routing Strategy for Safety-Critical WSNs
The routing scheme Dwarf provides a delay aware, energy efficient
and robust forwarding for safety-critical messages. The energy con-
sumption is greatly reduced by a minimized message overhead and
running the nodes with a very low duty-cycle. Despite this low
duty cycle. The timeliness and robustness is achieved by a delay
aware forwarding of the message over multiple paths. The topol-
ogy is maintained with the node and topology monitoring scheme
DiMo . This scheme ensures with marginal overhead that all nodes
provides multiple paths to the sink and that all these paths are ob-
served continuously and are being replaced if necessary. Hence
short-time drops in the link quality are absorbed having multiple
paths and messages, whereas a failed link is replaced by DiMo’s
topology maintenance. DiMo further combines the topology moni-
toring with the node monitoring and detects a failed node within a
required detection time. In conjunction, Dwarf and DiMo is the first
solution that meets the demanding requirements of safety-critical
event monitoring.
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2. MAC Framework
The MAC protocol allows saving by far the largest amount of energy
by duty cycling the radio. A multitude of MAC protocols especially
designed for WSNs are available, all of them allowing parameteriza-
tion for an optimized performance. This possibility for parameter-
izing the protocols makes it infeasible to benchmark them exhaus-
tively by neither simulation nor implementation. With a model-
based approach, this thesis presents the first extensive study for
comparing WSN MAC protocols, which allows selecting the MAC
protocol that suits the best for the application at hand. In particu-
lar the study highlights that WiseMAC shows the best performance
for a safety-critical system and is an integral part for Dwarf’s and
DiMo’s energy efficient operation.

3. Maintenance and Initialization
Protocols that require longevity need to be tuned for an optimized
operational phase. The maintenance and in particular the most
critical initial installation of the network is often greatly neglected.
This part of the network’s life cycle can drain a substantial part of the
available energy budget when the network is not (yet) operational.
This thesis proposes the NoSE protocol-stack enhancement, which
allows switching the network between the operational state and a
deep sleep state. The deep-sleep state allows for energy savings
while performing maintenance. The network can be woken up
any given time. During NoSE’s swift and time-bound start up, a
comprehensive neighbor assessment provides a solid basis for the
subsequent network topology set up and operation.

4. Channel Characterization
Safety-critical wireless systems are often deployed in indoor settings
with moving people and many sources of interference. The impos-
ing question is, what the impact of such an adversarial setting on the
wireless channel is. This thesis includes an extensive study of the
wireless channel for an indoor, office-like scenario. This is in a strong
contrast to most available studies, assuming artificial node layouts.
In particular it is shown that many links suffer from unstable be-
havior and that a link’s total loss of communication in the order of
a few seconds is not uncommon. These observations suggest a high
degree of redundancy and resulted in Dwarf’s multiple messages
and DiMo’s redundant paths being continuously monitored.
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1.4 Thesis Outline
This thesis provides the foundation for safety-critical event monitoring in
WSNs and is structured as follows:

Chapter 2 details the wireless medium that has to be coped with. Ex-
tensive measurements show that wireless communication always has to
account for random packet losses. In particular, wireless communication
links can show sudden changes in the link quality or even complete drop
outs in the order of a few seconds. It is further discussed how wireless
links can be assessed efficiently.

Chapter 3 provides insight into the multitude of MAC protocols es-
pecially designed for WSNs. All these MAC protocols have in common
that they duty cycle the radio for a minimized energy consumption but
differ in their approach. It is pointed out that a MAC protocol based on a
regular channel polling are very well suited for low-power operation and
that WiseMAC strikes out with the best latency vs. energy-consumption
trade-off.

Chapter 4 introduces DiMo, a monitoring scheme that checks the avail-
ability of the nodes while observing the links and the topology at the same
time. It accentuate that its distributed approach for monitoring is very
well suited for a low latency, energy efficient operation while highlighting
a very small false positive rate.

Chapter 5 introduces Dwarf, an energy-efficient, robust and depend-
able forwarding algorithm. The core idea of Dwarf is to use unicast-based
partial flooding along with a delay-aware node selection strategy. Fur-
thermore an integrated protocol suite is introduced that combines Dwarf
and DiMo and enables safety-critical networking. It is shown in simula-
tion and implementation that more than 99.9 % of the alarm messages are
delivered in time, failing nodes are promptly reported, and the (extrapo-
lated) network lifetime exceeds 3 years.

Chapter 6 proposes NoSE for an energy efficient maintenance and
initialization of the network. NoSE uses a reduced signaling scheme to
achieve an energy efficient, yet highly reactive wake-up scheme. NoSE
features a synchronous and exhaustive neighbor search with integrated
link assessment. Measurements on a real-world testbed and in simulation
show that the network can be woken up from its deep sleep and a complete
neighbor list with corresponding link qualities can be assessed within a
few minutes.

Chapter 7 concludes the thesis with an outlook for future research and
a summary of the contributions.



2
Radio Communication

Safety-critical WSNs are frequently deployed indoors. When it breaks
down to the physical level of the transmission, these indoor deployments
seem to be the hardest to work with [ZG03, RHL04]. This is due to
the high degree of multi-path fading and interference induced by cell
phones or WLANs, which results in unreliable and hardly predictable
communication links. This chapter analyzes in detail the wireless char-
acteristics for indoor deployments. It highlights the aspects affecting
reliable communication, in particular the links’ temporal behavior. Fur-
thermore it investigates different link-estimation strategies. This allows
selecting high-quality links and provides a solid basis for safety-critical
networking.

Section 2.1 introduces the procedure for the measurements and
presents the two sites they are conducted in. Section 2.2 analyzes the
overall link performance, discussing whether there is a correlation be-
tween the link quality and the distance or the radio’s signal-strength
indicators that can be exploited. Section 2.3 analyzes the temporal behav-
ior of the links, showing that sudden changes in the link quality are not
uncommon and that bursts of packet failures have to be accounted for. In
particular the novel σm metric is introduced, which represents the degree
of a link’s stability and conveniently allows detecting unstable links. Sec-
tion 2.4 analyzes link-assessment strategies for an optimized link-quality
estimation. Section 2.5 presents related work and Section 2.6 concludes
this chapter, highlighting the essentials for safety-critical communication.
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(a) NetworkA (Adversarial): 18 nodes are deployed in an office with various sources of
interference (e.g., WLAN, Bluetooth, moving people etc.).

(b) Network B (Benign): 24 nodes are deployed in an infrastructural part of a building,
in particular having hardly people around.

Fig. 1: The links are analyzed in a ”adversarial” office scenario and in a rather ”benign”
infrastructural part of a building.

2.1 Experimental Setup
The link measurements are performed in two different networks A and
B, located in different buildings. The positions of the nodes represent a
real-world topology of a possible fire-alarm network and are not placed
in an artificial setup like a line or a grid. Network A (cf. Figure 1(a))
is deployed in an Adversarial environment. The nodes are spread over
multiple offices, i.e., there are many static obstacles such as walls, but
also dynamic ones such as moving people. Furthermore there are various
sources of interference due to 802.11g WLAN access points, a Bluetooth
network and devices/machines like elevators, a microwave and a fridge.
Network B (cf. Figure 1(b)) on the other hand is deployed in a rather
Benign, infrastructural part, of a building. Located on the top floor, there
is a lot of infrastructure, such as machinery (220/380V), pumps and pipes.
In contrast to Network A, there are rarely people around, which greatly
reduces the sources for interference.
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Network A (Adversarial) B (Benign)
Number of nodes 18 24
Number of links 172 390
Received packets 7,936,690 7,171,839
Traced packets 10,430,000 8,280,000
Average packet- 76.1% 86.6%
reception rate (PRR)

Tab. 1: Measurement overview: nearly 20 million packets are traced in two distinct
deployment sites as further characterized in Figure 1.

The measurements are taken on the Tmote Sky platform [PSC05],
featuring an MSP430 microcontroller and the ZigBee compatible (2.4 GHz)
CC2420 radio. For the link measurements one single node is selected to
transmit 10,000 packets with a 200 ms interval (33.3 min). All other nodes
in the network are in reception mode and trace the received packets with
the corresponding sequence number, received signal strength indicator
(RSSI) and link-quality indicator (LQI). The role of the transmitting node
is assigned to all others in a round robin fashion. This results in a test
run with every node in the network being the transmitting node once,
observing all possible links in the network.

In order to capture rare effects in the communication patterns, exten-
sive measurement are performed, tracing nearly 20 Millions packets (cf.
Table 1). The measurements are taken with two distinct transmission
powers (0 dBm and -5 dBm), which basically doubles the number of an-
alyzed network topologies and links. Furthermore, the tests are carried
out during workdays and nights in order to see the impact of people
moving and the increased communication of the WLAN hotspots. The
measurements are all performed on one single channel (26), in order to
not further increase the number of parameters.

2.2 Static Link Analysis
The most fundamental quantifier for the link quality is the average packet
reception rate (PRR), which represents the average quality of a link over
the measured period. For instance, if 100 packets are sent, yet only 95 of
them received, a PRR of 0.95 results.

The PRR provides a first insight on the overall link performance in
the network. This is detailed in Figure 2 showing the distribution of the
PRR for all links in Network A. Of particular interest is the PRR range
of 0.8 to 1 where most links are assigned to. This area is very sensitive
when it comes down to selecting high quality links only. For instance
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Fig. 2: PRR Distribution in NetworkA: A large fraction of the links shows a rather poor
performance. For instance, 56% of the links suffer from a PRR of less than 0.9.

77% of all links have a PRR > 0.8, 44% a PRR > 0.9 but only 24% of the
links highlight a PRR > 0.95. Hence the links need to be carefully selected
when routing in a wireless sensor network, if the reliability is essential
and energy should not be wasted with numerous retries.

In the following it is detailed, whether there is a dependency between
the PRR and the distance or the signal-quality indicators of the radio that
can be exploited for routing in WSNs.

2.2.1 Spatial Behavior
Especially in safety-critical networks the exact position of the nodes is
usually available. So it is of particular interest for routing protocols,
whether the link quality exhibits a correlation with the distance between
the nodes that can be taken advantage of. For instance if the link quality
follows the widely used unit disk graph (UDG) model, i.e., all packets
are received within a given radius and no packets beyond, a centralized
algorithm at the sink can set up a sophisticated network topology only
considering the provided positions of the nodes.

Previous studies however indicated that there is no clear correlation
between the node distance and the PRR. Based on artificial layouts, the
prevalence of the so called gray area was first highlighted by Zhao et al.
[ZG03] and confirmed in various studies [WTC03, RHL04, ZK04]. That is,
the reception range can be divided into three distinct regions: Nodes up
to a certain distance d1 from the sender yield almost 100% of the packets
whereas nodes beyond a distance d2 > d1 do not receive any packets.
The gray area in between exhibits a rather unpredictable link quality
and nodes closer to the sink can show a worse link quality than nodes
much farther away, i.e., a monotonic correlation between distance and
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Fig. 3: PPR vs. distance: Every dot represents the PRR of one distinct link in the
network. The PRR does not follow a deterministic behavior and shows a wide
range, referred to as gray area (indicated with the two vertical lines), in which
the reception rate varies a lot.

link quality does not exist. Depending on the environment, the gray area
has shown to have a substantial extent. While the gray area measured
on a parking lot covers 10% of the total communication range, this range
is increased to 30% in a habitat and to 50% in an office building [ZG03].
These findings are explained by the increase in the multi-path signal
delivery for the different surroundings.

The imposing question is, how this gray area is affected by real (not
artificial) indoor deployments where for instance additional walls further
influence the signal quality. This is detailed in Figure 3 and highlights
for both Networks A and B a largely increased size of the gray area,
having almost all the links being attributed to it. Network B shows a
much wider communication range, and therefore also a larger extent of
the gray area, than A. The most evident reason for this is the increased
signal attenuation in NetworkA due to the numerous walls in this site.

The core message considering the spatiality of the links is that it is
hardly of use for setting up a topology in an indoor environment.
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2.2.2 RSSI and LQI
Having a large percentage of poorly connected neighbors suggests to
communicate with high-quality links only, which requires to estimate
the link qualities. For this purpose the radio provides the two additional
parameters of the received signal strength indicator (RSSI) and the link-quality
indicator (LQI). Both indicators are provided with every received packet.
The RSSI value represents the RF signal strength, yet is often claimed to be
a bad indicator for the signal quality [ZG03]. However this claim is based
on measurements with earlier radio hardware and does not necessarily
hold for newer radios like the CC2420 as suggested by Srinivasan et al.
[SDTL06, SL06]. The LQI correlation value is a virtual measurement of
the chip error rate and is based on the first 8 symbols following the start
frame delimiter.

The correlation between the RSSI and the PRR is depicted in Figure 4(a)
and in a close-up in Figure 4(c). It can be seen that an RSSI > −80 dBm
indicates that at least 80% of the packets are received, whereas a RSSI >
−68 dBm indicates high quality links with a PRR > 0.95 (except two
outliers). The inverse statement on the other hand is not possible: a low
signal strength does not necessarily indicate a bad link. Srinivasan et al.
had similar findings, however much clearer results; e.g., an RSSI value
greater than -87 dBm indicating a PRR > 0.85. This clearly indicates that
the deployment site has a large influence on the relation between RSSI
and the PRR. As a result, a parameterization independently of the actual
deployment situation is not possible.

The mean standard deviation of the RSSI range is about 1 dBm in
both Networks A and B. This small standard deviation makes the RSSI
a strong indicator for determining high-quality links. It is analyzed in
Section 2.4 how this can be exploited for estimating the link quality.

The LQI on the other hand is a rather bad indicator for high-quality
links as depicted in Figure 4(b) and 4(d). Especially the large standard
deviation (represented by the bar) of the different packets received from
one particular sender, makes the LQI a rather unattractive indicator. On
the other hand the LQI indicates bad quality links, e.g., a LQI < 80 usually
indicates a link with a PRR < 0.8.

2.3 Temporal Link Analysis
Characterizing the link quality with the average PRR provides a first
impression on the link quality, but lacks the information whether the
link quality varies over time. This temporal behavior can be depicted
by applying a sliding window over the trace for calculating a temporal
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Fig. 4: Correlation between the link-quality indicators RSSI and LQI and the corre-
sponding PRR: The RSSI is better suited to indicate high-quality links.

PRR. Figure 5 shows sample traces of the temporal behavior using a
window size of m = 100: the upper plots (a-c) highlight links that are
stable over time, i.e., the PRR varies slightly only. This is different for
the lower plots (d-f). The first plot (d) shows a distinct dropout lasting
for 3.5 minutes, the second (e) a degrading behavior and the third (f) a
suddenly increased link performance after showing a bad link quality for
15 minutes.

An interesting observation is made if the RSSI value is taken into
account. The stable links go along with the expected stable RSSI value.
However the same holds for the unstable links (f) and (g), which also
exhibit a stable RSSI. Only the dropout observed in link (d) is reflected by
a distinct change of the RSSI.

If the link stability needs to be characterized by a single value, neither
the average PRR nor the RSSI link metric can reflect them. This finding
has already been reported for the PRR [CWPE05] value, yet is new for the
RSSI value.
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Fig. 5: Trace of the PRR (upper curve) and the according (mean, min, max) RSSI (lower
curve) of four sample links: Most links in the network show a stable link quality
over time as shown in the plot (a-c). There are also links showing unstable
behavior, such as dropouts (d), degradation (e) or even step behavior (f). Only
plot (d) shows a distinct change of the RSSI value.

2.3.1 Metrics

In order to quantify the temporal behavior of a link, Cerpa et al. [CWPE05]
proposed to use the so called required number of packet (RNP) metric, rep-
resenting the number of required (re)transmissions upon a successful
reception. While the RNP metric is very useful for predicting the retrans-
mission overhead for a distinct link of the routing protocol, it is not well
suited to reflect the link stability. Instead this thesis proposes to use the
standard deviation σm of the temporal PRR. The degree of the link stability
is reflected in the comparison of the link’s standard deviation with the one
of a (stochastic) Bernoulli Process and is further detailed and analyzed
in Section 2.3.2. Furthermore, it is highlighted that the σm metric can
conveniently be used to distinguish between stable and unstable links.

All the previously introduced metrics, namely the PRR, RNP and the
new σm, represent a link with a single number only, enabling a direct
comparison of links. However, rare corner cases of a link’s behavior
will evidently average out. When designing a network protocol, it is
of particular interest whether burst of packet losses occur, which will
make communication on a particular link temporarily impossible. For
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instance the retransmission strategy of an unacknowledged packet can
be designed more effectively if the behavior of such bursts is known.
Willig et al. [WM06] suggest to analyze packet-burst failures based of the
relative frequency of a certain burst size. That is, compared to all bursts,
how many consist of a single packet failure, how many consist of two
consecutive failed packets and so on. This aspect is further detailed in
Section 2.3.3.

2.3.2 Link Stability
The stable links in Figure 5 (a)-(c) exhibit a rather constant packet recep-
tion rate, whereas the unstable links (d)-(f) show a changing rate over
time. In particular, the link failures of these unstable links have time de-
pendencies and hence the individual link failures have dependencies. For
a stable link on the other hand it is assumed that link failures are indepen-
dent and provide a constant packet reception rate for every transmitted
packet. The novel σm metric introduced in the following measures the de-
gree of volatility. This is achieved by comparing the standard deviation of
the link σtrace

m with the one of a stochastic process σrand
m with independent

link failures but the same average PRR. The quotient γm = σtrace
m /σrand

m
conveniently represents the level of the link stability.

2.3.2.1 Standard Deviation

The trace of a link measurement can conveniently be represented by a
series of ’1’s (packet received) and ’0’s (packet not received). In order to
calculate the standard deviation σtrace

m , the trace is divided into blocks of
m packets. For each of these blocks the PRR PRRi

m is calculated, which
results in a sequence of temporary PRR values (PRR1

m,PRR2
m, . . . ,PRRk

m).
The standard deviation is then defined as the root-mean-square deviation
of the temporary PRRs from their mean Pr:

σtrace
m =

√√
1
k

k∑
i=1

(PRRi
m − Pr)2. (2.1)

For a perfectly stable link on the other hand, the packet failures are
independent. Such a sequence is a Bernoulli process, i.e., a sequence with
independent random variables having each the probability Pr (equal the
PRR of a stable link) of being one. In order to map this stochastic sequence
to a temporal PRR, m packets are aggregated to a temporary PRR which
leads to a binomial distribution B(m,Pr). The standard deviation σrand

m of
a stochastic and perfectly stable link can then be expressed as
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σrand
m (Pr) =

√
1
m

Pr(1 − Pr). (2.2)

Figure 6 shows the standard deviation of all the traces measured in
NetworkA andB. The standard deviation of the Bernoulli process (stable
link) is plotted with a straight line, whereas all the different traces taken
in the two networks are represented by a circle. The difference between
the two networks is very distinct, showing a lot of links with a largely
increased instability in NetworkA but only a few in Network B.

2.3.2.2 Stability Criteria

A stable link should have a similar standard deviation as the Bernoulli
process with the same average PRR has. An unstable link on the other
hand is expected to show an increased standard deviation. The stability
factor γm can be used to determine the degree of the link’s stability:

γm =
σtrace

m

σrand
m (Pr)

=

√√
m

k(1 − Pr)Pr

k∑
i=1

(PRRi
m − Pr)2 (2.3)

The upper traces (a-c) shown in Figure 5 show all a stable behavior
which is also reflected by the stability factor γ50 highlighting a value of
about 1, namely 1.11 (a), 1.00 (b), and 0.97 (c). Having a γ50 < 1 in (c)
denotes that this link has an even smaller standard deviation than the
Bernoulli process. This is always possible, since a finite stochastic process
will usually show a minor deviation from the infinite Bernoulli process
assumed in (2.2).

The lower plots (d-f) show an increased instability from the left to
the right: whereas the leftmost trace (d) only shows a short dropout, the
step behavior of the rightmost link is clearly unstable. This behavior is
reflected by the stability factor γ50 showing an increasing value for the
three traces, namely 2.33 (d), 3.23 (e) and 4.84 (f).

The index m of the stability factor γm represents the granularity of
the link instabilities: Whereas a small value m shows very short time
fluctuations of the link, a larger value of m allows detecting long term
instabilities. In order to detect whether a link is stable, it should neither
show increased short nor long time fluctuations compared to the Bernoulli
process.

Definition 1. Stable Link Criteria:

γmi < αi ∀i ∈ [1, I]
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Fig. 6: Link stability: The solid line represents the standard deviation of a Bernoulli
Process; the dashed line indicates the boundary of stable links. Each circle repre-
sents an instance of a measured trace. A manual inspection showed considerable
more unstable links in NetworkA. This finding is confirmed by the σm metric.

This definition allows to determine a set of factors αi that defines a
global stability criteria. In order to determine this set αi, a manual inspec-
tion of all measured traces is required. In particular γ100 > 3.0 revealed
to detect links with a lot of short time fluctuations, and is represented by
the dashed line in Figure 6. Long term instabilities on the other hand, can
be detected using a second criteria γ500 > 4.8. Combining the two criteria
finally allows distinguishing the stable from the unstable links.

The manual inspection of the traces shows a largely increased number
of instabilities in NetworkA deployed in a rather malicious environment
compared to Network B deployed in a benign environment. The two
constraints for short and long-term instabilities allow quantifying this
observation and is presented in Table 2. Most notable: a routing protocol
in NetworkA has to deal with 10.4% unstable links whereas Network B
shows only 1.9% of such links. This inherently suggests that the param-
eter optimization of the topology maintenance depends largely on the
network’s deployment site.
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Network A (Adversarial) B (Benign)
Number of traces 656 828
Number of packets per trace 10,000 10,000
Packet frequency 5 Hz 5 Hz
Short time instabilities (γ100 > 3) 9.6% 1.1%
Long term instabilities (γ500 > 4.8) 9.4% 1.9%
Fraction of stable links 89.6% 98.1%
Fraction of unstable links 10.4% 1.9%

Tab. 2: Link stability: NetworkA shows an increased number of unstable links.

2.3.3 Burst Size

Analyzing the occurrence of bursts was proposed by Willig et al. [WM06].
Their measurements are based on a setup with 10 receivers (RFM TR1001),
lined up on plank having a node distance of 30 cm (2.7 m in total). They
measured the burst occurrence with the same packet frequency of 5 Hz
than the measurements taken in NetworkA andB, allowing a comparison
of the results. However, their testbed was rather small and did not
show nodes close to the (maximum) reception range, which resulted in
a minimal PRR of 0.908. In order to compare their results, only the links
with this minimal PRR are selected from NetworkA and B.

The artificial lineup of the nodes in [WM06] shows much less packet
bursts, having 98.4% ”single bursts” compared to the 91.2% and 95.0%
in Network A and B, respectively. In particular Network B, not having
distinct interfering networks close by, also shows an increased number
of bursts. This suggests that the 868 MHz frequency, used by the RFM
TR1001, is much less susceptible to burst errors than the 2.4 GHz fre-
quency of the CC2420.

Packet bursts become even more frequent, especially in Network A,
if all links with a PRR > 0.8 are considered (cf. Figure 7). Even though
more than 80% of all packet bursts consist of a single packet failure,
the hostile Network A shows packet bursts with up to 30 subsequent
packet misses, i.e., six seconds with no possibility for communication.
Network B on the other hand shows a rather similar behavior as the
Bernoulli process, especially when only the stable links are accounted for.
This correlation of the packet-failure bursts and the link stability does not
hold for Network A. This indicates that the adversarial environment in
NetworkA is likely to introduce frequent short-time outages in the order
of seconds. Hence an aggressive retransmission strategy is likely to waste
a lot of energy and might even result in unnecessary topology changes
due to subsequent unsuccessful retries.



2.4. Efficient Link Assessment and Estimation 25

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

−5

10
−4

10
−3

10
−2

10
−1

Burst size

R
el

at
iv

e 
fr

eq
ue

nc
y

 

 

All Links
Stable Links
Bernoulli Process

(a) NetworkA (Adversarial)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

−5

10
−4

10
−3

10
−2

10
−1

Burst size

R
el

at
iv

e 
fr

eq
ue

nc
y

 

 

All Links
Stable Links
Bernoulli Process

(b) Network B (Benign)

Fig. 7: Burst size of packet failures for links with PRR > 0.8. Network A exhibits a
distinct number of packet-failure bursts with a size of up to 30 packets, i.e.,
5 seconds without the possibility for a successful packet transmission. These
bursts are less common in Network B.

2.4 Efficient Link Assessment and Estimation
For safety-critical, low-power routing protocols it is essential that only
high-quality links are selected, which allows for a reliable and efficient
operation. Typical routing protocols usually select a random neighbor for
their routing and assess the link during operation, exchanging nodes in
the routing table with other (random) neighbors when conditions change.
This approach leads to a lot of inefficient adaptation of the network topol-
ogy, possibly also oscillations, in particular during the start-up of the
network [DHS+07].

In contrast to this ”best practice” this thesis suggests assessing a node’s
link quality prior to addition to the routing table. A neighbor will only
be considered if the link provides a reasonable link quality. Of course,
the continuous link assessment should still take place and will possibly
benefit from the novel link-assessment scheme executed at startup. It
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is discussed in the following, how such an initial link estimation can
be performed most efficiently by identifying the best links with high
probability. In particular the impact of the number of packets and the
packet interval for the link assessment is analyzed. Moreover it is shown
that the use of the RSSI value allows to further increase the accuracy of
the link-quality estimation.

2.4.1 Evaluation Method
The evaluation of the different strategies for the link assessment is based
on all N = 1448 measured traces in both networksA and B (cf. Table 2).
In particular, the two different networks are not distinguished for the
following evaluation. Furthermore only the stable links are considered in
the evaluation, since the hardly predictable unstable links would distort
the comparison of the different estimation strategies.

The average packet reception rate X of a trace is estimated by means of
subsampling [PRW99]. This means that only a few samples (packets) of
the trace are considered for estimating the link quality. In the following it
is detailed how different estimation strategies are analyzed and compared
based on so called estimation patterns.

2.4.1.1 Subsampling

The subsampling is based on a pattern illustrated in Figure 8. In this
example the pattern selects the packet numbers 1, 2, 5, 6, 9 and 10 from
the trace and estimates the link quality based on the success rate of these
six packets. By using a sliding window technique, this single pattern
will provide n ' 10, 000 link estimations (x1 . . . xn) for every evaluated
trace. For instance, starting the pattern on the first packet results in
x1 = 4/6 received packets, whereas starting from the fourth packet results
in receiving all packets x4 = 6/6 (cf. Figure 8).

The resulting n estimations x1, . . . , xn are compared with the average
packet reception rate X. This is done by calculating the variance of the
estimations from X and hence averaging the squared distance from all xi

to X:

σ2
Trace =

1
n

n∑
i=1

(X − xi)2. (2.4)

The smaller σ2
Trace gets, the more accurate the estimation pattern is.

If the estimation strategies are adopted for all N = 1448 traces, a
variance vector V with N elements results:

V =
(
σ2

Trace1, σ
2
Trace2, . . . , σ

2
TraceN

)′
. (2.5)
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Fig. 8: Based on the measured traces a sliding window is used to analyze the perfor-
mance of the estimation pattern.

2.4.1.2 Comparing Estimation Strategies

For the differentiation of two estimation strategies X and Y, the two
corresponding variance vectors (VX, VY) are compared. This however
requires to standardize the corresponding elements, which is necessary
to weight all evaluated traces of the link estimation the same. Otherwise
the evaluation would mainly be based on the traces with the highest
variance.

v′Xi = vXi /v
X

i = 1, v′Yi = vYi /v
X

i ∀i ∈ [1,N] (2.6)

The averages (V′X and V′Y) of the standardized vectors are then set into
proportion. This allows comparing the accuracy of the two underlying
estimation strategies:

V′ = V′Y/V′X = V′Y (2.7)

Hence a value V′ < 1 denotes that the estimation strategy Y is more
accurate than X.

2.4.2 Static Estimation Pattern
The following, rather simple estimation pattern, is going to be the refer-
ence for the subsequent more elaborate estimation strategies and is used
for the standardization (2.6). Hence the average of the corresponding
standardized variance vector VSA is equal one (V′SA = 1).

Standard Pattern (SA): The standard pattern consecutively sends 20
packets at a frequency of 5 Hz. The estimated link quality is the PRR
over these 20 packets.
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A solid link estimation should not only differentiate between high
and low-quality links, but should give an accurate estimation of the link
quality. In terms of retransmission overhead, it makes a big difference
whether a PRR of 85% or 95% can be expected.

The standard pattern (SA) reliably performs the task of separating the
good from the bad links: The links with a PRR < 0.5 are estimated with
a negligible probability of 0.02% of having a PRR > 0.8, never estimating
a PRR > 0.9. High-quality links with a PRR > 0.9, are estimated with a
probability of 1.84% for having a PRR < 0.8 and only 0.02% for having a
PRR < 0.5.

The accuracy of estimating high-quality links is shown in Figure 9(a),
depicting the detailed assessment for the links with a PRR > 0.8 in steps
of 0.05. The links with a very high PRR > 0.95 are correctly assessed
with a probability of 71.1%. For the links with a PRR lower than 0.95,
the probability for an exact link estimation drops significantly to less than
one third. On the other hand, the probability for a distinct misjudgment,
i.e., more than 10% difference between the evaluated and estimated PRR,
is also less than one third.

The SA solidly distinguishes between high and low-quality links.
However, the task of assessing the links with a fine granularity is much
harder and demands for a refinement of the pattern.

Patterns T-Y: These patterns estimate the link with the PRR out of
20 packets. The value Y indicates the packet interval and therefore
determines the estimation period. For instance T-10s traces a packet
every 10 s, requiring 190 s for the estimation. T-0.2s is equal to the
standard pattern (SA).

The evaluation of the patterns T-Y is shown in Figure 10(a). It can
be seen that a lower packet frequency improves the estimation; however,
the improvement gets insignificant for packet intervals longer than 5 s. A
relationship to the burst size of the packet losses evaluated in Section 2.3.3
is very likely. If such a burst occurs during the estimation, and the
estimation is mainly based on packets of this burst then the resulting
estimations will likely be incorrect. Therefore, a packet interval that is
longer than the majority of the burst sizes (i.e., a few seconds) improves
the quality of the estimation. The pattern T-10s is shown in Figure 9(b)
exhibiting a slightly increased estimation accuracy compared to the SA.

More complicated patterns have been studied also. For instance taking
5 packets with a frequency of 1 Hz, waiting for 20 seconds and taking
another 5 packets with a frequency of 1 Hz and so one until 20 packets
are sent. These patterns improved the estimation in the same scale as the
algorithms T-X. Hence, the basic characteristic for the pattern’s efficiency
is the temporal extension of the link estimation.



2.4. Efficient Link Assessment and Estimation 29

0.8 0.85 0.9 0.95 1
0

0.8

0.85

0.9

0.95

1

evaluated PRR

es
tim

at
ed

 P
R

R

 44.2%  22.7%  6.8%  0.3% 

 21.8%  20.2%  11.9%  1.0% 

 19.2%  25.6%  23.8%  5.2% 

 11.4%  21.8%  33.1%  22.3% 

 3.3%  9.7%  24.4%  71.1% 

(a) Pattern SA: 20 packets in 4 s.

0.8 0.85 0.9 0.95 1
0

0.8

0.85

0.9

0.95

1

evaluated PRR

es
tim

at
ed

 P
R

R

 45.8%  22.5%  6.2%  0.2% 

 23.5%  21.7%  12.4%  1.0% 

 18.4%  26.5%  24.8%  5.3% 

 9.8%  20.9%  33.6%  23.1% 

 2.5%  8.4%  23.0%  70.5% 

(b) Pattern T-10s: 20 packets in 190 s.

0.8 0.85 0.9 0.95 1
0

0.8

0.85

0.9

0.95

1

evaluated PRR

es
tim

at
ed

 P
R

R

 35.1%  10.8%  1.2%  0.0% 

 25.6%  16.3%  3.8%  0.1% 

 30.8%  42.4%  26.1%  1.3% 

 7.2%  22.6%  37.0%  8.3% 

 1.2%  7.9%  31.9%  90.3% 

(c) Pattern N-50: 50 packets in 10 s.
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Fig. 9: Detailed comparison of different estimation strategies for PRR>0.8. The target
squares are highlighted by dashed borders.

Patterns N-Z: These patterns consecutively send Z packets with a
frequency of 5 Hz. The estimation is performed by calculating the
PRR over these Z packets. The algorithm N-20 is equal to the standard
pattern (SA).

The number of packets has a clear impact on the quality of the esti-
mation as detailed in Figure 10(b). The relation between the number of
packets X and the resulting value V′ (compared with the SA) is almost
indirectly proportional. This means that when the number of packets is
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Fig. 10: Comparison of different estimation-strategy parameters.

doubled, the variance of the estimation is divided by two. This result
however needs to be quantified with respect to the power and time re-
quirements: For instance, the pattern N-50 requires 2.5 times more energy
and time than the SA, but shows a distinct improvement for assessing the
high quality links. In particular, 90.3% of the links with a PRR > 0.95 are
estimated correctly (cf. Figure 9(c)), in contrast to the 71.1% of the SA.

2.4.3 Adaptive Estimation

As indicated in Section 2.2.2 and further detailed in Table 3, the RSSI
value allows refining the link estimation. The table shows, that for high
RSSI values, i.e., RSSI > −70 dBm, the average PRR is more than 98%,
showing only a small standard deviation, and hence allows to detect very
good links. On the other hand, a low RSSI value does not necessarily
indicate a bad links. The following adaptive pattern R shows how this
additional information can be used for an increased performance of the
link assessment.
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RSSI Range Avg PRR σ(Avg PRR) Max PRR
-70. . . 0 dBm 98.2% 0.022 99.9%
-75. . . -70 dBm 94.6% 0.045 99.0%
-80. . . -75 dBm 91.5% 0.088 98.8%
-85. . . -80 dBm 88.7% 0.076 98.6%

Tab. 3: Statistics on the PRR for different RSSI thresholds: Even links with a low RSSI
can have a very high PRR.

Adaptive Algorithm R: The algorithm R is based on a pattern that
evaluates up to a maximum of 31 packets at 1 Hz. The algorithm
is divided into three rounds: (1) If the first packet has an RSSI >
−70 dBm, a PRR = 0.98 is estimated and the algorithm stops. (2)
Another 15 packets are evaluated. The algorithm stops returning the
PRR of the first 16 packets if this PRR> 0.9 AND min(RSSI) > −80 dBm.
(3) Another 15 packets are taken into account and the PRR of all 31
packets is returned.

The evaluation of this adaptive algorithm based on all traces, consid-
ers an average number of 18 packets for estimating the link quality. In
particular 36% of the estimations stopped after the first round, 13% after
the second, whereas 51% of the links required evaluating all 31 packets
for the estimation. With less packets considered on average, this adaptive
algorithm achieves a significantly better assessment than the SA pattern
(V′ = 0.75) and is further detailed in Figure 9(d). The overall estima-
tion accuracy is slightly below that one of the N-30 pattern (V′ = 0.68).
This indicates that for many good links a lot of energy and time can be
saved by quickly assessing them, still pursuing a thorough assessment
for the less predictable links. In contrast to the static estimation patterns,
an adaptive algorithm requires some sort of handshake protocol, when
being incorporated into a protocol.

The possibilities of using the LQI for an increased accuracy for the
link estimation of an extended algorithm R has been analyzed in detail.
However, such extensions could not achieve reasonably better results.
Furthermore, tweaking the parameters of algorithm R for an optimized
performance is not recommended, since this optimization depends mostly
on the environment the target network is being deployed in.

A reasonable value for a minimal link quality (MLQ) for a neighbor in
the routing table is a PRR ≥ 0.9. Selecting the neighbors without a prior
link assessment will result in high likelihood that the topology needs to
be changed since many links do not provide this MLQ. In the case of
the analyzed networksA and B, 44.6% of the initially selected links will
have to be replaced during operation. On the other hand, if the adaptive
algorithm R is used for a prior link assessment, this percentage is reduced
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to 14.8%. Hence there are 3.0 times less network topology changes during
the initialization of the network. This comes at an average cost of sending
18 packets and a 0.4% possibility of wrongly estimating such a MLQ
neighbor with a bad link quality of PRR < 0.8.

2.5 Related Work
The link quality in wireless sensor networks, i.e., using low power radio
devices such as the CC1000, RFM TR1000, is analyzed in several stud-
ies [ZG03, RHL04, WTC03, CWPE05, WM06, SL06]. Most of them focus
on the spatial properties of wireless links, based on rather artificial node
deployments such as a line or a grid. This provides a first insight into
link characteristics, however it lacks to disclose effects that only occur in a
less protected environments. This work on the other hand, evaluates the
link characteristic of real deployments, exemplary to the ones being used
in a wireless fire-alarm application. Furthermore, this study takes into
account that technology moves towards ample bandwidth, packet based
radios, such as the Chipcon CC2420 based on the IEEE 802.15.4 standard.
Most related studies mentioned above, measure the link quality based on
first generation radio hardware, which are byte stream based and operate
in the sub gigahertz band.

The existence of the gray area has first been shown by Zhao et al.
[ZG03] in a linear topology with a 868 MHz radio device. Woo et al.
[WTC03] (grid, 868 MHz) provide similar findings based on a uniform
grid over a large, essentially unobstructed indoor space. Reijers et al.
[RHL04] (linear, 868 MHz) extensively investigates the gray area and the
influence of the environment. They point out, that for indoor deploy-
ments, the extent of this gray area is very large due to the multi-path
signal delivery. In particular there are more nodes inside the gray area
than within the proper communication range. In the office-like deploy-
ments analyzed in this work, the gray area spans even further and covers
almost the whole communication range.

Temporal link behavior is studied by Willig et al. [WM06] (linear
within 3 meters, 868 MHz). They show that bit error occur in bursts,
while packet errors do not. This latter finding is in contradiction to
the finding in this work and clearly shows the large impact on the link
quality in hostile environments. Cerpa et al. analyze in [CWPE05] (grid,
868 MHz) the temporal properties of wireless links and propose the RNP
metric. This metric allows predicting the retransmission overhead of a
link, yet is not well suited to reflect the link stability.

The RSSI and LQI values is also studied in [SL06] (random, 2.4 GHz)
by Srinivasan et al.. They show that RSSI is usually a better link indicator
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than LQI due to the former’s smaller range of variance, a result that is
confirmed in this thesis. Srinivasan et al. however lack to notice that the
LQI value is well suited for indicating bad-quality links.

Link assessment and estimation for WSNs is not a well addressed
topic in literature. Woo et al. [WTC03] analyze traditional techniques
for the link assessment, pointing out that most of these approaches re-
quires to overhear all neighboring traffic. They propose the so called
WMEWMA(t,α) estimator, that does not rely on tracking down the se-
quence number of the neighboring traffic and addresses the issue of the
resource constraints for maintaining the neighbor table. While this es-
timator allows for observing the link quality while routing, it does not
assess the link quality prior adding the link to the routing table. Such an
initial link quality assessment is proposed by Lal et al. in [LMH+03]. They
assess the link quality over a period of a day, in order to get a good link
estimate. This thesis on the other hand highlights, how link estimation
can be performed within seconds.

2.6 Summary
This chapter provides significant insight into the link characteristics and
behavior of a 2.4 GHz indoor environment typical for wireless sensor net-
works. It has been shown that a large fraction of the link suffer from ran-
dom packet losses. These losses are not necessarily uniformly distributed
over time, having up to 10% of the links showing temporal instabilities.
It is even possible that complete dropouts (i.e., without any means for
communication) lasting for several seconds occur.

For safety-critical networking, the results clearly show that redun-
dancy in the network is indispensable. For WSNs in general it is high-
lighted that the topology needs to be monitored continuously and that
links should and can be well estimated. Among others, these aspects are
detailed in the remainder of this thesis.
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3
Medium Access Control for

Low-Power Operation

Application scenarios for (safety-critical) Wireless Sensor Networks of-
ten involve battery-powered nodes that should be operational for years
without the necessity of exchanging the batteries. With today’s hardware
platforms drawing tens of milliamperes of current and battery capacity
being limited to a few ampere hours, the need for energy management
becomes apparent; without it a node would drain its batteries within a
couple of days. This fundamental need for energy-efficient operation has
drawn the attention to the radio, which is the component of a typical
sensor node that consumes most energy.

Duty cycling the radio, that is, repeatedly switching it off for some
time, is the only way to achieve the required two orders of magnitude re-
duction in energy consumption for extending lifetime from days to years.
This duty cycling effectively reduces the available bandwidth on the ra-
dio channel, hence, limits the amount of data that can be communicated
through the sensor network. Note that the reverse does not necessarily
hold; applications constraining their payload do not automatically extend
the lifetime of a sensor node because radios consume about as much en-
ergy when running idle as when transmitting or receiving data. Only by
putting the radio into (deep) sleep, energy consumption reduces to zero
(i.e., from mW to µW range), which is the task of the Medium Access
Control (MAC) layer driving the radio hardware.

Since the introduction of the canonical S-MAC protocol [YHE02], a
whole range of energy-efficient WSN MAC protocols have been devel-
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oped (cf. Section 3.1). These MAC protocols all trade off performance
(latency, throughput) for a reduction in energy, but differ in complex-
ity and flexibility to adapt to traffic fluctuations, topology changes, and
varying channel conditions. Simple protocols are often based on random
access (CSMA), while more complex protocols organize channel access
according to some predefined schedule (TDMA).

Developers of long-running applications must be careful in selecting
the MAC protocol that suits their needs best, so that they can squeeze
the most out of the limited hardware resources. As such it is essential to
understand how MAC protocols operate in specific conditions (data rates,
traffic patterns, interference levels, etc.). At the moment, however, there
is no reference framework for doing so. Typical MAC protocols have
been demonstrated to outperform S-MAC, but with different simulators,
hardware platforms, and workloads, making it very difficult to assess
their behavior in another context. Comparative studies like [HDL05]
shed some light on the relative performance of a few protocols, but again
only for a limited number of deployment scenarios. The latter aspect can
be addressed by analytical models capturing relevant system parameters,
as for example the analytical model for the energy consumption of the
data-link layer by Zhong et al. in [ZRW04], which models the network
traffic and the radio characteristics. However, they discuss very few and
meanwhile outdated MAC protocols (ALOHA, CSMA) while advanced
MAC protocols, as considered in this chapter, contain a number of internal
parameters that must be taken into account too. For optimal performance,
it is simply not sufficient to compare MAC protocols running with their
standard settings. Instead the whole parameter range for all protocols
have to be compared against each other.

This chapter addresses this exploration void and presents a model-
based approach for benchmarking MAC protocols for the case of low
data-rate applications where energy efficiency is needed the most. The
analytical models of state-of-the-art MAC protocols are driven by a set
of context parameters (e.g., radio characteristics, data rate and network
topology) as well as internal MAC-protocol parameters (e.g., duty cycle,
slot length, and number of slots). As the low data rates make complica-
tions like collisions and congestion rare events, the models can be kept
rather simple in nature. This has three advantages. One, it makes the
analytical approach scalable in the sense that analyzing various proto-
cols is feasible. Second, it provides fairness for the comparison of the
protocols, as with the rather simple parameters it is avoided to get lost
in minor model details while loosing sight of the big picture. Three, the
MAC protocols can be evaluated in a large number of different settings.

This chapter presents a few results from the design-space exploration,
showing that reducing idle listening and overhearing, and managing
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clock drift are keys to achieving energy efficiency for low data-rate appli-
cations. However, the main contribution of this chapter are the analytical
models, which can be used to select the MAC protocol that favors an ap-
plication’s specific requirements and conditions. In particular, it allows
identifying the most suitable MAC protocol for the safety-critical WSN
protocol stack presented in Chapter 5.

The remainder of this chapter is structured as follows. Section 3.1
presents a brief overview of MAC protocols especially developed for
WSNs. Section 3.2 introduces the modeling framework, followed by a few
example models of state-of-the-art MAC protocols in Section 3.3. These
models are analyzed in Section 3.4 for a set of delay-insensitive monitoring
applications in typical network topologies, where energy efficiency is the
prime consideration. Most MAC protocols were originally designed for
being used with a byte-stream radio. It is discussed in Section 3.5 how the
MAC protocols and the modeling framework can be adapted for being
used with packet-based radios. Section 3.6 concludes this chapter.

3.1 Energy-Efficient MAC Protocols
The primary concern of WSN-specific Medium Access Control protocols
is to switch the radio into sleep mode; otherwise energy would be wasted
due to so-called idle listening by nodes waiting for potential incoming traf-
fic. Other sources of overhead that should be avoided include overhearing
of messages destined to other nodes, unnecessary sending if the receiver is
not listening, collisions for example due to hidden terminals, and protocol
overhead for medium reservation and clock synchronization. An addi-
tional complication for the low data-rate applications considered in this
study is that amortizing overheads, for example by piggybacking protocol
information on data messages, becomes rather difficult when applications
only send out a message every few seconds, or even minutes.

All energy-efficient MAC protocols duty cycle the radio, at the expense
of reducing bandwidth and increasing latency. The reduction in through-
put is of little concern since commonly-used radios like the TI CC1000
offer ample bandwidth (76.8 kbps) compared to what most applications
need (� 1 kbps). The latency increase, on the other hand, is much more
of a concern especially when targeting duty cycles of less than 1 %; in a
multi-hop scenario a message may encounter a delay up to a complete
sleep interval (1 s or more) on every transfer, resulting in long end-to-end
latencies.

A whole range of WSN-specific MAC protocols has been developed,
each with its own trade-off between latency, throughput and energy sav-
ings. In general, three classes of protocols are distinguished, depending
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Fig. 11: Taxonomy of MAC protocols according to organization and historic develop-
ment; the protocols analyzed in this study are highlighted.

on how strict access to the channel is organized. Figure 11 shows a tax-
onomy of MAC protocols along this classification of random, slotted, and
frame-based (TDMA) access, as well as the historic development within
each class.

The class of random access protocols puts no restrictions on when a
sleep/active cycle is taking place. Neighbors do therefore not need to
coordinate their cycles and consequently wake up independently of each
other. This avoids the overheads and bookkeeping associated with run-
ning a time synchronization protocol, but leaves it up to the sending nodes
to arrange a rendezvous with the intended receiver whenever it wakes
up. An effective way is to stretch the length of the standard preamble to
cover one complete sleep interval, which assures that the receiver (when
polling the channel for activity) will detect a signal and eventually detect
a start symbol, followed by the true message. This technique is known
as low-power listening (LPL) [HC02] or preamble sampling [EH02], and was
subsequently refined by the B-MAC protocol [PHC04], which added a
user-controlled sleep interval, and by the WiseMAC protocol [EHD04],
which tracks the phase offsets of neighbors’ schedules allowing senders
to transmit a message just in time with a short-length preamble saving
energy and bandwidth. The X-MAC protocol [BYAH06] in turn enhances
B-MAC by adapting it for packet-based radios sending out streams of
packets instead of one long preamble.



3.1. Energy-Efficient MAC Protocols 39

A reverse approach to LPL was proposed with the RI-MAC proto-
col [SGJ08]. Instead of listening periodically, beacons are sent at a regular
interval, indicating to be ready subsequently to receive a message. This
avoids sending a long wake-up preambles (the sender has to listen for
the receiver’s beacon instead) and is therefore especially suited for high
data-rates. Another approach to arrange a rendezvous is to use a second,
low-power radio to send a wakeup signal, which will prompt the re-
ceiver to power up its primary radio to listen for the message that follows
shortly. The idea of using wakeup radio is explored by STEM [STGS02]
and RATE EST [MV04] in simulation. Since there is no hardware im-
plementation in regular use, wake-up radios are not considered in the
remainder of this chapter.

The class of slotted access protocols requires nodes to synchronize on a
global notion of time, which is then organized as a sequence of slots. This
organization allows nodes to collectively iterate through a sequence of
active/sleep cycles. In the simplest case of the S-MAC protocol [YHE02],
nodes spend a fixed amount of time in active and sleep mode, i.e., they
wake up at the beginning of each slot and go back to sleep after a fixed-
length interval. Within an active period, nodes follow the classic CSMA
with collision avoidance (RTS/CTS signaling) approach to gain access to
the channel. To account for variations in traffic, both in time and loca-
tion, T-MAC [vDL03] introduces a simple timeout mechanism to adapt
the length of the active period to the actual load. At the start of each
slot, nodes listen for a short period (around 10 ms) to see if there is any
communication to engage in, if not, they switch back to sleep mode. This
allows saving a lot of energy over S-MAC running at a duty cycle that
matches the load at the busiest node in the network. The SCP-MAC pro-
tocol [YSH06] manages to reduce the length of the active period to just
1-2 milliseconds by orchestrating senders to resolve contention before the
receivers poll the channel (see Section 3.3.2). A down-side shared by all
slotted protocols is that communication is grouped at the beginning of
each slot, raising the chances on collisions, hence, limiting their dynamic
range to low traffic rates only.

The class of frame-based access protocols groups slots into frames, and
eliminates contention by precisely scheduling who is allowed to send
in which slot. Computing these (periodic) schedules is rather diffi-
cult. Simple (distributed) policies lead to overprovisioning, as in the
case of LMAC [HH04]; complicated policies taking actual traffic loads
into consideration induce great complexity and relatively large mem-
ory footprints for maintaining neighbor state, making protocols like
TRAMA [ROGLA03] hard to use in practice.

Lately, a number of hybrid protocols have been proposed that try to
combine the best of all domains, basically, by putting a TDMA-overlay
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structure on top of CSMA/CA. This combination employs the flexibil-
ity of random access with a (much) lower chance of collision. The
P-MAC [ZRS05], Z-MAC [RWAM05], and Crankshaft [HL07] are exam-
ple protocols from this hybrid category, with Crankshaft being used as
the representative in this chapter.

3.2 Modeling Framework
Given the wide variety of MAC protocols it is important to understand
their (relative) performance, such that the best protocol can be selected
for a specific deployment. The focus of this study is on long running,
low data-rate applications, which already corners the set of possible op-
erational conditions that has to be considered when evaluating MAC
protocols. Nevertheless, a thorough exploration should consider varia-
tion in workload (application traffic), radio and channel characteristics,
and network topology (e.g., node density).

Taking an analytical, model-based approach allows for a fast evalua-
tion of a number of MAC protocols in a rather large space of operational
conditions. In particular this chapter presents models for the network
topology, radio hardware, application traffic, and nine MAC protocols.
The former three models capture the essential operating conditions that
are varied when evaluating the MAC protocols in Section 3.4. These
three models are presented in the following, whereas the MAC models
are discussed in the next section.

3.2.1 Application Characteristics
Two kinds of applications are distinguished in this study, namely event-
based and periodic reporting. In many monitoring type of applications,
nodes simply send a status report on a regular basis to a central sink
node for (offline) processing and storage. Example deployments include
observing the nesting habits of Storm Petrels by monitoring the presence
of birds in individual burrows [MPS+02], recording the change of light
intensity at various heights in a Redwood tree [TPS+05], and observing
the microclimate (temperature and humidity) in a potato field [LBV06].
The typical communication pattern that emerges from periodic reporting
is a spanning tree with traffic flowing from the leaves to the data sink
at the root (see Figure 12). Depending on the specific deployment data
capturing may be synchronized (network-wide snapshots), and data may
be aggregated at intermediate nodes. For simplicity unsynchronized data
capturing without aggregation is considered, but extending the models
to include these features has proven to be straightforward.
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Fig. 12: Sample spanning tree with the sink at level 0 and a depth of 3.

The class of event-based applications shows a much more erratic com-
munication pattern as network activity is triggered by some external
event. For example, in the case of a surveillance system, the detection
of an intruder prompts the forwarding of an alarm message along some
route to the sink. Also, many monitoring applications can be optimized
to report only significant changes (bird enters/leaves a burrow) instead of
continuously streaming redundant data (the presence of the bird).

For both classes of applications the amount of energy consumed is of
major interest, because that determines the lifetime of the network (i.e.,
the time until the first node runs out of energy), and hence the feasibility
of the deployment. In the case of event-based applications, almost all
energy is spent on keeping the network alive as the data rate is close to
zero, assuming applications where events are rare. In the case of periodic
reporting, additional energy is spend on forwarding data packets to the
sink, with nodes close to the sink typically handling more traffic. A MAC
model should take both classes into account and incorporate system-level
traffic (for keeping the network alive) as well as application-level traffic.

The second performance metric of interest is latency. In many event-
based scenarios (end-to-end) latency is bounded by application require-
ments, for example, an intrusion detection must be reported at the sink
within a few seconds. Depending on the MAC protocol there can be a
rather large difference between average latency and worst-case latency.
For example with LMAC, a TDMA-style protocol in which each node
owns a time slot, the average delay at each hop is half the frame length,
but in the worst case the send slot is just missed and the message is
delayed for (almost) a complete frame. Reporting worst-case latency,
however, has little merit as in real life collisions and external interference
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Parameter Description Value (Range)

P Payload [byte] 32
FS Sampling frequency [#pkts/node/min] 0.01 – 10
C Connectivity [#neighbors] 4 – 16

FI Aggregated input traffic
∑

n∈I Fn
out

FB Aggregated background traffic
∑

n∈B Fn
out

Fout Output frequency FI + FS

Tab. 4: Traffic model (for a node N) with typical parameter values; the topology infor-
mation is encoded by means of sets I and B (cf. Figure 13), satisfying C = |I|+ |B|.
Note that all parameters are node specific, but that the indices (superscripts)
have been omitted for clarity whenever possible (e.g., write I instead of IN).

rule out any strict guarantees to begin with. Therefore the average la-
tency of the MAC protocols is modeled. For periodic reporting on the
other hand, latency is of minor concern because such data is quite often
stored for offline processing (e.g., generate daily/weekly/monthly statis-
tics) and even for online monitoring a delay in the order of a minute is
sufficient for most applications.

As the focus of this study is on low data-rate applications, throughput
is of no concern, other than that MAC protocols should not be driven
into overload leading to collisions and queue overflows. This will be safe
guarded by adding boundary constraints on the amount of traffic flowing
through the network. In order to keep the analysis tractable, the impact
of external interference, i.e., random packet loss is not considered. As a
consequence, the MAC models do not need to consider retransmissions,
which greatly simplifies the models.

3.2.2 Traffic Model
To keep a MAC model as simple as possible, the actual network topology
is abstracted by detailing for every node what input traffic it is handling,
and what background traffic is potentially bothering it being send out by
its other neighbors. Note that background nodes may be peers at the
same level of the tree, as well as nodes at levels below and above that of
the node itself. The latter group includes the parent node forwarding a
node’s outgoing traffic (amongst others) further up in the tree. Figure 13
illustrates the local view of a MAC model, which is sufficient to express the
energy consumption of a node using the particular traffic parameters from
Table 4. The network lifetime can then be obtained by simply iterating
over all nodes and recording the maximum energy consumption for the
traffic parameters at each node.
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Fig. 13: Local view of the traffic model: black arrows indicate traffic flowing through,
grey arrows indicate interference from background nodes.

The traffic model embeds the spanning tree of the application on top
of a raw network topology by specifying for each node the set of input
(child) nodes I and the set of overheard (background) nodes B. This
allows for accurate modeling of specific, irregular deployment scenarios,
as well as for modeling regular topologies like grids and the ring structure
of Figure 12.

In the following a set of equations is derived that allows to calculate
the induced traffic of the ring structure, which is being used in the MAC
performance analysis in Section 3.4. In particular, a spanning tree is con-
structed in the network that is based on shortest-hop routing to the sink
located in the center. Assuming a uniform node density on the plane and
a unit disk graph communication model, there are C + 1 nodes on the unit
disk. Hence all nodes are in communication range with a fixed number of
C neighbors. The nodes are grouped into rings according to their distance
d (minimal hop count) to the sink (d = 0). The first ring contains C nodes,
from which the node density is derived, and subsequently the number of
nodes Nd in ring d:

Nd =

{
1 if d = 0
Cd2
− C(d − 1)2 = (2d − 1)C otherwise.

Knowing the number of nodes in each ring allows to compute the average
number of input links of a node at level d as the ratio between Nd+1 and
Nd:

|Id| =


0 if d = D
C if d = 0
Nd+1/Nd = (2d + 1)/(2d − 1) otherwise,

where D denotes the maximum distance to the sink. Note that the number
of input links is independent of the node density. Knowing the number
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of input nodes and the nodes’ basic sampling frequency FS, the output
frequency is computed as

Fd
out =

{
FS if d = D
Fd

I + FS = |Id|Fd+1
out + FS otherwise.

This iterative formula can be reduced to

Fd
out = FS(D2

− d2 + 2d − 1)/(2d − 1), (3.1)

which gives a closed formula for the input rate (using Fd
I = Fd

out − FS):

Fd
I =

{
FSD2C if d = 0
FS(D2

− d2)/(2d − 1) otherwise.
(3.2)

To arrive at the aggregate background traffic it is assumed that the B nodes
in Figure 13 on average generate the same load (Fd

out) as the node itself:

Fd
B = |Bd|Fd

out = (C − |Id|)Fd
out. (3.3)

With equations (3.1) - (3.3) determining the node that consumes most
energy requires D evaluations (evaluate one node per ring) of a MAC
model, whereas brute-force (node by node) processing would involve CD2

evaluations. When considering real-world, irregular topologies similar
speed-ups can be achieved by focusing on a few bottleneck nodes through
specifying their individual parameters (FI, Fout, FB, C, etc.).

3.2.3 Radio Model
Besides the traffic parameters, the evaluation of a MAC model requires
input about the radio hardware that is, or will be, used in the specific
deployment scenario. Since the objective of this study is to compare the
relative performance of various MAC protocols, many details can be left
out. Instead of computing the absolute energy-consumption level, the
effective duty cycle is calculated. That is the fraction of time the radio is
switched on; regardless whether transceiving, idle listening or powering
up. This allows to omit exact energy consumption numbers and only
focus on the timing aspects. As such a radio can be modeled with just
three parameters: the time needed to power it up (i.e., to transit from
sleep into active mode), its data rate, and the time needed to do a carrier
sense (including power up).

An important issue with low data-rate applications is that clock drift
becomes an issue for advanced MAC protocols that arrange nodes to wake
up at precise moments in time to minimize energy consumption; without
any data traffic the clocks of different nodes may drift apart and needs to
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Par. Description TI TI RFM
CC1000 CC2420 TR1001

Type Byte-stream vs. packet based Byte Packet Byte
R Data rate [kbyte/s] 2.40 31.25 57.50
Ton Turn radio on into RX or TX [ms] 2.10 2.40 0.5
Tcs Time for carrier sense [ms] 2.45 2.60 0.53

(Ton included)
θ Frequency tolerance [ppm] 30 30 30
Lpbl Minimal preamble length [byte] 6 4 2.5

Tab. 5: Radio model with typical parameter values for the radios used in Section 3.4
and 3.5.

be accounted for. Therefore, the clock-drift parameter θ is included that
captures the precision of the (external) quartz crystal that determines the
timing of the underlying (radio) hardware. An overview of the radios
and their parameters used in this study are depicted in Table 5. It should
be noted that a byte-stream radio is assumed for the MAC models, since
most protocols were originally designed for such radios. It is discussed
in detail in Section 3.5, how the models are applicable to packet-based
radios.

3.3 MAC Models
There are many parameters influencing the performance of a MAC pro-
tocol. First, there are the (external) radio and network parameters as
introduced in the previous section. Second, there are the internal MAC
parameters, such as duty cycle, number of slots, and polling time. This
section shows how the energy efficiency and latency of the protocols is
modeled based on both the internal and external parameters.

Altogether nine different protocols are analyzed for this study, taking
a selection of the whole MAC design space as indicated in Figure 11.
An overview of these nine protocols and their internal parameters is
provided in Table 6 and 7 for reference. Discussing each protocol in de-
tail would take up too much space. Therefore the most sophisticated
protocol of each category is presented only: LMAC (scheduled), SCP-
MAC (slotted), WiseMAC (random access with wake-up prediction), and
Crankshaft (hybrid). The remaining five protocols, namely S-MAC (slot-
ted), T-MAC (slotted with timeout), D-MAC (slotted with convergecast),
B-MAC (random access), and X-MAC (packet-based random access), are
briefly discussed in Appendix A on page 147.
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Parameter Description Value (Range/Set)

B-MAC
Tw Sample/polling period [s] [0.02, 2]

Crankshaft
Lmax

data Maximum data length [byte] 32
Tsync Time between sync packets [s] [12, 60]
Nu Number of unicast slots per frame [4, 32]
Nb Number of broadcast slots per frame 2

D-MAC
Nsleep Number of sleep slots [6, 100]
Tsync Time between sync packets [s] [60, 600]

LMAC
Lmax

data Maximum data length [byte] {32,64,128,256}
Nslots Number of slots per frame 32

S-MAC
DC Duty Cycle [ % ] [0.1, 10]
Tdiscover Discovery interval [s] 360
Tactive Active phase/slot [s] [0.02, 0.1]

SCP-MAC
Tw Sample/polling period [s] [0.02, 2]
Tsync Time between sync packets [s] [12, 60]

T-MAC
Tslot Duration of a single slot [s] [0.15, 10]
Tsync Time between SYNC packets [s] 100
Tdiscover Discovery interval [s] 360

WiseMAC
Tw Sample/polling period [s] [0.02, 2]

X-MAC
Tw Sample/polling period [s] [0.02, 2]
Tal Acknowledgement listen period [ms] 0.95

Tab. 6: Internal (configurable) protocol parameters.
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Protocol Control Packet Size [byte] CW [#slots]

B-MAC Lhdr 9 15
Lack 9 + Lpbl

Crankshaft Lhdr 11 15
Lack (Sync) 9 + Lpbl

D-MAC Lhdr 10 15
LMAC Lhdr 7 + Lpbl –
S-MAC Lctrl 8 + Lpbl 15
SCP-MAC Lhdr (Sync) 10 7 + 8

Lack 8 + Lpbl

T-MAC Lctrl 8 + Lpbl 15
WiseMAC Lhdr 7 15

Lack (Sync) 9 + Lpbl

X-MAC Lhdr, Lack 9 + Lpbl 15
Lps 5 + Lpbl

Tab. 7: Implementation-specific (fixed) protocol settings for headers and contention win-
dows (CW), the latter ones having a slot time of TCW

Slot = 0.62 ms.

Given that for long-running applications most of the time (energy)
will be spent in the operational phase of a MAC protocol, the models
ignore any initialization procedures, which might be rather complex as
in the case of setting up a TDMA schedule. Another important simpli-
fication follows from the assumption that messages do not get distorted
(due to interference) or lost (due to collisions), so retransmissions are not
modeled. Collisions are unlikely for low data-rate traffic, but boundary
conditions are included to safe guard against the improper selection of
protocol parameters. For example, a MAC protocol that samples the radio
channel every second cannot possibly receive two packets per second.

In the following discussions of the four advanced MAC protocols
(LMAC, SCP-MAC, WiseMAC, and Crankshaft) first provides a short
description of the protocol, then discuss the synchronization (clock drift)
aspects, and finally provide equations for the average h-hop latency and
energy efficiency (duty cycle).

3.3.1 LMAC

The Lightweight MAC [HH04] protocol features a self-organizing TDMA
scheme that organizes time into frames containing Nslots slots each (cf. Fig-
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Fig. 14: The frame structure of LMAC.

ure 14). Every node owns one slot in which it sends out a header (to mark
its occupancy), possibly followed by a data payload either addressed to
a specific recipient (unicast) or to all nodes in range (broadcast). Conse-
quently, a node must listen (i.e., perform a carrier sense) in all slots other
than its own to check for incoming data. To allow for collision-free trans-
missions and spatial re-use of slots, a header includes a list of all occupied
slots in the owner’s one-hop neighborhood; after merging the occupancy
information of its neighbors, a new node joining the network can select a
free transmission slot within its two-hop neighborhood. This distributed,
interference free slot selection mechanism obviates the need for explicit
acknowledgement messages, which are left out from the LMAC protocol
to save energy; the recovery from external interference is left to the upper
layers in the protocol stack.

Synchronization. Synchronization is performed with every header that
is sent, i.e., in every occupied slot. In the worst case a node hears one
header per frame, hence, a sender and receiver can drift at most 2θT f rame

apart (one running ahead, the other running behind). For efficiency the
(receiving) nodes perform only a carrier sense, so the slot owner has to
guard for the maximum clock drift by sending out a stretched preamble.
Since it is unknown who is running ahead, the guard time must be twice
the maximum drift:

Tguard = 4θT f rame, where T f rame = Nslots · Tslot. (3.4)

Depending on the length of the slot Tslot, only a certain amount of payload
can be transmitted at once. Therefore, if the slot should fit a payload of
Lmax

data, the length of the slot results in

Tslot = Tguard + Thdr + Lmax
data/R. (3.5)

Latency. After receiving a message, a node must wait for its own slot
for forwarding. The message is therefore sent in one of the next Nslots − 1
slots, which results in an average latency of Thd = (Nslots − 1) · Tslot/2. This
is based on the assumption that no queues occur at any given node due
to the low data rate of the application. For the first hop however, the
message could be triggered right after the beginning of the owned slot
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and hence the message is delayed for Tinit = (T f rame + Tslot)/2 on average.
Finally, for the last hop only part of the transmission slot is occupied
when the payload is shorter than Lmax

data. For a message that needs to be
forwarded h hops, this results in an average latency of

L(h) = Tinit + (h − 1) · Thd − (Lmax
data − P)/R

= (h · T f rame − (h − 2) · Tslot)/2 − (Lmax
data − P)/R. (3.6)

Energy-Efficiency. The energy efficiency is assessed considering the
different sources individually. LMAC requires performing a carrier sense
(Ecs) in every slot but the owned one. In every frame, C neighbors are
sending a (guarded) header that is overheard (Ehdr), after which the radio
can be switched off in most cases; only the incoming traffic FI for the node
itself is received (Erx). Energy is spent also by transmitting (Etx) a header
in every frame (that needs to be guarded for potential clock drift) and the
payload if there is data to send.

Ecs = (Nslots − 1) · Tcs/T f rame

Ehdr = C · (Tguard/2 + Thdr)/T f rame

Erx = FI · P/R
Etx = (Ton + Tguard + Thdr)/T f rame + Fout · P/R

E = Ecs + Ehdr + Erx + Etx (3.7)

Parameter Constraints. Every node has its own transmission slot, and
hence, the bottleneck is at the nodes having the most packets to send,
i.e., the bottleneck nodes are the ones next to the sink. In order to avoid
queues, the bottleneck bandwidth is set to 50 %, i.e., having a packet in
every second (owned) slot only:

F1
out · T f rame < 1/2. (3.8)

3.3.2 SCP-MAC
The scheduled-channel-polling MAC [YSH06] protocol combines low-
power listening (LPL) with a global synchronized channel access, espe-
cially designed for low duty-cycle operation. All nodes in the network
wake up at a regular interval Tw and perform a synchronized carrier
sense. A sender node has to contend for the channel before the scheduled
wake-up, so the receivers do not waste energy on listening to a complete
contention window. The synchronized channel poll must be guarded to
account for possible clock drift, which results in a prolonged wake-up
preamble (tone).

To limit the length of the senders’ contention window (Tcw1), SCP-
MAC employs a second contention window after the wake-up time to
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Fig. 15: The channel access policy of SCP-MAC.

handle the (increased) chance of multiple senders picking the same slot
initially. This two-stage contention resolution policy allows for two short
contention windows instead of a single long one. After this second con-
tention window (Tcw2), the packet is sent and acknowledged1.

Synchronization. SCP-MAC requires that at least one message is sent
every Tsync in order to keep the neighboring nodes synchronized, which
results in a guard time of Tguard = 4θTsync. If the data rate is too low,
additional synchronization messages have to be sent:

Fsync =

{
0 if Fout > 1/Tsync

1/Tsync otherwise.
(3.9)

Latency. A message is generated somewhere during the wake-up
interval before the first contention window, which results in an average
delay of Tw/2 at the first hop. For every additional hop, the packet will be
delayed for another Tw. At the last hop, the time required for the packet
transfer sequence needs to be taken into account.

L(h) = Tw/2 + (h − 1) · Tw + Tcw1 + Tguard + Tcs + Tcw2/2 + Tmsg,(3.10)

where Tmsg = Thdr + P/R + Tack is the time required for sending the packet
header, the payload and the acknowledgement.

Energy-Efficiency. The energy consumption of SCP-MAC is calculated
by adding up its sources. The nodes are required to perform a (synchro-
nized) carrier sense Ecs in every slot to check for a potential message. If a
message is sent (Etx), the node has to guard for potential clock drift, has
to perform a carrier sense in the second contention window, and has to
transfer the message as illustrated in Figure 15. A receiving node (Erx)
on the other hand will listen for half the guard time on average, half of
the second contention window, and the message. For the messages that

1SCP-MAC offers several options, namely an RTS/CTS handshake with acknowl-
edgement, an acknowledged, and an unacknowledged data transfer. Considering the
low data rate and the short payload size in sensor networks, the handshake is a big
overhead. Therefore the acknowledged service is modeled.
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are overheard (Eovr), i.e., sent to another node, the radio is switched off
after receiving the header. The synchronization messages are handled
the same way as data messages. However, only a header without an
acknowledgement is broadcast (Estx) and received (Esrx).

Ecs = Tcs/Tw

Etx = Fout · (Tcw1/2 + Tguard + Tcs + Tmsg)
Erx = FI · (Tguard/2 + Tcw2/2 + Tmsg)

Eovr = FB · (Tguard/2 + Tcw2/2 + Thdr)
Estx = Fsync · (Tcw1/2 + Tguard + Tcs + Thdr)
Esrx = C · Fsync · (Tguard/2 + Tcw2/2 + Thdr)

E = Ecs + Etx + Erx + Eovr + Estx + Esrx (3.11)

In contrast to LMAC, the length of the guard time can be influenced
through a protocol parameter (Tsync). Sending a synchronization message
entails overhead (i.e., adds Estx and Esrx), but reduces the length of the
guard interval (i.e., decreases Etx, Erx, and Eovr). When the data rate of
the application (Fs) is known, the optimum synchronization interval can
be determined by taking the derivative of Equation (3.11) with respect to
Tsync, and setting that to zero. For the evaluation, however, an exhaustive
search over the whole parameter space is performed (cf. Table 6). This
ensures that the most efficient operation point is selected.

Parameter Constraints. The bottleneck is at the sink node, which has
to receive all (data & sync) messages injected into the network. In order
to avoid hidden terminal collisions at the sink, there should only be one
message every fourth slot. Note that this is a tighter bound (1/4) on
the maximum bandwidth than for LMAC (1/2), which rules out hidden
terminals by design (i.e., ensures conflict-free transmissions in a two-hop
neighborhood). An additional constraint on the parameter settings is that
a complete message sequence must fit into one slot.

(F0
I + |I0

| · Fsync) · Tw < 1/4
Tcw1 + Tguard + Tcw2 + Tmsg < Tw (3.12)

3.3.3 WiseMAC
The Wireless Sensor MAC [EHD04] is, like SCP-MAC, a refinement to the
periodic carrier sense of LPL. With WiseMAC, the nodes wake up inde-
pendently from each other at a periodic interval Tw. Instead of sending a
long preamble, WiseMAC maintains a table with the neighboring nodes’
poll schedule (updated individually with every packet that is sent), which
allows sending a short wake-up preambles only. The clock drift is com-
pensated by dynamically adapting the length of the wake-up preamble
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according to the maximal possible clock drift since the last message ex-
change. If no information about a neighbor’s poll schedule is available,
WiseMAC falls back to the long wake-up preamble of LPL with length Tw.
However, instead of just sending the long wake-up preamble, WiseMAC
is sending consecutive data packets. Therefore, all neighboring nodes,
except the intended receiver, will only receive a truncated first packet
plus the header of a second one. The intended receiver must wait for the
complete sequence, before it can acknowledge the data.

Synchronization. WiseMAC updates the polling schedule of the neigh-
bor with every received acknowledgement. In particular no special syn-
chronization messages are required to be sent. Unlike SCP-MAC, the
guard time that compensates the clock drift is adapted dynamically: from
the moment the last message exchange took place, the guard time in-
creases up to the long wake-up preamble of LPL.

Tguard = max(4θ/Fout,Tw) (3.13)

Latency. WiseMAC determines the starting point of the preamble
based on the estimated wake-up time of the receiving node, subtracting
half the dynamically adapted guard time and the contention window2. On
average the sending node has to wait for Tw/2, before starting to transmit
the the wake-up preamble and message as illustrated in Figure 16.

L(h) = h·(Tw/2+Tcw+Tguard+Tmsg), where Tmsg = Thdr+P/R+Tack. (3.14)

Energy-Efficiency. The energy consumption can best be approximated
by analyzing its sources individually. There is the idle listening (Ecs),
which requires switching on the radio every wake-up interval in order to

2The contention window, also referred to as medium reservation preamble, is in-
cluded to prevent multiple senders with the same guard time from transmitting at the
same time.
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perform a carrier sense. The energy consumption for sending a message
(Etx) depends on the length of the preamble, consisting of the contention
window and the guard time, and the time to transfer the message and the
acknowledgement. A receiving node will on average listen to the second
half of the guard time and take part in the message transfer sequence. Not
all messages transmitted by background nodes are overheard; only those
in progress when a node polls the channel are observed. The probability
of overhearing a message is thus related to the length of an actual message
sequence in relation to the length of the wakeup interval: povr = (Tcw/2 +
Tguard + Tmsg)/Tw. Furthermore, WiseMAC sends consecutive data packets
instead of a long preamble. So only a part of the first, and the header of a
second data packet will be overheard.

Ecs = Tcs/Tw

Etx = Fout · (Tcs + Tcw/2 + Tguard + Tmsg)
Erx = FI · (Tguard/2 + Tmsg)

Eovr =

{
FBpovr((Thdr + P/R)/2 + Thdr) if Tcw/2 + Tguard > Thdr + P/R
FBpovr((Tcw/2 + Tguard)/2 + Thdr) otherwise

E = Ecs + Erx + Etx + Eovr + Esync (3.15)

Parameter Constraints. There is a bottleneck at the sink node. However,
the randomly distributed wake-up slots of WiseMAC provide a natural
way of increasing the available bandwidth, i.e., the sink does not have
to share its slot with neighboring nodes as with synchronized protocols.
Therefore the traffic at the sink can be higher with WiseMAC than with
SCP-MAC, i.e., having a message in every second wake-up slot. A second
constraint needs to ensure that the message sequence and the contention
window fit into one slot.

(F0
I + |I0

| · F1
sync) · Tw < 1/2 (3.16)

Tcw + Tmsg < Tw (3.17)

3.3.4 Crankshaft
The Crankshaft [HL07] protocol is a hybrid MAC that combines sched-
uled with contention-based access. Time is divided into frames consisting
of Nb broadcast and Nu unicast slots. Every node is required to listen to
all broadcast slots and to one of the unicast slots, which is assigned based
on its MAC address modulo Nu. A node that needs to transmit a packet
to a particular node has to wait for this node’s unicast slot and content
for it using the Sift [JBT06] contention resolution scheme. The contention
resolution is required since several nodes might want to send a packet in
a particular slot (but not necessarily to the same node). Even though the
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data traffic is divided into several unicast slots and contention resolution
is performed, collisions might still occur or data packets are not received
due to other interference. Therefore, data packets are acknowledged. Fur-
thermore, Crankshaft explicitly provides a special mode for the usually
line-powered sink. Since energy consumption is of no concern, the sink
listens into all unicast slots. A message to the sink can therefore be sent
in any unicast slot, which increases the receiving bandwidth of the sink
substantially. Note that the access control of Crankshaft basically reduces
to that of SCP-MAC when operating with broadcast slots only (Nu = 0).

Synchronization. The Crankshaft protocol requires every node to send
a synchronization message every Tsync in one of the broadcast slots to keep
the network synchronized. It should be noted that the ordinary data trans-
fer cannot be used to keep the network synchronized, as these messages
are sent in unicast slots and, hence, not received by all neighboring nodes.
In order to reduce the energy consumption for idle listening, the nodes do
only perform a carrier sense in their slots leaving the transmitting node
to guard for potential clock drift.

Tguard = 4θTsync (3.18)

As with LMAC, the slot length Tslot limits the payload that can be trans-
mitted. If the slot should fit a payload of Lmax

data, the length of the slot results
in

Tslot = Tcw + Tguard + Thdr + Lmax
data/R + Tack, (3.19)

and therefore the frame length in

T f rame = (Nb + Nu) · Tslot. (3.20)

Latency. The latency for Crankshaft is very similar in nature to that of
LMAC. There is an initial delay Tinit = (T f rame+Tslot)/2, followed by waiting
at each hop until the next forwarder’s slot shows up taking Thd = T f rame/2
on average. For the final transmission to the sink, the node has only
to wait for the next unicast slots, i.e., has to wait for Nb/Nu + 1 slots on
average before the message can be sent.

L(h) = Tinit + (h − 2) · Thd + (Nb/Nu + 1) · Tslot − (Lmax
data − Ldata)/R

= (h − 1) · T f rame/2 + (Nb/Nu + 3/2) · Tslot − (Lmax
data − Ldata)/R(3.21)

Energy Efficiency. Crankshaft requires performing a carrier sense (Ecs)
in one unicast slot and all broadcast slots per frame. A node sending a
message (Etx) has to contend for the channel and guard the clock drift be-
fore starting the actual message transfer sequence. If a message is received
(Erx), the node will on average overhear half of the guard time only. Send-
ing (Estx) and receiving (Esrx) synchronization messages is very similar to
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ordinary data messages except that they only consist of a header. Data
messages are only overheard if a neighboring node has the same unicast
slot assigned. Since slots are assigned based on MAC addresses, which
is assumed to be randomly distributed, the number of nodes sharing the
same slot follow a binomial distribution. That is, the probability that n
out of |B| nodes share a particular node’s unicast slot is

Pr(X = n) =

(
|B|
n

)
pn(1 − p)|B|−n, where p = 1/Nu. (3.22)

Calculating the number of neighbors that are overheard, does not assume
the worst-case distribution of having all |B| neighbors having the same
slot assigned. Instead the number of overheard neighbors is estimated
Novr according to the paradigm Pr(X ≤ Novr) < 0.9, i.e., the number of slot
collisions (Novr) is in 90 % of the cases less than the expected value.

Ecs = (Nb + 1) · Tcs/T f rame

Erx = FI · (Tguard/2 + Tmsg), where Tmsg = Thdr + P/R + Tack

Eovr = Novr · FB/|B| · (Tguard/2 + Thdr)
Etx = Fout · (Tcs + Tcw/2 + Tguard + Tmsg)

Esrx = C · (Tguard/2 + Thdr)/Tsync

Estx = (Tcw/2 + Tguard + Thdr)/Tsync

E = Ecs + Erx + Eovr + Etx + Esrx + Estx (3.23)

Parameter Constraints. Due to the special sink mode of Crankshaft,
the bottleneck is only at the sink node if the number of incoming links
exceeds the number of unicast slots (3.24). Otherwise, the bottleneck is at
the nodes next to the sink (3.25). Then, there must be enough broadcast
slots for sending the synchronization messages (3.26). Similar to LMAC,
a message should only be received in every second slot.

F0
I /Nu · T f rame < 1/2 (3.24)

(F1
I + N1

ovr · F
1
B/|B

1
|) · T f rame < 1/2 (3.25)

C/Nb · Fsync · T f rame < 1/2 (3.26)

3.4 Analysis
The previous section modeled the main characteristics of four advanced
energy-efficient MAC protocols (LMAC, SCP-MAC, WiseMAC, and
Crankshaft); an additional five models of well-known, protocols (S-MAC,
T-MAC, D-MAC, B-MAC, and X-MAC) are provided in Appendix A on
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page 147. This section analyzes the fundamental latency-efficiency trade-
off of the individual protocols, as well as how they compare to each other.
First, however, the models are validated, demonstrating the soundness
of the MAC models when compared to detailed, and time-consuming,
simulations. Furthermore the tuning process is detailed for obtaining the
best performance of a MAC protocol given a set of external conditions
and constraints.

3.4.1 Validation
The art of modeling is to “make everything as simple as possible, but
not simpler” (Albert Einstein). The MAC models are rather simple and
abstract away many implementation details. The concern is then if the
models are accurate enough to capture the essential performance char-
acteristics. To answer this question the latency and energy efficiency
of the models is compared with simulation, for those protocols (namely
B-MAC, S-MAC, LMAC, SCP-MAC, and Crankshaft) where detailed sim-
ulation code was available [HDL05, HL07]. The simulator, an OMNeT++
based discrete-event simulator, uses an SNR-based reception model to
determine which packets are dropped due to contention and external in-
terference. This reception model in combination with the MAC protocols
was proven to be rather accurate; most simulation results are within 5 %
of actual delivery ratios and energy consumption numbers obtained on
a 24-node testbed when the measured RSSI values are made available to
the SNR-based channel model [HL09].

Figure 17 shows the ratio of the MAC performance models over the
outcome of the corresponding simulations assuming no external interfer-
ence. Each simulation result is the outcome over a series of 10 runs with
a different random seed to average out the non-deterministic effects in-
troduced by channel access policies, collisions, and the like. Figure 17(a)
shows that the end-to-end latency as predicted by the models is usu-
ally within 10 % of the value determined by simulation. The ratio for
S-MAC is more erratic, and can be attributed to the model fixing (round-
ing down) the number of hops that can be made in one active period (cf.
Equation (A.3)); in reality the number of hops depends on the choice of
waiting times in the contention windows introducing a certain amount
of variability that is not accounted for.

Figure 17(b) shows that efficiency (duty cycle) as predicted by the
models is generally within a 10 % margin when compared to simulation
results, with very good accuracies for low data rates. LMAC is the excep-
tion with the model always being too pessimistic by roughly 12 % of the
true efficiency. Unfortunately, it was not possible to identify the source
of this discrepancy, nor can it simply be corrected as the overshoot de-
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Fig. 17: Comparing model and simulation results (CC1000 radio, ring topology, C = 8,
D = 4).
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pends on the network topology. Nevertheless with the majority of errors
within 10 % the MAC models strike a good balance between complexity
and accuracy.

3.4.2 Protocol Optimization
The exact behavior of the MAC models depends on the settings of some
protocol-specific parameters as listed in Table 6. For example, the perfor-
mance of LMAC strongly depends on the number of slots in a frame (Nslots)
and the length of an individual slot (Lhdr+Lmax

data). The value ranges for these
internal protocol parameters are derived (centered around) the settings
provided in the original protocol descriptions and an earlier simulation-
based comparison study [HDL05]. The notable exception is the setting
of the synchronization interval (Tsync) of SCP-MAC, which is varied be-
tween 12 and 60 seconds, because the advocated range of 300-3600 sec-
onds in [YSH06] yields worse results in the evaluation. This discrepancy
is attributed to a different view on the effectiveness of synchronization
messages.3 Table 7 provides implementation details regarding the length
of the protocol headers, control messages, and contention window (if
applicable) of each protocol.

Since the optimal settings of the internal protocol parameters depend
on the external conditions (e.g., traffic rate, network density, radio char-
acteristics), comparing MAC models is not completely straightforward.
In the analysis presented in this section a simple, exhaustive method is
adopted that, given a set of external conditions, iterates over all combina-
tions of parameters considered for a given MAC protocol (cf. Table 6). For
all these settings the performance metrics of interest is computed first, e.g.,
latency and energy efficiency. Subsequently all the settings are pruned
that are inferior to so-called Pareto points [Deb01], which offer in this
case either lower latency for the same energy efficiency, or higher energy
efficiency for the same latency, or provide both lower latency and higher
energy efficiency. The end result of this multi-objective optimization pro-
cess is that the parameter setting are found that offer the best trade-offs
in the latency, energy-efficiency and data-rate space under consideration.

As an example, consider the plots in Figure 18 that illustrate the opti-
mization process for B-MAC and Crankshaft. B-MAC allows trading off
a more frequent channel polling (controlled through Tw) for a shortened

3It is argued that a node should receive a synchronization message from all neighbors
within one period, while Ye et al. state it is sufficient to receive one message from any
neighbor; this relaxed constraint, however, is not enough for synchronizing nodes in
sparse network topologies like linear chains. Furthermore this ensures fairness for the
comparison, since SCP-MAC is now following the same synchronization policy than the
other protocols that maintain a global structure.
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Fig. 18: Optimization of MAC parameters with respect to data load (FI). The markers
indicate the optimal operating points of the protocols for different data loads.
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wake-up preamble. As shown in Figure 18(a), both a very short and a
very long sampling period will result in a high duty cycle (i.e., low effi-
ciency), but their causes differ. While a short polling period will increase
the energy consumption for idle listening, a long one will increase the
energy consumption for transceiving the wake-up preamble. This results
in an optimal sampling time Tw, being dependent on the data load in
the network. Furthermore, the polling period cannot be chosen arbitrar-
ily large, as indicated by the topmost line (FI = 0.2 Hz) discontinued at
Tw = 260 ms; the polling period limits the maximum amount of traffic in
the network as denoted in Equation (A.17).

Crankshaft requires sending special messages to keep the network
synchronized. As illustrated in Figure 18(b), the interval Tsync of these
messages can be optimized with respect to the data load. For high
data-rates, the synchronization interval should be chosen rather short,
which results in a shortened guard time for all messages sent (cf. Equa-
tion (3.18)). For low data rates on the other hand, it does not pay off
to send synchronization messages at a high rate, since the potential sav-
ings for the shortened guard time are minimized. Crankshaft does not
only allow to parameterize the synchronization interval, but also to adapt
the number of unicast slots Nu being used. Hence, for minimizing the
duty cycle for a given data load, both parameters Nu and Tsync need to be
considered, which results in a two-dimensional parameter optimization.

3.4.3 Data Load vs. Energy Consumption
The first experiment studies the impact of the data load on the energy
consumption of the nine modeled MAC protocols. The data load as it
arrives at the sink is a function of the number of nodes in the network and
the sampling rate. In this experiment the network size (and topology) is
kept fixed and the rate FS at which messages are injected into the network
is varied. For ease of understanding though, the aggregate rate of the
incoming traffic at the sink (FSink

I ) is reported, which directly shows the
load at the bottleneck in the network. As with the validation experiments,
the network is structured as a set of four rings (D = 4) with a uniform
density of eight neighbors per node (C = 8), resulting in a network size
of 108 nodes. For the radio model the popular CC1000 radio is used (cf.
Table 5), and perfect links are assumed (i.e., external interference is not
taken into account). Unless overruled explicitly, these network and radio
settings are also used in the other experiments discussed in the remainder
of this study.

Figure 19 shows the individual Pareto fronts for the fundamental data-
load versus energy-consumption trade-off. It consists of two plots each
having the (optimized) duty cycle on the vertical axis, and the increasing
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data load on the horizontal axis. The left plot features the “slot-based”
protocols having the receiving nodes listen for a long period (S-MAC, T-
MAC and D-MAC) or into many slots (LMAC). The right plot, on the other
hand, features the “CP-based” protocols, i.e., the channel polling ones that
periodically check for activity. Comparing the two plots clearly shows
the advantage of the CP-based protocols where receiving nodes spend
energy only in the case of ongoing activity; the difference is especially
large for aggregate data rates below 1 message per 10 seconds.

The slot-based protocols do all have a quite high offset for very low
data rates, i.e., a lot of energy is spent even when almost no data is com-
municated through the network. A consequence of this “hot” idle mode is
that a certain traffic load can be accommodated for free as indicated by the
initial flatness of the curves. Once the data load crosses a certain thresh-
old (around 10−1 Hz for S-MAC, T-MAC and D-MAC; around 100 Hz for
LMAC) default parameter settings need to be adjusted to handle the in-
creased traffic to the best of the protocol’s capabilities. The reason that
S-MAC is less efficient than T-MAC and D-MAC in idle mode is a direct
outcome of the minimal active period which is the longest for S-MAC
and the shortest for D-MAC. LMAC on the other hand spends a lot of
energy in idle mode due to its large synchronization overhead required to
maintain the TDMA structure. The advantage of this structure becomes
apparent with higher data rates, showing a much better energy efficiency
than the other slotted protocols.

The CP-based protocols consume significantly less energy in idle mode
since the nodes only perform short carrier sensing and do not have to lis-
ten into long slots. One might anticipate that, for very low data traffic,
SCP-MAC and Crankshaft perform worst in the class of CP-based pro-
tocols since they incur the overhead of maintaining a slotting structure.
However, the results in Figure 19 show that this overhead already pays
off compared to B-MAC and X-MAC for very little traffic. This is due to
the parameterization of the polling interval, which can be set to a very
large value when a structure is maintained. For B-MAC and X-MAC on
the other hand, a long polling interval also results in very long messages
(preambles) when transmitting, hence the optimized polling interval is
shorter for the unstructured CP-based protocol variants. WiseMAC ex-
hibits the best energy efficiency for very low data rates. This can be
attributed to its design of having the nodes synchronize on a per-link
basis without the necessity of maintaining an expensive global structure.
When comparing WiseMAC with B-MAC and X-MAC, a much longer
polling interval can be chosen, since this does not imply an increased
message length.

The energy consumption of SCP-MAC increases the fastest once the
data rate at the sink exceeds 1 message per 10 seconds. This is due to
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Fig. 19: Energy-load trade-off (after Pareto optimization of MAC parameters).
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its global synchronization, grouping all communication activity into a
single slots. This does greatly reduce the available radio bandwidth and
further results in frequent overhearing. This overhearing is especially
expensive due to the two contention-window scheme of SCP-MAC, which
results in overhearing the second contention window for all nodes. It
would therefore be more energy efficient to have a single contention
window using the Sift [JBT06] contention resolution scheme. WiseMAC
and Crankshaft on the other hand use the complete channel bandwidth,
which allows for an increased energy efficiency for higher data rates.
For Crankshaft this is achieved by orchestrating to different slots, while
WiseMAC inherently balances the channel activity by having random
drifting channel-access times for the different nodes.

For the highest data rates Crankshaft shows about the same energy
efficiency as WiseMAC. This can be attributed to the special sink mode
of Crankshaft that spreads the load evenly across all unicast slots instead
of using just one slot. By itself this does not change the energy spend
on sending and receiving, but the reduced pressure allows for a different
setting of the internal protocol parameters of Crankshaft; in particular, it
may operate with fewer, larger slots per frame reducing the energy spend
on carrier sensing. This gives Crankshaft an advantage over WiseMAC,
which must select a relatively short wakeup interval (Tw) to meet its
boundary condition of handling at most one message every two wake-up
slots of the sink (cf. Equation (3.17)). The impact of having a dedicated
sink mode is further detailed in Section 3.4.6.

3.4.4 Energy Consumption vs. Latency
The second experiment studies the trade-off between energy consumption
and latency. This is of particular importance for event-based applications
such as burglar alarms that rarely exercise the sensor network, but do
need a fast response. The low-latency requirement forces, for example,
B-MAC to select a much shorter wake-up period Tw than is necessary
for handling the near-zero data rate. Figure 20 shows the fundamental
trade-off between average per-hop latency and energy consumption (duty
cycle) for a six-hop event message injected into an idle network. In order
to ensure that the topology is being maintained, it is assumed that every
node sends a status message to its parent node every 10 min, checking for
its availability.

The energy-latency trade-off is related to the efficiency plot discussed
in the previous section. In particular, the high offset in the energy con-
sumption of the slot-based protocols can also be observed in Figure 20(a),
limiting the minimal energy consumption to a duty cycle of 1 % at best
(D-MAC). The message latency depends a lot on the protocol design. Es-
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pecially the TDMA structure of LMAC delays the message greatly due
to the rather long frame time, whereas the staggered wake-up slots of D-
MAC pay off well. However, it needs be considered that D-MAC is likely
to result in a largely increased delay in the case of a link error, since there
is no effective way of signaling the higher levels in the tree of a pending
retransmission.

The CP-based protocols depicted in Figure 20(b), show the possibility
for very low duty cycles if latency cut-backs are possible. WiseMAC
stands out with its superior energy-latency trade-off. The reason is two-
fold: Firstly, WiseMAC already showed to operate very energy efficient
for low data rates in the previous section. Secondly, due to the random
access times of the nodes, the average waiting time for the parent to
wake up is Tw/2. This is in contrast to SCP-MAC, which also operates
very energy efficient for very low data-rates, yet delays the message by
Tw at every hop. Overall, this results in SCP-MAC roughly having a
doubled latency compared to WiseMAC. A similar trend holds for the
frame structure of Crankshaft, which delays the message due to the long
frame time (analog to LMAC). The delay of B-MAC and X-MAC is quite
different, despite their similar design. This is attributed to the strobed
preamble of X-MAC, which reduces the average preamble length and
message delay by a factor of two. Note that for both B-MAC and X-MAC
that the latency-efficiency curve levels off for high message delays. This is
due to the regular status messages that are sent every 10 min. Furthermore
it can be observed that the curves for WiseMAC and X-MAC are limited
to a maximum latency of about 1 s. The underlying cause is the polling
period Tw, having an upper bound of 2 s (see Table 6).

It should be considered that Figure 20 plots the average latency, while
some real-time applications might want to consider the worst-case latency.
For B-MAC and SCP-MAC these are very similar, but for WiseMAC,
Crankshaft and X-MAC the worst-case latency is in fact almost doubled.
Depending on the application at hand this may, or may not, change the
picture for selecting the most suitable protocol.

3.4.5 Sensitivity
The optimization presented before tunes the MAC-protocol parameters
for the most energy-efficient operation in a specific setup, that is, for a
specific set of network characteristics, radio parameters, etc. The follow-
ing sensitivity analysis shows how the most energy-efficient protocols,
namely Crankshaft, SCP-MAC and WiseMAC, are influenced by changes
in the setup.

The three most energy-efficient protocols are all based on periodic
channel polling combined with some form of synchronization; whereas
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WiseMAC synchronizes with each node individually, Crankshaft and
SCP-MAC are based on globally synchronized slots. The three protocols
have in common that they guard for potential clock drift, making it likely
that the node’s clock drift parameter θ impacts the energy efficiency. This
effect is depicted in Figure 21, which shows the energy efficiency of the
protocols for clock drift settings of 30 (default) and 120 ppm. (Initial ex-
periments with 60 ppm showed that none of the protocols are significantly
affected.) WiseMAC only shows one (rather thick) line, indicating its ro-
bustness against clock drift, which is a consequence of the dynamically
adapted guard time of WiseMAC. SCP-MAC shows some sensitivity to
clock drift. Especially for low data rates, the duty cycle is almost doubled
(0.20 % vs. 0.38 %). This is attributed to the long synchronization interval
in combination with a quadrupled guard time, resulting in long guard
times overheard by all nodes in the network. For higher data rates, the
guard time is not the dominating factor anymore, since the network is
tightly synchronized due to the frequent traffic. Crankshaft is less af-
fected by the clock drift than SCP-MAC. This is rather surprising, since
both protocols require global synchronization. Crankshaft minimizes
overhearing of the data traffic with its slot assignment, which explains
the smaller offset for higher data rates. For low data rates there is al-
most no difference for the different clock drifts. Detailed inspection of the
protocol parameters settings for this low data traffic showed, that the pro-
longed guard time results in an increased frame time (cf. Equation (3.20))
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Fig. 22: Sensitivity for radio: CC1000 (solid) vs. RFM TR1001 (dashed).

(3.5 s vs. 10.9 s). This is still sufficiently short to accommodate all traffic
in the network and allows compensating the prolonged guard time by
fewer channel polls.

The analysis so far is based on the CC1000 radio transceiver, featuring
multi-channel operation but having limitations in the available band-
width and rather long switching times. Figure 22 depicts the impact of
using the fast RFM TR1001 radio transceiver; the solid curves plot the
default (CC1000) performance, whereas the dashed, more efficient curves
derive from the faster (TR1001) radio. Using a faster radio (0.5 ms vs.
2.10 ms ‘switch on’ time and 5.75 kbps vs. 2.4 kbps bandwidth) impacts
the energy demands of the protocols with improved efficiency for all
data rates. Overall, the faster switching time is most beneficial for low
data rates where most energy is spent on polling the channel, or rather
on turning the radio (CC1000) on before probing the channel. The faster
transmission rate is most beneficial for higher traffic rates where overhear-
ing of headers and (partial) messages has a larger impact on the overall
energy consumption.

The network model assumes a constant node density in the network.
However, it is likely that a real deployment shows areas with an increased
node density. This would increase the number of neighbors and there-
fore the number of messages that can be potentially overheard. Figure 23
shows this effect, featuring the energy consumption of the protocols when
doubling the number of nodes, hence, with 8 (solid lines) and 16 (dashed
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lines) neighbors. Note that the x-axis plots the input frequency of the
bottleneck nodes next to the sink (F1

I ) to ensure that the same amount of
traffic is handled in both cases; when focusing on the aggregated input
rate at the sink (FSink

I ) as before, the send rate would have to be halved,
making for an unfair comparison (i.e., protocols becoming seemingly
more efficient for higher densities due to handling proportionally less
traffic). All protocols show increased energy consumption in the denser
network, however the amount varies. SCP-MAC shows a large increase in
energy consumption since all messages (i.e., preambles and headers) are
overheard. Crankshaft, especially designed for high density networks, is
hardly affected (up to around 0.3 Hz) due to its unicast slots, minimizing
the probability of overhearing messages. For very low data rates however,
the duty cycle of Crankshaft is slightly increased. This is attributed to
the increased number of synchronization messages overheard due to the
increased number of neighbors. WiseMAC is not based on a global sched-
ule and is synchronized with specific neighbors (i.e., parent and children)
on an individual basis, resulting in shorter guard preambles compared to
Crankshaft or SCP-MAC. This explains WiseMAC being only affected for
higher data rates, as the probability of overhearing increases with higher
node density and data rate.
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3.4.6 Bottleneck Sink
In the typical, data-gathering scenario analyzed in this study the sink be-
comes the bottleneck because it has to handle most traffic. Therefore, any
optimization in the access mode of the sink (and its immediate neighbors)
is likely to have a large impact. Crankshaft includes an optimization in
which the sink is always listening in contrast to ordinary nodes follow-
ing an active/sleep duty cycle (at slot level). This increases the effective
bandwidth to the sink, allowing Crankshaft to operate more efficiently,
and causing it to challenge the energy efficiency of WiseMAC for high
data rates (cf. Section 3.4.3).

The idea of employing such a special (always on) sink mode for other
MAC protocols as well is rather attractive, but not always straightforward
to implement or may even not be applicable at all. For instance, the
concept of LMAC of scheduling send slots already gets all nodes to listen
in on every slot, ruling out additional listening by the sink.4 In the
case of slotted protocols (S-MAC, T-MAC, D-MAC and SCP-MAC) it
would be possible to have nodes send messages to the sink ‘outside’ the
normal active period in a slot when the sink is always listening, but at a
considerable increase in complexity (additional timers and bookkeeping)
rendering it less attractive. For the class of random access protocols (B-
MAC and WiseMAC), however, only a minor modification is required to
take advantage of sink that is always listening. As suggested in [PHC04],
the nodes next to the sink are no longer required to send a stretched wake-
up preamble to meet a specific channel poll. This minimal optimization
greatly reduces the transmission energy for nodes next to the sink and
also reduces the channel load at the sink reducing overhearing overheads.

To determine the impact of a special sink mode the models are adapted
for Crankshaft, B-MAC and WiseMAC (cf. Appendix B on page 153). The
slotted protocols are not considered, because they would require a ma-
jor protocol redesign and have not proven to be very energy efficient
to start with. Figure 24 shows the gain in energy efficiency that results
from optimizing the protocols to keep the sink listening at all times. All
three protocols benefit from a special sink mode, but Crankshaft benefits
the most. Its performance without the optimization rapidly deteriorates
when the data rate increases, and the resulting bottleneck of all data pass-
ing through one slot causes it to violate the basic parameter constraints
for data arriving faster than two messages per second.

WiseMAC and B-MAC follow the same channel access strategy to ben-
efit from the increased resources of the sink. Nevertheless their impact

4A related optimization to LMAC [CvHH04] is to allocate more slots to the immediate
neighbors of the sink, which increases the effective bandwidth to the sink, but does not
reduce the overhearing overhead as Crankshaft does.
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differs largely: B-MAC benefits a lot, rather independent of the data rate,
whereas WiseMAC only shows a substantial gain for higher data rates.
This can be explained by the very energy-efficient operation of WiseMAC
for low data rates, spending most energy on regular channel polls, which
makes the energy saved on transmitting messages of little importance.
For higher data rates on the other hand, the energy consumption for
transmitting and overhearing messages is a non-neglectable factor, al-
lowing WiseMAC to benefit from the shortened preamble. In particular,
WiseMAC does outperform Crankshaft for higher data rates, making this
variant the overall most energy-efficient protocol.

3.4.7 Broadcast vs. Unicast
The common traffic pattern for low-power data gathering is unicast. Nev-
ertheless, broadcasts are sent at times, i.e., for announcing a change in the
topology. In the following it is analyzed how such broadcasts will impact
the contention-based MAC protocols.

The impact of the energy consumption differs greatly for broad-
cast messages, as certain protocols are better suited for sending them.
Crankshaft with its special broadcast slots and SCP-MAC with its single
slot for all communication are very well suited broadcast traffic. For B-
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MAC the difference between a unicast and a broadcast is negligible, since
the long wake-up preamble is waking-up all neighbors anyhow. X-MAC
and in particular WiseMAC highlight a reduced wake-up preamble for
unicast messages, which has to be extended to the long wake-up pream-
ble of B-MAC for broadcast traffic. For receiving broadcast messages
X-MAC and WiseMAC differ greatly: WiseMAC sends a packet stream
which allows the receiver to switch off the radio after receiving one com-
plete packet out of the packet stream. With X-MAC on the other hand
the receiving node has to stay awake until the end of the wake-up strobe,
waiting for the packet to be sent.

In order to analyze the impact of sending additional broadcast mes-
sages to the regular unicast traffic, the models were adapted according to
the discussion above. If the broadcasts are limited to one per hour, per
node as shown in Figure 25(a), not much costs are added compared to the
solely unicast case as depicted in Figure 19(b). If however the broadcast
frequency is increased to once every 5 minutes, as shown in Figure 25(b),
a clear impact is observed for low data rates. Especially WiseMAC and
even more X-MAC are affected by the additional broadcasts. On the other
hand, SCP-MAC and Crankshaft are only moderately influenced. Espe-
cially Crankshaft is very well suited for a combined unicast and broadcast
traffic, due to its dedicated unicast and broadcast slots.

3.5 Packet-Based vs. Byte-Stream Radios
Most of the discussed protocols are designed for byte-stream radios like
the CC1000 and the RFM TR1001 analyzed in the last section. However,
state-of-the-art platforms tend towards packet-based radios such as the
IEEE 801.15.4 compliant CC2420 used for the MicaZ and the TelosB node.
With such a radio, the packet is first copied into a dedicated radio buffer.
After receiving a trigger, the radio sends the packet autonomously, in
particular also adding the preamble and CRC checksum. For the CC2420
the length of this preamble can be set between 4 and 16 bytes, which
is generally too short to accommodate low-level MAC synchronization
techniques like, for instance, the long wake-up preamble of B-MAC and
SCP-MAC’s guard preamble and contention resolution “tone”.

As shown in [YSH06] a long preamble can be replaced by a stream of
packets. The granularity of such an artificial preamble depends on the
minimal packet size and the data rate (16 bytes and 250 kbps respectively
for the CC2420), which results in a minimal packet transmission time of
0.51 ms. The gap between two consecutive packets can be reduced to
30µs. It is therefore possible to imitate an arbitrarily-long preamble with
a granularity of 0.54 ms. This allows adopting the protocols discussed
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Fig. 25: Additional to the unicast traffic (cf. Figure 19(b)) every node sends broadcasts.
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in this study to packet-based radios with minimal loss compared to a
byte-stream radio. In exchange, the MAC implementation does not have
to burden the microcontroller with transceiving the byte stream, checking
for a start-frame delimiter, and performing a CRC check.

Adapting the models for packet-based radios is straight forward. For
instance, if the preamble exhibits a certain granularity, the model has to
account for this as shown with the packet-based X-MAC model (cf. Equa-
tion (A.19)). For the popular CC2420 radio, this makes only a small
difference, due to the fine granularity (0.54 ms) that can be achieved. This
allows to analyze the energy vs. data-rate trade-off as well for the CC2420
radio, using the existing models. Since the general trend is very similar
to the ones of the CC1000 and TR1001 radios, the plot is not shown but
the results are briefly discussed for the CP-based protocols.

For very low data rates the energy consumption of the MAC protocols
for the CC2420 radio is very similar to that of the CC1000 (cf. Figure 19(b)
for FSink

I < 0.1). This can be attributed to the fact that both radios have
similar switching times (cf. Table 5) and the fact that the regular channel
polls are the main source of radio activity. For higher data-rates, it is
mainly X-MAC, WiseMAC and Crankshaft that benefit from the increased
bandwidth, which allows them to minimize the energy consumption in
the same order as the faster TR1001 radio does (cf. Figure 22 for FSink

I > 1).

3.6 Conclusions
The fundamental need for energy-efficient operation has been a driving
force behind the development of many WSN-specific Medium Access
Control protocols. Each protocol strikes a different balance between per-
formance (latency, throughput) and energy consumption; all claiming to
be more efficient than the canonical S-MAC protocol, but evaluated with
different workloads, simulation environments, and hardware platforms
making it hard to assess the true benefits of the individual MAC protocols.

This chapter takes an analytical approach to answering the question
“which protocol is best?” given a set of external conditions including
radio hardware characteristics, network topology, and workload. The
study focuses on low data-rate applications for which the energy-efficient
operation of the MAC protocols is most critical as there is little room for
amortizing overheads. This focus also keeps the analysis tractable as
complications like contention need not be modeled in detail. However,
boundary conditions are introduced for safeguarding the contention-free
operation.

An extensive exploration of the MAC protocols that iterates over differ-
ent data rates, clock drifts, network densities, and radio characteristics has
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revealed a number of important protocol features that, collectively, war-
rant for a very efficient handling of low data-rate applications. First, the
timing uncertainty introduced by clock drifts is best handled (guarded)
at the sending node as that avoids any overhead at the receiver and other
nodes overhearing the message (one vs. many). Second, (randomized)
channel polling reduces idle listening to a great extent when compared
to more structured approaches organizing time into slots (and frames).
Third, taking advantage of the line-powered sink node by keeping it on at
all times allows one-hop neighbors to short cut sending procedures and
alleviates the bandwidth bottleneck in the network; usually the reduced
pressure on the (bottleneck) nodes surrounding the sink allows for a
more efficient setting of the internal protocol parameters, reducing over-
all energy consumption. Finally, protocols like T-MAC and SCP-MAC
that cluster communication into a slot suffer from overhearing overheads
when compared to protocols like X-MAC, Crankshaft, and WiseMAC that
spread (randomize) traffic over time, which further increases the available
bandwidth.

Although announcing an absolute winner is impossible, the study
identified that the WiseMAC protocol shows a remarkable consistent be-
havior across a wide range of operational conditions. This can be at-
tributed to its design choice of having a random access scheme in combi-
nation with local synchronization. This combination does not only min-
imize the energy consumption, but also maximizes the available chan-
nel bandwidth. WiseMAC is therefore the prime candidate for being
used for safety-critical event monitoring, where the data-load is usually
low, yet bandwidth is required in the case of an event. In particular,
WiseMAC is being used in the safety-critical communication stack pre-
sented in Chapter 5.



4
DiMo: Distributed Node

Monitoring

Safety-critical WSNs require that the health status of the sensor nodes is
continuously monitored. Node failures need to be captured by the sys-
tem and reported to administrators within a given delay constraint (e.g.,
within 5 min). Due to the resource constraints of WSN nodes, traditional
network management protocols such as the Simple Network Manage-
ment Protocol (SNMP) adopted by TCP/IP networks are not suitable. In
particular, WSNs require a light-weight network-management approach
tailored specifically to their unique constraints.

WSN deployments can be categorized by their application scenario:
data-gathering applications and event-detection applications. For data-
gathering deployments, health status monitoring is straight forward.
Monitoring information can be forwarded to the sink by specific health
status packets or the information can be embedded into the regular data
packets. Administrators can usually diagnose the network with a helper
program. NUCLEUS [TC05] is one of the network management systems
for data-gathering application of WSN. Event-detection deployments on
the other hand do not have regular traffic to send to the sink, which
makes the solutions for data-gathering deployments unsuitable. In this
context, health status monitoring can be quite challenging and has not
been discussed explicitly in the literature.

In an event-detection WSN, there is no periodic data transfer, i.e.,
nodes maintain radio silence until there is an event to report. While this
is energy efficient, it does mean that there is no possibility for the sink
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to distinguish whether the network is still up and running (and waiting
for an event to be detected) or if some nodes in the network have failed
and are therefore silent. Note that an operational node that gets discon-
nected from the network is also considered as failed. Furthermore, for
safety-critical systems, the specifications commonly include a hard time
constraint for accomplishing the node-health status-monitoring task. In
the exemplary case of a fire-alarm system, a failed node must be reported
to a control station within 5 minutes, in order to comply with regulatory
specifications [Eur08].

In safety-critical WSNs there is also a time bound for delivering data
to a sink in the case of an event (e.g., a fire-alarm must be reported within
10 s). This makes it unfavorable to set up a routing table and neighbor list
after the event has been detected. Hence the network should always be
ready to forward a message to the sink immediately whenever necessary,
even though there is no regular data transfer in the network. The lack of
regular data transfer in the network also leads to difficulty in detecting
bad quality links, making it challenging to establish and maintain a stable
and robust network topology.

This chapter provides a solution for distributed node monitoring
called DiMo, which consists of two functions: (i) Network topology main-
tenance and (ii) node health status monitoring. DiMo is developed based
on the following design goals:

• In safety-critical event monitoring systems, the status of the nodes
needs to be monitored continuously, allowing the detection and
reporting of a failed node within a certain failure detection time TD,
e.g., TD = 5 min.

• If a node is reported failed, a costly on-site inspection is required.
This makes it of paramount interest to decrease the false-positive
rate f p, i.e., wrongly assuming a node to have failed.

• In the case of an event, the latency in forwarding the information
to the sink is crucial, leaving no time to set up a route on demand.
It is required for the system to maintain a topology at all times. In
order to be robust against possible link failures, the topology needs
to provide redundancy.

• To increase efficiency and minimize energy consumption, the two
tasks of topology maintenance (in particular monitoring of the links)
and node monitoring should be combined.

• Maximizing lifetime of the network does not necessarily translate
to minimizing the average energy consumption in the network, but
rather minimizing the energy consumption of the node with the



4.1. Topology Maintenance 77

maximal load in the network. In particular, the monitoring should
not significantly increase the load towards the sink.

• It is assumed that there is no regular data traffic in event-detecting
WSNs, with the possibility that no messages are sent to the sink for
days, weeks or even months. Hence it is not required to optimize
routing or load balancing for regular data. This also rules out ap-
proaches that estimate the link quality based on the ongoing data
flow.

• Wireless communications in sensor networks is known for its erratic
behavior as shown in Chapter 2. DiMo assumes such an environ-
ment with unreliable and unpredictable communication links, and
hence message losses must be taken into account.

The remainder of this chapter is organized as follows. Section 4.1
introduces a redundant topology, allowing for reliably and timely for-
warding events, even in the presence of link failures. Section 4.2 details
DiMo, a distributed solution for monitoring nodes within a bounded de-
lay, a minimized message load and at the same time allowing checking the
quality of the links used for forwarding events. DiMo is compared ana-
lytically in Section 4.3 with the performance of two prominent monitoring
schemes Memento and Sympathy. Section 4.4 evaluates DiMo based on
extensive simulations performed on the state-of-the-art WSN simulator
Castalia and furthermore introduces a load-balancing scheme for greatly
prolonging the system’s lifetime. Finally, Section 4.5 summarizes this
chapter.

4.1 Topology Maintenance
Forwarding a detected event with minimal delay requires maintaining a
topology that is robust against node and link failures. In the following,
a redundant topology is proposed that provides two disjoint and loop-free
paths to the sink for all nodes in the network, except for the neighbors
of the sink. In this redundant setup, DiMo allows monitoring the topol-
ogy and the nodes at the same time. It should be noted that the node-
monitoring part of DiMo can be adapted to any other network topology.

Nodes have usually a multitude of neighbors they can communicate
with. In order to save management overhead and resources, it is not
advisable to connect to all of them for building a topology. In the following
it is discussed how to select (and connect to) a suitable subset of them, for
building a redundant topology.
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The topology is based on so called relay nodes. A relay is a neighbor
that has a smaller cost metric C and provides one or more routes to the
sink. Loops are inherently ruled out if packets are always forwarded to
relay nodes. In order to provide redundancy, a node must be connected
with at least two relay nodes, but not necessarily to all its relay nodes.
Such a node is called redundantly connected. If all nodes in the network are
redundantly connected, the network is called redundantly connected.1

Within the existing topology, the level L of a node represents the min-
imal hop count to the sink. The level is infinity if the node is not con-
nected. The redundant hop count R is defined as the maximum redundant
hop count in the set of connected relays plus one. The redundant hop
count is infinity if the node itself or one of its ancestors in the topology is
not redundantly connected. Otherwise, R represents the longest path to
the sink. If and only if all nodes in the network have a finite redundant
hop count, the network is redundantly connected.

For the cost metric C, the tuple (L,R) is used in this work. A node A
has a smaller cost metric than node B if

CA < CB ⇔ LA < LB ∨ (LA = LB ∧ RA < RB). (4.1)

The topology is set up starting from the sink broadcasting its current
cost metric, i.e., the level LS and the redundant hop count RS both equal
zero. Upon receiving such a topology announcement at a node A, the
node checks whether the announcing node is a suitable relay and if yes,
sends a connection request message. The potential relay can then accept
or decline this request whereas in the former case, node A will update its
cost metric and broadcast it in the case of a change.

The topology management function aims to establish and maintain a
redundantly connected network whenever possible. This might not be
possible for sparsely connected networks, where some nodes might only
have one neighbor and therefore cannot be redundantly connected by
definition. Sometimes it would be possible to find alternative paths with
a higher cost metric, which in turn would largely increase the overhead
for topology maintenance (e.g., for avoiding loops).

During the operation of the network, DiMo continuously monitors the
links, which allows the detection of degrading links and allows triggering
topology adaptation. In such a case, the node has to search for a more
suited relay and disconnect the degrading one. Due to DiMo’s redundant
structure, the node is still connected to the network, while searching for a
new relay. Hence in the case of an event, the node can forward the message

1Since there is a singularity at the sink, it is not possible for all nodes in the first-hop
neighborhood of the sink to be redundantly connected. Nodes that have the sink as a
relay node are therefore allowed to be each others relay, all having the same cost metric.
This will result in a single loop in the first-hop neighborhood of the sink.
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without delay. Whereas DiMo allows triggering a topology adaptation,
the process of adapting the topology is well studied in literature and
complementary to this work.

A redundant topology that provides two disjoint paths (based on two
redundant trees) was already presented in [MFB99]. The problem with
two single trees in a wireless environment is, that two single link failures
(one on each of the trees) already results in a disconnected network. In
comparison, the topology presented above can usually deal with several
link failures at the same time due to its mesh characteristic. In a worst-case
setting however, two single link failures will also result in a disconnected
network. The topology setup is much simpler for the algorithm presented
here. The drawback of this simplicity is that a redundant topology can-
not be built for some special topologies (e.g., a circle), whereas [MFB99]
always ensures two independent trees if this is possible.

4.2 Monitoring Algorithm
All links and nodes have to be monitored periodically, in order to assure
the reliable transmission of events to the sink. In the following a dis-
tributed algorithm called DiMo for topology, link and node monitoring
is presented. From the underlying MAC protocol it is required that an
acknowledged message transfer is supported.

4.2.1 Algorithm
A monitoring algorithm is required to detect failed nodes within a given
failure detection time TD (e.g., TD = 5 min). A node failure can occur for
example due to hardware and software errors or because a node runs out
of energy. Furthermore, an operational node that gets disconnected from
the network is also considered as failed.

The monitoring is done by so called observer nodes. The observer
monitors, based on a timeout of the monitoring time, whether the node
has checked in by sending a heartbeat. If yes, the timer is reset, if not, the
observer sends a node-missing message to the sink. The node is being
monitored only by one observer node at a time. If there are multiple
observer nodes available, the node alternates the monitoring task between
them. For instance, if there are three observers, every one of them observes
the node every third monitoring time.

An observer should not only check for the liveliness of the nodes, but
also for the links that are being used for sending data packets to the sink
in case of a detected event. These two tasks are combined by selecting the
relay nodes as observers, which greatly reduces the communication load
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(1) (2) (3) (4) (1) The last status message was acknowledged
(2) The observed node transmits the status 
      message to the observer (which fails)
(3) The observer reports the node missing
(4) The failed node has to be reported at the sink

Fig. 26: DiMo’s node monitoring scheme in a node-missing scenario.

and maximizes the network lifetime. The monitoring scheme is illustrated
in Figure 26 and is further detailed in pseudo code in Algorithms 1, 2 and
3.

The given failure detection time TD sets the upper bound for the mon-
itoring interval TM, i.e., the interval within which a node has to send a
heartbeat. Since failure detection is measured at the sink, the detection of
a missing node at the relay needs to be forwarded, resulting in an addi-
tional maximal delay TL. The monitoring interval has to account for this
delay and is set to

TM ≤ TD − TL. (4.2)

It has to be ensured by the node that it is being monitored every TM time
units by one of its observers.

The observed node has to take into account that the heartbeat can
be delayed, either by message collisions or link failures. Hence the node
should send the heartbeat before the monitoring timer of the relay expires
and leave room for retries and clock drift within the time window TR.
Hence the node should send the heartbeat in a shorter interval TS than
the monitoring timer of the observer:

TS ≤ TM − TR ≤ TD − TL − TR. (4.3)

The schedule of reporting to an observer is only defined for the next
monitoring time for each observer. Whenever the node checks in, the
next monitoring time is announced with the same message. For every
heartbeat sent, the old monitoring timer at the observer can be cancelled
and a new timer can be set according to the new time.

4.2.2 Packet Loss
Wireless communication always has to account for possible message
losses. Sudden changes in the link quality are always possible and even
total link failures in the order of a few seconds are not uncommon (cf.
Section 2.3.3). The time TR for sending retries should therefore be suffi-
ciently long to cover such blackouts. Though unlikely, it is possible that
even after a duration of TR, the heartbeat could not have been successfully
forwarded to the observer and thus was not acknowledged, in spite of
multiple retries.
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Algorithm 1 Node: without queueing control (cf. Section 4.2.4)
1: upon MonitoringTimerFires
2: RID := FindNodeToCheckIn()
3: TS := 0
4: if NodeStillRelay(RID) then
5: TS := NextUnscheduledMonitoringTime()
6: SetMonitoringTimer(RID, TS)
7: end if
8: TM := TS + TR
9: SendHeartbeat(RID, TM, MaxRetries)

10: end upon
11:

12: upon NewRelayRegistered(RID)
13: TS := NextUnscheduledMonitoringTime()
14: SetMonitoringTimer(RID, TS)

15: TM := TS + TR
16: SendHeartbeat(RID, TM, MaxRetries)
17: end upon
18:

19: upon FailedHeartbeatToNode(RID)
20: if RedundantRelaysAvailable(RID) then
21: RRID := RedundantRelay(RID)
22: TS := NextHeartbeatToRelay(RID)
23: TM := TS + TR
24: SetMonitoringTimer(RRID, TS)
25: SendRecoveryMsgToSink(RRID, TM)
26: end if
27: end upon

Algorithm 2 Observer: without queueing control (cf. Section 4.2.4)
1: upon ReceivingHeartbeat(Msg, CID)
2: if MonitoringTimerSet(CID) then
3: CancelTimer(CID)
4: end if
5: UpdateTimer(Msg, CID, true)
6: end upon
7:

8: upon FiringMonitoringTimer(CID)
9: ReportNodeAsMissing(CID)

10: end upon
11:

12: upon ReceivingRecoveryMsg(Msg, CID)
13: ForwardMsg(Msg)
14: UpdateTimer(Msg, CID, false)
15: end upon

16: function UpdateTimer(Msg, CID, regularMsg)
17: if MonitoringTimeInMsg(Msg) then
18: TM := getMonitoringTime(Msg)
19: if NodeNotYetMonitored(CID) then
20: RegisterNodeAtTheSink(CID)
21: end if
22: SetMonitoringTimer(CID, TM)
23: else if regularMsg then
24: UnregisterNodeAtTheSink(CID)
25: end if
26: end function

For the observed node it is impossible to distinguish whether the heart-
beat or the acknowledgement from the observer was lost and therefore
has to account for both cases considering the monitoring timer. In case
that only the acknowledgement got lost, the observer will assume that
the node checks in according to monitoring time TM announced in the
heartbeat. In case the heartbeat got lost, the node will not be monitored at
the announced time. Since the observed node cannot distinguish the two
cases, the node has to ensure that it is being monitored by an additional
observer at the time TM.

The node has to assume that it will be reported failed at the sink,
despite the fact it is still up and running. Should the node be redun-
dantly connected, a recovery message is sent to the sink via another relay
announcing being still alive. The sink receiving a recovery beacon and a
node-missing message concerning the same node can neglect these mes-
sages as they cancel each other out. The details for handling packet losses
and recovery messages are given in full detail in Algorithm 1.
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Algorithm 3 Sink
1: upon ReceivingNodeRegisterMsg(CID, RID)
2: UpdateNodeList(CID, RID, ’Add’)
3: end upon
4:

5: upon ReceivingNodeUnRegisterMsg(CID, RID)
6: UpdateNodeList(CID, RID, ’Remove’)
7: if NodeNotRegisteredAnymore(CID) then
8: SignalNodeNotObserved(CID)
9: end if

10: end upon

11: upon ReceivingNodeMissingMsg(NID)
12: WaitForRecoveryMsg(MaxWait)
13: if RecoveryMsgNotReceived(NID) then
14: SignalNodeMissing(NID)
15: end if
16: end upon

4.2.3 Topology Changes
In the case of a new relay being announced from the topology manage-
ment, a heartbeat is sent to the new relay, marking it as an observer node.
On the other hand, if a deprecated relay is announced, this relay might
still be acting as an observer, and the node has to check in as scheduled.
However, no new monitor time is announced with the heartbeat, which
will release the deprecated relay of being an observer.

Whenever, a node is newly observed or not being observed by a par-
ticular observer anymore, this is indicated to the sink. Hence the sink
is aware of which nodes are being observed in the network, and there-
fore always knows which nodes are up and running. This registration
scheme at the sink is an optional feature of DiMo and depends on the
user requirements.

4.2.4 Queuing Policy
Despite the redundancy in the network, it is always possible that a mes-
sage cannot be forwarded due to degraded links, which is most crucial
if this message announces a node being missing. Since a link can always
show temporal recovery, it would be disastrous if the node manages to
forward its own heartbeat, letting the sink believe that everything is in
best order, while still having a node-missing message stuck in its queue.

Therefore, a monitoring buffer exclusively used for monitoring mes-
sages (i.e., heartbeat, node-missing and recovery messages) is introduced.
These messages are queued according to their priority level: node-missing
messages have the highest, heartbeat the second-highest and recovery
messages the lowest priority. Since the MAC protocol and routing engine
usually have a queuing buffer as well, it must be ensured that only one
single monitoring message is being handled by the lower layers at the
same time. Only if an ACK is received, the monitoring message can be
removed from the queue (if a NACK is received, the message remains).
DiMo only prioritizes between the different types of monitoring messages
and does not require prioritized access over data traffic.
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As long as no node is reported as missing, the sink can be certain
that all nodes are up and running. However, if a node fails, the sink
has to assume that monitoring messages were lost in the failed node’s
queue, and other nodes might be lost as well. Depending on the user
requirements, the sink will flood a request to all relay nodes, asking to
report a list with the currently observed nodes.

4.3 Analytical Analysis
In this section DiMo is analyzed analytically and compared to two
state-of-the-art monitoring protocols Sympathy [RCK+05] and Me-
mento [RB06].

4.3.1 Sympathy and Memento
In literature, there are very few existing solutions for health monitor-
ing in wireless sensor network deployments. DiMo is the first solution
specifically designed for event detection applications. However, the two
prominent solutions of Sympathy and Memento for monitoring general
WSNs can also be tailored for event gathering applications. Both these
approaches send regular status messages to the sink: With Sympathy
the status messages are forwarded individually to the sink, whereas Me-
mento aggregates the status information in a bitmask. For both protocols,
the sink requires to receive a status update from all nodes every so called
sweep interval. This allows the sink to determine whether all nodes are
still up and running. Subsequently the two protocols are detailed and
their performance is compared to the node monitoring part of DiMo.

Sympathy [RCK+05] is a tool for detecting and debugging failures
in pre- and post-deployment sensor networks, especially designed for
data gathering applications. The nodes send periodic heartbeats to the
sink that combines this information with passively gathered data to de-
tect failures. Without the periodic data, passive snooping for application
traffic is not possible, and hence the monitoring relies on the active heart-
beats. For the failure detection, the sink requires receiving at least one
heartbeat from the node every sweep interval, i.e., its lacking indicates a
node failure. Sympathy performs poorly in practice without adaptation
to wireless packet losses. To meet a desired false positive rate, the num-
ber of heartbeats n sent every sweep interval has to be increased, which
however increases the communication cost. Similarly, the sweep interval
can be prolonged, resulting in an increased detection latency.

Memento [RB06] is a failure detection system that requires a node
to periodically send heartbeats to its so called observer node. Those
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heartbeats are not directly forwarded to the sink node, but are aggregated
in form of a bitmask that provides sufficient space to represent all nodes
as a single bit (i.e., bitwise OR operation). The observer node clears its
bitmask every sweep interval. If a node fails to send a heartbeat during
the sweep interval, its status bit is not set in the bitmask. Hence the
information of the missing node is disseminated every sweep interval
by one hop, eventually receiving the sink (e.g., if a failed node is in a
d-hop distance to the sink, it takes d sweep intervals until the node is
detected missing). Due to this aggregation, there is no increased message
load for nodes close to the sink, which is traded off by an increased
latency. Memento is not making use of acknowledgements on the link
layer and proactively sends multiple heartbeats every sweep interval,
whereas this number is estimated based on the link’s estimated worst-
case performance and the targeted false positive rate.

The three different approaches for the monitoring, namely Sympathy,
Memento, and DiMo result in different information the sink receives.
With Sympathy, every single node reports at regular intervals and hence
the sink can be sure that the node is still up and running. Memento on
the other hand aggregates the information of the nodes. If a node fails
to forward its heartbeat during the sweep interval, multiple nodes are
usually reported missing at the sink. DiMo is reporting only the missing
nodes to the sink.

4.3.2 False Positive Analysis
Wrongly assuming a node has failed, i.e., a false positive, normally results
from packet losses during monitoring. In order to ensure a fair compari-
son between the protocols, the following three assumptions are made: (1)
Whereas Memento sends r heartbeats every sweep, DiMo and Sympathy
send up to r−1 retransmissions in the case of unacknowledged messages.
(2) The three protocols are set to have the same sweep interval. This means
that Memento’s and Sympathy’s sweep interval is equal to DiMo’s mon-
itoring interval. (3) The protocols have the same packet-loss probability
pl for each transmission. This results in a packet reception rate (PRR) of
pr = 1 − pl. It should be noted, that the following false-positive analysis
is based on link qualities with a pr ≥ 0.8. This is a minimal link quality a
WSN should be able to cope with. In particular, no false positives should
occur, and a possible event should still be forwarded successfully to the
sink.

The false-positive rates for the three protocols can be determined as
follows:

• For Sympathy, a false positive for a node occurs when the heartbeat
does not arrive at the sink in a sweep interval, assuming r−1 retries
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PRR 80% 85% 90% 95%
Sympathy (n=1) 7.97e-3 2.53e-3 4.99e-4 3.12e-5
Sympathy (n=2) 6.36e-5 6.39e-6 2.50e-7 9.77e-10
Memento 1.60e-3 5.06e-4 1.00e-4 6.25e-6
DiMo 1.26e-5 1.28e-6 4.99e-8 1.95e-10

Tab. 8: False positive rates for a node with hop count 5 and 4 transmissions under
different packet success rates.

on every hop. A node will therefore generate false positives with a
possibility (1 − (1 − pr

l )
d)n, where d is the hop count to the sink and

n the numbers of heartbeats per sweep.

• With Memento, a node will be reported as failed, if it does not report
to its parent successfully during one sweep interval despite sending
r heartbeats. This results in a false-positive rate of pl

r.

• In DiMo the node is reported missing if it fails to check in at the ob-
server having a probability of pr

l . In this case, a recovery message is
triggered. Consider the case that the recovery message is not kept in
the monitoring queue like the node-missing messages, but dropped
after r attempts, the false positive rate results in pl

r(1 − (1 − pl
r)d).

Table 8 illustrates the false positive rates for the three protocols ranging
the PRR between 80% and 95%. For this example the observed node is
in a five-hop distance (d = 5) from the sink and a number of r = 4
attempts for forwarding a message is assumed. Sympathy clearly suffers
from a high packet loss, but its performance can be increased greatly
by sending two heartbeats every sweep interval (n = 2). This however
doubles the message load in the network, which is especially substantial
as the messages are not aggregated, resulting in a largely increased load
and energy consumption for nodes next to the sink. Comparing DiMo
with Memento shows the paramount impact of the redundant relay on
the false positive rate. DiMo offers a mechanism that is not supported
in Sympathy or Memento as it allows sending up to r − 1 retries for the
observer and redundant relay. Due to this redundancy, the message can
also be forwarded in the case of a total blackout of one link, a feature both
Memento and Sympathy are lacking.

4.3.3 Latency Analysis
For many application designers it is critical to tune the worst-case latency
of detecting a missing node. This section analyzes the resulting latency
if the same heartbeat frequency is assumed whereas the next section
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f p (PRR = 90%) 1e-3 1e-4 1e-5 1e-6 1e-7
Sympathy 4.5 8.5 8.5 8.5 12.5
Memento 72 96 120 144 168
DiMo 5 5 5 5 5

Tab. 9: The latency [min] under the same false positive rate requirement with a heartbeat
frequency of TS = 4 min and the number of attempts set to r = 4.

compares the heartbeat rates for achieving a failure detection time of
TD = 5 min. For a fair comparison, the three protocols should show
the same false positive rate f p, which can be estimated according to the
analysis in the previous section, assuming a link’s packet reception rate
of pr = 0.9.

With DiMo the latency of detecting a missing node is given by TD =
TS + TR + TL. For example, the guard times TL = TR = 30 s results in
a heartbeat rate of TS = 4 min. For Sympathy, the worst-case latency
is given by the sweep interval plus the worst-case latency for sending
the message TD = nTS + TL, where n is the number of heartbeats every
sweep interval. With Memento, the bitmask is reset for every node in
every sweep interval. Assuming synchronized sweeps throughout the
network, this results in a worst-case latency of TD = r(d + 1)TS, whereas
r denotes the number of heartbeats every sweep interval, d represents
the maximum hop count in the network, and the ’+1’ accounts for the
fact, that a node could fail right at the beginning of the observers sweep
interval after just having sent a first heartbeat.

The resulting worst-case latencies are detailed in Table 9, allowing
up to 3 retries to forward the message before the message is dropped.
Memento’s latency is largely increased due to its aggregation but also
due to the design choice of explicitly not exploiting the possibilities of
retransmissions. Sympathy shows a very quick detection time, however,
requires sending multiple heartbeats per sweep interval if a small false
positive rate is required. DiMo on the other hand achieves its design goal
of reporting the missing node within the required 5 min with 3 retries
(r = 4) for all false positive rates.

4.3.4 Message Overhead
All protocols achieve a given upper bound for the latency if the heartbeat
interval is adapted accordingly. For instance, with a heartbeat frequency
of TS = 4 min, the latency for Memento results in 120 min, according to
the results shown in Table 9. If a latency of 5 min is targeted, the heartbeat
interval for Memento needs to be increased by a factor of 24 (i.e., one
heartbeat every 10 s). However, at some point the increased message load
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f p (PRR = 90%) 1e-3 1e-4 1e-5 1e-6 1e-7
Sympathya 1.11 2.22 2.22 2.22 3.33
Memento 14.4 19.2 24.0 28.8 33.6
DiMo 1.25 1.25 1.25 1.25 1.25

aMessages are not aggregated resulting in an enormous
routing overhead for nodes close to the sink.

Tab. 10: Number of heartbeats sent per node in each failure detection interval TD for
meeting the latency constraint TD.

will result in a large amount of interference, which is especially critical for
Sympathy’s increased load close to the sink and also for Memento’s large
delay for disseminating the information to the sink that likely results in a
very short heartbeat interval.

Table 10 details the effect on the message overhead if a certain maximal
false-positive rate should be achieved and a link quality of pr = 0.9 is
assumed. The message overhead is denoted as the number of heartbeats
that have to be sent every TD time units at every node if a failed node has
to be reported within this time. DiMo and Sympathy both show a very
low heartbeat interval, whereas Memento shows a very high data rate
and therefore energy consumption. DiMo highlights a constant message
rate of only 1.25 messages every TD, being very close to the theoretical
optimum of 1.

Sympathy’s low heartbeat rate is misleading, as every single message
needs to be forwarded to the sink. Hence the nodes close to the sink have
to handle a cumulated load: For instance if in a 100 node network the
bottle-neck node close to the sink has to route the heartbeats of 1/5th of the
nodes, the bottle-neck node has to handle a 20 times increased heartbeat
rate. Memento’s aggregation and DiMo’s distributed approach both do
not suffer from such an increased load towards the sink.

DiMo and Sympathy both include retries in case of a packet failure.
Since both the message and the acknowledgement can get lost, the ex-
pected number of transmission is given by

E[trans] = (1 − pl)2
k≤r∑
k=0

pk
l (k + 1) ≤

1
1/(1 − pl)2 . (4.4)

For example, this results in sending on average an expected number of
1.23 messages per heartbeat assuming pl = 0.1 for both the message or the
acknowledgment.
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Fig. 27: DiMo is implemented as a part of the network layer, handling all monitoring
messages.

4.4 Simulation-based Evaluation
For evaluation purposes DiMo is implemented in Castalia 1.3, a state
of the art WSN simulator based on the OMNet++ platform. Castalia
allows evaluating DiMo with a realistic wireless channel and radio model
but also captures effects like the nodes’ clock drift. Castalia’s channel
model is based on the empirical findings of Zuniga et al. [ZK04]. In
particular, it allows modelling the grey area and furthermore there are
links with asymmetric behavior, i.e., node A might be able to talk to
node B, but not vice versa. Packet collisions are calculated based on the
signal to interference ratio (SIR) and the radio model features transition
times between the radio’s states (e.g., sending after a carrier sense will
be delayed). SpeckMAC [WA06], a packet based version of B-MAC, with
acknowledgements and a low-power listening interval of 100 ms is used
on the link layer. The characteristics of the CC2420 are used to model the
radio. For setting up the redundant topology, the NoSE (cf. Chapter 6)
initialization scheme is used for finding the neighbors and assessing the
link quality. If not otherwise stated, two nodes are neighboring if the
assessed link quality is at least 80%.

DiMo is implemented as a module of the network layer on top of the
’traditional’ routing engine and topology management as illustrated in
Figure 27. A packet is passed to the routing engine from the MAC, it is
decided according to a flag in the message header, whether the packet is
a monitoring message and needs to be forwarded to DiMo. Furthermore,
control messages are sent from the topology management to DiMo in
the case of a change in the topology (i.e., change in the set of relays)
as discussed in Section 4.2.3 and whether a monitoring message was
forwarded successfully. If DiMo receives a monitoring message, that
needs to be forwarded to the sink, the message is added to the queue
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Fig. 28: Failing nodes are reported within the required TD = 5 min, showing the expected
uniform distribution of the reporting delay.

and then sent back to the routing engine. This detour is made to ensure
that monitoring messages do not get lost as detailed in Section 4.2.4. If
the node is a sink node, control messages are sent to the application layer
notifying about missing nodes and changes in the registration of observer
nodes in the network.

The simulations are performed for a network containing 80 nodes,
arranged in a grid with a small Gaussian distributed displacement (called
jitter), representing an event detection system where nodes are usually not
randomly deployed but rather evenly spread over the observed area. 500
different topologies are analyzed by feeding independent random seeds
to the wireless channel model and the grid’s jitter, resulting in different
topologies for every simulation run. The topology management results in
a redundantly connected network with up to 5 levels L and a redundant
hop count R of 6 to 8.

4.4.1 Failure Detection Delay
The fundamental part of the monitoring is the detection of a failed node
within the required failure detection time TD. According to the example
of a fire-detection system, regulations require to detect a missing node in
TD = 5 min, which is taken as the reference to parameterize DiMo. The
monitoring time is set to TS = 4 min, providing ample time for retries
TR = 30 s and to notify about a missing node TL = 30 s. The failure
detection delay is measured by letting a node run out of energy at a
random time and checking for the delay until the sink is notified about
the missing node. All nodes but the sink are disabled in 40 different
topologies. The result is illustrated in Figure 28 showing the detection
delay of the node failures. In particular it highlights that all nodes are
detected missing within the required 5 min.

Node failures occur at random times. The failures are therefore uni-
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formly distributed during the nodes heartbeat interval TS. At the observer,
the node failure is observed TR time units later, still following a uniform
distribution. Since the delay for reporting the node missing at the sink
is similar for all message, the reporting delay at the sink should also fol-
low an uniform distribution. This is confirmed in Figure 28, where most
nodes are reported failed in the interval TR ≤ TD ≤ TS + TR.

However, it is essential to keep in mind that the 5 min detection delay
can only be met stochastically, making it important to carefully choose
the guard time TL. This is also indicated in Figure 28, showing that for
most situations there is ample guard time, indicated by the gap in the
histogram in the last 20 s. There is however also a case the node missing
message being delayed, requiring such a long guard time. Furthermore
Figure 28 shows that only a few failed nodes are discovered during the
first TR = 30 s. This happens if a node fails shortly after the heartbeat timer
expires, but still before the heartbeat has been successfully forwarded to
the observer.

4.4.2 False Positives
The essential part of a safety-critical event monitoring system is to reliably
forward a detected event and to timely detect a failed node. However,
it is also crucial to prevent false positives, since for every node that is
reported missing, a costly on-site inspection is required. A false positive
occurs, if the node fails to forward its status message. DiMo uses the same
links for monitoring the nodes and for forwarding an event message. A
low false-positive rate does therefore indicate a high success rate when
forwarding an event.

A false positive is triggered if the node fails to check in, which occurs
due to packet losses, mainly induced by random packet failures of the
wireless channel. In order to get a detailed view of the false positives, the
available link’s packet reception rate (PRR) is set to 0.8, which allows to
detail the effects of the retransmission scheme. Furthermore, this fixed
PRR also allows a comparison with the results of the analytical analysis.
This comparison is given in Figure 29(a) and shows the expected number
of false positives against the number of retries. Additionally to DiMo, the
plot shows the monitoring based on a tree structure (i.e., without DiMo’s
possibility of sending a recovery message using an alternate relay). This
tree structure is comparable with the performance of Memento. The
plot highlights the advantage of DiMo’s redundancy, however allowing
sending twice as many heartbeats than the tree approach. This might
not seem necessarily fair at first, however, in a real deployment it is
always possible that a link fails completely, allowing DiMo to still forward
the heartbeat. The simulation and the analysis exhibit a slight offset in
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Fig. 29: False Positives: DiMo achieves the targeted false positive rate of 10−7, also
representing the reliability for successfully forwarding an event.

the false-positive rate, which is explained by a simulation artifact of the
SpeckMAC implementation that occurs when the receiver’s wake-up time
coincides with the start time of a packet. This rare case allows receiving
not only one but two packets out of the stream, which artificially increases
the link quality by about three percent.

The nodes are observed every TS = 4 min, resulting in being monitored
1.3 · 105 times a year. A false positive rate of 10−6 would result in having a
particular node being wrongly reported failed every 7.7 years. Therefore,
for a 77-node network, a false positive rate of 10−7 would result in one
false alarm a year, being the targeted false-positive threshold for the
monitoring system. DiMo achieves this rate by setting the numbers of
retries for both the heartbeat and the recovery message to four. Hence
the guard time TR for sending the retries need to be set sufficiently long
to accommodate up to ten messages and back-off times.
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The impact of the link quality on DiMo’s false positive rate is detailed
in Figure 29(b). The tree topology shows a similar performance as DiMo,
if the same number of messages is sent. But again, it does not show the
benefit in the case of a sudden link failure, allowing DiMo to recover
immediately. Furthermore it might be surprising that the false positives
are not going to zero for a perfect link quality, which is explained by
collisions. This is also the reason why DiMo’s curve for two retries flattens
for higher link qualities. Hence, leaving room for retries is as important
as choosing good-quality links.

4.4.3 Load Balancing
It is quite common in a WSN that certain nodes are well connected and
serve as a relay node for many children. This will evidently lead to
an increased load and therefore energy consumption as illustrated in
Figure 30(a), where each bar represents a single node’s received heartbeats
in a forty-node network. The nodes without a bar are the ones that are
not relays, i.e., the network’s leaf nodes. There are distinct differences in
the packet load between the different relay nodes. In particular, nodes 2,
8, 13, 20 and 26 show an increased load, which will result in them running
out of energy first.

Traditionally, load balancing is tackled by the topology management,
where for instance a node will only accept a predefined maximal num-
ber of child nodes. With some (hierarchical) topologies, job rotation
can be performed for equalizing the node’s balance, as proposed with
LEACH’s [HCB02] rotating clusterheads.

DiMo proposes a complementary approach that balances the load
based on the topology provided by the topology management, indepen-
dently whether being balanced to a certain extent already. First, the relay
node provides its children with the current number of observed nodes,
representing the relay’s current load. Since the balancing of the load is a
long term issue, it is not required that every small change in the topology
is announced immediately and is rather piggybacked to another message.

Without load balancing, the monitored node is alternating between its
relays for checking in and therefore sends the same amount of heartbeats
to all of them. On the other hand, if the load balancing is enabled in
DiMo, the different relays are burdened inversely proportional to the
relays’ current load. For instance, if a node has two relays, R1 having 5
child nodes, and R2 having 3, then the relative burden on the two relays
is (5+3)/5 for R1 to (5+3)/3 for R2.

The effect of this simple load balancing is illustrated in Figure 30(b)
for the same network and setting than in Figure 30(a). There is a distinct
difference between the two plots, showing a well balanced load of the
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(a) Without load balancing: Certain nodes (e.g., 8, 13
and 26) show a distinctly increased message load.
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(b) With load balancing: The load is more evenly
distributed. Since the sink (node 1) is not resource
constrained, the load balancing boosts its load.
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(c) The load balancing reduces the maximal load in
the network by 30 percent on average.

Fig. 30: DiMo’s load balancing for a prolonged lifetime.

relays now. The peak of node 1, representing the sink, is an intended
feature, boosting the sink’s load, usually having a higher energy budget.
This is achieved by letting the sink announcing the minimal current load
of one, even though the sink usually handles many more child nodes.

The performance gain depends a lot on the given topology. Hence,
500 random topologies are analyzed with and without the load balanc-



94 Chapter 4. DiMo: Distributed Node Monitoring

ing mechanism enabled. This is illustrated in Figure 30(c), showing a
histogram of the gain G achieved through load balancing. To determine
the gain G, the load of the node with the maximal load for the balanced
solution LB is compared to the maximal load for the unbalanced solution
LU (G = LB/LU). On average, this maximum load can be reduced by 30 %,
substantially prolonging the lifetimes of the most heavy loaded nodes
and therefore of the whole network.

This heuristic approach for the load balancing is not necessarily op-
timal; however, it fulfills the important criteria of not introducing addi-
tional communication overhead and being simple enough to be imple-
mented on an embedded and distributed sensor node. It is left for future
work to analyze and compare different balancing strategies, such as a
min/max optimization, for a further improved load balancing.

4.5 Summary
This chapter presents DiMo, a distributed algorithm for node and topol-
ogy monitoring, especially designed for use with event-triggered wireless
sensor networks. As a detailed comparative study with two other well-
known monitoring algorithm shows, DiMo is the only one to reach the
design target of having a maximum error reporting delay of 5 minutes
while keeping the false-positive rate and the energy consumption com-
petitive.

The proposed algorithm can easily be implemented and also be en-
hanced with a topology management mechanism to provide a robust
mechanism for WSNs. This enables its use in the area of safety-critical
wireless sensor networks. It is detailed in the next chapter, how DiMo
can be incorporated into a safety-critical fire-monitoring application. In
particular, it also shows an evaluation of DiMo in a testbed as a part of a
fire-alarm application.
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Dwarf: Delay-aWAre Robust

Forwarding

In essence, safety-critical event monitoring requires low latency and reli-
able delivery and energy-efficiency in a network where links and nodes
may (temporarily) fail. The functionality can be decomposed into three
tasks: data (alarm) forwarding, node (status) monitoring, and network
management. These tasks are not unique in themselves, yet the strict
real-time requirements render most existing solutions unsuitable. For
example, the popular collection tree protocol (CTP) [FGJ+06] does adapt
to failing links, but only within tens of seconds making it of little use for
alarm forwarding.

Safety-critical event monitoring does therefore require an integrated
system, in which the components (i.e., protocols) are carefully constructed
to follow a coherent overall scheme. The system has been developed and
evaluated through a four-phase approach, as presented in this chapter. In
the first phase, a protocol suite is designed that meets the requirements
for safety-critical operation. In particular two main protocols coopera-
tively enable safety-critical operation: (1) Dwarf (Delay-aWAre Robust
Forwarding) allows for a timely delivery of alarm messages, whereas (2)
DiMo (Distributed Monitoring) observes the integrity of the nodes and
the network topology. In the second phase, simulation is used to verify
the validity of the overall design and to define an operating point for
the protocol parameters. In the third phase the system is implemented
and an initial round of small-scale tabletop experiments is run. These
initial tests prompted to adapt various aspects, for example, the MAC
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layer was modified to reduce the amount of contention around the sink.
In the fourth and final phase, a prototype wireless fire-alarm system is
deployed in a typical office environment to assess the performance under
realistic conditions. Furthermore, a final set of tabletop experiments is
run to determine the behavior in more dense scenarios than the office
setting provides. The results show that the integrated protocol suite for
safety-critical event monitoring does meet stringent latency and reliabil-
ity requirements, tolerates large fractions of link failures, yet is energy
efficient enough to allow for an operational lifetime of several years.

The remainder of this chapter is organized as follows. Section 5.1 sum-
marizes the requirements and assumptions derived from a real-world
fire-alarm system. These requirements set the boundary for the actual
alarm-forwarding algorithm, status notification, and network manage-
ment presented in Section 5.2. The feasibility of this integrated protocol
suite is studied in Section 5.3, followed by the implementation details
in Section 5.4. The results from evaluating the system in tabletop and
real-world experiments are provided in Section 5.5. Finally, Section 5.6
summarizes this chapter.

5.1 Requirements and Assumptions
As a case study, a distributed indoor wireless fire-alarm system is consid-
ered. The sensor nodes consist of a micro controller (e.g., TI MSP430), a
communication unit (e.g., TI CC1020), a power supply (e.g., 2 AA batter-
ies) and a sensor for detecting fire. There is at least one line-powered sink
node that is connected to a central host. Most sensor nodes are expected
to be out of communication range to a sink node and therefore require
multi-hop networking.

The aim is to comply with real (commercial) systems that meet the
currently known regulations and best practices in this domain. In partic-
ular there are two domain specific regulations [Eur08] to be considered
concerning the latency within the network: Firstly, an alarm raised by
a sensor must be reported at the sink within 10 seconds, over possible
multiple hops. Hence there is only a little margin for hop delays and
setting up a route on demand is hardly possible within this short time
span. Secondly, failed nodes must be reported within 5 minutes at the
sink. Typical failures are nodes running out of energy, hardware defects
and software errors. Link errors due to environmental changes and inter-
ferences can cause a node being unreachable. Such a node must also be
considered failed, since a possible alarm cannot be reported anymore.

Batteries are replaced by a qualified technician that has to assert the
integrity of the complete alarm system. Since this is a costly operation,
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it makes sense to replace the batteries of all nodes as soon as the first
one runs out of energy. In order to reduce operational costs, this requires
minimizing and equalizing the power consumption for all sensor nodes.
Such a complete battery replacement should not occur more often than
every three years to be economically reasonable.

5.1.1 Radio and MAC Protocol
Wireless alarm systems often utilize narrow-band radio frequency devices
that enable the use of the reserved channels defined in [ERC08]. Accord-
ing to this recommendation, the frequency band from 868.6-868.7 MHz is
exclusively to be used for wireless alarm systems. The channel spacing
for this band is 25 kHz and hence provides 8 independent alarm channels.
Communication on such a channel is limited to a transmission power of
10 mW and a channel-utilization of 1 %.

A low duty-cycle is essential for minimizing the energy consumption,
which requires to carefully choose the MAC protocol. Chapter 3 has
shown that the class of low-power-listening protocols is well suited to
achieve very low duty cycles. In particular, WiseMAC [EHD04] exhibits
superior performance and is being used in the protocol suite.

Using WiseMAC, the node wakes up periodically every Tw and checks
for activity on the radio channel. If no activity is detected, the node goes
right back to sleep. Otherwise the node keeps listening for a potential
message. The sending node will therefore pretend each message with a
wake-up preamble that is slightly longer than Tw, which ensures that the
intended receiver senses an active channel and listens to the complete
transmission. In order to minimize this long preamble, WiseMAC learns
the receiver’s wake-up schedule with every packet being exchanged. This
allows the sender to start transmitting a greatly shortened preamble right
before the intended receivers wakes up. This does not only save great
amounts of energy, but also minimizes the overall activity of the channel.
The exact length of the preamble depends on the clock drift and the time
passed since the last message was exchanged with the corresponding
receiver. In order to use WiseMAC effectively, the application should thus
ensure that (important) neighboring nodes are periodically contacted.

WiseMAC does not coordinate the wake-up time with the surround-
ing nodes. The message can therefore be delayed by Tw at every hop,
while waiting for the parent to wake up. The alarm-forwarding algo-
rithm Dwarf presented in the next section takes this into account and
minimizes the overall delay with its delay-aware routing scheme. Fur-
thermore it should be noted that the careful staggering of the wake-up
periods [LKR04] would allow for shortening the end-to-end latency, yet
runs the risk of excessive delays in the case of link errors.
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5.1.2 Definitions
The sensor network is represented by the graph G := (V,E) consisting of
the set of sensor nodes V and the set of edges E. All communication links
are considered to be bidirectional and two nodes u, v ∈ V can directly
communicate with each other (i.e., are neighbors) if and only if {u, v} ∈ E.
Furthermore, all sensor nodes u ∈ V are organized according to their
distance du (hop count) to the nearest sink. More precisely, the neighbors
of a node are divided into parents, siblings, and children: The set NP

u :=
{v : {u, v} ∈ E ∧ dv = du − 1} of neighbors that are closer to the sink
are the parents of a node u, the set NS

u := {v : {u, v} ∈ E ∧ dv = du} of
neighbors that are at the same distance are the siblings of u, and the set
NC

u := {v : {u, v} ∈ E∧ dv = du + 1} of neighbors that are further away from
the sink are the children of u.

5.2 Safety-Critical Protocol Suite
This section presents the protocol suite for enabling safety-critical net-
working. It introduces the alarm-forwarding algorithm Dwarf and details
how the status monitoring of the nodes and the network is performed in
cooperation with DiMo. In addition, insights about the neighbor man-
agement and the start-up of the network is provided.

5.2.1 Alarm Forwarding
When a node detects an alarm, it assembles an alarm message m and tries
to forward it towards the sink as fast as possible. To this end, each node
keeps track of the (estimated) wake-up times of its parents and siblings
and forwards the message to the k parents and siblings that wake up next.
The siblings are only considered in the forwarding process if the message
cannot be forwarded to k parents. Neighbors that are known to have
already received the alarm (e.g., siblings the message has been received
from) are not considered in this process. Forwarding the message to the
parent that wakes up next minimizes the local forwarding delay, whereas
sending the message to more than one neighbor decreases the probability
that the alarm gets lots. More precisely, the forwarding algorithm Dwarf
works as described in the following and as detailed in Algorithm 4.

For each newly created or received alarm message m, the alarm mes-
sage is forwarded k times. For this purpose the node maintains a set of
parent CP

m and sibling CS
m candidates. These sets contain all the parents

and siblings which are assumed to have not yet received the message m
(i.e., from which neither an acknowledgment of m nor the message m itself
has been received). As long as the parent candidate set is not empty, the
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Algorithm 4 Alarm forwarding for node u
1: var H← ∅
2:

3: function initCandidates(m)
4: CP

m ← NP
u \ Bm

5: CS
m ← NS

u \ Bm
6: end function
7:

8: function getNextHop(m)
9: if CP

m = ∅ and CS
m = ∅ then

10: initCandidates(m)
11: end if
12: if CP

m , ∅ then
13: select v ∈ CP

m that wakes up next
14: CP

m ← CP
m \ {v}

15: return v
16: else if CS

m , ∅ then
17: select v ∈ CS

m that wakes up next
18: CS

m ← CS
m \ {v}

19: return v
20: else
21: return ⊥
22: end if
23: end function
24:

25: function sendAlarm(m)
26: if rm < ra then
27: rm ← rm + 1
28: v← getNextHop(m)
29: if v , ⊥ then
30: send alarm message m to node v
31: end if
32: end if
33: end function
34:

35: upon drop of alarm message m sent to w
36: sendAlarm(m)
37: end upon
38:

39: function forwardAlarm(m)
40: H← H ∪ {m}
41: initCandidates(m)
42: rm ← 0
43: am ← 0
44: sendAlarm(m)
45: end function
46:

47: upon acknowledgment of alarm m sent to w
48: if am < k − 1 and w is not Sink then
49: am ← am + 1
50: Bm ← Bm ∪ {w}
51: sendAlarm(m)
52: end if
53: end upon
54:

55: upon reception of alarm message m from v
56: if m < H then
57: Bm ← {v}
58: forwardAlarm(m)
59: else if currentAlarm(m) and v < Bm then
60: Bm ← Bm ∪ {v}
61: end if
62: end upon
63:

64: upon detection of an alarm
65: create alarm message m
66: Bm ← {}

67: forwardAlarm(m)
68: end upon

parent that wakes up next is chosen as the next forwarding destination
and removed from the candidate set. If there are no more parents to chose
from (CP

m = ∅), the sibling that wakes up next is used instead. Once both
sets are empty, they are reinitialized with NP

u \Bm and NS
u \Bm, respectively,

where Bm is the set of neighbors that have already received the message.
Although the message has to be forwarded to k ≥ 2 neighbors, only

one alarm message is forwarded to the MAC layer at any given time.
Once the node receives the acknowledgment or drop of the message,
the next parent (or sibling) is determined and the message is sent again.
A node aborts the forwarding process as soon as the message has been
successfully forwarded to k neighbors or to a sink node. The forwarding
process is also aborted if there are no more parents and siblings to forward
the message to (i.e., (|NP

u | ∪ |NS
u |) \ Bm = ∅). In any case, overall at most

ra ≥ k attempts are made for forwarding the message. This implies that an
alarm is dropped without forwarding after ra unsuccessful transmissions.

Upon reception of an alarm message m, a node first verifies that the
alarm has not already been forwarded (i.e., m is not in the message history
H). New messages are appended to the message history H by adding a
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Fig. 31: Dwarf’s alarm-forwarding scheme: Node u receives an alarm from its child c1.
Subsequently u forwards the message k = 3 times to its parents NP

u := {p1, p2, p3}

and siblings NS
u := {s1, s2}. The nodes are selected according their distance from

the sink (parents come first) and their estimated wake-up times.

tuple containing a reference to the alarm originator and the sequence
number. The alarm is then forwarded in the same manner as a newly
generated alarm.

An example for forwarding an alarm with k = 3 is depicted in Fig-
ure 31. After node u receives an alarm message from its child c1, node
u forwards the message to the parents p2, p3 and p1 according their es-
timated wake-up times. After the failed transmission to parent p1, the
parent set is empty and the message is forwarded to the sibling s2.

5.2.2 Node Monitoring
Node failures have to be detected within a given time bound TD. In the
case for fire-detection-systems regulations demand a maximum delay of
TD = 5 min. The nodes are monitored locally with an algorithm adopted
from the DiMo node-monitoring scheme, which is discussed in detail in
Chapter 4 and is illustrated in Figure 26 on page 80. The monitoring
scheme is however slightly modified. In particular, there is only one
observer for each node at any given time, which reduces the complexity
of the node monitoring. In order to observe the remaining links in the
network, a neighbor-management scheme is being applied as discussed
in the next section.

In essence, every node has a dedicated observer node (usually a parent,
alternatively a sibling). The observer should receive a status heartbeat
from the observed node in a regular interval of TM < TD. Should the node
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fail to send the heartbeat within TM since the last one, the observer reports
the node missing at the sink using Dwarf with k = 1 and ra = ∞ (i.e.,
the message can be dropped after TD). The maximum latency TL (e.g.,
TL = 10 s) for this message, defines the upper bound for the heartbeat
interval at the observer of TM ≤ TD − TL.

Wireless links are susceptible to link failures and hence several retries
might be required for sending the status heartbeat to the observer node.
The retransmission scheme should be chosen rather conservatively, since
a possible simultaneous alarm message must not be jeopardized. Hence
ample time TR is reserved for several retries which requires sending the
status heartbeat after TS ≤ TM − TR since the last successful transmission.
Both the node and its observer reset their timer for TS and TM respectively
with each successful transmission of the status message.

Should it not be possible to contact the observer despite several re-
tries, the node will get reported missing, despite still running. In order to
minimize such false positives, the node will select another parent or sibling
as its new observer node. The newly chosen observer is sending imme-
diately a message to the sink, reporting that the node has a new observer.
Again Dwarf is being used (k = 1) for forwarding the notification. Hence
the message of the deprecated observer reporting the node missing will
be ignored, if the sink receives a message from the new observer.

Observer nodes have to handle an increased data load, decreasing
their lifetime. In order to average the energy consumption of the nodes
in the network, the observer nodes are chosen according to their current
energy budget. Hence the node selects from the set of potential observers
the one with the currently highest energy budget left. Due to the appli-
cations long-term operation of several years, observers are exchanged in
the order of weeks, allowing for a well-balanced energy consumption in
the network.

5.2.3 Neighbor Management
Dwarf requires to maintain a table with a node’s neighbors with their hop
count and wake-up times. Due to the constrained memory and energy
resources, the number of entries in the neighbor table is limited to Nmax.

The wake-up times are susceptible to drift due to clock inaccuracies.
This makes it necessary to periodically poll the parents and the siblings
in order to update the wake-up schedule. The child nodes on the other
hand do not have to be polled, since they themselves poll their parent
nodes. Furthermore it should be noted, that the observers are excluded
from these regular polls, since they are contacted regularly anyhow.

The chosen polling interval Ti affects the overall energy consumption,
which needs to be minimized. On the other hand it also affect the synchro-
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nization accuracy since the wake-up preamble increases with Ti. Hence
there is an increased likelihood that a parent that is just about to wake
up is not considered in the forwarding process since the wake-up time
estimation cannot ensure that the parent has not yet already woken up.
It is detailed in Section 5.4 that a polling interval of Ti = 33 minutes is a
well-balanced operating point.

The periodic polling is also required for a continuous monitoring of
the link qualities. Hence failing links are detected, and the corresponding
node can be evicted from the neighbor table. Should this eviction require
to update the node’s level, this information is forwarded to all neighbors
in the neighbor table.

5.2.4 Startup
The required knowledge of a node u consists only of its level l(u) and its
neighbors and their levels. The information regarding level and neighbors
can easily be obtained as part of the following startup algorithm:

1. Initially, the level of all nodes but the sinks is set to infinite and they
have no information about their neighborhood.

2. The sinks initiate the algorithm by broadcasting their ID and level.

3. A node u receiving a message from a neighbor v with l(v) < l(u) − 1
sets its own level to l(v)+1, updates its neighbors and (re)broadcasts
its new level.

5.3 Simulation-Based Feasibility Study
As a first evaluation step, the protocol suite is implemented in the Glo-
MoSim [ZBG98] simulation framework and analyzed for its behavior.
Only the most essential parts of the protocol suite are implemented. In
particular, the network topology is fed to the application at start up and
is stable (except for link and node failures) during the tests. Nevertheless,
regular packets are sent by the topology- and node-monitoring modules
in order to maintain realistic background traffic and to keep the neighbors’
wake-up schedule up-to-date.

With the help of the flexible and easy to adapt simulations, the proto-
cols are analyzed in different setups and parameterization. This allows
to quickly get better insight into the protocol behavior and to identify an
appropriate working point for the subsequent experimental evaluation.
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Fig. 32: 80 sensor nodes are positioned according to a real world, but wired deployment.
The connectivity is based on measured path-loss coefficients.

5.3.1 Simulation Setup
In order to simulate the application under realistic conditions, the net-
work topology is based on an existing (wired) real-world alarm system.
The sensors are deployed in a large historic public building, having 80
nodes deployed over two floors and one sink in the center of the network
(cf. Figure 32). The complete 80x80 path-loss matrix is measured and
provides the link qualities for all pair of nodes in the network. GloMoSim
is enhanced and allows to be fed with such recorded data. Packet colli-
sions are calculated based on the signal-to-interference-plus-noise ratio.
A further enhancement of GloMoSim allows modelling transition times
between the radio states. In particular the specifications of the TI CC1020
radio are used to feed this model in order to match the experimental
implementation. For the MAC layer, the original WiseMAC [EHD04] im-
plementation is used, but is enhanced by its author with an API providing
the neighbors wake-up schedules.

5.3.2 Alarm Latency
The latency for the alarm messages is most crucial and must be limited
to TL = 10 s. Figure 33 presents the delay for alarm messages under
different parameterization. It details the impact of WiseMAC’s wake-up
period Tw, the impact of the redundancy of the number of neighbors k
the alarm message is forwarded to and the redundancy d provided by the
network. This latter parameter d denotes the sum of parents and siblings
the nodes maintain in their neighbor table. For instance, a single-tree
topology is achieved with d = 1.

Figure 33(a) presents the average and Figure 33(b) the maximum la-
tency for 800 alarms (for each data point) injected into the network. The
most prominent observation is that the latency increases linearly with the
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Fig. 33: Fire-alarm latency in simulation without link failures. Despite 6 hops and a
wake-up period of Tw = 2 s, the alarm is forwarded within the required 10 s.
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MAC’s wake-up period Tw. This can be attributed to the wake-up pe-
riod in the order of a few hundred milliseconds dominating the message
transfer time lasting tens of milliseconds. Even with a wake-up period
Tw = 2 s and a maximal hop count of 6 in the network, the alarm is always
forwarded within the required 10 s. For a parameterization with k = 2
and d = 3, the maximal latency does not exceed 6 s despite the 6 hops and
the Tw = 2 s. This is a direct consequence of Dwarf’s alarm-forwarding
scheme that selects the next hop according to its level and wake-up time.

Having a detailed look at Dwarf parameterization (k and d) exhibits
that the redundancy in the network provides the highest potential to
minimize the alarm-notification delay. For a single-tree topology (d = 1),
there is only one route to the sink, and therefore the message is delayed
at every hop until the parent wakes up. Having redundancy (d ≥ 2)
allows to select the next hop according to the parents relative wake-up
times, which clearly reduces the latency. However, it does not make a
big difference whether d = 2 or d = 3 is chosen. The first reason is, that
a large fraction of the nodes (36%) do have only one or two parents, and
hence not the option to choose between three parents. The second is, that
it makes a big difference whether there is only one parent or if there are
two (in the former case one might have to wait for a long time for a single
parent to wake up). The difference whether there are two or three parents
is much smaller. The number of neighbors k the message is forwarded
has only a minimal impact on the alarm latency. This means that a first
message is usually not “overtaken” by a second message sent on another
route. However the maximal latency shows a smoother curve with less
outliers if k > 1. This observation can also be made comparing Figures
33(c) and 33(d). The main advantage of k > 1 is shown in Section 5.3.4,
when the network has to deal with random packet losses.

5.3.3 Energy Consumption
A minimal energy consumption is of utmost importance in order to ensure
longevity of the network. The radio activity is the main consumer of the
energy in the system and is analyzed in detail. There are two main sources
in the network that consume energy: (1) WiseMAC requires polling the
channel in a regular interval Tw and (2) the node and topology monitoring
requires to send periodic status packets. The energy consumption for
sending an alarm is neglected, since alarms are assumed to occur scarcely
and therefore contribute little to the overall energy budget.

Figure 34(a) depicts the energy consumption of the node in the net-
work (sink excluded) with the highest radio activity. The impact of the
two sources for the energy consumption is very distinct, having the reg-
ular channel polls as the dominant energy consumer. The radio activity
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Fig. 34: Energy consumption in simulation.

for the channel polling increases linearly with the wake-up frequency
1/Tw. The status messages on the other hand add the expected constant
offset. There is however an increase for short wake-up periods, which is
explained by a more frequent overhearing of status messages.

The slope of the overall energy consumption flattens for wake-up
periods beyond 1 s. Especially for a wake-up period larger than 1.5 s the
savings are getting rather small. On the other hand, the expenses for
a first rendezvous increase with a prolonged wake-up period. Hence a
wake-up period of 1.5 s is decided on for the remaining evaluation.

The status monitoring does not require to forward the messages to the
sink and does therefore not show a substantially increased load towards
the sink. Figure 34(b) shows the well balanced distribution of the energy
consumption of all nodes. Whereas the leave nodes have a radio duty
cycle of 0.34%, the maximum is 0.45%.
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5.3.4 Impact of Link Failures

Wireless communication has to account for possible message losses, in-
ferred from interference from outside the network. This section analyzes
the impact of such message losses on the delay and robustness of the
alarm notification. In order to simulate this effect, GloMoSim is enhanced
with the functionality for random packet drops with a probability pl on
the wireless channel. For the following analysis the wake-up period is set
to Tw = 1.5 s and the number of attempts for forwarding the message is
set to ra = 3.

The impact on the message latency over a range of the packet loss
rate from 0 to 30% is depicted in Figures 35(a) and 35(b). Instead of the
maximum latency, Figure 35(b) presents the 99%-quantile latency. This
allows to see the trend of the delay without having to deal with single
outliers, distorting the general trend. Especially the single-tree config-
uration greatly suffers from link failures. This is attributed to the long
waiting time of Tw = 1.5 s for every lost packet. If the network provides
redundancy (d > 1), the impact of packet losses is greatly reduced. The
average latency with 30% link failures increases only by 0.8 s compared
to the case without link failures, whereas the single-tree configuration
added 1.4 s. Having a look at the 99%-quantile latency shows that the
alarm is forwarded within the required 10 s despite up to 30% link fail-
ures, up to 6 hops to the sink and a wake-up period of Tw = 1.5 s. This
is due to reduced waiting time for the next neighbor waking up after a
missed packet.

The impact of the number of messages k is much smaller than the
one of the redundancy in the network. In particular, the configuration
{d, k} = {2, 2} shows a slightly increased latency compared to the {3, 1} case.
In general, k has only a minor impact for the latency of the messages, and
hence it rarely occurs that the first injected message is overtaken by a
subsequent one on a different route. However, k allows to minimize
packet drops as illustrated in Figure 35(c). Especially for this increased
robustness Dwarf is designed for having multiple messages sent in the
network. Furthermore it can be seen that the single-tree configuration
even has packet misses if no link failures occur. This is attributed to the
periodic traffic induced by the node and network monitoring.

After doing extensive testing of the protocol suite in simulation, there
is sufficient confidence into the protocol suite for starting with the imple-
mentation. Furthermore, the simulations results allow defining a work-
ing point for the implementation. In particular, WiseMAC will be set for
wake-up period of Tw = 1.5 s, Dwarf is parameterized with k = 2 and
ra = 3 and the size of the neighbor table is limited to Nmax = 6.
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Fig. 35: Fire-alarm latency in simulation with link failures (ra = 3 and Tw = 1.5 s). Re-
dundancy minimizes the reporting delay and reduces lost packets.

5.4 Implementation
The implementation discussed in this section emerges from a collabora-
tion with Siemens Building Technologies in Zug.

Wireless alarm systems require narrow-band radio functionality (cf.
Section 5.1) and therefore specialized radio hardware. To meet this re-
quirement, a custom sensor node is built as detailed in Table 11. The
sensor node is based on the MSP430F148 microprocessor and the narrow-
band TI CC1020 radio transceiver. Using a narrow-band instead of a



5.4. Implementation 109

Param. Description Value
RAM Data memory 2 kB
ROM Program memory 48 kB
Isleep Current consumption sleep 5µA
Iidle Current consumption idle 12.9 mA
IRX Current consumption RX 23.7 mA
ITX Current consumption TX 44.0 mA
Ecs Energy consumption carrier sense 1.03 µAs
R Data rate radio 0.625 kbps
ϑmax Max. drift variation 10−8 s−1

Tab. 11: The sensor node is based on a MSP430F148 microprocessor and a TI CC1020
radio transceiver.

wide-band transceiver such as the widely-used TI CC1000 transceiver
with a channel width of 500 kHz has two major implications on the en-
ergy consumption: Firstly, the radio’s data rate is limited to R = 0.625 kbps
(CC1000: up to 76.8 kbps) resulting in a greatly increased packet trans-
mission time of Tpkt = 59.2 ms (for a 23 bytes packet plus 14 byte acknowl-
edgment). Secondly, the radio shows a long phase-locked loop (PLL)
time of 2.5 ms (CC1000: 0.2 ms) and thus a long radio-switching time.
Both factors increase the overall energy consumption; the price that has
to be paid for using the reserved alarm channels with their minimized
interference.

On this sensor node, a prototype implementation of the application
including a complete wireless communication stack is developed. Fur-
thermore, a customized OS is written, which essentially provides an event
and an interrupt handler. The implementation comprises 20189 lines of
code (SLOCCount) and has to fit into the minimal memory provided by
the system (48 kB of ROM and 2 kB of RAM). The additional modules have
the following memory footprint: physical layer 3210 Bytes, WiseMAC
7604 Bytes, topology maintenance 4836 Bytes, Dwarf 2148 Bytes, and
DiMo 2594 Bytes. The available RAM is allocated as follows: physical
layer 58 Bytes, WiseMAC 264 Bytes, topology maintenance 404 Bytes,
Dwarf 26 Bytes, DiMo 122 Bytes, and message buffers 660 Bytes.

5.4.1 Neighbor Management
Synchronization with the neighbors is essential for Dwarf’s delay-aware
parent selection when forwarding an alarm. As discussed in Section 5.2.3,
this requires that the sensor nodes periodically exchange messages with
their parents and siblings. These exchanges allow the nodes to keep
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track on their neighbors’ wake-up schedules and to continuously observe
the link qualities. In the following the synchronization interval Ti is
determined that minimizes the energy consumption.

The synchronization message is based on two parts: (1) the fixed-
size data packet (plus acknowledgment) with transmission time Tpkt, and
(2) the wake-up preamble Tpbl that increases with the synchronization
interval Ti. In order to minimize the wake-up preamble, a clock-drift
estimation algorithm is added, which assumes a bounded-drift-variation
of the quartz crystal. That is, the model assumes that the variation ϑ(t) of
the clock drift ρ(t) is bounded by a constant ϑmax:

− ϑmax ≤ ϑ(t) =
d
dt
ρ(t) ≤ ϑmax. (5.1)

This is a reasonable assumption, as the drift is only gradually influenced
by changing conditions such as temperature and battery voltage [RBM05].

The integration over the drift variation results in a preamble length of
Tpbl = 2ϑmaxT2

i . Assuming that on average half of the wake-up preamble
is overheard by the receiver, the overall radio duty cycle for keeping a
link synchronized can then be computed as:

DClink(Ti) =
(
3ϑmaxT2

i + 2Tpkt

)
/Ti. (5.2)

Hence, the energy consumption of the synchronization packets is min-
imized if a synchronization interval of Topt

i =
√

2Tpkt/(3ϑmax) = 33.1 min is
chosen (cf. Figure 36). For the interval Topt

i = 33.1 min the preamble has a
length of Tpbl = 79 ms and results in an total transmission time (preamble
and packet) of 138 ms. Since the nodes wake up every 1.5 s, this implies
a 9.2% probability of overhearing synchronization messages from neigh-
boring nodes, which further adds to the nodes’ energy consumption. The
energy consumption is further discussed in Section 5.5.

5.4.2 Performance Optimization
In order to get a first impression of Dwarf’s implementation, a series of ini-
tial tests with a small tabletop setting are conducted. The setting consists
of 12 sensor nodes and one sink node, all located within communication
range of each other. Each of the 12 nodes is assigned a predefined level
in order to ensure that for all tests a similar topology is formed. In par-
ticular, 5 nodes are assigned a one-hop, 4 nodes a two-hop, and 3 nodes a
three-hop distance from the sink. During the topology set-up, only nodes
with the same or an adjacent level are allowed to connect to each other.

The latency and success rate of the fire-alarm messages are tested and
measured as follows: After powering on the nodes in the network, the
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Fig. 36: The energy consumption for keeping a neighbor synchronized is minimized for
Topt

i = 33.1 min.

neighbor management is executed without interaction to build a stable
topology. Subsequently, fire alarms are triggered every 30 s for all 12
nodes in a round robin fashion. For a single test run, 50 rounds of alarms
are triggered. A single test run is repeated 5 times with a fresh start up
each time, resulting in a total of 3000 traced fire alarms per experiment.

The first results of the implementation showed a rather unsatisfying
performance as illustrated in Figure 37(a). Most notably, 6.7% of the
alarms were not received at the sink node. Analyzing the message traces
identified two problems in the implementation: Firstly, due to the tight
synchronization of WiseMAC, collisions occurred despite the carrier de-
tection before each transmission (i.e., the nodes started transmitting a
message to the same receiver almost synchronously). Secondly, the sink
node seemed to be a bottleneck.

In order to address the collision problem, a so called medium reser-
vation preamble (MRP) is added to WiseMAC. Using the MRP, the nodes
start sending the wake-up preamble before the calculated start time us-
ing a random (negative) back-off window; the overall preamble is thus
prolonged by the MRP. Note that a MRP is only used for the time-critical
alarm messages but not for the regular status messages. This prioritizes
the alarm messages over the regular status messages while keeping the
additional energy consumption low. The impact of the MRP is depicted
in Figure 37(b) and shows a decrease of the miss rate from 6.7% to 4.7%.

A common way to address the bottleneck at the sink is to have an
always listening (line powered) sink. This means that the sink is always
on and can receive messages at any time. This approach does however
still allows for possible collisions due to hidden terminals, which are
especially likely at the sink. Instead the bottleneck is tackled with a so-
called slotted sink. Here, the sink divides the wake-up period Tw in Nmax
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(a) Non slotted sink without MRP: 93.3% success rate.
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(b) Non slotted sink with MRP: 95.3% success rate.
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(c) Slotted without sink MRP: 97.3% success rate.
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(d) Slotted with sink MRP: 99.9% success rate.

Fig. 37: Tabletop experiment with 12 nodes and one sink in a three-hop neighborhood.
The slotting of the sink and the medium reservation preamble (MRP) do both
increase the packet success rate of Dwarf’s alarm forwarding.
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slots and wakes up in the middle of each slot. Every connected neighbor
(Nmax at most) gets assigned a dedicated slot for sending a message to the
sink. This slotted sink has two advantages: Firstly, the sink node appears
like a (set of) regular node(s) with a dedicated wake-up time for each
neighbor and no special procedure (i.e., no additional code) is required
for contacting the sink. Secondly, every node has a dedicated access time
to the sink, which avoids that messages sent to the sink collide. The results
of using a slotted sink without the MRP is illustrated in Figure 37(c) and
shows a miss rate of 2.7%.

Figure 37(d) shows the impact on Dwarf’s alarm forwarding if both
schemes are applied. The combination of the MRP and the slotted sink
results in a success rate of a 99.9% and only 3 out of 3000 missed alarms.
One of the missed alarms was a one-hop alarm, the remaining 2 were
triggered at node in a 3-hop distance from the sink.

Having a detailed look at the plots for alarms tested with a non-slotted
sink in Figure 37(a) and 37(b), exhibits a burst pattern with a distance of
1.5 s. This is explained by the fact that a failed transmission to the sink
will be repeated with a delay of Tw = 1.5 s. Even worse, after this delay the
transmission may again collide with the (re)transmission to the sink sent
by a different node. In the case of the slotted sink approach in Figure 37(c)
and 37(d), the retransmission delay is shorter thanks to individual receive
slots at the sink for different neighbors and because alarm messages are
forwarded over multiple paths. Hence, if the forwarding of an alarm
message fails, the same alarm is likely to be forwarded to the sink by a
different neighbor before the next retransmission is due after 1.5 s.

5.5 Experimental Evaluation
The refined implementation of the protocol suite with enabled MRP and
slotted sink showed very promising results. To gain more insight into
the behavior and performance of the protocol suite, the implementation
is thoroughly evaluated for the most essential metrics for safety-critical
WSNs. First of all, it is of paramount importance that the mandatory
real-time demands are met: alarms need to be delivered reliably within
10 s at the sink and failed nodes have to be reported within 5 minutes.
Furthermore, one must ensure that the protocols are energy efficient in
order to enable a maintenance-free and year-long operation.

In the first evaluation step, a testbed is deployed in a typical office
environment. The office environment represents a sparse node setting
which, however, is not typical for all fire-alarm deployments. The second
common fire-alarm deployment is an open-space scenario, as it can be
encountered in factories and airport halls, in which nodes are typically in
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line of sight to each other having a high node density. For this reason, the
implementation is further tested in a dense tabletop setting.

In both settings all nodes are wired to a central database, collecting
performance data from the various tests. It is possible to trigger fire
alarms at specific nodes and to trace the path and delay of the alarm
message to the sink. The nodes can further be powered off to simulate
failure and record the time delay until a node is reported missing.

5.5.1 Office Deployment
In the distributed office setting, 16 sensor nodes and one sink node are
deployed on a floor in an office building, forming a three-hop deep span-
ning tree to the sink. The nodes are mounted on the ceiling at positions
at which wired fire detectors would be placed. Due to the distributed
nature of the deployment, the signal quality is degraded by walls and
other obstacles. This results in an increased chance for random packet
loss, which is counterbalanced by a decreased probability of mutual in-
terference compared to the tabletop deployment with high node density.

5.5.1.1 Alarm Latency

The latency and success rate of the fire-alarm messages are measured
in the same way as in the small tabletop scenario (cf. Section 5.4.2).
For measuring the alarm delay, 4950 alarm messages are triggered in a
round-robin fashion. Altogether, 99.94 % of the messages are successfully
delivered to the sink having only 3 messages being lost. Further investi-
gations exhibited that that 2 out of the 3 lost messages are dropped due
to a rare error in the implementation (an allocated buffer is overwritten)
and cannot be attributed to Dwarf’s alarm-forwarding scheme.

The latency distribution of the measured alarms is depicted in Fig-
ure 38(a) and divides the alarms according to the minimal hop count to
the sink. The message delay clearly depends on the hop count: one-hop
nodes deliver their message on average in 1.07 s, two hops in 1.78 s, and
three hops in 2.69 s. Notably, three-hop messages take only 0.90 s per hop
despite a wake-up period of Tw = 1.5 s. Considering that the messages are
(1) delayed by the wake-up preamble and in the communication stack,
(2) fail every once in a while, and (3) can be blocked by interference, this
per-hop delay is very short. It clearly highlights the advantage of the
Dwarf alarm-forwarding scheme.

Due to the stringent time bounds on the alarms, the maximal delay
of alarm messages is of utmost importance. Figure 38(a) shows that
although there is a clear tail in the latency distribution, no message is
delayed by more than 7.4 s, which is well within the 10 s requirement.
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Fig. 38: Latency of alarm messages on both testbeds. The markers on the top indicate
the average latency of the corresponding hops.

5.5.1.2 Status Monitoring

Node failures have to be reported within 300 s, but as status messages are
classified as low priority an additional delay of up to 20 s in the backbone
network is accounted for. Consequently, the status monitoring protocol is
configured to report failed nodes within TD = 280 s at the sink. Assuming
a maximum delay of TL = 20 s for reporting missing nodes, the monitoring
interval is set at the observer to TM = 260 s. For the monitoring the sending
interval is set to TS = 240 s. This leaves TR = TM − TS = 20 s for sending
several retries or for contacting an alternate parent.

In order to test whether failed nodes are reported on time to the sink,
nodes are powered down in a round robin fashion and the delay is mea-
sured until they are reported missing at the sink. Afterwards the node
is restarted and the network is given time to stabilize before the next
failure is triggered. In total 360 node failures are measured as detailed
in Figure 39. The maximum delay for detecting a node missing is 271 s,
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Fig. 39: Status monitoring in office setting: Failed nodes are reported missing at the sink
within the required 5 minutes.

which is well within the targeted TD = 280 s. It also shown that the status
messages from the observer to the sink are delayed up to 11 s, which is
longer than the maximum delay for alarm messages (7.4 s). This is a con-
sequence of two effects: First, status messages are sent without a medium
reservation preamble and second, to reduce overheads, status messages
are sent without any redundancy (k = 1) in comparison to alarms (k = 2).

Figure 39 further shows that nodes are not reported missing during
the first 20 s. This is a direct consequence of having TR = 20 s for sending
possible retries. So even if a node fails just before it is scheduled to contact
its observer, the latter one will not report the nodes missing for this time.

Furthermore it should be pointed out that during all monitoring tests,
no false positives occurred (i.e., no nodes were erroneously detected as
missing). This indicates that the monitoring scheme is robust against
random packet loss. However, long-term measurements in the order of
several months have to verify these results.

5.5.1.3 Energy Consumption

Alarms are assumed to occur rarely during the lifetime of a network.
Energy is thus mainly consumed by the status monitoring and for keeping
the network ready to forward an alarm. The average current consumption
for this steady state is detailed in Figure 40(a), showing the various sources
of energy consumption for the 16 nodes in the office setting.

A node’s energy consumption is deduced as follows: First the average
energy consumption for the various events in the system (e.g., receiving
a message) is measured. Then the number of corresponding events (e.g.,
number of received messages) is recorded and used to calculate the nodes’
overall energy consumption.
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(a) Office testbed.
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(b) Tabletop testbed.

Fig. 40: Energy consumption without ongoing alarms.

Figure 40(a) shows a well balanced current consumption of up to
130µA for nodes in the steady state. In particular, they all show the same
energy consumption for the regular channel polls. This is due to the fact
that all nodes sample the channel with the same polling interval, which
adds a constant offset of Ecs/Tw to the energy consumption. These regular
channel polls are the main cause of the system’s energy consumption in
the steady state, draining about two-thirds of the energy. This value is
rather large given the very low polling interval of Tw = 1.5 s and a direct
consequence of the narrow-band requirement for alarm messages, which
results in the previously discussed long PLL time. These findings match
the simulation results as depicted in Figure 34(a).

If a lifetime of three years without maintenance is targeted with an
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average energy consumption of 130µA, a battery capacity of 3400 mAh is
required. Hence with two alkaline batteries with a capacity of 2800 mAh
each, there is ample energy budget left; this surplus is used for sensor
readings, setting up the topology, and forwarding possible alarms.

5.5.2 Tabletop Experiments
For the high-density tabletop experiments, 32 nodes are arranged in a 8 x 4
grid. This arrangement is, on the one hand, a benign scenario due the high
signal quality and the absence of obstacles blocking the line of sight. On
the other hand, this arrangement also constitutes a worst-case scenario
due to the high chance of mutual interference. Similar to the initial table-
top experiments in Section 5.4.2, each node is assigned to a specific level
(i.e., distance to the sink): 5 nodes are assigned to level 1 and are allowed
to directly communicate with the sink, 10 nodes to level 2, and 16 nodes
to level 3. In this dense environment, where all 32 nodes interfere with
each other, the alarm latency and the energy consumption are measured
and compare the results with those of the office setting. Furthermore the
energy demands for sending alarm messages is analyzed.

5.5.2.1 Alarm Latency

For the tabletop experiment, 4609 alarms are triggered in the network.
Only one of the 4609 messages is lost and results in a delivery rate of
99.98 %. The maximal delay is with 9.7 s just within the required 10 s.

The latency distribution of the successfully received alarms is depicted
in Figure 38(b). Compared to the office experiments, there are two differ-
ences: both, the average latency and the tail of the alarms are increased in
the tabletop experiments. In particular, the average latency of three-hop
messages is 3.03 s compared to the 2.69 s in the office deployment. A
closer look at the tail shows that 3.3 % of all 3-hop messages are delayed
by more than 6 s in the tabletop experiment as opposed to only 0.5 % in the
office setup. The increased delay in the denser deployment is explained
by the increased level of interference caused by the network’s background
traffic for link and node monitoring. Alarm messages are thus delayed if a
scheduled transmission is blocked or disturbed. This interference cannot
be entirely avoided but is already minimized by the careful orchestration
of Dwarf, DiMo and WiseMAC.

In summary, a message delivery rate of more than 99.9 % is achieved
in both settings; a delivery rate which most WSN deployments do not
achieve, even with end-to-end acknowledgments. However, even with
the careful orchestration of the protocol suite, the alarm forwarding re-
mains probabilistic and cannot guarantee that all messages are always



5.5. Experimental Evaluation 119

delivered. It is therefore intended to add an end-to-end acknowledge-
ment scheme to ensure that in the rare cases where the deadline cannot
be met, alarms are not lost unnoticed.

5.5.2.2 Energy Consumption

The energy measurements in the tabletop setting exhibit a similar energy
consumption as the ones in the office setting as highlighted in Figure 40.
The major difference is that the level of overhearing is increased in the
tabletop setting. However, despite the high number (31) of possible in-
terfering nodes, this increase is not excessive. This can be attributed to
the careful design of the node and network monitoring, which minimizes
and balances the overall message load. Furthermore, the WiseMAC pro-
tocol minimizes overhearing due to its randomly allocated channel access
times and the adaptive wake-up preambles.

The maximum channel utilization on the alarm channels is regulated to
be less than 1 %. Hence, it must be ensured that none of the nodes exceeds
this limit. Node 27 transmitted the most messages (cf. Figure 40(b)), yet
occupied the channel for less less than 0.1 %. Consequently, the system is
well within the required limit for using the alarm channels.

In the dense tabletop setting, the energy demands for sending alarm
messages is measured, even though the contribution to the overall energy
consumption is minimal due to alarms being rarely triggered (mainly for
testing purposes, not for reporting actual fires). The energy demand for
sending 1000 alarm messages is depicted in Figure 41. This number cor-
responds to sending approximately one fire alarm per day over a period
of three years, which is clearly above the rate at which fire alarms are
expected to be triggered. For the evaluation, the nodes send 42 alarm
messages each in a round robin fashion, resulting in a total of 1302 trig-
gered alarms. The energy consumption for the steady state is subtracted
in order to only show the fraction induced by the alarms and the energy
consumption is normalized for 1000 alarms. It is worth mentioning that
all triggered alarms are received at the sink.

Most remarkably, the 1000 alarm messages reduce the battery capacity
by at most 1.76 mAh. This is less than 0.1% of the capacity of a single
alkaline AA battery. Hence, neglecting the energy considerations for
alarm messages was a reasonable decision. In contrast to the steady state,
the energy demand for sending alarms is not well balanced. This is the
consequence of having the nodes closer to the sink routing more packets.
In particular, the five 1-hop neighbors and some of the 2-hop neighbors
show a highly increased energy demand compared to the leave nodes.
However, as alarm forwarding only marginally contributes to the overall
energy consumption, the imbalance is of no real concern.
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Fig. 41: Energy consumption in the tabletop testbed for sending 1000 alarms.

5.6 Summary
This chapter presents an integrated protocol suite for safety-critical event
monitoring, where strict real-time requirements are coupled with a strong
demand for reliability, system integrity, and energy efficiency. The proto-
cols are carefully designed and chosen to cooperatively meet these strong
demands: (1) the delay-aware alarm-forwarding algorithm Dwarf closely
interacts with WiseMAC and allows for a timely delivery of alarm mes-
sages. (2) DiMo and the neighbor management allows to monitor the
status of the nodes, while keeping the overall traffic to a minimum. (3)
This background traffic is well distributed over time, which minimizes
collisions and further minimizes contention in the case of an alarm.

The implementation and tuning of the integrated protocol suite for
safety-critical event monitoring is guided by initial simulations, and eval-
uated in a lab setting as well as a realistic office environment. The results
show that even in dense deployments where nodes face fierce competi-
tion when accessing the wireless channel and consequently overhear a lot
of traffic, more than 99.9 % of the alarm messages are delivered in time,
all failing nodes are promptly reported, and the (extrapolated) network
lifetime exceeds 3 years.

Scalability is a major issue when designing a wireless communication
stack. The 12-node tabletop testbed shows to build a stable network
topology in less than an hour. The 32-node testbed on the other hand
requires half a day for building a stable topology and wastes a lot of
energy during this time. This motivates the design of NoSE, a dedicated
start-up and maintenance scheme. NoSE allows for a fast and energy-
efficient start-up of the network as detailed in the next chapter.



6
NoSE: Efficient Maintenance and

Initialization

Energy efficiency is of utmost importance for long-term sensor network
deployments. Specialized applications and protocols like Dwarf and
DiMo are therefore optimized for yearlong operation. However, this usu-
ally results in reduced energy efficiency during maintenance tasks and
initialization. This chapter proposes the NoSE protocol stack enhance-
ment that enables different operating modes for the application: (1) the
network can be set back to sleep while the network is being maintained,
(2) the network topology can be initialized efficiently with respect to time
and energy, (3) protocol parameters can be changed at runtime. In partic-
ular NoSE is designed for a smooth integration into LPL-based protocol
stacks and therefore integrates well into Dwarf and DiMo.

A motivating example analyzes the lifecycle of a safety-critical wireless
fire detector network being deployed in a large office setting. At the
beginning, nodes need to be installed. This cumbersome task is expected
to take several days, possibly interrupted by a weekend. Hence, the first
nodes in a network that are being installed and powered on are likely to
be without sufficient connectivity for a considerable time. During this
time it is essential that the nodes do not search extensively for neighbors
not yet installed, wastefully draining the batteries. On the other hand, the
responsiveness of starting up the network is important and should not
be delayed by a greatly reduced signaling scheme as used in low-power
data gathering stacks [BvRW07]. NoSE addresses this task by providing
the means for a time and energy-efficient initialization.

During the long lifetime of a sensor network in the order of years,
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Fig. 42: NoSE state machine: A received network call initiates a timer that triggers the
actual state change.

maintenance tasks need to be performed. A common task for a fire-
detector network is to replace and to add nodes. This may introduce
false alarms due to intermittent connectivity failures. Maintenance can
also considerably increase data traffic due to frequent topology changes
announced by broadcasting. NoSE provides the functionality for turning
off the network temporarily and saving energy. Similar energy savings
are possible if the data collected by the WSN is not being used temporarily.
In this case the network can be set into deep sleep. When the maintenance
task is completed, the network is woken up again and a stable topology
is formed.

At the (re)start of the fire-detector network, the maintenance team
needs a timely reassurance of a correct system set-up. Are there any par-
titions? Do nodes need to be relocated for an increased connectivity? Is
a certain node completely unavailable? The NoSE protocol enhancement
allows to answer such questions in a timely manner. In this context, a
detailed link assessment is vital. The low-power radios typically used
in a multi-hop deployment result in a large fraction of poorly connected
nodes as discussed in Section 2.2. Low-quality links affect the routing pro-
tocol especially during the network set-up, where statistical data on the
links’ performance is not yet available [DHS+07]. The start-up scheme of
NoSE (Neighbor Search and Estimation) allows for an exhaustive neigh-
bor search including a detailed link assessment.

This chapter describes NoSE, a protocol enhancement that can be
used with the most commonly used WSN protocol stacks. NoSE allows
for operational mode changes traversing a defined sequence of states as
illustrated in Figure 42. With so called network calls, all nodes in the
network can be toggled between an operational and a sleep state. This
allows for putting the network in a very energy-efficient sleep mode while
a maintenance task is being performed. When (re)starting, NoSE’s built-
in discovery scheme provides the functionality of an exhaustive neighbor
search and link assessment in a short and bounded time. This allows
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for a fast and energy-efficient start-up of the WSN and for an immediate
feedback about the integrity of the network.

Section 6.1 details maintenance tasks and evaluation metrics. Sec-
tion 6.2 describes NoSE’s network calls and neighbor discovery function-
ality. Section 6.3 discusses the implementation of NoSE and presents the
test setup on a testbed and in simulation. Section 6.4 offers a comprehen-
sive evaluation of NoSE. Section 6.5 presents related work and Section 6.6
concludes this chapter, highlighting the essentials for mode-changes in
Wireless Sensor Networks.

6.1 Maintenance and Initialization
NoSE allows for mode changes between the sleep and the operational
state. If a maintenance task is to be performed, nodes are set to sleep. This
is of particular importance during the initial installation of the nodes, and
hence nodes automatically switch to a sleep state when being powered
on. During sleep, nodes minimize their energy consumption. As soon as
the maintenance task is completed, the nodes are woken up and return to
normal operation.

6.1.1 Criteria
NoSE is evaluated on the criteria important for the maintenance and
initialization of a WSN:

1. Energy efficiency versus responsiveness: Energy consumption is
crucial for most sensor network deployments. The maintenance
task takes considerable time. During this phase, it is vital that the
nodes do not drain a substantial fraction of their battery power.
This is particularly likely since the dynamics introduced by the
maintenance greatly increase the node’s communication overhead
and hence its energy consumption. Typically energy consumption
and responsiveness are a trade-off: On the one hand, a protocol may
spend a lot of energy by aggressively looking for neighbors, which
allows for fast topology formation. However, if nodes are not yet
ready to participate, this approach is in vain. On the other hand,
minimizing radio communication decreases energy consumption,
but also responsiveness.

The time delay for setting the network back to operation is a major
concern as a time-bound, distributed assessment of the topology is
vital. The responsiveness of sensor nodes needs to be traded off
with the requirements on energy efficiency during the deployment
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phase. NoSE allows for explicit setting of a suitable trade-off for a
given application by adjusting its duty-cycling parameters.

2. Neighbor discovery and link-quality assessment: At the begin-
ning of the operational state, responsiveness and energy usage can
be improved by providing a well assessed neighborhood allowing
for fast topology setup without a large communication overhead.
While in sleep mode, a node does not have information about its
neighbors. This requires an initial message exchange, which is ex-
pensive. Hence, neighbor discovery shall only be performed on a
completed deployment in order to avoid repetitive neighborhood
searches while more nodes are still joining. At the exit of the sleep
state all neighbors should be available. Hence, neighbor discovery
is performed after waking up all the nodes in the distinct transitional
discovery state.

As Table 13 on page 136 indicates, more than a third of the links
available in the network have a packet reception rate of less than
85%. Hence energy is wasted in the operational state if neighbors
with a bad link quality are selected, which need to be replaced later
on. This necessitates a link-quality assessment, allowing for the
selection of high-quality neighbors.

In addition to these evaluation criteria, there is a strict requirement
for compatibility. The maintenance and initialization protocol must inte-
grate with a given protocol stack. Although a specialized initialization
protocol may benefit from a private second protocol stack, an integration
minimizes the resource requirements. NoSE is designed for integration
with the prevailing low-power-listening MAC protocols. In particular it
can also be used with WiseMAC and therefore complements Dwarf and
DiMo. Furthermore, NoSE can also be used with B-MAC and X-MAC
available in TinyOS 1.x and 2.x.

In an LPL-based MAC, a node generally has the radio turned off,
only switching it on at a regular interval TP in order to poll the channel
for a short time Tcs. If a carrier is detected, the node keeps listening,
otherwise the radio is switched off immediately. This concept results in a
very energy-efficient operation (duty cycle = Tcs/TP), if there is no or little
communication in the network. TP can be tuned for optimized energy
consumption if channel utilization is known as discussed in Section 3.4.2.

6.1.2 A Case for a Dedicated Maintenance Protocol
In order to show the need for a protocol stack enhancement, this section
investigates the effect of maintenance on a state-of-the-art low-power
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Fig. 43: CTP* does not distinguish between sleep and operation (starting with the dis-
covery). It broadcasts regular beacons during maintenance (t < 0 s), even if
neighbors are not yet available. The dashed line denotes the average over the
last 10 s.

protocol stack. In particular, it looks into the start-up behavior of the
TinyOS Collection Tree Protocol (CTP) on top of a LPL MAC protocol is
analyzed. The so-called CTP* [LWMB09] has been running efficiently and
reliably on a testbed (cf. Section 6.3.3) for months.

CTP* does not feature a dedicated maintenance phase. Hence dur-
ing the installation of the nodes, repeated neighbor announcements are
broadcast long before all nodes are available. This results in an increased
current draw of 0.67 mA during the installation of the nodes (cf. Figure 43
for t < 0 s). As shown in Section 6.4.1 a dedicated maintenance protocol
such as NoSE reduces this amount by 60%.

CTP* is designed and parameterized for an efficient overall operation,
at the price of a delayed responsiveness during start. As shown in Fig-
ure 44, CTP* shows a lot of parent switches, distributed throughout the
network’s start up. These switches can mostly be attributed to parent
selections with bad link qualities and require a lot of control beacons for
announcing the changes in the topology. The impact is two-fold: (1) it
takes about an hour to build a stable topology and to conclude about the
integrity of the network and (2) each control beacon wastes considerable
energy as can be seen in a power trace in Figure 43 for t ≥ 0 s. Using the
NoSE protocol enhancement, the start-up process can be sped up and en-
ergy is saved due to the integrated link assessment of the NoSE discovery
scheme.
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Fig. 44: Dynamics of the network after start-up of CTP* in a 25-node testbed (cf. Sec-
tion 6.3.3). It takes CTP* about an hour to obtain a stable topology.

6.2 NoSE in Detail
Mode changes in NoSE are supported by the internal state machine de-
picted in Figure 42. Additional to the sleep and operational states, the
transitional discovery state is responsible for the neighbor assessment. A
mode change is initiated by network calls: a wake-up call in sleep mode
initiates an initialization of the network; a sleep call in operational state
initiates the transition into a global, low-power-listening mode.

On power-on, a node enters the very energy-efficient sleep state. While
sleeping, the nodes only wake up every TSleep

P for a quick poll of the chan-
nel. Since every node in the network follows this paradigm, no message
exchange takes place during sleep. The sleep state is introduced in order
to save energy after the node is initially powered on and during mainte-
nance. In particular it would be of limited use, to gather neighborhood
information when not all surrounding nodes are yet available or nodes
are added, removed and relocated.

After installation or when the maintenance task is completed, the
network is woken up by a wake-up call originating at a single node, e.g.,
the sink node. The wake-up call is disseminated by flooding the network.
The flood notifies and synchronizes all nodes in the network for the
upcoming quasi-synchronous discovery phase by propagating two timer
values: (1) the discovery start timer triggers the transition to the discovery
state, (2) the discovery expiration timer triggers the exit from discovery
(cf. Figure 42). Quasi-synchronous in this respect means that the nodes
synchronize on a common time window for the discovery phase, making
a rather loose synchronization in the order of a second sufficient.

During discovery, an exhaustive neighbor search and link assessment
is performed. All nodes send a predefined number of messages N, making
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Algorithm 5 NoSE pseudocode (parameters in Table 12)
1: State = StateSleep
2: MACSetPollingInterval(TSleep

P )
3:

4: upon ReceivingParameterCall(C)
5: if OldParameterCall(C.id) then
6: BroadcastCurrentStatus(H)
7: else if NewParameterCall(C.id) then
8: CancelNoseTimers()
9: BroadcastNewStatus(C)

10: H = C
11: SetStateChangeTimer(C.Ts)
12: end if
13: end upon
14:

15: upon ReceivingStateChangeTimer
16: MACSetPollingInterval(H.TP)
17: if H.type == SleepCall then
18: State = StateSleep
19: else if H.type == WakeUpCall then
20: State = StateDiscovery
21: ClearNeighborTable()
22: N = H.N
23: TSlot = (H.TD −H.TR)/N
24: SetDiscoveryTimer(0)
25: end if
26: end upon

27: upon ReceivingDiscoveryTimer
28: N = N − 1
29: SendTime = Random(0,TSlot)
30: SetDiscoverySendTimer(SendTime)
31: if N > 0 then
32: SetDiscoveryTimer(TSlot)
33: else
34: SetDiscoveryEndTimer(TSlot + H.TR)
35: end if
36: end upon
37:

38: upon ReceivingDiscoverySendTimer
39: BroadcastDiscoveryMsg()
40: end upon
41:

42: upon ReceivingDiscoveryMsg(NodeID)
43: UpdateNeighborTable(NodeID)
44: end upon
45:

46: upon ReceivingDiscoveryEndTimer
47: State = StateOperational
48: MACSetPollingInterval(H.TOp

P )
49: end upon

it beneficial to decrease the channel-polling interval to TDisc
P � TSleep

P . This
saves considerable energy and shortens the duration of the discovery due
to the temporarily increased bandwidth. The discovery phase ends at
the same time for all neighbors. It results in complete and well-assessed
neighbor information available at every node.

On expiration of the discovery expiration timer, the node enters the
operational phase. In particular, the nodes will first set up a network
topology based on the well-assessed neighbor information provided by
NoSE. For the operational state, the MAC’s polling interval is set to TOp

P ,
which is propagated in the wake-up call. At any time, the operating
network can be set back to sleep by flooding a sleep call in the network.

The NoSE maintenance scheme is presented in pseudocode in Al-
gorithm 5, not including the parameter call. An overview of all NoSE
parameters and suggested setting is provided in Table 12.

6.2.1 Network Calls
Mode changes are initiated by network calls. These calls are triggered at
a dedicated node (usually the sink) and flooded in the network. There
are three possible network calls: (1) the wake-up call that wakes up the
network, (2) the sleep call that puts the nodes back asleep and (3) the
optional parameter call, which updates the MAC polling interval. A call
comprises all information required for the subsequent mode transition:
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Param. Description Typical Value
TS Remaining time until mode change 60 s
TD Duration of mode change (discovery) 2 min
N Number of discovery packets 30
TR Reserve time for a packet queued in the MAC 3 s
TSleep

P MAC polling interval during sleep 1.5 s
TDisc

P MAC polling interval during discovery 50 ms
TOp

P MAC polling interval when in operation 1.5 s

Tab. 12: Overview of NoSE parameters and suggested setting.

• It contains a call-type identifier, denoting whether the call is a sleep,
wake-up or parameter call.

• It contains a call id C.id. For every new call initiated by the sink, the
id is incremented.

• It contains the countdown-timer TS, indicating the start time of the
mode change, and its duration TD.

• It includes two polling intervals TP for the MAC protocol. One is to
be applied after the start of the mode change TS and the other one
to be used after the expiration of the mode change TS + TD.

The calls need to be reliable and fast in order to reach all nodes before
the start of the discovery phase. Furthermore it is essential that calls
induce only minimal overhead and are easily integrated. NoSE calls are
based on a simple flood in the network. If a new call is received for the first
time, a message is broadcast to all neighbors. Collisions are minimized by
benefiting from the MAC’s collision avoidance, i.e., doing a carrier sense
before sending. There is no need to use the NoSE specific wake-up call,
if the system already provides means for a fast and reliable flood, e.g.,
Trickle [LPCS04].

A potential problem occurs if a node misses one of the calls flooded
in the network. In order to ensure consistency within the nodes in the
network, NoSE calls provide a recovery scheme similar to the one of
Trickle. Every node stores the most recent call H. Whenever a call C is
received containing a newer call (C.id > H.id), the call is forwarded and
the old call is replaced in the history. Is the received call the node’s current
call, the call is ignored. If the node however receives a call containing
an old id (C.id < H.id), the node broadcasts its state H and hence ensures
that the outdated node gets synchronized. Similar, if a node A receives
a non-NoSE message during sleep from a node B, node A knows that
the network is not consistent. It therefore broadcasts its current state
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H. Subsequently, node B will get asleep if it had missed the sleep call
(H.idB < H.idA). Otherwise (H.idB > H.idA) node B will send its current
status, which indicates node A should become operational.

6.2.1.1 Wake-up Call

The wake-up call notifies and prepares all nodes in the network for the
subsequent discovery phase. All nodes have to know the point in time
TS when the discovery phase begins, its length TD, the number of pack-
ets N being exchanged and the adapted channel-polling interval during
discovery TDisc

P and during the subsequent operational state TOp
P .

6.2.1.2 Sleep Call

In the operational state, NoSE allows to set the network back asleep. This
is done by flooding the network with a sleep call containing the duty
cycle TSleep

P during the sleep phase and the start time TS. The sleep phase
lasts until receiving a wake-up call and hence has no duration (TD = 0).
It is up to the application designer, whether the application should still
gather new data and whether potentially buffered messages should be
kept in the queue or flushed. However, no messages are forwarded until
the next time the operational state is entered.

6.2.1.3 Parameter Call

The parameter call is an optional feature of NoSE. It allows for adapting
the MAC’s duty cycle. Similar to a wake-up call, the parameter call
contains the time TS and the new duty cycle TOp∗

P . The start time TS ensures
that all nodes in the network switch the duty cycle synchronously despite
the propagation delay while flooding the call. Furthermore the parameter
call allows to define a duration TD for which the new duty cycle should
be applied before returning back to the old duty cycle. If the duration is
omitted (i.e., set to zero), the duty cycle is changed to TOp∗

P upon further
notice. Parameter calls do not trigger a mode state change.

6.2.2 Discovery Phase
The discovery phase starts at the same time for all nodes that have received
the wake-up call. During discovery with duration TD the node sends
exactly N broadcast messages containing their node identifier. In parallel
to sending the broadcast messages, nodes keep a neighbor entry for all
neighbors they receive packets from. In particular, they track the number
of received packets and the maximum RSSI. As analyzed in the scenario
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without in-network interference in Section 2.4, the number of received
packets and the RSSI allows for reliably assessing the link quality.

During the discovery, the network’s traffic is increased. This in turn
will increase the probability for collisions that occur if broadcasts of dif-
ferent nodes (with length TDisc

P ) partially overlap. By limiting the channel
utilization CU, i.e., the fraction in time the channel is busy, the probability
for collisions are reduced. The channel utilization CU depends on the
number of neighbors L sending N messages each, the broadcast length TP

and the duration of the discovery TD:

CU = N(L + 1)TDisc
P /TD. (6.1)

It is shown in Section 6.4.4 that a CU of 0.2 should be chosen as an
upper bound for the channel utilization in order to ensure well-assessed
link qualities. Collisions are further reduced at the MAC layer, which
performs a carrier sense prior to the broadcast. If a carrier is detected, the
packet is rescheduled with a short random backoff. Hence a packet may
be delayed at the MAC layer for a short time before being transmitted.
In order to account for this small possible delay, NoSE reserves a slot of
length TR at the end of the discovery. During this reserved slot, the nodes
must not schedule any broadcasts beforehand. This allows the MAC for
transmitting broadcasts previously blocked by a positive carrier sense.

The NoSE discovery messages are evenly distributed over the whole
discovery phase. This avoids burst failures that are induced due to short-
time link failures as they have been commonly observed in Section 2.3.3.
Hence, this even distribution of the discovery messages increases the
fidelity of the link assessment. For this purpose, the discovery time
is partitioned into N subslots. In each of the subslots the node selects
independently a random time to send one discovery message.

During discovery, NoSE shortens the channel-polling interval to TDisc
P .

According to (6.1) this reduces the channel utilization CU and therefore
allows reducing the discovery time TD. This shortening of the channel-
polling interval increases the responsiveness and also saves sending en-
ergy in the order of TSleep

P /TDisc
P .

6.3 Implementation and Test Setup
6.3.1 Implementation
NoSE has been implemented in TinyOS-2.x on Tmote Sky nodes. It uses
the TinyOS-2.x CC2420 radio stack [MHL07] with low power listening
(LPL) enabled. NoSE is implemented as an individual layer in the pro-
tocol stack. Figure 45 shows NoSE integrated between the MAC and the
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Fig. 45: NoSE stack. An interface allowing for runtime modification of TP is provided.

Network layer. NoSE uses the standard MAC interface for transmitting
its messages. Additionally, an interface to adapt the polling interval TP

on the fly has been added. All NoSE packets (network calls and discovery
packets) are identified using a user-defined frame type according to IEEE
802.15.4. Based on a received packet’s frame type, NoSE decides whether
the packet needs to be internally handled or passed to the network layer.

Internally, NoSE maintains a state machine containing three phases:
sleep, discovery and operational (cf. Figure 42). When the node is powered
on, it switches into the energy-saving sleep state. As soon as a wake-up
call is received, the node sets the discovery start and expiration timers.
After the discovery phase, the node is in the operational state.

In order to achieve a better fidelity in the link estimation, Chack-
eres et al. [CBR02] showed that the discovery messages should have a
similar packet size than the data messages being sent during operation.
NoSE therefore sends a discovery message with the same length as data
messages (e.g., in TinyOS 2.x the standard packet size is 36 bytes). Instead
of filling the packet with random data, additional information is added
that can be used by the routing protocol, e.g., the node’s battery level.

6.3.2 Integration

After the discovery phase, the collected neighbor information has to be
transferred to the routing protocol. Thus, it is advisable that NoSE and
the routing protocol share a neighbor list.

As an example, the widely used ETX [CABM05] routing scheme is
considered, where packets are routed based on the overall link quality
of routes. This requires knowledge on each link’s packet reception rate,
which can be gained directly from the link-assessment information col-
lected during NoSE’s discovery phase. This results in a great performance
gain compared to the current TinyOS 2.x ETX implementation, where all
links are initialized as being perfect (EETX = 0, as of revision 1.4).
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6.3.3 Testbed Evaluation

NoSE is designed to improve the effectiveness of real deployments. To
this end, NoSE is tested in the realistic environment presented in Sec-
tion 2.1 (Network A extended by 7 more nodes). The assumed appli-
cation scenario is a wireless multi-hop fire-detection network initialized
with NoSE. The nodes’ neighbor density and location is characteristic
for fire-detectors deployed in an office building: 25 nodes deployed over
several offices on a single floor. The average neighbor density is 7.4;
the maximum density is 12. For the evaluation, 558 test runs were per-
formed. In order to check the quality of NoSE’s neighbor search, it is
required to have a profound knowledge of the network characteristics,
i.e., all neighbors and the according link qualities. This information how-
ever is susceptible to change. For this reason, the network characteristics
have been measured 18 times over a period of six weeks, alternating with
the performance evaluation of the NoSE protocol. For each assessment,
every node sent 1000 broadcast messages (with a length in the order of
1 ms) randomly distributed over a period of three hours using CSMA
without duty cycling.

Two different metrics are extracted from this reference data, which are
used in the evaluation: the Packet Reception Rate (PRR) and the Long Term
PRR (LTPRR). The term PRR reflects a single link assessment being closest
in time to the NoSE test. The LTPRR expresses the link performance over
the whole six weeks, i.e., over all 18 link measurements. Furthermore,
the terminology High-Quality Links, refers to links with a (LT)PRR > 95%.

6.3.4 Simulation

In order to show the scalability of the discovery, NoSE has also been
simulated in Castalia 1.3, a state-of-the-art WSN simulator based on OM-
Net++. Castalia provides a realistic wireless channel model that captures
the effects of the so called grey area. As with real deployments, this
model results in many links that exhibit poor performance. Castalia cal-
culates packet collisions based on the signal-to-interference-plus-noise
ratio. Castalia further provides a radio model that features transition
times between the radio’s states. The radio model specifically uses the
characteristics of the CC2420 to match the testbed evaluation.

The simulations use a network containing 160 nodes, arranged in a
grid with a small Gaussian-distributed displacement. The network rep-
resents an event-detection system where nodes are rather evenly spread.
The grid size is varied resulting in node densities ranging from 4 to 45
neighbors. 60 different topologies were analyzed by feeding random
seeds to the grid’s displacement and the wireless channel model.
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6.4 NoSE Evaluation
The metrics used to benchmark NoSE evaluate the major concerns for the
maintenance: (1) energy efficiency, (2) responsiveness, (3) integration and
(4) the completeness of the neighbor search and the quality of the link
assessment. These metrics are evaluated based on the most important
maintenance task: the original deployment of the nodes and the subse-
quent first start of the application. It is essential that the node’s energy
consumption is minimized during the deployment, yet shows a fast and re-
liable start up as soon as all nodes in the network are installed. It should be
noted that the analyzed deployment and first start-up show very similar
characteristics to other subsequent maintenance tasks.

Focusing on the initialization, NoSE can be compared to the Birth-
day Protocol (BP) [MB01]. While BP neither features operational mode
changes nor link assessment during initialization, it can be compared
with NoSE with respect to the energy efficiency and the responsiveness
during the initialization. BP has been implemented according to the pro-
tocol description in [MB01] and evaluated with the suggested parameter
allowing to find 95% of the available links.

Concerning integration, NoSE is designed to easily integrate with the
predominantly used LPL MAC protocols. BP on the other hand requires
a separate, second radio stack for its operation.

6.4.1 Energy Efficiency During Deployment
The energy consumption is analyzed by measuring the power consump-
tion of a single node. Figure 46 displays the traces of the two proto-
cols’ power consumption during the deployment and the start-up phase.
Power measurements are taken with an Agilent N6705A power analyzer,
with a sample time of 1 ms. For illustration purposes, samples are inte-
grated and plotted over periods of 100 ms each.

During the deployment of the nodes, drastic power savings have a
significant impact when the installation time is in the order of days. Fig-
ure 46 only presents the last 100 s of the deployment phase, whereas this
phase usually takes orders of magnitudes longer for real installations (i.e.,
days). Nevertheless, longer measurements confirmed that these trace ex-
cerpts are representative. NoSE’s deployment (sleep) phase shows a very
regular and low-power consumption, with an average current drain of
0.28 mA. This is due to NoSE’s low duty cycle merely sampling the chan-
nel once every second. BP following the same paradigm of listening only,
shows an increased current drain of 0.41 mA. This can be attributed to a
rather long channel sampling time of 20 ms waiting for a message to be
received. Another interesting artifact can be seen around the interval -70
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Fig. 46: Measured current consumption and responsiveness analysis for NoSE and BP
during initialization in the testbed. The dashed line indicates the average energy
consumption of the different protocol states.

to -50 s, where BP did not sample the channel for about 20 s. Due to the
use of random sampling times, nodes may sporadically stop to listen to
the channel for a long time, rendering BP highly non-deterministic.

Figure 47 shows the significant energy savings when using a dedicated
maintenance scheme compared to the standard routing protocol CTP*.
CTP*’s energy consumption is measured for single node without any
neighbors. Hence there is no network traffic biasing the measurement.
For the comparison, it should be stressed that both NoSE and CTP* are
based on the same LPL MAC protocol. CTP* requires 115 mAh over a
period of 7 days and hence 5% of the available energy of a single alkaline
AA battery (2200 mAh). The dedicated sleep phase of NoSE allows to
reduce this amount by 60%.
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Fig. 47: Extrapolated energy consumption comparison during initialization.

6.4.2 Responsiveness

The second important metric is the responsiveness of the start-up. This is
shown in Figure 46, where t = 0 s indicates the begin of the start-up. BP’s
runtime is non deterministic. In particular the start time of the discovery
differs for all nodes in the network. As illustrated in Figure 46(b), the
node started its discovery at t = 62 s. Hence the node initiating the
discovery at t = 0 s had already finished its discovery. NoSE on the other
hand features a deterministic start-up time, which is controllable by an
application-specific length of wake-up and discovery. Minimizing these
two phases directly increases the responsiveness. A detailed discussion
about the time requirement for the discovery is provided in the next
section.

NoSE’s wake-up call is evaluated for reliability and speed. Only in one
out of the 558 runs on the testbed, the wake-up call was not received by all
nodes. The nodes were always notified within less than 20 s. Nevertheless
a pessimistic wake-up period of TS = 60 s is chosen and allows for flexi-
bility in the network size. For the discovery phase, a period of 2 min has
shown to be an adequate value, which is further detailed in Section 6.4.4.
Overall NoSE provides well-assessed neighborhood information in just
3 minutes starting from the wake-up call.

BP and NoSE both require knowing the end time of the discovery
phase, which allows for switching to operational mode, e.g., to set up the
routing tables. For BP, this requires estimating the discovery’s runtime,
which is upper bounded by the network’s diameter multiplied by the
discovery time. Hence a conservative estimate of the a priori unknown
diameter of the network has to be made. NoSE on the other hand features
a bounded and deterministic duration of the discovery phase, allowing
for a smooth transmission to the subsequent operation.
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PRR [%] ≥ 95 85 − 95 50 − 85 < 50
#Links 155 45 42 75
NoSE 97.8% 88.8% 80.8% 59.3%
BP 97.0% 91.9% 82.5% 70.4%

Tab. 13: Comparison of the neighbor discovery performance measured in the testbed.
Both protocols find almost all high-quality links, but also a substantial number
of low-quality links.

6.4.3 Neighbor Discovery: NoSE vs. BP
The initialization schemes of NoSE and BP both provide a neighbor dis-
covery, which is compared in the following. NoSE and BP both aim at
finding all available neighbors. Table 13 shows their success rate, each
sending 20 discovery broadcasts. The table segments the number of found
neighbors according the measured link quality (PRR). Both protocols find
almost all of the available high-quality links. The same holds for links
with a link quality of 85-95%. However, both protocols also find a sub-
stantial number of links with a poor link quality. These links should
not be included, emphasizing the necessity of a link assessment prior to
setting up of the routing tables.

During discovery, both protocols show an increased activity. Even
though discovery time is short, the energy consumption requires con-
siderations: In BP (cf. Figure 46(b) between t = 62 s and t = 122 s) the
radio is always turned on, running with a 100% duty cycle. NoSE uses
the low-power-listening mechanism of the MAC, allowing for a reduced
energy consumption as indicated in Figure 46(a). Despite the increased
activity during the discovery, NoSE allows for a reduced duty cycle of
less than 20% for the same duration of 1 min as the Birthday’s discovery
phase, thus being 5 times as efficient.

BP’s non-deterministic behavior, the requirement of a second radio
stack and the lack of an integrated link-quality estimation show its limited
usability when being integrated into a system.

6.4.4 NoSE: Link-Assessment Quality
A unique feature of NoSE is its integrated link assessment. The assess-
ment is based on the knowledge that all nodes in the network send N
discovery messages. Based on the number of messages a node receives
from a specific neighbor, it assesses the link quality. This assumption
implies that discovery messages are lost due to bad links and not due to
collisions and requires to limit the channel utilization factor CU according
to (6.1). Subsequently an upper bound for CU is determined.
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Fig. 48: NoSE discovery phase on testbed: A high channel utilization CU, i.e., N large
and TD short, jeopardizes the link assessment.

The influence of collisions on the link estimation is analyzed in Fig-
ure 48 showing the fraction of high-quality (LTPRR) links, which received
at least 90% of the messages. As a rule of thumb, for every 10 messages be-
ing sent, the discovery should last an additional minute. For instance, 50
messages require 5 min for finding most LTPRR links. Having a channel-
polling interval TDisc

P = 100 ms and a maximal number of neighbors of
L = 12 in the testbed, the maximal channel utilization CU should be:

CU ≤ N(L + 1)TDisc
P /TD = 10(12 + 1)0.1/60 ≈ 0.2 (6.2)

Hence, the discovery duration can be almost arbitrarily reduced by
shortening the polling interval TDisc

P . However, this reduction of the dis-
covery phase also shortens channel-assessment time. As shown in Sec-
tion 2.3.3, the link estimation is susceptible to short-term link fluctuations
if the message interval undercuts two seconds. Hence, if the link assess-
ment quality is of paramount importance, the discovery time TD for this
configuration should not fall below 2 ·N seconds.

In order to show the scalability of NoSE’s discovery scheme, the ef-
fect of different network densities is simulated. Figure 49 shows the
performance of the link assessment in simulation depending on the node
density, highlighting the fraction of collisions for high-quality links. Iden-
tical to the testbed results, a highly increased bandwidth jeopardizes the
link assessment. If the data load is low, e.g., 10 messages in 2 min as
seen in Figure 49(a), the number of collisions are limited to about 4%,
even with 45 neighbors. More detailed, for a discovery duration of 120 s,
Figure 49(b) shows an increased number of lost packets for 17 neighbors
compared to 11 neighbors. This is very similar to the implementation
results, emphasizing that a channel bandwidth of 20% must not be ex-
ceeded during discovery. Thus, the discovery phase can be tuned for an
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Fig. 49: NoSE discovery phase in simulation. The parameters need to be adapted to the
network density in order to ensure well assessed links (TDisc

P = 100 ms).

optimized performance by estimating the deployment’s maximal node
density.

For parameterizing the discovery, it has to be decided how solid the
links should be assessed. Is a link estimation based on N = 10 messages
sufficient or should rather N = 50 messages be sent? The discovery time
should then be set to about TD = 2 · N seconds as discussed above. For
setting the appropriate channel polling time, an estimate of the maximal
number of neighbors L in the network has to be made and results in
TDisc

P ≤ 0.4/(L + 1) according to (6.2). In the testbed with up to L = 12
neighbors this results in a polling interval of TDisc

P ≤ 30 ms. It should be
noted that this polling interval is shorter than the one of the experiments,
due to the shorter discovery time (20 s vs. 60 s for N = 10).
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6.4.5 Long-Term Link Quality
Link assessment provides a snapshot of the link quality during discovery.
However the link quality varies over time (cf. Section 2.3.2). This is
underlined by an analysis of 40 discovery runs exchanging N = 20 packets
and assessing a high-quality link if at least 18 of the 20 packets are received.
The discovery finds 98.0% of all available long-term high-quality (LTHQ)
links. Yet, on the other hand, a substantial 27.3% of the discovered high-
quality links are not stable over the long term and exhibit a LTPRR < 85%.

As shown in Section 2.4.3, the RSSI value can increase the accuracy of
the link estimation. In the following it is analyzed whether the maximal
RSSI value received during the discovery can be used as an additional
criteria for detecting LTHQ links: Besides the requirement of receiving at
least 19 out of the 20 packets, the maximum RSSI value must exceed a
threshold RSSItrs. This second requirement greatly influences the fraction
of false positives as illustrated in Figure 50(a). The analysis shows that
choosing a threshold of RSSItrs = −73 dBm, allows being almost certain
that no bad links (LTPRR ≤ 85%) are selected. And there is further a
possibility of only 2.6% of selecting a medium link (85% < LTPRR <
95%). However, the RSSI reduces also the fraction of the detected LTHQ
links. As shown in Figure 50(b) the previously discussed threshold of
RSSItrs = −73 dBm will reduce the fraction of detected LTHQ links to only
71.5% compared to the 98.0% without a threshold. Hence a high threshold
should only be applied if ample high-quality links can be chosen from.

Trading off the true positives in Figure 50(b) with the false positives in
Figure 50(a) is a delicate task and depends a lot on the user’s demands.
For instance, a threshold of RSSItrs = −80 dBm allows finding a good
fraction of 92.2% of all LTHQ links. On the other hand, the number of
false positives are limited to 7.6% compared to the 27.3% without using
the additional RSSI threshold.

This long-term analysis shows, that the RSSI allows to increase the
fraction of detected LTHQ links. This is particularly useful, if ample
links are available, and discarding links with a lower RSSI still leaves
the network well connected. Another viable option is to rank the links
according to their RSSI values and preferably use the high ranked links.

6.5 Related Work
The MAC protocol can greatly influence the energy consumption and
responsiveness while maintaining and initializing the network. MAC
protocols based on a global structure are typically more complex than
protocols based on a random access scheme.
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Fig. 50: Even though the links show a good quality during the discovery period, many
of these links are not stable on the long term. The RSSI value as a second criteria
increases the accuracy of detecting long-term high-quality (LTHQ) links.

Protocols that need to maintain a global structure (e.g., slot
based [YSH06], TDMA [HH04, HL07]) are likely to show an increased
activity while performing maintenance tasks. This is required for keep-
ing the changing topology up to date, i.e., for synchronization and slot
arbitration. This requires the nodes to listen intensively and to send nu-
merous neighbor-announcement beacons in order to learn the current
channel policy. Moreover, separated clusters can emerge, each having
different channel access timings, and taking time to unify. This reduces
the system’s responsiveness. Hence these globally-structured MAC pro-
tocols require a protocol-specific extension for supporting mode changes.

Random-access protocols are commonly based on the low power lis-
tening (LPL) scheme [HC02] and do not require such an intricate setup.
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Protocols, such as B-MAC [PHC04] and WiseMAC [EHD04], do not initi-
ate message transmissions. It is up to the upper layer protocol to decide
when the sending of the first message is being initiated. For this class of
MAC protocols NoSE is directly applicable.

For maintenance, protocols like Deluge [HC04] and Trickle [LPCS04]
provide means for updating the code. Such data-dissemination protocols
complement NoSE’s operational mode changes ideally. In particular, the
parameter call provided by NoSE allows for temporarily decreasing the
MAC’s polling interval and hence increase the available bandwidth. This
allows for a swift and efficient dissemination of a code image.

One of the few protocols that already considers operational mode
changes is the Dozer [BvRW07] protocol stack. Dozer provides a com-
bined MAC and network layer which requires to send regular beacons. If
the sink node stops sending beacons, the nodes in the network eventually
fall asleep. The nodes are gradually woken up again as soon as the sink
starts sending beacons again. Since Dozer was not explicitly designed to
support mode changes, it misses NoSE’s functionality for a fast and time
bound (re)start of the network.

Several approaches for initializing WSNs exist. The most prominent
solution is the Birthday Protocol (BP) [MB01] by McGlynn and Borbash.
As detailed in Section 6.4.3, BP and NoSE are both well suited for dis-
covering neighboring links. BP however, does not feature a deterministic
discovery time and requires a separate, second radio stack, making it of
limited use when implementing a system.

Kuhn et al. [KMW04] as well as Moscibroda et al. [MvRW06] both
suggest setting up a clustered structure for an optimized initialization
process. Both these clustered approaches are rather complex and diffi-
cult to be implemented on a resource-limited sensor node. Furthermore
the clusterhead is less energy efficient than its children, limiting the use
for homogeneous networks. In [MvRW06] a second, so-called uniform
algorithm is proposed, which is based on an exponentially increasing
sending probability. Keshavarzian et al. [KUBHM04] propose different
access schemes for combining neighbor discovery and link assessment.
Their approach is based on the assumption that all nodes in a network
are switched on synchronously, which is impossible to achieve in a real
deployment.

Woo et al. [WTC03] investigate and evaluate various estimators for
link-quality assessment while running in operational mode. They an-
alyze how a finite, typically quite small neighbor table, providing con-
nectivity and routing information, can be managed. Such an algorithm
considerably improves network operation and complements NoSE link
assessment performed during initialization.
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6.6 Summary
This chapter addresses the issue of maintenance and initialization of WSN
deployments. It presents NoSE, a protocol-stack enhancement allowing
for mode changes of a network while under operation. NoSE allows
switching the network into an energy-efficient sleep state while mainte-
nance is being performed.

NoSE utilizes resources effectively, switching to high-bandwidth
phases where necessary, but drastically constraining power consumption
otherwise. It manages the trade off between the required responsiveness
and an efficient and minimal usage of the energy resources. Furthermore,
NoSE offers superior solutions for initialization that outperform standard
and specialized approaches known from literature by at least 30% energy
savings during maintenance and initialization. A major aspect of NoSE is
its bounded operation time, which allows for timely validation of system.
Additionally, NoSE’s unique integration of link estimation allows for a
well-assessed neighborhood. By filtering out mediocre links, NoSE in-
creases the stability and performance of the networking in the operational
state.

NoSE is readily usable with LPL MAC protocols commonly used to-
day. In particular it incorporates well into Dwarf and DiMo. Especially
during the start-up, great energy saving are possible. This is due to the
long channel-polling interval of WiseMAC in conjunction with Dwarf,
which makes the initial rendezvous and route updates very expensive.
Furthermore, the link assessment during discovery greatly reduces the
time to build a stable topology, due to the infrequent neighbor-polling
in the order of half an hour. It would therefore require substantial time
to gather significant data on a link’s quality if no link estimation is per-
formed prior to setting up the topology. Altogether NoSE allows for an
energy-efficient maintenance and a swift and dependable initialization.



7
Conclusions

This chapter summarizes the contributions of this thesis and discusses
potential directions for future research.

7.1 Contributions
This thesis contributed towards enabling safety-critical wireless sensor
networks. It focused on communication aspects and made the following
main contributions:

Radio Communication
The wireless communication is known for its erratic behavior. Chapter 2
studied the temporal characteristic of wireless links in an office-like sce-
nario. This is in contrast to most available studies that assume artificial
node layouts. It has been shown that total communication losses in the
order of a few seconds are much more frequent in real deployments than
in these artificial layouts. Furthermore, the novel σm metric has been in-
troduced. In contrast to other popular link-quality metrics in WSNs, the
σm metric analyzes the links’ temporal behavior and provides the means
for detecting unstable links.

MAC Framework
The analytical MAC framework presented in Chapter 3 provides the first
available solution for benchmarking WSN MAC protocols for low data
rates. This has not been possible before, due to the large parameter space
of the protocols, which does not permit the evaluation in simulation or
on a testbed. The framework allows an exhaustive parameter search for
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finding the most energy-efficient MAC protocol given a certain data load
or latency in the network. The study showed that MAC protocols based
on the so called low-power-listening scheme are very energy efficient and
well suited for WSNs. In particular WiseMAC proved to be the most
suitable candidate for being used in safety-critical applications.

Safety-Critical Protocol Suite
Chapters 4 and 5 proposed the two novel protocols DiMo and Dwarf,
which enable in conjunction safety-critical operation of WSNs. A de-
tailed analysis in simulation and in realistic testbeds showed that the
tightly integrated protocol stack ensures a timely delivery of more than
99.9 % of the alarm messages. This is a delivery rate most state-of-the-art
WSN deployments do not achieve despite their possibility of end-to-end
acknowledgements. The protocol suite further proved that failed nodes
are promptly reported and that the extrapolated network lifetime exceeds
3 years.

Maintenance and Initialization
Specialized applications and protocols like Dwarf and DiMo are opti-
mized for a yearlong operation. This however results in a reduced energy
efficiency during maintenance and initialization due to frequent changes
in the topology. Chapter 6 approached this imbalance and suggested
the NoSE protocol stack enhancement. NoSE enables different operating
modes, which allocates the resources effectively for an energy-efficient
maintenance and a swift and dependable initialization. In particular it
outperforms standard and specialized approaches known from literature
by at least 30% energy savings. Furthermore, the unique link-estimation
of NoSE during start-up provides a well assessed neighborhood and
therefore a solid basis for the operation.

7.2 Outlook

The research on safety-critical wireless sensor network has disclosed sev-
eral fields for potential future research:

End-to-End Acknowledgements
It has been shown, that even with a careful orchestration of the protocols,
the alarm forwarding remains probabilistic and cannot provide guarantee
that all alarms are delivered. The next obvious step is to enhance the alarm
forwarding with an end-to-end acknowledgement scheme. Hence in the
rare cases where the deadline cannot be met, the alarm will not get lost
unnoticed.
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Security
This thesis presented a protocol suite that allows safety-critical operation
of WSNs. A possible next step is the integration of a security layer in
the protocol stack. This would prevent malicious tampering within the
network, for instance for raising artificial alarms. Such a secure protocol
stack enables the protocol suite to be used in other application domains,
in particular for the intrusion detection.

Narrowband vs. Wideband Operation
The implemented protocol suite uses specialized narrowband channels
that must only be used for alarm systems. This has the advantage that
external interference is greatly minimized, yet comes at the price of in-
creased communication costs due to the low bandwidth and the long
radio-switching time. A wideband radio on the other hand provides
faster and therefore more energy-efficient operation. This would allow to
reduce the wake-up period Tw of the MAC for the same overall commu-
nication costs. It would be interesting to analyze whether the increased
availability of the nodes counterbalances the raised level of interference.
On a similar line, the frequency band (e.g., 433 MHz, 868 MHz, 2.4 GHz)
of the operation influences the overall behavior of the system. This raises
the question of which band provides for the most reliable and the most
energy-efficient operation.

Multichannel and Multiband Operation
Currently the protocol stack operates on a single physical channel, acting
as a single point of failure in the case of a (possibly malicious) jammer.
This can be avoided by enhancing the protocol stack for multichannel
operation. Either a channel-hopping scheme can be used, or the channel
is switched on demand. Another viable option is to further enhance to
multiband operation, ensuring the operation even if an entire frequency
band is jammed.





A
MAC Models – Continued

This appendix details the performance models for the S-MAC, T-MAC,
D-MAC, B-MAC, and X-MAC protocols, specifying their synchronization
requirements, latency, energy efficiency, and parameter constraints.

A.1 S-MAC
The Sensor-MAC [YHE02] protocol employs a fixed duty cycle for the ra-
dio to save energy. This is achieved by synchronizing nodes to a common
slot structure of a fixed length TSlot. The slots are divided into a sleep
phase Tsleep having the radio switched off, and a sync phase Tsync and an
active phase Tactive having the radio switched on. This results in a duty
cycle of DC = 1 − (Tsleep/Tslot). During the sync phase, nodes broadcast
SYNC beacons to keep the network synchronized, i.e., compensating for
clock drift. In the active phase the nodes contend for the channel based on
a RTS/CTS handshake followed by a DATA and an ACK packet. In order
to avoid overhearing, the RTS/CTS control packets include the length of
the DATA packet allowing nodes to switch their radios off for the rest of
the transfer sequence.

Synchronization. To keep the network synchronized it is assumed that
a node has to receive a SYNC beacon from all C neighbors. In order to
maximize the efficiency of S-MAC, the sync phase Tsync is minimized and
fits a single synchronization beacon having the length of a header. The
nodes are therefore synchronized every (C + 1) slots and require a clock-
drift compensation of Tguard = 2θTslot(C + 1). This results in a minimal
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sync phase time of
Tsync = Tguard + Tcw + Thdr. (A.1)

Latency. A packet can only be forwarded during the active phase.
A newly generated packet is initially delayed by Tinit = (Tsleep + Tsync)/2
on average (assuming a much longer sleep than active phase). In the
following active phase, the packet can then be forwarded several hops,
whereas the number of hops Hactive depends on the length of the active
phase, the size of the contention window and the time for the message-
transfer sequence:

Hactive = dTactive/(Tcw/2 + Tmsg)e. (A.2)

The message-transfer time Tmsg = 4Thdr + P/R consists of the control
(header-only) packets, namely RTS, CTS and ACK, and the data load
with its header.

A packet can only be forwarded Hactive hops per slot. Therefore
bh/Hactivec full slots are required to forward the packet along a h-hop path,
while in the last slot the packet is forwarded dh%Hactivee slots. Altogether
this results in a latency of

L(h) = Tinit + bh/Hactivec · Tslot + dh%Hactivee · (Tcw/2 + Tmsg). (A.3)

Energy Efficiency. The energy efficiency of S-MAC is given by the
chosen duty cycle (DC). However, the overhearing avoidance mecha-
nism reduces the duty cycle, especially under heavy load, and has to be
accounted for 1

ENS = DC + Tpowerup/Tslot − FB · (Tmsg − Thdr − Tpowerup). (A.4)

In addition, S-MAC requires to keep listening during the sleep phase
every Tdiscover interval, allowing to receive synchronization beacons of
nodes (i.e., discover nodes) that are not synchronized. This results in an
overall energy efficiency of

E = ENS + Tsleep/Tdiscover. (A.5)

Parameter Constraints. To avoid hidden terminal collisions, which are
especially likely at the sink, the bandwidth at the sink is limited to 25 %.
The second constraint is that the active phase needs to accommodate at
least one message.

F0
I · (Tcw/2 + Tmsg) < Tactive/Tslot/4 (A.6)

Tactive ≥ Tcw + Tmsg (A.7)

1With the communication model, the overhearing avoidance mechanism for CTS
frames cannot be modeled. However, this effect can safely be ignored given that only
a minor reduction for RTS frames are observed, because of the focus on worst-case
efficiency (nodes on the outside of the network handle little data traffic).
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A.2 T-MAC
The Timeout-MAC [vDL03] is an extension to S-MAC. In order to handle
traffic fluctuations in time and space T-MAC uses an adaptive duty cycle,
implemented as a so called activity timeout Ta = Tpowerup + Tcw + 2 · Thdr

that switches off the radio after the last message on the channel.
Synchronization. T-MAC does not have a special sync phase, but sends

a synchronization message every Tsync in the normal active period, which
is guarded for potential clock drift (Tguard = 2θTsync).

Latency. T-MAC does not allow to forward a message more than two
hops per active phase, since a node in a three hop neighborhood will
switch its radio off preliminary due to the activity timeout. This results
in a message latency of

L(h) = Tinit + b(h − 1)/2c · Tslot + (2 − h%2) · (Tcw/2 + Tmsg), (A.8)

where Tinit = Tslot/2 and Tmsg = 4 · Thdr + P/R.
Energy Efficiency. Energy is spent for idle listening (Eidle) and for mes-

sages that are sent (Etx), received (Erx), and overheard (Eovr). Furthermore,
synchronization messages need to be sent and received (Esync), and every
discovery interval the channel has to be checked for other nodes.

Eidle = (Tguard + Ta)/Tslot

Etx = Fout · (3 · Tcw/2 + 2 · Thdr + Tmsg)
Erx = FI · (2 · Tcw/2 + 2 · Thdr + Tmsg)

Eovr = FB · (Tcw/2 + Thdr)
Esync = (C + 1) · (Tcw/2 + Thdr)/Tsync

E = (Eidle + Etx + Erx + Eovr + Esync) + (Tslot − Ta)/Tdiscover (A.9)

Parameter Constraints. Similar to S-MAC, the bandwidth at the sink is
at most 25 % in order to avoid hidden terminal collisions.

(F0
I + (|I0

| + 1)/Tsync) · Tslot < 1/4 (A.10)

A.3 D-MAC
The data-gathering MAC [LKR04] addresses latency overhead for the
convergecast (data gathering) communication pattern, by staggering re-
ceive and send slots according to the level in the tree. There are Nsleep

sleep slots between the active receive and send slot, resulting in a frame
time of T f rame = (2 + Nsleep) · Tslot. D-MAC further uses CSMA with ac-
knowledgments to arbitrate between children, and schedules overflow
slots whenever a message is received.
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Synchronization. D-MAC needs to send a synchronization message
every Tsync, if the message rate is too low. There is no dynamically adapted
guard time with D-MAC requiring it to guard for a minimal message rate
of Tsync.

Fsync =

{
0 if Fout > 1/Tsync

1/Tsync otherwise
Tguard = 2θTsync

To handle conflicting access to a slot, for example two children sending
at the same time to their common parent, D-MAC includes a contention
window in every slot, resulting in a slot length of

Tslot = Tguard + Tcw + Tmsg, where Tmsg = Thdr + P/R + Tack. (A.11)

Latency. The staggered slots allow for fast message forwarding; a
message is only initially delayed by T f rame/2 on average.

L(h) = T f rame/2 + h · Tslot (A.12)

Energy Efficiency. D-MAC spends energy listening into the receiving
slot (Erx), sending messages (Etx) and listening into an additional slot (for
the so called data-prediction scheme) whenever a message is received
(Edp).

Erx = (Tpowerup + Tslot)/T f rame

Etx = Fout · (Tcs + Tmsg) + Fsync · (Tcs + Thdr)
Edp = (FI + |I| · Fsync) · (Tpowerup + Tslot)

E = Erx + Etx + Edp (A.13)

Parameter Constraints. To avoid hidden terminal collisions, the sink
should receive at most one message in every second slot.

(F0
I + |I0

| · F1
sync) · T f rame < 1/2 (A.14)

A.4 B-MAC
In Berkeley MAC [PHC04], nodes periodically check (interval Tw) with
a short probe (carrier sense) if the channel is clear, so they can power
down immediately. If the channel is busy, the node keeps listening until
a start symbol is detected. This reduces the idle-listening overhead at the
expense of sending out long preambles (which must be slightly larger than
the check interval). By default, B-MAC sends only a data packet after the
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preamble, but to be fair to other protocols the optional acknowledgement
is included in the model.

Latency. B-MAC allows sending a message right away, but the message
transfer time is prolonged by a (long) preamble spanning a complete
polling period Tw. B-MAC has an average latency of

L(h) = h · (Tcw/2 + Tw + Tmsg), where Tmsg = Thdr + P/R + Tack. (A.15)

Energy Efficiency. Energy is spent performing regular carrier senses
(Ecs), sending (Etx), receiving (Erx) and overhearing messages (Eovr).

Ecs = Tcs/Tw

Etx = Fout · (Tcs + Tw + Tmsg)
Erx = FI · (Tw/2 + Tmsg)

Eovr = FB · (Tw/2 + Thdr)
E = Ecs + Etx + Erx + Eovr (A.16)

Parameter Constraints. In order to avoid hidden terminal collisions at
the sink, a maximal bandwidth of 25 % is assumed at the sink.

|I0
| · E1

tx < 1/4 (A.17)

A.5 X-MAC
The X-MAC protocol [BYAH06] is a refinement of B-MAC for packet-
based radios. Identical to B-MAC, the nodes sample the channel every
Tw for a potential packet. The sending node however does not send a
long wake-up preamble, but sends a packet strobe instead. The packets
in the strobe (with length Tps) contain the receiver’s address only and
allow overhearing nodes to switch off the radio after receiving a packet
out of the strobe. The packets in the preamble strobe are interleaved with
short idle times of length Tal, in which the sender waits for a so called
early acknowledgment, after which the actual message exchange takes
place immediately. This early acknowledgement has the benefit that the
preamble on average is halved compared to B-MAC, but comes at the
price of an increased time for the carrier sense, due to the gaps in the
strobe preamble. According to the X-MAC protocol, there is only the
early acknowledgement, but no acknowledgment after the data packet
is sent. In order to ensure a fair comparison between the protocols,
an acknowledgement is added after the packet is sent as done for B-
MAC. Furthermore, X-MAC does not provide a functionality for sending
broadcasts. However, it can easily be extended following the approach
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of B-MAC, i.e., sending a strobe preamble of length Tw, indicating to all
receiver to keep listening.

Latency. The latency of X-MAC is similar to that of B-MAC. However
the wake-up strobe is cut in half and has an average length of Tw/2.

L(h) = h · (Tcw/2 + Tw/2 + Tmsg), where Tmsg = Thdr + P/R + Tack. (A.18)

Energy Efficiency. Energy is spent performing regular carrier senses
(Ecs), sending (Etx), receiving (Erx) and overhearing about half (Ttx/Tw) of
the messages (Eovr). When receiving, the node receives part (Tps + Tal)/2
of the packet strobe before the first strobe packet is received.

Ecs = (Tcs + Tal)/Tw

Ttx = (dTw/(Tps + Tal)e · (Tps + Tal)/2 + Tack + Tmsg)
Etx = Fout · (Tcs + Tal + Ttx)
Erx = FI · (3/2 · Tps + Tack + Tmsg)

Eovr = FB · Ttx/Tw · 3/2 · Tps

E = Ecs + Etx + Erx + Eovr (A.19)

Parameter Constraints. The constraint is the same as for B-MAC (A.17).



B
MAC Models – Special Sink Mode

This appendix explores the optimization of having the sink always listen
to the radio. This is the default behavior for Crankshaft and can be easily
implemented for B-MAC and WiseMAC.

B.1 Crankshaft*
If Crankshaft does not employ the special sink mode, the sink listens only
into one of the unicast slots. This results in the sink being the bottle-
neck, and hence Equations (3.24) and (3.25) constraining the maximum
bandwidth are replaced by

F0
I · T f rame < 1/2. (B.1)

B.2 B-MAC*
If B-MAC employs the special sink mode, nodes next to the sink are not
required to send a long preamble, which reduces the channel load and
further minimizes the energy consumption for sending messages (E∗tx) and
overhearing (E∗ovr) with a probability povr. The original B-MAC equations
for Etx and Eovr in Equation (A.16) therefore change (for nodes next to the
sink only) to

E1
tx = Fout · (Tcs + Tmsg) (B.2)

E1
ovr = EB-MAC

ovr /2 + F1
B/2 · povr · Tmsg/2, (B.3)
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where Tmsg = Thdr + P/R + Tack and povr = Tmsg/Tw. For the overhearing it is
assumed that half of the overheard nodes are in a one hop distance to the
sink. With the special sink mode of B-MAC, the maximal channel load
is not necessarily at the sink, but may be at the node next to the sink, or
even at a two-hop distance from the sink. Hence Equation (A.17) needs
to be generalized to the traffic surrounding any node k in the network∑

n∈Ik∪Bk∪{k}

En
tx < 1/4. (B.4)

This ensures that the channel load is not exceeding 25 % anywhere in the
network.

B.3 WiseMAC*
If the sink node is always listening, the resulting energy savings are
similar to the one of B-MAC, i.e., the preamble size for nodes next to the
sink is minimized and the bottleneck might be shifted. Thus nodes next
to the sink will incur the same costs for sending as B-MAC*, and observe
a similar reduction in costs for overhearing.

E1
tx = F1

out · (Tcs + Tmsg) (B.5)

E1
ovr = EWiseMAC

ovr /2 + F1
B/2 · Tmsg/Tw · Tmsg/2 (B.6)

One of the original parameter constraints of WiseMAC, Equation (3.17),
must be adapted to accommodate the new access policy around the sink.
The bottleneck is now either at the nodes next to the sink, having a limited
number of slots to receive messages (B.7), or (equivalent to B-MAC*) at
the channel (B.4).

(F1
I + |I1

| · F2
sync) · Tw < 1/2 (B.7)
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