
Diss. ETH No. 16204

Design and Deployment of
Wireless Networked Embedded

Systems

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of
Doctor of Technical Sciences

presented by
JAN BEUTEL

Dipl. El.-Ing., ETH Zurich
born August 6, 1973
citizen of Germany

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Jan M. Rabaey, co-examiner

2005





Abstract

The recent rise and widespread adoption of wireless networking technologies for mobile
communication applications has sparked numerous visions of an ever more networked
and interactive world. One such vision proposed in the late nineties are wireless sensor
networks, where wireless communication and computing elements are combined with in-
tegrated sensors to enable tightly coupled interaction with the physical world. As a new
application domain for wireless technology, key challenges here are (i) the limited resources
of the highly integrated nodes that are to be leveraged by the amount of devices deployed
and the collaboration between them, (ii) the tight coupling of application, nodes and the
environment and (iii) the broad usage profile by systems-experts and non-expert users alike.

First medium-scale experiments and field-trials have reported that it is increasingly hard to
design, develop, deploy, test and validate systems consisting of more than a hand-full of
nodes, especially when situated in a real-world environment. Prototypical applications are
scarce, seldomly consisting of more than a few tens to a hundred nodes. Setting up large,
heterogeneous, interactive and functional systems as forecast in the visions is no small task;
currently more an art than a systematic engineering effort. Coordinated methods and tools
for the design and deployment of wireless networked embedded systems are missing today.

With this work, we to contribute to the design and development of wireless networked
embedded systems. The specific contributions are presented and discussed in the context
of a vertical slice of the design space concerned and the relevant questions encountered:

• Functional and qualitative requirements of a location management service for wire-
less sensor networks based on measurements and simulation have been developed.
We present one of the earliest algorithms for the distributed computation of node
location.

• A novel platform for fast-prototyping of wireless sensor networks has been developed.
This platform has successfully served numerous researchers, among ourselves, as an
underlying infrastructure for experimentation and education.

• The BTnode platform has been used to develop multihop networks and topology
control mechanisms for Bluetooth scatternets. To our knowledge the experiments
presented are the largest connected Bluetooth scatternets reported to date.

• The concept of a deployment-support network as a powerful tool for the develop-
ment, deployment, test and validation of wireless sensor networks is presented in
conjunction with experimental evidence on the feasibility of the approach.





Kurzfassung

Die jüngsten Erfolge und verbreitete Akzeptanz drahtloser Netzwerktechnologien für An-
wendungen der Mobilkommunikation hat zu zahlreichen Visionen einer immer stärker
vernetzten und interagierenden Welt geführt. Eine solche Vision aus den späten Neunzi-
gern sind die drahtlosen Sensornetze, die drahtlose Kommunikation und Rechenelemente
mit integrierter Sensorik kombinieren um direkt mit der physikalischen Umgebung intera-
gieren zu können. Als neues Anwendungsgebiet drahtloser Netze sind die hauptsächlichen
Herausforderungen hier (i) die eingeschränkten Fähigkeiten der einzelnen, hochintegrier-
ten Knoten, (ii) die enge Koppelung von Anwendung, Knoten und Umgebung sowie (iii)
das breite Anwendungsspektrum sowohl durch Experten wie auch ungeschulte Anwender.

Erste mittelgrosse Experimente und Feldversuche berichten von zunehmenden Schwierig-
keiten, Systeme bestehend aus mehr als einer Hand voll Knoten zu entwerfen, zu ent-
wickeln, in Betrieb zu nehmen und zu testen; dies vor allem beim Einsatz in einer realen
Umgebung. Solch prototypische Anwendungen bestehen selten aus mehr als einigen zehn
bis zu hundert Knoten. Die Entwicklung grosser, heterogener und interaktiver Systeme wie
in den Visionen beschrieben, gleicht heute mehr einer Kunst als einer systematischen Inge-
nieursleistung. Aufeinander abgestimmte Methoden und Werkzeuge für die Entwicklung
und Inbetriebnahme drahlos vernetzter eingebetteter Systeme fehlen heute weitgehend.

Mit dieser Arbeit tragen wir zur Entwicklung und Inbetriebnahme solcher Systeme bei.
Im speziellen zeigen wir anhand eines senkrechten Schnittes des Entwurfsraumes relevante
Fragen und Lösungen auf und diskutieren diese:

• Funktionelle und qualitative Anforderungen eines Dienstes zur Positionsbestimm-
ung wurden anhand von Messungen und Simulationen entwickelt. Einer der ersten
Algorithmen zur verteilten Berechnung der Knotenposition wird vorgestellt.

• Eine neuartige Platform für den Bau von Prototypen drahtloser Sensornetze wur-
de enwickelt. Diese wurde von zahlreichen Forschern als Basisinfrastruktur für Ihre
Experimente und in der Lehre erfolgreich eingesetzt.

• Die BTnode Platform wurde verwendet um Transportmechanismen und Topologie-
steuerung von Bluetooth Scatternetzen zu entwickeln. Die daraus resultierenden Ex-
periemente stellen die grössten, bisher dokumentierten Bluetooth Scatternetze dar.

• Das Konzept des deployment-support networks wird als mächtiges Werkzeug für die
Entwicklung, Inbetriebnahme, Test und Abnahme drahloser Sensornetze eingeführt.





Acknowledgements

First of all I would like to thank Lothar Thiele for his visions, guidance and support
throughout this research. His excellent questions and valuable discussions have been both
inspiring and motivating, the trust and confidence endowed allowed maximum freedom
and creativity in the pursuit of new ideas. I am also grateful for the pleasant research
environment and the substantial resources provided that enabled to gain such extensive
practical experience through the experimental work performed.

Then I would like to thank Jan Rabaey for his spontaneous willingness to co-examine
my thesis. He introduced me to academic research during my stay at the Berkeley Wireless
Research Center prior to my PhD studies, sparked the initial motivation to pursue this path
and paved the broad direction of my research interests. Much of the work on positioning
is based on this collaboration.

What started out as a small joint-venture has since evolved into a serious and success-
ful project, a collaboration across lab boundaries, an industrial technology transfer and
numerous well-received publications. None of the members of the BTnode core team
would have been able to do so alone, least of all myself. For this I am deeply grateful to
Oliver Kasten, Matthias Ringwald, Kay Römer, Friedemann Mattern, Matthias Dyer and
Lothar Thiele. The National Center of Competence in Research on Mobile Information
and Communication Systems (NCCR-MICS) has provided an organizational roof and the
necessary funding for our joint endeavor.

Over the years many others have directly contributed to the success of the BTnode platform
both through academic affiliation such as Philipp Blum, Lennart Meier, Martin Hinz, Luca
Negri, Clemens Moser, Frank Siegemund, Regina O’Dell-Bischoff, Aaron Zollinger and
Roger Wattenhofer as well as industrial affiliation such as Michael Scheffler, Etienne Hirt
and Andreas Thiel.

Many colleagues from all over the world have been great discussion partners and helped cre-
ate my vivid network of active discussion: Chris Savarese, Josie Ammer, Robert Szewczyk,
Joe Polastre, Philippe Bonnet, Ralph Kling, Lama Nachman, Jeremy Elson, Phil Levis,
David Culler, Koen Langendoen, Kathy Sohrabi, Albrecht Schmidt, Holger Karl, Polly
Huang, Nirupama Bulusu, Amre El-Hoiydi, Christian Enz and Martin Vetterli. Not to
forget the many colleagues here at ETH: Simon Künzli, Christian Plessl, Herbert Walder,
Ernesto Wandler, Rolf Enzler, Urs Anliker, Paul Lukowicz, Holger Junker, Matthias Gries,
Marco Platzner, Samarjit Chakraborty, Michael Eisenring, Jörn Janneck, Martin May,



Lukas Ruf, Matthias Bosshard, Marc Langheinrich, Marco Laumanns, Jonas Greutert,
Alexander Maxiaguine, Stephan Bleuler and Eckart Zitzler.







Contents

1: Introduction 1
1.1 Characteristics of Deeply Embedded Networks . . . . . . . . . . . . . . 4

1.1.1 Wireless Sensor Network Visions . . . . . . . . . . . . . . . . . 4
1.1.2 Sensor Network Applications . . . . . . . . . . . . . . . . . . . 6
1.1.3 Design Space of Sensor Networks . . . . . . . . . . . . . . . . . 7

1.2 Design and Development of Wireless Networked Embedded Systems . . . 8
1.2.1 Sensor Network Systems Design . . . . . . . . . . . . . . . . . . 9
1.2.2 Prototype Development – Programming and Debugging . . . . . 10
1.2.3 Sensor Network Deployment and Testing . . . . . . . . . . . . . 11
1.2.4 A Vision of Wireless Sensor Network Application Design . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Contents and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2: Location Management in Wireless Communication Systems 15
2.1 Location Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Radionavigation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 Location Abstractions . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Network Based Navigation Techniques . . . . . . . . . . . . . . 24
2.1.5 Generalized Navigation Solution Using Trilateration . . . . . . . 27
2.1.6 Quality Metrics of Positioning Systems . . . . . . . . . . . . . . 28

2.2 Navigation Issues in Wireless Sensor Networks . . . . . . . . . . . . . . 28
2.2.1 Localization Challenges in Sensor Networks . . . . . . . . . . . . 29
2.2.2 Adaptive Network Topologies . . . . . . . . . . . . . . . . . . . 29
2.2.3 Range Estimation Error and Quantization . . . . . . . . . . . . 31
2.2.4 Geometry, Border Effects and Filtering . . . . . . . . . . . . . . 34
2.2.5 Heuristics and Iterations . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Robust Location Management Schemes for Wireless Sensor Networks . . 37
2.3.1 Cooperative Ranging . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



Contents

2.3.2 Topology Discovery . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Robust Start-up Positioning Scheme . . . . . . . . . . . . . . . . 39
2.3.4 Precision On-Demand Position Updates . . . . . . . . . . . . . 41

2.4 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Netsim – A Positioning Simulation Environment . . . . . . . . . 43
2.4.2 Services for Location Management . . . . . . . . . . . . . . . . 44

3: A Distributed Environment for Prototyping Sensor Networks 47
3.1 Related Sensor Network Platforms . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Early Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Research Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.4 Commercial Platforms . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.5 Specialized Low-Power Architectures . . . . . . . . . . . . . . . 51
3.1.6 Operating System Software for Sensor Networks – TinyOS . . . 52
3.1.7 Support Middleware . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Metrics of Wireless Sensor Network Platforms . . . . . . . . . . . . . . . 53
3.2.1 General Platform Metrics . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 State of the Art Platforms Compared . . . . . . . . . . . . . . . 55
3.2.3 Problematic Platform Metrics . . . . . . . . . . . . . . . . . . . 63

3.3 Prototyping Sensor Networks – A Design Rationale for Modular Platforms 65
3.3.1 Modular Platform Requirements . . . . . . . . . . . . . . . . . 66

3.4 The BTnode Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 BTnode Hardware Generations . . . . . . . . . . . . . . . . . . 69
3.4.2 BTnode Platform Characteristics . . . . . . . . . . . . . . . . . 71
3.4.3 Lightweight Operating System Support . . . . . . . . . . . . . . 78
3.4.4 Towards a Second Generation Programming Model . . . . . . . 82

3.5 BTnode Platform Success . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.1 BTnodes in Education . . . . . . . . . . . . . . . . . . . . . . . 84
3.5.2 BTnodes in Research Domains . . . . . . . . . . . . . . . . . . 84

4: Robust Multihop Networking using BTnodes 87
4.1 A Connection Oriented Medium – Bluetooth . . . . . . . . . . . . . . . 88

4.1.1 Embedded Bluetooth . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Bluetooth Pros and Cons . . . . . . . . . . . . . . . . . . . . . 90
4.1.3 Bluetooth Networking – Operational Prerequisites . . . . . . . . 90
4.1.4 Bluetooth Network Topologies – Related Work . . . . . . . . . . 92

4.2 XHOP – Multihop Bluetooth Data Transport . . . . . . . . . . . . . . . 93

x



Contents

4.2.1 XHOP Connection Manager . . . . . . . . . . . . . . . . . . . 94
4.2.2 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Robust Topology Formation using BTnodes . . . . . . . . . . . . . . . . 97
4.3.1 Fundamentals of Pico- and Scatternet Formation . . . . . . . . . 97
4.3.2 Non-determinism in Distributed Piconets . . . . . . . . . . . . . 98
4.3.3 TreeNet – Simple Tree Topology Construction . . . . . . . . . . 99
4.3.4 Lessons Learned Through Experimentation . . . . . . . . . . . . 101

4.4 Scalable Topology Control for Deployment-Support Networks . . . . . . 104
4.4.1 Topology Control Prototyping . . . . . . . . . . . . . . . . . . . 105
4.4.2 DSNtrees – Scalable Topology Control and Maintenance . . . . 110
4.4.3 Scalable Topology Control – Experimental Results . . . . . . . . 113
4.4.4 Random and RSSI-limited Selection Compared . . . . . . . . . 116
4.4.5 Scalable Topology Control – Lessons Learned . . . . . . . . . . . 117

5: Deployment – From Proof-of-Concept to Real-World Sensor Networks 121
5.1 Design Tools and Development Methodology – Related Work . . . . . . 122

5.1.1 System Design Aspects . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.2 Large Scale Simulation . . . . . . . . . . . . . . . . . . . . . . . 122
5.1.3 Virtualization and Emulation . . . . . . . . . . . . . . . . . . . 123
5.1.4 Test Grids and Monitoring Tools . . . . . . . . . . . . . . . . . 123
5.1.5 In-network Programming . . . . . . . . . . . . . . . . . . . . . 124
5.1.6 Sensor Calibration and Verification . . . . . . . . . . . . . . . . 125

5.2 Full Life-Cycle Support for Sensor Networks . . . . . . . . . . . . . . . . 125
5.3 Next-Generation Deployment-Support for Sensor Networks . . . . . . . 127

5.3.1 Deployment-Support Networks . . . . . . . . . . . . . . . . . . 128
5.3.2 Deployment-Support Network Prototype . . . . . . . . . . . . . 129
5.3.3 Beyond the Function of a Deployment-Support Network . . . . 130

6: Conclusions 133
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Future Work and Concluding Remarks . . . . . . . . . . . . . . . . . . 134

Bibliography 136

Curriculum Vitae 163

xi



Contents

xii



Tables

3-1 State of the art platform comparison – system core features . . . . . . . . 56
3-2 State of the art platform comparison – radio physical properties . . . . . . 58
3-3 State of the art platform comparison – baseband and interface abstraction 60
3-4 State of the art platform comparison – power supply and consumption . . 61
3-5 BTnode family – system core features . . . . . . . . . . . . . . . . . . . 72
3-6 BTnode family – radio systems . . . . . . . . . . . . . . . . . . . . . . . 74
3-7 BTnode family – power consumption . . . . . . . . . . . . . . . . . . . 76
3-8 BTnode family – physical setup and commercial figures . . . . . . . . . . 77

xiii



Tables

xiv



Figures

2-1 A typical WSN topology scenario . . . . . . . . . . . . . . . . . . . . . 16
2-2 Active and passive radionavigation . . . . . . . . . . . . . . . . . . . . . 17
2-3 Absolute and relative positioning topologies . . . . . . . . . . . . . . . . 23
2-4 Maps as reference system . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2-5 Network based navigation techniques . . . . . . . . . . . . . . . . . . . 26
2-6 Network topologies for positioning . . . . . . . . . . . . . . . . . . . . . 30
2-7 Iterative trilateration using strongly overdetermined topologies . . . . . . 31
2-8 Bluetooth 1.0 received signal stength indicator measurements . . . . . . . 32
2-9 802.11b Wireless LAN and Bluetooth 1.2 measurements . . . . . . . . . 32
2-10 Range estimation error and quantization . . . . . . . . . . . . . . . . . . 33
2-11 The effect of the quantization on the calculated position error . . . . . . 34
2-12 Overdetermined topologies and quantization . . . . . . . . . . . . . . . 34
2-13 Geometric influence on trilateration positioning accuracy . . . . . . . . . 35
2-14 Network geometry and very large errors . . . . . . . . . . . . . . . . . . 35
2-15 Obstacles and boundaries influencing trilateration accuracy . . . . . . . . 36
2-16 Limiter effect on the calculated position error . . . . . . . . . . . . . . . 37
2-17 Phases of cooperative ranging . . . . . . . . . . . . . . . . . . . . . . . . 38
2-18 Topology discovery in cooperative ranging . . . . . . . . . . . . . . . . . 39
2-19 Hop-TERRAIN start up phase . . . . . . . . . . . . . . . . . . . . . . . 41
2-20 Netsim positioning simulation framework . . . . . . . . . . . . . . . . . 44

3-1 Platform comparison – system core features . . . . . . . . . . . . . . . . 57
3-2 Platform comparison – radio physical properties . . . . . . . . . . . . . . 59
3-3 Platform comparison – communication interface abstractions . . . . . . . 61
3-4 Platform comparison – power supply and consumption . . . . . . . . . . 62
3-5 BTnode rev1 and BTnode rev2 hardware . . . . . . . . . . . . . . . . . 69
3-6 BTnode rev2 system overview . . . . . . . . . . . . . . . . . . . . . . . 69
3-7 BTnode rev2 hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3-8 BTnode rev3 system overview . . . . . . . . . . . . . . . . . . . . . . . 71
3-9 BTnode rev3 hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xv



Figures

3-10 BTnode rev3 radio systems . . . . . . . . . . . . . . . . . . . . . . . . . 73
3-11 BTnode rev3 power management . . . . . . . . . . . . . . . . . . . . . 74
3-12 BTnode in-situ current measurement . . . . . . . . . . . . . . . . . . . 75
3-13 Bluetooth power dissipation details . . . . . . . . . . . . . . . . . . . . . 76
3-14 BTnode rev3 assembly top . . . . . . . . . . . . . . . . . . . . . . . . . 77
3-15 BTnode rev3 area breakdown . . . . . . . . . . . . . . . . . . . . . . . . 77
3-16 BTnode area breakdown compared . . . . . . . . . . . . . . . . . . . . . 78
3-17 BTnode developer kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3-18 First-generation BTnode system software . . . . . . . . . . . . . . . . . 79
3-19 A typical BTnode program . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-1 Bluetooth core system architecture . . . . . . . . . . . . . . . . . . . . . 89
4-2 XHOP multihop data transport . . . . . . . . . . . . . . . . . . . . . . 93
4-3 XHOP packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4-4 XHOP connection manager . . . . . . . . . . . . . . . . . . . . . . . . 95
4-5 Multihop Bluetooth data transport using source routing . . . . . . . . . . 96
4-6 Bluetooth 1.1 organized in pico- and scatternets . . . . . . . . . . . . . . 98
4-7 Bluetooth 1.1 theoretical worst case scenario . . . . . . . . . . . . . . . . 99
4-8 Schematic view of the TreeNet algorithm operation . . . . . . . . . . . . 100
4-9 Sensor network development today . . . . . . . . . . . . . . . . . . . . . 103
4-10 Centralized control and monitoring . . . . . . . . . . . . . . . . . . . . 107
4-11 Initial network-topology construction and maintenance . . . . . . . . . . 108
4-12 Per-hop transmission delay . . . . . . . . . . . . . . . . . . . . . . . . . 109
4-13 Adaptive frequency hopping scatternets on Bluetooth 1.2 . . . . . . . . . 111
4-14 Cycle elimination on Bluetooth 1.2 trees . . . . . . . . . . . . . . . . . . 112
4-15 Scalable topology control – graphical user interface . . . . . . . . . . . . 113
4-16 Scalable topology control – per-hop transmission delay . . . . . . . . . . 114
4-17 Scalable topology control – initial topology construction . . . . . . . . . 115
4-18 Random topology selection – real world geometry . . . . . . . . . . . . . 116
4-19 Random topology selection – link distance evaluation . . . . . . . . . . . 116
4-20 Bluetooth 1.2 received signal strength indicator . . . . . . . . . . . . . . 117
4-21 RSSI-limited topology selection – real world geometry . . . . . . . . . . 118
4-22 RSSI-limited topology selection – link distance evaluation . . . . . . . . 118

5-1 Product life-cycle and deployment-support network domains . . . . . . . 125
5-2 Deployment-support networks enable stepwise refinement . . . . . . . . 128
5-3 Deployment-support network overview . . . . . . . . . . . . . . . . . . 129
5-4 Example deployment-support network with three targets . . . . . . . . . 130

xvi



Figures

xvii





1
Introduction

Wireless sensor networks, ad hoc networks, pervasive and ubiquitous computing, mobile
computing, mobile communications and wearable computing are all technology trends and
themes that have aroused broad interest over the past years. Many prominent visions have
forecast these to persist and impact large parts of our daily life. The visionary standpoint
of ubiquity and electronics embedded everywhere put forward by Weiser in 1991 [Wei91]
is certainly one of the most profound visions in the mobile computing community.

The most profound technologies are those that disappear. They weave themselves
into the fabric of everyday life until they are indistinguishable from it.

— Marc Weiser, “The Computer for the 21st Century”

The move from the one-computer-for-many-users in the early age of the mainframe com-
puters to a one-computer-per-user personal computer era has long been accomplished and
with the above mentioned technologies we are currently right on track in transition to the
many-computers-per-user scenario of the ubiquitous computing era that Weiser predicted.
Currently, trends show that in the near future there will be more and more devices and
services interacting, forming a variety of heterogeneous systems.

In their seminal articles, Estrin [EGHK99] and Kahn [KKP99] presented a far-reaching
vision of wireless sensor networks (WSN), where collections of tiny autonomous comput-
ers would collaboratively and unobtrusively monitor a variety of real-world phenomena
with unprecedented quality and scale, bringing substantial benefits to a variety of appli-
cation areas. Since then, numerous hardware platforms have been developed, operating
system abstractions have been established, a large number of protocols and algorithms for
networking, communication, and information processing have been proposed, and vari-
ous fundamental capabilities and limitations of these sensor networks have been examined.
Based on these ingredients, prototypical applications, e.g. [JOW+02, SBP+04, SOP+04],
have been developed, some of which consist of more than 100 sensor nodes. Such net-
works are formed from a set of small sensor devices, the nodes, that are deployed in an

1



Chapter 1: Introduction

ad hoc fashion and cooperate in sensing a physical phenomenon. The wireless sensor net-
work (WSN) nodes [CM04] are a novel platform class in the sense of Gordon Bell’s law
of 1972 that states that technology advances enable a new, lower-priced, higher-volume
computing platform or class to form every decade. In a WSN node communication, com-
putation and storage as well as interface and sensing are combined to perform all necessary
tasks on a single device. Constituting a key challenge, this is quite a different approach
from the traditional internet-based computing world, where many dedicated devices each
performing single dedicated functions such as routing, storage, web-services, connections
to peripherals and terminal functions to interface to users are coupled together to form
systems.

Wireless sensor networks regarded from a second perspective are not a single area of novel
fundamental research but a collection of often well-known techniques and established
know-how applied to a new domain. Many of the application classes envisioned for se-
nsor networks actually have a long tradition and specific solutions exist. Examples of such
traditional sensor network application classes are global networks of weather stations, un-
derwater submarine surveillance developed during the cold war, environmental monitoring
applications, building surveillance and factory automation. They typically employ wireline
communication, make heavy use of infrastructure that is deployed and installed at desig-
nated locations, consist of complicated, full-custom components with little opportunity
for reuse and as a result are exceedingly costly.

Scalability to vast numbers of nodes has been an important focus in past wireless sensor
network research but the amount of nodes making up a sensor network is debatable, de-
pending on the application settings envisioned [RM04]. Resource constrained devices are
not new either, as embedded and also real-time systems have a long tradition. Novel is in-
deed that wireless sensor networks are (i) a new application domain for wireless technology,
(ii) the very limited resources of each node are to be leveraged by the amount of devices
deployed and the collaboration between them, (iii) the tight coupling of application, nodes
and the environment and (iv) the broad usage profile that envisions that non-expert users,
e.g. a marine biologist, design, deploy and maintain these new computing and communi-
cation systems according to their needs.

To a large part driven by the achievements in miniaturization, the advances in integration
of complex wireless integrated products and the increase in performance and functionality
of the design tools, the requirements and properties of a single device are today well un-
derstood. Yet it is not simple and straightforward to implement the WSN concepts into a
functional prototype system or even a commercial product. The interaction of many de-
vices is often underestimated and design, test, deployment and validation of wireless sensor
networks today are in their infancy, posing hard research and technological questions. Es-
pecially wireless sensor networks are often proposed to follow a cross-layer approach, taking
care of many design decisions and requirements from a unified standpoint. In the experi-
ence gained from the implementation of WSN experiments and deployments such as doc-
umented by Szewczyk [SPMC04], Cerpa [CEH+01], Simon [SBP+04], Zhang [ZSLM04]
and others it has been shown that the system aspects are much more complex than initially

2



anticipated. Development is hard, error-prone and repetitive. Since wireless sensor net-
works are usually assumed to be implemented as distributed systems using small, resource
constrained devices that are remotely deployed, meticulous care has to be taken to design
simple, robust and failure tolerant algorithms. The features and application support of-
fered on highly integrated devices such as the Berkeley Motes [HSW+00, HHKK04], the
Intel Imotes [KAH+04] or the BTnodes [BKM+04] is quite the opposite when compared
to the ever increasing performance available in the traditional computing world. In order
to fully understand the complexity of the matter from a system perspective it is necessary
to not only model and/or simulate but also to implement and test on real-world systems.

From these medium-scale field experiments, the step to real-world applications of sensor
networks under production conditions does not seem to be a large one at first. However,
taking a closer look at the development process of these prototypical applications reveals
that putting a functional and operable sensor network in place is currently an art. Setting
up large, interactive systems playing together over a large scale of heterogeneous devices
and technologies as forecast in the visions is no small task. Systems issues are the hard
parts: Bringing together optimized solutions for the many cross-layer issued from a unified
systems perspective for power/energy, timing, performance, lifetime, duty cycles, form
factor, cost, flexibility etc. In order to close the gap between current proof-of-concept and
real-world sensor networks, this artwork has to be replaced with an efficient, coordinated
design and development process equally accessible to different users, e.g. assuming roles as
(i) hardware and systems software engineer, (ii) application programmer, (iii) deployment
technician and (iv) end-user of a sensor network such as the marine biologist mentioned
earlier.

In this thesis we examine challenges and specific research issues that have to be addressed
in order to enable such a development process. We are raising the question why only few
have managed to create viable and sustainable solutions and we identify the key obstacles
and problems that appear in practical multihop networking for wireless sensor networks.
In the work presented here, we want to highlight the idiosyncrasies of multihop ad hoc
networking when implemented on real devices. More specifically, we will focus on the
area of Bluetooth scatternet formation, where many different algorithms for mesh struc-
tures either conforming to the Bluetooth standard [Bas02], with star [PBC03] or tree
topologies [ZBC01] have been proposed. A recent distributed algorithm with bounds on
complexity proposed by Law [LMS03] has been validated by simulations as well as a com-
parative study by Basagni [BBMP04]. Often such work takes into account assumptions
on physical prerequisites not readily available in real devices and systems, or simply per-
fect performance, which is not encountered in wireless systems embedded in the physical
world. The extensive work on ad hoc networking simulation is most suitable to answer
specific, singular questions and tradeoffs but seemingly inappropriate when approaching
system level topics. Generally accepted assumption for simulation work like an 802.11
physical model or an example 1000x1000 grid of evenly distributed nodes and random
way-point models certainly lack when relating simulation to real-world experimentation
with interference, random failures, imperfections, and human interaction.

3



Chapter 1: Introduction

1.1 Characteristics of Deeply Embedded Networks
Mobile ad hoc networks (MANETs) that are usually characterized by themes such as high
overall node mobility, considerable power and resource consumption at the nodes and
moderate network sizes have brought about quite a change to the traditional connection-
oriented, infrastructure-dominated telecommunications world [IK96, Per01]. Wireless se-
nsor networks have departed from this traditional viewpoint in an even more radical way as
they are envisioned to be deeply embedded in very large quantity into the physical world.
Myriads of smart devices ranging from naive identity tags and simple sensors broadcasting
singular values such as temperature readings to much more sophisticated computing de-
vices with multiple sensor/actor subsystems, advanced signal processing, data aggregation,
extensive storage and diverse communication capabilities will be in constant interaction
with each other, the surrounding ubiquitous digital infrastructure and human users. Wire-
less sensor networks are at one extreme of the design space, embracing such paradigm as
immense scale, self-containment, self-organization, deep embedment and therefore also
limited access of and to the devices involved [ECPS02].

1.1.1 Wireless Sensor Network Visions
An early realization of "Anytime, Anywhere, Anyform"information systems was proposed
by Stemm [SK99] and Katz [KB95] in the context of the BARWAN project [KBA+96],
where wireless overlay networks offer a hierarchical structure of room-size, building-size,
and wide area data networks, to solve the problem of providing network connectivity to a
large number of mobile users in an efficient and scalable way.

The vision of “Smart Dust” put forward by Kahn [KKP99] in 1999 has sparked numer-
ous activities in both theoretical and applied research of ultra-small networked embedded
systems. Their vision foresaw a myriad of cubic millimeter, self-powered micro electro-
mechanical systems (MEMS) devices using optical links to communicate to a central sys-
tem. Here the claim that only a varying percentage of the total devices deployed are con-
tributing to an actual network is key. Devices are thought to be so small and cheap that the
extreme over-provisioning of the dust resources can actually become a reality. In the follow-
ing this vision has lead to the development of numerous comodity-off-the-shelf (COTS)
dust platforms [WLLP01, HSW+00].

Under the main prerequisite of wireless sensor networks, namely their stringent energy
budget, the first “classical” approaches have focused on efficient, symmetrical ad hoc net-
work configurations, meaning that the devices at both ends of a communication channel
were essentially of the same architecture. These early prototypical “sensor nodes” are now
constantly maturing and shift the focus from the fabrication of the single device as done by
Hill [HSW+00] and Rabaey [RAdSJ+00] toward the management of large, heterogeneous
systems and architectures and the services embedded into these. In order to be able to scale
to large networks consisting of the most heterogeneous clustered devices, mechanisms and
services need to be tailored specifically for interoperability and the optimal management of
the limited resources available on such nodes.

4



1.1. Characteristics of Deeply Embedded Networks

The paintable computing effort by Butera [But02] carries on this vision and sees miniature
computing devices embedded into paint for easy application onto all surfaces whereas the
Amorphous Computing project [AAC+00] focuses on biologically inspired self-assembly
mechanisms. Key questions being targeted are coherent behavior from large numbers of
cooperating, unreliable parts that are interconnected in unknown, irregular, and time-
varying ways as well methods suitable for the instruction of myriads of programmable
entities.

Address freedom in networking was a radical theme taken up by the directed diffusion re-
search of Estrin et al. [EGHK99, IGE00] and has since been on the agenda of algorithmic
research and scale-free networks by Barabasi [BB03]. Here data is forwarded not toward
explicit destinations but alongside gradients of interest.

The definition of the “Terminode” was coined by Hubaux et al. [HLBGH99, HLBG+00,
HGLBV01, BBS+01] combining the vision of pervasive and ubiquitous access to informa-
tion with ad hoc and mobility requirements on a larger scale.

Recently also industry has taken up the realm of sensor networks as a focus area and already
more and more companies are churning out sensor network devices, services and first
commercial applications.

The US based Committee on Networked Systems of Embedded Computers defined in
their 2001 report “Embedded Everywhere - A research agenda for Networked Systems of
Embedded Computers” [Com01] the following general characteristics for such EmNets:

• Multiple interacting nodes

• Embeddment into control systems without human intervention

• Purpose other than general computing and communication

• Natural or engineered contexts

Furthermore the following special characteristics of EmNet requirements and their appli-
cable technical solutions were specified:

• Energy-constrained nodes versus non-energy-constrained nodes

• Fixed topology versus flexible topology

• Safety-critical applications versus non-safety critical applications

• Highly engineered versus unconstrained, ad-hoc systems

Specifically, EmNets present the challenge of building large systems that are

• Tightly coupled with the physical world

• Resource-constrained environment

• Persist for long periods of time

• Many interacting components

• Used and interacted with by non expert users

5



Chapter 1: Introduction

Due to the wide intended application domain of EmNets and the apparent uncertainty of
a unified approach or technology it is apparent that broad system solutions will have to be
sought. Many of the technologies involved have specialized and highly sophisticated and
established solutions available today that can and must be employed to form this new com-
posite technology. It is a great challenge to devise a process of incremental improvements
here.

1.1.2 Sensor Network Applications
Wireless sensor networks are applied in a wide variety of areas, such as video surveillance,
traffic monitoring, air traffic control, robotics, cars, home monitoring, manufacturing,
environmental and wildlife habitat monitoring, industrial automation and military appli-
cations. A few sample applications are listed here:

Environmental Monitoring
The Sensor Web [Del02, DJJ+05] is a new class of geographic information system (GIS)
developed at NASA’s Jet Propulsion Laboratory consisting of a sensor network for environ-
mental monitoring and control using live, real-time streaming data from deployed systems.
Sensor Webs have been field tested in many areas including the Huntington botanical
gardens for botanical conditions including soil moisture and temperature, Antarctica to
monitor micro climate conditions for extreme life detection, and, in cooperation with the
University of Arizona, in the Avra Valley storage and recovery project for flood detection.

A new tool for environmental monitoring and assessment of the world’s ocean [FP05b,
Gou05] is the Argo system that uses neutrally buoyant floats to observe the salinity, tem-
perature and surface current flow of oceans. Floats descend to up to a few thousand meters
in depth to take measurements and then resurface independent of central control. The data
collected is relayed via satellite up-links to central data collection units on shore. Currently
there are close to 2000 floats deployed and in continuous operation worldwide.

The James Reserve application targets the investigation of forest plant growth [CEH+01,
SOP+04]. Here different types of wireless sensor network nodes and sensors are deployed
in patches to collect ecosystem and environmental data. Organized in hierarchies, different
protocols and communication paradigms are used as well as local computation and data
refinement on cluster heads.

Wildlife Habitat Monitoring
In the Great Duck Island habitat monitoring deployment [MCP+02, SPMC04, SMP+04]
about 150 sensor nodes were distributed on an island to observe the nesting behavior of
birds. Nodes are located both inside underground burrows to observe motion patterns of
the birds and the micro-climate as well as outside as weather stations. Data is transmitted
in streams over a multihop network to an access point where it is buffered and uploaded
to a central database repository off the island using a satellite link.

ZebraNet is an application for monitoring and tracking wildlife in a spacious outdoor
habitat [JOW+02]. All nodes are constantly mobile, fixed to a collar around a zebras

6



1.1. Characteristics of Deeply Embedded Networks

neck and relay behavioral data as well as global positioning system (GPS) position fixes
to a mobile data collection unit using flooding in a mobile ad hoc network [LSZM04,
ZSLM04].

Building Management and Factory Automation
Different applications ranging from security applications [FRL05a, FRL05b], structural
health monitoring [XRC+04] to building control [ACH+01, HHS+99, SDFV05] and
factory automation [NKA+05] have been both proposed and built in prototype systems.

Military Applications
In a military vehicle tracking application wireless sensor network nodes are dropped from
an unmanned aerial vehicle (UAV) [Hil04]. The nodes form an autonomous network and
collaboratively detect vehicle movements using built-in sensors. An occasional visit by the
UAV collects and transports the resulting data to a command post behind enemy lines.

An application to locate snipers uses acoustic measurements of distributed sensor nodes to
compute the trajectory and origin of bullets using the muzzle blast emitted by a shot being
fired [MSLS04, SBP+04]. The extensive computational tasks are performed on auxiliary
hardware and allow to compute a location estimate within a few seconds.

1.1.3 Design Space of Sensor Networks
While there is no formal definition of wireless sensor networks, many research papers im-
plicitly or explicitly contain a number of similar assumptions about properties of sensor
networks. These commonly found assumptions could be interpreted as a de facto defi-
nition of what a wireless sensor network is. In particular, sensor networks are typically
considered large-scale (thousands of nodes, covering large geographical areas), wireless, ad
hoc, multihop, unpartitioned networks of homogeneous, tiny (hardly noticeable), mostly
immobile (after deployment) sensor nodes that would be randomly deployed in an area of
interest.

However, a reality check with existing applications of sensor networks that has been re-
cently performed by Römer [RM04] reveals that these assumptions are often not met in
practice. While there are definitely a number of applications that can be characterized in
the above way, equally many applications deviate in various dimensions from the narrow
definition mentioned above. In fact, the applications of sensor networks form an extensive
design space with many dimensions.

• Deployment – one-time, incremental or as random activity

• Mobility – occasional or continuous performed by either selected or all nodes

• Cost, size, resources, and energy – very resource limited to unlimited

• Heterogeneity – a single type of node or diverse sets of differing properties and
hierarchies

7



Chapter 1: Introduction

• Communication modality – apart from radio frequency, optical, acoustic, inductive
and capacitive coupled communication have been used

• Infrastructure – different applications exclude, permit or require the use of fixed
infrastructure

• Network topology – single hop, star, multihop, mesh and/or multi-tier

• Coverage – sparse, dense or redundant

• Connectivity – continuous, occasional or sporadic

• Network size – ranging from tens of nodes to thousands

• Lifetime – few hours, several months to many years

• Other quality of service requirements – real-time constraints, tamper-resistance,
unobtrusiveness, stealth and others

In general, such an extensive design space, in contrast to the above narrow definition, com-
plicates coordinated application development in various ways. One could argue that de-
signing for the most restrictive point in the design space, e.g. minimum node capabilities,
highly mobile, etc. might be a solution. However, often there is no such global “mini-
mum” and it is often highly desirable to exploit the characteristics of the various points in
the design space. A further important implication is that most likely no single hardware
and software platform will be sufficient to support the whole design space or large portions
thereof.

In many cases, an application can be associated with a single point or a small region in
the design space throughout its lifetime. However, it is also quite possible that application
characteristics (and thus the point in the design space associated with that particular appli-
cation) could change dynamically during the lifetime of an application. For cost reasons it
may also be necessary or advantageous to reuse a sensor network for different applications
with different characteristics. In some cases a sensor network might even execute multiple
applications concurrently. Such applications require that design decisions cannot be done
statically during the design and development phases, but may have to be revised or adapted
during the runtime of the system.

1.2 Design and Development of Wireless Networked
Embedded Systems

It was envisioned that sensor networks could be used for complex monitoring and con-
trol tasks, where the output of many sensors with different modalities would be pro-
cessed, correlated, aggregated, or fused using advanced distributed signal processing func-
tions [Spm02]. Also, it was anticipated that the resulting information would be used to
control certain aspects of the sensor network, e.g. feedback loops for adaptive sampling
or even to control distributed actuators. Taking these visions into account, existing ap-
plication prototypes are often surprisingly simple. The measured physical signals typically

8



1.2. Design and Development of Wireless Networked Embedded Systems

display a low spatial and temporal variability, which makes them easy to handle. Also,
distributed processing of sensor data in the network is often rather simple, e.g. averaging.
In many cases, raw streams of sensor data are passed via a gateway to a back-end system
as input for human users [SPMC04]. Information obtained from sensors is rarely used to
control sensing or actuation.

Despite this low application complexity, the development of a running prototype with
more than a few nodes is a surprisingly complex task that requires highly-skilled system
programmers. In excess to the hard- and software involved, non-functional constraints
have to be observed. In real-world experiments researchers have been struggling to achieve
setups of more than a handful of nodes. Examples such as Great Duck Island [SPMC04],
shooter localization [SBP+04] or the extreme scaling mote [JPC05] exist, but have shown
hard to get to run and manage, especially due to the setup in a realistic physical environ-
ment. The construction of a running system that delivers predictable results in compli-
ance with application requirements today relies on factors such as significant amounts of
manpower [HBAB04] and money, individual skill of developers [CEH+01], many itera-
tions of the system design and implementations [MCP+02], and also a certain amount of
luck [SOP+04].

Distributed simulation, e.g. TOSSIM [LLWC03], is a valuable tool in the development
process; it allows to study system-design alternatives in a controlled environment. The
problem with simulation is that assumptions have to be made [KNG+04, MC03], simpli-
fications have to take place [KNE03], or models are simply wrong [MC03]; this inevitably
leads to a gap between reality and the simulated, virtual world. In addition, simulation re-
sults are known to not always be consistent across different scenarios or tool chains [CS02].
Already rather subtle differences of the simulation models and the real world can make the
difference between a working and a broken implementation [HBE+01]. For example,
many wireless radio simulations assume a spherical communication range. However, mea-
surements in a network of about 100 sensor nodes revealed that the radio communication
range is far from spherical in practice [GKW+02]. This can lead to asymmetric or even
unidirectional communication links, which can easily break algorithms that assume sym-
metrical links.

1.2.1 Sensor Network Systems Design
System design typically involves to partition the complete application into a number of
sub-components both in hardware and in software, which together provide the required
functionality of the system. Whenever possible, it is desirable to reuse existing components.
The developer is then faced with the challenge of selecting appropriate components from
potentially large set of available components.

Often the necessity to embed nodes into a tightly coupled physical environment without
possibilities for infrastructure access or backup facilities demand highly optimized system
concepts, only provisioning the resources really necessary for a solution. Selection of ap-
propriate system components, e.g. the sensor node hardware, then requires the estimation

9



Chapter 1: Introduction

of the minimum resource set necessary for correct, reliable and predictable operation. Typi-
cally, this issue is addressed today by over-provisioning additional resources [SMP+04] and
functionality in the design phase that is stripped in a later phase of prototype [RAdSJ+00].
While this is certainly a valid approach to overcome a certain amount of unknown obsta-
cles in an early development phase, it does not at all support any form of validation of an
application (correct-by-design) or guarantee a concise use of resources.

Already a long-time issue in domains such as integrated circuit (IC) and embedded systems
design, design-for-testability has not been an issue for sensor networks yet. As discussed in
section 5.1, testing and debugging must already be considered during the design in order
to provision necessary resources, e.g. memory, communication bandwidth, non-volatile
storage for logs. Also, issues such as calibration and verification may have to be considered
already during system design.

The design space of sensor networks presented earlier indicated that, in general, there are
no one-size-fits-all solutions for particular tasks. Rather, a variety of different solutions
will be needed to cover significant portions of the design space. Hence, a large set of
reusable components must be expected to be available in the future for the developer to
select from, e.g. different sensor nodes with different amounts of resources. Every solution
would have properties that are adapted to a certain region in the design space, e.g. a time
synchronization service that supports mobility but provides low precision .

It would be highly desirable to support the application developer in this often complex
selection process with appropriate concepts and tools to narrow down the set of design
alternatives. Promising approaches of such a semi-automatic design space exploration have
recently been explored for embedded systems [KTZ05] and specific applications such as
packet processors [TCGK02] and as we have proposed, also for distributed wearable com-
puting [ABD+04]. In respect to the special requirements put forward by the sensor net-
work case, the models used have to be refined to support unreliability in their resources
such as breaking links due to radio interference or node failures due to a limited energy
supply. Furthermore the collaborative nature of many sensor nodes collectively providing a
common system function cannot be incorporated easily into a typical one-to-one mapping
of tasks to available resources.

1.2.2 Prototype Development – Programming and Debugging
Once the application has been partitioned into functional components during the design
phase, some existing components may be reusable without modification, other existing
components may have to be modified, and some components may have to be developed
from scratch. As far as software components are concerned, modifications and new devel-
opments require programming work.

Given the required level of abstraction, the developer should be relieved as much as possi-
ble from programming individual sensor nodes at the system level, including distribution
issues by providing appropriate high-level abstractions that allow the programmer to think
in terms of the application. However, the use of abstractions often introduces perfor-
mance and resource overheads, which typically is a major issue in sensor networks. For

10



1.2. Design and Development of Wireless Networked Embedded Systems

example, a commonly used design principle in sensor networks is cross-layer interaction,
where knowledge about system details is used in the application and vice versa to achieve
efficient implementations. Since programming abstractions effectively shield application
development from system details, it is not clear whether cross-layer interaction and the use
of programming abstractions can be integrated in meaningful ways.

Hence, a major challenge is to find programming abstractions which are appropriate both
with respect to the developer skills and with respect to efficiency.

The task of programming is tightly integrated with testing, debugging, and profiling, e.g.
identifying performance bottlenecks and resource dissipation. In particular, all these tasks
should – as far as possible – be performed at a similar level of abstraction. With the
“generic role assignment” abstraction proposed by Frank [RFMB04, FR05], for example,
role specifications to examine what is going wrong are mapped to C code. Although a
traditional source-level debugger could be used to examine this C code, the value of this
abstraction would be significantly degraded by doing so. Rather, the developer should
be able to examine what is going wrong at the abstraction level of roles. Little work has
been done so far to support a consistent level of abstraction across programming, testing,
debugging, and profiling.

1.2.3 Sensor Network Deployment and Testing
Leading to meaningful results, sensor networks need to be deployed in an actual phys-
ical environment where sensor/actor interaction can take place at realistic scale and the
environment for wireless communication is matching both in dimensions and properties.
Moving on from programming and debugging of the single nodes to system testing in such
a deployment and testing phase, two different goals can be distinguished: (i) testing in or-
der to scale up the number of nodes in an initial deployment and (ii) testing in an actual
physical environment, i.e. field testing to incorporate the influence of the real-world.

In a first phase, a sensor network will have to be initialized, either node by node, or all
at once in a synchronized fashion [KMW04]. Subsequently a “steady” or operating state
will be reached where all nodes and services are running. Both phases require detailed
observations of the system behavior and the interaction with the environment, inflicting
only minimal impact on the sensor network and it’s deployment environment using a
lightweight infrastructure. This infrastructure should support on- and offline monitoring,
logging, distribution of software updates and commands as well as the control of operating
parameters.

Tools such as distributed simulation [LLWC03] are of great benefit in an early design
phase, offer good observability, but lack in respect to a realistic environment. Simulations
will not be able to attach peripherals such as sensors and use simplified physical models that
cannot capture many real-world influences, e.g. broken radio links, sporadic system errors.
Lessons from experimentation, such as outdoor sensor networks [MCP+02, SOP+04],
university class projects [HBAB04], or large-scale testbed deployments [CE04], have all
required direct and reliable access to the WSN devices involved. Out of this necessity,

11



Chapter 1: Introduction

many different techniques have been developed to attach temporarily or permanently to
WSN devices: Layered architectures with different scales of devices and hierarchical net-
works [PK00, HHKK04], serial multiplexing units mounted onto a table, as a semi-mobile
laptop unit, or mounted into a ceiling array [CBE03, GEC+04, CE04], direct ethernet at-
tachments such as the MIB600 programming board for the Berkeley Motes [HC02], used
in the moteLab and sMote testbeds. All of these have in common that they require wired
connections, although it is common to replace the direct serial cabling by another medium
to allow multiplexing. In the case of large mobile or outdoor applications, it is very hard
if not impossible to connect a significant amount of devices, whereas setups like a fixed
ceiling array can only offer a very synthetic environment for experimentation. This limits
the applicability of these approaches to cumbersome testing scenarios where fixed infras-
tructure is put in place for the duration of testing and afterwards removed.

1.2.4 A Vision of Wireless Sensor Network Application Design
In order for sensor networks to become a tool that can be widely used for real-world
applications, the development process has to meet a number requirements. If the cost of
the pure sensor node hardware will actually drop to few Dollars or even Cents per node, the
overall cost of using a sensor network will be dominated by development and maintenance
expenditure. Hence, it is very important to reduce the manpower and necessary skills that
are required for putting a sensor network in place and maintaining it over time. As an
ideal, application-domain experts, e.g. the end-users of the WSN application would be
able to develop, customize, and run a wide range of sensor network applications with only
little or moderate support by system experts.

This overall goal has far-reaching implications. For example, the development process
should be supported by appropriate abstractions at the application level to specify, exam-
ine, and verify application requirements and behavior. These abstractions must take into
account the specific characteristics of sensor networks (see section 1.1). Also, modular
reuse of existing hardware and software components must replace current practice of costly
custom design and development processes. The developer should also be appropriately
supported in selecting appropriate hardware and software components, with respect to
application requirements, from a large available set. It is also important that predictable
system behavior that is compliant with the application requirements can be achieved with-
out tweaking and adjusting bits at the system level.

This might all sound somewhat far-fetched or illusionary. However, considering an analogy
to the use of personal computers might help to put the above issues into a more realistic
light. Purchasing a personal computer (PC) typically involves an application analysis, e.g.
used for gaming, word processing, etc. to bound the functions and performance of the
required hardware. With some help from a sales person, the client can select from a large
palette of readily available hardware components, e.g. core computer, input and output
devices, extension cards which can be put together relatively effortlessly even with little
support from a systems expert. Only a very small fraction of PC users program at the
system level, e.g. using C, C++, or other system programming languages. Rather, most

12



1.3. Contributions

“application developers” use readily available tools or components that allow development
at the abstraction level of the application, e.g. graphics renderer, symbolic math package,
statistics tools, spreadsheets.

1.3 Contributions
With this thesis, we want to contribute to the design and development of wireless net-
worked embedded systems by providing a systematic approach for the development, test
and deployment of distributed applications on such devices. In order to achieve this goal
we present a vertical slice of the design space concerned and discuss relevant questions
encountered in different phases of the design and development process.

With the increasing development of large-scale wireless sensor network applications, the
coordinated development and deployment of sensor network devices are becoming an is-
sue of increasing importance. Independent researchers have reported that when moving
away from the engineer’s desktop and beyond numbers of 10–20 nodes, design, develop-
ment, deployment and testing become increasingly hard, and simulation will not solve all
problems encountered. While algorithms, system models, device architectures, and pro-
gramming abstractions have been investigated for quite some time now, not much has been
achieved in the area of deployment support or even a concerted design, development and
deployment methodology that allows for stepwise refinement and reliable monitoring of
systems.

Coordinated methods and tools for wireless sensor network deployment are missing today.
With our approach of a deployment-support network presented in this thesis, we push the
limit for large-scale prototyping from simulation and virtualization to coordinated real-
world deployment.

Specifically, the contributions of this thesis are as follows:

• Functional and qualitative requirements of a location management service for wire-
less sensor networks based on measurements and simulation have been developed.
We present one of the earliest algorithms for the distributed computation of node
location.

• A novel platform for fast-prototyping of wireless sensor networks has been developed.
This platform has successfully served numerous researchers, among ourselves, as an
underlying infrastructure for experimentation and education.

• The BTnode platform has been used to develop multihop networks and topology
control mechanisms for Bluetooth scatternets. To our knowledge the experiments
presented in this thesis are the largest connected Bluetooth scatternets reported to
date.

• The concept of a deployment-support network as a powerful tool for the develop-
ment, deployment and validation of wireless sensor networks is presented in con-
junction with experimental evidence of the feasibility of the approach.

13



Chapter 1: Introduction

The contributions presented in this thesis have also been published in the following ref-
ereed publications [SRB01, PEW+02, BKR03a, BKR03b, PEW+03, BKM+04, Beu04,
BDH+04, ABD+04, Beu05, BDMT05, BD05, DBM05, NBD05a].

1.4 Contents and Structure
In this thesis we identify functional and qualitative requirements of applications and ser-
vices for wireless sensor networks based on measurements and simulation using the exam-
ple of a location management service presented in chapter 2. Chapter 3 introduces and
discusses design criteria for wireless sensor network platforms. A comparison of the relevant
platforms developed in the field motivates a design rationale for modular platforms which
we use to develop the BTnode platform, a distributed environment for prototyping ad hoc
and wireless sensor networks. The BTnode platform is subsequently used to develop multi-
hop network topology construction mechanisms based on connection-oriented Bluetooth
scatternets in chapter 4. Different approaches are discussed in conjunction with the sys-
tem prerequisites and peculiarities of the platforms used, algorithms and experimental ev-
idence. Out of the experience gained in the implementation work presented, we motivate
a full life-cycle support for sensor networks and develop a methodology for the design and
development of wireless networked embedded systems based on the deployment-support
network in chapter 5.

14



2
Location Management in Wireless

Communication Systems

Location management both in time and space has been identified as a key technology
for the successful deployment and operation of context-aware sensor network services and
applications by different visions [RAdSJ+00, KKP99, ECPS02, Com01]. The benefit of
location information is not limited to the subscriber of a network or to network opera-
tors but will enable every wireless enabled device to become a meaningful instrumentation
probe. Today, technicians gather spatially distributed environmental information by driv-
ing to specific sample sites and making measurements, a time-consuming and inefficient
solution, or by installing costly fixed infrastructure in often inaccessible target areas. Spa-
tially distributed sensor data without an appropriate reference context, e.g. a time stamp,
and a set of multidimensional coordinates within a given reference system, is next to use-
less. While the global positioning system (GPS) offers good solutions for localization in
an outdoor environment, no such option exists for an indoor setting or lightweight ap-
proaches such as wireless sensor networks.

In this chapter we want to give an overview of the issues connected to running a location
management service on networked wireless embedded systems. This exemplary service is
then used break down and illustrate the cross-layer requirements on WSN systems that
arise when using local positioning algorithms as the basis for a system-wide location man-
agement service. Apart from general observations, definitions and algorithms applicable
to many wireless communication systems we are interested in the peculiarities of the wire-
less sensor network case where simplicity, robustness and energy awareness are of primary
importance as well as the implications on the design and development of WSN systems.

2.1 Location Management
In geography, location is a position or point in physical space expressed relative to the
position of another point or thing. A real location can often be designated by cartesian

15



Chapter 2: Location Management in Wireless Communication Systems

coordinates. On the earth, the geographic coordinate system can be used to specify the
position of any location. In this sense, navigation is the determination of position and
direction on the surface of the earth. The concept of location is not limited to the geo-
graphic representation of physical location with sets of latitude, longitude and altitude but
also applicable to symbolic location in a non-geographic sense such as location in time, in
a virtual information space or a geometric abstraction such as a data structure or the graph
of a network. Postal zip codes and telephone numbers are a good example of abstractions
containing designated location information.

There are several different branches of navigation, including but not limited to

• Celestial navigation – navigation by observation of the sun, moon and stars

• Pilotage – using visible natural and man made features such as sea marks or beacons

• Dead reckoning – using compass and log to monitor expected progress on a journey

• Inertial navigation – using integrating accelerometers mounted on gyroscopically
stabilized platforms

• Waypoint navigation – using electronic equipment such as radio navigation and
satellite navigation system to follow a course to a waypoint

• Position fixing – determining current position by visual and electronic means

• Collision avoidance – using radar or similar methods.

• Radionavigation – employing (the time of flight of ) electromagnetic waves

All of these methods use to some extent fixed infrastructure or elaborate and specialized
equipment which is not suitable for sensor networks.

Obstacle/Wall

Figure 2-1
A view on a typical wireless
sensor network topology
scenario with highly clustered
nodes, scarcely populated areas,
obstructed and separated
regions. The limited radio
range allows only for a few
overlapping links, requiring
multi hop communication.

The positioning problem in wireless sensor networks can be viewed as a general distributed
sensor problem, with sensors that can discover other nodes, estimate ranges between nodes
and such that serve as position references. Furthermore, the maps and data-sets that are to
be used in conjunction with the position information can also be viewed as a form of sensor
information, only that in this case the communication network and storage resources are
the means used to provide this information to context aware services. In densely populated
wireless sensor networks interactions between nodes are abundant. It is therefore necessary

16



2.1. Location Management

to extract and combine the appropriate information in a suitable way to render it usable.
To a certain degree, a notion of living with errors has to be adopted, since the formal
problem of distributed location is hard and resources available per node in a wireless sensor
network are finite. Important requirements for positioning in wireless sensor networks
are a distributed approach, that minimizes computational and especially communication
overhead and is robust enough to survive unreliable situations, such as occasional network
partitioning or node failures.

2.1.1 Radionavigation
Radionavigation techniques are commonly based on measuring the received signal stength
indicator (RSSI), time of arrival (ToA), time distance of arrival (TDoA), carrier phase and
code measurements, ultra-wide band (UWB), ultrasound and even visible light pulses of a
signal or the angle of arrival (AoA) of a radio signal [Beu04]. Three or more independent
signal measurements may be used to solve for a triangulation solution. While calculat-
ing direction using AoA requires additional antenna hardware that needs to be precisely
calibrated, the systems based on the time of flight of electromagnetic waves require very
accurate timing measurements and thus high synchronicity. Systems using this principle
are abundant and have been developed a long time ago. Among them are Lorentz (Ger-
many, 1930s), VOR (International, still used in aircraft today), GEE (British Royal Air
Force, World War II), LORAN (American, World War II, long range navigation for navy)
and GPS (American, 1978, satellite navigation system, see section 2.1.2.1).

Local

Remote

f1
f2

Local

Remote

f1

Figure 2-2
Active radionavigation uses a bidirectional relationship between the remote and local nodes. The up-
and down-link signal shown by f1 and f2 must not be the same. Passive radionavigation systems rely on
the continuous availability of timed pulses from fixed beacons.

Radionavigation can additionally be divided into two classes, active and passive radionavi-
gation [Log92]. In active radionavigation the navigation receiver broadcasts a signal f1 to
a distant transmitter or base station that bounces the signal back at the receiver, possibly at
a different frequency f2, as seen in Figure 2-2. For example, the range between the receiver
and distant transmitter in active radionavigation is computed by half the time of flight
multiplied by the speed of light c = 3 · 108 m/sec. In passive radionavigation a distant
transmitter sends out a series of precisely timed pulses f1. The navigation receiver picks up

17



Chapter 2: Location Management in Wireless Communication Systems

these pulses, measures the time of flight and multiplies by the speed of light analogous to
the previous solution.

A radionavigation system may or may not be able to communicate and thus share data used
to solve for the position. Radionavigation systems that cannot communicate have to rely
solely on their ability to detect and identify an electromagnetic signal. They can employ
methods based on signal strength, doppler shift and AoA measurements. If communication
is available, data can be modulated onto the navigation signal or be available on a secondary
communication carrier. This is common for ToA and TDoA solutions. Combinations of
modulated data and secondary links, for example in differential GPS, are possible too,
where the secondary communication link is used for correcting and refining the solution
derived by the GPS system.

In a networked environment of many navigating nodes, cell density, the distribution of
nodes, the ability to share information, terrain and physical obstruction play a major role
in the accuracy derived by the system.

From this perspective positioning techniques for wireless sensor networks have to be dis-
tributed, local and be based on the network. The exact implementation of each location
technique depends by large on the underlying communication network and it’s capabili-
ties. The required abstraction of location must be defined from the viewpoint of a WSN
application and the intended usage of the location information produced by such a ser-
vice. It appears quite logical to try to integrate network services such as positioning with
the data traffic in the network, as to reduce the amount of overhead connections and traf-
fic. A hybrid, or cross-layer approach integrating networking and positioning is therefore
highly desirable.

2.1.2 Related Work
2.1.2.1 Global Positioning System
The global positioning system (GPS) [Log92] was developed by the U.S. Department of
Defence to be used to determine one’s exact location and precise time anywhere on Earth
at any time. It relies on 28 satellites orbiting on six different planes so that a minimum
amount of four can be seen from any point on the planet. Each satellite transmits its
exact position and its precisely synchronized on-board time in a spread spectrum signal. A
GPS receiver measures the signal transit times between its point of observation and at least
four different satellites with known positions to be able to solve for the four unknowns
longitude x, latitude y, altitude z and time deviation ∆t [SB97]. There is no reverse
up-link communication necessary between the transceiver and the satellites.

Today GPS receivers are highly specialized, high performance, integrated computing de-
vices that can be integrated into handheld devices and mobile phones. Typical performance
figures of a receiver for continuous operation are less than 160 mW power consumption,
3 m accuracy, 20 ns timing precision, 41 sec cold start, 3.5 sec hot start and a 4 Hz update
rate at a size (without antenna) of about 1.9 cm3. GPS can be augmented with differential

18



2.1. Location Management

navigation data, post processing or inertial sensors to achieve even higher performance use-
ful for vehicle navigation, land surveying and civil engineering applications. In differential
GPS the error of a stationary receiver is transmitted to a mobile receiver and used to correct
it’s position estimate under the assumption of similar signal perturbation at both receivers.
Consequently, the resulting positioning accuracy is improved, the closer two receivers are
co-located.

So far, the application of GPS to sensor networks is limited firstly because of the consider-
able bulk and high power consumption but mainly because of the requirement for direct
line of sight to the satellites incorporated in the navigation solution. Furthermore the cost
(both economical and in resources utilized) of integrating a GPS receiver is prohibitive for
large scale WSN applications.

2.1.2.2 Cell-Based Positioning Techniques
Mainly driven by the U.S. Enhanced 911 mandate that requires to be able to locate mobile
phones up to about 50 to 100 m, but also by emerging commercial location based services,
cell-based positioning techniques have been under detailed investigation [Zha02, CS98,
DMS98]. Common to all these techniques is, that they rely on infrastructure put in
place and configured to be used for positioning. Similar to GPS, the wireless link to
base stations can be estimated and given a sufficient amount of base stations (overlapping
cells) a triangulation solution can be computed. Key issues here are the inter-operation of
multiple base stations, inefficient surveying prior to deployment and scalability problems
in centralized services since in most cases, the mobile cellular handsets cannot be modified.

The Active Bat system [HHS+99, ACH+01] is heavily dependent on dense ceiling moun-
ted infrastructure that uses combined radio frequency (RF) and ultrasound ranging to
achieve 3 cm position accuracy on custom mobile devices, the so-called “bats”. In con-
trast the Massachusetts Institute of Technology (MIT) Cricket location system [PCB00]
is highly decentralized and does not rely on central control and computation. The use of
combined RF and ultrasound ranging and identification however is similar. Fixed beacons
inside buildings distribute geographic information. AHLoS [SHS01] is a system using
ultrasound and RF and does not rely on an infrastructure setting.

The approach used by RADAR [BP00] goes even further in mapping out the characteristic
signal propagation in spaces with wireless local area network coverage to be used for posi-
tioning of mobile users. Individual maps per base station are then overlayed to determine
a mobile units position using computationally intensive, statistical methods performed on
a central resource.

The GPS-less system [BHE00] is an RF-based positioning method that requires a number
of nodes to be placed at known positions that form a regular mesh and transmit periodic
beacon signals containing their respective positions. This algorithm does not need any
accurate distance measurements; it only uses the information if a node is in range or out
of range of a certain beacon node. It has the advantage of simplicity, scalability and low
power consumption. However, it is coarse grained and needs a considerable amount of

19



Chapter 2: Location Management in Wireless Communication Systems

infrastructure. It has been extended to incorporate adaptive beacon placement [BHE01]
and scalable, ad-hoc deployable RF-based localization [BBEH02, Bul02].

Doherty [DPEG01] proposes a method based exclusively on connectivity-induced con-
straints. Know peer-to-peer communication in the network is modeled as a set of geo-
metric constraints on the node positions. The geometric constraints can be of an angular
(node in/out of sight for e.g. optical transmission) or radial nature (in/out of range for RF,
ultrasound or similar systems). The problem is solved using a linear program (LP), eval-
uating every single geometric constraint. Additionally, a method for placing a rectangular
bound around the possible positions is presented.

The algorithm presented in [CHH01] uses distance measurements to estimate positions.
As long as there are no anchor nodes in view, unknown nodes build up their own local
coordinate systems. The first unknown node just assumes to be on position (0, 0, 0), a
second will be placed on the positive x-axis at position (r, 0, 0). When a first anchor node
comes in view of the locally built coordinate system, a translation of the local system will
be required. For a second anchor a rotation and eventually a flip for the third (in three
dimensions a second rotation will follow before an eventual flip) is required.

2.1.2.3 Tagging with RF-ID
Initial radio frequency identification systems (RF-ID) were meant to be passive systems
confined to a very short radio range only. Powered by the signal emitted by a transmitter
RF-IDs reflect a signal that can be individually identified by a usually collocated receiver.
The system employed is essentially cell based localization, but on a very local level, e.g.
well under a meter [NLYP03, SF03]. Cheap and easy to embed, e.g. in printable product
labels or tags this technology is ideal for simple high volume applications. More complex
active tags allow for data storage and simple computing operations like authentification
and sensor data aggregation.

2.1.2.4 The Lighthouse Location System
The Lighthouse Location System for Smart Dust [Röm03] is based on direct line of sight
between fixed infrastructure laser transmitters and the mobile unit. Each transmitter emits
a laser beam that is rotated in two perpendicular axes, thus scanning a whole room. The
mobile unit registers the phase and duration of the light flashes and uses this information
to intersect three hyperboloids each in reference to the transmitters position.

Unique to this approach is, that high precision can be achieved with relatively low sys-
tem, communication and computational complexity on the sensor nodes. This and the
line of sight requirement and the extensive calibration necessary prior to usage make the
Lighthouse location system an elegant but rarely applicable solution.

2.1.2.5 Abstractions
In wireless sensor networks naming data and not nodes and the organization around spatial
and temporal coordinate systems require appropriate abstractions and programming mod-
els for location context to be developed. First approaches in this direction show that such

20



2.1. Location Management

systems can be viewed as a the tuple space model, distributed databases or even loosely
coupled parallel computing structures [BGS00].

2.1.3 Location Abstractions
2.1.3.1 Networks as Graphs
For the geometric abstractions that we will use we will assume the network to be a set of
vertices V = {v1, v2, . . . , vn} and edges E = {e1, e2, . . . , en} that describe the topology of
the network by means of a graph G(V, E).

In the case of range estimates being associated with a certain edge this can be done by
assigning a weight w(e) to every edge e = (vp, vq) connecting the vertices vp and vq. For
differential range estimates, where two endpoints derive individual range estimates from
their own, local viewpoints, the local wp(vp, epq) and remote wq(vq, epq) range estimates
can be combined using a function to assign a single weight

w(epq) = func(wp(vp, epq), wq(vq, epq)) (2.1)

to the edge connecting the vertices vp and vq. This function can be a simple averaging
function or a more complicated filter based on an estimation history and requiring exten-
sive data exchange between nodes. In a wireless sensor network the vertices of the graph
represent the nodes or devices and the edges represent the wireless communication links.
While this abstraction is quite suitable for link-layer abstractions, it is not always appro-
priate for lower layers, e.g. broadcast medium access layer (MAC). Commonly used are
also visibility graphs such as a unit disk graph (UDG) that only draw an edge between two
vertices if the length (weight) of the edge is below one.

Degree – The degree deg(v) or valency of a vertex v is the number of edges incident to v
(with loops being counted twice).

Scope of a Node – The scope of a node is defined by the ρ-neighborhood of a vertex v ∈ V
as Γρ(v, G) where ρ denotes the maximal hop distance from v on the Graph G.

Γρ(v, G) = {w|distG(w, v) ≤ ρ} (2.2)

When talking about physical location in the traditional way we usually view points as three
dimensional coordinates (x, y, z) in a cartesian reference coordinate system. Of course
many other transformations to other coordinate systems like polar coordinates are possible
too but we will consider the cartesian system here. In a three dimensional cartesian system
the Euclidean distance between two points vp and vq is defined by

distG(vp, vq) =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2 (2.3)

While there are also other metrics [dBvKMOS00] e.g. the manhattan distance, we will
continue to use this measure as a basis for the trigonometry introduced in later sections.

21



Chapter 2: Location Management in Wireless Communication Systems

Common to all notions of location is, that the individual locations are all relative to each
other, meaning that they depend on a predefined frame of reference. This leads to a
differentiation of the relative and absolute positioning cases.

2.1.3.2 Relative Position
Vectors linking two points give information on their position relative to each other. When
no reference points are given, the solution can be rotated and mirrored through an arbitrary
axis. Each position added to a system solution reduces the problem one degree of freedom
at a time. A minimum of four nodes are necessary to be able to unambiguously orient
a geometric position in three dimensional space (three nodes in two dimensional space)
since when using one reference per axis of the coordinate system, two ambiguous mirrored
solutions are possible (see Figure 2-3).

A system of many known positions that has no reference location and/or orientation is
only fixed in itself, not in it’s position in space: If only the position of one point and
no orientation is given, the system can be mirrored and rotated through any axis leading
through this point. The translatory movement is prohibited by this first known position.
When a second position is introduced into the system the rotation of the system is further
restricted to the axis through these two points. A two dimensional problem would thus
still have two possible solutions. A third known position finally fixes the system in two and
three dimensional space.

Free Node – A free node vf has no a priori knowledge of location, but seeks to obtain a
position estimate by the positioning methods described later in this section.

Settled Node – A settled node vs initially was a free node, but has calculated a position esti-
mate and can thus serve as an additional position reference to other nodes in the network.

A relative position can only be given in respect to other points resolving the distances and
the geometric configuration, e.g. the topology (see Figure 2-3). The minimum require-
ment for relative topology discovery is that all nodes that are to be considered in such an
algorithm must be connected and able to identify each other. Ranging and the exchange
of data between nodes further allows to weight an originally unweighted topology graph.

2.1.3.3 Absolute Position
An absolute position is given in respect to an inertial system and reference points in this
“inertial system”. It allows to determine positioning information of disjunct systems in-
dependently, in reference to the same point in the inertial system. Points that know their
position before the application of a navigation technique are referred to as anchor nodes.

Anchor Node – An anchor or beacon node va has knowledge of it’s location, either through
prior configuration, or an external reference source, such as a GPS receiver. It is impor-
tant to note, that anchors do not derive position through means offered by a network
positioning mechanism. They can thus serve as position references.

22



2.1. Location Management

Figure 2-3
The absolute position (left figure) of a free node (white node) is defined in respect to multiple reference
positions (black nodes). Relative positions (right figure) can be discriminated against other nodes in a
local reference system (wire frame topology) only.

2.1.3.4 Location in Space and Time
Usually mere (x, y, z) coordinates by themselves are not meaningful for context aware
system services and other information needs to be associated with these position fixes.
The most straightforward extension is to introduce time as fourth dimension to be able to
specify where and when a certain event took place resulting in sets of (x, y, z, t) for each
complete position fix.

Such a four-dimensional fix can then be used to put subsequent or collocated events into
a context frame. For this a reference frame is necessary as time and location information
is useless by itself. In a relative reference frame different parts of a network would com-
pare their data relative to each other. This enables to discriminate orientation, distance,
time difference, speed and acceleration between nodes of a network but not to an external
reference frame. Depending on the granularity required for the resolution of such data
different requirements on the accuracy of such position fixes can be defined. This allows
context aware applications to behave differently when evaluating not only the position fix
but also the desired and achieved accuracy.

When using position information in reference to a geographic map or a global time refer-
ence the context information can be extended. Here already a single position fix can be put
in context of this reference frame vs. a minimum of two position fixes that are necessary
for the relative case. For an earth centered view different reference ellipsoids and geodetic
datums that account for the specific shape of the earth [SB97]. In addition every observer
of a geometric system can act as an absolute reference point in an inertial system, namely
their own inertial system such as it is common on inertial platforms.

23



Chapter 2: Location Management in Wireless Communication Systems

2.1.3.5 Reference Systems
Absolute positioning allows to orient the nodes of a network on a map that can be any vari-
able or set of variables representing or assigning values to a geographic location or region,
from a single point to an entire planet. This must not necessarily be a two-dimensional
rendition, such as a paper road map that we are most familiar with today but can be any
data structure that defines a reference frame for more than just one node.

Figure 2-4
Maps as reference system: A map is a
simplified depiction of a space, a
navigational aid which highlights
relations between objects within that
space. A map can be used in
conjunction with absolute position fixes
(white node) and reference positions
(black nodes) and so enables the
contextual interpretation of location
information in human readable form.

A map projection is any of many methods used in cartography to represent the two-
dimensional curved surface of the earth or other body on a plane. The term "projec-
tion"here refers to any function defined on the earth’s surface and with values on the plane,
and not necessarily a geometric projection. Map projections can be constructed to pre-
serve properties like area, shape, direction, bearing, distance or scale, though not all of
them simultaneously.

It is thus required to be able to transform position estimates into the appropriate reference
system and precision, depending on the context, in order be able to support meaningful
location information. This requires access to stored data such as map datums and compu-
tational resources to perform the conversions.

2.1.4 Network Based Navigation Techniques
Positioning using navigation techniques generally consists of three components:

• Identification and data exchange

• Measurement and data acquisition

• Computation to derive location

The various approaches partition these tasks differently across their system components
and in some cases no or only unidirectional data exchange between nodes is used. The
identification of distinct nodes in the neighborhood with the use of the radio is usually a

24



2.1. Location Management

task attributed to the MAC protocols and is a key requirement for a positioning system.
This means, that nodes must have a distinct address as opposed to address free routing
schemes proposed by Estrin et al. [EGHK99, IGE00], and capabilities to discover the
addresses of surrounding nodes. Combined with storage, sorting and communication
capabilities this enables a distributed set of nodes to perform a network topology discovery,
i.e. they can search for neighbors and exchange this data. Based on the communication
capabilities of the nodes, topologies and paths for multi hop routing of data can be set up
subsequently and.

Measurements can either be performed to estimate the distance between nodes or the angle
of an incoming signal (see section 2.1.1). This can be performed on active communica-
tion links or analogous to the neighborhood identification described earlier. Depending
on the radio system, this can be performed in parallel to multiple nodes at once, simulta-
neously with data transmissions, or using a private, time-shared medium access. Moreover,
different system may demand to iterate measurements multiple times, depending on the
architecture and characteristics of the radio system.

The important thing to note is that there are always (i) errors in these measurements, that
(ii) individual measurements are not independent of each other and (iii) individual mea-
surements are strongly influenced by the surrounding environment and the transmission
system used. The availability of any one of these physical variables depends by large on the
transceiver and antenna architecture available and is beyond our scope. We will therefore
refer to these nonlinear measurements as range estimates r̂ independent of their source for
the remainder of this chapter. Furthermore, we will be assuming a distributed approach
where each free node is performing all tasks required to calculate a position estimate locally,
i.e. identification of neighbors, range estimation and computation as opposed to central-
ized approaches where an external observer performs some or all of these tasks for all free
nodes in a network [HHS+99, BP00].

2.1.4.1 Hyperbolic Trilateration
Using any one of the range estimation techniques listed earlier, the geometric position can
be computed using hyperbolic trilateration. Here three independent range measurements
with respect to globally referenced anchor nodes are used to compute the intersection
of three circles (see Figure 2-5). The inputs are the coordinates of the reference nodes
vi = (xi, yi, zi) and the respective range estimates r̂i

Hyperbolic trilateration is essentially the core idea behind most methods to calculate ge-
ometric position and is used in variations in most systems, for example in the GPS as
described in detail by Capkun [CHH02]. As defined in section 2.1.3 at least three range
estimates are necessary to solve for all ambiguities in the two dimensional as well as in the
three dimensional case. The mathematics of the overdetermined problem are explained in
detail in section 2.1.5.

25



Chapter 2: Location Management in Wireless Communication Systems

2.1.4.2 Triangulation
Using the trigonometry laws of sines and cosines the angles of an incoming signal α̂i can
be used to compute a triangulation solution (see Figure 2-5) similar to the method used
for hyperbolic trilateration. These angles can either be measured at the free node or at all
reference locations. In the latter case they need to be oriented correctly, implicating either
a precisely aligned infrastructure or supplemental measurements between adjacent refer-
ences. Apart from this alignment problem, AoA measurements require extensive hardware,
usually with multiple sectored antennae, making it currently unsuitable for most WSN
applications.

2.1.4.3 Multilateration
In the case of dense anchor node populations a maximum likelihood (ML) estimation can
be performed. The prerequisite for this multilateration technique is, that at least three
reference nodes are visible at every free node when performing the position calculation.

Using this multilateration method the position of the free node vu = (xu, yu, zu) is es-
timated from three or more reference nodes (the one-hop neighborhood) such that the
difference between measured and estimated range is minimized for every range estimate
r̂i,0 incorporated into the solution (see Figure 2-5).

min
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 ∀r̂i,0; i = 0 . . . n (2.4)

An iterative algorithm applicable for the multi hop case of this technique is explored
in [SHS01, SPS02]. The geometric constraints involved in multilateration can also be
formulated as a LP such as proposed by Doherty [DPEG01] where angular and radial
constraints are combined in one model. The drawback of this method is, that it has con-
siderable amounts of communication requirements, especially as an LP scales with the
square size of the network [vGR05].

r1

r2

r3

α1
α2 r1

r2 r3

r4

Figure 2-5
Three different network based navigation techniques (left hyperbolic triangulation, middle
triangulation, right multilateration) to compute the position of an free node (white node) and their
respective inputs ri and αi as well as the reference nodes vi (black nodes) are shown here.

Common to all these techniques is, that they rely on distinct range or angular estimates at
different distributed locations. Their approaches are compatible and a transformation of
data from one technique to another can be accomplished straightforward.

26



2.1. Location Management

2.1.5 Generalized Navigation Solution Using Trilateration
In the case of three of more independent range estimates to known reference nodes a three
dimensional trilateration problem is to be solved. If these references reside at a known
location (anchors or settled nodes), the absolute position can be given in reference to their
inertial system, such as is done for the GPS system [Log92].

For three references a geometric approximation can be given as has been described by
Caffery [Caf00]. In wireless ad hoc networks, trilateration problems are usually overde-
termined, meaning, there are more range estimates incorporated into a solution than nec-
essary to be able to solve for all unknown. Furthermore the errors in the range estimates
make it difficult to solve the resulting set of linear equations suggesting techniques that use
all available inputs to compute an approximation of position. The starting point here are
least square methods like the minimum mean square estimate (MMSE), to find an approx-
imate solution x̂ that best satisfies Ax = b with agreement to the range estimates given by
b. This means that the length of the residual error e = b−Ax̂ is to be minimized.

In general, the trilateration problem can be formulated as follows: Given a set of n range
estimates r̂i from the i-th reference at position vi = (xi, yi, zi) to the unknown position
vu, the n nonlinear navigation equations for the true ranges ri are defined by

ri = dist(vi, vu) =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 (2.5)

with ri = r̂i + ei and the estimation error ei. This can be linearized by subtracting the last
row resulting in a system of

Ax = b (2.6)

with

A = −2


(x1 − xn) (y1 − yn) (z1 − zn)
(x2 − xn) (y2 − yn) (z2 − zn)

...
(xn−1 − xn) (yn−1 − yn) (zn−1 − zn)

 x =

 xu

yu

zu



b =


r2
1 − r2

n − x2
1 + x2

n − y2
1 + y2

n − z2
1 + z2

n

r2
2 − r2

n − x2
2 + x2

n − y2
2 + y2

n − z2
2 + z2

n
...

r2
n−1 − r2

n − x2
n−1 + x2

n − y2
n−1 + y2

n − z2
n−1 + z2

n


There are different ways to solve the fundamental linear problem in calculus, geometry and
linear algebra. The classical way to proceed is to solve the normal equation

ATAx̂ = ATb (2.7)

27



Chapter 2: Location Management in Wireless Communication Systems

with the methods of linear algebra. However in order to account for system dynamics it
is common to weight input data according to their reliability using a covariance matrix
Σ and to use recursive and sequential filtering techniques to reduce the computational
complexity on the event of system changes and the availability of new information. The
weighting matrix C is a diagonal matrix that can be derived from the covariance matrix
and extends equation 2.7 to the weighted least squares form of the normal equation

ATCAx̂ = ATCb (2.8)

that can be solved in the form

x̂ = (ATCA)−1ATCb (2.9)

using QR decomposition or choleski factorization [SB97]. Other methods to solve such
MMSE problems are estimation using taylor series or the householder transform. Although
computationally intensive, this method scales well to scenarios that are highly overdeter-
mined, have varying node degree and is fairly tolerant to range errors if network connec-
tivity (node degree) is high.

2.1.6 Quality Metrics of Positioning Systems
There are different metrics that can be used to describe quality aspects of positioning sys-
tems. Firstly important are parameters that describe the network setting and the environ-
ment. Secondly important are such, that are relating directly to location and the algorithms
used.

The environment is mainly characterized by it’s signal propagation properties, the node
densities, distribution, degree of connectivity and mobility. Of course the availability of
a map is also a property of the environment that can enables absolute positioning while
relative positioning focuses on topology discovery only. In certain environments the acces-
sibility of information might be restricted to certain users or situations.

Navigation solutions can be classified based on accuracy, availability and cost (hardware,
computation, storage and communication requirements, latency and consumed energy).
The size of the database that is kept up to date in every node directly, update rates, and
mathematical accuracy required influence the computational complexity and therefore po-
sition accuracy. In situation where one has to start from scratch the initial positioning
error and the time to first fix, e.g. the duration for a first estimate to be available to an
application are the most crucial.

2.2 Navigation Issues in Wireless Sensor Networks
In the following we want to point to some sensor network specific issues that can be utilized
to improve the performance of navigation techniques. These are the network topology,
range errors, quantization and different filtering techniques.

28



2.2. Navigation Issues in Wireless Sensor Networks

2.2.1 Localization Challenges in Sensor Networks
When applied to an ad-hoc sensor network, these radionavigation approaches face several
new complications: sparse reference points that are not directly visible by all nodes in
the network, limited accuracy in the range measurements, and the need for low-power
implementation on limited resources. Anchor nodes, or nodes with a priori knowledge
of their locations relative to a global coordinate system, are assumed to be sparse and
randomly located. Like the other sensor nodes, their communication range is limited to
their immediate neighborhood. This makes it difficult, if not impossible, for requesting
nodes, or nodes attempting to estimate their positions, to acquire enough reference points
to perform traditional triangulation. It is only assumed that there will be at least four
anchor nodes in a connected network.

The accuracy derived through triangulation depends heavily on the geometry of the po-
sition references, the configuration of network nodes, and the accuracy of the range mea-
surements. The short transmit ranges of only a few meters result in unacceptably high syn-
chronization demands of 3 psec/cm of resolution, when TDoA techniques are employed.
AoA approaches require costly antenna arrays on each node. These observations make
these solutions unattractive, leaving the RSSI as the prime candidate for range measure-
ments. Given a known transmission power and a good model of the wireless channel, the
distance between transmitter and receiver can be estimated based on the received power.
Unfortunately, the accuracy of these RSSI range measurements is highly sensitive to multi-
path, fading, non-line of sight (NLOS) scenarios, and other sources of interference, which
may result in large errors. These errors can propagate through all subsequent triangulation
computations, leading to useless information.

Fortunately, sensor networks possess two properties that may help to overcome these con-
cerns: (i) dense interconnectivity leading to redundancy in the range measurements; (ii)
limited mobility which allows for long observation times and the removal of some of the
fast fading effects through integration. In the following section, we first discuss how these
properties can be used to solve a local positioning problem (i.e. positioning between nodes
that are within communication range). The following section will extend these techniques
to a system where not all nodes are within range. Subsequently we are introducing a robust
set of algorithms suitable for wireless sensor networks where not all nodes are within range
of a sufficient amount of anchor nodes at all times.

2.2.2 Adaptive Network Topologies
Sensor networks offer regions with high node densities and ad hoc networking mechanisms
that fundamentally allow every node to communicate with every other node. The key idea
is now to make use of the redundant network connections available when viewing the
network as a fully connected graph.

Formally a complete graph with n vertices has 1
2
n(n− 1) edges [Big89]. In an ad hoc net-

work setting however not all nodes are visible to all others due to the reduced transmission
range of a single node resulting in a structure such as seen in Figure 2-1 and 2-6. In order

29



Chapter 2: Location Management in Wireless Communication Systems

to facilitate efficient routing algorithms and to conserve energy it is often practical to re-
duce the complexity of the available connections to an appropriate set of connections such
as a planar graph or a dominating set [KWZ03, Wu02]. Geometric routing algorithms
commonly use planar graphs such as a gabriel graph as shown on the left in Figure 2-6. In
heterogeneous network settings the available network links might be reduced even further
to so-called backbone links allowing fast long-haul data transfer on commonly used routes
reducing the amount of edges that can be used for iterative positioning algorithms even
further.

Figure 2-6
Using the wireless sensor network specific network topology for positioning allows to heavily overlay
range estimates for individual trilaterations. A planar gabriel graph that is appropriate for geometric
routing is shown on the left, whereas the middle shows the complete graph for a given transmission
range. The right depicts all ranges visible to the center node that in this case can be incorporated into a
combined trilateration solution.

A trilateration solution such as discussed earlier (see section 2.1.4) achieves the highest
position accuracy when many independent range estimates to reference nodes are used. An
example scenario is shown in Figure 2-6. It is easy to note that the desired topology here
is quite different from the routing scenario in Figure 2-6. A high node density in a WSN
setting eases positioning because the peculiarities of the overdetermined topologies can be
put to use and redundant trilateration solution can be overlayed. This is exactly the reverse
setting from a traditional cellular network, where mobile units only talk to a single base
station. When a more mobile units crowd in a certain area, the burden on the base station
increases and the additional communication links do not help in the positioning problem,
since the mobile units do not communicate with each other directly.

A qualitative simulation such as the one shown in Figure 2-7 yields quite acceptable po-
sitioning errors and variances even in the case of very high range errors. The specific im-
provement that can be achieved for overdetermined topologies can be seen in Figure 2-12
with a characteristic nearly exponential reduction in the position error. Apart from our-
selves [SRB01], independent publications have agreed on a rule of thumb of using at least
five to seven nodes per trilateration to achieve an acceptable accuracy for WSN applica-
tions [SPS02, DWBP01]. From this perspective it is desirable for a positioning service in
wireless sensor networks to be able to use many more independent range estimations, than
offered by the routing grid alone. This could be achieved either by enforcing or switch-
ing over connections or by transceivers that can assess multiple channels (range estimates)
without actually transmitting data over these channels [STGS02, SBS02, RAdSJ+00].

30



2.2. Navigation Issues in Wireless Sensor Networks

Figure 2-7
Iterative trilateration using strongly overdetermined topologies with 25 reference positions for one free
node that is located in the center. Here the MMSE results are shown for successive iterations on 50 sets of
uncorrelated range estimates. The three figures differentiate only in the error (left 20%, middle 50%
and right 80%) that has been assumed for the range estimates.

2.2.3 Range Estimation Error and Quantization
Range estimation based on RF propagation techniques is problematic. Especially indoors
the environment is not very predictable with multipath, fading, interference and shading
effects abundant. Especially in the case of wireless sensor networks where lowest power
consumption and therefore also low transmit power is of primary concern, obstacles in the
line of sight path, noise and interference by other transmitting sources hinder the reliable
estimation using a sophisticated channel model. Typical mobile radio channel models
account for signal fading in the order of 1

r2 to 1
r4 but often in wireless sensor networks the

attenuation is even higher. The uncoordinated placement of nodes in environments that
are often harmful to radio signals adds further complexity to the estimation of ranges using
radio propagation of communication signals.

Sensor nodes are anticipated to be small, simple and robust devices, down to the scale of
Smart Dust [DWBP01, KKP99] carrying lightweight resources only that make it impos-
sible to use complex transceiver structures with advanced channel estimation capability.
In today’s wireless transceivers, the RSSI is primarily used for the detection of a carrier
signal, i.e. the signal-to-noise ratio (SNR). Internally, the baseband receiver section can
then decide if it can decode a received signal or not and adapt it’s parameters accordingly.
In transceivers supporting transmission power control the RSSI values at the remote side
can be used to reduce the local transmit power. This, however requires higher layer pro-
tocols to support this negotiation and feedback process. The link quality indicator (LQI),
sometimes based on the bit error rate (BER) or a combination of SNR and BER work
in a similar fashion. Without very detailed knowledge about the internal architecture and
function of a wireless transceiver, it is hard if not impossible to reason about the quality and
behavior of the RSSI and link quality indicator. Depending on the transmission system
used and the architecture of a transceiver, a signal-to-noise ratio ratio can be measured in
analog form in the vicinity of a receive amplifier or input filters (near the antenna), in the
mixer stages, at the analog-to-digital converter (ADC) or in the baseband section where
signal decoding and shaping takes place in digital form. Different architectures have differ-
ent ways of communicating the internal values to a host controller. Systems like Bluetooth
use a command/event interface supplying digitized values to the “user”, others like a low-
power radio (LPR) have a dedicated analog output pin, that can be either used to control

31



Chapter 2: Location Management in Wireless Communication Systems

a transmit power amplifier or be converted to digital values and supplied to higher layer
protocols. For instance, the Bluetooth specification only requires a Bluetooth device to
tell whether the RSSI is inside, above or below the golden device power range allowing
applications to discriminate analog-to-digital converter basic tradeoff if a signal and thus a
connection is good or about to cut off.

0 100 200 300 400 500 600
-300

-250

-200

-150

-100

-50

0

Distance Indoor [cm]

R
S

S
I [

0 
to

 -2
56

]

0 500 1000 1500 2000 2500 3000
-300

-250

-200

-150

-100

-50

0

Distance Outdoor [cm]

R
S

S
I [

0 
to

 -2
56

]

Figure 2-8
A pair of Ericsson ROK101008 Bluetooth 1.0 modules was used to measure the received signal stength
indicator over distance. Two different locations, a shielded setting in an indoor absorber room (left,
mean values) and an outdoor setting on a rooftop (right, mean values with variance). The RSSI
resolution supported by these first generation Bluetooth devices is next to useless to discriminate more
than just near and far.

S
ig

na
l L

ev
el

 [d
B

m
]

Distance [m]
-80

-60

-40

-20

0 5 10 15 20 25 0  1  3  5  9 12 16 20 28 36

−85

−80

−75

−70

−65

−60

−55

−50

S
ig

na
l L

ev
el

 [d
B

m
]

Distance [m]

Figure 2-9
802.11b Wireless LAN and Bluetooth 1.2 received signal stength indicator measurements – A Wireless
LAN card (left, minimum, mean and maximum values) and a modern Bluetooth 1.2 transceiver
(right, mean values with variance) show significant improvements in their RSSI resolution. However
the jitter is large and outliers quite frequent. Both measurements were performed in an indoor setting.

In order to illustrate this, some qualitative examples measured in different environments
and on different types and generations of transceivers are shown in Figures 2-8 and 2-9.

32



2.2. Navigation Issues in Wireless Sensor Networks

Other systems such as the Chipcon CC2420 low-power radio specify somewhat linear
characteristics of RSSI to input power in their datasheets, but fail to specify anything
about the attenuation over distance,

It is therefore important to make the best out of the situation and pursue a strategy employ-
ing other properties than an exact channel estimation in wireless sensor networks. In the
previous section we have suggested to use as many vectors as possible for the trilateration
solutions. What can be done in the case of large unpredictable errors and high variance of
range estimates as we have put forward? What if a sensor node can only discriminate very
few discrete steps in a range estimate, what if it can only detect near and far? Quantization
effects in range estimates influence positioning results, shown here for strongly limited res-
olution. In Figures 2-11 and 2-10 the influence of reduced quantization in overdetermined
trilateration using MMSE is depicted. We show, that for large range errors the resulting
position error actually increases with the quantization steps. This means, that in the case
of unreliable channel estimates, it is best to not spend too much effort on range estimation
but to just use the topological information for positioning.

Quantization = 1
Quantization = 2
Quantization = 3
Quantization = 7
Quantization = max.

Range Error [%]
0 0.2 0.4 0.6 0.8 1

P
os

iti
on

 E
rr

or
 [%

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Range Quantization Steps

Figure 2-10
Range estimation error and
quantization – Here four anchor nodes
were used to compute an unknown
position using trilateration. Different
levels of range quantization were
assumed along with range estimation
errors ranging from 0-100%. With
growing uncertainty of the range
estimate, the resolution of the range
estimate becomes less important. The
case max. quantization refers to the
full range estimate resolution.

To apply quantization to the measured distances, the range of possible values for distances
is divided into a number of equally sized quantization intervals. After applying the quan-
tization, all distance values inside the same quantization interval will receive the same
quantized distance value. To choose this quantized distance value inside the quantization
interval, a linear quantization was used for the simulation. The linear quantization is a
simple quantization scheme to use. It does not take into consideration the 2-dimensional
simulation setup. It instead assumes that all measured distances are distributed equally
inside the quantization interval. The quantization point inside this interval is chosen in a
way, that the distance from the quantization point to the upper border of the quantization
interval stands in a defined ratio to the distance from the lower border of the quantization
interval to the quantization point.

At low error rates, the calculated position error increases with a decreasing number of

33



Chapter 2: Location Management in Wireless Communication Systems

0
0.2

0.4
0.6

0.8
1

2
4

6
8

10
0

0.5

1

1.5

2

Error Rate [%]
Quantization Steps

P
os

iti
on

 E
rr

or
 [%

]

Figure 2-11
The effect of the quantization on the
calculated position error: The shown
graph was simulated with four anchors
nodes. A position error value of one on
the z-axis therefore denotes a case,
where the distance from the calculated
position to the real position of the
simulated node equals the
communication range of this node. The
curve plotted on the xz-pane at the
back shows the error rates obtained
from calculations without any
quantization or limitation.

quantization steps. However, this behavior is changing, such that for higher error rates, the
calculated position error increases with an increasing number of quantization steps. Two
more interesting observations are firstly that with one quantization step, the calculated
position error does not depend on the error rate and secondly that the position error does
not go to zero when a finite number of quantization steps are used, even when the error
rate is zero.

Quantization = 1
Quantization = 2
Quantization = 7
Quantization = max.
No Quantization

Number of Anchors

P
os

iti
on

 E
rr

or
 [%

]

3 4 5 6 7 8 9 10

2

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

Range Quantization Steps

Figure 2-12
Overdetermined topologies and
quantization: Using overdetermined
topologies such as shown in Figure 2-7
by using more anchor nodes than
actually necessary shows improved
positioning accuracy using trilateration.
The independent range estimation
error assumed here was 50%.

2.2.4 Geometry, Border Effects and Filtering
A well known influence of accuracy in the global positioning system is the dillution of
precision (DOP) [Log92, SB97]. The dillution of precision describes the geometric quality
of a GPS satellite configuration in the sky. Factors that affect the DOP are, besides the
satellite orbits, the presence of obstructions which make it impossible to use satellites in

34



2.2. Navigation Issues in Wireless Sensor Networks

certain sectors of the local sky. Especially in urban measurements, this may be limiting. We
speak of HDOP, VDOP, PDOP and TDOP respectively, for horizontal, vertical, position
and time dillution of precision. These quantities follow mathematically from the positions
of the usable satellites on the local sky.

Translated to navigation in sensor networks, straightforward geometric analysis using er-
roneous inputs reveals, that certain geometric constellations of the anchor nodes result in
larger position errors than others. This is easy to see when the optimum constellation is
considered. Assuming similar but independent perturbation on all range estimates the best
DOP is achieved, when all anchor nodes are located on a circumventing sphere in equidis-
tant spacing from the unknown location (an equilateral triangle for two dimensions and a
tetrahedron for three dimensions with the free node in the middle), and the worst DOP
in the case of all anchor nodes located on a straight line. Some examples for different
geometries simulated in two dimensions are shown in Figure 2-13 and 2-14.

0
10
20
30
40
50

Trilateration Position Error History
0

10
20
30
40
50

Trilateration Position Error History 0

10

20

30

40

50

60

70

80

90

100

Trilateration Position Error History

Figure 2-13
The geometry strongly influences positioning accuracy. Here, three settings with identical parameters
(three anchor nodes, 30% uncorrelated range estimation error, 100 iterations) are shown for optimal
(left), suboptimal (middle) and bad (right, not drawn to scale) geometries. It can be seen that for
(sub-)optimal geometries, the resulting position error stays well below the range error whereas for a bad
(inline) geometry the resulting position error is at least as big as the range estimation error.

Figure 2-14
Extracted from 10000
simulation runs, these example
geometries yield exceptionally
high (>1000%) position
estimation errors.
Characteristic for this
phenomenon are few range
estimates (three and four
anchors nodes shown here) and
bad dillution of precision with
all anchor nodes practically
aligned.

35



Chapter 2: Location Management in Wireless Communication Systems

Combining the knowledge of DOP and quantized range estimates, we have repeated the
calculation shown in Figure 2-11 for different areas assuming obstacles and network de-
ployment area boundaries. The examples shown in Figure 2-15 suggest, that border and
corner areas exhibit significantly higher position estimation errors (up to 2x) than areas
where anchors are located on a complete circumventing plane.

Area I

0
0.5

1
246810

0

1

2

P
os

iti
on

 E
rr

or

Range Error
Quantization

Area II

0
0.5

1
246810

0

1

2
P

os
iti

on
 E

rr
or

Range Error
Quantization 0

0.5
1

246810
0

1

2

P
os

iti
on

 E
rr

or

Area III

Range Error
Quantization

Figure 2-15
Obstacles and boundaries influence trilateration accuracy. Here three different area types are shown
where the anchors are placed in a full plane (left), a half plane (middle) and a quarter plane (right)
around the free node. A position estimation error up to 2x is evident for the obstructed cases with bad
dillution of precision.

The implication of these observations are twofold. Firstly, edges and border regions of a
network topology have to be treated differently when weighting individual trilateration so-
lutions than regions that are surrounded by anchor nodes on all sides. Secondly, in the case
of an overdetermined problem, care should be taken to select sets of equidistantly located
references that are in a somewhat similar distance from the free node. If multiple such sets
can be selected because of a strongly overdetermined problem, the resulting position esti-
mates can be combined in a weighted filter subsequently. Such an approach will eliminate
position estimates such as shown in Figure 2-13 that exhibit excessively large errors, mostly
due to bad geometry, i.e. dillution of precision.

When using a (quasi) unit disk graph as the underlying connectivity model position es-
timates with large errors are not feasible in all cases, e.g. when the distance to an anchor
node resulting from a position estimate is larger than the maximum radio range. Due to
the fact that there are usually no exact solution possible the approximations (least squares)
can produce large overshooting errors. It is thus beneficial to bound the calculated posi-
tion estimates by dist(vi, vi+1) ≤ rmax, with rmax denoting the maximum transmission
range. The effect of limitation on the calculated position estimate is shown in Figure 2-16.
Especially in the case of a resource constrained system, checking the resulting topology for
infeasible results and limiting the maximum deviation of successive iteration results is an
easy to implement and efficient way of improving accuracy and robustness.

36



2.3. Robust Location Management Schemes for Wireless Sensor Networks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Range Estimation Error Rate [%]

]
%[ rorr

E noita
mits

E noitis o
P

With Limit
Without Limit

Figure 2-16
The mean of the calculated position
error of the 1000 simulated
trilateration iterations using 4 anchor
nodes is shown. The lower curve shows
these values of the calculations made
with continuous measured distances
with an upper limit set to the maximal
communication range of the simulated
node. This corresponds to an infinite
number of quantization steps. The
upper curve shows the values obtained
from the calculations made with
continuous measured distances without
any limit.

2.2.5 Heuristics and Iterations
Heuristics and iterations improve the resulting accuracy, but since they depend on indepen-
dent sets of inputs they add to the complexity, storage, communication and computation
requirements. Sliding window and moving average finite impulse response (FIR) filters can
be used to average over multiple independent sets of range estimates as well as computed
position estimates. Compared to storing an extensive series of inputs and computing posi-
tion estimates using time series of individual measurements, filtering over a weighted sum
of individual position estimates and simple feasibility checks such as a limiter as discussed
earlier is preferred for achieving a lightweight and resource sensitive solution suitable for
wireless sensor networks. Of course any method using time series of data will slow down
the responsiveness of a service to changes in the environment and must be carefully chosen
for scenarios with high mobility.

2.3 Robust Location Management Schemes for Wire-
less Sensor Networks

In section 2.1.4 we have introduced the three key components of network based naviga-
tion, identification and data exchange, measurement and data acquisition and computation
to derive location. In this section we introduce the hybrid approach of cooperative rang-
ing integrating networking and positioning that offers both robust startup and precision
on-demand position updates as a suitable means for wireless sensor networks. The startup
phase addresses the sparse anchor node problem by cooperatively spreading awareness of
the anchor nodes positions throughout the network, allowing all nodes to arrive at ini-
tial position estimates. These initial estimates are not expected to be very accurate, but
are useful as rough approximations. The precision on-demand position update phase of
the algorithm then uses the results of the startup algorithm to improve upon these initial
position estimates. It is here that the range error and convergence problem is addressed.

37



Chapter 2: Location Management in Wireless Communication Systems

2.3.1 Cooperative Ranging
The cooperative ranging scheme allows to combine the different tasks that are necessary
for network based positioning to operate concurrently on many nodes. Once the neigh-
borhood information is available at a specific node updates of ranging, updating and po-
sitioning (see Figure 2-17) that depend on each other to some extent, can be performed
sequentially and out of order. Every node in the network is required to keep a database of
this neighborhood information containing neighbors position estimates and the range to
these neighbors. The size of this database depends on the requirements of the position-
ing service requested as well as on the state of the network, i.e. amount and geometry of
neighboring nodes.

Every node executes

Ranging
Updating

Positioning

3 Anchors 1 Iteration 10 Iterations

Figure 2-17
With the three phases of cooperative ranging data exchange, data acquisition and positioning operating
at every node in a wireless sensor network all nodes are able to efficiently compute position estimates even
when out of range of the three anchors shown above. After one iteration the nodes in the center have not
been able to acquire enough data to compute a position which changes, when first order neighbors
become settled node and act as position references as can be seen on the right [SRB01].

This scheme constitutes the basis of all positioning schemes and can be adapted to fit
specific needs or service levels as we show for the topology discovery, startup and precision
on-demand update phases in the following.

2.3.2 Topology Discovery
A node discovering it’s topology by exchanging link pairs within it’s scope receives range
measurements to a large number of neighboring nodes. This information once again can
be used to construct the topology graph of the network and to derive relative location

The Assumption Based Coordinates (ABC) algorithm [SRB01] determines the locations
of unknown nodes one at a time in the order that they establish communication, making
assumptions where necessary, and compensating for errors through corrections and redun-
dant calculations as more information becomes available. These assumptions are needed at
first in order to deal with the under determined set of equations presented by the first few
nodes. This description of the general algorithm assumes the perspective of node v0 and
can be solved successively reducing the amount of necessary computations.

The algorithm begins with the assumption that v0 is located at the origin (0, 0, 0). The
first node to establish communication with v0, v1, is assumed to be located at (r01, 0, 0),

38



2.3. Robust Location Management Schemes for Wireless Sensor Networks

where r01 = dist(v0, v1). The location of the next node, v2, can then be explicitly solved
for, given two assumptions: the square root involved in finding y2 is assumed to yield a
positive result, and z2 is assumed to be 0.

v0 v1

v2

r02

r01

r12

x2

v3

y2

v0 v1

v2

r03
r23

r13
x3

y3

v3

z3

Figure 2-18
Fixing a local set of coordinates starts topology discovery as is shown for the ABC algorithm here. Adding
more and more nodes to such a scheme a three dimensional reference system can be built up successively
that is relative to the origin node v0.

x2 =
r2
01 + r2

02 − r2
12

2r01

y2 =
√

r2
02 − x2

2 z2 = 0 (2.10)

The next node, v3, is handled much like v2, except that only one assumption is made: the
square root involved in finding v3 is positive.

x3 =
r2
01 + r2

03 − r2
13

2r01

y3 =
r2
03 − r2

23 + x2
2 + y2

2 − 2x2x3

2y2

z3 =
√

r2
03 − x2

3 − y2
3 (2.11)

From this point forth, the system of equations used to solve for further nodes is no longer
underdetermined, and so a standard MMSE algorithm can be employed for each new
node. Under ideal conditions, this algorithm thus far will produce a topologically correct
map with an orientation relative to the local node v0. A similar approach to derive a
startup configuration with a local coordinate system established at every node is followed
in [CHH02]. Here a geometric transformation that is used to transform multiple local
coordinate sets (LCS) into one oriented and networked coordinate system is described as
well.

2.3.3 Robust Start-up Positioning Scheme
The goal here is to have a service that is available at all times on every node, no matter how
small the node and independent of dedicated resources with in a network node. Tight

39



Chapter 2: Location Management in Wireless Communication Systems

integration with the network transport and efficient operation are the main aspects here.
For many applications such a simple, lightweight service that might not be able to give
high accuracy, account for dynamics and only support relative positioning is sufficient.

The purpose of the startup phase it to solve the sparse anchor problem, which comes from
the need for at least four reference points with known locations in a three-dimensional
space in order to uniquely determine the location of an unknown object. Too few refer-
ence points result in ambiguities that lead to underdetermined systems of equations. For
initial startup in a multi hop ad hoc network a mandatory requirement is that a network
be connected and for generating a first unambiguous position estimate also a sufficient
node degree. In the simple case of a single node this translates to a minimum degree of
three for the unknown node (see Figure 2-13). When assimilating a WSN topology to
be a wire frame with nodes acting as hinges [NN01], this can be extended to the whole
connected network. But successful startup does not yet imply, that accurate positions can
be computed. As we have shown earlier, different factors influence accuracy and even the
convergence of the positioning problem. Especially bad DOP and large range estimate
errors in multi hop scenarios can add up and cause divergence of the positioning results.

In order to support only the basics necessary for a successful startup different suggestions
have been made by [SRB01, SRL02] (Hop-TERRAIN), [NN01] (DV-hop) and [CHH02]
(LVS, LRG). The basic idea here is to use a hop count to the nearest references that can be
derived from the local topology cache of every node to estimate an extended range from the
unknown to the reference point. Usually, most nodes will start without known locations
and only a few randomly distributed anchors will exist. It is therefore highly unlikely
that any randomly selected node in the network will be in direct range with a sufficient
number of anchor nodes to derive its own position. Hop-TERRAIN solves this problem
by trading off accuracy for consistency. The startup phase will provide rough guesses of the
nodes initial positions. It is shown in [SRL02] that this is good enough as an input to the
second phase for refining the position estimates.

The Hop-TERRAIN algorithm works as follows: At large time intervals, each of the an-
chor nodes launches the Hop-TERRAIN algorithm by initiating a broadcast containing
its known location and a hop count of zero. All of the one-hop neighbors surrounding
the anchor will record the anchors position and a hop count of one. Then they perform
another broadcast containing the anchors position and a hop count of one. This process
continues until each anchors position and an associated hop count value have been spread
to every node in the network, (see Figure 2-19). It is important that nodes receiving these
broadcast packets only store and rebroadcast a certain anchors position if they have not
received such a packet with the same or smaller hop count before.

Once a node has received data regarding at least four anchor nodes, it is able to perform
a trilateration to estimate its location, (see Figure 2-5). This will of course only be a very
rough estimation of the actual positions.

The DV-hop algorithm proposed by [NN01] works very similar and is used to approximate
location for all nodes in an isotropic environment. It allows to orient a network on a plane
with limited mobility nodes and works with few references. The claim here is that DV-

40



2.3. Robust Location Management Schemes for Wireless Sensor Networks

Algorithm 1 Hop-TERRAIN
for all vu, vs ∈ G do

while receiving position packet do
if va 6∈ Γρ(v, G) or lower hop-count received then

store hop count
broadcast position packet with (hopcount + 1)

end if
if |va ∈ Γρ(v, G)| ≥ (dimension + 1) then

estimate current position using MMSE
end if

end while
end for

v1

v3

v2

vu

Figure 2-19
The Hop-TERRAIN startup
phase uses the hop-count over
all intermediate nodes to the
closest anchor nodes vi to
estimate extended ranges to be
used in the computation of
initial position estimates for all
unknown nodes vu. The
maximum radio range of node
vu is given by the shaded circle
here. In this example, the
resulting range estimates r̂1, r̂2

and r̂3 are four, two and three
respectively.

hop allows distributed efficient position awareness for non-GPS enabled nodes providing
an average accuracy of less than one radio hop from the true location. The difference
here is, that a hop count also takes place between reference locations (anchors) and in
combination with the true distance a priory known between these references an individual
weighting metric for each hop is computed rather than an average hop length as is used in
Hop-TERRAIN.

2.3.4 Precision On-Demand Position Updates
With the initial position estimates of Hop-TERRAIN in the startup phase, the objective
of the refinement phase is to obtain more accurate positions, using the estimated ranges
between nodes (see Figure 2-7). This paradigm can be abstracted as a scalable on-demand
service dependent on the available infrastructure for range estimation, the environment
and the available computing resources.

In the startup phase, the Hop-TERRAIN algorithm floods the anchors positions through

41



Chapter 2: Location Management in Wireless Communication Systems

the network and nodes record the hop count of the shortest path to each anchor. Hop-
TERRAIN also records the neighbor IDs on the shortest path. These IDs are collected
in a set of potentially sound neighbors. When the size of this set reaches four in three
dimensions (three in two dimensions) a node declares itself settled and may enter the
refinement phase. The neighbors of the settled node add its ID to their sets and may in
turn become settled, etc.

Refinement is an iterative algorithm in which the nodes update their positions in a number
of steps. At the beginning of each step, a node broadcasts its position estimate, receives
the positions and corresponding range estimates from its neighbors and computes a least
squares triangulation solution to determine its new position. Often the constraints im-
posed by the measured distances will force the new positions towards the true location of
the node. Refinement stops and reports the final result once updates become small.

Without any prevention, the large errors induced by RSSI measurements will propagate
fast throughout the network. Therefore, a confidence metric can be included in the re-
finement algorithm. Instead of solving the unweighted least squares the weighted version
as introduced in section 2.1.5 is solved. Each node assigns a confidence weight between
zero and one to its position estimate. Anchors immediately start with a confidence value
of one. Unknown nodes start with a low value and may raise their confidence after subse-
quent refinement iterations. Whenever a node performs a successful triangulation, it sets
its confidence level to the average of its neighbors levels. In general, this will raise the
confidence level. It is shown in [SRL02] that including confidence levels improved the
refinement phase considerably.

A general scheme for efficient and robust precision on-demand location awareness that can
be derived from these ideas is shown in overview in algorithm 2.

Algorithm 2 Precision On-demand Positioning
for all vs ∈ G do

while receiving position packet from Γρ do
establish connectivity graph, store and exchange neighborhood information
count hops to next references
estimate span between hops and weight the hop count
estimate current position using MMSE
bound and filter position estimates based on the neighborhood topology
check error against reference positions
if error too large then

inc(ρ)
end if

end while
end for

Further improvements can be made by detecting that a single node is ill-connected: If
the number of neighbors is less then four in three dimensional and less than three in two

42



2.4. Infrastructure

dimensional space then the node is ill-connected. However, detecting that a group of nodes
is ill-connected is more complicated, since some global perspective is necessary. A heuristic
can be employed that operates in an ad-hoc fashion, yet is able to detect most ill-connected
nodes. The underlying premise for the heuristic is that a sound node has independent
references that is, the multi-hop routes to the anchors have no link in common.

When performing subsequent updates using cooperative ranging schemes such the refine-
ment scheme described above different parameters can be adapted according to the require-
ments of the applications using the positioning information. To achieve the goal of high
local connectivity for optimal trilateration results it is important to expand the size of the
scope of each node also termed the location reference group (LRG) by [CHH02]. With a
growing visibility of the network more nodes and also more references can be taken into
account into each local wire frame model at the cost of higher storage and computational
requirements.

2.4 Infrastructure
2.4.1 Netsim – A Positioning Simulation Environment
The existing approaches for network simulation are typically based on low-level, event-
driven models of networking and physical layer functions [NS-2, GloMoSim, Opnet, etc.]
and target the detailed statistical analysis of very specific protocol functions. They are often
insufficient when analyzing large network topologies in varying environments or high-level
services such as local positioning.

We have designed a simulation tool suite that allows extensible and parametrized explo-
ration of positioning algorithms. Different algorithms as well as error models can be easily
plugged into the framework (see Figure 2-20). It has been used to generate most of the
results presented earlier.

• Designed to cope with very large multihop networks

• Every node is implemented as single instance

• Different communication mechanisms

• Support for different settings and mobility

• Detailed analysis and logging capability

• Easy to use and parametrize for fast design cycle

The Netsim tool suite uses a single instantiation per node to create a time-multiplexed dis-
tributed network simulation run. Each node instance is randomly selected and executed
once per run. Successive runs can be scheduled with varying environmental parameters.
The interaction between nodes is based on network messages for data exchange and differ-
ent error models for the range estimation between nodes.

43



Chapter 2: Location Management in Wireless Communication Systems

Figure 2-20
The Netsim positioning
simulation framework consists
of a graphical front end and a
simulation back end. It
supports easy to use
parametrization of the
simulation environment and
extensive support for analysis.
Shown on the left is a setup
with 1582 nodes after 100
runs. Regions with high
position estimation errors can
be seen in the upper right and
lower left corner were anchors
are sparse.

2.4.2 Services for Location Management
For a location management service we can identify the following functions that need to
be supported on every networked node that can be split up into communication based
functions and local execution primitives at each node:

Search and Identification of Nodes
Not all radio communication systems allow to explicitly search and identify individual
nodes. However, for a positioning algorithm this is a vital function. Furthermore it is
beneficial if a service can use primitives that allow to identify a node type, role and/or state,
i.e. to identify anchor, free or settled nodes prior to a connection setup. Service discovery,
which allows to detect the capability of a certain service availability from remote is not a
strict requirement for a location service but increases performance due to a reduction of
the search time for a certain node/service.

Range Estimation
Although strongly connected with the capability to detect a carrier signal and demodulate
symbols in a wireless communication link, not all transceiver systems allow to generate
range estimates between transceiver pairs. Those that do support such features, such as
RSSI or LQI typically use the data provided as a basic means to select among different
links (if available). Other such as the GPS system use the radio signal to solely estimate
ranges (all data transferred from satellites to receivers is used to compute range and position
estimates) and do not allow private data communication in the sense of an application. A
twin system of both capabilities would be most desirable.

44



2.4. Infrastructure

Data Exchange
In order for location estimation schemes as proposed to work, nodes have to exchange data
with each other (on a local scale). This necessitates the control of communication links
(topology control, link supervision, routing), reliable data transfer and time synchroniza-
tion. In dynamic environments with either varying conditions or mobile nodes, data sets
exchanged cannot be brought into a common context without time synchronization, i.e.
nodes must be able to transfer data sets within a given bounded interval and align them
with local observations,

Data Storage
Actually a basic primitive of every computing system, positioning schemes have extra re-
quirements of time-synchronized data storage. This should be supported both for range
estimation data as well as for arbitrary events to support logging and debugging.

Computation
Local computation with or without support through dedicated hardware is required to
compute filtering and MMSE results. Usually not an option in wireless sensor networks
distributed execution across multiple nodes can help to offload computationally intensive
tasks to nodes with more resources in heterogeneous environments.

Local Node Management Functions
Location estimation is a more complex task than the typical duty-cycled, sense–and–
broadcast application found in many wireless sensor networks. Basic node management
functions that need to be supported at every node to support the more complex and event
driven execution in a location management service are operating system based process
(thread) management, support for hardware drivers, storage and memory functions, power
management, user interface modalities (control, debugging, verbosity levels)as well as sta-
tus monitoring.

45



Chapter 2: Location Management in Wireless Communication Systems

46



3
A Distributed Environment for Prototyping

Sensor Networks

Although still a fairly recent field, platforms and prototype systems for wireless sensor
networks have received substantial attention and been focused in numerous investiga-
tions. The classical approach to wireless sensor network devices following the vision of
Smart Dust [KKP99] aims at low-power and highly integrated node hardware. One of its
most prominent representatives is the UC Berkeley family of Motes [HSW+00] that has
been commercialized and is widely used by researchers and industry all over the world.
Other research groups have developed similar architectures, developed from off-the-shelf
components and based on a low-power microcontroller and a custom radio front end chip
like the Smart-Its [BG03], Particles [DKBZ05], Eyes [HPH+05], ScatterWeb [RTVS03]
and Telos [PSC05] platforms. Common to most of these architectures is that all commu-
nication (baseband, medium access control and link-layer protocols) as well as the appli-
cation processing is performed on the host microcontroller, which implies a meticulous
design process, extensive knowledge about real-time systems, and in effect the allocation of
substantial resources on the host central processing unit (CPU). Another drawback of these
platforms is, that they can only communicate with devices equipped with the same type of
radio and the necessary protocol processing capabilities. In contrast to this, the BTnodes
can interact with any Bluetooth-enabled device without the need to integrate further hard-
or software.

3.1 Related Sensor Network Platforms
3.1.1 Early Platforms
An early platform in mobile computing research was the ParkTab device developed by
Want at Xerox PARC [WSA+96]. The ParkTab is a small battery powered mobile com-
munication device that allowed to receive messages and interact with services running on

47



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

back end servers. Furthermore a simple cell-based localization service was available based
on infrared, ceiling-mounted location beacons.

The InfoPad [TPB98] developed by Brodersen et al. at the University of California at
Berkeley (UCB) is a portable multimedia terminal that allowed the streaming of real-time
audio and video data over a wireless data link to a farm of back end servers responsible for
all processing tasks. All very-large scale integration (VLSI) circuits here were custom made
to optimize efficiency and battery life of the mobile units.

The back-end to the Sentient Computing system by Ward and Hopper at AT&T Research
Cambridge [WJH97, ACH+01] consists of a dense ceiling array of transceiver modules
connected over a system bus. Mobile, battery-powered devices, the so-called ”bats”, that
communicate with the transceiver modules via a radio down-link and an ultrasound up-
link. This technique allows for precise location determination of the active bats using
trilateration based on ultrasonic time of flight and is deployed for experimentation on
about 1000 m2 of building space spanning multiple floors.

All of these early platforms have in common a fixed infrastructure that needs to be put in
place, operated and maintained for the lifetime of the system. Moreover they were more
or less targeted at a single application only with limited flexibility or reuse in follow up
projects. Among these examples, the active bat system is the only one that has a lifetime of
multiple years and is today still and being operated and used to produce current research
results [HWH03].

3.1.2 State of the Art
The de facto standard in WSN platforms today, both in industry and research, are the Ber-
keley Motes and the TinyOS software framework by Culler et al. [HSW+00, LMP+05].
More than just a piece of operating system software and demo applications, TinyOS is a
whole new component based paradigm for wireless sensor networks that assumes an on-
going evolution of hardware devices and software components based on a network-centric
abstraction [CHB+01]. Introduced in 2000 it has gained significant impact over the past
years, mostly in the academic and research communities. The commercialization of the
standard platform for TinyOS, the Berkeley Mica Motes through the industrial partner
Crossbow has not only made experimentation accessible to researchers without the systems
focus or manufacturing capabilities to develop their own testbeds but also to emerging
industrial applications and commercial products.

Originally following Kahn’s vision of Smart Dust [KKP99] the family of Motes were de-
veloped from comodity-off-the-shelf (COTS) components [HC02] and are targeted for a
broad audience. The family of Motes, based on the Atmel AVR micro-architecture and an
additional radio chip ranges from early prototypes like the WeC, Rene, Rene2, Dot and
Mica Motes to the widespread Mica2 and Mica2Dot and design studies such as the Spec
integration of a Mote-on-a-chip (full system-on-chip) by Hill [Hil04]. Recently added
members of the family pave the way to new radio architectures such as IEEE 802.15.4
(Telos, MicaZ, Imote2), Bluetooth (Imote) or lower power micro-architectures (Telos and

48



3.1. Related Sensor Network Platforms

Eyes using a TI MSP430, Imote using an ARM7 thumb, Imote2 using an Intel PXA271).
Especially the Intel Imote architecture deserves some attention here as it is closely related
to the BTnode architecture. The Imote is based on an ARM7 thumb and a Bluetooth
radio integrated into a Zeevo Bluetooth system-on-chip (SoC) [KAH+04]. This requires
to run both the proprietary Zeevo OS and Bluetooth protocol stack as well as the TinyOS
application on the same CPU resulting in considerable burden and software complexity.
As a result the Imote2 [NKA+05] is again separated into two subsystems, a CPU and a
radio.

Usually deployed in outdoor scenarios applications such as monitoring of seismic activ-
ity [WAJR+05], habitat monitoring [SOP+04, SPMC04], wildlife monitoring [CEH+01,
MCP+02] and military applications like shooter localization [MSLS04] or wide-area sur-
veillance [HKS+04] have used setups ranging between tens and hundreds of nodes.

A recent study and classification resulted in a proposal to extend WSN architectures to
tiered architectures [HHKK04] with connection to back-end infrastructure using Stargate
embedded Linux devices, medium sized nodes capable of bridging networks and support-
ing high data transfer rates (Bluetooth devices like Imotes and BTnodes) as well minimum
complexity and thus ultra low-power sensor devices, such as the traditional Mica2 Motes.

3.1.3 Research Platforms
There are many platforms that have been developed for research purposes or as case studies
only. The PicoRadio testbed by Rabaey et al. [RAdSJ+00] aims at the early investiga-
tion of system level properties and software architecture trade-offs to be used in a full SoC
implementation of a PicoNode. Focus is on highly-specialized ultra low-power radio archi-
tectures [RAK+02] and SoC integration. In the first testbed prototypes a stack of boards
is used to accommodate a Strongarm processor with adjacent field-programmable gate ar-
ray (FPGA) for baseband processing, a selection of radio modules, input-output (IO) and
power components.

Similar in architecture but with less performance and targeted at networking and applica-
tion layer research are the Rockwell/WINS nodes developed by Pottie [PK00]. RadioAc-
tive networks [BWG99] drawing the strength from both software radios and active net-
works first described by Tennenhouse et al. [TW96, TSS+97, Ten00] are other examples
of network-application integration.

The Medusa MK-II nodes by Srivastava [SS02] step up the system integration effort and
versatility incorporating multiple radios and multimedia IO on a single printed circuit
board (PCB). These were augmented with various sensors to serve as the I-Badge platform
used in ubiquitous computing research to create a smart kindergarden [CMY+02].The
many subsystems on the I-Badge have however induced considerable system complexity
and also interfacing constraints that are impractical in the long run.

Research focusing on ad-hoc networking protocols and local positioning by Estrin and
others [EBB+03] has made use of mixed environments of iPAQ devices and Mica2 Motes

49



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

with attached ultrasonic ranging sensors. Applications here range from beamforming us-
ing comodity-off-the-shelf components [WYM+02], and habitat monitoring [WEG+03a].
While first pioneered at the University of California at Los Angeles (UCLA), researchers
at MIT developed the concept of an acoustic Mote further into a now commercialized
platform, the Crossbow MCS Cricket with on-board ultrasonic rangefinder [PCB00].

The Smart It’s devices were conceived for ubiquitous computing experimentations and
are oriented towards a low-complexity, quick to assemble solution requiring minimum ef-
fort and learning phase. They are built from 20 MHz PIC microcontrollers using RFM
low-power radios by Beigl [BG03]. Recently a whole family of sensor add-ons and dif-
ferent sensor–processor–radio combinations have been revised under the name Smart It’s
Particles [DKBZ05] targeting the lower end of system functionality and size. A vari-
ant of this idea of quick assembly and kit-based experimentation has been developed
by Schmidt [Sch02] to support physical prototyping of ubiquitous computing experi-
ments. A similar theme of interaction within a pervasive computing world is followed
by Fuhrmann et al. [FKO03, HBFZ04] and their Bluewand devices.

The ScatterWeb devices designed by Schiller [RTVS03] are embedded wireless modules
using an HC11 microcontroller, a low-power Radio, Bluetooth, wired ethernet and a dis-
play for educational purposes. These devices can run full TCP/IP software as well as web
servers and simple application software.

The uAmps project at MIT focuses on adaptive low-power sensor networks [WMM+01]
with work on energy-scalable protocols by Wang [WHSC01] and Heinzelman [HSWC00]
on power-aware wireless micro-sensor networks by Min [MCB+02]. Furthermore, an ap-
plication-specific protocol architecture for wireless micro-sensor networks was proposed by
Heinzelman [HCB02].

Researchers at the University of California at Irvine (UCI) have developed platforms for
different applications, namely the Eco [PLC05] and DuraNode focusing on power utility
maximization for multiple-supply systems by using a load-matching switch [PC04] and the
Itsy platform [LC04] focusing on combined architecture-operation trade-offs in dynamic
voltage scaling, partitioning and power-failure recovery.

The Consensus platform [RPW+04] makes use of two different radios (Bluetooth and
802.11b) with strongly differing characteristics to investigate power–performance trade-
offs in embedded microserver applications. Albeit similar to many architectures found
in todays personal digital assistants (PDA), this platform allows for in-situ profiling and
analysis not possible on it’s commercial counterparts.

The electronic shepherd is a device encompassing a GPS, GPRS communication and an
UHF transceiver for tags used in animal flock monitoring by Thorstensen [TSBW04].

Bellis et al. [BDO+05] have proposed yet another stackable platform consisting of 25 mm2

sensor cubes. Each cube supports a single function (radio, compute, FPGA, sensor, inter-
face etc.) and is connected to other cubes using a global, vertical inter-cube bus system.

The Gnomes testbed for low power heterogeneous wireless sensor networks devised by
Welsh [WFF03] is based on lower power COTS dust devices using an MSP430 microcon-

50



3.1. Related Sensor Network Platforms

troller powered from nickel metall hydride (NiMH) cells. An operating system (OS) with
additional process management and scheduling has been modeled after TinyOS.

3.1.4 Commercial Platforms
The family of Berkeley Motes is successfully marketed by Crossbow that manufactures the
devices, sensor boards and developer kits as well as offering training and consulting services.
Several variants differing in radio and sensor capabilities have been produced as well as
auxiliary sensor board, programmer and microserver hardware (Stargate) and appropriate
software tools. Within a larger DARPA project the extreme scaling mote (XSM) has been
developed and is currently being deployed with about 10’000 nodes [Ros04, DGA+05].
Here, Crossbow takes the lead role in the industrialization and product management based
on the original UCB open source hardware designs and software projects.

A long time contender in the sensor network arena, Sensoria spun out of UCLA and is
mainly involved in full-custom military applications. Here, due to the commercial nature
of the projects, functionality and robustness is of higher importance than small size or
budgetary constraints. So many of the applications are actually not light weight at all, as
documented by Elson [Els03].

There are quite a few young companies in the field that focus on scalable, secure, and robust
mobile mesh networking for observation and security applications such as PacketHop or
Millenial Net who are producing building and industrial automation applications based
on sensor networks. Others started out by producing devices such as the TACT-433 by
IP01, the TinyNode584 by Shockfish, the M1010 motes from DustInc or the Tmote Sky
by Moteiv [PSC05] and are offering more and more system integration as well as software
services.

Industrial embedded modules, like the series of radio modules offered by Panasonic allow
easy integration of wireless communication without specialized skills (RF engineering). In
the case of the Zeevo equipped Bluetooth modules with integrated ARM core and memory,
these modules could be used as stand-alone platform, i.e. like the Imote, without further
modification. However, (user-) interface, power management and sensor components are
missing on such modules.

3.1.5 Specialized Low-Power Architectures
The experiences of Raghunathan [RPW+04] using a low-power wireless mobile comput-
ing platform show that use of specialized, low-power individual components alone is not
enough to achieve a system goal, but that that the entire system has to be designed and
operated in a low-power aware manner from the ground up, carefully orchestrating the
transitions of the various components to and from their low-power states such as proposed
by Lu [LCS+00] and others.

The PicoBeacon is a recent, low-power design study of a self powered radio circuit using
an integrated solar cell, minimal charge buffering and power control circuits [ROC+03].

51



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

The WiseNet architecture proposed by Enz [EEHDP04] uses a specialized, custom MAC
protocol using minimized preambled to achieve ultra-long lifetime requirements using sin-
gle cell battery power supplies and so therefore not compatible to other devices and proto-
cols. In contrast to WiseMAC [EHD04], MAC layer protocols such as S-MAC [YHE04],
B-MAC [PHC04], T-MAC [vDL03] and BitMAC [RR05] operate on standard comodity-
off-the-shelf hardware and are thus widely accessible.

3.1.6 Operating System Software for Sensor Networks – TinyOS
Most of the hardware platforms discussed in the previous sections use proprietary cus-
tom software and only provide a thin hardware abstraction layer, on top of which ap-
plications are executing [RTVS03]. One particular exception is TinyOS [HSW+00], a
component-oriented operating systems architecture designed for the Berkeley family of
Motes. TinyOS [CHB+01] pursues a network-centric approach to embedded software sys-
tems. Similar to our approach presented in section 3.4.3 it provides asynchronous events
as a basic programming abstraction. System services (such as multihop routing) as well as
applications are implemented as a set of components with well-defined interfaces. A sim-
ple declarative language is used to connect these components in order to form a complete
application. TinyOS applications are programmed in this custom C dialect [GLvB+03],
requiring special development tools, i.e. a nesC compiler. This is in contrast to our plat-
form, which uses standard C and an unmodified GNU tool chain.

Today the TinyOS software repository contains numerous additions and contributed demo
projects that can be adapted and facilitate the development of custom applications. In
retrospective of the past years, the community effort generated by TinyOS and it’s open-
source policy has shown significant impact. The software implementation of the core
TinyOS-1.x is well maintained and contains a time tested and versatile set of functions.
Although well perceived and popular throughout the community, it must be noted that the
software and its details are demanding on the developer and ask for meticulous care and
profound knowledge to be useful. Aside from concepts and paradigm, the reality and day
to day routine of developers consist of just as many bug-fixes and workarounds as in most
other software systems and is not rocket science at all but serious engineering work. The
ongoing work to create a TinyOS-2.x based on unified models and abstractions [LMG+04,
HPH+05] look promising to date but will need extensive further development.

Default TinyOS-1.x applications use a similar approach and structure as the first genera-
tion BTnode System Software (see section 3.4.3). It’s main application model followed by
the majority of developers assumes a duty-cycled stream-oriented application that is very
suitable when assuming the processing of sensory data and protocol data on the commu-
nication links. Approaches to interleave such streams at different rates exist, but things
get very complex and unpredictable when control flow dominates in application or mixed
datastream and control flow applications need to be debugged.

52



3.2. Metrics of Wireless Sensor Network Platforms

3.1.7 Support Middleware
Various projects aim to provide a service infrastructure or middleware which supports the
development of complex sensor network applications. TinyDB [MFHH02] interprets the
sensor network as a distributed database being constantly filled with sensory data such
that a simple SQL-like query language can be used to query the sensor network. Sen-
sorWare [BHS03] uses an agent-like approach to program sensor networks for complex
tasks. A scripting language is used to define small programs which are then distributed
to the nodes of the network. Later on, executing scripts can migrate from node to node
along with their state information. DSWare [LSS03] uses a real-time variant of an event
notification system, which allows to subscribe to specific events generated by sensor nodes.

3.2 Metrics of Wireless Sensor Network Platforms
Sensor networks have been built for a number of different, widely varying applications and
environments. Although unified requirements and characteristics to suit the needs of a
majority of applications cannot be established there is a certain consensus about the state-
of-the-art in applications and the typical characteristics of an optimal system [RM04].

The standard wireless sensor network application usually assumes spatially distributed
nodes with simple, individual sensors that transmit these sensor values to a common sink
using a wireless (multihop) network. In order to achieve a cost-effective and minimum-
obtrusive solution nodes are generally thought to be of small physical dimensions, low-cost
and operating in a power-efficient (duty-cycled) fashion from their own power supply. Typ-
ical application examples here are in environmental monitoring [MCP+02] object tracking
[SBP+04] and long-term surveillance [LSZM04]. Further general requirements for WSN
devices are a small form factor, ubiquitous usage, unobtrusive application, programma-
bility, availability and affordability. Often underestimated, the appropriate development
tools, sample applications, documentation and support are also playing a major role for a
success of platforms and applications alike.

3.2.1 General Platform Metrics
It is difficult to compare different platforms, especially when designed for and used in
different applications where unified requirements cannot be established [RM04]. Never-
theless, general requirements and metrics are important for the assessment, evaluation and
comparisons of platforms, applications and implementations. Many of the criteria used to
describe the performance and characteristics are conflicting, requiring careful analysis and
application dependent metrics. We will be specifically interested in metrics concerning
platform architecture, tools and support, and applications as discussed in the following.

Architecture
Generally, architectures of WSN devices can be partitioned into three subsystems: com-
munication, computation and sensing/interface. Although a platform architecture is a
combination of these three subsystems, it is often practical to distinguish between these

53



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

when evaluating and comparing platforms in the interest of greater transparency and de-
tail.

Specific architecture metrics are:

• CPU speed and architecture

• Memory size and type

• IO capabilities

• User interface capabilities

• Sensors, type, resolution, sample rate, accessibility

• Programming modalities, necessary tools, number of cycles

• Radio characteristics, data rate, frequency, number of endpoints, number of chan-
nels, setup time

• Transmission characteristics, transmit power, sensitivity, interference, antenna type,
range

• Radio and interface capabilities, protocols

• Power consumption in all operating states

• Energy supply, power conversion

• Cost, initial acquisition and follow up for deployment and maintenance

• Deployment effort, required know-how

• Physical properties such as casing, size, robustness

• Availability, year of introduction

Tools and Support
The availability of appropriate development tools and access to all system specific docu-
mentation is key for successful applications. Only a thorough, transparent and up-to-date
documentation will allow developers to use the platforms appropriately and with the nec-
essary care for the details, that are so important when operating on resource constrained
systems. Especially when pursuing team efforts and in academic environments, the ques-
tion of royalties and licenses per user and per developer kit necessary are of considerable
concern. Here, royalty free tools and open-source software and documentation models
are generally anticipated an so facilitates external collaboration, a model that is becoming
more and more important in commercial application domains as well.

Specific tool metrics are:

• Availability of development tools

• Availability of system libraries and example applications

• Cost of tools and developer kits per user

• Availability and access to documentation

• Debugging support and tools

54



3.2. Metrics of Wireless Sensor Network Platforms

Applications
Many applications have been proposed (see section 1.1.2) spanning a wide variety of prop-
erties and goals. Today, the design space of sensor network does not follow a single com-
mon denominator as we have discussed in section 1.1.3. It is thus difficult to characterize
applications, especially with the use of a single set of standardized metrics.

Some commonly used metrics for applications are:

• Application, system and single node lifetime

• Persistence of the application

• Peak and average load

• Memory requirements

• Data traffic and patterns

• Data processing, storage and aggregation

• Modalities and frequency of user interactions

• Startup behavior and duty-cycle

• Mobility

• Homogeneity/Heterogeneity of nodes

• Coverage area

• Availability, access to the application

• Redundancy, resilience to failures

• Dependence on infrastructure

3.2.2 State of the Art Platforms Compared
For a concrete platform comparison example, characteristic figures have been compiled for
the Crossbow Mica2 and Mica2Dot, the Moteiv Tmote Sky (aka Telos) and the Intel Imote
(see tables 3-1, 3-2, 3-3 and 3-4). The Mica2 and Mica2Dot represent the de facto stan-
dard platform for sensor networksdiffering only in form factors and slightly different core
resources. The Tmote Sky is a modern, ultra low-power architecture using standard com-
ponents while the Imote represents a completely different approach of a high-performance,
custom node-on-a-chip. All of these platforms are designed to run custom TinyOS WSN
applications (see section 3.1.2 for details) without the capability to interface to other wire-
less enabled devices. The data presented in the tables are derived from device datasheets in
the case of the commercial Mica2, Mica2Dot and Tmote Sky and the relevant publications
in the case of the Imote [KAH+04, NKA+05]. Especially in the case of the power con-
sumption figures it is hard to derive objective and true figures since the conditions under
which these figures are attained vary and often, the platform documentation cites subcom-
ponent datasheets only (for the Mica and Mica2Dot), as opposed to measurements on the
whole, live system (Tmote Sky and Imote).

55



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

In this section, the four selected platforms are compared against each other. For the sake
of completeness, the platform comparison further includes the BTnode rev3 that is in-
troduced in detail later in this chapter in section 3.4. The comparison is based on the
relevant system core features (see tables 3-1 3-5 and 3-8) presented in Figure 3-1, the radio
system properties (see tables 3-2, 3-3 and 3-6) in Figures 3-2 and 3-3 as well as the power
consumption and power supply properties (see tables 3-4 and 3-7) in Figure 3-4. In the
case of the dual radio BTnode platform a distinction is made between the low-power radio
and the Bluetooth radio. We will use this comparison to motivate and illustrate the design
choices made for the BTnode platform in section 3.3.

3.2.2.1 System Core

Table 3-1: State of the art platform comparison – system core features
Mica2a Mica2Dota Tmote Skya Imoteb

Microcontroller ATmega128l ATmega128l MSP430F ARM7
Architecture 8-Bit 8-Bit 16-Bitc 32-Bit
Speed 7.3728 MHz 4 MHz 8 MHz 12 MHz
Program Memory 128 kB 128 kB 48 kB 512 kB
Data Memory 4 kB 4 kB 10 kB 11 kBd

Configuration Mem. 4 kB 4 kB – –
Storage Memory 512 kB 512 kB 1024 kB –
ADC Resolution 10-Bit 10-Bit 12-Bit –
External IO 51 18 16 30
On-Board Sensors 2e 2e 5e –
UI Components 3 LEDs 1 LED 3 LEDs,

1 Button
1 LED

Programming Modes ISP, JTAG,
Bootloader

ISP, JTAG,
Bootloader

USB, JTAG JTAG

Re-Prog. Cyclesf ≤10’000 ≤10’000 10’000+ ≤500
Size 1856 mm2 492 mm2 2621 mm2 900 mm2

a Typical datasheet values.
b Typical datasheet values and as reported by Nachman et al. [NKA+05].
c 16-Bit RISC with hardware multiplier.
d 64 kB total with 11 kB free for applications on top of the mandatory Zeevo OS and radio stack.
e These values include an integrated battery monitor.
f This values specifies the amount of cycles that the Flash program memory supports.

The system core is evaluated so that CPU architecture and speed, memory sizes, external
IO and on-board sensors are all to be maximized whereas the system size is to be minimized
to derive the optimal architecture (see Figure 3-1). The Mica2 and Mica2Dot Motes
show conservative memory and processing capabilities combined with a default sensing
and storage capability. They differ only in respect to size, CPU speed and external IO. The
Tmote Sky supports increased processing capabilities, many on-board sensors combined

56



3.2. Metrics of Wireless Sensor Network Platforms

with ample storage capabilities but lacks clearly in terms of size and especially memory for
processing. It is thus most suitable for lightweight applications with long inactive periods
and bursty processing demands. The Imote is harnessing considerable processing power
and program memory on a small form factor but it lack in terms of integrated sensors,
storage and data memory. Especially the restricted amount of re-programming cycles limit
the use of the Imote for heavy development work. All four platforms suffer from very scarce
data memory resources requiring extreme care during the design and meticulous effort in
developing applications that fit into such limited memory footprints of a few kilobytes
only.

Figure 3-1
Platform comparison – system core features: While the Imote is clearly harnessing considerable processing
power and program memory on a small form factor, it lacks in term sensors and storage. The Mica2 and
Mica2Dot differ only in size, speed and the amount of external IO. The BTnode rev3 (see tables 3-5
and 3-8 for details) supports ample memory and IO but only one sensor, clearly distinguishing it from
the minimal memory support and large variety of sensors provided by the Tmote Sky.

3.2.2.2 Radio Systems – Physical Properties
Whith the system core features given as objective facts, the radio features already pose con-
siderable problems and room for interpretation. The cause for this is mainly the broad

57



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

range of options and configurations possible on most of these radio devices. Although
designed for standardized interoperability, a multitude of protocols and operating schemes
are available and the performance of a single solutions is so highly dependent on the re-
quirements of the underlying application. While the physical parameters such as frequency,
modulation, transmit power and sensitivity are more of interest to the radio designer the
data rate, radio range (cell size), amount of distinct channels and setup time are very rel-
evant to application design and performance. Furthermore the interface modalities under
which a radio is connected to a host CPU and the services offered by the radio are of
concern (see also section 3.2.2.3).

Table 3-2: State of the art platform comparison – radio physical properties
Mica2a Mica2Dota Tmote Skya Imoteb

Radio Chipcon
CC1000

Chipcon
CC1000

Chipcon
CC2420

Zeevo
TC2001

Standard ISM ISM 802.15.4 Bluetooth 1.1
Frequency Band 315-916 MHz 315-916 MHz 2.4 GHz 2.4 GHz
Data Rate 38.4 kbps 38.4 kbps 250 kbps 723.2 kbps
Setup Time <50 msecc <50 msecc <1 msec <500 msec
TX Powerctrl 30 dBc 30 dBc 24 dBc –
TX Powerd –/+10 dBmc –/+10 dBmc -3/+0 dBm +0.5/+4 dBm
Sensitivity -101 dBmc -101 dBmc -94 dBm -80 dBm
Modulation FSK FSK DSSS-QPSK FHSS-GFSK
Int. Antenna – Wire embed. PIFA GigaAnt
Ext. Antenna MMCX conn. – SMA conn. U.FL conn.
Outdoor Range 150 mc 150 mc 125 m 30 m
Indoor Range 40 mc 40 mc 50 m 30 m
Channels 4 4 16 79
Max. Endpoints MAC specific MAC specific 16-bit 7S, 4M

a Typical datasheet values.
b Typical datasheet values and as reported by Nachman et al. [NKA+05].
c Values are frequency (and data rate) dependent.
d Typical/maximal datasheet values.

Of the seven properties depicted in Figure 3-2, all but the setup-time, which is to be min-
imized are to be maximized for best performance. Although the Mica2, Mica2Dot and
BTnode rev3 with low-power radio (BTnode3 LPR) are using the same radio they are
typically specified for different protocol variants resulting in different data rates and radio
ranges. Clearly situated at one extreme of the design space when compared to the link-
oriented 802.15.4 and Bluetooth radios used in the Tmote Sky, Imote and BTnode rev3
with Bluetooth (BTnode3 BT), the broadcast-oriented CC1000 ISM radio supports only
few distinct channels resulting in a low capacity. When operated at high transmit power
levels the radio ranges achieved are also high, further limiting the capacity of a network.
The Tmote Sky shows a different approach with lower transmit power, higher sensitiv-

58



3.2. Metrics of Wireless Sensor Network Platforms

ity and bandwidth, a number of dedicated channels and extremely low setup-time. The
Bluetooth radios on the Imote and BTnode rev3 Bluetooth are situated at the other end
of the design space supporting a very high data rate, the highest amount of channels and
so resulting in considerably higher capacity. It must be noted however, that the setup-
times displayed here are for the hardware resource alone and do not encompass the time
necessary to set up a communication link and successfully transmit data.

Figure 3-2
Platform comparison – radio physical properties: The BTnode rev3 Bluetooth radio (see table 3-6) and
Imote cover an almost identical region supporting high bandwidth and capacity but low range and long
setup time (top shaded area). The Mica motes and the BTnode rev3 low-power radio follow a different
approach that spans the bottom half of the diagram (bottom shaded area). All are using the same chip
but specified values and test environments are different resulting in the variation presented. The Tmote
Sky supports considerable datarates, very low setup time and low transmit power yielding.

3.2.2.3 Radio Systems – Communication Interface Abstractions
The five platforms selected for this comparison use four different radios of which the Imote
and BTnode rev3 Bluetooth radios differ only slightly. We are only discussing the ZV4002
here as the Zeevo TC2001 and ZV4002 are follow-up products based on the same core de-
sign. A key difference yet to be observed stems from the communication interface, services
and abstractions offered by the different radios. Here, three different distinctions can be

59



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

made: While the Chipcon CC1000 is a simple RF transceiver, using a bit-stream interface,
lacking support for packet and address detection as well as error correction and acknowl-
edgments, the CC2420 and especially the Bluetooth devices follow a different paradigm
(see section 4.1 for an in-depth presentation of Bluetooth). The interfaces on the CC2420
and ZV4002 offer considerable internal memory for the buffering of whole packets, and
in the case of the Bluetooth radios, a comfortable asynchronous interface based on com-
mands and events. Many of the key baseband functions are available internally and are
executed transparently with minimal intervention required by the host CPU. This results
in different driver and protocol stack requirements that impact design decisions and lastly
the capabilities of the applications themselves. The CC1000 radio interface is basically
made up of two bit-streams of the date being transmitted and received over the RF front
end while the CC2420 and especially the Bluetooth radios offer packet or even link ori-
ented abstractions. The drivers and protocol stack for the CC1000 have to provide most
baseband (packet framing, address and error detection) and all MAC layer functionality on
the host CPU. While the Bluetooth radios are clearly at one end of the design space with
link orientation and a high-level interface supporting a multitude of protocol functions,
the ISM radios such as the CC1000 are at the other end with all low-level, bit-stream and
protocol processing, above the (de-)modulation and analog-to-digital conversion being of-
floaded onto the host controller (see Figure 3-3).

Table 3-3: State of the art platform comparison – baseband and interface abstraction
Chipcon
CC1000

Chipcon
CC2420

Zeevo
ZV4002

Packet Detection no yes yes
Address Decoding no yes yes
Encryption Support no 128-bit AES 128-bit SC
Error Detection no yes yes
Error Correction no 2-bit FEC config. FEC
Acknowledgments no yes yes
Host Controller Interface synchronous byte synchronous

packet
asynchronous
command/event

Internal Buffering 1 byte 128 byte 1x256 byte HCI,
5x339 byte ACL

Time Synchronization SFD/byte SFD internal
Link Quality Indicator no yes yes
RX Signal Strength yes yes yes

3.2.2.4 Power Consumption
Table 3-4 gives values for the typical energy supply and power consumption in character-
istic operating states that are common across all platforms. These are a deep sleep mode
where the CPU is running a timer only and the radio is turned off (CPU sleep, radio off ),
a mode where solely the CPU is operating (CPU on, radio off ), an idle-listening mode

60



3.2. Metrics of Wireless Sensor Network Platforms

Bitstream Oriented Packet Oriented

ISM Radio
CC1000

Bluetooth
ZV4002

802.15.1
CC2420

Real-Time Processing Load

Event-Based Interaction

Host Controller Requirements

Interface Abstraction

Figure 3-3
Platform comparison –
communication interface
abstractions: ISM radios such
as the CC1000 require
extensive real-time processing
on a host controller while
packet-oriented radio systems
such as Bluetooth support
high-level event driven
interfaces.

where both the CPU is on and the radio is ready to receive data (CPU on, radio listen), a
mode with data transmission at the nominal data rate (CPU on, radio RX/TX) and finally
a worst case mode (Max. Power).

Table 3-4: State of the art platform comparison – power supply and consumption
Mica2a Mica2Dota Tmote Skyb Imote

Battery Supply 2 AA cells 1 coin cell 2 AA cells 2 CR2 cells
Minimum Vcc 2.7 Vc 2.7 Vc 2.1 Vd 3.0 V
Battery Capacity 2000 mAh 560 mAh 2900 mAh 1600 mAh
Regulated Supply – – –d yes
CPU sleep, Radio off 0.054 mWe 0.054 mWe 0.0153 mWe 9 mWf

CPU on, Radio off 36 mW 36 mW 5.4 mW 27 mWf

CPU on, Radio listeng 66 mW 66 mW 65.4 mW 62.1 mWf

CPU on, Radio RX/TX 117 mW 117 mW 58.5 mW 112.5 mWh

Max. Power 165 mW 165 mW 69 mW 195 mWh

a Typical datasheet values. Power consumption values computed by summation of individual power con-
sumption of system core, flash memory (Flash) memory and radio components given in datasheets at
Vcc=3.0 V.
b Typical datasheet values as reported for the whole system. Power consumption computed at 3.0 V.
c Operation from rechargeable cells (Vcc=2.4 V) unreliable.
d The system is fed directly from batteries with a regulated power supply at 1.8 V available for the radio
transceiver only. The CPU requires a minimum Vcc=2.1V.
e Wakeup possible from internal timer only.
f Power measurements on live system at Vcc=3.0 V as reported by Nachman et al. [NKA+05].
g Radio listening typically assumes a worst case of CPU active and radio RX at the nominal datarate.
h Datasheet values at Vcc=3.0 V for radio SoC only (no peripherals).

The values for the Mica2 and Mica2Dot are derived from the Crossbow datasheets and
are given for an operating voltage of Vcc=3.0 V which is equivalent to two new AA cell
batteries. The Tmote Sky is either powered directly from 2 AA cell like the Mica2 or
powered from a USB interface using an internal regulator. Since the primary interest here
is in the supply from batteries, the system power consumption values are given for the
operating voltage of Vcc=3.0 V. The power supply for the CC2420 radio is derived from

61



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

an internal 1.8 V regulator integrated in the radio transceiver. On all three systems the
energy consumption is reduced when lower operating voltages are used. The table lists the
lowest rated values for the operating voltages. Of course, on has to keep in mind, that
a lower voltage level on a battery is also an indicator for the remaining available battery
power. It is up to the system and application designer to assure a termination of the
application on low battery levels if this can cause malfunction or misbehavior.

Figure 3-4
Platform comparison – power supply and consumption: being the only ultra low-power system in the
comparison, the Tmote Sky clearly dominates the power consumption scenario when compared to the
other platforms. The considerable power consumption in sleep mode for the BTnode rev3 (see table 3-7)
and Imote can be attributed to the regulated power supply and the extended SRAM storage memory
available on these devices. The Bluetooth radio systems compare quite favorably to the CC1000 based
systems here.

Due to it’s complex architecture, the Imote uses a different power supply concept with
a regulated power supply. Here, the internal operating voltage of Vcc=3.0V is generated
using a low-noise, low-dropout linear regulator. The standard power supply consists of two
parallel CR2 cells at 6.0 V each. The power consumption was measured at the input of

62



3.2. Metrics of Wireless Sensor Network Platforms

the linear regulator at 6.0 V [NKA+05]. Since the linear regulators operational principle
is to burn up all excess energy, the values given in table 3-4 were converted to the actual
internal operating voltage Vcc=3.0V to give an objective comparison.

3.2.3 Problematic Platform Metrics
As mentioned already in the previous sections, objective metrics and comparisons between
platforms are hard to obtain. Apart from the many variations and options possible in
systems design, different design objectives lead to viewpoints and design goals specific to
every single case. What seems suitable in one case may or may not be adequate in another.
We will shed some light onto this chasm using two examples in the following.

3.2.3.1 Problematic Platform Metrics – Power Consumption
Of all criteria used to describe and compare platforms for wireless sensor networks, the
power consumption is the most difficult to assess. The main reason for this is, that it is a
key characteristics of WSN devices to be low-power, in fact to operate energy conserving
and that the energy supply for every node is finite. Although proposed early on, only few
have so far considered renewable energy sources [RWR03] and built complete prototype
systems [ROC+03, JPC05]. The second reason for problematic and often incomparable
results in power consumption is the varying settings and different architectures of the de-
vices used and applications being compared. In most cases datasheets give detailed results
about the average (typical) and worst case power consumption at a nominal operating
voltage for the single device that the datasheet is referring too. Missing are further values
for additional system components, such as clock generation, drivers, latches, memories,
LED etc. that are required for a fully operational system. Often, different core voltages
are used for internal components, while interfaces are operating at higher voltages. In the
case of an unregulated battery supply, the voltage driving a system can vary considerably
over time and with the respective load. Since the power consumption is dependent on the
supply voltage, it is thus required to give exact values for the current consumption and
the respective voltage level at which these have been measured for every operating state
concerned.

Single power consumption values for steady states are easy to measure but need to be
put into an application context where the power consumption varies over time, i.e. in a
duty cycled application where the radio switches from transmit to receive and possibly
also to sleep of off, the setup times between these states add to the overall system power
consumption. For heavily duty cycled applications such as wireless sensor networks the
most important parameter here is the setup time from a low power sleep state to a ready to
transmit or receive state. For different radio types this setup time can vary considerably as
can be seen in tables 3-4 and 3-6.

To enable a fair comparison of platforms and applications, a practice of measuring the
whole system in live operation at it’s energy supply, i.e. the battery, should be adopted
rather than resorting to values for single subsystems or components only (cited from
datasheets). The latter is more of important in respect to system design aspects, where

63



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

concrete questions that concerning single components only are being asked, e.g. the ef-
fect of different power modes on a microcontroller or different transmit power levels on
a radio transceiver. Although two different architectures and operating at different oper-
ating frequencies, the power consumption values given in the datasheets for the Mica2
and Mica2Dot are the same. The values presented in publications derived from measure-
ments [PSC05] differ up to about 300% between the two platforms and up to about 200%
between publication and datasheets.

Through measurement of the system energy consumption at the energy supply, all system
components can be incorporated into a comparison. To define the minimum power con-
sumption for a system, it is usually desirable to measure currents at the lowest operating
point, i.e. the minimum stable operating voltage. Often, operation below the minimum
voltage specified by the datasheet is still possible and the knowledge of this threshold volt-
age is an important fact to know about a system. However, stable operation cannot be
guaranteed nor can this argument be used as a selling point to the user.

It is also misleading to mix values for the current consumption given in mA and power
consumption given in mW for a general platform comparison. The application designer
usually cares about the longevity of a system and thus the energy supply and dissipation
over time. So in general, for an application designer, power consumptions should be given
in mW.

Architectural differences are another source of inaccuracies. Not all systems require sta-
bilized power supplies where large amounts of energy are typically dissipated in the con-
verters. Operating states on platforms differ, as not all system offer the same modalities of
operation and states.

Elaborate platform characterization like for the Mica2 [SHC+04], the Tmote Sky [PSC05]
and the Bluetooth part of the BTnode rev3 [NBD05b] are not very common in the liter-
ature but give detailed insight into the power performance and behavior of systems. They
reveal interesting characteristics and properties, such as considerable power consumption
for running LED (2 mA @ 3.0 V) and memory access (up to 10 mA @ 3.0 V), that are
often overseen. They lay the foundation for precise system models useful in simulation
(e.g. PowerTOSSIM [SHC+04]) or power-adaptive protocols (e.g. Negri [NBD05b]).

3.2.3.2 Problematic Platform Metrics – Capacity
Radio systems are predominantly characterized by bandwidth, data rate, range and power
consumption. Often forgotten at first is the system capacity, i.e. the ability of a system
to actually make use of the resources available and so the limits of any application. The
theoretical background here is generally considered as landmark publications [GK00] but
is only valid in a general context. Theory usually takes into account perfect conditions, e.g.
asymptotically large ad hoc networks, perfect scheduling (no collisions), perfect knowledge
of conditions and neighbor states, etc.

The term capacity, in the sense of Shannons channel capacity denotes the theoretical upper
bound for a given channel. While these results are clearly of general nature, they need to
be adapted when applied to real networks. Here, a networks capacity is also limited by the

64



3.3. Prototyping Sensor Networks – A Design Rationale for Modular Platforms

Shannon bound but also by the capacity of the protocols used, that do not only consist
of the raw data transmitted over a given channel. Multiple access schemes used divide
the available medium in dedicated channels of a defined bandwidth. In the case of a time
shared access, multiple users have to negotiate to use a single channel, i.e. with an increasing
number of users producing traffic the channels get jammed. Since a transmitter covers a
certain area in space for the time it is transmitting (i.e. a cell), single channel radios using
broadcast primitives such as available on the CC1000 radios support much less capacity in
a given area than radios with dedicated links such as the CC2420 or especially Bluetooth
radios. In the case of a Bluetooth radio the increase in resource consumption is payed
off by a considerable aggregate bandwidth of theoretically up to 79 channels per area at
a given time. Each channel in Bluetooth (up to standard v1.2, see section 4.1) supports
links of up to 723.2 kbps allowing a sustained aggregate bandwidth of 57.1 Mpbs in cells
of up to 10-30 m. In practice, both simulation [NWS03] and experimental results [KL01]
have confirmed the feasibility of operating about 50 simultaneous channels, which leaves
us with roughly 2/3 of the limit outlined in the standard. This is considerably more than
what can be achieved with the CC1000 radio using 4 channels at 38.4 kbps and covering
cell sizes of up to 40-150 m (Mica2).

Given these estimates based on the raw data rates without congestion and loss of data,
one can easily argue in favor of one solution or the other. A straightforward conversion
to energy dissipation per bit transmitted, as is often done for radio transceivers, reveals
Bluetooth as the true winner, while mostly idle channels with occasional bursts favor a
CC1000 radio. Depending on the application characteristics, it is not sufficient to just
relate to the theoretical capacity, but metrics must be combined with application duty-
cycle, traffic patterns, the number of nodes and the region covered by their transmissions
(multiple access scheme and range), MAC and link-layer properties.

3.3 Prototyping Sensor Networks – A Design Ratio-
nale for Modular Platforms

Wireless sensor networks have been anticipated to become a pervasive tool that would
enable detailed and unobtrusive observation of real-world phenomena, thus bringing sub-
stantial benefits to a variety of application areas. A number of advanced proof-of-concept
systems have been successfully deployed, suggesting that the remaining gap between these
prototypes and real-world applications of sensor networks has been significantly narrowed.
We have discussed a selection of platforms supporting such applications in the previous
section. Each of them was however designed for specific application scenarios, each with
their own strict requirements and constraints resulting in a loss of generality and modu-
larity. Of course, many researchers and practitioners are using these platforms for other
application domains than they were originally conceived for, but today there are equally
many that are building their own costly, full-custom systems. We believe that in the future
the total cost of applying a sensor network will be dominated by the development pro-
cess as per-device-cost are expected to drop to few Dollars. Hence, significant efforts are

65



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

needed to approach the goal of consistent and coordinated design, programming, testing,
debugging, validation and deployment of sensor network applications – which is mostly
non-existent today. Also, modular reuse of existing hardware and software components
must replace current practice of costly custom design and development processes.

The Berkeley family of Motes and TinyOS of which we have discussed and compared three
members (Mica2, Mica2Dot and Tmote Sky) in the previous section certainly target mod-
ularity and general applicability and to some extent set todays standards, yet they are inher-
ently custom platforms. A modular wireless networked embedded system for widespread
use in research and development should not be limited to a single application, e.g. through
the use of custom hard- and software, or specialized on-board sensors, support ample re-
sources,e.g. to accommodate early development code with debugging support, have an
easy to use radio interface and support a widespread programming standard, e.g. the C
programming language, where no custom tools need to be maintained. Most important
however, is the ability to interact with other wireless enabled devices and the human user.
To think of sensor networks as fully autonomous and self-contained without interaction is
a contradiction of the vision put forward by sensor networks. Observation and interaction
with the physical world through a sensor network requires to be able to access a sensor
network through a heterogeneous set of interoperable devices.

Key properties missing on the Berkeley family of Motes for a modular and development-
oriented system are (i) the interaction with other wireless enabled devices through (ii)
standardized, high-level, event-driven interfaces, (iii) flexible and sufficient support of sys-
tem resources and (iv) development, test and deployment support through standardized
tools and methodologies.

3.3.1 Modular Platform Requirements
Event-Driven Interaction
Interaction and interoperability with other wireless enabled devices has been proposed in
different flavors, such as clustered architectures [WEG+03a, WEG03b], where the cluster-
heads are equipped with more computing and memory resources to process and aggregate
sensor data collected from the nodes in their cluster, isolated sensor network patches be-
ing linked to a base station and database for the storage and query of results [MCP+02],
actuation or notification on the occurrence of an event [FRL05a, FRL05b] or user interac-
tion scenarios where devices with well acquainted user interface capabilities such as mobile
phones or PDA enable human users to interact with sensor network nodes [Sie04b]. All
of these interactions with systems and applications have in common, that they are not
inherently data-driven but driven by events and user interaction, which is not very well
supported by the standard Mote/TinyOS architecture today.

Systems and platforms should be designed based on asynchronous, event-based program-
ming models to support interaction and interoperability between devices and with the
human users.

66



3.3. Prototyping Sensor Networks – A Design Rationale for Modular Platforms

Standardized Interfaces
Tiered architectures constructed from multiple sets of custom device architectures have
been proposed [HHKK04], but ultimately this alone will not be sufficient to support the
heterogeneity of devices and systems found today. Specifically, heterogeneity should be
supported through standardized interfaces and application programming interfaces that
use high-level abstractions that can be used by non-experts in a similar way as wireless
communication specialists. Just supporting different radios to choose from within a system
framework as is the case for TinyOS is not sufficient here.

Devices must support interoperability between different classes of devices using high-level
communication interface abstractions.

Flexible and Sufficient Resources
Test and development systems usually need more resources than a final production system
that is highly optimized to it’s designated task. The Motes are inherently ill equipped
with memory for data storage requiring the utmost care in programming. This lack of
flexibility considerably restricts the ease of use and the degree of freedom to try different
approaches and to debug applications. The same flexibility is lost when communication
resources are scarce. High data rates, high capacity and robust link-layer abstractions are
key to success and can always be scaled down to be more conservative in resources at a
later stage if required. Too many and too specific sensors tightly integrated with the nodes
hinder flexible application design. Specific sensors can always be added according to the
application requirements using external add-ons and usually need to be specifically tailored
to this application.

Ample memory resources, sufficiently high data rates and flexible IO are required for many
different applications alike.

Development and Deployment Support
The development of algorithms and applications for sensor networks is non-trivial for var-
ious reasons. Firstly, sensor networks are highly dynamic distributed systems, where a con-
sistent view of the global system state is typically not available to the developer. Secondly,
the behavior of the sensor network is highly dependent on the physical environment, such
that problems might not be easily reproducible. Thirdly, for reasons of energy efficiency,
sensor network applications do often perform in-network data processing and aggregation,
where raw sensor data is already processed and evaluated inside the network in order to
reduce the volume of data which has to be transmitted. To verify and debug such sys-
tems, the developer often needs access to both, the raw sensor data and the aggregated
output of the sensor network [EBB+03]. Equally important as the support of debugging
and deployment are standardized tools and methodologies, such as the C programming as
the prevalent standard in programming embedded systems. Independence of development
processes in ongoing research projects (such as nesC in the case of TinyOS) and expensive
custom tools (the ARM development suite in the case of the Imote) as well as community

67



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

support through open models foster a fast learning curve and ultimately success with a plat-
form. Many platforms today require too many custom tools, knowledge or methodologies
to develop applications successfully.

Open, proven and standardized programming models with the necessary support and doc-
umentation are key to success.

The BTnode platform tries to close the gap put forward by these specific platform require-
ments and provide a modular and easy to use platform for prototyping wireless network
embedded systems.

3.4 The BTnode Platform
The BTnode is a versatile, lightweight, autonomous wireless communication and comput-
ing platform based on a Bluetooth radio and a microcontroller.

The device is designed for fast-prototyping [3] of ad hoc and wireless sensor network
applications and is well suited to investigate different protocols, operation parameter trade-
offs and radio alternatives. The following design criteria were followed apart from the
requirements layed out above.

• Small form factor, low component count

• Standardized wireless interface

• Flexible and cost effective deployment of large quantities of networking nodes

First architectural considerations required a device magnitudes smaller than a personal dig-
ital assistant (PDA) but equally flexible and programmable and supporting Bluetooth. In
the context of a wireless prototyping platform, Bluetooth has the advantage of being avail-
able today for experimentation, compatibility to interface to many consumer appliances
and an abstract, standardized high level digital interface. The first usage profile envi-
sioned the BTnodes to serve as a demonstration platform for research in mobile ad hoc
network (MANET)s and distributed sensor networks as well as ubiquitous and pervasive
computing.

The device has no integrated sensors, since individual sensor configurations are required
depending on the application. Instead, with its many general-purpose interfaces, this plat-
form can be used with various peripherals, such as sensors, but also actuators, digital signal
processors (DSP), serial devices (like GPS receivers, RFID readers, etc.) and user interface
components.

An interesting property of this platform is its considerably small form factor while still
maintaining a standardized wireless interface.

The BTnode hardware can run TinyOS [LDB03, BD05], or the BTnut system software
that is based on an Ethernut kernel and allows cooperative multi-threaded applications
with standard C programming (see section 3.4.3).

68



3.4. The BTnode Platform

3.4.1 BTnode Hardware Generations
Starting out from an all-in-one Bluetooth module, the BTnode family of nodes has ma-
tured to a full fledged dual radio wireless networking platform. The first prototypes were
built using a microcontroller development kit and a Bluetooth evaluation kit that were as-
sembled for first functional testing and software development. After that first BTnode rev1
prototypes were produced that led to the development of the BTnode rev2 (see Figure 3-5)
and BTnode rev3 (see Figure 3-9).

Figure 3-5
The BTnode rev1 prototype (left) and the BTnode rev2 hardware (right) that was series produced and
distributed to researchers with 200 units.

3.4.1.1 The BTnode rev2
The BTnode rev2 hardware [BKR03a] is built around an Atmel ATmega128L microcon-
troller with on-chip memory and peripherals (see Figure 3-6). The microcontroller fea-
tures an 8-Bit RISC core delivering up to 8 MIPS at a maximum of 8 MHz. The on-chip
memory consists of 128 kilobytes of in-system programmable Flash memory, 4 kilobytes
of SRAM, and 4 kilobytes of EEPROM. There are several integrated peripherals: JTAG
for debugging, timers, counters, pulse-width modulation, 10-Bit analog-digital converter,
inter-integrated circuit (I2C) bus, and two hardware universal asynchronous receiver trans-
mitters (UART). An external low-power SRAM adds an additional 240 kilobytes of data
memory to the BTnode system.

Module Microcontroller
ATmega128LBluetooth

Supply
Power

GPIO Analog Serial IO

Clock/Timer LEDs

SRAM

Figure 3-6
The BTnode rev2 hardware
system overview shows the three
basic components:
Communication (Bluetooth
radio), computation (Atmel
system core) and
IO/peripherals (sensor
connectors and peripherals).

69



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

A real-time clock is driven by an external quartz oscillator to support timing updates while
the device is in low-power sleep mode. The system clock is generated from an external
7.3728 MHz crystal oscillator.

An Ericsson Bluetooth module is connected to one of the serial ports of the microcon-
troller using a detachable module carrier, and to a planar inverted F antenna (PIFA) that is
integrated into the circuit board. This is a very simple and practical antenna design when
space on the circuit board is available..

Four light emitting diodes (LED) are integrated, mostly for the convenience of debugging
and monitoring. One analog line is connected to the battery input and allows to monitor
the battery status. Connectors that carry both power and signal lines are provided and can
be used to add external peripherals, such as sensors and actuators.

Figure 3-7
BTnode rev2 hardware contains a Bluetooth module, an antenna, user interface components and
connectors for power-supply and sensors on the top (left), the microcontroller and external memory on
the bottom (right).

3.4.1.2 The BTnode rev3
The BTnode rev2 has been revised, mainly (i) to make use of a new Bluetooth subsystem
and (ii) to incorporate a second, low-power radio which is identical to the one used on the
Berkeley Mica2 Motes. This makes the BTnode rev3 a twin of both the Mica2 Mote and
the old BTnode rev2. Both of its radios can be operated simultaneously or be indepen-
dently powered off when not in use, considerably reducing the power consumption of the
BTnode. This new device provides opportunities to create tiered architectures with high-
bandwidth nodes bridging ultra-low-power devices like the Berkeley Motes to Bluetooth-
enabled gateway appliances [HHKK04], or to investigate duty-cycled multi-front end de-
vices with wake-up radios [SBS02] or bandwidth–power–latency trade-offs [RPW+04].

The Ericsson Bluetooth subsystem on the BTnode rev2 was discontinued in 2002 making
further development based on this device impossible. An assessment of the platform sta-
tus and the experience gained with applications resulted in the following extended design
criteria for the BTnode rev3:

• Bluetooth 1.2 subsystem supporting multiple-master scatternets

70



3.4. The BTnode Platform

• Additional low-power radio

• Integrated, battery-powered power supply

• Board-to-board extension connector

• Availability and open documentation of radios (developer information)

The design of the BTnode rev3 resulted in a dual-radio wireless networking platform (see
Figure 3-9). The low-power radio (Chipcon CC1000) is the same as used on the Berkeley
Mica2 Motes. The Bluetooth radio is a Bluetooth 1.2 compliant device (Zeevo ZV4002)
with radio circuits, baseband, MAC, link controller and an ARM7 core integrated on a
single SoC. Both radios can be operated simultaneously or be independently powered off
using microcontroller controlled power switches (see Figure 3-8).

GPIO Analog Serial IO

System
Bluetooth LEDs

SRAM
Radio

Low-power

Power Supply

Microcontroller
ATmega128L

Figure 3-8
BTnode rev3 system overview
with dual radios: Two
independent radios can be
operated simultaneously or be
individually powered off when
not in use. A regulated power
supply operates from dual
sources (battery and external
DC input).

Figure 3-9
BTnode rev3 hardware: All
components are mounted on a
single sided assembly with the
printed circuit board mounted
on a 2 AA cell battery holder.
The AVR system core is in the
middle with the two radios on
the sides: The Chipcon
low-power radio is situated on
the bottom left and the Zeevo
Bluetooth on the upper right
corner.

3.4.2 BTnode Platform Characteristics
The characterization of an embedded platform such as the BTnode is not straightforward
since it already consists of a number of subsystems that are complex embedded systems
by themselves. Thus the characteristics described in the following often depend on the
setup and combination of the subsystems involved. In many cases simplifications have to
be made. These are noted in the following tables.

71



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

3.4.2.1 System Core and Memory Capabilities
The system core consist of a microcontroller, it’s auxiliary circuits like clock, IO compo-
nents and memories. The memories can be separated into volatile and non-volatile as well
as program and data memories. Typically the program memory consists of non-volatile
Flash memory and the data memory of volatile SRAM memory, both available on-chip on
modern devices. Furthermore a non-volatile configuration memory can be used for stor-
age of configuration information and parameters specific to the device or application and
a storage space for application specific data such as sensor values, logs or cached network
packets. Depending on the type of program memory and the programming mode used
there can be considerable limitations in the amount of programming cycles possible. For
the Atmel AVR family typically in-system programmer (ISP) programming is used, but
JTAG and a resident bootloader are also available (see section 3.4.2.5).

Table 3-5: BTnode family – system core features
BTnode rev1 BTnode rev2 BTnode rev3

Microcontroller ATmega103l ATmega128l ATmega128l
Architecture 8-Bit RISC 8-Bit RISC 8-Bit RISC
Speed 3.6864 MHz 7.3728 MHz 7.3728 MHz
Program Memory 128 kB 128 kB 128 kB
Data Memory 4 kB 64 kB 64 kB
Configuration Mem. 4 kB EEPROM 4 kB EEPROM 4 kB EEPROM
Storage Memory – 180 kB SRAM 180 kB SRAM
ADC Resolution 10-Bit 10-Bit 10-Bit
External IO UART, SPI, I2C,

PWM, GPIO
UART, SPI, I2C,
PWM, GPIO

UART, SPI, I2C,
PWM, GPIO

On-Board Sensors – 1a 1a

UI Components 4 LEDs 4 LEDs 4 LEDs
Programming Modes ISP ISP, JTAG, Boot-

loader
ISP, JTAG, Boot-
loader

Re-Prog. Cyclesb ≤10’000 ≤10’000 ≤10’000

a This sensor is an integrated battery monitor.
b This values specifies the amount of cycles that the Flash program memory supports.

3.4.2.2 Communication Interfaces
The original communication interfaces of the BTnode were Ericsson Bluetooth mod-
ules. These are Bluetooth devices operating at powerclass 1 at a maximal output power
of 4 dBm. The main difference between the two types used here is the increasing flexibility
for network topologies where at first only point-to-point links were available to the full
fledged AFH/SFH scatternet support with 4 piconets on the Zeevo ZV4002 device in the
BTnode rev3. Here an external power amplifier to increase the transmission range and with
transmit power control would be possible but seemed not suitable for the BTnode rev3.

72



3.4. The BTnode Platform

PDATA, PCLK, PALE

LNA

PA

DEMOD

VCO PD OSC~
/N

MIXER

CHARGE
PUMP

L1

RF_IN DIO

CHP_OUT

IF STAGE

RF_OUT

RSSI/IF

3

CONTROL

XOSC_Q2

XOSC_Q1
/R

DCLK

L2

LPF

BIAS R_BIAS

LNA

PA

DEMOD

VCO PD OSC~
/N

MIXER

CHARGE
PUMP

IF STAGE

3

CONTROL

/RLPF

BIAS

CC1000

In-package
Fil ter +
Switch+

Matching
Network

Radio
Transceiver

+
Bluetooth

MAC
ARM7TDMI

RAM

Boot ROM

External
Bus

USB

UART

GPIO

PA Controller

16 data,
20 addr

16

External Bus
Interface (Flash)

USB
Interface

UART
Interface

GPIO

ZV4002

PCM PCM

Interrupt
Controller 3

Interrupts

SPI High-speed
Serial Interface

Chip Select
3

Figure 3-10
BTnode rev3 radio systems – The Chipcon CC1000 (left) is a simple wireless modem transceiver with
digital IO and control whereas the Zeevo ZV4002 (right) is a complex wireless embedded system with
all radio and processing components integrated and controlled by an embedded ARM7 core.

The low power radio on the BTnode rev3 is quite different from a Bluetooth subsystem. It
lacks the advanced protocol processing capabilities and high level application programming
interface (API) found on a Bluetooth device. It is more like a modulation engine or data
pump with the microcontroller acting as the main protocol processor (see Figure 3-10).
This implies that this protocol processor is capable of all baseband, MAC and link-layer
processing with packet detection, error correction, retransmission, data sequencing on the
serial data-stream to and from the wireless transceiver. Compared to the high-level, link-
oriented interface offered by the Bluetooth host controller interface (HCI), this is quite a
burden requiring meticulous care in design and implementation. Especially the interleav-
ing of stream-oriented communication interface processing with event driven application
processing becomes difficult in the case of more complex applications that do not only
consist of polling a sensor and transmitting it’s value on a wireless broadcast channel but
of interactive and often interdependent processes. In our first implementations (see sec-
tion 3.5 and chapters 4 and 5), both radios have only been used separate from each other
but both a Bluetooth and low-power radio MAC protocol stack are available [RR05].

3.4.2.3 Power Management
The BTnodes are designed to be powered from standard batteries and operate on a single
internal voltage level of 3.3 V. For easy in-situ power consumption analysis and flexible
power management, the radios and the system core have a separate power feed each that
can be switched by the microcontroller (see section 3.4.2.1 and figure 3-12). Due to the
high power-quality demands of the Bluetooth radio system a regulated power-supply of
V cc = 3.3 V is required. On the BTnode rev1 and rev2 the standard power-supply are
three AA cells whereas the BTnode rev3 utilizes a DC-DC step-up converter powered from
only two AA cells or alternatively a low-dropout linear regulator powered from an external
DC input (see figure 3-11. All power supplies are optimized for low noise and efficient
power conversion.

An estimation of the total system power consumption P can be made by summing up the
power consumption values Pi = V cc·Ii measured for the individual subsystems and adding
the conversion losses Pc occurring at the regulated power supplies, with i ∈ {bt, cc, core}

73



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

Table 3-6: BTnode family – radio systems
BTnode rev1 BTnode rev2 BTnode rev3

Bluetooth
BTnode rev3
LP Radio

Radio Ericsson
ROK101008

Ericsson
ROK101007

Zeevo
ZV4002

Chipcon
CC1000

Standard Bluetooth 1.0 Bluetooth 1.1 Bluetooth 1.2 ISM
Frequency Band 2.4 GHz 2.4 GHz 2.4 GHz 0.3-1 GHz
Data Ratea –/723.2 kbps –/723.2 kbps –/723.2 kbps 38/76.8 kbps
Setup Timeb 1-2 sec 1-2 sec <500 msec <50 msecc

TX Powerctrl – – – 30 dBc

TX Powera +1.5/+4 dBm +0/+4 dBm +0/+4 dBm –/+10 dBmc

Sensitivityb -70 dBm -70 dBm -86 dBm -110 dBmc

Int. Antenna Rangestar embed. PIFA GigaAnt Monopole
Ext. Antenna – – – MMCX conn.
Outdoor Rangec,d 30 m 30 m 30-50 m 30-100 m
Indoor Rangec,d 5-30 m 5-30 m 10-30 m 2-30 m
Channels 79 79 79 4
Max. Endpoints 1 S 7 S, 1 M 7 S, 4 M MAC specific

a Typical/maximal datasheet values.
b Typical datasheet values.
c Values are frequency (and datarate) dependent.
d Typical measured value.

Linear
Regulator

IN OUT

DC/DC
Step-up

IN

SHDN
OUT

bat_sense

Vdc_in

Vcc

2 
A

A
 c

el
ls

on/off

Figure 3-11
BTnode rev3 power
management – The default
power supply from two AA cells
supports battery voltage
monitoring and can be shut off
on the presence of an external
DC input.

and Pc depending on the available power supply and the converter type used.

P =
∑

Pi + Pc = V cc ·
∑

Ii + Pc (3.1)

Pc =

{
Pcdown

for Vmax ≥ Vin ≥ (V cc + Vd)

Pcup for Vin = 0 ∧ Vmin ≤ Vbat ≤ V cc
(3.2)

For a linear regulator the voltage in excess of V cc is dissipated with the low dropout voltage
Vd limiting the minimum required input voltage Vin [HH89] and Icc =

∑
Ii being the

sum of the currents feeding the individual subsystems as defined earlier.

74



3.4. The BTnode Platform

Pcdown
= (Vin − V cc) · Icc for (Vin − V cc) ≥ Vd (3.3)

A DC-DC step up converter is characterized by it’s conversion efficiency η which is depen-
dent on the actual current flow and the battery voltage Vbat.

Pcup = Vbat · Icc · (1

η
− 1) = Vbat ·

∑
Pi

V cc
· (1

η
− 1) (3.4)

In a simple example powered from two AA rechargeable cells and operating all three sub-
systems simultaneously the following values were measured: V cc = 3.3 V, Ibt = 35 mA,
Icc = 14 mA, Icore = 19 mA This results in an internal power consumption of

∑
Pi =

3.3·(35+14+19) = 224.4 mW. Using a feed of Vbat = 2.4 V and an efficiency of η = 90 %,
the conversion loss is estimated to be Pcup = 2.4 · (35 + 14 + 19) · ( 1

0.9
− 1) = 18.3 mW

and the total power system power consumption that needs to be supplied by the batteries
P = 224.4 + 18.3 = 242.5 mW.

GPIO Analog Serial IO

System
Bluetooth LEDs

SRAM
Radio

Low-power

Power Supply

Microcontroller
ATmega128L

Current 
Datalogger

In-Situ 
Direct Current

Access

Figure 3-12
BTnode in-situ direct current
access is available
independently for the two
radio systems and the system
core by replacing a 0 Ohm
resistor in the power supply
feeder lines with a
current-meter and datalogger.
This allows to extract live data
logs from the device running
under realistic operating
conditions.

The power consumption profile given in table 3-7 was measured in-situ on the respective
subsystems. For this purpose, three direct current access points are available (0 Ohm resis-
tors in the power supply feeder lines) where in-situ measurements of the power consump-
tion of the radios and the microcontroller core can be performed using a current-meter
and datalogger (see Figure 3-12). This allows for very fine grained and subsystem-specific
power consumption measurements in the live system under standard operating conditions
as opposed to an artificial lab setup with developer boards only. An additional trigger sig-
nal from the microcontroller to the datalogger enables to sample values at a given instance
in time. Figure 3-13 shows a qualitative example measurement taken from the Bluetooth
radio subsystem alone while connected in a point-to-point link.

3.4.2.4 Physical Setup
The physical setup of the BTnode devices is a circuit board with standard surface mount
components (SMD/BGA). The design was targeted at low cost, industry standardized

75



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

0 100 200 300 400 500 600 700 800 900 100010

15

20

25

30

35

40

45 Master Role - Active Master Role - Sniff

C
ur
re
nt
(m
A
)

Samples

SI

SA

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45

50
Slave Role - Active Slave Role - Sniff

C
ur
re
nt
(m
A
)

Samples

SA+ST

SA

SI

Figure 3-13
Bluetooth power dissipation details: Current dissipation on a Bluetooth point-to-point link in active
and sniff mode measured on a master (left) and slave (right) role (sniff mode parameters: SI=5.12 sec,
SA=ST=0.64 sec) [NBD05b].

Table 3-7: BTnode family – power consumption
BTnode rev1 BTnode rev2 BTnode rev3

DC Supply Input Range 3.6-16 V 3.6-16 V 3.6-5 V
DC Input Dropout Voltage 90/180 mVc 90/180 mVc 150/180 mVd

Battery Supply 3 AA cells 3 AA cells 2 AA cells
Step Up Conversion Efficiency – – 90/96 %e

CPU power down, radios offa – 0.5 mW 9.9 mW
CPU standby, Radios offa 9.9 mW 12 mW 23.1 mW
CPU idle, Radios offa 26.4 mW 30.9 mW 39.6 mW
CPU idle, Bluetooth listeninga – – 92.4 mW
CPU idle, Bluetooth Tx/Rxa 108.9 mW 67 mWb 105.6 mW
CPU idle, Bluetooth Inquirya 148.8 mW 160 mWb 198 mW
CPU idle, CC1000 listeninga – – 82.5 mW
CPU idle, CC1000 TX/RXa – – 102.3 mW
CPU idle, Radios both listeninga – – 135.3 mW
Max. Power – – 260.7 mW

a All values are typical values measured on live system at 3.3 V.
b The Bluetooth module used in rev2 is a different generation Ericsson module compared to rev1 resulting
in different power characteristics.
c Typical datasheet values at 75/200 mA load current.
d Typical datasheet values at 50/100 mA load current.
e Typical/maximum datasheet values at 100 mA load current.

surface mounted production and follows the good automated manufacturing practices
(GAMP). Standard connectors with good availability were used to connect auxiliary sensor
boards or programming/debugging hardware to the BTnode system. The BTnode rev3
uses a single sided assembly that is fitted onto a two AA cell battery holder (see figure 3-14).
Two screw-on mounting holes are also available.

76



3.4. The BTnode Platform

GND
UART0_CTS
UART0_RTS
UART0_TXD
UART0_RXD

PF0
PF1
SDA
SCL
PB4
PE6
PE3

VCC_IO
VCC

VDC_IN

1 G
ND

2 UART0_CTS
3 UART0_RTS
4 UART0_TXD
5 UARTO

_RXD
6 UART1_CTS
7 UART1_RTS
8 UART1_TXD
9 UART1_RXD
10 PF0
11 PF1
12 SDA
13 SCL
14 PB4
15 RESET
16 G

ND
17 VDC_IN
18 VDC_IN
19 VCC_IO
20 VCC_IO

40 G
ND

39 BT_RST
38 BT_TDO
37 AVR_TDI
36 TM

S
35 TCK
34 RSSI
33 PDATA
32 PCLK
30 PALE
31 PE3
29 PE6
28 CHP_O

UT
27 SS
26 SCK
25 M

ISO
24 M

O
SI

23 G
ND

22 VCC
21 VCC

Figure 3-14
The BTnode rev3 consists of a
four layer printed circuit board
with all surface mount
components mounted onto a
single side. There are two ways
to physically connect to a
BTnode. The extension
connector J1, or the debug
connector J2.

The area breakdown on the topside can be separated into system core, Bluetooth radio,
low-power radio, power management, external IO and other areas and results in quite
similar partition sizes for all these subsystems. This suggests that compared to the rather
complex functionality of the radios and the system core the external IO and power man-
agement are crucial design points when it comes to high system integration. This is was
even more visible on the BTnode rev2 where 52.6% of the overall area were used for exter-
nal IO, power management and other areas compared to 47.4% for system core and radio
(see Figure 3-16).

Figure 3-15
An area breakdown of the
1890 mm2 of the
BTnode rev3 into its
subsystems results in system core
15.6%, Bluetooth 22.4%,
low-power radio 14.1%,
power management 16.4%,
external IO 17.6% and other
areas 13.5%.

Table 3-8: BTnode family – physical setup and commercial figures
BTnode rev1 BTnode rev2 BTnode rev3

Size 60x40 mm 60x40 mm 58.15x32.5 mm
Components 45 50 109
Year 2001 2002 2004
Availability prototypes only prototype series yes
Unit Cost USD 170 USD 190 USD 215
Dev Kit Cost USD 30-100 USD 30-300 USD 300
Tool Cost – – –
Open Platform yes yes yes

77



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

Other, 29.8%

Other, 13.5%

External IO, 17.8%

External IO, 17.6%

Power, 5.0%

Power, 16.4%

LP Radio, 14.1%

Bluetooth, 26.6%
Bluetooth, 22.8%

System Core, 20.8% System Core, 15.6%

0%

20%

40%

60%

80%

100%

BTnode rev2 BTnode rev3

Figure 3-16
The BTnode area breakdown
as measured on the circuit
boards for the BTnode rev2
and BTnode rev3 compared.
The percentages shown show
that with increasing
integration, external IO,
power management and other
areas dominate the area cost
over the actual core
components.

3.4.2.5 Programming
An embedded platform for deployment either in large numbers or in remote embedments
in the physical environment has requirements on the programmability that exceed those
of a traditional embedded platform. The program memory of the microcontroller in the
BTnode system core can be programmed using a traditional ISP or a JTAG in-circuit em-
ulator. With the help of a simple command line tool or a more sophisticated integrated
development environment (IDE) the processor is configured by setting the microcontroller
fuse bits, memories can be erased, read, written and verified. Furthermore the joint test ac-
tion group or IEEE 1149.1 boundary-scan (JTAG) in-circuit emulator allows to set break-
points for low-level debugging at runtime.

For quick desktop reprogramming and code dissemination over a wireless network the
bootloader feature of the ATmega128l microcontroller can be used. Here, a bootloader
remains resident in a reserved section of the program memory (max. 4096 kilobytes on
the ATmega128l). When executed on a system reboot, it detects a program upload via the
BTnodes serial port or a resident firmware in the storage memory (SRAM). The bootloader
finally transfers this executable to the program memory (Flash) and starts it. For network
reprogramming, the application currently running on the system needs to receive the new
executable, save it to storage memory, and then reboot the system in bootloader mode.

The ZV4002 Bluetooth system carries it’s own firmware that needs to be initially pro-
grammed during factory testing. This is done only once on the current BTnode, but
an exchange of the firmware and development of embedded applications on the ZV4002
itself would be possible using the appropriate solution developer kit (SDK) from Zeevo
(see [KAH+04] and [NKA+05] for a similar approach on the Intel Imote).

3.4.3 Lightweight Operating System Support
The hardware resources available on such a miniaturized embedded device are quite re-
duced when compared to other mobile systems like modern cell phones or PDA run-
ning full-blown Windows derivatives on multi-scalar processors. The performance of the
BTnode microcontroller core and OS can be somewhat compared to the first PC in the

78



3.4. The BTnode Platform

Figure 3-17
A simple BTnode developer kit
to perform first steps consists of
a BTnode rev3, a usbprog
USB programming adapter, an
Atmel ATAVRISP
programmer, a serial and a
USB cable, a 15-Pin Molex
breakout cable for the debug
connector J2 and the software,
documentation and tools
contained on the
BTnode CDROM.

80’s, without features such as dynamic memory management, dynamic program loading
and execution. Thus, extreme care needs to be taken to make use of the scarce resources
efficiently, predominantly a domain of classical embedded systems.

The first-generation BTnode system software (see Figure 3-18) is a lightweight OS/app-
lication framework written in C and assembly language using a standard libC and the
gcc compiler suite. The drivers, which are available for different hardware subsystems,
provide convenient application programming interfaces (API) for application developers.
The system supports an event-based programming model and provides non-preemptive
scheduling of event-handlers.Within this framework, applications are typically partitioned
into a Bluetooth link-layer that is communicating with the Bluetooth front end through
commands and events, keeping track of point-to-point connections with individual link-
state machines, a command-line terminal for control and debugging and an application
core. The terminal interface, similar to a command-line shell application or telnet allows
convenient interactive control and monitoring of applications on the embedded devices
using a well-acquainted and verbose user interface. The whole application is defined at
compile time and then programmed into the Flash memory of the microcontroller using
either an ISP, JTAG or a resident bootloader.

D
is

pa
tc

he
r

BTnode 

RTC UART I2C GPIO Analog

...Task 1 Task 2 Task iTask 3

Bluetooth
Stack

Application

Communication

Driver

Hardware

Figure 3-18
First-generation BTnode
system software – A
lightweight OS framework for
wireless sensor network
applications. A dispatcher is
responsible for registering and
executing event-handlers in a
coordinated fashion.

79



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

3.4.3.1 Device Drivers
The drivers are designed with fixed buffer lengths that can be adjusted at compile time
to meet the stringent memory requirements. Available drivers include memory, real-time
clock, UART, I2C, LED, power modes, and ADC. The driver for the Bluetooth radio
provides a subset of the networking functionality according to the Bluetooth specification.
Bluetooth link management is performed on Bluetooth’s logical link and adaptation proto-
col (L2CAP) layer. The RFCOMM protocol, a serial port emulation, provides connectivity
to computer terminals and consumer devices, such as cameras and mobile phones.

3.4.3.2 Programming Model
The system is geared towards the processing of (typically externally triggered) events, such
as sensor readings, the reception of data packets on the radio interface or user interface
interaction. To this end, BTnode applications follow an event-triggered programming
model, common to embedded systems and graphical user interface (GUI) programming
toolkits, where the system schedules application tasks on the occurrence of events. Inter-
nally, those tasks (or event-handlers) are implemented as C functions.

In the BTnode system, events model state changes. A set of predefined event types is used
by the drivers to indicate critical system conditions, such as expired timeouts or data being
ready for reading on an IO device. Applications can define their own event types, which
are represented by 8-bit integer values. Individual events can carry type-specific parameters
for evaluation in the application task.

A central component of the system is the dispatcher, where applications have to register
event/event–handler–function pairs. After the dispatcher has been started, it also accepts
individual events from drivers and application tasks. Low-level drivers (interrupts) or other
software components can generate an event to notify other system components to take
some action. In this context, events are not processed immediately but are stored in an
event queue in the dispatcher.

The dispatcher mainly consists of a first-in first-out (FIFO) queue that stores the events
that occurred and calls the corresponding event handlers to process them. Of course, other,
more complicated queuing disciplines are possible too. While the event queue is not empty,
the dispatcher starts the corresponding handler (i.e. , the previously registered function) for
the next event in the queue, passing the events individual parameters. Events are processed
in the order they are received by the dispatcher. Only one task (event handler) can be active
at a time and every event handler is always completely executed before the next is sched-
uled. So every event handler depends on the previous event handler to terminate in time.
However, long tasks can be broken into smaller pieces and can be triggered subsequently
by the event mechanism (e.g. by application-specific events).

3.4.3.3 Process Model
Like most embedded systems, the BTnode does not support dynamic loading and exe-
cution of applications at runtime. Only a single application is present on the system at

80



3.4. The BTnode Platform

1: #include <btnode.h>
#define THRESH_EV (MAX_SYS_EVENT+1)

3: static u16 conn_id = 0;

5: int main( int argc, char* argv[])
{

btn_system_init(argc, argv, /* ... */ );
/* accept conn */
btn_bt_psm_add(101);

11: btn_disp_ev_reg(BT_CONN_EV, conn_cb, 0);
12: btn_disp_run();

return 0; /* not reached */
}

16: void conn_cb(call_t call, cb_t cb)
{

conn_id = (u16)(call_data & 0xFFFF);
bt_sens_start(BTN_SENS);

20: bt_sens_set_thresh(BTN_SENS, 30, THRESH_EV);
21: btn_disp_ev_reg(THRESH_EV, sens_cb, 0);

}

24: void sens_cb(call_t call, cb_t cb)
{

u8 error = 0;
u8 buf = (call & 0xFFFF);
btn_bt_send(conn_id, buf, sizeof(buffer));

}

Figure 3-19
A typical BTnode program, which is
waiting for an incoming Bluetooth
connection. Once the connection is
established, it repeatedly transmits
sensor data exceeding a given threshold.
During initialization, the program
registers a handler for connection events
(line 11) and then passes control to the
dispatcher (line 12), which enters sleep
mode until events occur that need
processing. Once the connection is
established, the corresponding handler
function conn_cb is called by the
dispatcher (line 16). The program
initializes the sensors with a threshold
value (line 20) and registers the event
handler sens_cb (line 21). On the
occurrence of the sensor event, the
associated data is sent over the
connection (line 24 ff ).

a time. At compile time, applications are linked to the system software, which comes as
a library. The resulting executable is then uploaded to the BTnode’s Flash memory, ef-
fectively overwriting any previous application code. After uploading, the new application
starts immediately. However, the BTnode system can also be reprogrammed through the
network (see section 3.4.2.5).

3.4.3.4 Linux-to-AVR Embedded Emulation
In contrast to the design flow proposed for the Berkeley Motes using large simulations
as a means for stepwise refinement and collaborative debugging [LLWC03] we propose
a method based on virtualization and emulation of the embedded BTnode platform on
a Linux system [BKM+04] prior to deployment on the embedded target device. The
whole system software is designed for portability and is available for different emulation
environments (x86 and iPAQ Linux, Cygwin, and Mac OS X) apart from the embedded
platform itself. This cross-platform development approach uses Bluetooth devices attached
to a PC to run BTnode applications natively without the need for tedious downloading
to the embedded target itself and allowing for extensive debugging an monitoring due
to the capabilities of the PC platform. Native compilation and execution on Linux is
achieved using adapted drivers to match the host system and a virtualization of the core
OS functions in conjunction with a serial Bluetooth device on a PC or even an iPAQ
device.

Emulation simplifies application building and speeds up debugging since developers can
rely on the sophisticated debugging tools available on desktop systems. Also, the time for

81



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

uploading the sensor-node application to the embedded target can be saved. Furthermore,
different platforms, such as an iPAQ running Linux, can be used as cluster heads, reusing
much of the software written for the embedded nodes and making use of the resources of
the larger host platform for interfacing, extended computation or storage.

Using this “embedded Linux emulation” we can (i) make use of the unlimited resources
of a PC host platform as cluster head, e.g. for computationally intensive tasks, (ii) to
bridging networks, (iii) for comfortable application debugging and (iv) using the actual
Bluetooth devices embedded into a real environment instead of a simplified model as is
often the case in simulations [LLWC03]. The emulation has been used to perform the
computational intensive operations of the Hop-TERRAIN algorithm (see section 2.3.3)
in an early implementation based on XHOP (see section 4.2). Here, native x86 Linux
binary libraries were linked with BTnode application code and proved the versatility of the
approach.

3.4.4 Towards a Second Generation Programming Model
The first-generation, non-preemptive, event-triggered BTnode system software has draw-
backs that are unacceptable in the context of networked embedded systems. In fact all
event-triggered systems have these drawbacks [KR05] – not only the BTnode systems soft-
ware. It strongly depends on the applications whether these drawbacks are just minor
annoyances or become sources of instability and malfunction.

The key problem stems from applications that are not as simple and clearly structured as
the idealized “sample and broadcast” application, often referred to as the standard WSN
application. These simple applications can easily be serialized and optimized for energy
efficiency using duty-cycling and state-based dynamic power management schemes. In
the case of multiple, heterogeneous and asynchronous events, such as often encountered
in interactive applications or in the case of the BTnode, on the Bluetooth HCI interface
with complex and often interleaved control structures, a single FIFO event-handler loop
such as present in the BTnode system software dispatcher in section 3.4.3 is inappropriate.
Although the communication between processes is simple and based on global state vari-
ables, multiple interrupts of the same kind can lead to problems here. Too many events
generated by a single source as well as long processes that prevent others from running can
easily lead to buffer overflows. Extensive routines for preserving and checking the context
prior to accessing shared resources are the norm and buffer overflows can occur frequently
when the system load increases. In practice this results in complex, bulky and often reen-
trant code, that is hard to maintain and unable to support the functional performance and
quality required.

Similar programming frameworks such as Contiki [DGV04], Maté [LC02] as well as
TinyOS-1.x and nesC [GLvB+03] follow a comparable non-preemptive, event-triggered
model and thus share most of these drawbacks with the first-generation BTnode system
software. Switching to one of these systems would not remedy the problems encoun-
tered when larger, control-flow dominated applications were to be developed and deployed.
Therefore, an OS option that is not following the non-preemptive, event-triggered model,

82



3.5. BTnode Platform Success

equally well-supported as TinyOS and preferably written and maintained in the C pro-
gramming language, had to be considered.

This led to the choice of a multi-threaded model with each thread executing its own se-
quential control flow in its own state (register and memory context). Since only one thread
can be executed at a time on a single CPU, a scheduler is responsible for the selection of
the next thread to execute and keeps track of all threads and events during run-time. In
the non-preemptive case, each thread has to decide when to allow a context switch some-
what relaxing (but not ultimately solving) the problem of too long processes as mentioned
earlier. It is usually the case that priority based schedulers are being used with this process
model.

3.4.4.1 BTnut System Software Integration
Nut/OS is an intentionally simple real-time operating system (RTOS) for the Atmel AVR
family of microcontrollers, which provides a minimum of network oriented system services
with a large and active user base. Existing application domains of Nut/OS are mostly in
networking applications but user interfaces, such as terminals and displays, are also in use.
It’s features include:

• Non-preemptive, cooperative multi-threading

• Events

• Priorities for threads

• Periodic and one-shot timers

• Dynamic heap memory allocation

• Interrupt driven streaming I/O

The second generation BTnut system software builds upon this RTOS framework by pro-
viding BTnode specific drivers, communication protocol stacks for the Bluetooth and low-
power radio radios and demo applications. A separate build environment automatically
configures and integrates the Nut/OS core into this BTnut extension. The basic drivers
and the application structure is intentionally kept similar to the first-generation software,
although somewhat simplified in their handling through the use of the embedded multi-
threaded OS.

A novel programming model for programming wireless sensor networks using attributed
state machines has been proposed by Kasten [KR05] but is currently still in research phase
and not ready yet for real-world applications.

3.5 BTnode Platform Success
The BTnode platform and especially the software systems, support mechanisms and tools
discussed in this thesis has been jointly developed by the Computer Engineering and Net-
works Lab and the research group for Distributed Systems at ETH Zurich. The details of

83



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

the system software infrastructure for the BTnode platform are outside the scope of this
thesis and documented in detail by Siegemund [Sie04b] and Kasten [Kas05].

The BTnode platform is not solely used in the research presented here, but truly a ver-
satile and reliable ad hoc networking platform for fast-prototyping of applications and
experiments in research and development environments. The BTnode rev2 has been
successfully deployed with over 200 units. Many researchers across Europe but also in
the US have been using these for their implementation work and experimentation. The
BTnode rev3 has been commercialized with an industrial partner, the former ETH Zurich
spin-off Art of Technology. To date, the BTnode hardware has been used by 30+ other
research groups outside of ETH Zurich. This has led to a substantial gain in experience
throughout the research community as well as numerous well-perceived publications both
by members of the BTnode project, closely related researchers as well as third parties.

The development of the BTnode platform under an open-source policy has led to several
copies of the design, especially mentioned here is a redesign and commercially available
hardware replicas of the BTnode rev2 through a US based company (Cobalt Blue by Vit-
ronics).

3.5.1 BTnodes in Education
Apart form being a popular system for student thesis projects, the BTnodes and BTnut
have been introduced in a 5-session lab of a graduate course on embedded systems design
held at ETH Zurich for the first time in spring 2005 (120 participants) [BBDM05].

Teaching and Demos
• Different seminars, workshops and demos

• Hands-on tutorials to related researchers

• Demo in cooperation with the computer vision and wearable computing labs at
ETH Zurichs 150th anniversary

• BTnode related hardware as an example in a Bluetooth textbook [MT02]

• About 30-40 successfully completed student projects (thesis/internships)

• Bi-annual undergraduate lab using Lego Mindstorms and BTnodes [ER02]

• Graduate lab in embedded systems [BBDM05]

3.5.2 BTnodes in Research Domains
A selection of the most prominent work that has been based (in part) on the BTnodes and
related publications:

Wearable Computing Applications and Case Studies
• Physical activity detection network [JLT03],

• Wearable unit with reconfigurable modules [PEW+02, PEW+03]

84



3.5. BTnode Platform Success

• A systematic approach to the design of distributed wearable systems [ABD+04]

Ubiquitous Computing Applications and Demonstrators
• Proactive furniture assembly [AMS02]

• Better avalanche rescue through sensors [MS02]

• Smart spaces using RFID tags [SR02],

• User interaction scenarios with cell phones, active and passive tags [SF03]

• Smart product monitoring using mobile phones and short text messages [Sie02,
SR03]

• Context-aware communication platform for smart objects [Sie04a]

• Cooperating smart everyday objects [Sie04b]

• Handhelds and cooperating smart everyday objects [SK04b, SFV04]

• Tuplespace-based collaboration of Bluetooth-enabled devices in smart environments
[SK04a]

• Proximity as a security property in a mobile enterprise application context
[DNHKK04]

• Building intelligent environments with Smart-Its [HGK+04]

• Physical prototyping with Smart-Its [GKSB04]

• Innovative application development for ubiquitous and wearable computing
[Mic04]

• Improving interaction with context-aware systems [Ant04]

Wireless Sensor Networks Research
• Power management, throughput measurements based on BTnode rev2 and TinyOS

[LDB03]

• Prototypes and evaluations for the Hogthrob project [BBDL03, Leo04]

• Connection oriented sensor-networks [Dyd04]

• BitMAC: A deterministic, collision-free, and robust MAC protocol for sensor net-
works [RR05]

• Beyond event handlers: programming wireless sensors with attributed state machines
[KR05]

• A distributed platform for sensor networks [BKR03a, BKR03b]

• Prototyping wireless sensor networks with BTnodes [BKM+04]

• Next-generation prototyping of sensor networks [BDH+04]

• A state based programming framework for wireless sensor networks [Kas05]

• TinyOS on BTnodes [BD05]

85



Chapter 3: A Distributed Environment for Prototyping Sensor Networks

Time Synchronization and Local Positioning
• Tracking real-world phenomena with smart dust [Röm04b] using the lighthouse

location system [Röm03]

• Determination of time and location in large-scale dynamic networks of tiny sen-
sors [Röm04a]

• Time synchronization using BTnodes [MW05]

• Time synchronization and calibration in wireless sensor networks [RBM05]

• Time synchronization and localization in sensor network [Röm05]

• Topology and position estimation in Bluetooth ad hoc networks [Fre03]

Bluetooth Performance and Algorithms
• Early BTnode performance assessments [KL01]

• Power management of BTnodes [MFT05]

• Power consumption of bluetooth scatternets [NBD05b]

• Robust topology formation using BTnodes [Beu05]

• A practical topology control algorithm for ad-hoc networks [WZ04]

• Topology control for deployment support networks [BDMT05, DBM05]

86



4
Robust Multihop Networking using BTnodes

Research of the past years has brought about many new developments and proposals for
wireless sensor networks, mostly in areas of algorithms and theory, backed up by extensive
simulation work. In order to fully understand the complexity of these issues from a system
perspective we will highlight the idiosyncracies of multihop networking implemented on
real devices. In this chapter we example of how to construct connected ad hoc network
topologies using Bluetooth. The goal of this work is twofold: We want to (i) form large,
connected networks consisting of many devices, supporting transparent multihop trans-
port and (ii) to understand the limits and benefits of Bluetooth technology in the context
of ad hoc networking and the relevant implementation cross-layer issues.

A prerequisites for multihop networking on an ad hoc network is a connected network
topology spanning all nodes in a given area of interest. Different approaches for multihop
routing are known [PH00, ICP+99] that can be used to to meet different performance
requirements. Popular routing protocols like dynamic destination-dequenced distance-
vector routing (DSDV) [PB94], ad hoc on demand distance vector (AODV) [Per01],
dynamic source routing (DSR) [JM96], location aided [KV98, YBV00], dominating set
based [Wu02] or geometric routing [KWZ03] all rely on an underlying communication
network infrastructure. In the case of a Bluetooth network, this underlying infrastructure
is a connection oriented medium, as opposed to a broadcast oriented or connectionless
medium. This means that within a given area where radio communication can be estab-
lished, nodes do not communicate over a joint channel but that between any two node
pairs a separate channel exists. The challenge here is not so much in the multiuser separa-
tion, collision detection and avoidance but in distributed synchronization and scheduling
of the distinct channels as to deliver maximum service quality to all nodes.

A first task to be solved in multihop networking using Bluetooth is the construction and
maintenance of a connected network topology. This basic backbone connectivity serves
the purpose of a general deployment infrastructure on which data can be transported from
node to node and which services such as a local positioning service outlined in section 2.3

87



Chapter 4: Robust Multihop Networking using BTnodes

can be operated. Topology construction should be simple, robust and local as to mini-
mize the burden inflicted on neighboring nodes. On every node, such a topology control
service encompasses the discovery of remote nodes, connection management (opening,
closing and supervising links), as well as the construction and maintenance of a connected
network topology based on the node, link and application status. Then, data-forwarding
services, routing schemes and other services can make use of the network topology to create
meaningful and worthwhile applications.

We have developed three different variants of such multihop network topologies based
on the BTnode platform described earlier (see chapter 3), each accounting for different
prerequisites and capabilities of the underlying hardware. Additionally, it was necessary
to also implement an adequate data transport scheme to accompany each topology vari-
ant, enabling debugging and monitoring of the node functions. The first example (see
section 4.2) is based on Bluetooth devices not capable of forming scatternets but only
point-to-point piconets (Ericsson ROK101008, one master-slave connection) and uses a
time-multiplexed approach to achieve multihop connectivity. The TreeNet example (see
section 4.3) implements a self-healing, distributed Bluetooth scatternet formation on the
BTnode rev2 platform using an improved Bluetooth module (Ericsson ROK101007) capa-
ble of rudimentary scatternet formation as described in sections 3.4 and 4.3.1.1. The third
examples makes use of the BTnode rev3 with a modern Bluetooth radio system (Zeevo
ZV4002) capable of forming advanced scatternets by means of parallel management of
multiple connections and a much higher degree of freedom than it’s predecessors to form
large network topologies to be used for a deployment-support network (see section 4.4).

After a brief introduction to some basic principles and the fundamentals Bluetooth wireless
communication in section 4.1, we will discuss our example implementations including
devices used, prerequisites, limitations, algorithmic ideas and implementation results in
the sections 4.2, 4.3 and 4.4. Much of the implementation, testing and experimental
work presented in this chapter would not have been possible alone and was performed in
collaboration with Matthias Dyer, Lennart Meier and Matthias Ringwald.

4.1 A Connection Oriented Medium – Bluetooth
Bluetooth, or IEEE 802.15.1 is a short-range wireless communication system conceived
as wireless cable replacement by major telecommunication equipment manufacturers such
as Nokia, Motorola, Ericsson, IBM and others [Haa01, Haa00, HM00]. It’s main design
goal is to seamlessly interconnect portable and/or fixed electronic equipment, e.g. personal
computers, handhelds, mobile phones, audio equipment, cameras and other accessories.
The Bluetooth standard uses a strongly layered approach, defining the radio system and
data transmission on the lower layers as well as interfaces and support for the application
on higher layers through Bluetooth profiles. Many features of the core specification are
optional, allowing product differentiation. Today over 30 of such profiles exist for various
applications, e.g. remote control, call control, object push, hands-free, local positioning
personal area networking, service discovery and others.

The Bluetooth physical layer operates in the unlicensed ISM band at 2.4 GHz and uses a

88



4.1. A Connection Oriented Medium – Bluetooth

frequency hopping transceiver with 1 Megasymbol per sec. Typically, a group of devices
share a physical channel in a master-slave configuration called a piconet. The master pro-
vides the synchronization reference and controls the time-shared medium access in slots
of 625 µsec using a frequency hopping pattern. Within a physical channel, a physical link is
formed between any two devices that transmit packets in either direction between them. In a
piconet physical channel there are restrictions on which devices may form a physical link. There
is a physical link between each slave and the master. Physical links are not formed directly be-
tween the slaves in a piconet. The physical link is used as a transport for one or more logical
links that support unicast synchronous, asynchronous and isochronous traffic, and broadcast
traffic. Traffic on logical links is multiplexed onto the physical link by occupying slots assigned
by a scheduling function in the resource manager. Above the baseband layer the L2CAP layer
provides a channel-based abstraction to applications and services. It carries out segmentation
and reassembly of application data and multiplexing and de-multiplexing of multiple channels
over a shared logical link.

The system architecture is partitioned into a controller and host partition (see Figure 4-1)
that communicate through a host controller interface (HCI). This allows the independent in-
tegration of the controller, i.e. the Bluetooth device or module and the host, i.e. a personal
computers CPU. As the Bluetooth controller is typically assumed to be strongly resource lim-
ited in comparison to the host, the L2CAP layer is expected to carry out certain management
functions, e.g. message sizes, buffer management, etc.

L2CAP

LMP

LC

Radio

control controldata data

Synchronous
unframed traffic

Asynchronous and
isochronous framed traffic

Device
control

services
L2CAP
layer

L2CAP
Resource
Manager

Channel
Manager

Link
Manager

layer

Baseband Resource
Manager

Radio
layer

Link
Manager

Device
Manager

Baseband
layer

Link Controller

RF

B
lu

et
oo

th
 H

os
t

 
B

lu
et

oo
th

 C
on

tr
ol

le
r

Host Controller Interface (HCI)

Figure 4-1
The Bluetooth core system
architecture is shown except for
the service discovery
protocol (SDP) that is not
shown for clarity. Systems are
partitioned into a controller
and host section that
communicate via the host
controller interface (HCI).
Different protocols are defined
on the various layers, e.g. RF
and baseband (Radio), link
controller (LC), link
management protocol (LMP)
and logical link and
adaptation protocol (L2CAP).
It supports both synchronous
and asynchronous data traffic.

The first Bluetooth draft documents date back to 1998 and have subsequently been revised and
improved.

89



Chapter 4: Robust Multihop Networking using BTnodes

4.1.1 Embedded Bluetooth
The generic HCI eases integration of Bluetooth into new products. These need only be capable
of running a Bluetooth host protocol stack and the profiles according to the application require-
ments. Bluetooth devices and modules are increasingly being made available which come with
an embedded stack and a standard universal asynchronous receiver transmitter (UART) port.
The UART protocol can be as simple as the industry standard AT protocol, which allows the
device to be configured to cable replacement mode. This means it now only takes a matter of
hours (instead of weeks) to enable legacy wireless products that communicate via UART port.

4.1.2 Bluetooth Pros and Cons
++ Price (single device and design-in)

++ Layered architecture, modularity

++ High layer abstractions, HCI

++ Built in encryption and security features

++ Continuous development, maturing standard due to improvements in drafts 1.0 and 2.0

−− Power consumption, especially of early SoC

−− Limited local connectivity (max. 8 nodes per piconet)

−− Complex to handle, mostly because of connection orientated nature, quality of service
and security issues

−− Initiating a connection takes a long time

4.1.3 Bluetooth Networking – Operational Prerequisites
Networking in Bluetooth is organized in master-slave configurations of up to seven active slaves
that can be connected to one master at a time (piconet). Prior to opening a connection to a
specific node, the initiating node has to perform an inquiry to detect other nodes in the vicinity.
Multiple piconets can be interconnected by nodes taking on dual roles of slave–slave or master–
slave forming a scatternet (see Figures 4-6 and 4-13). While the interconnection of nodes in
these different configurations is part of the Bluetooth standard, the formation and control of
multihop topologies is not governed by the standard. Also, the data transport is only defined on
each single hop (from master to slave or vice versa) and not over multiple hops, e.g. from slave
to slave over an intermediate master in a standard piconet or even across a scatternet formed by
multiple piconets. This means that a functional layer running on the host controller must take
care of general connection management and all multihop packet forwarding (see section 3.4.3).

90



4.1. A Connection Oriented Medium – Bluetooth

At the lowest architectural layer, four types of physical channels are defined. Two of these
physical channels (the basic piconet channel and adapted piconet channel) are used for com-
munication between connected devices and are associated with a specific piconet. The remain-
ing physical channels are used for discovering Bluetooth devices (the inquiry scan channel)
and for connecting Bluetooth devices (the page scan channel). In order to reduce the likeli-
hood of two independent Bluetooth transceivers tuned to the same RF frequency at the same
time a mandatory channel access code is being prefixed to every packet on the physical chan-
nels. A Bluetooth device can only use one of these physical channels at any given time. In
order to support multiple concurrent operations, the device uses time-division multiplexing
between the channels. In this way a Bluetooth device can appear to operate simultaneously
in several piconets, while still remaining discoverable and connectable. Whenever a Bluetooth
device is synchronized to the timing, frequency and access code of a physical channel it is
said to be connected to this channel. The Bluetooth specification assumes that a device is
only capable of connecting to one physical channel at any time. Advanced devices may be
capable of connecting simultaneously to more than one physical channel, but the specifica-
tion does not assume that this is possible. Situated above the physical channels are physical
links (active and parked links) as well as logical links and L2CAP channels. The physical links
can transport synchonous connection-oriented (SCO) (bi-directional, symmetric, audio/video)
and asynchronous connection-oriented (ACL) data (reliable or time-bounded, bi-directional,
point-to-point) that can be parametrized with respect to up- and downlink data rates, error
correction and quality of service (QoS).

Bluetooth devices use the asymmetric inquiry procedure to discover nearby devices by sending
an inquiry request on the inquiry scan channel. Devices that are available to be found are
known as discoverable devices and listen and respond to these inquiry requests. The procedure
for forming connections is asymmetrical and requires that one Bluetooth device carries out the
page (connection) procedure while the other Bluetooth device is connectable (page scanning).
The connectable device uses a special physical channel to listen for connection request packets
from the paging (connecting) device. This physical channel has attributes that are specific to
the connectable device, hence only a paging device with knowledge of the connectable device is
able to communicate on this channel. After a successful connection procedure, the devices are
physically connected to each other within a piconet. While in a connection, different modes
are possible: hold (reduced traffic), sniff (reduced duty cycle) and park (suspended traffic). A
role switch allows to swap the roles (master and slave) of two devices connected in a piconet.
The Bluetooth device is responsible to balance the different procedures, physical channel access
and distribute time-shared resources to meet QoS requirements and the processing needs of
ongoing logical transports.

The host controller interface (see Figure 4-1) provides abstraction and standardized access to the
lower levels of the protocol stack residing on the Bluetooth controller. HCI events are used for
notifying the host when something occurs. HCI commands provide the host with the ability
to control baseband, link management layer, policies and status. HCI commands may take
different amounts of time to be completed. Therefore, the results of commands will be reported
back to the host in the form of an event. The host will receive isochronous notifications of
HCI events independent of which host controller transport layer is used (currently, UART and

91



Chapter 4: Robust Multihop Networking using BTnodes

universal serial bus (USB) are available transport layers). When the host discovers that an event
has occurred it will then parse the received event packet to determine which event occurred. For
example, for most HCI commands the controller will generate the command complete event
when a command is completed. This event contains the return parameters for the completed
HCI command. For enabling the host to detect errors on the HCI-transport layer, there needs
to be a timeout between the transmission of the host’s command and the reception of the
controller’s response (e.g. a command complete or command status event). This amount of
time is dependent on the number of commands unprocessed in the command queue and the
HCI-transport layer used.

The host is responsible for opening and closing connections by issuing the required HCI com-
mands. It is required to maintain a link state machine for every physical link and for the
multiplexing of all logical links and the data transfer. For this, different ACL and synchronous
SCO data packets are assembled at the sending side’s host and transferred over the HCI to the
Bluetooth device. The data is received and output to the receiving side’s host in the same order
as it has been sent.

For an in-depth discussion of Bluetooth properties in the context of ad-hoc networking either
see the reference listed in section 4.1.4 or the recent thesis by Dydensborg [Dyd04].

4.1.4 Bluetooth Network Topologies – Related Work
The Bluetooth standard only describes the minimum requirements of the interconnection of
piconets to form scatternets using master-slave and slave-slave bridges but no suitable algorith-
mic control of the network topology. This leaves room for individual ideas and researchers have
embraced the topic and generated numerous proposals.

There are basic studies on the suitability of Bluetooth as a networking technology by Johans-
son [JKKG01] as well as on the comparison and interferences of Bluetooth and 802.11b wireless
networks by Ferro [FP05a] and Chandrashekar [CCM+01].

The solutions proposed for the automatic formation of Bluetooth scatternets can be classified
according to the preconditions of the algorithms and the properties of the resulting scatternet.
One such precondition is that all nodes must be in each other’s transmission range (single-
hop) [LMS03]. The BlueMesh [PBC02] algorithm is one solution for the more general multi-
hop case, and guarantees that a connected mesh topology is achieved. Unfortunately, the au-
thors of BlueMesh assume that the topology of the network does not change. This algorithm
can therefore not deal with link failures and leaving and joining nodes.

Many other proposed solutions refer to the problem of setting up static scatternets [PBC03,
ZBC01] where many different algorithms for mesh structures either conforming to the stan-
dard [Bas02, BP02], or non-conforming with mesh [PBC02], star [PBC03], ring [FC02] or
tree [ZBC01] topologies have been proposed. The performance of Bluerings has been stud-
ies by Lin [LTC03]. A recent distributed algorithm with bounds on complexity proposed by
Law [LMS03] has been validated by simulations as well as through a comparative study by
Basagni [BBMP04].

92



4.2. XHOP – Multihop Bluetooth Data Transport

Following algorithmic work on the connectivity of Bluetooth scatternets [GRSV03], Guerin
has studied the performance and complexity of such algorithms and comes to the conclusion
that forming at least one connected topology is NP-hard due to degree constraints. However,
his investigation is based on assumptions that cannot be justified on real devices, e.g. seven
simultaneous master and seven slave roles [VGSR05].

Similarly to this study, the properties and performance of the most algorithmic work is de-
termined by simulation with often unrealistic choice of parameters for these evaluations. For
instance, the performance evaluation in [BBMP04] used a variable time for the inquiry opera-
tion, randomly selected in the interval from 0.01 sec to 0.5 sec. This is not realistic compared
to real devices where this duration is specified to be in the range of 1.28 sec to 61.44 sec by the
Bluetooth standard.

To the best of our knowledge, implementation reports of a large-scale multihop scatternet-
formation algorithm are missing so far. Even theoretical analysis has just begun to address the
problem of maintaining a connected scatternet for multihop topologies in a dynamic envi-
ronment. Recent evaluations of scatternet-formation algorithms [BBP03, BBMP04] have also
referred to the lack of such algorithms.

4.2 XHOP – Multihop Bluetooth Data Transport
Initial experiments [Fre03] based on the BTnode rev1 and BTnode rev2 equipped with the
same Bluetooth devices (Ericsson ROK101008) allowed to form point-to-point connections
only. These severe device restrictions require to use a time-multiplexed scheme for multihop
networking. Data is sent on one point-to-point link at a time and cached on intermediate
nodes. In a large, distributed context with multiple packets being transported, this results in
a dumbbell-like network topology (when viewed as a momentary snapshot), with connections
being created on demand only and being torn down after data transmission had finished (see
Figure 4-2).

In an idle state, there are no open connections in the network. Connections will only be
opened if there is data that has to be sent from one to another node. After a connection has
been established, the data will be sent. If there is no pending data for an open connection
it is closed again immediately. Obviously, this approach does not allow fast multihop data
transmission as paging is a lengthy process (see section 4.3.2). On the other hand, it allows us
to open all connections that are possible among devices, which are in range of each other.

Figure 4-2
XHOP multihop data
transport – Dumbbell-like
Bluetooth connections allow
for a time-multiplexed
multihop routing across
piconet borders. At any given
time, only single point-to-point
links are available.

93



Chapter 4: Robust Multihop Networking using BTnodes

XHOP packet

param
len

param
len

cmd
type

cmd
len

xhop
header answerparam cmd

type param ...
2 1 2 param_len 1 2 param_len

route
pos

route
len

option
type dataroute

1 route_len*6 max(64k - header_len)1 1

data
len datacmd

type
header
cmds

source
address

data
len datacmd

type
source

address ...
6 data 6 data11 11

remote commands

answer data

Figure 4-3
An XHOP packet consist of a
predefined route of Bluetooth
addresses and payload data up
to the maximum length of a
Bluetooth ACL data packet
(max. 64 kbytes). Using this
protocol, remote commands
can be transported and
executed across multiple hops
generating answer data that is
returned to the origin of a
remote command.

Based on this approach, the XHOP Bluetooth multihop source routing protocol implements
a variant of the popular dynamic source routing (DSR) developed at Carnegie Mellon Univer-
sity [JM96]. XHOP provides a mean for multihop data transport and a script like command
language for remote command execution (see Figure 4-3). DSR is an on-demand routing pro-
tocol, which means that routes are not updated continuously. When a node requires sending
data, it first needs to initiate a route discovery process before it can use the retrieved route to
send the data with XHOP. To allow remote configuration and remote data queries over several
hops in a BTnode network, XHOP was implemented using a connection manager consisting
of an inquiry scheduler and a connection manager/packet forwarder.

4.2.1 XHOP Connection Manager
To facilitate data transmission between devices a connection manager has been implemented
that sits immediately above the L2CAP layer and is responsible for all data transmission in the
network. The connection manager consists of two parts. The first part is the inquiry scheduler
that periodically performs inquiries and maintains a list of known devices that can be queried
by the upper layers. The other part is the actual connection manager that accepts data packets
from upper layers and is responsible for opening and closing connections and delivering the
packets.

4.2.1.1 Basic Inquiry Scheduler
The inquiry scheduler performs inquiries in a periodic interval and manages a list of devices
discovered. The list contains the known device’s Bluetooth address, their clock offset, a time
stamp of the last time the node was reported and a status byte. The routine also checks the
remote’s class of device (CoD) used for further identification, i.e. to decide whether the remote
device is a BTnode or not. By using an unique CoD this provides a simple but effective means
for identification of devices that are part of the experiment and such that are not. To account
for dynamic network environments, devices are removed from the list if not found for a given
timeout. The inquiry list can be queried from remote to perform a topology discovery in the
network.

94



4.2. XHOP – Multihop Bluetooth Data Transport

register data packet

check pending packets

y

check pending packets

L2
C

A
P

A
pp

lic
at

io
n

C
on

ne
ct

io
n 

M
an

ag
er

 / 
R

ou
tin

g

send data

send datasend
data

connection
event

delay

n

y
connection

request

process
commands

109 - Single Hop

107 - XHOP

111 - Route Home

answer
data

forward packet

y

y

n

n

received
data

close
connection

disconnect

pending packets

n
PSM

connection
cleanup

immediate
forwarding

chose packet,
open connection

check pending
packets

open connection?

pending
packet for an open

connection?

destination?

Figure 4-4
The XHOP connection
manager integrates both
connection management and
packet forwarding on top of
the Bluetooth L2CAP layer. A
reduced variant of dynamic
source routing supports
multihop data transport. The
core functionality is provided
by an event-driven state
machine. Packets are stored in
a pending packet buffer and
iteratively handled by the core
state-machine. For enhanced
readability, the basic inquiry
scheduler is not shown here.

4.2.1.2 XHOP Connection Management and Packet Forwarding
The basic scheme for sending data in the dumbbell-like network structure works the following
way. The application registers a data packet that has to be sent along a given route. The
application tags the packet with a timeout constant and a maximal number of retries in case
of a forwarding failure. The data is copied to buffers inside the connection manager and the
function returns immediately. The connection manager repeatedly checks for open connections
and for pending packets. If there is an open connection to a remote device and there is data to
send to that device, then it will send it immediately. Otherwise, it chooses a packet among the
pending ones and tries to open a connection to the destination device. The process chosen to
select a pending packet to send next is random. However, adding a priority based scheme here
would be an easy and useful extension. The connection manager is also responsible to close a
connection if there are no pending packets for the device on the other end of the connection.
Incoming packets are evaluated for their final destination. Packets destined for the local node
get passed to the application directly, while XHOP packets not at their final destination yet are
handled as described above (see Figure 4-4).

An application example of XHOP is given in Figure 5.5. Node A sends an XHOP packet to
node E over the route (A, B, C,D,E). It requests node E to perform an inquiry and return
the result along the reverse route (E, D, C, B, A).

4.2.2 Experiences
This Bluetooth multihop source routing prototype showed the feasibility of an integrated, scal-
able, cross-layer application protocol on the BTnode devices. It allows multihop data transport
by routing across piconet borders and thus supporting more than eight nodes in a network.
Furthermore, it allowed remote topology discovery, remote execution of commands using the
command line interface and a script like command language in the payload of XHOP packets.

95



Chapter 4: Robust Multihop Networking using BTnodes

A

B

C
D E

G

F

xhop(A,B,C,D,E)
inq()
return_result()
xhop(E,D,C,B,A)

Figure 4-5
Multihop Bluetooth data transport
using source routing – The XHOP
protocol allows to communicate across
piconet borders using a source routing
approach. A skript-like command
language in the XHOP packet payload
allows to execute remote commands like
the one shown on the left. Here node A
performs a remote topology discovery by
sending a set of remote commands
along the predefined route
(A,B, C, D, E) to node E and
receives the result (D,F,G) along the
reverse route.

An obvious caveat of this implementation was the high latency due to the very slow connection
performance of about 1–2 sec per hop, depending on the inquiry and paging results, but nev-
ertheless it allowed to gather first experiences, gaining an understanding of the properties and
caveats of Bluetooth networking and the related implementation issues.

Prototyping first on Linux and then moving to the embedded platform (see section 3.4.3.4)
proved to be a valuable tool to accelerate the design and testing cycle, and as a result fast-
prototyping [BKM+04] using the BTnode platform. Another valuable technology developed
in the context of the XHOP prototype was network re-programming of the BTnode program
memory. This was implemented using the same basic packet format as described earlier and the
remote command execution facility. As Bluetooth support error corrected data transmission, it
was only necessary to implement an appropriate caching mechanism for the firmware images
(up to 128 kbytes), a flash memory programming function and a bootloader. The per-hop
performance achieved for 10 kbytes of data was about 0.8 sec for the data transmission and
about 0.2 sec for writing to Flash, resulting in about 10 sec to transmit, write and reboot with
an 80 kbyte firmware image.

At the time, the BTnode was still an early prototype, hardware components were partially
untested often lacking appropriate software and driver support. While the first prototype was
still implemented in a single inline application without the support of a system software it was
extremely hard to interleave operations, leading to very messy code and as a result, instability
of the application. With the BTnode System Software (see section 3.4.3) just in the beginning
of development, many features had to be developed from scratch for this application to work,
but proved valuable as a basic means of system level support.

Problems encountered with the often unreliable Bluetooth hardware can be largely attributed
to the early development status of the devices used, others are properties of this specific wireless
technologies where there are many possibilities for application wide failures to occur of which
we give a few examples here: (i) As the command for closing a connection immediately discon-
nects without regarding ongoing data transmissions, care had to be taken when disconnects can

96



4.3. Robust Topology Formation using BTnodes

be issued. (ii) The device to which data was sent may fail to disconnect. As it is not the sender’s
responsibility to close connections it may be left open. (iii) A slave in an open connection is
no longer able to respond to connection requests from other masters and is therefore blocked
for further data transmissions. Care had to be taken that even on disconnection failures, open,
unused connections will still be closed as soon as possible.

4.3 Robust Topology Formation using BTnodes
Throughout this second example of Bluetooth multihop networking, we will be using the
BTnode rev2 prototyping platform introduced in the previous chapter as our underlying in-
frastructure. We will first talk about the Bluetooth prerequisites available on the BTnode rev2
that we can actually use as starting points to develop an appropriate multihop topology main-
tenance algorithm. This algorithm will be subsequently discussed in our example implementa-
tion. The Bluetooth prerequisites contain general definitions made in the Bluetooth standard
and specific device capabilities found on the BTnode rev2 devices. Nevertheless, the concepts
of this work can be applied in a straightforward manner to other generations of devices with
differing capabilities.

4.3.1 Fundamentals of Pico- and Scatternet Formation
For the development of a topology control algorithm based on the BTnodes we will be able to
use the states disconnected, master, slave and master-slave as well as the operations

• inquiry(duration, max_devices) → addressList

• connect(address) → link

• disconnect(link)

• roleSwitch(link, role)

• sendData(link, data)

The operation inquiry() is used to scan the environment for other nodes and returns the ad-
dresses found in the respective scan. The search operation either runs for a selected duration
or until a number of devices max_devices have been found. A connect() tries to establish a
link to a node with a given address, typically found by a previous inquiry(). In order to switch
the master/slave relation a roleSwitch() can only be performed on single point to point links
since it changes the location of the master and thus would break the structure of a piconet with
multiple slaves. A sendData() operation finally sends a buffer of data across the link specified.
These operations are initiated by sending an HCI command to the Bluetooth device and com-
pletion is signalled by an HCI event received by the microcontroller. Although multiple HCI
commands can be queued at the Bluetooth controller, the single functions are serialized and are
blocking in function until completed, e.g. only one connect() can be executed at a given time,
requiring care on the implementation.

97



Chapter 4: Robust Multihop Networking using BTnodes

4.3.1.1 Bluetooth 1.1 Scatternets on the BTnode rev2
The Bluetooth standard specifies a set of required features, of which devices typically are not
required to support all. Likewise the degree of freedom in implementations is reduced con-
siderably from that used in most theoretical studies (see section 4.1.4). In contrast to the
Ericsson ROK101008 devices available in our first experiments (see section 4.2) the Ericsson
ROK101007 devices available on the BTnode rev2 used here are capable of forming scatternets
interconnected via nodes assuming a single master-slave dual role as shown in Figure 4-6.

Master

Slave

Master-Slave

Figure 4-6
Bluetooth 1.1 organized in
pico- and scatternets – Single
piconets can be interconnected
to form tree-shaped scatternets
by the means of master-slave
bridges. Only nodes assuming
a master role (root nodes of a
tree) remain visible to other
nodes.

In our case, the capability for device discovery and connection control has hardware specific
restrictions: A node can only (i) perform or (ii) answer to an inquiry() or connect() while in
the states disconnected or master and (iii) is only visible to other nodes while not performing
one of the above operations. While assuming slave or master-slave roles the devices are no longer
discoverable and connectable. This means that we cannot construct arbitrary mesh topologies
(we cannot construct circular structures, but only trees), and that nodes that are already part of
a scatternet and not the root of the tree are not discoverable and connectable any more. Tree
topologies can thus be only grown from the root and not from intermediate nodes or the leaves.

4.3.2 Non-determinism in Distributed Piconets
Since wireless channels have many variant properties there is generally no guarantee for the
success for any over-the-air operation. In general, the wireless medium can be assumed to be an
unreliable medium. Again, when applied to Bluetooth technology this means that operations
such as inquiry() and connect() can exhibit considerable delays and much worse, have no
a priori guarantee for success. This is especially a problem when operating in a distributed
and uncoordinated environment with many peers. An inquiry() of a given duration does not
always return a complete list of neighbors present and a connect() might not succeed even if
before the inquiry() resulted in exactly and exclusively this node. As the operations rely on
best effort, no assumptions on the state or even the presence of other nodes can be made prior
to a successful search or connection setup. A node that was visible before might not be visible
anymore, be busy with an operation or subject to other random sources of interference. In
practice, subsequent iterations of an inquiry() result in a different amount and order of nodes
found on each iteration [KL01].

In a theoretical worst-case, distributed scenario for the limited-visibility Bluetooth devices used
on the BTnode rev2 discussed in section 4.3.1.1 where e.g. all nodes would try to perform

98



4.3. Robust Topology Formation using BTnodes

an inquiry() or connect() simultaneously for an equal length duration using the properties
described earlier, we would not be able to detect the presence of any node, independent of the
node density (see Figure 4-7).

Figure 4-7
Bluetooth 1.1 theoretical worst
case scenario – Synchronized
inquiry() of all nodes for an
equal duration will not give
yield node discoveries, since all
nodes are busy transmitting
inquiry() and cannot respond
simultaneously due to
hardware limitations of the
Ericsson ROK101007
Bluetooth module. An example
of a semi-connected network
(four independent piconets)
and five simultaneous
inquiries is shown on the left.

Traditional problems of limited visibility (hidden station problem) are further influenced by
asymmetric effects on the higher layers, that are specific to Bluetooth: The inquired node does
not notice the presence of the inquiring party, i.e. a response to an inquiry is not signalled to
the host by an HCI event. Typically, average rates of success are defined and protocols have to
take care of retries, retransmissions and back-off on erroneous behavior. Independent studies
by Kasten [KL01], Murphy [MWF02] and Welsh [WMF02] have shown that the average delay
for a successful inquiry() and connect() is in the order of multiple seconds. The recent version
1.2 update of the Bluetooth standard actually contains several improvements in this direction.

What we can learn from such insights is, that inquiry() and connect() are highly nondeter-
ministic (both in timing and function) and we will have to find means to cope with all these
properties to construct robust and reliable networking services.

4.3.3 TreeNet – Simple Tree Topology Construction
Learning about all these properties we can understand that we cannot construct arbitrary mesh
structures in Bluetooth 1.1 scatternets. In fact the devices used allow only to construct trees
and no circular structures and that we would have to deal with lot’s of non-determinism and
failures. So the question in this section is how to construct and maintain arbitrarily large trees
in a robust and distributed way using a most simplistic scheme.

A very simple and robust distributed algorithm to be used for connection management based
on a search–and–connect scheme that is executed on every node is given in the following:

Starting with all nodes initially disconnected and idle, nodes would perform an inquiry() to
search for other nodes and subsequently try to connect() to all nodes found in this search

99



Chapter 4: Robust Multihop Networking using BTnodes

Algorithm 3 TreeNet – Simple Tree Topology Construction
loop

while my_slaves < max_degree do
found_nodes = inquiry();
for all nodes in found_nodes do

connect(node);
end for

end while
end loop

phase. Upon a successful connection between two nodes, the slave node stops inquiring and
connecting (since it cannot inquire and connect anymore), while the master node continues
if it has not yet acquired max_degree1 slaves. This means that new connections are opened
only between nodes that are not in a slave or master-slave role. Starting with disconnected
piconets, the network topology evolves by connecting more and more piconets to each other
and forming scatternet trees until, after multiple iterations, only one master node is left at the
root of the final tree (see Figure 4-8). If a link fails, the root of the disconnected subtree is not a
slave anymore and will thus start inquiring and connecting again. To speed up the connection
process, the information obtained during inquiries (node addresses and clock offsets) is stored
locally.

(a) (b) (c) (d) (e)

Figure 4-8
Schematic view of the TreeNet algorithm operation – (a) Initially disconnected, (b) first piconets form,
(c) they interconnect to form first scatternet trees, until (d) larger scatternets are forming and the tree
structure becomes visible, and (e) finally, a single tree has been constructed.

This algorithm allows the formation of large topologies in a robust, distributed and extremely
lightweight fashion that is independent of any central controller, exhaustive computation or
data exchange between nodes. Based on a simple search–and–connect scheme the TreeNet
topology formation offers basic redundancy, self-configuration and even self-healing properties.
Since this is clearly a best-effort approach there is no given guarantee for a specific topology or
even optimization. If desirable, it is possible to add auxiliary topology control services to break
up trees at specific connections and to optimize the topology after the initial construction phase
of the TreeNet algorithm.

1 This parameter is used to control the degree and hence depth of the final tree.

100



4.3. Robust Topology Formation using BTnodes

Data transport is organized based on the topology information. Upon a connect, leaf nodes
(slaves) send their ID upwards in the direction of the root. Every intermediate node keeps a
table of the respective subtree with only the root node (master) having a complete table of the
network topology. This allows simple broadcast and unicast distribution of XHOP packets with
remote commands from any node via the root node, sufficient for demo and initial deployment.
However, this approach does not scale to infinitely large tree topologies.

4.3.4 Lessons Learned Through Experimentation
Of course real life in such experimentation does not come as cheap as proposed in our eight
line algorithm in the previous section. Major issues that were discovered along the way from
concept to final system validation were, that (i) an eight line, high-level algorithm leads to about
2000 lines of code in a functional implementation and (ii) it is very difficult to test, deploy and
evaluate a large amount of devices. We will now discuss these two issues in more detail.

4.3.4.1 Code Size and Complexity
Given the constraints specific to our devices, the implementation and the highly non-determi-
nistic behavior of the environment, extensions to the core TreeNet algorithm (algorithm 3) are
close at hand to improve the overall performance.

First of all there are evident general lockup issues in the formation of the trees, that needs to be
accounted for. A major restriction that is rooted in the restriction of the Bluetooth hardware to
not be able to connect() to slave roles is, that all nodes must be in visible range of each other
for the algorithm to function and all nodes to be able to connect to a tree. Furthermore a set
of nodes might not fully connect if multiple max_degree roots form because they will not be
allowed to take on another slave connection due to the max_degree limitation.

In order to solve this problem and the lockup issues discussed above, a root node that can still
see other nodes but has been in a max_degree state can try to disconnect one of it’s slaves
and try to connect to another node using algorithm 4. This is of course not a very efficient
operation but it allows to gradually include all nodes into a balanced single tree using this simple
and robust random back-off technique. Care has to be taken to only invoke algorithm 4 after
a sufficiently long initialization phase for the whole network, e.g. when the topology control
dynamics have settled down. In practice we have used timeouts of multiple tens of seconds to
multiple minutes to detect a max_degree-root lock-up.

The problem of distributed inquiry() and connect() has been discussed earlier. A simple
greedy algorithm that time-stamps operations and events can then try to connect() to the
last node seen on an inquiry() first, expecting that node to be available for incoming con-
nections since it has recently answered to an inquiry(). Also caching of all inquiry() and
connect() attempts, their respective results and the retry count allows to use further heuristics
and to adapt the periodic behavior to nodes with frequent failures. These operations are not
very expensive in respect to the overall operation since they are performed completely on the
host microcontroller and help to reduce especially the amount and the duration of the time-
consuming and blocking inquiry() and connect() operations. They require to exchange the

101



Chapter 4: Robust Multihop Networking using BTnodes

Algorithm 4 Multiple max_degree-Root Lock-up Resolution
loop

while my_slaves = max_degree do
found_nodes = inquiry();
if found_nodes 6= 0 then

current = randomly_select(open_links);
disconnect(current);
new = randomly_select(found_nodes \ current);
connect(new);

end if
end while

end loop

for all nodes in found_nodes do and randomly_select() functions in the above algorithms
by a sorting and selection according to time-stamps.

An extension to sort and select nodes to connect to according to the received signal stength
indicator values is certainly also desirable, but was not supported by the Bluetooth devices on
the BTnode rev2. The RSSI resolution was too erroneous to be used for topology control (see
section 4.4.4).

Apart from these enhancements, an application needs appropriate error handling and fall back
mechanisms to handle all unsuccessful operations. The basic underlying infrastructure to be
able to run such an algorithm thus additionally needs data storage, data exchange, timing
functions, time-stamping of events, error handling as well as connection and link management
as a minimum subset implemented on every node in the system. Note that algorithm 4 is
already longer than the original TreeNet core algorithm. In total, this leads to about 2000
lines of additional code in our example implementation for the heuristically enhanced TreeNet
application.

4.3.4.2 Large Scale Distributed Deployment
When it finally comes to simultaneous deployment on multiple devices, possibly away from
the engineers desktop, the situation changes once more: How to debug, quantify, visualize
and monitor the operation of a large number of distributed sensor devices without altering
the operation of the system and without attaching additional infrastructure? Stepwise testing,
deployment and validation are necessary steps in any design process.

Typical problems that appear here are the necessary cables, either for power or debugging and
control, batteries, mounting, housing to shield the electronics from harmful influences of the
environment, (re-)programming of all devices with software updates, debugging of a distributed
concurrent system, developing for stepwise deployment, visualization and analysis of operations
and the online access to nodes. Trial and error, system testing grids or brute force approaches
are most common today, some examples are illustrated in Figure 4-9.

Extra functionality is necessary to enable to debug and monitor the function of every node

102



4.3. Robust Topology Formation using BTnodes

Figure 4-9
Sensor network development today – A typical engineers desktop with devices under test and
programming devices (left), a static test-grid fixed onto a table using a large serial multiplexer to access
individual nodes in the setup (middle) and collective debugging sessions with independent development
setups (right).

until the final functionality can be verified. Today, this is typically done with a serial debugging
cable and a control terminal for each node. This is of course not feasible in the field as well as
with an increasing number of devices.

The TreeNet algorithm was implemented on the BTnodes and first demonstrated with over
40 devices in September 2003 at the NCCR-MICS annual project review, to that date and
our knowledge the largest interconnected Bluetooth scatternet. In an initial phase the first
scatternet trees appear quickly, on the order of a few seconds. It has shown that to reliably form
a single tree out of all nodes is a harder task with durations on the order of multiple minutes.
This is attributed to the reduced visibility of nodes as the algorithm progresses until in the final
stage, there are exactly two devices left that have to match. The resulting trees are generally very
stable and remain connected over hours, even in the presence of heavy interference from other
Bluetooth devices and wireless local area networks. Since there are no ambiguous routes in a
tree, only a simple packet forwarding mechanism was implemented that would allow a source
routing type multihop data transfer. A demo application was implemented as a puzzle with
light patterns being broadcast to all nodes from a control terminal for easy visualization and
verification of the tree structure.

4.3.4.3 Experiences
With this work we have demonstrated the implementation of a functional, light weight applica-
tion that is capable of forming robust and self-healing tree topologies in Bluetooth scatternets.
We have shown that it is feasible to reliably interconnect many Bluetooth devices using simple
algorithms. In our experience, Bluetooth has been easy to apply.

The wireless sensor network development reality encountered in this example has shown once
again that it is very hard to deploy applications anywhere beyond 10–20 nodes. Of course it
would be simple to argue that with sufficient manpower all implementation problems can be
solved, but we have identified a key problem in this rather young field: Coordinated meth-
ods and tools for the complex, cross-layer development, testing, debugging, deployment and
validation of systems composed of many devices are missing today.

In our example, a most simplistic eight line algorithm already bloats to well over 2000 lines

103



Chapter 4: Robust Multihop Networking using BTnodes

of code when implemented in a functionally satisfying way. With the additional support for
stepwise refinement and debugging capabilities this increases even further, locking up extensive
portions of the resources available on a platform such as the BTnode. This should remind
algorithm designers to drastically reduce algorithm complexity and the demand for auxiliary
functions when designing for resource constrained embedded devices.

Models and methods for the design of such systems usually do not contain abstractions for
unreliable operations, e.g. link-failures, time-outs or unsuccessful operations. The integration
of non-deterministic models into OS and deployment concepts is unclear today and there is
no methodology for stepwise refinement and validation or large sensor networks. These are of
course major issues for future work that will continue to require further trial-and-error type
experimentation.

Specific to the TreeNet implementation on the BTnode rev2 we expect to improve performance
considerably with the next generation devices that feature a full fledged Bluetooth 1.2 compli-
ant front end. This will relieve many of the restrictions encountered on our present devices and
allow for much more flexibility and new algorithmic opportunities. Nevertheless to achieve a
functional and manageable system we believe that it is of imperative importance to go lean and
lightweight in all aspects.

4.4 Scalable Topology Control for Deployment-Sup-
port Networks

Deployment-support networks have been proposed (see section 5.3.1) [BDH+04] as a non-
permanent, wireless cable replacement. This approach allows to deploy and test large numbers
of devices in a realistic physical scenario. The deployment-support network (DSN) is trans-
parent, highly scalable, and can be quickly deployed. It does not disturb the target wireless
sensor network any more than the traditional, cable-based approach. For the engineer, every-
thing actually looks as if the usual cables were in place; he can thus use the same tools. The
DSN nodes are attached to WSN target devices via a programming and debugging cable and
form an autonomous network (see Figure 5-4). The WSN nodes can then be accessed through
serial-port tunnels operated over the deployment-support network. With this tool, the limit
for large-scale prototyping is pushed from simulation [LLWC03] and virtualization [GEC+04]
to coordinated real-world deployment.

The BTnode is a most suitable platform for the implementation of a DSN prototype. Its
Bluetooth radio perfectly meets the high bandwidth requirements for a cable replacement.
Clearly, the energy consumption of a Bluetooth-based DSN node might be higher than that
of the target sensor node, especially when the traffic on the Bluetooth connections of the
deployment-support network is high. However, this is not critical since the required lifetime of
a DSN node is comparatively small. Several techniques can be applied to improve the energy
efficiency of the deployment-support network, for instance duty-cycling or using the various
power modes of the microcontroller and the Bluetooth connections.

The Bluetooth standard contains no specifications for the formation and control of multihop
topologies or for the data transport across multiple hops. An additional functional layer must

104



4.4. Scalable Topology Control for Deployment-Support Networks

therefore provide these services. We chose a modular structure for this layer, i.e. topology
control and data transport are independent of each other. In the following sections discusses
a modular structure for the software running on each DSN node. First experiments were still
performed on the BTnode rev2, with it’s restriction to master-slave scatternets only, as descri-
bed in section 4.2, using a new system software allowing concurrent threads (see section 4.4.1).
In contrast to the TreeNet architecture, this new application architecture is based on a sep-
arate (i) connection manager and (ii) packet forwarding engine and thus well suited to be
adapted to next-generation systems such as the BTnode rev3. The final implementation on the
BTnode rev3 is discussed in section 4.4.2 including detailed experiments and evaluation.

4.4.1 Topology Control Prototyping
The basic operational idea of a simple, robust and completely local topology control algorithm
derived from the TreeNet example discussed in section 4.3 forms the basis of a prototype topol-
ogy control for deployment-support networks developed on the same hardware prerequisites
as the TreeNet example (see section 4.3.1 for details). For reasons of system complexity and
adaptability to new algorithms and platforms (see section 4.4.2) the application architecture
was separated into two threads, each running a (i) connection manager and (ii) packet for-
warding engine respectively. While supporting a clearly defined API this further facilitates the
development and exchange of software components in a team without breaking the application.
Initial experiments encompassing some 20–30 devices and spanning topologies of up to 10–12
hops prove the feasibility of the approach for larger experiments at a later stage documented in
section 4.4.3.

4.4.1.1 Topology Control and Maintenance
The connection manager constructs and maintains a multihop network of the DSN nodes. It
shall be a simple, robust, and completely local algorithm that automatically takes care of link
failures and joining and leaving nodes. The basic principle of a simple, distributed connection
manager algorithm is as follows: Every DSN node periodically searches for other nodes, and
subsequently tries to connect to all nodes found.

The connection manager is restricted to to form tree topologies only due to the hardware
constraints of the BTnode rev2 (see section 4.3.1.1). Since in a tree there is only one path
between any two nodes, we are relieved from explicit route calculation; this reduces the system
complexity considerably for the data transport using a packet manager, first experiments and
evaluation.

Tree-building for a deployment-support network along the proposed scheme involves the de-
tection of the main tree by assigning a unique tree ID to each subtree formed (see Algorithm 5).
Upon detection of a node, the remote and local ID’s are compared, and if they are not equal,
a connect() is performed. The larger ID is then broadcast to the respective subtree. At a later
stage, this tree ID will be used to detect and eliminate cycles (see section 4.4.2.2).

Upon a successful connection between two nodes, the slave node stops inquiring and connect-
ing (since it cannot inquire and connect anymore on the BTnode rev2), while the master node
continues if it has not yet acquired max_degree slaves. This parameter is used to control the

105



Chapter 4: Robust Multihop Networking using BTnodes

Algorithm 5 DSN Connection Manager – Tree Construction and Maintenance
loop

while my_slaves < max_degree do
found_nodes = inquiry();
for all node in found_nodes do

remote_id = get_id(node);
if remote_id 6= my_id then

connect(node);
if remote_id > my_id then

my_id = remote_id ;
broadcast(remote_id);

else
broadcast(my_id);

end if
end if

end for
end while

end loop

degree and hence depth of the final tree. This means that new connections are opened only
between nodes that are not in a slave role. Starting with disconnected piconets, the network
topology evolves by connecting more and more piconets to each other and forming scatternet
trees until, after multiple iterations, only one master node is left at the root of the final tree (see
Figure 4-8). If a link fails, the root of the disconnected subtree is not a slave anymore and will
thus start inquiring and connecting again. To speed up the connection process, the information
obtained during inquiries (node addresses and clock offsets) is stored locally.

This simple algorithm allows the formation of large topologies in a robust and completely
distributed fashion. It does not need central control, or exhaustive computation or communi-
cation between nodes. Therefore, it can be expected to scale well to a large number of nodes.
Despite its simplicity, our algorithm builds and maintains a self-healing network that tries to
reconnect subtrees separated upon disconnects.

4.4.1.2 Multihop Packet Forwarding
The transport manager takes care of multihop packet forwarding. It receives information about
the available connections from the connection manager and uses these connections to route
packets. Note that the transport manager makes no assumptions about the underlying topology.
The packet switching at every BTnode is based on virtual-circuit switching and automatically
forwards traffic to the appropriate connection based on a virtual-circuit identifier.

For the transport manager, the concept of a host is important. A host is a DSN node to
which a user device, e.g. a PC, is connected. Hence, a host is a source of commands to the
deployment-support network and a sink for data from the deployment-support network. There
can potentially be multiple hosts in a deployment-support network.

106



4.4. Scalable Topology Control for Deployment-Support Networks

Communication is always initiated by a host, typically by opening a virtual connection to a
specific DSN node. This is done by simply flooding the network with a route-request message.
Each DSN node stores the ID of the connection such a message arrived on; this is the route to
the host to be used on the return path. When the destination node sends its reply along the
return path, the intermediate nodes assign a local virtual-circuit identifier to the connection
the reply arrived on; this is the route to the destination node. After the setup is completed,
packets can be transported over this virtual connection with only minimal header processing at
the intermediate nodes.

If a link fails, the host and all endpoints of broken virtual connections are notified and remove
the corresponding virtual-circuit identifiers from their local tables. A host application handles
the retransmission of lost packets.

Multiple virtual connections are supported. If the connections are simultaneously active and
if their paths overlap partially, the throughput of an individual virtual connection is obviously
reduced.

4.4.1.3 Prototype Experimental Results
The following experimental setup was used for evaluation: 15–30 BTnodes are scattered ran-
domly on a large desk. All nodes are programmed with the same software. A host PC is con-
nected over a 115 kbps serial link to one of the BTnodes. The host PC configures the BTnode
to be a host node in order to receive topology information. Each node stores connection-specific
events such as new connections and link losses to a local log. The topology information and
the logged events are remotely collected by a monitoring and control application running on
the host PC (see Figure4-10).

Figure 4-10
Centralized control and
monitoring – A monitoring
tool running on a host allows
to monitor the network
topology and control the de-
ployment-support network.
Here, monitoring and control
is centralized with all topology
information being gathered by
the monitoring tool.

We will now discuss two aspects of the implemented deployment-support network: network-
topology construction and the per-hop transmission delay.

Network-Topology Construction
The topology construction depends on the ability to discover other nodes and to successfully
connect to them. These are highly non-deterministic operations since no a priori assumptions

107



Chapter 4: Robust Multihop Networking using BTnodes

about the state of remote nodes can be made. They may be inquiring, connecting, or in a
slave role, which means that they are not visible to others at that time. Previous measurements
have shown that the time for inquiring is a time-consuming process and in the order of tens
of seconds [KL01, WMF02] for a reliable discovery of all nodes. Experimentation has shown
that for our continuous and iterative connection manager, a short inquiry that is repeated often
accelerates the formation of large clusters. Our experiments were conducted with the following
values: inquiries last 3 sec and pauses between inquiries are chosen randomly between 5 and
20 sec.

0 20 40 60 80 100 120
0

5

10

15

20

time [s]

ne
tw

or
k 

co
ne

ct
iv

ity

0 200 400 600 800 1000 1200
0

5

10

15

20

time [s]

lo
ca

l t
re

e 
si

ze

Figure 4-11
Initial network-topology construction and maintenance – Different experiments are shown here with 19
nodes. The connectivity is the total amount of connections in the network cluster (left). Upon link losses
the self-healing maintenance re-establishes a connected tree topology (right).

Figure 4-11 (left) illustrates the evaluation of the initial connection events of 19 BTnodes. It
shows three test runs of the initial topology construction with the total number of connections
in the network with the connections are identical to the edges in the global topology graph
of the network. The nodes start to form large clusters within approximately 60 sec. The self-
healing property can also be seen here: connections that are dropped are subsequently repaired.

Bluetooth connections take time to be set up. Pending connection requests and lost connections
that have not been detected by both endpoints are visible as steps of a half in Figure 4-11 (left).
Here, the behavior of connection requests and successful connects can be seen in the quick
steps in the left region. Disconnects that rely on the Bluetooth link supervision timeout that is
typically set to multiple seconds have much longer half steps as can be seen on the right.

In contrast, in a tree structure without redundant connections, a failure of an arbitrary link
may result in the disconnection of a large portion of the network. Figure 4-11 (right) shows
two experiments with a view of the local tree size of two independent nodes connected to a
host PC. Since this is the local view from a specific node, local tree sizes can vary over a large
range. On subsequent connect and disconnect events, whole subtrees can be affected. Using
the self-healing property of the topology control and maintenance algorithm, a recovery to a
similar tree size can be accomplished within a rather short time.

108



4.4. Scalable Topology Control for Deployment-Support Networks

Per-Hop Transmission Delay
On a virtual connection spanning multiple hops, the data has to be forwarded hop by hop.
The transmission and processing delays add up along the path. We measured the delay by
sending time-stamped packets to an endpoint. The packets are looped back to the sender,
which measures the round-trip delay. Figure 4-12 shows the average round-trip delay divided
by two. For different packet sizes we have measured and averaged the delay of 40 packets.

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Number of Hops 

D
el

ay
 [m

s]

32 bytes
64 bytes
96 bytes
128 bytes

Packet length
Figure 4-12
Per-hop transmission delay –
Average multihop transmission
delay and standard deviation
for different packet lengths.The
per-hop delay was measured to
be 35–65 ms for the first hop
and 45–90 ms for subsequent
hops, depending on the packet
size. For small packets, this
results in approximately 50 ms
per hop and per packet.

For serial-port tunneling, the end-to-end delay is of importance. The maximum tolerable
delay for a serial connection depends on the application. Typically, a terminal session tolerates
minutes before disconnecting, in-system programming can cope with a few seconds, and typing
on an interactive user interface requires a maximal delay of 100–500 ms. Our measurements
show that for the time being, we have to limit ourselves to tasks that do not require low-delay
transmissions from the host to a DSN node many hops away. The local connection between
DSN node and its attached WSN target node can however meet any delay demands of the
target WSN target node. Delay sensitive applications like reprogramming a WSN target node
can thus be done by first downloading all the data to the DSN node, and from there with
negligible delay to the WSN target node.

4.4.1.4 Evaluation Based on the BTnode rev2
Looking at the overall experimental results, we can see that the concept of a deployment-
support network is working out. We have successfully formed connected tree topologies span-
ning 20–30 BTnodes and operating multiple virtual connections with data rates up to a speed
of 57.6 kbps. Self-healing tree topologies spanning 10–12 hops are autonomously constructed
in tens of seconds to a few minutes. The experience from our experiments has shown that the
initial tree formation is sufficiently fast and produces large network topologies. In the following
discussion, we will focus on the characteristics of the deployment-support network itself and
not so much on its interaction with a target wireless sensor network.

Due to the properties of our devices and the simplicity of the distributed algorithm, it is im-
possible to guarantee the formation of a single tree spanning all nodes in a given region. While

109



Chapter 4: Robust Multihop Networking using BTnodes

giving a connectivity guarantee is very hard in a random wireless environment, an optimized
topology could be achieved by breaking up trees at specific connections to optimize the topol-
ogy after an initial construction phase.

The tree topology was a reasonable choice for the initial implementation and the proof of con-
cept. However, the experiments show link losses which result in the disconnection of potentially
large subtrees, prohibiting long-term operation of virtual tunnels over larger hop distances.

Some of the problems encountered can be directly attributed to the rather old and sometimes
unreliable Bluetooth modules we have used in these initial experiments. Devices making use of
a next-generation Bluetooth subsystem, such as the upcoming BTnode rev3, will allow greater
flexibility, enhanced stability, and an increased performance.

To achieve greater stability in case of link losses and reliable virtual-connection operation for
days, network topologies with redundant links are clearly favorable. This would eliminate many
of the limitations discussed earlier, but would require additional functionality to run on the
DSN nodes. While redundancy is favorable in respect to robustness and network performance,
it comes at a significant price: It will require advanced topology-shaping algorithms and of
course more complex routing, which is presently reduced to simple packet forwarding.

The connection and transport manager are already designed to accommodate such function-
ality and many proposed algorithms for topology control and routing exist. But again success
here depends on the implementation details and the concerted behavior of the nodes. Since a
wireless network is not static, given that links can break and nodes can fail all components have
to be able to operate in a dynamic environment with joining and leaving nodes.

Even in a simple algorithm as presented, several parameters have to be determined through
practical experimentation. In our work, a major increase in performance was achieved with the
selection of the correct duty-cycle parameters for the inquiry duration and period.

4.4.2 DSNtrees – Scalable Topology Control and Maintenance
The final version of the topology construction and maintenance makes use of the third genera-
tion hardware with a modern and capable Bluetooth module.

4.4.2.1 Bluetooth 1.2 Scatternets on the BTnode rev3
The improved Bluetooth device used on the BTnode rev3 uses an adaptive frequency hop-
ping technique and advanced baseband control circuitry that enables a device to participate in
four different physical channels at a given time. The Zeevo ZV4002 Bluetooth device on the
BTnode rev3 is capable of interconnecting scatternets of up to four piconets simultaneously
per node, with active connections to a maximum of seven slave and three master devices. Ad-
ditionally, connection requests, data transfers, and inquiries can be performed simultaneously.
The previous BTnodes rev2 generation imposed several constraints, most notably permitting
only one slave role per node and making nodes with a slave role unable to perform or respond
to inquiries or to open new connections. Compared to the Bluetooth interface used in the
BTnode rev2 (see section 4.3.1.1) this allows to (i) connect not only top-down, i.e. to the root
of a tree but to an arbitrary node of the network, (ii) form circular topologies using slave-slave

110



4.4. Scalable Topology Control for Deployment-Support Networks

and master-slave roles and (iii) to stay discoverable and connectable at all times with the lim-
itations of reduced node degree and role freedom as described. With the BTnode rev3, it is
not anymore necessary for the operation of our deployment-support network that all nodes be
within each other’s transmission range.

Master

Slave

Master-Slave

Slave-Slave

Figure 4-13
Adaptive frequency hopping
scatternets on Bluetooth 1.2
allow multiple slave roles per
device. This allows to use
slave-slave bridging (lower
right) and higher degree
topologies with cycles while still
being discoverable and
connectable.

4.4.2.2 DSNtrees – Scalable Topology Control and Maintenance
In its current form, the connection manager forms tree topologies. Since in a tree there is only
one path between any two nodes, we are relieved from explicit route calculation; this reduces
the system complexity considerably, easing first experiments and evaluation. Other network
topologies, e.g. planar mesh topologies [WZ04] but outside the scope of this thesis. Yet the
software architecture is already set up to accommodate such adaptation.

The tree structure is constructed and maintained by two parallel threads. The inquiry thread
(see Algorithm 6) periodically performs an inquiry and randomly connects to one of the dis-
covered DSN devices.

The packet-handler thread (see Algorithm 7) processes negotiation or tree ID packets arriving
from the lower layers. These packets are used to maintain the tree structure by preventing and
detecting cycles in the network topology. All nodes connected in a tree share the same tree ID.
When two nodes connect, they exchange negotiation packets and compare their tree IDs. If
the two nodes were not in the same tree before the connection, their IDs differ and they have
to establish a unique ID for the newly formed tree. This is done by agreeing on the larger of
the two IDs and broadcasting it in a tree ID packet to all nodes in the subtree with the smaller
ID. If two nodes that are already in the same tree connect, they will notice that they share the
same ID and therefore drop the connection. If a node receives a tree ID broadcast with an
ID different from its own, it adopts this new ID. If the received ID is its own ID, there is a
cycle in the network and the link over which the broadcast arrived is dropped. This mechanism
eliminates cycles that can arise when two subtrees are connected almost simultaneously via two
different links (see Figure 4-14); in this case, the cycle prevention by negotiation does not work.

If a link is lost, the tree is partitioned, and the two subtrees must not share the same tree ID
anymore. Therefore, if a node loses the link over which the current tree ID was received, the
node broadcasts its unique device ID as its subtree’s new tree ID.

This set of local algorithms provides self-healing topologies in a robust and completely dis-
tributed fashion. It does not need exhaustive computation or communication. The only

111



Chapter 4: Robust Multihop Networking using BTnodes

A1
B1

A2
B2

Figure 4-14
Cycles can form when
disconnected trees are
connected almost
simultaneously at two different
points. Here, Ai and Bi,
i ∈ {1, 2}, connect. The
tree-ID broadcast eliminates
the cycle shortly afterwards.

Algorithm 6 DSNtrees Connection Manager – Random Inquiry Thread
loop

found_nodes := inquiry();
node := randomly_select(found_nodes);
connect(node);

end loop

Algorithm 7 DSNtrees Connection Manager – Packet-handler Thread
loop

packet := wait_for_packet();
if packet .type = tree_ID_packet then

if local_tree_ID = remote_tree_ID then
disconnect(packet.link);

else
local_tree_ID := remote_tree_ID ;
broadcast local_tree_ID to my subtree

end if
end if
if packet .type = negotiation_packet then

if local_tree_ID = remote_tree_ID then
disconnect(packet.link);

else
if local_tree_ID < remote_tree_ID then

local_tree_ID := remote_tree_ID ;
broadcast local_tree_ID to my subtree

end if
end if

end if
end loop

transmitted data that grows linearly with the number of nodes is the tree ID; since it does
not change very often, it is negligible in the overall communication during the operation of
the deployment-support network. The best effort search and connect with random back-off

112



4.4. Scalable Topology Control for Deployment-Support Networks

assures that nodes will eventually connect. No expensive negotiation between neighbors and
no a priory knowledge about the neighbors states (node degree, master/slave status, traffic re-
quirements, etc.) are necessary. Therefore, it is expected to scale well to a large number of
nodes.

4.4.3 Scalable Topology Control – Experimental Results
We have tested and measured the properties of our implementation in two different setups.
The first one was a lab setup involving 2–40 nodes. We measured the per-hop transmission
delay and observed the network-topology construction. In the second setup, we distributed 71
BTnodes on a large office floor, thus obtaining a larger, realistic deployment scenario.

In both setups, all nodes are running the same software. A host PC is connected over a 115 kbps
serial link to one of the BTnodes. This node is a host in the deployment-support network and
receives topology information from the other BTnodes: Each node sends information about
events such as new connections and link losses to the host, and additionally stores them in a
local log. The logs are remotely collected by a monitoring and control application running on
the host PC (see Figure 4-15).

Figure 4-15
Scalable topology control –
graphical user interface: The
deployment-support network
monitoring tool shows a
scatternet tree topology with 71
nodes in a large experiment. A
virtual connection from the
host node [00:5b] over ten
hops to node [00:65] has
been established and is
represented by the fattened
line. Commands for remote
execution at the network nodes
can be entered using simple
buttons or a command line
interface.

4.4.3.1 Per-Hop Transmission Delay
On a virtual connection spanning multiple hops, the data has to be forwarded hop by hop.
The transmission and processing delays add up along the path. We measured the delay by
sending time-stamped packets to an endpoint. The packets are returned to the sender, which
then measures the round-trip delay. Figure 4-16 shows the round-trip delay divided by two.
For each hop count (up to 16 hops), we measured the average delay of 200 packets of two
different sizes. The figure shows the expected linear behavior.

113



Chapter 4: Robust Multihop Networking using BTnodes

For serial-port tunneling, the end-to-end delay is of importance. The maximum tolerable de-
lay for a serial connection depends on the application. Typically, a terminal session tolerates
minutes before disconnecting, in-system programming can cope with a few seconds, and an
interactive user interface requires a maximal delay of 100–500 ms. Our measurements show
that for the time being, we have to limit ourselves to tasks that do not require low-delay trans-
missions from the host to a DSN node that is many hops away.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

200

400

600

800

1000

1200

1400

1600

Number of Hops

en
d−

to
−e

nd
 d

el
ay

 [m
s]

10 byte payload
117 byte payload
medians

Figure 4-16
Per-hop transmission delay –
The per-hop delay for the first
hop is on average 17 msec for
small packets and 45 msec for
large packets. For subsequent
hops, the average delays are
42 msec and 60 msec,
respectively. The difference
between the small and large
packet delay is mainly the time
needed for transferring more
data between the Bluetooth
device and the microcontroller.

4.4.3.2 Network-Topology Construction
The topology construction depends on the ability to discover other nodes and to success-
fully connect to them. Since a-priori assumptions about the state of remote nodes cannot
be made before an actual connection, these are highly non-deterministic operations. While a
node is inquiring or connecting, it might not be discovered by others. Previous measurements
have shown that inquiring is a time-consuming process requiring in the order of tens of sec-
onds [KL01, WMF02] for a reliable discovery of all nodes. Experiments have shown that for
our connection manager, short but frequent inquiries accelerate the formation of large network
clusters. Our experiments were conducted with the following values: inquiries last 3.8 sec and
pauses between inquiries are chosen randomly (to avoid that all nodes inquire simultaneously)
between 3 and 20 sec.

The scatternet-construction algorithm introduced in Sect. 4.4.2.2 is truly distributed. Since
connections are established in parallel, the algorithm can be expected to scale well with an
increasing number of nodes. We have verified this assumption with the following experiment.

Initially, n nodes are switched on one after the other. After all nodes are connected in a single
tree, we simultaneously reset them with a broadcast command from the monitoring tool. This
then provides a common time base for all nodes. All nodes log their connection and disconnec-
tion events, annotated with the time since the last reset. After all nodes are again connected, the
monitoring tool retrieves these logs from all the nodes. Figure 4-17 illustrates the evaluation of
the network-topology construction.

114



4.4. Scalable Topology Control for Deployment-Support Networks

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

time [s]

nu
m

be
r o

f c
on

ne
ct

io
ns

10 nodes

20 nodes

30 nodes

40 nodes
in

iti
al

 c
on

ne
ct

s

50
%

 c
on

ne
ct

iv
ity

10
0%

 c
on

ne
ct

iv
ity Figure 4-17

Initial network-topology
construction – Each curve
represents the average of ten
different experiments using a
constant amount of nodes.
After a boot-up phase of
approximately 13 sec, the first
connections are established. At
20 sec, close to 50% of all the
connections are established,
and at 70 sec the construction
is finished. These values are
independent of the number of
nodes involved.

All n nodes are connected in one tree if and only if there are n − 1 connections. In some of
the 40 experiments, not all n nodes were connected in the end. A yet unresolved software error
in the low-level event-handling routines occasionally caused a deadlock in the inquiry thread
(Alg. 5). As a consequence, some nodes were not able to discover and connect to other nodes
anymore and remained isolated.

This was the reason why the above experiments were not conducted with more than 40 nodes.
If many nodes are reset simultaneously, not all of them can connect in the first iterations of the
inquiry thread, probably due to radio interference. Thus, the probability that a node’s inquiry
thread enters the deadlock before the node is connected increases with increasing node density.
This problem is not inherent to our algorithm and should disappear with the low-level software
errors dissolved.

4.4.3.3 A Realistic Deployment Scenario
To test our deployment-support network in a realistic scenario, we deployed 71 BTnodes on
a large office floor. We also wanted to test our hypothesis that the problem described in the
previous section should disappear if we reduce the node density.

We therefore distributed the nodes as depicted in Fig. 4-18, switching them on as we went
along. Being switched on one after the other, all 71 nodes joined a single tree scatternet (see
Figure 4-15) without any problem. We then issued the reset command to all nodes. Within
70 sec, 46 nodes had again connected to a tree. As more time passed, the tree did however not
grow beyond this size. Essentially, the problem remained as severe as in the lab setup.

The explanation for this is that there is no sufficient difference in connectivity between the
lab setup and the floor deployment. This can be seen in Figure 4-18: the various connections
over relatively long distances show that the average number of neighbors is still very high. The
quality of the long-distance links in Figure 4-18 is probably smaller than that of the short-
distance links. Furthermore, it may be desirable that the DSN nodes connected to co-located
target nodes also be co-located in the deployment-support network. An improved version of

115



Chapter 4: Robust Multihop Networking using BTnodes

80
.1

80
.1

60
.6

60
.6

8686
8585

8484
8383

8282
8181

75757676777778
.1

78
.1

78
.2

78
.2

60
.7

60
.7

71
.2

71
.2

7474

60
.9

60
.9

60
.8

60
.8

71
.1

71
.1

6969

8080

]b5:00[

]56:00[

Figure 4-18
Random topology selection –
real world geometry: The
experiment with 71 nodes
shown in Figure 4-15 was set
up on a large office floor. The
actual connections from
Figure 4-15 are shown here;
the virtual connection from
node [00:5b] over ten hops
to node [00:65] is
highlighted. This is the largest
connected Bluetooth scatternet
reported to date.

our connection manager would hence prefer high-quality links.

max. link length [m]
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >30

# 
lin

ks

0

2

4

6

8

10

12 Figure 4-19
Random topology selection –
link distance evaluation: The
network topology derived in
the experiment shown in
Figure 4-15 and 4-18 yields
the link-distance analysis
results depicted on the left.
Minimum 0.81 m, maximum
28.41 m, mean 9.76 m,
standard deviation 6.31 m.
Apart from a few long distance
links, this shows an equal
distribution of link lengths.

4.4.4 Random and RSSI-limited Selection Compared
The experiments have shown that the impact of the range of the devices was underestimated.
In order to improve the topology control we investigated and incorporated the received signal
stength indicator (RSSI) as a link metric. From the very first Bluetooth modules (see Figure 2-8)
there has been a significant improvement as to the resolution and and error of the RSSI (see
Figure 4-20). Moreover, an improvement in the Bluetooth standard allows to query the RSSI
of a remote device with a HCI command already during the inquiry phase. The experimental
evaluation has shown, that the RSSI values acquired during inquiry have a larger variance, but
that they are still usable for topology control.

A simple change to the inquiry thread discussed in section 4.4.2.2 to select a node for connec-
tion not randomly, but according to the maximum RSSI value (see Algorithm 8) improved the

116



4.4. Scalable Topology Control for Deployment-Support Networks

0  1  3  5  9 12 16 20 28 36

−85

−80

−75

−70

−65

−60

−55

−50

S
ig

na
l L

ev
el

 [d
B

m
]

Distance [m] 0  1  3  5  9 12 16 20 28 36
−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

S
ig

na
l L

ev
el

 [d
B

m
]

Distance [m]

Figure 4-20
Bluetooth 1.2 received signal strength indicator – Two series of measurements are shown both for the
received signal strength indicator while connected in a single point-to-point link (left), and during the
inquiry phase (right).

resulting topology significantly in respect to the average link length.

Algorithm 8 DSNtrees Connection Manager – RSSI-limited Inquiry Thread
loop

found_nodes := inquiry();
node := select_max_rssi(found_nodes);
connect(node);

end loop

In similar experiments as described earlier, 30 nodes were distributed as shown for one example
in Figure 4-21. Since, for larger deployments there were no links spanning similar maximum
distances as shown in Figure 4-18, it was acceptable to only use a subset of the deployment
described earlier. The resulting link-lengths for five independent experiments are shown in Fig-
ure 4-22. Compared to the histogram shown in Figure 4-19 the links are much shorter. But
in order to achieve full connectivity using the topology control algorithm described, a certain
amount of compromise has to be made. In the case were a node is unsuccessful in establish-
ing a connection to it’s estimated nearest neighbor (either due to interference or because the
remote node cannot accommodate the new connection) the requesting node will back-off and
randomly retry, resulting in the few, long range links that can be seen in Figure 4-21. The only
way to counteract this, would be to introduce a negotiation of the network topology based
on the local neighborhood estimation between nodes as proposed by Wattenhofer [WZ04] for
mesh topologies.

4.4.5 Scalable Topology Control – Lessons Learned
Our algorithm works and performs well in principle, as the experiments have shown. The
remaining problems can by large be attributed to system-software issues that can stall certain

117



Chapter 4: Robust Multihop Networking using BTnodes

757677 00
:E

6
00

:D
9

01
:0

1

01
:0

D

00
:F

5

00
:B

E

01
:1

0

00
:D

F

00
:1

D

00
:D

8 01
:0

B

00
:D

7

00
:F

D

00
:D

4

00
:E

D

01
:0

3

00
:C

B

00
:F

B

00
:F

9

00
:D

B

00
:E

5

01
:2

0

00
:D

0

00
:F

F

00
:D

6

00
:C

F

01
:0

9

00
”D

2

00
:F

1

00
:D

C

Figure 4-21
RSSI-limited topology selection
– real world geometry: A
similar experiment was
repeated with the revised
inquiry thread using
RSSI-limited node selection.
30 nodes were deployed in a
similar office environment.
Since there is no
inquiry-history or negotiation
used between nodes, the longest
links are created in phases
where the random search only
yields long-distance neighbors
and one has to be selected and
connected due to the
connectivity requirement
imposed.

0

1

2

3

4

5

6

7

8

9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
max. link length [m]

# 
lin

ks

Figure 4-22
RSSI-limited topology selection
– link distance evaluation:
The experiment shown in
Figure 4-21 yields on average
significantly shorter links than
the experiments based on
random selection. Here, five
independent runs of the same
experiment with 30 nodes is
shown. The key averaged
values for all five experiments
are: minimum 0.15 m,
maximum 7.9 m, mean
2.19 m, standard deviation
1.78 m.

nodes without a possibility for recovery.

Using simple local algorithms has been a very encouraging experience due to their traceable and
comprehensible nature. The increase in complexity when actually implementing an algorithm
is not to be underestimated. In conjunction with the complex behavior of the devices, the exact
interpretation of an effect can be very hard.

In current research, there is an apparent gap between the results of theoretical and practical
work [KMW04]. Seemingly simple algorithms often rely on the availability of complex func-
tions which are not readily supported by the actual hardware. For instance, a frequently used

118



4.4. Scalable Topology Control for Deployment-Support Networks

function such as “send to all neighbors” typically has to be divided into smaller parts such as
“search for all neighbors”, “open a connection”, “send the data”, and “close the connection”.
If the function additionally has to be reliable, error-handling for all the subfunctions has to
be provided to account for imperfections and failures. As described in sections 4.2, 4.3.1.1
and 4.4.2.1, peculiarities of the hardware may even make some functions impossible to imple-
ment.

A setup of many nodes in a small lab facilitates frequent and repeated experiments, but is not
very realistic. In experiments involving radios, the high node density of a lab setup can actually
lead to interference problems that would not occur in a sparse field setup. As a countermeasure,
we reduced the inquiries of nodes connected to the host. This resulted in less interference and
therefore faster connection buildup. Since we had observed that inquiring nodes occasionally
lose links, the reduction of inquiries also increased the stability of the deployment-support
network.

For the thorough analysis of a running system, the reliable extraction of data from the system
is vital. This requires storing the data locally and synchronizing it upon extraction. When
aggregating data from many nodes, coordination and throughput issues have to be managed.
The data of unreachable (e.g. dead) nodes typically is of primary interest. For its extraction, it
has to be stored in non-volatile memory and collected after a restart of the node.

4.4.5.1 Bluetooth Peculiarities
The effort to maintain a link can be separated into the control overhead necessary in the host,
i.e. the Atmega128 CPU and the controller, i.e. the Zeevo ZV4002 Bluetooth system and the
radio transmit and receive power necessary. Without transmit power-control (only required as a
limiter in power class 1 and optional for power class 2 and 3 in Bluetooth) that is only available
using an external power amplifier with the ZV4002 on the BTnode rev3, the power consump-
tion is independent of the link-distance. The power budget of a single link is thus dominated
by the control-overhead at both endpoints; to maintain a fully connected topology between
any n nodes, n− 1 links with similar energy requirements are mandatory by principle. Similar
to the power budget, the radio interference at constant transmit power is more or less the same
so that algorithms that try to achieve high spatial capacity by optimizing transmit power for
minimum interference [BCSR03] are not of advantage here. In order to further optimize, the
right way to go is link-state optimization using reduced duty-cycle (low-power) sniff and hold
modes supported by modern Bluetooth devices such as explored by Negri [NBD05b].

With our algorithms presented, we cannot achieve nearest neighbor topology due to random-
ness introduced by the inquiry phase and a lack of negotiation. Only algorithms such as (XTC)
proposed by Wattenhofer [WZ04] with first implementation results by Martin [Mar05] will be
able to help here since they negotiate locally optimal topologies. Another benefit of such mesh
topologies is the redundancy of links and as such resilience to link failures at the cost of more
complicated data transport and routing.

In the sense of the application, it is not clear that a received signal stength indicator optimized
topology is “better”. It depends by large on the traffic patterns which topology is more a
suitable than another. Is the majority of traffic between neighborhoods of one or two hops?

119



Chapter 4: Robust Multihop Networking using BTnodes

Between ten hops or even more? The question how many hops are actually preferable is a
factor remaining often unclear today, although there is a trend to be observed that commercial
systems are considering far less hops than theoretical studies.

4.4.5.2 Conclusions and Outlook
We have presented our implementation of a deployment-support network on the BTnode rev3
platform. Our measurements indicate that our implementation scales well to a large number
of nodes. With a deployment-support network spanning 71 BTnodes, we have presented the
largest Bluetooth scatternet reported to date.

After the first promising assessment of the DSN idea on the BTnode rev2, the transition to
the new hardware was accomplished smoothly. The increased performance and reliability of
the new devices has eased the implementation work considerably and has even surpassed our
expectations.

The experiments reported here concentrate on the startup phase of the network; the mainte-
nance phase necessitates further investigation. Thorough testing and measurements are needed
to find optimal values for parameters such as the inquiry period and duration or the num-
ber of connection retries. These values can then be compared to those obtained by simula-
tion [BBMP04]. The final result would be a network that is highly agile in the startup phase
and that reduces the frequency of operations in the operating phase for maximum stability and
minimum overhead.

Our first experiments were conducted with a simple tree topology. For increased resilience
against link or node failures, redundant links are very desirable. The modular structure of our
software allows us to easily replace the current connection manager. A comparison of various
topologies with the reference tree topology can then be performed to trade off resilience against
complexity.

120



5
Deployment – From Proof-of-Concept to

Real-World Sensor Networks

With the increasing development of large-scale wireless sensor network applications, the co-
ordinated development and deployment of sensor network devices are becoming an issue of
increasing importance. Independent researchers have reported that when moving away from
the engineer’s desktop and beyond numbers of 10–20 nodes, deployment and testing be-
come increasingly hard, and simulation will not solve all problems encountered [BKM+04,
SPMC04]. While algorithms, system models, device architectures, and programming abstrac-
tions have been investigated for quite some time now, not much has been achieved in the area
of deployment-support or even a concerted design, development and deployment methodology
that allows for stepwise refinement and reliable monitoring of systems. Coordinated methods
and tools for wireless sensor network deployment are missing today.

With our approach of a deployment-support network presented in this chapter, we push the
limit for large-scale prototyping from simulation [LLWC03] and virtualization [GEC+04] to
coordinated real-world deployment. The novel concept of the deployment-support network is
based on the BTnode rev3 platform that has been presented in chapter 3. We motivate the need
for concerted tools for the development and deployment based on related work presented in
section 5.1 and continue to explain the details and operation of a deployment-support network
in section 5.3. The design, implementation and testing work for a functional deployment-
support network prototype would not have been possible alone. The work presented in this
chapter was performed in collaboration with Philipp Blum, Matthias Dyer, Lennart Meier,
Matthias Ringwald and others.

121



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

5.1 Design Tools and Development Methodology –
Related Work

While the single embedded system is rather well understood both in its underlying technol-
ogy and support by adequate design and development methods not much progress has been
achieved to establish a methodology or a concerted design flow for the joint design and de-
velopment of distributed networked embedded systems such as wireless sensor networks. The
most important contributions in the area are summarized here.

5.1.1 System Design Aspects
From a system design perspective different approaches have been taken to develop energy-
scalable algorithms [HSWC00] or application-specific protocol architectures for wireless sensor
networks by Heinzelman [Hei00], Sinha [SWC02] and others.

The PicoRadio design flow aims at a combination of multiple disciplines, e.g. RF, low-power
and low-voltage circuit design, antennas, networking, protocols and applications [RAdSJ+00],
to create a bottom up methodology for the design of wireless sensor network nodes on a
chip [dSJSA+01]. Different prototypes developed in the course of the project aim at proto-
typing certain aspects encountered during the progression of the project. Early systems based
on an FPGA, a StrongARM processor are geared towards the prototype development of pro-
tocol and communication processing functions [TLR01, RAdSJ+00] whereas later systems
specialize in low-power [RAK+02] and custom hardware integration [ROC+03].

For the network-centric component paradigm underlying the TinyOS system architecture and
the underlying nesC programming abstraction see section 3.1.6.

The task of programming is tightly integrated with testing, debugging, and profiling (e.g. iden-
tifying performance bottlenecks and resource dissipation). In particular, all these tasks should
– as far as possible – be performed at a similar level of abstraction. With the “generic role
assignment” abstraction proposed by Frank [RFMB04, FR05], for example, role specifications
to examine what is going wrong are mapped to C code.

5.1.2 Large Scale Simulation
Simulation as a typical means for evaluating algorithms and system properties has many fol-
lowers in sensor networks. Apart from adapting well known networking simulators such as
NS-2, Opnet or GloMoSim specialized simulation packages have been created to account for
the embedded nature of the wireless sensor network devices. TOSSIM allows accurate and scal-
able simulation for TinyOS [LLWC03] with selectable simulation accuracy models. Here real
TinyOS application are cross-compiled for the TOSSIM environment where multiple instan-
tiations can be run simultaneously and communicate via an underlying radio model. Different
such models exist as well as recent extensions for power-profiling within TOSSIM [SHC+04].

A comparable approach, based on a low-level abstraction of the AVR CPU architecture is
Avrora [TLP05]. In contrast to TOSSIM, focus is more on the analysis and checking of em-
bedded software prior to deployment on target hardware. The core simlator as well as different

122



5.1. Design Tools and Development Methodology – Related Work

profiling utilities and monitoring tools provide a basis infrastructure for experimentation, pro-
filing and analysis [LWG05].

5.1.3 Virtualization and Emulation
A significant approach to bridge the gap between simulated and real world (see section 1.2)
is the concept of virtualization pursued by the EmStar architecture [GEC+04]. The EmStar
environment uses a ceiling-mounted grid of nodes connected to an emulation server to bridge
between simulation and emulation in the testbed, but operation is complex and extensive in-
frastructure is necessary. Unique to this approach is the rather tight integration of real and
virtual components in one framework, but the capability to capture all properties of the en-
vironment and of the devices themselves in the respective virtual counterparts is limited and
complexity is high.

The BEE architecture [CKR+03, KCB+03, KCA+03] aims at prototyping the systems func-
tionality of wireless transceiver systems prior to manufacturing of the integrated circuits. This
is similar to widely adopted approaches of mixed hard- and software virtualization common in
industrial SoC development, however the BEE makes use of extensive hardware resources to
allow the virtualization of multiple system entities and elaborate channel models all on a single
emulation platform.

5.1.4 Test Grids and Monitoring Tools
Laptops with wireless local area network (WLAN) support are commonly used in large-scale
testbeds for reproducible ad hoc protocol evaluations such as performed by Lundgren using 37
laptops and network configuration tools for Linux running experiments based on the AODV,
optimized link state routing (OLSR) and temporally-ordered routing algorithm (TORA) pro-
tocols [LLN+02]. This kind of approach is certainly not directly applicable to the much smaller
and resource constrained WSN devices, but nevertheless, important system level insights can
be achieved here through direct experimentation.

Similarly, researchers have used test grids fixed onto tables or ceiling mounts (see Figure 4-9) in
conjunction with serial port multiplexers or serial–to–ethernet converters to access individual
sensor network devices under test for monitoring in larger setups. Driven by the need for larger
and automated experimentation, Welsh [WASW05] have developed moteLab, a testbed infras-
tructure based on Berkeley Motes attached to MIB600 programming boards each with direct
ethernet connection, distributed across multiple office floors [HC02]. The ethernet connec-
tion is used for programming and for a monitoring back-channel using serial port tunneling. A
web-enabled front end allows multiple users to use the Mote test grid in a time-shared manner
by individual upload of a computing task to be performed on the devices. All responses and
feedback is logged to a database for offline analysis.

The Mirage effort pursued at Intel Research is similar to moteLab but uses an auctioning
mechanism for fair resource allocation to multiple users [CBA+05].

Connected to the work on EmStar, wireless network measurement tool based on packet delivery
rates were developed for connectivity studies based on Mote hardware [CBE03] that can be

123



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

accesses using a fixed ceiling array or a portable laptop array [CE04] in EmStar.

The Kansei testbed consists of 210 extreme scaling motes (XSM) each connected to 210 ex-
treme scale stargates (XSS). The stargates are connected using both wired and wireless ether-
net providing a testbed infrastructure to conduct experiments with 802.11b networking and
XSM [DGA+05]. This testbed has enabled the development of a 1000+ node wireless sensor
network and a 200+ node peer-to-peer ad hoc network of 802.11b devices deployed within
project ExScal [ARE+05].

Lifton [LSBP02] devised the Pushpin computing devices that form a flexible testbed for mod-
eling, testing and deploying distributed peer-to-peer sensor networks with identical nodes in a
controlled lab setting. Here the round Pushpin devices can be placed at random on a power-
plane and attach to the power-grid through a set of pushpins. Flexible local communication is
achieved either through infrared, capacitive coupling or radio modules that can be fitted onto
the Pushpin devices. The Betha OS used, allows to process and exchange small programs and
thus adds to the flexibility in experimentation. This work draws inspiration from the MIT
Paintable Computing [But02] and the Amorphous Computing projects [AAC+00].

Wireless cable replacement is proposed for monitoring and diagnosing computer systems by
Eberle [Ebe03]. The main goal of this work is to reduce cost and system complexity of the
testing infrastructure only used temporarily. Here, wired, daisy-chained boundary-scan circuits
are replaced by a more robust and flexible wireless network with direct point-to-multipoint
connections to system components.

SensorScope [SDFV05] initially aims at solely operating wireless sensor network nodes in a
realistic environment to gather sensor status and environmental data. However, increased usage
with different objectives has led to the augmentation of an ethernet back-channel similar to
moteLab.

The Bluetooth standard also offers the RFCOMM profile for serial-port communication, and
various vendors are offering products based either on RFCOMM or on proprietary extensions.
The drawback of these solutions is that they offer point-to-point connections between two
endpoints only.

5.1.5 In-network Programming
Testbeds such as described above require frequent updates to the software running on the
devices under test. Testbed infrastructure such as moteLab, Mirage and Kansei use a wired
back-channel and auxiliary hardware for this task. Applications where a wired back-channel
infrastructure is infeasible either require to collect and re-distribute all nodes manually or to
use in-network programming services that operate on the wireless sensor network itself.

Tools for remote in-network programming of Mote sensor networks can be operated as a self-
regulating code propagation service inside a sensor network [LPCS04], and it has been shown
that this technique scales to large populations [HC04]. However, it requires alterations of the
WSN devices, and offers only remote programming. The lack of dedicated feedback becomes
even more important when monitoring data-centric systems without dedicated node identifi-
cation [MFHH02].

124



5.2. Full Life-Cycle Support for Sensor Networks

5.1.6 Sensor Calibration and Verification
In his “Analysis of a Large Scale Habitat Monitoring Application” Szewczyk [SMP+04] reports
that in order to understand the correlation between sensor reading and the actual situation in
the environment, an auxiliary system consisting of cameras and a secondary network had to be
used. With the application of sensor networks still in its infancy today, the problems of faulty,
un-calibrated data derived from sensor networks remains unclear.

5.2 Full Life-Cycle Support for Sensor Networks
A typical design flow for embedded systems starts out from a concept and design phase where
basic system properties and functions are defined and an evaluation of the different design alter-
natives takes place. Following this, prototypes are developed that are then programmed, tested,
and debugged according to the specification created in the design process. The deployment
phase is mainly characterized by extensive system testing in a realistic environment. When
satisfying benchmark results have been achieved using a pilot deployment, a validation of the
properties defined in the initial design specification has to be performed before a technical
(type) approval required for an actual product launch can take place. For example, a fire alarm
is required to report status of every node at least once every 30 sec (otherwise it is assumed that
fire destroyed the detector), environmental sensors must deliver true and reliable readings over
years.

Typical
Product
Lifecycle

D
S

N
 Application Domain

s

Developm
ent

Design and

Concept

and Pilot

Prototype

Launch and

Ramp
Production

Se
rv

ice
 a

nd

Su
pp

or
t

Ph
as

e-
ou

t
an

d 
D

is
po

sa
l

Figure 5-1
With future real-world sensor network
applications emerging into successful
industrial grade products, specific
attention is required on all phases of
the product life-cycle, namely from
concept and design over development,
prototype, pilot deployment,
production, service and support finally
leading to phase-out and
decommission. In order to ensure
customer and thus also commercial
success, properties such as quality,
reliability, and guaranteed performance
are of paramount importance.

Such a process is neither new nor revolutionary, but a rather standard procedure in industrial
product development. Variations of these processes exist, but in order to guarantee functional,
timely, sustainable and correct sensor network applications with a reasonable use of resources
(manpower), a minimum amount of iterations (cycles) in the design and development process
is generally anticipated. With ever decreasing cost of the devices themselves, careless applica-
tion design can thus lead to extensive development, deployment, and operating cost and so a
prohibitive total cost of ownership.

125



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

In the context of sensor networks, the importance of coordinated methods and tools has been
underestimated and so far concise approaches in this direction are missing. In the following we
discuss the different phases of an example design flow in the light of the peculiarities of sensor
networks. Particular emphasis is given to the fact that in a sensor network many devices have
to cooperate in applications spanning collections of devices under real-world influence.

Concept, System Design and Development
In the earliest phase, system concepts and specifications are created based upon application
requirements, early analysis and know-how from comparable projects. Subsequently system
design tasks such as the selection of suitable components, partitioning into hard- and software
building blocks and more detailed analysis of the required functions take place. As far as pos-
sible, standard components with well-known characteristics are used here to assure timeliness
and cost-effectiveness through the reuse of modular components.

Stepwise design and development also means over-provisioning of resources to allow for changes
at a later point in time and design-for-testability: Support for testing, debugging and monitor-
ing have to be designed into systems already at an early stage. The use of automated tools
accelerated the design and development process favorably. Early feedback from the systems
under development back to designers is often required. The “classical” approach used for this
feedback in the design and development of wireless sensor networks is simulation. After a
satisfying design review, this phase concludes and leads to prototype development.

Prototype and Pilot Deployment
During prototype development the first system functionality is created, according to the spec-
ification created in the first conceptual phase. After initial checks of the functionality a pilot
deployment is usually performed.

Feedback from such early prototype and subsystem tests into the development process often
cause reiterations that are cumbersome as well as resource and time-consuming and may require
to change initial concepts, design decisions and as a last resort, the specification.

Launch and Ramp
After a positive prototype review, deployment with use of the real target environment, actual
numbers of devices and correct scale allows extensive system tests. Both the initialization phase
and continuous operation are of interest here. Performance benchmarks, functional validation,
verification under production conditions are required.

Production and Operation
Final handover to a customer or end-user requires a demonstration of functionality with sus-
tainable operation under varying operating conditions. Often also a duplicate application to
related domains is of concern here. In this case, means for system testing and validation are also
required in this phase.

126



5.3. Next-Generation Deployment-Support for Sensor Networks

Service and Support
While monitoring of system status and operation is actually part of the operation in a final pro-
duction environment, the reaction on the detection of failures and as far possible the correction
of errors have to take place in the service phase. Depending on the requirements, upgrades
or changes to a running system can be necessary too, requiring both flexible, transparent and
re-targetable mechanisms.

Phase-out and Disposal
In the decommissioning phase different problems need to be accounted for: (i) A pollution and
trash problem due to the devices put in place, (ii) post-mortem and system behavior analysis
and (iii) to learn for subsequent development. While this sounds seemingly simple, researchers
and practitioners report that non existent local logging facilities on sensor nodes or imprecise lo-
cation tagging of devices deployed in the outdoors make this task next to impossible [SMP+04].

To create a simple yet effective means for full life-cycle service and support for the design and
deployment of wireless sensor networks throughout all the phases described above is the goal of
the methodology behind the next-generation deployment support presented in the next section.

5.3 Next-Generation Deployment-Support for Sensor
Networks

Classic approaches to develop and deploy wireless sensor networks use serial cables for program
download, control and monitoring. Although successful in lab setups, this approach is limited
due to scalability issues and completely infeasible for deployment in the field. When moving
away from the engineer’s desktop and beyond numbers of 10–20 nodes, deployment and testing
become increasingly hard. This is because wired connections to every node become infeasible.
The loss of these connections reduces the possibilities for control and monitoring considerably,
often resulting in trial-and-error procedures. Success and exact results then rely on sufficient
manpower [HBAB04], individual skill [CEH+01], many iterations [MCP+02], and also a
certain amount of luck [SOP+04].

In a coordinated design flow with stepwise refinement and validation (see Figure 5-2), it is vital
to be able to monitor and control the target systems at all times. It is therefore desirable to be
able to connect to any target device as if it were located on an engineer’s desktop, ideally with
minimal influence on the device’s operation.

A step in the right direction are techniques that use the wireless sensor network itself to provide
a connection to the WSN devices [LPCS04, HC04]. However, this implies altering the system
and thus its behavior. Furthermore, it requires a relatively stable wireless sensor network. On
failures, which occur frequently in early prototyping phases, a manual recovery is required.

A deployment-support network is useful throughout the entire development and deployment
cycle allowing transparent access to all system components under development with minimum
impact on the devices and systems being developed: In an early phase, where the focus is on
getting the first functions operational and distributing new code to all devices; during system

127



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

Design

Simulation Design
Review

Prototype 
Development

Test & Debug 

Deployment

Prototype
Review

Deployment Support Network
Application Domains

Design
ValidationTest & Debug 

Figure 5-2
Deployment-support network enable
stepwise refinement – Any wireless
sensor network system can be
programmed, tested, debugged,
deployed and verified both on- and
offline while being embedded in the
physical environment. The often
necessary iterations in the design,
development and deployment process
can be considerably reduced while
enabling full life-cycle service and
support.

testing in the final stages of development; in a production-like deployment phase where moni-
toring, validation and measurement with minimal interference are the primary focus. With the
DSN approach, operation and testing in the field is made possible, significantly decreasing the
amount of necessary cycles in the development process and achieving correct implementations
in a timely manner. A deployment-support network can be used by both skilled systems-
engineers, installation personnel, operators and end-users and especially non system experts.

5.3.1 Deployment-Support Networks
Deployment-support networks (DSNs) [BDH+04] have been proposed as a non-permanent,
wireless cable replacement for the development, test, deployment and validation of sensor net-
works in different environments (e.g. first in a lab setup and subsequently in the field). This
approach allows to deploy and test large numbers of devices in a realistic physical scenario. The
DSN is transparent, highly scalable, and can be quickly deployed. Due to its nature of an over-
lay network and autonomous operation, it does not disturb the target sensor network any more
than the traditional, cable-based approach. For the engineer, everything actually looks as if the
usual cables were in place; he can thus use the same tools. The DSN nodes are attached to sensor
network target devices via a programming and debugging cable and form an autonomous net-
work. The sensor nodes can then be accessed through serial-port tunnels for online monitoring,
debugging, and uploading software updates, operated over the DSN (see Figure 5-3). With this
tool, the limit for large-scale prototyping is pushed from simulation [LLWC03] and virtualiza-
tion [GEC+04] to coordinated real-world deployment. The DSN acts as an infrastructure-less
external observer with minimum impact on the observed system, offering a seamless transi-
tion from the lab to the field, and – when removed after a validation and verification phase –
autonomous operation under production conditions [BDMT05].

The ability to reliably connect to a WSN target device without altering it can be achieved
by simply attaching a DSN device to every WSN target device, and letting the DSN devices

128



5.3. Next-Generation Deployment-Support for Sensor Networks

host controller

targetsDSN nodes

Figure 5-3
The approach of a deployment-support network is a wireless serial-cable replacement offering reliable
and transparent connections by attaching a BTnode to every target node, e.g. a Berkeley Mote, in a
certain deployment scenario. Using the target wireless sensor network itself for control and monitoring is
not an option since any additional traffic could disturb the actual WSN application, and in the early
phases of development the target wireless sensor network is too unreliable.

construct and maintain an autonomous multihop network. A host, e.g. a PC, can tap into this
network by attaching to one of the DSN devices, and open a virtual connection to an arbitrary
DSN node. The host is then able to communicate both with this node and with its attached
target. Multiple virtual connections are possible, either originating at the same host, or at hosts
attached to different DSN nodes.

There are different possibilities to interact with the target, such as serial-port connections for
target monitoring and control, and remote target programming and resetting. In the case of
serial-port tunneling, the target’s serial port is replicated on the host system. The tunneled data
can be used as if the target device was directly attached to the host. Standard tools like an
in-system programmer or an in-circuit debugger can be used without modification, although
the target may be multiple hops away. For operations requiring access to specific IO pins of the
target device, e.g. remote programming or resetting, additional general-purpose IO pins of the
DSN node have to be used. A general overview of the DSN components and some exemplary
host–target virtual connections are shown in Figure 5-4.

5.3.2 Deployment-Support Network Prototype
First experiences with a deployment-support network prototype has been made using BTnode
platform discussed in chapter 3 as well as the topology control and multihop data transport
mechanisms presented in chapter 4. The basic operation can be described as follows: The
BTnode devices construct and maintain a multihop backbone network. A host, e.g. a PC,
can then attach to any of them and open a virtual connection to an arbitrary BTnode in the
network. The host can then communicate both with this node and with its attached target
through the virtual connection. So far, we have implemented remote programming, target
control and monitoring (see Figures 5-4 and 5-3); other BTnode–target operations are also
possible.

In this application, a multihop network formed by Bluetooth Scatternets is most suitable due to
the reliable link layer, multiplexing, QoS capabilities and rather high bandwidth of Bluetooth.
This bandwidth is necessary when tunneling the aggregate traffic of multiple virtual connec-

129



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

Mote Target Sensor Network

Host PC 
Connection

Deployment-Support 
Network

of 4 BTnodes

Figure 5-4
Each WSN target device
(Mica2Dot Mote) is attached
to a DSN node (BTnode rev3)
using an adapter cable. In this
example, three Motes can be
debugged via a four-node
deployment-support network
spanning three hops and a host
PC attached to the
deployment-support network.

tions. A simple, robust and distributed algorithm constructs a tree topology. The tree topology
is self-healing, i.e. it automatically takes care of joining and leaving nodes.

The virtual connection replaces the direct host–target serial cable. The packet switching at
every BTnode is based on asynchronous transfer mode (ATM) virtual circuits and automati-
cally forwards traffic to the appropriate connection. Thus, no routing is necessary on our tree
topology.

Benefits of this deployment-support network are scalable and transparent connections to arbi-
trary target devices. It is plug-and-play, self-configuring and requires no alteration of the target
system. In demonstration setups, we have successfully built tree topologies spanning 30–40
BTnodes and having multiple virtual connections with data-rates up to 57.6 kbps.

5.3.3 Beyond the Function of a Deployment-Support Network
But even now that deployment-support networks have been proposed we are still lacking proper
analysis tools that can make use of distributed monitoring data from many nodes and feed them
back into the design cycle for refinement. How do we assess the performance of a whole system?
How do we analyze the interaction and synergies between nodes? Is it possible to validate? Is it
possible to quantify correctness of the application? It remains a challenge to create appropriate
metrics and benchmarks for profiling, validation and functional verification of sensor network
applications that are vital when approaching type approval, required as the final development
step before a real-world product launch.

The advantages of a deployment-support network are:

++ Full life-cycle service and support for the development and deployment of wireless sensor
networks

++ De-coupling from an yet unreliable wireless sensor network while under development
through use of a secondary overlay network

++ Minimal invasive, i.e. not reliant on resources on the devices under test

130



5.3. Next-Generation Deployment-Support for Sensor Networks

++ Simple application by both skilled system engineers and non system experts

++ On- and offline usage

++ Plug and play operation

++ Testing and deployment in any target environment using autonomous, battery-powered,
wireless devices

131



Chapter 5: Deployment – From Proof-of-Concept to Real-World Sensor Networks

132



6
Conclusions

In this chapter we summarize the contributions of our work and discuss possible directions of
future work.

6.1 Summary of Contributions
With the work presented in this thesis we contribute towards a systematic approach for the
development and deployment of wireless networked embedded systems. By providing a view
on different aspects of the design, development and deployment process we warrant a broad
applicability of the concepts and methods discussed.

In chapter 2 we develop a location management service for wireless sensor networks based on
the specific characteristics of the network topology and resources encountered on such systems.
This is one of the first algorithms to be described in the literature. We analyze the functional
and qualitative requirements necessary for implementation based on measurements and simu-
lation.

An analysis of current wireless sensor network platforms in chapter 3 motivated the design
of the BTnode platform based on a need for event-driven interaction, standardized interfaces,
flexible and sufficient resources, development and deployment support to allow convenient
fast-prototyping of wireless sensor network applications. Especially the ability to connect to
other Bluetooth enables devices and the system software support using plain C programming
have made the BTnode a successful platform with numerous applications both in education
and research.

Based on the BTnode platform, we have developed Bluetooth multihop topology control algo-
rithms suitable to the prerequisites of the platform and conducted several practical experiments.
These experiments constitute the largest connected Bluetooth scatternets with 70+ nodes re-
ported of to date.

The experience gained through numerous implementations and the lack for appropriate devel-
opment and deployment support has led to the development of the concept of a deployment-

133



Chapter 6: Conclusions

support network as a powerful tool for the development, deployment, test and validation of
wireless sensor networks. We have shown that scalable deployment-support networks can be
implemented on currently available hardware.

6.2 Future Work and Concluding Remarks
Our experiences and developments have spawned a number of interesting questions to be pur-
sued in continuing work.

The next step, which has already been started, is to test the deployment-support network with
a real-world sensor network application in a larger test setup. This will allow to measure per-
formance and adapt operating parameters and performance based real data. Future activities
will include the measurements of throughput, power consumption, and the interference with
other radios. The tree topologies used so far are very susceptible to single link failures, as every
link failure cuts off a whole subtree. Therefore investigation based on mesh topologies, e.g.
XTC are already under way and an optimal tradeoff between redundant topologies and routing
overhead will have to be found.

Distributed debugging, based on the deployment-support network and it’s simultaneous con-
nections to many target devices will allow to derive knowledge about the distributed operation
and interaction of nodes that can then be fed back into the design and development process.
However it is unclear how this is to be done, i.e. (i) the probing interface at the targets should
be minimal invasive as not to influence the target device and (ii) how to analyze and reason
from the collected data.

The multiple radio front ends on the BTnode rev3 also deserve attention. Proposals have
been made for the operation of dual radios with differing characteristics on wireless sensor
networks and many mobile computing and communication consumer devices today feature a
host of different interfaces. In the domain of wireless sensor networks this has so far only been
exploited to bridge between infrastructure networks and wireless sensor networks but not for
tradeoffs or the enhancement of performance.

Over the past years many platforms for wireless sensor networks have been developed too nu-
merous to be counted and standardized software and interfaces are emerging. This obviously
suggests that one should consider not to build another custom platform from scratch as we
have done for the BTnode but to reuse existing components. Practice has shown, that it takes
more time, experience, commitment and careful attention to details and constraints to fully
understand and make profitable use of a platform as one might think at first. In some cases you
might as well have developed such a system yourself in the meantime. However we strongly
advocate to make use of existing, standardized, modular components and technology where
ever possible. With the emergence of tools, methodologies, support of general applicability and
standardized abstractions the limitations imposed and symptoms of infancy so dominating in
practice today will hopefully cease over time.

The biggest problem we have encountered, was actually developing the deployment-support
network application without having a DSN already in place to be used for the development
and deployment work.

134



6.2. Future Work and Concluding Remarks

135





Bibliography

[AAC+00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, and T.F. Knight.
Amorphous computing. Communications of the ACM, 43(5):74–82, 2000.

[ABD+04] U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz, L. Thiele, and
G. Tröster. A systematic approach to the design of distributed wearable sys-
tems. IEEE Transactions on Computers, 53(8):1017–1033, August 2004.

[ACH+01] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and
A. Hopper. Implementing a sentient computing system. IEEE Computer,
34(8):50–56, August 2001.

[AMS02] S. Antifakos, F. Michahelles, and B. Schiele. Proactive instructions for fur-
niture assembly. In Proc. 4th Int’l Conf. Ubiquitous Computing (UbiComp
2002), volume 2498 of Lecture Notes in Computer Science, pages 351–360.
Springer, Berlin, September 2002.

[Ant04] S. Antifakos. Improving Interaction with Context-Aware Systems. PhD thesis,
Dept. Computer Science, ETH Zürich, Switzerland, 2004.

[ARE+05] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathu-
mani, H. Zhang, H. Cao, M. Sridharan, S. Kumar, N. Seddon, C. Anderson,
T. Herman, N. Trivedi, C. Zhang, M. Nesterenko, R. Shah, S. Kulkarni,
M. Aramugam, L. Wang, M. Gouda, Y. Choi, D. Culler, P. Dutta, C. Sharp,
G. Tolle, M. Grimmer, B. Ferriera, and K. Parker. ExScal: Elements of an ex-
treme scale wireless sensor network. In Proc. 11th IEEE Int’l Conf. Embedded
and Real-Time Computing Systems and Applications (RTCSA 2005), page to
appear, 2005.

[Bas02] S. Basagni. Remarks on ad hoc networking. In E. Gregori, G. Anastasi,
and S. Basagni, editors, Advanced Lectures on Networking: NETWORKING
2002 Tutorials, volume 2497 of Lecture Notes in Computer Science, pages
101–123, Pisa, Italy, May 2002. Springer, Berlin.

[BB03] A.L. Barabási and E. Bonabeau. Scale-free networks. Scientific American,
pages 60–69, May 2003.

137



Bibliography

[BBDL03] P. Bonnet, A. Beaufour, M.B. Dydensborg, and M. Leopold. Bluetooth-based
sensor networks. ACM SIGMOD Record, 32(4):35–40, December 2003.
SPECIAL ISSUE: Special section on sensor network technology and sensor
data managment.

[BBDM05] J. Beutel, P. Blum, M. Dyer, and C. Moser. BTnode Programming - An
Introduction to BTnut Applications. Computer Engineering and Networks
Lab, ETH Zürich, Switzerland, 1.0 edition, May 2005.

[BBEH02] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scalable, ad hoc
deployable, RF-based localization. In Proc. Grace Hopper Conf. Celebration
of Women in Computing, October 2002.

[BBMP04] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli. Comparative perfor-
mance evaluation of scatternet formation protocols for networks of Bluetooth
devices. Wireless Networks, 10(2):197–213, March 2004.

[BBP03] S. Basagni, R. Bruno, and C. Petrioli. A performance comparison of scatternet
formation protocols for networks of Bluetooth devices. In Proc. 1st IEEE
Int’l Conf. Pervasive Computing and Communications (PerCom 2003), pages
341–350. IEEE CS Press, Los Alamitos, CA, March 2003.

[BBS+01] L. Blazevic, L. Buttyan, Capkun S., S. Giordano, J.P. Hubaux, and J.Y.
Le Boudec. Self organization in mobile ad hoc networks: The approach of
Terminodes. IEEE Communications Magazine, 39(6):166–174, June 2001.

[BCSR03] R. Balaji, J.K. Chen, S. Shakkottai, and T.S. Rappaport. Connectivity of se-
nsor networks with power control. In Proc. 37th Asilomar Conf. Signals, Sys-
tems and Computers, 2003, volume 2, pages 1691–1693. IEEE, Piscataway,
NJ, November 2003.

[BD05] J. Beutel and A. Dogan. Using TinyOS on BTnodes. In Proc. 4th GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze, Technical Report 418, pages 6–10.
Dept. Computer Science, ETH Zürich, Switzerland, March 2005.

[BDH+04] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald. Next-generation
prototyping of sensor networks. In Proc. 2nd ACM Conf. Embedded Net-
worked Sensor Systems (SenSys 2004), pages 291–292. ACM Press, New York,
November 2004.

[BDMT05] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology control for
deployment-sensor networks. In Proc. 4th Int’l Conf. Information Processing
in Sensor Networks (IPSN ’05), pages 359–363. IEEE, Piscataway, NJ, April
2005.

138



Bibliography

[BDO+05] S.J. Bellis, K. Delaney, B. O’Flynn, J. Barton, K.M. Razeeb, and
C. O’Mathuna. Development of field programmable modular wireless se-
nsor network nodes for ambient systems. Computer Communications, page
to appear, 2005.

[Beu04] J. Beutel. Handbook of Sensor Networks: Compact Wireless and Wired Sens-
ing Systems, chapter Location Management in Wireless Sensor Networks.
CRC-Press, Boca Raton, FL, 2004.

[Beu05] J. Beutel. Robust topology formation using BTnodes. Computer Communi-
cations, page to appear, 2005.

[BG03] M. Beigl and H. Gellersen. Smart-Its: An embedded platform for smart ob-
jects. In Proc. Smart Objects Conference (SOC 2003), Grenoble, France, May
2003.

[BGS00] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE
Personal Communications, 7(5):10–15, October 2000.

[BHE00] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost outdoor local-
ization for very small devices. IEEE Personal Communications, 7(5):28–34,
October 2000.

[BHE01] N. Bulusu, J. Heidemann, and D. Estrin. Adaptive beacon placement. In
Proc. 21st Int’l Conf. Distributed Computing Systems (ICDCS 2001), pages
489–498. IEEE, Piscataway, NJ, April 2001.

[BHS03] A. Boulis, C.C. Han, and M.B. Srivastava. Design and implementation of
a framework for programmable and efficient sensor networks. In Proc. 1st
ACM/USENIX Conf. Mobile Systems, Applications, and Services (MobiSys
2003), pages 187–200. ACM Press, New York, May 2003.

[Big89] N.L. Biggs. Discrete Mathematics. Oxford University Press, New York, revised
edition, 1989.

[BKM+04] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele. Pro-
totyping wireless sensor network applications with BTnodes. In Proc. 1st Eu-
ropean Workshop on Sensor Networks (EWSN 2004), volume 2920 of Lecture
Notes in Computer Science, pages 323–338. Springer, Berlin, January 2004.

[BKR03a] J. Beutel, O. Kasten, and M. Ringwald. BTnodes – a distributed platform for
sensor nodes. In Proc. 1st ACM Conf. Embedded Networked Sensor Systems
(SenSys 2003), pages 292–293. ACM Press, New York, November 2003.

[BKR03b] J. Beutel, O. Kasten, and M. Ringwald. BTnodes – applications and archi-
tecture compared. In Proc. 1st GI/ITG KuVS Fachgespräch Drahtlose Sensor-
netze, TKN Technical Report TKN-03-012, pages 34–37. Telecommunica-
tion Networks Group, Technical University Berlin, July 2003.

139



Bibliography

[BP00] P. Bahl and V.N. Padmanabhan. RADAR: An in-building RF-based user lo-
cation and tracking system. In Proc. 19th Ann. Joint IEEE Conf. Computer
Communiucation Soc. (Infocom 2000), volume 2, pages 775–784. IEEE, Pis-
cataway, NJ, 2000.

[BP02] S. Basagni and C. Petrioli. Multihop scatternet formation for Bluetooth net-
works. In Proc. 55th IEEE Semiannual Vehicular Technology Conference
(VTC Spring 2002), pages 424–428. IEEE, Piscataway, NJ, May 2002.

[Bul02] N. Bulusu. Self-configuring Localization Systems. PhD thesis, Dept. Com-
puter Sciences, Univ. of California, Los Angeles, CA, 2002.

[But02] W.J. Butera. Programming a Paintable Computer. PhD thesis, Massachusetts
Institute of Technology, February 2002.

[BWG99] V. Bose, D. Wetherall, and J. Guttag. Next century challenges: RadioActive
networks. In Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile Computing and
Networking (MobiCom ’99), pages 242–248. ACM Press, New York, August
1999.

[Caf00] J.J. Caffery. A new approach to the geometry of TOA location. In J.H. Weber,
J.C. Arnbak, and R. Prasad, editors, Proc. 52nd IEEE Vehicular Technology
Conf. Fall 2000 (VTC 2000), volume 4, pages 1943–1949. IEEE, Piscat-
away, NJ, 2000.

[CBA+05] B.N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D.C. Parkes, J. Shneidman,
A.C. Snoeren, and A. Vahdat. Mirage: A microeconomic resource allocation
system for sensornet testbeds. In Proc. 2nd IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), page to appear. IEEE, Piscataway, NJ, May
2005.

[CBE03] A. Cerpa, N. Busek, and D. Estrin. SCALE: A tool for simple connectivity
assessment in lossy environments. Technical Report 21, Center for Embedded
Networked Sensing (CENS), Univ. of California, Los Angeles, CA, September
2003.

[CCM+01] M.V.S. Chandrashekar, P. Choi, K. Maver, R. Sieber, and K. Pahlavan. Evalu-
ation of interference between IEEE 802.11b and Bluetooth in a typical office
environment. In Proc. IEEE Symp. Personal, Indoor and Mobile Radio Com-
munications (PIMRC 2001), volume 1, pages 71–75, September 2001.

[CE04] A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor networks
topologies. IEEE Transactions on Mobile Computing, 3(3):272–285, July
2004.

140



Bibliography

[CEH+01] A. Cerpa, J.E. Elson, M. Hamilton, J. Zhao, D. Estrin, and L. Girod. Habitat
monitoring: application driver for wireless communications technology. ACM
SIGCOMM Computer Communication Review, 31(2):20–41, April 2001.

[CHB+01] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A network-
centric approach to embedded software for tiny devices. In First Int’l Work-
shop on Embedded Software (EMSOFT 2001), volume 2211 of Lecture Notes
in Computer Science, pages 114–130. Springer, Berlin, October 2001.

[CHH01] S. Capkun, M. Hamdi, and J.P. Hubaux. GPS-free positioning in mobile ad
hoc networks. In R.H. Sprague, editor, Proc. 34th Ann. Hawaii Int’l Conf.
System Sciences (HICSS 2001), pages 10–19. IEEE CS Press, Los Alamitos,
CA, January 2001.

[CHH02] S. Capkun, M. Hamdi, and J.P. Hubaux. GPS-free positioning in mobile ad
hoc networks. Cluster Computing, 5(2):157–167, 2002.

[CKR+03] C. Chang, K. Kuusilinna, B. Richards, A. Chen, N. Chan, and R.W.
Brodersen. Rapid design and analysis of communication systems using the
BEE hardware emulation environment. In Proc. 14th IEEE Int’l Workshop
Rapid Systems Prototyping (RSP 2003), pages 148–154. IEEE, Piscataway,
NJ, June 2003.

[CM04] D. Culler and H. Mulder. Smart sensors to network the world. Scientific
American, pages 84–91, June 2004.

[CMY+02] A. Chen, R.R. Muntz, S. Yuen, I. Locher, S.I. Sung, and M.B. Srivastava. A
support infrastructure for the smart kindergarten. IEEE Pervasive Computing,
1(2):49–57, April 2002.

[Com01] Committee on Networked Systems of Embedded Computers, Computer Sci-
ence and Telecommunications Board, Division on Engineering and Physi-
cal Sciences, National Research Council, editor. Embedded, Everywhere:
A research agenda for networked systems of embedded computers. National
Academy Press, Washington, 2001.

[CS98] J.J. Caffery and G.L. Stüber. Overview of radiolocation in CDMA cellular
systems. IEEE Communications Magazine, 36(4):38–45, April 1998.

[CS02] D. Cavin and Y. Sasson. On the accuracy of MANET simulators. In ACM
Workshop Principles Of Mobile Computing (POMC 02), pages 38–43. ACM
Press, New York, October 2002.

[DBM05] M. Dyer, J. Beutel, and L. Meier. Deployment support for wireless sensor
networks. In Proc. 4th GI/ITG KuVS Fachgespräch Drahtlose Sensornetze,
Technical Report 418, pages 25–28. Dept. Computer Science, ETH Zürich,
Switzerland, March 2005.

141



Bibliography

[dBvKMOS00] M. de Berg, van Kreveld M., M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer, Berlin, 2 edition,
2000.

[Del02] K.A. Delin. The sensor web: A macro-instrument for coordinated sensing.
Sensors, 2(7):270–285, 2002. Special Issue: Networked Sensors and Wireless
Sensor Platforms.

[DGA+05] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler. Design of a wireless
sensor network platform for detecting rare, random, and ephemeral events. In
Proc. 4th Int’l Conf. Information Processing in Sensor Networks (IPSN ’05),
pages 497–502. IEEE, Piscataway, NJ, April 2005.

[DGV04] A. Dunkels, B. Grönvall, and T Voigt. Contiki – a lightweight and flexible
operating system for tiny networked sensors. In Proc. 1nd IEEE Workshop
on Embedded Networked Sensors (EmNetS-I), pages 455 – 462. IEEE, Piscat-
away, NJ, November 2004.

[DJJ+05] K.A. Delin, S.P. Jackson, D.W. Johnson, S.C. Burleigh, R.R. Woodrow, J.M.
McAuley, J.M. Dohm, F. Ip, T.P.A. Ferré, D.F. Rucker, and V.R. Baker. En-
vironmental studies with the sensor web: Principles and practice. Sensors,
5(2):103–117, 2005. Special Issue, Sensors for Environmental Monitoring.

[DKBZ05] C. Decker, A. Krohn, M. Beigl, and T. Zimmer. The particle computer sys-
tem. In Proc. 4th Int’l Conf. Information Processing in Sensor Networks (IPSN
’05), pages 443–448. IEEE, Piscataway, NJ, April 2005.

[DMS98] C. Drane, M. Macnaughtan, and C. Scott. Positioning GSM telephones.
IEEE Communications Magazine, 36(4):46–54, 1998.

[DNHKK04] C. Decker, S. Nguissi, J. Haller, and R. Kilian-Kehr. Proximity as a secu-
rity property in a mobile enterprise application context. In Proc. 37th Ann.
Hawaii Int’l Conf. System Sciences (HICSS 2005), volume 07, page 70189b.
IEEE CS Press, Los Alamitos, CA, 2004.

[DPEG01] L. Doherty, K.S.J. Pister, and L. El-Ghaoui. Convex position estimation in
wireless sensor networks. In Proc. 20th Ann. Joint IEEE Conf. Computer
Communiucation Soc. (Infocom 2001), volume 3, pages 1655–1663. IEEE,
Piscataway, NJ, 2001.

[dSJSA+01] J.L. da Silva Jr., J. Shamberger, M.J. Ammer, C. Guo, S. Li, R. Shah,
T. Tuan, M. Sheets, J.M. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, and
P. Wright. Design methodology for PicoRadio networks. In Proc. Conf. De-
sign, Automation and Test in Europe (DATE 2001), pages 314–323. IEEE,
Piscataway, NJ, March 2001.

142



Bibliography

[DWBP01] L. Doherty, B.A. Warneke, B. Boser, and K.S.J. Pister. Energy and perfor-
mance considerations for smart dust. Int’l J. Parallel and Distributed Systems
and Networks, 4(3):121–133, 2001.

[Dyd04] M.B. Dydensborg. Connection Oriented Sensor Networks. PhD thesis, De-
partment of Computer Science, University of Copenhagen, Denmark, De-
cember 2004.

[EBB+03] J. Elson, S. Bien, N. Busek, V. Bychkovskiy, A. Cerpa, D. Ganesan, L. Girod,
B. Greenstein, T. Schoellhammer, T. Stathopoulos, and D. Estrin. EmStar: An
environment for developing wireless embedded systems software. Technical
Report 0009, Center for Embedded Networked Sensing (CENS), Univ. of
California, Los Angeles, CA, March 2003.

[Ebe03] H. Eberle. A radio network for monitoring and diagnosing computer systems.
IEEE Micro, 23(1):60–65, January 2003.

[ECPS02] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physi-
cal world with pervasive networks. IEEE Pervasive Computing, 1(1):59–69,
2002.

[EEHDP04] C.C. Enz, A. El-Hoiydi, J.D. Decotignie, and V. Peiris. WiseNET: An
ultralow-power wireless sensor network solution. IEEE Computer, 37(8):62–
70, August 2004.

[EGHK99] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century chal-
lenges: Scalable coordination in sensor networks. In Proc. 5th ACM/IEEE
Ann. Int’l Conf. Mobile Computing and Networking (MobiCom ’99), pages
263–270. ACM Press, New York, August 1999.

[EHD04] A. El-Hoiydi and J.D. Decotignie. WiseMAC: An ultra low power MAC
protocol for multi-hop wireless sensor networks. In S. Nikoletseas and J.D.P.
Rolim, editors, Proc. 1st Int’l Workshop Algorithmic Aspects of Wireless Se-
nsor Networks (ALGOSENSORS 2004), volume 3121 of Lecture Notes in
Computer Science, pages 18–31. Springer, Berlin, June 2004.

[Els03] J.E. Elson. Time Synchronization in Wireless Sensor Networks. PhD thesis,
Dept. Computer Sciences, Univ. of California, Los Angeles, CA, 2003.

[ER02] A. Erni and S. Reichmuth. Bluetooth Anbindung für Lego Mindstorms. Term
thesis, Computer Engineering and Networks Lab, ETH Zürich, Switzerland,
July 2002.

[FC02] C.C. Foo and K.C. Chua. BlueRings - Bluetooth scatternets with ring struc-
tures. In Proc. IASTED Int’l Conf. on Wireless and Optical Communication
(WOC 2002). ACTA Press, Calgary, Canada, July 2002.

143



Bibliography

[FKO03] T. Fuhrmann, M. Klein, and M. Odendahl. The BlueWand as interface for
ubiquitous and wearable computing environments. In Proc. 5th European
Personal Mobile Communications Conf. (EPMCC ’03), pages 91–95. IEE,
London, April 2003.

[FP05a] E. Ferro and F. Potorti. Bluetooth and Wi-Fi wireless protocols: A survey and
a comparison. IEEE Wireless Communications, 12(1):12–26, 2005.

[FP05b] H.J. Freeland and P.F.Cummins. Argo: A new tool for environmental moni-
toring and assessment of the world’s ocean, an example from the NE pacific.
Progress in Oceanography, 64(1):31–44, 2005.

[FR05] C. Frank and K. Römer. Algorithms for generic role assignment in wireless se-
nsor networks. In Proc. 3rd ACM Conf. Embedded Networked Sensor Systems
(SenSys 2005), page to appear, November 2005.

[Fre03] U. Frey. Topology and position estimation in Bluetooth ad hoc networks.
Master’s thesis, Computer Engineering and Networks Lab, ETH Zürich,
Switzerland, March 2003.

[FRL05a] C.L. Fok, G.C. Roman, and C. Lu. Mobile agent middleware for sensor
networks: An application case study. In Proc. 4th Int’l Conf. Information
Processing in Sensor Networks (IPSN ’05). ACM Press, New York, April 2005.

[FRL05b] C.L. Fok, G.C. Roman, and C. Lu. Rapid development and flexible deploy-
ment of adaptive wireless sensor network applications. In Proc. 25rd Int’l
Conf. Distributed Computing Systems (ICDCS 2005). IEEE, Piscataway, NJ,
2005.

[GEC+04] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramananthan, and D. Es-
trin. EmStar: A software environment for developing and deploying wireless
sensor networks. In Proc. USENIX 2004 Annual Tech. Conf., pages 283–
296, June 2004.

[GK00] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transac-
tions on Information Theory, 46(2):388–404, March 2000.

[GKSB04] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl. Physical prototyping
with Smart-Its. IEEE Pervasive Computing, 3(3):74–82, July 2004.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wick-
eret. Complex behavior at scale: An experimental study of low-power wireless
sensor networks. Technical Report CSD-TR 02-0013, Dept. Computer Sci-
ences, Univ. of California, Los Angeles, CA, February 2002.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
nesC language: A holistic approach to networked embedded systems. In Proc.

144



Bibliography

ACM SIGPLAN 2003 Conf. Programming Language Design and Implemen-
tation (PLDI 2003), pages 1–11. ACM Press, New York, June 2003.

[Gou05] J. Gould. From swallow floats to Argo – the development of neutrally buoyant
floats. Deep-Sea Research II, 52(3-4):529–543, 2005.

[GRSV03] R. Guérin, J. Rank, S. Sarkar, and E. Vergetis. Forming connected topolo-
gies in Bluetooth ad-hoc networks – an algorithmic perspective. In Providing
Quality of Service in Heterogeneous Environments, Proc. 18th Int’l Teletraffic
Congress (ITC-18), Teletraffic Science and Engineering. Elsevier B.V., Ams-
terdam, The Netherlands, September 2003.

[Haa00] J.C. Haartsen. The Bluetooth radio system. IEEE Personal Communications,
7(1):28–36, February 2000.

[Haa01] J.C. Haartsen. Bluetooth – ad hoc networking in an uncoordianted envi-
ronment. In Proc. 2001 Int’l Conf. Acoustics, Speech, and Signal Processing
(ICASSP 2001), volume 4, pages 2029–2032. IEEE, Piscataway, NJ, May
2001.

[HBAB04] B. Hemingway, W. Brunette, T. Anderl, and G. Borriello. The Flock: Mote
sensors sing in undergraduate curriculum. IEEE Computer, 37(8):72–78,
August 2004.

[HBE+01] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K.C. Lan, Y. Xu,
W. Ye, D. Estrin, and R. Govindan. Effects of detail in wireless network sim-
ulation. In Proc. SCS Multiconference Distributed Simulation 2001, pages
3–11. USC/Information Sciences Institute, Society for Computer Simulation,
Los Angeles, CA, January 2001.

[HBFZ04] H.J. Hof, E.O. Blass, T. Fuhrmann, and M. Zitterbart. Design of a secure
distributed service directory for wireless sensornetworks. In Proc. 1st European
Workshop on Sensor Networks (EWSN 2004), volume 2920 of Lecture Notes
in Computer Science, pages 276–290. Springer, Berlin, January 2004.

[HC02] J.L. Hill and D. Culler. Mica: A wireless platform for deeply embedded net-
works. IEEE Micro, 22(6):12–24, November 2002.

[HC04] J.W. Hui and D. Culler. The dynamic behavior of a data dissemination pro-
tocol for network programming at scale. In Proc. 2nd ACM Conf. Embed-
ded Networked Sensor Systems (SenSys 2004), pages 81–94. ACM Press, New
York, November 2004.

[HCB02] W. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application-
specific protocol architecture for wireless microsensor networks. IEEE Trans-
actions on Wireless Communications, 1(4):660–670, October 2002.

145



Bibliography

[Hei00] W. Heinzelman. Application-Specific Protocol Architectures for Wireless Net-
works. PhD thesis, Massachusetts Institute of Technology, Boston, MA, 2000.

[HGK+04] L.E. Holmquist, H.W. Gellersen, G. Kortuem, A. Schmidt, M. Strohbach,
S. Antifakos, F. Michahelles, B. Schiele, and M. Beigl anb R. Mazé. Build-
ing intelligent environments with Smart-Its. IEEE Computer Graphics and
Applications, pages 56–64, January 2004.

[HGLBV01] J.P. Hubaux, T. Gross, J.Y. Le Boudec, and M. Vetterli. Toward self-organized
mobile ad hoc networks: The Terminodes project. IEEE Communications
Magazine, 39(1):118–124, January 2001.

[HH89] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press,
Cambridge, UK, 2nd edition, 1989.

[HHKK04] J.L. Hill, M. Horton, R. Kling, and L. Krishnamurthy. Wireless sensor net-
works: The platforms enabling wireless sensor networks. Communications of
the ACM, 47(6):41–46, June 2004.

[HHS+99] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a
context-aware application. In Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile
Computing and Networking (MobiCom ’99), pages 59–68, August 1999.

[Hil04] J.L. Hill. System Architecture for Wireless Sensor Networks. PhD thesis, UC
Berkeley, 2004.

[HKS+04] T. He, S. Krishnamurthy, J.A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru,
T. Yan, L. Gu, J. Hui, and B. Krogh. Energy-efficient surveillance system
using wireless sensor networks. In Proc. 2nd ACM/USENIX Conf. Mobile
Systems, Applications, and Services (MobiSys 2004), pages 270–283. ACM
Press, New York, June 2004.

[HLBG+00] J.P. Hubaux, J.Y. Le Boudec, S. Giordano, M. Hamdi, L. Blazevic, L. Buttyan,
and M. Vojnovic. Towards mobile ad hoc wans: Terminodes. In Proc. 2000
IEEE Wireless Communications and Networking Conf. (WCNC 2000), vol-
ume 3, pages 1052–1059. IEEE, Piscataway, NJ, September 2000.

[HLBGH99] J.P. Hubaux, J.Y. Le Boudec, S. Giordano, and M. Hamdi. The Terminode
project: Towards mobile ad hoc WANs. In Proc. 1999 IEEE Int’l Workshop
Mobile Multimedia Communications (MoMuC 99), pages 124–128. IEEE,
Piscataway, NJ, November 1999.

[HM00] J.C. Haartsen and S. Mattisson. Bluetooth – a new low-power radio interface
providing short-range connectivity. Proceedings of the IEEE, 88(10):1651–
1661, October 2000.

146



Bibliography

[HPH+05] V. Handziski, J. Polastre, J.H. Hauer, C. Sharp, A. Wolisz, and D. Culler.
Flexible hardware abstraction for wireless sensor networks. In Proc. 2nd Eu-
ropean Workshop on Sensor Networks (EWSN 2005), pages 145–157. IEEE
CS Press, Los Alamitos, CA, January 2005.

[HSW+00] J.L. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensors. In Proc. 9th Int’l Conf. Architec-
tural Support Programming Languages and Operating Systems (ASPLOS-IX),
pages 93–104. ACM Press, New York, November 2000.

[HSWC00] W.R. Heinzelman, A. Sinha, A. Wang, and A.P. Chandrakasan. Energy-
scalable algorithms and protocols for wireless microsensor networks. In Proc.
2000 Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP 2000),
volume 6, pages 3722–3725. IEEE, Piscataway, NJ, 2000.

[HWH03] R.K. Harle, A. Ward, and A. Hopper. Single reflection spatial voting. In
Proc. 1st ACM/USENIX Conf. Mobile Systems, Applications, and Services
(MobiSys 2003), pages 1–15. ACM Press, New York, May 2003.

[ICP+99] A. Iwata, C.C. Chiang, G. Pei, M. Gerla, and T.W. Chen. Scalable routing
strategies for ad hoc wireless networks. IEEE Journal on Selected Areas in
Communication, 17(8):1369–1379, August 1999. Special Issue on Ad Hoc
Networks.

[IGE00] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. In Proc. 6th
ACM/IEEE Ann. Int’l Conf. Mobile Computing and Networking (MobiCom
2000), pages 56–67. ACM Press, New York, August 2000.

[IK96] T. Imielinski and H. Korth, editors. Mobile Computing. Kluwer Academic
Publishers, Norwell, MA, 1996.

[JKKG01] P. Johansson, M. Kazantzidis, R. Kapoor, and M. Gerla. Bluetooth: An en-
abler for personal area networking. IEEE Network, 1(5):28–37, September
2001.

[JLT03] H. Junker, P. Lukowicz, and G. Tröster. PadNET: Wearable physical activity
detection network. In Proc. Int. Symp. Wearable Computers (ISWC ’03),
pages 244–245. IEEE, Piscataway, NJ, October 2003.

[JM96] D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless
networks. In T. Imielinski and H. Korth, editors, Mobile Computing. Kluwer
Academic Publishers, Norwell, MA, 1996.

[JOW+02] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with ZebraNet. In Proc. 10th Int’l Conf. Architectural Support

147



Bibliography

Programming Languages and Operating Systems (ASPLOS-X), pages 96–107.
ACM Press, New York, October 2002.

[JPC05] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sensor
networks. In Proc. 4th Int’l Conf. Information Processing in Sensor Networks
(IPSN ’05), pages 463–468. IEEE, Piscataway, NJ, April 2005.

[KAH+04] R. Kling, R. Adler, J. Huang, V. Hummel, and L. Nachman. Intel mote:
Using Bluetooth in sensor networks. In Proc. 2nd ACM Conf. Embedded
Networked Sensor Systems (SenSys 2004), page 318. ACM Press, New York,
November 2004.

[Kas05] O. Kasten. A State-Based Programming Framework for Wireless Sensor Net-
works. PhD thesis, Dept. Computer Science, ETH Zürich, Switzerland, 2005.

[KB95] R.H. Katz and E.A. Brewer. The case for wireless overlay networks. In
T. Imielinski and H. Korth, editors, Mobile Computing, pages 621–650.
Kluwer Academic Publishers, Norwell, MA, 1995.

[KBA+96] R.H. Katz, E.A. Brewer, E. Amir, H. Balakrishnan, A. Fox, S. Gribble,
T. Hodes, D. Jiang, N. Giao Thanh, V. Padmanabhan, and M. Stemm.
The bay area research wireless access network (BARWAN). In Proc. 41st
IEEE Comp. Soc. Int’l Conf.: Technologies for the Information Superhigh-
way (COMPCON 1996), pages 15–20. IEEE CS Press, Los Alamitos, CA,
February 1996.

[KCA+03] K. Kuusilinna, C. Chang, M.J. Ammer, B. Richards, and R.W. Brodersen.
Designing BEE: A hardware emulation engine for signal processing in low-
power wireless applications. EURASIP Journal on Applied Signal Processing,
2003(6):502–523, 2003. Special issue on Rapid Prototyping of DSP Systems.

[KCB+03] K. Kuusilinna, C. Chang, H.M. Bluethgen, W.R. Davis, B. Richards,
B. Nikolic, and R.W. Brodersen. Winning the SoC Revolution, Experiences
in Real Design, chapter Real-time System-on-a-Chip Emulation: Emulation
Driven System Design with Direct Mapped Virtual Components, pages 229–
253. Kluwer Academic Publishers, Norwell, MA, 2003.

[KKP99] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: Mobile
networking for smart dust. In Proc. 5th ACM/IEEE Ann. Int’l Conf. Mobile
Computing and Networking (MobiCom ’99), pages 271–278. ACM Press,
New York, August 1999.

[KL01] O. Kasten and M. Langheinrich. First experiences with Bluetooth in the
Smart-It’s distributed sensor network. In Workshop on Ubiquitous Comput-
ing and Communication, Int’l Conf. Parallel Architectures and Compilation
Techniques (PACT 2001), September 2001.

148



Bibliography

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing newly deployed ad
hoc and sensor networks. In Proc. 10th ACM/IEEE Ann. Int’l Conf. Mobile
Computing and Networking (MobiCom 2004), pages 260–274. ACM Press,
New York, 2004.

[KNE03] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless-
network research. Technical Report TR2003-467, Dartmouth College Com-
puter Science, July 2003.

[KNG+04] D. Kotz, C. Newport, R.S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental
evaluation of wireless simulation assumptions. In Int’l Workshop Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM 04), pages
78–82. ACM Press, New York, October 2004.

[KR05] O. Kasten and K. Römer. Beyond event handlers: Programming wireless
sensors with attributed state machines. In Proc. 4th Int’l Conf. Information
Processing in Sensor Networks (IPSN ’05), pages 45–52. IEEE, Piscataway,
NJ, April 2005.

[KTZ05] S. Künzli, L. Thiele, and E. Zitzler. A modular design space exploration frame-
work for embedded systems. IEE Proc. Computers & Digital Techniques,
152(2):183–192, March 2005.

[KV98] Y.B. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile ad hoc
networks. In Proc. 4th ACM/IEEE Ann. Int’l Conf. Mobile Computing and
Networking (MobiCom ’98), pages 66–75. ACM Press, New York, August
1998.

[KWZ03] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-
case efficient geometric ad hoc routing. In Proc. 4th ACM Int’l Symp. Mobile
Ad Hoc Networking and Computing (MobiHoc 2003), pages 267–278. ACM
Press, New York, June 2003.

[LC02] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In
Proc. 10th Int’l Conf. Architectural Support Programming Languages and Op-
erating Systems (ASPLOS-X), pages 85–95. ACM Press, New York, October
2002.

[LC04] J. Liu and P.H. Chou. Distributed embedded systems for low power: A case
study. In Proc. 18th Int’l Parallel and Distributed Processing Symposium
(IPDPS 2004), pages 26–30. IEEE, Piscataway, NJ, April 2004.

[LCS+00] Y. Lu, E. Chung, T. Simunic, L. Benini, and G. De Micheli. Quantitative
comparison of power management algorithms. In Proc. Conf. Design, Au-
tomation and Test in Europe (DATE 2002), pages 20–26. IEEE, Piscataway,
NJ, March 2000.

149



Bibliography

[LDB03] M. Leopold, M.B. Dydensborg, and P. Bonnet. Bluetooth and sensor net-
works: A reality check. In Proc. 1st ACM Conf. Embedded Networked Sensor
Systems (SenSys 2003), pages 103–113. ACM Press, New York, November
2003.

[Leo04] M. Leopold. Power estimation using the Hogthrob prototype platform. Mas-
ter’s thesis, Department of Computer Science, University of Copenhagen,
Denmark, 2004.

[LLN+02] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom, and C. Tschudin. A
large-scale testbed for reproducible ad hoc protocol evaluations. In Proc. 2002
IEEE Wireless Communications and Networking Conf. (WCNC 2002), vol-
ume 1, pages 412–418. IEEE, Piscataway, NJ, March 2002.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable
simulation of entire TinyOS applications. In Proc. 1st ACM Conf. Embedded
Networked Sensor Systems (SenSys 2003), pages 126–137. ACM Press, New
York, November 2003.

[LMG+04] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, Brewer E.,
and D. Culler. The emergence of networking abstractions and techniques in
TinyOS. In Proc. First Symp. Networked Systems Design and Implementation
(NSDI ’04), pages 1–14. ACM Press, New York, March 2004.

[LMP+05] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Ambient Intelligence, chap-
ter TinyOS: An Operating System for Sensor Networks, pages 115–148.
Springer, Berlin, 2005.

[LMS03] C. Law, A.K. Mehta, and K.Y. Siu. A new Bluetooth scatternet formation
protocol. ACM/Kluwer Mobile Networks and Applications, 8(5):485–498,
October 2003.

[Log92] T. Logsdon. The Navstar Global Positioning System. Van Nostrand Reinhold,
New York, 1992.

[LPCS04] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating al-
gorithm for code propagation and maintenance in wireless sensor networks.
In Proc. First Symp. Networked Systems Design and Implementation (NSDI
’04), pages 15–28. ACM Press, New York, March 2004.

[LSBP02] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso. Pushpin comput-
ing system overview: A platform for distributed, embedded, ubiquitous se-
nsor networks. In F. Mattern and M. Naghshineh, editors, Proc. First Int’l
Conf. Pervasive Computing (Pervasive 2002), volume 2414 of Lecture Notes
in Computer Science, pages 139–151. Springer, Berlin, August 2002.

150



Bibliography

[LSS03] S. Li, S. H. Son, and J. A. Stankovic. Event detection services using data ser-
vice middleware in distributed sensor networks. In F. Zhao and L. Guibas, ed-
itors, Proc. 2nd Int’l Conf. Information Processing in Sensor Networks (IPSN
’03), volume 2634 of Lecture Notes in Computer Science. Springer, Berlin,
April 2003.

[LSZM04] T. Liu, C.M. Sadler, P. Zhang, and M. Martonosi. Energy-efficient surveil-
lance system using wireless sensor networks. In Proc. 2nd ACM/USENIX
Conf. Mobile Systems, Applications, and Services (MobiSys 2004), pages 256–
269. ACM Press, New York, June 2004.

[LTC03] T.Y. Lin, Y.C. Tseng, and K.M. Chang. Formation, routing, and mainte-
nance protocols for the Bluering scatternet of Bluetooths. In Proc. 36th Ann.
Hawaii Int’l Conf. System Sciences (HICSS 2003), page 10pp. IEEE CS Press,
Los Alamitos, CA, January 2003.

[LWG05] O. Landsiedel, K. Wehrle, and S. Götz. Accurate prediction of power con-
sumption in sensor networks. In Proc. 2nd IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), page to appear. IEEE, Piscataway, NJ, May
2005.

[Mar05] K. Martin. Adaptive XTC on BTnodes. Master’s thesis, Computer Engineer-
ing and Networks Lab, ETH Zürich, Switzerland, May 2005.

[MC03] R. Min and A. Chandrakasan. Top five myths about the energy consumption
of wireless communication. Mobile Computing and Communications Review,
7(1):65–67, January 2003.

[MCB+02] R. Min, S. Cho, M. Bhardwaj, E. Shih, A. Wang, and A.P. Chandrakasan.
Power-aware wireless microsensor networks. In M. Pedram and J.M. Rabaey,
editors, Power Aware Design Methodologies, pages 335–372. Kluwer Aca-
demic Publishers, Norwell, MA, 2002.

[MCP+02] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In Proc. 1st ACM Int’l Work-
shop Wireless Sensor Networks and Applications (WSNA 2002), pages 88–97.
ACM Press, New York, September 2002.

[MFHH02] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TAG: A tiny
aggregation service for ad-hoc sensor networks. In Proc. 5th Symp. Operating
Systems Design and Implementation (OSDI 2002), pages 131–146. ACM
Press, New York, December 2002.

[MFT05] L. Meier, P. Ferrari, and L. Thiele. Energy-efficient Bluetooth networks. Tech-
nical Report 204, Computer Engineering and Networks Lab, ETH Zürich,
Switzerland, January 2005.

151



Bibliography

[Mic04] F. Michahelles. Innovative Application Development for Ubiquitous and
Wearable Computing. PhD thesis, Dept. Computer Science, ETH Zürich,
Switzerland, 2004.

[MS02] F. Michahelles and B. Schiele. Better rescue through sensors. In Proc. 4th Int’l
Conf. Ubiquitous Computing (UbiComp 2002), September 2002.

[MSLS04] M. Maróti, G. Simon, Á. Lédeczi, and J. Sztipanovits. Shooter localization in
urban terrain. IEEE Computer, 37(8):60–61, August 2004.

[MT02] A. Merkle and A. Terzis. Digitale Funkkommunikation mit Bluetooth.
Franzis’ Verlag, Poing, Germany, 2002.

[MW05] F. Michel and P. Wüger. Angewandte Uhrensynchronisation auf BTnodes.
Term thesis, Computer Engineering and Networks Lab, ETH Zürich,
Switzerland, February 2005.

[MWF02] P. Murphy, E. Welsh, and J.P. Frantz. Using Bluetooth for short-term ad hoc
connections between moving vehicles: a feasibility study. In Proc. 55th IEEE
Semiannual Vehicular Technology Conference (VTC Spring 2002), volume 1,
pages 414–418. IEEE, Piscataway, NJ, May 2002.

[NBD05a] L. Negri, J. Beutel, and M. Dyer. The power consumption of Bluetooth
scatternets. page submitted, 2005.

[NBD05b] L. Negri, J. Beutel, and M. Dyer. The power consumption of Bluetooth
scatternets. Technical Report 220, Computer Engineering and Networks Lab,
ETH Zürich, Switzerland, May 2005.

[NKA+05] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel. The Intel mote
platform: A Bluetooth-based sensor network for industrial monitoring. In
Proc. 4th Int’l Conf. Information Processing in Sensor Networks (IPSN ’05),
pages 437–442. IEEE, Piscataway, NJ, April 2005.

[NLYP03] L.M. Ni, Y. Liu, Lau Y.C., and A.P. Patil. LANDMARC: Indoor location
sensing using active RFID. In Proc. 1st IEEE Int’l Conf. Pervasive Computing
and Communications (PerCom 2003), pages 407–415. IEEE CS Press, Los
Alamitos, CA, March 2003.

[NN01] D. Niculescu and B. Nath. Ad hoc positioning system (APS). In Proc. IEEE
Global Telecommunications Conf. (GLOBECOM 2001), pages 2926–2931.
IEEE, Piscataway, NJ, November 2001.

[NWS03] K. Naik, D.S.L. Wei, and Y.T. Su. Packet interference in a heterogeneous
cluster of Bluetooth piconets. In Proc. 58th IEEE Semiannual Vehicular
Technology Conference (VTC Fall 2003), volume 1, pages 582–586. IEEE,
Piscataway, NJ, October 2003.

152



Bibliography

[PB94] C.E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. SIGCOMM Com-
puter Communications Review, 24(4):234–244, 1994.

[PBC02] C. Petrioli, S. Basagni, and I. Chlamtac. BlueMesh: Degree-constrained
multihop scatternet formation for Bluetooth networks. ACM/Kluwer Mobile
Networks and Applications, 9(1):33–47, February 2002.

[PBC03] C. Petrioli, S. Basagni, and I. Chlamtac. Configuring BlueStars: Multi-hop
scatternet formation in Bluetooth networks. IEEE Transactions on Comput-
ers, 52(6):779–790, Jun. 2003.

[PC04] C. Park and P.H. Chou. Power utility maximization for multiple-supply sys-
tems by a load-matching switch. In Proc. Int’l Symp. Low Power Electronics
and Design (ISLPED 2004), pages 168–173. ACM Press, New York, August
2004.

[PCB00] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket location-
support system. In Proc. 6th ACM/IEEE Ann. Int’l Conf. Mobile Computing
and Networking (MobiCom 2000), pages 32–43. ACM Press, New York,
2000.

[Per01] C.E. Perkins, editor. Ad Hoc Networking. Addison-Wesley, Boston, MA,
2001.

[PEW+02] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, and L. Thiele. Recon-
figurable hardware in wearable computing nodes. In Proc. Int. Symp. Wear-
able Computers (ISWC ’02), pages 215–222. IEEE, Piscataway, NJ, October
2002.

[PEW+03] C. Plessl, R. Enzler, H. Walder, J. Beutel, M. Platzner, L. Thiele, and
G. Tröster. The case for reconfigurable hardware in wearable computing. Per-
sonal and Ubiquitous Computing, 7(5):299–308, October 2003.

[PH00] D.D. Perkins and H. Hughes. A performance comparison of routing protocols
for mobile ad hoc networks. In M.S. Obaidat, F. Davoli, and M.A. Marsan,
editors, Proceedings of the 2000 Symposium on Performance Evaluation of
Computer and Telecommunication Systems, pages 480–487, 2000.

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wire-
less sensor networks. In Proc. 2nd ACM Conf. Embedded Networked Sensor
Systems (SenSys 2004), pages 95–107. ACM Press, New York, 2004.

[PK00] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors. Communi-
cations of the ACM, 43(5):51–58, May 2000.

153



Bibliography

[PLC05] C. Park, J. Liu, and P.H. Chou. Eco: An ultra-compact low-power wireless
sensor node for real-time motion monitoring. In Proc. 4th Int’l Conf. In-
formation Processing in Sensor Networks (IPSN ’05), pages 398–403. IEEE,
Piscataway, NJ, April 2005.

[PSC05] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power
wireless research. In Proc. 4th Int’l Conf. Information Processing in Sensor
Networks (IPSN ’05), pages 364–369. IEEE, Piscataway, NJ, April 2005.

[RAdSJ+00] J.M. Rabaey, M.J. Ammer, J.L. da Silva Jr., D. Patel, and S. Roundy.
PicoRadio supports ad hoc ultra-low power wireless networking. IEEE Com-
puter, 33(7):42–48, July 2000.

[RAK+02] J.M. Rabaey, J. Ammer, T. Karalar, Li. S., B. Otis, M. Sheets, and T. Tuan.
Picoradios for wireless sensor networks: the next challenge in ultra-low-power
design. In Proc. Int’l Solid-State Circuits Conf. (ISSCC 2002), volume 1,
pages 200–201. IEEE, Piscataway, NJ, February 2002.

[RBM05] K. Römer, P. Blum, and L. Meier. Sensor Networks, chapter Time Synchro-
nization and Calibration in Wireless Sensor Networks. John Wiley & Sons,
New York, July 2005.

[RFMB04] K. Römer, C. Frank, P.J. Marrón, and C. Becker. Generic role assigment for
wireless sensor networks. In Proc. 11th ACM SIGOPS European Workshop,
pages 7–12. ACM Press, New York, September 2004.

[RM04] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE
Wireless Communications, 11(6):54–61, December 2004.

[ROC+03] S. Roundy, B. Otis, Y.H. Chee, J.M. Rabaey, and P. Wrigh. A 1.9GHz RF
transmit beacon using environmentally scavenged energy. In Proc. Int’l Symp.
Low Power Electronics and Design (ISLPED 2003), August 2003. design
contest.

[Röm03] K. Römer. The Lighthouse location system for smart dust. In Proc. 1st
ACM/USENIX Conf. Mobile Systems, Applications, and Services (MobiSys
2003), pages 15–30. ACM Press, New York, May 2003.

[Röm04a] K. Römer. Determination of time and location in large-scale dynamic net-
works of tiny sensors. In A. Ferscha, H. Hoertner, and G. Kotsis, editors,
Advances in Pervasive Computing, pages 125–132. Austrian Computer Soci-
ety (OCG), April 2004.

[Röm04b] K. Römer. Tracking real-world phenomena with smart dust. In Proc. 1st Eu-
ropean Workshop on Sensor Networks (EWSN 2004), volume 2920 of Lecture
Notes in Computer Science, pages 307–322. Springer, Berlin, January 2004.

154



Bibliography

[Röm05] K. Römer. Time Synchronization and Localization in Sensor Networks. PhD
thesis, Dept. Computer Science, ETH Zürich, Switzerland, 2005.

[Ros04] P.E. Ross. 10 tech companies for the next 10 years. IEEE Spectrum, pages
32–38, November 2004.

[RPW+04] V. Raghunathan, T. Pering, R. Want, A. Nguyen, and P. Jensen. Experience
with a low power wireless mobile computing platform. In Proc. Int’l Symp.
Low Power Electronics and Design (ISLPED 2004), pages 363–368. ACM
Press, New York, August 2004.

[RR05] M. Ringwald and K. Römer. BitMAC: A deterministic, collision-free, and ro-
bust MAC protocol for sensor networks. In Proc. 2nd European Workshop on
Sensor Networks (EWSN 2005), pages 57–69. IEEE CS Press, Los Alamitos,
CA, January 2005.

[RTVS03] H. Ritter, M. Tian, T. Voigt, and J. Schiller. A highly flexible testbed for stud-
ies of ad-hoc network behaviour. In Proc. 28th Ann. IEEE Conf. Local Comp.
Networks (LCN 2003), pages 746–752. IEEE, Piscataway, NJ, October 2003.

[RWR03] S. Roundy, P.K. Wright, and J.M. Rabaey. Energy Scavenging for Wireless
Sensor Networks with Special Focus on Vibrations. Springer, Berlin, 2003.

[SB97] G. Strang and K. Borre. Linear Algebra, Geodesy and GPS. Wellesley-
Cambridge Press, Wellesley, MA, 1997.

[SBP+04] G. Simon, G. Balogh, G. Pap, M. Maróti, B. Kusy, J. Sallai, Á. Lédeczi, A. Ná-
das, and K. Frampton. Sensor network-based countersniper system. In Proc.
2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages
1–12. ACM Press, New York, November 2004.

[SBS02] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless: An event driven energy
saving strategy for battery operated devices. In Proc. 6th ACM/IEEE Ann.
Int’l Conf. Mobile Computing and Networking (MobiCom 2001), pages 160–
171. ACM Press, New York, September 2002.

[Sch02] A. Schmidt. Ubiquitous Computing – Computing in Context. PhD thesis,
Computing Department, Lancaster University, U.K., 2002.

[SDFV05] T. Schmid, H. Dubois-Ferrière, and M. Vetterli. SensorScope: Experiences
with a wireless building monitoring sensor network. In Proc. Workshop on
Real-World Wireless Sensor Networks (REALWSN ’05), page to appear, June
2005.

155



Bibliography

[SF03] F. Siegemund and C. Flörkemeier. Interaction in pervasive computing set-
tings using Bluetooth-enabled active tags and passive RFID technology to-
gether with mobile phones. In Proc. 1st IEEE Int’l Conf. Pervasive Comput-
ing and Communications (PerCom 2003), pages 378–387. IEEE CS Press,
Los Alamitos, CA, March 2003.

[SFV04] F. Siegemund, C. Flörkemeier, and H. Vogt. The value of handhelds in smart
environments. In Proc. 17th Int’l Conf. on Architecture of Computing Systems
- Organic and Pervasive Computing (ARCS ’04), volume 2981 of Lecture
Notes in Computer Science, pages 291–308. Springer, Berlin, January 2004.

[SHC+04] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and M. Welsh. Sim-
ulating the power consumption of large-scale sensor network applications. In
Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004),
pages 188–200. ACM Press, New York, November 2004.

[SHS01] A. Savvides, C.C. Han, and M.B. Strivastava. Dynamic fine-grained localiza-
tion in ad hoc networks of sensors. In Proc. 7th ACM/IEEE Ann. Int’l Conf.
Mobile Computing and Networking (MobiCom 2001), pages 166–179. ACM
Press, New York, July 2001.

[Sie02] F. Siegemund. Spontaneous interaction in ubiquitous computing settings
using mobile phones and short text messages. In Proc. Workshop Support-
ing Spontaneous Interaction in Ubiquitous Computing Settings (at Ubicomp
2002), September 2002.

[Sie04a] F. Siegemund. A context-aware communication platform for smart objects. In
A. Ferscha and F. Mattern, editors, Proc. Second Int’l Conf. Pervasive Comput-
ing (Pervasive 2004), number 3001 in Lecture Notes in Computer Science,
pages 69–86. Springer, Berlin, April 2004.

[Sie04b] F. Siegemund. Cooperating Smart Everyday Objects – Exploiting Heterogene-
ity and Pervasiveness in Smart Environments. PhD thesis, Dept. Computer
Science, ETH Zürich, Switzerland, 2004.

[SK99] M. Stemm and R.H. Katz. Vertical handoffs in wireless overlay networks.
ACM/Baltzer Mobile Networks and Applications (MONET)), 3(4):319–334,
January 1999.

[SK04a] F. Siegemund and P. Keller. Tuplespace-based collaboration for Bluetooth-
enabled devices in smart environments. In Proc. Informatik 2004, 34.
Jahrestagung der Gesellschaft für Informatik, Workshop on Mobile Ad-Hoc
Networks, pages 133–137. Gesellschaft für Informatik, Bonn, Germany,
September 2004.

156



Bibliography

[SK04b] F. Siegemund and T. Krauer. Integrating handhelds into environments of co-
operating smart everyday objects. In Proc. 2nd Europ. Symp. on Ambient
Intelligence (EUSAI 2004), volume 3295 of Lecture Notes in Computer Sci-
ence, pages 160–171. Springer, Berlin, January 2004.

[SMP+04] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An
analysis of a large scale habitat monitoring application. In Proc. 2nd ACM
Conf. Embedded Networked Sensor Systems (SenSys 2004), pages 214–226.
ACM Press, New York, November 2004.

[SOP+04] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and
D. Estrin. Habitat monitoring with sensor networks. Communications of the
ACM, 47(6):34–40, June 2004.

[Spm02] Special issue on collaborative signal and information processing in microsen-
sor networks. IEEE Signal Processing Magazine, 19(2), March 2002.

[SPMC04] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor
network expedition. In Proc. 1st European Workshop on Sensor Networks
(EWSN 2004), volume 2920 of Lecture Notes in Computer Science, pages
307–322. Springer, Berlin, January 2004.

[SPS02] A. Savvides, H. Park, and M.B. Srivastava. The bits and flops of the n-hop
multilateration primitive for node localization problems. In Proc. 1st ACM
Int’l Workshop Wireless Sensor Networks and Applications (WSNA 2002),
pages 112–121. ACM Press, New York, September 2002.

[SR02] F. Siegemund and M. Rohs. Rendezvous layer protocols for Bluetooth-enabled
smart devices. In H. Schmeck, T. Ungerer, and L. Wolf, editors, Proc. 16th
Int’l Conf. on Architecture of Computing Systems - Trends in Network and
Pervasive Computing (ARCS 2002), volume 2299 of Lecture Notes in Com-
puter Science, pages 256–273. Springer, Berlin, 2002.

[SR03] F. Siegemund and M. Rohs. Rendezvous layer protocols for Bluetooth-enabled
smart devices. Personal and Ubiquitous Computing, 7(2):91–101, July 2003.

[SRB01] C. Savarese, J.M. Rabaey, and J. Beutel. Locationing in distributed ad hoc
wireless sensor networks. In Proc. 2001 Int’l Conf. Acoustics, Speech, and
Signal Processing (ICASSP 2001), volume 4, pages 2037–2040. IEEE, Pis-
cataway, NJ, May 2001.

[SRL02] C. Savarese, J.M. Rabaey, and K. Langendoen. Robust positioning algorithms
for distributed ad hoc wireless sensor networks. In Proc. 2002 USENIX An-
nual Technical Conference, pages 317–327. USENIX Association, Berkeley,
CA, June 2002.

157



Bibliography

[SS02] A. Savvides and M.B. Srivastava. A distributed computation platform for
wireless embedded sensing. In Proc. Int’l Conf. Computer Design: VLSI in
Computers and Processors (ICCD 2002), pages 220–225. IEEE, Piscataway,
NJ, August 2002.

[STGS02] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava. Topology manage-
ment for sensor networks: Exploiting latency and density. In Proc. 3rd ACM
Int’l Symp. Mobile Ad Hoc Networking and Computing (MobiHoc 2002),
pages 135–145. ACM Press, New York, June 2002.

[SWC02] A. Sinha, A. Wang, and A. P. Chandrakasan. Energy scalable system design.
IEEE Transactions on VLSI Systems, 10(2):135–145, April 2002.

[TCGK02] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for evaluat-
ing design tradeoffs in packet processing architectures. In Proc. 39th Design
Automation Conf. (DAC 2002), pages 880–885. ACM Press, New York, June
2002.

[Ten00] D. Tennenhouse. Proactive computing. Communications of the ACM,
43(5):43–50, 2000.

[TLP05] B. Titzer, D.K. Lee, and J. Palsberg. Avrora: Scalable sensor network sim-
ulation with precise timing. In Proc. 4th Int’l Conf. Information Processing
in Sensor Networks (IPSN ’05), pages 477–482. IEEE, Piscataway, NJ, April
2005.

[TLR01] T. Tuan, S. Li, and J.M. Rabaey. Reconfigurable platform design for wireless
protocol processors. In Proc. 2001 Int’l Conf. Acoustics, Speech, and Signal
Processing (ICASSP 2001), volume 2, pages 893–896. IEEE, Piscataway, NJ,
May 2001.

[TPB98] T.E. Truman, R. Pering, T. amd Doering, and R.W. Brodersen. The InfoPad
multimedia terminal: A portable device for wireless information access. IEEE
Transactions on Computers, 47(10):1037–1087, 1998.

[TSBW04] B. Thorstensen, T. Syversen, T.A. Bjornvold, and T. Walseth. Electronic shep-
herd: A low-cost, low-bandwidth, wireless network system. In Proc. 2nd
ACM/USENIX Conf. Mobile Systems, Applications, and Services (MobiSys
2004), pages 245–255. ACM Press, New York, June 2004.

[TSS+97] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and G.J
Minden. A survey of active network research. IEEE Communications Maga-
zine, 35(1):80–86, January 1997.

[TW96] D. Tennenhouse and D. Wetherall. Towards an active network architecture. In
Proc, 1996 SPIE Conf. Multimedia and Networking (MMCN ’96), volume
2667, pages 2–16. SPIE, Bellingham, MA, March 1996.

158



Bibliography

[vDL03] T. van Dam and K. Langendoen. An adaptive energy efficient MAC pro-
tocol for wireless sensor networks. In Proc. 1st ACM Conf. Embedded Net-
worked Sensor Systems (SenSys 2003), pages 171–180. ACM Press, New York,
November 2003.

[vGR05] J. van Greunen and J.M Rabaey. Location and timing synchronization ser-
vices. In W. Weber, J.M. Rabaey, and E. Aarts, editors, Ambient Intelligence,
pages 173–197. Springer, Berlin, 2005.

[VGSR05] E. Vergetis, R. Guérin, S. Sarkar, and J. Rank. Can Bluetooth succeed as a
large-scale ad hoc networking technology? IEEE Journal on Selected Areas in
Communication, 23(3):644–656, March 2005. Special Issue on Wireless Ad
Hoc Networks.

[WAJR+05] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh. Monitoring
volcanic eruptions with a wireless sensor network. In Proc. 2nd European
Workshop on Sensor Networks (EWSN 2005), pages 108–120. IEEE CS Press,
Los Alamitos, CA, January 2005.

[WASW05] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A wireless sensor
network testbed. In Proc. 4th Int’l Conf. Information Processing in Sensor
Networks (IPSN ’05), pages 483–488. IEEE, Piscataway, NJ, April 2005.

[WEG+03a] H. Wang, J. Elson, L. Girod, D. Estrin, and K. Yao. Target classification
and localization in habit monitoring. In Proc. 2003 Int’l Conf. Acoustics,
Speech, and Signal Processing (ICASSP 2003), volume 4, pages 844–847.
IEEE, Piscataway, NJ, April 2003.

[WEG03b] H. Wang, D. Estrin, and L. Girod. Preprocessing in a tiered sensor net-
work for habitat monitoring. EURASIP Journal on Applied Signal Processing,
2003(4):392–401, March 2003. Special Issue on Sensor Networks.

[Wei91] M. Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, September 1991.

[WFF03] E. Welsh, W. Fish, and J.P. Frantz. GNOMES: A testbed for low power
heterogeneous wireless sensor networks. In Proc. 2003 Int’l Symp. Circuits
and Systems (ISCAS ’03), volume 4, pages 836–839. IEEE, Piscataway, NJ,
May 2003.

[WHSC01] A. Wang, W.R. Heinzelman, A. Sinha, and A.P. Chandrakasan. Energy-
scalable protocols for battery-operated microsensor networks. Journal VLSI
Signal Processing, 29(3):223–237, November 2001.

[WJH97] A. Ward, A. Jones, and A. Hopper. A new location technique for the active
office. IEEE Personal Communications, 4(5):42–47, October 1997.

159



Bibliography

[WLLP01] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister. Smart Dust: Commu-
nicating with a cubic-millimeter computer. IEEE Computer, 34(1):44–51,
January 2001.

[WMF02] E. Welsh, P. Murphy, and J.P. Frantz. Improving connection times for
Bluetooth devices in mobile environments. In Proc. Int’l Conf. Fundamentals
of Electronics Communications and Computer Sciences (ICFS 2002), March
2002.

[WMM+01] A. Wang, R. Min, M. Miyazaki, A. Sinha, and A.P. Chandrakasan. Low power
sensor networks. In A. Gatherer and E. Auslander, editors, The Application of
Programmable DSPs in Mobile Communications, pages 299–326. John Wiley
& Sons, New York, 2001.

[WSA+96] R. Want, B.N. Schilit, N.I. Adams, R. Gold, K. Petersen, D. Goldberg, J.R.
Ellis, and M. Weiser. The ParkTab ubiquitous computing experiment. In
T. Imielinski and H.F. Korth, editors, Mobile Computing, pages 45–102.
Kluwer Academic Publishers, Norwell, MA, 1996.

[Wu02] J. Wu. Handbook of Wireless Networks And Mobile Computing, chapter
Dominating-Set-Based Routing in Ad Hoc Wireless Networks, pages 425–
450. John Wiley & Sons, New York, 2002.

[WYM+02] H. Wang, L. Yip, D. Maniezzo, J.C. Chen, R.E. Hudson, J. Elson, and K. Yao.
A wireless time-synchronized COTS sensor platform: Applications to beam-
forming. In Proc. IEEE CAS Workshop Wireless Communications and Net-
working 2002. IEEE, Piscataway, NJ, September 2002.

[WZ04] R. Wattenhofer and A. Zollinger. XTC: A practical topology control algo-
rithm for ad-hoc networks. In Proc. 18th Int’l Parallel and Distributed Pro-
cessing Symposium (IPDPS 2004), page 216. IEEE CS Press, Los Alamitos,
CA, April 2004.

[XRC+04] N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan,
and D. Estrin. A wireless sensor network for structural monitoring. In Proc.
2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages
13–24. ACM Press, New York, November 2004.

[YBV00] K. Young-Bae and N.H. Vaidya. Location-aided routing (LAR) in mobile ad
hoc networks. Wireless Networks, 6(4):307–321, 2000.

[YHE04] W. Ye, J. Heidemann, and D. Estrin. Medium access control with coordi-
nated adaptive sleeping for wireless sensor networks. IEEE Transactions on
Networking, 12(3):493–506, June 2004.

[ZBC01] G.V. Záruba, S. Basagni, and I. Chlamtac. BlueTrees – scatternet formation to
enable Bluetooth-based personal area networks. In Proc. IEEE Int’l Conf. on

160



Bibliography

Communications (ICC 2001), volume 1, pages 273–277. IEEE, Piscataway,
NJ, June 2001.

[Zha02] J. Zhang. Handbook of Wireless Networks And Mobile Computing, chapter
Location Management in Cellular Networks, pages 27–50. John Wiley &
Sons, New York, 2002.

[ZSLM04] P. Zhang, C.M. Sadler, S.A. Lyon, and M. Martonosi. Hardware design expe-
riences in ZebraNet. In Proc. 2nd ACM Conf. Embedded Networked Sensor
Systems (SenSys 2004), pages 227–238. ACM Press, New York, November
2004.

161



Bibliography

162



Curriculum Vitae

Personal Data

Jan Beutel
born August 6, 1973 in Munich, Germany

Education

1980-1993 Various schools Germany and Saudi Arabia

• School education

1993 Alexander von Humboldt Gymnasium Constance, Germany

• High school graduation

1994-1999 ETH Zurich Zurich, Switzerland

• Studies in Electrical Engineering at ETH Zurich

2000 ETH Zurich Zurich, Switzerland

• Master in Electrical Engineering

2000-2005 ETH Zurich Zurich, Switzerland

• PhD student

2004/2005 Austrian Association of Skiing Instructors Innsbruck, Austria

• International Certification as Ski Instructor (ISIA) and Alpine Ski Guide

163



Chapter 6: Curriculum Vitae

Professional Experience

1993-1994 Dieffenbacher Group Germany and Ireland

• Internship and technical staff, hydraulic press systems

1995-1998 Institute of Forming Technology, ETH Zurich Zurich, Switzerland

• Technical staff, development of measurement systems and automation
applications for a metallurgy research project

1996-1998 Electronics Lab, ETH Zurich Zurich, Switzerland

• Teaching assistant for undergraduate courses and labs in electronic design

1998-1999 u-blox AG Zurich, Switzerland

• Technical staff, research and development of GPS receivers

• Evaluation and maintenance of CAD tools

1999 UC Berkeley Berkeley, CA

• Associate researcher at the Berkeley Wireless Research Center

• PicoRadio project

2000-2005 Computer Engineering and Networks Lab,
ETH Zurich

Zurich, Switzerland

• Research and teaching assistant for graduate courses and labs in computer
architecture and embedded systems design

• Supervision of numerous term and master theses projects

• Research projects in the areas of wireless ad hoc and sensor networks,
wearable and mobile computing systems

• Hard- and software design and development

• Project management and development; industrial technology transfer of
the BTnode platform

164


