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Notation

Set of edges of a lattice or word graph, E = {ey1, e2,..., e/}

Set of nodes of a lattice or word graph, N = {n1,na,...,ny}

Lattice or word graph
Length of word sequence

Likelihood of observation sequence X given word sequence
W (acoustic model)

A-priori probability of word sequence W (language model)
N-gram probability of word sequence W

State ¢ of an HMM

Length of a sequence of feature vectors or observations
Vocabulary of a speech recognizer: V = {v1,vz,..., vy}
Number of words in vocabulary V

Set of all word sequences over the vocabulary V

Word sequence wyws . .. wg, most likely word sequence

Most likely word sequence without parser, most likely
word sequence with parser

Sequence of feature vectors or observations x1Xs . ..Xp
HMM state transition probability from state i to state j

HMM state transition probability from state i to state j
given the duration d of the state ¢

HMM observation probability of x given state j

Syntactical score of a full parse
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cs Syntactical score of a phrase

cy Syntactical score of a single word

e; it" edge of a graph or of an edge sequence

ip Word insertion penalty

n; it" node of a graph or a sequence of nodes

t Index of observation vector

w; i*" word of a word sequence

v; i*" word of vocabulary V

Xt Observation vector at time ¢

01(7) Best score along a single path at time ¢ which ends in

state Sj and accounts for the first ¢ observations

m

Empty word, |¢] =0
Posterior probability
Language model weight
Mean value

Standard deviation

9 9 ™ > 2

N

Variance



Abstract

Todays speech recognizers use very little knowledge of what language
really is. They treat a sentence as if it would be generated by a random
process and pay little or no attention to its linguistic structure. If
recognizers knew about the rules of grammar, they would potentially
make less recognition errors.

Highly linguistically motivated grammars that are able to capture
the deeper structure of language have evolved from the natural lan-
guage processing community during the last few years. However, the
speech recognition community mainly applies models which disregard
that structure or applies very coarse probabilistic grammars.

This thesis aims at bridging the gap between statistical language
models and elaborate linguistic grammars. The first goal is to intro-
duce precise linguistic knowledge into a medium vocabulary continuous
speech recognizer. The second goal consists of investigating the capabil-
ities and limitations of qualitative language models to improve medium
vocabulary continuous speech recognizers.

Two architectures are studied in-depth. The first is a novel architec-
ture which integrates a non-probabilistic grammar into speech recogni-
tion based on a word spotter, an island chart parser for definite clause
grammars and a strategy component. It uses morphological knowledge
to improve performance and is able to properly treat German noun
compound words.

The second architecture extends a speech recognizer by a rule-based
component in a way such that any improvement can be clearly at-
tributed to that component and therefore to the linguistic knowledge.
A speech recognizer creates word lattices and at the same time provides
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the baseline word error rate. The word lattices are subsequently pro-
cessed by a natural language processing module. A score derived from
the syntactic structures found by a parser is used to rescore the word
lattice such that grammatical phrases are slightly favoured. However,
we do not require that the utterances to be recognized are grammat-
ical. By comparing the word error rate of the enhanced system with
the baseline word error rate we can directly quantify the benefit of our
approach. The lattice parsing system is based on a linguistically moti-
vated HPSG grammar which was developed by Tobias Kaufmann in a
separate project.

We provide evidence for the first time that a statistically signif-
icant improvement of recognition accuracy on a medium vocabulary
continuous speech recognition dictation task due to a non-stochastic
hand-written grammar is possible over a competitive baseline recog-
nizer. The baseline recognizer uses cross-word triphone hidden Markov
models and a 4-gram language model. The relative reduction of the
word error rate due to the parser is 27.0% which is statistically signifi-
cant at a level of 0.001.

Our results suggest that a sophisticated qualitative language model
is complementary to an N-gram model. A grammar is best at modeling
long-distance dependencies and hierarchical structures, while an N-
gram model captures local and lexical dependencies.

The main limitation of the lattice parsing approach is the out-of-
vocabulary (OOV) rate. For increasing OOV rates the relative improve-
ment due to parsing decreases. Missing words break up the syntactic
structure of a sentence and less constraints can be imposed.



Kurzfassung

Heutige Spracherkennungssysteme verfiigen iiber relativ wenig Sprach-
wissen. Sie behandeln Ausserungen, als ob diese von einem Zufallspro-
zess erzeugt worden wiren und ignorieren weitgehend die linguistischen
Strukturen, die der Sprache zu Grunde liegen. Wenn ein Spracherken-
ner die grammatikalischen Regeln einer Sprache kennen wiirde, wiirde
er womoglich weniger Fehler machen.

Auf dem Gebiet der Computerlinguistik wurden Fortschritte erzielt,
so dass heute Grammatiken zur Verfiigung stehen, welche die Regeln
von natiirlicher Sprache und deren Strukturen recht prézise abbilden.
In der Spracherkennung werden diese aber entweder gar nicht oder nur
in stark vereinfachter Form angewendet.

Diese Doktorarbeit verfolgt das Ziel, regelbasiertes grammatikali-
sches Wissen in den Spracherkennungsprozess einzubringen, sowie die
Moglichkeiten und Grenzen aufzuzeigen, dadurch die Erkennungslei-
stung der kontinuierlichen Spracherkennung zu verbessern.

Zwei Architekturen werden genauer betrachtet. Die erste, neuarti-
ge Architektur integriert regelbasiertes Wissen, indem ein Wordspotter
mit einem Insel-Chart-Parser fiir Definite-Klausel-Grammatiken kom-
biniert wird, welche von einer Strategiekomponente gesteuert werden.
Dank der Verwendung morphologischen Wissens kann die Effizienz des
Verfahrens gesteigert werden, und deutsche Komposita kénnen korrekt
behandelt werden.

Die zweite Architektur erweitert einen Spracherkenner mit einer
regelbasierten linguistischen Komponente so, dass jede Anderung der
Erkennungsleistung eindeutig dieser Komponente und damit dem lin-
guistischen Wissen zugeordnet werden kann. Ein Spracherkenner er-
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zeugt Worthypothesengraphen und liefert gleichzeitig die Referenzer-
kennungsrate. Die Worthypothesengraphen werden aufgrund der von
einem Parser gefundenen syntaktischen Strukturen neu bewertet, so
dass grammatikalisch korrekte Phrasen leicht bevorzugt werden. Die
linguistische Komponente basiert auf einer HPSG-Grammatik und ei-
nem Parser, der in einem separaten Projekt von Tobias Kaufmann ent-
wickelt wurde.

Wir erbringen zum ersten Mal den Nachweis, dass eine signifi-
kante Verbesserung der Erkennungsgenauigkeit aufgrund einer hand-
geschriebenen Grammatik fiir kontinuierliche Spracherkennung mit
mittelgrossem Vokabular moglich ist. Das Referenzsystem verwendet
wortiibergreifende Triphon-Hidden-Markov-Modelle und ein 4-Gram-
Sprachmodel. Die gemessene relative Verbesserung der Wortfehlerrate
betragt 27% und ist statistisch signifikant (Signifikanzniveau 0.001).

Unsere Resultate legen nahe, dass eine fortgeschrittene Grammatik
komplementdres Wissen zum N-Gram-Model enthilt. Die Stirke der
Grammatik liegt bei der Modellierung von nichtlokalen Abhéngigkei-
ten und hierarchischen Strukturen, wahrend das N-Gram-Modell lokale
und lexikale Abhéngigkeiten beschreibt.

Der wichtigste Einfluss auf die Verbesserungsmoglichkeiten ei-
ner Grammatik auf die Erkennungsleistung ist die out-of-vocabulary
(OOV) Rate. Mit grosser werdender OOV-Rate nimmt die relative Ver-
besserung aufgrund des Parsings ab. Die fehlenden Worter zerstoren die
syntaktische Struktur des Satzes, wodurch weniger syntaktische Ein-
schrankungen gemacht werden kénnen.



Chapter 1

Introduction

1.1 Problem Statement and Aim

Today’s speech recognizers use very little knowledge of what language
really is. They treat a sentence as if it would be generated by a random
process and pay little or no attention to its linguistic structure. If
recognizers knew about the rules of grammar, they would potentially
make less recognition errors.

The predominantly used N-gram language model assumes that a
word is only influenced by a few preceding words, typically one or
two. However, natural language is more precisely described in terms of
hierarchical structures and dependencies between constituents in order
to account for longer-distance constraints [Moo099].

There is clearly a trend to extend the language models to make
more use of the structure of a language [LST92, Cha97, Ros00, Roa01,
XCJ02, HJ03, WHO03, CCP04]. However, these models are still based
on very course grammars which are extracted automatically from syn-
tactically annotated corpora such as the Penn Treebank [MSM94].

While the speech community mainly applies models which disregard
the structure of language or applies very coarse probabilistic grammars,
highly linguistically motivated grammars that are able to capture the
deeper structure of language have evolved from the natural language
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processing community during the last few years [Miil99, Net96, Hau00,
Gor88.

This thesis aims at bridging the gap between statistical speech
recognition and elaborate linguistic grammars. The first goal is to
introduce precise linguistic knowledge into a medium vocabulary con-
tinuous speech recognizer. The second goal consists of investigating the
capability of qualitative language models to improve medium vocabu-
lary continuous speech recognition systems for general texts.

The idea to use grammars for speech recognition is not new. In
fact, it was already present in the early recognizers [Low76, EHRLRS0].
However, these systems are either restricted to simple language and
small vocabulary (e.g. commands or simple questions [MAD195]), are
very domain specific (like scheduling meetings [Wah00|), or they aimed
at improving natural language understanding rather than word accu-
racy [NBKvN97, ZGGT91, CR89).

This thesis goes beyond previous work in that the task is more
general. We allow general language which is not restricted to a certain
domain so that domain specific knowledge cannot be used. So far,
no significant improvement of recognition accuracy was reported due
to using a linguistically motivated grammar for a task comparable to
ours.

1.2 Hypothesis

Based on the experience that a good language model is important for
high recognition accuracy, and the fact that current LMs do not use
all information about language available, we expect that linguistic so-
phistication leads to an improved recognition accuracy. The working
hypothesis is thus as follows:

Adding a rule-based linguistic sub-system to a speech
recognizer which takes the structure of language into con-
sideration improves its accuracy.

The central question of this thesis is how rule-based knowledge can
improve recognition accuracy. This question can be broken down into
three basic issues.
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1. How can the rule-based knowledge be incorporated into the sta-
tistical framework of a speech recognizer?

2. How much can a knowledge based language model improve the
word error rate, and by which factors is it influenced?

3. What are the limitations of the approach?

1.3 Scientific Contribution

Two architectures are investigated. The first is a novel architecture
which integrates a non-probabilistic grammar based on word spotting
and island chart parsing. It uses morphological knowledge to improve
performance and properly treat German noun compound words. It
is different from [Nak89], which also uses word spotting and context-
free parsing, in that it allows bi-directional interaction, bi-directional
parsing and the application of morphological knowledge.

The second architecture is based on lattice parsing. We provide
evidence for the first time that a statistically significant improvement
of recognition accuracy on a medium vocabulary CSR dictation task
due to a non-stochastic hand-written grammar and lattice parsing is
possible over a competitive baseline recognizer.

1.4 Structure of the Thesis

Chapter 2 identifies the weaknesses of the prominent N-gram language
model and motivates the incorporation of more linguistic knowledge.
Chapter 3 surveys different architectures that allow to use rule-based
knowledge in ASR. We propose our own architecture based on word-
spotting and parsing in Chapter 4. The lattice parsing architecture
applied in Chapter 5 is especially suited to provide evidence that rule-
based knowledge can improve LVCSR accuracy. We measure the gain
of the lattice parsing language model in the experiments in Chapter 6.
Chapter 7 concludes the thesis by giving answers to our three main
questions. The appendix contains the test sentences that were used
in the experiments and a short overview about the HPSG grammar
formalism, which was used in the lattice parsing approach.



Chapter 2

Language Modeling

2.1 Speech Recognition

The aim of automatic speech recognition is to enable a machine to rec-
ognize what a human speaker said. A machine that can “hear” can
be helpful in many ways. The user can control the machine by voice,
which keeps his hands and eyes free for other tasks, it can save the user
from typing vast amounts of text by simply dictacting it, the recog-
nized speech can be used to index speech such as broadcast news which
allows efficient document retrieval, or the system may even understand
what the user intends to do or answer his questions. These examples
illustrate that speech recognition is an important aspect of improving
human-machine interfaces and thus making machines more usable and
user friendly.

Speech recognition research has started more than five decades ago.
In the late 40’s the invention of the sound spectrograph made it possible
to visualize acoustic signals [Pot45]. It was believed, that as soon as the
spectrum of a speech signal could be computed fast enough, the speech
recognition problem could be easily solved. Although thousands of
researchers around the world worked on the problem for more than half
a century, the task must be still considered to be unsolved. In difficult
acoustical environments machines perform orders of magnitude worse
than humans [Lip97].
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How was such a misinterpretation possible? On one hand the speech
recognition problem is often largely underestimated because it is so
natural for human beings to listen to others and understand them.
We are not aware of the tremendous amount of variability present in
a speech signal. We can understand people we never met before, we
are able to recognize a huge amount of different words in continuous
speech, and we are even able to understand ungrammatical utterances
or expressions we have never heard before. We are able to perform so
well because we include a wide variety of knowledge sources: we have
prior knowledge about the syntax and semantics of a language, we can
derive the meaning of new words by analogy, we use situational clues
like the course of a dialogue and we have access to all experiences we
made in our live and all knowledge about the world we have. Machines
can not keep up with that.

There are a lots of other reasons why speech recognition is inherently
difficult. The next section discusses a selection of them. They point up
why speech recognition must make use of knowledge about a language,
and they motivate the approach that was taken in this thesis.

2.1.1 The Ambiguity of Speech

Written language consists of a sequence of discrete symbols, the letters
of the alphabet. These symbols are uniquely identifiable and do not
interact. The boundaries of a word are well defined as words are sepa-
rated by spaces. This is still true for the smallest linguistic elements of
speech, the phonemes. In written form, these are discrete symbols as
well. However, the situation changes dramatically when we are going
from written form to spoken form, or more specifically if we look at a
speech signal.

A speech signal contains a tremendous amount of variability from
several sources. There is no one-to-one relationship between letters or
phonemes and their physical realisation in a speech signal:

e The acoustic realisation of a phone largely depends on the indi-
vidual speaker properties such as sex, vocal tract shape, origin,
dialect tone coloration, speaking rate, speaking style (normal,
whispering, shouting), mood and health.
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dieser

sprach ‘ ’ spracherkenner ‘

erkenner kenner ‘ ’ kenn ‘

[erkenne | [[renne |
!\'\ﬁ‘L\ K
!'l H'iﬁo |

Figure 2.1: The effect of missing word boundaries. If the spaces in
the German sentence “dieser spracherkenner ist einfach” (engl. “this
speech recognizer is simple”) are removed, the resulting letter sequence
“dieserspracherkenneristeinfach” can be split in 32 ways into a sequence
of German words. The original sequence can only be reconstructed by
means of syntactic and semantic knowledge.
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e The pronunciation of a particular phone is influenced by its pho-
netic context (coarticulation). This influence may span several
phones and even syllable and word boundaries.

e Allophonic variants and phoneme variations. The phones [r| and
[e], e.g., are allophonic variants of the phoneme /r/. A phoneme
variation that often occurs in Swiss standard German is the re-
placement of /z/ with /s/, e.g., /s3ks/ instead of /z3ks/ for the
digit “6”.

e The signal is altered by the room characteristics like reverbera-
tion, the microphone characteristics, signal coding and compres-
sion, as well as background noise.

Given these facts it is clear that the feature space regions of speech
units like phones do largely overlap and that there is always uncer-
tainty about the presence of such units in a speech signal. Even if
the phone sequence could be recognized perfectly, its conversion to the
corresponding textual representation has to deal with a high amount
of ambiguities that arise from unknown word boundaries in continuous
speech (cf. Fig. 2.1) and the existence of words that are pronounced
the same way but are differently spelled (homophones, e.g. /bai/ is the
pronunciation of buy, by, and bye).

In order to convert speech to text, a description of the acoustic
events of speech alone is not sufficient. To resolve ambiguities, knowl-
edge about the language at hand is indispensable and plays a very
important role in speech recognition. The claim to use linguistic knowl-
edge in speech recognition is justified from a mathematical point of view
as well, as explained in the next section.

2.1.2 MAP Recognizer

From the perspective of information theory speech recognition can be
considered as decoding problem (cf. Fig. 2.2). A speaker has a mes-
sage W in his mind. He pronounces the message and transforms it by
means of his vocal chord and vocal tract into a signal s. The signal
is transmitted to the recognizer. The digitized speech signal is con-
verted by the feature extraction into a sequence of feature vectors X.
The speech production and the feature extraction together form the
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acoustic channel. The acoustic channel is noisy due to influences of
the speaker, the transmission channel and the feature extraction. The
task of the linguistic decoder is to make an optimal estimate W of the
uttered message W given the feature sequence X.

F=- -~ - - T ---— - 2
| |

TS T T T T 1 r-- - - aoa- T T T~ B

| ! | | ! |

\ w! Speech | s || Feature |!X| Linguistic | | W

M > = LAY

‘ essage 1| Producer || I'| Extraction | 1 Decoder | |

| ! | | ! |

L __ L J Lo ____ L __ J
Speaker . _ _ _ _ _ _ _ __ __________ 4 Speech Recognizer

Acoustic Channel

Figure 2.2: Jelinek’s source-channel model of speech recognition, ac-
cording to [Jel98].

How can the optimal word sequence W be determined? According
to the Bayes decision theory the following decision rule must be applied:

To minimize the error probability choose the word sequence
W among all possible word sequences V* of a given vocab-
ulary V' which has the highest posterior probability given
the feature sequence X:

W = argmax P(W|X) . (2.1)
Wwev*

This decision rule is known as maximum-a-posterior rule or short
MAP rule.! The proof of optimality of this decision strategy is given
in [DH73, p. 13]. Using the Bayes rule, the posterior probability can
be written as

PX|W) - P(W)

POWX) = =5

(2.2)

1The MAP-rule minimizes the probability that the recognized utterance is wrong.
An utterance is not correctly recognized if a single word or several words are incor-
rect. Hence, the rule does not minimize the number of incorrect words but rather
the number of not fully correct utterances.
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Since the probability of the feature sequence P(X) is fixed for a given
utterance it can be dropped from the decision process. Thus, the MAP-
rule can be written as

W = argmax P(X|W) - P(W) . (2.3)
Wev

Eq. (2.3) reveals two important parts of the speech recognition process:

1. P(X]|W) is the likelihood that we will observe the feature sequence
X given that W was uttered. The likelihood is estimated by an
acoustic model, e.g. a hidden Markov model (HMM).

2. The prior probability P(W) is independent of the observed feature
sequence. It is provided by a language model.

2.2 Language Models in General

A language model (LM) is a collection of prior knowledge about a
language. This knowledge is independent of an utterance to be recog-
nized. It therefore represents previous knowledge about language and
the expectations at utterances. Knowledge about a language can be
expressed in terms of which words or word sequences are possible or
how frequently they occur.

As explained in the last sections, the need for a language model
in a speech recognizer arises from the variability of the speech signal,
missing word boundaries and homographs. It is needed to resolve the
ambiguities which the acoustic model is not able to handle. It is also
mathematically justified by the MAP decision rule.

Language models can be divided into two groups. The criterion is
whether the model is data driven or expert-driven:

e Statistical language models: If the model is based on count-
ing events in a large text corpus, for example how frequent a
certain word or word sequence occurs, the model is called to be
a statistical language model. Such a model describes language as
if utterances were generated by a random process. It is therefore
also known as stochastic language model.
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e Knowledge based models: If the knowledge comes from a hu-
man expert the model is called knowledge-based language model.
Such linguistic knowledge could for example include syntax, the
conjugation of verbs or the declension of adjectives. The basis
of such a model does not rely on counting observable events, but
rather the understanding of the mechanisms, coherences and reg-
ularities of a language. If this knowledge is defined by rules, such
models are also called rule-based models.

Since statistical language models are the most commonly used models,
they will be discussed first. The next section describes the key idea,
the advantages and the limitations of statistical LMs. The limitations
will motivate the use of knowledge based models and the approach that
was taken in this thesis.

2.3 Statistical Language Models

A statistical LM aims at providing an estimate of the probability dis-
tribution P(W) over all word sequences W. It must be able to assign
a probability to each possible utterance. By applying the multiplica-
tion law, the probability of a word sequence can be decomposed into a
product of probabilities:

K
Pwiwsy ... wg) = H P(wg|wiws ... wg—1) (2.4)
k=1

P(wg|wiws ... wg—1) is the probability that wy occurs given that the
words wywsy ... wg—1 were observed previously. The preceding words of
wy, are also referred to as history and denoted as hy = wiws ... wr_1.
Eq. (2.4) states that the probability that W was uttered is the product
of the probability that w; was spoken, times the probability that we
follows wy, etc., times the probability that wx was uttered given that
all its preceding words were uttered.

The conditional probabilities P(wy|hy) must be estimated on large
amounts of texts related to the recognition task at hand. The max-
imum likelihood estimate can be computed by the relative frequency
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approach:

- freq(wiws ... wy)
Pwg|uwiws ... wg—1) = o — (2.5)

where freq(e) denotes the frequency of event e in the training corpus.
In order for the estimate to be appropriate, freq(wjws ... wy) must be
sufficiently large.

The number of frequencies that must be counted and stored for
this model is prohibitive. The number of different strings of length
K composed of words of a vocabulary of size |V is |V|¥. Even for a
vocabulary size of |[V| = 1000 words and a string length of K = 10
the number of different strings and thus the number of frequencies
to determine is 1000'® = 103°. Besides, the longer the conditioning
history hj gets, more and more strings wjws ... wg will never occur in
the training data.

An obvious solution is to limit the length of the histories by assum-
ing that the probability of each word does not depend on all previous
words, but only on the last N — 1 words:

P(wk|w1w2 e wk_l) ~ P(wk\wk_NHwk_N_‘_g - wk_l) s (26)

which leads to the so called N-gram language model.

2.3.1 N-Gram Language Models

An N-gram language model assumes that the probability of a word is
not influenced by words too far in the past. It considers two histories
to be equivalent, if they have their last N — 1 words in common. The
N — gram probability of a word sequence is thus defined by

K
Py(W) = H P(wg|Wg—N+1WE—N+2 -+ Wk—1) (2.7)
k=1
The most frequent choices are N = 1 (unigram), N = 2 (bigram) and
N = 3 (trigram):

K
Py(W) = P(wy) - P(walw) - [[ Plwrlwi—owr—1) . (2.8)
k=3
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With decreasing N the approximation gets coarser and the space re-
quirements decrease.

The N-gram is currently the most widely used language model in
speech recognition. Virtually all state-of-the-art large vocabulary con-
tinuous speech recognizers use purely statistical language models, most
commonly N-gram models [SBBT00, BAHUT02, GLA02, HWEP00|.
The simplicity of the model, its easy integration into the decoding pro-
cess and its ability, at least to some extent, to take semantics into
account, contribute to its success. It is also attractive because it is
completely data driven, which allows engineers to apply it without re-
quiring detailed knowledge about the language at hand.

However, despite of its success, the word N-gram language model
has several flaws:

e False conditional independence assumption. The N-gram
model assumes that a word is only influenced by its N — 1 pre-
ceding words and that it is independent from other words farther
in the past. It assumes that language is generated by a Markov
process of order N —1, which is obviously not true [Ros00, Cho56].

e Saturation. The quality of N-gram models increased with larger
amounts of data becoming available online. However the improve-
ment is limited due to saturation [DUHWO05|. Bigram models
saturate within several hundred million words, and trigrams are
expected to saturate within a few billion words [Ros00].

e Lack of generalization across domains. N-grams are sensi-
tive to differences in style, topic or genre between training and test
data. The quality of an N-gram model trained on one text source
can degrade considerably when applied to an other text source,
even if the two sources are very similar. Rosenfeld computed a
trigram model on Dow-Jones (DJ) newswire texts. He compared
the model’s perplexity? on Associated Press (AP) newswire texts
to the perplexity of DJ texts from the same time period. The
perplexity of the AP data was twice that of the DJ data [Ros96,
p. 220].

2The perplexity denotes the average number of words a speech recognizer has to
choose from. Lower perplexities often correlate with lower recognition error rates.
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This loss of modeling quality is even more pronounced if the mis-
match between two domains is large. [WMHO0] reports a perplex-
ity of about 100 for the standard DARPA NAB word trigram LM
for Wall Street Journal texts compared to a perplexity of more
than 1000 for a personal information management domain.

e Lack of extensibility. Given an N-gram model it is difficult
or even impossible to derive a new model which has additional
words. The information contained in the model is not helpful to
derive N-grams containing new words. Grammars, on the other
hand, are able to generalize better because they are based on the
underlying linguistic regularities. Adding a new word basically
requires to know its syntactic class. It should be noted that the
same is true for class-based N-grams [BDPd 92|, if the classes
are linguistically motivated and defined manually.

e Language specific properties. German has a number of prop-
erties which pose additional difficulties to N-grams. German is
a compounding language and has a highly inflective nature. A
compound is a complex expression in a single word, such as the
concatenation of two or more nouns. Compounding and the high
number of morphological endings result in very large vocabularies,
which in turn aggravates the problem of data sparseness [HRB02].

e Data Sparseness. The severity of the data sparseness prob-
lem can be illustrated by the following findings in the context of
Czech broadcast news transcription. Due to the high amount of
inflectional word forms the vocabulary had a size of 300k words. A
bigram language model was estimated on a 400 million words cor-
pus. When the test sentences were added to the language model
training corpus, the word error rate decreased 3% absolute.? This
is remarkable, since the amount of added words (a few hundred
words only) compared to the original corpus size of 400 million
words is rather small. If data sparsity was not an issue, we would
not expect such an impact by such a small change.

Grammaticality is not a strong constraint in the N-gram language
models as the next section explains.

3Personal communication with Jan Nouza (Technical University of Liberec),
April 2006.
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2.3.2 Structured Language Models

N-grams fail on constructions like in the the following example sen-
tence:

The dogs chasing the cat bark.

The trigram probability P(bark|the cat) will be very low because on
one hand cats seldom bark, and on the other hand because a plural
verb (bark) is unexpected after a singular noun (cat). Nevertheless this
sentence is completely sound. The verb (bark) must agree in number
with the noun (dogs) which is the head of the preceding noun phrase,
and not with the noun that linearly precedes it.

One might be tempted to believe that increasing the length of
the window on which the N-gram probabilities are conditioned might
increase the model’s ability to represent grammaticalness. However,
[Cho56] argues the converse: With increasing N the model will exclude
an increasing number of grammatical sentences, since longer histories
are more and more unprobable due to data sparsity. Therefore, we
must take the hierarchical structure of the sentence into account (cf.
Fig. 2.3) to properly solve the problem.

Doing so has proven to be helpful. [BFHMO98] used humans as
post-processor of an ordered list of the ten most likely hypotheses of
a speech recognizer. Either the test persons were restricted to choose
one out of ten hypotheses, or they were allowed to freely edit them.
The participants were able to improve the accuracy in both cases and
on different corpora. Many of the gains involved linguistic proficien-
cies such as number agreement and tense agreement. The inclusion
of agreement constraints into a CFG-based language model has been
found to improve performance in therms of both word error rate and
semantic error rate on different command and control tasks [RGHT01].

Language models which take the hierarchical structure of a sen-
tence into account are called structured language models. They rely on
some sort of parsing. Most often a statistical parser is used which
is trained on syntactically annotated text material like the English
Penn Treebank [MSMO94]. Indeed, there is clearly a trend to extend
the N-gram models to make more use of the structure of a language
[LST92, Cha97, Ros00, Roa01, XCJ02, HJ03, WH03, CCP04]. Some of
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The dogs chasing the cat

Figure 2.3: Syntax tree of the sentence “The dogs chasing the cat
bark”.

these models were applied to speech recognition and showed superior
performance compared to an N-gram model.

2.4 Knowledge-Based LM

Undoubtedly, written and spoken language follow certain rules such as
spelling and grammar. In a knowledge-based approach these rules are
collected by experts (linguists) and are represented as a hand-crafted
formal system. This system allows to decide if a sentence belongs to
the language defined by the rules, and if that is the case, to derive its
syntactic structure. The knowledge is explicitly available.

2.4.1 Terminology

The term grammar has a general and a technical meaning, referring
to a natural language or a formal language, respectively. For clarity
the following terms are defined and used consistently throughout this
thesis:
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e Grammatical vs. ungrammatical. These terms are used in
conjunction with the grammar of a real world natural language.
The grammar of a human language is elusive since it evolves over
time and may be regionally different. Although the syntax of a
language may be standardized by reference books, there may be
sentences which cannot clearly be attributed to be grammatical
or ungrammatical.

e Intra-grammatical vs. extra-grammatical. These terms are
used to denote whether a sentence belongs to a formal language
defined by an artificial grammar which is only the model of the
grammar underlying a natural language. In contrast to real natu-
ral languages it is always well defined whether a sentence is intra-
grammatical or extra-grammatical since the language is uniquely
defined by a set of rules.

e Non-grammatical and out-of-grammar. These terms are
used for sentences that are ungrammatical, extra-grammatical or
both. They are used whenever it is not important to distinguish
between ungrammaticality and extra-grammaticality.

e Qualitative LM vs. quantitative LM. A qualitative language
model decides whether a sentence is intra-grammatical or extra-
grammatical. This decision is binary, the model cannot assign
a value or probability to a sentence. A quantitative LM assigns
each conceivable sentence a value, it is therefore also denoted as
numerical LM. If the assigned value satisfies the properties of a
probability, the model is called probabilistic LM or stochastic LM.

2.4.2 Structured vs. Knowledge-Based LMs

The statistical parsers mentioned in the last section are somewhere
in between a pure data-driven and a pure knowledge based approach.
They are data driven because they “learn” the rules that are implic-
itly present in a large amount of training data. However, the success-
ful approaches require the training data to be syntactically annotated.
The syntactical annotation of the training corpus requires a significant
amount of expert knowledge. The annotation is done by either hu-
man annotation or using a parser with semi-automatic disambiguation
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[BHK™97, BDHT02|. Although the method itself is data-driven, ex-
pert knowledge and human interaction is still required to prepare the
training data. From a linguistic point of view, the statistical grammars
are still quite coarse.

In contrast to a statistical LM, no training data is needed for a
knowledge-based system. This can be advantageous if no or only a
small amount of (annotated) data is available from a specific domain.
At the same time this means that the lexicon can be easily extended.

The successful applications of statistical parsing as language model
[CCP04, HJ03, XCJ02, Roa0l] did not have to deal with domain mis-
match since they are trained on the Penn Treebank and tested on the
DARPA ’93 HUB-1 corpus, which both consist of sentences taken from
the Wall Street Journal. It is not clear, however, how good the models
generalize to other domains. At least for trigrams a mismatch was re-
ported even on the same domain (newspapers text) for different sources
(newswires) [Ros96, p. 220].

2.4.3 Challenges

The knowledge based approach faces several problems. One is of course
the difficulty to build a formal system which appropriately reflects the
phenomena of a natural language; however, this is not within the scope
of this thesis.

The main problem that a speech recognizer has to deal with is the bi-
nary nature of a qualitative language model. If no appropriate measures
are taken, the system is only capable of recognizing intra-grammatical
utterances. This is quite a strong limitation, since a recognizer should
be able to transcribe extra-grammatical utterances as well.

The lack of frequencies of a purely rule-based system is disadvan-
tageous if the recognizer has several hypotheses to choose from which
are all intra-grammatical. For example, the sentences “How to recog-
nize speech?” and “How to wreck a nice beach?” are both syntactically
correct, however the first is a-priori more likely and should be preferred.



Chapter 3

Integration of Linguistics

3.1 Architectures

This chapter reviews the architectures that were applied in the liter-
ature to introduce more linguistic knowledge into speech recognition.
Two related projects which are similar to the work presented in this
thesis are highlighted as well.

This review is part of the answer of the first question, how rule-
based knowledge can be incorporated to the statistical framework of
a speech recognizer. In the subsequent chapters, two architectures are
further investigated. The first one is a novel approach based on word
spotting and island chart parsing, the second one is known from natural
language understanding systems and is based on lattice parsing.

The chapter starts with a literature review and closes with the mo-
tivation for the choice of the two architectures which are studied more
in-depth.

3.1.1 N-grams Derived from a Statistical Grammar

Stochastic grammars have the advantage that they typically have much
less parameters than an N-gram model. Stochastic grammars can thus
be more reliably estimated from sparse data than N-grams. However,
N-grams can be more easily integrated into the decoder without re-
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quiring a parser. The idea is therefore to combine the advantage of
reliably estimating the parameters of a stochastic grammar with the
ease of integration of N-gram models. This is accomplished by es-
timating N-gram probabilities from a stochastic grammar instead of
using the N-gram counts of sparse data.

[ZGGT91] builds a word-pair grammar by randomly generating sen-
tences from a stochastic context-free grammar (SCFG). [SS94| describes
an algorithm to compute the distribution of N-grams for a probabilis-
tic language given by a SCFG in closed form. [WSHO04] converts the
SuperARV LM (a sort of class-based LM) to a word N-gram in ARPA
LM format.

3.1.2 Parsing and Stack Decoding

[God92] computes word transition probabilities by conditioning the
probability of the next word wy on the top N grammar symbols on
the stack of a shift-reduce parser after parsing the preceding words
wiwy ... We—-1:

P(wk|w1w2 e wkfl) ~ P(’wk|G1\1,N+1, .. 7G]M) (3.1)

where Gy is the grammar symbol on the top of the stack. The parser
is integrated into an acoustic stack decoder. The decoder removes the
top hypothesis from the priority queue. The parser analyses the word
string of the current hypothesis and computes the transition probabil-
ity for the next-word candidates given by Eq. (3.1). The hypothesis
is extended by each candidate, combined with the acoustic score and
added to the priority queue.

[ZGGT91] uses the prediction capability of the probabilistic natu-
ral language processing component TINA [Sen89] to propose words to
extend partial paths of a stack decoder.

3.1.3 Dynamic Generation of Networks

Including natural-language constraints into the decoder can be desir-
able for two reasons: First, decoding can be more efficient due to the
reduced search space, and second, it may improve recognition accuracy.
The advantage is that undesired, extra-grammatical sentences can be
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ruled-out early and that low scored intra-grammatical sentences can be
saved from being pruned away. To include a grammar into a Viterbi
decoder it must be possible to process the grammar left-to-right as the
Viterbi-algorithm runs time-synchronously.

If the grammar is regular, it can be modeled by a finite state au-
tomaton and directly integrated into the recognition network of an
HMM recognizer. Some natural language phenomena can not be de-
scribed in terms of regular grammars or are more elegantly formulated
by a context-free grammar [SW97, p. 27]. It is not feasible to compile
CFGs into a static, finite state transition network because the number
of states could be unmanageably large or infinite.

However, due to pruning only a part of the state transition network
is active at each point in time, therefore a CFG can be realized as a
network by dynamically extending the necessary part of the finite state
network [MM90, Dup93|.

[MPM89] incrementally extends the recognition network of a Viterbi
decoder by a NL parser and a unification-based CFG. The recognition
network is generated on the fly, by expanding the state transitions of
an ending word into all words which can follow according to the gram-
mar. It does so by predicting terminal symbols in a top-down manner;
non-terminal symbols on the right-hand-side of context-free rules are
expanded until a terminal is found. Therefore, the grammar must not
be directly or indirectly left-recursive, which can be guaranteed if the
grammar is given in the Greibach normal form!.

The dynamic approach was extended by a probabilistic component
in [JWST95|. It uses a SCFG to compute a follow set and word tran-
sition probabilities for a given prefix string. If the prefix string is
parseable the SCFG is used to compute the probability distribution
of possible following words. If the string cannot be parsed, the system
falls back to bigram probabilities instead.

3.1.4 Predict and Verify

The idea behind predict and verify is very similar to the dynamic gen-
eration of partial grammar networks. The main difference is that in

LA grammar is in Greibach normal form if it is e-free and each production is of
the form A — aa, where a is a terminal and « is a string of nonterminals, possibly
empty.
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the dynamic generation approach the parser is driven by the HMM
decoder, while in the predict and verify approach the emphasis is put
on the parser which drives the recognition process. It is based on pre-
dicting the next word or the next phone in a top down manner and
is also called analysis by synthesis. A word or a phone is assumed to
be present if it’s maximal likelihood over all possible ending points is
larger than a threshold.

In [KTS89] an LR parser and a context-free grammar were used
to predict the next phone, which was verified by a phone HMM. The
algorithm is not time synchronous. A time synchronous strategy which
includes a parser and a unification grammar to top-down predict the
next word is described in [HW94].

A far more complex system within this paradigm is Hearsay-II
[EHRLRS80], which applies various knowledge sources at different levels
that communicate through a so called blackboard.

3.1.5 Word Spotting and Parsing

The system described in [KS89] uses a word spotter to detect keywords
as islands in small vocabulary continuous speech. From these islands
the system expands the islands by verifying neighboring words which
are predicted by a word pair grammar.

[Nak89] spots words in a speech signal and creates a list of word
hypotheses. A context-free grammar is then used to concatenate the
word hypotheses to partial sentences. The sentences are related to
electronic mail.

3.1.6 N-Best Filtering and N-Best Rescoring

The approaches described so far had in common that the linguistic
knowledge was introduced into the decoder, which can be problematic
when complex knowledge sources are applied. For example, a complex
knowledge source might be computationally very expensive, or it may
require that a whole sentence is available.

In the N-best filtering approach a speech recognizer enumerates the
N-best recognition hypotheses, and the first hypothesis which is fully
accepted by a grammar or a semantic module is chosen. An example for
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syntactical filtering is [ZGGT91] while semantical filtering was applied
in [CR89].

If a numerical language model is available N-best rescoring can be
applied [OKAT91, God92, XCJ02]. The recognition score is combined
with a natural language score and the hypothesis with the best overall
score is selected.

The computational demand for the exact enumeration of the N-best
recognition hypotheses increases linearly with N for the best-known
method [CS89]. For an approximative enumeration the computational
costs increase only by a small factor independent of N [SA90]. Some
recognizer implementations require N to be known in advance [SA90],
others can incrementally generate new hypotheses on demand [Pau89).

The advantage of the N-best approach is its simplicity. However,
the computational demand to linguistically process the N-best list in-
creases linearly with IV which is a disadvantage for large values of V.

3.1.7 Word Lattice Parsing

Compared to N-best lists, word graphs are a more compact representa-
tion [JHJ98|. When comparing two consecutive utterances of an N-best
list, they typically differ in only a few words, i.e. large parts are iden-
tical. While identical word sequences of two utterances occur in both
entries of the N-best list, they share the same nodes in a word graph.
The word graph representation is thus denser.

The advantage of using N-best lists or word lattices as interface
is that natural language processing and speech recognition can be de-
coupled and developed independently of each other [HIM194]. The
information flow is strictly feed-forward which simplifies the design.

Analogous to N-best processing there are two approaches to pro-
cess lattices: lattice filtering [BCHT89, CR89, HJJT99, HJ03] which
selects the acoustically highest scored lattice path which is accepted by
the linguistic module, and lattice rescoring [vNBKN99, Kie00, CCP04]
which combines the acoustic score with a syntactic score and extracts
the best path with respect to the combined score.

A robust approach being able to combine partial analyses of a rule-
based grammar was implemented as part of the Verbmobil project in
[Kie00]. The system uses an HPSG parser to find passive edges over
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a continuous sequence of words. The system then assigns each passive
edge a score, at which edges with utterance status (e.g. NPs, PPs)
receive a better score than lexical edges. A shortest-path algorithm
finds the optimal sequence of partial analyses covering the whole input.
The acoustic score and the probabilistic language model score are not
considered in determining the best analysis. A very similar approach
was taken in OVIS [NBKvN97, vNBKN99], which, however, also takes
the acoustic score into account.

Most approaches first create a word lattice [ON97] and then apply
the parser in a post-processing step. A heuristic time-synchronous gen-
eration of word-lattices based on local decisions without backtracking
is described in [PR96]. The advantage is that the higher level process-
ing can take place at the same time as the signal is decoded which
allows to parallelize computation. The size of the lattice is controlled
by a beam pruning parameter. More effective pruning methods such as
forward-backward pruning [SO99|, however, require the full lattice to
be available and can thus not be applied.

3.2 Related Projects

In Chapter 5 we will use an architecture based on lattice parsing to give
evidence that rule-based linguistic knowledge can significantly improve
the recognition accuracy. This architecture was also used in two large
projects: OVIS and Verbmobil.

3.2.1 OVIS

OVIS is a demonstrator of a Dutch spoken public transport information
system over telephone lines [SRVDH'97]. The aim was to automate
the processing of queries which are limited to travels between two train
stations. The vocabulary consists of about 3200 words which are mostly
names of stations and cities.

In its first version, an NLP module looked for sequences of semantic
concepts rather than trying to find a full parse. Later on a grammar in-
spired by HPSG whose rules were compiled into a definite-clause gram-
mar (DCG) was used for analyzing the speech input. To achieve robust-
ness, the system searched not only for sentences, but also grammatical
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categories such as noun phrases or prepositional phrases, which cor-
respond for example to temporal expressions or locative phrases from
that domain.

Given some optimization criteria the system finds an optimal path
through a word hypothesis graph, for example, minimizing the number
of grammatically correct phrases and skipped words. In [NBKvN97|
the optimization criteria first minimizes the number of skips, then the
number of phrases, and then the acoustic scores. In [vVNBKN99] the op-
timization criterion was replaced by a function which is a weighted sum
of log acoustic likelihood, log language model probability and number
of edges.

3.2.2 Verbmobil

The Verbmobil system recognizes spontaneous continuous speech,
translates the utterance to another language and converts the trans-
lated text to speech [Wah00].

In the first phase the domain was appointment negotiation. The
research prototype translated German to English (vocabulary of 2500
words) and Japanese to English (vocabulary of 400 words). The ob-
jective of the second phase was the bidirectional translation of sponta-
neously spoken dialogues for German/English and German/Japanese
with a vocabulary size of about 10,000 words. The domain was ap-
pointment scheduling, travel planning and making hotel reservations.

Vermobil makes use of deep syntactic analysis with HPSG (word
lattice parsing) and is able to select partial analyses by a shortest-paths
algorithm. From the algorithmic point of view the approach taken
in Chapter 5 is very similar to the approach described in [KKK199).
However, the limited domain of Verbmobil reduces lexical ambiguity
and excludes certain types of constructions [Usz02].

3.3 Further Investigations

The thesis subsequently analyses two architectures. In Chapter 4 we
propose our own architecture which is based on word spotting and
island chart parsing. We have chosen this approach because of its
flexibility.
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The second approach in Chapter 5 uses a parser to rescore a word
lattice. The motivation for the choice of the second approach lies in its
ability to clearly attribute any improvement of the recognition accuracy
to the linguistic component. This property makes it a good choice to
give an answer to question two, how much linguistical knowledge can
improve recognition accuracy.
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Word Spotting Approach

4.1 Introduction

Since precise linguistic knowledge is rule-based, the recognition system
gets inhomogeneous: it includes a statistical and a rule-based part that
have to co-operate in some way.

A very simple type of co-operation is sequencing the two subsys-
tems, as can be seen in many so-called speech understanding systems:
The statistical subsystem provides some hypotheses, e.g. an N-best
word lattice which is subsequently processed by the knowledge-based
subsystem. In particular, there is no feedback from the knowledge-
based subsystem to the statistical one.

This sequencing can be considered to be inappropriate because it
is impossible to determine the number of best hypotheses that have
to be provided by the statistical subsystem in advance. It can al-
ways happen that a necessary hypothesis is missing and therefore the
knowledge-based subsystem cannot find the correct sentence. Increas-
ing the number of hypotheses does not eliminate but only decrease this
problem at the costs of a new one, namely the workload of the parser
of the knowledge-based subsystem (combinatorial explosion).

A further issue arises from the fact that not all parts of an utterance
are equally intelligible. Emphasized syllables are more precisely articu-
lated, whereas others might be pronounced rather carelessly. Addition-
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Figure 4.1: Fundamental architecture of a speech recognition system
that combines statistical speech units recognition and linguistic knowl-
edge processing (bidirectional interaction)

ally, there are coarticulation, pronunciation variations and noise. This
motivates to start the recognition at those points where we consider
the hypotheses to be reliable using some sort of confidence measure.

4.2 System Architecture

Based on the above considerations, we propose a speech recognition
system architecture which includes a statistical speech units recognizer
and a rule-based linguistic processor [BP03|. It has to be emphasized
that these two subsystems work tightly together. The speech unit rec-
ognizer provides an initial set of hypotheses to the linguistic processor,
that in turn can request additional hypotheses. Such a request can
be very specific, e.g. with respect to location or syntactic information.
This requires an incremental processing and a bidirectional interaction
between these two components, as illustrated in Fig. 4.1.
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On top of these two subsystems, an operational system needs some
control module. Consequently, the proposed system is composed of the
following three sub-systems:

e A statistical speech units recognizer which i) provides initial hy-
potheses, i) is ready to produce additional hypotheses on de-
mand at designated locations and i) is able to score hypotheses
proposed by the linguistic processor.

e A rule-based linguistic processor that concatenates small hy-
potheses to larger ones according to a grammar without any re-
striction of the parsing direction.

e A control module which includes among other things a strategy
component that decides which of the currently possible actions
the parser has to execute in order to optimally make progress
towards the final solution.

This architecture specifies a broad class of recognizers that can be in-
stantiated in different ways. For our prototype we have chosen some
sort of word spotter as speech units recognizer and an island chart
parser as linguistic processor.

This prototype has been implemented primarily as a proof of con-
cept. Therefore, the main focus was on exploring principles rather than
achieving efficiency.

4.3 Speech Units Recognizer

As outlined in Sec. 4.2, the speech units recognizer has to provide ei-
ther hypotheses or has to compute the score of a suggested hypothesis.
In both cases some sort of word spotting is used. The speech units
recognizer is based on phonemes and is able to provide hypotheses for
phoneme sequences of arbitrary length, ranging from single phones to
morphemes, words, phrases and sentences.

4.3.1 Benefits of Word Spotting

A word spotter is able to find the best match of a keyword in a signal.
For a given keyword, it computes both the location in the signal and a
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ago

S1 S> S3

Figure 4.2: Single state HMM with non-emitting entry and exit states.
The stay state transition probability is denoted as asz, the state change
probability is ass =1 — asz, and ays = 1.

corresponding acoustic score. Note that the spotting algorithm is not
restricted to entire words, but can also be used for sub-word units (e.g.
morphemes), multi-word expressions or even whole sentences. This has
been exploited threefold:

1. By spotting every word of the recognizer lexicon and sending the
best scored words as initial hypotheses to the linguistic processor.

2. The linguistic processor can request additional hypotheses at a
specific location in the signal.

3. When the linguistic processor concatenates two hypotheses into
a single one, the joined hypothesis can be scored by spotting it in
the vicinity of the original ones. Scoring the joint hypothesis is
important as its constituting hypotheses often overlap or have a
gap in between, as will be explained in more detail in Sec. 4.4.2.

4.3.2 Word Spotter

The word spotter is based on the Viterbi decoding algorithm and op-
erates on phoneme models. Phonemes are represented by 40 context-
independent monophone HMM/ANN models with a single state, as
depicted in Fig. 4.2.

As filler model a variant of the online garbage model in [BDB94]
is used. It computes the average of the N best local phoneme scores,
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whereby the top-value itself is not considered. Thus, the garbage model
is never the best one, but is always one of the top candidates.

Duration Model

The geometric duration model of standard HMMs based on static state
transition probabilities has been replaced by a more adequate para-
metric model following a Gamma distribution. Explicit modeling of
the state distribution was shown to improve recognition in [Rab89] and
Gamma distributions are reported to fit empirical distributions suffi-
ciently well in [Bur95].

Our duration model replaces the static state transition probabilities
by dynamic ones which depend on the duration d spent so far in the
current state. The state change transition probability a23(d) in function
of this duration d is computed such that the distribution of the phone
duration follows a Gamma distribution [MP02|. The free parameters
of the Gamma distributions have been estimated from the mean p and
variance o2 of the duration of HMM states from a standard Viterbi
segmentation of the training set.!

In order to apply the duration model in the word spotter, the Viterbi
recursion has been changed slightly by replacing the constant a;; by the
function a;;(d):

01(4) = [max d1-1(0) aiy(d)] - by (1) (4.1)

where 0;(j) is the score for observing the feature vectors x; to x; and
being in state S; at time ¢; and b;(x;) is the probability to observe the
feature vector x; in state S -

Double Normalized Scores

The speech units hypotheses are scored with a double normalization
technique which takes into account the number of frames in each phone
and the number of phones in each word (phone-based normalized pos-
terior confidence measure, [BB98|). According to our experience this
measure significantly improves the accuracy of the word spotter score.

IShape parameter a = p? /02 and inverse scale parameter 3 = u/ o2,

50 Chapter 4. Word Spotting Approach

4.4 Linguistic Processor

The linguistic processor is realized as an active island chart parser.
This section outlines our motivation for this choice and explains further
details.

4.4.1 Island Chart Parsing

The chart parsing framework [Kap73, Kay82] is very powerful for pars-
ing natural language. Hypotheses are represented by edges which are
stored in a data structure called chart. The chart represents all syntac-
tic structures that have been found or tried so far. Thus, it shows also
the parsing state and it prevents any work from being repeated. Active
chart parsing uses an agenda to keep track of the grammar rules still to
be applied. Depending on the implementation of the agenda different
rule invocation strategies (top-down, bottom-up or mixed) and differ-
ent search strategies (depth-first, breadth-first, best-first etc.) can be
adopted. This is attractive as it provides a flexible framework that can
be controlled by a strategy component.

An extension of standard chart parsing is island parsing, which en-
ables the recognizer to start at “trustily” recognized constituents and
proceed bidirectionally [SDR87, SFI88]. There are two extremes in
choosing the number of islands, either only a single one is selected or
every word hypothesis is regarded as an island. Our implementation
does the latter. Only hypotheses which belong to an island can be
expanded. Since we do not know which words belong to the correct
solution, and since we want to be able to find grammatically correct
phrases anywhere in the utterance, our implementation regards every
word hypothesis as an island.

The properties of island chart parsing conform to the requirements
discussed in Sec. 4.1 and Sec. 4.2.

4.4.2 Parsing Text vs. Speech

Chart parsing is commonly used for parsing written text. In this case
there is always a unique unambiguous boundary between two consec-
utive words. These boundaries are the vertices to which the edges in
the chart are anchored. Only adjoined edges can be combined.
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the cat the cat

the cat the cat

Figure 4.3: When parsing text, the vertices of the chart are unique
word boundaries (left) and it is thus always clear which words are neigh-
bours and consequently can be concatenated to a larger hypothesis. This
contrasts to acoustic hypotheses from a word spotter: generally such hy-
potheses do not fit; there is often an overlap or a gap (right). Therefore,
when parsing speech, the vertices are acoustic frames and words can be
connected when they meet some adjacency criterion.

In contrast to that, the word boundaries of hypotheses created by a
word spotter are not constrained to be adjoined (typically they overlap
or have gaps in between), so chart parsing is not directly applicable.
This difference is illustrated in Fig. 4.3.

The simplest solution is to redefine the term of adjacency of two
edges. Instead of saying two edges e; and ey are adjacent if e;.end =
es.start we define them to be still adjacent as long as the mismatch of
the concerned boundaries is less than 7:

. true  if |ej.end — eg.start| < T
adjacent(e1, e2) = False else

4.4.3 Morphological Knowledge

Most German words are composed of a stem, an ending and optional
prefixes. From one stem typically dozens of correct word forms can be
derived and thus the number of full word forms is much higher than
the number of stems. Using morphological knowledge has a number of
advantages. The lexicon can be more compactly represented?, the use

2The system was extended after the experiments and was able to derive 30°000
word forms from 5’000 morpheme stems and 750 endings.
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Speech Signal

Phoneme Models

Units Spotter

Full Form Lexicon

Word Stem Lexicon

Word Grammar e v
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! Word Endings Lexicon |- ]

rescore joined hypotheses

Figure 4.4: Block-diagram of the recognizer.

of rules improves consistency and in our architecture it can be used to
improve performance.

In order to reduce the workload of the word spotter, we spot the
stems instead of the full word forms. Only if the control module decides
that a stem hypothesis has to be considered for further processing, this
stem is expanded to full word forms which are again supplied to the
spotter for scoring.

Some words are not subject to this optimization, namely unin-
flectable words and irregular forms. They are treated as full word
forms and are spotted directly.

Consequently, the recognizer shown in Fig. 4.4 has got three lexica
that contain full word forms, stems and endings, resp. The full word
forms lexicon mainly contains grammatical words, but also some irreg-
ular forms. The stem lexicon also informs for each stem which prefixes
it can take. Additionally, there is a word grammar that tells the inflec-
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tion module which stems can be combined with which endings to full
word forms. The implementation represents the morphological knowl-
edge in terms of definite-clause-grammar (DCG) rules and finite state
transducers (FSTs) and is largely based on [Tra95].

4.5 Control Module

This section demonstrates the recognition process by showing how the
statistical subsystem and the linguistic processor operate under the
coordination of the control module.

4.5.1 The Recognition Process

The recognizer depicted in Fig. 4.4 processes an input speech signal
as follows: First and independently of the subsequent processing, the
utterance boundaries are detected by computing the best alignment
of the model sequence silence - filler model - silence using dynamic
programming.

Afterwards, all entries of the full form lexicon and the stem lexicon
are spotted and the resulting hypotheses are stored in a list. Then the
following steps are repeated:

1. Select the best scored hypothesis and remove it from the list.

2. Since a word or a stem can appear more than once in one and the
same utterance, it has to be spotted again in the areas it has not
already been found. The resulting hypotheses are added to the
list. If the hypothesis selected in step 1 is a word, skip step 3.

3. For the stem selected in step 1, all possible full word forms are
generated and spotted in the signal (near the found stem). The
resulting hypotheses are added to the list. Go back to step 1.

4. The full word form is passed to the island chart parser that adds
an edge representing the word hypothesis to the agenda. Then
a full parse is executed, i.e., the rule invocation is repeated until
the agenda is empty. In other words, all syntactic structures
derivable from the word hypotheses known so far (i.e. that have
been passed to the parser) are computed. Note that whenever
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ber
untethieft ein fehle
unterhizte ein femszhfilm
ihr iz e ein
wir und ums einem fem fehlen
rund ins einen \eher, fehl
wie unter uns wie eine ey fehl

wir unterhielten uns iiber einen fernsehfilm .

Figure 4.5: Screenshot of the continuous speech recognizer based on
word spotting. The upper part shows the word hypotheses provided by
the word spotter, which are concatenated to larger ones according to a
grammar. The recognized utterance is shown at the bottom (“we were
talking about a TV movie.”)

two edges are combined to a single one, the combined edge has
to be rescored by spotting the corresponding word sequence (cf.
Sec. 4.4.2).

wt

. If no stop criterion is met, continue with step 1.

6. The best scored sentence hypothesis is printed out. Sentence hy-
potheses that span the utterance boundaries are always preferred
from shorter ones and are compared using the double normaliza-
tion technique from Sec. 4.3.2. If no sentence hypothesis spans the
utterance boundaries, the sum of the log phoneme probabilities
is used for comparison instead of the normalized score.

The stop criterion currently used is a timeout proportional to the
utterance length.
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Pruning

Unpromising edges are conservatively pruned. Before an edge is added
to the agenda its score is compared to all edges spanning approximately
the same part of the utterance. If the score of the edge in question is
not among the N best, it is pruned. N depends on the number of words
spanned by the edge (cf. Table 4.1 for exact values). The values were
chosen ad hoc.

k1 2 3 4 5 6 >6
N 100 10 5 4 3 3 2

Table 4.1: An edge spanning k words is added to the agenda if its
score is within the N best competing edge scores found in the chart,
otherwise it is pruned.

4.6 Experiments

The aim of the experiment was in a first attempt to explore the pro-
posed concept and test the prototype. Since the entire system was
designed and implemented from scratch, the task had to meet some
constraints. The utterances should be of a manageable complexity,
which restricts the size of the vocabulary and the range of grammatical
phenomena in the test sentences. Another simplification was achieved
by allowing the system to be speaker dependent.

In order to train acoustic models and test the system, a corpus was
required which has enough data of a single speaker to train a speaker
dependent model and contains suitable sentences for testing. There was
no German corpus available which satisfied these constraints. There-
fore the recording of the test and training data was done by ourselves.
To prevent an oversimplification of the task, the test sentences were
not defined by ourselves, but taken from a dictation book for pupils
(cf. Appendix A). The sentences used to train the acoustic models are
taken from newspaper text. Thus, the training and test data can be
assumed to be disjoint.
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The utterances of both the training and test set were spoken by a
single male speaker in an office environment with low background noise
using a head-set microphone sampled at 16 kHz. The feature vector
extracted at each frame consisted of 14 standard MFCCs plus the log-
energy [Eur00]. These vectors were extracted from 25ms windows at a
frame rate of 100 Hz.

4.6.1 Training

40 context-independent monophone HMM/ANN models with a single
state were trained. The neural network is a three layer perceptron with
120 and 80 neurons in the first and second hidden layer, respectively.
The input is composed by the features of the current frame plus 8 frames
context. Thus, the input layer has 15 -9 = 135 neurons. The input
of each input neuron is transformed to have zero mean and standard
deviation on the training data. There are 40 neurons in the output
layer, one for each phoneme. The network was trained for 10 epochs
on 887 newspaper sentences containing 51937 phonemes, corresponding
to 101 minutes speech. The samples were chosen randomly such that
the phonemes were trained uniformly. The weights were updated after
each sample (stochastic learning) using standard back-propagation.

4.6.2 Testing

The test data consists of 72 sentences taken from a dictation book for
pupils.®> The sentences used for training the HMM/ANN models and
the test sentences are disjoint. The utterances contain 3, 6.8 and 11
words in minimum, mean and maximum respectively. The total num-
ber of words in the test sentences is 489. Out of the 4067 different word
forms that can be recognized, 232 word forms appear in the test sen-
tences. The full form lexicon contains 1418 entries and the morpheme
stem lexicon consists of 492 stems. The pronunciation of a lexicon en-
try follows the citation form given in [Dud90|, pronunciation variations

30f the set of test sentences (cf. Appendix A) the first 72 parseable sentences
were used. These are: 0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22,
23, 24, 26, 29, 30, 32, 33, 35, 36, 38, 39, 40, 41, 42, 46, 47, 48, 52, 55, 58, 59, 61,
68, 70, 75, 79, 83, 84, 86, 90, 92, 93, 96, 99, 100, 102, 103, 104, 106, 107, 110, 111,
113, 115, 116, 117, 118, 119, 120, 133, 134, 135, 136
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were not taken into account. There are neither out-of-vocabulary words
nor out-of-grammar sentences.

The 130 Definite Clause Grammar (DCG, [PW80]) rules of the
sentence grammar cover the following aspects of the German language.
Verb tenses: present tense (Présens), simple past tense (Priteritum),
present perfect tense (Perfekt), past perfect tense (Plusquamperfekt),
moods: indicative and subjunctive, main sentences with free word order
(affirmative and negative statements) and questions. The morphologi-
cal knowledge was expressed in terms of 27 word grammar rules.

The experiments have been conducted for different neural networks
(size of hidden layers, number of epochs trained etc.), garbage model
parameter values N, and gap tolerances. Only the best result is re-
ported here. These parameters were thus optimized to the test data.
The parameters were chosen as follows. The online garbage model was
computed by the top 15 phone probabilities and two parsing edges were
considered to be adjacent if the gap was smaller than 7 = 10 frames
(100ms). The recognition process was stopped when it ran 10 times as
long as the duration of the signal.

The best scored hypothesis is compared against the reference in
terms of substitutions, insertions and deletions.

4.6.3 Results

A word error rate (WER) of 6.5% was achieved. The recognition results
on the word and sentence levels are given in Table 4.2. The detailed
results are: 461 correct words (C), 4 insertions (I), 7 deletions (D) and
21 substitutions (S) on a total number of 489 words (V).

4.7 Compound Words

Several advantages of using morphological knowledge have already been
pointed out in Sec. 4.4.3. Another advantage is the efficient treatment
of compound words. This section describes an extension to the system
which allows to handle compound words and prefixing of verbs. This
extension was not part of the experiment described in the last section.
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words correct 94.3%
word accuracy 93.5%
sentences correct 66.7%

word error rate (WER)  6.54%

Table 4.2: Recognition results in terms of words correct (C/N ), word
accuracy (C'— I)/N, word error rate (I + D + S)/N and number of
sentences without any error on a speaker dependent recognition task
with a 4k words dictionary.

4.7.1 The Importance of Compound Words

Compound words are an important aspect of German’s rich morphol-
ogy: it means that new words can be created by concatenating words
and/or morphemes. This kind of word formation can produce correct
words which are easily understandable, but cannot be found in any
dictionary. A famous example is the word Donaudampfschifffahrts-
gesellschaftskapitin (Danube steamboat navigation company captain),
which is a single word formed by six nouns (Donau, Dampf, Schiff,
Fahrt, Gesellschaft and Kapitén) and two filler morphemes (s).

Compounds are widely used both in written and spoken language.
The vocabulary of the German language has therefore to be consid-
ered of virtually infinite size. Although this problem can be mitigated
by using a large recognizer vocabulary with several hundred thousand
words [MADO3], a large vocabulary does not really solve the problem.

A speech recognizer for German definitely needs mechanisms to
cope with this phenomenon in order to reduce the problem of out-of-
vocabulary errors. Since the proposed recognizer is morpheme-based
anyway, it can be extended easily to handle compounds as well by
adding word compound rules. These rules define how morphemes can
be combined to words and allow to derive the syntactic properties of the
new word. In German, a noun compound word inherits the syntactic
properties of the last noun. The semantic properties however cannot
be derived.
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Rule Example
noun — noun -+ noun Baumstamm
noun — noun + ’s’ ++ noun Staatstreffen
noun — verb stem + noun Gehstock

noun — verb stem -+ ’e¢’ + noun Haltestelle
noun — adjective stem + noun  Schnellstrasse

Table 4.3: Most often used compound rules for German noun com-
pounds.

4.7.2 Regularities

Although compounds can be created with virtually no restriction, there
are a few rules that cover a fair amount of compounds. The rules de-
scribed in Table 4.3 cover the most frequent German noun compounds
(approximately 90%). There are other possibilities as well, e.g. noun —
particle + noun, but they occur much less frequent and are not consid-
ered for the sake of performance. As these rules are recursively defined,
compound words of arbitrary length can be handled. In addition to the
rules above, adjective compounds and the prefixing of verbs ('be’, 'ver’,
‘um’, 'weiter’, 'wieder’, etc.) were also implemented. The number of
rules of the compound grammar is 9.

4.7.3 Search Strategy

The number of hypotheses which a speech recognizer has to process
increases tremendously when compound rules are added. Words then
not only interact on the level of the sentence grammar, but also on
the level of the compound grammar. Each additional word hypothesis
originating from compounding results in an additional work load for
the sentence parser. Restrictive pruning must be applied in order to
deal with the exceedingly productive compound rules.

The recognizer described in Sec. 4.5.1 spots word stems, predicts
possible word endings and creates the corresponding full form words,
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which are spotted again. The top-down prediction of endings like ’e’,
’es” and ’t’ is appropriate because endings are very short. Short key-
words are difficult to spot since they i) match in many places because
they are not so specific, and ) can be easily missed if there is a slight
mismatch. For the same reason, the two compound filler morphemes
’s” and ’e’ (cf. Table 4.3) are predicted and tested for their presence in
a top-down manner. For example, when two nouns are close to each
other, a compound word is hypothesized bottom-up and the existence of
the morpheme ’s’ is verified top-down, which results in two compound
nouns hypotheses, one with filler and one without. The existence of
a compound filler morpheme cannot be predicted by rules since it is
arbitrary to some extent and must therefore be detected in the signal.

A similar bottom-up / top-down strategy was used to process verb
prefixes. Prefixes which are too short to be detected reliably in the
speech signal bottom-up are predicted top-down (e.g. 'ge’, 'be’, 'um’,
‘ab’).  All the others are processed bottom-up (e.g. ’fort’, ’heraus’,
‘unter’).

4.7.4 Results

The extended system is able to handle noun and verb compounds in
roughly the same amount of processing time as before, due to the opti-
mization described above. Allowing compounds is equivalent to a very
large vocabulary. As a result, the word error rate increased to 27%.
To improve, better acoustic models and a statistical language model
or a statistical compound model would be required. Due to the limi-
tations discussed in the next section, further work on the architecture
was discontinued.

4.8 Discussion

The aim of the work described in this chapter was to provide an ar-
chitecture which allows to apply rule-based linguistic knowledge within
the statistical framework of a speech recognizer. As outlined in the
previous chapter, a variety of approaches can be taken. In the follow-
ing, the advantages and drawbacks of the proposed architecture are
discussed.
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4.8.1 Advantages

Flexibility is the architecture’s main advantage. The use of a word spot-
ter allows to use any kind of search strategy (depth-first, breadth-first,
best-first, left-to-right etc.) and any kind of rule invocation strategy
(top-down, bottom-up, mixed).

The flexibility was not exhaustively used in the experiments. When
two hypotheses are combined, the joint hypothesis is rescored by spot-
ting it in the vicinity of the original ones. The rescoring could be done
more accurate, e.g. by taking cross-word pronunciation variations at
the joint into account.

Since the system is not restricted to process the utterance from left
to right it can skip unintelligible parts. Skipping is not done intention-
ally but is a side-effect of word spotting and island parsing. Depending
on the application, it may be preferable to mark the parts of the signal
where recognition was not possible rather than to count on a transcrip-
tion which is very unreliable.

4.8.2 Problems

The control module is a complex part. This became clear when the
system was extended to handle compound words. The problem is to
decide when to take which action. For example, one has to trade ex-
ploration versus exploitation, i.e. when does is make sense to provide
additional hypotheses by spotting additional stems and thus broaden
the search, when should the compound grammar be used, and when
and how long should the sentence parser run? In the current system
all derivable syntactic structures are computed. For longer sentences
or under more difficult acoustic conditions this approach could render
to be computationally prohibitive due to combinatorial explosion.

The detection of short stems or short words (like grammar words)
is difficult for a word spotter. If these words are carelessly pronounced,
they receive a low score. It may happen, that they are either pruned
away or the timeout occurs before they are processed. This problem
was not pronounced so much in the experiments described here since
the word spotter was speaker dependent, however, it may aggravate for
a speaker independent system.
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The effect of allowing compounds is comparable to having a very
large dictionary. With increasing dictionary size the confusability in-
creases, which leads to lower recognition accuracy. Therefore, adding
the possibility of recognizing almost arbitrary compound words comes
at the cost of a lower recognition rate. In order to compensate the
increased confusability a statistical compound model would have to be
used.

4.8.3 Further Work

Apart from the acoustic score, the described system treats each word
sequence to be equally likely. The performance could be improved by
adding a stochastic language model, which would allow the control
module to use prior knowledge to guide the system. The acoustic score
of each hypothesis (consisting of at least a full form word) could be
multiplied by a language model score. This would allow to reorder the
agenda and reflect the fact that some utterances occur more frequently
than others. A stochastic compound language model would be required
as well when the compound grammar is enabled.

The search space is restricted by the grammar to the language it
defines. Thus, the current system can only recognize intra-grammatical
sentences. This limitation could be overcome by taking advantage of
the island parser. The fragments (islands) found by the parser could
be combined if no solution is found which spans the whole signal. For
example, a minimum number of adjacent fragments could be chosen
by means of dynamic programming. In order to be robust, several de-
compositions of the signal into fragments would have to be considered.
Each would have to be scored by the word spotter and the highest
scored solution would be chosen.

4.9 Conclusions

A novel speech recognizer architecture which integrates both statistical
acoustic knowledge and rule-based linguistic knowledge was proposed.
It applies morphological knowledge for efficient processing and can han-
dle compound words of arbitrary length in a straightforward way. As
a proof of concept a prototype was implemented and a recognition ex-
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periment was carried out. This prototype achieves a word recognition
accuracy of 93.5% on a speaker dependent continuous speech recog-
nition task consisting of grammatical sentences with a vocabulary of
4k words. To apply the system on a more complex task, a statistical
language model and an extension to recognize non-grammatical utter-
ances as well would have to be added. From the experiences made it
can be concluded that rule-based knowledge should not be seen as a
replacement for an N-gram, but rather as complementary information.



Chapter 5

Lattice Parsing Approach

The architecture introduced in the previous chapter was mainly an an-
swer to the first question of this thesis, how non-probabilistic knowledge
can be integrated into a stochastic speech recognizer. The architecture
described in this chapter is less versatile, however, it is better suited to
compare a linguistically enhanced system with a standard system.

The architecture is frequently used in natural language understand-
ing systems: a word lattice serves as an interface between an acoustic
recognizer and a natural language processing module. In our approach
a score derived from the syntactic structures found by the parser is used
to rescore the word lattice such that grammatical phrases are slightly
favoured.

5.1 Architecture

The aim is to provide evidence that rule-based knowledge can improve
LVCSR accuracy. To do so, a speech recognizer must be extended
by a rule-based component in a way such that any improvement of
recognition accuracy can be clearly attributed to that component and
therefore to the linguistic knowledge. The architecture shown in Fig. 5.1
fulfills this requirement: a speech recognizer creates word lattices and
at the same time provides a baseline word error rate. The word lattices
are subsequently rescored by a natural language processing module.
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Figure 5.1: A speech recognizer is used to measure the baseline recog-
nition accuracy for a given task. We aim at outperforming this baseline
system by rescoring the word lattice created by the recognizer by means
of linguistic knowledge. The N-best list is used to drive the parser to
work on the most promising hypotheses first.

By comparing the word error rate of the enhanced system with the
baseline word error rate we can directly quantify the benefit of the
linguistic component.

Initially, a word lattice is produced by the baseline speech recog-
nizer. Due to the uncertainty of word boundaries in continuous speech,
the same word sequence may be represented by several lattice paths
with different acoustic scores. The parser only considers the word se-
quence of a path but not its score. Consequently, there is no use in
parsing several paths that differ in score only. By ignoring acoustic
scores and timing information we create a word graph which repre-
sents all word sequences of the lattice in compact form and thus can
be processed more efficiently by the parser.

Ideally, the parser processes each path in the word graph, produc-
ing all phrases which can be derived from the corresponding word se-
quences. As the number of paths in a word graph may be huge, one
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has to focus on the most promising hypotheses. For this reason only
the paths in the baseline system’s N-best list are parsed, starting with
the best hypothesis. If the parsing time exceeds some predefined limit,
the parsing procedure is terminated. Parsing can potentially lead to
a combinatorial explosion of hypotheses resulting in large processing
times. The parsing time limit guarantees a worst-case running time of
the experiments.

The phrases derived by the parser are used to rescore the recognizer
lattices. However, the final solution is not restricted to the N-best paths
but can rather be any path in the lattice. The rescoring step will be
described in the next section.

5.2 Scoring Syntactic Structures

A speech recognizer’s aim is to find the word sequence which was most
likely uttered given an acoustic observation X. The maximum a pos-
teriori (MAP) criterion chooses the word sequence W such that the
product of the acoustic likelihood P(X|W) and the language model
probability P(W) is maximized (cf. Eq. (2.3)).

In practical applications the acoustic likelihood and the language
model probability have to be balanced to optimize performance. Also,
adding a word insertion penalty has proven to be advisable to get op-
timal results:

W = argmax P(X|W) - P(W)* - ip"l (5.1)
Wev

A denotes the language model weight, the norm |- | measures the length
of a sequence and ip is the word insertion penalty.

5.2.1 Extending the MAP Criterion

We extend the MAP criterion with an additional parsing score f(W)
which allows us to favour grammatical utterances:

W+ = argmax P(X|W) - P(W)* - ip™I . f(W) (5.2)
Wev*
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As we use a non-probabilistic rule-based grammar the parser does not
provide a score but only syntactic structures. In the remainder of this
section we explain how the parsing score f(W) can be computed from
syntactic structures.

Let W be a word sequence in the lattice spanning the whole ut-
terance. W can be decomposed into a sequence U = (u, usa,...,un)
of so-called parsing units u;. A parsing unit u; represents a word se-
quence w(u;) which the parser identified as being grammatically cor-
rect. The decomposition is such that the concatenation w(u;)ow(usz)o

-ow(u,) = W. Note that for a given W there may exist several
different decompositions.

Three types of parsing units are distinguished. The smallest unit
represents a single word. Units which are larger than one word but do
not span a whole utterance are called fragment units. A unit spanning
the whole utterance is called an utterance unit. We first define the
parsing score s(-) for a single parsing unit to depend on its unit type:

co fw(u)=W,
s(u) = <cg if 1 <|w(u)| < W], (5.3)
cy else

where c,, cg, and ¢, denote the scores for utterance units, fragment
units and single word units, respectively. The score of a decomposition
of Wis

g (u1,...,un)) = Hs(ul) . (5.4)
i=1
The score of word sequence W is the maximal score of all its valid
decompositions:
JW) = maxg(U) . (5.5)

Note that f(W) is always defined, even if the utterance is not fully
parsable, because W can always be decomposed into single word units.
Therefore a fall-back mechanism for unparsable sentences is superflu-
ous. Table 5.1 illustrates how parsing scores are computed.
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sentence parsing score
(Anna and Bob go to school) FW) =ca
(Anna and Bob) (so) (to school) fW)=c3 ¢,
—_———— ) —,.——

B

(Anna)Cﬁ(and) (bozbed) (g;)) (two) (school) f(W)=c%
—_—— —— —— = - —

C cy Cy Cry Cry Cry

Table 5.1: Three examples illustrating how the parsing score is com-
puted.

5.2.2 Parameter Optimization

The parameters A, ip, cq, cg, and ¢, are optimized on development
data to minimize the empirical word error rate.

Experience suggests that the error surface is not smooth and has a
large number of local minima [KOR92|. Because the word error rate
is not a continuous objective function gradient descent methods can
not be applied. One possibility would be to optimize the weights by
Powell’s Method [PTVF02|, as described in [OKAT91].

In this work, however, the downhill simplex method known as
amoeba search (a multidimensional unconstrained nonlinear mini-
mization algorithm, [NMG65|) is applied, since it was already suc-
cessfully used for different weighting problems in speech recognition
[VTBO00, Ver00, GVN*01].

5.3 Algorithms and Data Structures

The preceding section contains a high-level overview of the lattice pars-
ing approach. This section explains in detail how the word sequence
W+ can be extracted from a given lattice according to the extended
MAP criterion of Eq. (5.2).
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The main data structures on which the algorithms operate are word
lattices and word graphs. Since in literature the terms word lattice and
word graph are used differently, the section starts with a definition of
these terms.

5.3.1 Definition of Word Lattice and Word Graph

All descriptions of algorithms are based on the definitions given here.

Word lattice. Words are represented by weighted edges, where the
edge weight corresponds to the acoustic score. Nodes define the start
and end of a word and stand for a point of time in the signal. An
example of such a lattice is given in Fig. 5.2.

Word graph. Words are represented by nodes and the node weight
corresponds to the acoustic score. The edges define the word sequences.

Formal Definition of Word Lattices

A word lattice is a directed acyclic graph (DAG) consisting of a tuple
G = (N,E) of a set of nodes N = {n1,n2,...,ny} and a set of directed
edges E = {ey,e2,..., e }-

Each node n; € N is associated with a floating point value ¢time(n;)
which denotes a point of time in the signal in seconds, and an integer
identifier id(n;).

Each directed edge ¢; = (nstart; Nend) € E is defined by a start
node ngiqrt = start(e;), an end node nepqg = end(e;), a string word(e;),
an acoustic score scoreqc(e;), a language model score scorej,(e;) and
an optional parsing score scorepgrse(€;). Each node n; has a set of
predecessor edges pred_edges(n;) = {e;|end(e;) = n;} and a set of
successor edges succ_edges(n;) = {e;|start(e;) = n;}, as well as
a set of predecessor nodes pred_nodes(n;) = {n;|(n;,n;) € E} and
a set of successor nodes succ_nodes(n;) = {nj|(n;,n;) € E}. All
incoming edges of a node belong to the same word.

Each lattice has a unique start node start(G) and a unique end
node end(G). These nodes can be assumed to be unique without loss of
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sil
-1400

Figure 5.2:  Ezxample of a word lattice. FEdge weights correspond
to the log-likelihood of the respective acoustic HMM word model. The
language model score is not shown.
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generality because such a graph can always be constructed. For any pair
of two nodes (n;,n;) there is exactly zero or one edge e, = (n;,n;) € E.

A partial path is defined to be a sequence of edges (e1,ea,...,en)
where end(e;) = start(e;+1). Because there is at most one edge between
two nodes it is also possible to equivalently define a path to be a se-
quence of adjacent nodes (n1,na, ..., ny,) with n; € pred_nodes(n;y1).
A full path is a path with the restriction that start(e;) = start(G)
and end(e,) = end(G) respectively n1 = start(G) and n,, = end(QG).
paths(G) is the set of all full paths in graph G. The score of a path is
the sum of scores along the path

n
score(eq, ... en) = Z score(e;)
=1

assuming that the scores are log likelihoods or log probabilities.

5.3.2 Overview

There are basically two approaches to choose from. The simpler one
uses the parsing score to re-rank the N-best list and can treat each
N-best solution independently of the others. The final solution is re-
stricted to an utterance present in the N-best list. The more compli-
cated solution operates directly on the lattice. It takes advantage of the
fact that the N-best solutions largely overlap which prevents it from
repeatedly parsing common word sequences. The decision fell on the
lattice approach. It was expected to be more powerful since the final
solution is not restricted to the N-best paths but can rather be any
path in the lattice.

The key idea is to add new edges to the lattice, one for each phrase
found by the parser. The acoustic score of a new edge is computed
by summing the acoustic scores of the edges subsumed by the parsing
edge. The same applies to the language model score. The parsing score
is set according to the parsing unit type (word unit, fragment unit or
utterance unit). The best scored utterance can then be extracted in
the usual way by dynamic programming.

As a lattice can be very large and parsing is an expensive operation,
the lattice is not parsed directly. Instead, several measures are taken
to keep the computational complexity within reasonable bounds. In
short, the processing consists of the following steps:
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1. Pruning. During decoding the size of the word lattice can be
controlled by appropriately setting the beam search parameters.
Once the decoding is complete the lattice size is reduced further
by forward-backward posterior pruning.

2. Non-word removal. Word lattices can contain non-words which
the parser might not be able to handle, e.g. denoting silence or
speaker noise. The nodes and edges belonging to non-words are
removed from the lattice. The scores of the removed edges are
pushed to the remaining edges so that the total score remains
constant.

3. N-best extraction. A stack decoder extracts the N-best paths
from the word lattice. The N-best paths are used to guide the
parser to process the most promising hypotheses first.

4. Lossy compression. In a lattice, the same word sequence can be
represented by multiple paths with different acoustic scores due to
the uncertainty of word boundaries in continuous speech. From a
syntactical point of view timing is irrelevant. By ignoring acoustic
scores and timing information a word graph which represents all
word sequences of the lattice in compact form is created.

5. Word graph parsing. The N-best paths of the word lattice are
mapped to the word graph and processed step by step. In each
step a bottom-up chart parser produces all phrases which can be
derived from the words of the current step.

6. Creation of annotated lattices. A new edge is created in the un-
compressed word lattice for each phrase the parser has found. The
word lattice enriched with the results of the parser is called anno-
tated lattice. Annotated lattices are used to compute the acoustic
and language model score of a phrase, since that information was
removed during the lossy compression.

7. First best extraction. The best scored solution of the annotated
lattice according to Eq. (5.2) is extracted using dynamic program-
ming.

Although some of these or similar algorithms are already known
from various works, they are restated here under a common notation
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for the sake of clarity and reproducibility. The N-best extraction by
the stack decoder and the first best extraction are excluded from the
description since they are considered to be standard techniques.

5.3.3 Forward-Backward Posterior Pruning

Pruning applied during time-synchronous decoding (e.g. Viterbi beam
search, [HAHO1, p. 625]) is forced to come to a decision based on partial
information, namely all observations up to the current point in time.
Forward-backward pruning, however, operates on the entire utterance
and is therefore more effective.

The pruning algorithm of the SRI Language Modeling Toolkit
[Sto02] was applied. The algorithm is described below since it is not
documented in the manual and no reference is given.

A full path was defined in Sec. 5.3.1 to be a contiguous sequence of
edges or nodes from the designated graph start node to the designated
graph end node, and paths(G) stands for the set of all full paths in
graph G. Now we additionally define paths(n;) to be the set of all full
paths through node n;. The score or log likelihood of a path was defined
to be the sum of scores along the edges, assuming that all scores are
log likelihoods or log probabilities. To explain how posterior pruning
works let us assume in this section that the scores are not in log domain,
but rather likelihoods or probabilities. This will simplify the formulas
considerably, but the concept remains the same. The score of a path is
then

score(path) = H score(e;)

e; Epath

The scaled posterior probability v(n;) of node n; is defined to be the
sum of probabilities of all full paths going through that node divided
by the sum of probabilities of all full paths in the graph:

Z SCOre(p)
v(ni) = S seore(a) (5.6)

qEpaths(G)

Using the forward-backward algorithm the posterior probabilities can
be efficiently computed [SO99|. Note that v(n;) = 1 if all full paths go
through node n;.
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A node is pruned if its posterior probability lies below a given
threshold. The threshold can be either absolute or relative. The dis-
advantage of absolute thresholds is that if the threshold is too high
the pruned lattice will be empty. In order to have a more meaningful
pruning parameter, we do not choose an absolute threshold directly
but derive it from a pruning factor n instead. If n is chosen to be zero
no pruning will occur. If it is set to one the lattice will be maximally
pruned, but it is guaranteed that at a least one full path will remain.

This can be accomplished as follows: First the minimum posterior
probability along the nodes of a path is determined for every path. The
result is a list of minima, one minimum for each path. Then we find
the maximum of these minima and use this value as absolute threshold
corresponding to pruning factor one:

0(G) = max min y(n;) | . 5.7
(@) pepaths(G) (mep’y( Z)) (5:7)
There is at least one path in the graph whose minimum node posterior
equals 6(G). Thus if only nodes with a posterior strictly less than 6(G)
are pruned at least one path will survive the pruning. Using a relative
pruning factor 7, a node n; is pruned if

v(n) <n-6(G), 0<n<1. (5.8)

An example of posterior pruning is given in Fig. 5.3.

5.3.4 Non-Word Removal

Lattices can contain non-word symbols denoting silence, noise or fillers,
which not necessarily show up in the final transcription and which the
parser cannot handle. The corresponding nodes and edges are removed
from the lattice such that the total score of any word sequence remains
the same by pushing the score of any removed edge into the remaining
edges.

A node n; is removed from the word lattice by first adding by-pass
edges to the graph to preserve existing paths and then removing the
node and all its edges from the graph. More formally, for any pair
(ep, es) of predecessor edges e, € pred_edges(n;) and successor edges
es € succ_edges(n;) a new edge enew = (start(ep), end(es)) is added
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0.10 0.20 0.10 0.20 0.20

|2|B||3 C| |2|B|0.l429| |3|C 0.8571‘ |2|C().857l|

0.10 0.30 0.10 0.30 0.30

0.50 0.50 0.50

(a) Lattice to be (b) Nodes annotated with  (c) Lattice after pos-
pruned. The weights  scaled posterior probabilities terior pruning with
on the edges are ~y(n;). 6(G) = 0.8571. pruning factor n = 1.

likelihoods (not
log-likelihoods).

Figure 5.3: [llustration of posterior pruning as described in Sec. 5.3.8
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to the graph with score(enew) = score(ep) + score(es). Thus if a node
has n incoming edges and m outgoing edges, n - m by-pass edges will
be added to the graph. Node n; and all its appendant edges are then
removed. An example of non-word removal is given in Fig. 5.4 on the
left.

5.3.5 Lossy Compression

As parsing is a time consuming process, the lattice fed into the parser
must be as small as possible. The lattice must thus be minimized
with respect to the number of nodes and edges. The lattice size was
already controlled during the decoding by the beam-search parameters
and later by the posterior pruning factor. While these parameters affect
the lattice word error rate, the compression described here does not.
Because the parser does not know about scores and points of time in a
signal we can remove these properties of the lattice and concentrate on
word sequences. The transformation described in the next paragraph
reduces the size of the lattice but preserves all word sequences. It is a
simplified version of the algorithm described in [JH99].

Two nodes n; and n; can be merged into a single node ny;
if either pred_mnodes(n;) = pred_nodes(n;) or succ_nodes(n;) =
succ_nodes(nj). The merged node n;; has the following properties:
pred_edges(n;;) = pred_edges(n;) Upred_edges(n;) and analogously
succ__edges(ni;) = succ_edges(n;) U succ_edges(n;).

Lossy compression is illustrated in Fig. 5.4. The word “he” which
occurred twice in the original lattice was merged into a single node
while all word sequences are preserved. This compression is called
lossy because scores are no longer available in the compressed lattice.

Expansion of Compressed Paths

At a later step (Sec. 5.3.7) it will become necessary to map the
parser’s paths given by a sequence of nodes of the compressed lattice
Le = G(Ne, E¢) back to the corresponding paths in the uncompressed
lattice Ly = G(Ny,Ey) in order to compute their acoustic and lan-
guage model scores. To do so we must be able to map each compressed
node ¢ to its set of uncompressed nodes U. We define the bijective
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INULL
-1500 INULL

: 1.4 5
(a) The same lattice as in Fig. 5.2 (b) The result of applying lossy

but with silence (sil) removed as de-  compression to the lattice on the left
scribed in Sec. 5.3.4. as described in Sec. 5.3.5

Figure 5.4: Ezample of two lattice operations: (a) non-word removal
and (b) lossy compression.
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function
U=map(c): c—=U c¢ceNg, UCNy . (5.9)

Such a mapping can be computed by adding a node equivalence
set to each node of the uncompressed lattice. Before compression, this
set is initialized to contain the node it is attached to. Whenever two
nodes are merged their equivalence sets are unified. After compression
the nodes are serially renumbered. A mapping table from nodes in the
compressed lattice to nodes in the uncompressed lattice can be derived
by listing the renumbered nodes and their set of equivalent nodes (which
are kept fix during renumbering). The mapping table corresponding to
the example given in Fig. 5.4 is shown in Table 5.2.

compressed node ¢ 0 1 2 3 4 5
set of uncompressed nodes U {0} {1} {2,3} {4} {5} {6}

Table 5.2: Mapping function corresponding to the example lattices in
Fig. 5.4 .

5.3.6 Lattice Parsing

As each word to be parsed will result in one or more lexical entries in
the parser chart, it is desirable to keep the number of words small. In
a lattice, the words are stored in the edges, so the parser has to create
an entry for each edge. We defined that a word lattice has the property
that all incoming edges of a node belong to the same word. Thus it
is more efficient to convert the lattice to a word graph and parse the
word graph nodes instead. The number of word graph nodes is usually
smaller than the number of lattice edges, as illustrated in Fig. 5.5.

Parsing is the most complex and computationally demanding op-
eration with regard to lattice processing. It is therefore important to
guide the parser to work on promising hypotheses first, even more if we
have to expect the parser not to be able to parse the full word graph
due to time or memory constraints.
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Figure 5.5: The parser operates on word graphs. The word graph
of this illustration corresponds to the the word lattice in Fig. 5.4(b).
While the lattice representation would give rise to siz lexical entries in
the parsers chart (one for each non-null edge), the graph representation
causes only four (one for each non-null node).
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Driving the Parser

In order to drive the parser to process promising hypotheses first, the
N-best paths are incrementally extracted from the uncompressed word
lattice using a stack decoder (A*-search). These uncompressed word
lattice paths (Fig. 5.4(a)) are translated to compressed word graph
paths (Fig. 5.5) by inverting the mapping function of Sec. 5.3.5. Null
nodes are ignored. Only the paths in the baseline system’s N-best list
are processed, starting with the best hypothesis.

Processing means the parser builds all derivable syntactic struc-
tures. The phrases which have already been derived in previous steps
are reused for efficiency reasons. This is repeated until all N paths are
processed or a stop criterion, e.g. a time limit, is met. An example of
N-best path extraction is given in Table 5.3. The parsing process can
be stopped any time because the recognized utterance does not need to
be fully parsed as it can be composed of partial parses which can even
consist of a sequence of single words.

step score utterance lattice edges word graph nodes
1 -8550 he reads (0,3,5,6) (2,4)

2 8700 ifhereads (0,1,2,5,6) (1,2,4)
3 -8300 whoreads (0,4,5,6) (3,4)

Table 5.3: N-best paths extracted from the uncompressed word lattice
given in Fig. 5.4(a). The word graph nodes refer to the word graph in
Fig. 5.5.

Parser Output

The parser returns a parsing path for any word sequence in the word
graph which is part of the language described by a grammar. Such
a parsing path is defined by a sequence of word graph nodes eparse =
<’I”L17 .o ,nn>4

An example of parsing paths which continues the example from
Table 5.3 is given in Table 5.4.
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step word sequence path

he (2)

1 reads (4)
he reads (2,4)

5 (1)
if he reads (1,2,4)
who (3)

3 who reads (3,4)
who reads (3,4)

Table 5.4: Parsing paths. The step number in the leftmost column
corresponds to the N-best path extraction step as given in Table 5.5.
The node identifiers in the third column refer to the word graph shown
in Fig. 5.5.

5.3.7 Annotated Lattices

The aim of this section is to explain how the parsing paths can be used
to introduce new edges into the uncompressed word lattice. The word
lattice enriched with the results of the parser is called annotated lat-
tice ['NBKN99]. As mentioned in Sec. 5.3.5, the parsing paths have
no acoustic or language model scores. The lossy compression has re-
moved them. To compute the scores of the parsing paths they must be
mapped to their corresponding paths in the incompressed lattice. The
conversion is performed in four steps.

1. The first step converts the word graph node sequence to a se-
quence of compressed lattice nodes. This step is trivial, since the
node numbering is of the compressed word lattice and the word
graph is the same.

2. The sequence of compressed lattice nodes is not yet complete.
A parsing path representing a single word consist of a sin-
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gle word graph node. In a word lattice however, a path
needs at least two nodes to be properly defined, namely a
node where it starts and a node where it ends. Therefore we
have to prepend the node sequence (ni,...,n,) of compressed
lattice nodes with all possible predecessor nodes of the first
node, which results in a new set of compressed lattice paths
{pi | pi = (np,n1,...,ny,),n, € pred_nodes(ny)}.

3. Since a node c¢ in the compressed lattice is related to a set of nodes
U = map(c) in the uncompressed lattice, uncompressing a path
results in a set of paths py, which is the cartesian product of the
mapped node sets intersected with the uncompressed lattice:

pu = (map(ng) X map(ny) X ... x map(n,)) N paths(L¢)
(5.10)
where map is the mapping function defined in Eq. (5.9). These
paths can be efficiently computed by using a recursive depth first
search without computing the full Cartesian product.

4. In the last step a new annotated edge e must be added to the lat-
tice for every uncompressed path p = (nq,...,n,) which is longer
than a single word with the following properties: start(e) = ny,
end(e) = ny, scoreq.(e) = Z?;ll scoreqe(ni,ni+1), the language
model score is set analogous, and word(e) is set to the word se-
quence along the parsing path. The parsing score scoreparse(€)
of each edge is set to cq, ¢g or ¢, according to Eq. (5.3).

Example. Consider the utterance “he reads” which is found
by the parser in step 1 (see Table 5.4). The parsing path
Dparse = (2,4) (Fig. 5.5) corresponds to the compressed lattice
path prc = (2,4) (Fig. 5.4(b)). By prepending the predecessor
nodes pred_nodes(2) = {0,1} to path prc we get two lattice paths
pre, = (0,2,4) and prc, = (1,2,4). Now we compute the Cartesian
product of the mapped nodes using the mapping from Table 5.2 for
both paths:

pre, o {0} x {2,3} x {56} ={(0,2,5),(0,3,5)}
prc, - {1} X {273} X {5} = {<17275>7 <17375>}
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he who reads he reads if he reads
-1400 7300 -7050 -7200
Ca Ca Co

reads reads
-3500 | -3600
Cy

'NULL
-1500

Figure 5.6: Annotated word lattice.

By intersecting the resulting four paths
{(0,2,5),(0,3,5),(1,2,5),(1,3,5)}

with the lattice we find that two of them are valid, namely (0, 3,5) and
(1,2,5). So the uncompressed word lattice is annotated with two new
edges: (0,5,”he reads”, —7050) and (1,5, he reads”, —5000). The full
annotated lattice is given in Fig. 5.6.
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5.4 Grammar Formalism

So far, the grammar was assumed to be given. The architecture de-
scribed in the last sections is independent of the grammar formalism
used. However, for a real implementation, a few aspects deserve con-
sideration.

A good grammar should accept as many grammatical word se-
quences as possible and at the same time reject as many ungrammati-
cal word sequences as possible. Precision is the main requirement of a
grammar to be used in our architecture: it only makes sense to favour
the parsable word sequences if they are very likely to be correct. Note
that since our approach can deal with unparsable word sequences, there
is no need to artificially weaken the grammar rules, as is sometimes done
to achieve a higher robustness.

However, it is also important that the grammar covers a wide range
of syntactic constructions. It is necessary that the syntactically analyz-
able parts of the utterance are as large as possible, since only the words
within an analyzable unit can be constrained. For instance, knowing
a German verb’s valency structure allows to constrain the inflectional
endings of its objects (case, agreement of subject and finite verb). The
disambiguation of inflectional endings is important since such endings
are easily confused by the recognizer. In order to favour a given word
sequence for obeying the valency constraint, the parser has to be able
to derive a unit which contains the verb and all its objects. This in
turn requires that each individual object is fully parsable.

The grammar formalism must not only be powerful enough to de-
scribe most of the linguistic phenomena, but must also allow the gram-
mar writer to realize the phenomena in an elegant and outright way
such that the system is clearly laid out [SW97, p. 33]. The most
widely used formalisms in speech recognition, CFGs and DCGs, are
not optimal choices [SW97, p. 45]. Different grammar formalisms were
evaluated and discussed by Kaufmann in [Kau05b] in a project related
to this thesis. As a grammar formalism, we have chosen Head-Driven
Phrase Structure Grammar (HPSG) [PS87].

HPSG is a framework for linguistic theories. It uses linguistically
motivated abstractions which substantially simplify the task of writing
precise large-scale grammars. In addition to its linguistic adequacy,
HPSG is well-suited for natural language processing applications. Ex-

86 Chapter 5. Lattice Parsing Approach

isting systems like [Miil96] demonstrate that parsing efficiency can be
reasonably high, even for large HPSG grammars which cover a substan-
tial fragment of a natural language. A more detailed overview about
this formalism and the reasons why we have chosen it is given in Ap-
pendix B.

5.5 Summary

This chapter describes an architecture which allows to compare a lin-
guistically enhanced system with a standard speech recognizer. Any
improvement of the word error rate can be clearly attributed to the
linguistic component. The architecture is frequently used in spoken
language understanding systems: a word lattice serves as an interface
between an acoustic recognizer and a natural language processing mod-
ule.

The word lattice is rescored such that grammatical phrases are
slightly favoured by extending the MAP criterion by a parsing score.
The parsing score is derived from the syntactic structures the parser
found in the lattice. It relies on a few parameters which are optimized
empirically on held-out data to minimize the word error rate.

This chapter describes the principles and implementation details of
the post-processing approach. The next chapter concerns itself with
the experiments and the data it was applied to.



Chapter 6

Lattice Parsing
Experiments

The main goal of the experiments is to verify whether adding a general
rule-based linguistic sub-system to a speech recognizer improves its
accuracy.

This goal is divided into three sub-goals. First, we want to find ev-
idence which supports the hypothesis that it is possible to significantly
improve LVCSR accuracy by using a non-stochastic hand-written gram-
mar and a parser in addition to a stochastic language model. Second,
we want to find out which factors influence these improvements, and
third, we are interested in identifying the limitations of the approach.

6.1 Introduction

The architecture described in the previous chapter was chosen because
it allows to compare the output W of a standard recognizer with the
output W+ of a linguistically enhanced recognizer (cf. Fig. 5.1). By
comparing the word error rate WER s 0f the enhanced system with
the baseline word error rate WERpqserine we can directly quantify the
benefit of the linguistic component.
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The measure used to evaluate the benefit of the parser throughout
the experiments is the relative reduction of the baseline word error rate:

WERparsc - WERbasclinc
WERbaseline .

AWER = (6.1)
We also report the statistical significance for the Matched Pairs
Sentence-Segment Word Error Test (MAPSSWE) and the McNemar
Test on sentence level [GC89).

The first experiment compares the performance for speaker depen-
dent monophone and triphone models with different number of mix-
tures and a trigram LM. The second experiment uses speaker adapted
models and a 4-gram LM. The influence of the size of the N-best list
is investigated in the third experiment, while the fourth experiment
investigates the influence of out-of-vocabulary words.

6.1.1 Task

To initiate our work we looked for a task with a manageable complex-
ity. We identified dictation texts for pupils as a suitable recognition
task. We recorded the first 300 sentences (1892 words) from an exer-
cise book for pupils in their third year of education (cf. Appendix A).
The sentences were read aloud by a single male speaker and recorded
with a headset microphone sampled at 16 kHz in an office environment
with low background noise.

Although these sentences are rather simple, they comprise a wide
variety of grammatical constructions, including verbal complexes with
up to three verbs, prefix verbs, coordination of nominal and verbal
projections, extraposition and genitive attributes. The sentence lengths
range from a single word up to 14 words (cf. Fig. 6.1). Note that these
sentences occur neither in the acoustic training corpus nor in the text
corpus used for the estimation of the statistical language models.

6.1.2 The Linguistic Component

In a separate project an HPSG bottom-up chart parser and a German
HPSG grammar were developed by Tobias Kaufmann [Kau05a].

The parser was especially designed for the application on word
graphs. Typically, there is much overlap between the paths in a word
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Figure 6.1: Distribution of sentence lengths for dictation task.

graph. To prevent identical word sequences from being analyzed several
times, hypotheses from previously parsed paths are reused.

The grammar is largely based on the one proposed by [Miil99]. The
semantic component of HPSG was not taken into account as we are
only concerned with the grammaticality of utterances. We added some
constructions which were observed in the experimental data and which
occur frequently in language use. Among them are prenominal and
postnominal genitives, expressions of quantity (2 dollars, 3 liters) and
forms of address (Mr. and Mrs.). These constructions are very general
and not specific to our task.

The current grammar covers many more phenomena than those
which actually occur in the task. A list of test sentences which illus-
trates the abilities of the system is found in [Kau06|.

Out of the 300 sentences in our task 278 (93%) are accepted by
the grammar. In all experiments the parsing lexicon contains a basic
set of closed-class words and those open-class words occurring the test
sentences, which amounts to about 7’000 full word forms in total. The
recognition dictionary is created from the parsing lexicon and contains
exactly the same words. The pronunciation of a word follows the ci-
tation form given in [Dud90], pronunciation variations were not taken
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into account. The open-class words include about 200 verbs, 340 nouns
and 90 adjectives. For each verb, the possible valency structures (800
in total) have been determined using several sources independent of
test set and development set [Dud99, ES76].

6.2 Speaker Dependent Dictation

The aim of the first experiment is to test our approach under opti-
mal conditions. Optimal conditions means that the baseline word error
rate should be low and the correct solution should be part of the lattice.
These conditions allow the parser to choose the correct sentence among
several alternatives. The best recognition results are achieved with
speaker dependent models and no out-of-vocabulary (OOV) words.
The influence of OOV words on the performance of our approach is
scrutinized in a later experiment. We compare the performance for
monophone and triphone models [BKPO5b.

6.2.1 Data and Models

Continuous density HMMs have been trained by means of
HTK [Cam02| with 7 hours of continuous German speech of a single
male speaker sampled at 16 kHz in an office environment with low back-
ground noise using a headset microphone. The recording of the training
data and the test data was performed by the same speaker as in Chap-
ter 4. The 39-dimensional feature vector consists of 13 Mel-frequency
cepstral coefficients (MFCCs) including the Oth coefficient, the delta
and the delta-delta coefficients. The HMMs are three state left-to-right
models with 8 or 32 Gaussian mixtures per state. For each of the 40
phonemes a context-independent monophone model was trained (called
mono_ 8 and mono_ 32). Context-dependent cross-word triphone mod-
els were trained as well (tri_ 8 and tri_32). The states have been tied
using a decision-tree based clustering according to yes/no questions
regarding phonetic context, resulting in 3355 triphone models.
Bigrams and trigrams serve as statistical language models. The
N-gram probabilities were estimated with the SRI language modeling
toolkit [Sto02] on a 50 million words text corpus (German newspaper
text and literature) using Good-Turing discounting for smoothing. The



6.2. Speaker Dependent Dictation 91

N-grams were estimated for a recognizer vocabulary of 7k words. There
are no out-of-vocabulary words.

On the test data, the task perplexity is 339.5 for the bigram LM
and 274.9 for the trigram LM. The sentences in the test set do neither
occur in the acoustic training corpus nor in the text corpus used for
the estimation of the language models.

6.2.2 Experimental Setup

The test sentences were partitioned into a development set (200 sen-
tences, 1255 words) and a test set (100 sentences, 637 words). The
parameters A, ip, ca, cg and ¢, introduced in Sec. 5.2.1 were optimized
on the development set to minimize the empirical word error rate.

The development set was also used to manually choose the beam
search and posterior pruning parameters. The parameters were set to
values which substantially reduced the lattice sizes and at the same time
yielded a reasonably high lattice accuracy. All optimizations were done
for each HMM set (mono_8, mono_ 32, tri_8, tri_32) individually.

The HTK decoder performed a time synchronous Viterbi beam
search storing the 5 best tokens per HMM state. The recognition net-
work was a back-off bigram word-loop. The resulting lattices were
rescored with the trigram language model and posterior pruning was
applied (n = 1076). The 100 best scored recognizer lattice paths were
processed by the incremental lattice parser. The parsing timeout was
set to one minute on a 1 GHz UltraSPARC IIIi processor. Finally, the
optimal word sequence was extracted by combining acoustic, language
model and parsing scores.

6.2.3 Results

The results in Table 6.1 show that the linguistic component consistently
decreased the word error rate for all acoustic models. The relative
reduction of the word error rate using the parser in addition to the
trigram language model was 48.6% in the best case and 28.9% in the
worst case, as shown in Table 6.2.

The improvement using the parser is significant for the mono 32
model on a 0.001 level for the MAPSSWE test and at a level of 0.05
for the McNemar test. The other results are not significant.
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WER mono_8 mono_32 tri_8 tri_32
no LM 19.94 13.97 10.68 8.79
+ bigram 7.22 5.65  3.61 2.35
+ trigram 5.97 581 235 1.88
+ parsing 4.24 2.98 1.57 1.26

Table 6.1: Word error rates in percent measured for different acoustic
models and language models.

model AWER

mono_8  -28.9%
mono_ 32  -48.6%
tri_ 8 -33.3%
tri_ 32 -33.3%

Table 6.2: Relative reduction of the word error rate on the test set
due to extending the MAP criterion with a parsing score.

6.2.4 Discussion

‘We have given evidence that rule-based knowledge capturing the struc-
ture of natural language can be a valuable information source comple-
mentary to N-grams. The additional score derived from the syntactic
structures considerably decreased the word error for all acoustic mod-
els. To our knowledge, a comparable reduction of the word error rate
due to applying a parser has not yet been reported for a similar task.

Our basic assumption was that the utterances to be recognized have
to be grammatical to a sufficient degree. This assumption holds well
for our experiment since most sentences in the test and development
sets are covered by our grammar. Yet there is still room for improv-
ing recognition performance: the parser sometimes does not arrive at
processing the correct utterance because parsing is stopped due to a
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timeout. Timeouts are quite frequent, as parsing efficiency is still a
major problem. We expect to decrease the word error rate further by
improving the performance of the linguistic subsystem.

However, sometimes the criterion of grammatical correctness is not
discriminative enough. Word lattices often contain several grammati-
cally sound utterances. If a grammatically correct utterance is ranked
before the correct utterance, the latter can not be chosen. For example,
the acoustic recognizer sometimes confuses different verb tenses, which
usually does not affect grammaticality.

6.3 Speaker Adapted Dictation

Most speech recognition systems today are either speaker independent
or can be adapted to a given speaker. Therefore an experiment with
a speaker adapted system was performed to evaluate the performance
on a more realistic scenario [BKP05a]. Additionally, the baseline sys-
tem was made more competitive by using an interpolated 4-gram LM
instead of a 3-gram LM and by increasing the language model corpus
size as well. Additionally, the LM was adapted to the task as well. The
LM perplexities were thereby reduced by 27% on average.

6.3.1 Data and Models

Speaker-independent continuous density HMMs have been trained by
means of HTK on the PhonDat 1 corpus [Pho90] which contains about
21 hours of clean continuous German speech of 200 speakers. The sam-
pling rate was 16 kHz. The feature extraction was the same as in the
speaker dependent experiment: the 39-dimensional feature vector con-
sisted of 13 Mel-frequency cepstral coefficients (MFCCs) including the
Oth coefficient, the delta and the delta-delta coefficients. In order to
compensate linear channel distortions speaker-based cepstral mean sub-
traction was applied. The HMMs were three-state left-to-right models.
For each of the 40 phones a context-independent monophone model
with 32 Gaussian mixtures was trained. Context-dependent cross-
word triphone models with 16 Gaussians were trained as well. The
states have been tied using a decision-tree-based clustering according
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to yes/no questions regarding phonetic context, resulting in 875 unique
states and 2540 triphone models.

Additionally, 30 minutes of speech were recorded from the same
speaker and the same recording conditions as in the speaker-dependent
experiment. This data was used to adapt the speaker-independent
acoustic models. We applied maximum likelihood linear regression
(MLLR) and the maximum a posterior approach (MAP) in a super-
vised manner.

Interpolated back-off N-grams serve as statistical language models.
Two text corpora were used: a 70 million words corpus (German news-
paper text and literature) and a 30 thousand words corpus (texts from
various dictation exercise books). The first one allows smoother esti-
mates but the latter is closer to our task. The interpolation weights
and the discounting strategy were optimized for low perplexity on the
test data in order to get a competitive LM as our baseline.! The N-
gram probabilities were estimated for a vocabulary of 7k words with
the SRI language modeling toolkit [Sto02] using modified Kneser-Ney
discounting for smoothing. The word classes of the class-based 2-gram
were induced so as to minimize the perplexity of the model. There are
no out-of-vocabulary words. The perplexities for the different LMs are
given in Table 6.3.

The decoder of the baseline system performed two passes. In the
first pass speaker-adapted monophone models and a bigram language
model were used. The HTK [Cam02] decoder was used to create word
lattices by time-synchronous Viterbi beam search. At each HMM state,
the 5 best tokens were taken into account. In the second pass, the
resulting lattices were rescored with cross-word triphones and a 4-gram
language model and posterior pruning was applied (n = 1077).

The 20 best scored recognizer hypotheses were processed by the
parser as described in Sect. 5.3. The parsing timeout was set to one
minute on a 1 GHz UltraSPARC IIli processor. Finally, the optimal
word sequence was extracted by combining acoustic, language model
and parsing scores as defined in Eq. (5.1) and Eq. (5.2).

1This is valid because the parameters optimized on the test data are part of the
baseline system and not of our extension.
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basic models data PPL
class-based 2-gram (500 classes) 70M 566
2-gramsok 30k 389
2-gramzonm 7T0M 291
4-gramzons 70M 222
interpolated models PPL
decoding:
2-gramzrops + 2-gramgor + class-2-gram 251
rescoring:
4-gramzops -+ 2-gramseg + class-2-gram 198

Table 6.3: Perplezities (PPL) measured on the test data.

6.3.2 Results

The relative reduction of the word error rate due to the parser is 27.0%.
We tested the statistical significance of our results with the Matched
Pairs Sentence-Segment Word Error Test (MAPSSWE) and the McNe-
mar Test on sentence level [GC89|. The improvement over the baseline
is significant on a 0.001 level for both tests. The detailed results are
given in Table 6.4.

We have carried out further experiments (not shown in Table 6.4)
to explore the influence of the baseline word error rate on the rela-
tive improvement. The results indicate that the relative improvement
increases with the quality of the input word lattices: The lower the
baseline word error rate, the higher the relative improvement. For a
setup with only 30 seconds of adaptation data the baseline word error
rate of 17.3% could be reduced by 20.2% relative.
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WER AWER

baseline without 4-gram 7.24

baseline 5.87 —19.0%
baseline 5.87
baseline + parsing 4.28 —27.0%

Table 6.4: Word error rates in percent for different language models:
baseline system (2-gram during decoding and 4-gram lattice rescoring),
baseline without 4-gram rescoring and enhanced system.

6.4 Influence of Size of N-Best List

In the experiment of Sec. 6.3, the size of the N-best list was set arbitrar-
ily to 20. The aim of this experiment is to investigate how the choice
of N influences the word error rate of the enhanced system. To mea-
sure the influence of N on the word error rate, recognition experiments
were carried out for different values of N, while the lattice remained
the same. The parameters A, ip, cq, cg and ¢, introduced in Sec. 5.2.1
were optimized for each N separately.

Results and Discussion

The results are presented in Fig. 6.2. It is observed that the word
error rate does not change much for values beyond N = 20. The curve
exhibits some peculiarities that deserve a more detailed analysis.

The curve is quite noisy, and for N=1 and N=3 the parsing system
performs worse than the baseline. The main reason for this behaviour is
a mismatch between the development set and the test set. To verify this
statement, the experiment was run again, but that time all parameters
were optimized on the test data. As can be seen in Fig. 6.3, without
mismatch the parsing system performed always better than the baseline
system and the curve is smoother.
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Figure 6.2: Word error rate of the enhanced system vs. the size of
the N-best list processed by the parser. The parameters were optimized
on development data.
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Figure 6.3: Word error rate of the enhanced system vs. the size

of the N-best list processed by the parser as in Fig. 6.2, but with the
parameters optimized on the test data.
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The word error rate does not strictly decrease for increasing val-
ues of N. One reason for this behaviour is the stochastic nature of
the optimization process (the parameters were optimized for each N
independently). Another reason is the following. If NV is increased, the
parser is presented an additional word sequence. This word sequence
may be wrong but nonetheless grammatical to a high degree. In order
to prevent this wrong word sequence from being strongly favoured, the
parsing scores must be lowered, which in turn may result in a decreased
overall word error rate.

The word error rate for N = 20 in Fig. 6.2 is not the same as
in Table 6.4, although both experiments were conducted on the same
data and in the same manner. The difference is explained by the fact
that the parser runs for at most one minute, which means that it can
produce a different amount of parsing edges depending on the load of
the machine. The lesson is that the timeout should have been replaced
by a limit which is not based on time directly.

At a first glance it might be surprising that the parsing system
performs better than the baseline system for N = 1 in Fig. 6.3, which
means that best path in the annotated lattice is different from the
baseline solution. The reason is that the word sequences of N-best lists
overlap, and the syntactic structures found for the first best solution
are valid for the overlapping part of all other N-best solutions as well.
The parsing score allows to stick to the “correct” parts of the first best
solution and allows to increase the language model weight, which in
turn corrects some errors. Indeed, the optimal language model weight
for the baseline is 10.7 and 22.3 for the parsing system with N = 1.

6.5 Influence of OOV

This experiment aims at investigating the influence of the out-of-
vocabulary (OOV) rate to the relative improvement due to the lin-
guistic component.

In contrast to the experiments in Sec. 6.2 through Sec. 6.4, the OOV
rate in a real dictation scenario is greater than zero. If an OOV word
occurs, the recognizer will make at least one error. Due to the influence
of the N-gram one OOV word often results in more than one error. The
correct solution cannot be found by the parser in the lattice, and the
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syntactic structure of the utterance breaks apart, which weakens the
capabilities of the linguistic component. The question is how much the
improvement deteriorates with an increasing OOV rate.

The experimental setup is the same as in the speaker adapted dic-
tation experiment from Sec. 6.3 with the exception that the vocabulary
size was decreased to different sizes to simulate different OOV rates.
The original vocabulary was reduced by removing the least frequent
words. The word frequencies were measured on the same 70 million
words corpus that was used to estimate the N-gram models.

6.5.1 Results

The relationship between the OOV rate and the relative improvement
is shown in Table 6.5. As expected, the number of errors that can be
corrected by the linguistic module decreases with increasing OOV rate.

OOV rate —4-gram baseline -parsing oracle AWER

0.00% 7.24 5.87 4.28 1.00 -27.0%
0.32% 7.29 6.77 5.23 1.64 -22.7%
0.69% .7 6.98 6.13 2.01  -12.1%
1.16% 10.10 8.93 8.46 418  -5.33%
1.64% 10.89 9.78 9.25 5.02 -5.41%
2.11% 11.42 10.52 9.83 5.60 -6.53%
2.54% 11.58 10.62 10.04 576  -5.47%
3.07% 12.63 11.26 10.62 6.29 -5.63%
4.70% 15.33 14.32 13.53 8.77  -5.54%
8.35% 21.35 20.56 20.56  14.69 0.0%

Table 6.5: Influence of OOV rate to different word error rates: the
baseline without 4-gram rescoring, the baseline, the parsing system and
oracle. AWER denotes the relative improvement of the parser to the
baseline.
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6.5.2 Discussion

The results indicate that the OOV rate is a limiting factor for the
given approach. To achieve a statistically significant improvement the
OOV rate must be below 1% for the given task. If this is also true
for other tasks, then a German broadcast news transcription system
would require a vocabulary of about half a million to one million words
to reach that rate [GLA02].

When the OOV rate increases, both the baseline WER and the
oracle WER increase. The difference between the baseline WER and
the oracle WER is the maximum possible improvement for any post-
processing method. At an OOV rate of 8.35% the baseline WER of
20.56% could be theoretically reduced by 28.6% relative to the oracle
WER of 14.69%. Although there would be room for improvement, the
linguistic system cannot take advantage of it.

The interpretation of the results is that missing words break up the
syntactic structure of a sentence. The long distance dependencies are
lost and less constraints can be imposed on the individual phrases. In
the extreme case, the phrases consist of a single word or a few words
only, where an N-gram is more competitive.
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Discussion

7.1 Integration of Linguistic Knowledge

The first question of this thesis was how rule-based knowledge can be
incorporated into the statistical framework of a speech recognizer. Two
architectures were used in this thesis to integrate linguistic knowledge.
The first one integrated the linguistic knowledge into the speech recog-
nizer, while the second one post-processed the recognizer output.

The advantage of the word spotting approach is its flexibility. It
allows to apply morphological and syntactical knowledge at an early
stage of speech recognition and allows to properly handle compound
words. Since island processing is used, any kind of knowledge and
strategy can be applied. This flexibility, however, comes at the cost of
an increased complexity for the control module. The control module has
to decide when to provide additional hypotheses by spotting new words
and when to apply which knowledge to combine smaller fragments to
larger ones. It is questionable whether the system would scale well for
a more complex task than the one at hand.

In the second architecture, the use of lattices as intermediate data
structure between a speech recognizer and a parsing component allows
to treat the speech recognizer and the parsing component independently
of each other. This modularization greatly simplifies the development
of the whole system. The parsing component is no longer integrated
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into the decoder. The lattice can be pruned and compressed effec-
tively which leads to less computational load for the parser, which in
turn allows to use a complex and linguistically sophisticated grammar
formalism, such as HPSG.

The implementation of the word spotting approach was only capable
of recognizing intra-grammatical utterances since it completely relied
on a qualitative (strictly rule-based) language model. Robustness was
achieved in the lattice parsing approach by scoring syntactic structures
and allowing the recognized utterance to be composed of parseable frag-
ments. The lattice parsing system favours intra-grammatical utterances
but can recognize extra-grammatical utterances as well.

7.2 Influencing Factors

This section discusses the various aspects which influence the perfor-
mance improvements gained by a linguistic processor, which was the
second main question of this thesis. As a preliminary remark, it must
be stated that it is difficult or even impossible to compare the results
of different works that are based on different data and different condi-
tions. Nevertheless, doing so might give us insight into why applying
linguistic knowledge has been successful for some applications and why
it failed in other cases. Some parts of the discussion are therefore of
speculative character.

7.2.1 Influence of Baseline

In the OOV experiment of the lattice parsing approach (Sec. 6.5) we
observed that with an increasing OOV rate not only the baseline WER
got worse. The relative improvement due to parsing decreased as well.
This would suggest that we can expect a larger gain by using a parser
when the baseline performance increases. Our interpretation was that
missing words break up the syntactic structure of a sentence and less
constraints can be imposed.

The same was observed in the experiments conducted by Brill, who
investigated whether humans are able to improve the output of a speech
recognizer [BFHM98]. There were two scenarios: either they were re-
stricted to select one of the 10-best recognizer hypotheses or they were
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allowed to freely edit the output. The test was performed for three
different corpora (Switchboard, Broadcast News and Wall Street Jour-
nal). Humans were able to consistently improve the output across all
corpora in both scenarios. They used linguistic knowledge such as
tense agreement, preposition choice, determiner choice and complete
sentence vs. not complete sentence, as well as semantic and pragmatic
knowledge. When the accuracy of the recognizer increased, the relative
human improvement increased as well. Brill concluded that the better
the transcription of the recognizer is, the more reliable contextual cues
exist to determine the correct solution.

It has been repeatedly observed in the past that natural language
knowledge can improve speech recognition, however, the improvement
often disappeared when the baseline performance increased [MAD™95].

[NBKvN97| concluded that grammatical analysis does not give a
clear advantage to improve recognition accuracy. The word accuracy
was increased by parsing by 30.3% relative to a system which used no
language model as baseline, but only 1.45% when the baseline used a
bigram language model. Their findings are in contrast to ours, where
a relative reduction of the word error rate of 27% was achieved relative
to a 4-gram baseline.

Adding a linguistic component can only be successful if the knowl-
edge it has is somehow complementary to the statistical knowledge of
the N-gram language model.

7.2.2 Complementary Information

Our results suggest that a sophisticated qualitative language model is
complementary to an N-gram model. The qualitative language model
provides additional information not present in the traditional N-gram
model. The same finding is reported in [WLH02| where interpolating
a word N-gram with a parser LM led to a consistent improvement of
word and sentence error rates. The intuitive reason is that a gram-
mar is best at modeling long-distance dependencies and hierarchical
structures, while an N-gram captures local and lexical dependencies.
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7.2.3 Scoring

In the 1993 DARPA benchmark speech recognition evaluation on the
ATIS task, SRI used a scoring scheme similar to ours [MAD'95]. A
natural language score was computed as a combination of the number of
phrases found needed to cover a hypothesis, a bonus for a full sentence
and penalties for grammar rules which were dispreferred. The natural
language score was scaled and added to the recognition score, and the
combined score was used to rescore an N-best list. Even though their
scoring was slightly more sophisticated than ours, the word error rate
was only reduced by about 5%. Only when a kind of multi-level N-
gram was used, which takes the fragment types found by the parser and
semi-automatically chosen word classes into account, an improvement
of 14.6% was achieved.

It seems that the number of fragments found by the parser is a more
reliable indicator for the correctness of a hypothesis for our task than
for ATIS. A consistent finding is that a fragment insertion penalty is
advantageous [MAD195, KKK 199

Optimizing the parameters of our parsing score computation
(Sec. 5.2.2) on development data was found to be very important.
Without adjusting the parsing score on some held-out data, no im-
provement was observed on the test data.

7.3 Limitations

The third main question of the thesis was what the limitations of the
linguistic approach are.

The wordspotting approach requires reasonable acoustic conditions
in order to reliably detect short words, and it requires the utterances
to be recognized to be intra-grammatical. Using a statistical language
model additionally to the rule-based grammar would be beneficial.

The post-processing approach is more robust and can deal with
extra-grammatical utterances as well. However, since it assumes that
grammatical utterances should be favoured, the domain at hand should
reflect that fact. A domain where this approach can be expected to
work well is for example the dictation of business letters, reports or
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manuals, where the text preferably consists of grammatically sound
sentences.

It remains an open question how well the approach would work on
conversational speech, since conversational speech often contains non-
grammatical sentences and abounds with disfluencies like repetitions,
restarts and partial words. It is not clear how well a rule-based system
can cope with the phenomena of spontaneous speech. One has to note,
however, that spontaneous speech is also challenging for N-grams due
to the lack of large amounts of stylistically matching training data
[DLWO04].

The main limitation of the post-processing approach is the OOV
rate. With increasing OOV rate the relative improvement of the parser
degraded quickly, so that the recognizer lattice should be of a reasonable
quality to make the approach work. While this requirement may be a
limitation, it is at the same an advantage. It is often difficult to further
improve an already well performing system, but such a system seems
to be the best prerequisite for the parsing approach to perform well.
Thus, the lattice parsing approach may become more interesting the
better the recognizers get.

7.4 Outlook

Our results were produced for a task which is rather forthcoming in that
it consists of grammatical sentences most of which are accepted by our
grammar. As the presented results are convincing, a more difficult real-
world task should be addressed, such as broadcast news transcription
or the dictation of more complicated texts.

Also, wrong hypotheses are sometimes grammatical. Some sen-
tences are grammatically completely sound, although a human would
never analyse the sentence in the same way, so some sort of statistical
information for disambiguation will be needed in future.
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Test Sentences

The test set consists of the first 300 sentences taken from a dictation
book for pupils [Miil01]. Punctuation marks were omitted and all words
were translated to lowercase.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020

ich bin neu in dieser schule

die klasse kenne ich auch noch nicht
mein nachbar heisst kevin

unsere lehrerin ist frau klein

sie sagt zu mir steffi

aber ich heisse stephanie

ich kann schon mehr schreiben als die anderen
in der pause bleibt anna bei mir

sie zeigt mir alles

bald kann ich das allein

heute kam der bus wieder zu spét

alle waren schon in der klasse

ich habe frau klein alles erzidhlt

sie hat mich getrdstet

kevin hat mir geholfen

dann habe ich die richtige seite in meinem buch gefunden
morgen geht er mit mir zur haltestelle
dann bekomme ich auch einen sitzplatz
das hat kevin mir versprochen

ich freue mich schon darauf

unser schulbus ist oft ganz voll
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021 alle sind dann sehr laut
022 die grossen kinder dréngeln immer
023 sie helfen uns nicht
024 der fahrer sagt nie etwas
025 manchmal nimmt er nicht alle mit
026 die miissen dann eine stunde warten
027 im sommer ist das nicht so schlimm
028 aber im winter wird es kalt
029 Dbald sind ferien
030 ich freue mich schon sehr
031 dann kann ich den schulbus fiir einige zeit vergessen
032 heute ist der platz neben anna leer
033 dennis fehlt
034 ob er krank ist
035 keiner weiss es
036 nach der pause ist dennis da
037 er geht an den lehrertisch und spricht mit herrn bar
038 dann kommt er auf den platz neben mir
039 da wird er ganz rot
040 nach der stunde erzdhlt dennis mir alles
041 er hat verschlafen
042 im bett war es noch so schoén
043 aber dann musste er sich beeilen
044 das kann jedem mal passieren oder
045 am freitag war ich zu friilh in der schule
046 ich habe auf dem flur gewartet
047 dort traf ich anna
048 wir unterhielten uns iiber einen fernsehfilm
049 das war wohl zu laut
050 denn plotzlich ging eine klassentiir auf
051 frau braun kam heraus und schimpfte
052 dann hat sie uns in einen gruppenraum gesteckt
053 aber jede in einen anderen
054 wir sollten lesen iiben
055 meine grosse schwester hat ein mobiltelefon
056 anna und ich haben leider noch keins
057 sonst h&tten wir uns unterhalten konnen
058 einmal lief ein hund durch einen bach
059 er trug in seinem maul ein stiick fleisch
060 das wasser war wie ein spiegel
061 da sah der hund pldétzlich das fleisch darin
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062
063
064
065
066
067
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069
070
071
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080
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082
083
084
085
086
087
088
089
090
091
092
093
094
095

096
097

098
099
100

gierig schnappte er danach

aber es war ja nur das spiegelbild

so verlor er durch seine dummheit seinen guten braten
es war einmal mitten im winter

die schneeflocken fielen wie federn vom himmel

da sass eine koénigin am fenster und ndhte

das fenster hatte einen rahmen von schwarzem ebenholz
wie sie so ndhte stach sie sich in den finger

da fielen drei tropfen blut in den schnee

das rot sah im schnee so schoén aus

da wiinschte sich die koénigin ein tochterchen

es sollte so schon sein wie blut schnee und ebenholz
das tochterchen wurde geboren und hiess schneewittchen
doch bald starb die konigin

und der vater war mit schneewittchen allein
schneewittchen lebte mit dem vater allein im schloss
aber nach einem jahr heiratete der konig wieder

die neue frau konnte schneewittchen nicht leiden

das mddchen war ndmlich viel schoner als sie

die konigin fragte jeden tag ihren spiegel

mit der antwort aber war sie nie zufrieden

darum sollte der jéager schneewittchen in den wald bringen
dort fand es bei den sieben zwergen ein zuhause

eines tages aber tauchte die bdse stiefmutter auf

sie war verkleidet

schneewittchen kaufte von ihr einen vergifteten apfel
da konnten ihr auch die zwerge nicht mehr helfen

der vergiftete apfel hatte schneewittchen getdtet
darum waren die sieben zwerge sehr traurig

sie legten das schone mddchen in einen sarg aus glas
plotzlich kam ein kdnigssohn in den wald

er fand schneewittchen in dem gl&dsernen sarg

als er es fort trug stolperte er

dadurch fiel dem mddchen das giftige apfelstiick aus dem
mund

da erwachte schneewittchen

der konigssohn war von herzen froh und nahm es mit auf
sein schloss

dort heirateten sie und lebten gliicklich bis an ihr ende
eines tages kam besuch

es war onkel bert aus amerika
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101 keins der kinder kannte ihn
102 darum waren alle besonders neugierig
103 onkel bert ist mein bruder
104 er ist vor zwolf jahren ausgewandert
105 ich habe ihn seitdem auch nicht mehr gesehen
106 eigentlich heisst er hubertus
107 onkel bert war lustig angezogen
108 er trug ein buntes hemd und einen breiten hut
109 papas bruder kann spannend erzdhlen
110 und er hat uns tolle sachen mitgebracht
111  onkel bert ist fiir drei wochen zu besuch gekommen
112 er sieht papa &hnlich
113 sie sind ja auch briider
114 sabrina und ich sollen den kleinen koffer herbringen
115 onkel bert l&dchelt geheimnisvoll
116 wir miissen die augen schliessen
117 danach o6ffnet er den koffer
118 wir sind sehr gespannt
119 dann diirfen wir wieder gucken
120 da liegen zwei bunte pakete auf dem tisch
121 was da wohl drin ist
122 wir sind ganz aufgeregt und packen ein paket aus
123 ein komisches stofftier
124 zwei computerspiele
125  eine schwarze jeans
126 zwei becher fiir coladosen
127  turnschuhe
128 vier végel fiir den weihnachtsbaum
129 eine leine fiir nero
130 zwei miitzen und zwei sonnenbrillen mit spiegelglas
131 inzwischen hat sich nero ein kuchenstiick gestohlen
132 das haben wir in der aufregung nicht gemerkt
133 vor den herbstferien hatten wir eine besondere priifung
134 alle haben ihr fahrrad dazu mitgebracht
135 am dienstag stand ein polizist auf dem schulhof
136 er hat alle fahrrédder gepriift
137 aber das hatten wir schon mit frau winter geiibt
138 fast alles war in ordnung
139 nun hatten wir drei wochen zeit
140 wir sollten das fahren iiben
141 die réder mussten geputzt werden und dann alle in ordnung

sein
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am freitag nach den herbstferien haben wir uns auf dem
schulhof getroffen

alle hatten das fahrrad wieder dabei

auch der polizist war da

er hatte herrn sandmann mitgebracht

das ist ein fahrlehrer

die beiden haben uns die fahrradpriifung abgenommen
dabei ging es lustig zu

tina musste durch eine aufgemalte gasse fahren

aber sie lenkte ganz schief

dann kam ein kreis mit einer schlangenlinie dran

auf einer anderen strecke sollte man mdéglichst langsam
fahren

dabei ist lars umgekippt

tina hat ganz laut gelacht

das war heute nur eine probe sagte herr sandmann

in der néchsten woche wird es ernst

im wald bliiht es schon

der winter ist voriber

im wald im gebiisch an den hecken und grédben bliiht es schon
es sind die ersten friilhlingsblumen

wir freuen uns dariiber

diese blumen haben unter der erde zwiebeln oder verdickte
wurzeln

darin speichern sie nahrung fiir den friihling

darum konnen sie schon so friih bliihen

wenn man sie pfliickt welken sie bald

auch in der vase im wasser halten sie nicht lange

man sollte die blumen lieber draussen blithen lassen
dann koénnen sich alle dariiber freuen

der zirkus kommt

gestern rollten sechs grosse wagen durch den ort
jetzt stehen sie auf dem festplatz

sie bilden einen grossen kreis

zehn ménner bauen ein buntes zelt auf

in einer ecke kann man grosse kdfige sehen

zwel kinder probieren eine iibung auf einem pferd

wir diirfen zuschauen

in unserer klasse haben wir jetzt einen neuen schiiler
er gehdrt zu den zirkusleuten

benny besucht stédndig eine andere schule
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180 am nachmittag beginnt die tierschau
181 das kostet nichts
182 morgen soll die erste vorstellung sein
183 der léwe und die maus
184 der 1lowe lag vor seiner hohle und schlief
185 auf dem felsen dariiber spielte eine kleine maus
186 plotzlich fiel sie auf den 1ldwen und weckte ihn
187 der lowe war &rgerlich aber er liess die maus laufen
188 eines tages war der koénig der tiere in not
189 er hatte sich in einem netz verfangen
190 da kam das mduslein und nagte das netz entzwei
191 jetzt musste sich der ldéwe bedanken
192 und er war froh dass er der maus damals nichts getan hatte
193 unsere katze ist wieder da
194 am freitag war unsere katze verschwunden
195 ich habe sie mit meinen freundinnen iiberall gesucht
196 niemand hatte unsere kitty gesehen
197 sie ist grauschwarz getigert
198 meine mutter hat im tierheim angerufen
199 aber dort war sie auch nicht
200 abends hat papa zufdllig den besenschrank gedffnet
201 da kam ihm kitty entgegengesprungen
202 miill in der natur
203 die ganze klasse hat miill gesammelt
204 zwei stunden lang sind wir auf den sportplatz und in das
kleine wdldchen gegangen
205 einige eltern waren auch dabei
206 frau hartmann hatte zehn grosse miillsédcke mitgenommen
207 was wir alles gefunden haben
208 auch ein fahrrad war dabei
209 tommy entdeckte sogar eine leere geldbdrse
210 wir haben sechs miillsdcke gefiillt
211 unsere katze bellt wie ein kaninchen
212 das kaninchen singt wie ein wellensittich
213 der schwimmt und taucht wie eine robbe
214 unser huhn legt einen apfel
215 die banane hat rote béckchen
216 zwei tomaten spielen fussball
217 abends geht die sonne auf
218 das schwein iiberholt den hund
219 auf der strasse féhrt ein schiff
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220 das flugzeug geht zu fuss 261 am meisten freue ich mich aber auf andrea

221 die strassenbahn fliegt iliber die autobahn 262 eigentlich ist die erdnuss gar keine richtige nuss

222 im gras reitet eine ameise 263 sie ist eine hiilsenfrucht

223 der storch telefoniert mit dem fisch 264 wir essen sie gern mal zwischendurch oder beim fernsehen
224 michael und mona vergessen nie ihre hausaufgaben 265 am besten schmecken sie wenn sie gerdstet sind

225 der igel schlédft auf dem baum 266 erdniisse enthalten viele vitamine und andere wichtige
226 frau meier findet keine fehler im diktat stoffe

227 jens hat in diesem jahr zweimal geburtstag 267 fledermduse sind in der nacht unterwegs

228 Dberlin liegt in japan 268 sie haben ilibrigens mit mdusen oder vdgeln nichts zu tun
229 die turnstunde 269 sie wohnen unter leeren dédchern in tiirmen und hdéhlen
230 am anfang der turnstunde wdrmen sich alle auf 270 am tag schlafen sie

231 anne hiipft im kreis 271 dabei halten sie sich mit den fiissen an der decke fest
232 steffi und kristin tanzen 272 der kopf héngt nach unten

233 dennis jagt vanessa 273 manche leute haben vor fledermdusen angst

234 zwei kinder machen eine schiebekarre 274 aber sie tun uns nichts

235 oliver klettert am seil hoch 275 sie fressen kdfer fliegen spinnen und andere krabbeltiere
236 olaf iiberholt ihn am seil nebenan 276 wir sollten die flederméuse schiitzen

237 andrea malt sebastian 277 unser hund heisst willi

238 andrea nimmt ein blatt papier und stifte 278 er ist ein labrador mit fast ganz schwarzem fell

239 sie sieht sebastian genau an 279 seine augen sind wunderschén braun

240 der muss lachen 280 willi haben wir seit fiinf jahren

241 den kopf malt sie zundchst wie ein ei 281 papa sagt dass er jetzt im besten hundealter ist

242 dann setzt sie die augen ein 282 mit willi wird es nie langweilig

243 sie werden ganz blau 283 er hdlt uns immer auf trab

244 ohren und nase malt andrea hellrot 284 denn er kann alles gebrauchen

245 der mund lacht 285 mal nimmt er meine schuhe mal den handfeger

246 man kann die z&hne sehen 286 sogar spielsachen holt er sich

247 dann sieht sebastian das bild an 287 willi trdgt alles zu seinem schlafplatz

248 er lacht wieder 288 wenn mal einer etwas sucht guckt er dort nach

249 jetzt will er andrea malen 289 meist hat man damit auch gliick

250 ich stehe jeden morgen friih auf 290 einmal fand ich es aber nicht mehr lustig

251 meine mutter weckt mich 291 da hatte er mein kuscheltier und mein schulheft gemopst
252 dann gehe ich ins badezimmer 292 im mai und juni werden bei uns viele tierkinder geboren
253 ich wasche mich und putze die z&hne 293 trotzdem sieht man sie nur selten

254 dann ziehe ich mich an 294 die jungen werden von ihren eltern gut versteckt

255 fiir das friihstiick lasse ich mir zeit 295 das kleine reh heisst rehkitz

256 dann fithle ich mich auch besser in der schule 296 es wird im hohen gras verborgen

257 spéter bringt mich meine mutter zum schulbus 297 von dort lauft es erst weg wenn es schnell genug ist
258 der ist leider oft sehr voll 298 junge h&schen werden im freien geboren

259 und die grossen dréngeln immer 299 sie haben gleich fell

260 in der schule treffe ich alle meine freunde
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HPSG

Remark

The purpose of this appendiz is to give the interested reader a more
detailed overview about HPSG, since it plays an important role in our
lattice parsing approach.

Sections B.1 to B.7, and only these sections, were written by Tobias
Kaufmann, who implemented the German HPSG grammar and parser
used in this thesis. His work has not yet been published in English.

B.1 Introduction

Our approach to speech recognition requires a grammar which reliably
accepts correct sentences (or phrases) and rejects incorrect ones. De-
veloping a precise grammar makes specific demands on the grammar
formalism to be used. Our German grammar is based on the Head-
driven Phrase Structure Grammar (HPSG, [PS94]|) formalism. In this
section, it will first be explained why we preferred HPSG to more re-
stricted formal grammars such as regular and context-free grammars.
Next, we will introduce some of the more challenging language-specific
and general phenomena which have to be modelled by a precise gram-
mar. Finally, we will discuss some of the fundamental concepts on
which HPSG is based and give a short characterization of our German
grammar.
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B.2 Why not Regular Grammars?

Regular grammars are the most restricted formal grammars defined in
the Chomsky hierarchy (Chomsky type 3). For reasons to be explained
below, regular grammars are obviously not suited for precisely model-
ing natural language. However, due to their simplicity they lend them-
selves to illustrating the consequences of a wrong choice of grammar
formalism.

Regular grammars cannot model natural languages as they are un-
able to properly describe recursive structures. Recursive structures are
omnipresent in natural language. An example for the English language
are nested relative clauses:

(1)  the cat; hides;
(2) the cat; the dog; chases; hides;
(3) the cat; the dog; the many hits;, chases; hides;

The subscripts indicate that each verb has a unique subject. A precise
grammar needs to account for these dependencies in order to exclude
the following ungrammatical sentences:

(4) *the cat the dog chases hides hides

(5)  *the cat the dog chases hide

In example (4), the last verb has no subject, and in (5) the verb hide
and its subject the cat do not agree.

One could argue that deeply nested sentences like (3) are very diffi-
cult to understand even for human listeners, and therefore a grammar
for practical applications does not need to cover them. If the nesting
level is limited, a regular grammar can simply enumerate all possible
configurations. However, this technique substantially complicates the
work of the grammar developer. To make things worse, there will gen-
erally be several interacting phenomena (e.g. nested relative clauses
and agreement), such that the joint effects of these phenomena have
to be enumerated. In the end, grammar writing will resemble more to
enumerating the set of correct sentences than to describing the rules of
a natural language.
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Generally, if a grammar formalism does not provide the proper
means to express the rules underlying a natural language, the task
of writing precise large-coverage grammars will become virtually in-
tractable.

B.3 Why not Context-Free Grammars?

The descriptive power of context-free grammars (CFG, Chomsky type
2) appears to be sufficient for modelling most natural languages. There
are only a few known linguistic phenomena which are not context-free,
for example the so-called cross-serial dependencies in Dutch and Swiss-
German. But still CFGs are not very well suited for describing natural
language. While they can naturally account for the recursive structure
inherent to natural language, they do not lend themselves to modelling
dependencies between constituents which do not appear on the right-
hand side of the same production rule. Examples for such dependencies
are given in the following section.

B.4 Some Phenomena to be Modelled

The following paragraphs present some of the linguistic phenomena
which have to be described by a precise large-coverage grammar for
German. For the purpose of illustration, English examples were chosen
whenever possible.

Subcategorization refers to the phenomenon that a given verb re-
quires specific syntactic arguments. For example, sleep requires a
single noun phrase in nominative case (its subject). However, there is
no usage of sleep which requires or allows a directional argument:

(6) the cat sleeps
(7)  *the cat sleeps into the garden

The German language has a relatively free word order. In particular,
the syntactic arguments may appear in almost any order:
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(8) dass [die frau/ [dem mann]| [ein buch] gab
that [the woman] [the man] [a  book] gave

’that the woman gave a book to the man’

(9) dass [ein buch] [dem mann] [die frau/ gab
that [a  book] [the man| [the woman| gave

’that the woman gave a book to the man’

In German clauses, several verbs form a verbal complex. Each verb
contributes its own syntactic arguments to the verbal complex, and
these arguments can again be freely permuted:

(10) dass ihr der mann dieses buch zu lesen empfahl
that her the man this  book to read recommended

’that the man recommended her to read this book’

(11) dass dieses buch thr der mann zu lesen empfahl
that this  book her the man to read recommended

’that the man recommended her to read this book’

The verbal complex itself can be discontinuous. In the following exam-
ple, the parts of the verbal complex are marked by subscripts indicating
their position in the dependency hierarchy:

(12) zu esseng hat; er den apfel wversuchts
to eats has; he the apple trieds

’he has tried to eat the apple’

Another source of discontinuity is called extraposition. An extraposed
phrase is separated from the phrase on which it depends and moved to
the right. In the following example the relative clause that climbed up
the tree is separated from a cat:

(13) a cat was saved [that climbed up the tree]

Finally, extraction refers to the phenomenon that something can be
moved out of a phrase to the left, even across sentence boundaries. As
an example we can look at the relative clause in (14). The word whose
cat can be thought of having been moved from the position after about
to the position before wonder:

(14) I wonder [whose cat| she was talking about
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B.5 Head-driven Phrase Structure Gram-
mar

There are many extensions of CFGs which were designed to better
model natural language phenomena. Head-driven Phrase Structure
Grammar can be considered as such an extension. HPSG employs
context-free production rules, but is in fact an unrestricted grammar
(Chomsky type 0). Typical HPSG grammars do not make full use
of the Turing power offered by the formalism. Rather, they use
HPSG’s formal devices to express general rules underlying natural
languages. Some of these formal devices will be presented subsequently.

Instead of non-terminal symbols, HPSG grammars use typed hi-
erarchical data structures, so-called attribute-value matrices (AVMs).
Fig. B.1 shows an AVM for the German verb schldft (sleeps). An
AVM precisely describes the syntactic properties of a phrase or word.
For instance, the value embedded under the SUBCAT attribute is a
list containing all syntactic arguments of some word or phrase. For
the AVM in Fig. B.1 this list contains a single element, which is a
description of the verb’s subject. To use such data structures rather
than atomic non-terminal symbols has the following consequences:

e Grammar rules can access the information contained in the AVM
selectively, i.e. they can operate on the information which is rel-
evant to them and ignore all other information. This allows to
write rules which are dedicated to very general linguistic phe-
nomena. For example, there typically is a subcategorization rule
which combines a phrase with another phrase if the latter matches
some element of the former’s SUBCAT list. This rule then can ap-
ply to verbs, adjectives, nouns, prepositions etc...

e AVMs allow HPSG to overcome the locality of a production rule,
which is one of the problems of CFGs (cf. Sec. B.3). Informa-
tion about a missing (i.e. moved) phrase can be introduced at
some point into an AVM and propagated along several subse-
quent rule applications. Eventually, one of the derived phrases
can be combined with a phrase matching the propagated descrip-
tion. A typical HPSG grammar employs several lists to handle
phenomena like extraction and extraposition.
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PHON phon
GRAPH graph schizft

INITIAL +
MOD none

LMOD none
DSL nadoc
SUBJ eiist

FLIP -

HEAD

YFORM fin
vorb

MOD nane
LMOD none

HEAD CASE-TYPE strcase
KASUS | SYN-GASE nom:

CAT case-strust

L noun

SUBCAT eiist

VCOMP efist

SPR sfist

LCOMP efist

cat

CAT FER ,aer'—l
FIRST KEY | uma [4] omes

Ling
CONT | SUBJ-PER [0] per-3

SUBJ-NUM [1] pu-s
IS-EXPL -

IS-REFL -

CORRELATE conelate-none

Loc SUBCAT

cant

Lioc

REL giist
NONLOC {‘NHER [ }}
inber

nontoc

SYNSEM

L synsem
REST eiist

L nedist
VCOMP eiist
SPR ejist
LCOMP eist

Leat
KEY cvont
CONT | MODUS mod-ggw

cont

QUE efist

REL oist
INHER

SLASH efist

inher
INERT-EXTRA elist
ACTIVE-EXTRA elist

LisT (2]t

NONLOG | INERT-ANCHORS | | q1.[5]

Ltac

dlist

LisT //s!j|

ACTIME-ANGHORS | | oo

dlist
INTRO-EXTRA gfist

L nontie:
COORD -

L synsem

L lexical-sign

Figure B.1: An AVM for the German verb “schlaft” (“sleeps”).
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e A substantial part of the grammar is not expressed in terms of
rules but coded into the AVMs of the lexicon entries. For this rea-
son, HPSG is called a lexicalized grammar. On the one hand this
makes the structuring and maintaining of a lexicon a challenging
task (see below), but on the other, it offers a convenient way to
handle idiosyncrasies and exceptions. If some word behaves ex-
ceptionally in some way, it is often not necessary to change any
grammar rules. Rather, one can just modify its AVM without
affecting the rest of the grammar.

HPSG offers many additional formal devices. Many HPSG systems
distinguish between immediate dominance rules which combine phrases
and linear precedence rules which specify the relative order of the
combined phrases. Some systems can directly represent discontinuous
constituents [Miil96] which can be used to elegantly deal with some
of the phenomena discussed in Sec. B.4. Some systems allow to
impose relational constraints on AVMs. Such constraints typically are
something like PROLOG predicates operating on AVM arguments.
They are often used to define list operations such as concatenating
lists and choosing or deleting list elements.

As mentioned above, by coding syntactic information in the rep-
resentations of words, much of the grammar’s complexity is transferred
into the lexicon. HPSG offers several techniques to avoid redundancy
in the lexicon. In particular, AVMs are organized in inheritance
hierarchies: a partial description of an AVM with a specific linguistic
interpretation is encapsulated in a macro-like construct. The specifica-
tion of the AVM may itself be expressed in terms of macros. Another
technique makes use of lexical rules to derive lexical entries from
others. Among others, lexical rules are used to describe inflection and
derivation.

B.6 Our German Grammar

The German grammar developed for this work is largely based on
[Miil99]. It employs relational constraints and discontinuous con-
stituents. Even though it consists of only 16 immediate dominance
rules and 25 linear precedence rules it both covers a large fragment
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of the German language and reliably rejects ungrammatical sentences.
Table B.1 shows a classification of the immediate dominance rules.

5  general rules

11  construction-specific rules:

verbal complex (3 rules)

coordination (2 rules)

prenominal and postnominal genitives (2 rules)
relative clause (1 rule)

interrogative clause (1 rule)

optional determiners (1 rule)

nominalization of adjectives (1 rule)

Table B.1: Classification of the immediate dominance rules in our
German grammar.

B.7 Processing Issues

In the preceding sections we have mostly argued from a grammar devel-
oper’s point of view. However, one could think of defining a grammar
formalism tailored to the description of natural language which can be
compiled into a formally simpler grammar, e.g. CFG. This has ac-
tually been done: A precursor of HPSG, Generalized Phrase Structure
Grammar (GPSG, [GKPS82]) was designed as a context-free formal-
ism which offers formal means to elegantly describe certain linguistic
phenomena. A GPSG can directly be converted to a set of context-free
production rules.

HPSG grammars are not context-free and therefore cannot generally
be compiled into equivalent CFGs. However, an HPSG grammar can be
approximated with a CFG [KKO00]. This approximation usually results
in a large set of context-free production rules. For example, [KKS00]
reports to have approximated a Japanese HPSG consisting of 43 rule
schemata by means of almost 20 millions of context-free production
rules.
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