
Research Collection

Doctoral Thesis

On Large-Scale System Performance Analysis and Software
Characterization

Author(s):
Anghel, Andreea-Simona

Publication Date:
2017

Permanent Link:
https://doi.org/10.3929/ethz-b-000212482

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000212482
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

DISS. ETH NO. 24524

ON LARGE-SCALE SYSTEM
PERFORMANCE ANALYSIS AND

SOFTWARE CHARACTERIZATION

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

ANDREEA-SIMONA ANGHEL

Ing. Sys. Com. Dipl. EPF

born on 19.08.1986

citizen of Romania

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Anton Gunzinger, co-examiner

Dr. Gero Dittmann, co-examiner

2017

A dissertation submitted to

ETH Zurich

for the degree of Doctor of Sciences

DISS. ETH No. 24524

Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Anton Gunzinger, co-examiner

Dr. Gero Dittmann, co-examiner

Examination date: July 26th, 2017.

This work was conducted in the context of the joint ASTRON and IBM DOME project and was

funded by the Dutch Ministry of Economische Zaken, and the Province of Drenthe.

IBM, Blue Gene, and POWER8 are trademarks of International Business Machines Corporation,

registered in many jurisdictions worldwide. Intel, Xeon and Xeon Phi are trademarks of

Intel Corporation in the U.S. and other countries. Other product or service names may be

trademarks or service marks of IBM or other companies.

To my beloved husband and family

Acknowledgements

Doing a PhD has been a great experience for me during which I had the chance to learn how

to conduct high-quality research, how to write good scientific publications, how to collaborate

in an effective manner with engineers and researchers worldwide and to meet some extraordi-

nary intelligent people. Here I would like express my appreciation to all of those that helped

me during this important stage of my life.

First, I would like to extend my sincere gratitude to Prof. Dr. Lothar Thiele for providing me

with the opportunity to pursue my doctoral studies under his guidance and for being very

supportive throughout the years. I highly appreciate all the discussions that we had during our

PhD sessions, which taught me to ask the right research questions and to effectively address

them. Furthermore, I would like to thank Prof. Dr. Anton Gunzinger for accepting to co-advise

me and for all the feedback during the different stages of my research. Our discussions taught

me to pragmatically address a complex research topic and to not forget about the applicability

side of research.

I sincerely thank Dr. Gero Dittmann for helping me survive professionally and personally

throughout my PhD. I highly appreciate his openness and all his guidance throughout these

tough years. I am indebted to him for his permanent encouragement and support. I have

learned a lot from him, from complex topics such as system modeling to how to efficiently

write a technical paper and professionally coordinate a research discussion.

Moreover, I would like to express my gratitude to Ronald Luijten for all the support and for

always believing in me and to Dr. Ton Engbersen and Dr. Martin Schmatz for allowing me to

pursue my graduate studies at IBM Research – Zurich as part of the DOME project. Without

them I would have not had the chance to work on this very challenging project.

I would like to express special thanks to my DOME P1 colleagues, Dr. Rik Jongerius and Dr.

Giovanni Mariani, for all the hard work that we have done together over the last years. We

went through many exhausting long technical discussions, but we have always managed to

find a good solution. I am also grateful to have built nice memories from the various social

events that we have attended together. Within the same project, I also had the opportunity to

i

Acknowledgements

supervise two very good master students, which helped me gain a practical insight into several

aspects of compilers and software optimizations. For this and all important lessons that I have

learned from our collaboration, I thank Laura Vasilescu and Evelina Dumitrescu.

I owe a lot to my current and former colleagues at IBM Research – Zurich, IBM Deutschland

R&D GmbH and IBM Research Yorktown (USA) for all the inspiring discussions and for a

wonderful work environment throughout the years: Mitch Gusat, Dr. Patricia Sagmeister, Dr.

Jonas Weiss, Dr. German Rodriguez Herrera, Georgios Kathareios, Michael Kauffmann, Dr.

Cyriel Minkenberg, Dr. Robert Birke, Dr. Peter Altevogt, Dr. Cedric Lichtenau, Dr. Thomas

Pflueger, Dr. Jose Moreira and Dr. Jessica Tseng. Special thanks go also to my former and

current office-mates, Dr. Anil Kurmus, Dr. Matthias Neugschwandtner, Nathalie Casati, Dr.

Florian Auernhammer, Celestine Duenner, Dr. Wolfgang Denzel and Dr. Milos Stanisavljevic.

Furthermore, I am grateful to Charlotte Bolliger and Anne-Marie Cromack from the IBM

publications department for proofreading and correcting my publications. I have learned a lot

from their suggestions and corrections. I would also like to thank Jilly Fotheringham and Jens

Poulsen from the IBM IS team for all the help during the past years.

I would like to also thank all my DOME colleagues from the Netherlands for all the interesting

face-to-face meetings, wonderful social events and for the myriad discussions on innumerable

topics, in particular to Albert Jan Boonstra, Bram Veenboer, Leandro Fiorin, Erik Vermij, Chris

Broekema, Stefan Wijnholds and Andre Gunst.

I would like to thank my parents Liliana and Ilie, my brother Radu and his family for being

very patient and coping with my sometimes difficult behavior. They have been a continuous

support for me and I thank them for never allowing me to give up. I am also grateful to Grit

Abe, Adela Almasi and Mareike Kuehn for their wonderful friendship and for all the great

moments that we have created together throughout the last years.

Most importantly, I am extremely grateful to my husband Bogdan for his love and permanent

support over the years. He has always encouraged me and pushed me to finalize this thesis.

Without his constant optimism, I would have probably not arrived at the end of this work.

Zurich, 01.05.2017

ii

Abstract

Over the years, many scientific breakthroughs have only been possible thanks to advances in

the field of very large high-performance computer systems. To reach the exascale computing

era, these systems will need to further increase their size, performance and energy efficiency.

Building an exascale system under stringent power and performance constraints will be a very

challenging task for any organization. Project planning requires early estimates of the system

size, performance and power consumption. To address these challenges, system designers

need holistic methodologies to simultaneously analyze multiple system components and

performance metrics. Such methodologies should also be fast so that designers can efficiently

analyze a wide range of hardware design points.

In this thesis, we devise tools and methods to enable: (1) a qualitative investigation of the

performance and power consumption of future large-scale systems, and (2) an efficient ex-

ploration of system design points by loading platform-independent software properties into

analytic system performance models. We first decouple the software characterization from

performance modeling and extract compute and communication properties inherent to appli-

cations. Then, we load the hardware-independent software profiles into analytic processor

and network models. Such a methodology is useful for system designers at an early design

stage to gain insights into system behavior. The main contributions of this thesis are:

• We introduce PISA (Platform-Independent Software Analysis tool), a framework for

extracting architecture- and ISA-agnostic software profiles from sequential and parallel

workloads at native execution time. We illustrate how our framework can be leveraged

to extract application signatures that impact the system performance.

• We analyze if platform-agnostic software profiles can enable analytic modeling of pro-

cessor performance and power consumption. We provide the first study of the accuracy

of using ISA-agnostic application signatures with two analytic processor models. The

results show that we can achieve an average accuracy of 34%, while preserving the

relative performance trends across workloads. We also show that the analytic power

model preserves the relative trends across hardware systems.

iii

Acknowledgements

• We study how to analytically model the processor branch miss rate, without simulating

the the branch prediction mechanism. We start from a state-of-the-art characterization

metric of branch predictability, the branch entropy. We identify the first method to

reverse engineer the history size of a branch predictor using branch entropy estimates.

We outline the limitations of branch entropy and propose a hardware-independent

method to derive analytic performance models of branch predictors. We also introduce

a new branch predictability metric that is up to 17 percentage points more accurate

than branch entropy.

• We propose a method for estimating the node injection bandwidth effectively sustained

by a network by taking into account the application’s communication pattern and a net-

work specification. We derive analytic bandwidth models for classes of communication

patterns (uniform, shift and 2-dimensional nearest-neighbor) and network topologies

(fat-trees, tori, full-mesh and 2D HyperX). The proposed models achieve an accuracy of

more than 90% in the majority of cases. The validation results also show that the models

can reliably be used to perform design-space exploration across topologies.

• We present the first methodology that estimates the performance of large-scale systems

using as input platform-independent software profiles with analytic processor and

network bandwidth models. For the most scalable implementation of a representative

benchmark of graph analytics, the proposed methodology obtains good correlation

(0.92) across different hardware systems when comparing the estimates with super-

computer measurements. This result indicates that our methodology could reliably be

used to (1) rank systems by performance, and (2) perform early and fast design-space

exploration.

• As case studies, we perform design-space exploration of (1) compute nodes for algo-

rithms used by the biggest and most sensitive radio telescope to be built in the upcoming

years (the SKA), and (2) compute nodes and network topologies for a representative

application of graph analytics (Graph 500). For the radio astronomy case, we also con-

tribute with a set of application-specific ASIC/FPGA power models, platforms currently

not supported by our general-purpose system analysis methodology.

Designing new systems requires a good understanding of the properties of the workloads that

will run on them. This understanding is typically obtained through software measurements

on existing systems. In this case, the measurement tools need to be scalable and reliable

to accurately measure the system bottlenecks. A final contribution of the thesis lies in this

area. Out-of-the-box MPI software profiling tools do not differentiate between time spent in

iv

Acknowledgements

data transfer via network and time spent in waiting for messages to be processed on other

processes (data dependencies). Thus, we propose a high-precision profiling methodology that

quantifies not only the time spent in compute and communication, but also the time spent in

inter-process data dependencies. This is relevant for system designers as only the time spent

in data transfer can be optimized by optimizing the network. We apply our methodology to a

representative benchmark of graph analytics when run on a real supercomputer.

v

Résumé

Au cours des dernières décennies, des nombreuses découvertes scientifiques ont été rendues

possibles grâce aux progrès dans le domaine des systèmes informatiques à grande échelle et de

haute performance. Pour atteindre l’époque de puissance de calcul exa-échelle, ces systèmes

nécessiteront d’augmenter leur taille, performance et efficacité énergétique. La conception

d’un exa-système sous des strictes contraintes de performance et d’énergie sera une tâche très

complexe. La planification de projet exige des premières estimations de taille, performance

et consommation d’énergie. Pour construire une architecture optimale, les concepteurs de

système ont besoin d’une méthodologie holistique pour analyser simultanément plusieurs

mesures de performance pour plusieurs composants. En plus, ces méthodologies doivent être

rapides pour permettre l’analyse d’un grand nombre d’architectures matérielles.

Dans cette thèse, on propose des outils et des méthodes pour rendre possible : (1) l’investi-

gation qualitative de la performance et consommation d’énergie des superordinateurs de la

prochaine génération, et (2) une exploration efficace des différentes architectures en com-

binant des profils de logiciels, indépendants de l’architecture matérielle, avec des modèles

mathématiques de performance et énergie. D’abord on sépare les propriétés des logiciels

de la modélisation de performance et consommation d’énergie. On extrait des profils de

computation et communication intrinsèques aux logiciels. Ensuite on utilise ces profils avec

des modèles mathématiques de processeur et de réseau. Une telle méthodologie est utile pour

les concepteurs de système. En effet, dans les premières étapes de conception, il est important

de comprendre les comportements des systèmes, en fonction des propriétés des logiciels et

architectures matérielles. Les contributions principales de cette thèse sont :

• On propose PISA (Platform-Independent Software Analysis), un outil capable de profiler

des logiciels de manière indépendante de l’architecture matérielle et de l’architecture

du jeu d’instructions. On utilise PISA pour analyser des logiciels séquentiels et parallèles

pendant l’exécution du logiciel. On démontre comment utiliser PISA pour extraire des

propriétés qui influencent la performance des systèmes.

• On analyse si ces profils des logiciels permettent la modélisation mathématique de

vii

Acknowledgements

la performance et de l’énergie des processeurs. On présente la première étude de la

précision de la combinaison de tels profils avec deux modèles mathématiques de per-

formance des processeurs. Les résultats montrent une précision moyenne de 34%, en

gardant les tendances relatives de performance sur l’ensemble des logiciels. On montre

aussi que le modèle d’énergie garde les tendances relatives de consommation d’énergie

sur l’ensemble des architectures matérielles.

• On étudie comment modéliser mathématiquement le taux de prédiction de branche-

ment dans un processeur sans simuler le mécanisme de branchement matériel. On

commence par l’analyse d’une méthode de l’état de l’art, l’entropie de branchement.

On propose la première méthode d’ingénierie inverse de l’histoire globale du méca-

nisme de prédiction de branchement. On montre aussi les limitations de l’entropie de

branchement et on propose une approche de dériver des modèles mathématiques pour

estimer la performance des prédictions de branchement. Finalement, on propose une

nouvelle mesure pour caractériser la performance de prédiction de branchement qui

est de 17 points de pourcentage plus précise que les prédictions basées sur l’entropie de

branchement.

• On propose une méthode pour estimer la bande passante d’injection d’un nœud effecti-

vement soutenue par le réseau en fonction du schéma de communication du logiciel et

la spécification matérielle du réseau. On présente des modèles mathématiques pour

trois catégories de schémas de communication représentatives en matière de calcul

de haute performance (uniforme, shift, 2-dimensionnel nearest-neighbor) et quatre

topologies de réseaux (fat-tree, tori, full-mesh et 2D HyperX). Les modèles de bande

passante ont une précision de plus de 90% dans la plupart des cas. Ils peuvent aussi être

utilisés de manière fiable pour analyser rapidement un nombre élevé d’architectures de

réseau.

• On présente la première méthodologie pour estimer la performance des systèmes à

grande échelle en combinant des profils des logiciels indépendants de l’architecture ma-

térielle et de l’architecture du jeu d’instructions avec des modèles mathématiques des

processeurs et réseaux. Pour la plus évolutive implémentation d’un logiciel représentatif

pour l’analyse des graphes (Graph 500), notre méthode obtient des bonnes corrélations

(0.92) sur l’ensemble des architectures quand on compare avec des mesures des super-

ordinateurs réels. Ce résultat indique que notre méthode peut être utilisée de manière

fiable pour (1) classer les systèmes en fonction de leur performance, et (2) analyser

rapidement un grand nombre d’architectures dans les premières étapes de conception

de système.

• Comme études de cas, on présente une analyse 1) d’architectures de processeur pour

viii

Acknowledgements

les algorithmes utilisés dans le contexte de SKA, le plus grand télescope radio du monde

qui sera construit dans les prochaines années, et 2) d’architectures de processeur et

réseau pour Graph 500. Dans l’étude de radioastronomie, on propose aussi des modèles

d’énergie spécifiques aux logiciels de SKA pour les architectures d’ASIC et de FPGA. Ces

deux architectures ne sont pas actuellement modelées par la méthodologie générale

d’évaluation de la performance des systèmes à grande échelle mentionnée au-dessus.

En général, la conception de nouveaux systèmes demande une bonne compréhension des

propriétés des logiciels qui seront exécutés sur ces systèmes. Cette compréhension vient

normalement des mesures des logiciels sur des systèmes actuels. Dans ce cas, les outils

de profilage doivent être évolutifs et fiables pour mesurer avec précision l’interaction des

logiciels avec les architectures matérielles. Une contribution finale de cette thèse est située

dans ce domaine. Les outils de profilage actuels pour les logiciels MPI ne sont pas capables

de différencier entre le temps passé en transférant les données via le réseau et le temps

passé dans les dépendances de données (en attendant que les données soient traitées avant

d’être envoyeés dans le réseau). On propose une méthodologie de haute précision qui peut

quantifier pas seulement le temps passé dans les parties de calcul et communication d’un

processus, mais aussi le temps passé dans les dépendances des données entre les processus.

Cette information est importante pour les concepteurs de systèmes, parce que seulement le

temps passé dans le transfert via le réseau peut être réduit en optimisant le réseau. On utilise

la méthodologie pour analyser Graph 500 lors de son exécution sur un superordinateur actuel.

ix

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 The Case of Modeling Supercomputers . 1

1.2 State-of-the-Art in Application Analysis and System Modeling 3

1.3 Research Questions and Contributions . 5

1.4 Thesis Overview . 8

2 Profiling Methodology for Inter-Process Data Dependencies Analysis 11

2.1 Introduction . 12

2.2 Background on Graph 500 . 13

2.3 Out-of-the-Box MPI Software Characterization 14

2.3.1 Benchmarking Platform . 14

2.3.2 Graph 500 Configuration . 15

2.3.3 Tracing and Analysis Tools . 15

2.3.4 Characterization Results . 15

2.4 Custom MPI Software Characterization . 16

2.4.1 Methodology for Inter-Process Data Dependencies Analysis 17

2.4.2 Characterization Results . 18

2.5 Communication Patterns Characterization . 19

2.6 Related Work . 23

2.6.1 Graph 500 Characterization . 23

2.6.2 Profiling Tools for Parallel Applications . 24

2.7 Conclusions . 24

3 PISA: A Hardware-Agnostic Software Characterization Framework 27

3.1 Introduction . 27

3.2 Instrumentation Methodology . 29

3.2.1 The LLVM Compiler Infrastructure . 29

3.2.2 Characterization Framework: Coupled Design 30

3.2.3 Characterization Framework: Decoupled Design 33

3.3 Characterization Metrics . 34

xi

Contents

3.3.1 Instruction Mix . 35

3.3.2 Instruction-Level Parallelism . 36

3.3.3 Memory Access Patterns . 38

3.3.4 Branch Entropy . 40

3.3.5 Communication Patterns . 40

3.4 Characterization Results . 42

3.4.1 Experimental Setup . 42

3.4.2 Instruction-Level Parallelism . 42

3.4.3 Memory Access Patterns . 45

3.4.4 Branch Entropy . 50

3.5 Comparison with Real Systems . 51

3.5.1 Instruction Mix . 51

3.5.2 Level-1 Cache Hit Rate . 53

3.5.3 Branch Misprediction Rate . 54

3.5.4 Communication Patterns . 55

3.6 Related Work . 56

3.7 Conclusions . 58

4 Analytic Processor Modeling Using Hardware-Agnostic Software Profiles 61

4.1 Introduction . 61

4.2 Processor Performance Modeling . 62

4.2.1 Overview of Independent Modeling of CPU Events 63

4.2.2 Independent Modeling: Single-Core Performance Results 65

4.2.3 Overview of Modeling of CPU Events and Event Interactions 67

4.2.4 Event-Interaction Modeling: Single-Core Performance Results 69

4.3 Processor and DRAM Power Modeling . 71

4.3.1 Processor Power McPAT Modeling Overview 71

4.3.2 DRAM Power CACTI Modeling Overview 72

4.3.3 DRAM Power MeSAP Modeling Overview 72

4.3.4 McPAT-CACTI Modeling: Single-Core Power Results 73

4.4 Processor Branch Prediction Modeling . 74

4.4.1 Branch Entropy Overview . 76

4.4.2 Branch Entropy-Based Reverse-Engineering of Hardware Parameters . . 78

4.4.3 Branch Entropy Limitations . 79

4.4.4 Branch Predictability Max-Outcome Metric Overview 81

4.4.5 Characterization Results . 83

4.5 Related Work . 85

4.5.1 Processor Performance Modeling . 85

4.5.2 Branch Predictability Modeling . 85

4.6 Conclusions . 86

xii

Contents

5 Analytic Modeling of Network Communication Performance 89

5.1 Introduction . 89

5.2 Network Topologies Overview . 91

5.3 Communication Bandwidth Modeling Methodology 94

5.4 Bandwidth Models: Uniform Communication Pattern 96

5.4.1 Full-Mesh Topology . 96

5.4.2 2-Level Fat-Tree Topology . 98

5.4.3 3-Level Fat-Tree Topology . 99

5.4.4 1-Dimensional Torus Topology . 101

5.4.5 2-Dimensional Torus Topology . 103

5.4.6 3-Dimensional Torus Topology . 106

5.4.7 2-Dimensional HyperX Topology . 108

5.5 Bandwidth Models: Shift Communication Pattern 110

5.5.1 Full-Mesh Topology . 110

5.5.2 2-Level Fat-Tree Topology . 112

5.5.3 3-Level Fat-Tree Topology . 114

5.6 Bandwidth Models: Nearest-Neighbor Communication Pattern 115

5.6.1 Overview of Supported MPI Rank Mappings 116

5.6.2 Full-Mesh Topology . 116

5.6.3 2-Level Fat-Tree Topology . 119

5.6.4 3-Level Fat-Tree Topology . 121

5.6.5 2-Dimensional HyperX Topology . 124

5.7 Validation Results . 128

5.7.1 Experimental Setup . 128

5.7.2 Uniform Communication Pattern . 129

5.7.3 Shift Communication Pattern . 131

5.7.4 Nearest-Neighbor Communication Pattern 132

5.8 Related work . 133

5.9 Conclusions . 135

6 Putting it All Together: Full-System Performance Prediction 137

6.1 Introduction . 137

6.2 Full-System Performance Modeling Description 137

6.3 Validation Results . 140

6.3.1 Graph 500 Benchmark . 141

6.3.2 NAS LU Benchmark . 144

6.4 Full-System Power Modeling Description . 147

6.5 Related Work . 148

6.6 Conclusions . 150

xiii

Contents

7 Design-Space Exploration Studies in Radio Astronomy and Graph Analytics 151

7.1 Design-Space Exploration of Compute Nodes . 151

7.1.1 Square Kilometer Array Overview . 152

7.1.2 Power Modeling of the SKA Station Processor 154

7.1.2.1 ASIC/FPGA Power Modeling Description 156

7.1.2.2 Power Models Parameters and Scaling Rules 159

7.1.2.3 Results and Discussion . 160

7.1.3 Power Modeling of the Central Signal Processor 161

7.1.3.1 General-Purpose CPU Power Modeling Overview 163

7.1.3.2 Results and Discussion . 165

7.2 Design-Space Exploration of Large-Scale Systems 169

8 Conclusions and Future Work 173

8.1 Conclusions . 173

8.2 Future Work . 176

Appendices 177

Author’s Publications and Patents 185

Bibliography 200

Curriculum Vitae 201

xiv

1 Introduction

Innovations through advanced scientific computing have significantly impacted both science

and our society. The prediction of the activity in the earth’s mantle, the prediction of storms

and weather phenomena, economic forecasts, the study of galaxy evolution, cosmology and

dark energy, are only a few examples of complex computational problems that would not

have been possible to solve without the development of high-performance computers or

supercomputers.

We start this chapter with describing the case for building new supercomputers and our

approach to support their design. Section 1.2 presents a background discussion on the

challenges of workload characterization and system modeling. The overall problem statement

and a discussion of the thesis contributions are presented in Section 1.3, which is followed by

a more detailed plan of the thesis in Section 1.4.

1.1 The Case of Modeling Supercomputers

During the last decades, each advance in computing capabilities allowed applications to run

with larger problem sizes, on larger amounts of data, faster and often at a lower power con-

sumption than before. In less than a decade, the performance of such systems has increased

by two orders of magnitude, from 280 TFlops in 2006 to 93 PFlops in 2016 [11]. The energy

efficiency also increased from approximately 200 MFlops/W in 2006 to 6 GFlops/W in 2016 [11].

These impressive improvements were possible because of the, e.g., transistor speed and energy

scaling by reducing the semiconductor size (Moore’s Law), processor clock frequency increase,

supply voltage and dynamic power consumption decrease, micro-architectural advances

exploiting the transistor density gains and cache architectures emulating fast data transfers to

span the gap between processors and main memory [41].

Hardware-software co-design [125], simultaneous optimization of both applications and

hardware, played a crucial role in attaining the Petascale computing age. This method was

successfully used, e.g., in the case of the first Petascale supercomputer released in 2009,

1

Chapter 1. Introduction

the IBM Roadrunner (BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 GHz / Opteron DC

1.8 GHz, Voltaire Infiniband). This supercomputer was developed for modeling the decay

of the US nuclear weapons stockpile, under the auspices of the National Nuclear Security

Administration’s Advanced Simulation and Computing program. Four years later, in 2013,

even though performance-wise the Roadrunner was still a top high-performance computer, it

was shut down for operational cost reasons.

In the upcoming decades, supercomputers are expected to significantly increase their size,

performance and energy efficiency, reaching this time the exascale computing age. An example

of a real case study that will require an exascale system in the next decade is the back-end

processing pipeline of the largest and most sensitive radio telescope in the world, the Square

Kilometer Array (SKA), which will be built starting in 2018. The main mission of this telescope

will be to enable the collection and interpretation of very weak radio signals from the beginning

of the Universe, i.e., from more than 13 billion years ago. According to a study performed in

2014, all the SKA antennas will generate data at output rates in the range of petabits (1015) per

second, which is more than 100 times the 2014 rate of the global internet traffic. Part of this data

will end up in the SKA back-end supercomputing center where the compute requirements of

the scientific applications using the data will be in the range of 10 exa-operations/second [78].

On top of these high requirements, the power budget allocated to the system is expected to

not be higher than 20 MW.

Building an exascale system under a 20 MW power consumption constraint will be challenging.

Since 2013 until June 2016, the highest performance attained by a supercomputer, according

to the Top500 list of the world’s top supercomputers, stayed constant at 33 PFlops, with a

power consumption of 17 MW. In June 2016, a new Petascale system, the Sunway TaihuLight,

capable of 93 PFlops at a slightly better power consumption of 15.37 MW claimed the No. 1

rank in the 47th edition of the Top500 list. This achievement is one encouraging step towards

exascale. However, looking at the power efficiency of the most powerful supercomputers, as

shown in the June 2016 list, the efficiency ranges from approximately 50 MFlops/W to only 6.6

GFlops/W. To reach exascale, engineers and systems architects will need to find solutions to

improve the power efficiency by one order of magnitude, to at least 50 GFlops/W.

Studies like [26] and [112] thoroughly present the technical challenges of the new era of

computing. As the semiconductor manufacturing industry has reached the physical limits

of voltage scaling [66], technology advances have already started to face challenges due to

stringent energy budgets. In planning and designing the next-generation supercomputers,

system architects must consider multiple trade-offs and dependencies. Many aspects of a

large-scale computing system will need to be taken into account: the gate delays in a given

process technology node, the micro-architectural and architectural properties of a compute

node, the communication network, the storage, the cooling technologies, the software etc.

Thus, a fast holistic methodology for simultaneously analyzing multiple system performance

metrics for a wide range of hardware design points is required for a successful design of the

next-generation supercomputers.

2

1.2. State-of-the-Art in Application Analysis and System Modeling

Designing new high-performance and more power-efficient systems needs to be supported by

a good understanding of the properties of the software that will run on it. When the system de-

sign relies on application analysis via measurements on existing systems, the characterization

tools need to be scalable to large problem sizes and reliable to accurately measure the system

bottlenecks. We tackle this problem by introducing a scalable technique for accurately charac-

terizing the time spent in parallel workloads in compute, communication and inter-process

data dependencies.

When the system design relies on analysis of applications in a hardware-independent manner,

tools that measure the applications’ inherent properties need to be available for sequen-

tial and parallel workloads. Understanding system bottlenecks and exposing the hardware-

agnostic properties of applications allow system architects to reason on what architectural

decisions would best support the software. We address this problem by proposing a hardware-

independent software analysis tool for sequential, OpenMP and MPI applications. The appli-

cation signatures extracted with the proposed tool are used to analytically model the system

performance and power consumption. We believe that our proposed solution will support the

system-level design research to gain insights into the effects of fundamental design decisions

and differentiate good from bad design points.

1.2 State-of-the-Art in Application Analysis and System Modeling

Workload characterization plays a crucial role in system design. A good understanding of work-

load properties can support decisions to match hardware to applications. Various techniques

have been used to measure the inherent properties of applications and the interaction between

algorithms and architectures, ranging from profiling of applications on specific hardware plat-

forms using performance counters, to micro-architectural and full-system simulations and

purely analytic methods.

Many studies such as [61], [17], [38] and [65] have characterized sequential applications in

terms of CPU and memory usage, instructions per processor cycle, data and instruction cache

misses, cache accesses, amount of bytes transfered between cache levels per instruction and

memory bandwidth utilization. These detailed characterizations are accurate and valuable

to understand the suitability of an existing hardware design to a specific set of applications.

Moreover, they are useful studies to understand whether application performance could

benefit from a certain architectural trend or not. However, such results are based on measure-

ments performed on existing systems, thus the insights are usually limited to the experimental

hardware.

Parallel applications are often characterized by tasks or communication graphs [44]. Each

node represents a sequence of computations and the arcs represent data dependencies. Such

graphs can be generated using complex software tools, e.g., Vampir [83], Tau [118], the HPC

Toolkit [52], Extrae [3] combined with interfaces for use of the hardware performance coun-

ters like PAPI [100]. The communication calls of the parallel application are intercepted

3

Chapter 1. Introduction

and information about the communication is extracted. Tools like PAPI are used to mon-

itor the hardware counters to extract information about the performance of the compute

segments between the communication calls. The workload measurement data is thus col-

lected for offline analysis. While the communication properties of the workload are usually

hardware-independent (the communication matrix, the amount of data exchanged between

the communicating pairs, the size of the messages), the compute performance is hardware-

dependent. Therefore, estimating the performance of the same application but run on a

non-existing or existing system with different architectures of compute nodes is not possi-

ble. Empirical collections of data are valuable studies that provide accurate results to guide

algorithm-architecture co-design, but they are dependent on the experimental hardware.

Analytic approaches are less accurate alternatives to empirical collections of performance

data. These techniques are useful in guiding system design at a low-cost and they are fast

alternatives to other performance estimation methods such as cycle-accurate simulation.

However, they usually rely on simplifying assumptions (e.g., simplified architectures of proces-

sors, balanced computation and communication [54]) that do not necessarily hold in real-life

implementations. Moreover, they are mainly applicable to kernels whose computational

structure and communication phases are easily/manually deducible (e.g., the dependency

graph of the application is easy to derive [54]).

An example of a comprehensive analytic analysis is presented by Kerbyson et al. [81]. The study

is a characterization of the SAGE spatial decomposition algorithm, characterization used as

input to a machine performance model. A-priori knowledge about the application is required

to manually characterize it in terms of high-level operations, an operation being defined by

the processing of a subset of cells in the grid. The characterization is based on manual analysis

of the key structures of the algorithm and on information pertaining to machine traces. The

latter are used to estimate the actual execution time of the high-level operations. Thus, the

compute time of an operation is not analytically estimated, but obtained via measurements of

existing machines, similar to the empirical collections of performance data.

Other analytic approaches are based on Amdahl’s Law [20], [69]. Over the decades, they have

been successful techniques for evaluating the performance and scalability of parallel applica-

tions. However, performance is estimated assuming specific values of processor performance

metrics (specific values of, e.g., cycles per instruction), thus again the estimated execution

time is hardware-dependent. In addition, manual analysis of the algorithm is necessary to

quantify the application compute and communication behavior, e.g., in terms of number of

processing operations or number of data transfers through the network.

In between analytic models and empirical collection of data stand simulators. Examples

of frequently used micro-architectural simulators include [39], [27] and [45]. They achieve

emulation speeds for a single processor of tens or hundreds of millions of instructions per

second. In general, regardless of the level of abstraction at which such simulators analyze

the stream of instructions, a large parameter space exploration of processor designs is very

4

1.3. Research Questions and Contributions

time and resource consuming. For each processor configuration, a new run is required to

estimate the performance. Similar challenges are faced by network simulators [98]. Each

network topology is described by a set of parameters describing the interconnect structure of

the switches and nodes. For each system size and set of network parameters, it is necessary

to run a new simulation. For full-system simulators such as [25], [105] and [35] the feasibility

of evaluating a large design space is even lower. If for example one would like to simulate an

application with 64, 128, 256, 512 processes each with 1, 2 and 4 threads per process, each

process-thread configuration on a parameter space of 5 topologies with 50 configurations per

topology and of processors with 10 micro-architectural parameters and 5 values per parameter,

150,000 simulations would need to be run. Replacing the network and the processor simulation

with analytic models would bring a significant speedup, especially for very large design spaces.

This is important when designing a system at exascale.

We propose an alternative methodology to full-system simulators that is more time-effective

especially for large hardware design spaces. The key of our approach is to decouple the

application characterization from performance and power modeling. We characterize the

application in an ISA (Instruction Set Architecture)-agnostic manner and load the application’s

properties into analytic models. These models parametrize the hardware resources and enable

fast system design-space exploration. Even if the hardware-agnostic software characterization

incurs an analysis overhead, as the analysis is hardware-agnostic, it needs to be performed

only once per application, for each input size and number of threads or processes. Therefore,

the time cost of the software analysis can be amortized across several subsequent performance

evaluations of specific hardware systems.

We rely our methodology on using the hardware-agnostic application properties with analytic

models to estimate the performance of a system. We focus on the early phases of system design

and, by using analytic models, we provide researchers and engineers with means to explore a

large design space in a short time span. In these early stages, the relative accuracy of different

design points is important in order to gain insights into the effects of fundamental design

decisions. This way system designers can differentiate between worse and better design points.

For absolute accuracy, methods with lower abstraction layers, such as simulators, could be

further used. However, as they run significantly slower than analytic models, only a selection

of the large design space could be analyzed into more detail.

1.3 Research Questions and Contributions

This thesis aims to address multiple research questions and two case studies as follows.

For system design based on measurements (and tracing) on existing systems, we study how to

analyze system bottlenecks by separately measuring the time that parallel applications spend

not only in compute and communication, but also in inter-process data dependencies. This is

relevant especially in the case of asynchronous MPI implementations, such as a representative

benchmark of graph analytics, Graph 500 [4]. In such applications, waiting for a message

5

Chapter 1. Introduction

typically takes the form of continuous polling until the message is received. With the existing

tracing tools, the polling is either categorized as compute or communication time. However,

in reality the time spent in polling is time not only due to delays incurred by the network, but

also due to delays incurred on the processors that need to generate the message. We propose a

high-precision profiling methodology of analyzing the time spent in compute, communication

and inter-process dependencies in MPI asynchronous applications. We perform a thorough

profiling analysis of one of today’s most representative data-intensive benchmarks, Graph 500.

We show that, when running it on a current top supercomputer, it can spend 80% of the time

in communication, meaning that improvements in the messaging infrastructure of the system

can significantly decrease the application completion time.

The remainder of the thesis is dedicated to studying a different modeling approach than that of

predicting system performance based on bottleneck analysis or measurements of existing sys-

tems. Namely, we investigate if it is possible to perform early and fast design-space exploration

of large-scale systems by (1) decoupling the software properties from performance and power

modeling and extracting compute and communication signatures inherent to applications,

and (2) loading the platform-independent software signatures into analytic processor and

network performance models. While accuracy is important in system performance evaluation

methodologies, we mainly aim to build models that preserve the ranking of systems based on

their performance. To this end, the contributions are guided by the next research questions.

How to extract hardware and ISA-agnostic software signatures from sequential and parallel

applications at native execution time? In prior art, the application characterization for proces-

sor modeling is typically based either on measurements of performance counters of existing

architectures, or on measurements of micro-architectural-agnostic signatures of x86 binaries.

Not only that they are hardware- and ISA-dependent, respectively, but both approaches ap-

ply only to sequential code implementations (similar to interpreter-based characterization

frameworks). To analyze the performance of large-scale systems, it is necessary to characterize

parallel workloads. We introduce a novel compiler-based instrumentation approach to analyze

both sequential and parallel applications in an ISA- and hardware-agnostic manner at native

run-time. We call the framework that implements our approach the Platform-Independent

Software Analysis tool (PISA), a framework built on top of the LLVM compiler infrastructure.

Can platform-independent software signatures be used with analytic processor performance

models to estimate execution time and how accurate is the combination of the two? We use

PISA profiles with two different state-of-the-art analytic processor models: (1) a traditional

model that estimates performance by assuming that the events occurring in a processor are

independent, and (2) a more recent approach that takes into account the interactions between

the processor events. We provide the first analysis of the accuracy of ISA- and hardware-

agnostic software signatures loaded into such analytic processor models. We also study the

accuracy of a power model that uses PISA-based software profiles.

We further investigate what other types of processor performance modeling a framework like

6

1.3. Research Questions and Contributions

PISA can enable. We use PISA to study how to estimate branch misprediction. To this end, we

model branch miss rate based on PISA branch traces using two methods that characterize the

predictability of the branch behavior of an application: the state-of-the-art branch entropy

and a novel max-outcome branch prediction method. (1) We show how accurately branch

entropy models hardware branch predictor parameters and describe the first method to

reverse engineer the global history size of a branch predictor. (2) We analyze the limitations

of branch entropy and propose a method to derive analytic models of hardware branch

prediction. (3) We propose an alternative method to branch entropy, that we call max-outcome,

which is not only correlated with the measured branch miss rates, but it is also more accurate

than branch entropy when compared with real measurements. Moreover, in contrast to the

branch entropy method, the max-outcome approach models not only the history size of a

branch predictor, but also the pattern table size.

Estimating the performance of the processor is not sufficient for predicting the performance

of a large-scale distributed system. The network plays an important role in the overall system

performance. Thus, the next question that we aim to answer is how to analytically model

network performance in a fast and accurate manner. We introduce an analytic performance

analysis method that takes into account a network specification and the communication

pattern of a parallel application to analytically derive the injection bandwidth of a node

sustained by a network. We apply the method to three classes of communication patterns,

representative of HPC patterns (uniform, shift and 2-dimensional nearest-neighbor). In

contrast to state-of-the-art simulations or mathematical max-flow formulations, our proposed

bandwidth models provide fast means to perform early and fast design-space exploration

across network configurations of any size at good accuracy rate of more than 90% in the

majority of cases.

With analytic models of processors and networks, we further introduce the first methodology

for large-scale systems performance prediction that uses hardware- and ISA-independent

software profiles. To estimate the compute time, we load the software compute profiles

into analytic processor models (unlike the state of the art typically based on hardware-

specific application profiles and (pseudo) cycle-accurate compute simulators). To estimate

the communication time, we employ linear models of the transmission time of a message,

models that use our analytic bandwidth estimators in combination with network latencies. By

combining the communication time with the compute time, we derive a method to estimate

the execution time of a parallel application. Validation results with measurements on real su-

percomputers indicate that our methodology could be used for early design-space exploration

studies. Indeed, for the Graph 500 benchmark we obtained a linear correlation factor across

hardware designs of more than 0.92.

We conclude our contributions with two realistic case studies. We perform a design-space

exploration of compute nodes for radio astronomy (SKA) algorithms and of compute nodes

and network topologies for graph analytics (Graph 500). For the SKA case we also contribute

with an application-specific ASIC/FPGA power model for SKA front-end applications. With

7

Chapter 1. Introduction

Profiling methodology for software
and system bottleneck analysis in
parallel asynchronous applications

(Chapter 2)

Platform-independent software
analysis (PISA) framework

(Chapter 3)

Applying PISA to processor
design and compute modeling

(Chapter 4)

Communication bottleneck analysis
via analytic modeling of the

interaction of communication
patterns and network topologies

(Chapter 5)

Methodology for full-system
performance analysis based on

hardware-agnostic software signatures
(Chapter 6)

System modeling in graph analytics
(Chapter 7)

Design-space exploration of compute
nodes and network topologies

Power modeling of the SKA system
(Chapter 7)

CPU-based
power analysis

ASIC/FPGA-based
power analysis

Figure 1.1 – A schematic representation of the contributions of this thesis.

our exploration studies we aim to (1) provide the SKA with preliminary guidelines on the

design of its compute nodes, and (2) estimate the power consumption of components of the

SKA pipeline assuming different hardware implementations. For the Graph 500 case study,

we perform a power-performance trade-off analysis across different processors and network

configurations for a system of 262,144 nodes.

1.4 Thesis Overview

The chapter organization of this thesis is summarized in Figure 1.1, whereas more detailed

contributions of each chapter are presented in the next paragraphs.

Chapter 2

This chapter presents a high-precision profiling methodology for analyzing the time spent in

inter-process data dependencies in MPI asynchronous applications. To understand system

bottlenecks, the software profiling tools need to expose not only the time an application

spends in compute and communication, but also in inter-process dependencies. We provide

a methodology on how to analyze the time spent in data dependencies using state-of-the-art

MPI profiling tools.

We apply this methodology to the graph analytics field, by conducting a wide array of tests on a

high-performance computing system, the MareNostrum III supercomputer, for the Graph 500

benchmark. Our method shows that the most scalable MPI reference implementation of Graph

500 spends 80% of the time enabling communication (more than already reported estimations

8

1.4. Thesis Overview

of 50% to 60%). We also provide a first detailed characterization of the communication

pattern of the benchmark, analyzing it both in terms of data volumes between communicating

pairs and behavior in time. The profiling method introduced in this chapter is useful for

performance evaluation engineers and researchers that rely their software characterization

and system bottleneck analysis on measurements of existing systems.

Chapter 3

While the previous chapter introduced an example of a thorough characterization analysis

by applying a novel method to profile MPI applications on real systems, this chapter intro-

duces PISA, an LLVM-based software instrumentation approach to characterize sequential

and parallel C/C++ and Fortran implementations in a hardware-agnostic manner, at appli-

cation run-time. We build this workload characterization framework with the goal to enable

design-space exploration of existing and non-existing systems. The framework characterizes

applications per thread and process in terms of instruction mix (scalar and vector instructions),

instruction-level parallelism, memory access patterns, branch behavior and communication

requirements. We apply our characterization framework on the Graph 500 and SPEC CPU2006

benchmarks. For these benchmarks, we provide a comparison between their characteristics

extracted with our framework and real measurements of the same characteristics performed

on x86 and POWER processors.

Chapter 4

This chapter is dedicated to show-casing PISA applications to processor modeling.

One case is using the hardware-agnostic software characterization results with analytic pro-

cessor models to evaluate performance and power. We estimate the latter metrics for single-

threaded applications from the Graph 500 and SPEC CPU2006 benchmarks using (1) a simple

mechanistic first-order super-scalar processor model and (2) a more complex state-of-the-art

processor model. We compare the results with POWER and x86 measurements. We show

that loaded into state-of-the-art processor analytic models, the PISA characterization enables

performance evaluation of processor micro-architectures with an accuracy of 34% on average

across the SPEC CPU2006 and Graph 500 benchmarks.

The second use case focuses on one architectural component of the processor, i.e., the branch

predictor. We analyze the branch behavior of an application using PISA-based traces and

analytically estimate the branch prediction rate using linear models built from branch-entropy-

based estimates and real measurements. We further devise a new branch-entropy-based

method to reverse engineer the history table size of a branch predictor. We extend the state-of-

the-art with a branch prediction characterization metric that models not only the predictor

history length, but also limitations of how much information the predictor can store. The

analysis we perform on branch prediction are high-level theoretical studies useful for guiding

the design of future branch predictors.

9

Chapter 1. Introduction

Chapter 5

This chapter complements the previous ones with analytic performance models at the network

level. To this end, we introduce a set of models for estimating the injection bandwidth

of a node sustainable by a network. We quantify the link communication bottleneck due

to packet network contention by analytically modeling the interaction of communication

patterns (application property) with network topologies (hardware property). We derive

models for three communication patterns (uniform all-to-all, nearest-neighbor and shift) and

four network topologies (fat-tree, 2D HyperX, torus and full-mesh). We validate the proposed

models by comparing them against state-of-the-art network simulations. The results show

that the average accuracy of the analytic models is in the majority of cases above 90%.

Chapter 6

In this chapter we introduce a methodology for analytically evaluating the performance and

power of large-scale systems. As input we use hardware-agnostic software profiles such as

those extracted with PISA. Furthermore, we combine the communication models in Chapter

5 with the compute models in Chapter 4 and derive an analytic model for estimating the

performance of large-scale systems. We validate the proposed methodology against measure-

ments performed on real supercomputers for two applications: Graph 500 (as an example

of application with uniform all-to-all communication pattern) and the NAS LU benchmark

(as an example of application with nearest-neighbor communication pattern). To allow

performance-power trade-off analysis for full systems, we also introduce a power model for

both the compute and the communication components of the system. We use this power

model to perform a design-space exploration of network topologies and compute nodes in

Chapter 7.

Chapter 7

In this chapter we apply our performance modeling methodology to two fields: radio astron-

omy (Square Kilometer Array) and graph analytics (Graph 500). For the radio astronomy

case, we perform a design-space exploration study for hardware compute nodes. We first

provide an application-specific ASIC/FPGA model for estimating the power consumption of

the SKA front-end processing system. We thus quantify how much more power-efficient an

ASIC-based solution is than an FPGA implementation for three particular SKA algorithms.

A variation of the FPGA power model has been transfered to the leaders of one of the SKA

consortia. For the central processing stage of the SKA, we run design-space exploration studies

of general-purpose CPUs using our proposed analytic performance evaluation methodology.

For the graph analytics case study, we perform a full-system design-space exploration of

compute nodes architectures and network topologies. We identify which combination of

processing nodes and network interconnects best suit the most scalable MPI implementation

of the Graph 500 benchmark for a network scale of 262,144 compute nodes.

Chapter 8 concludes the dissertation and discusses future work.

10

2 Profiling Methodology for Inter-

Process Data Dependencies Analysis

Before introducing the components of a hardware-agnostic methodology for full-system

performance estimation, we investigate in this chapter hardware-dependent time profiling

tools for parallel (MPI) software. These tools are often used by system designers that build

or optimize their systems based on profiling measurements of existing hardware. We apply

a representative of such tools on the reference implementation of one of the most popular

graph analytics benchmark, i.e., Graph 500 [4], run on a Top 100 supercomputing system [2].

Such profiling tools are key to efficiently design systems, because they provide information

about the performance bottlenecks. Is the software run on the given hardware compute or

communication bound? If communication-bound, how much time is spent in data transfer

and how much in inter-process data dependencies? This is relevant information for a system

designer, because only the time spent in data transfer can be optimized by optimizing the

interconnect fabric. As out-of-the-box profiling tools do not differentiate between data transfer

and data dependencies, we propose a scalable profiling methodology that quantifies not only

the time spent in compute and communication, but also the time spent in inter-process

dependencies.

The communication characterization results presented in this chapter are used for validation

of the communication pattern extracted with the hardware-agnostic software analysis tool

presented in Chapter 3. Also, the herein methodology could be used to quantify the time spent

in data dependencies when using as input hardware-agnostic MPI traces of compute and

communication events. Indeed, the traces could be fed to analytic performance models to

estimate the actual execution time of the compute and communication segments. Once the

original hardware-agnostic trace is timed, the methodology presented in this section could be

used to estimate a detailed time breakdown of an MPI application. This represents a relevant

future work item of this thesis.

This chapter is based on the following Springer article: Anghel A., Rodriguez G., Prisacari B., Minkenberg
C., Dittmann G. (2015) Quantifying Communication in Graph Analytics. In: Kunkel J., Ludwig T. (eds) High
Performance Computing. ISC High Performance 2015. Lecture Notes in Computer Science, vol 9137. Springer,
Cham. DOI: 10.1007/978-3-319-20119-1_33.

11

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

The contributions of this chapter are two-fold. First, we provide a detailed characterization of

the communication characteristics of the Graph 500 benchmark run on a real supercomputing

system. The characterization includes the first analysis of the communication pattern of this

application. Secondly, we describe a profiling methodology for accurately quantifying the

compute and communication bottlenecks, by measuring also the time spent in inter-process

data dependencies.

2.1 Introduction

Today’s systems generate large volumes of data that need to be transferred, stored, but most

of all processed to gain insights. As an example, over the last years, social networks have

experienced an exponential growth up to as much as one billion active users with an average

of more than one hundred connections each [31]. The complex processing involved in the

exploitation of these large data sets requires the use of distributed workloads executed on

massively parallel systems. To guarantee a high level of performance for these workloads, it is

essential to identify what their bottlenecks are, particularly whether their execution is compu-

tation or communication-dominated. In the latter case, optimization is especially of interest,

as data motion is expected to become the dominant power consumption component in future

HPC systems [55]. One solution to address this challenge is the development of mechanisms

that better orchestrate the data motion through the system [41]. However, to implement such

mechanisms it is necessary to first understand the application communication patterns.

In the context of data analytics workloads, one particularly relevant class of applications is

graph-based analytics. Indeed, the large sets of data generated by social networks and business

analytics are often modeled as graphs that need to be processed on large-scale distributed

systems using scalable parallel algorithms. A representative of this class is the Graph 500

benchmark suite [102], which has been introduced to guide the design of systems envisioned

to support data-intensive applications. The benchmark is designed to assess the performance

of supercomputing systems by solving a well-defined graph problem, i.e., the breadth-first

search (BFS) graph traversal.

We use the MareNostrum III supercomputer [2] to characterize the communication of the

most scalable reference MPI implementation of Graph 500. We analyze the data exchange

across processes and the variability of the communication-to-computation ratio with the

problem size (scale, edge factor) and number of processes. To the best of our knowledge, this

is the first study that shows the actual communication pattern of the benchmark, offering

preliminary guidance for future application or network design optimization efforts. To improve

the precision of our results, we introduce a profiling methodology enabling us to minimize

the tracing overhead and adjust communication time for data dependencies. This alternative

profiling methodology is useful for accurately quantifying the compute and communication

bottlenecks.

The remainder of this chapter is organized as follows. We start with providing background

12

2.2. Background on Graph 500

information about the Graph 500 benchmark and its MPI-simple implementation (Section 2.2).

In Section 2.6 we present a selection of related work. We continue in Section 2.3 with a brief

description of the computing system and profiling tools we used in the benchmarking process,

as well as with a description of the parameters we used for the Graph 500 experiments. The

same section presents characterization results obtained employing out-of-the-box standard

profiling tools. Section 2.4 introduces the custom application characterization methodology

for communication profiling and presents the experimental results. We proceed in Section 2.5

with describing the experimental results obtained for the communication patterns study.

Finally, we discuss the main take-aways of this chapter in Section 2.7.

2.2 Background on Graph 500

Graph 500 is a large-scale benchmark for data-intensive applications. The problem size is

given by the scale and the edge factor parameters of the input graph. If scale is equal to V

then the number of vertices equals 2V and if the edge factor is equal to E then the graph

has 2V ·E edges. The benchmark implements two main kernels: graph generation and BFS.

First, the benchmark generates a list of edges and constructs an undirected graph. The

graph construction phase uses the Kronecker graph generator which is similar to the graph

generation algorithm presented in [46]. 64 graph nodes are randomly selected and, for each

node, the BFS tree with that node as root is computed. The BFS step is validated to ensure that

the generated trees are correct. The output of the benchmark is the time necessary to perform

the BFS and the number of traversed edges per second (TEPS). In this chapter, we focus on the

analysis of the BFS kernel as in a graph analytics setting the graph itself would already exist.

Graph 500 provides 4 implementations of the BFS algorithm: simple, replicated-csr, replicated-

csc and one-sided. All four implementations use a level-synchronized BFS algorithm, that is,

all the vertices at a given level in the BFS tree are all processed before any vertex in a lower level

of the tree is processed [15]. For the remainder of the chapter we will focus on the MPI-simple

implementation, which, despite its name, is actually the most scalable among all the reference

MPI implementations [124].

The MPI-simple version of Graph 500 implements the BFS algorithm as follows. Each MPI

process uses two queues: a current queue (CurrentQueue) and a next queue (NextQueue).

CurrentQueue hosts all the vertices that have to be visited at the current level. NextQueue

hosts all the vertices that will need to be visited at the next level. At the end of a level, the

two queues are swapped. In addition, each MPI process uses two arrays: Predecessors (list of

parents) and Visited (to track if a vertex has already been visited or not). If an MPI process A

needs to visit a vertex that is assigned to another MPI process B , then process A will send a

message to process B (via the MPI Isend function), requesting that process B visit that specific

vertex. The information passed via this MPI message will include the vertex to be visited, as

well as the predecessor in A that triggered the visit. For optimization, multiple such requests

13

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

can be aggregated in messages of a certain size. This coalescing size is a tunable parameter. In

this study we use the default value of 4 KB.

Concerning the choice of the Graph 500 benchmark as representative for the graph analytics

space, we are aware that other frameworks and implementations exist. Some of the notable

examples are Giraph [1] and Graphlab [92]. Giraph is an iterative graph processing framework

built on top of Apache Hadoop. It is written mostly in Java and uses sockets for communication.

GraphLab is a distributed framework that allows easy implementation of asynchronous, dy-

namic and graph-parallel algorithms, built on top of an RPC library. We have nonetheless

limited our analysis to Graph 500, because our current tools are implemented on top of MPI

and as such are incompatible with the other two frameworks. As future work, we are looking

into adapting the same methodology for TCP socket communication as well as extending it

beyond the data analytics space by applying it to other relevant HPC benchmarks, e.g., SPEC

MPI2007 [10].

Last but not least, within the Graph 500 benchmark, several implementations are supplied, but

we have chosen to focus on the MPI-simple implementation. This is because, while the other

implementations are expected to behave better than the simple approach in a small-scale

environment with few nodes, they do not, as shown for example by Suzumura et al. [127], scale

to the system sizes that are now usual in practice in datacenter and HPC systems.

2.3 Out-of-the-Box MPI Software Characterization

Our objective is to understand the application performance bottlenecks by profiling its ex-

ecution. Thus, we have instrumented the Graph 500 MPI-simple implementation and used

the Extrae tool [3] to monitor the time the application spent in: (i) in MPI asynchronous

point-to-point communication calls (calls to MPI Irecv, MPI Isend); (ii) in polling MPI Test

calls; (iii) in MPI all-reduce calls; and iv) outside of MPI functions.

We executed the instrumented code on 4 to 64 nodes with a total of 16 to 256 concurrent

processes, on the MareNostrum III supercomputer and obtained a set of preliminary results,

presented in Subsection 2.3.4.

2.3.1 Benchmarking Platform

To benchmark Graph 500 we used a large-scale supercomputing cluster, MareNostrum III [2],

currently ranked 57th in the November 2014 Top 500 list [12]. The cluster consists of more than

3,056 compute nodes and 48,896 cores. Each compute node has two Intel®SandyBridge-EP

E5-2670 20M processors, each with 8 cores running at 2.6 GHz, and is equipped with 32 GB of

memory (DDR3-1600). Nodes are interconnected using an Infiniband FDR-10 network.

14

2.3. Out-of-the-Box MPI Software Characterization

2.3.2 Graph 500 Configuration

We downloaded the Graph 500 reference code [4] and compiled it on the supercomputing

cluster using the Intel compiler version 13.0.1 and the Intel MPI 4.1.1 default version. The

only modification we have made to the reference code was to insert events that mark the

beginning and the end of each BFS (after the collection of the time statistics). In terms of

problem size, we ran the benchmark for scales as small as 16 and as large as 26, while the

edge factors used range between 16 and 256 in successive powers of 2. We used a number of

concurrent processes ranging from 32 to 256.

2.3.3 Tracing and Analysis Tools

To extract the MPI traces of the Graph 500 benchmark we use a light-weight tracing tool,

Extrae, formerly known as mpitrace, developed at the Barcelona Supercomputing Center. The

traces have been further processed using two additional tools: a GUI-based trace analyzer

called Paraver, and Paramedir, a command-line analysis tool based on Paraver. The two tools

can filter the trace data and visualize time-lines, compute statistics, generate traffic matrices,

i.e., spatial traffic distributions etc.

The tracing library Extrae is implemented as an interposition library that intercepts the MPI

library calls. The tool stores the minimum amount of information needed to, in a later (off-line)

phase, match all the communication partners and generate a single trace file that comprises

all the communication activity, including parameters of MPI calls. The library also provides

an API allowing custom emission of user events. We employ this capability, in particular by

using Extrae’s API to mark the entry and exit to the relevant code segments of the Graph 500

benchmark. As we are measuring application completion time, it is important to quantify the

overhead of the tracing tool. In all our experiments, the impact of tracing on the application

runtime did not exceed 15%.

2.3.4 Characterization Results

As an initial approach, we used Extrae to profile all MPI calls that the Graph 500 simple

implementation makes. This does not require changing the code of the benchmark in any

way. However, in the course of a complete run of the benchmark, there is an initial graph

construction phase, after which multiple BFS computation steps, which are the ones we are

interested in analyzing, alternate with validation steps necessary only for solution verification

and estimation of the number of traversed edges per second. As such, for convenience, we did

minimal changes to the code to signal to the tracing tool the beginning and end of actual BFS

tree computations, by means of emitting custom events. Only two events were needed, each

requiring a single tracing library call.

Using this straightforward approach, we were able to determine that during the execution of

the benchmark, the application is performing one of four types of activities: (1) asynchronous

15

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

Figure 2.1 – Standard instrumentation. Single BFS execution time percentual breakdown for
varying graph scales under a constant edge factor (16) and 128 concurrent processes (a), for
varying edge factors under constant graph scale (20) and 128 concurrent processes (b), and for
varying number of processes under constant graph scale (20) and edge factor (16) (c).
From [21] ©Springer International Publishing Switzerland 2015.

point-to-point communication (MPI Isend or MPI Irecv); (2) polling of pending asynchronous

messages (MPI Test); (3) calls to MPI all-reduce; (4) computation, quantified as the time spent

outside of any MPI calls.

The results obtained using standard characterization are outlined in Figure 2.1. The figure

shows the percentual breakdown of the application execution into each of the activities enu-

merated above. The three sub-figures present the impact on this breakdown of three main

application parameters: the scale and the edge factor (which define the problem size) and the

number of concurrent processes executing the application. Several insights can be extracted

from these results. First, the majority of the execution time of the application is spent in either

computation or waiting for data to arrive from other processes (polling). In general, polling

time dominates, accounting for more than 50% of the time in all scenarios and for more than

60% of the time in typical scenarios (where a reasonably high number of concurrent processes

are employed). Second, there are a few clear trends of breakdown evolution with the three

application parameters: (i) as the scale increases, computation becomes more important, (ii)

as the edge factor increases, computation becomes more important, and (iii) increasing the

number of concurrent processes significantly decreases the importance of computation. Over-

all, in a scenario where increasingly large problems would be solved by means of increasing

the computational resources, the problem will remain highly communication-bound.

2.4 Custom MPI Software Characterization

By performing a more detailed data-dependency analysis, we present in this section a new set

of characterization results. Using the Paraver and Paramedir analysis tools [86] on the resulting

execution traces, we were able to quantify the proportion of the overall completion time that

16

2.4. Custom MPI Software Characterization

was spent waiting for communication to complete, performing computation or waiting due

to data dependencies even for large problem sizes. We start this section with describing our

methodology for extracting the time spent in inter-process data dependencies.

2.4.1 Methodology for Inter-Process Data Dependencies Analysis

In an application which uses synchronous communication, waiting for data from another

process is typically performed via a single blocking call (either a blocking receive or a wait),

which is logged in a communication trace very efficiently. In contrast, in an application

using asynchronous communication, waiting for data takes the form of polling, that is, MPI

test calls that query the communication infrastructure multiple times unsuccessfully before

ultimately receiving a confirmation of data being available. Logging every failed test in the

communication trace can lead to it becoming extremely large as well as inducing a high tracing

overhead (and thus a warped view of the application). However, particularly in the case of a

communication-bound application, it is precisely the failed tests that convey the time spent

waiting for data.

Pure
computation DD

(c)

Pure computation
+ send/receive

(b)

Computation

Comm. wait

DD Comm

(a)

Computation Waiting/Test Send Receive Message transmission

Figure 2.2 – Three types of traces for a minimal application with two concurrent processes.
Fig.(a) shows a standard trace, Fig.(b) shows the trace where the communication is emulated
from locally stored data, and Fig.(c) shows the trace were communication is emulated from
locally stored data but the temporal data dependencies (DD) between MPI Isends and their
corresponding MPI Irecvs are enforced.
From [21] ©Springer International Publishing Switzerland 2015.

To address this issue, we imagined the following thought experiment. Let us assume that failed

tests are not logged in the trace, and instead time spent performing them appears as being

outside of any communication event. This means that what now appears to be computation

time in the trace is a mix of actual computation and polling. Should we be able to execute

the application on the same system but ensuring ideal (zero-latency, infinite-throughput)

communication, then whatever the completion time of this ideal run is, that would exclusively

be the actual computation. To achieve this ideal setup, we replaced the standard MPI calls

with custom calls that wrap the former and additionally have the capability to record traffic

and replay it at ideal speed (i.e., incurring node-side delays such as memory copies, but not

17

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

incurring any network-side delay). This allowed us to identify the time spent performing

exclusively non-communication-related computation (Figure 2.2 (a) and (b)). The advantage

of such an approach is not only that the trace itself is much more efficiently stored and

collected, but more importantly, the actual computation is measured without any tracing

overhead, and thus estimated much more precisely.

However, with this record-replay approach, removing polling time that is falsely registered

as computation is not possible while at the same time maintaining the data dependencies

between concurrent processes. Indeed, when executing a parallel workload, a process can be

caught in a sequence of polling phases in two main circumstances:

1. the next steps the process has to execute depend on data in flight that takes a certain

amount of time to arrive due to imperfections or simply inherent limitations of the

underlying communication system, such as network latencies and contention; as this

time component is communication-related, we call it communication delay;

2. the next steps the process has to execute depend on data that has not yet been sent

by the corresponding source process; this time component stems from application-

inherent data-dependencies between concurrent processes and we call it inter-process

data dependencies, labeled as DD in Figure 2.2.

To be able to quantify the actual communication time, we need to partition the waiting time

into the two categories above. For every message exchanged, the trace comprises both the

source and the destination processes. As such, it provides all the necessary dependency infor-

mation to achieve this partitioning. However, in order to be able to schedule the dependencies,

we used another tool, called DIMEMAS [32], which is capable of ingesting traces captured

with Extrae, replay them maintaining the semantic data dependencies and additionally model

the inter-process communication for arbitrary levels of bandwidth, latency and network con-

gestion. Using this tool, we were able to determine the application runtime in the absence

of communication delays (Figure 2.2(c)). This runtime, coupled to the ideal runtime above

and the real runtime, the latter two measured on the real system, are sufficient to allow us to

identify with high accuracy the time the application spends in each of the following five types

of activities: (1) asynchronous point-to-point communication; (2) calls to MPI all-reduce; (3)

actual (as opposed to apparent) communication-related polling; (4) inherent data dependency

related polling; (5) actual computation.

2.4.2 Characterization Results

Using this custom methodology, we re-ran the experiments presented in the previous section

and obtained the results illustrated in Figure 2.3.

First, as expected, the results show that a significant amount of what appeared to be com-

putation time was actually overhead due to tracing (particularly due to the inclusion of the

18

2.5. Communication Patterns Characterization

Figure 2.3 – Custom instrumentation. Single BFS execution time percentual breakdown for
varying graph scales under a constant edge factor (16) and 128 concurrent processes (a), for
varying edge factors under constant graph scale (20) and 128 concurrent processes (b), and for
varying number of processes under constant graph scale (20) and edge factor (16) (c).
From [21] ©Springer International Publishing Switzerland 2015.

failed tests). While relative to the entire application execution, this overhead was moderate

(< 15%), as it was accounted for practically entirely in the computation part of the trace, it

made up a significant portion of that part. Indeed, while the previously identified trends are

still present, actual computation is in fact approximately 40% smaller than what the standard

instrumentation estimated.

Second, data dependencies make up a non-negligible part of the execution time, which now

the custom characterization correctly identifies. In terms of trends, data dependencies seem

to become relatively less important with the increase of the scale and more important with

the increase of the edge factor. Also, as the degree of parallelism increases, their importance

relative to the time spent computing increases significantly.

With the custom methodology and the resulting smaller traces, we are also able to handle

larger problem sizes and degrees of parallelism. Figure 2.4 shows the results obtained for

scales as large as 26 and 256 concurrent processes (the edge factor was set to the standard

benchmark value of 16).

The figure shows that the previously identified trends hold, with communication remaining

by far the dominating component, accounting for more than 80% of the total execution time

(more than 75% of which is spent waiting for data).

2.5 Communication Patterns Characterization

In a parallel application implementation, optimizing the data exchange is key to improving

the performance of graph-based analytics applications. Understanding the characteristics of

19

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

Figure 2.4 – Custom instrumentation. Single BFS execution time percentual breakdown for
varying graph scales under a constant edge factor (16) and 256 concurrent processes.
From [21] ©Springer International Publishing Switzerland 2015.

the data exchanges is crucial to developing efficient systems and networks that enable these

optimizations. Fortunately, the tracing and analysis tools we have at our disposal have a high

enough granularity to allow data motion characterization. Indeed, from the communication

traces, we were able to determine the amount of data that each (source,destination) task

pair exchange, in time. The resulting traffic-matrix heatmap for a representative scenario

(scale 20, edge factor 64 and 64 concurrent processes) for the entire duration of a single BFS is

shown in Figure 2.5(a). Figure 2.5(b) shows the distribution of the amounts of data exchanged

across all individual (source,destination) pairs. From both illustrations, one can see that the

data exchange pattern strongly resembles uniform all-to-all communication. Indeed, the

distribution has a standard deviation of only 8.6% around the mean and is almost entirely

contained in an interval of 20% around the mean, with a very slight positive skew.

While these results suggest a uniform all-to-all traffic pattern, they are not sufficient to reach

such a conclusion. A given (source,destination) pair could indeed exchange over the execution

time of the program as many bytes as any other pair. However, the performance of the

exchange and the communication pattern itself can vary strongly depending on how this

global amount of data is aggregated into messages. Exchanging the 512 KB in numerous small

messages or a few very large messages will lead to very different traffic signatures. To shed light

on this aspect, we continue the characterization by extracting a similar heatmap (Figure 2.6(a))

and distribution across communicating pairs (Figure 2.6(b)) for the average message size. This

analysis shows that the variability in the case of the message size is even smaller than in the

case of the aggregated amount of data exchanged. Indeed, across communicating pairs, the

standard deviation is only 0.7% around a mean of 3.75 KB per message. It should be noted that

message size is a direct function of the (configurable) coalescing size parameter. For this study,

20

2.5. Communication Patterns Characterization

Figure 2.5 – Representative single BFS computation for scale 20, edge factor 64 and 64 con-
current processes. Figure (a) illustrates the traffic matrix between the processes and sug-
gests that data exchanges are approximately uniformly distributed between all possible
(source,destination) pairs. Figure (b) shows the actual distribution of (source,destination)
pairs communication volumes across possible data amounts. The volumes are distributed
approximately Gaussian around a mean of 512 KB with a standard deviation of only 8.6% and
a slight positive skew.
From [21] ©Springer International Publishing Switzerland 2015.

Figure 2.6 – Representative single BFS computation for scale 20, edge factor 64 and 64 concur-
rent processes. Figure (a) illustrates the distribution of the size of the exchanged messages
across every possible pair of communicating tasks. The distribution is highly regular, with an
average message size 3.75 KB and an extremely small variability (standard deviation is 0.7%),
as illustrated in detail by the histogram in Figure (b).
From [21] ©Springer International Publishing Switzerland 2015.

we did not change the default 4 KB value. Choosing a different value for this parameter might

have performance implications, but (for a reasonable range) it will not impact the conclusions

of the data motion characterization.

21

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

Figure 2.7 – Interval analysis of the communication pattern of a single BFS (scale 20, edge
factor 64, 64 processes). The X axis represents the execution of the BFS in percentages. For
every 5% of the execution time, we isolate the messages that are sent in that time window.
For every time window: Figure (a) shows the fraction of all (source,destination) pairs that
communicate in that interval; Figure (b) illustrates the mean and standard deviation of the
amount of data exchanged in the interval across (source,destination) pairs; Figure (c) shows
the mean and standard deviation of the average message size exchanged in the interval across
(source,destination) pairs. For 80% of the intervals, the communication has the characteristics
of a uniform all-to-all exchange.
From [21] ©Springer International Publishing Switzerland 2015.

Finally, even under low variability distributions of both aggregate communication volume

and message size, a third aspect must also be taken into consideration when characterizing

a potentially uniform all-to-all communication pattern, and that aspect is the distribution

of the data exchange in time. To perform this analysis, we divide the entire runtime of the

BFS into 20 intervals. For each interval, we perform the same two analyses that we performed

before for the entire run, i.e., we compute the total and per-message communication volume

and represent each resulting per-interval distribution by its mean and standard deviation. In

addition, we also look at the number of active communicator pairs per time interval. The

results are shown in Figure 2.7.

Figure 2.7(a) illustrates the percentage of active communicating pairs per time window. During

80% of the execution time, all pairs are in active communication. Figure 2.7(b) shows the data

volume exchanged per communicating pair per time window. During 80% of the execution

time, the amount of data per time window exchanged by an arbitrary communicating pair

is similar to that of any other communicating pair (the standard deviation is lower than

20% in the majority of cases). Finally, the distribution of the message sizes is even more

regular, as illustrated in Figure 2.7(c). During 65% of the time, there is no variability, i.e.,

every source is sending exclusively 4 KB messages, while during an additional 15% of the time

the variability is very low (the standard deviation is lower than 20%). The remaining four

windows (highlighted in red) manifest larger deviations from what would be expected from a

uniform all-to-all exchange—only a subset of (source,destination) pairs communicate, and

22

2.6. Related Work

across that subset there are large variations in both the amount of data exchanged and the

size of the messages used. However, we would argue that these intervals are not necessarily

indicative of periods when a different communication pattern is taking place, but rather signs

that imperfections/limitations of the communication infrastructure or load imbalance issues

cause a limited subset of messages to experience long end-to-end latencies. Such tail effects

can subsequently impact the application globally, leading to increased completion time and

low network utilization.

In summary, these results suggest that system or network designs and optimizations targeting

high-performance uniform all-to-all traffic have a high potential of positively impacting the

communication performance of data analytics applications, and, consequently, the overall

high performance of these communication-bound workloads.

2.6 Related Work

The work presented in this chapter lies at the intersection of two research topics: A) Graph 500

related characterization and B) communication profiling tools.

2.6.1 Graph 500 Characterization

Previous Graph 500-related research efforts, such as [124], [115], and [49], have implemented

optimized versions of the benchmark, tested them on large-scale computing systems and

reported their optimization techniques and performance results. In this chapter, we did not

propose yet another optimized implementation of the benchmark, but we rather focused on

an in-depth workload characterization of its most scalable MPI reference implementation.

In the characterization space, Jose et al. [79] report their findings on profiling the execution

of the MPI-simple implementation version of Graph 500—tested with 128 processes and a

problem scale of 26 and edge factor of 16—using unified MPI+PGAS communication run-

time over IB. Excluding the synchronization cycles spent in the MPI all-reduce calls, a total

amount of 60% of the total BFS time is predicted to represent communication. However, the

runtime breakdown of one single problem size may not be sufficient to understand how the

communication varies across different problem sizes and number of processes.

Suzumura et al. [124] perform a performance evaluation study of Graph 500 on a distributed-

memory supercomputer for different types of implementations, including MPI-simple. The

study reports profiling results for computation, communication and stall times. Even though

the execution breakdowns are shown only for the replicated-based implementations (replicated-

csr and replicated-csc), the authors expect the MPI-simple implementation to have similar

performance characteristics as replicated-csc. The results show that communication and stall

times account for less than 50% of the total execution time, even when increasing the number

of nodes from 1 to 64.

23

Chapter 2. Profiling Methodology for Inter-Process Data Dependencies Analysis

In this chapter, we analyzed the breakdown of the execution time of the MPI-simple implemen-

tation, but across multiple scale, edge factor and number of processes values. This allowed

us to identify trends in the execution breakdown of the benchmark. We showed that the

communication time might be underestimated and that communication represents in some

cases more than 70% of the total execution time. We also performed an in-depth analysis of

the MPI-simple communication patterns across processes.

2.6.2 Profiling Tools for Parallel Applications

Crovella et al. [53] propose a methodology for measuring and modeling sources of overhead

in parallel Fortran applications. The sources identified are load imbalance, insufficient par-

allelism, synchronization loss (defined as processor cycles spent acquiring a lock or waiting

for a barrier), resource contention or communication loss. We propose a scalable method to

achieve a similar breakdown by distinguishing within the communication loss between time

spent at the destination waiting for data to be sent by the source – which we call inter-process

data dependencies– and time spent waiting for data already in flight – actual communication

delay. Furthermore, we use our proposed method to perform measurements for the Graph

500 benchmark.

A first step towards extracting characterization information from a parallel application is

the use of profiling tools. The information provided by these tools is useful to break down

the execution time of the application into time spent in communication and computation.

For MPI applications, a typical way to do so is by interposing instrumentation functions

between the MPI library functions and the MPI calls of the application. Such profiling tools

will intercept application calls, particularly those involving communication: sends, receives,

collective operations. This allows keeping a trace, generally in memory with regular flushes to

disk, of the communication activity of the application. Some tools are able to provide more

detail, such as performance counters before and after each profiled call, more information

about the protocols or parameters with which the communication took place, or the user

function from which the communication primitive was called etc. Moreover, these tools are

able to dynamically profile with more or less overhead, re-compiling the application not being

necessary. Some examples of profiling tools are: Vampir [83], Tau [118], the HPC Toolkit [52],

or Extrae [3], among many others. For this work we will use Extrae, but we could have used

any other tool, as we did not require any special feature or modification of the code of Extrae.

2.7 Conclusions

In this chapter, we performed an in-depth characterization and data motion analysis of a

representative application in the graph-based analytics space. To this end, we chose to analyze

the Graph 500 benchmark suite, which is widely considered a key application in assessing the

performance of supercomputing systems on data-intensive applications. In particular, we

24

2.7. Conclusions

focused on the most scalable implementation of the reference benchmark, the MPI-simple

code.

Initial attempts of characterization using standard profiling exposed several limitations, mainly

a high spatial and temporal overhead and a lack of support for data dependencies. Using a

custom profiling approach, we addressed these issues and were able to target larger problem

sizes and degrees of parallelism, up to scale 26 and 256 concurrent processes, while improving

the accuracy of the characterization.

One of the main take-away messages of this work is that the Graph 500 benchmark which is

representative of graph analytics workloads is communication dominated. Indeed, we have

shown that the vast majority (more than 75%) of the execution time is spent in polling opera-

tions that represent waiting periods for messages in flight. This means that improvements in

the messaging infrastructure (such as network bandwidth and latency or workload-specific

routing or process to node allocation) will translate directly into a proportional decrease of

what we identified as polling. In turn, the application itself will benefit greatly.

Furthermore, we quantified how the characterization changes with the problem size and

the number of concurrent processes. Most importantly we identified that communication

becomes less dominant with the increase of the scale, but significantly more dominant as more

computational resources (concurrent processes) are assigned to the application. Moreover,

we managed to separately quantify waiting times due to data dependencies and show that

they can become important for the high levels of parallelism characteristic of HPC systems.

In performing this characterization, we also addressed several issues that a tracing tool will

encounter when profiling applications using asynchronous communication. These include

minimizing the tracing overhead, reducing the trace size by avoiding the storing of failed MPI

test events and perhaps most importantly by pinpointing polling time due to data dependen-

cies. Indeed, to make sure that we do not erroneously account in the communication time

inherent synchronization waiting periods between applications (time spent in one process

waiting for a message that another process has not yet sent), we carefully isolated this portion

of execution time in the form of a data dependency time. While for the purposes of this study

we made use of the Extrae tracing tool, the conclusions are not characteristic of Extrae alone,

but rather of the entire class of tracing/profiling tools, e.g., Vampir, Tau or the HPC Toolkit.

Last but not least, analyzing the spatial and temporal distribution of the data exchange, we

identified that the dominating communication pattern of the benchmark is uniform all-to-all,

opening avenues for workload-specific data motion optimization of the Graph 500 benchmark.

25

3 PISA: A Hardware-Agnostic Software

Characterization Framework

If in the previous chapter we focused on hardware-dependent time profiling tools often

used to build or optimize systems based on measurements of existing hardware, in this

chapter, we propose a hardware-agnostic application characterization tool to be used in

methodologies that aim at exploring a large number of configurations of existing or future

hardware systems. We describe in detail a hardware-independent software analysis tool called

PISA (Platform-Independent Software Analysis) that will be used in the subsequent chapters

to enable processor and full-system performance evaluation.

The contributions of this chapter are four-fold. (1) We propose PISA, a modular LLVM-based

hardware-agnostic software analysis framework applicable to both sequential and parallel

applications. (2) We showcase part of the capabilities of this framework by characterizing

an application representative of graph-based analytics, the Graph 500 benchmark [4]. 3)

We compare application characteristics extracted with PISA for the Graph 500 and SPEC

CPU2006 [122] benchmarks with real measurements performed on x86 and POWER8 proces-

sors. 4) We propose a generalized memory reuse distance metric to characterizing both the

spatial and temporal memory locality of a program.

3.1 Introduction

Workload characterization plays a crucial role in system design. A good understanding of

workload properties can support decisions to match hardware to applications. Various tech-

niques have been used to measure the inherent properties of applications and the interaction

between algorithms and architectures, ranging from profiling of applications on specific hard-

This chapter is an extended version of a Springer journal article, Anghel, A., Vasilescu, L. M., Mariani, G.
et al. Int J Parallel Prog (2016) 44: 924. DOI: 10.1007/s10766-016-0410-0, which is an extended version of the
following ACM conference publication: Andreea Anghel, Laura Mihaela Vasilescu, Rik Jongerius, Gero Dittmann,
and Giovanni Mariani. 2015. An instrumentation approach for hardware-agnostic software characterization. In
Proceedings of the 12th ACM International Conference on Computing Frontiers (CF ’15). ACM, New York, NY, USA,
Article 3, 8 pages. DOI: http://dx.doi.org/10.1145/2742854.2742859.

27

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

ware platforms using hardware performance counters, to micro-architectural simulations and

purely theoretical methods.

For example, Ferdman et al. [61] investigate the interaction between scale-out workloads and

x86 processors. Scale-out workloads operate on large data sets that are split across a large

number of machines and serve large numbers of independent requests that do not share any

state. The study shows that the memory bandwidth is over-provisioned and that memory-level

parallelism in scale-out workloads is low. These types of studies provide accurate and valuable

results to guide algorithm-architecture co-design, but they are limited to the experimental

hardware.

Simulators and emulators [45, 25, 105, 35] are a viable alternative to empirical profiling studies,

because of their flexibility of easily changing the hardware parameters of the simulated system.

For each hardware design the applications are run through the simulator and performance

results are collected for different hardware designs. However, this approach is time-consuming,

particularly when exploring a broad design space.

At the opposite end of the spectrum, theoretical approaches for algorithm analysis such

as [117, 54] are fast alternatives for guiding system design. However, they are usually based on

simplifying assumptions like abstract algorithm models, thus, cannot capture the application

complexity. This usually leads to a decrease in precision.

To bridge the gap between theoretical approaches and simulators, we propose enhancing the

former with a more detailed application model. To this end, we introduce PISA, a platform-

independent software analysis tool capable of extracting a signature capturing the appli-

cation’s complexity. The signature consists of a set of hardware-independent application

characteristics that can then be fed to analytic hardware models [77] to perform fast and truly

workload-specific performance evaluation. We use the LLVM infrastructure [88] to instrument

the application’s code and analyze it at basic-block and instruction granularities at native

execution time. Even though we run the application natively, our proposed tool extracts

hardware-agnostic properties. Hardware constraints can also be easily modeled, but even in

that case the characterization remains independent of the execution platform. We believe that

such a framework is a key tool for system designers, enabling them to understand application

properties and ultimately system performance bottlenecks.

To analyze the inherent properties of an application in a hardware-independent manner, it

is necessary to “run” the application on an ideal processor model. Hennessy and Patterson

define in [68] the properties of such a processor. To name a few of these properties: (1)

unlimited number of registers available, avoiding all write-after-write and write-after-read

hazards – the SSA form represents this property; (2) unlimited number of execution units,

so that an unbounded number of instructions can be executed simultaneously; (3) perfect

branch prediction; (4) infinite instruction window width, and all memory accesses taking

one clock cycle; 5) perfect address alias analysis (a load can be moved before a store only

provided that the accessed addresses are not identical). This definition can be extended to an

28

3.2. Instrumentation Methodology

ideal parallel machine as follows: (1) the machine is a collection of ideal processors; (2) the

processors are connected via an ideal network with unlimited bandwidth and zero latency; 3)

there is zero stack overhead for libraries handling message-passing routines.

As an illustrative case study, in this chapter, we apply our methodology to an application

representative of graph-based analytics, the Graph 500 benchmark [4]. This benchmark was

introduced to guide the design of systems for data-intensive applications. It is designed

to assess the performance of supercomputing systems by solving the breadth-first search

(BFS) graph-traversal. The large sets of data that social networks and business analytics

usually generate are often modeled as graphs. The scale of the data that such applications

have to handle precludes storing the entire graph on one single node. Therefore, large-scale

distributed computing systems are required, together with scalable parallel algorithms, to

efficiently process the graphs.

The remainder of this chapter is organized as follows. In Section 3.2 we present the main

contribution of this chapter, the hardware-agnostic instrumentation methodology. We con-

tinue in Section 3.3 with a description of the characterization metrics that are extracted with

the proposed characterization framework. The same section presents a novel approach to

characterizing the spatio-temporal memory locality of an application. Section 3.4 illustrates

the framework capabilities (1) to enable multiple ILP analyses and (2) to understand the

application memory access patterns and branch behavior. We proceed in Section 3.5 with

validating the application characteristics extracted with PISA with the same characteristics

measured on real systems. Finally, we discuss the related work in Section 3.6 and conclude in

Section 3.7.

3.2 Instrumentation Methodology

In this section we start with providing background information on the LLVM compiler infras-

tructure. Then we present in detail the instrumentation methodology.

3.2.1 The LLVM Compiler Infrastructure

The LLVM infrastructure [88] compiles application code to an intermediate representation

(IR) form (or bitcode) used for optimization before linking and code execution. The LLVM IR

is low-level, language- and target-independent and uses a RISC-like virtual instruction-set

architecture (ISA) with an unlimited number of virtual registers in single static assignment

(SSA) form. The LLVM IR provides explicit data flow in SSA form and programmatic access to

the control-flow graph (CFG). The application code in IR form is called a module and contains

functions and global variables. Each function is a set of basic blocks, and each basic block is a

set of instructions ending in a control-flow instruction.

During the LLVM compilation process, a set of optimization passes can be applied to the IR of

29

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

LLVM IR

instrumented

analysis

library

LLVM libs

binary code

clang

mem2reg instrumentation

opt

linking process

int main() {

int i, n;

hw-agnostic

properties

LLVM IR

SSA format

native run

Figure 3.1 – Overview of PISA.
From [22], [23].

an application. The optimization passes are invoked by the opt command-line tool, which

can load customized passes as plug-ins from dynamic library files. After optimization, the

application is executed natively or using an interpreter.

3.2.2 Characterization Framework: Coupled Design

To ensure hardware independence, PISA analyzes the IR instruction flow rather than the

assembly code running on a hardware platform. Even though LLVM provides direct access to

the control flow graph of the program, the actual stream of executed instructions cannot be

determined without interpreting or executing the program. PISA performs hardware-agnostic

software analysis at native execution time. The output of PISA is a set of hardware-agnostic

application properties that we call the application signature and serves as a software model.

Figure 3.1 shows an overview of PISA. The input is the source code of a program, e.g., in

C/C++, which is compiled by the LLVM front-end, e.g., clang/clang++, to emit LLVM-IR

bitcode (.bc files). This bitcode is transformed into SSA format by running the mem2reg

optimization provided by LLVM. Next, PISA uses the LLVM optimization support, opt, to

instrument the SSA bitcode with function calls to a modular external library that implements

different workload analyses, such as instruction mix, memory access pattern, instruction-level

parallelism, communication pattern etc. Finally, the instrumented bitcode is linked with the

LLVM libraries and our external library to generate the final binary code. The binary code thus

created is then run natively, and the program is analyzed. The native execution guarantees

that our instrumentation collects information about the actual instruction flow of the input

program.

An example of an instrumented LLVM IR code is shown in Figure 3.2. The bold lines represent

code inserted in the instrumentation phase. This phase consists of inserting library calls in

the LLVM IR in SSA format as follows:

• init_library - inserted only once at the beginning of the main function to pass the

LLVM IR module bitcode of the program and various options (e.g., analysis types) to the

external library;

• analyze_bb - used to notify the library about the next basic block that will be executed; it

30

3.2. Instrumentation Methodology

 ; schematic LLVM IR
 @.str = “%d\n”
 @0 = “; ModuleID = ...”

 @main #0 {
 entry:
 %0 = getelementptr(@0, 0)
 call @init_library(%0, 0)
 call @func_address(0, @main)
 call @analyze_bb(0, 0)
1. %x = alloca(10)
2. %idx = getelementptr(%x, 0)
3. store(42, %idx)
 call @update_vars(0, 0, 4, %idx)
4. %idx1 = getelementptr(%x, 0)
5. %tmp = load(%idx1)
 call @update_vars(0, 0, 6, %idx1)
6. %y = getelementptr(@.str, 0)
7. %call = call @printf(%y, %tmp)
8. ret 0

Figure 3.2 – Instrumented LLVM IR in SSA form.
From [22], [23].

is inserted at the beginning of each basic block; each basic block is identified by a unique

(f,b) pair, f being the function index and b being a basic block index inside function f ;

• update_vars - used for passing the real memory address used by load and store instruc-

tions to the library; it is inserted after every such instruction;

• func_address - inserted at the beginning of the main function to notify the library about

the real address of each internal function; our framework needs to differentiate between

calls to internal functions and calls to external functions, i.e., functions whose code is

not in IR form, such as functions from the libc library if its code is not compiled to

bitcode; the real addresses are useful when a program uses pointers to functions.

• exclude_function - inserted at the beginning of the main function to notify the library to

exclude certain functions from the analysis; this feature is used when the user does not

want to analyze certain functions, such as reading input data from a file.

These library calls allow PISA to reconstruct the program’s instruction flow as follows. The

execution of each basic block is signaled to the external library. A basic block has a single entry

point and a single exit point. This property allows the framework to process the sequence

of instructions inside a basic block. Each instruction is processed in a visit library function

that extracts different hardware-agnostic properties according to the type of analysis selected,

and stores the information in different data structures. If the basic block contains load or

store instructions, the library needs to ensure that update_vars is called after the instruction is

processed. Furthermore, if the basic block contains a call to an internal function, the basic

block execution will be interrupted and the execution will continue from the first basic block

in the function called. In Figure 3.2 the analyze_bb call triggers the analysis of the instructions

inside the first basic block. When a store instruction is encountered (instruction 3), the basic

block processing is stopped and restarted by update_vars. The processing continues similarly,

31

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

BB end
interrupt

Library trace

process_instr(0,0,0):
visit(instr 1)
visit(instr 2)
visit(load_instr)

visit_mem(load_instr)
process_instr(0,0,4):
visit(instr 4)
visit(call f())
S.push_state((0,0,6))

process_instr(1,0,0):
visit(ret_instr)

(x,y,z) = S.pop_state()
process_instr((x,y,z)):
visit(instr 6)

IR execution flow

@analyze_bb(0,0)

instr 1
instr 2
load_instr
@update_vars(0,0,4)

instr 4
call f()
@analyze_bb(1,0)

ret_instr
instr 6

Load
interrupt

Call
interrupt

Figure 3.3 – PISA library events during application execution.
From [22], [23].

with restarts necessary for every load or store instruction or internal function call, until the

end of the basic block has been reached.

For resuming the analysis after an interrupt an internal state is maintained. Figure 3.3 shows

an overview of the library processing events that happen during the application execution.

The state identifies an instruction as a triplet: (function_id, basic-block_id, instruction_id).

The library provides a function for processing instruction flows, process_instr. This function

receives a state and processes instructions through the visit library call until the end of the

basic block or until it is interrupted because it encounters a call to an internal function or a

load/store instruction. analyze_bb calls process_instr with instruction_id equal to zero. If a

load/store instruction is encountered, the processing is stopped and will be started by the

update_vars call that sends the real memory address to the library (via the visit_mem call)

and calls process_instr with the corresponding state triplet. If a call to an internal function

is encountered, then the current state is pushed to a stack and the processing is stopped.

The processing will be started again by an analyze_bb call from the new function. When the

processing step reaches the end of the basic block, it checks whether the stack is empty. If the

stack is empty, then the processing is stopped and will be continued by a new analyze_bb call.

If the stack is not empty, the top state will be extracted from the stack and process_instr will be

called with that state.

External libraries called by an application can also be analyzed using the same approach by

compiling them to LLVM IR and linking them together with the application bitcode. In this

case, both the application and external library code is instrumented and analyzed at run-time.

Otherwise, without recompilation, PISA can be used to count how many and which external

library calls have occurred at run-time. The user can use this information to compare the

number of such calls with the number of instructions analyzed in the application and decide

whether the number of instructions spent in external libraries is significant or not. In this

32

3.2. Instrumentation Methodology

work we have not analyzed the LLVM IR of the external libraries for two reasons. First, we

wanted to analyze the application characteristics independently from a particular external

library implementation. Second, as stated later in Sec. 3.5, for the applications analyzed in the

current chapter, the number of instructions executed in external libraries is very small.

The framework can also analyze multi-threaded and multi-process applications and outputs

separate profiles for each thread and each process. In multi-threaded applications, the address

space is shared across threads. For each thread, the framework keeps independent data

structures that will be updated by the visit call. The framework knows which structure to

update based on the thread ID. The bitcode instrumentation is identical to that of single-

threaded applications. If a basic block is executed by multiple threads, then analyze_bb will be

called by each thread context, and only the data structure corresponding to the calling thread

ID will be updated. Multi-process applications have a separate address space for each of their

processes. For such applications, there is no need to differentiate between the processes,

because the data are kept privately and the calls will only access the address space of that

process.

Depending on the type of analysis, e.g., memory access patterns, instruction-level parallelism,

the code instrumentation incurs an execution-time overhead of two to three orders of magni-

tude relative to the non-instrumented code. However, as the analysis is hardware-agnostic, it

needs to be performed only once per application for each input size and number of threads

or processes. Therefore, the time cost of the PISA analysis can be amortized across several

subsequent performance evaluations of specific hardware systems. Each application input

configuration entails a new pass through PISA, however, even comparing the time of a single

non-amortized such characterization pass plus the time of an analytic performance model [77]

versus the time of existing simulation approaches, our method can reach analysis speeds of

several MIPS (millions of IR instructions per second) which is comparable or even one order

of magnitude faster than the simulation method [45, 25, 105, 35].

3.2.3 Characterization Framework: Decoupled Design

In the PISA design described so far, the execution of an application thread and its profiling

share a single thread. Therefore, each call to the analysis library stalls the application execution,

incurring an execution time overhead. Moreover, in parallel applications, the overhead on one

process may impact the other processes as well. For example, say an MPI process A performs

an asynchronous MPI receive call and then enters a polling phase in which it continuously

checks for the reception of a message from another MPI process B. If process B is stalled

because of the analysis phase, process A might execute more instructions in the polling phase

than necessary. Therefore, we propose a second PISA design that can reduce the analysis

overhead. The IR instrumentation is still performed on the thread of the application. However,

the analysis of the IR instructions is delegated to a separate process and, thus, the application

33

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

LLVM IR

instrumented

analysis

library
LLVM libs

binary code

clang

mem2reg instrumentation

optint main() {

int i, n;

hw-agnostic

properties

LLVM IR

SSA format

native run

server

send data

to server

receive data from

each thread/process

. . .

processing units

Figure 3.4 – Overview of PISA (decoupled version).
From [23] ©Springer Science+Business Media New York 2016.

can continue its execution without having to wait for the analysis to finalize. We call this

approach decoupled and show an overview of this design in Figure 3.4.

The information of each instrumentation call that occurs on the application thread is sent

to the analysis process in the form of a message. The analysis process uses the I/O event

notification system call epoll to collect these application messages via sockets and stores their

content in memory. For each OpenMP thread or MPI process A in the application, the analysis

process spawns an independent thread that is responsible for performing the analysis for

thread or process A. Not only is PISA capable of handling multi-process applications running

over multiple nodes, but it also allows for the analysis component to be executed across

multiple processes and nodes by providing multiple IP addresses to which the application

MPI processes should communicate.

Both PISA versions can be used to perform hardware-independent workload characterization

of sequential, MPI or OpenMP applications. Preliminary results show that the decoupled ver-

sion can reduce the impact on the application execution time, leading to a slow down of only

one order of magnitude over the native execution time. The analysis is still the bottleneck, but

it has been offloaded to a separate process. The disadvantage of the decoupled architecture,

however, is that the analysis process may require a significant amount of memory, particularly

for long-running analyzed applications. This is due to the instrumentation messages poten-

tially accumulating in RAM while they are waiting to be processed. Thus, both PISA designs

are viable options for performing the characterization of an application and choosing one or

the other depends on whether reducing the analysis overhead on the application completion

time or the resources of the hardware on which the characterization is run is more critical.

3.3 Characterization Metrics

By analyzing the LLVM IR code in SSA form, PISA is able to extract a high-level application

model that consists mainly of the instruction mix, the instruction-level parallelism, the mem-

ory access pattern and the branch behavior. For multi-threaded (OpenMP) and multi-process

(MPI) applications, PISA extracts these metrics per thread (OpenMP) and per process (MPI).

The instruction-level parallelism is averaged across the entire execution of the application and

34

3.3. Characterization Metrics

consists of a set of numbers, each representing the instruction-level parallelism of a certain

type of instruction (control, integer, memory, floating-point or all types). The memory access

pattern has the form of a cumulative distribution and the predictability of the branch behavior

is quantified by a number. For MPI implementations with point-to-point communication,

PISA also extracts the amounts of data exchanged between the processes during the entire

execution of the application.

PISA could extract the complete communication graph of the application, however, we restrict

PISA to collect only a high-level signature of the application in order to enable fast design-

space exploration using analytic hardware performance models. By removing the timing

information from the application signature, we trade-off performance estimation accuracy for

evaluation speed.

In this section we will focus on describing how PISA defines and extracts the different appli-

cation properties, actual examples of PISA characterization results of real applications being

presented in Section 3.4.

3.3.1 Instruction Mix

By analyzing the IR code of the application at run-time, PISA can extract the instruction mix,

both scalar and vector instructions. Each instruction of an analyzed basic block is counted

towards one of the LLVM instruction type categories: terminator, binary, bitwise binary,

memory and miscellaneous. These are instruction categories that describe the IR format of

the LLVM infrastructure. Mapping each type of instruction to real processor instruction set

categories, e.g., integer, floating-point, control, load/store, is necessary to be able to use PISA’s

output as input to analytic processor performance models. Indeed, this mapping is required

to quantify how much workload each type of functional unit in a real processor is supposed to

execute. In the next paragraphs we will provide an overview of this mapping.

The LLVM terminator instructions end every basic block in a program and indicate which basic

block needs to be executed next after the current basic block. These instructions typically

produce control flow. Examples of such instructions are return and conditional/unconditional

branches. We categorize these instructions as control, as they will be executed in a real

processor by the control unit. These instructions, in addition to the function call instructions,

are analyzed to characterize the control-flow behavior of an application at run-time.

The LLVM binary operators are used to perform most of the computation in a program. A

binary operation takes two operands of the same type, execute an operation on them, e.g.,

addition or multiplication, and produce a single value. In the case of vector binary instructions,

the operands are of vector data type. In that case the binary instruction produces a number

of values equal to the number of elements in the vector operands. Binary instructions with

integer operands are categorized as integer, whereas binary instructions with floating-point

operands are considered floating-point instructions.

35

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

The LLVM logical binary operators are used to perform bit-twiddling in a program. They

require two operands of the same type, execute an operation on them, e.g., shift or logical

or, and produce a single value. The resulting value is the same type as its operands. All these

instructions take integer or vector data types, thus, we categorize them as integer, as they will

be executed in a real processor by the integer functional units.

The LLVM memory instructions read, write and allocate memory. The main two instructions

to read/write from/to memory are load and store and we categorize them as load/store

instructions, as they will be executed in a real processor by the load/store units. The LLVM IR

load/store instructions are analyzed to extract the memory access pattern of an application at

run-time.

Other LLVM instructions include function call instructions, conversion operations, compar-

ison operations and address calculation operations. The call instructions are categorized

as control, because a function call changes the control flow of the program. Conversion

operations take a single operand and a type and perform bit conversions on the operand, e.g.,

truncate the operand to a different type or zero extend to a different operand type. The conver-

sion operations that take as input an integer type are categorized as integer, while those that

take as input a floating-point type are categorized as floating-point. Comparison operations

return a boolean value. They take three operands. The first is a condition code to indicate what

type of comparison to perform and the other two operands are the ones on which the com-

parison operation is applied. The comparison instruction that operates on integer operands

is categorized as integer, whereas when the operands are floating-points it is categorized as

floating-point. Address calculations are special LLVM instructions called getElementPtr which

are used to get the address of a sub-element of an array data structure. It performs address

calculation only and does not access memory. We categorize these instructions as integer.

3.3.2 Instruction-Level Parallelism

The instruction-level parallelism (ILP) can be measured only within a basic block or also

across basic blocks. We focus on the latter as current processors enhance their performance

by exploiting the application’s ILP across basic blocks. To measure the ILP exhibited by a

stream of instructions, our framework analyzes the dependencies between all the instructions

and assigns to each instruction the earliest cycle number at which it can be executed on the

machine model chosen. This is the minimum cycle number at which all dependencies of an

instruction are satisfied on that specific model.

Multiple machine models have been proposed to analyze the ILP of an application. Lam

et al. [87] propose a set of machine models that include several that are representative of

real hardware. Similar to our approach, they examine the instructions from real programs

and compute the available parallelism by enforcing true data dependency and control flow

constraints associated with each machine model. The choice of a machine model, however,

depends on the scope of the characterization. If the objective is to characterize the work-

36

3.3. Characterization Metrics

load for a specific hardware architecture (e.g., a processor with 32 registers and two integer

functional units), then that particular machine model must be assumed when calculating the

ILP.

Our objective is to analyze a program’s inherent compute and data motion properties in a

hardware-independent manner. Therefore, we use the ideal machine described in Section 4.1.

The ILP in such a machine is imposed by the actual data flows through either registers or

memory. The resource (structural hazards) and storage (write-after-read and write-after-write)

dependencies [28] are eliminated in our proposed framework since the LLVM virtual ISA uses

an unlimited number of registers in SSA form. Thus, there are two types of dependencies left

to analyze: true data and control dependencies. True data dependencies (read-after-write)

happen when an instruction i produces a result that may be used by instruction j. Data

dependencies through memory are difficult to detect in practice since two addresses may refer

to the same location but look different a.k.a. aliasing. However, the LLVM IR overcomes this

issue by allowing us to analyze true data dependencies only through registers. Even if the code

uses pointer arithmetics, before the actual arithmetic operation, there will be a load to an

LLVM register with the actual value of the memory operand used in the arithmetic operation.

Thus, we can easily track all data and memory dependencies through the use of the LLVM

registers. Control dependencies, on the other hand, happen when an instruction belongs

to a basic block of a branch and, thus, it cannot be executed before the branch condition is

evaluated, because until that evaluation, it is not known whether the instruction will indeed

execute. If we assume perfect branch prediction, these dependencies are also eliminated.

Furthermore, in the ideal processor model, each instruction is assumed to be executed in

one cycle. Finally, we also neglect the function call overhead, that is the overhead for setting

up the stack frame, copying parameters and return address. Indeed, the overhead of such

calling conventions would be too specific to the actual ISA, and our objective is to measure

properties in a hardware-agnostic manner. The LLVM virtual ISA allows the framework to

make this abstraction, because it does not consider any specific hardware-dependent calling

conventions. The LLVM mem2reg tool promotes alloca instructions to register references,

thus, it eliminates the stack overhead and any architecture-dependent calling conventions by

using only registers.

Figure 3.5 shows an example of how the framework calculates the ILP of an instruction stream

at run-time. The first step is to compute the dependency graph. Instructions that have no data

dependency (1, 2, 3, 7, 8, 11) can be executed in cycle 0 because of the properties of the ideal

machine model. Instructions that have a dependency only on instructions in cycle 0 (4) can be

executed in cycle 1, and so on. If an instruction depends on instructions assigned to different

cycles, it can be executed in the cycle following the maximum value of its predecessors’ cycles.

In Figure 3.5, every row of the graph corresponds to a different cycle. Data dependencies

through memory are handled correctly through the update_vars mechanism described in

Section 3.2.2. Note that dependencies on an immediate value returned by a function call

are actually dependencies on the return instruction of that call and not on the call itself, e.g.,

37

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

; schematic LLVM IR
1. %call1 = call @g()
2. %call2 = call @f()
3. ret 1
4. %add = add (%call2,1)
5. ret %add
6. %add = add (%call1,1)
7. %call3 = call @f()
8. ret 1
9. %add2 = add (%add,%call3)
10. %add3 = add (%add2,1)
11. ret 0

CTRL instruction Non-CTRL instruction

1

4

2 3

5

6

7 8 11

Earliest cycle

0

1

2

3

4

5

9

10

Figure 3.5 – Example of ILP calculation.
From [22], [23].

instruction 4 depends on instruction 3 and not 2. Otherwise, they are dependencies on the

variable assignment.

We define the span of an application as being the maximum cycle number of any instruction

calculated by our framework. Our target is to identify the minimum number of functional

units in a processor core required to execute the application within the ideal span. To achieve

this, we use a simple estimator, the average ILP, calculated as follows:

ILPapplication =
instructions

span
(3.1)

To determine the ILP per type of instruction (control, memory, integer or floating-point), we

use the Eq. 3.1, where the number of instructions reflects the number of instructions of that

particular type.

3.3.3 Memory Access Patterns

To understand the inherent memory access patterns of an application, PISA measures both its

spatial and temporal locality patterns on the machine model described in Section 4.1, which

assumes single-cycle memory access latency.

The temporal locality is measured by implementing the reuse distance analysis described by

Zhong et al. [134]. The framework calculates the reuse distributions at application run-time

and analyzes both the data and the instruction reuse distance distributions of a program. The

reuse distance analysis consists of computing the number of distinct memory accesses since

the last access to a given memory address, which is computationally expensive. To implement

this operation, we use a splay tree because of its look-up or insert operations of O(log n).

Splay trees perform particularly well when the program analyzed exhibits high locality.

The reuse distance analysis does not supply information about spatial locality. Therefore,

38

3.3. Characterization Metrics

a
1

a
1
+n

1
a
1
+s a

1
+n

1
+s

a
2

a
2
+n

2

Figure 3.6 – Spatial locality definition.
From [22], [23].

PISA can additionally perform a more general memory pattern analysis that captures both the

spatial and the temporal locality of a program, as follows.

PISA monitors all memory (load/store) instructions. In the resulting ordered list, it can

assign consecutive indexes to instructions, starting with index 0. The index is a measure of

temporality, as memory accesses with consecutive indexes will be executed consecutively in

time. Every entry in the list is characterized by the following parameters: i —memory access

index; a —memory access start address; and n —memory access length (in bytes).

Using this workload model, PISA calculates, given a current memory access, a measure of

likelihood that another memory location is accessed a number of indexes in the future during

the execution of the program. Figure 3.6 shows how we define spatial locality.

We want to define what it means for two accesses to occur at a distance of s in space. This is

not as straightforward as subtracting the start addresses and checking whether the difference

is s, because each instruction potentially accesses several memory locations at once. One way

to define it is that at least one memory location accessed by the second instruction is at a

distance of s in space from any location accessed by the first instruction. Formally, given a

memory access (i ,a1,n1), the framework computes p(s,t), defined as the probability that the

next t-th memory access (i + t ,a2,n2) will have the property

(a1 +n1 + s ≥ a2 ∧ a1 + s ≤ a2 +n2). (3.2)

In this case, p(s,t) ∈ [0,1] is defined for t ≥ 0 and computed as follows. For each value of t , we

consider every pair of accesses that are at a distance t from each other in the memory access

list. Then, for every value of s, we count how many of these pairs satisfy the property given by

Eq. 3.2. If that number is ks,t , then p(s,t) = ks,t /(|L|− t), where L is the list of accesses and |L|
is its length. With p(s,t) we define a joint measure of the spatio-temporal locality of a program,

which can be represented as a locality heat-map.

By quantifying both the spatial and temporal aspects of locality, the approach we propose

can, thus, supply useful input not only to cache memory design, but also to systems based on

emerging technologies such as nonvolatile memory, systems that aim at bringing computation

closer to data.

39

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

3.3.4 Branch Entropy

PISA can be used to measure the control flow behavior of an application. Indeed, PISA can

monitor the outcomes of all conditional and unconditional branches in an application. Each

branch is uniquely identified by three indexes, i.e., the function ID, the basic block ID and the

instruction ID within the basic block. This identifier is the equivalent of the branch address in

our branch behavior modeling approach.

Based on this branching information, PISA can estimate the branch misprediction rate of the

application. To achieve this, PISA first computes the application’s branch entropy as defined

in Equation 3.3. Branch entropy, introduced by Yokota et al. [132], is an entropy-like measure

of the predictability of the outcome of the next branch of an application, given the outcomes

of the previous n branches, where n is called the branch history size. To obtain an ideal

predictability estimate, Yokota et al. [132] take the limit of branch entropy when n goes to

infinity. In contrast, we maintain the history size as a parameter of our estimator, the history

size corresponding to the global buffer size of the hardware branch predictor.

BE(n) = E(n +1)−E(n),where E(n) =−
∑

xn

p(xn) · l og2(p(xn)) (3.3)

To derive an actual misprediction rate from branch entropy, we use an approach suggested

in the same paper [132] that basically consists in considering the next branch outcome as

a stochastic binary process and applying the inverse binary entropy function to the branch

entropy to obtain a misprediction rate. We explain in detail the concept of branch entropy in

Section 4.4.

This is considered a lower bound on the misprediction rate under the constraint of having

access to only a number of past branch outcomes equal to the chosen history size. The lower

bound or ideal aspect may come from assessing the branch entropy of the application from its

complete branching behavior.

3.3.5 Communication Patterns

To extract the communication pattern of an MPI application PISA needs to be able to quantify

how much data each communicating pair of MPI processes exchanges during the execution of

the application. PISA monitors the MPI library calls of not only MPI implementations with

blocking (synchronous), but also with non-blocking (asynchronous) MPI communication

calls. The instrumentation consists of an mpi_update_db PISA call inserted after each point-

to-point, collective, initialization and finalize MPI call in the application’s LLVM IR source

code. The mpi_update_db call includes parameters with which the MPI call is executed at

run-time. An example of LLVM IR code with an MPI instrumented call is shown in Figure 3.7.

The figure shows the instrumentation of an MPI_Irecv call. The parameters of the instrumen-

tation call mpi_update_db are the following:

40

3.3. Characterization Metrics

 ; schematic LLVM IR
 …

 @main #0 {
 entry:
 …
 %call = call i32 @MPI_Irecv(i8* %tmp, i32 512, %struct.ompi_datatype_t* dt,
 i32 -1, i32 0, %struct.ompi_communicator_t* ct,
 %struct.ompi_request_t** %recvreq)

 call void (...)* @mpi_update_db(i32 90, i32 6, i32 0, i32 0, i32 2, i32 512,
 %struct.ompi_datatype_t* dt, i32 -1, i32 0, %struct.ompi_communicator_t*
 ct, %struct.ompi_request_t** %recvreq)
 }

Figure 3.7 – Example of MPI PISA instrumentation.

• the index of the IR function from which the MPI call is called, e.g., 90;

• the index of the IR basic block from which the MPI call is called, e.g., 6;

• the index of the MPI call instruction within the basic block, e.g., 0;

• a PISA flag used to distinguish between MPI calls in Fortran and C, e.g., 0 (C code);

• a PISA MPI call code, e.g., 2 (MPI_Irecv);

• arguments of the real MPI call, e.g., for the MPI_Irecv in the Figure, the number of

elements in the receiving buffer, the size of an element in the buffer, the processor

ID of the other end-point of the communication, the communication tag, the MPI

communicator, the real memory address of the MPI request.

To quantify the communication requirements of an MPI application and determine the

process-to-process message exchange pattern, PISA uses parameters of the point-to-point

MPI call: the number of elements in the send/receive buffer, the type of elements in the buffer

and the source or destination process field. By multiplying the number of elements with the

size of the element type, PISA quantifies the amount of exchanged data.

To determine the pair of communicating processes is straightforward in blocking (synchronous)

implementations. The source or destination process index can be extracted from the argu-

ments of the MPI call. However, in the case of non-blocking (asynchronous) communication, a

special monitoring of the MPI_Test and MPI_Wait function calls is required. In a non-blocking

(asynchronous) implementation, even though the process executes the MPI_Irecv call, the

process does not wait in that MPI call to receive the data. Instead the MPI process executes

MPI_Test calls that query the communication infrastructure multiple times unsuccessfully

before ultimately receiving the actual message. The mapping between an MPI_Irecv call and

its corresponding successful MPI_Test is possible via the unique MPI_Request of the MPI_Irecv

call that is used by the MPI_Test to poll the reception of the message. The successful MPI_Test

provides critical information for extracting the communication pattern of the application, the

41

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

source (or the destination) of the message, information that is not necessarily present in the

MPI_Irecv call arguments (see Figure 3.7, where the 4th argument of the MPI_Irecv call, which

indicates the source of the message, is −1).

3.4 Characterization Results

In this section we illustrate PISA’s capability to enable multiple types of ILP analysis that are

useful for understanding system performance bottlenecks. Moreover, we show how PISA can

be used to also understand application memory access patterns and branch behavior.

3.4.1 Experimental Setup

We ran our framework for all the characterization metrics presented in Section 3.3. We

used LLVM and clang 3.4, OpenMPI v.1.8.1 and the Intel®OpenMP* runtime library (version

07.2014). As input, we used the Graph 500 benchmark suite [4]. Its problem size is defined

by the scale (s) and edge factor (e) parameters of the input graph. For scale s, the number of

vertices equals 2s , and for edge factor e, the graph has 2s ·e edges. The benchmark implements

two kernels: graph generation using the Kronecker graph generator and BFS. 64 graph nodes

are randomly selected, and for each node, the BFS tree with that node as root is computed.

The BFS step is validated to ensure that the trees generated are correct.

For the remainder of this section, we focus on analyzing the properties of the Graph 500

implementations shown in Table 3.1. Seq-list is a single-threaded list-based implementation,

seq-csr is a single-threaded compressed-sparse-row implementation, while the last two are

parallel implementations using either OpenMP (omp-csr) or MPI (mpi-simple).

Application Implementation type Problem size

SEQ-LIST BFS - sequential s12-15, e16
SEQ-CSR BFS - sequential s12-15, e16
OMP-CSR BFS - OpenMP s12-15, e16
MPI-SIMPLE BFS - MPI s12-15, e16

Table 3.1 – Graph 500 workloads used in PISA experiments.
From [23] ©Springer Science+Business Media New York 2016.

3.4.2 Instruction-Level Parallelism

Figure 3.8 shows the average ILP per instruction type measured on the ideal machine model

described in Section 4.1. The average ILP was measured for the seq-list and seq-csr imple-

mentations of Graph 500 for problem sizes ranging from scale 12 to 15. The ALL category

represents the average ILP aggregated over all types of instructions, whereas the other three

categories represent the average ILP for control, integer and memory (load, store) instructions,

respectively. A category for floating-point instructions is omitted as such instructions occur

42

3.4. Characterization Results

seldom for this particular application. The results show that for the ideal machine model the

Graph 500 implementations (and problem sizes) exhibit a high potential ILP of more than 55,

with a higher ILP exhibited by control instructions (in the 30-40 range) and a moderate ILP

for integer and memory instructions (in the 10-20 range). Furthermore, the two implementa-

tions exhibit similar ILP levels (with slightly higher values —as much as 15%— for the seq-list

implementation), and there is a noticeable trend of ILP to decrease with the problem scale.

20

40

60

80

csr-s12 csr-s13 csr-s14 csr-s15

A
ve

ra
ge

 IL
P

ALL CTRL INT MEMORY

(a) Seq-csr implementation (scales 12-15).

20

40

60

80

list-s12 list-s13 list-s14 list-s15

A
ve

ra
ge

 IL
P

ALL CTRL INT MEMORY

(b) Seq-list implementation (scales 12-15).

Figure 3.8 – ILP —ideal machine model.
From [22], [23].

Current hardware architectures are not able to exploit these high levels of ILP. This is due to

hardware limitations that do not fit the ideal machine model. Among the most important

limiting factors are the control flow constraints and the limited instruction window width. Our

framework is able to take into account such hardware limitations and adjust its analysis.

0.3

0.6

0.9

1.2

1.5

1.8

list-s12 list-s13 list-s14 list-s15

A
ve

ra
ge

 IL
P

ALL CTRL INT MEMORY

(a) CTRL instrs. serialized (seq-list, scales 12-15).

0

2

4

6

8

10

12

8 24 64 128 512 2048

 Instruction window width

A
ve

ra
ge

 IL
P

ALL CTRL INT MEMORY

(b) Limited instruction window (seq-list, scale 15).

Figure 3.9 – ILP —ideal machine with hardware constraints.
From [22], [23].

Figure 3.9a shows how the average ILP changes when imposing a control-flow constraint on

43

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

the ideal machine model, as defined in the BASE machine model in [87] which executes control

instructions in order and at most one such instruction per cycle. We see that the average

ILP has decreased considerably, falling below 2 (30 times lower) for the aggregated (ALL) ILP

and below 0.5 for the integer and memory instructions. This is because the span increases

considerably as a result of the serialization of the control instructions.

If we alternatively adjust the framework to take into account the limited instruction window

size, we obtain the results shown in Figure 3.9b for seq-list scale 15. Similar results were

obtained for the other scales and implementation. While not as extreme as in the case of

control-flow constraints, a significant reduction in ILP of more than 6x for an instruction

window width of 128 occurs also in this case.

While so far we have shown ILP results for sequential applications, our framework can also

analyze parallel applications. We analyzed the ILP variability across the threads of the OpenMP

implementation (omp-csr run with 8 threads or omp-8t) and across the processes of the MPI-

simple implementation (mpi-simple run with 8 processes or mpi-8p), both analyzed for a

graph scale of 15. The ILP was measured on the ideal machine with no hardware constraints.

The results presented in Figure 3.10 show that there is a high variability across threads in ILP

levels, with a standard deviation of 163 around a mean of 297 for the omp-csr implementation.

262
297.4

56.9 64.1

0

100

200

300

400

mpi−8p omp−8t seq−csr seq−list

IL
P

 p
er

 th
re

ad
 o

r
pr

oc
es

s

Figure 3.10 – Average ILP across Graph 500 algorithms (ideal machine - no hardware
constraints). From [22], [23].

This variability can be explained by the stochastic nature of three sections of the application:

(i) the graph generation, (ii) the partitioning across threads, and (iii) the root node selection

for each of the 64 BFS phases, which causes each thread to perform different amounts of total

work. Moreover, a large percentage of this variability is also due to the master thread, which

performs a different set of tasks from all the other threads. If we restrict the analysis to just the

worker threads, then the variability is smaller, with, e.g., a standard deviation of 100 around

a mean of 254 for the same omp-csr implementation. Similar results have been obtained

for the other scales and MPI implementation. It is also interesting to note that the parallel

implementations exhibit higher ILP potential than the sequential ones.

We have also analyzed the ILP variability for the OpenMP implementation run with 2 (omp-2t),

4 (omp-4t) and 8 (omp-8t) threads and the MPI-simple implementation run with 2 (mpi-2p), 4

(mpi-4p) and 8 (mpi-8p) processes on the ideal machine with a limited instruction window

44

3.4. Characterization Results

14.2 13.7 13.1

10.4 10.7 10.9

0

5

10

15

mpi−2t mpi−4t mpi−8t omp−2t omp−4t omp−8t

IL
P

 p
er

 th
re

ad
 o

r
pr

oc
es

s

Figure 3.11 – Average ILP across Graph 500 algorithms (ideal machine - window size 54).
From [23] ©Springer Science+Business Media New York 2016.

size (Fig. 3.11). For a realistic instruction window size of 54, the ILP variability across threads

or processes and the ILP itself are at least one order of magnitude lower than in the case of

an ideal machine with no hardware constraints. We also notice a decreasing ILP trend with

the number of processes for the MPI implementation and an increasing ILP trend with the

number of threads for the OpenMP implementation.

3.4.3 Memory Access Patterns

We start by showing results for the temporal memory access pattern of the Graph 500 im-

plementations. Figure 3.12a shows the cumulative data reuse distance distributions for the

seq-list implementation across multiple problem sizes. Figure 3.12b shows the distributions

for seq-list and seq-csr for an exemplary problem size (scale 15).

The way we interpret these reuse distance distributions is the following. For a given reuse

distance value d, the Y-axis represents the probability that between two consecutive accesses

to the same memory address at most d distinct other memory addresses are accessed. This

probability can be used to approximate the cache hit rate of an application run on a processor

with a cache size of d, assuming least-recently-used cache eviction policy. The distributions

in Figure 3.12a exhibit a similar reuse distance pattern. We note, however, that, as expected,

the cache hit rate of the application decreases as the problem size (the size of the graph)

increases, for all cache sizes. Figure 3.12b shows that seq-csr is slightly more cache-friendly

than seq-list for typical cache sizes (d larger than 212 = 4KB). For a cache size of, e.g., 262K

(218), seq-csr exhibits a cache hit rate of 70%, whereas seq-list exhibits a cache hit rate of 63%.

This is also expected as the seq-csr implementation uses data structures that are more efficient

in accessing the memory than seq-list.

For multi-threaded applications, each application thread has its own data reuse distribution.

To quantify the similarity of the temporal memory access patterns of the threads, we analyzed

the variability of the distributions across the threads of an OpenMP implementation, by

calculating the distance correlation between the distributions of each pair of threads as shown

in Equation 3.4. The distance correlation of two distributions is calculated by dividing their

45

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 25 210 215 220

Reuse distance (d)

P
ro

ba
bi

lit
y

(r
eu

se
 d

is
ta

nc
e

<
 d

)

list−s13 list−s14 list−s15

(a) Seq-list implementation (scales 13-15).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20 25 210 215 220

Reuse distance (d)

P
ro

ba
bi

lit
y

(r
eu

se
 d

is
ta

nc
e

<
 d

)

csr−s15 list−s15

(b) Seq-csr and seq-list implementations (scale 15).

Figure 3.12 – Data reuse distance distributions.
From [23] ©Springer Science+Business Media New York 2016.

distance covariance by the product of their distance standard deviations and takes values

∈ [0,1]. The higher the distance correlation, the more similar the two distributions are.

dCor(X ,Y) =
dCov(X ,Y)

p
dVar(X) ·dVar(Y)

(3.4)

By applying the correlation metric, we found that there are two classes of threads, master and

workers. The worker (non-master) threads exhibit very similar reuse distance distribution

patterns. Indeed, the average correlation factor between pairs of such threads is 0.99, with a

standard deviation of less than 0.9%. The master thread, in contrast, exhibits a fairly different

distribution as the correlation factor between that distribution and that of any of the worker

threads is only 0.33, with a standard deviation lower than 1%.

The temporal reuse distance distributions presented so far provide information only about the

temporal memory access pattern of an application. They can be used to estimate the cache

hit rate of an application run on caches with given size and line size.

To quantify also the spatial locality of an application, we generated locality heat-maps as

described in Section 3.3.3. Before showing the locality heat-maps for the Graph 500 implemen-

tations, we first show-case the value of our heat-maps, by implementing a proof-of-concept

algorithm that clearly exhibits spatial locality. We call this algorithm customized random access.

We designed the algorithm as shown in Listing 3.1, where v is a vector of N = 100 elements.

Every t +1 = 15+1 = 16 memory accesses the same vector element address is referenced.

m = 3000; N = 100; d = 10; t = 15;

for(int j = 0; j < m; j++){

int increment = 0, sum = 0;

46

3.4. Characterization Results

for(int k = 0; k < t; k++){

int random = ((double) rand())/(RAND_MAX +1E-6)

var(k) = random *(N-d);

sum = sum + v[var(k)];

}

for(int k = 0; k < t; k++)

sum = sum + v[var(k)+d+increment ++];}

Listing 3.1 – Algorithm with spatial memory locality (customized random access).

Figure 3.13 shows how the locality of this program is represented using two commonly used

approaches and our locality heat-maps.

558450

558500

558550

558600

558650

558700

558750

558800

558850

0 2000 4000 6000 8000 10000

M
e
m

o
ry

 R
e
fe

re
n
c
e
 A

d
d
re

s
s

Memory Reference Index

Memory Reference Pattern

a)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128

P
ro

b
a
b
ili

ty
(R

e
u
s
e
 D

is
ta

n
c
e
 <

 d
)

Distance (d)

Reuse Distance (CDF)

b)

Heat-Map (PDF:PDF)

0 10 20 30 40 50 60 70 80 90 100

Distance (number of bytes)

0

20

40

60

80

100

N
u
m

b
e

r
o
f
a
c
c
e
s
s
e
s

0

0.2

0.4

0.6

0.8

1

A
c
c
e
s
s
 P

ro
b
a
b
il
it
y

c)

Figure 3.13 – Three locality representations for the customized random access algorithm.

47

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

The first scatter representation – Figure 3.13a – shows a set of consecutive memory addresses

accessed over time. This representation fails to capture any locality pattern. On the other

hand, the second plot in Figure 3.13b, the reuse distance cumulative distributions (CDF) as

defined in [134], exposes the temporal locality characteristics, but fails to quantify the spatial

locality. Finally, our proposed spatio-temporal representation – Fig. 3.13c – precisely indicates

that, given a current memory access, there is a significant probability to access a memory

location which is 4 ·10 = 40 bytes away from the current access, in exactly 16 memory accesses

later and that the probabilities of other locality patterns are significantly lower. For this

latter representation, the Y-axis represents the temporal dimension (t) of the newly proposed

metric (in number of consecutive accesses to memory), while the X-axis represents the spatial

component (s) of the metric (in number of bytes). The intensity of a given heat-map "pixel" is

proportional to the value of the p(s,t) metric defined in Subsection 3.3.3.

When the heat-map shows the probability to access a memory address at a distance of exactly

s bytes from the currently accessed memory address in the next exactly t memory references,

we call this representation a PDF:PDF spatio-temporal locality map (probability distribution

function in both spatial and temporal dimensions). Variations of this plot are possible, e.g., the

PDF:CDF heat-map (probability distribution function in the spatial dimension and cumulative

distribution function in the temporal dimension) would show the probability to access a

memory address at a distance of exactly s bytes from the currently accessed memory address in

one of the next t memory references – or the CDF:PDF plot which would show the probability

to access a memory address at a distance of at most s bytes from the currently accessed

memory address in the next exactly t memory references.

Next, we apply the locality heat-map concept to the Graph 500 implementation. Figure 3.14

shows examples of heat-maps for two problem sizes (scales 14 and 15) of the seq-list Graph

500 implementation.

The spatio-temporal memory patterns are similar across the different problem sizes. There is

an area of relatively high locality between -50 and +50 bytes in the spatial dimension and low

locality beyond that (Figure 3.14 shows the [-103,103] interval on the Y axis, but we actually

plotted the heat-map up to [-105,105]). This means that there is a rather high probability that,

given a memory access, a memory access at a distance [-50,50] in space from the current

access will be accessed in the near future. Moreover, on the temporal axis, there is rather little

variability for a fixed spatial distance s, which means that there is roughly the same probability

to access a memory location again at any number of accesses in the future. The reuse distance

chart in Figure 3.12 can be used to draw the same conclusion, because the slope of the reuse

distance cumulative distribution function is approximately constant between 210 and 216, but

only for s = 0. The locality heat-map representation generalizes conclusions we can draw

about the temporal characteristics to the entire s (spatial) space.

Before moving to the next PISA characterization metric, we briefly discuss the use cases of the

locality heat-maps presented in this chapter. The locality method has potentially multi-fold

48

3.4. Characterization Results

(a) Seq-list implementation (scale 14). (b) Seq-list implementation (scale 15).

Figure 3.14 – Memory access patterns - Locality heat-maps.
From [22], [23].

applicability for system design. For example, when needing to reach a certain design goal, it is

often the case that there is a choice to be made between either different applications to achieve

that goal, different implementations of the same application or even different compiler or

runtime optimizations for a given implementation. Our visualization technique allows us to

compare these different ways to achieve the goal from a memory-reuse-pattern perspective

and identify the optimal application, implementation or optimization.

Another application of the method lies in the prefetching domain. Our tool shows the memory

access pattern of the application and, thus, helps in determining what type of prefetching

would enhance performance most. Badawy et al. [30] presents an in-depth study of prefetching

techniques and their relative performance on several popular algorithms. If the pattern

is relatively regular hardware-prefetching techniques could be useful to address the CPU-

memory performance gap. Otherwise, if the pattern is irregular, software-prefetching could

be a better solution to hide memory latencies, provided that the system has enough memory

bandwidth. Furthermore, the probability distribution generated by our tool can be interfaced

with a prefetching engine and serve as the basis for that engine’s decisions of when and what

to bring from memory ahead of time.

The locality heat-maps could also be used in the context of distributed systems, where appli-

cations run on several nodes. Indeed, locality can be used to bridge the gap between fast local

processing and slow remote data operations. The memory access distribution can be used to

answer such questions as what the optimum amount of local memory is that would ensure a

certain ratio of local-to-remote processing.

Finally, another potential use case of the locality analysis is to enable memory system design-

49

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

space exploration. The locality distributions could be used in a subsequent offline processing

step to estimate the performance of different memory architectures, including associativi-

ties and replacement policies. In our proposed methodology for full-system performance

evaluation we will, however, use only the temporal reuse distance distribution, assuming

fully associative LRU (Least Recently Used eviction policy) caches. Not only that this method

estimates cache miss rates with reasonable accuracy as shown later in this chapter, but also

allows us to analytically evaluate the cache performance without running simulations. We

have not yet found a fast way of using the heat-map with an analytic cache performance

model. One challenge is how to actually use the Markovian representation of the heat-map in

combination with a probabilistic cache performance model and what assumptions to make

about the independence of subsequent memory accesses. We think that even if we find a good

inter-memory-address independence assumption, the analytic model would be computa-

tionally demanding, which would convert the analysis in a simulator that would reduce the

desired exploration speed of our system design methodology.

3.4.4 Branch Entropy

Figure 3.15 shows the branch misprediction rate results based on the branch entropy as

measured by PISA for the two Graph 500 sequential implementations for scale 15. PISA’s

estimated misprediction rate improves with increasing information on past branch behavior

(given by the history size).

0

10

20

30

40

0 5 10 15 20 25 30
History size [bits]

E
nt

ro
py

−
ba

se
d

 m
is

pr
ed

ic
tio

n
ra

te
 [%

]

csr−s15

list−s15

Figure 3.15 – PISA-based Graph 500 global branch entropy.
From [23] ©Springer Science+Business Media New York 2016.

As expected, for low history sizes, the branch misprediction rate is very high (just below 50%).

As we assume the branch predictor to have access to more history, the misprediction rate drops

steeply and stabilizes at approximately 1%. The figure also shows that increasing the history

size beyond 12 only brings minor benefits. There are differences between the two Graph 500

implementations, particularly for small history sizes. However, once the misprediction rate

stabilizes, the difference is very small.

Given a certain branch predictor design that we would like to evaluate, we can plug in that

50

3.5. Comparison with Real Systems

specific branch predictor history size in PISA and obtain an estimate for the expected branch

misprediction rate from the curve. Conversely, should our goal be to find the best predictor

design for an application, PISA allows us to answer questions such as: what is the best achiev-

able misprediction rate for an application or up to what size does it make sense to increase

the predictor resources to achieve that best rate.

3.5 Comparison with Real Systems

In this section we compare the application characteristics extracted by PISA with the same

characteristics measured on real systems. When executing an application on a particular

architecture, due to specifics related to the back-end compiler and ISA among others, the

characteristics we measure will be different from those extracted by PISA to a larger or smaller

extent. We perform this comparison precisely to quantify this difference. We show comparison

results for the instruction mix, the L1 data cache hit rate, as estimated by the reuse distance

distribution, and the branch misprediction rate, as estimated by the branch entropy, obtained

with PISA vs. real profiling data obtained on two systems.

All the applications have been compiled with the -O3 -fno-slp-vectorize -fno-vectorize

optimization flags. We have performed the measurements on two systems: (1) E5-2690 Sandy

Bridge processor (64-bit architecture, 160 integer register file size, 144 floating-point register

file size, issue width of 6, cache line size of 64 bytes, L1 data cache size of 32K, L1 instruction

cache size of 32K, L2 cache size of 256K and L3 cache size of 20M) and (2) 8286-42A POWER8

processor (64-bit architecture, issue width of 10, cache line size of 128 bytes, L1 data cache

size of 64K, L1 instruction cache size of 32K, L2 cache size of 512K and L3 cache size of 8M).

To decide whether to instrument in addition to the applications the external libraries that they

use, we have profiled the execution on the POWER8 machine using oprofile and monitored the

processor performance counters to estimate the proportion of external library instructions.

The results showed that the proportion is on average 1.33% across the SPEC CPU2006 and

Graph 500 seq-list and seq-csr applications (85% of which are spent in the libc library).

We considered this percentage small enough for PISA to only analyze the application’s own

instructions.

3.5.1 Instruction Mix

Figure 3.16 shows how the Graph 500 instruction mix extracted with PISA compares with its

corresponding instruction mix measured on an x86 Sandy Bridge and a POWER8. To profile

the instruction mix, on x86, we used MICA [72], a PIN-based tool and, on POWER8, we used

operf to monitor the hardware performance counters. The instruction mix consists of the

proportion of occurrences of each instruction type (loads, stores, control, floating-point and

integer) relative to the total number of instructions.

51

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

csr−s12 csr−s13 csr−s14 csr−s15 list−s12 list−s13 list−s14 list−s15

0

25

50

75

100

P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86

In
st

ru
ct

io
n

m
ix

 [%
]

loads stores integer floating−point control

Figure 3.16 – Graph 500 instruction mix - POWER8 and x86 vs. PISA.
From [23] ©Springer Science+Business Media New York 2016.

429.mcf 445.gobmk 450.soplex 453.povray 456.hmmer 458.sjeng 462.libquantum 464.h264ref 482.sphinx3

0

25

50

75

100

P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86 P8 PISA x86

In
st

ru
ct

io
n

m
ix

 [%
]

loads stores integer floating−point control

Figure 3.17 – SPEC CPU2006 instruction mix - POWER8 and x86 vs. PISA.
From [23] ©Springer Science+Business Media New York 2016.

To compare PISA’s results with the real profiling measurements, we use the root mean square

error (RMSE) between proportions across instruction types. For the two Graph 500 sequential

implementations, PISA extracts the instruction mix with high accuracy when compared with

both processor architectures. The RMSE for the different problem sizes of seq-csr is below 2.5

percentage points vs. P8 and below 6.2 percentage points vs. x86, while for seq-list it does

not exceed 1.4 percentage points vs. P8 and 4.2 percentage points vs. x86. One interesting

observation is that the instruction mix of these particular applications is relatively independent

of the problem size and PISA is able to capture this characteristic.

The main source of error pertains to the memory instructions category which is underesti-

mated on the PISA side. This result can be explained by the fact that our characterization

assumes an ideal processor model with an unlimited number of registers. In reality, the

number of registers is limited and registers can spill resulting in an increase of the number

of memory instructions. Moreover, the accuracy is lower for the x86 processor than for P8.

This can be explained by the fact that LLVM IR is a RISC-like instruction set, thus, closer to P8,

whereas x86 uses a CISC instruction set architecture.

To understand how PISA performs on a broader set of benchmarks, we show in Figure 3.17 the

instruction mix results for multiple SPEC CPU2006 benchmarks. In contrast to the Graph 500

52

3.5. Comparison with Real Systems

results, here we see a higher degree of variability of the characterization accuracy. Although

the average RMSE vs. P8 across the benchmarks is 7.5 percentage points, we have benchmarks

for which the RMSE is as low as 3.9 percentage points (429.mcf) and benchmarks for which

the RMSE is as high as 14.8 percentage points (458.sjeng). Similarly for x86, we see an average

RMSE across the benchmarks of 11 percentage points, but with individual values between 6.6

(462.libquantum) and 15.7 (445.gobmk) percentage points.

Although the accuracy is lower than in the case of Graph 500, we should also note that the

SPEC CPU2006 benchmarks exhibit much higher differences between different processor

architectures than Graph 500 does. Indeed, whereas with Graph 500 the RMSE between

architectures is on average 5 percentage points, the RMSE for SPEC CPU2006 is on average

11 percentage points. PISA being architecture-agnostic, it cannot possibly exhibit an error

far smaller than the spread an application exhibits between architectures. Strengthening this

conclusion is the fact that the applications where PISA has a lower accuracy (e.g., 458.sjeng,

445.gobmk) are precisely the applications that show the largest spread between architectures.

3.5.2 Level-1 Cache Hit Rate

Figure 3.18 shows how the Graph 500 L1 cache hit rate, modeled with PISA using the data

reuse distribution, compares with its corresponding L1 cache hit rate measured on a POWER8

(L1 cache size of 64KB, L1 data cache line size of 128 bytes). To profile the L1 cache hit rate

we used the perf tool to monitor the total number of load and store instruction misses. We

performed the same study on x86 using the same profiling tool. As the results are similar to

POWER8, for brevity we only show here the POWER8 vs. PISA comparison.

csr−s12 csr−s13 csr−s14 csr−s15 list−s12 list−s13 list−s14 list−s15

0

25

50

75

100

PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8

L1
 c

ac
he

 h
it

ra
te

 [%
]

Figure 3.18 – Graph 500 L1 cache hit rate - PISA vs. POWER8.
From [23] ©Springer Science+Business Media New York 2016.

The estimated vs. measured RMSE across these Graph 500 implementations and problem

sizes is 12 percentage points. While slightly high, this is a reasonable result considering that

PISA is oblivious to the micro-architectural cache details and only takes into account the cache

size and cache line size. Furthermore, even small variations in the hit rate of the application,

e.g., as a consequence of changing the problem size, are correctly reflected in the estimations

PISA provides. For example, we notice that the L1 cache hit rate of Graph 500 on POWER8

decreases with larger problem sizes for both seq-csr and seq-list and PISA is able to capture

this specific characteristic of the application. Finally, when we extend the study to a broader

53

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

429.mcf 445.gobmk 450.soplex 453.povray 456.hmmer 458.sjeng 462.libquantum 464.h264ref 482.sphinx3

0

25

50

75

100

PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8 PISA P8

L1
 c

ac
he

 h
it

ra
te

 [%
]

Figure 3.19 – SPEC CPU2006 L1 cache hit rate - PISA vs. POWER8.
From [23] ©Springer Science+Business Media New York 2016.

range of applications (SPEC CPU2006 – Figure 3.19) we conclude that outside of Graph 500,

the precision of the PISA estimates is actually significantly higher: the RMSE across these

SPEC CPU2006 benchmarks is only 2.8 percentage points.

We also analyzed the LLC hit rates, but we did not see much variability between the applica-

tions. We have measured the LLC hit rates by monitoring four perf performance events on the

POWER8 machine: LLC-store-misses, LLC-load-misses, LLC-loads and LLC-stores. The hit

rates obtained were between 97% (for 429.mcf) and approx. 99% (for the others). PISA reports

similar LLC hit rates, between 97% (for 429.mcf) and 99.99%.

3.5.3 Branch Misprediction Rate

The global branch misprediction rate estimated by PISA using the branch entropy analysis is

generally an optimistic estimator for the real misprediction rate [132]. Indeed, this analysis

quantifies the performance of an ideal branch predictor, that is, a predictor that knows in

advance, before the application is run, all the sequences of a given length of branch outcomes

and their corresponding probability of occurrence.

csr−s12 csr−s13 csr−s14 csr−s15 list−s12 list−s13 list−s14 list−s15

0.00

0.01

0.02

0.03

0.04

PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86

B
ra

nc
h

 m
is

pr
ed

ic
tio

n
ra

te
 [%

]

Figure 3.20 – Graph 500 branch misprediction rate - PISA vs. x86.

Figure 3.20 shows the comparison between the branch misprediction rate estimated with

PISA, for a global-history size of 32, which corresponds to the size of the global buffer on an

x86 Sandy Bridge processor [63], and the real measurement on x86 for Graph 500. The real

measurements were obtained using the perf tool version 3.2 which collects information about

the branch misses. The figure shows that as the problem size increases, the misprediction rate

slowly decreases, e.g., for seq-csr the real misprediction rate decreases from 2.58% to 2.37%

54

3.5. Comparison with Real Systems

429.mcf 445.gobmk 450.soplex 453.povray 456.hmmer 458.sjeng 462.libquantum 464.h264ref 482.sphinx3

0.00

0.02

0.04

0.06

PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86 PISA x86

B
ra

nc
h

 m
is

pr
ed

ic
tio

n
ra

te
 [%

]

Figure 3.21 – SPEC CPU2006 branch misprediction rate - PISA vs. x86.

when increasing the problem size from scale 12 to scale 15. PISA’s estimate also exhibits a

decrease albeit a less pronounced one (from 1.11% to 1.09% in the same seq-csr case). Across

implementations, the same figure shows that the seq-list version of Graph 500 exhibits a higher

misprediction rate than the seq-csr version (e.g., for scale 15, seq-csr has a misprediction rate

of 2% vs. 3.7% for seq-list), which is also captured by PISA, once a slightly lower amplitude (1%

vs 1.7% for the same scale-15 case).

Figure 3.21 shows the same analysis results for SPEC benchmarks. Even when looking at this

broader range of applications, we notice that PISA generally provides an optimistic estimator of

the branch misprediction rate and is equally able to identify the best and worse performing ap-

plications from this perspective. Indeed, PISA estimates that 429.mcf, 445.gobmk and 458.sjeng

will experience a significantly higher misprediction rate than the rest, and, conversely, that

462.libquantum will experience a much lower misprediction rate.

To quantify to what extent misprediction rate trends across applications and input problem

sizes are captured by PISA, we trained a linear regression model having the x86/P8 mispre-

diction rate as the response variable and the PISA estimate as the predictor variable. Across

the SPEC CPU2006 benchmarks, the R-squared of this model has a value of 0.77 (x86) and

0.76 (P8), respectively, which indicates a reasonably good linear correlation. As future work

we are planning to improve the branch entropy model by looking at the entropy based on

local-history sizes and by considering additional metrics that characterize the branch behavior

of an application.

3.5.4 Communication Patterns

Figure 3.22 shows the communication pattern extracted with PISA for a representative single

BFS computation of the MPI-simple implementation of the Graph 500 benchmark, for scale

20, edge factor 64 and 64 concurrent processes.

The figure first indicates that the communication pattern of this benchmark is uniform all-to-

all, as expected from the measurements we performed on the same application run on the

MareNostrum supercomputing system (see Subsection 2.5).

Moreover, the same figure shows that the average total amount of data exchanged between two

55

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

Figure 3.22 – Representative single BFS computation for scale 20, edge factor 64 and 64
concurrent processes. Figure (a) illustrates the traffic matrix between the processes and
suggests that data exchanges are approximately uniformly distributed between all possible
(source,destination) pairs. Figure (b) shows the actual distribution of (source,destination)
pairs communication volumes across possible data amounts. The volumes are distributed
approximately Gaussian around a mean of 554 KB with a standard deviation of only 8.1% and
a slight positive skew.

communicating MPI processes is 554 KB with a standard deviation of 8.1%. We also calculated

(not shown in the figure) the average message size of the communication exchanges. For the

same problem size and number of processes we obtained an average message size of 4 KB

with no variability (zero standard deviation).

Finally, we compare the PISA communication pattern results with the pattern measured

on the MareNostrum supercomputing system for the same problem size and number of

processes (the measurements shown in Figure 2.5). The comparison shows that PISA slightly

overestimates the total amount of data exchanged per pair of communicating processes by 8%

and the average message size by 6.6%. This can be explained by the inherent variability of the

Graph 500 of the graph generation phase and the allocation to the MPI nodes.

3.6 Related Work

Caparros [43] gives a top-level overview of a workload analysis framework based on the

LLVM interpreter which is no longer supported by the compiler community. Although we

share the same characterization objectives, the solution proposed in [43] is limited to single-

threaded applications, and it is incompatible with basic programming-languages constructs,

e.g., functions that take as argument a pointer to another function. Moreover, the interpreter

does not allow access to the real memory addresses accessed by the program, thus, limiting

the workload analysis opportunities.

56

3.6. Related Work

Shao et al. [116] propose an architecture-independent analysis framework based on the

IDJIT intermediate representation (IR) form as an alternative to the LLVM IR code. The

proposed framework measures the application’s instruction mix as well as the memory and

branch entropies. Once analyzed, the high-level IDJIT bytecode is translated into LLVM IR

and the LLVM compilation is triggered to generate the executable binary. The IDJIT-based

solution is shown to be compatible with single-thread implementations only. To the best

of our knowledge, there is no IDJIT-based solution functional for parallel OpenMP and MPI

workloads. As our target is to model large-scale systems, we need to extract software properties

from parallel applications, which is precisely what PISA allows us to achieve. Moreover,

many available benchmarks for HPC systems are implemented in Fortran [33]. The IDJIT-

based solution is, however, not compatible with Fortran code. Finally, even if an IDJIT-based

solution would be available for analyzing OpenMP and MPI code, including Fortran, instead

of using IDJIT as an additional IR form and processing step in the LLVM compilation process,

we directly instrument and then analyze the LLVM IR code at application run-time. The

advantages presented in [116] of the IDJIT IR over the LLVM IR are actually automatically

handled in our proposal by the LLVM mem2reg optimization.

Hoste et al. [72] introduce an ATOM/Pin-based [93] workload instrumentation and analysis

tool. The analysis results, however, depend on the hardware architecture and ISA on which

the analysis was performed. Unlike ATOM/Pin, which instruments an already generated

machine binary, we instrument and analyze the LLVM IR code, which is a higher-level code

representation that does not suffer from, e.g., machine-dependent calling conventions or

register spilling, as found in a machine-specific binary.

Our work can also be compared with existing research in the field of Graph 500 profiling

and characterization. Previous research on this topic is limited to empirical profiling data

of the MPI implementations. Jose et al. [79], Suzumura et al. [124] and Anghel et al. [21]

evaluate the performance of the Graph 500 parallel implementations and report profiling

results for computation and communication times. To our knowledge, our work is the first to

propose a characterization of the hardware-agnostic compute properties of this benchmark,

instruction-level parallelism and memory-access properties.

Regarding our proposed memory locality approach, the data locality properties of programs

have been extensively studied in the context of both memory design and code optimization.

Beyond qualitative descriptions provided in computer architecture books [68], different local-

ity characterization metrics have been proposed in literature. In terms of temporal locality,

Changwoo et al. [48] introduce reference distance as the total number of references between

accesses to the same data. Beyls et al. [36] show that this metric cannot exactly predict cache

behavior for fully associative caches, but the reuse distance or stack reuse distance [58] can.

This metric is defined as the number of distinct data elements accessed between two consecu-

tive references to the same element. We use this metric to measure with PISA the temporal

memory reuse pattern of the application.

57

Chapter 3. PISA: A Hardware-Agnostic Software Characterization Framework

In terms of spatial locality, the previous related work has attempted to quantify it via mainly

scalar metrics that allow for easy ordering or clustering of applications in locality classes. This

has been done for example by using some form of reduction function to aggregate distances

between consecutive or close to consecutive memory accesses [130] or by looking at locality

from the perspective of the efficiency of cache line usage [101]. This related work, however,

tends to treat the spatial and temporal dimensions of locality as orthogonal to each other,

and, thus, only offer a pair of unidimensional, often even scalar views on the way applications

handle data accesses. With our proposed locality heat-maps we generalize these concepts

and quantify accurately the entire two-dimensional spatio-temporal locality characteristic

of a program. This approach has the drawback of replacing a small set of values with a

locality signature for each application, thus, making it difficult to, e.g., categorize applications

in classes of locality patterns. However, it offers a more complete view of the application

properties, allowing for increased optimization potential, either via memory system or cache

design or via ahead-of-time pre-fetching strategies.

Looking at the broader context, PISA will be used as a workload-model generator for a set of

analytic hardware models for performance evaluation, as shown in the next chapter. Thus,

the combination of PISA with analytic models can also be compared with other performance

evaluation approaches, ranging from theoretical performance models [117, 54] to system

simulators and emulators, e.g., COTSon [25], MARSSx86 [105], or Graphite [35]. The latter

are capable of generating high-accuracy performance estimates, incurring, however, a high

evaluation overhead, while the former produce estimates rapidly, but fail to capture details

of application behavior as the application is modeled abstractly. We aim to provide a middle

ground between the two, by complementing purely analytic performance models with a

detailed hardware-independent application model extracted by PISA. We show how PISA

performs in combination with compute and communication models in Chapters 4 and 5.

3.7 Conclusions

In this chapter we presented a framework for architecture- and ISA-agnostic workload char-

acterization using a novel instrumentation of native application code. Using the Graph 500

benchmark suite as a representative graph analytics code, we have illustrated how our frame-

work can be leveraged to extract application properties relevant for performance evaluation,

such as memory access patterns, branch behavior and instruction-level parallelism.

We showed that the framework is able to capture such properties as (1) the ILP that an appli-

cation exhibits when assuming an ideal machine model; (2) the subsequent reduction of the

exploitable ILP when integrating general hardware constraints, such as limited instruction

window width or control flow restriction; 3) detailed spatio-temporal data locality patterns

that generalize the traditional reuse-distance analysis; 4) the variability of the potential for

instruction-level parallelism across threads or processes of parallel applications; and 5) the

branch behavior of an application.

58

3.7. Conclusions

Furthermore, we compared PISA’s results with real measurements on two processors using

Graph 500 and SPEC CPU2006 benchmarks. The results indicate that PISA extracts the instruc-

tion mix of an application with high accuracy for RISC-like ISAs such as the POWER8 ISA and

with reasonable accuracy for x86. Moreover, PISA’s data reuse distribution estimates with good

accuracy the L1 cache hit rate for the SPEC CPU2006 benchmarks when compared with both

x86 and POWER8 processors. Furthermore, PISA generally provides an optimistic estimate

for the branch misprediction rate and its branch-entropy-based predictions exhibit a high

correlation with real measurements across applications.

We believe that such a framework is a key tool in enabling efficient and high-quality application

characterization as well as easy comparison of the suitability of different systems for arbitrary

workloads. In the next chapter, we will describe different applications of PISA to processor

performance modeling.

59

4 Analytic Processor Modeling Using

Hardware-Agnostic Software Profiles

In this chapter we present how hardware-agnostic software profiles, such as PISA’s, can enable

processor performance modeling. We show how software properties such as instruction mix,

instruction-level parallelism, data and instruction memory reuse patterns can be used with

analytic models to estimate the processor core performance. We load the software properties

extracted with PISA into two state-of-the-art analytic approaches and we validate the estimates

with performance measurements performed on real systems. To the best of our knowledge,

we contribute with the first analysis of the accuracy of the combination of analytic processor

performance models with hardware- and ISA-agnostic software profiles.

We also analyze in detail the modeling of one processor core component, the branch predictor.

We use PISA to extract a trace of branch decisions during the execution of a program. This trace

is used as input to two methods that characterize the predictability of the branch behavior

of an application. These are the branch entropy [132] and a novel max-outcome branch

prediction method. Our contributions related to branch misprediction modeling are the

following. (1) We investigate how accurately the branch entropy models hardware branch

predictor parameters and describe a method of reverse engineering the global history size of

a branch predictor. (2) We analyze the limitations of branch entropy and propose a method

to derive analytic models of hardware branch prediction. (3) We propose a novel method

for the characterization of application branch behavior which is not only correlated with the

measured branch miss rates, but it is also more accurate than the branch entropy.

4.1 Introduction

Simulations are often used by researchers and designers to study the performance of pro-

cessors. Although they are usually reasonably accurate in predictions, simulations are slow,

especially in the context of large-scale design-space exploration. A single simulation provides

little or no insight into the main hardware-software interactions that occur in a processor. A

large set of slow simulations is normally required to identify trends and dependencies between

the different architectural aspects that impact the performance. In this work, we use PISA as an

61

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

enabler of fast processor performance prediction. In the first part of this chapter, we provide

an overview of how the PISA software properties can be used with existing analytic perfor-

mance and power models. These results are relevant for system designers and researchers to

understand the feasibility of analytic hardware modeling using hardware-agnostic profiles. In

the second part of the chapter, we focus in detail on the modeling of one processor component,

namely the branch predictor.

For the remainder of the thesis, we assume models of superscalar out-of-order processors.

The instructions are fetched from the instruction cache, decoded and dispatched to the issue

queue and the reorder buffer. The issue queue is used for out-of-order scheduling and the

re-order buffer is used for in-order committing of the instructions. Instructions with all

data dependencies met are ready for execution and dispatched to a functional unit of type

corresponding to the type of the instructions. For example, the load/store instructions are

dispatched to the load/store units or the floating-point instructions are dispatched to the

floating-point units. Moreover, each processor has private L1 and L2 caches, while the L3

cache is shared across multiple cores. We also assume that the processor is attached to a main

memory DRAM.

For in-order processors, such as the PowerPC A2 of Blue Gene supercomputers, we use the

same models slightly adapted to the in-order core architecture. For example, on the software

side, we measure from the instruction flow an in-order ILP instead of out-of-order ILP. Also,

on the hardware side, the reorder buffer does not exist in in-order processors, thus, we remove

the performance models or constraints related to this processor buffer.

The structure of this chapter is the following. In Sections 4.2 and 4.3 we analyze the accuracy

of using platform-agnostic software profiles with analytic processor performance and power

models. We continue in Section 4.4 with an in-depth study on how to analytically model

branch prediction in a processor. We present related work in Section 4.5 and conclude in

Section 4.6.

4.2 Processor Performance Modeling

The processor core performance can be expressed in instructions per second, d or in cycles

per instruction (CPI), c. One can be converted to the other via the clock operating frequency

fcore: d = fcore

c
. The CPI performance is impacted by multiple machine events that may occur

during program execution, such as instruction executions, data or instruction cache misses or

branch mispredictions.

Stanley-Marbell [123] proposes a mechanistic performance model for superscalar out-of-

order processors that quantifies the CPI penalty effect of these machine events independently.

Jongerius et al. [77, 76] present an alternative processor performance model that also includes

the effect on performance of the interaction of the different machine events. Both models

in [123] and [77, 76] are inspired from a mechanistic model presented in [59]. In this section,

62

4.2. Processor Performance Modeling

we briefly explain how hardware-agnostic application properties can be used with the two

compute models presented in [123] and [77, 76].

4.2.1 Overview of Independent Modeling of CPU Events

The processor model in this chapter is based on the model presented in [123]. The machine

events covered by [123] are instruction executions, instruction stalls, data stalls and branch

mispredictions. We will show in this chapter how to use PISA profiles to model the performance

of these events. It is worth mentioning that [123] also models memory bandwidth limitations

that we do not cover in this chapter. In the following, c i will refer to the penalty in cycles that

every event incurs on average.

The instruction executions are determined from the application’s scalar instruction mix and

average ILP per instruction type against the core architectural issue-width and functional-unit

count. The issue-width is the maximum number of instructions that can be issued during the

same cycle. The instruction mix and the average ILP per instruction are calculated with PISA

(see Subsection 3.3).

The ILP that can be exploited for each instruction type depends on both the inherent ap-

plication ILP and the number of available execution units. Thus, the exploitable ILP can

be expressed as n̂type = mintype(ntype, ILPtype), where ntype is the number of functional units

for a given instruction type and ILPtype is the ILP of the application for that particular type

of instructions. The type can be either integer (INT), floating-point (FP), control (CTRL), or

memory (MEM).

To determine the exploited ILP we use an additional model to the ILP model in [123]. If the

number of available functional units for a given type ntype bounds the exploited ILP for that

type, the overall application performance will degrade due to resource contention. The overall

ILP exploited by the application is bounded in this case by the maximum slowdown of any

individual type, S = maxtype(ILPtype

n̂type). Additionally, the overall ILP cannot be larger than the

core issue width. Thus, the overall ILP can be modeled as n̂ = min
(

nissue-width,
∑

type
ILPtype

S

)

. In

summary, the time penalty incurred by the instruction execution events cexecutions is:

cexecutions =
1

n̂
. (4.1)

The next machine events that we model with PISA profiles are the data stalls. The performance

of a processor is impacted by the cycles required to complete the memory access instructions.

Indeed, memory access latencies and finite bandwidths introduce stalls in the execution of

the instruction stream. We model the data stalls by considering fully-associative caches with

least-recently used (LRU) eviction policy and by ignoring hardware prefetchers.

We use PISA to extract the temporal data reuse distribution of an application (see Subsec-

tion 3.3.3). The spatial-temporal locality heat-maps presented in the same Subsection 3.3.3

63

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

would be a more complete characterization of the application memory access pattern. How-

ever, our initial cache performance models that use the heat-map as input were too slow

for the desired capacity of our full-system performance prediction methodology. Therefore,

for the data stalls, we only use the temporal data reuse distribution. However, as shown in

Subsection 3.5, this property allows modeling the cache miss rate with reasonable accuracy.

To model the cache misses we use the application data reuse distribution with hardware

parameters, such as the cache size and the cache line size. More precisely, the fraction of

memory operations that request cache lines with a reuse distance larger than the number of

lines that fit the cache, is assumed to incur a cache miss event. Indeed the cache size is smaller

than the cache line size multiplied with the reuse distance of that cache line. We formalize

this model for the L1 data-cache as shown in Equation 4.2:

cL1d-stalls = T core-L2 ·F MEM · f miss(Dd-reuse, M d-L1,Ld-L1gran), (4.2)

where f miss() calculates the fraction of misses from the data reuse distribution Dd-reuse for

an L1 data cache size of M d-L1 and a cache line size of Ld-L1gran. F MEM is the fraction of

instructions that perform a memory operation. Thus, F MEM · f miss(Dd-reuse, M d-L1,Ld-L1gran)

represents the fraction of instructions that result in an L1 data cache miss. To quantify the

time penalty in cycles for an L1 data cache miss, we multiply the cache misses with the

core-to-L2-cache latency, T core-L2.

Similarly, we calculate the data cache miss rates for the L2 and L3 caches. For the L3 cache

misses, the DRAM access latency is modeled similarly to [59]. Instruction dispatch will not

stop immediately when an L3 cache miss occurs, but will continue until the reorder buffer is

filled. The DRAM latency is reduced by the latency to fill the reorder buffer which is modeled

as the length of the reorder buffer divided by the overall exploited ILP n̂. In summary, the time

penalty incurred by the data stalls on the core performance is modeled as:

cd-stalls = cL1d-stalls + cL2d-stalls + cL3d-stalls. (4.3)

Memory instructions that hit the L1 cache will also incur a time penalty that is related to the

time required to access L1. This effect is modeled similarly to data cache misses as:

cd-hits = T core-L1 ·F MEM ·
(

1− f miss(Dd-reuse, M d-L1,Ld-L1gran)
)

. (4.4)

The next machine events that we model are the instruction stalls. We consider two effects:

instruction cache misses and branch misprediction penalties. The instruction misses are

calculated similarly to the data cache misses. Indeed, PISA extracts not only a temporal data

reuse distribution, but also a temporal reuse distribution of the instructions. Equation 4.5

shows the model for the instruction cache misses, where D i-reuse is the application’s instruction-

cache reuse distribution and T core-L2 is the time penalty in cycles to access the L2 instruction

64

4.2. Processor Performance Modeling

cache (usually the same as the latency of accessing the L2 data cache).

cL1i-stalls = T core-L2 · f miss(D i-reuse, M i-L1,Li-L1gran). (4.5)

The branch misprediction penalty is modeled as suggested in [60], as the front-end pipeline

refill time. This penalty is the time valid instructions take to enter the instruction window after

a branch misprediction. For this model we set the misprediction rate to a typical value of the

tournament predictors of 3% [68], the same for all applications. Given the fraction of control

instructions in the application’s code F CTRL and the front-end pipeline depth nfront-pipe, the

branch misprediction penalty is modeled as:

cbranch = F CTRL ·nfront-pipe ·F misprediction. (4.6)

The summation of the penalties of the individual machine events above represents the base

core performance (CPI) model.

c = cexecutions + cd-stalls + cd-hits + cL1i-stalls + cbranch (4.7)

4.2.2 Independent Modeling: Single-Core Performance Results

This section presents performance results for a subset of the SPEC CPU2006 [122] and Graph

500 [4] benchmarks. We analyzed the applications as presented in Chapter 3, using PISA. For

characterization, we used LLVM version 3.4 and the compiler optimization of -O3. From the

SPEC CPU2006 benchmark set, we selected C and C++ benchmarks and run them with test

data sets. For Graph 500, we executed the sequential list-based (SEQ-LIST) and the sequen-

tial compressed-sparse-row (SEQ-CSR) implementations with four different workload sizes,

namely for scale values 12, 13, 14 and 15 and edge factor 16. An overview of the benchmarks

and their input data sets is listed in Table 4.1.

The analyzed workload sizes are limited by the additional run-time overhead incurred by

the PISA instrumentation and, therefore, are typically small with execution times that do not

exceed 10 seconds when run without PISA instrumentation. On the other hand, we had to

characterize each application only once as the application-specific parameters generated

by the analysis are architecture-independent. To increase the accuracy of the performance

results, instead of running PISA with no hardware restrictions for the ILP analysis and with byte

memory access granularity for the data reuse distribution, we fixed the instruction window

size for the ILP calculation to 54 and the cache line size to 64, values of the corresponding

parameters of the processors used for measurement.

We validate the core performance estimated with the previously described analytic model

against application performance measured on an actual hardware platform, an Intel®Xeon®E5-

2697 v3 Haswell-EP. The values of the hardware parameters used in the analytic models are

65

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

Benchmark Domain Input data set

SPEC CPU2006

429.MCF Combinatorial optimization test
445.GOBMK Artificial intelligence test
450.SOPLEX Linear programming test
453.POVRAY Ray-tracing test
456.HMMER DNA pattern search test (-num 10000)
458.SJENG Artificial intelligence test (8 - 9)
462.LIBQUANTUM Physics (quantum computing) 144
464.H264REF Video compression test (5 frames)
482.SPHINX3 Speech recognition test
Graph 500

SEQ-LIST Graph analytics (BFS) s12-15, e16
SEQ-CSR Graph analytics (BFS) s12-15, e16

Table 4.1 – SPEC CPU2006 and Graph 500 applications used in the experiments.

shown in Table 4.2. To measure the performance (the number of cycles and the number of

instructions) on the Xeon processor we used perf, version 3.2.

Figures 4.1 and 4.2 show the comparison between the PISA-based performance estimates

obtained with the analytic processor model and measurements on the Xeon processor for

the CPI metric and for the execution time (in cycles), respectively. The execution times are

obtained by multiplying the CPI with the instruction count. In the case of the model, the

instruction count is the total number of instructions measured with PISA, thus, LLVM IR

instructions, whereas, in the case of the measurement, the instruction count is the total

number of assembly instructions measured with perf.

For the CPI metric, we estimate performance with a mean absolute percentage error (MAPE) of

126%, whereas for the time we estimate with a MAPE of 45%. We also analyzed the correlation

between the model estimates and the measurements across the applications. We obtained

a correlation factor of 0.95 for CPI and of 0.84 for execution time (in cycles). These results

indicate that the model, even though it has a rather large error rate on the CPI metric, preserves

with reasonable accuracy the relative differences in performance across applications.

The errors of the analytic model can be attributed to multiple sources. First, some machine

events such as the integer and floating-point unit stalls are not modeled. The load/store

unit stalls are underestimated. The processor model assumes that each functional unit has

unit latency and that its results are immediately available to the next instruction. In practice,

operations can take several cycles, increasing the average CPI due to dependency stalls. For

the load/store unit, the model partially models this effect by calculating the delay due to L1

accesses. However, the data cache misses are overestimated, because the model assumes that

load/store operations that cause a cache miss fully serialize, while in practice independent

memory operations may overlap, effectively reducing the delay. There are sources of error also

66

4.2. Processor Performance Modeling

Parameter Description Xeon E5-2697

ncores Cores per socket 14
fcore Core clock frequency 2.6 GHz
nissue-width Issue width 8
nINT # integer units 4
nFP # floating-point units 2
nMEM # load/store units 2
nCTRL # branch units 2
nfront-pipe Front-end pipeline depth 7
nROB Reorder buffer capacity 192
M d-L1 Data L1 cache size 32 KB
M d-L2 Data L2 cache size 256 KB
M d-L3 Data L3 cache size 32 MB
M i-L1 Instruction L1 cache size 32 KB
Ld-L1gran Data L1 cache line size 64 bytes
Ld-L2gran Data L2 cache line size 64 bytes
Ld-L3gran Data L3 cache line size 64 bytes
Li-L1gran Instruction L1 cache line size 64 bytes
M DRAM DRAM size per socket 32 GB
T core-L1 Data L1 access latency 4 cycles
T core-L2 Data L2 access latency 12 cycles
T core-L3 Data L3 access latency 36 cycles
T core-DRAM DRAM access latency 217 cycles
B DRAM DRAM bandwidth 59.7 GB/s

Table 4.2 – Values for hardware parameters of Intel®Xeon®E5-2697 v3 Haswell-EP [74].

on the software characterization side. For instance, the instruction mix as already shown in

Chapter 3 can be different from the actual instruction mix run on the hardware.

4.2.3 Overview of Modeling of CPU Events and Event Interactions

Jongerius et al. [77, 76] propose an analytic model for processor-core performance that cap-

tures the interactions between machine events. In contrast to the previous model, which

assumes the different stall components to be independent of each other, the model proposed

in [77, 76] also considers the interactions between event types where a delay in one place

causes additional contention in another. More precisely, the approach models the effect on

performance of full pipeline stalls. For example, whenever a long-penalty instruction occurs,

such as an L3 cache access, the issue queue will fill with instructions that have dependencies

on the long-penalty instruction.

The performance is expressed, as in the previous processor modeling case, in cycles per

instruction (CPI, c) or instructions per cycle (IPC, c−1). The model accounts for different

constraints related to the software-inherent bottlenecks and the hardware resources available

67

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

0

1

2

3

42
9.

m
cf

44
5.

go
bm

k

45
0.

so
ple

x

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

48
2.

sp
hin

x3

g5
00

−s
eq

−c
sr

−s
12

g5
00

−s
eq

−c
sr

−s
13

g5
00

−s
eq

−c
sr

−s
14

g5
00

−s
eq

−c
sr

−s
15

g5
00

−s
eq

−li
st−

s1
2

g5
00

−s
eq

−li
st−

s1
3

g5
00

−s
eq

−li
st−

s1
4

g5
00

−s
eq

−li
st−

s1
5

C
yc

le
s

pe
r

in
st

ru
ct

io
n

(C
P

I)

model measurement

Figure 4.1 – Single-core CPI performance results: model vs. measurements on Xeon.

0

10000

20000

30000

42
9.

m
cf

44
5.

go
bm

k

45
0.

so
ple

x

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

48
2.

sp
hin

x3

g5
00

−s
eq

−c
sr

−s
12

g5
00

−s
eq

−c
sr

−s
13

g5
00

−s
eq

−c
sr

−s
14

g5
00

−s
eq

−c
sr

−s
15

g5
00

−s
eq

−li
st−

s1
2

g5
00

−s
eq

−li
st−

s1
3

g5
00

−s
eq

−li
st−

s1
4

g5
00

−s
eq

−li
st−

s1
5

T
im

e
(M

cy
cl

es
)

model measurement

Figure 4.2 – Single-core execution times: model vs. real measurements on Xeon.

at the core level. All the constraints are solved through a linear-programming solver that finds

the maximum attainable core performance. A detailed explanation of how the PISA software

properties are used with all the model constraints is out of the scope of this chapter. However,

we present a couple of examples of how the model uses part of the software properties.

We measure the fraction of instructions of each type F type executed by the application using

PISA, where type can be control (CTRL), memory (MEM), integer (INT) and floating-point

(FP). The issue rate of instructions is limited by the number of functional units ntype of that

type provided by the hardware architecture. In this case, a first set of constraints is defined as

c−1 ·F type ≤ ntype for each type of instructions.

Another constraint is imposed by the inherent ILP of the application. Indeed, the number of

instructions in flight at the same time cannot be larger than the overall ILP of the application.

68

4.2. Processor Performance Modeling

This can be formalized as follows: c−1·
∑

event F event·T event ≤ ILP, where c−1·
∑

event F event·T event

represents the average number of events occurring at the same time and T event the latency

of an event. An event represents a cache access (L1, L2, L3), a DRAM access, an integer

multiplication/division, or a floating-point multiplication/division. For the fraction of events

F event per instruction for the integer and floating-point multiplications and division events, we

use the instruction mix extracted with PISA. We also use PISA to characterize the overall ILP of

the application. The fractions of cache misses at different levels of the memory hierarchy are

determined based on the temporal reuse distance distributions as exemplified in Section 3.4.3

and Subsection 4.2.1. The reuse distribution paired with the hardware parameters such as the

cache size gives the hit rate on a particular cache hierarchy (assuming fully-associative caches

with LRU eviction policy and no hardware prefetchers).

The same constraint can actually be used to model bounds derived from the application-

inherent ILP per type, namely c−1 ·
∑

eventtype
F eventtype ·T eventtype ≤ ILPtype. This captures the

constraint on ILP between instructions of the same type, while the previous model captures the

constraint on ILP between instructions of different types. Jongerius et al. [77, 76] propose more

such constraints related to full pipeline stalls, memory bandwidth contention and branch

mispredictions. The branch misprediction constraint uses application-specific misprediction

estimates based either on branch entropy or other metrics as shown in Section 4.4.

4.2.4 Event-Interaction Modeling: Single-Core Performance Results

This section presents performance results for a subset of the SPEC CPU2006 [122] and Graph

500 [4] benchmarks as shown in Table 4.1. We first analyzed the applications as presented

in Chapter 3, using our LLVM-based characterization framework PISA. For characteriza-

tion, we used LLVM version 3.4 and the compiler optimization of -O3 -fno-slp-vectorize

-fno-vectorize.

We validate the core performance estimated with the model in [77, 76] against application

performance measured on an actual hardware platform, an Intel®Xeon®E5-2697 v3 Haswell-

EP. The values of the hardware parameters used in the analytic models are shown in Table 4.2.

To measure the performance (the number of cycles and the number of instructions) on the

Xeon processor we used perf, version 3.2.

Figures 4.3 and 4.4 show the comparison between the PISA-based performance estimates

obtained with the analytic processor model and measurements on the Xeon processor for

the CPI metric and for the execution time (in cycles), respectively. The execution times are

obtained by multiplying the CPI with the instruction count. In the case of the model, the

instruction count is the total number of instructions measured with PISA, thus, LLVM IR

instructions, whereas, in the case of the measurement, the instruction count is the total

number of assembly instructions measured with perf.

For the CPI metric, we estimate performance with a MAPE of 24%, whereas for the time we

69

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

0.0

0.5

1.0

1.5

42
9.

m
cf

44
5.

go
bm

k

45
0.

so
ple

x

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

48
2.

sp
hin

x3

g5
00

−s
eq

−c
sr

−s
12

g5
00

−s
eq

−c
sr

−s
13

g5
00

−s
eq

−c
sr

−s
14

g5
00

−s
eq

−c
sr

−s
15

g5
00

−s
eq

−li
st−

s1
2

g5
00

−s
eq

−li
st−

s1
3

g5
00

−s
eq

−li
st−

s1
4

g5
00

−s
eq

−li
st−

s1
5

C
yc

le
s

pe
r

in
st

ru
ct

io
n

(C
P

I)

model measurement

Figure 4.3 – Single-core CPI performance results: model vs. measurements on Xeon.

0

10000

20000

30000

42
9.

m
cf

44
5.

go
bm

k

45
0.

so
ple

x

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

48
2.

sp
hin

x3

g5
00

−s
eq

−c
sr

−s
12

g5
00

−s
eq

−c
sr

−s
13

g5
00

−s
eq

−c
sr

−s
14

g5
00

−s
eq

−c
sr

−s
15

g5
00

−s
eq

−li
st−

s1
2

g5
00

−s
eq

−li
st−

s1
3

g5
00

−s
eq

−li
st−

s1
4

g5
00

−s
eq

−li
st−

s1
5

T
im

e
(M

cy
cl

es
)

model measurement

Figure 4.4 – Single-core execution times: model vs. real measurements on Xeon.

estimate with a MAPE of 34%. We also analyzed the correlation between the model estimates

and the measurements across the applications. We obtained a correlation factor of 0.96 for

CPI and a of 0.97 for execution time (in cycles). These results indicate that the model not only

provides good accuracy, but also accurately preserves the relative differences in performance

across applications. When compared with the previous compute model approach, the current

model performs better in terms of both absolute and relative time predictions (relative across

applications). Thus, for the remainder of the thesis, we will use this model [77, 76] with PISA

profiles for evaluating the performance of a full system.

70

4.3. Processor and DRAM Power Modeling

4.3 Processor and DRAM Power Modeling

The performance models in the previous section capture the dependency of the application

execution time on the hardware properties. We showed how accurately we can use PISA

profiles with compute performance models. In this section we focus on processor and memory

power modeling. To model the processor power consumption we leverage existing tools,

McPAT [91] for processor power and CACTI [126] or MeSAP [108] for main memory (DRAM)

power.

McPAT is an integrated power, area and timing modeling framework that supports design-

space exploration for multi-core processor configurations ranging from 90 nm to 22 nm. The

framework implements a power model of microprocessors, from their micro-architectures

and on-chip interconnect networks, to the influence of CMOS technology trends. The tool in-

cludes core power-consumption (including gate leakage, runtime dynamic power), caches and

peripheral circuitry on core and die levels. The input to McPAT is: (1) application properties,

which can be extracted from the PISA software profile, and (2) information about the processor

performance that can be analytically calculated with the compute models introduced in the

previous section. McPAT does not provide power estimates for DRAM memories.

For DRAM power consumption modeling, we use CACTI or MeSAP. CACTI is an integrated

cache and memory access time, cycle time, area, leakage, and dynamic power model. By

integrating all these models together, CACTI users can perform trade-off analysis between

time, power, and area. MeSAP [108] is an analytic memory power model also for DRAM

memories. MeSAP provides more accurate predictions than CACTI. Both CACTI and MeSAP

can be used with PISA profiles and processor performance models to estimate the power

consumption of DRAM memories.

4.3.1 Processor Power McPAT Modeling Overview

McPAT is configured using XML-files that include information about both the hardware

parameters and the application properties. Examples of such hardware parameters are shown

in Table 4.2 (e.g., number of functional units per type, number of cores, number of hardware

threads, technology node, clock frequency rate, issue width, reorder buffer size). Examples of

software-related properties are the total number of instructions per type, the total number of

branch mispredictions and the total number of execution cycles. The latter is derived from

the processor core performance model used with PISA.

McPAT returns power numbers for the core with private caches P core, the L3 data cache

P L3-memory and the network on-chip P on-chip-network. Given these power estimates, we model

the processor power consumption as shown in Equation 4.8.

P processor = ncores ·P core +P L3-memory +P on-chip-memory +P glu, (4.8)

71

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

where ncores is the number of processor cores, P core includes not only the core power, but

also that of the private L1 and L2 caches and P glu represents the power consumption of the

peripheral circuits at the processor level.

4.3.2 DRAM Power CACTI Modeling Overview

Like McPAT, CACTI uses as input information about both the hardware and the software

properties. The static DRAM power is calculated as the number of dies (the total memory size

divided by the capacity of a DRAM memory) multiplied with the number of memory banks

and the leakage power per bank. These are all hardware parameters. The dynamic DRAM

power, however, depends also on software properties. Indeed, the dynamic power is calculated

as the number of reads per second multiplied with the energy per read operation plus the

number of writes per second multiplied with the energy per write operation. While the energy

per read/write operation are hardware parameters, the number of read/write operations per

second is calculated using the load/store instruction mix, the total number of instructions

extracted with PISA and the compute throughput derived from the processor performance

model (Equation 4.7).

The number of DRAM reads per second is modeled as:

Loads

Loads+Stores
·

fcore

c
·F MEM · f miss(Dd-reuse,M d-L3,Ld-L3gran), (4.9)

where F MEM · f miss(Dd-reuse,M d-L3,Ld-L3gran is the fraction of memory instructions that miss

the L3 cache. This is derived from the temporal reuse distance distribution as explained for

Equation 4.2. The number of DRAM writes is modeled similarly as:

Stores

Loads+Stores
·

fcore

c
·F MEM · f miss(Dd-reuse,M d-L3,Ld-L3gran). (4.10)

4.3.3 DRAM Power MeSAP Modeling Overview

Poddar et al. [108] proposes a DRAM model as a more accurate alternative to CACTI. Indeed,

it is shown that MeSAP achieves a 26% error rate for the power consumption of the STREAM

benchmark on a DDR4 memory, whereas the popular CACTI achieves an error rate of 165%.

Moreover, MeSAP is two orders of magnitude faster than trace-based approaches and has a

MAPE of approximately 20% for SPEC CPU2006 and Graph 500 benchmarks when used with

the performance model in Subsection 4.2.3.

Like McPAT and CACTI, the MeSAP analytic model takes as input both hardware and software

properties. Examples of hardware properties are the core clock frequency, the number of

DIMMs in a system, the number of ranks in a DIMM, the size of a rank, the number of memory

chips per rank and parameters specific of the memory chip, such as the refresh cycle, the

memory type and size or the operating currents. On the software side, the properties are the

72

4.3. Processor and DRAM Power Modeling

number of bytes read and written from and to DRAM and the number of execution cycles of

the application. The latter is actually the result of using the software profiles with hardware

performance models such as those presented in the previous section.

4.3.4 McPAT-CACTI Modeling: Single-Core Power Results

We present power validation results for McPAT+CACTI tools using the performance model

presented in Subsection 4.2.1. We measured the power consumption on two architectures: an

IBM PowerLinux-7R2 (POWER7+) and an Intel®Xeon®E5-2697 v2. On the POWER7+ system,

we used the AMESTER tool [90] to measure power consumption of both the CPU package and

the DRAM. The software allowed us to remotely collect power data at 1 ms resolution for core

and DRAM memory sensors. On the Xeon system, we use the RAPL (running average power

limit) feature and read out the model-specific registers (MSRs) to measure power consumption.

Power saving and Intel TurboBoost technologies where switched off during measurements.

Table 4.3 gives the hardware parameters passed to McPAT.

Parameter Description POWER7+ Xeon

Lnode Technology node 32 nm 22 nm
ncores Cores per socket 8 12
nthreads Number of hardware threads 4 2
nsockets Sockets per card 2 2
fcore Core clock frequency 3.6 GHz 2.7 GHz
nINT # integer units 4 3
nFP # floating-point units 4 2
nMEM # load/store units 2 2
nCTRL # branch units 1 1
nfront-pipe Front-end pipeline depth 9 7
nROB Reorder buffer capacity 120 168
M d-L1 L1 cache size 32 KB 32 KB
M d-L2 L2 cache size 256 KB 256 KB
M d-L3 L3 cache size 80 MB 30 MB
M DRAM DRAM size 64 GB 64 GB
T core-L1 Data L1 access latency 2 cycles 4 cycles
T core-L2 Data L2 access latency 8 cycles 12 cycles
T core-L3 Data L3 access latency 17 cycles 18 cycles
T core-DRAM DRAM access latency 375 cycles 187 cycles
B L1-L2 L1-L2 memory bandwidth 256 GBs 80 GBs
B L2-L3 L2-L3 memory bandwidth 512 GBs 80 GBs
B L3-DRAM L3-DRAM memory bandwidth 100 GBs 59.7 GBs

Table 4.3 – Power-model parameters, representing an IBM PowerLinux-7R2 (POWER7+) system
and an Intel®Xeon®E5-2697 v2 (Ivy Bridge-EP). (The POWER7+ L3 bandwidth and latency
values are for the non-local adaptive victim L3 [135, 73].)

Results are shown in Figure 4.5a for SPEC CPU2006 and Figure 4.5b for Graph 500. Note that

73

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

429.mcf

Model

429.mcf

Real

445.gobmk

Model

445.gobmk

Real

450.soplex

Model

450.soplex

Real

453.povray

Model

453.povray

Real

456.hmmer

Model

456.hmmer

Real

458.sjeng

Model

458.sjeng

Real

462.libquant

Model

462.libquant

Real

464.h264ref

Model

464.h264ref

Real

482.sphinx3

Model

482.sphinx3

Real

0

10

20

30

40

50

60

70

80

90

100

110

P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

]

Core Power DRAM Power

(a) SPEC CPU2006

seq-csr-s12

Model

seq-csr-s12

Real

seq-csr-s13

Model

seq-csr-s13

Real

seq-csr-s14

Model

seq-csr-s14

Real

seq-csr-s15

Model

seq-csr-s15

Real

seq-list-s12

Model

seq-list-s12

Real

seq-list-s13

Model

seq-list-s13

Real

seq-list-s14

Model

seq-list-s14

Real

seq-list-s15

Model

seq-list-s15

Real

0

10

20

30

40

50

60

70

80

90

100

110

P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon P7 Xeon

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 [
W

]

Core Power DRAM Power

(b) Graph 500

Figure 4.5 – Power models validation: model estimates versus real measurements of IBM
PowerLinux-7R2 and Xeon-E5.

the IBM POWER7+ is an earlier generation than the Intel®Xeon®and the two follow very

different design targets with respect to energy efficiency and performance. The Xeon system

uses a newer technology node and is highly optimized for low energy consumption, while

the POWER7+ system uses an older technology node and is optimized for performance. The

POWER7+ has a larger L3 cache and employs buffer chips between memory controller and

memory DIMMs to increase the size of addressable memory.

For SPEC CPU2006 we estimate power consumption with an average accuracy of 87% for

POWER7+ and 53% for Xeon. The Graph 500 benchmarks show similar results, with an average

accuracy for POWER7+ of 80% and 74% for Xeon. We make two observations in the POWER7+

results. (1) DRAM power is underestimated. This can be attributed to the memory buffer

chips the POWER7+ architecture uses to connect memory controller and memory DIMMs.

CACTI does not model the additional power consumption of these buffer chips. The modeled

and measured power consumption for the Xeon system is more accurate. (2) Even though

the models do not precisely match the real measurements, they correctly predict the ranking

between the two systems.

4.4 Processor Branch Prediction Modeling

In this section, we focus on modeling the performance of one specific processor component,

the branch predictor. A branch predictor predicts the outcome of a conditional branch (and

the branch target address in the case of unconditional branches) in order to improve the flow

74

4.4. Processor Branch Prediction Modeling

in the instruction pipeline. Numerous prediction schemes have been proposed to achieve this

goal [131, 97]. In the case of dynamic branch prediction, essentially a branch predictor learns

from the execution of branches which can be taken or non-taken. Thus, a predictor can adapt

to dynamic changes in branch behavior at application run-time.

Two main ideas that are usually implemented by branch predictors are: (1) a branch outcome

can be correlated with other branches’ outcomes (global branch correlation), and (2) a branch

outcome can be correlated with the last outcomes of the same branch (local branch correla-

tion). Thus, to learn branching outcome patterns, a predictor usually stores the most recent

outcomes, globally for all branches, or locally, per branch, or a combination of the two. These

predictors are called two-level predictors, because they use a global branch history register

(GHR) as first-level and a pattern history table (PHT) indexed by the GHR as second-level. The

GHR can contain global or local branching information. The PHT can be indexed using either

only the history or a combination of history outcomes with branch address bits (global or

per-address indexing). Each combination of GHR and PHT schemes defines a different type of

two-level predictor, e.g., global history and global indexing, global history and per-address

indexing.

In our work, we do not propose a new design for branch predictors. Our target is to quantify the

predictability of branch behaviors in applications in a predictor-independent manner, taking

into account at most two hardware parameters, namely, the history size and the pattern table

size. By doing so, we significantly abstract from the inner-workings of a particular predictor

architecture. Thus, we look for characterization metrics that can quantify how predictable the

branching behavior of an application is and how that metric can be converted to an actual

branch prediction rate. Our performance prediction methodology is enabled by a hardware-

and ISA-agnostic software characterization framework. Therefore, we investigate how to use

PISA to characterize predictability and how to derive an analytic model for predicting the

branch prediction rate of an application on a specific processor.

We start with an overview of the state-of-the-art branch entropy metric [132] and continue

with an in-depth study of how accurately branch entropy models the history size parameter of

the hardware predictor on current processors. The branch entropy does not take into account

the size of the pattern tables, but only the history size. We also introduce the first method to

reverse engineer the history size of the hardware predictor by analyzing the linear correlation

between the measurements of branch misprediction rate and the branch entropy estimates.

We also provide a first study about the limitations of branch entropy and propose an approach

to derive analytic models of the performance of branch predictors.

As an alternative to branch entropy, we propose a more intuitive method for calculating

the predictability of application branch behavior. We call this the max-outcome prediction

method, because the method relies its estimates on the branch outcome that occurs most of

the time. We show that this method estimates branch miss rate by keeping the same correlation

with real measurements as the branch entropy. However, it increases the accuracy over the

75

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

branch entropy across different application from 53% to 70%. In addition, the max-outcome

method easily models not only the history size of a predictor, but also the pattern table size as

hardware parameters. This enables processor and branch predictor designers to perform early

design-space exploration for hardware history and pattern table sizes.

For all real measurements in this section we used the Sandy Bridge processor, because the

global history size of its branch predictor (32) is publicly available information [63].

4.4.1 Branch Entropy Overview

In the context of application characterization, the entropy is a metric often used to measure

the variability of memory addresses accessed during the execution of a program. The concept

has also been used in the context of characterizing the application branch behavior [132]. We

use this branch entropy concept to study how to analytically model the performance of branch

predictors.

Let S be a source of information generating a limited set of symbols. The sequences xi

of length-n generated by S follow a certain discrete probability distribution p over a finite

population π= {xi }, i ∈ {1,2...N }, where N is the number of distinct sequences of n symbols

generated by S. The entropy E(n) is then defined as:

E(n) =−
∑

i

p(xi) · log2(p(xi)). (4.11)

The extreme cases of predictability using the entropy concept are: (1) perfect predictability,

when the source generates a single sequence which is trivial to predict, ∃ x ∈ P such that p(x) =
1 and p(xi) = 0 ∀xi 6= x, which implies E(n) =− log2(1) = 0, and (2) perfect unpredictability,

when all sequences of symbols are generated with the same probability, thus, difficult to

predict, ∀xi p(xi) = 1
|P | =

1
N

, which implies that E(n) =−
∑N

1
1
N
· log2(1

N
) = log2(N).

The entropy can be leveraged to quantify the predictability of a branch behavior. An appli-

cation can be seen as a source of branch instructions that generate two symbols 1 and 0,

each representing a type of branch outcome, taken or non-taken, respectively. Qualitatively,

the entropy of the next branch outcome given access to the n previous outcomes (history

size) is the entropy of (n +1)-length sequences of S minus the entropy of n-length sequences.

Thus, given a history size n, the branch entropy is defined as BE(n) = E(n +1)−E(n), where

BE(n) ∈ [0,1] and BE(n) is a monotonically decreasing function with n [132].

To quantify the prediction rate of the outcome of the next branch, given the history of the past

n branch outcomes, we need to convert the branch entropy BE(n) to an actual prediction rate.

The source of branch outcomes S characterized by BE(n) is usually complex, with sequences

that may follow some generation rules and others that may be fully random. To analytically

derive a prediction rate from the branch entropy of such a source is probably not possible.

Instead, we consider a source S with a simplified symbol generation process, but characterized

76

4.4. Processor Branch Prediction Modeling

0.25

0.50

0.75

1.00

0 10 20 30

History size

B
ra

nc
h

en
tr
op

y BE(6)

(a) Branch entropy curve.

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

B
ra

nc
h

en
tr
op

y

min(p,1-p) max(p,1-p)

Branch (Mis)Prediction Rate

(b) Branch entropy to (mis)prediction conversion.

Figure 4.6 – Branch (mis)prediction rate derived from branch entropy.

by the same BE(n) as the one for our original source. We assume this source to generate 1 and

0 symbols following a Bernoulli distribution D(p). The probability to generate 1 is p and the

probability to generate 0 is 1−p. To determine p, we need to solve the equation:

BE(n) =−p · log2(p)− (1−p) · log2(1−p). (4.12)

We observe that if p1 is a solution of Equation 4.12, then also 1− p1 is a solution. Indeed,

let’s consider that we have a branch entropy for the history size of 6, BE(6) – see Figure 4.6a.

Figure 4.6b shows that for BE(6) the equation has two solutions p1 and p2 = 1−p1. For either of

the two solutions, max(p,1−p) = max(p1,1−p1) = max(p2,1−p2) = max(p1,p2). In summary,

the conversion rule from branch entropy to branch prediction rate is max(p,1−p) and for the

branch misprediction rate is 1−max(p,1−p) = min(p,1−p).

Next, we study how well the misprediction rate corresponding to BE(n) correlates with branch

prediction rates measured on real processors with a global history size of n. Namely, we com-

pare how the misprediction rate corresponding to BE(32) correlates with real measurements

performed on a Sandy Bridge processor. In Subsection 3.3.4 we described what information

PISA extracts to calculate the branch entropy. PISA collects the branch outcomes of instruc-

tions that change the control flow in a program. We use PISA to calculate the branch entropy

and the misprediction rates for a history size of 32 for the SPEC CPU2006 and Graph 500

benchmarks described in Table 4.4.

Given this set of hardware-agnostic entropy-based misprediction estimates, we investigate if

we can find a linear model that predicts the real measurement. We create a prediction model

for the real measurements by ordinary least-square regression, by minimizing the residual sum

of squares, where the residuals are the differences between the measurement and the estimate

calculated with branch entropy. The goodness of the fit, the coefficient of determination, is a

statistical measure that indicates how well the regression line approximates the measurements.

If the coefficient is 1, then the regression line perfectly fits the data. If the coefficient is 0, then

there is no correlation between the two sets of values.

Figure 4.7 shows the linear relationship between the real measurements of branch mispredic-

77

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

Benchmark Domain Input data set

SPEC CPU2006

429.MCF Combinatorial optimization test
445.GOBMK Artificial intelligence test
450.SOPLEX Linear programming test
453.POVRAY Ray-tracing test
456.HMMER DNA pattern search test
458.SJENG Artificial intelligence test
462.LIBQUANTUM Physics (quantum computing) 186
464.H264REF Video compression test (10 frames)
482.SPHINX3 Speech recognition test
Graph 500

SEQ-LIST Graph analytics (BFS) s10-15, e16
SEQ-CSR Graph analytics (BFS) s10-15, e16

Table 4.4 – SPEC CPU2006 and Graph 500 applications used in the experiments.

tion performed on a Sandy Bridge processor with the branch-entropy-related misprediction

estimates for a history size of 32. The linear correlation factor is 0.78 which indicates a reason-

ably good linear correlation.

0.00

0.02

0.04

0.06

0.005 0.010 0.015 0.020 0.025

 Branch−entropy−based misprediction rate (EMPR)

R
ea

l m
is

pr
ed

ic
tio

n
 r

at
e

(R
M

P
R

)

Figure 4.7 – Sandy Bridge real measurements vs. branch-entropy estimates.

4.4.2 Branch Entropy-Based Reverse-Engineering of Hardware Parameters

We obtained a reasonably good correlation between real measurements and branch-entropy

misprediction estimates. There are two possible explanations to obtaining a good correlation.

One is that the model captures the inherent predictability of the branching behavior of the

application. The second is that the model integrates characteristics of the hardware system on

which the application is running, e.g. history size (global or local). Thus, to understand to what

extent the model is able to cover the two aspects, we performed the following experiment.

For each history size from 1 to 48 we built a separate linear model that estimates the measured

branch miss rate from the branch entropy miss rates. Each such linear model has its own

78

4.4. Processor Branch Prediction Modeling

coefficient of correlation that we show in Figure 4.8. The global results assume that the source

of branch outcomes has a single global history without differentiating between branches. The

local results, however, assume that each branch has a local history of the same size. In the

global model, the branch entropy is calculated across all branch outcomes, independently of

the branch. In the local model, we calculate the branch entropy for each individual branch

and the final branch entropy characterizing the source of branches is an average across the

local branch entropies weighted with the frequency of each branch.

0.4

0.6

0.8

0 10 20 30 40 50

 History size

C
or

re
la

tio
n

global
local

Figure 4.8 – Correlation analysis across history sizes for the Sandy Bridge processor.

The experimental results are encouraging. The global model with one of the highest correla-

tions (0.772) is the one that uses the correct hardware parameter value, the global history size

which is 32 for the Sandy Bridge processor [63]. The maximum correlation value was obtained

for a history size of 33, with a correlation of 0.795, 2.9% higher than the correlation obtained

for the real global history rate. As we artificially introduce error into our model by using higher

or lower values for the hardware parameter, the correlation decreases. We conclude that (1)

the branch entropy models the hardware parameter of global history size with reasonable

accuracy, and (2) the method described above can be used to reverse engineer the history

sizes of real branch predictors.

The method was validated not only for Sandy Bridge, but also for POWER processors, for

which, however, we do not show results for confidentiality reasons. For the local model we

could not validate the local history size, because this information is not public. However,

following the results obtained for the global model, if the Sandy Bridge processor would have a

local history size, the size could be the one corresponding to the linear model with the highest

correlation, namely 14.

4.4.3 Branch Entropy Limitations

Although the branch-entropy estimates for branch miss rate correlate reasonably well with

real measurements, we identified a limitation of the branch entropy method, which is a

consequence of the limited trace size. To explain this limitation we perform the following

79

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

0.00

0.25

0.50

0.75

1.00

0 20 40 60

History size

B
ra

nc
h

en
tr

op
y

(a) Random-1M.

0.00

0.25

0.50

0.75

1.00

0 20 40 60

History size

B
ra

nc
h

en
tr

op
y

(b) Random-10M.

Figure 4.9 – Branch entropy for random traces.

experiment. We synthetically generate a trace of branch outcomes using a random generator

of 0 and 1 symbols. We calculate for each trace the branch entropy for different history sizes

from 1 to 64. Figures 4.9a and 4.9b show the global branch entropy results for two random

traces, one with 1 million entries and one with 10 million entries, respectively.

A source with uniform random behavior has a branch entropy of 1. Given that the source of

information used in this experiment is random, we would expect the branch entropy graphs

to show this random behavior regardless of the history size, namely the branch entropy to

constantly be at a value of 1. Instead, the results in the figures show that the branch entropy is

able to capture this randomness only up to a certain global history size, roughly 16 and 20, for

the 1M-trace and the 10M-trace, respectively. Beyond 16 and 20, the branch entropy quickly

drops to a nearly 0-value, which implies that the behavior is highly predictable.

This experiment raises an interesting question: how large the trace size should be so that the

samples in the trace are representative of the probability distribution of the source generating

the trace. It is not clear how to answer this question, as typically the distribution is dependent

on the probability itself, which we do not know.

For example, if p(x) = i for some string x and 0 otherwise, then 1 sample is enough. Otherwise,

if the probability distribution is roughly uniform over all strings, then a minimum of k ·2n

samples are necessary, for some value k, to ensure that each of the possible sequences of

the distribution occurred at least several times in the trace. This implies that the trace size t

should be larger than k ·2n and, thus, the maximum history size for which the branch entropy

is still reliable is n = log2(t)−k.

To determine the value of k we use the random trace experiment. For the 1M-entry random

trace, the history size that still gives a reliable branch entropy of 1 is 16 = ⌈log2(106)⌉ − 3.

For the 10M-entry random trace, the history size that still gives a reliable branch entropy

of 1 is 20 = ⌈log2(107)⌉− 3. Therefore, we decided to use k = 3. We note ˆBEt (n) the most

reliable branch entropy of a history size of n, given the trace size t and ˆBEt (n) corresponds to

n = log2(t)−3.

80

4.4. Processor Branch Prediction Modeling

We can also theoretically show what may happen if too few samples are available in the trace.

Let’s say that p is a uniform probability distribution over 2n sequences of length n and we

sample k sequences, k < 2n . The entropy of the source with the distribution p, as it is uniform

random, is E = n, but as we have only k samples, the entropy of the available samples will be

at most log2(k), probably even lower due to sequences repeating in a uniform sample.

Let’s assume that the branch entropy method is independent of the sample size. Let’s also

assume that the source is uniform random and that the sample size is k = 2m . In this case

E(1) = 1, E(2) = 2 and E(m) = m, where m = log2(k). However, E(m +1) ≤ log2(k) = m and,

thus, E(m +1)−E(m) ≤ m −m = 0. This contradicts the original hypothesis that the source

is random and that the branch entropy is independent of the sample size. Thus, ideally one

should consider that the most reliable branch entropy value of an application with a limited

trace size t is ˆBEt (log2(t)−3). To the best of our knowledge, the analysis presented in this

section is the first to outline such a limitation of the concept of branch entropy.

With the latest outcome of our analysis, to build analytic models of the performance of

branch predictors, one could use a methodology as follows. Let’s assume we have a set of

applications. For each application, we calculate the branch entropy and its corresponding

branch misprediction rate for a history size of log2(t)−3, where t is the size of the application

branch trace. The misprediction rate corresponding to ˆBEt (log2(t)−3) could be used in an

analytic processor performance model to quantify the branch prediction performance.

Alternatively, one could further perform a set of branch misprediction measurements on

existing processors for the same applications. Then we build a linear regression model that

predicts the real measurement from the hardware-independent misprediction rate. This is

a model that could also be used to quantify the misprediction rate in an analytic compute

performance model such as the one presented in [77, 76].

In summary: (1) To quantify the inherent branch predictability of an application with a limited

branch trace size t , the branch entropy should ideally be calculated for a history size of

log2(t)−3 to remove inaccuracies due to limited branch trace size; (2) To quantify the branch

predictability of an application with a limited branch trace size t , for a branch predictor with a

given hardware global history size n, one could use either BE(n) (as shown in our previous

experiments, we obtained a good correlation factor between the real measurements and the

entropy estimates corresponding to a global history size of n) or, ideally, BE(log2(t)−3); (3) To

build a model for a real branch predictor, one could use misprediction rates corresponding to

a branch entropy of history size of either (ideally) log2(t)−3 or n, where n is the global history

size of the real branch predictor and t is the branch trace size of the application.

4.4.4 Branch Predictability Max-Outcome Metric Overview

Two important hardware parameters of a branch predictor are the global history and the

pattern table sizes. The branch entropy metric models with reasonable accuracy the global

81

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

history size, however it does not model the capacity of the pattern table. We introduce an

analytic method that can model both hardware parameters. Our solution could be used for

early design-space exploration of branch predictor architectures. We call this approach the

max-outcome prediction method, because it estimates the prediction rate per pattern based

on the next outcome of the pattern that occurs most of the time.

We consider, as in the case of branch entropy, the branching decisions as a stream of 0 and 1

bits (either global or local per branch decisions). We further consider a fixed history size n,

corresponding to the global or local buffer size of a branch predictor. We also assume that

for a given length-n branching pattern h, the outcome of the next branch corresponds to a

binary stochastic process that outputs 1 with probability p. Then, the best prediction rate we

can then obtain is by predicting the most frequent outcome for each pattern, which gives a

prediction rate of max(p, 1−p). The ideal aspect of this prediction rate estimate derives from

assuming that the most frequent outcome for each history pattern is known from the start.

To estimate p, for every length-n pattern h, we count the number of times it is followed

by a 0 (N0) and the number of times it is followed by a 1 (N1). Then p = N1
N1+N0

and the

ideal prediction rate quantified as max(N1,N0)
(N1+N0) . The calculation of p is similar to the taken

rate metric [47], however, we do not calculate one taken rate per branch instruction, but a

taken probability per history pattern of a given length. A corner case we also consider is that

when the pattern occurs a single time. In that case no prediction power can be expected of

even an ideal predictor. The prediction rate in this case is 0.5. Given the per-history-pattern

prediction rates, the global prediction rate is computed as the average across history patterns,

weighted by the number of occurrences of each pattern. Table 4.5 shows an example of how

the max-outcome method calculates the prediction rates per branching pattern h. The total

prediction rate in this case is 100·0.7+50·0.8+20·0.75+10·0.7
100+50+20+10 = 73%

Pattern h N0 N1 Total Prediction rate

00 70 30 100 70%
01 10 40 50 80%
10 15 5 20 75%
11 3 7 10 70%

Table 4.5 – Example of max-outcome computation (no size limitation on the pattern table).

To account for potentially limited memory available to the predictor (limited pattern table

size), we will make the following assumptions. A predictor can only keep track of at most T

history patterns and their associated probabilities. For all the other patterns, it will treat them

as a single pattern or entry. Thus, for this entry it will estimate a single probability based on

the aggregate N0 and N1 counts. The ideal aspect derives from keeping track of the T most

frequent patterns and knowing them from the start. Table 4.6 shows the same example as

the previous table but for a limited pattern table size of T = 3 entries. In this case, the total

82

4.4. Processor Branch Prediction Modeling

prediction rate will be 100·0.7+50·0.8+30·0.6
100+50+30 = 71%. As expected by limiting the table size, the

prediction rate decreases in comparison with when the table had no limitations on its size.

Pattern h N0 N1 Total Prediction rate

00 70 30 100 70%
01 10 40 50 80%

Rest 18 12 30 60%

Table 4.6 – Example of max-outcome computation (limited pattern table size).

4.4.5 Characterization Results

We performed branch misprediction measurements on a Sandy Bridge processor for the SPEC

CPU2006 and Graph 500 applications in Table 4.4 (we did not include 462.libquantum as both

the entropy and the max-outcome metrics were significantly overestimating the misprediction

rate). We compared these measurements with the hardware-agnostic branch-entropy and max-

outcome miss rates. For the latter, in order to make the comparison with the branch entropy

fair, we take the case when there are no limitations on the pattern table size. The information

about the pattern table sizes is, to the best of our knowledge, not publicly available.

Figure 4.10 shows the correlation results for both the branch entropy and the max-outcome

miss rates. The correlation is calculated across applications between the estimates of a given

branch behavior predictability metric and the real measurements. As branch-entropy-related

metrics, we use the misprediction rate corresponding to the branch entropy calculated for

a history size of 32 (equal to the global history size of the Sandy Bridge branch predictor)

and the misprediction rate corresponding to the most reliable branch entropy, given the

limited branch trace size B̂Et (log2(t)− 3). In the figure we call the latter "branch entropy

(ideal)". Moreover, as alternative metrics for quantifying branch predictability, we use the

max-outcome metric for history sizes of 32 and log2(t)−3, where t is the application trace

size. We call the latter "max-outcome (ideal)". The log2(t)−3 value does not have a specific

meaning for the max-outcome metric, as it does for the branch entropy metric. We simply

present both results to make a fair comparison with the branch entropy values.

0.00

0.25

0.50

0.75

1.00

branch entropy (32) branch entropy (ideal) max−outcome(32) max−outcome(ideal)

 Branch behavior predictability metric

C
or

re
la

tio
n

Figure 4.10 – Branch entropy vs. Max-outcome - Correlation across applications.

83

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

The results in Figure 4.10 show that the max-outcome metric has a high correlation across ap-

plications, similar to branch entropy. Indeed, the max-outcome metric achieves a correlation

factor of 0.86 (for a global history size of 32) and 0.82 (for a global history size of log2(t)−3).

The branch entropy metric exhibits also high correlation across applications, namely, 0.87 (for

a global history size of 32) and 0.84 (for a global history size of log2(t)−3).

0

25

50

75

100

branch entropy (32) branch entropy (ideal) max−outcome(32) max−outcome(ideal)

 Branch behavior predictability metric

A
cc

ur
ac

y
ra

te
 [%

]

Figure 4.11 – Branch entropy vs. Max-outcome - Accuracy rate across applications.

Furthermore, the model error for an application is calculated as |Model−Measurement|
Measurement . Then, we

compute the model accuracy as 1 minus the average error across applications. Figure 4.11

shows the accuracy results for both the branch entropy and max-outcome metrics when

compared with the real measurements.

The branch entropy metric for a history size of 32 exhibits an average accuracy of 53% (with a

maximum accuracy of 92% and a minimum accuracy of 30%). The branch entropy metric for

a history size of log2(t)−3 exhibits a slightly higher average accuracy of 58% (with a maximum

accuracy of 92.7% and a minimum accuracy of 33.8%). The max-outcome metric, however,

shows a higher accuracy of 70% (with a maximum accuracy of 98.5% and a minimum accuracy

of 11%) for a history size of 32 and 0.64 (with a maximum accuracy of 98% and a minimum

accuracy of 33%) for a history size of log2(t)−3. The minimum accuracy of 11% seems to be

an outlier, as the average accuracy across the remaining applications is 78% with a minimum

accuracy of 60% and maximum accuracy of 98.5%.

In conclusion, the max-outcome branch behavior predictability metric is not only able to

preserve a good linear correlation across applications as branch entropy, but it is also more

accurate on average than branch entropy. The max-outcome metric also models not only

the global history size of a branch predictor, but also the table pattern size, thus, allowing

processor designers and researchers to perform design-space exploration of the two hardware

parameters.

84

4.5. Related Work

4.5 Related Work

The work presented in this chapter can be compared with previous (1) approaches that model

processor performance, and (2) branch predictability metrics and modeling of hardware

branch prediction.

4.5.1 Processor Performance Modeling

A wide variety of methods exist in the literature that address the modeling of a processor’s

performance. Many of these methods include processor simulators [27, 45]. Such methods are

usually reasonably accurate in predicting performance, however, they are time-consuming.

With execution-based simulators, no software profiles are required, as applications can simply

be run on the simulation infrastructure. With trace-based simulators, application traces

must be available. For each architectural parameter change, a new simulation is necessary.

In our work, we take the inverse approach. We want to analyze the application once in a

hardware-agnostic manner and then use that profile with a fast analytic model to explore the

performance across different hardware configurations. For our objectives, simulators would

not be a feasible solution, as we aim for fast early design-space exploration of a large number

of hardware design points. This is relevant especially when we want to model large-scale

(exascale) systems.

Processor performance has also been analyzed by using performance data collected via

measurements on existing or simulated processor architectures [89, 61, 96]. In our work, we

aim at decoupling the software properties from hardware performance modeling and combine

them with analytic performance models that describe the interactions between software and

hardware.

The closest related work to our modeling objectives is presented by Van den Steen et al. [57].

They also propose to use an analytic processor model with hardware-architecture-agnostic

software profiles, but only for x86 profiles. They propose as next steps to perform similar

processor performance evaluation using ISA-independent profiles. We tackle precisely this

particular topic. We propose the first analysis of the feasibility of analytically analyzing the

processor performance based on hardware- and ISA-agnostic software profiles.

4.5.2 Branch Predictability Modeling

Regarding branch predictability metrics, Yokota et al. [132] introduce the concept of branch

entropy and investigate the correlation between branch-entropy miss rates and miss rates

obtained via simulations. We use the branch entropy concept to perform multiple further

analyses. First, we analyze the linear correlation between branch-entropy miss rates obtained

from hardware-agnostic branching traces and measurements on real processors and we show

that there is a reasonably good linear correlation between the two. By analyzing the correlation,

85

Chapter 4. Analytic Processor Modeling Using Hardware-Agnostic Software Profiles

we identify the first method to reverse engineer the history size of a hardware predictor. Finally,

we provide a first study about the limitations of branch entropy and propose an approach to

derive analytic models of the performance of branch predictors.

As an alternative to branch entropy, we propose the max-outcome metric that takes into ac-

count not only the history size of a predictor, but also the pattern table size. The max-outcome

metric uses the taken rate metric [47]. The differences are (1) the taken rate is calculated

per history pattern and not per static branch instruction, (2) we define a misprediction rate

per history pattern, and (3) while Chang et al. [47] use the taken rate to classify branches in

application (no branch miss rate modeling), we use the new metric to estimate miss rates.

The max-outcome method has an accuracy of up to 17 percentage points better than branch

entropy when compared with real miss rates.

Joshi et al. [80] use the fraction of taken branches and the fraction of forward-taken branches

in addition to a large set of other software properties to find similarities in benchmarks. De

Pestel et al. [107] propose a metric derived from branch entropy which replaces the non-

linear branch-entropy-to-miss-rate curve in Figure 4.6b with a linear one. They report higher

accuracy results when compared with the estimates based on the original branch entropy

concept.

4.6 Conclusions

In this chapter, we presented the first analysis of how hardware- and ISA-agnostic software

profiles, such as PISA’s, enable processor analytic performance modeling. We showed that by

using PISA profiles with analytic compute models that model the processor events indepen-

dently, we obtain for the execution time metric an average accuracy of 45% across the SPEC

CPU2006 and Graph 500 benchmarks when compared with measurements on real processors.

We also obtain a good correlation factor across the applications for a given hardware architec-

ture of 0.84. When we load the software profiles into analytic compute models that take into

account interactions between the machine events, the results show a higher average accuracy

of 34% and a correlation factor of 0.97.

We also showed that PISA enables modeling of power consumption of processors and mem-

ories, with good accuracies of 80%+ for POWER7+ processors. While the accuracy for the

Xeon processors is lower at only 53% for SPEC CPU2006 and 74% for Graph 500, the models

accurately capture the rankings between the two processors from a power consumption per-

spective. While not as accurate as simulators, the methods presented in this chapter show

encouraging results for using fast analytic compute model to perform early design-space

exploration of large sets of hardware configurations. This is relevant especially in the context

of large-scale (exascale) system modeling.

We also performed a detail analysis of a common characterization metric, the branch entropy.

We showed that there is a good linear correlation between branch-entropy miss rates obtained

86

4.6. Conclusions

from hardware-agnostic branching traces and measurements on current processors. By

analyzing the correlation, we identified the first method to reverse engineer the history size of

a hardware predictor. We also provided a first study about the limitations of branch entropy

and propose an approach to derive analytic models of the performance of branch predictors.

Finally, we introduced the max-outcome branch predictor metric that is able to model not only

the history size of a branch predictor, but also the size of the pattern table. When assuming no

limitations on the pattern table size, the max-outcome out-performs the estimates of branch

miss rates based on branch entropy with up to 17 percentage points.

87

5 Analytic Modeling of Network

Communication Performance

The previous two chapters introduced (i) a hardware-agnostic instrumentation method for

extracting software signatures from multi-threaded and multi-process applications, and (ii)

three use cases of how the software analysis tool can be used to support and evaluate the

performance and power consumption of processors. The compute nodes of a large-scale

system will be connected via an interconnection fabric. The fabric performance depends on

the interaction of a multitude of parameters, such as the network parameters, the application

communication pattern, the routing scheme and the mapping strategy of the MPI processes.

In this chapter, we address the analytic modeling of the performance of network topologies

under specific workload scenarios. We propose a performance analysis method that takes

into account a network specification and a communication pattern to predict the network

effective injection bandwidth. We apply this method to derive analytic models for classes of

applications described by three communication patterns representative of HPC workloads:

uniform, shift and 2-dimensional nearest-neighbor (2D NNE). As network topologies we model

2-level and 3-level fat-trees, 2-dimensional (2D) HyperX, full-mesh and multi-dimensional

tori. We validate the models using high-accuracy network simulators.

5.1 Introduction

System design is the first step towards building a large-scale computer system. To find the op-

timal design, system architects often need to explore a large space of hardware configurations.

Thus, it is important for them to use efficient modeling techniques that analyze the perfor-

mance under many workload scenarios in a timely manner without hardware prototyping

or long-running simulations. In such systems, nodes often exchange data with each other to

proceed with their local computation. This makes the interconnection fabric and the resulting

inter-node communication bandwidth key components that need to be optimized.

Many research studies have analyzed interconnection fabrics by using network simulators [84,

98]. Other approaches have assessed the network performance using linear programming

89

Chapter 5. Analytic Modeling of Network Communication Performance

(LP) formulations which find the maximum flow that can traverse the network fabric given a

specific communication matrix [121]. Network simulations and LP formulations are flexible

and usually generic solutions and can be used in principle to analyze any topology and

workload scenario. However, both approaches are reasonable in time (minutes or hours per

hardware design point) and memory resources only for small network scales [82]. Moreover,

the execution time of a max-flow LP formulation may grow exponentially with the number

of flows traversing the network. This makes such approaches less feasible for analyzing the

performance of large-scale networks, especially within frameworks that aim at performing

design-space exploration for large sets of exascale network design points.

Although not as generic as the previously mentioned approaches, in this chapter, we propose

analytic communication bandwidth models for classes of communication patterns run on net-

work topologies with even millions of nodes. Our objective is to build a set of analytic compute

and communication hardware models that can be used to efficiently evaluate the performance

of large-scale systems. Moreover, if a network system architect has to analyze a large hardware

design space, by using our proposed analytic communication models, the design space can

be rapidly analyzed and reduced to a smaller space with hardware configurations that meet

specific requirements. If necessary, the resulting smaller set of design points can be further

analyzed in more detail using, e.g., simulators or other computationally-intensive (potentially)

more accurate methods.

In Chapter 4 we presented how we can load the PISA characterization results into fast analytic

compute models to estimate the performance of a processor. In the following sections we

will present a methodology to analytically derive the effective bandwidth of an application.

The bandwidth models presented in this section will be used in Chapter 6 to determine the

communication time and, thus, the total application execution time. We analytically model the

effective bandwidth of a parallel MPI application as a function of four software and hardware

parameters that impact the network performance: the application communication pattern,

the network topology, the network routing scheme and the mapping of the MPI processes to

the hardware compute nodes.

1. Communication Patterns. Many HPC applications exhibit an inter-process communication

pattern similar to one of the following: uniform, shift, nearest-neighbor, bit reversal, butterfly,

complement, matrix transpose [84]. The long-term objective of this work is to introduce band-

width models for each of these communication patterns. This would allow fast estimation of

the performance of a network topology under the most common HPC patterns. In this thesis

we will focus on three of these patterns: uniform, shift and 2-dimensional nearest-neighbor.

The bandwidth models for the remaining patterns represent future work.

2. Network Topologies. We focus our analysis on existing network topologies which can also

be used in a later stage to validate the estimated execution time of an MPI application with

real measurements. We model fat-tree, full-mesh, 2D HyperX and torus network topologies.

90

5.2. Network Topologies Overview

Fat-trees are very popular topologies, not only for HPC supercomputing systems, but also for

data-centers [18].

3. Routing Schemes. There are two main routing schemes employed in real systems: direct

and indirect. With direct routing, all packets traverse the network through the shortest path.

With indirect routing, they are sent through indirect paths. More precisely, for each packet,

the routing is performed in two steps: (1) an intermediate node different from the destination

node of the packet is randomly chosen, and the packet is routed to that intermediate node,

and (2) route the packet from the intermediate node to the actual destination of the packet.

Fat-tree and torus systems use shortest-path routing. The full-mesh and 2D HyperX usually

use a combination of shortest-path and indirect routing based on the temporal dynamics of

the network congestion [19]. In this work, we present analytic models for the shortest-path

routing. The analytic modeling of indirect routing and combinations of routing schemes

represents future work. Our bandwidth models do not include the switch congestion, because

this type of congestion is a transient switch state that depends on the temporal dynamics of

the application which we do not include in the current PISA software model.

4. MPI Rank Mapping Strategies. There are research studies that analyze the performance of

different mapping strategies for various communication patterns and network topologies [109].

In this work we focus on linear MPI rank mapping, because this is one of the most frequently

used strategy in practice. For the 2-dimensional nearest neighbor we actually support a wider

set of mapping strategies: we divide the application domain in equal-sized partitions that

fully populate sub-domains of the hardware domain. We describe this mapping strategy in

Section 5.6.

In Section 5.2 we describe the hardware parameters of the network topologies under study. In

Section 5.3 we present the methodology used to estimate the communication bandwidth of a

parallel application. We apply this method to derive bandwidth estimators for the uniform,

shift and 2-dimensional nearest-neighbor communication patterns in Sections 5.4, 5.5 and 5.6,

respectively. We validate the models using high-accuracy network simulations in Section 5.7.

In Section 5.8 we discuss the related work of this chapter and we conclude in Section 5.9.

5.2 Network Topologies Overview

In this section, we describe the types of network topologies whose performance we analyze

under different communication pattern scenarios.

Full-Mesh Topology. The full-mesh topology is described by two hardware parameters a,p.

a represents the total number of switches in the network and p is the number of compute

nodes attached to a switch. A full-mesh topology has the characteristic of each switch being

connected to each of the other switches in the network. Figure 5.1 shows an example of a full-

91

Chapter 5. Analytic Modeling of Network Communication Performance

mesh topology with a = 6. Table 5.1 summarizes the full-mesh-related hardware parameters

taken into account by our methodology.

Figure 5.1 – Full-mesh (a = 6).

Param. Meaning

a no. switches
p no. nodes per switch
b0 node-switch bandwidth
b1 switch-switch bandwidth
l0 node-switch link latency
l1 switch-switch link latency

Table 5.1 – Full-mesh parameters.

Fat-Tree Topology. A fat-tree can be described as a multi-stage tree topology where the

bandwidth of the connections increases towards the root of the tree. The network topologies

modeled in this work belong to the family of extended generalized fat trees (XGFT) [103]

which is a general formalization of fat-trees. This family also includes other popular data-

center interconnection networks, such as k-ary n-trees and slimmed k-ary n-trees. An XGFT

(h;m1,..mh ; w1,..wh) has h +1 levels of nodes divided into leaf nodes and inner nodes. There

are
∏h

i=1 mi leaf nodes occupying level 0 and they serve as end compute nodes. The inner

nodes occupy levels 1 to h and serve as switches. Each non-leaf node on level i has mi child

nodes and each non-root node on level j has w j+1 parent nodes. w0 represents the number

of links through which an end node is connected to an L1 switch. w1 represents the number

of upward links per L1 switch and so on.

Figure 5.2 shows an example of a 2-level XGFT topology with w0 = 2, w1 = 2, m1 = 2 and m2

= 4. Table 5.2 summarizes the hardware parameters of a 2-level XGFT topology taken into

account by our methodology. For a 3-level XGFT, in addition to the parameters in Table 5.2,

the network has 4 more parameters: w2 (the number of upward links per L2 switch), m3 (the

number of downward links per L3 switch), b2 (the switch-switch bandwidth between levels 2

and 3) and l2 (the switch-switch link latency between levels 2 and 3).

Figure 5.2 – 2-level XGFT (2;2,4;2,2).

Param. Meaning

w0 upward links per end node
w1 upward links per L1-switch
m1 downward links per L1-switch
m2 downward links per L2-switch
b0 node-switch bandwidth
b1 switch-switch bandwidth
l0 node-switch link latency
l1 switch-switch link latency

Table 5.2 – 2-level XGFT parameters.

In Figure 5.3 we show a 3-level XGFT with w0 = 2, w1 = 2, w2 = 4, m1 = 2, m2 = 2 and m3 = 2.

This topology is functionally equivalent to the traditional fat-tree in Figure 5.4. At levels 0 and

92

5.2. Network Topologies Overview

1, the traditional fat-tree and the XGFT are identical in structure. Moving up into the tree, in

the XGFT we have single links between connected switches, but a switch can have multiple

next-level switch neighbors. Conversely, in the traditional fat-tree we always have a single next-

level neighbor, but multiple links to it. Indeed, in the traditional fat-tree, every L1 switch has

w1 upward links, all going to its single L2 neighbor. Also, every L2 switch has w1 ·w2 upward

links [103], all going to its single L3 neighbor. In our bandwidth models, given its simplicity

and functional equivalence to XGFTs, we will use the traditional fat-tree representation.

Figure 5.3 – 3-level XGFT (3;2,2,2;2,2,4). Figure 5.4 – 3-level traditional fat-tree.

2-Dimensional HyperX Topology. The N-dimensional HyperX interconnect fabric is a topol-

ogy resulting from the Cartesian product of n fully-connected graphs of switches [16, 37]. The

2D HyperX is a 2-level hierarchical topology. It is described by three hardware parameters

p,d1,d2. p is the number of nodes connected to a switch. d1 and d2 represent the numbers

of switches in the X and Y dimensions, respectively. The switches in the X dimension are

connected via a full-mesh topology. The same applies for the switches in the Y dimension.

Figure 5.5 shows an example of a 2D HyperX topology with d1 = 4 and d2 = 3. Table 5.3

summarizes the hardware parameters of this topology taken into account by our methodology.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

d
1

d
2

Figure 5.5 – 2D HyperX (d1 = 4, d2 = 3).

Param. Meaning

p nodes per switch
d1 switches in dimension 1 (X)
d2 switches in dimension 2 (Y)
b0 node-switch bandwidth
b1 switch-switch bandwidth (X)
b2 switch-switch bandwidth (Y)
l0 node-switch link latency
l1 switch-switch link latency (X)
l2 switch-switch link latency (Y)

Table 5.3 – 2D HyperX parameters.

Torus Topology. The torus topology can be seen as a mesh interconnect with nodes arranged

in arrays of 2 or more dimensions. An N-dimensional torus has n dimensions, each node has

2 ·n neighbors and communication can take place in 2 ·n directions. Such network topologies

have been widely used in BlueGene supercomputers [51, 14]. Figure 5.6 shows an example

93

Chapter 5. Analytic Modeling of Network Communication Performance

of a 2-dimensional (2D) torus with d1 = 4 and d2 = 3. Table 5.4 summarizes the hardware

parameters of a 2D torus taken into account by our methodology.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

d
1

d
2

Figure 5.6 – 2D torus (d1 = 4, d2 = 3).

Param. Meaning

p nodes per switch
d1 switches in dimension 1 (X)
d2 switches in dimension 2 (Y)
b0 node-switch bandwidth
b1 switch-switch bandwidth (X)
b2 switch-switch bandwidth (Y)
l0 node-switch link latency
l1 switch-switch link latency (X)
l2 switch-switch link latency (Y)

Table 5.4 – 2D torus parameters.

5.3 Communication Bandwidth Modeling Methodology

Our end goal is to estimate the communication time of an MPI application in a fast manner.

To achieve this goal we need the amount of data exchanged between any two communicating

pairs of processes and the bandwidth at which the messages are exchanged. Analytically

calculating the node bandwidth for an arbitrary communication pattern is a complex problem

due to the large number of (temporal) system inter-dependencies determining the bandwidth.

HPC applications, however, usually have a regular communication pattern, which we leverage

to derive fast analytic bandwidth models.

Given an MPI application, we first characterize with PISA its communication properties in

a hardware-independent manner, by extracting its communication matrix—the amount of

data exchanged between any pair of processes during the application runtime. Based on this

matrix, we categorize it (when possible) as one of the regular patterns representative of HPC

applications, e.g., uniform, shift, 2-dimensional nearest-neighbor. Then, we estimate the

application bandwidth as the bandwidth of its equivalent regular communication pattern,

making two assumptions: (1) regardless of how many cores an end node has, there is one

single-thread MPI process mapped per node, and (2) the MPI processes of the application

fully populate the system (each node runs one MPI process).

Communication-wise an MPI application is a set of communicating processes. We call the

data transfer occurring between two given processes a flow. For the remainder of this chapter,

whenever we refer to a flow between two compute nodes, we refer to the flow between the two

processes assigned to those nodes. To determine the effective bandwidth of the application

we first determine the bandwidth available to each flow. So, with our method, we provide

bandwidth estimates at two granularities, flow and application. From the latter, one can also

derive a global estimator for the effective bandwidth per node, by dividing the application

bandwidth by the total number of nodes.

94

5.3. Communication Bandwidth Modeling Methodology

We make two assumptions when deriving the per-flow bandwidth models:

1. Fairness of link bandwidth allocation. If multiple flows share the same link, then each

flow receives the same fraction of the available bandwidth. For example, in Figure 5.7

the link L2 is shared by two flows. Each one receives half of the available bandwidth.

2. Maximum bottleneck across traversed links. If a flow traverses multiple links, then the

effective bandwidth seen by the flow is the effective bandwidth achieved on the link

with the highest contention. In Figure 5.7 the green flow between the hosts H2 and H4

traverses three links, L1, L2 and L3. Assuming that all the links have the same physical

bandwidth, the effective bandwidth of the green flow is given by the bandwidth obtained

on the link with the highest contention L2.

H
1

H
2

H
3

H
4

s
1

s
2

L
2

L
3

L
1

Figure 5.7 – Link contention example illustrating the bandwidth modeling assumptions.

We define the effective application bandwidth as the total volume of data transfered through

the network divided by the time necessary to put the data on wire (the wire time) as shown in

Equation 5.1).

B eff
app =

Volumeapp

Timewire
Volumeapp

(5.1)

Once we have derived the bandwidth of each flow we determine the effective application band-

width as follows. The total data volume of the application is the aggregate volume exchanged

across all flows. The time to put this volume of data on wire for the entire application is the

longest such time across the individual flows. For a given flow j the wire time is calculated

as the volume of data of that flow Volume j divided by its effective bandwidth B eff
j

. Thus, the

effective bandwidth of the application is calculated as in Equation 5.2.

B eff
app =

∑

i Volumei

maxj
Volumej

B eff
j

(5.2)

The (average) effective bandwidth per process is calculated as:

B eff
node =

B eff
app

n
(5.3)

where n is the number of nodes (which equals the number of processes) in the system.

As our bandwidth methodology computes the bandwidth of every single flow, it could be used

95

Chapter 5. Analytic Modeling of Network Communication Performance

to provide estimators at multiple granularities: (i) an individual bandwidth for every flow, (ii)

an individual bandwidth for every node, or (iii) one bandwidth value for the entire applica-

tion. However, not all granularities are compatible with the current full-system performance

prediction methodology.

Indeed, as shown in Chapter 6, our full-system prediction method decouples the software

properties from hardware performance modeling and combines the hardware and software

properties of a system through fast analytic models to allow the evaluation of large hardware

design spaces. The software profiler (PISA) extracts compute and communication signatures

from the MPI applications, per MPI process. The extrapolation tool (ExtraX) takes the PISA

software profiles at small scales and extrapolates them to large scales. These two components

of the method (PISA and ExtraX) are decoupled from the hardware modeling.

Before the actual extrapolation, ExtraX first clusters the MPI ranks in classes of processes

with similar compute (instruction mix, instruction-level parallelism, data memory reuse pat-

tern) and communication (total amount of data exchanged) properties. Then, by employing

machine-learning techniques, ExtraX learns from a set of software profiles how the differ-

ent compute and communication properties scale to larger problem sizes. ExtraX uses the

extrapolation model to predict the profiles of the identified classes at target scale.

In order to use the highest bandwidth granularity (per-flow) with the extrapolated profile, our

full-system methodology would need to extrapolate the entire communication matrix (not

only the total amount of data exchanged) which is currently not supported. To use the medium

bandwidth granularity (per process or node), the methodology would need to preserve in the

extrapolation the mapping of processes to the application domain. This is currently supported

by ExtraX, however, our bandwidth models would become exceedingly detailed. Therefore,

for the remainder of the thesis, we will work at the third granularity level and use the single

estimator B eff
node (derived from the effective application bandwidth) as the bandwidth at which

the nodes send data through the network.

5.4 Bandwidth Models: Uniform Communication Pattern

In a parallel application with uniform communication pattern, each MPI process sends data

to each of the other nodes including to itself with the same probability. Each MPI process

generates n data flows, where n is the total number of MPI processes of the application. On

average each of these flows transports the same volume of data V .

5.4.1 Full-Mesh Topology

The total number of compute nodes in a full-mesh topology is a ·p and the number of flows

per compute node in the case of a uniform communication pattern is a ·p. Thus, the total

number of flows generated by the application through the network is (a ·p)2.

96

5.4. Bandwidth Models: Uniform Communication Pattern

We define a flow type as a set of flows sharing the same path characteristics (they traverse the

same kinds of links in the same order). Each flow within a flow type will have the same effective

bandwidth. However, two flow types can potentially have two different effective bandwidths.

For the uniform pattern run on a full-mesh topology we identify two flow types. The first type

includes flows between communicating nodes that are connected to the same switch, whereas

the second type includes flows between nodes connected to different switches.

Flows of the first type send messages through two links: source-switch and switch-destination.

The effective bandwidth of this first flow type is calculated as the minimum between the two

effective bandwidths achieved on each of the links:

B1 = min(Bsource-sw,Bsw-destination). (5.4)

Flows of the second flow type sends the messages through three links: source-switch, switch-

switch and switch-destination. In this case, the effective bandwidth is calculated as:

B2 = min(Bsource-sw,Bsw−sw,Bsw-destination). (5.5)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.6.

B eff
app =

(a ·p)2 ·V
max(V

B1
, V

B2
)
= (a ·p)2 ·min(B1,B2) (5.6)

To calculate B1 and B2 we analyze the contention on the three types of (directional) links:

source-switch, switch-switch and switch-destination. The source-switch link is shared by all

the flows that carry messages sent by the source node to all the other nodes in the network.

Therefore, Bsource-sw is b0
a·p . The switch-destination link is shared by all the flows that carry

messages to the destination node from all the other nodes in the network. Thus, Bsw-destination

is b0
a·p . Consequently, B1 = min(b0

a·p , b0
a·p) = b0

a·p .

Moreover, for any given link connecting two switches, say connecting switch S1 to S2, the

link is traversed only by the flows generated by the p nodes connected to S1 towards the p

nodes of S2. Thus, the switch-to-switch link is shared by p2 flows. Therefore, B2 = min(b0
a·p , b1

p2).

Equation 5.7 shows the model for the effective application bandwidth.

B eff
app = (a ·p)2 ·min(

b0

a ·p
,min(

b0

a ·p
,

b1

p2
)) = a ·p ·min(b0,

b1 ·a

p
) (5.7)

To determine the effective bandwidth per node for the uniform communication pattern, in a

full-mesh topology with shortest-path routing and linear mapping, we use the model shown

in Equation 5.8, where the parameters are explained in Table 5.1.

B eff
node =

B eff
app

a ·p
= min(b0,

b1 ·a

p
) (5.8)

97

Chapter 5. Analytic Modeling of Network Communication Performance

5.4.2 2-Level Fat-Tree Topology

The total number of compute nodes in the 2-level fat-tree topology is m1 ·m2, and, in the case

of the uniform communication pattern, the number of flows per compute node is m1 ·m2.

Thus, the total number of flows generated by the application through the network is (m1 ·m2)2.

For the uniform pattern run on a 2-level fat-tree topology we identify two flow types traversing

the network. The first type includes flows between communicating nodes that are connected

to the same L1 switch (switchL1), whereas the second type includes flows between nodes

connected to different L1 switches.

The flows of the first type send messages through two links: source-switchL1 and switchL1-

destination. The effective bandwidth of this first flow type is calculated as the minimum

between the two effective bandwidths achieved on each of the links:

B1 = min(Bsource−swL1 ,BswL1−destination). (5.9)

The flows of the second flow type send messages through four links: source-switchL1, switchL1-

switchL2, switchL2-switchL1 and switchL1-destination. In this case, the effective bandwidth is

calculated as:

B2 = min(Bsource−swL1 ,BswL1−swL2 ,BswL2−swL1 ,BswL1−destination). (5.10)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.11.

B eff
app =

(m1 ·m2)2 ·V
max(V

B1
, V

B2
)
= (m1 ·m2)2 ·min(B1,B2) (5.11)

To calculate B1 and B2 we analyze the contention on the four types of (directional) links. The

w0 source-switchL1 links are shared by all the flows that carry messages sent by a source

node to all the other nodes in the network. Therefore, Bsource−swL1 is b0·w0
m1·m2

. The w0 switchL1-

destination links are shared by all the flows that carry messages to a destination node from

all the other nodes in the network. Therefore, BswL1−destination is b0·w0
m1·m2

. Consequently, B1 =
min(b0·w0

m1·m2
, b0·w0

m1·m2
) = b0·w0

m1·m2
.

Moreover, the m1 nodes connected to a switchL1 all share the w1 up-links from switchL1 to

switchL2. All these w1 links carry flows from the m1 sources attached to a switchL1 to all the

other m1 ·m2 −m1 nodes in the network. The total number of flows traversing the w1 links is

m1 · (m1 ·m2 −m1) = m2
1 · (m2 −1). Therefore, BswL1−swL2 =

b1·w1

m2
1 ·(m2−1)

.

To determine BswL2−swL1 we perform a similar calculation. Given a destination node d attached

to switchL1, there are m1 ·m2 −m1 flows with destination d that will traverse the switchL2-

switchL1 down-link. As there are m1 nodes attached to switchL1, the total number of flows

traversing the switchL2-switchL1 down-link is m1 ·(m1 ·m2−m1) = m2
1 ·(m2−1). Consequently,

BswL2−swL1 =
b1·w1

m2
1 ·(m2−1)

= BswL1−swL2 and B2 = min(b0·w0
m1·m2

, b1·w1

m2
1 ·(m2−1)

).

98

5.4. Bandwidth Models: Uniform Communication Pattern

Given B1 and B2, the model for the effective application bandwidth in Equation 5.11 is equiva-

lent to the model shown in Equation 5.12.

B eff
app = (m1 ·m2)2 ·min(B1,B2) = m1 ·m2 ·min(b0 ·w0,

b1 ·w1

m1 · (1− 1
m2

)
) (5.12)

To determine the effective bandwidth per node for the uniform communication pattern, in a

2-level fat-tree topology, with shortest-path routing and linear mapping, we use the model

shown in Equation 5.13, where the parameters are explained in Table 5.2.

B eff
node =

B eff
app

m1 ·m2
= min(b0 ·w0,

b1 ·w1

m1 · (1− 1
m2

)
) (5.13)

5.4.3 3-Level Fat-Tree Topology

The total number of compute nodes in the 3-level fat-tree topology is m1 ·m2 ·m3, and, in

the case of the uniform communication pattern, the number of flows per compute node is

m1 ·m2 ·m3. Thus, the total number of flows generated by the application through the network

is (m1 ·m2 ·m3)2.

For the uniform pattern run on a 3-level fat-tree topology we identify three flow types traversing

the network. The first type includes flows between communicating nodes that are connected

to the same L1 switch (switchL1). These flows do not cross the L1 network level. The second

type includes flows between nodes connected to different L1 switches and that do not cross

the L2 level. Finally the third type includes the remaining flows, those that reach the L3 level.

The flows of the first type send messages through two links: source-switchL1 and switchL1-

destination. The effective bandwidth of this first flow type is calculated as the minimum

between the two effective bandwidths achieved on each of the links:

B1 = min(Bsource−swL1 ,BswL1−destination). (5.14)

The flows of the second flow type send the messages through four links: source-switchL1,

switchL1-switchL2, switchL2-switchL1 and switchL1-destination. In this case, the effective

bandwidth is calculated as:

B2 = min(Bsource−swL1 ,BswL1−swL2 ,BswL2−swL1 ,BswL1−destination). (5.15)

The flows of the third flow type send the messages through six links: source-switchL1, switchL1-

switchL2, switchL2-switchL3, switchL3-switchL2, switchL2-switchL1 and switchL1-destination.

In this case, the effective bandwidth is calculated as:

B3 = min(Bsource−swL1 ,BswL1−swL2 ,BswL2−swL3 ,BswL3−swL2 ,BswL2−swL1 ,BswL1−destination). (5.16)

99

Chapter 5. Analytic Modeling of Network Communication Performance

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.17.

B eff
app =

(m1 ·m2 ·m3)2 ·V
max(V

B1
, V

B2
, V

B3
)

= (m1 ·m2 ·m3)2 ·min(B1,B2,B3) (5.17)

To calculate B1, B2 and B3 we analyze the contention on the six types of (directional) links. The

w0 source-switchL1 links are shared by all the flows that carry messages sent by a source node

to all the other nodes in the network. Therefore, Bsource−swL1 is b0·w0
m1·m2·m3

. The w0 switchL1-

destination links are shared by all the flows that carry messages to a destination node from

all the other nodes in the network. Therefore, BswL1−destination is b0·w0
m1·m2·m3

. Consequently,

B1 = min(b0·w0
m1·m2·m3

, b0·w0
m1·m2·m3

) = b0·w0
m1·m2·m3

.

Moreover, the m1 nodes connected to a switchL1 all share the w1 up-links from switchL1 to

switchL2. All these w1 links carry flows from the m1 sources attached to a switchL1 to all the

other m1 ·m2 ·m3−m1 nodes in the network. The total number of flows traversing the w1 links

is m1 · (m1 ·m2 ·m3 −m1) = m2
1 · (m2 ·m3 −1). Therefore, BswL1−swL2 =

b1·w1

m2
1 ·(m2·m3−1)

.

To determine BswL2−swL1 we perform a similar calculation. Given a destination node d attached

to switchL1, there are m1 ·m2 ·m3 −m1 flows with destination d that will traverse the switchL2-

switchL1 down-link. As there are m1 nodes attached to switchL1, the total number of flows

traversing the switchL2-switchL1 down-link is m1 · (m1 · m2 · m3 − m1) = m2
1 · (m2 · m3 − 1).

Consequently, BswL2−swL1 =
b1·w1

m2
1 ·(m2·m3−1)

= BswL1−swL2 and B2 = min(b0·w0
m1·m2·m3

, b1·w1

m2
1 ·(m2·m3−1)

).

We further quantify BswL2−swL3 and BswL3−swL2 .

The w1 ·w2 switchL2-switchL3 up-links are shared by m1 ·m2 · (m1 ·m2 · (m3−1)) flows. Indeed,

each of the m1 ·m2 nodes in a switchL2 sub-tree send flows to all the nodes in the other

switchL2-rooted sub-trees of the network, m1 ·m2 ·(m3−1) nodes. This implies that BswL2−swL3 =
b2·w1·w2

m2
1 ·m

2
2 ·(m3−1)

.

Furthermore, given a switchL2 sub-tree, each of the nodes in the sub-tree (in number of

m1 ·m2) will receive flows on the switchL3-switchL2 w1 down-links from all the other nodes in

the network (in number of m1 ·m2 · (m3 −1)). Thus, BswL3−swL2 =
b2·w1·w2

m2
1 ·m

2
2 ·(m3−1)

= BswL2−swL3 .

Consequently, B3 = min(b0·w0
m1·m2·m3

, b1·w1

m2
1 ·(m2·m3−1)

, b2·w1·w2

m2
1 ·m

2
2 ·(m3−1)

).

Given B1, B2 and B3, the model for the effective application bandwidth shown in Equation 5.17

is equivalent to the model in Equation 5.18.

B eff
app = (m1·m2·m3)2·min(B1,B2,B3) = m1·m2·m3·min(b0·w0,

b1 ·w1

m1 · (1− 1
m2·m3

)
,

b2 ·w1 ·w2

m1 ·m2 · (1− 1
m3

)
)

(5.18)

To determine the effective bandwidth per node under the uniform communication pattern, in

a 3-level fat-tree topology with shortest-path routing and linear mapping, we use the model

100

5.4. Bandwidth Models: Uniform Communication Pattern

shown in Equation 5.19, where the parameters are explained in Table 5.2.

B eff
node =

B eff
app

m1 ·m2 ·m3
= min(b0 ·w0,

b1 ·w1

m1 · (1− 1
m2·m3

)
,

b2 ·w1 ·w2

m1 ·m2 · (1− 1
m3

)
) (5.19)

5.4.4 1-Dimensional Torus Topology

The 1-dimensional (1D) torus is a ring topology. Typically the torus topology implements the

dimension-order routing (first route in the X dimension, second route in the Y dimension,

and so on) with shortest-path within each dimension. As the torus in this section has one

dimension only, the routing scheme is essentially shortest-path in a ring.

If the size of the ring d1 is an even number, then for every switch S there are two paths of equal

length d1
2 to access the switch at d1

2 hops away from switch S. In this case, we will assume that

the flows originating in S with destination nodes attached to the switch at d1
2 hops away from

S are equally distributed between the two paths.

The total number of compute nodes in the 1D torus is p ·d1. The number of flows per compute

node is thus p ·d1 and the total number of flows generated by the application through the

network is (p ·d1)2. For the uniform pattern run on a 1D torus we identify two flow types

that traverse the network. The first type includes flows between communicating nodes that

are connected to the same switch, whereas the second type includes flows between nodes

connected to different switches.

The flows of the first type send messages through two links: source-switch and switch-

destination. The effective bandwidth of the first flow type is calculated as the minimum

between the two effective bandwidths achieved on each of the links:

B1 = min(Bsource-sw,Bsw-destination). (5.20)

The flows of the second type send the messages through at least three links: source-switch,

switch-switch and switch-destination. Depending on the locations of the source and destina-

tion nodes, the flows traverse one or more consecutive switch-switch links. However, due to

the topology and communication pattern symmetries, all the switch-switch links will have

the same flow contention. We use Figure 5.8 to show how we calculate the contention on

a particular switch-switch link. The link switch4-switch0 (the wrap-around link) has been

omitted for simplicity of drawing.

0 1 2 3 4

Figure 5.8 – 1-dimensional torus switch-switch link contention.

Let’s quantify the number of flows traversing the directional link from switch1 to switch2.

101

Chapter 5. Analytic Modeling of Network Communication Performance

The link is traversed by p2 flows from the nodes of switch1 to the nodes of switch2 and by

p2 flows from the nodes of switch0 to the nodes of switch2. In addition, due to the routing

scheme, the p2 flows of switch1 to the nodes of switch3 will also traverse the link from switch1

to switch2. Therefore, in total, the link from switch1 to switch2 will be shared by 3 ·p2 flows.

The same calculation can be performed for any link from switchk to switch(k+1) mod d1 , for any

k ∈ [0,d1 −1] and the result will be the same.

Regardless of how many switch-switch links the flows of the second type traverse, the effective

bandwidth of the second type of flows is calculated as:

B2 = min(Bsource-sw,Bsw−sw,Bsw-destination). (5.21)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.22.

B eff
app =

(p ·d1)2 ·V
max(V

B1
, V

B2
)
= (p ·d1)2 ·min(B1,B2) (5.22)

To calculate B1 and B2 we analyze the contention on the three types of (directional) links. The

source-switch link is shared by all the flows that carry messages sent by a source node to all

the other nodes in the network. Therefore, Bsource-sw is b0
p·d1

. The switch-destination link is

shared by the flows that carry messages to a destination node from all the other nodes in the

network. Thus, Bsw-destination is b0
p·d1

. Consequently, B1 = min(b0
p·d1

, b0
p·d1

) = b0
p·d1

.

We analyze the switch-switch link contention for the two cases when d1 mod 2 = 1 and d1 mod

2 = 0, separately. Due to the topology and communication pattern symmetries, the switchk -

switch(k+1 mod d1) link contention is the same for all values k ∈ [0,d1 − 1]. We quantify the

number of flows that traverse the directional switchk -switch(k+1 mod d1) link.

We calculate the number of flows for the case when d1 mod 2 = 1. The nodes attached to

switchk generate p2 flows to the nodes attached to the next ⌊d1
2 ⌋ switches. Due to shortest-

path routing, all these flows traverse the switchk -switch(k+1 mod d1) link. Similarly the nodes

attached to switch(k−1) mod d1 generate p2 flows to the nodes attached to the next ⌊d1
2 ⌋− 1

switches. These flows also traverse the switchk -switch(k+1 mod d1) link. And so on until a

switchx sends its p2 flows to 1 single switch through the switchk -switch(k+1 mod d1) link.

The total number of flows that traverse the switchk -switch(k+1 mod d1) link is the sum over all

the previously mentioned flows, F = ⌊d1
2 ⌋ · p2 + (⌊d1

2 ⌋−1) · p2 + ...+ (⌊d1
2 ⌋− (⌊d1

2 ⌋−1)) · p2. If

d1 = 2 ·m +1, then ⌊d1
2 ⌋ = m. In this case, F = m ·p2 + (m −1) ·p2 + ...+ (m − (m −1)) ·p2 =

m·(m+1)
2 ·p2 = ⌊ d1

2 ⌋·⌈ d1
2 ⌉

2 ·p2.

We perform the same calculation for the case when d1 mod 2 = 0. The nodes attached to

switchk generate p2 flows to the nodes attached to the next ⌊d1
2 ⌋− 1 switches and 0.5 · p2

flows to the switch at d1
2 hops distance. The 0.5 factor comes from the routing assumption

that when there are two equal paths between a source a destination, like in this case when

102

5.4. Bandwidth Models: Uniform Communication Pattern

the ring dimension is an even number, the flows are equally distributed between the paths.

This is equivalent with saying that switchk generates p2 flows to the nodes attached to the

next ⌊d1
2 ⌋−0.5 switches. All these flows traverse the switchk -switch(k+1 mod d1) link. Similarly,

the nodes attached to switch(k−1) mod d1 generate p2 flows to the nodes attached to the next

⌊d1
2 ⌋−0.5−1 switches. These flows also traverse the switchk -switch(k+1 mod d1) link. And so on

until a switchx sends its p2 flows to 0.5 switches through the switchk -switch(k+1 mod d1) link.

The total number of flows that traverse the switchk -switch(k+1 mod d1) link is: F = (⌊d1
2 ⌋−0.5) ·

p2+(⌊d1
2 ⌋−0.5−1) ·p2+ ...+(⌊d1

2 ⌋−(⌊d1
2 ⌋−0.5+1)) ·p2. If d1 = 2 ·m, then ⌊d1

2 ⌋ = m. In this case,

F = (m −0.5) ·p2 + (m −0.5−1) ·p2 + ...+ (m −0.5− (m −0.5+1)) ·p2 = m·m
2 ·p2 = ⌊ d1

2 ⌋·⌈ d1
2 ⌉

2 ·p2.

The quantity
⌊ d1

2 ⌋·⌈ d1
2 ⌉

2 corresponds to the total number of pairs of switches whose nodes

communicate through the switchk -switch(k+1 mod d1) link (the two switches communicate

through p2 flows). Or, in general, in a 1D torus with d1 nodes, the total number of pairs of

switches that communicate through any link of the torus is:

Nd1 =
⌊d1

2 ⌋ · ⌈d1
2 ⌉

2
. (5.23)

In summary, Bsw−sw = b1

⌊ d1
2 ⌋·⌈ d1

2 ⌉
2 ·p2

and B2 = min(b0
p·d1

, b1

⌊ d1
2 ⌋·⌈ d1

2 ⌉
2 ·p2

).

Given B1 and B2, the model for the effective application bandwidth in Equation 5.22 is equiva-

lent to the model in Equation 5.24.

B eff
app = (p ·d1)2 ·min(B1,B2) = p ·d1 ·min(b0,

2 ·b1 ·d1

⌊d1
2 ⌋ · ⌈d1

2 ⌉ ·p
) (5.24)

To determine the effective bandwidth per node for the uniform communication pattern, in a

1D torus topology with dimension-order routing and linear mapping, we use the model shown

in Equation 5.25, where the parameters are explained in Table 5.4.

B eff
node =

B eff
app

p ·d1
= min(b0,

2 ·b1 ·d1

⌊d1
2 ⌋ · ⌈d1

2 ⌉ ·p
) (5.25)

5.4.5 2-Dimensional Torus Topology

The 2-dimensional (2D) torus is a 2-dimensional grid with dimension-order routing scheme.

Similarly to the 1D torus, if the size of the X dimension, say d1, is an even number, then for

every switch S in an X row there are two paths of equal length to access the switch at d1
2 hops

distance from switch S in the same X row. In this case, we will assume that the flows originating

in S with destination nodes attached to the switch at d1
2 hops away from S in the same X row

with S are equally distributed between the two paths. We make the same assumption for flows

originating in switches located in the same Y column.

103

Chapter 5. Analytic Modeling of Network Communication Performance

The total number of compute nodes in a 2D torus is p ·d1 ·d2. The number of flows per

compute node is thus p ·d1 ·d2 and the total number of flows generated by the application

through the network is (p ·d1 ·d2)2.

For the uniform pattern run on a 2D torus we identify four flow types traversing the network.

The first flow type includes flows between communicating nodes that are connected to the

same switch. The second and third flow types include flows between nodes connected to

switches in the same X row and in the same Y column, respectively. Finally, the forth flow

type includes flows between nodes connected to switches located on different X rows and Y

columns.

The flows of the first type send messages through two links: source-switch and switch-

destination. The source-switch link is shared by all the flows that carry messages sent by

a source node to all the other nodes in the network. Therefore, Bsource-sw is b0
p·d1·d2

. The switch-

destination link is shared by the flows that carry messages to a destination node from all the

other nodes in the network, thus Bsw-destination is b0
p·d1·d2

. The effective bandwidth of this first

flow type is calculated as the minimum between the effective bandwidths achieved on each of

the links:

B1 = min(Bsource-sw,Bsw-destination) = min(
b0

p ·d1 ·d2
,

b0

p ·d1 ·d2
) =

b0

p ·d1 ·d2
. (5.26)

The flows of the second type send messages through at least three links: source-switch, switch-

switch (same X row) and switch-destination. Depending on the locations of the source and

destination nodes in the network, the flows traverse one or more consecutive switch-switch

links. However, due to the topology and communication pattern symmetries, the contention

on the switch-switch links (same X row) is the same. We use Figure 5.9 to calculate the

contention of a particular switch-switch link in the X dimension. The wrap-around links

have been omitted for simplicity of drawing. Let’s quantify the number of flows traversing

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

R

C

Figure 5.9 – 2D torus switch-switch (same row R) X link contention.

the directional link from switch1 to switch2 of row R. Similar to the 1D torus case, the link is

traversed by the flows of
⌊ d1

2 ⌋·⌈ d1
2 ⌉

2 pairs of switches in row R (Equation 5.23). However, in this 2D

case, when a switch S (e.g., switch0 of row R) communicates with another switch S′ in its row

104

5.4. Bandwidth Models: Uniform Communication Pattern

(e.g., switch2 of row R) through a link in the X dimension (e.g., the link from switch0 to switch2

of row R), it also communicates through the same link with all the switches in the column

of S′ (the column C). Thus, in the same way as we had Nd1 pairs of switches communicating

through any given link of a 1D torus (Equation 5.23), in the 2D case, any link in the X dimension

is traversed by the flows of Nd1 switch-column pairs. The total number of flows between one

source switch and one destination column of switches is p2 ·d2. Consequently, the total

number of flows traversing any X link is
⌊ d1

2 ⌋·⌈ d1
2 ⌉

2 ·p2 ·d2 and the effective bandwidth of the

second flow type can be calculated as:

B2 = min(Bsource-sw,BswX−swX ,Bsw-destination) = min(
b0

p ·d1 ·d2
,

b1

⌊ d1
2 ⌋·⌈ d1

2 ⌉
2 ·p2 ·d2

). (5.27)

The flows of the third flow type send messages through three types of links: source-switch,

switch-switch (same Y column) and switch-destination. Depending on the locations of the

source and destination nodes, the flows will traverse one or more consecutive switch-switch

links. However, due to the topology and communication pattern symmetries, the contention

on the switch-switch links (same Y column) are the same. We use Figure 5.10 to show how

we calculate the contention of a particular switch-switch link in the Y dimension. The wrap-

around links have been omitted for simplicity of drawing. Let’s quantify the number of flows

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

R

C

R-1

R-2

Figure 5.10 – 2D torus switch-switch (same column C) Y link contention.

traversing the directional link from switch2 of row R to switch2 of row R −1. Similar to the

1D torus case, the link is traversed by the flows of
⌊ d2

2 ⌋·⌈ d2
2 ⌉

2 pairs of switches in column C

(Equation 5.23). However, when a switch S (e.g., switch2 of row R) communicates with another

switch S′ in its column (e.g., switch2 of row R −2) through a link in the Y dimension (e.g., the

link from switch2 of row R to switch2 of row R −1), all the switches in the row R of switch

S also communicate with S′ through the same link. Thus, in the same way as we had Nd1

pairs of switches communicating through any given link of a 1D torus (Equation 5.23), in

the 2D case, any link in the Y dimension is traversed by the flows of Nd2 row-switch pairs.

The total number of flows between one source row of switches and one destination switch is

p2 ·d1. Consequently, the total number of flows traversing any Y link is
⌊ d2

2 ⌋·⌈ d2
2 ⌉

2 ·p2 ·d1 and

105

Chapter 5. Analytic Modeling of Network Communication Performance

the effective bandwidth of the second flow type can be calculated as:

B3 = min(Bsource-sw,BswY−swY ,Bsw-destination) = min(
b0

p ·d1 ·d2
,

b2

⌊ d2
2 ⌋·⌈ d2

2 ⌉
2 ·p2 ·d1

). (5.28)

The flows of the forth flow type send messages through four types of links: source-switch,

switch-switch (same X row), switch-switch (same Y column) and switch-destination. We have

previously quantified the flow bottlenecks of the switch-switch links for switches in the same

X row and for switches in the same Y column. Thus, the effective bandwidth of the forth flow

type is calculated as:

B4 = min(Bsource-sw,BswX−swX ,BswY−swY ,Bsw-destination)

= min(
b0

p ·d1 ·d2
,

b1

⌊ d1
2 ⌋·⌈ d1

2 ⌉
2 ·p2 ·d2

,
b2

⌊ d2
2 ⌋·⌈ d2

2 ⌉
2 ·p2 ·d1

). (5.29)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.30.

B eff
app =

(p ·d1 ·d2)2 ·V
max(V

B1
, V

B2
, V

B3
, V

B4
)
= (p ·d1 ·d2)2 ·min(B1,B2,B3,B4)

= (p ·d1 ·d2)2 ·min(
b0

p ·d1 ·d2
,

b1

⌊ d1
2 ⌋·⌈ d1

2 ⌉
2 ·p2 ·d2

,
b2

⌊ d2
2 ⌋·⌈ d2

2 ⌉
2 ·p2 ·d1

) (5.30)

To determine the effective bandwidth per node for the uniform communication pattern, in

a 2D torus with dimension-order routing and linear mapping, we use the model shown in

Equation 5.31, where the parameters are explained in Table 5.4.

B eff
node =

B eff
app

p ·d1 ·d2
= min(b0,

2 ·b1 ·d1

⌊d1
2 ⌋ · ⌈d1

2 ⌉ ·p
,

2 ·b2 ·d2

⌊d2
2 ⌋ · ⌈d2

2 ⌉ ·p
) (5.31)

5.4.6 3-Dimensional Torus Topology

The total number of compute nodes in the 3-dimensional (3D) torus topology is p ·d1 ·d2 ·p3.

For the uniform communication pattern, the number of flows per compute node is thus

p ·d1 ·d2 ·p3 and the total number of flows generated by the application through the network

is (p ·d1 ·d2 ·p3)2.

Similarly to the 1D and 2D torus cases, if the size of say the X dimension d1 is an even number,

then for every switch S in an X row there are two paths of equal length to access the switch

at d1
2 hops away from switch S in the same X row. In this case, we will assume that the flows

originating in S with destination nodes attached to the switch at d1
2 hops away from S in

the same X row with S are equally distributed between the two paths. We make the same

assumption for communicating flows through switches of the same Y or Z rows.

106

5.4. Bandwidth Models: Uniform Communication Pattern

For the uniform pattern on the 3D torus we identify eight flow types traversing the network.

The first flow type includes flows between communicating nodes that are connected to the

same switch. The second, third and forth flow types include flows between nodes connected

to switches in the same X, same Y and same Z row, respectively. The fifth, sixth and seventh

flow types include flows between nodes in the same XY plane, same YZ and same XZ planes,

respectively. The last flow type includes flows between nodes connected to switches in different

2D planes.

For each of these flow types, the effective bandwidth is given by the minimum across the

bandwidth bottlenecks imposed by each type of link that they traverse. For reasons of sym-

metry of topology and communication pattern, all links in the same dimension exhibit the

same bottleneck. It suffices to quantify the five bottlenecks (node-switch, switch-switch in

the X dimension, switch-switch in the Y dimension, switch-switch in the Z dimension and

switch-node) to determine the effective bandwidths of the eight types of flows. Similarly to

the 1D and 2D torus cases, the following can be shown.

1. The node-switch and switch-node links have an effective bandwidth of b0
p·d1·d2·d3

.

2. The switch-switch links in the X dimension are traversed by flows between commu-

nicating pairs of source switches and destination YZ planes of switches, each plane

corresponding to a single switch in the same X row as the source switch. There are Nd1

such pairs (Eq. 5.23) and every pair has p2 ·d2 ·d3 flows. Thus, the effective bandwidth

on switch-switch X links is BswX−swX =
b1

p2·d2·d3·
⌊ d1

2 ⌋·⌈ d1
2 ⌉

2

.

3. The switch-switch links in the Y dimension are traversed by flows between communicat-

ing pairs of source rows of switches in the X dimension and destination rows of switches

in the Z dimension, each X and Z rows corresponding to a single switch in the Y row of

the link. Thus, the number of communication row-row pairs is Nd2 (Equation 5.23) and

every pair has p2 ·d1 ·d3 flows. Thus, the effective bandwidth on switch-switch Y links

is BswY−swY =
b2

p2·d1·d3·
⌊ d2

2 ⌋·⌈ d2
2 ⌉

2

.

4. The switch-switch links in the Z dimension are traversed by flows between communicat-

ing pairs of source XY planes of switches and destination switches in the Z dimension,

each XY plane corresponding to a single switch in the same Z row as the destination

switch. There are Nd3 (Equation 5.23) such pairs and every pair has p2 ·d1 ·d2 flows.

Thus, the effective bandwidth on switch-switch Z links is BswZ−swZ =
b3

p2·d1·d2·
⌊ d3

2 ⌋·⌈ d3
2 ⌉

2

.

The effective bandwidth of each of the flow types Bi i ∈ [1,8] is expressed as the minimum of

a combination of the five link bottlenecks enumerated above. By applying Equation 5.2, we

107

Chapter 5. Analytic Modeling of Network Communication Performance

calculate the application bandwidth as in Equation 5.32.

B eff
app =

(p ·d1 ·d2 ·d3)2 ·V
max
1≤i≤8

(V
Bi

)
= (p ·d1 ·d2 ·d3)2 · min

1≤i≤8
(Bi) = (p ·d1 ·d2 ·d3)2·

min(
b0

p ·d1 ·d2 ·d3
,

b1

p2 ·d2 ·d3 · ⌊
d1
2 ⌋·⌈ d1

2 ⌉
2

,
b2

p2 ·d1 ·d3 · ⌊
d2
2 ⌋·⌈ d2

2 ⌉
2

,
b3

p2 ·d1 ·d2 · ⌊
d3
2 ⌋·⌈ d3

2 ⌉
2

)

(5.32)

To determine the effective bandwidth per node for the uniform communication pattern, in

a 3D torus with dimension-order routing and linear mapping, we use the model shown in

Equation 5.33, where the parameters are explained in Table 5.4.

B eff
node =

B eff
app

p ·d1 ·d2 ·d3
= min(b0,

2 ·b1 ·d1

p · ⌊d1
2 ⌋ · ⌈d1

2 ⌉
,

2 ·b2 ·d2

p · ⌊d2
2 ⌋ · ⌈d2

2 ⌉
,

2 ·b3 ·d3

p · ⌊d3
2 ⌋ · ⌈d3

2 ⌉
) (5.33)

Based on the models derived for the 1D, 2D and 3D tori for the effective bandwidth per node

of a uniform communication pattern, we can generalize the model to an N-dimensional torus

as in Equation 5.34.

B eff
node = min(b0, min

1≤i≤n
(

2 ·bi ·di

p · ⌊di

2 ⌋ · ⌈di

2 ⌉
)) (5.34)

5.4.7 2-Dimensional HyperX Topology

The total number of compute nodes in the 2D HyperX topology is p ·d1 ·d2. For the uniform

pattern, the number of flows per compute node is p ·d1 ·d2. Therefore, the total number of

flows generated by the application is (p ·d1 ·d2)2.

For the uniform pattern run on a 2D HyperX we identify four flow types. The first flow type

includes flows between communicating nodes that are connected to the same switch. The

second and the third flow type include flows between nodes connected to different switches,

but both switches in the same X row or Y column, respectively. The forth flow type includes

flows between nodes connected to switches in different rows and columns.

Flows of the first type send messages through two links: source-switch and switch-destination.

The effective bandwidth of this first flow type is calculated as the minimum between the two

effective bandwidths achieved on each of the links:

B1 = min(Bsource-sw,Bsw-destination). (5.35)

Flows of the second flow type send the messages through at least three links: source-switch,

switch-switch (X dimension) and switch-destination. Due to symmetries of the network

topology and communication pattern, the switch-switch X links exhibit the same contention

108

5.4. Bandwidth Models: Uniform Communication Pattern

(which we calculate later in this section). Thus, the effective bandwidth of the second flow

type is calculated as:

B2 = min(Bsource-sw,BswX−swX ,Bsw-destination). (5.36)

Similarly, flows of the third flow type send the messages also through at least three links, source-

switch, switch-switch (Y dimension) and switch-destination and their effective bandwidth is

calculated as:

B3 = min(Bsource-sw,BswY−swY ,Bsw-destination). (5.37)

Finally, flows of the forth flow type send the message through at least four links: source-

switch, switch-switch (X dimension), switch-switch (Y dimension) and switch-destination.

The effective bandwidth of this type of flow is:

B4 = min(Bsource-sw,BswX−swX ,BswY−swY ,Bsw-destination). (5.38)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.39.

B eff
app =

(p ·d1 ·d2)2 ·V
max(V

B1
, V

B2
, V

B3
, V

B4
)
= (p ·d1 ·d2)2 ·min(B1,B2,B3,B4) (5.39)

To calculate the Bi bandwidths, we analyze the contention on the four types of (directional)

links: source-switch, switch-switch (X and Y links) and switch-destination. The source-switch

link is shared by all the flows that carry messages sent by the source node to all the other nodes

in the network. Therefore, Bsource-sw is b0
p·d1·d2

. The switch-destination link is shared by all the

flows that carry messages to the destination node from all the other nodes in the network.

Therefore, Bsw-destination is b0
p·d1·d2

. Consequently, B1 = min(b0
p·d1·d2

, b0
p·d1·d2

) = b0
p·d1·d2

.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

R

CC-1

Figure 5.11 – 2D HyperX switch-switch (same X row) link contention.

Moreover, for any given link connecting two switches in the X dimension, say connecting

switch S1 to switch S2, the link is traversed by the flows generated by the p nodes connected to

S1 towards the p nodes of S2. However, these are not the only flows sharing this link. We use

Figure 5.11 to show how we calculate the number of flows sharing the switch-switch X link.

109

Chapter 5. Analytic Modeling of Network Communication Performance

The nodes connected to all the switches in the column C −1 that need to communicate with

the nodes connected to switch2 in column C will also send half of their flows through the same

switch1-switch2 link of row R . They will send only half of their flows due to the routing scheme

(shortest path) and due to the assumption that if there are equal paths between the source

and the destination, we assume the flows to be equally distributed across the available paths.

In addition switch1 will send the half of its flows through the same link to nodes connected to

all the switches in column C , except for switch2 to which switch1 sends all p2 flows.

Thus, the total number of flows crossing the switch-switch X link is (1+0.5 · (d2 −1)+0.5 · (d2 −
1)) ·p2 = d2 ·p2 and the effective bandwidth B2 is min(b0

p·d1·d2
, b1

p2·d2
). Similarly, for the switch-

switch Y link the number of flows sharing a Y link is p2 ·d1. Thus, the effective bandwidth B3 is

min(b0
p·d1·d2

, b2

p2·d1
).

Given all the link bottlenecks, we can now also calculate the effective bandwidth for the flows

of the forth type and we obtain B4 = min(b0
p·d1·d2

, b1

p2·d2
, b2

p2·d1
).

Given B1, B2, B3 and B4, the effective application bandwidth shown in Equation 5.39 is equiva-

lent to the model shown in Equation 5.40.

B eff
app = p ·d1 ·d2 ·min(b0,

b1 ·d1

p
,

b2 ·d2

p
) (5.40)

To determine the effective bandwidth per node for the uniform communication pattern, in a

2D HyperX topology with shortest-path routing and linear mapping, we use the model shown

in Equation 5.41, where the parameters are explained in Table 5.3.

B eff
node =

B eff
app

p ·d1 ·d2
= min(b0,

b1 ·d1

p
,

b2 ·d2

p
) (5.41)

5.5 Bandwidth Models: Shift Communication Pattern

In a shift communication pattern, each MPI process communicates only with one other

process. If the application has n processes, the process with index a sends data to the process

with index (a+s) mod n, where s is the shift step. Thus, each node generates only a single flow

of data throughout the network. Each of these flows transports the same volume of data V .

5.5.1 Full-Mesh Topology

As the total number of compute nodes in a full-mesh topology is a ·p, the total number of

flows generated by the application through the network is a ·p. The number of application

flow types depends on the value of the shift step s.

We will first calculate the effective bandwidth for the case when the shift step is lower than

the number of nodes connected to a switch s < p. There are two types of flows generated

110

5.5. Bandwidth Models: Shift Communication Pattern

throughout the network. The first flow type sends messages through two links: source-switch

and switch-destination. There are a · (p − s) flows of this type, as in each switch there are p − s

nodes that communicate with nodes connected to the same switch. The effective bandwidth

of this first flow type is calculated as the minimum between the two effective bandwidths

achieved on each of the links:

B1 = min(Bsource-sw,Bsw-destination). (5.42)

The second flow type sends the messages through three links: source-switch, switch-switch

and switch-destination. There are a · s flows that are of this type, as in each switch there are s

nodes that communicate with nodes outside the switch to which they are connected. In this

case, the effective bandwidth is calculated as:

B2 = min(Bsource-sw,Bsw−sw,Bsw-destination). (5.43)

By applying Equation 5.2, we calculate the application bandwidth as in Equation 5.44.

B eff
app =

a · (p − s) ·V +a · s ·V
max(V

B1
, V

B2
)

= a ·p ·min(B1,B2) (5.44)

To calculate B1 and B2 we analyze the contention on the three types of (directional) links:

source-switch, switch-switch and switch-destination. The source-switch link is used by a

single flow that carries messages sent by the source node to its destination node. Therefore,

Bsource−sw is the full available bandwidth b0. This is also valid for the switch-destination link

which is used by the flow that carries messages to the destination node from another single

node in the network. Consequently, B1 = b0. The switch-to-switch link is shared by s flows,

as s of the p nodes connected to a switch need to send data to s nodes connected to another

same switch. Therefore, Bsw−sw = b1
s

and B2 = min(b0, b1
s

). Equation 5.45 shows the effective

application bandwidth for s < p.

B eff
app = a ·p ·min(b0,min(b0,

b1

s
)) = a ·p ·min(b0,

b1

s
) (5.45)

We analyze the case when the shift step is greater than the number of nodes connected to a

switch s > p and s mod p 6= 0. For any given switch S1 the p flows originating in its nodes will

go each to one of two switches S2 and S3. Specifically s′ = s mod p of the flows go to one of the

switches, say S2, and the remaining p − s′ flows go to the other switch. For all of these flows

their effective bandwidth will be:

B = min(Bsource-sw,Bsw−sw,Bsw-destination). (5.46)

As before, Bsource-sw and Bsw-destination will be b0. The s′ flows from S1 to S2 share the link

connecting S1 to S2. As we are using shortest path routing in a full-mesh, no other network

flows use this link. Thus, Bsw−sw is b1
s′ for these flows. Similarly, for the flows from S1 to S3,

111

Chapter 5. Analytic Modeling of Network Communication Performance

Bsw−sw is b1
p−s′ . Consequently, we have two flow types, one with B1 = min(b0, b1

s′) and one with

B2 = min(b0, b1
p−s′). The effective bandwidth of the application will be:

B eff
app =

a · s′ ·V +a · (p − s′) ·V
max(V

B1
, V

B2
)

= a ·p ·min(B1,B2) = a ·p ·min(b0,
b1

s′
,

b1

p − s′
) (5.47)

We identify a corner case in which the shift step is a multiple of the number of nodes connected

to a switch s′ = s mod p = 0. For any given switch S1 the p flows originating in its nodes will

go each to only one other switch S2. For all these flows their effective bandwidth will be:

B1 = min(Bsource-sw,Bsw−sw,Bsw-destination). (5.48)

As before, Bsource-sw and Bsw-destination will be b0. The p flows from S1 to S2 share the link

connecting S1 to S2. As we are using shortest path routing in a full-mesh, no other network

flows use this link. Thus, Bsw−sw is b1
p

for these flows. Consequently, B1 = min(b0, b1
p

). The

effective bandwidth of the application will be:

B eff
app =

a ·p ·V
V
B1

= a ·p ·min(B1) = a ·p ·min(b0,
b1

p
) (5.49)

In summary, to determine the effective bandwidth per node for the shift communication

pattern, in a full-mesh topology with shortest-path routing and linear mapping, we use the

model in Equation 5.50, where s′ = s mod p. The hardware parameters are explained in

Table 5.1.

B eff
node =

B eff
app

a ·p
=



















min(b0, b1
s

) s < p

min(b0, b1
p

) s′ = 0

min(b0, b1
s′ , b1

p−s′) s > p ∧ s′ 6= 0

(5.50)

5.5.2 2-Level Fat-Tree Topology

The total number of compute nodes in a 2-level fat-tree topology is m1 ·m2 and, in the case

of the shift communication pattern, the total number of flows generated by the application

through the network is m1 ·m2. The effective bandwidth per application depends on the value

of the shift step s.

We will first calculate the effective bandwidth for the case when the shift step is lower than

the number of nodes connected to a switchL1 s < m1. For each switchL1 in the network,

m1 − s nodes connected to switchL1 will each send one flow to m1 − s nodes connected

to the same switchL1. These flows will traverse two links, source-switchL1 and switchL1-

destination. The source-switchL1 link is used by a single flow that carries messages sent

by the source node to its destination node. This is also valid for the switchL1-destination

link which is used by the flow that carries messages to the destination node from another

112

5.5. Bandwidth Models: Shift Communication Pattern

single node in the network. Thus, the effective bandwidth obtained by the m1 − s flows is

B1 = min(Bsource−swL1 ,BswL1−destination) = min(b0,b0) = b0.

The remaining s nodes will generate s flows that will exit their corresponding switchL1.

These flows will traverse four links, source-switchL1, switchL1-switchL2, switchL2-switchL1

and switchL1-destination. The effective bandwidth of these flows is calculated as the mini-

mum across the effective bandwidths achieved on the four links:

B2 = min(Bsource-swL1 ,BswL1−swL2 ,BswL2−swL1 ,BswL1−destination). (5.51)

For a given switchL1, the s flows that exit the switch will share the w1 switchL1-switchL2

links, thus each flow achieving an effective bandwidth of BswL1−swL2 =
b1·w1

s
. Moreover, for each

switchL1, there are exactly s flows sent from another L1 switch to s nodes connected to switchL1.

These flows traverse w1 switchL2-switchL1 links. Therefore, the effective bandwidth obtained

on the switchL2-switchL1 links is also BswL2−swL1 =
b1·w1

s
. In conclusion, the s flows that exit

switchL1 achieve an effective bandwidth of B2 = min(b0, b1·w1
s

, b1·w1
s

,b0) = min(b0, b1·w1
s

).

By applying Equation 5.2, we calculate the application bandwidth for s < m1 as:

B eff
app =

m2 · (m1 − s) ·V +m2 · s ·V
max(V

B1
, V

B2
)

= m1 ·m2 ·min(b0,
b1 ·w1

s
). (5.52)

For s ≥ m1, the m1 nodes connected to a switchL1 send all their m1 flows to nodes connected

to another switchL1. Thus, all flows traverse the network through four links: source-switchL1,

switchL1-switchL2, switchL2-switchL1 and switchL1-destination. All m1 flows exit their corre-

sponding switchL1 and share w1 switchL1-switchL2 links. Thus, the effective bandwidth on the

switchL1-switchL2 links is b1·w1
s

. Due to network and pattern symmetries, the same effective

bandwidth is obtained on the switchL2-switchL1 links. In summary, the effective bandwidth of

the m1 flows is B3 = min(b0, b1·w1
m1

).

By applying Equation 5.2, we calculate the application bandwidth for s ≥ m1 as:

B eff
app =

m2 ·m1 ·V
max(V

B3
)

= m1 ·m2 ·min(b0,
b1 ·w1

m1
). (5.53)

In summary, to determine the effective bandwidth per node for the shift communication

pattern, in a 2-level fat-tree topology with shortest-path routing and linear mapping, we use

the model in Equation 5.54. The hardware parameters are explained in Table 5.2.

B eff
node =

B eff
app

m1 ·m2
=







min(b0, b1·w1
s

) s < m1

min(b0, b1·w1
m1

) s ≥ m1

(5.54)

113

Chapter 5. Analytic Modeling of Network Communication Performance

5.5.3 3-Level Fat-Tree Topology

The total number of compute nodes in a 3-level fat-tree topology is m1 ·m2 ·m3 and the total

number of flows generated by the application through the network is m1 ·m2 ·m3. The effective

bandwidth per application depends on the value of the shift step s.

We will first calculate the effective bandwidth for the case when the shift step is lower than the

number of nodes connected to a switchL1 s < m1. Let’s analyze the flows in a switchL2-rooted

sub-tree. The same analysis will apply to all the m3 sub-trees in the network.

For each of the first m2 − 1 switches switchL1 in the sub-tree, m1 − s nodes connected to

switchL1 send their flows to m1 − s nodes connected to the same switch switchL1. Thus, the

flows traverse two links, source-switchL1 and switchL1-destination. The source-switchL1 link

is used by a single flow that carries messages sent by the source node to its destination node.

Therefore, the effective bandwidth on the source-switchL1 link is the full available bandwidth

b0. This is also valid for the switchL1-destination link which is used by the flow that carries

messages to the destination node from another single node in the network. Thus, the effective

bandwidth obtained by the m1 − s flows is B1 = min(b0,b0) = b0.

The remaining s nodes of the m2 − 1 switches generate s flows that exit their correspond-

ing switchL1. These flows traverse four links, source-switchL1, switchL1-switchL2, switchL2-

switchL1 and switchL1-destination. The effective bandwidth of these s flows is calculated as

the minimum across the effective bandwidths achieved on the four links:

B2 = min(Bsource-swL1 ,BswL1−swL2 ,BswL2−swL1 ,BswL1−destination). (5.55)

For a given switchL1, the s flows that exit the switch share the w1 switchL1-switchL2 links,

thus each flow achieving an effective bandwidth of BswL1−swL2 =
b1·w1

s
. Moreover, for a given

switchL1, there are exactly s flows sent from another switchL1 to s nodes connected to switchL1.

These flows traverse w1 switchL2-switchL1 links. Therefore, the effective bandwidth obtained

on the switchL2-switchL1 links is also BswL2−swL1 =
b1·w1

s
. In conclusion, the s flows that exit

switchL1 achieve an effective bandwidth of B2 = min(b0, b1·w1
s

, b1·w1
s

,b0) = min(b0, b1·w1
s

).

For the last switch switchL1 in the switchL2-rooted sub-tree, m1−s flows are sent to m1−s nodes

connected to the same switchL1 at the same B1 = b0 bandwidth. However, s flows are sent to

the first switchL1 in the next sub-tree. Thus, these last s flows traverse six links in the network

source-switchL1, switchL1-switchL2, switchL2-switchL3, switchL3-switchL2, switchL2-switchL1

and switchL1-destination. The s flows share the w1 switchL1-switchL2 links and the w1 ·w2

switchL2-switchL3 links. Thus, upward in the tree, each of the s flows achieve an effective

bandwidth of min(b0, b1·w1
s

, b2·w1·w2
s

). Due to symmetries of the network and communication

pattern, the same bandwidth is obtained on the downward links in the tree, switchL3-switchL2,

switchL2-switchL1 and switchL1-destination. Indeed, for example, given switchL2, there are

exactly s flows sent from another sub-tree to nodes in the switchL2-rooted sub-tree. Thus, the

114

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

w1 ·w2 switchL3-switchL2 links are shared by s flows. Consequently, the s flows that exit their

switchL2-rooted sub-tree achieve an effective bandwidth of B3 = min(b0, b1·w1
s

, b2·w1·w2
s

).

By applying Equation 5.2, we calculate the application bandwidth for s < m1 as:

B eff
app =

m3 ·m2 · (m1 − s) ·V +m3 · (m2 −1) · s ·V +m3 · s

max(V
B1

, V
B2

, V
B3

)
(5.56)

= m1 ·m2 ·m3 ·min(b0,
b1 ·w1

s
,
b2 ·w1 ·w2

s
). (5.57)

For m1 ≤ s < m1 ·m2, the only difference when compared with the s < m1 case is that all nodes

in a switchL1 switch send m1 flows sharing the available w1 switchL1-switchL2 links. Thus,

the switchL1-switchL2 and the switchL2-switchL1 link bottlenecks are b1·w1
m1

. The application

bandwidth for m1 ≤ s < m1 ·m2 will be:

B eff
app = m1 ·m2 ·m3 ·min(b0,

b1 ·w1

m1
,
b2 ·w1 ·w2

s
). (5.58)

Finally, for s ≥ m1 ·m2, the only difference when compared with the previous case is that

all nodes m1 ·m2 in a switchL2-rooted sub-tree send their flows outside their corresponding

sub-tree, sharing the available w1 ·w2 switchL2-switchL3 links. Thus, the switchL2-switchL3

and switchL3-switchL2 link bottlenecks are b2·w1·w2
s

. The application bandwidth for s ≥ m1 ·m2

will be:

B eff
app = m1 ·m2 ·m3 ·min(b0,

b1 ·w1

m1
,
b2 ·w1 ·w2

m1 ·m2
). (5.59)

In summary, to determine the effective bandwidth per node for the shift communication

pattern, in a 3-level fat-tree topology with shortest-path routing and linear mapping, we use

the model in Equation 5.60. The hardware parameters are explained in Table 5.2.

B eff
node =

B eff
app

m1 ·m2 ·m3
=



















min(b0, b1·w1
s

, b2·w1·w2
s

) s < m1

min(b0, b1·w1
m1

, b2·w1·w2
s

) m1 ≤ s < m1 ·m2

min(b0, b1·w1
m1

, b2·w1·w2
m1·m2

) s ≥ m1 ·m2

(5.60)

5.6 Bandwidth Models: Nearest-Neighbor Communication Pattern

We start this section by describing the MPI rank mapping strategies covered by our nearest-

neighbor models. Then we will derive the bandwidth models for the 2-dimensional nearest-

neighbor (2D NNE) pattern. In this pattern, each process communicates with 4 processes

corresponding to its North/South/East/West neighbors in the application domain. Each

process generates 4 flows to their neighbors, one to each neighbor, each flow carrying on

average the same amount of data.

115

Chapter 5. Analytic Modeling of Network Communication Performance

5.6.1 Overview of Supported MPI Rank Mappings

An MPI rank mapping strategy defines what hardware node is assigned to which application

process. As mentioned in Section 5.1, due to its relevance in practice, for the nearest-neighbor

communication pattern run on full-mesh and fat-tree topologies, we will consider more than

just the linear mapping.

Specifically, we consider mappings where the application domain (the grid of processes that

determines the nearest-neighbor pattern) is partitioned into equal-sized application sub-

domains. Furthermore, we consider the domain of hardware nodes to be also partitioned into

equal-sized hardware sub-domains. In the case of a full-mesh, a partitioning of the hardware

nodes into switches is such a partition (a hardware sub-domain is a switch). The mappings

that we cover are those that bijectively map the application sub-domains onto the hardware

sub-domains. Thus, not only must the total number of nodes in the system match the total

number of application processes, but in addition the processes in an application sub-domain

should fully populate the compute nodes in a hardware sub-domain. An example of such a

mapping is shown in [109] for dragonfly topologies.

Figures 5.12 and 5.13 show an example of such a mapping. In Figure 5.13 we show the hardware

domain or the network topology (in this case, a full-mesh with a = 6 switches and p = 10

nodes per switch). We do not show the compute nodes to simplify the figure. In Figure 5.12

we illustrate the application domain, a 2-dimensional nearest-neighbor with D1 = 10 and

D2 = 6, where D1 and D2 are the sizes of the X and Y dimensions of the nearest-neighbor grid,

respectively. The mapping is described by a tuple of numbers {d 1
1 ,d 1

2 }, where d 1
1 |D1 (D1 is a

multiple of d 1
1) and d 1

2 |D2 (D2 is a multiple of d 1
2). The tuple defines the size of the application

sub-domain. As the hardware sub-domain in the case of a full-mesh topology is the switch,

then d 1
1 ·d 1

2 = p. The indexing of the nodes in an application sub-domain follows a linear

mapping as shown in the figure for the indexing of the sub-domains Si .

Figure 5.12 – 2D NNE application domains. Figure 5.13 – Full-mesh hardware domains.

5.6.2 Full-Mesh Topology

Using the mapping strategy in Figures 5.12 and 5.13, we present bandwidth models for all D1,

D2, d 1
1 , d 1

2 cases, except for the case when D1 = d 1
1 and D2 = d 1

2 which would mean a topology

116

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

D
1

D
2

d
1

1

d
1

2

Figure 5.14 – Partition of a 2-dimensional nearest-neighbor application domain.

with only 1 switch, not representative of large-scale systems. We start the analysis with the

case when D1 >>> 2 ···d 1
1 and D2 >>> 2 ···d 1

2 .

We first calculate the effective bandwidth of the d 1
1 ×d 1

2 application sub-domain shown in

Figure 5.14. All nodes in the sub-domain are connected to the same switch. Each node

generates four flows of data to their North/South/East/West neighbors. Depending on where

in the sub-domain the nodes are located, they communicate only with nodes within their

sub-domain or also with nodes outside of their sub-domain, thus connected to other switches.

The red nodes in the center of the application sub-domain communicate only with nodes

connected to the same switch. The green nodes in the corners communicate with two nodes

within the same switch and with two nodes connected to two other different switches. The

yellow nodes on the East/West edges communicate with three nodes within the same switch

and with one node connected to another switch. Finally, the black nodes on the North/South

edges of the sub-domain communicate similarly to the yellow nodes on the East/West edges.

We will analyze the flows of each of these node types separately and then apply our bandwidth

methodology in Section 5.3 to determine B eff
node.

The four flows generated by the red nodes in the center of the sub-domain send messages

through two links: source-switch and switch-destination. The effective bandwidth of these

flows is calculated as the minimum between the two effective bandwidths achieved on each

of the links. Both links are shared by four flows of data, therefore, they are equal to b0
4 . The

effective bandwidth is thus B1 = b0
4 . The total number of such flows is n1 = 4 · (d 1

1 −2) · (d 1
2 −2).

The four flows generated by the black nodes on the North/South edges of the sub-domain are

of two types. (1) Three flows send messages to three nodes within the same switch through

two links, source-switch and switch-destination, at B2 = b0
4 bandwidth each. The total number

of such flows is n2 = 3 · (2 ·d 1
1 −4). (2) The forth flow sends messages to a node connected

to another switch through three links: source-switch, switch-switch and switch-destination.

The effective bandwidth of the flow is calculated as the minimum across the three effective

bandwidths achieved on each of these links. The effective bandwidth on the source-switch

and switch-destination links is b0
4 . The switch-switch link is shared by d 1

1 flows generated by

117

Chapter 5. Analytic Modeling of Network Communication Performance

the d 1
1 nodes on the North/South edge of the sub-domain. Therefore, the effective bandwidth

on the switch-switch link is b1

d 1
1

. The effective bandwidth of these flows is B3 = min(b0
4 , b1

d 1
1

). The

total number of such flows is n3 = 2 ·d 1
1 −4.

Similarly, we calculate the effective bandwidths of the yellow nodes on the East/West edges of

the sub-domain. (1) Three flows send messages to three nodes within the same switch through

two links source-switch and switch-destination at B4 = b0
4 bandwidth. The total number of

such flows is n4 = 3 · (2 ·d 1
2 −4). (2) The forth flow sends messages to a node connected to

another switch through three links: source-switch, switch-switch and switch-destination.

The effective bandwidth of these flows is B5 = min(b0
4 , b1

d 1
2

). The total number of such flows is

n5 = 2 ·d 1
2 −4.

We also calculate the effective bandwidths of the nodes in the corners of the sub-domain.

These nodes generate two types of flows as follows. (1) Two flows send messages to nodes

within the same switch through two links source-switch and switch-destination at B6 = b0
4

bandwidth. The total number of such flows is n6 = 2 ·4. (2) The third flow sends messages to

a node connected to another switch through three links: source-switch, switch-switch and

switch-destination. The effective bandwidth of this flow is B7 = min(b0
4 , b1

d 1
1

). The total number

of such flows is n7 = 1 ·4. (3) The forth flow sends messages to a node connected to another

switch through three links: source-switch, switch-switch and switch-destination. The effective

bandwidth of this flow is B8 = min(b0
4 , b1

d 1
2

). The total number of such flows is n8 = 1 ·4.

All application sub-domains are equivalent, therefore, the same bandwidths Bi and flow

counts ni are valid for all of them. Thus, we calculate the application effective bandwidth as

in Equation 5.61, where V is the amount of data per flow.

B eff
app =

∑8
i=1 V ·ni

max j (V
B j

)
= 4 ·D1 ·D2 ·min

j
(B j) = 4 ·D1 ·D2 ·min

(

b0

4
,
b1

d 1
1

,
b1

d 1
2

)

(5.61)

We calculate the effective bandwidth per node for the case when D1 > 2 ·d 1
1 and D2 > 2 ·d 1

2 as:

B eff
node =

B eff
app

D1 ·D2
= 4 ·min

(

b0

4
,
b1

d 1
1

,
b1

d 1
2

)

. (5.62)

For the remaining cases of the combinations of D1 (equal to d 1
1 , equal to 2 ·d 1

1 , or greater than

2 ·d 1
1) and D2 (equal to d 1

2 , equal to 2 ·d 1
2 , or greater than 2 ·d 1

2), we directly show B eff
node.

If D1 === 2 ···d 1
1 and D2 >>> 2 ···d 1

2 , the West flows of the nodes on the West edges and the East

flows of the nodes on the East edges will communicate with their neighbors through the same

switch− switch link, thus shared by 2 ·d 1
2 flows. In this case, B eff

node will be 4 ·min
(

b0
4 , b1

d 1
1

, b1

2·d 1
2

)

.

Similarly, if D1 >>> 2 ···d 1
1 and D2 === 2 ···d 1

2 , then B eff
node will be 4 ·min

(

b0
4 , b1

2·d 1
1

, b1

d 1
2

)

. For the case

when D1 === 2 ···d 1
1 and D2 === 2 ···d 1

2 , B eff
node will simply be 4 ·min

(

b0
4 , b1

2·d 1
1

, b1

2·d 1
2

)

.

118

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

D1 D2 B eff
node

D1 > 2 ·d 1
1 D2 > 2 ·d 1

2 4 ·min
(

b0
4 , b1

d 1
1

, b1

d 1
2

)

D1 = 2 ·d 1
1 D2 > 2 ·d 1

2 4 ·min
(

b0
4 , b1

d 1
1

, b1

2·d 1
2

)

D1 > 2 ·d 1
1 D2 = 2 ·d 1

2 4 ·min
(

b0
4 , b1

2·d 1
1

, b1

d 1
2

)

D1 = 2 ·d 1
1 D2 = 2 ·d 1

2 4 ·min
(

b0
4 , b1

2·d 1
1

, b1

2·d 1
2

)

D1 = d 1
1 D2 > 2 ·d 1

2 4 ·min
(

b0
4 , b1

d 1
1

)

D1 > 2 ·d 1
1 D2 = d 1

2 4 ·min
(

b0
4 , b1

d 1
2

)

D1 = 2 ·d 1
1 D2 = d 1

2 4 ·min
(

b0
4 , b1

2·d 1
2

)

Table 5.5 – B eff
node for the full-mesh topology.

Moreover, if D1 === d 1
1 and D2 >>> 2 ···d 1

2 , then there will be no flow contention on the switch−
switch links due to East-West nearest-neighbor communication and B eff

node = 4 ·min
(

b0
4 , b1

d 1
1

)

.

Similarly, if D1 >>> 2 ···d 1
1 and D2 === d 1

2 , then there will be no flow contention on the switch−
switch links due to North-South nearest-neighbor communication and B eff

node = 4 ·min
(

b0
4 , b1

d 1
2

)

.

The cases of D1 = d 1
1 and D2 = 2 ·d 1

2 , and D1 = 2 ·d 1
1 and D2 = d 1

2 are not representative of

large-scale systems. Nevertheless, for D1 === d 1
1 and D2 === 2 ···d 1

2 , B eff
node = 4 ·min

(

b0
4 , b1

2·d 1
1

)

, and

for D1 === 2 ···d 1
1 and D2 === d 1

2 , B eff
node = 4 ·min

(

b0
4 , b1

2·d 1
2

)

. We summarize the bandwidth models

for the different mapping scenarios for the full-mesh topology in Table 5.5.

5.6.3 2-Level Fat-Tree Topology

Similarly to the full-mesh topology, the mapping of application processes to hardware nodes

is a tuple {d 1
1 ,d 1

2 }, where d 1
1 |D1 and d 1

2 |D2. In the case of the 2-level fat-tree, each application

sub-domain of size d 1
1 × d 1

2 is mapped to a hardware sub-domain which is an L1 switch

and d 1
1 ·d 1

2 = m1 and D1 ·D2 = m1 ·m2. As in the case of full-mesh topology, application

sub-domains are mapped to the 2-level fat-tree topology linearly.

We present bandwidth models for all D1, D2, d 1
1 , d 1

2 cases, except for the case when D1 = d 1
1

and D2 = d 1
2 which would mean a topology with only 1 switch, not representative of large-scale

systems. We start the analysis with the case when D1 ≥≥≥ 2 ···d 1
1 and D2 ≥≥≥ 2 ···d 1

2 .

We first calculate the effective bandwidth of the d 1
1 ×d 1

2 application sub-domain shown in

Figure 5.14. All nodes in the sub-domain are connected to the same L1 switch. Each node

generates four flows of data to their North/South/East/West neighbors. Depending on where

in the sub-domain the nodes are located, they could communicate only with nodes within

their sub-domain or also with nodes outside of their sub-domain, thus connected to other L1

switches.

119

Chapter 5. Analytic Modeling of Network Communication Performance

The red nodes in the center of the application sub-domain communicate only with nodes

connected to the same L1 switch. The four flows generated by these nodes send messages

through two links: source-switchL1 and switchL1-destination. The effective bandwidth of

these flows is calculated as the minimum between the two effective bandwidths achieved on

each of the links. Both links are shared by four flows of data, therefore, they are equal to b0
4 .

The effective flow bandwidth is thus B1 = b0
4 .

The black nodes on the North/South edges communicate with three nodes within the same L1

switch and with one node connected to another L1 switch. The four flows generated by these

are of two types. (1) Three flows send messages to three nodes within the same switch through

two links, source-switchL1 and switchL1-destination, at B2 = b0
4 bandwidth. (2) The forth flow

sends messages to a node connected to another switch through four links: source-switchL1,

switchL1-switchL2, switchL2-switchL1 and switchL1-destination. The effective bandwidth of

the flow is calculated as the minimum across the four effective bandwidths achieved on each

of these links.

The effective flow bandwidth on the source-switchL1 and switchL1-destination links is b0
4 .

The w1 switchL1-switchL2 links are shared by 2 ·d 1
1 flows generated by the 2 ·d 1

1 nodes on the

North/South edges, but also by 2·d 1
2 flows generated by the 2·d 1

2 nodes on the West/East edges

of the application sub-domain. Therefore, the effective flow bandwidth on a switchL1-switchL2

link is b1·w1

2·(d 1
1+d 1

2)
. The nodes in a hardware sub-domain are also the destinations of 2 · (d 1

1 +d 2
1)

flows that share w1 switchL2-switchL1 links. Thus, the effective flow bandwidth obtained on a

switchL2-switchL1 link is b1·w1

2·(d 1
1+d 1

2)
.

Consequently, the effective bandwidth of a flow generated by the black nodes on the North/-

South edges of the application sub-domain is B3 = min(b0
4 , b1·w1

2·(d 1
1+d 1

2)
). Similarly we calculate

the effective flow bandwidths of the remaining nodes (yellow and green in the application

sub-domain in Figure 5.14) and we obtain b0
4 for the flows within the hardware sub-domain

and min(b0
4 , b1·w1

2·(d 1
1+d 1

2)
) for the flows that exit their hardware sub-domain.

All application sub-domains are equivalent, thus the same flow bandwidths are valid for all of

them. We can calculate the effective bandwidth per application as:

B eff
app = 4 ·D1 ·D2 ·min

(

b0

4
,

b1 ·w1

2 · (d 1
1 +d 1

2)

)

. (5.63)

We calculate B eff
node for the case when D1 ≥ 2 ·d 1

1 and D2 ≥ 2 ·d 1
2 as follows:

B eff
node =

B eff
app

D1 ·D2
= 4 ·min

(

b0

4
,

b1 ·w1

2 · (d 1
1 +d 1

2)

)

. (5.64)

For the remaining cases of the combinations of D1 (equal to d 1
1 , or greater than or equal to

2 ·d 1
1) and D2 (equal to d 1

2 , or greater than or equal to 2 ·d 1
2), we directly show B eff

node.

120

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

D1 D2 B eff
node

D1 ≥ 2 ·d 1
1 D2 ≥ 2 ·d 1

2 4 ·min
(

b0
4 , b1·w1

2·(d 1
1+d 1

2)

)

D1 = d 1
1 D2 ≥ 2 ·d 1

2 4 ·min(b0
4 , b1·w1

2·d 1
1

)

D1 ≥ 2 ·d 1
1 D2 = d 1

2 4 ·min(b0
4 , b1·w1

2·d 1
2

)

D1 = d 1
1 D2 = d 1

2 4 · b0
4

Table 5.6 – B eff
node for the 2-level fat-tree topology.

If D1 === d 1
1 and D2 ≥≥≥ 2···d 1

2 , all the nodes on the East/West edges of the application sub-domain

communicate within the switch. Only the North/South nodes generate one flow each to their

North/South neighbors that exits its L1 switch and B eff
node = 4 ·min(b0

4 , b1·w1

2·d 1
1

).

Otherwise, if D1 ≥≥≥ 2···d 1
1 and D2 === d 1

2 , all the nodes on the North/South edges of the application

sub-domain communicate within the same L1 switch. Only the East/West nodes generate one

flow each to their East/West neighbors that exits its L1 switch and B eff
node = 4 ·min(b0

4 , b1·w1

2·d 1
2

).

Finally, if D1 === d 1
1 and D2 === d 1

2 , none of the flows exits the hardware sub-domain. Thus,

B eff
node = 4 · b0

4 . We summarize the bandwidth models for the different mapping scenarios for

the 2-level fat-tree topology in Table 5.6.

5.6.4 3-Level Fat-Tree Topology

For the 3-level fat-tree topology, the mapping of application processes to hardware nodes is

a quadruple {d 1
1 ,d 1

2 ,d 2
1 ,d 2

2 }, where d 2
1 |d

1
1 |D1 and d 2

2 |d
1
2 |D2 as shown in Figures 5.15 and 5.16

(where d |D means that D is a multiple of d). In Figure 5.15, we show the application domain

D1 ×D2 divided in red sub-domains each of size d 1
1 ×d 1

2 . Each red sub-domain is further

divided in blue sub-sub-domains each of size d 2
1 ×d 2

2 . For the remainder of this section,

we will refer to an application sub-domain as to a 1st-level application sub-domain and to

an application sub-sub-domain as to a 2nd-level application sub-domain (the same for the

hardware sub-domain and sub-sub-domain, to which we will refer as 1st-level and 2nd-level

hardware sub-domain, respectively). In Figure 5.16, we show the hardware domain and the

mapping of the red 1st-level application sub-domain to the 1st-level hardware sub-domain

and the blue 2nd-level application sub-domain to the 2nd-level hardware sub-domain.

The red 1st-level application sub-domain of size d 1
1 ×d 1

2 is mapped to a 1st-level hardware

sub-domain which is a switchL2-rooted sub-tree (L2 is the second level of switching in the

3-level fat-tree topology). The blue 2nd-level application sub-domain of size d 2
1 ×d 2

2 is mapped

to a 2nd-level hardware sub-domain which is a switchL1 of the 1st-level hardware sub-domain

(L1 is the first level of switching at the bottom of the 3-level fat-tree topology). Moreover,

D1 ·D2 = m1 ·m2 ·m3, d 1
1 · d 1

2 = m1 ·m2, and d 2
1 · d 2

2 = m1. The 1st-level application sub-

121

Chapter 5. Analytic Modeling of Network Communication Performance

domains are mapped to the 1st-level hardware sub-domains linearly as well as the 2nd-level

application sub-domains within a 1st-level application sub-domain.

S
1

S
2

S
1

S
4

S
3

D
2

D
1

S
2

S
1

d
1

1

d
1

2

d
2

1

d
2

2

Figure 5.15 – The application domain of
a 2-dimensional nearest neighbor pattern.
The MPI processes are arranged in a 2-
dimensional grid of size D1 ×D2. The grid is
split into sub-grids (1st-level application sub-
domains) of size d 1

1 ×d 1
2 . Each such sub-grid

is further divided into sub-grids (2nd-level ap-
plication sub-domains) of size d 2

1 ×d 2
2 .

Figure 5.16 – The hardware domain of a 3-level
fat-tree. The processes of a 1st-level applica-
tion sub-domain are linearly mapped to the
nodes of one of the m3 switchL2-rooted sub-
trees (1st-level hardware sub-domain). The
processes of the 2nd-level application sub-
domain are linearly mapped to the nodes of
one of the m2 switchL1 (2nd-level hardware
sub-domain) of the switchL2-rooted sub-tree.

For the remainder of this section, we will make the next notations: D1 = a ·d 1
1 , D2 = b ·d 1

2 ,

d 1
1 = x ·d 2

1 , and d 2
1 = y ·d 2

2 . We analyze in detail the case when a ≥≥≥ 2, b ≥≥≥ 2, x ≥≥≥ 2 and y ≥≥≥ 2.

For the remaining cases, we will directly show the final B eff
node models at the end of this section.

There will be two cases that we do not cover: when x = 1 and y = 1, in which case m2 = 1 and

a = 1 and b = 1, in which case m3 = 1, both cases not being realistic.

Let’s start with the flow analysis of the nodes in the 2nd-level application sub-domain of

size d 2
1 ×d 2

2 . All nodes in this sub-domain are connected to the same switchL1. Each node

generates four flows of data to their North/South/East/West neighbors. Depending on where

in the 2nd-level application sub-domain the nodes are located and on the placement of the

2nd-level application sub-domain within the 1st-level application sub-domain, the nodes

can communicate in three ways: (1) only with nodes within the same 2nd-level hardware

sub-domain, (2) with nodes outside of their 2nd-level hardware sub-domain, but still within

the same 1st-level hardware sub-domain, or (3) with nodes outside their 1st-level hardware

sub-domain.

For the nodes communicating with nodes within the same 2nd-level hardware sub-domain,

they will send flows at an effective bandwidth of b0
4 . Indeed, such flows will traverse the network

through two links, source-switchL1 and switchL1-destination, both links being shared by the

four flows North/South/West/East sent/received by each node in the network. The number of

flows of this type generated within a 2nd-level application sub-domain is 4 · (d 2
1 −2) · (d 2

2 −2).

All the remaining flows of a 2nd-level application sub-domain, in number of 2 · (d 2
1 +d 2

2) will

exit their switchL1. Indeed, 2 ·d 2
2 flows will carry the East/West traffic from the nodes on

122

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

the East/West edges of the 2nd-level application sub-domain and 2 ·d 2
1 flows will carry the

North/South traffic from the nodes on the North/South edges of the 2nd-level application

sub-domain. All these 2 ·(d 2
1 +d 2

2) flows will share the w1 switchL1-switchL2 links. The effective

flow bandwidth obtained on such links is thus b1·w1

2·(d 2
1+d 2

2)
. The same effective flow bandwidth

will be obtained on the downward switchL2-switchL1 links. Indeed, the nodes in a 2nd-level

application sub-domain located on the North/South/East/West edges of the sub-domain will

be destinations for exactly 2·(d 2
1+d 2

2) flows originating in the neighboring 2nd-level application

sub-domains. To conclude, the flows that exit their 2nd-level hardware sub-domain, but

remain within their 1st-level hardware sub-domain, will have an effective bandwidth of

min(b0
4 , b1·w1

2·(d 2
1+d 2

2)
).

We have so far analyzed the flow contention for links within a 1st-level application sub-domain

(source-switchL1, switchL1-switchL2, switchL2- switchL1 and switchL1-destination). To quantify

the flow contention on the switchL2-L3 and switchL3-switchL2 links, we analyze the flows of

the 1st-level application sub-domain.

A total of 4·(d 1
1−2)·(d 1

2−2) flows in a 1st-level application sub-domain will communicate within

the 1st-level hardware sub-domain. The remaining 2 · (d 1
1 +d 1

2) flows will exit their 1st-level

hardware sub-domain and traverse the network through the switchL2-switchL3 and switchL3-

switchL2 links. Thus, the w1 ·w2 switchL2-switchL3 links will be shared by 2 ·(d 1
1 +d 1

2) flows and

the effective flow bandwidth achieved on these links will be b2·w1·w2

2·(d 1
1+d 1

2)
. The same bandwidth will

be obtained on the switchL3-switchL2 links. Indeed, the nodes on the four edges of a 1st-level

application sub-domain will be the destinations of exactly 2 · (d 1
1 +d 1

2) flows originating in the

neighboring 1st-level application sub-domains. To conclude, the flows that exit their 1st-level

hardware sub-domain will have an effective bandwidth of min(b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·(d 1
1+d 1

2)
), as they

will experience all the link bottlenecks that occur in the network.

All 1st-level and 2nd-level application sub-domains are equivalent, thus the same flow band-

widths are valid for all of them. We can calculate the effective bandwidth per application as:

B eff
app = 4 ·D1 ·D2 ·min

(

b0

4
,

b1 ·w1

2 · (d 2
1 +d 2

2)
,

b2 ·w1 ·w2

2 · (d 1
1 +d 1

2)

)

. (5.65)

We calculate B eff
node for the case when a ≥ 2, b ≥ 2, x ≥ 2 and y ≥ 2 as follows:

B eff
node =

B eff
app

D1 ·D2
= 4 ·min

(

b0

4
,

b1 ·w1

2 · (d 2
1 +d 2

2)
,

b2 ·w1 ·w2

2 · (d 1
1 +d 1

2)

)

. (5.66)

For the remaining cases of the combinations of a, b, x and y (each equal to 1, or greater than

or equal to 2), we directly show the final B eff
node models.

If a ≥≥≥ 2, b ≥≥≥ 2, x === 1 and y ≥≥≥ 2, the effective bandwidth per node is the same as the one in

Equation 5.66. Indeed although on the East/West direction there are no intra-1st-level appli-

123

Chapter 5. Analytic Modeling of Network Communication Performance

a b x y B eff
node

a ≥ 2 b ≥ 2 x ≥ 1 y ≥ 1 4 ·min
(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·(d 1
1+d 1

2)

)

a = 1 b ≥ 2 x ≥ 2 y ≥ 1 4 ·min
(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·d 1
1

)

a = 1 b ≥ 2 x = 1 y ≥ 2 4 ·min
(

b0
4 , b1·w1

2·d 2
1

, b2·w1·w2

2·d 1
1

)

a ≥ 2 b = 1 x ≥ 1 y ≥ 2 4 ·min
(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·d 1
2

)

a ≥ 2 b = 1 x ≥ 2 y = 1 4 ·min
(

b0
4 , b1·w1

2·d 2
2

, b2·w1·w2

2·d 1
2

)

Table 5.7 – B eff
node for the 3-level fat-tree topology.

cation sub-domain 2nd-level application sub-domain neighbors, there are still neighboring

1st-level application sub-domains, thus transfers still occur between them, transfers that

traverse the network through all types of switch-switch links. The same effective bandwidth

model applies for the case when a ≥≥≥ 2, b ≥≥≥ 2, x ≥≥≥ 2 and y === 1. Indeed, although on the North/-

South direction there are no intra-1st-level application sub-domain 2nd-level application

sub-domain neighbors, there are still neighboring 1st-level application sub-domains, thus

transfers still occur between them.

Otherwise, if a === 1, b ≥≥≥ 2, x ≥≥≥ 2 and y ≥≥≥ 2, the East/West flows are contained in the same

1st-level application sub-domain, thus only 2 · d 1
1 flows will exit the 1st-level application

sub-domain. In this case, B eff
node = 4 ·min

(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·d 1
1

)

. Else, if a === 1, b ≥≥≥ 2, x === 1

and y ≥≥≥ 2, then in addition to the previous comment, also within a 2nd-level application

sub-domain, only 2 ·d 2
1 flows will exist the 2nd-level hardware sub-domain. Thus, B eff

node =
4 ·min

(

b0
4 , b1·w1

2·d 2
1

, b2·w1·w2

2·d 1
1

)

. Finally, if a === 1, b ≥≥≥ 2, x ≥≥≥ 2 and y === 1, although on the North/-

South direction there are no intra-1st-level application sub-domain 2nd-level application

sub-domain neighbors, there are still neighboring 1st-level application sub-domains, thus the

North/South transfers still traverse the network through all the types of switch-switch links.

Therefore, B eff
node = 4 ·min

(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·d 1
1

)

.

The last cases are for a ≥≥≥ 2 and b === 1. If x ≥≥≥ 2 and y ≥≥≥ 2 or x === 1 and y ≥≥≥ 2, there will be only 2·
d 1

2 flows exiting the 1st-level application sub-domain. Thus, B eff
node = 4·min

(

b0
4 , b1·w1

2·(d 2
1+d 2

2)
, b2·w1·w2

2·d 1
2

)

.

However, when x ≥≥≥ 2 and y === 1, in addition to the previous comment, there will be only 2 ·d 2
2

flows exiting the 2nd-level application sub-domain. Thus, B eff
node = 4 ·min

(

b0
4 , b1·w1

2·d 2
2

, b2·w1·w2

2·d 1
2

)

.

We summarize the bandwidth models for the different mapping scenarios for the 3-level

fat-tree topology in Table 5.7.

5.6.5 2-Dimensional HyperX Topology

For the 2D HyperX topology, we cover a set of linear mappings of application sub-domains

to hardware sub-domains. The application sub-domain is represented by a full line (row)

in the application domain grid. The hardware sub-domain is represented by all the nodes

124

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

connected to an integer set of m consecutive switches in the horizontal (X) dimension of the

network topology (m ≤ d1). We bijectively and linearly map application lines to the hardware

sub-domains (sequences of switches in the X dimension of the topology). These mapping

cases can be described by a number k, where D1 ·k = d1 ·p, with k ∈N>0 and D1 = m ·p, with

m = d1
k
∈N>0. As we fully populate nodes in the hardware domain with the processes of the

application domain, D1 ·D2 = d1 ·d2 ·p.

We show an example of mapping application sub-domains to hardware sub-domains in

Figures 5.17 and 5.18. Figure 5.17 shows a 2D NNE application domain with D1=4 and D2=4.

Figure 5.18 shows the hardware domain which is a 2D HyperX topology with p=2, d1=4 and

d2=2. In this case, an application sub-domain is one line of 4 processes in Figure 5.17. A

hardware sub-domain is represented by all the nodes connected to 2 consecutive switches in

the horizontal (X) dimension of the topology. The figures show a mapping of application sub-

domains to hardware sub-domains when m=2 and k=2. m represents the number of switches

per hardware sub-domain and k represents the number of hardware sub-domains per X row

in the hardware topology. The colors represent the application or hardware sub-domains.

The models herein will cover the cases of D2 > 2 which is common for the 2D NNE pattern.

Figure 5.17 – 2D NNE application domain. Figure 5.18 – 2D HyperX hardware domain.

Figure 5.19 – 2D HyperX hardware domain (new switch notation Sl ,x,c).

Throughout this section we will use the following notations. Sl ,x,c is the c-th switch in the x-th

hardware sub-domain of the l -th line (X dimension) of the hardware domain and N i
l ,x,c is the i -

th node connected to switch Sl ,x,c , with l ∈ {0,1,...(d2 −1)}, x ∈ {0,1,...(k −1)}, c ∈ {0,1,...(m −1)}

and i ∈ {0,1,...(p − 1)}. Figure 5.19 shows the indexes of the switches in Figure 5.18 when

using the Sl ,x,c notation. For example, S3 is S0,1,0, the first switch in the second hardware

sub-domain of the first X row of the hardware domain.

125

Chapter 5. Analytic Modeling of Network Communication Performance

We identify multiple mapping cases depending on the values of k (k equal to 1, equal to 2, or

greater than 2) and m (k equal to 1, equal to 2, or greater than 2). In all cases, the nodes send

four flows to their corresponding North/South/East/West neighboring nodes. The East/West

communications generated by the nodes in a hardware sub-domain H will occur within H and

the effective flow bandwidths will be impacted by the m parameter (the number of switches

in a hardware sub-domain). However, the North/South communications generated by the

nodes in H will occur outside H . We analyze the North/South/East/West flow bandwidths of

the nodes of a hardware sub-domain. The analysis is similar for all sub-domains.

For the East/West direction communication, for any k value, for all topology lines of switches

l ∈ {0,1,...(d2 −1)}, for all hardware sub-domains x ∈ {0,1,...(k −1)} in a topology line l and

for all switches c ∈ {0,1,...(m − 1)} in a hardware sub-domain (l ,x), all source nodes N i
l ,x,c

∀i ∈ {1,...(p−2)} generate two flows to their East/West neighbors (the destination nodes). Both

source and destination nodes are connected to the same switch. The flows thus traverse only

two links source-Sl ,x,c and Sl ,x,c -destination. On both links, the flows achieve an effective

bandwidth of b0
4 , due to each node sending and receiving exactly four flows of data to and

from their North/South/East/West neighbors. For i ∈ {0, (p −1)} and m = 1, all the flows stay

within the switch, thus all East/West flows achieving the same effective bandwidth of b0
4 .

Furthermore, for i ∈ {0, (p −1)} and m ≥ 2, all nodes N i
l ,x,c communicate East/West within

their hardware sub-domain, but outside their Sl ,x,c . Node N 0
l ,x,c communicates West via one

flow with N
p−1
l ,x,m−1 for c = 0 and node N 0

l ,x,c communicates West via one flow with N
p−1
l ,x,c−1

for c > 0. Vice-versa, node N
p−1
l ,x,m−1 communicates East via one flow with N 0

l ,x,c for c = 0 and

node N
p−1
l ,x,c−1 communicates East also via one flow with N 0

l ,x,c for c > 0. These East/West

flows traverse three types of links in the hardware sub-domain, source-switch, horizontal

switch-switch, switch-destination. The horizontal switch-switch links are shared either only

by one flow (if m > 2) or by two flows (both East and West, if m = 2). The effective bandwidth

of the East/West flows obtained on the horizontal switch-switch links is thus b1 (if m > 2) or b1
2

(if m = 2). In summary, for i ∈ {0, (p −1)} and m ≥ 2, the effective bandwidth of the East/West

flows is calculated as the minimum across the bandwidths obtained on each of the traversing

links min(b0
4 , b1

2) if m = 2, or min(b0
4 ,b1) if m > 2.

We have so far analyzed the East/West communications for any k and m (each equal to 1,

equal to 2, or greater than 2). For the North/South direction communication, we start the

analysis for k > 2 and ∀l ∈ {0,1,...(d2 −1)}, and ∀c ∈ {0,1,...(m −1)}. All source nodes N i
l ,x,c

∀i ∈ {0,1,...(p −1)} generate two flows to their North/South neighbors (the destination nodes).

For ∀x ∈ {1,...(k −2)}, each node N i
l ,x,c communicates North via one flow with node N i

l ,x−1,c
(and vice-versa for the South communication). Moreover, each node N i

l ,x,c communicates

South via one flow with node N i
l ,x+1,c (and vice-versa for the North communication). Thus, a

total of p flows share the link between Sl ,x,c and Sl ,x−1,c and p flows share the link between

Sl ,x,c and Sl ,x+1,c . Thus, for ∀x ∈ {1,...(k −2)} the horizontal switch-switch links share p flows,

each North/South flow achieving on these links an effective bandwidth of b1
p

.

126

5.6. Bandwidth Models: Nearest-Neighbor Communication Pattern

m k B eff
node

m = 1 k > 2 4 ·min(b0
4 , b1

p
, 2·b2

p
)

m = 1 k = 1 4 ·min(b0
4 , b2

p
)

m = 1 k = 2 4 ·min(b0
4 , b1

2·p , 2·b2
p

)

m = 2 k > 2 4 ·min(b0
4 , b1

2 , b1
p

, 2·b2
p

)

m = 2 k = 1 4 ·min(b0
4 , b1

2 , b2
p

)

m = 2 k = 2 4 ·min(b0
4 , b1

2·p , 2·b2
p

)

m > 2 k > 2 4 ·min(b0
4 , b1

p
, 2·b2

p
)

m > 2 k = 1 4 ·min(b0
4 ,b1, b2

p
)

m > 2 k = 2 4 ·min(b0
4 , b1

2·p , 2·b2
p

)

Table 5.8 – B eff
node for the 2D HyperX topology.

For x = 0, each node connected to Sl ,0,c communicates North via one flow each with ex-

actly one node connected to Sl−1,k−1,c through two equal-length paths: p
2 flows through

Sl ,0,c −Sl−1,0,c −Sl−1,k−1,c and p
2 flows through Sl ,0,c −Sl ,k−1,c −Sl−1,k−1,c . However, the Sl ,0,c −

Sl ,k−1,c link is shared also by p
2 flows (North communication) generated by the p nodes of

Sl+1,0,c to Sl ,k−1,c . The link between Sl−1,0,c and Sl−1,k−1,c is also shared by p
2 flows (North

communication) generated by the p nodes of Sl−1,0,c to Sl−2,k−1,c . Thus, the Sl ,0,c −Sl ,k−1,c

and Sl−1,0,c -Sl−1,k−1,c links are shared by 2 · p
2 = p flows each. The vertical Sl ,0,c -Sl−1,0,c link is

shared only by p
2 flows (North communication) generated by the p nodes connected to Sl ,0,c ,

thus each flow sharing this link achieving an effective bandwidth of 2·b2
p

. The same analysis is

valid for the Sl ,k−1,c -Sl−1,k−1,c link. Similar analysis is valid for the case x = k −1. In summary,

for x ∈ {0, (k −1)}, the North/South flows experience an effective bandwidth of min(b0
4 , b1

p
, 2·b2

p
),

as they traverse all the types of links in the network source-switch, horizontal switch-switch,

vertical switch-switch and switch-destination.

In the case of k = 1, all the nodes N i
l ,x,c communicate North with N i

l−1,x,c and South with

N i
l+1,x,c . Thus, each of the Sl ,x,c −Sl−1,x,c and Sl ,x,c −Sl+1,x,c links is shared by p flows. The

North/South flows achieve an effective bandwidth across all the traversed links of min(b0
4 , b2

p
).

Finally, we analyze the case when k = 2 and x ∈ {0,1}. For x = 0, the South communications

use the same link Sl ,0,c −Sl ,1,c as the North traffic. Indeed, the Sl ,0,c −Sl ,1,c link is used by

p South flows generated by the nodes N i
l ,0,c to the nodes N i

l ,1,c , by p
2 North flows from the

nodes N i
l ,0,c to the nodes N i

l−1,1,c and by p
2 North flows generated by the nodes N i

l+1,0,c to

the node N i
l ,1,c . Thus, the effective bandwidth obtained by both South and North flows on

the horizontal switch-switch links is b1
2·p . The same analysis applies to x = 1. The vertical

switch-switch links share only p
2 flows. Thus, in the case of k = 2, the effective bandwidth

obtained by the North/South flows is min(b0
4 , b1

2·p , 2·b2
p

).

127

Chapter 5. Analytic Modeling of Network Communication Performance

We summarize the cases of all flows and show the models of B eff
node in Table 5.8.

5.7 Validation Results

In this section, we validate the analytic bandwidth models using the simulation framework

presented in [98, 99]. The simulator is based on a discrete event simulation package called

Omnest (the commercial version of the OMNet++ package) [9, 8]. The simulator is able to

accurately evaluate the performance of custom networks at flit level (the atomic unit of transfer

across a communication link) for full-mesh, fat-tree, multi-dimensional tori and 2D HyperX

topologies. The framework is highly modular and allows fast customization of the network

configuration. The user can set the workload type, the properties of the compute node network

adapter, the interconnection network (including the switch hardware characteristics, the flow

control and congestion avoidance mechanisms) and the simulation statistics and control.

Workloads are represented via stochastic traffic generators whose inter-arrival times, traffic

destinations and message sizes can manually be set.

5.7.1 Experimental Setup

For each experiment, we assign a single task per compute node or network adapter. Each

node sends at a maximum link bandwidth b0. For the uniform and shift communication

patterns, we assign the tasks to the nodes linearly, meaning that the index of the node is the

same with the index of the task. The indexing of the nodes is performed topologically. Starting

with zero, all the nodes in a group are indexed consecutively, one group and switch at a time.

For the nearest-neighbor pattern, we map the MPI processes following the mapping strategy

explained in Section 5.6. We partition the application domain is sub-domains and linearly

assign the partitions to the hardware sub-domains. Then, within the application sub-domain,

we use linear mapping.

To generate the workload we use the synthetic traffic generator of the network simulator.

For the uniform communication pattern, we generate uniform random traffic, where each

task selects for each message a destination from all the other tasks with equal probability.

For the shift communication pattern, we generate shift traffic, where each MPI process p

sends equal-sized messages to another unique process with the index (p+ s) mod nodes. For

the nearest-neighbor workload, we generate 2-dimensional nearest-neighbor traffic, where

each MPI process communicates via equal-sized messages with its North/South/West/East

processes (the neighbors as defined in the nearest-neighbor application domain).

For each experiment the metric of interest is the effective bandwidth per node. This is

calculated as the total amount of data exchanged divided by the completion time of the

communication pattern divided by the number of nodes. For shift and nearest-neighbor, we

exchanged a fixed amount of data between every communicating pair (128 KB). For uniform,

the nodes communicate uniformly at random for a fixed amount of time (10 milliseconds).

128

5.7. Validation Results

PARAMETER VALUE

Workload type Uniform, shift, nearest-neighbor
Message size 512 (bytes)
Network adapter type Infiniband
Network adapter buffer size 200 (KB)
Network adapter delay 100 (nanoseconds)
Node load 100%
Host-switch bandwidth 7 (GB/second)
Switch flit size 512 (bytes)
Switch type Infiniband-like
Switch input buffer size 100 (KB per port)
Switch output buffer size 100 (KB per port)
Switch-switch bandwidth 7 (GB/s)

Table 5.9 – Network simulator setup hardware parameters.

For all experiments, we used an input-output-buffered Infiniband switch with 100 KB per

buffer as switch architecture. All links are 7 GB/second (FDR) and the flit-size is constant to

512 bytes. Moreover, we used shortest-path routing (dimension-order for tori topologies).

Table 5.9 shows a summary of the main network adapter and switch parameters used for our

simulations.

5.7.2 Uniform Communication Pattern

We performed experiments for the full-mesh, fat-tree (2-level and 3-level), 2-dimensional

HyperX and 3-dimensional torus topologies. The network configurations were chosen so that

the number of nodes is approximately 1,000-1,200, with the exception of the tori and HyperX

topologies where we covered a larger span of number of nodes from 4 to 3,375.

For the full-mesh topology, we ran simulations with a total number of nodes ∈ {1,026..1,170},

with p ∈ {13..80} and a ∈ {13..80}. For the 2-level fat-tree, we ran simulations with a total

number of nodes ∈ {1,024..1,224} with w0 = 1, w1 ∈ {2..39}, m1 ∈ {25..61} and m2 ∈ {20..42}. For

the 3-level fat-tree, we performed experiments with a total number of nodes ∈ {1,026..1,200},

with w0 = 1, w1 ∈ {3..39}, w2 ∈ {2..6}, m1 ∈ {18..61}, m2 ∈ {3..10} and m3 = 6.

For the 3-dimensional torus topology, we ran simulations with a total number of nodes

∈ {8..3,375}, with p = 1, d1 ∈ {2..15}, d2 ∈ {2..64} and d3 ∈ {2..80}. In this design-space we

included configurations of 3-dimensional tori topologies with d1 = d2 = d3 ∈ {2..15}.

For the 2D HyperX, we performed simulations with a total number of nodes ∈ {16..1,200}, with

p ∈ {2..14} and d1 = d2 ∈ {4..10}. For this particular topology, we only ran HyperX topologies

with equal-sized dimensions d1 and d2 due to simulator limitations.

Table 5.10 shows the accuracy results of our bandwidth models for the uniform pattern when

129

Chapter 5. Analytic Modeling of Network Communication Performance

Network topology Mean accuracy Max accuracy Min accuracy Correlation

2L FAT-TREE 98.9% 99.3 % 98.7% 0.99

3L FAT-TREE 98.8% 99 % 98.6% 0.98

FULL-MESH 99.4% 99 % 99.5% 0.99

2D HYPERX (SAME SIZE) 97.9% 99.7% 94.2% 0.99

3D TORUS (ALL) 83.4% 99.5% 38.8% 0.97

3D TORUS (SAME SIZE) 93.1% 99.5% 81.1% 0.99

3D TORUS (DIFFERENT SIZES) 77.3% 97.3% 38.8% 0.93

Table 5.10 – Accuracy results across network topologies (uniform pattern).

compared with the network simulation results. For each experiment, we calculated the model

error as |Model−Simulation|
Simulation . The accuracy across a set of experiments (e.g., all experiments

corresponding to the same topology) is calculated as 1 minus the average model error across

the same set.

The results show that the effective bandwidth models for the uniform communication pattern

are very accurate for the fat-tree, full-mesh and 2D HyperX topologies, with average accuracy

rates of more than 97%. The 3-dimensional torus topology also exhibits a reasonable accuracy

with an average rate of 83% for all torus experiments. Per class of topology, the correlation

across the experiments (each experiment corresponding to a network configuration) is also

very high of more than 0.97. Moreover, the correlation across the experiments for all topologies

is 0.98. This indicates that the proposed effective bandwidth models for the uniform pattern

can reliably be used to perform design-space exploration across network configurations.

40

60

80

100

0 10 20 30

 Network experiment

A
cc

ur
ac

y
[%

]

torus−3D

Figure 5.20 – Accuracy variability results for the 3-dimensional torus (uniform pattern).

We further analyzed the 3-dimensional tori results. To understand the variability of the

results across different network configurations, we present in Figure 5.20 the accuracy results

for all tori experiments. Although the majority of results are well distributed around the

mean accuracy, we identify a few configurations with less than 60% accuracy. Through a

more detailed investigation of the torus results, we found that tori configurations with equal

sized dimensions are more accurately predicted than tori configurations with at least two

130

5.7. Validation Results

dimensions of different sizes. Indeed, the average accuracy of tori with equal dimensions is

93%, whereas for the tori with at least two dimensions of different sizes is 77%.

5.7.3 Shift Communication Pattern

We performed experiments for full-mesh and fat-tree (2-level and 3-level) topologies. For

the full-mesh topology, we ran simulations with a total number of nodes ∈ {96..1,536}, with

p ∈ {8..64} and a ∈ {12..24}. For the 2-level fat-tree, we ran simulations with a total number

of nodes ∈ {24..1,024} with w0 = 1, w1 ∈ {2..8}, m1 ∈ {12..64} and m2 ∈ {2..16}. For the 3-level

fat-tree, we ran experiments with a total number of nodes ∈ {48..1,280}, with w0 = 1, w1 ∈ {2..4},

w2 ∈ {4..8}, m1 ∈ {12..40}, m2 ∈ {2..8} and m3 ∈ {2..4}.

For all topologies, we used shift synthetic traffic with shift-value s. For each network configu-

ration we chose multiple values of s to cover all the cases of s being lower or higher than the

sizes of the hardware sub-domains. For example, for full-mesh topology, we ran multiple s

values lower or higher than the number of nodes attached to a switch p, for 2-level fat-tree

lower or higher than the number of nodes attached to an L1 switch m1, for 3-level fat-tree

lower or higher than the number of nodes attached to an L1 switch m1, lower or higher than

the size of a switchL2-rooted sub-tree m1 ·m2.

Table 5.11 shows the accuracy results of the network models for the shift pattern when com-

pared with the network simulation results. For each experiment, we calculated the model

error as |Model−Simulation|
Simulation . The accuracy across a set of experiments (e.g., all experiments corre-

sponding to the same topology) is calculated as 1 minus the average model error across the

same set.

Network topology Mean accuracy Max accuracy Min accuracy Correlation

2L FAT-TREE 92.8% 99.7% 78% 0.98

3L FAT-TREE 94.1% 99.8% 78% 0.99

FULL-MESH 96.7% 99.8% 82% 0.99

Table 5.11 – Accuracy results across network topologies (shift pattern).

The results show that the effective bandwidth per node for the shift communication pattern

are very accurate for the fat-tree and full-mesh topologies, with average accuracy rates of more

than 92%. Per class of topology, the correlation across the experiments (same shift-value s,

different network configurations) is also very high of more than 0.98. The correlations reported

in Table 5.11 correspond to the minimum correlation value obtained across all shift values.

This indicates that the proposed effective bandwidth models for the shift pattern can reliably

be used to perform design-space exploration across network configurations.

131

Chapter 5. Analytic Modeling of Network Communication Performance

5.7.4 Nearest-Neighbor Communication Pattern

We performed experiments for the full-mesh, 2-level and 3-level fat-tree and 2D HyperX

network topologies. For the full-mesh topology, we performed simulations with a total number

of nodes 1,024, with p ∈ {8,16,32,64} and a ∈ {16,32,64,128}. For the 2-level fat-tree, we ran

simulations with a total number of nodes 1,024 with w0 = 1, w1 ∈ {2,4,8}, m1 ∈ {8,16,32} and

m2 ∈ {32,64,128}. For the 3-level fat-tree, we ran experiments with a total number of nodes

1,024, with w0 = 1, w1 ∈ {2,4}, w2 = 4, m1 ∈ {2,8,32}, m2 ∈ {4,16} and m3 ∈ {2,8,32,128}.

For all the simulations above, we tested all possible mapping strategies with D1 and D2

∈ {2,4,8,16,32,64,128,256,512} and with d1 and d2 ∈ {1,2,4,8,16,32,64}, where D1, D2, d1 and d2

satisfy the mapping described in Subsections 5.6.2, 5.6.3 and 5.6.4 for full-mesh, 2-level and

3-level fat-tree topologies, respectively.

For the 2D HyperX topology, we performed simulations with a total number of nodes {100,

200, 300, 400, 500, 1,000}, with d1 = d2 = 10 and p ∈ {1,2,3,4,5,10}. For these simulations, we

ran mapping strategies for k and m ∈ {1,2,5,10} following the mapping explained in Subsec-

tion 5.6.5.

Table 5.12 shows the accuracy results of the bandwidth models for the 2-dimensional nearest-

neighbor communication pattern when compared with the network simulation results. For

each experiment, we calculated the model error as |Model−Simulation|
Simulation . The accuracy across a set

of experiments (e.g., all experiments corresponding to the same topology) is calculated as 1

minus the average model error across the same set.

Network topology Mean accuracy Max accuracy Min accuracy Correlation

2L FAT-TREE 91.1% 99.8% 80.4% 0.98

3L FAT-TREE 89.7% 99.7% 75% 0.98

FULL-MESH 97.8% 99.8% 95% 0.99

2D HYPERX 83% 91.8% 52% 0.89

Table 5.12 – Accuracy results across network topologies (nearest-neighbor pattern).

The results show that the effective bandwidth per node for the 2-dimensional nearest-neighbor

communication pattern are very accurate for the fat-tree and full-mesh topologies, with av-

erage accuracy rates of more than 89%. A slightly lower accuracy is obtained for 2D HyperX

topologies where we obtain an average of 83% with a minimum of 52%. Per class of topology,

the correlation across the experiments (each experiment corresponding to a network config-

uration and mapping strategy) is also very high of more than 0.98 for fat-tree and full-mesh

and 0.89 for 2D HyperX topologies. The results indicate that the proposed effective bandwidth

models for the 2-dimensional nearest-neighbor communication pattern can reliably be used

to perform design-space exploration across network configurations and mapping strategies.

We further analyze the 2D HyperX results. To understand the variability of the results across

different experiments, we present in Figure 5.21 the accuracy results for all 2D HyperX experi-

132

5.8. Related work

50

60

70

80

90

0 5 10 15 20

 Network experiment

A
cc

ur
ac

y
[%

]

2D−HyperX

Figure 5.21 – Accuracy variability results for the 2D HyperX topology.

ments. Although the majority of results are well above 80% accuracy, we identify 4 configura-

tions with accuracies between 50 and 60% (which correspond to p=10). We plan as future work

to investigate in detail the statistics reported by the 2D HyperX simulations for large values of

p in order to understand better where the network contention lies and, if possible, adapt the

network models to better capture this network contention.

5.8 Related work

To analyze the network throughput a traditionally used metric is the bisection bandwidth.

This metric quantifies the network performance in a communication-pattern-independent

manner. It measures the performance as the aggregate bandwidth of the links in a worst-

case cut that divides the network in two equal-sized sets of nodes [104]. With our proposed

solution we provide analytic bandwidth models that are specific to classes of communication

patterns. Our approach provides a more accurate estimate for the effective bandwidth of a

node. Indeed, for example, let’s assume a full-mesh topology with a switches and p nodes

per switch. Assuming that there is no network bottleneck at the end node, the bisection

bandwidth is b1·a2

4 and the bisection bandwidth per node is b1·a
2·p , regardless of the application’s

communication pattern, routing scheme or MPI rank mapping strategy. In reality, however,

if the pattern is uniform, the mapping linear and the routing shortest-path, then, as shown

in this chapter, the effective node bandwidth is b1·a
p

. In this case, the bisection bandwidth

would significantly underestimate the bandwidth. Another example is if the communication

pattern is shift with s a multiple of p. In this case, as also shown in this chapter, the bandwidth

estimator is b1
p

which can be very different than the bisection bandwidth.

Simulators are popular approaches to estimate communication performance [129, 98]. Such

methods are usually accurate and generic, assuming that the simulators provide implemen-

tations for the topologies under study and for the types of traffic of interest. However, they

are slow and not scalable to large network sizes or communication execution times. With our

methodology, we provide fast means to analyze a large set of hardware network design points.

Let’s assume that a network system designer or researcher has a large hardware design space

133

Chapter 5. Analytic Modeling of Network Communication Performance

to analyze. By using our proposed analytic communication models, the design space can be

rapidly analyzed and reduced to a smaller design space with hardware configurations that

meet specific requirements. The resulting smaller set of hardware design points can be further

analyzed in more detail if necessary using, e.g., simulators or other computationally-intensive

more accurate methods.

Another well-known approach to obtain the effective bandwidth is formulating the problem

as a flow-optimization problem [121]. Given a network specification and a communication

matrix, such a problem will not only provide the bandwidth of the application, but also the

routing that ensures it. There is numerous research available on this topic. Kinsy et al. [82]

propose an integral max-flow problem by using a mixed integer linear programming (MILP)

formulation to find a set of routes for flows that cannot be separated across different paths.

The authors state, however, that their optimizations are only feasible from a practical point of

view for small network sizes.

Applegate et al. [24] propose a linear programming max-flow formulation for finding close-to-

optimal routes that is polynomial in size with respect to the network size. For an Internet Server

Provider (backbone) network with 315 routers, they report 31 minutes computation time for

their algorithm. Moreover, their work is focusing on estimating network performance when

the characteristics of the traffic pattern are not known. The same remark applies to the work

presented in [111, 29]. In our work, applications that run on high-performance computing

systems usually have a well-defined communication pattern. In our models, we leverage the

regularity of such communication patterns in order to create fast means of evaluating their

communication performance given a network specification. We assume shortest-path routing

and optimal routing when multiple paths are available.

Prisacari et al. [110] propose a highly optimized max-flow integer linear programming (ILP)

formulation to efficiently determine optimal routes for arbitrary workloads for fat-tree topolo-

gies. Their approach combines ILP with dynamic programming to effectively reduce the time

to solution. The authors claim significant speedups over the state of the art. However, even

their approach which is specifically optimized for fat-trees topologies, requires hours to weeks

for networks of more than 1024 nodes for every single system configuration. These methods

are valuable but do not scale, and even if they would become feasible for specific network

sizes, larger network sizes would still be unfeasible to analyze. For example, in [110], even

though a highly optimized method is proposed, the authors report that when increasing the

network size from 512 to 1024, the computation time increases 100-fold. Furthermore, Singla

et al. [119] report that their simulator does not scale for all-to-all traffic because the number of

commodities in the flow problem increases as the square of the network size.

Prisacari et al. [109] propose a model of the effective bandwidth for dragonfly topologies and

the 2-dimensional nearest-neighbor communication pattern. The model includes only link

bottlenecks that may occur between dragonfly groups. Our method applies generically to a

variety of network topologies and covers all network flows and link bottlenecks. We apply it to

134

5.9. Conclusions

multiple combinations of patterns (including 2-dimensional nearest-neighbor) and network

topologies in order to provide the scientific community with fast means of design-space

exploration across applications and network topologies.

5.9 Conclusions

In this chapter, we proposed a method for estimating the injection bandwidth of a node effec-

tively sustained by a network. The method captures the impact of link contention bottlenecks

on the node effective bandwidth. We derived analytic models for the uniform pattern under

fat-trees, tori, full-mesh and 2D HyperX topologies, for the shift pattern under full-mesh and

fat-tree topologies and for the 2-dimensional nearest-neighbor pattern under fat-trees, full-

mesh and 2D HyperX topologies. While for the former two patterns the models apply for linear

mapping of the MPI processes to the hardware nodes, for the latter communication pattern

the models apply to a larger set of mapping strategies in which application sub-domains are

mapped to hardware sub-domains.

The validation results indicate that the proposed effective bandwidth models are not only

accurate, but can also reliably be used to perform design-space exploration across network

configurations not only across variations of configurations of the same network topology,

but also across types of topologies. For the uniform pattern we obtained average accuracy

rates of more than 97%, except for tori topologies for which we attained 83%. For the shift

pattern we obtained average accuracies of more than 92%. Finally, for the 2-dimensional

nearest-neighbor pattern we obtained average accuracies of more than 89% for full-mesh

and fat-trees and 83% for 2D HyperX topologies. Moreover, we obtained very high linear

correlations of more than 0.89 between the model-based estimates and the simulation-based

results for all patterns and network topologies under study.

With these models we provide the community with means of fast design-space exploration

across different network topologies. The bandwidth models can also be used with existing

tools such as DIMEMAS [32] to allow performance evaluation of parallel application based on

detailed compute-communication graphs. As an example, our models could extend DIMEMAS

to "analytically simulate" network topologies, by simply replacing the link bandwidth used in

the time model of a packet transmission event with the effective bandwidth provided by the

analytic models. We will investigate this research path in our future work. As next steps, we

also plan to derive similar bandwidth models for other communication patterns such as bit

reversal, complement and matrix transpose, typical patterns of HPC applications.

135

6 Putting it All Together: Full-System

Performance Prediction

In the previous chapters we introduced (i) a software profiler that analyzes applications in a

platform-agnostic manner, (ii) use cases of how the software properties can enable processor

performance evaluation, and (iii) an analytic method for estimating the injection bandwidth

of a node in a distributed system, given a communication pattern and a network specification.

In this chapter, we combine all the models under a mathematical formulation and evaluate

the accuracy of the proposed method with measurements performed on supercomputers.

We propose the first analytic methodology for early and fast design-space exploration of

large-scale systems, that uses as input hardware- and ISA-agnostic software profiles.

6.1 Introduction

Figure 6.1 shows an overview of our proposed methodology for large-scale system performance

modeling. To extract the software model, our methodology uses the platform-independent

software analysis (PISA) tool introduced in Chapter 3. PISA measures software properties

such as available scalar and vector instruction mix, parallelism, memory access patterns and

communication matrix. As the software models are extracted at application run-time, they

can only be collected on current systems which are orders of magnitude smaller than exas-

cale. To predict the software models at exascale, our methodology uses the extrapolation tool

introduced by Mariani et al. [94], tool that is based on advanced statistical techniques. Once ex-

trapolated, the software model is then loaded into the hardware compute and communication

models presented in Chapters 4 and 5. These hardware models analytically capture perfor-

mance constraints and dependencies of a computing system. The analytic models allow fast

exploration of a large design-space of processor and network parameters.

6.2 Full-System Performance Modeling Description

To estimate the execution time of an MPI application, we first cluster the profiles of the MPI

processes extracted with PISA in classes of similar compute and communication signatures.

137

Chapter 6. Putting it All Together: Full-System Performance Prediction

+

Full-System and

per Component

Instruction Mix
Parallelism

(Instruction)

Control-Flow

Entropy

Memory

Locality

Communication
Register

Accesses

Performance

Results

Power

Results

Cost

Results

Performance

Models

Power

Models

Cost

Models

5.4, 2.3,

34, 24

…

Hardware Parameters

Scale

Properties to

Exascale

1 2 4 5

3

PISA Hardware models

ExtraX

int main

()

{…}

LLVM

Compilation

Instrumentation

001010010100

010101101010

Input Dataset

Application

Source Code

Native

Execution

and

Analysis

Figure 6.1 – Full-system performance evaluation methodology overview.

The clustering is performed using the method presented by Mariani et al. [95], a tool based

on unsupervised machine-learning techniques to consistently classify threads in different

program runs. Such a clustering method allows to speed up the performance analysis of large

sets of hardware design points. Indeed, instead of calculating performance metrics for each

individual thread or process, which in an exascale system can be in the range of hundreds of

thousands, our proposed methodology calculates the performance only for the representative

processes of the identified classes. This increases the capacity of the methodology at the

expense of reduced accuracy.

For each such class of processes C , we analytically estimate the execution time of a represen-

tative process of the class as shown in Equation 6.1.

TimeC = TimeC
compute +TimeC

communication (6.1)

The assumption taken by the model is that there is no overlap between the compute and

communication time of the process of class C . To quantify the overlap in time between

compute and communication, the application signature should include the temporal se-

quence of the compute and communication events that occur during the execution of an MPI

application. However, the current PISA application model does not include such a compute-

communication graph, thus the methodology does not include a model for the overlap time.

Although PISA could generate a hardware-independent compute-communication graph, the

main reason for not considering the graph is that it would require simulation for evaluating the

performance of each different hardware design point. This would significantly limit the design-

space exploration capacity of our methodology. Moreover, to generate a communication graph

138

6.2. Full-System Performance Modeling Description

of a problem size and number of processes representative of an exascale system would not be

possible for two reasons: the lack of exascale systems and the very large trace size.

The compute time of a representative process of class C is calculated based on the PISA com-

pute signature and the architectural parameters of the processor (Equation 6.2) using proces-

sor performance models such as those presented in Section 4.2. The PISA signature includes

the instruction mix (InstructionMixC), the overall and per-instruction-type instruction-level

parallelism (ILPC , ILPC
type) and the temporal memory access patterns (MemoryPatternC). The

architectural parameters refer not only to the architecture of the processor, but also to the

architecture of both the cache hierarchy and the external DRAM.

TimeC
compute = f(SwSignatureC

compute , HwParametersprocessor)

SwSignatureC
compute = {InstructionMixC , ILPC , ILPC

type , MemoryPatternC }
(6.2)

The communication time of a representative process of class C is calculated based on the

PISA communication signature and the architectural parameters of the network topology

(Equation 6.3). The PISA communication signature includes three parameters: the regular

communication pattern that best approximates the inter-process communication behavior of

the application PatternApp
communication (e.g., uniform, 2-dimensional nearest-neighbor), the total

number of exchanged MPI messages MC and the average message size MC
Size. The architectural

parameters of the network include not only the parameters that describe the structure of the

interconnect fabric (e.g., the number of up-links and down-links at each level in a fat-tree, the

sizes of the three dimensions of a 3-dimensional torus), but also the communication latencies,

the node MPI stack latency, the link latency and the switch latency.

TimeC
communication = g(SwSignatureC

communication, HwParametersnetwork)

SwSignatureC
communication = {PatternApp

communication , MC , MC
Size}

(6.3)

Equation 6.4 shows the actual model for the communication time of a representative process

of class C , model that considers different sources of communication latency.

TimeC
communication = MC · (lnode + llink + s · lswitch +

MC
Size

Beff
node

) (6.4)

The average communication latency per message llink incurred due to link traversal is cal-

culated as the sum of the lengths of all the paths taken by messages exchanged by the MPI

processes during the execution of the application divided by the total number of paths. The

average communication latency incurred due to switch traversal is calculated as the average

number of switches s traversed by the MPI messages multiplied by the switch latency lswitch.

The average number of switches is estimated by subtracting 1 from the average number of

links traversed by the MPI messages during the application run.

It is important to note that the average link and switch latency models take into account the

communication pattern that best approximates the communication behavior of the appli-

139

Chapter 6. Putting it All Together: Full-System Performance Prediction

cation, thus the model is approximately tailored to the application communication pattern.

The regularity of the approximated communication pattern allows us to derive closed-form

formulas for both average link and switch latencies, without running simulation.

Moreover the communication effective bandwidth Beff
node at which the end nodes exchange

MPI messages is estimated using the method described in Section 5.3. For each combination

of a communication pattern with a network topology the methodology uses a separate analytic

model for Beff
node.

In this section we have so far proposed a set of models to estimate the communication and

compute times per class of MPI processes C . We estimate the completion time of the full MPI

application across all classes of processes by using Equation 6.5.

TimeApp = max
C

(TimeC
compute +TimeC

communication) (6.5)

We believe that such a model would characterize with reasonable accuracy the completion

time of an MPI application with limited waiting time across processes. We consider such

an assumption reasonable as programmers of parallel and distributed high-performance

computing systems usually aim to balance the workload across the nodes and to reduce the

idle times across MPI processes.

6.3 Validation Results

We apply our full-system performance prediction methodology to two MPI benchmarks:

Graph 500 [4] and NAS LU [33] for which we also performed a set of time measurements

on supercomputers with different network topology configurations. Graph 500 is a repre-

sentative of graph analytics benchmarks and provides multiple MPI implementations. We

analyze the most scalable MPI implementation of the benchmark (MPI-simple). NAS LU is

a computational fluid dynamics application of the NAS benchmarks [33]. To estimate the

communication time, we use the uniform bandwidth estimators introduced in Section 5.4

for Graph 500 and the 2-dimensional nearest-neighbor bandwidth estimators introduced in

Section 5.6 for the NAS LU benchmark. Indeed, as shown in Chapter 2, Graph 500 has a nearly

uniform all-to-all [21] pattern and NAS LU has a 2-dimensional nearest-neighbor pattern [95].

To perform real measurements we used three supercomputing systems. One was a Cray

XC40 Series Supercomputer (Magnus) provided by the Pawsey Supercomputing Center in

Australia [7]. The system was ranked in November 2014 at No. 77 in the world’s Green500

most energy-efficient supercomputers list. This supercomputer provided us with access to

network configurations of full-mesh and 2D HyperX topologies. The second supercomputer

used for our measurements was Orzel / Eagle provided by the Poznan Supercomputing and

Network Center (PSNC), a supercomputer with a performance of 1.4 PFlops and a fat-tree

network interconnect fabric. This system allowed us to run different network configurations of

2-level and 3-level fat-tree topologies. The third supercomputer was an IBM Blue Gene/Q su-

140

6.3. Validation Results

percomputer where we had access to a limited set of network configurations of 1-dimensional,

2-dimensional and 3-dimensional tori topologies. We used all three supercomputers to an-

alyze the performance of Graph 500. For NAS LU we used only the first two systems, as the

Blue Gene/Q had been decommissioned at the time we started the evaluation of the NAS

benchmark.

From a compute hardware perspective, both Magnus and Eagle use x86 Haswell processors,

while Blue Gene/Q uses a POWER A2 in-order processor [13]. From a network perspective, we

measured the node MPI stack latencies (lnode) using the Intel MPI benchmarks [5]. For the

link and switch latencies, for the Magnus system we used information provided in [40], for

the Eagle system we used information obtained through personal communications with the

system administrators and for the Blue Gene/Q system we used information reported in [50].

Regarding link bandwidths, Eagle provides a fat-tree interconnect fabric with 7 GB/s FDR links,

Magnus provides a 2D HyperX (and full-mesh) interconnect fabric with 5 GB/s links [7] and

the Blue Gene/Q provides a torus fabric with 2 GB/s links [50].

6.3.1 Graph 500 Benchmark

For the model estimates, we profiled with PISA the BFS execution of the MPI-simple imple-

mentation of the Graph 500 benchmark for graph scales from 16 to 21, for an edge factor of 16

and for different counts of concurrent MPI processes from 4 to 64 (in powers of 2). For larger

scales we used ExtraX to extrapolate the software profile to target scale. We used either the

PISA or the extrapolated software compute profiles loaded into the processor performance

model presented in [76] to estimate the compute time. As processor architectures we used

E5-2597 v3 Haswell (for the Magnus and Eagle compute chips) and POWER A2 [67] (for the

Blue Gene/Q compute chip).

To analytically estimate the communication time, we need models for the average link latency,

average number of switches traversed per MPI message and the effective bandwidth. In Table 1

in the appendix, we show the analytic models for the average link latency per message for

the uniform pattern. To determine the average number of links traversed by a message, the

analytic models are similar, where the link latencies at the different levels of hierarchy in

the network (l0, l1, l2) are replaced with 1. The average number of switches is calculated by

subtracting 1 from the average number of links. As bandwidth estimators, we use the effective

bandwidth (per node) models derived in Section 5.4 for the uniform communication pattern .

For the real measurements, we ran the MPI-simple implementation of Graph 500 for scales

from 16 to 25 for an edge factor of 16 with different number of processes from 4 to 64 (in

powers of 2), following a linear mapping strategy of assigning one MPI process per compute

node. Each of these problem sizes were run on supercomputers with network configurations

as shown in Table 2 in the appendix. For each experiment we measured the execution time

of the BFS kernel. We compare the execution time measurement with the time analytically

estimated using our full-system methodology.

141

Chapter 6. Putting it All Together: Full-System Performance Prediction

We calculate the accuracy of our models and report the results per system (Eagle with 2-level

or 3-level fat-tree topology, Magnus with full-mesh or 2D HyperX topology and Blue Gene/Q

with torus topology). For each experiment we calculate the model error as |Model−Measurement|
Measurement .

The average system error is calculated as the average across all experiments performed on that

system. The accuracy is calculated as 1 minus the average system error. Table 6.1 shows the

accuracy results obtained when comparing the real measurements with the analytic estimates

derived from the combination of PISA software profiles with hardware (processor and network)

models (items no. 2 and 4 in Figure 6.1). The results in this section correspond to application

problem sizes of scales from 16 to 21, for an edge factor of 16 and for a number of concurrent

MPI processes from 4 to 64.

Topology (System) Average accuracy Max accuracy Min accuracy Correlation

2L FAT-TREE (EAGLE) 73.14 % 77 % 59 % 0.99

3L FAT-TREE (EAGLE) 64.66 % 76 % 42 % 0.98

FULL-MESH (MAGNUS) 90.80 % 99.7 % 76 % 0.98

2D HYPERX (MAGNUS) 89.31 % 90 % 72 % 0.98

1D TORUS (BG/Q) 95.41 % 99.6 % 93.2 % –

2D TORUS (BG/Q) 84.82 % 99.5 % 17 % 0.99

3D TORUS (BG/Q) 67.5 % 98.7 % 21 % 0.95

Table 6.1 – Accuracy results across systems (Graph 500).

The results show that with our proposed methodology we can generally evaluate performance

with reasonable accuracy of 90.80% for full-mesh, 89.3% for the 2D HyperX, 73.1% for the

2-level fat-tree, 64.6% for the 3-level fat-tree, 95.4% for the 1-dimensional torus, 84.8% for

the 2-dimensional torus and 67.5% for the 3-dimensional torus. The results with the highest

variability around the mean accuracy were obtained for systems with torus fabrics. This

result may be due to the fact that a torus topology typically uses complex deadlock avoidance

mechanisms that can generate additional congestion in the network, that is not covered with

our communication bandwidth models.

A more detailed view of the accuracy results is presented in Figure 6.2 where we show the

accuracy for all tested hardware configurations. On the X axis we show the network topology

specifications in the following format : (fm,p,a) for full-mesh, (ft2L, w0,w1,m1,m2) for 2-level

fat-tree, (ft3L, w0,w1,w2,m1,m2,m3) for 3-level fat-tree, (2dHyperX,p,d1,d2) for 2D HyperX,

(t1d,p,d1) for 1D torus, (t2d,p,d1,d2) for 2D torus and (t3d,p,d1,d2,d3) for 3D torus topologies.

In order to conclude whether our methodology captures the trends in performance across

different hardware configurations, we calculated the correlation factors for the different types

of systems. For a given application problem size and system (network) type, we calculate

the correlation factor across all the tested hardware configurations of that system. We report

in Table 6.1 the minimum correlation value obtained across the application problem sizes.

For 2-dimensional and 3-dimensional torus-based systems, we excluded the result obtained

for the smallest application problem size (16), where we obtained a negative correlation

142

6.3. Validation Results

factor. Nevertheless, for all larger scales, the results indicate that our full-system performance

methodology is able for the Graph 500 benchmark to accurately capture the relative trends in

performance across different hardware configurations. We do not show the correlation for the

1D torus-based system, as we only had one network configuration available.

We also calculated the correlation factor across all types of systems per application problem

size. For the application problem size 16 we obtained a correlation factor of 0.71 and for all the

other problem sizes (17, 18, 19, 20, 21) we obtained a correlation factor of more than 0.98. This

is again a encouraging result for using our full-system methodology for system performance

ranking and early system design-space exploration.

fm
,1

,1
6

fm
,1

,4
fm

,1
,8

fm
,2

,1
6

fm
,2

,4
fm

,2
,8

fm
,4

,1
6

fm
,4

,4
fm

,4
,8

ft2
L,

1,
4,

1,
4

ft2
L,

1,
4,

16
,4

ft2
L,

1,
4,

2,
4

ft2
L,

1,
4,

4,
4

ft2
L,

1,
4,

8,
4

ft3
L,

1,
4,

2,
1,

4,
2

ft3
L,

1,
4,

2,
2,

4,
2

ft3
L,

1,
4,

2,
4,

4,
2

ft3
L,

1,
4,

2,
8,

4,
2

2d
H

yp
er

X
,1

,2
,2

2d
H

yp
er

X
,1

,4
,2

2d
H

yp
er

X
,1

,4
,4

2d
H

yp
er

X
,1

,8
,2

2d
H

yp
er

X
,1

,8
,4

2d
H

yp
er

X
,2

,2
,2

2d
H

yp
er

X
,2

,4
,2

2d
H

yp
er

X
,2

,4
,4

2d
H

yp
er

X
,2

,8
,2

2d
H

yp
er

X
,2

,8
,4

2d
H

yp
er

X
,4

,2
,2

2d
H

yp
er

X
,4

,4
,2

2d
H

yp
er

X
,4

,4
,4

2d
H

yp
er

X
,4

,8
,2

t3
d,

1,
2,

2,
2

t3
d,

1,
2,

2,
4

t3
d,

1,
2,

4,
4

t3
d,

1,
4,

4,
4

t2
d,

1,
2,

2
t2

d,
1,

2,
4

t2
d,

1,
4,

4
t1

d,
1,

4

0

20

40

60

80

100

A
cc

ur
ac

y
ra

te
 [%

]

Figure 6.2 – Full-system model validation (PISA and hardware models) – Graph 500.

We also compared the real measurements with extrapolated PISA profiles loaded into hardware

models (items no. 1, 3 and 4 in Figure 6.1) and show the results in Table 6.2. The reported

results are for application graph scales of 24 and 25, for an edge factor of 16 and a number

of processes of 64. We only report the accuracy rates for full-mesh, fat-tree and 2D HyperX

systems, as we did not perform measurements for these large graph scales for the tori fabric

(which had been decommissioned at the time we ran the large-scale measurements).

The results indicate that the estimates of using extrapolated PISA software profiles with

hardware models are reasonably accurate with 78% accuracy for fat-tree topologies and

with more than 84% for the full-mesh and 2D HyperX interconnects. A more detailed view of

the results per network configuration is shown in Figure 6.3. We also calculated the correlation

143

Chapter 6. Putting it All Together: Full-System Performance Prediction

Network topology Problem size 24 Problem size 25

2L FAT-TREE 78.98 % 80.58 %

3L FAT-TREE 78.37 % 76.27 %

FULL-MESH 86.91 % 93.13 %

2D HYPERX 84.3 % 86.3 %

Table 6.2 – Accuracy results across systems (Graph 500).

factors obtained for each of the application problem sizes across hardware configurations. We

obtained a correlation factor of 0.97 for scale 24 and 0.92 for scale 25. This is again a good result

indicating that our full-system methodology could reliably be used to analyze performance

trends when varying the system hardware configurations.

fm,4,16 ft2L,1,4,16,4 ft3L,1,4,2,8,4,2 2dHyperX,2,8,4 2dHyperX,4,4,4 2dHyperX,4,8,2

0

25

50

75

24 25 24 25 24 25 24 25 24 25 24 25

 Problem scale

A
cc

ur
ac

y
ra

te
 [%

]

Figure 6.3 – Full-system model validation (PISA, ExtraX and hardware models) – Graph 500.

6.3.2 NAS LU Benchmark

For the model estimates, we ran with PISA the NAS LU benchmark for scales 36, 64, 102 and

162 with different counts of processes from 4 to 64 (in powers of 2). For larger scales, we

used ExtraX to extrapolate the PISA software profiles obtained at smaller scales to 408 and

800. We used either the PISA or the extrapolated software compute profiles loaded into the

processor performance model presented in [76] to estimate the compute time. As processor

architectures we used E5-2597 v3 Haswell (for the Magnus and Eagle compute chips).

To analytically estimate the communication time, we need models for the average link latency,

average number of switches traversed per MPI message and the effective bandwidth per

node. In Tables 3, 4, 5 and 6 in the appendix, we show the analytic models for the average

link latency per message for the 2-dimensional nearest-neighbor pattern. To determine the

average number of links traversed by a message, the analytic models are similar, where the

link latencies at the different levels of hierarchy in the network (l0, l1, l2) are replaced with 1.

The average number of switches is calculated by subtracting 1 from the average number of

links. As bandwidth estimators, we use the effective bandwidth (per node) models derived in

Section 5.6 for the 2-dimensional nearest-neighbor communication pattern .

For the real measurements, we ran the NAS LU benchmark for problem sizes 36, 64, 102, 162,

144

6.3. Validation Results

408, 800 with different number of processes from 4 to 64 (in powers of 2), following a linear

mapping strategy of assigning one MPI process per compute node. Each of these problem sizes

were run on a supercomputer with network configurations as shown in Table 7 in the appendix.

For each experiment we measured the execution time of the benchmark. We compare the

time measurement with the time analytically estimated using our full-system methodology.

We calculate the accuracy of our models and report the results per system (Eagle with 2-level or

3-level fat-tree topology, Magnus with full-mesh or 2D HyperX topology). For each experiment

we calculate the model error as |Model−Measurement|
Measurement . The average system error is calculated as

the average across all experiments performed on that system. The accuracy is calculated as

1 minus the average system error. Table 6.3 shows the accuracy results obtained when com-

paring the real measurements with the analytic estimates derived from using PISA software

profiles with hardware (processor and network) models (items no. 2 and 4 in Figure 6.1). The

results in this section correspond to application problem sizes of 36, 64, 102 and 162 and for a

number of concurrent MPI processes from 4 to 64.

Topology (System) Average accuracy Max accuracy Min accuracy Correlation

2L FAT-TREE (EAGLE) 82.4 % 92 % 67 % 0.99

3L FAT-TREE (EAGLE) 72.3 % 87 % 34 % 0.99

FULL-MESH (MAGNUS) 78.7 % 99 % 46 % 0.95

2D HYPERX (MAGNUS) 82 % 99 % 47 % 0.94

Table 6.3 – Accuracy results across systems (NAS LU).

The results show that with our proposed methodology we estimate performance with accuracy

of 78.7% for full-mesh, 82% for the 2D HyperX, 82.4% for the 2-level fat-tree, 72.3% for the

3-level fat-tree systems. The results, however, exhibit a larger variability around the mean

accuracy than those obtained for Graph 500. A more detailed view of the accuracy rates is

presented in Figure 6.4 where we show the accuracy for all tested hardware configurations.

On the X axis we show the network topology specifications in the following format : (fm,p,a)

for full-mesh, (ft2L, w0,w1,m1,m2) for 2-level fat-tree, (ft3L, w0,w1,w2,m1,m2,m3) for 3-level

fat-tree, (2dHyperX,p,d1,d2) for 2D HyperX topologies.

In order to conclude whether our methodology captures the trends in performance across

different hardware configurations, we calculated the correlation factors for the different types

of systems. For a given application problem size and system (network) type, we calculate the

correlation factor across all the tested hardware configurations of that system. We report in

Table 6.3 the minimum correlation value obtained across the application problem sizes. We

also calculated the correlation factor across all types of systems per application problem size.

The lowest correlation factor of 0.92 was obtained for the application problem size 36. The

results indicate that our full-system performance methodology is able, similarly to the Graph

500 benchmark, to accurately capture the relative trends in performance across different

hardware configurations. This is an encouraging result for using our full-system methodology

for system performance ranking and early system design-space exploration.

145

Chapter 6. Putting it All Together: Full-System Performance Prediction

2d
H

yp
er

X
,1

,1
2,

3

2d
H

yp
er

X
,1

,4
,4

2d
H

yp
er

X
,1

,5
,5

2d
H

yp
er

X
,1

,6
,6

2d
H

yp
er

X
,1

,8
,2

2d
H

yp
er

X
,2

,4
,2

2d
H

yp
er

X
,2

,6
,3

2d
H

yp
er

X
,2

,8
,4

2d
H

yp
er

X
,2

,9
,2

2d
H

yp
er

X
,3

,4
,3

2d
H

yp
er

X
,3

,6
,2

2d
H

yp
er

X
,4

,2
,2

2d
H

yp
er

X
,4

,4
,4

fm
,1

,1
6

fm
,2

,8

fm
,4

,1
6

ft2
L,

1,
4,

4,
16

ft2
L,

1,
4,

4,
4

ft3
L,

1,
4,

2,
2,

4,
2

ft3
L,

1,
4,

2,
2,

4,
8

0

20

40

60

80

100

A
cc

ur
ac

y
ra

te
 [%

]

Figure 6.4 – Full-system model validation (PISA and hardware models) – NAS LU.

We also compared the measurements with those obtained from extrapolated PISA profiles

loaded into hardware models (items no. 2, 3 and 4 in Figure 6.1) and show the results in

Table 6.2 for application problem sizes of 408 and 800 and a number of processes of 64. We

obtain 60% accuracy for the problem size of 408 and 92% accuracy for the problem size of 800.

A more detailed view of the results per network configuration is shown in Figure 6.5.

2dHyperX,2,8,4 2dHyperX,4,4,4 fm,4,16 ft2L,1,4,4,16 ft3L,1,4,2,2,4,8

0

25

50

75

100

408 800 408 800 408 800 408 800 408 800

 Problem scale

A
cc

ur
ac

y
ra

te
 [%

]

Figure 6.5 – Full-system model validation (PISA, ExtraX and hardware models) – NAS LU.

We also analyzed the correlation factors obtained for each of the problem sizes 408 and 800

across hardware configurations. We find that for NAS LU, when extrapolating the PISA profiles

with ExtraX to the larger problem sizes, the system performance ranking across different

hardware configurations is no longer preserved. As in the absence of ExtraX, the correlation

factors were very high, more investigation is necessary to understand the impact of ExtraX on

the quality of the estimates. This represents future work.

146

6.4. Full-System Power Modeling Description

6.4 Full-System Power Modeling Description

In this section we introduce an analytic model for estimating the power consumption of a full

system (both compute and communication). Although we do not validate this model with

power measurements we use it as a first-principle-based power model to perform theoretical

trade-off performance-power analysis across hardware design points. We apply this model in

the Chapter 7 for the Graph 500 benchmark assuming a large-scale system.

The energy of the system can be calculated as the sum between the communication energy

required by the end nodes to exchange messages over the network and the compute energy

consumed by all the end nodes (Equation 6.6). The model assumes that an N -process MPI

run is executed on N nodes, one MPI process per node.

Esystem = N ·Ecompute +Ecommunication (6.6)

Equation 6.6 is valid if all MPI processes have the same compute signature, thus the same pro-

cessor and memory energy consumption. However, in practice, this assumption may not hold.

We can adjust Equation 6.6 to take into account different compute signatures. By employing

the process clustering methodology in [95], the MPI processes can be clustered in classes

Cn , each class comprising of processes with similar compute and communication signatures.

Equation 6.7 shows the system energy model when considering classes of processes, where

|Cn | represents the number of processes of class Cn .

Esystem =
∑

Cn

|Cn | ·E
Cn

compute +Ecommunication (6.7)

The compute energy of a process of class Cn is calculated based on the static and dynamic

power of the processor and memory evaluated with McPat and CACTI/MeSAP as described

in Chapter 4.3. Equation 6.8 shows the model for the compute energy of a process of class

Cn . TApp is the total execution time of the MPI application as calculated in Equation 6.5 and

T
|Cn |
compute represents the compute time of a process of class Cn .

E
Cn

compute = E
Cn

compute-static +E
Cn

compute-dynamic

E
Cn

compute = P
Cn

compute-static ·TApp +P
Cn

compute-dynamic ·T
Cn

compute

(6.8)

We have so far described the compute energy model. We continue in the following paragraphs

with the communication energy model. Equation 6.9 shows the energy communication model

for a process of class Cn .

Ecommunication = Ecommunication-static +
∑

Cn

|Cn | ·E
Cn

communication-dynamic (6.9)

Equation 6.10 shows the static energy of the communication Ecommunication-static. The model

accounts for the static energy consumed by all the network switches s during the execution

time of the MPI application TApp. The total number of switches is calculated based on the

147

Chapter 6. Putting it All Together: Full-System Performance Prediction

network topology configuration parameters.

Ecommunication-static = s ·Eswitch-static = s ·Pswitch-static ·TApp (6.10)

The dynamic energy consumption model quantifies the dynamic energy consumed by the link

drivers in the network and the switch logic, energy consumed to transfer the MPI messages

from source to destination nodes. Equation 6.11 shows this model, where l , l elec, l opt and

s represent the average number of links, the average number of electrical links, the average

number of optical links and the average number of switches through which messages are sent,

respectively. These model parameter values are calculated based on the network topology

configuration and the communication pattern that best approximates the communication

behavior of the MPI application.

E
Cn

communication-dynamic = (l elec ·e l-elec
bit + l opt ·e

l-opt
bit + s ·e s

bit) ·8 ·DataCn

E
Cn

communication-dynamic = (l elec ·e l-elec
bit + l opt ·e

l-opt
bit + (l −1) ·e s

bit) ·8 ·DataCn

(6.11)

The average number of switches s is straightforward to calculate from the average number of

links l that the messages of the communicating pairs have to traverse through the network.

The remaining model parameters represent the following. DataCn represents the total amount

of bytes sent by a process of class Cn to all its destination nodes, e l-elec
bit the energy per bit

consumed by the electrical link driver, e
l-opt
bit the energy per bit consumed by the optical link

driver and e s
bit the energy per bit consumed by the switch logic.

In summary, to estimate the power consumption of the system Psystem, we use Equation 6.12.

Psystem =
∑

Cn
|Cn | ·E

Cn

compute

TApp
+

Ecommunication

TApp
(6.12)

6.5 Related Work

Many system performance modeling and design-space exploration methods have been pro-

posed in the past. Sharapov et al. [117] propose a solution for capturing the behavior of

applications at petascale by combining queuing-based modeling with cycle-accurate simu-

lation. The authors present an infrastructure for manual performance characterization of

individual applications via code inspection and benchmarking and use Amdahl’s law for pre-

dicting performance at petascale. In contrast we propose an automatic way of characterizing

parallel applications in a hardware-agnostic manner and, to predict performance, we use

hardware analytic models that capture the fundamental interactions between the software

properties and the hardware parameters. The only application property that we currently do

not automatically detect from PISA profiles is the type of the communication pattern (e.g.,

uniform, shift, nearest-neighbor) which is used on the communication modeling side. This

aspect represents a future work item for this thesis.

148

6.5. Related Work

A large number of previous solutions that aim to model system performance and perform

design-space exploration, rely on measurements of existing systems and often involve in-

depth knowledge about the applications [133, 81, 64, 120].

Zhai et al. [133] propose a method for predicting behavior of applications at scale. They rely

on the existence of at least one node of the target system and predict performance by scaled

simulation and replay of the compute and communication graph. A critical limitation of their

approach is that the problem size that their solution can deal with is limited by the scale of

host platforms from which they collect message logs required for the replay phase.

Snavely et al. [120] use x86-based instrumentation to extract machine profiles using Machine

Access Pattern Signature and Pallas MPI benchmarks. To estimate application execution

time, they use traces of compute and communication events as input to a network simulator,

DIMEMAS [32]. The authors report error rates of less than 10% on average and maximum

error rates of approximately 25%. Such an approach has a reasonably good prediction accu-

racy, but it has poor scalability. Indeed, only the collection and processing of a large-scale

communication graph would be problematic or even not possible due to processing or storage

limitations. The authors present prediction results for up to 128 nodes.

Gahvari et al. [64] provide a performance model of an algebraic multi-grid kernel, a solver

for large sparse linear systems that is used in many HPC applications. Parameters of the

analytic performance models are calibrated based on measurements on existing hardware ar-

chitectures. Moreover expert application knowledge is required to derive application-specific

performance models. Similarly, Kerbyson et al. [81] propose a performance model for SAGE,

a multi-material hydrodynamics code. With our methodology, we provide a set of more

broadly-applicable and hardware-measurement-independent models, and automatic tools

for application characterization.

We share with Hoefler et al. [71, 70] the same objectives of early-design-stage exploration of the

interaction between applications and compute architectures, in the context of performance

and power consumption. In contrast to their approach, however, we do not manually construct

analytic models of specific applications. (1) Our compute models are universally applicable

given a PISA profile and no previous knowledge of the application compute behavior is

required. (2) On the communication modeling side, even though, in the estimation of the

communication time, we use similar system parameters, network latency and bandwidth, as

in their LogGP models, we do not measure these parameters, but derive them analytically for

specific classes of communication patterns, network topologies and mapping strategies.

Using PISA software profiles with analytic models can be compared to other performance

evaluation approaches, ranging from theoretical performance models [54] to system simula-

tors and emulators [25, 105, 35]. The latter are capable of generating high-accuracy perfor-

mance estimates, incurring, however, a high evaluation overhead per hardware specification.

The former produce estimates rapidly, but fail to capture details of application behavior as the

application is modeled abstractly. We aim to provide a middle ground between the two, by

149

Chapter 6. Putting it All Together: Full-System Performance Prediction

complementing purely analytic performance models with a detailed hardware-independent

application model extracted by PISA.

Finally, another related approach uses regression modeling for predicting performance of

single-threaded applications [89]. The authors build linear models that predict application

performance based on 23 micro-architectural parameters. To build reliable models with such

a high number of features, the authors run thousands of simulations using an out-of-order,

super-scalar processor simulator. It is reported that the best prediction results are obtained

by creating application-specific linear models with median error rates of 4.1% to 10.8%. In

our approach, we target early design-space exploration of large-scale systems following two

main ideas: (1) decoupling the application properties from the hardware parameters, and (2)

deriving hardware analytic models that capture the interaction between the two. We believe

that training application-specific performance models (generating training data) for a large

number of system parameters (not only processor-related, but also network-related) using

simulators is a slow process that we propose to avoid by using hardware analytic models.

6.6 Conclusions

In this chapter we presented the first methodology that estimates the performance of large-

scale systems using as input platform-independent software profiles. These profiles were

loaded into analytic processor and network models. We evaluated our approach using two

applications, Graph 500 and NAS LU, which we ran on systems with wide sets of network

configurations.

For the Graph 500 benchmark, we obtained very good correlation results across different

hardware systems. This indicates that the proposed methodology could reliably be used to

(1) rank systems based on their performance, and (2) perform early and fast design-space

exploration. For the NAS LU benchmark, we obtained also good correlation results when using

PISA profiles with hardware models. This is again an encouraging result for our approach.

As future work, we will investigate the impact of extrapolation of software profiles on the

quality of the performance estimates. We also envision to validate our method with other MPI

applications with uniform, shift or 2-dimensional nearest-neighbor communication pattern.

150

7 Design-Space Exploration Studies in

Radio Astronomy and Graph Analytics

In this chapter we apply our performance modeling methodology to two fields: radio as-

tronomy, the Square Kilometer Array [42] and graph analytics, Graph 500 [4]. For the radio

astronomy case we perform a design-space exploration study of compute nodes, guiding thus

the design of parts of the SKA compute infrastructure.

For the graph analytics case study, we perform a full-system design-space exploration of com-

pute node architectures and network topologies. We identify which combination of processing

nodes and network topologies best suit the compute and communication requirements of the

most scalable MPI implementation of the Graph 500 benchmark.

7.1 Design-Space Exploration of Compute Nodes

One of the main challenges that the Square Kilometer Array (SKA) telescope will need to

surmount is power consumption. In order to make the right choices early in the design

process, we analytically study several components of the SKA processing pipeline and estimate

their power consumption by assuming different types of compute node architectures. Our

objective is not only to provide power consumption estimates for the SKA pipeline, but also

to provide guidelines for the SKA compute node architectures. The SKA pipeline will consist

of a three-level processing scheme, briefly presented in Subsection 7.1.1. However, for our

design-space exploration study we will focus on the first two levels of the pipeline.

In Subsection 7.1.2 we present the first level of the SKA processing pipeline, the station

processor. This level will most probably be implemented in ASIC or FPGA technology. Our

PISA-based analytic methodology applies only to general-purpose processors, thus cannot be

used to estimate the power consumption for ASIC/FPGA technology. Therefore, for this first

level of processing, we introduce an application-specific ASIC/FPGA power model. The model

This chapter is based on an IEEE conference publication, A. Anghel, R. Jongerius, G. Dittmann, J. Weiss and
R. P. Luijten, "Holistic power analysis of implementation alternatives for a very large scale synthesis array with
phased array stations," 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Florence, 2014, pp. 5397-5401, DOI: 10.1109/ICASSP.2014.6854634.

151

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

Figure 7.1 – Close-up view of one of the SKA instruments. [From: http://skatelescope.org]

is an extension of the computational requirements analysis proposed by Jongerius [75] for the

LOFAR pipeline [56]. Additionally the models herein take into account the power consumption

of the memory operations. We also introduce scaling rules for the energy values of arithmetic

and memory operations.

In Subsection 7.1.3 we describe the second level of the SKA processing pipeline, the central

signal processor. Various compute technologies have been proposed for implementing this

SKA processing level, including ASICs, FPGAs and general-purpose CPUs. We analyze the

power consumption of the most compute-intensive kernel of this processing level assuming

implementations of general-purpose CPUs. As prediction methodology, we employ PISA

coupled with analytic processor performance-power models.

7.1.1 Square Kilometer Array Overview

Processing large data volumes in real-time prevents state-of-the-art radio telescopes from

achieving the accuracy necessary to study radio signals that originated billions of years ago.

The Square Kilometre Array (SKA) [42] is a next-generation telescope which aims to overcome

these challenges. By providing an infrastructure that transports and processes data rates in

the Pb/s range, SKA will be the largest and most precise radio telescope in the world – at least

an order of magnitude better than the current state of the art in terms of sensitivity and survey

speed.

As the name suggests SKA will have a collecting area of a million square meters, made up of a

vast array of antennas located on two continents, South Africa and Australia (see Figure 7.1).

Before being made available to astronomers, the radio signals captured by these antennas will

need to be electronically processed. This processing step will face many challenges. Indeed,

the aggregated data rate from all the antennas will be in the Pb/s range requiring as many as

1018 compute operations/second to process under a very limited power budget.

152

7.1. Design-Space Exploration of Compute Nodes

Relying on Moore’s Law may not be enough to ensure that the SKA system will benefit from

technology advances that can handle its processing challenges. New hardware-software

system design practices are necessary to increase the system performance within a given

energy budget. Our proposed analytic methodology can be one such novel design practice to

explore large ranges of hardware design points.

The SKA telescope will be built in 2 phases. The construction of the first phase (SKA1) will start

in 2018 and end in 2023, whereas the construction of the second phase (SKA2) is projected to

start in 2023 and end in 2030. In SKA1 only a part of the SKA telescope will be built in order to

serve as a proof-of-concept for testing the feasibility of the telescope. The design of SKA2 is

still under discussion at the time of writing this thesis. However, it is expected for the current

SKA1 design to significantly extend its collecting area.

SKA1 will consist of three telescopes, each operating in different frequency ranges and serving

different sets of science applications, such as planet formation, gravitational waves, cosmic

magnetism, dark energy or galaxy evolution. Many SKA1 designs have been proposed during

the time when this thesis was conducted. For the remainder of the thesis, we will focus on the

re-baselining design proposed in [106] for one of the instruments of the SKA1, the SKA1-Low.

This instrument is an array of 131,072 antennas and the largest in terms of number of antennas

among the three SKA1 instruments.

The 131,072 antennas of the SKA1-Low telescope, grouped in 512 stations of 256 antennas

each, are spread out over an area of 50 km in diameter and operate in the 50 - 350 MHz

frequency range. This telescope is fundamentally Fourier synthesis (interferometric) arrays.

The main principle of interferometry [113] is to combine the signals from an array of antennas

to virtually form the equivalent of a single much larger telescope. For the SKA1-Low, the

signals of 256 antennas in a station are forming one station beam and the station beams are

combined by correlation. This technology has been proven to be highly flexible at observation

time and to operate at a low cost for frequencies lower than 300 MHz [56]. In this work we

focus on the digital processing and not on the phase array hardware technologies.

 Station Processor

 Station Processor

Central
Signal

Processor
(CSP)

Science
Data

Processor
(SDP)

1st level 2nd level 3rd level

Figure 7.2 – Top-level view of the SKA processing pipeline.

Figure 7.2 shows a top-level view of the processing levels of the SKA pipeline. As a preliminary

processing step, the radio signals are filtered and amplified where they are collected at the

antenna site. The first processing level happens in a station computing facility (the station

processor). 256 antennas send their collected signals to this station processor in order for the

signals to be digitized, Fourier transformed and beam-formed. The output of the 512 station

153

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

processors is sent to a central signal processor (CSP) where the second level of processing

occurs. In the CSP, the station beams are correlated with each other. Finally, the correlated

frequency channels are sent to yet another computing facility, called the science data processor

(SDP), for the third processing step, the sky image processing.

7.1.2 Power Modeling of the SKA Station Processor

For the station processor we estimate the power consumed by the poly-phase filter (PPF)

and beam-forming (DBF) kernels. We chose to analyze ASICs and FPGAs, because (1) these

are two types of compute nodes that have been often used in the implementation of the

digital pipeline of radio telescopes [34] [56], and (2) there is a high probability for the station

processor to actually be implemented using ASIC/FPGA technology. With our analysis we aim

to provide an optimistic estimate of the compute and memory power requirements of the

digital processing pipeline. We also show how an ASIC-based solution compares power-wise

to an FPGA-based implementation.

Figure 7.3 shows a schematic view of the station processor, where the system parameter

names in the figure are described in Table 7.1. The values of the parameters in the table are in

according to the SKA1 re-baseline design [106].

Parameter name Parameter description Parameter value

Nant no. of antennas (per station) 256 (antennas)
Npol no. of polarizations (per antenna) 2 (polarizations)
f antenna sampling frequency 600∗106 (samples/second)
Ntaps no. of FIR taps (per FIR filter) 8 (taps)
Nsubbands no. of FIR subbands (per FIR filter) 512 (subbands)
Nbeams no. of beams (per station) 1 (beams)

Table 7.1 – SKA1-Low station design parameters.

Each antenna sends its signal to an analog-to-digital converter (ADC) located in the station

computing facility. If the signal bandwidth is fsignal, the ADC samples the signal at a Nyquist

rate of f = 2 · fsignal (assuming no over-sampling). The antennas have two polarizations with

one ADC per antenna per polarization.

The digitized samples are then passed as real-valued inputs to a poly-phase filter (PPF) that

produces complex output samples (real and imaginary) per subband. The PPF consists of a

finite impulse response filter bank (FIR) and a Fourier transform (FFT). The real-valued ADC

samples are first passed through an FIR filter bank that separates the input signal into multiple

subband components Nsubbands, each carrying a single frequency subband of the original

signal. The filter multiplies the current sample, as well as a number of recently received

samples, with weights that fix the contribution of each input in the final FIR sample. Each

multiplication represents a tap filter.

154

7.1. Design-Space Exploration of Compute Nodes

ADC

FIR

FIR

FFT

ADC

FIR

FIR

FFT

DBF

f

2⋅N subbands

f

2⋅N subbands

f

f

f

2⋅N subbands

f

2⋅N subbands

2⋅N subbands

2⋅N subbands

N pol

N ant

8

8 8 2 x8

f

2⋅N subbands

N beams

N pol

8

8 8 2 x8

N subbands N subbands

N subbands

2 x8

f

2⋅N subbands

ADC

FIR

FIR

FFT

ADC

FIR

FIR

FFT

f

2⋅N subbands

f

2⋅N subbands

f

f

f

2⋅N subbands

f

2⋅N subbands

2⋅N subbands

2⋅N subbands

N pol

8

8 8 2 x8

f

2⋅N subbands

8

8 8 2 x8

N subbands

N subbands

f

2⋅N subbands

N subbands

2 x8

N pol

N subbands

2 x8

N subbands

2 x8

Figure 7.3 – Station digital processing pipeline overview.

The FIR output samples are input to a Fast Fourier Transform (FFT) operation that converts

the digitized samples from the time domain into the frequency domain. The FFT size is given

by the number of FFT inputs and is typically chosen as a power of 2 to facilitate the addressing

in digital storage. Moreover, because the FIR output samples are real-valued and given the

Hermitian symmetry of the Fourier transform, two sets of real-valued input sequences can

be FFT-processed simultaneously. Thus, the number of subbands Nsubbands generated by the

real-valued FIR filter is half the number of FFT inputs Nfft = 2 ·Nsubbands.

The FFT output frequencies are input to a digital beam-former (DBF) which applies a phase

delay on each frequency sample to steer the beam in a certain direction on the sky and then

sums the resulting samples from all antennas per frequency subband. The station beam-

former generates Npol ·Nsubbands ·Nbeams streams that are sent to the central processing facility

(CSP).

155

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

7.1.2.1 ASIC/FPGA Power Modeling Description

Table 7.2 provides a list of power- and energy-related notations used throughout this section.

Notation Notation description

PFIR FIR dynamic compute power
PFIR-MEM FIR dynamic memory power
PFFT FFT dynamic compute power
PFFT-MEM FFT dynamic memory power
PPPF FFT+FIR dynamic compute power
PPPF-MEM FFT+FIR dynamic and static memory power
PDBF DBF dynamic compute power
PDBF-MEM DBF dynamic and static memory power
Pleak

mem Memory leakage power (memory size mem)
Pstation Station compute and memory power
Eb

MAC Energy per real-valued MAC op. (b-bit operands)
Eb

CMAC Energy per complex-valued MAC op. (2×b-bit operands)
Eb

mem Energy per R/W memory op. (b-bit access, mem memory size)
Eb

bfly Energy per FFT butterfly operation (2×b-bit)

Table 7.2 – Power- and energy-related notations and parameters.

The poly-phase filter (PPF) power includes the FIR filtering and FFT processing steps. An Ntaps

FIR requires Ntaps multiply-accumulate (MAC) operations to filter a digital sample generated

by the ADC. Equation 7.1 shows the FIR power model. For the SKA1-Low station processing,

the FIR input and output operand widths are real-valued 8-bit (b = 8).

PFIR = Nant ·Npol ·Ntaps ·Eb
MAC · f (7.1)

We estimate the number of FFT operations assuming a typical implementation, the radix-2

Cooley-Tukey [Cooley]. This implementation recursively breaks down an Nsubbands-point

discrete Fourier transform into r smaller transforms of size m where r is the radix of the

transform and Nsubbands = r ·m. Such a smaller transform operation is called butterfly. We

consider the radix r to be equal to 2 and we calculate the total number of FFT compute

operations based on the number of butterflies required to process Nsubbands inputs. This is

Nbfly = Nsubbands
2 · log2(Nsubbands). Equation 7.2 shows the FFT power model:

PFFT = Nant ·Npol ·Nbfly ·Eb
bfly ·

f

2 ·Nsubbands
= Nant ·Npol · log2(Nsubbands) ·Eb

MAC · f (7.2)

where Eb
bfly represents the energy per butterfly operation for an input operand width of 2×b bits.

Based on its internal real-valued MAC and accumulate (ADD) operation count, a complex-

valued butterfly operation requires the same energy as approximately 4 real-valued MAC

operations with b-bit inputs. For the SKA1-Low station processor, the inputs to the FFT block

are 8-bit real-valued, all the intermediate calculations within the FFT are performed on 2×16-

156

7.1. Design-Space Exploration of Compute Nodes

bit operands (16-bit real and 16-bit imaginary) and the outputs are 2×8-bit operands (8-bit

real and 8-bit imaginary).

It is important to note that the FFT power model is dependent on the assumed FFT imple-

mentation. In our model we chose the radix-2 Cooley-Tukey implementation. However, there

might be others with less computations, e.g., radix-4 Cooley Tukey. In that case, the user would

have to simply replace the number of butterfly operations with the new number (and type) of

operations.

By summarizing Equations 7.1 and 7.2, the compute power of the poly-phase filter (PPF) is:

PPPF = PFIR +PFFT (7.3)

where PFIR is calculated for 8-bit operands (E8
MAC) and PFFT is calculated for 2×16-bit operands

(E16
MAC).

We have so far quantified the compute power of the FIR and FFT kernels. However, both

kernels use data that resides in memory, thus they generate access operations to read/write

data from/to memory. We assume that each PPF has an on-chip memory where the samples

in the FIR pre-filters, the FIR coefficients, the FFT inputs and the FFT coefficient (twiddle)

factors used in the butterfly calculation are stored. The memory storage size and the memory

access size will allow us to quantify the energy consumption of a read/write memory access.

Then, based on the number of memory accesses performed by each kernel, we will derive a

power model for the memory activity of the FIR and FFT kernels.

Per antenna and polarization, the storage required by the FIR filters is Ntaps · 2 ·Nsubbands

multiplied by the input sample size and that of the FIR coefficients is Ntaps · 2 ·Nsubbands

multiplied by the FIR coefficient size. In our case both input sample size and FIR coefficient

size are equal to 8 bits. For each digitized sample and for each FIR filter tap, we assume that at

least two reads are performed during filtering: one read for the input sample and one read for

the FIR coefficient.

PFIR-MEM = Nant ·Npol ·Ntaps · (EbFIR-in

mem +EbFIR-coef

mem) · f (7.4)

where EbFIR-in

mem and EbFIR-coef

mem are the dynamic energy consumptions for a memory R/W operation

on an FIR input (of bit-width bFIR-in) and on an FIR coefficient factor (of bit-width bFIR-coef),

respectively, from/to a memory of size mem.

The FFT storage highly depends on the hardware implementation of the FFT kernel. We

assume that at a minimum we need to store the FFT inputs of an FFT and the internal twiddle

factors used in the butterfly operations. There are 2 ·Nsubbands inputs which require 8 bits of

memory each.There are also Nsubbands −1 twiddle (coefficient) factors of 2×16 bit-width each.

For each FFT operation we assume that the input samples and the twiddle factors have to be

157

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

read at least once from memory.

PFFT-MEM = Nant ·Npol · (EbFFT-in

mem +EbFFT-coef

mem) ·
f

2
(7.5)

where EbFFT-in

mem and EbFFT-coef

mem are the dynamic energy consumptions for a memory R/W opera-

tion on an FFT input (of bit-width bFFT-in) and FFT coefficient factor (of bit-width bFFT-coef),

respectively, from/to a memory of size mem.

In summary, the PPF power model for data movement through memory is shown in Equa-

tion 7.6.

PPPF-MEM = PFIR-MEM +PFFT-MEM +Nant ·Npol ·Pleak
mem (7.6)

where the memory is shared by both the FIR and the FFT and is of size:

mem =Ntaps ·2 ·Nsubbands · (bFIR-in +bFIR-coef)

+2 ·Nsubbands ·bFFT-in + (Nsubbands −1) ·bFFT-coef

and Pleak
mem represents the leakage power of this on-chip memory of size mem. The FIR memory

accesses are on 8-bit operands and the FFT memory accesses are on 8-bit operands for the

inputs and on 2×16-bit operands for the FFT coefficient factors.

In the next processing step, the digital beam-former (DBF) applies a phase delay on each FFT

subband to steer the beam in a certain direction on the sky and then sums the resulting samples

from all antennas per subband. Each complex stream from the FFT output is multiplied by a

complex exponential to adjust its phase. Then, all the streams of the same polarizations from

different antennas are summed.

The phase delay step can be implemented with one complex multiplication. A complex

addition is further required to add in the partial sum from the previous antenna. Thus,

each beam-former operation requires one complex-valued MAC (CMAC) per antenna per

polarization. This computation occurs independently for each station beam. The energy of a

2×b-bit CMAC is estimated to consume as much energy as approximately 4 b-bit MACs.

PDBF = Nbeams ·Npol ·Nant ·4 ·Eb
MAC ·

f

2
(7.7)

where the MAC arithmetic is performed on 8-bit operands (E8
MAC).

For the beam-forming step, we neglect the source of the delay values. Normally, these values

will be computed periodically and stored in a memory of at least length Nbeams ·Nsubbands ·
Nant ·Npol. So each beam-forming operation requires not only one CMAC, but also one read

158

7.1. Design-Space Exploration of Compute Nodes

operation from this memory.

PDBF-MEM = Nbeams ·Npol ·Nant ·Eb
mem ·

f

2
+Pleak

mem (7.8)

where an on-chip memory is dedicated to the DBF kernel and is of size:

mem = Nbeams ·Nsubbands ·Nant ·Npol ·bDBF-in

where bDBF-in is the DBF input bit-width (2×8) and Pleak
mem represents the leakage power of this

on-chip memory of size mem.

In summary we estimate the power consumption of the station processor as:

Pstation = PPPF +PPPF-MEM +PDBF +PDBF-MEM (7.9)

7.1.2.2 Power Models Parameters and Scaling Rules

We analyze the power consumption of the digital processing pipeline implemented in ASIC and

FPGA. We estimate the dynamic power requirements when implemented in 90 nm technology

and extrapolate the power consumption towards a 14 nm technology.

Simulations on synthesized designs prior to layout (22 nm technology, 125 MHz clock) yield an

ASIC MAC energy consumption of 9.6 pJ for real-valued 32-bit operands. This value is scaled

to 90 nm and 14 nm technologies using the NMOSFET dynamic power indicator values (C ·V2)

reported in the high-performance logic technology requirements of the ITRS PIDS tables [6].

The scaling factors are 0.83 for 22 nm → 14 nm and 1.86 for 22 nm → 90 nm transition, where

the MAC energy scales quadratically with the bit width of the input operands.

We scale the energy consumption of FPGA MAC operations in 90 nm based on the FPGA vs.

ASIC dynamic power measurements reported in [85]. They compare 90-nm CMOS FPGA

and 90-nm CMOS standard-cell ASIC in terms of power consumption for core logic. The

dynamic power ratio is approximately 7x for FPGAs that use hard-wired building blocks

(memories, multipliers, DSP) compared to ASICs. In our analysis, we employ the latter value.

When moving to 14 nm technology, we consider this relative consumption factor to remain

unchanged. However, given the increasing number of hard blocks hosted by FPGAs at lower

technology nodes, it is possible that this ratio will decrease. Table 7.3 shows the MAC-related

energies used in our models.

For on-chip memories, we assume embedded DRAM for ASICs and SRAM for FPGAs. To

estimate the dynamic energy of a R/W memory operation and the memory leakage power, we

leverage the CACTI tool [126] (the "pure RAM interface") with the following parameters.

For DRAM we use: LP-DRAM for the RAM cell type in both the data and tag arrays, ITRS-HP for

the peripheral and global circuitry transistor type in both the data and tag arrays, conservative

159

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

Platform ASIC FPGA Eq. no.

Technology node 90 nm 22 nm 14 nm 90 nm 22 nm 14 nm

E8
MAC (pJ) 1.1 0.6 0.5 7.7 4.2 3.4 7.1, 7.7

E16
MAC (pJ) 4.4 2.4 2 31.1 16.8 13.9 7.2

E32
MAC (pJ) 17.8 9.6 7.9 124.6 67.2 55.7 -

Table 7.3 – MAC energy consumption values for ASIC and FPGA technology.

interconnect projection type, global type of wire outside mat, temperature of 350 K, 1 read

port and 1 write port. For SRAM we use: ITRS-HP for the RAM cell type in both the data and

tag arrays, ITRS-HP for the peripheral and global circuitry transistor type in both the data

and tag arrays, conservative interconnect projection type, global type of wire outside mat,

temperature of 350 K, 1 read port and 1 write port.

For both DRAM and SRAM memories, we assume memory banks of 16 KB each and number

of bits read out per memory access of 8-bit. A 16-bit memory access is estimated to consume

twice the energy of an 8-bit access. Also the power leakage of an N -bank memory is calculated

as the number of banks N multiplied by the power leakage per bank. The memory size of

a station PPF is 19,456 bytes (thus two memory banks of 16 KB each summing up to a total

memory of 32 KB). The memory size of a station DBF is 524,288 bytes (thus 32 memory banks

of 16 KB each summing up to a total memory of 524 KB).

The newest technology supported by CACTI is 32 nm. Thus, for 14 nm technology, we first

calculate the R/W dynamic energy for 32 nm using CACTI and then scale it to 14 nm using a

factor of 0.8 [6]. As for the leakage power, we assume the scaling factor to 14 nm technology

to be 1x. The memory-related energies that we used in our models are shown in Table 7.4 for

ASIC technology and in Table 7.5 for FPGA technology.

Technology node 90 nm 32 nm 22-nm 14 nm Eq. no.

P
P

F

E8
32kB (pJ) 19 4.3 4.1 3.4 7.4,7.5

E32
32kB (pJ) 76 17.2 16.5 13.6 7.5

Pleak
32kB (mW) 1.3 1.4 1.4 1.4 7.6

D
B

F E16
524kB (pJ) 78 15.6 14.9 12.4 7.8

Pleak
524kB (mW) 48 48 48 48 7.8

Table 7.4 – DRAM access energy consumption values for the ASIC memory model.

7.1.2.3 Results and Discussion

Figure 7.4 shows the per-station power results for ASIC and FPGA implementations in 90,

32 and 14 nm CMOS technologies. The results provide an optimistic estimate of the station

power consumption, covering only part of what in reality consumes power in the station.

160

7.1. Design-Space Exploration of Compute Nodes

Technology node 90 nm 32 nm 22-nm 14 nm Eq. no.

P
P

F

E8
32kB (pJ) 18 3.2 3.1 2.5 7.4,7.5

E32
32kB (pJ) 72 12.8 12.2 10.2 7.5

Pleak
32kB (mW) 14.4 12.4 12.4 12.4 7.6

D
B

F E16
524kB (pJ) 98 18.6 17.8 14.8 7.8

Pleak
524kB (mW) 240 233 233 233 7.8

Table 7.5 – SRAM access energy consumption values for the FPGA memory model.

Components such as analog-to-digital conversion, chip-to-chip communication, static logic

power, static refresh memory power or cooling are not part of the model. Also calibration may

periodically occur in the digital pipeline that we do not consider in the model.

14nm 32nm 90nm

0

50

100

150

200

ASIC FPGA ASIC FPGA ASIC FPGA

S
ta

tio
n

po
w

er
 [W

]

ASIC
FPGA

Figure 7.4 – Station processor power for ASIC and FPGA technologies.

The results show that a station would consume at least 29 W and 73 W for ASIC and FPGA

implementations in 14 nm, respectively. This implies that (1) all the SKA1-Low 512 stations

would consume at least approximately 14.8 kW in ASIC and 37.3 kW in FPGA, and (2) an

ASIC-based implementation would be 2.5 times more power-efficient than an FPGA imple-

mentation. In 32 nm, a station would consume at least 37 W and 87 W for ASIC and FPGA

implementations, respectively. This implies that all the SKA1-Low 512 stations would consume

at least approximately 19 kW in ASIC and 44.5 kW in FPGA.

7.1.3 Power Modeling of the Central Signal Processor

The central signal processor collects the data from the Nstat = 512 station processors and

correlates it. The CSP inputs are the beams per subband and antenna polarization generated

by each station processor. The total number of inputs is Nbeams ·Npol ·Nsubbands ·Nstat.

The CSP inputs first pass through a second poly-phase filter. This filter further splits the

station subbands into narrower frequency ranges, called channels. In the station the original

signal was decimated into Nsubbands = 512 subbands. In the CSP each subband is further

decimated into Nchannels = 128 channels each, resulting in 65,536 total number of channels,

161

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

as stated in the SKA1 re-baseline design. All the channels are then input to two additional

computational steps, a phase delay and a bandpass correction, both implemented with

complex multiplications. The results are further input to the most compute-intensive kernel

of this pipeline, the correlation [128]. In this section we will focus on the analysis of this kernel.

The channels are correlated for each pair of stations and polarizations per station beam.

For each channel and each combination of two stations and two polarizations, the complex

sample from one station is multiplied with the conjugate of the complex sample from the

other station. Thus, a correlation is essentially a complex multiply operation (in the case of

the SKA1-Low, performed on 2×32-bit operands).

To reduce the amount of data generated by the correlation step, an additional integration

step is performed immediately after correlation. The integrator accumulates data over a

specified time interval and stores the intermediate results. Each correlation is thus followed by

a complex addition. Therefore, in terms of compute, the correlator and the integrator perform

one CMAC operation per correlation. The total number of correlation-integration operations

is N2
stat ·N2

pol ·Nbeams · f
2 . For the SKA1-Low CSP the number of correlations is 314 ·1012, where

Nstat = 512. A back-of-the-envelope power estimate for the compute part of the correlation for

ASIC technology in 14-nm is 7.9 ·10−12 ·314 ·1012 = 2.48 kW, whereas for FPGA technology is

55.7 ·10−12 ·314 ·1012 = 17.48 kW.

However, in addition to the CMAC operations, the correlator and the integrator also perform

a large number of memory operations. To efficiently implement the integration in terms of

storage size and number of memory accesses, the correlated outputs need to arrive at the

integrator in a specific order. For instance, if the correlator receives the samples on a per-

channel basis, the correlated outputs will need to be re-ordered on a per-polarization basis and

all the samples that belong to the same integration interval will need to arrive back-to-back at

the integrator input. A correlator-integrator power model for the memory requirements of an

ASIC/FPGA implementation would highly depend on the assumed hardware architecture.

Various ASIC/FPGA correlator designs have been proposed in the literature. For example,

Fiorin et al. [62] proposes an ASIC design with programmable, near-data accelerator using 3D-

stacked hybrid memory cubes (HMCs). The correlator algorithm is mapped to the proposed

architecture and a power model is derived for 14-nm CMOS technology. The paper reports a

power consumption of 9.62 W for processing all channels of a station subband, resulting in a

total of approximately 5 kW.

Moreover, Romila [114] proposes an FPGA design implemented on a Xilinx Virtex-6 FPGA.

The dynamic power of the correlator (including the integration kernel) is reported to be

approximately 30 kW, for a slightly different SKA1-Low design point with 512 instead of 128

channels and with a 4 times smaller integration time than the actual one. A detailed analysis

of the memory requirements of these proposed architectures or another correlator design are

out-of-the-scope of this thesis. We proceed with the analysis of the kernel assuming general-

162

7.1. Design-Space Exploration of Compute Nodes

purpose CPUs with traditional cache hierarchy and external DRAM memory. For this analysis

we employ our full-system performance prediction methodology presented in Chapter 6.

7.1.3.1 General-Purpose CPU Power Modeling Overview

As input to our methodology we used an OpenMP correlator implementation similar to the

one presented in [128]. As the implementation is in OpenMP, the analysis in this section will

be restricted to the compute processing (no analysis of the communication over network,

for which it would be required an MPI implementation). To characterize the software we

used LLVM 3.4 with the -O3 -mllvm -force-vector-width=16 compiler optimizations. We

characterized the software with PISA in terms of instruction mix, instruction-level parallelism,

branch behavior and memory temporal reuse patterns, for a set of problem sizes. A problem

size is defined by the number of stations, the number of channels and the number of OpenMP

threads. Table 7.6 shows the problem sizes that we profiled using PISA.

Parameter Train set Test set

Stations 16,24,40,56,64 56,80,120,160,184

Channels 8,16,32,64,128 32,64,128,256,512

Thread count 2,4,6,8,10 12,14,16,18,20

Table 7.6 – Problem sizes of the correlator implementation profiled with PISA.

The SKA1-Low target size is defined for 512 stations and 65,536 channels. We use the PISA

profiles of smaller problem sizes as input to the ExtraX extrapolation framework to estimate

the software properties for the target size. We train the machine learning methods used by

ExtraX with the PISA results of the problem sizes in the train set. We then evaluate the accuracy

of the models on the results obtained for the problem sizes in the test set.

PISA extracts software profiles for each OpenMP thread individually. Before training the

models, ExtraX runs a thread clustering method that identifies similarities across threads in

the PISA profiles. For the correlation algorithm, the clustering identifies that all worker threads

have similar properties, thus the correlator implementation under study exhibits one class

of threads. For a given problem size, the profile representative of this class is determined by

averaging the workload properties across all threads. The resulting class profiles obtained

for the problem sizes in the train set are used in the remainder of the ExtraX analysis to build

models that will extrapolate the workload properties to the target scale. For each workload

property ExtraX derives a separate extrapolation model.

We evaluate the accuracy of the models on the profiles obtained for the problem sizes in

the test set shown in Table 7.6. For all metrics, e.g., instruction count, instruction count

per type (integer, floating-point, memory, control), instruction-level parallelism, instruction-

level parallelism per type, we obtain accuracies of more than 98%. This means that, for the

163

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

correlator implementation under study, ExtraX is able to accurately estimate the workload

properties at large non-profiled problem sizes.

We use the extrapolation models to derive the workload properties of the threads executing the

correlator for the SKA target size. Furthermore, we input the extrapolated profile to a processor

hardware model to evaluate the compute performance. We use the compute model in [76]

that was partially presented in Section 4.2.3. For the multi-threaded implementations, the

model assumes that each OpenMP thread in the application is assigned to one processor core.

In our design-space exploration exercise, an n-core processor will run an n-thread correlator.

We first evaluate the performance (processor time) for compute nodes representatives of big

and small cores, Intel Xeon E5-2697 v3 Haswell-EP and ARM Cortex-A15 (ARM) processors.

The hardware parameters of these architectures are presented in Table 7.7.

Parameter Description Xeon E5-2697 ARM Cortex-A15

ncores Cores per socket 14 4

fcore Core clock frequency 2.6 GHz 2.3 GHz

nissue-width Issue width 8 8

nINT # integer units 4 3

nFP # floating-point units 2 2

nMEM # load/store units 2 2

nCTRL # branch units 2 1

nfront-pipe Front-end pipeline depth 7 12

nROB Reorder buffer capacity 192 128

M d-L1 Data L1 cache size 32 KB 32 KB

M d-L2 Data L2 cache size 256 KB 0 KB

M d-L3 Data L3 cache size 32 MB 2 MB

M DRAM DRAM size per socket 32 GB 2 GB

T core-L1 Data L1 hit latency 4 cycles 4 cycles

T core-L2 Data L2 hit latency 12 cycles 0 cycles

T core-L3 Data L3 hit latency 36 cycles 21 cycles

T core-DRAM DRAM hit latency 217 cycles 274 cycles

B L1 L1 cache bandwidth 160 GB/s 137 GB/s

B L2 L2 cache bandwidth 160 GB/s 137 GB/s

B L3 L3 cache bandwidth 40 GB/s 17 GB/s

B DRAM DRAM bandwidth 59.7 GB/s 17 GB/s

Table 7.7 – Values for hardware parameters of Intel Xeon E5-2697 v3 and ARM Cortex-A15

On the application side, each channel can be processed independently from any other. There-

fore, we assume that each compute node processes an equal set of channels from the total of

65,536. We assume 8 channels and 512 stations per compute node. The analytic processor

164

7.1. Design-Space Exploration of Compute Nodes

performance model used with the PISA profile extrapolated to 512 stations for 14 threads

(Haswell) and 4 threads (ARM), reports the following performance numbers. A compute node

requires 5.42 seconds of processing on a Haswell processor and 12.79 seconds on an ARM

Cortex-A15 processor. These execution times violate the real-time requirement imposed by

the system, 0.52 seconds (the CSP integration time). Therefore, we further explore variations

of the two architectures for several hardware parameters as shown in Table 7.8 in order to

determine a processor architecture that could meet the time requirement.

Parameter Values Unit

Core count ncores 48,64,96,128 cores
Clock frequency fcore 2.3,2.6,3.2,3.6,4.0 GHz
L2-L3 memory bandwidth B L3 40,60,120,160 GB/s
L3-DRAM memory bandwidth B DRAM 40,60,120,160 GB/s

Table 7.8 – Design-space exploration of processor parameters.

7.1.3.2 Results and Discussion

In the remainder of this section, the performance metric is defined as the execution time of a

compute node that runs the correlation kernel. Also the power metric is the power consumed

by a compute node (processor and memory) during the execution of the correlation.

We start our analysis for Haswell architectures assuming that a compute node processes

8 channels and 512 stations. We first investigate which Haswell processor architectures

meet the time requirement of 0.52 seconds. We identify that none of the architectures in our

hardware design space with 48 and 64 cores per processor and with L2-L3 memory bandwidths

of 40 GB/s and 60 GB/s meets the time constraint. Therefore, we show in Figures 7.5 and 7.6

only the exploration results for architectures with a number of cores of 96 and 128 and for

L2-L3 memory bandwidths of 120 GB/s and 160 GB/s.

Each of the graphs in Figures 7.5 and 7.6 presents the results for a certain combination of

number of cores and L2-L3 memory bandwidth for all the clock frequencies and L3-DRAM

memory bandwidths in our hardware design space. Figure 7.5 shows the results for 120 GB/s

and 160 GB/s L2-L3 memory bandwidth, for 96 cores. Figure 7.6 shows the results for 120 GB/s

and 160 GB/s L2-L3 memory bandwidth, for 128 cores. The horizontal black line in all sub-

figures represents the time requirement imposed by the system.

Generally, we observe from each of the graphs that the higher the L3-DRAM memory band-

width, the lower the execution time. Indeed the lowest execution times are of approximately

0.5 seconds obtained for an L3-DRAM memory bandwidth of 160 GB/s.

For L3-DRAM memory bandwidths of 40 GB/s and 60 GB/s, the clock frequency does not

impact the execution time, most probably because the system is memory bandwidth bound.

However, for an L3-DRAM memory bandwidth of 120 GB/s, the clock frequency impacts the

165

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

0.5

1.0

1.5

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

96−cores + 120 GB/s L2−L3−Bw

(a) 120 GB/s L2-L3 memory bandwidth

0.5

1.0

1.5

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

96−cores + 160 GB/s L2−L3−Bw

(b) 160 GB/s L2-L3 memory bandwidth

Figure 7.5 – CSP design-space exploration of Haswell nodes – 8 channels per node, 96 cores.

0.5

1.0

1.5

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

128−cores + 120 GB/s L2−L3−Bw

(a) 120 GB/s L2-L3 memory bandwidth

0.4

0.8

1.2

1.6

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

128−cores + 160 GB/s L2−L3−Bw

(b) 160 GB/s L2-L3 memory bandwidth

Figure 7.6 – CSP design-space exploration of Haswell nodes – 8 channels per node, 128 cores.

execution time, especially in the case of 96 cores (Figure 7.5(a)) where the execution times

decreases with approximately 25% when increasing the clock frequency from 2.6 GHz to

4.0 GHz. Nevertheless, none of the 96 cores, 120 GB/s L2-L3 memory bandwidth architectures

meets the time requirement of 0.52 seconds. The same applies for the 128 cores, 120 GB/s

L2-L3 memory bandwidth architectures (Figure 7.6(a)).

The only processor configurations that meet the time constraint imposed by the system

are shown in Figures 7.5(b) and 7.6(b): (i) (Figure 7.5(b)) 96 cores, 160 GB/s L2-L3 memory

bandwidth, 160 GB/s L3-DRAM memory bandwidth for clock frequency of 4.0 GHz, and (ii)

(Figure 7.6(b)) 128 cores, 160 GB/s L2-L3 memory bandwidth, 160 GB/s L3-DRAM memory

166

7.1. Design-Space Exploration of Compute Nodes

Cores Frequency L2-L3 b/w L3-DRAM b/w Time Power Total power

96 4.0 160 GB/s 160 GB/s 0.51 s 421 W 3.44 MW
128 3.2 160 GB/s 160 GB/s 0.48 s 511 W 4.18 MW
128 3.6 160 GB/s 160 GB/s 0.46 s 521 W 4.26 MW
128 4.0 160 GB/s 160 GB/s 0.46 s 521 W 4.26 MW

Table 7.9 – Performance-optimal Haswell architectures for 8 channels per node.

bandwidth for clock frequencies of 3.2, 3.6 and 4.0 GHz. For these configurations, we perform

a power-performance trade-off analysis. Table 7.9 shows the power-performance results for

these 4 architecture designs. The total power is calculated by multiplying the power of a node

by 8,192 = 65,536 channels
8 channels per node .

Out of the four processor architectures in Table 7.9 the one with the lowest power consumption

is the with 96 cores. In this case, the total power consumption of the correlator is 3.44 MW.

We performed the same design-space exploration for ARM processor architectures. However,

none of the hardware design points in Table 7.8 was able to run the correlation kernel for

8 channels and 512 stations in less than 0.52 seconds. Indeed, the fastest hardware design

point was an ARM-type of processor with 128 cores, 160 GB/s L2-L3 memory bandwidth,

160 GB/s L3-DRAM memory bandwidth and 4.0 GHz clock frequency. The execution time of

this architecture was 0.57 seconds with 364 W per compute node, summing up to a total of

2.98 MW. We further analyze the ARM architectures assuming 4 channels and 512 stations

per compute node, as less workload per compute node will most probably allow us to find

architectures that meet the time constraint (same hardware design space as in Table 7.8).

As in the case of Haswell, we first investigate which ARM processor architectures meet the time

requirement of 0.52 seconds. We identify that none of the architectures in our hardware design

space with 48 and 64 cores per processor and with L2-L3 memory bandwidths of 40 GB/s

and 60 GB/s meets the time requirement. Therefore, we show in Figures 7.7 and 7.8 only

the exploration results for architectures with a number of cores of 96 and 128 and for L2-L3

memory bandwidths of 120 GB/s and 160 GB/s.

Each of the four graphs in Figures 7.7 and 7.8 presents the results for a certain combination of

number of cores and L2-L3 memory bandwidth for all the clock frequencies and L3-DRAM

memory bandwidths in our hardware design space. Figure 7.7 shows the results for 120 GB/s

and 160 GB/s L2-L3 memory bandwidth, for 96 cores. Figure 7.8 shows the results for 120 GB/s

and 160 GB/s L2-L3 memory bandwidth, for 128 cores.

Generally, we observe from each of the graphs that the higher the L3-DRAM memory band-

width, the lower the execution time. Indeed, the lowest execution times are obtained for an

L3-DRAM memory bandwidth of 160 GB/s.

For L3-DRAM memory bandwidths of 40 GB/s and 60 GB/s, the clock frequency does not

impact the execution time, most probably because the system is memory bandwidth bound.

167

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

0.4

0.6

0.8

1.0

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

96−cores + 120 GB/s L2−L3−Bw

(a) 120 GB/s L2-L3 memory bandwidth

0.4

0.6

0.8

1.0

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

96−cores + 160 GB/s L2−L3−Bw

(b) 160 GB/s L2-L3 memory bandwidth

Figure 7.7 – CSP design-space exploration of ARM nodes – 4 channels per node, 96 cores.

0.4

0.6

0.8

1.0

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

128−cores + 120 GB/s L2−L3−Bw

(a) 120 GB/s L2-L3 memory bandwidth

0.25

0.50

0.75

1.00

2.3 2.6 3.2 3.6 4.0

 Clock frequency [GHz]

E
xe

cu
tio

n
tim

e
[s

]

L3DramBw 40 60 120 160

128−cores + 160 GB/s L2−L3−Bw

(b) 160 GB/s L2-L3 memory bandwidth

Figure 7.8 – CSP design-space exploration of ARM nodes – 4 channels per node, 128 cores.

However, for an L3-DRAM memory bandwidth of 120 GB/s or 160 GB/s, the clock frequency

impacts the execution time, as the system becomes compute bound. Indeed, in the case of

96 cores (Figure 7.7(a)) the execution time decreases with approximately 30% when increasing

the clock frequency from 2.6 GHz to 4.0 GHz. Similar conclusions can be drawn from the other

results for 96 cores and 128 cores.

Overall, we identify 32 design points that meet the time requirement imposed by the system,

time lower than or equal to 0.52 seconds. For 96 cores (Figure 7.7), regardless of whether the

L2-L3 and L3-DRAM memory bandwidths are 120 or 160 GB/s, a clock frequency of 3.2 GHz

gives an execution time of approximately 0.47 seconds under a power consumption of 255 W

168

7.2. Design-Space Exploration of Large-Scale Systems

per node (summing up to a total power consumption of 4.17 MW for 16,384 = 65,536 channels
4 channels per node

compute nodes). The hardware designs with higher clock frequencies of 3.6 or 4.0 GHz show

a higher power consumption by up to 5% in comparison with the frequency of 3.2 GHz. For

128 cores (Figure 7.8), any of the clock frequencies gives a design point that meets the time

constraint. However, the lowest power consumption across the 128-core designs that meets

the time target is 318 W, which is 24% higher than the optimal 96-core design previously

identified, making it sub-optimal.

In summary, we have identified two systems that could implement the SKA correlation under

the time constraint of 0.52 seconds: (1) a system with 8192 compute nodes, each node with

a Haswell-type of processor architecture with 96 cores, 160 GB/s L2-L3 memory bandwidth,

160 GB/s L3-DRAM memory bandwidth and frequency of 4.0 GHz, and (2) a system with 16384

compute nodes, each node with an ARM-type of processor architecture with 96 cores, 120 GB/s

L2-L3 memory bandwidth, 120 GB/s L3-DRAM memory bandwidth and frequency of 3.2 GHz.

Although ARM processors are known to be less power-hungry than Haswell processors, in

this case, the ARM solution, given the higher number of nodes necessary to meet the time

requirement, consumes 20% more power than the Haswell-based solution. We conclude that

the Haswell-based solution is a possible system for implementing the SKA correlation under a

power budget of 3.44 MW.

7.2 Design-Space Exploration of Large-Scale Systems

In this subsection we explore hardware designs of compute nodes and network topologies and

analyze their performance and power consumption for the most scalable MPI implementation

(MPI-simple) of Graph 500 [4]. The performance metric is the application execution time,

comprising of the compute and communication times. The time of an MPI application is

analytically estimated as described in Chapter 6. The power consumption of the system is

calculated based on the power consumed by the compute nodes and network. The power of

the compute nodes is calculated as described in Chapter 4 and includes both the processor

and the DRAM power. To estimate the power consumption of the entire system (network

included) we use the model described in Section 6.4.

As input to our methodology we use the MPI-simple implementation of Graph 500. To charac-

terize the software we use LLVM 3.4 with the -O3 -mllvm -force-vector-width=16 com-

piler optimizations. We characterize the software with PISA in terms of instruction mix,

instruction-level parallelism, memory temporal reuse patterns and communication pattern,

for a set of problem sizes (no branch behavior analysis). A problem size is defined by the scale

and edge factor of the graph and the number of MPI processes. Table 7.10 shows the problem

sizes that we profiled with PISA.

We define the target size to be for a scale of 26, edge factor of 16 and 256,144 MPI processes. We

use the PISA profiles of smaller problem sizes as input to the ExtraX extrapolation framework

to estimate the software properties for the target size. ExtraX trains machine learning models

169

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

Parameter Train set Test set

Scale 14,15,16,17 21,22,23

Edge factor 16,32,64 32,64,128

MPI processes count 4,8,16 32,64,128

Table 7.10 – Problem sizes of the Graph 500 MPI-simple code profiled with PISA.

using the PISA profiles of the problem sizes in the train set. We then evaluate the prediction

accuracy of the models on the results obtained for the problem sizes in the test set.

PISA extracts software profiles for each individual MPI process. Before training the models,

ExtraX runs a process clustering method that identifies similarities across processes in the

PISA profiles. For the Graph 500 BFS kernel, the clustering identifies that all worker processes

have similar properties, thus the BFS implementation under study exhibits a single class of

processes. For a given problem size, the profile representative of this class is determined by

averaging the workload properties across all processes. The resulting class profile is used in the

remainder of the ExtraX analysis to build models that will extrapolate the workload properties

to the target scale. For each workload property ExtraX derives a separate extrapolation model.

We evaluate the accuracy of the models on the profiles obtained for the problem sizes in the

test set shown in Table 7.10. The average prediction rate for the instruction count is 4.7%,

the average prediction rate of the memory reuse distance of 1.4%, the average prediction rate

for the overall ILP of 0.7% and the average prediction rate for the number of exchanged MPI

messages of 9.7%.

We use the extrapolation models to derive the workload properties of the processes executing

the BFS kernel of the Graph 500 benchmark at target scale. Finally, we input the extrapolated

profile to a processor hardware model to evaluate the compute performance. We use the

compute model in [76] that was partially presented in Section 4.2.3. For estimating the

network performance we use the uniform bandwidth models for fat-tree, torus and 2D HyperX

topologies in Section 5.4.

We perform an exploration study across different processors and network topologies for a

system scale of 262,144 compute nodes. This study could be of interest for designers of large-

scale systems that are expected to run Big Data workloads such as graph analytics. As compute

nodes, we use E5-2697 v3 (Haswell) and Tegra K1 ARM Cortex-A15 processors (Table 7.7). As

network topologies, we consider variations of 3-level fat-tree, 2D HyperX and 5-dimensional

torus with 262,144 nodes (fully populated systems). For the network performance model, we

assume linear mapping of the MPI processes to the end nodes, an MPI node stack latency of

0.9 microseconds, a switch latency of 0.7 microseconds, a switch-to-switch link bandwidth of

5 GB/second, a node-to-switch link bandwidth of 5 GB/second, a node-to-switch link latency

of 2.5 nanoseconds and a switch-to-switch link latency of 12 nanoseconds. For the network

power model, we assume that the static power of a switch is 100 W (regardless of the radix

170

7.2. Design-Space Exploration of Large-Scale Systems

value), the energy to TX/RX a bit through an electrical/optical link of 70 pJ. We show the

design-space exploration results in Figure 7.9.

4

6

8

10

12

14

0.2 0.4

 System performance [seconds]

S
ys

te
m

 p
ow

er
 c

on
su

m
pt

io
n

[M
W

]

Ft3L−1−128−64−128−32−64

Ft3L−1−16−16−64−64−64

Ft3L−1−32−32−256−32−32

Ft3L−1−64−64−64−64−64

HyperX−128−32−64

HyperX−256−32−32

HyperX−32−128−64

HyperX−64−64−64

Torus5D−8−16−16−8−4−4

Torus5D−8−8−8−8−8−8

ARM

Haswell

Figure 7.9 – Graph 500 design-space exploration.

In practice the system that we design has to conform with certain requirements. For example,

there might be a constraint that the system should not consume more than 8 MW. If that is

the only constraint, we can then select only the configurations under the 8 MW threshold. In

our example this would exclude the Haswell-based systems and would expose the best choice

as being a system with ARM-based compute nodes interconnected through a 2D HyperX

topology with 64 nodes per switch and 64 switches in each dimension of the 2D topology. This

system would achieve a performance of 0.24 seconds.

Conversely, for other systems, the more stringent requirements could be related to perfor-

mance. Say we have systems where the constraint is that the application has to finish in less

than 0.20 seconds. In this example the best choice corresponds to a system with Haswell-based

compute nodes interconnected through a 2D HyperX topology with 64 nodes per switch and

64 switches in each dimension of the 2D topology. This system would achieve a performance

of 0.18 seconds.

Even if the constraints are not clear at design time or might evolve, our methodology can

generally provide a small set of Pareto-optimal configurations as shown in Figure 7.10.

In our example, the five points remaining after extracting the Pareto front expose a choice

where the system designer can trade-off performance for power consumption, from the lowest-

power configuration (e.g., ARM compute nodes interconnected via a 2D HyperX topology with

256 nodes per switch, 32 nodes in the X dimension and 32 nodes in the Y dimension of the

2D topology that would consume 3.58 MW for a performance of 0.31 seconds) to the highest-

performing configuration (e.g., Haswell-based compute nodes interconnected through a 2D

HyperX topology with 64 nodes per switch and 64 switches in each dimension of the 2D

topology that would consume 12 MW for a performance of 0.18 seconds).

171

Chapter 7. Design-Space Exploration Studies in Radio Astronomy and Graph Analytics

4

6

8

10

12

0.20 0.25 0.30

 System performance [seconds]

S
ys

te
m

 p
ow

er
 c

on
su

m
pt

io
n

[M
W

]

ARM

Haswell

HyperX−128−32−64

HyperX−256−32−32

HyperX−64−64−64

Figure 7.10 – Graph 500 design-space exploration - Pareto front.

Such studies are very useful at an early design-space exploration stage. By employing our

methodology for full-system performance evaluation, the system designers can rapidly eval-

uate very large sets of hardware designs. From the vast amount of results, they can select,

e.g., the Pareto optimal configurations, typically in a much smaller number than the initial

set of configurations, and analyze them into further detail using more accurate performance

evaluation tools such as simulators.

172

8 Conclusions and Future Work

In the upcoming decade it is expected that we reach the exascale computing age. Such systems

will come, however, with stringent power and performance constraints. Thus, the system

architects will need to explore a wide range of processor and network architectures to build

an optimal system design. A holistic methodology for design-space exploration that covers

not only multiple system components, but also multiple performance metrics, is required to

provide the architects with a good understanding of the architectures, applications and their

interactions. Such a methodology is useful for any organization that needs to run massively

parallel software on very large computer systems.

8.1 Conclusions

The main part of this thesis was dedicated to studying if it is possible to perform early design-

space exploration of large-scale systems by (1) decoupling the software characterization from

performance and power modeling and extracting compute and communication properties

inherent to applications, and (2) loading the platform-independent software properties into

analytic processor and network models. We proposed such a methodology and validated it

with measurements of real supercomputers. For the most scalable MPI implementation of

Graph 500, a representative benchmark of graph analytics, we showed that the methodology is

able to accurately preserve the ranking of system configurations based on their performance.

The research in this part of the thesis was conducted to answer multiple research questions.

How to characterize the inherent, hardware-independent properties of sequential and parallel

applications? How to use them with compute models and quickly evaluate the performance

of many hardware designs? How to analytically model the network performance to decide

which network topology best suits the communication requirements of a certain class of

applications? What methodologies to use to efficiently evaluate the system-level performance

of a wide range of hardware designs?

To address these questions, we first presented PISA, a framework for hardware- and ISA-

173

Chapter 8. Conclusions and Future Work

agnostic workload characterization for sequential and parallel applications. We illustrated

how our framework can be leveraged to extract application properties that impact the system

performance, such as instruction mix, memory access patterns, branch behavior, instruction-

level parallelism and inter-process communication behavior. When comparing PISA’s results

with measurements on actual processors, we found that PISA is capable of extracting the

instruction mix of an application with high accuracy for POWER8 and with reasonable accuracy

for x86 processors. Moreover, PISA’s data reuse distribution estimates with good accuracy the

L1 cache hit rate for the SPEC CPU2006 benchmarks when compared to both x86 and POWER8

processors. Furthermore, PISA generally provides an optimistic estimate for the branch

misprediction rate and its branch-entropy-based predictions exhibit good linear correlation

with actual measurements across applications.

We further presented the first analysis of how hardware- and ISA-agnostic software profiles,

such as PISA’s, can enable analytic performance modeling of processors. We showed that by

loading PISA profiles into analytic approaches that model the processor events independently,

we obtained an average time accuracy of 45% across the SPEC CPU2006 and Graph 500

benchmarks when compared with measurements on actual processors. We also obtained a

good correlation factor of 0.84 across applications. When we load the software profiles into

analytic approaches that take into account the interactions between processor events, the

results showed a higher average time accuracy of 34% and a correlation factor of 0.97.

We also performed a detail analysis of a common characterization metric, the branch entropy,

in order to analytically model the branch miss rate of a processor. We showed that there is a

good linear correlation between the branch-entropy-based miss rates obtained from hardware-

agnostic-based branching traces and measurements on current processors. By analyzing the

correlation, we identified the first method to reverse engineer the history size of a hardware

predictor. We also provided a first study about the limitations of branch entropy and proposed

an approach to derive analytic models of the performance of branch predictors. Finally, we

introduced the max-outcome branch predictor metric that is able to integrate not only the

history size of a branch predictor, but also the size of the pattern table. When assuming infinite

pattern table size, the max-outcome metric outperforms the branch miss rate estimates based

on branch entropy on average with 17 percentage points.

Furthermore, we proposed a theoretical method for estimating the node injection bandwidth

effectively sustained by a network. The method quantifies the impact of link contention

bottlenecks on the node effective bandwidth. We derived analytic bandwidth models for the

uniform pattern under fat-trees, tori, full-mesh and 2D HyperX topologies, for the shift pattern

under full-mesh and fat-tree topologies and for the 2-dimensional nearest-neighbor pattern

under fat-trees, full-mesh and 2D HyperX topologies. The validation results indicate that the

proposed effective bandwidth models are not only accurate, but can also reliably be used to

perform design-space exploration across network configurations not only across variations

of configurations of the same network topology, but also across types of topologies. Indeed,

we obtained high linear correlations of more than 0.89 between the model-based estimates

174

8.1. Conclusions

and the simulation-based results for all patterns and network topologies under study. With

these models we provide the community with means of fast design-space exploration across

network topologies.

We further presented the first methodology that estimates the performance of large-scale

systems using as input platform-independent software profiles loaded into analytic processor

and network models. We evaluated our approach using two applications, Graph 500 and the

NAS LU, which we ran on real systems with multiple sets of network configurations. For the

Graph 500 benchmark, we obtained very good correlation results across different hardware

systems. This indicates that the proposed methodology could reliably be used to (1) rank

systems based on their performance, and (2) perform early and fast design-space exploration.

For the NAS LU benchmark, we also obtained good correlation results when using PISA profiles

with hardware models (no extrapolation). This is again an encouraging result for using our

approach in the context of fast and early design-space exploration.

Another part of this thesis was dedicated to a methodology that accurately measures the time

that parallel asynchronous applications spend in compute, communication and inter-process

data dependencies. Such a methodology is an alternative to regular tracing tools that aim

to quantify system bottlenecks. Our method can be used by researchers and engineers that

build and optimize systems based on tracing information of applications executed on systems

similar to the target system.

As out-of-the-box profiling tools do not differentiate between data transfer and data depen-

dencies, with our profiling methodology, if an application is communication-bound, we can

accurately quantify how much time is spent in data transfer and how much in inter-process

data dependencies. This is relevant information for a system designer, because only the

time spent in data transfer can be optimized by optimizing the interconnect fabric. Initial

attempts of characterization using standard profiling exposed several limitations, mainly a

high spatial and temporal overhead and a lack of support for data dependencies. Using our

custom profiling approach, we addressed these issues and were able to target larger problem

sizes and degrees of parallelism, while improving the accuracy of the characterization.

In the upcoming decades, supercomputers are expected to significantly increase their size,

performance and energy efficiency, reaching the exascale computing age. Building such a

system under very stringent power and performance constraints will be challenging. With

this thesis we provided the scientific community with tools and methods for fast and early

design-space exploration of large sets of hardware processor and network designs. For system

design based on measurements of applications run on existing systems, we also provided

a methodology to accurately characterize the time that asynchronous parallel applications

spend not only in compute and communication, but also in inter-process data dependencies.

175

Chapter 8. Conclusions and Future Work

8.2 Future Work

With regard to processor modeling, a next step is to understand how to efficiently, through

fast analytic models, use the spatio-temporal locality heat-maps to accurately quantify the

cache miss rates. We also envision to extend PISA to extract application properties specifically

relevant to GPU and accelerators performance modeling. For instance, the performance of a

GPU is highly impacted by the host-device communication overhead. For this purpose, PISA

can be extended with an analysis to quantify the amount of data communication between

a host (CPU) and a GPU (accelerator) code. One possible approach would be to use PISA

to analyze the parallel regions of an OpenMP implementation. Indeed,assuming that those

parallel regions would actually be run on an accelerator, PISA could measure the amount of

memory data used across different parallel regions and between the serial and parallel regions.

With regard to the communication models, we plan to extend the communication pattern-

specific network models to other standard HPC patterns, such as bit reversal, bit complement

and matrix transpose. This will enable to rapidly explore large sets of network topology

design points and quantify the network performance for a comprehensive set of standard

HPC patterns. We will also extend the network models to support mappings of multiple MPI

processes on a single compute node and validate the models with measurements of real

supercomputers. This aspect is important in order to model large-scale systems with efficient

usage of the available compute nodes. Finally, we will analyze the accuracy of predicting the

performance of OpenMP+MPI software implementations.

As alternative to the network bandwidth models proposed in this thesis, which are specific to a

pair of communication pattern and network topology, we plan to also study how to efficiently

use a more generic, but slower solution such as max-flow linear formulations. A possible

approach of integrating such a method in our full-system methodology would be to estimate

the node injection bandwidth for small network sizes using the max-flow-based formulations

and apply linear regression (or other similar machine learning methods as those presented

in [94]) to predict the bandwidth for larger networks.

With regard to the full-system performance prediction methodology, we will apply it to more

MPI applications of uniform, shift and 2-dimensional nearest-neighbor communication

patterns to further validate our proposed methodology. Moreover, to enforce the topological

order of the compute and communication events in an MPI application, we envision to analyze

the accuracy of a hardware-independent communication graph combined with analytic

processor and network models and existing simulators, such as DIMEMAS.

Finally, we will extend our full-system analysis method with cost models for compute nodes,

network links and switches to enable performance-power-cost trade-off analysis of large-scale

systems. This is relevant as power and cost are key for infrastructure planning and budgeting.

Adding the cost component would complete our methodology and provide system designers

with means of selecting the most suitable hardware design points across the three metrics.

176

Appendices

177

Models of Average Link Latency / Average Number of Links

Uniform Pattern

Network topology Average link latency

2L FAT-TREE

x1 = (m1 −1) ·2 · l0
x2 = (m2 −1) ·m1 · (2 · l0 +2 · l1)

=⇒ llink = x1+x2
m1·m2−1

3L FAT-TREE

x1 = (m1 −1) ·2 · l0
x2 = (m2 −1) ·m1 · (2 · l0 +2 · l1)
x3 = m1 ·m2 · (m3 −1) · (2 · l0 +2 · l1 +2 · l2)

=⇒ llink = x1+x2+x3
m1·m2·m3−1

2D HYPERX

x1 = (p −1) ·2 · l0

x21 = p · (d1 −1) · (2 · l0 + l1)
x22 = p · (d2 −1) · (2 · l0 + l2)
x23 = p · (d1 −1) · (d2 −1) · (2 · l0 + l1 + l2)

=⇒ llink = x1+x21+x22+x23
d1·d2·p−1

1D TORUS

x1 = 2 · l0 +
⌈ d1

2 ⌉·⌊ d1
2 ⌋·l1

d1
− 2·l0

p·d1

=⇒ llink = x1

2D TORUS

x1 = 2 · l0 +
⌈ d1

2 ⌉·⌊ d1
2 ⌋·l1

d1
+ ⌈ d2

2 ⌉·⌊ d2
2 ⌋·l2

d2
− 2·l0

p·d1·d2

=⇒ llink = x1

3D TORUS

x1 = 2 · l0 +
⌈ d1

2 ⌉·⌊ d1
2 ⌋·l1

d1
+ ⌈ d2

2 ⌉·⌊ d2
2 ⌋·l2

d2
+ ⌈ d3

2 ⌉·⌊ d3
2 ⌋·l3

d3
− 2·l0

p·d1·d2·d3

=⇒ llink = x1

FULL-MESH

x1 = a ·p · (p −1) ·2 · l0

x2 = a ·p ·p · (a −1) · (2 · l0 + l1)

=⇒ llink = x1+x2
a·p·(a·p−1)

Table 1 – Average link latency models (uniform communication pattern).

179

Supercomputer Measurements - Graph 500 - Network Configurations

Topology p d1 d2 d3 a w0 w1 w2 m1 m2 m3 #Processes

TORUS1D 1 4 − − − − − − − − − 4
2D

To
ru

s 1 2 2 − − − − − − − − 4
1 2 4 − − − − − − − − 8
1 4 4 − − − − − − − − 16

3D
To

ru
s 1 2 2 2 − − − − − − − 8

1 2 2 4 − − − − − − − 16
1 2 4 4 − − − − − − − 32
1 4 4 4 − − − − − − − 64

2D
H

yp
er

X

1 2 2 − − − − − − − − 4
1 4 2 − − − − − − − − 8
2 2 2 − − − − − − − − 8
1 4 4 − − − − − − − − 16
1 8 2 − − − − − − − − 16
2 4 2 − − − − − − − − 16
4 2 2 − − − − − − − − 16
1 8 4 − − − − − − − − 32
2 4 4 − − − − − − − − 32
2 8 2 − − − − − − − − 32
4 4 2 − − − − − − − − 32
2 8 4 − − − − − − − − 64
4 4 4 − − − − − − − − 64
4 8 2 − − − − − − − − 64

F
u

ll-
m

es
h

1 − − − 4 − − − − − − 4
1 − − − 8 − − − − − − 8
2 − − − 4 − − − − − − 8
1 − − − 16 − − − − − − 16
2 − − − 8 − − − − − − 16
4 − − − 4 − − − − − − 16
2 − − − 16 − − − − − − 32
4 − − − 8 − − − − − − 32
4 − − − 16 − − − − − − 64

2L
Fa

t-
tr

ee

− − − − − 1 4 − 1 4 − 4
− − − − − 1 4 − 2 4 − 8
− − − − − 1 4 − 4 4 − 16
− − − − − 1 4 − 8 4 − 32
− − − − − 1 4 − 16 4 − 64

3L
Fa

t-
tr

ee − − − − − 1 4 2 1 4 2 8
− − − − − 1 4 2 2 4 2 16
− − − − − 1 4 2 4 4 2 32
− − − − − 1 4 2 8 4 2 64

Table 2 – Network topology configurations (Graph 500).

180

Models of Average Link Latency / Average Number of Links

2-Dimensional Nearest-Neighbor Pattern (1)

Mapping description Average link latency

d 1
1 = D1 ∧d 1

2 |D2

x1 = 2 ·d 1
1 · (2 · l0 + l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
1) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

d 1
1 |D1 ∧d 1

2 = D2

x1 = 2 ·d 1
2 · (2 · l0 + l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
2) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

d 1
2 |D2 ∧d 1

1 |D1

x1 = (2 ·d 1
2 +2 ·d 1

1) · (2 · l0 + l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
2 −2 ·d 1

1) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

Table 3 – Average link latency models (nearest-neighbor, full-mesh).

Mapping description Average link latency

d 1
1 = D1 ∧d 1

2 |D2

x1 = 2 ·d 1
1 · (2 · l0 +2 · l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
1) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

d 1
2 = D2 ∧d 1

1 |D1

x1 = 2 ·d 1
2 · (2 · l0 +2 · l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
2) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

d 1
2 |D2 ∧d 1

1 |D1

x1 = (2 ·d 1
2 +2 ·d 1

1) · (2 · l0 +2 · l1)

x2 = (4 ·d 1
1 ·d 1

2 −2 ·d 1
2 −2 ·d 1

1) ·2 · l0

=⇒ llink = x1+x2

4·d 1
1 ·d

1
2

Table 4 – Average link latency models (nearest-neighbor, 2L fat-tree).

181

Models of Average Link Latency / Average Number of Links

2-Dimensional Nearest-Neighbor Pattern (2)

Mapping description Average link latency

d 2
1 = d 1

1 = D1 ∧d 2
2 |d

1
2 |D2

x1 = 2 ·d 2
2 · (2 · l0 +2 · l1 +2 · l2)

x2 = (4 ·d 1
1 ·d 1

2 −4 ·d 2
1 ·d 2

2) · (2 · l0 +2 · l1)

x3 = (4 ·d 2
1 ·d 2

2 −2 ·d 2
1) ·2 · l0

=⇒ llink = x1+x2+x3

4·d 1
1 ·d

1
2

d 2
1 |d

1
1 = D1 ∧d 2

2 = d 1
2 |D2

d 2
1 |d

1
1 = D1 ∧d 2

2 |d
1
2 |D2

x1 = 2 ·d 2
2 · (2 · l0 +2 · l1 +2 · l2)

x2 = (4 ·d 1
1 ·d 1

2 −4 ·d 2
1 ·d 2

2 +2 ·d 2
1 +2 ·d 2

2 −2 ·d 1
1) · (2 · l0 +2 · l1)

x3 = (4 ·d 2
1 ·d 2

2 −2 ·d 2
1 −2 ·d 2

2) ·2 · l0

=⇒ llink = x1+x2+x3

4·d 1
1 ·d

1
2

d 2
1 |d

1
1 |D1 ∧d 2

2 = d 1
2 = D2

x1 = 2 ·d 1
2 · (2 · l0 +2 · l1 +2 · l2)

x2 = (4 ·d 1
1 ·d 1

2 −4 ·d 2
1 ·d 2

2) · (2 · l0 +2 · l1)

x3 = (4 ·d 2
1 ·d 2

2 −2 ·d 2
2) ·2 · l0

=⇒ llink = x1+x2+x3

4·d 1
1 ·d

1
2

d 2
1 = d 1

1 |D1 ∧d 2
2 |d

1
2 = D2

d 2
1 |d

1
1 |D1 ∧d 2

2 |d
1
2 = D2

x1 = 2 ·d 1
2 · (2 · l0 +2 · l1 +2 · l2)

x2 = (4 ·d 1
1 ·d 1

2 −4 ·d 2
1 ·d 2

2 +2 ·d 2
1 +2 ·d 2

2 −2 ·d 1
2) · (2 · l0 +2 · l1)

x3 = (4 ·d 2
1 ·d 2

2 −2 ·d 2
1 −2 ·d 2

2) ·2 · l0

=⇒ llink = x1+x2+x3

4·d 1
1 ·d

1
2

d 2
1 = d 1

1 |D1 ∧d 2
2 |d

1
2 |D2

d 2
1 |d

1
1 |D1 ∧d 2

2 = d 1
2 |D2

d 2
1 |d

1
1 |D1 ∧d 2

2 |d
1
2 |D2

x1 = (2 ·d 1
1 +2 ·d 1

2) · (2 · l0 +2 · l1 +2 · l2)

x2 = (4 ·d 1
1 ·d 1

2 −4 ·d 2
1 ·d 2

2 +2 ·d 2
1 +2 ·d 2

2 −2 ·d 1
1 −2 ·d 1

2) · (2 · l0 +2 · l1)

x3 = (4 ·d 2
1 ·d 2

2 −2 ·d 2
1 −2 ·d 2

2) ·2 · l0

=⇒ llink = x1+x2+x3

4·d 1
1 ·d

1
2

Table 5 – Average link latency models (nearest-neighbor, 3L fat-tree).

182

Models of Average Link Latency / Average Number of Links

2-Dimensional Nearest-Neighbor Pattern (3)

Mapping description Average link latency

m = 1∧k = 1

x1 = 4 · l0 ·p ·m

x2 = (2 · l0 + l2) ·2 ·p ·m

=⇒ llink = x1+x2
2·p·m+2·p·m

m = 1∧k = 2

x1 = 4 · l0 ·k ·p ·m

x2 = (2 · l0 + l1) ·2 ·p ·m

x3 = (2 · l0 + l1 + l2) ·2 ·p ·m

=⇒ llink = x1+x2+x3
2·k·p·m+2·p·m+2·p·m

m = 1∧k > 2

x1 = 4 · l0 ·k ·p ·m

x2 = (2 · l0 + l1) ·2 ·p ·m

x3 = (2 · l0 + l1 + l2) ·2 ·p ·m

x4 = (2 · l0 + l1) · (k −2) ·2 ·p ·m

=⇒ llink = x1+x2+x3+x4
2·k·p·m+2·p·m+2·p·m+(k−2)·2·p·m

m >= 2∧k = 1

x1 = 2 · l0 · (2 ·p ·m −2 ·m)
x2 = (2 · l0 + l1) ·2 ·m
x3 = (2 · l0 + l2) ·2 ·p ·m

=⇒ llink = x1+x2+x3
2·p·m−2·m+2·m+2·p·m

m >= 2∧k = 2

x1 = 2 · l0 ·k · (2 ·p ·m −2 ·m)
x2 = (2 · l0 + l1) ·2 ·k ·m
x3 = (2 · l0 + l1) ·2 ·p ·m

x4 = (2 · l0 + l1 + l2) ·2 ·p ·m

=⇒ llink = x1+x2+x3+x4
2·k·p·m−2·k·m+2·k·m+2·p·m+2·p·m

m >= 2∧k > 2

x1 = 2 · l0 ·k · (2 ·p ·m −2 ·m)
x2 = (2 · l0 + l1) ·k ·2 ·m
x3 = (2 · l0 + l1) ·2 ·p ·m

x4 = (2 · l0 + l1 + l2) ·2 ·p ·m

x5 = (2 · l0 + l1) · (k −2) ·2 ·p ·m

=⇒ llink = x1+x2+x3+x4+x5
2·k·p·m−2·k·m+2·k·m+2·p·m+2·p·m+(k−2)·2·p·m

Table 6 – Average link latency models (nearest-neighbor, 2D HyperX).

183

Supercomputer Measurements - NAS LU - Network Configurations

Topology p d1 d2 d3 a w0 w1 w2 m1 m2 m3 #Processes
2D

H
yp

er
X

4 2 2 − − − − − − − − 16
2 4 2 − − − − − − − − 16
1 4 4 − − − − − − − − 16
1 8 2 − − − − − − − − 16
1 5 5 − − − − − − − − 25
1 12 3 − − − − − − − − 36
3 4 3 − − − − − − − − 36
3 6 2 − − − − − − − − 36
2 6 3 − − − − − − − − 36
1 6 6 − − − − − − − − 36
2 9 2 − − − − − − − − 36
4 4 4 − − − − − − − − 64
2 8 4 − − − − − − − − 64

Full-mesh
2 − − − 8 − − − − − − 16
1 − − − 16 − − − − − − 16
4 − − − 16 − − − − − − 64

2L Fat-tree
− − − − − 1 4 − 4 4 − 16
− − − − − 1 4 − 16 4 − 64

3L Fat-tree
− − − − − 1 4 2 2 4 2 16
− − − − − 1 4 2 8 4 2 64

Table 7 – Network topology configurations (nearest-neighbor pattern).

184

Author’s Publications and Patents

Journal Peer-Reviewed Articles

A. Anghel, L. Vasilescu, G. Mariani, R. Jongerius, G. Dittmann, “An Instrumentation Approach

for Hardware-Agnostic Software Characterization,” in International Journal on Parallel Pro-

gramming (IJPP’16) 44: 924, Springer, 2016, DOI:10.1007/s10766-016-0410-0.

G. Mariani, A. Anghel, R. Jongerius, G. Dittmann, “Scaling Application Properties to Exas-

cale,” in International Journal on Parallel Programming (IJPP’16), 44: 975, Springer, 2016,

DOI:10.1007/s10766-016-0412-y.

G. Mariani, A. Anghel, R. Jongerius, G. Dittmann, “Classification of Thread Profiles for Scaling

Application Behavior,” in Journal of Parallel Computing, Elsevier, 2017.

R. Jongerius, A. Anghel, G. Mariani, G. Dittmann, E. Vermij, H. Corporaal, “Analytic Multi-Core

Processor Model for Fast Design-Space Exploration,", in IEEE Transactions on Computers (TC),

IEEE 2017 (under review).

Conference Peer-Reviewed Articles

A. Anghel, L. Vasilescu, G. Mariani, R. Jongerius, G. Dittmann, “An Instrumentation Approach

for Hardware-Agnostic Software Characterization,” in Proceedings of the 12th ACM Interna-

tional Conference on Computing Frontiers, ser. CF’15. New York, NY, USA: ACM, 2015, pp.

3:1–3:8, DOI: http://dx.doi.org/10.1145/2742854.2742859.

G. Mariani, A. Anghel, R. Jongerius, G. Dittmann, “Scaling Application Properties to Exascale,”

in Proceedings of the 12th ACM International Conference on Computing Frontiers, ser. CF’15.

New York, USA: ACM, 2015, pp. 31:1–31:8, DOI: http://dx.doi.org/10.1145/2742854.2742860.

A. Anghel, G. Mariani, R. Jongerius, G. Dittmann, “Analytic Performance Modeling of Fat-Tree

Topologies For Fast Design-Space Exploration“, in 2018 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS’18), IEEE 2018 (under review).

R. Jongerius, G. Mariani, A. Anghel, E. Vermij, G. Dittmann, H. Corporaal, “Analytic processor

185

model for fast design-space exploration,” in International IEEE Conference on Computer Design

(ICCD’15), New York, USA, IEEE, 2015, DOI: 10.1109/ICCD.2015.7357136.

S. Poddar, R. Jongerius, F. Leandro, G. Mariani, G. Dittmann, A. Anghel, H. Corporaal, “MeSAP:

A fast analytic power model for DRAM memories,” in Design, Automation and Test in Europe

Conference, pp. 49–54, IEEE, 2017, DOI: 10.23919/DATE.2017.7926957.

A. Anghel, G. Rodriguez, B. Prisacari, C. Minkenberg, G. Dittmann, “Quantifying Communication

in Graph Analytics,"" in Proceedings of High Performance Computing - 30th International Con-

ference, ISC High Performance 2015, pp. 472–487, 2015, Lecture Notes in Computer Science,

vol 9137, Springer, Cham.

P. Fuentes, E. Vallejo, J.L. Bosque, R. Beivide, A. Anghel, G. Rodriguez, M. Gusat, C. Minken-

berg, “Synthetic Traffic Model of the Graph500 Communications,” in Proceedings of the 16th

International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP),

2016, Lecture Notes in Computer Science, vol 10048, Springer, Cham.

G. Kathareios, A. Anghel, A. Mate, R. Clauberg, Mitch Gusat, “Catch It If You Can: Real-Time

Network Anomaly Detection With Low False Alarm Rates“, in Proceedings of the 16th IEEE

International Conference On Machine Learning And Applications (ICMLA’17), IEEE, 2017.

A. Anghel, R. Jongerius, G. Dittmann, J. Weiss, and R. P. Luijten, “Holistic power analysis of

implementation alternatives for a very large scale synthesis array with phased array stations,”

in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP 2014, pp. 5397–5401, IEEE, 2014, DOI: 10.1109/ICASSP.2014.6854634.

M. L. Schmatz, R. Jongerius, G. Dittmann, A. Anghel, T. Engbersen, J. van Lunteren, and P. Buch-

mann, “Scalable, efficient ASICs for the square kilometre array: From A/D conversion to central

correlation,” in Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing, ICASSP 2014, pp. 7505–7509, IEEE, 2014, DOI: 10.1109/ICASSP.2014.6855059.

A. Anghel, G. Rodriguez, and B. Prisacari, “The importance and characteristics of communication

in high-performance data analytics,” in Proceedings of the IEEE International Symposium on

Workload Characterization, IISWC 2014, IEEE, 2014, DOI: 10.1109/IISWC.2014.6983044.

D. Crisan, A. Anghel, R. Birke, C. Minkenberg, and M. Gusat, “Short and fat: TCP performance

in CEE datacenter networks,” in Proceedings of the IEEE 19th Annual Symposium on High

Performance Interconnects, HOTI 2011, pp. 43–50, IEEE, 2011, DOI: 10.1109/HOTI.2011.16.

Workshop Peer-Reviewed Articles

A. Anghel, R. Birke, and M. Gusat, “Scalable high resolution traffic heatmaps: Coherent queue

visualization for datacenters,” in Proceedings of the 6th International Workshop on Traffic

186

Monitoring and Analysis TMA 2014, pp. 26–37, 2014, Lecture Notes in Computer Science, vol

8406, Springer, Berlin, Heidelberg.

A. Anghel, G. Dittmann, R. Jongerius, and R. Luijten, “Spatio-temporal locality characteriza-

tion, in 46th IEEE/ACM International Symposium on Microarchitecture (MICRO-46) Workshops:

1st Workshop on Near-Data Processing, 2013.” [Online].

Available: http://www.cs.utah.edu/wondp/Anghel_Locality.pdf

A. Anghel, R. Birke, D. Crisan, and M. Gusat, “Cross-layer flow and congestion control for

datacenter networks,” in 23rd International Teletraffic Congress (ITC 23) Workshops: 3rd

Workshop on Data Center Converged and Virtual Ethernet Switching, DC-CAVES, 2011, San

Francisco, CA, USA, September 9, 2011.

Patents

A. Anghel, G. Dittmann, P. Altevogt, C. Lichtenau, T. Pflueger, IBM Corporation, "Cognitive

Selection of Variable Memory-Access Widths", Patent Office CH, Patent Number CH820160129,

2017.

A. Anghel, G. Dittmann, P. Altevogt, C. Lichtenau, T. Pflueger, IBM Corporation, "Cognitive

Load-Aware Branch Prediction", Patent Office CH, Patent Number CH820160099, 2017.

A. Anghel, B. Prisacari, IBM Corporation, Large Scale Distributed Training of Machine Learning

Models Without Loss of Accuracy, Patent Number CH920160046US1, 2016.

A. Anghel, G. Kathareios, M. Gusat, IBM Corporation, Monitoring Queues at Switches of a

Network from an External Entity, Patent Office US, Patent Number CH920150073US1, 2015.

A. Anghel, B. Prisacari, G. Rodriguez, IBM Corporation, Datacenter Scheduling of Applications

Using Machine Learning Techniques, Patent Office US, Patent Number CH920140079US1,

2015.

A. Anghel, C. Basso, R. Birke, D. Crisan, M. Gusat, K. Kamble, C. Minkenberg, IBM Corporation,

Quantized Congestion Notification (QCN) Extension to Explicit Congestion Notification (ECN)

for Transport-based End-to-End Congestion Notification, Patent Office US, Patent Number

20150188820, Application number 14/145683, Publication date 2015/07.

A. Anghel, R. Birke, C. DeCusatis, M. Gusat, C. Minkenberg, IBM Corporation, Coherent Load

Monitoring of Physical and Virtual Networks With Synchronous Status Acquisition, Patent

Office US, Patent Number US20140269403 A1, Application Number US 13/834,679, Publication

date 2014/09.

187

Bibliography

[1] Apache Giraph. http://giraph.apache.org/.

[2] Barcelona Supercomputing Center MareNostrum supercomputer.

https://www.bsc.es/innovation-and-services/supercomputers-and-

facilities/marenostrum.

[3] Extrae. Barcelona Supercomputer Center. https://tools.bsc.es/extrae.

[4] Graph 500 benchmark. http://www.graph500.org/.

[5] Intel MPI Benchmarks, User Guide and Methodology Descrip-

tion (version 3.2.4). https://www.lrz.de/services/compute/courses/

x_lecturenotes/mic_workshop_ostrava/IMB_Users_Guide.pdf.

[6] International Technology Roadmap for Semiconductors (ITRS).

http://www.itrs2.net/itrs-reports.html (accessed November 2013).

[7] Magnus technical specifications. https://www.pawsey.org.au/our-systems/magnus-

technical-specifications (accessed September 2016).

[8] OMNEST, High-Performance Simulation for All Kinds of Networks.

https://omnest.com/.

[9] OMNeT++, Discrete Event Simulator. https://omnetpp.org/.

[10] Standard Performance Evaluation Corporation, SPEC MPI2007.

https://www.spec.org/mpi/.

[11] Top 500 list. http://www.top500.org.

[12] Top 500 list. http://www.top500.org/list/2014/11/ (November 2014).

[13] A2 Processor – User’s Manual for Blue Gene/Q (version 1.3).

https://computing.llnl.gov/tutorials/bgq/A2UserManual.pdf, 2012.

[14] ADIGA, N. R., BLUMRICH, M. A., CHEN, D., COTEUS, P., GARA, A., GIAMPAPA, M. E.,

HEIDELBERGER, P., SINGH, S., STEINMACHER-BUROW, B. D., TAKKEN, T., TSAO, M., AND

189

Bibliography

VRANAS, P. Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49, 2 (Mar.

2005), 265–276.

[15] AGARWAL, V., PETRINI, F., PASETTO, D., AND BADER, D. A. Scalable graph exploration

on multicore processors. In Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis (Washington, DC,

USA, 2010), SC ’10, IEEE Computer Society, pp. 1–11.

[16] AHN, J. H., BINKERT, N., DAVIS, A., MCLAREN, M., AND SCHREIBER, R. S. HyperX:

Topology, routing, and packaging of efficient large-scale networks. In Proceedings of

the Conference on High Performance Computing Networking, Storage and Analysis (New

York, NY, USA, 2009), SC ’09, ACM, pp. 41:1–41:11.

[17] AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND WOOD, D. A. DBMSs on a Modern

Processor: Where Does Time Go? In Proceedings of the 25th International Conference

on Very Large Data Bases (San Francisco, CA, USA, 1999), VLDB ’99, Morgan Kaufmann

Publishers Inc., pp. 266–277.

[18] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scalable, commodity data center

network architecture. SIGCOMM Comput. Commun. Rev. 38, 4 (Aug. 2008), 63–74.

[19] ALVERSON, B., FROESE, E., KAPLAN, L., AND INC.), D. R. C. Cray XC series net-

work. http://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf (ac-

cessed September 2016).

[20] AMDAHL, G. M. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference (New York, NY, USA, 1967), AFIPS ’67 (Spring), ACM, pp. 483–485.

[21] ANGHEL, A., RODRIGUEZ, G., PRISACARI, B., MINKENBERG, C., AND DITTMANN, G.

Quantifying communication in graph analytics. In High Performance Computing, J. M.

Kunkel and T. Ludwig, Eds., vol. 9137 of Lecture Notes in Computer Science. Springer

International Publishing, 2015, pp. 472–487.

[22] ANGHEL, A., VASILESCU, L. M., JONGERIUS, R., DITTMANN, G., AND MARIANI, G. An

instrumentation approach for hardware-agnostic software characterization. In Proceed-

ings of the 12th ACM International Conference on Computing Frontiers (New York, NY,

USA, 2015), CF ’15, ACM, pp. 3:1–3:8.

[23] ANGHEL, A., VASILESCU, L. M., MARIANI, G., JONGERIUS, R., AND DITTMANN, G. An in-

strumentation approach for hardware-agnostic software characterization. International

Journal of Parallel Programming 44, 5 (2016), 924–948.

[24] APPLEGATE, D., AND COHEN, E. Making intra-domain routing robust to changing and

uncertain traffic demands: Understanding fundamental tradeoffs. In Proceedings of the

2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications (New York, NY, USA, 2003), SIGCOMM ’03, ACM, pp. 313–324.

190

Bibliography

[25] ARGOLLO, E., FALCÓN, A., FARABOSCHI, P., MONCHIERO, M., AND ORTEGA, D. COTSon:

Infrastructure for full system simulation. SIGOPS Oper. Syst. Rev. 43, 1 (Jan. 2009), 52–61.

[26] ASHBY, S., BECKMAN, P., CHEN, J., COLELLA, P., COLLINS, B., CRAWFORD, D., DON-

GARRA, J., KOTHE, D., LUSK, R., MESSINA, P., AND OTHERS. The opportunities and

challenges of exascale computing. Summary report of the advanced scientific computing

advisory committee (ASCAC) subcommittee at the US Department of Energy Office of

Science (2010).

[27] AUSTIN, T., LARSON, E., AND ERNST, D. SimpleScalar: An infrastructure for computer

system modeling. IEEE Computer 35, 2 (Feb. 2002), 59–67.

[28] AUSTIN, T. M., AND SOHI, G. S. Dynamic dependency analysis of ordinary programs.

SIGARCH Comput. Archit. News 20, 2 (Apr. 1992), 342–351.

[29] AZAR, Y., COHEN, E., FIAT, A., KAPLAN, H., AND RACKE, H. Optimal oblivious routing

in polynomial time. In Proceedings of the 35th Annual ACM Symposium on Theory of

Computing (New York, NY, USA, 2003), STOC ’03, ACM, pp. 383–388.

[30] BADAWY, A.-H., AGGARWAL, A., YEUNG, D., AND TSENG, C.-W. The efficacy of software

prefetching and locality optimizations on future memory systems. Journal of Instruction-

Level Parallelism 6, 7 (2004).

[31] BADER, D., RIEDY, J., AND MEYERHENKE, H. Applications and challenges in large-scale

graph analysis. HPC Graph Analytics Workshop (2013).

[32] BADIA, R. M., LABARTA, J., GIMENEZ, J., AND ESCALE, F. DIMEMAS: Predicting MPI

applications behavior in grid environments. In Workshop on Grid Applications and

Programming Tools (GGF8) (2003), vol. 86, pp. 52–62.

[33] BAILEY, D., HARRIS, T., SAPHIR, W., VAN DER WIJNGAART, R., WOO, A., AND YARROW,

M. The NAS Parallel Benchmarks 2.0. The International Journal of Supercomputer

Applications (1995).

[34] BAUDRY, A., LACASSE, R., ESCOFFIER, R., WEBBER, J., GREENBERG, J., PLATT, L., TREACY,

R., SAEZ, A. F., CAIS, P., COMORETTO, G., QUERTIER, B., OKUMURA, S. K., KAMAZAKI,

T., CHIKADA, Y., WATANABE, M., OKUDA, T., KURONO, Y., AND IGUCHI, S. Performance

highlights of the ALMA correlators, in Proc. SPIE 8452, Millimeter, Submillimeter, and

Far-Infrared Detectors and Instrumentation for Astronomy VI, 2012.

[35] BECKMANN, N., EASTEP, J., GRUENWALD, C., KURIAN, G., KASTURE, H., MILLER, J. E.,

CELIO, C., AND AGARWAL, A. Graphite: A Distributed Parallel Simulator for Multicores.

Tech. rep., MIT, Nov. 2009.

[36] BEYLS, K., AND D’HOLLANDER, E. Reuse distance as a metric for cache behavior.

In Proceedings of the IASTED Conference on Parallel and Distributed Computing and

Systems (2001), pp. 617–662.

191

Bibliography

[37] BHUYAN, L. N., AND AGRAWAL, D. P. Generalized hypercube and hyperbus structures

for a computer network. IEEE Trans. Comput. 33, 4 (Apr. 1984), 323–333.

[38] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. The PARSEC benchmark suite: Char-

acterization and architectural implications. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation Techniques (New York, NY, USA,

2008), PACT ’08, ACM, pp. 72–81.

[39] BINKERT, N., BECKMANN, B., BLACK, G., REINHARDT, S. K., SAIDI, A., BASU, A., HES-

TNESS, J., HOWER, D. R., KRISHNA, T., SARDASHTI, S., SEN, R., SEWELL, K., SHOAIB,

M., VAISH, N., HILL, M. D., AND WOOD, D. A. The Gem5 simulator. SIGARCH Comput.

Archit. News 39, 2 (Aug. 2011), 1–7.

[40] BIRAN, A. Characterization of the Cray Aries network (NERCS advanced technol-

ogy group). https://www.nersc.gov/assets/pubs_presos/NUG2014Aries.pdf (accessed

September 2016), 2014.

[41] BORKAR, S., AND CHIEN, A. A. The future of microprocessors. Commun. ACM 54, 5

(May 2011), 67–77.

[42] BROEKEMA, P. C., BOONSTRA, A.-J., CABEZAS, V. C., ENGBERSEN, T., HOLTIES, H.,

JELITTO, J., LUIJTEN, R. P., MAAT, P., VAN NIEUWPOORT, R. V., NIJBOER, R., ROMEIN,

J. W., AND OFFREIN, B. J. DOME: Towards the ASTRON and IBM Center for Exascale

Technology. In Proceedings of the 2012 Workshop on High-Performance Computing for

Astronomy Date (New York, NY, USA, 2012), ACM.

[43] CABEZAS, V. A tool for analysis and visualization of application properties. Tech. Rep.

RZ3834, IBM, 2012.

[44] CALZAROSSA, M., AND SERAZZI, G. Workload Characterization: a survey. Proceedings of

the IEEE 8, 81 (1993), 1136–1150.

[45] CARLSON, T. E., HEIRMAN, W., EYERMAN, S., HUR, I., AND EECKHOUT, L. An evaluation

of high-level mechanistic core models. ACM Transactions on Architecture and Code

Optimization (TACO) (2014).

[46] CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C. R-MAT: A recursive model for graph

mining. In Proceedings of the 2004 SIAM International Conference on Data Mining.

[47] CHANG, P.-Y., HAO, E., YEH, T.-Y., AND PATT, Y. Branch classification: A new mecha-

nism for improving branch predictor performance. International Journal of Parallel

Programming 24, 2 (1996), 133–158.

[48] CHANGWOO, P., KYUNG-WOO, L., HYE-KYUNG, H., AND GYUNGHO, L. Reference dis-

tance as a metric for data locality. In Proceedings of HPC-ASIA97 (1997), pp. 151–156.

[49] CHECCONI, F., AND PETRINI, F. Massive data analytics: The Graph 500 on IBM Blue

Gene/Q. IBM Journal of Research and Development 57, 1/2 (2013), 10.

192

Bibliography

[50] CHEN, D., EISLEY, N. A., HEIDELBERGER, P., SENGER, R. M., SUGAWARA, Y., KUMAR, S.,

SALAPURA, V., SATTERFIELD, D., STEINMACHER-BUROW, B., AND PARKER, J. The IBM

Blue Gene/Q interconnection fabric. IEEE Micro 32 (2012), 32–43.

[51] CHEN, D., EISLEY, N. A., HEIDELBERGER, P., SENGER, R. M., SUGAWARA, Y., KUMAR, S.,

SALAPURA, V., SATTERFIELD, D. L., STEINMACHER-BUROW, B., AND PARKER, J. J. The

IBM Blue Gene/Q interconnection network and message unit. In Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and

Analysis (New York, NY, USA, 2011), SC ’11, ACM, pp. 26:1–26:10.

[52] CHUNG, I.-H., WALKUP, R. E., WEN, H.-F., AND YU, H. MPI performance analysis tools

on Blue Gene/L. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing

(New York, NY, USA, 2006), SC ’06, ACM.

[53] CROVELLA, M. E., AND LEBLANC, T. J. Parallel performance prediction using lost cycles

analysis. In Proceedings of the 1994 ACM/IEEE Conference on Supercomputing (Los

Alamitos, CA, USA, 1994), SC’94, IEEE Computer Society Press, pp. 600–609.

[54] CZECHOWSKI, K., BATTAGLINO, C., MCCLANAHAN, C., CHANDRAMOWLISHWARAN, A.,

AND VUDUC, R. Balance principles for algorithm-architecture co-design. In Proceedings

of HotPar’11 (Berkeley, CA, USA), USENIX Association, pp. 9–9.

[55] DALLY, B. Power, programmability, and granularity: the challenges of exascale comput-

ing. In IEEE Parallel & Distributed Processing Symposium (2011), pp. 878–878.

[56] DE VOS, M., GUNST, A., AND NIJBOER, R. The LOFAR telescope: System architecture

and signal processing. Proceedings of the IEEE 97, 8 (2009), 1431–1437.

[57] DEN STEEN, S. V., PESTEL, S. D., MECHRI, M., EYERMAN, S., CARLSON, T. E., BLACK-

SCHAFFER, D., HAGERSTEN, E., AND EECKHOUT, L. Micro-architecture independent

analytical processor performance and power modeling. In ISPASS (2015), IEEE Com-

puter Society, pp. 32–41.

[58] DING, C., AND ZHONG, Y. Predicting whole-program locality through reuse distance

analysis. SIGPLAN Not. 38, 5 (May 2003), 245–257.

[59] EYERMAN, S., EECKHOUT, L., KARKHANIS, T., AND SMITH, J. E. A mechanistic perfor-

mance model for superscalar out-of-order processors. ACM Trans. Comput. Syst. 27, 2

(May 2009), 3:1–3:37.

[60] EYERMAN, S., SMITH, J., AND EECKHOUT, L. Characterizing the branch misprediction

penalty. In 2006 IEEE International Symposium on Performance Analysis of Systems and

Software (March 2006), pp. 48–58.

[61] FERDMAN, M., ADILEH, A., KOCBERBER, O., VOLOS, S., ALISAFAEE, M., JEVDJIC, D.,

KAYNAK, C., POPESCU, A. D., AILAMAKI, A., AND FALSAFI, B. Clearing the clouds: a study

of emerging scale-out workloads on modern hardware. In Proceedings of the seventeenth

193

Bibliography

international conference on Architectural Support for Programming Languages and

Operating Systems (New York, NY, USA, 2012), ASPLOS XVII, ACM, pp. 37–48.

[62] FIORIN, L., VERMIJ, E., VAN LUNTEREN, J., JONGERIUS, R., AND HAGLEITNER, C. Explor-

ing the Design Space of an Energy-Efficient Accelerator for the SKA1-Low Central Signal

Processor. International Journal of Parallel Programming 44, 5 (2016), 1003–1027.

[63] FOG, A. The microarchitecture of Intel, AMD and VIA CPUs. An

optimization guide for assembly programmers and compiler makers.

http://www.agner.org/optimize/microarchitecture.pdf, 1996 (last update 2016).

[64] GAHVARI, H., BAKER, A. H., SCHULZ, M., YANG, U. M., JORDAN, K. E., AND GROPP,

W. Modeling the Performance of an Algebraic Multigrid Cycle on HPC Platforms. In

Proceedings of the International Conference on Supercomputing (New York, NY, USA,

2011), ICS ’11, ACM, pp. 172–181.

[65] HARDAVELLAS, N., FERDMAN, M., FALSAFI, B., AND AILAMAKI, A. Reactive NUCA: Near-

optimal Block Placement and Replication in Distributed Caches. SIGARCH Comput.

Archit. News 37, 3 (June 2009), 184–195.

[66] HARDAVELLAS, N., FERDMAN, M., FALSAFI, B., AND AILAMAKI, A. Toward dark silicon in

servers. IEEE Micro 31, 4 (July 2011), 6–15.

[67] HARING, R., OHMACHT, M., FOX, T., GSCHWIND, M., SATTERFIELD, D., SUGAVANAM, K.,

COTEUS, P., HEIDELBERGER, P., BLUMRICH, M., WISNIEWSKI, R., GARA, A., CHIU, G.-T.,

BOYLE, P., CHIST, N., AND KIM, C. The IBM Blue Gene/Q compute chip. Micro, IEEE 32,

2 (March-April 2012), 48 –60.

[68] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture, Fourth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2006.

[69] HILL, M. D., AND MARTY, M. R. Amdahl’s law in the multicore era. Computer 41, 7 (July

2008), 33–38.

[70] HOEFLER, T. Bridging performance analysis tools and analytic performance modeling

for HPC. In Proceedings of the 2010 conference on Parallel processing (Berlin, Heidelberg,

2011), Euro-Par 2010, Springer-Verlag, pp. 483–491.

[71] HOEFLER, T., GROPP, W., KRAMER, W., AND SNIR, M. Performance modeling for system-

atic performance tuning. In State of the Practice Reports (New York, NY, USA, 2011), SC

’11, ACM, pp. 6:1–6:12.

[72] HOSTE, K., AND EECKHOUT, L. Microarchitecture-independent workload characteriza-

tion. IEEE Micro 27, 3 (2007), 63–72.

[73] INTEL CORPORATION. Intel Xeon processor E5-2697 v2 (30M cache, 2.70 GHz). http://ark.

intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz.

194

http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz

Bibliography

[74] INTEL CORPORATION. Intel Xeon processor E5-2697 v3 (35M cache,

2.60 GHz) specifications. http://ark.intel.com/products/81059/

Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2__60-GHz.

[75] JONGERIUS, R. LOFAR retrospective analysis - analyzing LOFAR station processing. Tech.

rep., IBM Research, 2012.

[76] JONGERIUS, R., ANGHEL, A., MARIANI, G., DITTMANN, G., VERMIJ, E., AND CORPORAAL,

H. Analytic multi-core processor model for fast design-space exploration (under review).

In IEEE Transactions on Computers (2017), TC.

[77] JONGERIUS, R., MARIANI, G., ANGHEL, A., DITTMANN, G., VERMIJ, E., AND CORPORAAL,

H. Analytic processor model for fast design-space exploration. In Proceedings of the

33rd IEEE International Conference on Computer Design (ICCD) (2015), ICCD’15.

[78] JONGERIUS, R., WIJNHOLDS, S. J., NIJBOER, R., AND CORPORAAL, H. An End-to-End

Computing Model for the Square Kilometre Array. IEEE Computer 47, 9 (2014), 48–54.

[79] JOSE, J., POTLURI, S., TOMKO, K., AND PANDA, D. K. Designing scalable Graph500

benchmark with hybrid MPI+OpenSHMEM programming models. In ISC’13, vol. 7905

of Lecture Notes in Computer Science, Springer, pp. 109–124.

[80] JOSHI, A., PHANSALKAR, A., EECKHOUT, L., AND JOHN, L. K. Measuring benchmark

similarity using inherent program characteristics. IEEE Trans. Comput. 55, 6 (June 2006),

769–782.

[81] KERBYSON, D. J., ALME, H. J., HOISIE, A., PETRINI, F., WASSERMAN, H. J., AND GITTINGS,

M. Predictive performance and scalability modeling of a large-scale application. In

Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (New York, NY, USA,

2001), SC ’01, ACM, pp. 37–37.

[82] KINSY, M. A., CHO, M. H., WEN, T., SUH, E., VAN DIJK, M., AND DEVADAS, S.

Application-aware deadlock-free oblivious routing. SIGARCH Comput. Archit. News 37,

3 (June 2009), 208–219.

[83] KNÜPFER, A., BRUNST, H., DOLESCHAL, J., JURENZ, M., LIEBER, M., MICKLER, H.,

MÜLLER, M., AND NAGEL, W. The Vampir Performance Analysis Tool-Set. In Tools

for High Performance Computing, M. Resch, R. Keller, V. Himmler, B. Krammer, and

A. Schulz, Eds. Springer Berlin Heidelberg, 2008, pp. 139–155.

[84] KODI, A. K., NEEL, B., AND BRANTLEY, W. C. Photonic interconnects for exascale and

datacenter architectures. IEEE Micro 34, 5 (2014), 18–30.

[85] KUON, I., AND ROSE, J. Measuring the Gap Between FPGAs and ASICs. In Proceedings of

the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays

(New York, NY, USA, 2006), ACM, pp. 21–30.

195

http://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2__60-GHz
http://ark.intel.com/products/81059/Intel-Xeon-Processor-E5-2697-v3-35M-Cache-2__60-GHz

Bibliography

[86] LABARTA, J., GIRONA, S., PILLET, V., CORTES, T., AND GREGORIS, L. DiP: A parallel

program development environment. In Proc. of the Second International Euro-Par

Conference on Parallel Processing (London, UK, 1996), vol. II, Springer-Verlag, pp. 665–

674.

[87] LAM, M. S., AND WILSON, R. P. Limits of control flow on parallelism. In Proceedings of

the 19th Annual International Symposium on Computer Architecture (1992), ISCA ’92,

pp. 46–57.

[88] LATTNER, C., AND ADVE, V. LLVM: A Compilation framework for lifelong program

analysis & transformation. In Proceedings of CGO’04, pp. 75–86.

[89] LEE, B. C., AND BROOKS, D. M. Accurate and efficient regression modeling for mi-

croarchitectural performance and power prediction. In ASPLOS-XII: Proceedings of the

12th international conference on Architectural support for programming languages and

operating systems (New York, NY, USA, 2006), ACM, pp. 185–194.

[90] LEFURGY, C., WANG, X., AND WARE, M. Server-level power control. In Proceedings of

the IEEE International Conference on Autonomic Computing (ICAC’07) (2007).

[91] LI, S., AHN, J. H., STRONG, R. D., BROCKMAN, J. B., TULLSEN, D. M., AND JOUPPI, N. P.

McPAT: an integrated power, area, and timing modeling framework for multicore and

manycore architectures. In Proceedings of the 42nd Annual International Symposium

on Microarchitecture (New York, NY, USA, 2009), MICRO 42, ACM, pp. 469–480.

[92] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KYROLA, A., AND HELLERSTEIN,

J. M. Distributed GraphLab: A Framework for Machine Learning and Data Mining in

the Cloud. Proc. VLDB Endow. 5, 8 (Apr. 2012), 716–727.

[93] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S.,

REDDI, V. J., AND HAZELWOOD, K. Pin: Building customized program analysis tools with

dynamic instrumentation. In Proceedings of PLDI’05 (New York, NY, USA, 2005), ACM,

pp. 190–200.

[94] MARIANI, G., ANGHEL, A., JONGERIUS, R., AND DITTMANN, G. Scaling properties of

parallel applications to exascale. International Journal of Parallel Programming 44, 5

(2016), 975–1002.

[95] MARIANI, G., ANGHEL, A., JONGERIUS, R., AND DITTMANN, G. Classification of thread

profiles for scaling application behavior. Parallel Computing (PARCO) 66 (2017), 1 – 21.

[96] MARIANI, G., PALERMO, G., ZACCARIA, V., AND SILVANO, C. Desperate++: An enhanced

design space exploration framework using predictive simulation scheduling. IEEE Trans.

on CAD of Integrated Circuits and Systems 34, 2 (2015), 293–306.

[97] MCFARLING, S. Combining Branch Predictors (WRL Technical Note TN-36). Tech. rep.,

1993.

196

Bibliography

[98] MINKENBERG, C., DENZEL, W., RODRIGUEZ, G., AND BIRKE, R. End-to-End Modeling

and Simulation of High- Performance Computing Systems. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012, pp. 201–240.

[99] MINKENBERG, C., AND RODRIGUEZ, G. Trace-driven co-simulation of high-performance

computing systems using OMNeT++. In Proceedings of the 2nd International Conference

on Simulation Tools and Techniques (ICST, Brussels, Belgium, Belgium, 2009), Simutools

’09, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), pp. 65:1–65:8.

[100] MOORE, S., CRONK, D., WOLF, F., PURKAYASTHA, A., TELLER, P., ARAIZA, R., AGUILERA,

M. G., AND NAVA, J. Performance Profiling and Analysis of DoD Applications using

PAPI and TAU. Proceedings of DoD HPCMP UGC 2005, IEEE, Nashville, TN. (2005).

[101] MURPHY, R. C., AND KOGGE, P. M. On the memory access patterns of supercomputer

applications: Benchmark selection and its implications. IEEE Trans. Computers 56, 7

(2007), 937–945.

[102] MURPHY, R. C., WHEELER, K., BARRETT, B., AND ANG, J. Introducing the Graph 500.

Cray User’s Group (CUG) (2010).

[103] ÖHRING, S. R., IBEL, M., DAS, S. K., AND KUMAR, M. J. On generalized fat trees. In

Proceedings of the 9th International Symposium on Parallel Processing (Washington, DC,

USA, 1995), IPPS ’95, IEEE Computer Society, pp. 37–.

[104] PADUA, D. Encyclopedia of Parallel Computing. Springer Publishing Company, Incorpo-

rated, 2011.

[105] PATEL, A., AFRAM, F., CHEN, S., AND GHOSE, K. MARSS: A Full System Simulator for

Multicore x86 CPUs. In Proceedings of the 48th Design Automation Conference (New

York, NY, USA, 2011), DAC ’11, ACM, pp. 1050–1055.

[106] P.E. DEWDNEY, W. TURBER, R.BRAUN, J. SANTANDER-VELA, M. WATERSON, AND G.-H.

TAN. SKA1 system baseline v2 description SKA-TEL-SKO-0000308. Tech. rep., SKA

Organisation, November 2015.

[107] PESTEL, S. D., EYERMAN, S., AND EECKHOUT, L. Micro-architecture independent branch

behavior characterization. In 2015 IEEE International Symposium on Performance

Analysis of Systems and Software, ISPASS 2015, Philadelphia, PA, USA, March 29-31

(2015), pp. 135–144.

[108] PODDAR, S., JONGERIUS, R., LEANDRO, F., MARIANI, G., DITTMANN, G., ANGHEL, A.,

AND CORPORAAL, H. MeSAP: A fast analytic power model for DRAM memories. In

Proceedings of Design, Automation and Test in Europe (2017), DATE’17.

[109] PRISACARI, B., RODRÍGUEZ, G., HEIDELBERGER, P., CHEN, D., MINKENBERG, C., AND

HOEFLER, T. Efficient task placement and routing of nearest neighbor exchanges in

197

Bibliography

dragonfly networks. In The 23rd International Symposium on High-Performance Parallel

and Distributed Computing, HPDC’14, Vancouver, BC, Canada - June 23 - 27, 2014 (2014),

pp. 129–140.

[110] PRISACARI, B., RODRIGUEZ, G., MINKENBERG, C., AND HOEFLER, T. Fast pattern-specific

routing for fat tree networks. ACM Trans. Archit. Code Optim. 10, 4 (Dec. 2013), 36:1–

36:25.

[111] RÄCKE, H. Minimizing congestion in general networks. In Proceedings of the 43rd

Symposium on Foundations of Computer Science (Washington, DC, USA, 2002), FOCS’02,

IEEE Computer Society, pp. 43–52.

[112] REED, D. A., AND DONGARRA, J. Exascale computing and big data. Commun. ACM 58, 7

(June 2015), 56–68.

[113] ROHLFS, K., AND THOMAS, W. Tools of Radio Astronomy. Springer Berlin Heidelberg,

2004.

[114] ROMILA, A. FPGA-based pre-processor for the Square Kilometre Array telescope. M.Sc.

thesis: Eidgenoessische Technische Hochschule Zurich, 2015.

[115] SATISH, N., KIM, C., CHHUGANI, J., AND DUBEY, P. Large-scale energy-efficient graph

traversal: A path to efficient data-intensive supercomputing. In Proceedings of the

International Conference on High Performance Computing, Networking, Storage and

Analysis, SC’12 (2012), vol. 7905, pp. 14:1–14:11.

[116] SHAO, Y. S., AND BROOKS, D. ISA-independent workload characterization and its

implications for specialized architectures. In Proceedings of ISPASS’13, pp. 245–255.

[117] SHARAPOV, I., KROEGER, R., DELAMARTER, G., CHEVERESAN, R., AND RAMSAY, M. A

case study in top-down performance estimation for a large-scale parallel application.

In Proceedings of PPoPP’06, ACM, pp. 81–89.

[118] SHENDE, S. S., AND MALONY, A. D. The Tau Parallel Performance System. Int. J. High

Perform. Comput. Appl. 20, 2 (May 2006), 287–311.

[119] SINGLA, A., GODFREY, P. B., AND KOLLA, A. High throughput data center topology

design. In Proceedings of the 11th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014 [119], pp. 29–41.

[120] SNAVELY, A., CARRINGTON, L., WOLTER, N., LABARTA, J., BADIA, R., AND PURKAYASTHA,

A. A framework for performance modeling and prediction. In Proceedings of the 2002

ACM/IEEE Conference on Supercomputing (Los Alamitos, CA, USA, 2002), SC ’02, IEEE

Computer Society Press, pp. 1–17.

[121] SRINIVASAN, A. Improved approximations for edge-disjoint paths, unsplittable flow,

and related routing problems. In , 38th Annual Symposium on Foundations of Computer

Science, 1997. Proceedings (1997/10/20/22 1997), IEEE, IEEE, pp. 416 – 425.

198

Bibliography

[122] STANDARD PERFORMANCE EVALUATION CORPORATION. SPEC CPU2006 benchmark

description. http://www.spec.org/cpu2006.

[123] STANLEY-MARBELL, P. ExaBounds—Better-than-back-of-the-envelope Analysis for

Large-Scale Computing Systems . Tech. rep., IBM Research – Zurich, 2012.

[124] SUZUMURA, T., UENO, K., SATO, H., FUJISAWA, K., AND MATSUOKA, S. Performance

characteristics of Graph500 on large-scale distributed environment. In Proceedings of

IISWC’11, pp. 149–158.

[125] TEICH, J. Hardware/software codesign: The past, the present, and predicting the future.

Proceedings of the IEEE 100, Centennial-Issue (2012), 1411–1430.

[126] THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND JOUPPI, N. P. CACTI 5.1.

Technical Report HPL-2008-20, Hewlett Packard Laboratories, November 2008.

[127] UENO, K., AND SUZUMURA, T. Highly Scalable Graph Search for the Graph500 Bench-

mark. In Proceedings of the 21st International Symposium on High-Performance Parallel

and Distributed Computing (New York, NY, USA, 2012), HPDC ’12, ACM, pp. 149–160.

[128] VAN NIEUWPOORT, R. V., AND ROMEIN, J. W. Correlating radio astronomy signals with

many-core hardware. International Journal of Parallel Programming 39, 1 (2011), 88–

114.

[129] WANG, H.-S., ZHU, X., PEH, L.-S., AND MALIK, S. Orion: a power-performance sim-

ulator for interconnection networks. In MICRO 35: Proceedings of the 35th annual

ACM/IEEE international symposium on Microarchitecture (Los Alamitos, CA, USA, 2002),

IEEE Computer Society Press, pp. 294–305.

[130] WEINBERG, J., MCCRACKEN, M. O., STROHMAIER, E., AND SNAVELY, A. Quantifying

Locality In The Memory Access Patterns of HPC Applications. In Proceedings of the 2005

ACM/IEEE Conference on Supercomputing (Washington, DC, USA, 2005), SC ’05, IEEE

Computer Society, pp. 50–.

[131] YEH, T.-Y., AND PATT, Y. N. A comparison of dynamic branch predictors that use two

levels of branch history. SIGARCH Comput. Archit. News 21, 2 (May 1993), 257–266.

[132] YOKOTA, T., OOTSU, K., AND BABA, T. Potentials of branch predictors: From entropy

viewpoints. In Proceedings of the 21st International Conference on Architecture of Com-

puting Systems (Berlin, Heidelberg, 2008), ARCS’08, Springer-Verlag, pp. 273–285.

[133] ZHAI, J., CHEN, W., AND ZHENG, W. Phantom: predicting performance of parallel

applications on large-scale parallel machines using a single node. In Proceedings of

the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(New York, NY, USA, 2010), PPoPP ’10, ACM, pp. 305–314.

[134] ZHONG, Y., SHEN, X., AND DING, C. Program locality analysis using reuse distance.

ACM Trans. Program. Lang. Syst. 31, 6 (Aug. 2009), 20:1–20:39.

199

http://www.spec.org/cpu2006

Bibliography

[135] ZYUBAN, V., TAYLOR, S., CHRISTENSEN, B., HALL, A., GONZALEZ, C., FRIEDRICH, J.,

CLOUGHERTY, F., TETZLOFF, J., AND RAO, R. IBM POWER7+ design for higher frequency

at fixed power. IBM Journal of Research and Development 57, 6 (2013), 1:1–1:18.

200

	Acknowledgements
	Abstract
	Introduction
	The Case of Modeling Supercomputers
	State-of-the-Art in Application Analysis and System Modeling
	Research Questions and Contributions
	Thesis Overview

	Profiling Methodology for Inter-Process Data Dependencies Analysis
	Introduction
	Background on Graph 500
	Out-of-the-Box MPI Software Characterization
	Benchmarking Platform
	Graph 500 Configuration
	Tracing and Analysis Tools
	Characterization Results

	Custom MPI Software Characterization
	Methodology for Inter-Process Data Dependencies Analysis
	Characterization Results

	Communication Patterns Characterization
	Related Work
	Graph 500 Characterization
	Profiling Tools for Parallel Applications

	Conclusions

	PISA: A Hardware-Agnostic Software Characterization Framework
	Introduction
	Instrumentation Methodology
	The LLVM Compiler Infrastructure
	Characterization Framework: Coupled Design
	Characterization Framework: Decoupled Design

	Characterization Metrics
	Instruction Mix
	Instruction-Level Parallelism
	Memory Access Patterns
	Branch Entropy
	Communication Patterns

	Characterization Results
	Experimental Setup
	Instruction-Level Parallelism
	Memory Access Patterns
	Branch Entropy

	Comparison with Real Systems
	Instruction Mix
	Level-1 Cache Hit Rate
	Branch Misprediction Rate
	Communication Patterns

	Related Work
	Conclusions

	Analytic Processor Modeling Using Hardware-Agnostic Software Profiles
	Introduction
	Processor Performance Modeling
	Overview of Independent Modeling of CPU Events
	Independent Modeling: Single-Core Performance Results
	Overview of Modeling of CPU Events and Event Interactions
	Event-Interaction Modeling: Single-Core Performance Results

	Processor and DRAM Power Modeling
	Processor Power McPAT Modeling Overview
	DRAM Power CACTI Modeling Overview
	DRAM Power MeSAP Modeling Overview
	McPAT-CACTI Modeling: Single-Core Power Results

	Processor Branch Prediction Modeling
	Branch Entropy Overview
	Branch Entropy-Based Reverse-Engineering of Hardware Parameters
	Branch Entropy Limitations
	Branch Predictability Max-Outcome Metric Overview
	Characterization Results

	Related Work
	Processor Performance Modeling
	Branch Predictability Modeling

	Conclusions

	Analytic Modeling of Network Communication Performance
	Introduction
	Network Topologies Overview
	Communication Bandwidth Modeling Methodology
	Bandwidth Models: Uniform Communication Pattern
	Full-Mesh Topology
	2-Level Fat-Tree Topology
	3-Level Fat-Tree Topology
	1-Dimensional Torus Topology
	2-Dimensional Torus Topology
	3-Dimensional Torus Topology
	2-Dimensional HyperX Topology

	Bandwidth Models: Shift Communication Pattern
	Full-Mesh Topology
	2-Level Fat-Tree Topology
	3-Level Fat-Tree Topology

	Bandwidth Models: Nearest-Neighbor Communication Pattern
	Overview of Supported MPI Rank Mappings
	Full-Mesh Topology
	2-Level Fat-Tree Topology
	3-Level Fat-Tree Topology
	2-Dimensional HyperX Topology

	Validation Results
	Experimental Setup
	Uniform Communication Pattern
	Shift Communication Pattern
	Nearest-Neighbor Communication Pattern

	Related work
	Conclusions

	Putting it All Together: Full-System Performance Prediction
	Introduction
	Full-System Performance Modeling Description
	Validation Results
	Graph 500 Benchmark
	NAS LU Benchmark

	Full-System Power Modeling Description
	Related Work
	Conclusions

	Design-Space Exploration Studies in Radio Astronomy and Graph Analytics
	Design-Space Exploration of Compute Nodes
	Square Kilometer Array Overview
	Power Modeling of the SKA Station Processor
	ASIC/FPGA Power Modeling Description
	Power Models Parameters and Scaling Rules
	Results and Discussion

	Power Modeling of the Central Signal Processor
	General-Purpose CPU Power Modeling Overview
	Results and Discussion

	Design-Space Exploration of Large-Scale Systems

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Author's Publications and Patents
	Bibliography
	Curriculum Vitae

