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Abstract
Time synchronization is an important service in many distributed systems. The
goal of time synchronization is to provide the nodes of such a system with a
common, i.e. synchronized, time base. Synchronized time allows for coordi-
nated actuation and sensor fusion. Time synchronization requires that the nodes
have local clocks and can then be achieved by communication among the nodes.
The reasons why time synchronization is never perfect are the variable delay of
messages exchanged by the nodes and the variable speed of the nodes’ local
clocks, i.e. clock drift. Clock-synchronization algorithms aim at providing the
nodes with a means to translate their local time to synchronized time.

This thesis is about guarantees on the quality of time synchronization that
can be provided for real systems. Such guarantees can be obtained by measuring
the synchronization quality in a real system or by using analytical methods and
formal system models. In the first part of this thesis, we apply both approaches
in the context of the wireless-loudspeakers application. This application poses
particularly hard requirements on the synchronization quality since the human
ear can discern a temporal misalignment in the order of a few microseconds
between correlated audio channels. The main contributions are listed in the
following.

• A novel class of clock synchronization algorithms is introduced, which, in con-
trast to known state-of-the-art algorithms, achieve sufficient synchronization
quality in a wide range of conditions, that is in various operation modes of
the wireless network and in situations of heavy network traffic.

• A novel framework for the optimization and comparison of clock-synchronization
algorithms is presented. The framework combines trace-based simulation and
evolutionary optimization to provide for a realistic and reproducible evaluation
and a fair comparison.

• The comparison of empirical and analytical worst-case results allows to argue
about the suitability of system models. A novel delay model is proposed that
captures the relevant properties of measured delay sequences more accurately
than previously known delay models.

In the second part, this thesis also contributes to the understanding of the
worst-case synchronization quality that can be achieved in large-scale systems.
Here the goal is to design the time-synchronization service so that a high syn-
chronization quality can be achieved with minimal overhead in terms of com-
munication among the nodes. In large-scale systems, some nodes and links
between nodes may fail, and nodes may be mobile. A novel class of algorithms
is proposed that has the advantage over known approaches that it is completely
local. No global configuration is required and thus a high resilience against
node and link failures is achieved.

Finally, it is shown how this approach for organizing time synchronization
in large-scale networks can be combined with the algorithms for accurate point-
to-point synchronization presented in the first part of the thesis.



Kurzfassung
Zeitsynchronisation ist ein wichtiger Dienst in vielen verteilten Systemen. Das
Ziel ist es, den Knoten in einem solchen System eine gemeinsame, also synchro-
nisierte, Zeitbasis zur Verfügung zu stellen. Damit werden koordinierte Aktio-
nen und die gemeinsame Auswertung von Beobachtungen ermöglicht. Ein Zeit-
synchronisationsdienst basiert darauf, dass alle Knoten eine lokale Uhr besitzen
und miteinander kommunizieren können. Perfekte Synchronisation kann nicht
erreicht werden, weil die Laufzeiten von Nachrichten und die Laufgeschwin-
digkeiten der lokalen Uhren variabel sind. Uhrensynchronisationsalgorithmen
erlauben es den Knoten, die lokale Zeit in synchronisierte Zeit umzurechnen.

Die vorliegende Arbeit beschäftigt sich mit Garantien zur Synchronisations-
qualität, welche in realen Systemen erreicht werden kann. Solche Garantien
können durch Messungen oder mittels analytischer Methoden und formaler Mo-
delle gefunden werden. Im ersten Teil dieser Arbeit werden beide Metho-
den im Kontext von drahtlosen Lautsprechern angewendet. Diese Anwendung
stellt besonders harte Anforderungen an die Synchronisationsqualität, da das
menschliche Ohr zeitliche Verschiebungen von wenigen Mikrosekunden zwi-
schen zusammengehörigen Audiokanälen wahrnehmen kann. Nachfolgend die
wichtigsten Resultate:

• Eine neue Klasse von Uhrensynchronisationsalgorithmen wird vorgestellt, mit
welchen im Gegensatz zu bekannten Algorithmen unter verschiedenen Randbe-
dingungen und auch unter starker Netzwerkbelastung eine für drahtlose Laut-
sprecher genügende Synchronisationsqualität erreicht wird.

• Eine Methode zur Optimierung und zum Vergleich von Uhrensynchronisations-
algorithmen wird präsentiert. Die Methode kombiniert Trace-basierte Simula-
tion mit evolutionärer Optimierung, was realistische und reproduzierbare Re-
sultate sowie einen fairen Vergleich von verschiedenen Algorithmen erlaubt.

• Die Gegenüberstellung von empirischen und analytischen Resultaten erlaubt es,
die Eignung verschiedener Systemmodelle kritisch zu hinterfragen. Ein neues
Modell für Nachrichtenlaufzeiten wird vorgeschlagen, welches die relevanten
Eigenschaften von Laufzeitsequenzen besser beschreibt als bekannte Modelle.

In einem zweiten Teil enthält die vorliegende Arbeit Beiträge zum Ver-
ständnis der erreichbaren Synchronisationsqualität in Systemen mit sehr vie-
len Knoten. Hier ist es das Ziel, den Sychronisationsdienst so zu gestalten,
dass eine gute Qualität mit minimalen Aufwand bezüglich der Zahl benötigter
Nachrichten erreicht wird. Dabei muss berücksichtigt werden, dass in grossen
Systemen Knoten ausfallen und/oder mobil sein können. Eine neue Klasse von
Algorithmen wird vorgestellt, welche den Vorteil haben, dass sie rein lokal, also
ohne globale Konfiguration arbeiten und daher robust gegen Ausfall und Mo-
bilität von Knoten sind.

Abschliessend wird gezeigt, wie dieser Ansatz zur Organisation der Syn-
chronisation in grossen Netzen mit den im ersten Teil der Arbeit eingeführten
Punkt-zu-Punkt-Synchronisationsalgorithmen kombiniert werden kann.
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1
Introduction

The quality of time synchronization in computer networks not only depends
on the synchronization algorithm that is used, but also on non-deterministic
system stimuli. Therefore, the synchronization quality of a particular system is
variable. This thesis is about guarantees on the quality of time synchronization,
that is about determining how bad the synchronization quality can be in the
worst case.

There are basically two ways to determine such guarantees on the synchro-
nization quality, which are illustrated in Fig. 1. (i) The synchronization quality
can be measured. The problem is that no matter how many measurements are
performed, one cannot be sure that the worst case has been covered. Mea-
surements deliver an optimistic estimation of the worst-case synchronization
quality. (ii) The system under consideration can be abstracted into an analyt-
ical model. In this model, rigorous proofs of the worst-case synchronization
quality are possible. The problem here is to make the right abstractions, since
derived guarantees about the worst case are valid for the model and not for the
actual system. If all assumptions of a model are true, then the derived guarantee
must be pessimistic. If these assumptions are wrong, then the guarantee may be
pessimistic or optimistic.

In this thesis, we will use empirical and analytical methods to approximate
the worst-case synchronization quality in two different kinds of networks, that
is (i) in small wireless networks used for audio distribution and (ii) in large-
scale wireless sensor networks. The empirically obtained results will be used
to discuss the suitability of a variety of analytical models. As illustrated in
Fig. 1, the measured worst case does not always allow to differentiate between
a wrong and a correct but incomplete model. Therefore, special emphasis is put
on quantifying the analytical results for concrete systems, which allows us to
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Fig. 1: Empirical and analytical methods can be used to approximate the actual maximal syn-
chronization error (worst case). Neither of these methods provides guarantees on the
actual system in a strict sense.

argue about a particular model in terms of the gap between the measured and
the analytically derived worst-case synchronization quality.

In Section 1.1, a short overview of the fundamental problems involved in
time synchronization in computer networks is presented. In Section 1.2, we
describe several application domains that require tight synchronization. A short
overview of known results and a survey of related research topics is given in
Section 1.3. An outline of this thesis is provided in Section 1.4.

1.1 Clock Synchronization in a Nutshell

We start our discussion by giving three examples explaining what clock syn-
chronization is about.

Ex. 1: (Clock synchronization is difficult to establish.) Let us assume that we have
two clocks A and B that run at exactly the same speed, and we want to adjust
the offset of clock B, so that B shows the same time as A. This is no problem
if the offset of B can be adjusted while reading the time from A. But sometimes
this is not possible, e.g. because A is mounted on the kitchen wall, while B is
the internal clock of the car radio. Now, setting the offset of B is more difficult:
First we read the time from A, then we go to B and adjust B according to the
reading of A. But the clocks are not yet synchronized, since A did not stop
during the time we walked to B. The obvious solution to this problem is to add
the time it took us to walk from A to B to the reading of A when adjusting B.
In other words, the timestamp t1 contained in the message from A to B has to
be corrected by the delay d of this message. If this delay is known, then the
problem is solved. But as the clock B is not a priori synchronized with clock
A, it is not possible to measure the delay using clocks A and B. Thus, we face
the typical chicken and egg problem, or put mathematically: Given t1 and the
relation t2 = t1 + d, what are the values of t2 and d?
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The example showed that unknown message delay is an obstacle to achiev-
ing clock synchronization. This problem is very old1 and many smart solutions
have been found for special instances. Most notably the round-trip experiment
has proven to be useful in many situations: First, we read the time t1 from clock
A and send a message to B. When the message arrives, we read t2 from clock
B and send a message back to A, where t3 is read. If it can be assumed that the
delay from A to B is equal to the delay from B to A, we know that the time of
A was 1

2
(t1 + t3) when the time of clock B was t2, regardless of the actual delay

the messages encountered.
Recent advances in computer-network technologies have once again made

clock synchronization an active area of research. Packet-switching technologies
in the WAN and statistical multiplexing in the LAN allow more economic use
of bandwidth than circuit switching and fixed TDMA schedules, and thus are
rapidly expanding to new application domains. The downside of these tech-
nologies concerning clock synchronization is that the delay of a packet2 is less
predictable. The delay is strongly influenced by the current network load and
the assumption of symmetric delays between any two network nodes becomes
unrealistic.

Small differences in the rate of clocks are another obstacle to clock synchro-
nization, as is shown in the next example.

Ex. 2: (Clock synchronization is difficult to maintain.) Let us assume that we have
two clocks A and B that run at slightly different speeds. Let us further assume
that at time t1 clock B has been synchronized to clock A and both clocks show
exactly the same time. Obviously, at time t2 > t1 this is not the case anymore.
Therefore, synchronization has to be re-established periodically.

A longer re-synchronization period can be chosen if the rate of B can be
adjusted so that it is close to the rate of A. Adjusting the rate requires that the
rate difference is known. Determining the rate difference between two clocks
is thus an important aspect of clock synchronization. It is feasible if (i) the rate
difference is constant and (ii) the offset between clocks A and B is known at
two times t1 and t2. Both requirements are never satisfied in a real system and
thus various approximation techniques have been developed.

A third problem arises when a large number of clocks has to be synchro-
nized to a common time. Assume that synchronization can only be performed
pairwise, that is you can read the time of two clocks simultaneously and then
adjust either one of them or both.

Ex. 3: (Clock synchronization is difficult to organize.) If I told you that the time
when writing these lines is 9 a.m. according to my wristwatch and 3 p.m. by my

1See e.g. the informal discussion of clock synchronization for the European railroad system
in the early 20th century in [Gal03].

2The terms packet and message are used as synonyms in this thesis, as all messages used in
the algorithms presented in later sections are so short that they can be transported in a single
packet.
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desktop computer’s time, could you tell which information is better? You could
not, unless additional information about these two sources of time information
is available. For example if you know that the desktop computer regularly syn-
chronizes with a stratum-one time server using NTP while the wristwatch is an
old mechanical one, which I forgot to wind up this morning, then it is quite clear
that the time actually is about 3 p.m.

This example shows that the organization of clock synchronization in large-
scale networks requires some mechanisms that defines how the synchronized
time is “routed”. For example, the clocks that have to be synchronized can be
organized in a tree and every child node can then synchronize to its parent node.
But such a solution has the drawback that the construction of this tree structure
does not come for free and may be difficult to achieve if the network topology
is constantly changing due to node mobility or node failures.

1.2 Applications of Synchronized Clocks
In this section, we sketch four application domains in which synchronized clocks
play a central role. A description of the application is followed by a short dis-
cussion of the requirements on the synchronized clocks. The requirements are
different in all four cases and they are summarized in Table 1. A more detailed
discussion of requirements and metrics for the synchronization quality is given
in Chapter 2. The case of media distribution is studied in detail in Chapter 3.
The case of wireless sensor networks is studied in Chapter 4. The cases of cir-
cuit emulation and distributed control have been selected because we believe
that the methods and algorithms presented in this thesis are also applicable in
these contexts and promise substantial benefits over existing solutions.

1.2.1 Media Distribution

In recent years, many new consumer-electronics (CE) technologies have entered
our homes. As these devices start to integrate networking capabilities in order
to provide new and improved services, wire-bound connections more and more
become a burden. Wireless technologies like the IEEE 802.11 standards seem
to be a promising alternative for certain CE applications. Wireless loudspeakers
are a particularly interesting application, since current home-cinema systems
require up to 8 loudspeakers distributed in the living room. At the same time,
this application poses hard real-time challenges. A temporal offset between cor-
related audio channels causes different psychoacoustic effects, as illustrated in
Fig. 2. Such an offset results from oscillator drift in the loudspeakers and from
the variability of packet delays. Proper synchronization of the loudspeakers and
of the audio source is thus essential. The requirements on the synchronization
quality are (i) keeping the offset constantly below 1 millisecond, (ii) keeping
offset variations below 100 microseconds (a constant pan is no problem, as the
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Channel Offset Psychoacoustic Effects
> 10ms Source separation
> 1ms Timbre

> 100µs Pan
> 10µs/10s Noise

Fig. 2: Wireless-Loudspeakers Application: Two or more loudspeakers are connected over an
IEEE 802.11b network to a source of audio streams. The source is connected to the
wireless network either directly or via a wireless access point (WAP). On the right,
the time scales of different psychoacoustic effects are summarized: If the offset is
larger than 10ms, the two channels are perceived as separate sources. Around 1ms,
the sound’s characteristics are modified. Starting at 100µs, the offset can also change
the directional perception of the source. Even smaller offsets can cause noise if the
offset is rapidly changing (by more than 10µs in an interval of less than 10s length).

balance between the channels has to be adjusted according to the user’s posi-
tion anyway), and (iii) avoiding fast offset variations above 10 microseconds.
Additionally, these criteria have to be achieved within a short setup time, as a
user is not willing to wait more than a few seconds for the system to become
operational.

1.2.2 Ad-hoc Networks

Ad-hoc networks have lately received a lot of interest from academia, e.g. in the
form of wireless sensor networks [ADL+98], [ASSC02], or more generally mo-
bile information and communication services that are based on self-organization
[VG01].

Clock synchronization is an important service in these networks. For ex-
ample, the fusion of distributed sensor data may require knowledge about the
chronology of the sensor observations [Röm01, Röm03a]. The energy con-
sumption of wireless devices can be reduced by synchronous power-on and
shutdown of the wireless-communication circuits of a sender – receiver pair
[CJBM01, WESW98]. Synchronization is required for federating multiple sen-
sor nodes into an array with augmented sensing capabilities, e.g. for the local-
ization of audio sources as proposed in [GBEE02] and [SBM+04].

Though the requirements on synchronization are substantially different for
the various applications envisaged for ad-hoc networks, there are some common
challenges that are different from those in infrastructure-based networks [ER02,
Röm03b]. (i) Energy efficiency: Synchronization can only be achieved and
maintained by communication, which is expensive in terms of energy. As sen-
sor nodes are autonomous, battery-powered devices, energy-awareness is a key
requirement for every service on such a node, including clock synchronization.
(ii) Ad-hoc deployment: The clock-synchronization service must not rely on any
a-priori configuration or infrastructure. (iii) Robustness under node mobility
and node failure: There is no guarantee of stable connections between nodes.
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(iv) The aforementioned acoustic-ranging applications also demand synchro-
nization accuracy in the microsecond range, while temporal ordering of events
often requires only millisecond accuracy.

1.2.3 Circuit Emulation

Recent developments in transmission and switching technologies create new
opportunities to converge telephony and data services. Given the emerging de-
ployment of switched Gigabit-Ethernet in MANs, these networks can be em-
ployed to emulate telephony circuits to offer connectivity for legacy telephony
systems such as GSM base stations and PBXs3. Recent [Nor00] and ongoing
research projects [Fie04] propose that so-called circuit emulation adapters pro-
vide a T1/E14 carrier to which the legacy components are connected.

In order to prevent buffer under- or overflow in the circuit-emulation adapters,
the clock rates of these devices need to be synchronized across the Gigabit-
Ethernet. As such systems are continuously in service, the setup time is not
of concern. Energy and network bandwidth are available in largely sufficient
quantities.

1.2.4 Distributed Control

Recently, the Time-Triggered Architecture (TTA) has been proposed [MBSP02]
as a distributed computing platform for large, complex and safety-relevant sys-
tems in the aerospace and automotive domain. It is argued that TTA facilitates
the composition of components into a complex system. A system using TTA
is based on globally coordinated, static schedules of all activities and thus re-
quires synchronized clocks in all components of the system. Clock synchro-
nization is achieved with microsecond accuracy using the Time-Triggered Pro-
tocol (TTP) [KG94], which is in essence a TDMA protocol. Similar levels of
accuracy are also achieved by the competing protocols FlexRay [FC] and Time-
Triggered CAN [Gmb, HMFH02]. Also a short setup time is necessary.

Major car manufacturers lately seem to prefer FlexRay over TTP [Mur03],
the main argument being that FlexRay additionally reserves time slots for event-
triggered communication, and thus provides more flexibility. Of course, the use
of standard CDMA communication technologies would provide even more flex-
ibility and presumably better economies of scale5. In this thesis, we show that
similar levels of clock-synchronization accuracy can be achieved in standard
Ethernet networks. It seems possible that the vast amount of bandwidth already
available in today’s wired and even wireless Ethernet technologies may allow
reliability and safety problems to be partially circumvented in the future.

3Short for private branch exchange, a private telephone network used within an enterprise.
Users of the PBX share a certain number of outside lines for making telephone calls external to
the PBX. From http://www.webopedia.com

4Standard TDMA carrier used in telecommunications. See e.g. [Tan96].
5In the automation industry, where safety concerns are less acute, this trend is already

becoming a reality as reflected by the new IEEE 1588 standard [Edi02]. A comprehensive
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Media Ad-Hoc Circuit Distributed
Distribution Sensor Networks Emulation Control

Offset • •(•) ••
Rate •• •• ••
Setup Time •• •
Energy ••
Fault Tolerance •• • ••

Tab. 1: Comparison of different applications’ requirements on clock synchronization. Two
dots indicate mission-critical issues, one dot stands for issues with some importance.

1.3 Research Topics in Clock Synchronization

The problem of clock synchronization has many aspects that are active research
topics. In this section, we give an overview of the most important areas, focus-
ing on real-time clock synchronization, implemented as software processes in a
distributed system. We do not cover hardware clock synchronization6, but dis-
cuss hardware assistance for high-performance software clock synchronization.
Also, logical (vector) time is not considered7. Our discussion starts with theoret-
ical aspects, namely contributions on lower bounds on the achievable accuracy8.
Later, contributions in selected application areas with specific requirements on
clock synchronization are discussed.

1.3.1 Optimal Synchronization

The achievable accuracy depends on the system model, consisting of (i) the
network model, (ii) bounds on message delays and (iii) assumptions on clock
drift. A lower bound for completely connected systems with bounded delay and
without drift is given in [LL84], an algorithm achieving the lower bound is also
presented. [HMM85] extends the lower bound to arbitrary networks. [BW01]
presents closed-form bounds for chains, meshes and hypercubes. The authors
of [LL84], [HMM85], and [BW01] give worst-case-optimal bounds, viewing
the system as an adversary that intentionally chooses message delays and clock
drifts in such a way as to make synchronization as difficult as possible.

[AHR93], [PSR94], and [OPS99] use the stronger criterion of optimality in
every execution. [AHR93] presents lower bounds assuming either (i) known
lower and upper delay bounds, (ii) a known bound on round-trip bias or (iii)

overview of existing solutions in this domain is given by [Sch03].
6For an introduction to phase-lock techniques see [Gar79]. An good introduction to GPS is

[HWLC97].
7Logical time is only concerned with determining precedence relations [Lam78] of events,

but not with the real time when events actually occur. For an introduction, see [Mor85] and
[Mat93].

8As the terms accuracy, precision, etc. are not used consistently in the literature, we use
accuracy here to represent the quality of synchronization in a generic way. A formal definition
of the terms as used in this thesis is given in Chapter 2.
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known lower and upper bounds on receive-time difference. In [PSR94], these
results are extended to the on-line case, and [OPS99] incorporates drifting clocks.
A quite different approach to optimality is presented in [KEES03] and similarly
in [HS03], where optimality in a statistical, maximum-likelihood sense is pro-
posed.

In some situations, it is desirable that synchronized clocks not only fulfill
a given accuracy requirement, but that the nodes themselves know the actual
accuracy. [MO83, Mar84] and [SS97] present the idea of interval-based syn-
chronization, providing algorithms that compute an interval in which the refer-
ence time is contained. The algorithms presented in [PSR94, OPS99] compute
an error margin, which is essentially equivalent. [Sch97, Sch98] extend the
interval-based approach to rate synchronization. Also the convex-closure ap-
proach of [Ber00] falls into the category of interval-based synchronization.

[SC90] shows that optimal accuracy can be achieved with continuous amor-
tization instead of discrete clock adjustments; similar ideas are found in the
patent [Str96].

1.3.2 Accurate Synchronization

Often, the target accuracy of an application is better than the deterministically
optimal synchronization accuracy [LL84, HMM85, BW01]. Three back doors
have been found, probabilistic synchronization, a-posteriori synchronization
and hardware-assisted synchronization9. The notion of probabilistic synchro-
nization stands for trade-off strategies between accuracy and the probability of
achieving this accuracy10. The probabilistic algorithm of [Cri89] uses a dy-
namically determined number of round-trip messages to achieve a desired accu-
racy. A better accuracy can be achieved by allowing more round-trip messages.
A more static, a-priori approach is taken in [Arv94]: Several unidirectional
messages are used to perform a linear-regression analysis of the clock offset
and drift. Assuming normal distribution of message delays, the probability of
achieving a given accuracy with a given number of messages can be computed.
Good performance is achieved if the message delay approximately follows a
Gaussian distribution11. Linear regression can also be interpreted as a system-
identification technique [LGX00]. Linear regression has been found to converge
faster than e.g. phase-locked-loop algorithms [Nor00].

The a-posteriori agreement technique has been proposed in [HS91], [VR92]
and [VCR93]. It makes use of the observation that the receive times of a broad-

9The latter two approaches are not actually back doors, they rather allow system constants,
as for example message-delay variability, to be decreased but are still in line with the results
from [LL84, HMM85, BW01].

10In contrast to the common use of the notion probabilistic in algorithm theory, probabilistic
synchronization does not mean algorithms that make random decisions but algorithms that have
a certain probability of achieving a given accuracy.

11This is the case e.g. for the RF communication used on the Berkeley Motes, which is the
reason why linear regression has been successfully applied on this platform [EGE02, HS03,
MKSL04a].
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cast message are often more closely aligned and less variable than the send
and receive times of a broadcast or unicast message. Implementations of the
technique are presented in [VRC97] and for an IEEE 802.11 wireless network
in [MFNT00]. Also the RBS algorithm [EGE02] is based on this technique.
The a-posteriori agreement can be applied easily e.g. in a CAN network where
the sender of broadcast messages itself receives the message and can time-stamp
this reception. This time stamp can then be appended to the next broadcast mes-
sage, thus time-stamp distribution does not cost additional messages. In most
networks, a sender of broadcast messages does not itself receive the message.
Then the a-posteriori agreement technique becomes more complicated, as the
receive times have to be collected and distributed.

To achieve an accuracy in the microsecond range, the use of special hard-
ware assistance has been proposed. [HC02, GKS03, EGE02, vGR03, MKSL04b]
use low-level access to the Berkeley Motes’ RF interface, which has a particu-
larly small delay variability. [LMC99] presents an implementation of the prob-
abilistic algorithm of [Cri89] for the Myrinet technology, achieving low mi-
crosecond accuracy. [MDG01] discusses hardware enhancements of standard
PCs for time-stamping received and sent packets. [MFNT00] presents a driver-
level implementation of an a-posteriori algorithm achieving 150 microseconds
on a 802.11b network. [Mil93] discusses hardware and software interfaces to
connect a PC to a source of reference time signals (e.g. Pulse Per Second, DCF,
GPS, etc.).

1.3.3 Synchronization in Large Systems

In large systems, the message complexity of many clock-synchronization algo-
rithms becomes intolerable. Several solutions have been proposed to solve the
problem. The widely deployed NTP [Mil91] is based on a hierarchy of time
servers to reduce message complexity. [VRC97] presents a similar scheme.
Another approach is to use unidirectional communication of timing information
only, which provides perfect scalability concerning the number of nodes that
listen to a source of timing information. [Arv94] presents a statistical analysis
of achievable accuracy for such a unidirectional scheme. In [DRS94], the the-
oretical foundations of eavesdropping synchronization are given, followed up
by the more practically-oriented [DRSW95]. This concept allows the advan-
tages of unidirectional synchronization and the guaranteed-interval approach to
be combined, but relies on complicated assumptions about the behavior of the
communication link. The eavesdropping technique is patented [SW93].

Even unidirectional schemes can run into scalability problems. [HL02] re-
ports occasional failures of the Time Synchronization Function (TSF) built into
the IEEE 802.11 standard. This synchronization scheme is essentially equiva-
lent to an algorithm presented in [Lam78]: All clocks constantly broadcast their
local time. Whenever a time stamp is received that is ahead of the local time,
the local time is updated accordingly. All clocks will thus follow the fastest
clock in the system. The problem of this scheme occurs when the node with the
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fastest clock cannot broadcast its time due to contention on the communication
medium.

1.3.4 Fault-Tolerant Synchronization

In large distributed systems, it is unavoidable that some components eventually
fail. Research on fault-tolerant synchronization covers questions of how many
faults of nodes and links can be tolerated. Node faults include node crashes and
Byzantine behaviors. Link faults include permanent failure, message omission
and late or early delivery (violating a-priori bounds). [SLWL90] presents an
introduction to various system and fault models and discusses important algo-
rithms. It is shown that in an arbitrary network, f link faults can be tolerated
if the connectivity is at least 2f . If an authentication service is available12,
then only f + 1 connectivity is required. In a completely connected network,
authentication is of no use. Regarding node faults, it is shown that synchro-
nization is possible if at least 3f nodes participate. If authentication is avail-
able, only 2f nodes are required. Later work [DHSS95] treats the question
of processor joins. It is found that joins are possible if at least half the nodes
are not faulty and authentication is possible. [dAB94, FC95] introduce fur-
ther variants of convergence functions. [BHHN00] integrates previous results
in fault-tolerance with a drifting clock model. The consequence is that syn-
chronization is a never-ending process, and that therefore the number of faults
cannot reasonably be bounded. [SW99] extends the interval-based algorithms
of [Sch97, Sch98] with fault-tolerance mechanisms. A comparison of many
fault-tolerant clock-synchronization algorithms is given in [AP98].

1.3.5 Ad-hoc and Energy-Efficient Synchronization

Similarly to other application areas, the contributions on clock synchronization
cover single-hop and multihop issues. The Berkeley Motes platform is used by
many researchers for an implementation of their ideas, which allows the com-
parison of their results. For single-hop synchronization, it is disputed whether
the a-posteriori agreement technique, as used by the RBS algorithm [EGE02],
achieves better results than round-trip techniques [GKS03, GKAS03, SV03,
vGR03] or unidirectional [MKSL04b] communication of time information. Re-
ported accuracies of all these algorithms lie in the low microsecond range.

multihop synchronization schemes organize the distribution of time infor-
mation in a large network. [MR03] proposes a clustering scheme for RBS that is
aware of energy restrictions. The TPSN algorithm [GKS03] first creates a static
synchronization hierarchy before time information is distributed from a single
reference node at the top of the hierarchy. The FTSP algorithm [MKSL04b]
provides a more dynamic scheme that can tolerate node failures and node mo-
bility.

12Node A receives a message from node B via node C. Authentication allows node A to verify
if the contents of the message are exactly those produced by node B, regardless of the behavior
of the intermediate node C.
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Another focus of research on clock synchronization in the area of wireless
sensor networks is energy efficiency. The concept of post-facto synchronization
has been proposed by [EE01] and [ER02] to reduce energy consumption: In
contrast to always-on synchronization, a post-facto approach only synchronizes
the time of nodes that actually have collected information that needs to be time-
stamped, thus synchronization happens only on demand13. [Röm01] gives an
algorithm that implements post-facto synchronization. An interesting feature is
that instead of time, time intervals are measured and converted from one time
scale to another strictly on an as-needed basis. The deficiency of the approach
is that the scheme is not applicable to coordinated actuation.

1.3.6 Network-Delay Measurements

An active research area in its own right is network-delay measurement. The
basic question here is the following: Given unsynchronized local send and re-
ceive time stamps of a sequence of one-way packets (most often in a WAN
context), is it possible to determine and compensate relative clock drift14 and
discontinuities in one of the clocks? Important publications in the field are
[Pax97, Pax98, MST99] presenting new algorithms, [ZLX02] giving a compar-
ison of several known algorithms and [PV01], [AGR03] discussing measure-
ments systems.

Though it is clear that this question comes very close to the clock-synchro-
nization problem, neither of the communities cites the work of the other very
much. One big difference in the problem statements that may be responsible
for this is that the network-delay problem is approached off-line, whereas clock
synchronization (at least in the case of drifting clocks) is an on-line problem.

1.3.7 Audio

Synchronization of media streams most often refers to implicit synchroniza-
tion of one or more streams using buffer fill levels as input rather than time
stamps. The goal of such algorithms is to avoid buffer over- and underflows and
to achieve lip-synchronization between audio and video streams. An overview
of this kind of synchronization algorithms is given in [IT00] and [LS02]. Formal
definitions of synchronization properties for stream-synchronization are given
in [Ste90].

Real-time synchronization with an accuracy in the millisecond range is re-
quired for interactive-performance systems. Such systems allow geographi-
cally distant artistic performers to cooperate, based on communication of MIDI
events. The clock-synchronization aspects of such systems are discussed e.g. in

13We believe that the dichotomy always-on vs. post-facto is slightly misleading and suggest
always-on vs. on-demand instead. The post-facto principle only applies to sensing applications
and cannot be used to synchronize for coordinated actuation. In such a case, either always-on
synchronization or a limited, pre-facto synchronization specifically designed for coordinated
actuation is required. The concept of on-demand unites post- and pre-facto.

14Often called skew in the community.
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[BD99, FOL01, FLO02].
An application that is currently starting to receive attention by industry

and consumers is wireless home-media networking [Mos04, Dev03, Bar03,
Bri03, Phi03]. Media content is made accessible to the living-room stereo
system via an 802.11 link. This application is much simpler from the clock-
synchronization perspective than the one we sketched in the previous section:
Both stereo channels are transported as a unit to the stereo amplifier, while the
distribution to the loudspeakers is still analog, and thus has a highly determinis-
tic latency. The aforementioned digital distribution of individual audio channels
is likely to become the next step in this development, as it is proposed e.g. by
[Dic04].

Audio applications have also been studied by the wireless-sensor-networks
community, either in the form of acoustic ranging [EGE02, MKSL04b] or more
generally for a distributed audio-capturing platform [LKW03].

1.3.8 Discussion

In this section, we have argued that even though the basic problem of clock
synchronization is intuitively simple, a wide range of different problems arise
when looking at the details. It seems that clock synchronization has been a side
issue in many different research areas and communities, while a common view
is often missing. E.g. the contributions in the area of ad-hoc networks only sel-
dom make use of previous results from work on fault-tolerant synchronization.
A critical confrontation of practically achieved accuracy with the theoretical
optimality results has, to our best knowledge, never been undertaken.

1.4 Thesis Outline

In the following, we summarize the contents and the main contributions of this
thesis.

Chapter 2: Models and Methods
This chapter presents models and methods, which are used in Chapter 3, and
which are extended in Chapter 4. These are

• Various alternative system models describing message delays and clock drift
and an execution model for clock-synchronization algorithms (CSAs).

• Properties and metrics used in the analysis of CSAs.

• Techniques for measuring message delays and clock drift and measurement re-
sults from an 802.11b wireless LAN system.
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• A framework for the optimization and comparison of CSAs, which is based on
a combination of measurements and simulation. Evolutionary optimization is
used for finding the parameters of a CSA.

Chapter 3: Point-to-Point Synchronization
This chapter studies the problem of synchronizing a drifting clock to a reference
clock under the assumption of variable message delay. The novel class of Local-
Selection CSAs is introduced and formally analyzed:

• Local-Selection CSAs exhibit properties which other CSAs do not, for example
safety and liveness.

• Two upper bounds on the synchronization quality are derived. The first is
based on the assumption of bounded delay, and meets a lower bound known
from [LL84]. The second is based on the novel delay-interval model (presented
in Chapter 2) and delivers a better bound. The delay-interval model can also
provide estimates of how fast synchronization can be achieved.

• The requirements and benefits of drift compensation are analyzed under the
assumptions of constant and of variable clock drift.

Heuristic variations of the Local-Selection CSAs are presented which make
more economic use of memory and computation resources, and which require
less knowledge about system parameters. Their performance is compared with
that of other CSAs, using the wireless-loudspeakers application as a case study.
It is demonstrated that the heuristic Local-Selection CSAs achieve a sufficient
synchronization quality and are significantly more robust against cross traffic in
the network.

Chapter 4: Multihop Synchronization
This chapter is joint work with Lennart Meier and studies clock synchroniza-
tion in large-scale ad-hoc networks, for example wireless sensor networks. We
present a modeling and analysis framework, which is applicable in a wide range
of scenarios.

• A lower bound on the worst-case accuracy is derived and applied to tree-based
CSAs.

• Interval-based synchronization is applied to the multihop synchronization prob-
lem in ad-hoc networks for the first time. It is shown that a simple algorithm
from [MO83] is worst-case optimal.

• The interval-based and the tree-based approaches are compared in terms of
worst-case accuracy and distribution of the energy consumption among the
nodes in the network.
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• The novel Back-Path algorithm is presented as an improvement of the algorithm
from [MO83]. It is analyzed under which conditions the Back-Path algorithm
outperforms the algorithm from [MO83], and the improvement is quantified
using simulation of large-scale ad-hoc networks.

Chapter 5: Synthesis
In this chapter, we combine the results and insights from the previous two chap-
ters. It is shown how the Local-Selection CSAs from Chapter 3 can be used
to realize a communication event according to the zero-delay assumption from
Chapter 4. The combination of the Local-Selection CSAs and the interval-based
CSAs solves all three problems sketched in Sect. 1.1 and contributes to the im-
plementation of a time-synchronization service in large-scale ad-hoc networks.



2
Models and Methods

The purpose of this chapter is to introduce the terminology, models and meth-
ods used in later chapters for the analysis of clock-synchronization algorithms
(CSAs). Fig. 3 illustrates the structure of this chapter.

In Sect. 2.2, CSAs are formally defined. It is defined, what the input and
what the output of a CSA is. Two simple but contrasting examples are presented.
In Sect. 2.3, qualitative properties that formalize “reasonable” behavior of a
CSA are presented. These properties can be evaluated in a system model that
makes only minimal assumptions.

In Sect. 2.4, various metrics are introduced to assess the output of a CSA. In
Sect. 2.5, formal system models are presented. These models state assumptions
about message delays and clock drift, which allow us to make predictions about
the worst-case bounds on the metrics defined in Sect. 2.4.

A more empirical approach to the evaluation of CSAs is presented in Sec-
tion 2.6. The average-case performance of a CSA is evaluated based on system
traces. It is shown how such traces can be obtained from a real system. We
present data from an 802.11b wireless network, which will be used extensively
in Chap. 3. In this section, we also discuss how traces can be generated from
a formal system model. The generated traces are compared with the measured
traces and the accurateness of the various system models is discussed.

In Section 2.7, we introduce multiobjective evolutionary algorithms as a
tool for optimizing CSAs. Several trade-offs in the parameterization of CSAs
are identified and the efficiency of the evolutionary approach is compared with
standard search methods.
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Engineer

Optimize
Parameters
(Sect. 2.7)

Predict Worst-Case
Performance (Sect.2.5)

CSA
(Definitions: Sect. 2.2)
(Properties: Sect. 2.3)

(Metrics: Sect. 2.4)

System Model
(Sects. 2.5, 2.6)

Real System
(Sect. 2.6)

Generated TracesMeasured Traces

Measure Average-Case
Performance (Sect. 2.6)

Fig. 3: Overview of Chapter 2. The thesis is concerned with the analysis of clock synchro-
nization algorithms (CSAs), introduced in Sect. 2.2: (i) The worst-case performance is
evaluated (Sect. 2.5) based on various assumptions about message delays and clock drift
. (ii) The average-case performance is evaluated based on traces that have been mea-
sured in a real system or generated according to a particular system model (Sect. 2.6).
As a fair evaluation requires that the parameters of a CSA are optimized, Sect. 2.7
presents an automated method to do so.

2.1 Notation

Capital latin letters are mainly used for functions, lower-case latin letters mostly
represent scalars. Calligraphic letters are used for sets and algorithms. Greek
letters usually are parameters of the system model or a CSA, most often they
are scalars. We refer to some x at the time of the i-th message arrival (see next
section) as xi.

2.2 Algorithm Model

In this section, we formally define the notion of clock-synchronization algo-
rithms (CSAs). The discussion is focused on external synchronization. This
means that a clear distinction can be made between nodes that have access to
reference time and nodes that do not have such information1. More precisely,
we consider point-to-point synchronization with unidirectional communication
from one reference node to one client node, which is illustrated in Fig. 4. The
discussion of time synchronization is extended to arbitrarily complex topologies
with multiple reference and client nodes in Chapter 4.

1Without loss of generality, we assume that reference time is real time.
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Reference ClientNetwork

real time t
local time H(t) 

synchronized time C(H(t))
time stamp message

Fig. 4: Model for point-to-point synchronization. The system consists of a reference node, a
client node, and a network. The reference node has access to real time, the client node
has access to local time. The nodes can exchange messages containing time stamps.
Time stamps are values of real time assigned to events occurring at the reference node
and values of local time for events occurring at the client node. Events that are relevant
for clock synchronization include message-send and message-receive events.

This section is organized as follows: First we introduce the notion of clocks,
then we discuss how a CSA is executed and what kind of input it processes.
Finally, we formally define what a CSA does and present two examples.

2.2.1 Clock Model

A clock is a physical or a virtual device that associates an event with a time.
The time of a single event is called a time stamp and is a real number. Clocks
are modeled as piecewise continuous, strictly monotonic increasing functions.
We distinguish two types of clocks:

Def. 1: (Local Clock) A local clock is a physical clock device, modeled as a function
H : IR → IR. We use the notation hi = H(ti) to denote the local time hi of an
event i that occurs at real time ti. The drift of a local clock is ρ(t) = dH(t)

dt
− 1.

The drift variation of a local clock is ϑ(t) = dρ(t)
dt

.

In general, the notion of the local clock is used to refer to the local clock of
the client node. Note that the inverse function H−1 is the perfect solution to the
time synchronization problem: To every time stamp h from the local clock, it
associates the corresponding real time t. But this does not actually work, since
the client does not know the function H .

Def. 2: (Logical Clock) A logical clock is a function C : IR → IR. It is a virtual clock,
realized in software on a device that has a local clock. We use the notation
ci = C(hi) to denote the logical time ci of an event i that occurs at local time
hi. The drift of a logical clock is �(t) = dC(H(t))

dt
− 1.

Note that the argument of a logical-clock function always is a local time. A
device that evaluates a logical clock knows only local time, but not real time. To
refer to the logical time ci of an event i that occurs at real time ti, the notation
ci = C(H(ti)) is used. The drift of a logical clock can also be written as
�(t) = dC(h)

dh
dH(t)

dt
− 1 = dC(h)

dh
(1 + ρ(t)) − 1.
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Fig. 5: Three examples of views. a) The reference node periodically sends a message con-
taining the send time-stamp to the client node. b) The client node periodically sends
a message containing the send time-stamp to the reference node, which immediately
returns a message containing the received time stamp and the send time-stamp to the
client node. c) Client and reference nodes append send time-stamps to messages that are
exchanged between the nodes on behalf of other concurrent applications. The reference
node additionally appends the latest received time stamp form the client node.

2.2.2 Input of CSAs

Clock-synchronization algorithms are executed locally on the client node. The
goal is to compute a logical clock C that approximates the inverse local-clock
function, i.e. C ≈ H−1. The computation of logical clocks is based on locally
available information, which we call a view. Information that is relevant for
synchronization is a set of time stamps. This set includes time stamps from the
local clock, corresponding to locally observed events, and time stamps received
in time-stamp messages from the reference node.

Def. 3: (View) The view Vi is the set of all time stamps the client node has acquired up
to and including local time hi. The local time hi is the local time when the i-th
time-stamp message is received.

The notion of views is illustrated in Fig. 5. The reference and the client
node cooperate in exchanging time stamps. On the left, the view resulting
from unidirectional communication from the reference node to the client node
is shown. The reference node that repeatedly sends time-stamp messages to the
client node, containing the send time stamp si. The time stamp hi is the receive
time according to the local clock of the client. The view Vi contains all pairs of
send and receive time stamps (sj , hj) with j ≤ i 2.

In the middle and right drawings of Fig. 5, other views are shown, which
include time-stamp messages from the client node to the reference node. The

2The index counts the time-stamp messages in the order of arrival at the client node. In the
example depicted in Fig. 5, the (i − 1)-th message has been sent after the i-th message, thus
si−1 > si. By convention, such an inversion can never occur for the receive time-stamps.
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example in the middle represents the well-known round-trip synchronization
scheme, e.g. used by the Cristian’s algorithm [Cri89]. The following definitions
can also be applied to this scheme, which we will do occasionally when com-
paring the unidirectional approach with the round-trip approach. However, the
focus of this and the next chapter is on unidirectional synchronization, shown
on the left. In Chapter 4, we will introduce CSAs that use the scheme shown on
the right, which is a superposition of two uncoordinated unidirectional schemes
between two peers.

2.2.3 Estimate-Based CSAs

We now introduce estimate-based CSAs. The predicate estimate-based is used
to distinguish CSAs that compute estimates of real time from interval-based
CSAs, which compute lower and upper bounds on real time and which are in-
troduced in Chapter 4.

Def. 4: (Estimate-Based CSA) An estimate-based clock-synchronization algorithm A
computes from every view Vi a logical clock Ci. The synchronized clock is then
as the function C, which at all local times h ≥ h1 is equal to the latest logical
clock Ci:

Ci = A(Vi)

C(h) = Ci(h) , with i : hi ≤ h < hi+1

The synchronization error at time t provided by algorithm A is

E(t) = C(H(t)) − t .

We present two simple estimate-based CSAs which will be used throughout
this chapter to illustrate concepts and definitions.

Def. 5: (Local-Clock CSA) The algorithm Aloc is an estimate-based CSA that com-
putes logical clocks according to

Ci(h) = s1 + (h − h1)

Algorithm Aloc stores the first time-stamp pair (s1, h1) in memory and ig-
nores all later time stamps. All logical clocks Ci are equal and the synchronized
clock has a constant offset to the local clock.

Def. 6: (Network-Clock CSA) The algorithmAnet is an estimate-based CSA that com-
putes logical clocks according to

Ci(h) = si + (h − hi)
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C (H(t))2
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Fig. 6: Logical clocks computed by Anet. The logical clocks C1 – C3 are shown as dashed
lines, the local clock H and the synchronized clock C , which is always equal to the
latest logical clock, are shown as solid lines.

Algorithm Anet only stores the latest time-stamp pair (si, hi). The synchronized
clock C leaps to si whenever a message is received. The offset to the local
clock is constant only in between two time-stamp message arrivals. Figure 6
illustrates the behavior of algorithm Anet.

The algorithms Aloc and Anet represent two extreme cases. The first mostly
relies on the local clock, while the latter is mostly based on the received time
stamps. As we will see later, both algorithms have advantages and disadvan-
tages and good CSAs are often a compromise between these extremes.

In the next chapter, a particular kind of estimate-based CSAs will play an
important role:

Def. 7: (Selective CSA) An estimate-based CSA is a selective CSA if, for every view
Vi, it computes (i) a candidate clock C∗

i , (ii) a decision πi ∈ {0, 1}, and (iii) a
logical clock according to

Ci(h) =

{
C∗

i (h) if πi = 1
Ci−1(h) if πi = 0

If πi = 1, then the candidate clock is selected and Ci(h) = C∗
i (h), ∀h ≥ hi.

If πi = 0, the candidate clock is rejected and Ci(h) = Ci−1(h), ∀h ≥ hi, i.e.
the new logical clock is equal to its predecessor.

Clearly, every estimate-based CSA is selective in some sense. However,
we reserve the term for CSAs that compute non-trivial decisions πi. Algorithm
Aloc has π1 = 1 and πi = 0 for all i > 1 and is thus not a selective CSA. Also
algorithm Anet with πi = 1 for all i is not a selective CSA.
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2.3 Properties

In the previous section we have defined what CSAs are. But what is a good
CSA? This question is the topic of the next four sections, and we will argue
that the answer strongly depends (i) on the exact requirements and (ii) on the
system in which the CSA is executed. But first, we present a way of analyzing
CSAs that allows us to make statements about CSAs without making any as-
sumptions about the systems in which the CSAs are executed. This analysis is
based on properties that formalize correct behavior on a microscopic level, i.e.
on properties that describe the processing of a single view Vi. To this purpose,
we define the error ei = Ci(hi) − ti as the synchronization error immediately
after starting the logical clock Ci, and e−i = Ci−1(hi)−ti as the synchronization
error immediately before starting the logical clock Ci.

Def. 8: (Safety) An estimate-based CSA A is said to be safe if the error immediately
after starting a new logical clock is never worse than it was immediately before
starting this clock:

∀i > 1 : |ei| ≤ |e−i |

Ex. 4: Algorithm Aloc is safe: It never modifies the synchronized clock after the first
time-stamp message arrival and thus ei = e−i for all i > 1.

Algorithm Anet is not safe: Consider the case when the client’s local clock
has drift ρ = 0, the first time-stamp message delay is 1ms, and the second is
2ms. Then e−2 = −1ms and e2 = −2ms. Thus |e2| > |e−2 | and Anet is not safe.

We have said before that the properties do not require to make assumptions
about the system. But to show that Anet is not safe, we have made such assump-
tions. This is no contradiction: If a property is required to hold in all possible
systems, we can construct an arbitrary system to show that the property does
not hold.

While Aloc is safe, we would not say that it is a very good CSA, since it
achieves safety by simply never doing anything (for i > 1). Therefore we
define the liveness property:

Def. 9: (Liveness) An estimate-based CSA A is said to be live, if on an infinite sequence
of views, no logical clock Ci is the last that has a better synchronization error
than its predecessor.

∀i : ∃j > i : |ej | < |e−j |

Ex. 5: The algorithm Aloc is not live, since ei = e−i for all i > 1.
The algorithm Anet is not live: Consider the case when all time-stamp mes-

sage delays are 1ms. Then the error is ei = −1ms for all i. If the client’s local
clock drift is positive (ρ > 0), but time-stamp messages are received sufficiently
often such that e−i < 0, then ei < e−i < 0 and thus |ei| > |e−i | for all i.
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None of the two CSAs introduced so far is safe and live. In the next chap-
ter, we will present CSAs that fulfill both properties. These algorithms never
actively degrade the synchronization error and eventually improve the synchro-
nization error, thus we can say that they are correct. In the following, we present
an alternative definition of correctness that applies to selective CSAs only:

Def. 10: A selective CSA is optimally selective if it never makes a wrong decision. Let
e∗i = C∗

i (hi)− ti be the initial error of the candidate clock C ∗
i . Then a selective

CSA is optimally selective if

|e∗i | > |e−i | → πi = 0

|e∗i | < |e−i | → πi = 1

Optimal selectivity implies safety (by condition |e∗
i | > |e−i | → πi = 0).

Instead of requiring that the CSA eventually improves the synchronization error,
it must improve whenever possible.

2.4 Performance Metrics

In this section, we are interested in quantitative statements about CSAs. The
question is not whether a CSA is good or not, which was the focus of the previ-
ous section, but rather how good it is. Furthermore, we do not focus our atten-
tion on a single execution of a CSA (processing a single view Vi), but consider
a synchronized clock C over an extended period of interest.

Let the observation interval T = [ts, te], starting at real time ts and ending
at real time te, and its length ∆T = te − ts. It does not make sense to observe
the synchronization error of a clock before the synchronization algorithm has
been started, thus ts ≥ t1 (remember that t1 is the time of the first time-stamp
message arrival). However, the observation may be started at ts > t1 if one
is interested in the steady-state behavior only. In this observation interval, we
define the following three performance metrics:

Def. 11: (Accuracy) The accuracy A of a synchronized clock C is the maximal absolute
value of the synchronization error:

A = max
t∈T

(|E(t)|)

Def. 12: (Peak Jitter) The peak jitter J of a synchronized clock C is the difference be-
tween the maximal and the minimal value of the synchronization error:

J = max
t∈T

(E(t)) − min
t∈T

(E(t))



2.4. Performance Metrics 23

t

C(H(t))

t

J

E(t)

t

A
M

�

J

E'(t)

t

A

M

�

�

�

C'(H(t))

(a) (b) (c)

Fig. 7: Performance metrics accuracy A, peak jitter J , and MTIE Mτ . (a) Two synchronized
clocks C and C′. (b) Error of C and corresponding performance metrics. (c) Error of
C ′. Here the accuracy is larger than the peak jitter.

Def. 13: (Maximum Time-Interval Error (MTIE)) The maximum time-interval error
Mτ of a synchronized clock C is the maximal difference in the synchronization
error within an observation interval of real-time length τ :

Mτ = max
ts≤t≤te−τ

(
max

t≤u≤t+τ
(E(u)) − min

t≤u≤t+τ
(E(u))

)

The accuracy A describes how large the absolute synchronization error can
become, the peak jitter J describes the variability of the synchronization error.
The MTIE M 3 is similar to the peak-jitter metric. It also measures the variability
of the synchronization error, but not over the whole observation period, only
over a smaller interval. Note that Mτ1 ≤ Mτ2 if τ1 ≤ τ2 and J = M∆T . Figure 7
illustrates the three metrics, a concrete example how the various metrics can be
used to model the synchronization requirements of an application can be found
in Sect. 3.6.

For the three performance metrics defined above, we have implicitly used
a target setup time of S̃ = ts − t1, i.e. we have not considered the interval
[t1, t

s]4. We will now define the actual setup time S as a performance metrics,
using target values for the other three metrics.

Def. 14: (Setup Time) The setup time S of a synchronized clock C is defined as the
smallest real number such that the metrics A, J and M in the observation inter-
val T = [t1 + S, te] meet their target values, i.e. A ≤ Ã, J ≤ J̃ and M ≤ M̃ .

We now return to the initial question of this section: How good are algo-
rithms Aloc and Anet? The question can for example be answered by determin-
ing the worst possible accuracy, peak jitter or MTIE these algorithms achieve.

3We will omit the interval length τ whenever it is clear from the context or irrelevant.
4We will sometimes use the notation J(S̃) to refer to the peak jitter after a setup time of S̃.
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2.5 Worst-Case Performance
To determine the worst-case performance of a CSA, it has to be specified what
the worst case is. The system can be interpreted as an adversary that knows
exactly how a CSA works and then generates a sequence of views Vi that makes
the CSA behave badly. In this section, we specify the system model, i.e. the
rules that the adversary has to obey when generating worst-case views.

In our model of point-to-point synchronization with unidirectional commu-
nication, the adversary can determine (i) the drift of the client’s local clock and
(ii) the delays of the time-stamp messages. In Sect. 2.5.1, we present clock-drift
models, and in Sects. 2.5.2 and 2.5.3, two different delay models are introduced.

2.5.1 Clock Drift

In the whole thesis, we always assume local clocks with bounded drift.

Ass. 1: (Bounded Drift) The drift ρ(t) of a local clock lies at all times t in the interval
[−ρ̂, ρ̂].

The bounded-drift model is the most general and the most pessimistic model.
It allows the speed of local clocks to make arbitrary jumps in the interval [−ρ̂, ρ̂].
Real clock devices do not behave like this. It is however a suitable model to
determine the worst-case performance. Sometimes, we will make stronger as-
sumptions about the drift of local clocks.

Ass. 2: (Bounded Drift Variation) The variation ϑ(t) = dρ(t)
dt

of a local clock’s drift

lies in the interval [−ϑ̂, ϑ̂].

Note that bounded drift variation is an additional constraint for the adversary
and never replaces the bounded-drift assumption. A special case of bounded
drift variation is constant drift, i.e. when ϑ̂ = 0, then ρ(t) = ρ is constant. The
constant drift model with ϑ = 0 is too optimistic in practice. It will be used in
Sect. 3.4.1 to develop a drift-compensation mechanism, which in Sect. 3.4.2 is
extended to the bounded-drift-variation model.

2.5.2 Bounded Delay

We start with a very simple, standard delay model. It is assumed that time-
stamp messages are received regularly and that their delay is bounded by finite
constants.

Ass. 3: (Message Interval) In every interval of real-time length ∆t, at least one time-
stamp message is received by the client node.

ti − ti−1 ≤ ∆t, ∀i > 1

Ass. 4: (Bounded Delay) The delay di of every time-stamp message is bounded by the
finite constants dmin and dmax.

di ∈ [dmin, dmax], ∀i ≥ 1
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Worst case Ex. WLAN Ex. WAN
Aloc Anet Aloc Anet Aloc Anet

A dmax + ρ̂∆T dmax + ρ̂∆t 110ms 10, 01ms 1100ms 1001ms
J ρ̂∆T dvar + 2ρ̂∆t 100ms 9, 02ms 100ms 990, 2ms
Mτ ρ̂τ dvar + ρ̂τ 0, 1ms 9, 01ms 0, 1ms 990, 1ms

Tab. 2: Worst-case performance of Aloc and Anet in the bounded-delay model: The result of a
performance comparison depends on the applied metric, on system parameters like the
maximal drift ρ̂, bounds on the message delay dmin and dmax, and the message interval
∆t, and on the length of the observation interval ∆T .

Occasionally, we use the notation dvar = dmax − dmin.
Now, it is finally possible to determine how good algorithms A loc and Anet

perform in the worst case.

Ex. 6: The synchronization error achieved by algorithm Aloc is E(t) = s1 + H(t) −
h1− t = −d1 +(H(t)−h1)− (t− t1) = −d1 +

∫ t
t1

ρ(t)dt. The worst-case peak
jitter is thus J = ρ̂∆T if ρ = ±ρ̂. The worst-case accuracy is dmax + ρ̂∆T if
d1 = dmax and ρ = −ρ̂. The worst-case MTIE is Mτ = ρ̂τ .

The synchronization error achieved by algorithm Anet is E(t) = −di +∫ t
ti

ρ(t)dt with ti ≤ t < ti+1. Anet can achieve at most −dmin + ρ̂∆t and at least
−dmax − ρ̂∆t. The worst-case peak jitter is thus J = dvar + 2ρ̂∆t. The worst-
case accuracy is A = dmax + ρ̂∆t and the worst-case MTIE is Mτ = dvar + ρ̂τ .

These results are summarized in Tab. 2. Two numerical examples are also
shown in this table. We use τ = 1s, ∆T = 1000s, ρ̂ = 10−4. For the wireless
LAN example, ∆t = 100ms, dmin = 1ms, and dmax = 10ms. For the WAN
example ∆t = 10s, dmin = 10ms, and dmax = 1s.

We see that Aloc in both examples achieves a better MTIE than Anet. On the
other hand, Anet achieves the better accuracy. Concerning the peak jitter, Aloc

is better in the WAN scenario, andAnet is better in the WLAN where the message
delay is less variable and time-stamp messages are received more frequently.

The example has shown that the decision whether Aloc or Anet is better de-
pends on the requirements: Anet often provides a better accuracy, while Aloc

promises a lower MTIE. Which one provides the lower peak jitter depends es-
sentially on the length of the observation interval ∆T . Whether Aloc or Anet

is better also depends on system characteristics: Algorithm Anet is very sensi-
ble to the variability dvar of the time-stamp message delays, while Aloc depends
strongly on the maximal rate deviation ρ̂ of the local clock. Finally, the decision
depends on the available resources: Algorithm Anet also requires that time-
stamp messages arrive frequently (small ∆t). Some of the worst-case bounds
presented in Table 2 are presumably very pessimistic, e.g. the bound for the
MTIE in the case of algorithm Anet, which implicitly assumes that the time-
stamp messages with the shortest and the longest delay are received consecu-
tively. Also, some of the bounds are either difficult to determine in advance or
have to be chosen very pessimistically. E.g. the maximal delay in a WLAN can
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achieve several hundreds of milliseconds, while most of the delays are below
two milliseconds. To summarize, the value of the presented worst-case bounds
is rather dubious in practice.

2.5.3 Delay-Interval Curves

The bounded-delay model presented above constrains every message delay to
lie in a given interval, independent of previous delays. We now introduce a
slightly more complex delay model that constrains every message delay to lie
in an interval whose size depends on previously encountered message delays.
This alternative delay model is original work and will allow us to derive smaller
upper-bounds on performance metrics than the simple bounded-delay model in
Sect. 3.3.

The basic idea is the following: The bounded-delay model requires that in
every interval of length ∆t, a message with a delay in [dmin, dmax] is received.
We extend this with a second constraint, saying that in every interval of length
2∆t, at least one message with a delay in [dmin, D

u(2)] is received. Similarly,
in every interval of length j∆t, at least one message is received that has a delay
in [dmin, D

u(j)]. We call the function Du : IN → IR the upper delay-interval
curve.

Ass. 5: (Delay-Interval Model) A sequence (di), i ≥ 1 of message delays is an admis-
sible sequence in the delay-interval model if in every interval of length ∆t, at
least one time-stamp message is received, and if in every interval of length j∆t
with j ≥ 1, at least one message has a delay not greater than Du(j).

max
i≥1

{
min

k∈[i,i+j−1]
{dk}

}
≤ Du(j), ∀j

Figure 8 shows two examples of delay-interval curves. In the following,
we discuss (i) how an upper delay-interval curve can be obtained if a delay
sequence is given, and (ii) how delay sequences can be generated if an upper
delay-interval curve is given.

Computation of the Delay-Interval Curves
Given a sequence (di), we want to compute an upper delay-interval curve such
that the sequence (di) is admissible. There exist infinitely many such curves,
e.g. Du(j) = ∞ for all j ≥ 1 is always a solution, but does not really capture
the properties of the sequence (di). Instead,

Du(j) = max
i≥1

{
min

k∈[i,i+j−1]
{dk}

}
(2.1)

provides the smallest function Du for which the sequence (di) is admissible.
We call this function the tight delay-interval curve. It is a monotonic decreasing
function. Note that the value of Du(1) is equal to the maximal delay in the
sequence. Inversely, Du(∞) is the minimal delay.
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Fig. 8: Two examples of delay-interval curves. The curves are computed from the delay se-
quences using Eq. 2.1. Both sequences are equal except that in the sequence on the
right, 30 consecutive delays are maximal.

Algorithm 1 Generate Delay Sequence
Input: Upper delay-interval curve Du of length π
Output: Admissible delay sequence (di) with length I

for i := 1 to I do
DMAX := Du(1)
for j := 1 to min(π, i − 1) do

if mink∈[i−j,i−1](di) > Du(j) then
DMAX := min(DMAX,Du(j))

end if
end for
di := random number in [Du(π),DMAX]

end for

Generation of the Delay Sequences
Deriving an admissible delay sequence (di) from a given delay-interval curve
can be done using Alg. 1. The last statement of the algorithm can be changed to
di := DMAX to obtain the most pessimistic admissible delay sequence. Also,
it could be enhanced to account for a particular delay distribution function.

2.6 Average-Case Performance
In the last section, we have presented analytical methods to derive worst-case
bounds on the performance achieved by a CSA. The results of this analysis are
guaranteed under the assumptions made in the system model. From a prac-
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titioner’s point of view, there are two problems with this approach: (i) Real
systems, though nasty as they are, do not behave as adversaries. They do not
take pleasure in leading the engineer and his algorithms astray, and thus the an-
alytical worst-case bounds are often far too pessimistic. (ii) Analytical system
models make many abstractions and simplifications on the actual behavior of
a real system. System models describe what a scientist would like a system to
be, such that he can analyze it nicely. Therefore, the worst-case “guarantees”
presented in the last section are by no means guaranteed in a real system.

In this section, we present an alternative way to evaluate the performance
of CSAs, based on evaluating system traces and measuring the performance ac-
cording to the metrics defined in Sect. 2.4. In Sect. 2.6.1, we present a method
to obtain system traces by measurement in a real system and discuss empiri-
cal date recorded in an 802.11b WLAN. Alternatively, traces can be generated
according to an analytical system model. In Sect. 2.6.2, we present statistical
models that allow to generate traces and determine their parameters according
to the measured traces. In Sect. 2.6.3, we confront the performance obtained
by simulation of the well-known Linear-Regression CSA on measured and on
generated traces.

A view contains all the information that a client node can use for synchro-
nization. However, it does not contain sufficient information for assessing the
synchronization quality. For this purpose, we define the notion of a trace.

Def. 15: (Trace) A Trace Ti contains the information of the view Vi augmented with the
real times ti of the time-stamp-message arrivals at the client node:

Ti = Vi

⋃
{tj | j ≤ i} .

Using traces, we can derive the delays of time-stamp messages from the
reference to the client node. Since si is the real time of the send event and ti

is the real time of the receive event, we have di = ti − si. It is also possible
to derive the clock drift of the client node’s local clock. More precisely, the
average clock drift between two time-stamp-message arrivals is ρi = (hi −
hi−1)/(ti − ti−1) − 1.

2.6.1 Measured Traces

Here we describe how traces can be obtained from a real system and present
measured probability-distribution functions for various scenarios and load con-
ditions.

We record traces consisting of 50000 time-stamp messages. For every mes-
sage, the send time stamps si, the local receive time stamps hi and the virtual
receive time-stamp ti have to be measured. We call ti a virtual time stamp, be-
cause it is a value of the sender’s clock at an event that occurs at the receiver.
Measuring ti is thus the most difficult part of recording system traces.
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Fig. 9: Setup for the delay measurements. a) The send and receive time stamps si and hi are
measured with the local TSC. b) The virtual receive time ti is interpolated using local
time stamps pj and p′j from parallel-port interrupts, which are generated concurrently
on both nodes.

Measurement System
Nodes are standard PCs running the Linux operating system. The nodes use
their time-stamp counter (TSC) register, which exists in every Pentium proces-
sor, to measure the time of events. Its resolution is determined by the clock fre-
quency of the CPU, i.e. the TSC of a Gigahertz Pentium has a resolution of one
nanosecond. On the reference node, a periodic process generates time-stamp
messages. The send time stamps si are written into these messages. When a
message is received at the client node, the send time stamp is written into a log
together with the corresponding receive time stamp hi.

Measuring the Virtual Receive Time ti
The virtual receive time ti is equal to the local receive time hi plus the current
offset between the reference’s and the client’s TSC. This offset can be mea-
sured as follows: A direct cable connects the parallel ports of the reference and
the client nodes. The reference node periodically generates falling and rising
edges on one of its parallel-port output pins. This pin is connected to the exter-
nal interrupt pin of the parallel ports of the reference and the client node. Thus,
whenever the reference generates a rising edge on its parallel-port output pin, si-
multaneous interrupts are generated on both nodes. Reference and client record
their TSC registers in the parallel-port interrupt service routine. The reference
sends its parallel-port time stamp to the client, which writes it together with its
own local parallel-port time stamp in a second log. Using interpolation methods,
it is now possible to compute virtual receive times ti of the timestamp-messages
according to the TSC register of the reference. The procedure is illustrated in
Fig. 9

Accuracy of the Measurements
All time-stamping mechanisms are implemented in loadable kernel modules in
order to reduce OS latencies that otherwise would cause additional delay vari-
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Fig. 10: System setup for recording traces. wired) The reference and the client nodes are in the
wired part of the setup, inf cw) reference is wired, the client wireless, inf wc) reference
is wireless, the client is a wired node, and inf ww,adhoc) both reference and client are
wireless nodes.

ability. A detailed description of the measurement system is given in [BD03],
similar procedures are described in [MFNT00] and [EGE02]. The accuracy of
the measurements has been found to be better than ±5µs.

Scenarios
Figure 10 displays the various scenarios for which we record traces. An IEEE
802.11b wireless network is connected via an access point (WAP) to a switched
100Base-TX IEEE 802.3 Ethernet. Various combinations of the reference and
the client node in either the wireless or the wired part of the network are ex-
amined. In the case of both reference and client node being wireless nodes, the
802.11b network is configured both in infrastructure and in ad-hoc mode.

Network Load
For all the scenarios depicted in Fig. 10, we have recorded several traces under
variable conditions. Several types, directions and rates of network load have
been generated during the measurements. Figure 11 shows all scenarios with a
wireless client (i) without any additional network load, (ii) with load generated
by a 128kBit/s, constant-rate MP3 audio-stream, and (iii) with load generated
by a 3MBit/s, variable-rate DivX video-stream. The MP3 and the DivX streams
were generated by the reference node5 and received by the client node. Detailed
results are shown in Table 3, many more scenarios and load conditions have
been presented in [BD03].

Discussion
As can be seen in Tab. 3, the minimal delay is different for the various sce-
narios. In the infrastructure mode with wireless reference and client nodes, the
minimal delay is twice as large as the minimal delay in the ad-hoc mode, which
could be expected since the messages are first sent from the reference node to

5Using the Video LAN Client (VLC) software for Linux.
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Fig. 11: Measured cumulated probability-density functions (CDFs) and delay sequences. On
the left, measured probability functions for different scenarios with a wireless client and
different load conditions are shown. On the right, corresponding delay sequences are
shown. All sequences are shown in the same scale to allow a qualitative comparison.

the WAP and then from the WAP to the client node. If the client node is a
wired node, the minimal delay is shorter, since the access point retransmits the
message on the much faster wired network. In the opposite direction, the min-
imal delay is slightly higher, while for the purely wired scenario, the minimal
delay is almost two orders of magnitude smaller. In all scenarios, the minimal
delay remains almost constant (variations below 24µs) under the various load
conditions. This observation is the main reason why the Local-Selection CSAs
presented in Chapter 3 achieve a better performance, especially in heavy and
variable network conditions, than CSAs that do some form of averaging over
many time stamps (see Sect. 3.6).

Increasing network load has a much stronger influence on the median delay
d0.5 and the average delay davg. The effect is most prominent in the case of
the ad-hoc mode, where the median delay increases by more than 600µs under
heavy network load and the average delay increases even by more than 1ms.

In all scenarios and under all load conditions, the maximal delay can achieve
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Scenario Load dmin[µs] d0.25[µs] d0.5[µs] d0.75[µs] dmax[µs] davg[µs]
adhoc none 811 830 827 830 53533 837

light 800 841 1167 1737 7221 1365
heavy 809 834 1458 2449 17559 1850

inf ww none 1638 1669 1858 2035 45737 1888
light 1636 1698 1875 2053 50683 2017
heavy 1637 1771 2014 2923 82349 2605

inf wc none 1143 1216 1220 1226 3317 1225
light 1125 1007 1217 1007 671187 7247
heavy 1121 1169 1212 2231 212460 10081

inf cw none 1207 1273 1420 1624 87800 1459
light 1216 1316 1472 1692 75181 1770
heavy 1192 1347 1592 2109 50812 1914

wired none 24 32 34 35 151 33
light 20 35 41 47 302 41
heavy 22 98 135 167 425 134

Tab. 3: Statistical properties of the measured traces. For every scenario and load type, at least
10 traces have been recorded. The values shown above are the averages of these traces.

very large values (> 50ms). As can be seen in Fig. 11 on the right side, it is
mainly the WAP that occasionally causes very large message delays.

2.6.2 Generated Traces

After describing how to measure traces, we present an alternative way of ob-
taining traces. Message delays can be modeled as a random variable whose
distribution F (d) = Probability(di ≤ d) is specified. We review three differ-
ent probability functions that have been used in the literature and discuss their
applicability to the scenarios described above.

For example, a normal distribution according to

F N(d) =
1

2

(
1 + erfc(

d − davg

σ
√

2
)

)

can be assumed, where σ is the standard deviation of the delay. In some in-
stances, the normal distribution is a good description of the reality, e.g. the delay
of the low-level RF channel of Berkeley Motes has been reported to closely fol-
low a normal distribution [EGE02]. Normal distributions are often assumed for
simulation [vGR03, OS94] and the derivation of optimality results [KEES03].
However, the normal distribution is symmetric and does not model a minimal
delay. This is often not realistic, e.g. in the case of WANs [Cri89, Tro94, Fie04].

An exponential-distribution model according to

F E(d) =




0 if d < dmin

1 − e
dmin−d

davg−dmin otherwise
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Fig. 12: Measured CDF and best-fitting models. P is a Pareto model, E exponential and N
normal. RMSE is the root mean square error of the model; small values indicate good
fit. The exponential model fits best in the ad-hoc scenario, the Pareto is best in the
infrastructure scenarios, and the normal model fits best in the wired-Ethernet scenario.
None of the models is very accurate, as can be seen most clearly in the infrastructure,
wireless-to-cable scenario (inf wc).

may be more accurate in these cases. It has been found that exponential dis-
tributions often are too optimistic in the sense that the probability of delays
exceeding the expected delay davg is underestimated.

Heavy-tail distributions describe such situations more accurately [Fie04].
An example is the Pareto distribution defined as

F P (d) =

{
0 if d < dmin

1 −
(

dmin

d

)α
otherwise

Discussion
We have fitted the three probability functions to the measured probability func-
tions using the root mean square error (RMSE) as the optimization criterion.
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Scenario Load Pareto Exponential Normal
dmin[µs] α[1] dmin[µs] davg[µs] davg[µs] σ[µs]

adhoc none 776 57.8 856 861 801 10
light 768 2.0 682 1388 1283 583
heavy 783 1.5 562 1864 1668 1100

inf ww none 1634 7.6 1622 1859 1848 201
light 1605 5.9 1610 1923 1867 231
heavy 1522 2.3 1369 2479 2272 831

inf wc none 1210 127.0 1210 1220 1218 8
light 335 1.9 450 693 730 208
heavy 430 0.7 678 1695 1476 791

inf cw none 1163 5.5 1156 1422 1392 203
light 1153 3.5 1155 1531 1460 246
heavy 1173 2.5 1100 1825 1684 570

wired none 31 13.1 31 34 33 2
light 34 4.9 33 42 41 7
heavy 94 2.7 81 141 133 51

Tab. 4: Parameters of the best-fitting models for various scenarios and network-load condi-
tions. The parameters are significantly different for all scenarios and load conditions.

Table 4 shows the parameters of the best-fitting models, Fig. 12 displays the
measured probability functions and the best-fitting models for scenarios with
heavy load (DivX). In Tab. 4, it can be seen that the parameters are significantly
different for the various scenarios and have to be individually determined for
every scenario. Fig. 12 shows that no single statistical model fits best in all
scenarios: For the wired case, the normal distribution is most accurate (small-
est RMSE), the exponential model is best in the case of the ad-hoc scenario,
and the Pareto model is best in the other scenarios. Remember that we have
noted in the discussion of the measured probability functions that the ad-hoc
scenario has less outliers than corresponding infrastructure scenarios. It is thus
not surprising that the exponential model is strongest in the ad-hoc scenario.

A downside of statistical delay models is that they assume statistical inde-
pendence of concurrent delays. As will be seen in Sect. 2.6.3 , this leads to
far too optimistic performance estimations using artificially generated delay se-
quences, even if their probability function fits well the measured probability
function.

2.6.3 Experimental Study: Accuracy of Delay Models

In this section we have presented several possibilities of obtaining traces: (i)
Record from a real system, (ii) generate delays using measured CDFs, (iii) gen-
erate delays using a statistical delay model, (iv) generate delays using measured
delay-interval curves. We now examine how well the various models capture
the properties of the real system regarding clock synchronization.
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Experimental Setup
We compare the MTIE in an interval of length τ = 10s, achieved by the Linear-
Regression CSA on traces generated with the various models. The Linear-
Regression CSA is explained in Example 7. The window size was set to κ :=
500. We have computed the average probability function from ten recorded
traces containing 10000 time-stamp messages. From the resulting probability
function we have generated ten traces with the same length. Then we have
fitted normal, exponential, and Pareto probability functions, and again gener-
ated ten traces from all these models (using the constant drift model). Finally,
we computed the average-delay curves from the ten recorded traces and gener-
ated ten traces from these curves. The complete procedure was executed with
recorded traces from the ad-hoc scenario and the infrastructure, wired reference,
and wireless client scenario.

Ex. 7: (Linear-Regression CSA Allr) Algorithm Anet (Def. 6) starts every logical
clock Ci with the received time stamp as the initial value. Therefore time-stamp
messages with very large delays cause large deviations in the synchronization
error. The linear-regression CSA smoothes such deviations by averaging several
received time stamps to produce initial values of the logical clocks. The linear-
regression algorithm is shown in Alg. 2. The algorithm maintains four sums
Sloc, Sref , Sloc2 and Slocref which range over the last κ time-stamp messages.
With these sums, the algorithm computes offset and slope of the regression line.
The algorithm minimizes the sum of the square deviations between the last κ
time stamps and the regression line.

Algorithm 2 Linear-Regression CSA, following [PTVF92], Section 15.2
Input: View Vi = {(hj , sj)|j ≤ i}
Output: Logical clock Ci

Parameters: Averaging-window size κ
State: Sloc := Sref := Sloc2 := Slocref := 0
Sloc := Sloc + hi

Sref := Sref + si

Sloc2 := Sloc2 + h2
i

Slocref := Slocref + hi ∗ si

if i > κ then
Sloc := Sloc − hi−κ

Sref := Sref − si−κ

Sloc2 := Sloc2 − h2
i−κ

Slocref := Slocref − hi−κ ∗ si−κ

end if
if i > 1 then

Ci(H(t)) := Sloc2Sref−SlocSlocref

Sloc2−S2
loc

+ H(t)Slocref−SlocSref

Sloc2−S2
loc

else
Ci(H(t)) := (si − hi) + H(t)

end if
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Fig. 13: MTIE achieved by the Linear-Regression CSA on recorded traces compared to the
values achieved on generated traces. The upper chart shows the results for the ad-
hoc scenario; the lower chart shows those of the infrastructure scenario with a wired
reference and a wireless client. On the left, the MTIE achieved on ten recorded traces
is shown, followed by the MTIE achieved on traces generated on the base of a given
probability function. The rightmost bars show the results achieved on traces generated
with the delay-curves model. The MTIE values achieved on normal and exponential
traces for the ad-hoc scenario are too small (i.e. too good) to be visible.

Linear-regression mechanisms are used e.g. in the RBS synchronization al-
gorithm for sensor networks [EGE02]. In [Arv94], the peak jitter achieved
by a simpler version of the linear-regression algorithm is analyzed using sta-
tistical methods and assuming that statistical properties of the message-delay
sequence are known (expected delay, standard deviation). In contrast to the
linear-regression algorithm presented here, the algorithm of [Arv94] starts a
new logical clock only every κ arrivals of a time-stamp message. Under these
assumptions, a method for choosing the parameter κ is presented. Note that
Allr requires O(κ) memory.

Discussion
Figure 13 shows all the resulting MTIE values. It can be seen that all models
correctly identify the infrastructure scenario to be more difficult than the ad-hoc
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scenario. In the ad-hoc scenario, Allr achieves much better results on statistical
models than on the recorded traces. The traces generated with the measured
probability function and with the delay-curves produce results that are close
to those achieved on the recorded traces. In the infrastructure scenario, there
is only a small difference between the statistical models and the delay-curve
model. The normal-distribution model leads to the most optimistic MTIE val-
ues, while the exponential and the Pareto models, which generate more and
larger outliers, give worse and more variable results. In summary, all artificially
generated traces lead to too optimistic results and fail to deliver realistic estima-
tions of the synchronization performance in a specific, real system. Therefore,
we base our quantitative evaluations on measured traces.

2.7 Parameter Optimization

In this section, we argue that the parameter optimization of realistic CSAs is a
difficult task, and show that multiobjective evolutionary algorithms (MOEAs)
are a well-suited method. In two experimental studies, conflicting goals in the
design of CSAs are identified, and the performance of MOEAs in comparison
with more traditional optimization methods is evaluated.

2.7.1 Motivation

Not all CSAs are as simple as the Local-Clock and the Network-Clock CSAs
(see Defs. 5 and 6). For example the performance of the linear-regression CSA
presented in Example 7 presumably depends on the averaging-window size κ,
set to κ = 500 in the experiments of Sect. 2.6.3. A larger κ would probably have
reduced the damaging influence of time-stamp messages with a very large delay,
so-called outliers. On the other hand, averaging over a long period, aside from
costing a lot of memory, is problematic because of non-constant clock drift,
since then the assumption of a linear relation between local time and reference
time is not justified. The best choice of κ is thus a compromise that is dependent
on the frequency and the amplitude of outliers and on the speed and amount of
change in the clock drift. Maybe it would be a better idea to enhance Allr by an
outlier-rejection mechanism: if a received time stamp is more than a specified
amount off the current synchronized-clock time, the time-stamp message is dis-
carded instead of being included in the average calculations. Such a mechanism
introduces at least one more parameter, for which it is again not clear how it is
chosen optimally and what its impact on the choice of the averaging-window
size is.

We see that CSAs that aim at achieving robust performance in a real system
tend to have relatively many parameters and determining their optimal settings
is not trivial. As will be seen in the next chapter, mechanisms for automatic
parameter adaption most often have parameters themselves, and are thus no real
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solution to the parameter-optimization problem. Furthermore, optimal param-
eter settings for one scenario are not necessarily optimal in another scenario.
The problem is especially grave if the performance of several different CSAs
is compared: Assume two CSAs A1 and A2; irrespective of the algorithms’
mechanisms, it is very likely that one can show that A1 is better than A2, if
one tunes A1’s parameters carefully while no effort is spent on the parameters
of A2. For all these reasons, a method for automatic parameter optimization is
required, which allows to clearly define the effort that is spent on optimizing a
CSA’s parameters.

Many standard optimization methods are not applicable, as the relation be-
tween a given parameter and the algorithm’s performance can not be described
analytically, e.g. gradient-search methods which require differentiability of the
performance metrics. Also, many applications require CSAs that simultane-
ously optimize several performance metrics. E.g. the wireless-loudspeakers ap-
plication sketched in Fig. 2 relies on an accuracy in the order of a millisecond, a
peak jitter in the order of 100 microseconds, an MTIE with τ = 10s in the order
of 10 microseconds and a setup time in the order of a few seconds. Many stan-
dard optimization methods can only optimize a single criterion, which forces
the user to weigh the various criteria a priori. This is often difficult, if nothing
is known about achievable values. Methods that concurrently optimize several
criteria are much more user-friendly in such a situation, as they clearly iden-
tify which combinations are achievable and thus allow an educated trade-off
decision after the optimization step.

We are thus looking for a method that allows us to automatically optimize
a large number of parameters according to multiple, maybe conflicting criteria,
and which does not require differentiability of the relation between parameters
and the optimization criteria.

2.7.2 Multiobjective Evolutionary Optimization

We now present the principles of multiobjective evolutionary optimization al-
gorithms (MOEAs), which fulfill the requirements described above.

Evolutionary algorithms are based on the notions of individuals and pop-
ulations. An individual is a representation of a potential solution to the opti-
mization problem, and a population is a set of individuals. Every individual is
characterized by its genotypic and a phenotypic representation. For example
the genotype of a CSA are its parameters, while the phenotype of a CSA is its
performance achieved on a given trace or set of traces. From the genotypic rep-
resentation, the phenotypic representation can be obtained by simulation of the
CSA with the given parameters. This process is called fitness assignment.

Evolutionary algorithms work on populations. Starting with an initial pop-
ulation, an iterative process generates new populations, called generations. A
new generation is derived from its predecessor as follows: In a first step, the
environmental selection removes a given number of individuals from the pop-
ulation, namely those that have a comparably low fitness. Other criteria may



2.7. Parameter Optimization 39

V
A

R
IA

T
O

R

S
E

L
E

C
T

O
R

Fitness Assignment

Fig. 14: Evolutionary optimization process as supported by the PISA tool set. A parameter set
for a CSA constitutes an individual. The variator component (left-hand side) computes
the fitness of a population of individuals. The selector component (right-hand side)
decides which individuals are not part of the next generation of individuals and which
individuals are parents for the next generation. The variator then recombines and mu-
tates the parameters of the parent individuals to create the offspring. The process is
repeated from the beginning.

also influence this step, e.g. the goal of preserving diversity in the population.
In a second step, the mating selection chooses some individuals from the pop-
ulation that will serve as parents. In the final step, new individuals are added
to the population to compensate for the environmental selection. This is done
by recombination of two parent-individuals, i.e. a new individual is created
that shares some of its genotypic representation with each of its parents, and
applying mutation, i.e. some random modification of a part of the genotypic
representation. The set of all new individuals is called offspring.

The PISA Interface
As illustrated by Fig. 14, the components of an MOEA can be divided into two
components. (i) The problem-dependent functionality, which includes recom-
bination and mutation of the individuals and fitness assignment, is grouped into
the variator component. (ii) The problem-independent functionality is grouped
in the selector component. This component decomposition has the advantage
that a user only has to implement the variator component and can use tested
standard implementations of the selector component. The freely available PISA
interface [BLTZ03] provides easy access to a variety of state-of-the-art MOEAs.
In our experimental studies, we used the SPEA2 algorithm [ZLT02].

Variator for CSA Optimization
We now describe in more detail the implementation of the variator component.

Individuals: The genotypic representation of an individual consists of the
sequence of a CSA’s parameters. Depending on the type of CSA, the parame-
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ters can be integers or reals or a mix of both. E.g. for the linear-regression CSA
presented in Example 7, it is a single integer value, the window size κ. The
phenotypic representation is a set of performance metrics achieved by the CSA
on a given trace or set of traces. To avoid an over-specialization of the param-
eters, it is advantageous to simulate the CSA on several traces and compute the
performance metrics as the worst values achieved on any of the traces.

Recombination: Two parent individuals A and B are recombined to create
two new individuals C and D by randomly selecting an integer number i and
setting the first i parameters of the individual C equal to those of parent A and
the remaining parameters equal to those of parent B. The new individual D has
the first i parameters from B and the others from A.

Mutation: For every new individual, a randomly chosen parameter is mul-
tiplied with a real number chosen randomly from [0.5, 1.5]. For efficiency, we
have implemented the compute-intensive simulation of the CSAs in C code,
while the recombination and mutation functionality is written in Matlab6.

2.7.3 Experimental Study: Conflicting Criteria

In the previous description, the selection of the performance metrics as opti-
mization objectives has not been specified. The following experimental study
has the purpose of illustrating the use of MOEAs for parameter optimization
and of identifying two pairs of conflicting objectives. We introduce the phase-
locked-loop CSA Apll, which is particularly well suited for this purpose, since
it has only a small number of parameters and the reason for the conflicting ob-
jectives are intuitively accessible.7

Ex. 8: (Phase-Locked-Loop CSA) AlgorithmAloc (Def. 5) starts the first logical clock
C1 with an initial value equal to the first time stamp s1 and ignores all later
time stamps. The phase-locked-loop algorithm Apll shown in Alg. 3 is similar in
that only the first time stamp s1 is used as an initial value for the logical clock
started at its arrival. The following time stamps are used to adjust the rates of
later logical clocks. Whenever a received time stamp si has a larger value than
the current reading of the latest logical clock Ci−1(hi), the new logical clock Ci

is set to progress faster than the previous logical clock. The rate adjustment is
determined by a PI controller with the difference si − Ci−1(hi) as input. The
offset of the new logical clock Ci is determined such that the synchronized clock
C is continuous, i.e. such that Ci(hi) = Ci−1(hi). A possible implementation is
shown in Alg. 3. An additional feature of this implementation is the limitation
of the input for the PI controller to ±θmax, which limits the negative impact of
outliers. Various forms of PLL algorithms are used in ATM (synchronous AAL,
see [Nor00], Sec. 2.3). Also NTP contains a PLL [Mil95].

6On a 2x900MHz SunBlade 1000, the fitness assignment based on 3 traces of length 50000
for a population of 40 individuals takes less than 8 seconds, a complete run with 100 generations
takes 13 minutes.

7Another reason is that, together with the linear-regression CSA, Apll will be used as a
yardstick when we evaluate the performance of a new family of CSAs in the next chapter.
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Algorithm 3 Phase-Locked-Loop CSA
Input: View Vi = {(hj , sj)|j ≤ i}Vi

Output: Logical clock Ci

Parameters: Integral gain κI

Proportional gain κP

Maximal input signal θmax

State: Integrator sum SI := 0
Temporary variables: Input signal θ

if i > 1 then
θ := si − Ci−1(hi)
if θ > θmax then

θ := θmax

end if
if θ < −θmax then

θ := −θmax

end if
SI := SI + κI(hi − hi−1)θ
Ci(H(t)) := Ci−1(hi) − hi

1+κPθ+SI
+ H(t) 1

1+κPθ+SI

else
Ci(H(t)) := (si − hi) + H(t)

end if

Experimental Setup
A population of 20 individuals representing Apll algorithms is optimized during
20 generations for two objectives. The objectives are (i) the conflicting objec-
tives MTIE Mτ and peak jitter J with a setup time of 30s, and (ii) the conflicting
objectives peak jitter and the setup time S, measured at the time when peak jit-
ter is better than 300µs and the MTIE is below 10µs. The whole procedure is
performed for the ad-hoc and the wireless infrastructure scenario, both with all
three load types.

Discussion
From every optimization, the two extremal solutions, i.e. those with the best
MTIE and the best peak jitter, respectively the best peak jitter and the shortest
setup time are displayed in Tab. 5. As an example, consider the case of the
infrastructure scenario with heavy load (DivX). The first optimization obtained
an algorithm that achieves after 30s a peak jitter of 427µs and an MTIE of 16µs.
The other algorithm achieves the much worse peak jitter of 1929µs but a better
MTIE of 2µs. The second optimization obtained one algorithm that achieves
a peak jitter of 400µs, but requires 1495s to reduce the peak jitter to the target
value of 300µs. The other algorithm achieves a peak jitter of 1030µs after 30s,
but can reduce it to 300µs after 103s. The trade-offs are less pronounced for the
experiments with no or light load.

Figure 15 illustrates what the trade-off between peak jitter and MTIE actu-
ally means regarding the algorithm’s behavior. While optimizing the peak jitter
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Fig. 15: Optimization criteria can be conflicting. On the left, the Peak jitter and MTIE values
achieved by the PLL algorithm optimized using SPEA2. On the right, the synchroniza-
tion error over time of the two extremal solutions is shown.

results in a PLL with a very short time constant (high proportional gain, low
integral gain), optimizing the MTIE results in a longer time constant. An al-
gorithm with a long time constant is more resilient to outliers, but is very slow
in settling to a steady state. Returning to the wireless-loudspeakers application
from Fig. 2, the interpretation is the following: Optimizing peak-jitter results
in a noisy performance, while optimizing MTIE results in a solution where the
perceived direction of the sound’s source is not constant.

The study showed that the various performance metrics defined in Sec. 2.4
can indeed be conflicting objectives regarding parameter optimization. Multio-
jbective optimization allows us to first explore the range of feasible trade-offs,
and to weigh the various objectives afterwards.

Scenario Load Best J [µs] Best Mτ [µs] Best J [µs] Best S[s]
J Mτ J Mτ J S J S

adhoc none 7 2 26 1 6.40 0 6.40 0
light 163 17 1336 6 156.40 1000 337.04 32
heavy 1813 57 10235 8 1850.96 1000 14745.53 783

inf cw none 63 11 2714 3 61.04 6 94.26 0
light 74 11 1442 2 72.00 1119 90.73 0
heavy 427 16 1929 2 400.31 1495 1030.16 103

Tab. 5: Conflicting objectives. Performance metrics achieved by the PLL algorithm for a given
scenario and load condition. Every double column (Best X) represents one parameteri-
zation. The first two parameterizations are obtained by optimizing the objective values
peak jitter J (Def. 12) and MTIE Mτ in an interval of length τ = 10s (Def. 13), the last
two algorithms are obtained by optimizing the peak jitter and the setup time S (Def. 14).



2.7. Parameter Optimization 43

0 0.1 0.2
0

0.005

0.01

0.015

0.02

κ
P
 [1]

κ I [1
]

MOEA

0 500 1000 1500
0

10

20

30

40

50

MAXJ [µs]

M
T

IE
 [µ

s]

0 0.1 0.2
0

0.005

0.01

0.015

0.02

κ
P
 [1]

Grid

0 500 1000 1500
0

10

20

30

40

50

MAXJ [µs]

0 0.1 0.2
0

0.005

0.01

0.015

0.02

κ
P
 [1]

Random

0 500 1000 1500
0

10

20

30

40

50

MAXJ [µs]

Fig. 16: Comparison of parameter-optimization algorithms. Parameter optimization using
SPEA2, grid search and random search. For all methods, 2500 solutions were evaluated.
The upper charts display two of the parameters of the evaluated candidate solutions, the
lower charts display the corresponding objective values.

2.7.4 Experimental Study: MOEAs vs. Random and Grid Search

Having shown that multiobjective optimization is a reasonable approach to pa-
rameter optimization of CSAs, we now compare the proposed evolutionary al-
gorithm with two simple alternatives: grid search and random search.

Experimental Setup
An initial population of 50 individuals of phase-locked-loop algorithms was op-
timized using the MOEA during 50 generations. The objective values were for
peak jitter and MTIE and the traces were taken from the infrastructure scenario
with a wired reference (inf cw). In total, the MOEA evaluated 2500 candidate
parameter sets. The solutions found by the MOEA are compared to solutions
found by the grid-search and the random-search methods, both under the con-
straint of evaluating the same number of candidate parameterizations.

Discussion
Figure 16 displays the parameterizations of Apll that were evaluated by the three
optimization methods. The grid- and the random-search methods explore more
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or less uniformly the whole parameter space and achieve a very similar coverage
in the objective space. The MOEA concentrates its search on a limited area of
the parameter space. While the solution with the best MTIE is comparable
to the respective solutions found by grid and random search, the MOEA finds
solutions with a better peak jitter (500µs vs. 592µs and 601µs). Also the region
of interesting trade-offs is much more densely populated in the objective space
of the MOEA. The area dominated by the solutions found by the MOEA (with
the corner point J = 2000µs and Mτ = 100µs) is 1.3 times larger than the
area dominated by the solutions found by grid search and 1.45 times larger than
the corresponding area for random search. These factors are not particularly
impressing. However in the next chapter, we will see CSAs that have up to
nine parameters. To systematically explore a nine-dimensional parameter space
using grid search is almost infeasible: Evaluating 2500 solutions would mean
that for every parameter, only 2 or 3 values could be examined. In contrast, the
MOEA quickly finds interesting areas in the parameter space and concentrates
its efforts on them. Concerning the running time, all optimization algorithms
are approximately equal, since the running time is strongly dominated by the
fitness assignment (simulation of the CSA on the input traces), which is the
same for all of the optimization algorithms.

2.8 Summary

In this chapter, methods to evaluate clock-synchronization algorithms (CSAs)
have been presented. Some of the methods are more theoretical, based on formal
system models. Others are empirical, based on measurements in a real system.
In the next chapter, both approaches will be applied to the novel class of Local-
Selection CSAs.

We have presented properties of CSAs that formalize correct or reasonable
behavior and which can be evaluated without a complete specification of the
system model. While these properties allow us to reason about the qualities and
weaknesses of a particular CSA, they do not give any quantitative information
about the CSAs performance. Therefore, various metrics have been introduced
to quantify the performance of a CSA. We have seen that it is necessary to make
detailed assumptions about clock drift and message delays to derive worst-case
bounds on these metrics.

We have presented a method to evaluate the average-case performance of
CSAs using simulation. Various ways to obtain system traces for the simulation
have been compared. It has been shown that artificially generated traces lead to
performance estimations that are too optimistic. Multiobjective evolutionary al-
gorithms (MOEAs) have been presented as a tool for optimizing the parameters
of a CSA. Combining measurements, simulation and optimization provides for
a realistic, reproducible and fair evaluation and comparison of different CSAs,
as illustrated in Fig. 17.
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Fig. 17: Realistic, reproducible and fair evaluation strategy. Measure: Send and receive time
stamps si and hi are stored together with reference time ti. Simulate: CSAs are simu-
lated on the trace, producing estimates ci. With the reference time, the synchronization
error ei can be determined. Optimize: The parameters of the CSA are optimized using
a multiobjective-optimization evolutionary algorithm (MOEA).

In contrast to direct measurements of the synchronization quality in a real
system, the presented method is reproducible, because it uses simulation based
on recorded traces. In contrast to simulation based on artificially generated
traces, it is realistic, since the traces have been obtained by measurements in
a real system, accounting for side effects like OS latencies, cross traffic in the
network, etc. The method is fair, because parameter optimization of the CSAs
is an integral part of the evaluation. The method will be applied to the wireless-
loudspeakers application in the next chapter.
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3
Point-to-Point Synchronization

In this chapter, the synchronization of a single client node to a reference node
is discussed. It is assumed that clock-synchronization algorithms (CSAs) run
locally on the client and process a sequence of time-stamp messages received
from the reference node, without sending messages to the reference node. The
novel class of Local-Selection CSAs (LS-CSAs) is introduced. In Sects. 3.2–
3.4, LS-CSAs are formally analyzed, contributing to a better understanding of
the achievable performance of point-to-point synchronization. In Sects. 3.5
and 3.6, the theoretical insights of previous sections are translated to imple-
mentable, efficient algorithms. The algorithms are evaluated using simulation
based on measured traces. It is demonstrated that LS-CSAs outperform known
CSAs and reliably achieve synchronization in the low microsecond range in
802.11b WLANs.

In Sect. 3.1, the defining properties of the LS-CSAs are introduced. The
decisive property of slow logical clocks and its ramifications are illustrated by an
informal comparison with a similar CSA from Lamport presented in [Lam78].

In Sect. 3.2, it is shown that LS-CSAs are safe, live, and optimally selective.
These properties guarantee a reasonable behavior of a CSA, independent of
assumptions on message delays. It is shown that other CSAs do not fulfill all
three properties.

In Sect. 3.3, two upper bounds on peak jitter achieved by LS-CSAs are
presented and compared. The first bound meets a lower bound first presented
in [LL84]; this bound does not describe the transient phase of synchronization,
and there is a large gap between the bound and typically achieved peak-jitter
values. The second bound is original work; it accurately describes the transient
phase of synchronization and provides a better upper bound in the steady state
than the first bound.
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Section 3.4 discusses under what conditions it is possible to estimate and
compensate the drift of the client’s local clock. Constant and variable drift are
considered. An LS-CSA is presented that implements drift compensation us-
ing a-priori information about message delays. Upper bounds on the error of
drift compensation are derived. It is shown that drift compensation dramatically
improves synchronization.

In Sect. 3.5, we present simple, implementable heuristic LS-CSAs that do
drift compensation without requiring any a-priori information about message
delays. It is discussed which of the properties of Sect.3.2 still hold and which do
not. The heuristic LS-CSAs are compared in terms of the cost and performance
achieved in a 802.11b WLAN.

In Sect. 3.6, the performance of the heuristic LS-CSAs is compared with
the performance of other CSAs. To this purpose, the wireless-loudspeakers
application is presented and a set of target performance metrics is defined that
model the requirements of this application. The quality of synchronization is
examined in different 802.11b WLAN scenarios. The performance of the CSAs
is compared in various scenarios and network load situations.

3.1 Local-Selection Principle
In this section, the Basic Local-Selection algorithm Als is introduced and the
class of Local-Selection CSAs is formally defined. The difference between
Local-Selection CSAs and a similar algorithm from Lamport [Lam78] is dis-
cussed.

3.1.1 Definition and Description

The presentation starts with the definition of a very simple CSA, which we call
Basic Local-Selection algorithm.

Def. 16: (Basic Local Selection) The Basic Local-Selection algorithm Als is a selective
estimate-based CSA (Def. 7) that computes candidate clocks C ∗

i and decision
πi from the view Vi = {(sj, hj)|j ≤ i} and the parameter ρ̂ according to the
following rules:

C∗
i (h) = si +

h − hi

1 + ρ̂
, ∀h ≥ hi (3.1)

πi = (c∗i > c−i ), ∀i > 1 (3.2)

The parameter ρ̂ is an upper bound on the drift of the local clock.

An example of how the algorithms works is shown in Fig. 18. In the fol-
lowing, three properties are described that capture the essential behavior of this
algorithm. These properties will then be used to define the class of Local Selec-
tion CSAs.
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Prop. 1: (Bounded Negative Error) The error of every candidate value c∗i is negative
or zero and finite.

−∞ < e∗i ≤ 0 ∀i

Prop. 2: (Slow Logical Clocks) The drift of all logical clocks is negative and lower-
bounded by a constant −�̂.

−�̂ < �i(t) < 0 ∀i, ∀t ≥ ti

Prop. 3: (Required Positive Adjustment) The synchronization error ei immediately af-
ter starting a new logical clock is (i) not smaller than it was before (e−

i ) and (ii)
not smaller than the candidate error e∗i .

ei ≥ max(e−i , e∗i ) ∀i > 1

Based on these properties, we define the class of Local-Selection CSAs.

Def. 17: (Local-Selection CSAs) A selective estimate-based CSA A is a Local Selection
CSA (LS-CSA) if Properties 1, 2 and 3 hold.

Lem. 1: The Basic Local-Selection algorithm Als is an LS-CSA.

Proof:
Prop. 1 The candidate error is e∗i = si − ti. Since si is the send time and ti

is the receive time of the i-th time-stamp message, the error is e∗i = −di. Every
message has a positive delay and thus e∗i < 0. Every message that is received
has a finite delay, and thus −∞ < e∗i .

Prop. 2 The clock drift is �i(t) = dCi(H(t))
dt

− 1 = 1+ρ(t)
1+ρ̂

− 1. By Ass. 1,
ρ(t) < ρ̂, and thus �i(t) < 0. Also by Ass. 1, ρ(t) > −ρ̂, and thus �i(t) >
−�̂ = 1−ρ̂

1+ρ̂
− 1 ≈ −2ρ̂.

Prop. 3 Case 1) If c∗i > c−i , then ci = c∗i = si > c−i . Subtracting ti, we get
ci − ti = c∗i − ti > c−i − ti and thus ei = e∗i > e−i . Case 2) If c∗i ≤ c−i , then
ci = c−i ≥ si = c∗i . Subtracting ti results in ei = e−i ≥ e∗i . �

3.1.2 Comparison with Lamport’s CSA

In order to provide some intuitive understanding of the characteristics of LS-
CSAs, we compare algorithm Als with an algorithm presented by Lamport in
the seminal paper [Lam78].

Def. 18: (Lamport’s CSA) Algorithm Alam is a selective estimate-based CSA that com-
putes candidate clocks C∗

i and decisions πi from the view Vi = {(sj, hj)|j ≤ i}
according to the following rules:

C∗
i (h) = si + h − hi, ∀h ≥ hi (3.3)

πi = (c∗i > c−i ), ∀i > 1 (3.4)
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Case 2:ρ>0
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Case 1:ρ<0

Local Selection
Lamport
Time stamps

Local Selection
Lamport
Time stamps

Fig. 18: Synchronization error achieved by Lamport’s algorithm and by the Basic Local-
Selection algorithm. On the left, the case of a slow client clock is shown. Both al-
gorithms work correctly, the performance of the Local-Selection algorithm is worse
because the absolute value of the client’s drift is by ρ̂ larger than in the case of Lam-
port’s algorithm. On the right, the case of a fast client is displayed. Here, Lamport’s
algorithm fails to synchronize. The Local Selection algorithm works correctly as in the
slow client case.

The algorithm Alam is similar to Als in that it only makes positive adjust-
ments to the synchronized clock C, and thus Prop. 3 holds. Moreover, every
logical clock that is initially different from its predecessor has a negative error,
thus Prop. 1 holds. But it is not an LS-CSA, since the drift of the logical clocks
is �i(t) = ρ(t), which can be either positive or negative. The consequences of
this difference are illustrated in Fig. 18.

Case 1: ρ(t) ≤ 0
If the client’s local clock H progresses slower than real time, the client keeps
updating its clock forever. It does not update its clock at every reception of a
time stamp si, e.g. if a very slow message follows shortly after a fast message,
it will be ignored. But after some time, the client’s clock has fallen far enough
behind real time that even a slow message is used to update the client’s clock.

Case 2: ρ(t) > 0
If the client’s local clock progresses faster than real time, the situation is dif-
ferent: In case the client’s clock initially is behind real time, some of the first
received messages are used to update the client’s clock. But at some point of
time, the client’s clock gets ahead of real time and all messages received from
this time on are discarded without updating the client’s clock. The client’s clock
now freely runs away of real time, boundlessly increasing the synchronization
error.
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Discussion
We have shown that algorithm Alam fails to synchronize if the local clock is
faster than the reference clock. In [Lam78], a slightly different setting is de-
scribed, in which this problem is avoided: Lamport’s algorithm synchronizes a
number of nodes with drifting clocks among each other. Every node periodically
sends time-stamp messages to all other nodes and whenever a node receives a
time stamp with a higher value than its own time, it sets its current time to the
value of the received time stamp. Thus the node with the fastest clock adjusts
its clock only upon receiving a time stamp from the node with the highest offset
and then stops updating for good. All other nodes keep adjusting their clocks
to the time stamps from the node with the fastest clock. In this setting, the
“reference node” is not specified a priori, but emerges during the execution of
the algorithm and may also change when the drift rates of the local clocks vary.
This synchronization scheme is part of the IEEE 802.11 standards, where it is
called Distributed Time Synchronization Function (DTSF). The scheme has two
drawbacks: (i) If the number of nodes sending time-stamp messages is large,
there may result congestion and in consequence loss of messages. If so, the
node with the fastest local clock may not be able to send time-stamp messages
to some other nodes, and thus synchronization fails. This scalability problem
has been described in [HL02]. (ii) Relating the synchronized time to some ex-
ternal time (e.g. UTC) is non-trivial, since it cannot be predicted which node
takes the role of the reference. These system-wide synchronization issues will
be discussed in more detail in Chaps. 4 and 5.

Returning to the issue of this chapter, namely the synchronization of a client
node with a predetermined reference node, the LS-CSAs have the advantage
over algorithm Alam that they always operate in the mode described as case 1
and thus avoid free-running synchronized clocks and unbounded synchroniza-
tion error. This claim is formalized as the liveness property in Sect. 3.2. On
the other hand, the left side of Fig. 18 shows that peak jitter and the other per-
formance metrics achieved by Als are worse than those achieved by Alam if the
local clock H is already slower than real time. This is discussed in Sect. 3.3,
where upper bounds on the performance metrics are derived. In Sects. 3.4
and 3.5, Local-Selection algorithms and heuristics are presented that eliminate
this drawback by drift compensation, i.e. by making sure that �i(t) is negative,
but only as little as necessary.

3.2 Properties

In this section, we show that Local-Selection CSAs are (i) safe and live and
(ii) that they are optimally selective. These properties formalize correct behav-
ior of a CSA. A safe CSA never actively degrades synchronization, and a live
CSA eventually improves synchronization. Optimal selectivity is stronger in the
sense that it implies safety and requires that a CSA improves synchronization
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whenever possible. This section is summarized in the following theorem:

Thm. 2: Every LS-CSA is safe, live, and optimally selective.

First we prove these three properties and then compare the properties of
LS-CSAs with the properties of other CSAs.

3.2.1 Properties of Local-Selection CSAs

Before proving the properties safety, liveness and optimal selectivity, we start
with the following lemma:

Lem. 3: (Negative Offset) The error E of a synchronized clock computed by an LS-CSA
is negative or zero.

E(t) ≤ 0 ∀t > t1

Proof: Every logical clock Ci that is different from its predecessor starts with
a negative error ei = e∗i ≤ 0. (Prop. 1). Since the drift of every logical clock is
negative (Prop. 2), the error remains negative.

If all logical clocks that are not equal to the previous logical clock have
negative error, then all logical clocks have negative error and then also the syn-
chronization error is negative. �

Lemma 3 actually states that an LS-CSA computes a valid lower bound on
real time. This will be of interest in the next chapter, where we discuss interval-
based CSAs. The lemma is presented here, because it shortens the proof of
optimal selectivity.

Lem. 4: (Safety) Every LS-CSA is safe.

Proof: Case 1) If a logical clock is equal to its predecessor, then ei = e−i ,
fulfilling the safety condition |ei| ≤ |e−i |.

Case 2) By Prop. 1, the initial error of every logical clock that is different
from its predecessor is negative, i.e. ei = e∗i ≤ 0. By Prop. 3, we have ei ≥ e−i .
Combining these relations, we get 0 ≥ ei ≥ e−i and thus |ei| ≤ |e−i |, which
corresponds to Def. 8. �

Lem. 5: (Liveness) Every LS-CSA is live.

Proof: To prove liveness, we have to show that the synchronization error even-
tually improves (Def. 9). Since we have already shown safety, it suffices to show
that eventually, a logical clock Ci is different from its predecessor.

Let e∗ = mini(e
∗
i ) > −∞ (by Prop. 1). Any logical clock Ci eventually has

an error that is smaller than e∗ (by Prop. 2). Let tk be the real time of the first
message arrival after the error of Ci has fallen below e∗. Assume that no logical
clock Cj with i < j < k is different from Ci, then e−k < e∗. By Prop. 3, we
have ek ≥ e∗k ≥ e∗ and ek > e−k , thus Ck is different from its predecessor. �
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Lem. 6: (Optimal Selectivity) Every LS-CSA is optimally selective.

Proof: Step 1) If |e∗i | > |e−i |, then e∗i < e−i (Prop. 1 and Lem. 3). Adding ti to
both sides, we get c∗i = si < c−i and thus πi = (si > c−i ) = 0.

Step 2) If |e∗i | < |e−i |, then e∗i > e−i (Prop. 1 and Lem. 3). Adding ti to both
sides, we get c∗i = si > c−i and thus πi = (si > c−i ) = 1. �

3.2.2 Discussion

First, we discuss the validity of the presented properties for non-LS-CSAs, and
then summarize Sect. 3.2

Algorithm Alam is safe, but not live and not optimally selective. Safety can
be shown in the same way as for LS-CSAs, as the proof of Lem. 4 requires
only Props. 1 and 3, which also hold for Alam. Algorithm Alam is neither live
nor optimally selective: A counterexample is shown in Fig. 18. This is because
Alam does not fulfill Prop. 2, and thus it cannot be shown that e−

i < 0, ∀i > 1.
It can easily be shown that Apll and Allr presented in the previous chapter

are not safe and thus not optimally selective. The reason is that every received
time stamp influences new logical clocks, regardless of the accuracy of the time
stamp. E.g. on a delay sequence with di = 0 for i ∈ [1, 9] and d10 = 1s, the error
of synchronized clocks computed by these CSAs increases at the reception of
the tenth time-stamp message, thus these CSAs are not safe. These algorithms
are live on most delay sequences. The outlier-rejection mechanism plays an
important role: a small threshold value leads to rejection of most time stamps,
thus the algorithms tend to be “more safe, but less live”. Hard statements are
very difficult to prove.

Cristian’s algorithm presented in [Cri89] is not a unidirectional CSA. In con-
trast to all other CSAs presented here it requires a view Vi with round-trip mea-
surements, i.e. the client asks for time stamps from the reference and measures
the time between sending the request and receiving the time stamp. Cristian’s
CSA is considered here because it is a truly selective estimate-based CSA. A
logical clock is different from its predecessor if and only if the measured round-
trip delay is below a specified threshold value. But this condition is neither
related to the synchronization error immediately before the update, nor to the
synchronization error after the update. Even if the round-trip delay is below
the threshold value, there is no guarantee that the candidate value c∗i computed
under the assumption of symmetrical delays from and to the reference node
does not provide worse accuracy than the current synchronized time c−i . On the
other hand, even if the round-trip delay is large, the candidate value c∗i can be
perfectly accurate (e∗i = 0), provided that the delays from and to the reference
node are symmetric. The algorithm is thus neither safe nor optimally selective.

In Tab. 6, the validity of the various properties presented in this section are
summarized for the CSAs presented so far and also for the CSAs presented in
the following sections. Only the Local-Selection algorithm satisfies safety, live-
ness and optimal selectivity. The other algorithms either can degenerate into
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Algorithm Safety Liveness Opt. Selectivity Peak Jitter
Aloc • - - ∞
Anet - - - Js

Allr (-) (•) (-) ?
Apll (-) (•) (-) ?
A from [Cri89] (-) (•) (-) ?
Alam (ρ > 0) • - - ∞
Alam (ρ ≤ 0) • • •

Als • • • Js, Jd

LS Alsdel if Di < di • if Di < di

Alsdc • if Ri(H(t)) > ρ(t), ∀t > ti
Alsdc,iter if Du is valid Js, Jd, J l

d

HLS Aleak • if λ > ϑ̂
2(1−ρ̂)

- ?

Tab. 6: Properties of various CSAs. The symbol • implies that the property holds, − means
that it does not. (•/−) marks unproved conjectures. Local-Selection (LS) CSAs fulfill
all properties (Sect. 3.2); peak jitter J is bounded by Js and Jd (Sect. 3.3). The peak
jitter of algorithms that are not live cannot be bounded. For some algorithms, e.g.
Heuristic Local-Selection (HLS) CSAs (Sect. 3.5), bounds on peak jitter are not known.

a mode where they stop doing anything and thus degrade the accuracy bound-
lessly (not live), or may actively degrade the accuracy by their actions (not safe).

The presented properties are a novel way to analyze the behavior of CSAs on
a microscopic level, i.e. considering their reaction to the input of a single time-
stamp message. The advantage of this approach is that the analysis is mostly
independent of properties of system traces (except the exclusion of degener-
ated delay sequences for the liveness property of Als, see Def. 9). However,
the presented properties cannot be used to draw conclusions about the aver-
age or worst-case accuracy, peak jitter, and MTIE of CSAs. Still, the optimal-
selectivity property will be used to derive an upper bound on the peak jitter in
the next section.

3.3 Upper Bounds on Performance Metrics

In this section, two different upper bounds on the peak jitter Js and Jd achieved
by Local-Selection CSAs are presented. The difference between the bounds
is due to different adversaries that generate a delay sequence for time-stamp
messages processed by LS-CSAs. Bound Js is derived under the assumption
that an adversary chooses every message delay di deliberately from the interval
[dmin, dmax]. The bound Jd is derived under the assumption that the message
delays di are constrained by an upper delay-interval curve Du. In comparison,
the bound Jd has a number of advantages:
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• For realistic system parameters, Jd is far smaller than Js.

• In real systems, the maximal delay dmax tends to be very large, due to sporadic
outliers. Js directly increases with dmax, while the new bound Jd is mostly
independent of the maximal delay.

• The bound Jd is a function of the setup time. It is intuitively clear that the peak
jitter immediately after starting some algorithm A is large and later becomes
smaller. Bound Jd derived from the delay-interval curve accurately describes
this behavior, while Js is independent of the setup time.

We first derive the two bounds on peak jitter and illustrate the difference in
Ex. 9 and Fig. 19. Then the relation between bounds on peak jitter J and bounds
on the accuracy A and the maximum time-interval error M are discussed.

3.3.1 Adversary 1: Bounded Delay

In the following we derive a bound on the peak jitter J achieved by an LS-CSA.
The bound Js is in accordance with the lower bounds presented in [LL84] for
non-drifting nodes and in [HMM85] for nodes with bounded drift.

Thm. 7: (Static Upper Bound on Peak Jitter) The peak jitter J achieved by algorithm
Als is upper-bounded by Js ≥ J with

Js = dmax − dmin + �̂∆t

if the delay di of every time-stamp message is contained in [dmin, dmax] and the
interval between consecutive message arrivals is at most ∆t.

Proof: By definition, we have J = max(E(t)) − min(E(t)). By Prop. 2,
the error of logical clocks only decreases, thus max(E(t)) = max(e∗i ) =
max(−di) ≤ −dmin. Let E(t′) = min(E(t)). If we can show that E(t′) ≥
−dmax − �̂∆t, then J ≤ −dmin + dmax + �̂∆t = Js.

The rest of the proof is by contradiction: Assume that E(t′) < −dmax−�̂∆t.
By Ass. 3, we know that at some time ti ∈ [t′ − ∆t, t′] a time-stamp message
with a delay d ≤ dmax has been received.

Case 1) If at this message arrival (real time ti) the synchronized clock has
been set to the value of the time stamp si, then the synchronization error is
E(t′) ≥ −dmax +

∫ t′
ti

�i(t)dt. Since �(t) > −�̂, we get E(t′) ≥ −dmax − �̂∆t,
which contradicts the assumption.

Case 2) If at ti the synchronized clock has not been set to si, then si = ti−di

must have been smaller than C(ti). Subtracting ti, we get −di < E(ti). As
E(ti) = E(t′)−∫ t′

ti
�i(t)dt and �i(t) > −�̂, we derive E(ti) < E(t′)+�̂(t′−ti).

Using the original assumption, we arrive at E(ti) < −dmax. But −di < E(ti) <
−dmax is a contradiction. �

The peak jitter thus depends on the maximal and the minimal message delay
dmax and dmin, the maximal clock drift �̂, and the interval ∆t between time-
stamp messages. As �̂ typically is very small (≤ 100ppm = 10−4), the delay
component (dmax−dmin) most often dominates over the drift component (�̂∆t).
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If the maximal delay is very large, then also the bound on peak jitter be-
comes very bad. Unfortunately, in most real situations, the maximal delay is
indeed very large, compared to typical (median) delay values, see e.g. Tab. 3.
In these situations, the derived bound is of little use if the performance of a CSA
has to be estimated realistically; the bound is far too pessimistic.

3.3.2 Adversary 2: Upper Delay-Interval Curve

We now present the upper bound Jd on the peak jitter achieved by an LS-CSA.

Thm. 8: (Dynamic Upper Bound on Peak Jitter) The peak jitter J achieved by algo-
rithm Als after a setup time of i∆t is upper-bounded by Jd(i∆t) ≥ J with

Jd(i∆t) = min{Du(j) + �̂j∆t|j ∈ [1, i]} − Du(∞)

if the delays di of the time-stamp messages are constrained by the upper delay-
interval curve Du and the interval between consecutive message arrivals is at
most ∆t.

Note that the bound Js from Thm. 7 is a special case of the bound Jd from
Thm. 8: Js = Jd(∆t) = Du(1)−Du(∞)+ �̂∆t. By Ass. 5, Du(1) = dmax and
Du(∞) = dmin, and thus Jd(∆t) = dmax − dmin + �̂∆t.

Proof: The bound Js is based on the observation that whenever a time-stamp
message is received, the error cannot be smaller than −dmax, and between two
messages, the error cannot decrease by more than �̂∆t.

Knowing that the message delays are constrained by Du allows to extend
this argument: Du(i) implies that in every interval of length i∆t, at least one
message is received with a delay d ≤ Du(i). At these moments, the error cannot
be smaller than −Du(i), and between these moments, the error cannot decrease
by more than −�̂i∆t. The first of these messages with d ≤ Du(j) arrives at
latest i∆t after the first time-stamp message. Thus, the peak jitter J achieved
after a setup time of i∆t is at most Du(i)−Du(∞)+�̂i∆t}. The same argument
can be made for any 1 ≤ j ≤ i, and therefore Jd(i∆t) = min{Du(j)+�̂j∆t|j ∈
[1, .., i]} − Du(∞). �

Ex. 9: To illustrate Thm. 8, we generate 50 delay sequences with dmax = 5ms, dmin =
0ms and a message interval ∆t = 0.1s. Additionally, the delay sequences are
generated such that they comply with the upper delay-interval curve Du(i) =
(51−i

50
)5dmax for i ≤ 50 and Du(i) = ( 1

50
)5dmax for i > 50. The Local-Selection

algorithm is simulated with these delay sequences, assuming a node with ρ =
−ρ̂ = −100ppm. The resulting peak jitter in function of the setup time is shown
in Fig. 19.

Clearly, the static bound Js = dmax − dmin + 2ρ̂∆t = 5.02ms (dashed line
in Fig. 19) is a valid upper bound for all the traces. While the bound is quite
accurate at the start of the sequence, the peak jitter soon becomes far smaller
than can be predicted using this bound, e.g. the peak jitter is below 630µs on
all delay sequences after 2s.
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Fig. 19: Upper bounds on peak jitter. The dashed line represents bound Js (Thm. 7). The solid
line shows bound Jd (Thm. 8). The dash-dotted lines represent the peak jitter J in
function of the setup time achieved by the Basic Local-Selection algorithm on 50 delay
sequences. Both bounds are valid, but Jd is much tighter. For example after 2s (dotted
line), Js = 5.02ms, Jd = 770µs and J < 630µs. Bound Jd also describes the behavior
in the transient phase at the start of the delay sequences.

The dynamic bound Jd is shown as a solid line in Fig. 19. It can be seen
that it is also valid for all the traces, but describes much more accurately the
actual peak jitter achieved by the Local-Selection algorithm. For example, after
2s setup time, a peak jitter of at most 770µs is predicted.

Discussion
The dynamic bound Jd provides better estimates of the peak jitter achieved by
algorithm Als than the static bound Js: (i) The bound is dynamic, i.e. the bound
decreases for increasing setup time. The bound thus reflects the transient be-
havior at the begin of a time-stamp-message sequence. (ii) The new bounds
provide much better guarantees. In the numeric example shown in Fig. 19, the
upper bound on peak jitter is reduced from 5ms to 770µs, whereas Als achieves
peak jitter of at most 630µs on 50 sequences.

This benefit is due to the additional delay constraint, the upper delay-interval
curve Du. On the one hand, such a curve Du is a stronger requirement than
simple upper and lower bounds dmin and dmax (explaining intuitively the better
bound). On the other hand, it could also be argued that Du is a weaker require-
ment, since Du(1) → ∞ has not much significance for Jd, whereas dmax → ∞
makes Js utterly worthless. The bound Jd is robust in the sense that it does not
depend on dmax, which in practical settings often is much larger than most of
the delays.
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Comparison to Lamport’s Algorithm
No finite bound can be derived for algorithm Alam if the client’s local clock is
faster than real time. Otherwise, i.e. if ρ < 0, the bounds of Thms. 7 and 8 are
also valid for algorithm Alam. Here we have �̂ = ρ̂ (for Als, we had �̂ = 2ρ̂),
and thus the peak jitter is better than in the case of algorithm Als.

3.3.3 Upper Bounds on Accuracy

By Defs. 11 and 12, the peak jitter J and the accuracy A are related by

A =

{
J + min(E(t)) if max(E(t)) ≥ −min(E(t))
J − max(E(t)) otherwise

(3.5)

For algorithm Als, the maximal error is bounded by max(E(t)) ≤ −dmin

and max(E(t)) < −min(E(t)), thus we have A ≥ J + dmin. In the follow-
ing, we discuss whether an LS-CSA can be constructed that produces a better
accuracy A. Consider the following CSA:

Def. 19: (Local Selection with Delay Compensation) The Local Selection with Delay
Compensation algorithm Alsdel is a selective estimate-based CSA that computes
candidate logical clocks C∗

i from the view Vi = {(sj, hj)|j ≤ i} according to
the following rules:

C∗
i (h) = si + Di +

h − hi

1 + ρ̂
, ∀h ≥ hi (3.6)

πi = (c∗i > c−i ), ∀i > 1 (3.7)

The constant Di is either an a-priori specified parameter or computed from the
view Vi.

Lem. 9: (Local Selection with Delay Compensation) Algorithm Alsdel is an LS-CSA, if
Di ≤ di, ∀i. Then the accuracy is A ≥ J + dmin − Di.

Proof: The difference between algorithms Alsdel and Als may cause a violation
of Prop. 1, i.e. e∗i = si +Di − ti = Di −di may be positive. This is not the case
if Di ≤ di. �

If Di > di, then algorithm Alsdel is not safe, it is not optimally selective
and Lem. 3 does not hold. However, algorithm Alsdel is still live, since this
only requires −∞ < e∗i and negative drift of the logical clocks. Also the upper
bounds on peak jitter remain valid.

How to determine Di

The problem of finding Di can be interpreted as delay compensation and Di =
dmin obviously is the maximal Di that guarantees safety and optimal selectivity.
In this case, we have A = J . As will be shown in Sect. 3.5, it is not possible
to estimate dmin if no a-priori knowledge about message delays is provided. We
will return to this problem of estimating the minimal delay at the end of Chap. 4.
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As a consequence, the accuracy will be neglected in the next sections in favor
of peak jitter1.

3.3.4 Upper Bound on MTIE

In this section we have provided upper bounds on the peak jitter and the accu-
racy provided by LS-CSAs. There is a trivial relation between peak jitter and
MTIE: Mτ ≤ J ∀τ , since J = M∞ and M is monotonic increasing with the
window size τ . It is not clear whether a better bound on the MTIE can be found
- we conjecture that under the two delay models used here, no tighter bound can
be found. The reason is that there is no constraint on the occurrence of messages
with minimal delay, and therefore max(E(t)) ≤ dmin +Di seems to be the only
bound for max(E(t)), no matter how small or large the interval length τ is.

3.4 Drift Compensation
In this section, we present methods to estimate the drift ρ of the local clock
under the assumption that (i) ρ is constant (Ass. 1 and ϑ = 0) and (ii) the drift
variation ϑ is bounded (Ass. 2). An LS-CSA is presented that employs these
methods. An upper bound on the achieved peak jitter is derived, which shows
that drift compensation dramatically improves the synchronization quality, but
requires a relatively long setup time.

Def. 20: (Local Selection with Drift Compensation) The Local-Selection with Drift
Compensation algorithm Alsdc is a selective estimate-based CSA that computes
the candidate logical clock C∗

i and decision πi from the view Vi = {(sj, hj)|j ≤
i} according to the following rules:

C∗
i (h) = si +

h − hi

1 + Ri(h)
, ∀h ≥ hi (3.8)

πi = (c∗i > c−i ), ∀i > 1 (3.9)

The function Ri is a parameter either a priori specified or computed from the
view Vi.

Thm. 10:Algorithm Alsdc is an LS-CSA if Ri(H(t)) > ρ(t), ∀t > ti.

Proof: Of the three defining properties of an LS-CSA, only Prop. 2 (slow logical
clocks) is affected by the difference between Als and Alsdc. Thus, if �i(t) =

1+ρ(t)
1+Ri(H(t))

− 1 < 0, then algorithm Als is an LS-CSA. Clearly, Prop. 2 holds if
Ri(H(t)) > ρ(t) ∀t > ti. �

1A final remark concerning the accuracy: If minimizing accuracy A is the only goal and the
properties safety and optimal selectivity are not of concern, then D i = dmin + J/2 is the best
choice. In this case, we get A = J/2.
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If Prop. 2 does not hold, algorithm Alsdc is neither live nor optimally se-
lective, exactly as Alam on a node with a fast local clock. Safety still holds,
regardless of the drift of the local clock.

The problem of finding Ri can be interpreted as drift compensation. Clearly,
if no assumptions are made about the variation ϑ = dρ

dt
of the local clock drift,

then no Ri(H(t)) < ρ̂ can guarantee Ri(H(t)) > ρ(t).

3.4.1 Constant Drift

We now present a method to estimate the drift ρ of the local clock under the
assumption that ρ is constant. The method computes the constant function R i,
which is an upper bound on the drift ρ.

Thm. 11:(Estimation of Constant Drift) Let hj < hi be the local times of arbitrary
time-stamp-message arrivals, let cj and ci be the synchronized times associated
with these events, and let J be an upper bound on the peak jitter in the real-time
interval [tj , ti]. Then the constant Ri computed according to the rule

Ri =
hi − hj

ci − cj − J
− 1 (3.10)

is an upper bound on the drift of the local clock, i.e. ρ ≤ Ri. The drift �i of
the logical clock computed according to Def. 20 is lower-bounded by −�̂ ≤ �i,
with

�̂ =
2J

ci − cj + J
(3.11)

Proof: As we assume constant ρ, the relation ρ =
hi−hj

ti−tj
− 1 holds for all j < i.

The real-time difference ti − tj is not known by a CSA, but it can be bounded
by ci − cj + J ≥ ti − tj ≥ ci − cj − J , as J is an upper bound on the peak
jitter in the whole real-time interval [tj , ti]. Thus the drift can be bounded by

hi−hj

ci−cj+J
− 1 ≤ ρ ≤ hi−hj

ci−cj−J
− 1. Therefore, Ri =

hi−hj

ci−cj−J
− 1 ≥ ρ.

The drift of the logical clock is �i = 1+ρ
1+Ri

− 1. Using the bounds on the

drift of the local clock, we get �i ≥ hi−hj

ci−cj+J
/

hi−hj

ci−cj−J
− 1 =

ci−cj−J

ci−cj+J
− ci−cj+J

ci−cj+J
=

−2J
ci−cj+J

. Therefore, −�̂ ≤ �i with �̂ = 2J
ci−cj+J

. �

From Eq. 3.11, we see that the lower bound �̂ gets arbitrarily close to zero
when the interval [cj, ci] grows. The interpretation of this observation is that
drift compensation with an arbitrarily small error is possible after a sufficiently
long setup time.

3.4.2 Variable Drift

In practice, it is not possible to manufacture an oscillator device that is perfectly
stable, and thus constant drift is often not a realistic assumption. We now con-
sider the case that the variation of the drift ϑ(t) = dρ(t)

dt
is bounded by a known

constant ϑ̂ (Ass. 2). In the following, it is shown that with variable drift, the
error of drift compensation cannot be reduced arbitrarily.
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We present a method that computes the constant ri, which is an upper bound
on ρ(hi), and the function Ri, which is an upper bound on ρ(h), ∀h ≥ hi.

Thm. 12:(Estimation of Variable Drift) Let hj < hi be the local time of arbitrary time-
stamp-message arrivals, let cj and ci be the synchronized times associated with
these events, and let J be an upper bound on the peak jitter in the interval [tj , ti].
Then the constant ri computed according to the rule

ri =
hi − hj

ci − cj − J
+

1

2
ϑ̂(ci − cj + J) − 1 (3.12)

is an upper bound on the drift of the local clock at real time ti, i.e. ρ(ti) < ri.
The function Ri computed as

Ri(h) = ri + ϑ̂(C(h) − ci + J) (3.13)

is an upper bound on ρ(t) for every h = H(t) ≥ hi.
The drift �i of the logical clock computed according to Def. 20 is approxi-

mately lower-bounded by −�̂ ≤ �i(ti), with

�̂ =
2J

ci − cj − J
+ ϑ̂(ci − cj + J) (3.14)

Proof: The local-time difference is hi − hj = ti − tj +
∫ ti
tj

ρ(t)dt. The clock
drift at time ti is maximal if it increases as much as possible over the whole
interval [tj , ti], i.e. ρ(t) = ρ(tj) + ϑ̂(t − tj). Then hi − hj = ti − tj +∫ ti
tj

(
ρ(tj) + ϑ̂(t − tj)

)
dt = (1 + ρ(tj))(ti − tj) + 1

2
ϑ̂(ti − tj)

2. Resolving

the equation for ρ(tj) results in ρ(tj) = hi−hj

ti−tj
− 1

2
ϑ̂(ti − tj) − 1. From the

assumption of constantly increasing drift, we get ρ(ti) = ρ(tj) + ϑ̂(ti − tj) =
hi−hj

ti−tj
+ 1

2
ϑ̂(ti − tj) − 1. As the real-time difference ti − tj is bounded by

ci−cj−J ≤ ti−tj ≤ ci−cj+J , we derive ρ(ti) ≤ hi−hj

ci−cj−J
+ 1

2
ϑ̂(ci−cj+J)−1 =

ri.
If ri ≥ ρ(ti), then ri + ϑ̂(t − ti) ≥ ρ(t) for all t ≥ ti. As t − ti ≤

C(H(t)) − ci + J , we have Ri(H(t)) = ri + ϑ̂(C(H(t)) − ci + J) ≥ ρ(t).

For the proof of −�̂ ≤ �i(ti), we approximate �i(ti) = 1+ρ(ti)
1+ri

−1 ≈ ρ(ti)−
ri, and obtain �i(ti) ≥ hi−hj

ci−cj+J
− 1

2
ϑ̂(ci − cj +J)− 1− (

hi−hj

ci−cj−J
+ 1

2
ϑ̂(ci − cj +

J)− 1) =
hi−hj

ci−cj+J
− hi−hj

ci−cj−J
− ϑ̂(ci − cj + J) = − 2J(hi−hj)

(ci−cj)2−J2 − ϑ̂(ci − cj + J).

With hi−hj ≤ (1+ ρ̂)(ci−cj +J), we get �i(ti) ≥ − 2J(1+ρ̂)
ci−cj−J

−ϑ̂(ci−cj +J) ≈
− 2J

ci−cj−J
− ϑ̂(ci − cj + J) = −�̂.

�
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Discussion
In contrast to the case of constant drift, the error of the drift estimation �̂ does
not go to zero when the interval [cj , ci] grows large. There is an optimal interval
length, over which �̂ becomes minimal. Simplifying Eq. 3.14 to �̂ ≈ 2J

ci−cj
+

ϑ̂(ci − cj) results in a useful rule of thumb: The error of drift compensation
attains the minimum

�̂ ≈
√

8Jϑ̂ (3.15)

after a setup time of

ci − cj ≈
√

2J

ϑ̂
(3.16)

Ex. 10: Assume a synchronized clock that has a peak jitter of at most J = 1ms. If the
oscillator stability is ϑ̂ = 10−7s−1 (0.1ppm/s, typical for oscillators operated
under strongly variable temperature conditions), the drift can be compensated
with an error of 30ppm after a setup time of 140s. If the oscillator stability is
ϑ̂ = 10−9s−1 (3.6ppm/h, typical for workstations in the first hour after power-
up), the drift can be compensated with an error of 3ppm after a setup time of
1410s. If the oscillator stability is ϑ̂ = 10−11s−1 (0.9ppm/day, typical for long-
running workstations in air-conditioned offices), the drift can be compensated
with an error of 0.3ppm after a setup time of 14140s.

3.4.3 An expensive Local-Selection Variant

The drift-estimation methods presented in Sects. 3.4.1 and 3.4.2 both require
that a bound J on the peak jitter is known. Thus a CSA that wants to employ
these methods has to compute such a bound. This is possible, e.g. Js can be
used if the CSA is provided with upper and lower bounds on message delays, or
Jd can be used if the CSA is provided with an upper delay-interval curve Du.

In the following, we present the Local Selection with Iterative Drift Com-
pensation algorithm Alsdc,iter, shown in Alg. 4. The algorithm is designed for
the assumption of constant drift ρ.

The algorithm has two parameters, the upper delay-interval curve Du and
the number of iterations L. In a first iteration, the simple Als algorithm is per-
formed (equivalent to Alsdc with Ri = ρ̂). The bound J l

d for the peak jitter of
the synchronized clock C l is computed from the a-priori known upper delay-
interval curve Du (according to Thm. 8). The synchronized clock C l and the
bound J l

d are used to compute the estimate Rl+1
i of the drift of the local clock

H and also the maximal error �̂l+1 of this estimate. Now that we have better
information about clock drift, the whole history of received messages is used
to recompute a more accurate logical clock C l+1 and a smaller bound on peak
jitter J l+1

d . These results can then again provide a better estimation of the local
clock drift and so forth.

Thm. 13:(Alsdc,iter is an LS-CSA) Let the drift ρ of the local clock H be constant. Then
the Local-Selection algorithm with Iterative Drift Compensation (Alg. 4) is an
LS-CSA if Du is a valid upper delay-interval curve.
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Algorithm 4 Local Selection with Iterative Drift Compensation Alsdc,iter

Parameters: Bound on clock drift ρ̂, upper delay-interval curve Du, number of
iterations L
Input: View Vi = {(sj , hj)|j ≤ i},
Output:
Logical clock Ci

for l := 1 to L do
// Estimate receive interval ∆t
∆t := (1 + ρ̂) max{hj − hj−1|j ∈ [2, i]}

// Compute Rl
i from synchronized clock C l and bound J l

d

if i = 1 then
R1

i := ρ̂
else

Rl
i := min

{
hi−hj

Cl−1(hi)−Cl−1(hj)−J l−1
d

(j∆t)
|j ∈ [1, i − 1]

}
− 1 // (Thm. 11)

end if

// Compute �̂l from synchronized clock C l and bound J l
d

if i = 1 then
�̂1 := 2ρ̂

else
�̂l := min

{
2J l−1

d
(j∆t)

Cl−1(hi)−Cl−1(hj)+J l−1
d

(j∆t)
|j ∈ [1, i − 1]

}
// (Thm. 11)

end if

// Compute synchronized clock C l with current drift compensation Rl
i

for j := 1 to i do
C l

j := Alsdc (Vj , R
l
i) // (Def. 20)

end for

// Compute J l
d with current �̂l

for j := 1 to i do
J l

d(j∆t) := min{Du(k) + �̂lk∆t|k ∈ [1, j − 1]} − Du(∞) // (Thm. 8)
end for

end for
Ci := CL

i

Proof:(1) The first clock C1 is computed by an LS-CSA, as Alsdc(Vj, ρ̂) is
equivalent to Als(Vj), which is an LS-CSA (by Lem. 1). (2) Every J l

d computed
by Alg. 4 is an upper bound on the peak jitter if clock C l is computed by an
LS-CSA and −�̂l is a lower bound on ρ (by Thm. 8). In particular, this is the
case for J1

d , since (1) and −�̂1 = −2ρ̂. (3) Rl+1
i is an upper bound on ρ and −�̂l

is a lower bound on �i
l if peak jitter of clock C l is bounded by J l

d (by Thm. 11).
This is the case because of (2). (4) The clock C l+1 is computed by an LS-CSA
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if Rl+1
i is an upper bound on ρ, which is the case since (3). Arguments (2)–(4)

prove by induction that every clock C l is computed by an LS-CSA, thus C is
computed by an LS-CSA, and algorithm Alsdc,iter is an LS-CSA. �

Ex. 11: The bounds on the peak jitter J l
d and logical clock drift �̂l computed by algo-

rithm Alsdc,iter can be used to compute approximate bounds achieved by this
algorithm. We use

�̂l =




2ρ̂ if l = 1

min{2J l−1
d

(j∆t)

(i−j)∆t
| j ∈ [1, i − 1]} otherwise

(3.17)

J l
d(i∆t) = min{Du(j) + �̂lj∆t | j ∈ [1, i − 1]} (3.18)

to compute the upper bound on the peak jitter J l
d(i∆t) in the l-th iteration and

after setup time i∆t. Note that in Eq. 3.17, we have used (i − j)∆t where
Alsdc,iter computed C l−1(hi) − C l−1(hj) + J l−1

d (j∆t) . Both expressions are
upper bounds on the length of the real-time interval [tj , ti]. The form (i −
j)∆t provides a more pessimistic �̂l, but does not require that the clock C l−1

is actually computed based on a concrete view.
The same delay-interval curve as in Ex. 9 is used. Fig. 20, left side shows

the bounds J l
d for l ∈ [2, 5]. On the right side, the bounds computed under

the assumption of variable drift are shown. The figure illustrates that under
variable drift, drift compensation cannot be done with an arbitrarily small error,
even after a long setup time. We can now also verify the rule of thumb presented
in Ex. 10. As drift variation was ϑ = 10−7s−1, the predicted setup time is 140s,
corresponding quite well to the curve shown in Fig. 20.

Discussion
Algorithm Alsdc,iter is not really practical because it is prohibitively expensive
in terms of memory and computation overhead and also because it requires that
an upper-delay interval curve Du is known to the algorithm. The purpose of
presenting such an impractical algorithm is (i) to illustrate the use of Theorems 8
and 11 for reducing peak jitter and accuracy in comparison with the simple
Local-Selection algorithm Als (Fig. 20, left side and Fig. 19), (ii) to show that
compensation of constant drift is possible and arbitrarily small peak jitter can be
guaranteed after a sufficiently long setup time, and (iii) to establish a yardstick
for assessing the performance of much simpler heuristic algorithms presented
in the next section.

A similar algorithm can be designed for the assumption of variable drift.
Instead of Thm. 11, the computation of the drift estimate employs Thm. 12.
The peak jitter achieved by such an algorithm is shown in Fig. 20, right side.

Summary
In this section, we have shown that in principle, it is possible to construct LS-
CSAs that compensate clock drift. Algorithm Alsdc,iter has been presented,
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Fig. 20: On the left, the upper bound on the peak jitter achieved by Alsdc,iter is shown for
2 − 5 iterations. The bound for 1 iteration (corresponding to Als) is shown in Fig. 19.
While the first iteration reduces the bound on peak jitter to 770µs after 2s, the drift
compensation mechanism further reduces this bound to less than 50µs after 110s in the
second iteration. In the third iteration, this is achieved already after 60s. Note that in all
iterations, the peak jitter goes to zero after a sufficiently long setup time. On the right,
the upper bound on the peak jitter achieved by a similar algorithm for variable drift is
shown. Here, four iterations are needed to get a bound on peak jitter of 50µs achieved
after 70s.

which estimates clock drift with arbitrarily small error for a sufficiently large
setup time (by Thm. 13). It has been shown that this is not possible if the clock
drift is variable, and a simple rule of thumb has been presented to compute
the achievable error of drift compensation and the corresponding setup time
(Ex. 10). With a numerical example (Ex. 11, Fig. 20), we have shown that drift
compensation can dramatically reduce the deterministic upper bound Jd on the
peak jitter compared to LS-CSAs without drift compensation (Fig. 19), though
only after a relatively long setup time.

3.5 Local-Selection Heuristics
This section presents practical variants of the Local-Selection principle. While
also algorithm Alsdc,iter presented in the previous section is feasible, it is not
really practical:

• Parameters: A practical CSA should not require knowledge about message
delays (e.g. dmin and dmax or Du). While it is mandatory to have this knowledge
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to compute upper bounds on performance metrics in an offline estimation, the
CSA itself should not use such knowledge in its computations.

• Memory: A practical CSA should only access a small subset of the view Vi, as
the size of the total view quickly becomes large. E.g. for Vi = {(sj, hj)|j ≤ i}
with ∆t = 10ms and a time-stamp size of 8 bytes, the size of the view after
10 minutes is approximately 940 kilobytes. For embedded systems (see the
application scenario described in Sect. 3.6), this is not tolerable.

• Computation Overhead: In embedded systems, not only memory is restricted
but also the available computation resources. Clock synchronization is hardly
ever the main purpose of a platform, and thus its computation overhead should
be as small as possible. This is not the case with algorithm A lsdc,iter, which e.g.
executes many minimum-operations over large arrays.

It is certainly possible to find a more efficient version of Alsdc,iter that stores
intermediate results between consecutive executions (for computing Ci and Ci+1),
thus the second and third argument why Alsdc,iter is not practical may not be very
strong. But then, the first argument already suffices.

In the following, we first show that it is not possible to construct an LS-CSA
other than Als if the algorithm has no knowledge about message delays. We
thus introduce the class of heuristic Local-Selection algorithms (HLS-CSAs),
which do not comply with the slow-logical-clock property (Prop. 2). Instead
they fulfill the eventually-slow-logical-clock property and thus are live (but not
optimally selective).

We then present two concrete examples of HLS-CSAs. We compare the
achieved peak jitter of these algorithms with the upper bound Jd of algorithm
Alsdc,iter. While we have no guarantee that the performance of the HLS-CSAs is
not much worse on some peculiar delay sequences, they outperform the correct
Alsdc,iter in typical cases.

3.5.1 Lower Bound on Drift Compensation

Let a view Vi = {(sj, hj)|j ≤ i} but no additional information about message
delays. Clearly, algorithm Alsdc,iter cannot be used because it requires the upper
delay-interval curve Du. But maybe there exists some other method to estimate
clock drift, such that the resulting synchronized clock C has the properties of a
synchronized clock computed by an LS-CSA?

Thm. 14:(Drift and Delay Compensation is impossible) (i) No deterministic CSA can
compute from the view Vi = {(sj, hj)|j ≤ i} an upper bound R on the drift ρ
that is smaller than ρ̂. (ii) No deterministic CSA can compute from this view Vi

a lower bound D on the message delays di that is larger than 0.

Proof: The proof of the theorem is by contradiction. Assume a CSA computes
R < ρ̂ or D > 0. We can construct a delay sequence assuming ρ = ρ̂ and
dmin = 0 that provides the CSA with exactly the same view as the original
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delay sequence assuming a constant drift of ρ = R and dmin = D. As the CSA
is deterministic, it computes the same R and D, but these are not valid.

For simplicity, we assume a constant drift ρ. Clearly, if drift compensation is
not possible in the case of constant drift, then it is also not possible in the case of
variable drift. Let R = ρ be the upper bound on this drift computed by the CSA.
The drift ρ is given by ρ =

hj−hj−1

tj−tj−1
− 1 for any j ∈ [1, i]. Remember that the

reference time at reception of a time-stamp message tj is the send time of this
message plus its delay (tj = sj + dj). We can compute modified delays d′

j and
d′

j−1, such that the drift becomes ρ′ = ρ̂ and the view Vj remains unchanged:

From ρ′ =
hj−hj−1

(sj+d′j)−(sj−1+d′j−1)
− 1 we get d′

j =
hj−hj−1

ρ′+1
+ sj−1 + d′

j−1 − sj,

and from ρ =
hj−hj−1

(sj+dj)−(sj−1+dj−1)
− 1 we get dj =

hj−hj−1

ρ+1
+ sj−1 + dj−1 −

sj. Combining the two equations results in d′
j − dj = d′

j−1 − dj−1 − (hj −
hj−1)

ρ′−ρ
(1+ρ′)(1+ρ)

. With ∆dj = d′
j − dj, ∆dj−1 = d′

j−1 − dj−1, and using the

approximation 1
(1+ρ′)(1+ρ)

≈ 1 we arrive at ∆dj−1 = ∆dj +(hj −hj−1)(ρ
′−ρ).

This equation implies that in order to get the delay sequence that produces the
view Vi but with ρ′ = ρ̂, the j-th delay has to be shortened less than the j − 1-th
delay (since (hj − hj−1)(ρ̂ − ρ) is positive). Thus we construct an alternative
trace, in which we have t′i = s′i = si (thus with d′

i = dmin = 0) and t′j = sj +d′
j,

where d′
j = dj+∆dj and ∆dj = ∆dj+1+(hj+1−hj)(ρ

′−ρ) for all j ∈ [1, i−1].
The view Vi remains unchanged, but ρ′ = ρ̂ and dmin = 0. �

In a sense, this result is frustrating, because it tells us that we cannot hope to
construct a better LS-CSA than algorithm Als if we have no knowledge about
message delays. On the other hand, this result is also liberating: if not even very
complicated procedures (see Alg. 4) can guarantee that some drift estimation R
is an upper bound on ρ, then we should use simple procedures instead and just
see empirically how they perform.

Def. 21: (Heuristic LS-CSAs) A selective estimate-based CSA A is a Heuristic Local-
Selection CSA (HLS-CSA) if Properties 1 and 3 hold, and the drift �i of every
logical clock eventually becomes negative, i.e.

∃t∗i ≥ ti : −�̂ < �i(t) < 0 ∀i, ∀t ≥ t∗i

Lem. 15: (Safety and Liveness) Every HLS-CSA is safe and live.

Proof: The proof of safety is the same as in the case of Als (Lem. 4). The proof
of liveness is the same as for LS-CSAs (Lem. 5), since the error of every logical
clock Ci eventually is smaller than e∗. But for an HLS-CSA, it possibly takes
more time than for an LS-CSA. �

An HLS-CSA is not optimally selective. As logical clocks initially may
have a positive drift �i, the synchronized clock C can have a positive error. If
for some j, e∗i < 0 and e−i > 0, then the candidate clock C∗

i is not selected, even
though |e∗i | may be smaller than |e−i |.
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Def. 22: (Leakage Local Selection) The Leakage Local-Selection algorithm Aleak is a
selective estimate-based CSA that computes the candidate logical clock C ∗

i and
decision πi from the view Vi = {(sj, hj)|j ≤ i} according to the following rule:

C∗
i (h) = si +

h − hi

1 + Ri(h)
, ∀h ≥ hi (3.19)

πi = (c∗i > c−i ), ∀i > 1 (3.20)

The function Ri is computed as

Ri(h) = ri + λ(h − hi) (3.21)

where the constants ri and λ are parameters either a-priori specified or com-
puted from the view Vi.

Lem. 16: (Aleak is an HLS-CSA) Algorithm Aleak is an HLS-CSA if λ > ϑ̂
2(1−ρ̂)

.

Proof: We have to show that �i(t) < 0 for some t ≥ ti. We know that (1−ρ̂)(t−
ti) < (h − hi). We also know that (h− hi) < (1 + ρ(ti))(t− ti) + 1

2
ϑ̂(t− ti)

2.

Thus, Ci(h) < si +
(1+ρ(ti))(t−ti)+

1
2
ϑ̂(t−ti)

2

1+ri+λ(1−ρ̂)(t−ti)
= si + (t− ti)

(1+ρ(ti))+
1
2
ϑ̂(t−ti)

1+ri+λ(1−ρ̂)(t−ti)
. With

λ > ϑ̂
2(1−ρ̂)

, we get Ci(h) < si +(t−ti)
(1+ρ(ti))+

1
2
ϑ̂(t−ti)

1+ri+
1
2
ϑ̂(t−ti)

. Let (t−ti) → ∞, then

Ci(h) < si +(t− ti). On the other hand, we have Ci(h) = si +
∫ t
ti
(1+�i(t))dt.

Thus,
∫ t
ti
(1 + �i(t))dt < (t − ti) and consequently �i(t) < 0. �

Lemma 16 implies that algorithm Aleak is safe and live, no matter whether
the initial drift estimation ri is an upper bound on ρ(ti) or not. If it is not,
then the logical clock Ci progresses faster than real time for some time, but
eventually its drift �i becomes negative again (an example is shown in Fig. 21,
right column).

In the following, we present two different strategies for constructing HLS-
CSAs.

3.5.2 Strategy 1: Approximate Local Selection

In the previous section, we have shown, that an LS-CSA with drift compen-
sation can be constructed if a bound on the peak jitter J is known. We had
used information about message delays to derive such a bound J . If nothing is
known about message delays, such a procedure is not possible. Instead, a bound
on peak jitter can be estimated. This is done in the Approximate Local-Selection
algorithm, shown in Alg. 5.

Rationale
In the first ι executions, algorithm Aleak,app is essentially equivalent to Als; the
drift of the local clock is not compensated.

In the queues, information about logical clocks that are different from their
predecessors is stored: In queue Qj , the difference between the initial value si
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Fig. 21: Parameters of the Agnostic Local-Selection Algorithm: The top row displays the drift
� of the synchronized clock computed by the Agnostic LS algorithm with three com-
pensation factors α. The bottom row shows the corresponding synchronization errors.
On the left, α is chosen too small - drift compensation is very slow. On the right, α

is far too large; the drift is over-compensated, resulting in periods where no candidate
clocks are selected. In the middle, the choice of α is accurate; the synchronized clock
has less than 0.3ppm drift after 600s setup time. The synchronization error shown in
this figure can be compared to the synchronization error achieved without drift com-
pensation, shown in Fig. 18. There the synchronization is approximately contained in
the interval [−2.5ms,−800µs], here (middle column), it lies in [−840µs,−800µs] after
approximately 300s setup time.

and the current time of the previous logical clock c−i is stored, queue Qh stores
the local time hi, and queue Qc memorizes the synchronized time si at the start
of this logical clock.

If these queues are full, then the peak jitter is estimated as the largest dif-
ference in queue Qj . With this estimate and Eq. 3.12, the drift is estimated
over the interval defined by the oldest event in the queues and the current event
(local-time interval [Qh.tail , hi], synchronized-time interval [Qc.tail , si]).

Finally, the Leakage Local-Selection algorithm is executed with the com-
puted drift estimation ri and the a-priori specified leakage factor λ.

Parameters
Choosing the parameters for algorithm Aleak,app incurs various trade-offs. In
the following, the general lines that have to be considered when choosing these
parameters are discussed. Figure 22 shows how evolutionary optimization (see
Sect. 2.7) determines these parameters. This optimization evaluates the perfor-
mance on traces recorded in an 802.11b WLAN in ad-hoc mode under heavy
network load. A detailed description follows in Sect. 3.5.5. Note that we do
not count the maximal drift of the local clock ρ̂ and its maximal variation ϑ̂ as
parameters of the algorithm.
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Algorithm 5 Approximate Local Selection Aleak,app

Parameters: Initial phase ι, leak factor λ, queue size q
Input: View Vi = {(sj , hj)|j ∈ [1, i]}
Output: Logical clock Ci

Variables: FIFO queues Qj , Qh, Qc of size q

if i > ι then
ri := Ri−1(hi)
if si − c−i > 0 then

insert (si − c−i ) at head of Qj

insert si at head of Qc

insert hi at head of Qh

if Qj is full then
ri := hi−Qh.tail

si−Qc.tail−max(Qj)
+ 1

2
ϑ̂(si − Qc.tail + max(Qj)) − 1

end if
end if

else
ri := ρ̂

end if
Ci := Aleak(Vi, ri, λ) //(Def. 22)

• Initial phase ι. The estimation of the peak jitter is not accurate for the first
messages. Therefore, these initial messages should not be used for drift com-
pensation. But delayed drift compensation leads to an increased setup time. The
evolutionary optimization (Fig. 22) resulted in ι = 12.

• Queue size q. Clearly, the memory requirements of the algorithm directly in-
crease with q. On the other hand, the estimation of the peak jitter improves if
the queues contain more elements. Also the time interval over which drift is
estimated becomes larger with increasing q and thus reduces the negative influ-
ence of an inaccurate estimation of the peak jitter. On the other hand, in the case
of strongly variable drift, this interval may become too large. The evolutionary
optimization (Fig. 22) resulted in a surprisingly small q = 6.

• Leakage factor λ. This parameter determines how fast the logical clocks de-
celerate (compare Eq. 3.21). If λ is chosen much larger than ϑ̂

2(1−ρ̂)
(compare

Lem. 16), then a wrong estimation ri of the local clock drift is quickly corrected.
On the other hand, a good estimation cannot be maintained for a long time. The
evolutionary optimization (Fig. 22) resulted in λ = 7 · 10−8s−1 = 260ppm/h.

3.5.3 Strategy 2: Agnostic Local Selection

The first strategy for constructing a heuristic Local-Selection algorithm was to
mimic algorithmAlsdc and estimate the missing piece of information at run time.
We now present a second approach, which completely ignores the theory devel-
oped in previous sections, in order to simplify the procedures. The algorithm
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Fig. 22: Distribution of the Approximate Local-Selection algorithm’s parameters during the
evolutionary optimization process. Every cross represents a set of solutions for which
the parameter has the value shown on the x-axis. The number of solutions in this set is
shown on the y-axis. The dotted line represents the first 17 generations containing 100
parameter sets each. The dashed line represents generations 18 to 34 and the solid line
generations 35 to 50. The vertical line shows the parameters of the best individual. The
initial phase ι and the queue size q become smaller during the optimization process, the
leakage factor λ increases.

presented in Alg. 6 is thus dubbed Agnostic Local Selection.

Algorithm 6 Agnostic Leakage Local Selection Aleak,agn

Parameters: Initial phase ι, leak factor λ, drift compensation factor α
Input: View Vi = {(sj , hj)|j ∈ [1, i]}
Output: Logical clock Ci

if i > ι then
ri := Ri−1(hi)
if si − c−i > 0 then

ri := Ri−1(hi) − α(si − c−i )
end if

else
ri := ρ̂

end if
Ci := Aleak(Vi, ri, λ) //(Def. 22)
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Fig. 23: Distribution of Agnostic Local-Selection parameters during the evolutionary optimiza-
tion process. Every cross represents a set of solutions for which the parameter has the
value shown on the x-axis. The number of solutions in this set is shown on the y-axis.
The initial phase ι is slightly longer, the leakage factor is smaller than in the case of the
Approximate LS algorithm (see Fig. 23).

Rationale
The initial behavior of Algorithm Aleak,agn is equivalent to Aleak,app. Whenever
a candidate clock is selected (si > c−i ), it is quite likely that the drift of the
latest logical clock is negative. Thus, the algorithm sets the new estimation r i

to a smaller value. The adjustment is proportional to the difference between
the current reading of the previous logical clock Ci−1 and the candidate clock
c∗i = si.

Parameters
Two of the parameters, the initial phase ι and the leakage factor λ are the same
as for algorithmAleak,app. The results of evolutionary parameter optimization on
traces recorded in an 802.11b WLAN in ad-hoc mode under heavy network load
are shown in Fig. 23. The initial phase ι is 26, slightly more than for A leak,app.
The leakage factor resulting from optimization is λ = 2 · 10−8s−1 = 78ppm/h,
thus slightly smaller than for Aleak,app.

In addition, the Agnostic LS algorithm has a drift compensation factor α:

• Drift compensation factor α. Figure 21 illustrates the effect of the parameter
α. A large α causes aggressive drift compensation, i.e. it happens quite often
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that the resulting ri is too small and thus the drift of the logical and the synchro-
nized clocks is positive. A small α on the other hand leads to inefficient drift
compensation. After evolutionary optimization (Fig. 23), the drift compensation
factor is α = 0.16s−1

3.5.4 Adaptive Parameters

Algorithms Aleak,app and Aleak,agn present simple ideas for the estimation of
clock drift. More complicated mechanisms may improve the performance, but
also make the algorithm more difficult to understand and also to implement. In
the following, two reasonably simple modifications are presented.

The purpose of decelerating the logical clocks is twofold: First, it should be
avoided that a change of the local clock rate leads to fast logical clocks. Second,
it is supposed to correct over-compensation of the clock drift (see Fig. 21). As
the latter occurs frequently at the start of a time-stamp-message sequence, the
parameter λ should initially be considerably larger than ϑ̂

2(1−ρ̂)
, but can decrease

over time. This parameter thus should not be a constant. Instead,

λ := (1 − λµ)λ + λµλmin (3.22)

can be applied whenever a logical clock is different from its predecessor, i.e. if
(si > c−i ). This introduces two new parameters: λµ ∈ [0, 1], which describes
how quickly the leakage factor is reduced, and λmin, which specifies a lower
threshold for the leakage factor. Evolutionary optimization of these parameters
for algorithm Aleak,app resulted in λ = 8 ·10−7s−1 = 3000ppm/h, λµ = 0.3 and
λmin = 2 · 10−12s−1 = 0.2ppm/day 2.

In the case of algorithm Aleak,agn, the same argument applies to the drift
compensation factor α. The factor may be adapted by

α := (1 − αµ)α + αµαmin (3.23)

Here the values α = 0.5s−1, αµ = 0.2 and αmin = 0.003s−1 have been found by
the optimization process. The complete adaptive variants of algorithmsA leak,app

and Aleak,agn are stated in the appendix.

3.5.5 Experimental Study: Comparison of Heuristic Algorithms

We have presented two heuristic LS-CSAs and their adaptive variants. In this
section, we evaluate and compare the performance and cost of these heuristics.

Experimental Setup
Four algorithms are evaluated, Aleak,app (Sect. 3.5.2), Aleak,agn (Sect. 3.5.3) and
their adaptive variants (sketched in Sect. 3.5.4).

In a first step, the parameters of these algorithms are optimized, using the
procedure described in Sect. 2.7. Populations of 100 individuals are optimized

2Compare the values for λ and λmin with ϑ̂ of Ex. 10. The values found by the evolutionary
optimization nicely mirror the measured drift variations.
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over 50 generations, thus 5000 parameter sets are evaluated. The evaluation is
based on recorded traces (see Sect. 2.6.1) from an 802.11b WLAN in ad-hoc
mode. Three traces with a message interval of ∆t ≈ 20ms, containing 50000
messages each are used. The goals of the optimization are (i) to minimize the
peak jitter after 10 seconds and (ii) to minimize the setup time when a peak
jitter of 100µs is achieved. The parameter set with the best peak jitter after 10
seconds was selected as the best parameter set. The results of this optimization
step for Aleak,app and Aleak,agn are shown in Figs. 22 and 23. The parameters of
the adaptive variants are described in Sect. 3.5.4.

The optimized algorithms are evaluated on ten traces with the same param-
eters as those used in the optimization step. Figures 24 and 25 display the
synchronization error, the peak jitter, and the drift of the synchronized clock
achieved by algorithms Aleak,app and Aleak,agn on the trace where the peak jit-
ter after 10 seconds is largest. In Tab. 7, the worst peak jitter and setup time
achieved by the four algorithms on the ten traces are summarized.

Table 8 shows the cost in terms of computation and memory overhead of
these algorithms. The memory cost represents the number of symbols used by
the algorithm. This calculation is illustrated using the example of algorithm
Aleak,app: The algorithm uses five constants (ι, λ, q, ρ̂, ϑ̂) and five time stamps
from the view (hi, si, ri and hi−1, si−1, ri−1 in the form of Ri−1 and c−i−1). Addi-
tionally, the variable i and the queues are used, resulting in 3·q+1 symbols. For
q = 6 determined by the optimization process, we get the total of 30 symbols.
The computation overhead is divided into categories: Additions and subtrac-
tions (seven for Aleak,app, i.e. one for si − c−i and six for the computation of
ri), multiplications (two for the computation of ri and one for Ri−1), divisions
(one for the computation of ri and one for c−i ) and comparisons (three: i > ι,
si > c−i and Qjfull).

Algorithm Peak Jitter MTIE
After 10s S(J ≤ 100µs) After 10s S(M ≤ 10µs)

Aleak,app 18µs 0.1s 14µs 23s
Aleak,app,adap 21µs 0.1s 2µs 4s
Aleak,agn 49µs 0.2s 25µs −
Aleak,agn,adap 38µs 0.2s 17µs 27s

Alsdc,iter 70µs 8s 54µs 67s

Tab. 7: Performance of heuristic LS-CSAs. The table shows the worst performance values
achieved by the algorithms on ten traces. The peak jitter J and the MTIE M with
τ = 10s are measured after 10s. Also the setup times after which the algorithms achieve
a peak jitter of less than 100µs and an MTIE of less than 10µs are evaluated. The Ag-
nostic LS does not achieve M ≤ 10µs. The Iterative Drift-Compensation algorithm is
shown as a yardstick for the heuristic algorithms.

Discussion
Remember that algorithm Aleak,app makes use of the theory that was developed
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Fig. 24: Performance of the optimized Approximate Local-Selection algorithm in an 802.11b
WLAN in ad-hoc mode with heavy network load. The left column displays the initial
30 seconds, the right column shows the following 15 minutes. The top row displays
the synchronization error, in the middle the peak jitter is shown and the bottom row
shows the drift of the synchronized clock. The spikes in the drift curves are due to the
non-continuous nature of the synchronized clock.

Algorithm Operations Memory
n+ n< n∗ n/

Aleak,app 7 3 3 2 30
Aleak,app,adap 9 3 5 2 32
Aleak,agn 2 2 1 − 11
Aleak,agn,adap 6 2 5 − 15

Tab. 8: Computation and memory overhead of heuristic LS-CSAs. The computation overhead
(Operations) represents the number of operations executed upon reception of a time-
stamp message. The operations are categorized into additions/subtractions, compar-
isons, multiplications, and divisions. The memory overhead is a count of symbols used
by the algorithm. A time-stamp typically is ≤ 8 Bytes long, thus the memory overhead
of the Approximate LS-CSA is ≤ 240 Bytes.

in Sects. 3.2–3.4, while algorithm Aleak,agn does not. In Tab. 7, we see that
the Approximate Local-Selection algorithm outperforms the Agnostic Local-
Selection algorithm in all criteria. This is also the case for the adaptive variants
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Fig. 25: Performance of the optimized Agnostic Local-Selection algorithm in an 802.11b
WLAN in ad-hoc mode with heavy network load. The left column displays the ini-
tial 30 seconds, the right column shows the following 15 minutes. The top row displays
the synchronization error, in the middle the peak jitter is shown and the bottom row
shows the drift of the synchronized clock. The spikes in the drift curves are due to the
non-continuous nature of the synchronized clock.

of both algorithms. Thus we conclude that the insights gained in Sects. 3.2–3.4
do help to construct a good heuristic LS algorithm. However, the advantage
is not very impressive for the peak jitter. It is more significant for the MTIE,
where algorithm Aleak,agn without adaptive parameters totally fails to achieve
the required 10µs. Also the adaptive variant of Aleak,agn is more than five times
worse (27s versus 4s) than the adaptive variant of algorithm Aleak,app.

We compare the adaptive algorithms with their non-adaptive counterparts.
The peak jitter is slightly better for the Agnostic LS, but slightly worse for the
Approximate LS. However, the adaptive variants achieve a considerably lower
MTIE.

The cost in terms of memory and computation of all algorithms is quite
low, as shown in Tab. 8. The adaptive variant of algorithm Aleak,app is the most
expensive, requiring memory for 32 symbols and a total of 19 operations. Al-
gorithm Aleak,agn requires approximately a third of these resources and does not
require divisions. The low complexity of the algorithms permits driver-level or
even hardware implementations.

Finally, we compare the performance of the heuristic algorithms with the
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exact algorithm Alsdc,iter. Table 7 shows that in all metrics, the exact algo-
rithm performs much worse than the heuristics. Though this looks surprising
at first glance, it can be understood when recalling that the drift compensation
of Alsdc,iter is guaranteed to be correct, thus necessarily is more prudent (and
thus slow) than the drift compensation of the heuristic algorithms. The cost
of Alsdc,iter is not indicated. The reason is that the cost of the implementation
shown in Alg. 4 is enormous3, but obviously could be reduced considerably.

The conclusion of this experimental section is that the adaptive Approxi-
mate LS algorithm performs better at a slightly higher price than the Agnostic
LS algorithm. The latter may still be an interesting choice for a hardware im-
plementation, where memory and computation constraints are extremely strong.
However, we will use the adaptive Approximate LS algorithm in the experi-
ments presented in the next section.

3.6 Case Study: Wireless Loudspeakers

In this section, the performance of various CSAs for wireless loudspeakers is
evaluated and compared. We first present this application and its requirements
on clock synchronization. Then the performance is evaluated individually for
various network setups and load situations. Finally, we compare the robustness
of the evaluated CSAs in changing network setups and variable network load
situations.

3.6.1 Application Scenario

In recent years, many new consumer-electronics (CE) technologies and devices
have entered our homes. As these devices start to integrate networking capa-
bilities in order to provide new and improved services, wire-bound connections
more and more become a burden. Wireless technologies like the IEEE 802.11
standards seem to be a promising alternative, e.g. in home cinema systems that
connect a central source with up to eight loudspeakers distributed all over the
living room. The use of 802.11b technology provides the additional benefit of
an easy integration of living-room CE equipment and the home computer. This
would allow the user, for example, to play MP3 files from the Internet directly
on the loudspeakers in the living room. Such a setup is illustrated in Fig. 26.

Unfortunately, loudspeakers pose stringent real-time requirements. Variable
message delay on the wireless connection and oscillator drift in the loudspeak-
ers are the origins of a temporal offset between the channels played by different
loudspeakers4. This offset between correlated audio channels can cause unde-

3The simulation of a trace of 10 minutes length takes more than 20 minutes on a Pentium4
using non-optimized Matlab code.

4Note that this problem is inexistent for conventional analog connections to the loudspeak-
ers, as the propagation time of the signals is constant.
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Fig. 26: Case study Wireless Loudspeakers: Two or more loudspeakers are connected over a
wireless network to an audio source. The source is either directly connected to the
wireless network (A) or via a wireless access point (B). A temporal offset between the
audio channels causes undesirable psychoacoustic effects.

sirable psychoacoustic effects:

Source Separation. If the temporal offset between the channels is more than
ten milliseconds, the loudspeakers are perceived as separate sources.

Timbre Modification. A channel offset of more than one millisecond alters the
timbre5 of the sound.

Directional Perception. A channel offset of more than 100µs influences the
directional perception of the sound source.

Noise. Fast fluctuations of the channel offset with a magnitude of at least 10µs
can cause noise in the perceived sound.

From these psychoacoustic effects, a set of target metrics is derived. Clearly
the offset has to be below one millisecond to avoid source separation and timbre
modification. The channel offset is however not required to be less than 100µs.
This is because the directional perception of a sound source depends strongly on
the physical location of the loudspeakers and anyway has to be adjusted manu-
ally (by means of the balance control) to the preferences of the user. However,
once this adjustment has been made, it should not have to be modified. A chan-
nel offset with an average of say 500µs is perfectly acceptable, as long as it does
not vary by more than 100µs. Thus the first three effects are avoided if the accu-
racy is better than one millisecond and the peak jitter is better than 100µs. Noise
generation is avoided if the MTIE in an interval of ten seconds is less than 10µs.
A final requirement concerns the setup time. Clearly, the user is not willing to

5From Wikipedia, the free encyclopedia: “Timbre (character, color): In music, timbre is the
quality of a musical note which distinguishes different types of musical instruments. This is
why, with a little practice, you can pick out the saxophone from the trumpet in a jazz group or
the flute from the violin in an orchestra, even if they are playing notes at the same pitch and
amplitude.”
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switch on his home cinema ten minutes before using it just to let it synchronize.
Thus the aforementioned target metrics have to be met quickly. We use a tar-
get setup time of ten seconds. In summary, the application’s requirements are
described by

S̃ = 10s

Ã = 1ms

J̃ = 100µs

M̃ = 10µs

To simplify the following discussion we define an application-specific metric
that summarizes the four metrics accuracy, peak jitter, MTIE, and setup time in
a single scalar value.

Def. 23: (Performance Penalty) Given the target metrics Ã for the accuracy, J̃ for the
peak jitter, M̃ for the MTIE and S̃ for the setup time, the performance penalty
P of an algorithm achieving the accuracy A, the peak jitter J , the MTIE M and
the setup time S is

P =

{
max{A/Ã, J/J̃, M/M̃} if S > S̃

S/S̃ otherwise
(3.24)

The interpretation of the performance penalty is the following: If after the
target setup time all other target metrics are met, then the penalty is ≤ 1. In
this case, the penalty gives the information of how much faster than required
all target metrics are met. For example P = 0.3 means that already after three
seconds this is the case. If the target metrics are not met by the target setup
time, we have a penalty > 1. In this case, the penalty expresses by what factor
the targets are missed. Thus P = 2 means that after ten seconds, either the
accuracy, the peak jitter, or the MTIE is twice as large as required.

3.6.2 Experimental Setup

In the following, we compare the Adaptive Approximate Local-Selection al-
gorithm Aleak,app,adap(Alg. 8) with the Phase-Locked-Loop CSA (Alg. 3), the
Linear-Regression CSA (Alg. 2) and the Gradient CSA (Alg. 10) which is pre-
sented in the Appendix. We compare the performance of the CSAs in three
different operation modes: (i) Network in ad-hoc mode, (ii) network in infras-
tructure mode, and the sender is a wireless node (source A in Fig. 26), (iii)
network in infrastructure mode, and the sender is part of a wired network that is
connected to the wireless network via an access point (source B in Fig. 26). In
addition, we vary the network load. An overview of some statistical properties
of the traces recorded in these different scenarios is shown in Tab. 3 on page 32.
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Fig. 27: Achieved peak jitter J , MTIE M , and performance penalty P of three parameteri-
zations per CSA, found by the evolutionary algorithm. The three solutions represent
different trade-offs that can be chosen from the set of the non-dominated parameteriza-
tions. In most cases, the solution with the best performance penalty is the same as the
solution with the best peak jitter.

Which metric is the most difficult to achieve?
In the first experiment, we examine whether different metrics can be conflicting
and whether the target peak jitter of 100µs or the target MTIE of 10µs is more
difficult to achieve. In Fig. 27, the peak jitter J , the MTIE M , and the perfor-
mance penalty P of three solutions found by the evolutionary optimization for
the infrastructure mode, wired-source scenario with 3MBit/s load are displayed
for all algorithms. It can be seen that the peak jitter and the MTIE metrics are
conflicting criteria for algorithms Apll and Allr. For the other CSAs, this cannot
be shown clearly. Furthermore, the figure shows that for algorithms Apll and
Allr, the target peak jitter Ĵ = 100µs is more difficult to achieve than the target
MTIE M̂ = 10µs, since the solution with the smallest penalty P is identical to
the solution with the best peak jitter J . For algorithm A leak,app,adap, the solution
with the smallest penalty P is equivalent to the solution with the smallest MTIE
M .
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Fig. 28: The performance penalty P of the Adaptive Approximate Local-Selection (leak,app),
the Phase-Locked-Loop (pll), the Linear-Regression (llr) and the Gradient (grd) algo-
rithms in the three operation modes and three load situations. The top row shows the
results in a network without load, the two rows below show the effect of increasing
network load. For every scenario and load type, the parameterization was optimized
individually.

Which scenarios and load situations are difficult?
In a second experiment, we were interested in the performance penalty of the
CSAs for the various scenarios and load situations. The parameters of the CSAs
are optimized specifically for every scenario and every load situation. Figure 28
shows the achieved performance penalties P . It can be seen that for all al-
gorithms and scenarios, the penalty P increases with increasing network load.
The negative impact of the network load is more accentuated in ad-hoc scenario
than in the infrastructure scenarios. Algorithm Aleak,app,adap achieves all target
metrics in all scenarios and load types (resulting in P < 1). Algorithm Agrd

achieves an almost sufficient penalty P in all infrastructure scenarios. Algo-
rithms Apll and Allr clearly fail to achieve a penalty P ≤ 1 in all scenarios with
network load.
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Fig. 29: Box plots of the performance penalty P achieved on ten traces per scenario and load
type. In contrast to Fig. 28, a single parameterization is used for all scenarios and
load types. The median and maximal penalties of the algorithms used in this figure are
summarized in Tab. 9.

What is the achieved performance?
Clearly, it is desirable to have a CSA that works well in every scenario and un-
der variable network load without changing its parameters. Thus we examine
the performance of the CSAs with a single parameterization in different scenar-
ios. Figure 29 shows the achieved performance penalty P of a single algorithm
optimized for all scenarios concurrently. For every scenario and load type, ten
traces were evaluated and the resulting penalties are displayed using box plots6,
the median and maximal values are summarized in Tab. 9. The penalties are
slightly larger than in the last experiment, shown in Fig. 28, because the CSAs’
parameters are not optimized for every scenario individually. Algorithm Apll

seems to be the least robust of the examined CSAs, in the sense that its perfor-
mance penalty under heavy network load is more widely distributed than that of
the other algorithms.

6Box plots show maximum, minimum (tails) and median values, as well as upper and lower
quartiles (box) of a distribution.
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Ad-hoc Median penalty Maximal penalty
- 128kb/s 3Mb/s - 128kb/s 3Mb/s

Aleak,app,adap 0.20 0.38 0.72 0.56 0.59 1.98
Apll 0.52 11.92 19.12 0.69 13.2 > 20
Allr 0.16 1.69 17.14 2.01 2.40 18.62
Agrd 0.56 3.20 12.30 0.98 3.76 17.17
Infr. w’less-w’less Median penalty Maximal penalty

- 128kb/s 3Mb/s - 128kb/s 3Mb/s
Aleak,app,adap 0.62 0.62 0.89 0.87 0.96 1.81
Apll 1.83 1.85 4.33 2.74 3.21 > 20
Allr 1.02 1.98 4.90 1.18 4.64 5.03
Agrd 1.20 1.77 4.15 1.42 2.71 5.16
Infr. wired-w’less Median penalty Maximal penalty

- 128kb/s 3Mb/s - 128kb/s 3Mb/s
Aleak,app,adap 0.46 0.52 0.76 0.71 0.92 2.05
Apll 1.07 1.05 4.19 1.13 4.78 > 20
Allr 1.96 2.54 5.33 2.17 4.81 8.07
Agrd 1.59 2.07 5.78 2.22 3.26 8.10

Tab. 9: Median and maximal performance penalties P of the algorithms used for Fig. 29.
P ≤ 1 means that all requirements are met.

How much does it cost?
Finally, we compare the cost of the CSAs in terms of computation and mem-
ory overhead. The results are shown in Tab. 10. Algorithms Apll and Agrd

are cheapest, algorithm Aleak,app,adap is slightly more expensive, and algorithm
Allr is much more expensive, since it uses much more memory than the other
CSAs. However, this result can be misleading, since cost was not an optimiza-
tion criterion. Our experience shows that algorithm Allr with a window size of
approximately 100 time stamps achieves almost equal results as the one gener-
ated by the evolutionary optimization with a window size of more than 40’000.
Still, algorithm Agrd achieves equal and even better results than Allr at a much
lower cost.

3.6.3 Discussion

In the first experiment we have seen that for algorithms Apll, Allr, and Agrd,
the peak jitter requirement is difficult to achieve. In the second experiment, it
was shown that this is mostly a problem in heavy-network-load situations. A
possible explanation for this phenomenon is that all these algorithms in some
way average over many time stamps. The average and median message delay is
strongly dependent on the network load (see Tab. 3). The synchronization error
achieved by these algorithms mirrors the short-term variations of the median
message delay. Figures 28 and 29 indicate that the ad-hoc scenario with high
load is most difficult for the algorithms Apll, Allr, and Agrd. This matches with
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Algorithm Operations Memory
n+ n< n∗ n/

Aleak,app,adap 9 3 5 2 32
Apll 8 3 5 0 7
Allr 15 4 10 2 43996
Agrd 13 4 4 5 8

Tab. 10: Resource requirements of the algorithms used for the results from Fig. 29. The table
shows the number of operations sorted by the type of operation (n< is the number of
comparisons, n/ also includes modulo operations) and the number of time stamps that
are stored in memory. In our implementation, time stamps are 8 bytes long.

the variability of the median delay under network load, shown in Tab. 3. While
the median delay in the ad-hoc scenario varies by more than 600µs, it varies by
less than 200µs in the infrastructure scenarios.

In contrast, algorithm Aleak,app,adap achieves a far better peak jitter and this
almost independently of the network-load situation. This is explained by the fact
that in contrast to all other algorithms, Aleak,app,adap selects time-stamp mes-
sages with a delay close to the minimal delay. In contrast to the average and
also the median delay, the minimal delay remains constant even under heavy-
network-load conditions, as can be verified in Tab. 3. Algorithms Aleak,app,adap

has more troubles with the MTIE criterion. The reason may be the selective na-
ture of the algorithm, resulting in frequent “jumps” of the synchronization error.
We have seen in the experimental study of Sect. 3.5.5 that drift compensation
and parameter adaptation reduce this problem.

Considering the median performance penalties shown in Tab. 9, only algo-
rithm Aleak,app,adap achieves all target metrics in all scenarios and with all load
types, the other algorithms have P > 4 in the infrastructure scenarios and even
P > 12 in the ad-hoc scenario. Considering the maximal performance penal-
ties, algorithm Aleak,app,adap misses the targets by a factor of 2, which may still
be acceptable for many consumer applications. The penalties of algorithms Allr

and Agrd are more than twice as large (P > 5) in the infrastructure scenarios and
more than eight times larger in the ad-hoc scenario. In all scenarios, algorithm
Apll performs much worse than the other algorithms. This confirms the finding
of Noro’s thesis ([Nor00]), which claims that linear regression often achieves a
better synchronization than PLL algorithms.

In summary, we have shown that for wireless loudspeakers, Aleak,app,adap

performs considerably better than the other algorithms and mostly achieves the
target metrics. The memory and computation overhead of all algorithms is
small, which allows embedded-system implementations at driver level or even
in hardware.



3.7. Summary and Conclusions 85

3.7 Summary and Conclusions

In this chapter, we have studied time synchronization of a single client node
that receives time-stamp messages from a reference node. We have presented
the classes of Local-Selection (LS) and heuristic Local-Selection (HLS) CSAs,
an overview is provided in Figure 30. Several ways to analyze these algorithms
have been presented. Experimental evidence has been provided that these novel
algorithms substantially outperform previously known state-of-the-art CSAs. In
the following, we summarize the chapter. Important conclusions are empha-
sized.

3.7.1 Analysis

The LS-CSAs have been analyzed under various assumptions about message de-
lays and clock drift. In Sect. 3.2, it has been shown that LS-CSAs are safe and
live. These properties assure that without making assumptions about message
delays, it is guaranteed that the synchronization error does not grow bound-
lessly. In addition, LS-CSAs fulfills the stronger optimally-selective property,
which formally states that these algorithms never make a wrong decision.

The optimally-selective property is used in Sect. 3.3 to derive a novel up-
per bound on the achieved peak jitter under the assumption of message delays
constrained by an upper delay-interval curve. It has been shown that this as-
sumption can provide more detailed and more realistic estimations of the actu-
ally achieved peak jitter than a previously known analysis based on upper- and
lower-bounded message delays.

In Sect. 3.4, we have presented ways to estimate and compensate the drift
of the client’s local clock under the assumption that the CSA has some a-priori
knowledge about message delays. It has been shown that drift compensation
substantially improves time synchronization. We have found that variability of
the clock drift makes it impossible to compensate drift completely. A simple
procedure for estimating the achievable rate error has been proposed. The upper
bound on the peak jitter presented in Sect. 3.3 has been refined to allow for the
drift compensation mechanism of algorithm Alsdc,iter.

In Sect. 3.5, it has been shown that without a-priori knowledge about mes-
sage delays, drift compensation is not possible in a deterministic sense, i.e.
every drift-compensation procedure risks to make an arbitrarily large error.

In summary, we have contributed to a better understanding of unidirectional
point-to-point synchronization. We have clarified the relation between assump-
tions about the system and guarantees about the synchronization quality. The
most eminent result is that the assumption of message delays constrained by
an upper delay-interval curve allows to derive tight and guaranteed bounds on
the synchronization quality. As we have shown in the last chapter, such delay-
interval curves are quite simple to obtain. Thus, guaranteed synchronization in
the range of microseconds is possible in 802.11b WLANs.
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Fig. 30: Summary of the Local-Selection algorithms (LS-CSAs) and heuristics (HLS-CSAs)
presented in Chapter 3. The algorithms in shaded boxes are completely specified and
implementable. A solid arrow connects a basic algorithm with a refined variant. Dashed
arrows represent a more general similarity between two algorithms.

3.7.2 Practical Algorithms

A second goal of this chapter was to present simple algorithms that require
minimal a-priori knowledge about the system and which can be used in a wide
range of system setups and application scenarios without making adaptations.

In Sect. 3.5, the heuristic Local-Selection algorithms have been presented.
They are safe and live, thus the synchronization error does not grow bound-
lessly. In contrast to LS-CSAs, HLS-CSAs are not optimally selective and thus
the upper bounds developed in Sect. 3.3 do not hold. Instead, their perfor-
mance has been assessed experimentally. It has been shown that HLS-CSAs
perform substantially better than other CSAs if, e.g. due to heavy and variable
network load, the median message delay is variable. It has been shown that
HLS-CSAs achieve the synchronization quality required for wireless loudspeak-
ers. This result has been confirmed by our industrial partner BridgeCo7, who
has implemented HLS-CSAs in commercial products. BridgeCo holds an in-
ternational patent on the fundamental slow-logical-clock property of LS-CSAs
and the eventually-slow-logical-clock property of HLS-CSAs [BD01].

3.7.3 Outlook

In the next chapter, we present interval-based synchronization, which is con-
cerned with providing a client node with upper and lower bounds on refer-
ence time instead of with a single estimate of reference time. In Sect. 3.2,
we have shown that LS-CSAs actually compute a lower bound on reference
time (Lem. 3). We will thus show in Chapter 5 how LS-CSAs can be used to
construct interval-based CSAs.

7BridgeCo AG, 8600 Dübendorf, Switzerland. http://www.bridgeco.net



4
Multihop Synchronization

In Sect. 1.1, we have identified three fundamentally different issues in clock
synchronization: (i) Message delay between synchronizing nodes, (ii) clock
drift and (iii) the organization of synchronization in complex arrangements of
many nodes. In the last chapter, we have extensively discussed the first two
issues in a very simple scenario of a single client node synchronizing to a single
reference node. The purpose of this chapter is to discuss the third issue, namely
that of organizing clock synchronization in large multihop networks, which are
typical for example in sensor-network applications.

In Sect. 4.1, the specific problems arising in multihop synchronization are
explained and known approaches to solve them are presented. A formal sys-
tem model is introduced and a lower bound for the worst-case performance is
derived.

In Sect. 4.2, we present interval-based synchronization as a novel multihop
synchronization strategy. It is cheaper than the previously known clustering
and tree-based schemes, since it does not require any coordination among the
nodes to setup or maintain global configuration of the synchronization process.
As a consequence, the scheme is more robust against changes in the network
topology than other schemes, i.e., against nodes that leave or enter the system,
mobile nodes, link failures, etc. Furthermore, it is shown that the interval-based
algorithm I IM from Marzullo and Owicki [MO83] is worst-case optimal in arbi-
trary scenarios, while tree-based schemes are not. It is shown that interval-based
algorithms can simultaneously achieve a good performance and a balanced dis-
tribution of the energy consumption among all nodes.

In Sect. 4.3, the interval-based algorithm IBP is presented, which outper-
forms algorithm I IM in typical cases and achieves the same performance in the
worst case. These algorithms are compared by simulation of typical scenarios.
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4.1 Introduction

In this section, we first describe informally why multihop synchronization is
a more difficult problem than point-to-point synchronization (Sect. 4.1.1). A
short discussion summarizes currently known approaches to cope with these
difficulties (Sect. 4.1.2). In Sect. 4.1.3, the system model is formalized. Finally,
a lower bound on the worst-case accuracy is derived (Sect. 4.1.4).

4.1.1 The Problem

In multihop networks, nodes cannot communicate with all other nodes in the
system directly. The emerging application of large-scale sensor networks is one
example of a multihop network. Sensor nodes typically are small and inex-
pensive devices with stringent energy constraints. As the power consumption
for communication increases quickly with the geographical distance between
sender and receiver, multihop communication is potentially more energy-effi-
cient than direct links between all sensor nodes.

Concerning clock synchronization, multihop communication creates a prob-
lem: As not all nodes can directly communicate with the reference node, two
client nodes Nu and Nv have to synchronize directly with each other. But what
does this mean? Should Nu set its time according to that of Nv or should rather
Nv adjust its clock to Nu’s? Clearly it is desirable that the node whose clock
has a smaller error is used as the reference for the other. But how do the nodes
know which one that is? In Sect. 4.1.2, state-of-the-art solutions to this problem
are discussed.

There are also other issues in multihop synchronization. multihop networks
are sometimes deployed in an ad-hoc fashion. Consider the example of envi-
ronmental monitoring using a large number of sensor nodes. Some of these
nodes may go out of service because their batteries are exhausted. New nodes
may be added to the system to replace the failed nodes. Nodes may be mobile,
for example if attached to wild animals, to weather balloons, or to soldiers in
a battlefield. Ad-hoc deployment and mobility cause permanent change in the
system. It is thus desirable that synchronization schemes adapt to this change
quickly and without causing a large overhead in terms of communication.

4.1.2 Related Work

In this section, we present two ways to avoid the multihop synchronization prob-
lem sketched in the previous section, and two ways to explicitly deal with the
issue. Figure 31 illustrates these approaches.

Virtual connections
An overlay network of virtual connections from all nodes to a reference node
can be constructed. Synchronization over these virtual connections then is re-
duced to the simple reference-client situation discussed extensively in Chap. 3.
The approach has some major drawbacks: (i) The message delay on the virtual
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(a) (b) (c) (d)

Fig. 31: Organizing synchronization in multihop networks. (a) Virtual connections from the
reference to all clients. (b) Single-hop synchronization with reference nodes that are
synchronized out-of-band (e.g., via GPS). (c) Single-hop synchronization in overlap-
ping clusters, gateway-nodes translate (grey) time stamps. (d) Tree hierarchy with a
single reference node at the root.

connections can become extremely large and widely variable, since messages
are repeatedly received, stored and forwarded. The situation is aggravated if
nodes are temporarily switched off in order to reduce energy consumption. (ii)
It may be quite difficult and expensive to maintain the virtual connections if the
nodes are mobile. (iii) In networks with a large number of nodes, the central
reference node becomes a bottleneck; the approach does not scale.

Out-of-Band Synchronization
Another way of circumventing the problem is to deploy a large number of refer-
ence nodes in the network, such that every node has a direct connection to one
of them. The reference nodes are synchronized among each other using some
out-of-band mechanism. The global positioning system (GPS) is well suited
for this purpose as it provides time information with sub-microsecond accuracy.
Such a system has been proposed by Verissimo et al. [VRC97]. However, GPS
receivers are still relatively costly. Additionally, they require a direct line of
sight to a number of satellites, and thus cannot operate inside buildings.

Clustering
The authors of the RBS algorithm propose to partition the network into clus-
ters [EGE02]. All nodes within a cluster can broadcast messages to all other
members of the cluster, and every node in the cluster maintains multiple logical
clocks that are synchronized with all other nodes in the cluster. Some nodes are
members in several clusters and participate independently in all corresponding
synchronization procedures. These nodes act as time gateways and translate
time stamps from one cluster to the other. Clustering has been proposed for
internal synchronization, that is the synchronization of a subset of client nodes.
For external synchronization to an a-priori designated reference node, the clus-
tering scheme is equivalent to tree construction discussed below; every cluster
corresponds to one hop in the tree, see Fig. 31.

There is a trade-off in choosing the size of the clusters. On the one hand,
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a small number of large clusters reduces the number of translations and thus
improves the accuracy; on the other hand, energy consumption grows quickly
with increasing transmission range, which is in favor of many small clusters.
This trade-off has been examined in [MR03].

The disadvantages of the clustering approach, at least in the form proposed
by [EGE02], are that (i) a broadcast-communication mechanism is required,
and (ii) the construction and maintenance of the cluster organization becomes
difficult in networks with mobility and nodes leaving and joining.

Tree Construction
The most common solution of the multihop synchronization problem is to con-
struct a synchronization tree with a single reference at the root, see [GKS03,
SV03, vGR03, MKSL04a]. Single-hop synchronization is applied along the
edges of the tree with the node closer to the root as the reference node. Vari-
ous well-known algorithms can be used to construct such a tree, a discussion
of this is presented in [vGR03]. As the accuracy degrades with the hop dis-
tance from the root, a tree with minimum depth is preferable. Tree construc-
tion faces two main problems: (i) In sensor networks, the network topology is
dynamic; nodes temporarily or permanently fail and thus leave and rejoin the
network. The tree-based synchronization algorithms explicitly have to deal with
such events. In particular, the root node may fail, which necessitates to elect a
new root [MKSL04a]. (ii) Two neighboring nodes in terms of physical location
may have a large hop distance in the synchronization tree. In consequence, the
accuracy of synchronization between these nodes is not as good as if they would
synchronize with each other directly.

4.1.3 Model and Problem Statement

We now formally define the multihop synchronization problem. From this prob-
lem definition, a lower bound on the achievable worst-case performance is de-
rived.

Def. 24: (Network and Nodes) A network N = {Nu|0 ≤ u ≤ n} is a set of n+1 nodes.
Every node Nu has a local clock Hu with a drift rate ρu in the range of [−ρ̂, ρ̂]
and an arbitrary offset relative to real time. The node N0 is the reference node
and its local clock shows real time, that is H 0(t) = t. All other nodes are
referred to as client nodes.

Def. 25: (Communication Events) Communication is point-to-point between two nodes.
Communication is modeled as an event and thus has no duration; every com-
munication event occurs at a unique real time. At a communication event, the
nodes can exchange an arbitrary amount of information in both directions. For-
mally, the i-th communication event is a tuple (ui, vi, ti), meaning that nodes
Nui

and Nvi
communicate at real time ti.

Note that this communication model assumes zero delay, which is com-
pletely different from the models used in the previous chapters.
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Def. 26: (Scenario) A scenario S = (N , {(ui, vi, ti)}) is a graph with vertices that cor-
respond to nodes in the network N and edges (Nui

, Nvi
) with weight ti that

correspond to communication events.

Figure 32 shows two representations of a scenario. On the left side, the
graph representation is shown. On the right, the scenario is represented as an
event chart: For every client node, a time line is drawn. Communication events
with the reference node are shown as bullets on the time line of the correspond-
ing client node at the height corresponding to the real time of this event. Com-
munication events between two client nodes are shown as a connected bullet
pair on the time lines of the involved nodes, again at the height corresponding
to the real time of the communication event.
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Fig. 32: Graph and event-chart representations of a scenario.

A scenario is a form of specifying a particular synchronization problem. We
will analyze the following: Given a scenario, what is the accuracy a particular
CSA can guarantee?

To answer this question, it has to be specified precisely what we under-
stand by accuracy. By Def. 11, the accuracy is the largest absolute value of the
synchronization error in a specified observation interval. We now take another
approach:

Def. 27: (Destination Event) A destination event is an artificial event used for the anal-
ysis of a scenario. It is modeled as a tuple (d, td), meaning that the synchro-
nization error of node Nd ∈ N at real time td is analyzed.
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Clearly, the choice of the destination event has a strong influence on the
result of the analysis. For example, if it is placed on a node that has never com-
municated with the reference node directly or via other client nodes, then no
finite accuracy can be guaranteed. Also, if the destination event is placed long
after the last communication event of the node Nd, then the worst-case accuracy
will be very large. So how should the destination event be placed? There are
three different interpretations of this problem: (i) Maybe the application that
uses the synchronized time specifies itself when and at which node and at what
time synchronization is needed. This approach will be followed in the next
section where a lower bound for the achievable accuracy is derived. (ii) If a sce-
nario consists of a periodic pattern, then it maybe immediately clear for which
position of the destination event the accuracy becomes maximal. This approach
will be followed in Sect. 4.2.2, where this lower bound is applied to scenarios
corresponding to synchronization trees. (iii) In more complicated scenarios, the
worst-case accuracy of many different destination events can be evaluated and
the worst case of all these results can be determined by taking the maximum.
This approach will be followed in Sect. 4.2.3.

4.1.4 Lower Bound

In this section, we derive a lower bound Ad for the accuracy at a destination
event (d, td) achieved by a deterministic CSA in a given scenario S. To this
purpose, we have to complement the notion of a scenario by the notions of
traces and views.

Def. 28: (Trace) A trace T = (N , {(ui, vi, ti, h
ui
i , hvi

i )} is a scenario S augmented by
the local times hui

i and hvi
i of the nodes Nui

and Nvi
involved in the i-th com-

munication event.

A trace is thus a concrete realization of a scenario. There are infinitely
many traces corresponding to a scenario. These traces differ in the drift rates
of the local clocks. By Def. 24, the drift rates are bounded and thus for every
two communication events i and j where a node Nu is involved, the local time
difference hu

j − hu
i must lie in the interval [(tj − ti)(1 − ρ̂), (tj − ti)(1 + ρ̂)].

Like a scenario, a trace can be represented as a graph or as an event chart,
see for example Fig. 33

While a trace contains the complete information about the real and local
times of all communication events in a scenario, we now introduce the view,
which contains the information that is known to a node at a particular time.

Def. 29: (View) A view Vd is a set of tuples (ui, vi, h
ui
i , hvi

i ), containing all information
about communication events, i.e. the involved node identifiers ui and vi and the
respective local times hui

i and hvi
i , that is available to node Nd at real time td.

Informally, it is simple to understand about which communication events
node Nd can have information at real time td: the view Vd contains information
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Fig. 33: Trace and view of the scenario from Fig. 32. The trace complete specifies real and local
times of all events in the system. The view only contains the information available to a
client node at a particular destination event.

about all communication events from which there exists a path to the destination
event d in the event chart, without going backwards on the time lines. In other
words, the view contains the information that node Nd has acquired locally,
i.e. local times hd of communication events in which it is involved, and the
information it can have received from other nodes at a communication event.

Figure 33 shows on the left side a trace and a destination event. On the
right side, the corresponding view is shown. In contrast to the trace on the left,
the view on the right does not contain the communication event 3, since node
N1 cannot know about it at real time td. The view also does not contain the
real times of the communication events among client nodes. It does, however,
contain the real times of the communication events with the reference node,
since the reference node knows the real time.

There are infinitely many traces that can correspond to a view. The traces
differ in the drift rates of the nodes and thus the real times of communication
events. As drift rates are bounded, the real time difference tj − ti between any
two communication events i and j in which node Nu is involved must lie in the
interval [(hu

j − hu
i )/(1 + ρ̂), (hu

j − hu
i )/(1 − ρ̂)].

Thm. 17:(Lower bound) Given a scenario S and a destination event (d, td), then the
accuracy Ad of the synchronized time cd computed by a deterministic CSA on
node Nd at real time td is lower-bounded by

Ad ≥ ρ̂

1 − ρ̂
(td − ts) (4.1)

where ts is the largest real time of any communication event with the reference
node that is contained in the view Vd.
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Proof: The idea of the proof for Theorem 17 is the following: Given a
scenario with a destination event d occurring at real time td, we construct a
trace T and a view Vd such that all client’s drift rates are maximal, i.e., ρu = ρ̂
for all nodes Nu in the network. Let us assume that some deterministic CSA
computes the estimated real time cd from the view Vd. Now we construct a
second trace T ′, which has exactly the same view Vd as the first trace T . But in
T ′, the drift rates for all nodes Nu in the network are switched to ρu = −ρ̂ after
the latest communication event with the reference node has occurred. Since
all local times are the same in both traces, the real times of all communication
events occurring after the latest communication event with the reference node
are increased, thus T ′ corresponds to a scenario S ′ that is different from S. The
two alternative traces having the same view are illustrated in Fig. 34.
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Fig. 34: Two traces with the same view. On the left, ρ = ρ̂ at all times. After time t2, the clocks
in the constructed trace on the right run with minimal speed. Since the two traces are
indistinguishable to a CSA, i.e. they have the same view, the accuracy achieved by a
deterministic CSA cannot be better than 1

2(t′d − td).

The CSA, as it is deterministic, thus computes the same estimated real time
cd for the destination event. But in the trace T ′, the real time of the destination
event d is t′d. The accuracy the CSA can guarantee is thus at best 1

2
(t′d − td)

if cd = 1
2
(td + t′d). In the following, it is shown that this expression is exactly

the one from Thm. 17. Let ∆h be the sum of all local time differences on
an arbitrary path in the event chart from the latest communication event with
the reference node to the destination event. ∆h is equal for all paths, since
we have assumed that all nodes have the same drift. For trace T , we have
∆h = (1 + ρ̂)(td − ts). For trace T ′, we have ∆h = (1 − ρ̂)(t′d − ts). Since
the view of both traces is the same, ∆h must be equal for both cases, thus we
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have (1 + ρ̂)(td − ts) = (1 − ρ̂)(t′d − ts). This equation can be transformed to
t′d = ts + (td − ts)

1+ρ̂
1−ρ̂

and thus t′d − td = (td − ts)(
1+ρ̂
1−ρ̂

− 1) = (td − ts)(
2ρ̂

1−ρ̂
).

Thus the accuracy can at best be Ad = ρ̂
1−ρ̂

(td − ts). �

Ex. 12: (Node Chain) Assume a network of nodes N = {Nu|0 ≤ u ≤ n} that are ar-
ranged in a chain by ascending node identifier. Every pair of neighboring nodes
communicates at least once in every interval of real-time length ∆t. Fig. 35 il-
lustrates the corresponding worst-case scenario. Worst-case here means that
node Nu communicates with Nu+1 immediately before Nu communicates with
Nu−1 thus information received by Nu from Nu−1 can only be passed to Nu+1

after an interval of length ∆t.

N1 N2 N3 N1 Nn

	t

d

N0

N2

N3

N1

Nn-1

Nn

(a) (b)

Fig. 35: Worst-case scenario and destination event for a chain of nodes

The real-time difference between the destination event and the latest com-
munication event with the reference node in the corresponding view is td − ts =
n∆t. Using Eq. 4.1 we get a lower bound for the worst-case accuracy of node
n of Ad ≥ ρ̂

1−ρ̂
n∆t. The lower bound Ad is thus proportional to the interval of

communication events ∆t and the hop distance to the reference node.

4.2 Interval-Based Synchronization

In this section, we propose interval-based synchronization as a novel approach
to the multihop synchronization problem. In Sect. 4.2.2, we show that the sim-
ple interval-based algorithm I IM, which has been presented in [MO83] for the
single-hop case, always meets the lower bound from Theorem 17 and is thus
worst-case-optimal. We then compare the worst-case accuracy of algorithm
IIM with that of tree-based algorithms. For arbitrary scenarios, tree-based algo-
rithms are not worst-case-optimal. In Sect. 4.2.3, scenarios that are specifically
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designed for synchronization are considered. For a given frequency of commu-
nication events in a network, which corresponds to a given amount of energy
per time spent on synchronization, algorithm I IM combines the advantages of
different tree-construction principles, that is a good accuracy and an equal dis-
tribution of communication events, and thus energy consumption, among all
nodes in the network.

4.2.1 Definitions

As in the case of estimate-based CSAs (see Def. 4), interval-based CSAs are
executed locally on one node immediately after a communication event. We
use the notation Vu

i for the view Vd according to Def. 29 with a destination
event placed at node Nu immediately after the i-th communication event. In
contrast to estimate-based CSAs, interval-based CSAs compute two clocks, a
lower-bound clock Č and an upper-bound clock Ĉ.

Def. 30: (Interval-based CSA) An interval-based CSA I running on node Nu computes
after every communication event i in which Nu is involved from the correspond-
ing view Vu

i a new pair of logical clocks (Ču
i , Ĉu

i ) = I(Vu
i ). The lower-bound

clock Ču and the upper-bound clock Ĉu are defined as follows:

Ču(hu) = Ču
i (hu), with i : hu

i ≤ hu < hu
i+1,

Ĉu(hu) = Ĉu
i (hu), with i : hu

i ≤ hu < hu
i+1 .

The goal of an interval-based CSA is to ensure that at all times, real time
is above the reading of the lower-bound clock and below the reading of the
upper-bound clock.

Def. 31: (Correctness) An interval-based CSA I is correct if real time t is contained in
the interval defined by the lower- and the upper-bound clocks, that is if

Ču(Hu(t)) ≤ t ≤ Ĉu(Hu(t)) .

Secondly, the interval between the two clocks should be as small as possible.

Def. 32: (Uncertainty) The uncertainty Uu provided by an interval-based CSA is defined
as

Uu(t) = Ĉu(Hu(t)) − Ču(Hu(h)) .

Note that in contrast to the synchronization error E(t) (see Def. 4), the un-
certainty Uu(t) can be computed by the client node Nu itself.

It is straightforward to derive an estimate-based CSA from an interval-based
algorithm.

Def. 33: (Estimate-Based CSA derived from an Interval-Based CSA) An estimate-
based CSA A according to Def. 4 can be derived from any interval-based CSA
I according to

C(H(t)) =
1

2
(Č(H(t)) + Ĉ(H(t))) ,

where Č is a lower- and Ĉ an upper-bound clock computed by algorithm I.
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Deriving an estimate-based CSA from an interval-based CSA allows to eval-
uate the accuracy and other metrics. This is useful when comparing interval-
based CSAs with estimate-based CSAs, which is done in the next sections.

4.2.2 A Worst-Case-Optimal Interval-Based Algorithm

The algorithm IM from [MO83] is an interval-based CSA. We present this algo-
rithm here to illustrate the concept of interval-based CSAs and then show that it
always achieves the lower-bound from Theorem 17.

Def. 34: (Algorithm IM) In a network of nodes executing the interval-based algorithm
IIM, every node Nu computes after every communication event i with a node
Nv lower- and upper-bound clocks according to

Ču
i (hu) =

{
0 if i = 0

max(ču
i , č

v
i ) +

hu−hu
i

1+ρ̂
otherwise

(4.2)

Ĉu
i (hu) =

{
∞ if i = 0

min(ĉu
i , ĉ

v
i ) +

hu−hu
i

1−ρ̂
otherwise

(4.3)

where the time stamps ču
i and ĉu

i are the current value of the lower- and upper-
bound clocks of node Nu immediately before the communication event, and čv

i

and ĉv
i are the corresponding time stamps of node Nv

At every communication event i between nodes Nu and Nv, the nodes ex-
change the current readings of their lower- and upper-bound clocks, that is,
node Nu receives from Nv the time stamps čv

i and ĉv
i , and node Nv receives

from Nu the time stamps ču
i and ĉu

i . The new lower-bound clock Ču
i starts with

the larger value of the two lower-bound clocks Ču and Čv at the time of the
communication event i. It then progresses at a rate of (1+ρu)/(1+ ρ̂). The new
upper-bound clock Ĉu

i starts with the smaller value of the upper-bound clocks
Ĉu and Ĉv at the time of the communication event i. It then progresses at a rate
of (1 + ρu)/(1 − ρ̂).

Thm. 18:(Correctness of IIM) Algorithm IM is correct.

Proof: To show that algorithm IM is correct, we have to show that (i) the initial
lower- and upper-bound clocks are correct, (ii) that all later lower- and upper-
bound clocks are initially correct, and (iii) that all lower- and upper-bound
clocks remain correct. In the following, we prove these three points for the
lower-bound clocks. The proof for the upper-bound clock can be derived anal-
ogously.

Clearly all clocks Ču
0 are correct, since real time is always positive, which

proves (i). All clocks Ču
i with i > 0 are initially equal to either Ču

i−1 or Čv
i−1,

thus if Ču
i−1 and Čv

i−1 are correct, then also Ču
i is initially correct. If Ču

i is
initially correct, then it remains correct, since its rate is (1+ρu)/(1+ ρ̂), which,
by Def. 24, is never greater than 1. This proves (ii) and (iii). �
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Thm. 19:(Upper bound on the Uncertainty of IIM) In a network of nodes executing
algorithm IM, the uncertainty at a destination event d is upper-bounded by

ud ≤ 2ρ̂

1 − ρ̂
(td − ts) ,

where ts is the real time of the latest communication event with the reference
node in the view Vd.

Proof: The idea of the proof is the following: Select an arbitrary path in the
event chart (only forwards on the time lines, both directions on the communi-
cation events) from the last communication event with the reference node in the
view Vd to the destination event. Now we compute the uncertainty along this
path. We assume that at all communication events on this path, the lower- and
upper-bound clocks of the node from which the path starts the traversal of the
communication event are better, i.e., the lower-bound clock has a larger value
and the upper-bound clock has a smaller value, than the clocks of the node on
which the path continues. The resulting uncertainty is an upper bound on the
uncertainty achieved by algorithm IM.

The uncertainty at the start of the path is us = 0. On a path-segment along
the time line corresponding to some node Nu, starting at communication event
i and ending at communication event j, the uncertainty grows according to
Def. 34 by

uu
j − uu

i =
hu

j − hu
i

1 − ρ̂
−

hu
j − hu

i

1 + ρ̂
= (hu

j − hu
i )

2ρ̂

1 − ρ̂2
.

By Def. 24, (hu
j − hu

i ) ≤ (tj − ti)(1 + ρ̂) and thus

uu
j − uu

i ≤ (tj − ti)
2ρ̂

1 − ρ̂
.

On the path segments corresponding to communication events, the uncertainty
remains constant. Thus we can sum up the increase of the uncertainty over
all path segments corresponding to time lines of some nodes Nu resulting in
ud − us = (td − ts)

2ρ̂
1−ρ̂

, and since us = 0 we have proven Theorem 19. �

Thm. 20:(Worst-Case-Optimality of AIM) Algorithm AIM is worst-case-optimal for ev-
ery scenario S and every destination event d.

Proof: We show that the accuracy of algorithm AIM is half the uncertainty
achieved by algorithm I IM. By Theorems 17 and 19, this proves that AIM is
worst-case-optimal.

As we know that I IM is correct, the synchronization error of the lower-
bound clock Č is at most 0, and that of the upper-bound clock Ĉ is at most ud.
In this case, the error of the synchronized clock C is ud/2. The synchronization
error of the lower-bound clock is at least −ud, and that of the upper-bound clock
is at least 0. Then the error of the synchronized clock C is −ud/2. In all other
cases, the synchronization error is between these extremal values, and thus the
accuracy Ad = ud/2 of algorithm AIM is half the uncertainty of I IM. �
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Discussion
When we want to compare the interval-based approach with tree-based ap-
proaches, which have shortly been presented in Sect. 4.1.2, we face the difficulty
that the interpretation of a scenario is different for the two approaches. In the
interval-based approach, a scenario can be completely arbitrary. It is assumed
that the scenario is generated by some functionality of the network that has no
relation to synchronization, and algorithm AIM is worst-case-optimal in every
scenario. In the tree-based approach, this is not so: synchronization information
is only exchanged between parent and child nodes in the tree, thus a scenario
cannot contain communication events between two nodes that are not neighbors
in the tree.

One possibility of comparing the approaches is the following: We assume
that an arbitrary scenario is given, since it was generated by some other func-
tionality of the network. As stated before, algorithm AIM is worst-case-optimal.
But what about the tree-based approaches? We assume the network is organized
in some sort of tree, and every communication event in the scenario that is be-
tween nodes that are not neighbors in this tree is ignored by the synchronization
algorithm.

Consider the example shown in Figs. 32, 33, and 34, and assume that the
reference node N0 is the parent of nodes N2 and N3, while node N3 is the par-
ent of N1. Thus, the communication event between nodes N2 and N3 and the
communication event between nodes N2 and N1 are not considered for synchro-
nization. If we assume that there exists a tree-based CSA that achieves the lower
bound of Theorem 17, then this algorithm is optimal for this scenario.

Now consider the same example, but assume that node N2 is the parent of
N1. The same tree-based CSA, by Theorem 17, thus cannot achieve a bet-
ter worst-case accuracy than Ad ≥ ρ̂

1−ρ̂
(td − t1) while the optimum is Ad ≥

ρ̂
1−ρ̂

(td − t2). Therefore, the tree-based CSA is not optimal. The interpretation
of this example is that a tree-based CSA cannot make optimal use of some ar-
bitrary scenario, since it is restricted to consider only synchronization-related
information received from its parent.

4.2.3 Experimental Study: Comparison with Tree-Based Algorithms

We now present an approach for comparing interval-based CSAs with tree-
based CSAs, assuming that scenarios are specifically designed for the respective
synchronization principle. For the tree-based CSAs, this means that communi-
cation events only occur between corresponding parent and child nodes, thus
also tree-based CSAs use all communication events, as interval-based CSAs do.

A tree can be seen as a set of chains, which are possibly overlapping. A
network of n client nodes and a reference node can for example be organized in
a single chain of length n or in n short chains with length 1 - a topology also
called “star”. In Example 12, it has been derived that in a chain of length n, the
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accuracy is lower-bounded by

Ad ≥ ρ̂

1 − ρ̂
n∆t (4.4)

if at least once in every interval of real-time length ∆t a communication event
occurs between every pair of neighbors. Thus if the network is organized in a
single chain, the accuracy becomes rather bad; it increases proportionally with
the length n. If the network is organized in n short chains, the accuracy is far
better, that is Ad ≥ ρ̂

1−ρ̂
∆t, which is independent of the network size n. In

both cases, the total number of communication events is the same, that is n
in every interval of real-time length ∆t. In the case of the long chain, these
communication events are equally distributed among all nodes (two per node
and per ∆t, except for N0 and Nn, which have only one in the same period).
In the case of the short chains, all client nodes have one communication event
per ∆t and the reference node has n communication events per ∆t. A single
long chain has the advantage that all nodes communicate approximately equally
often but have a bad accuracy. In contrast, many short chains provide a good
accuracy, but the reference node has to serve many communication events, thus
needs far more energy than the other nodes. It thus fails far earlier than the other
nodes if all nodes have equal energy resources.

Clearly, both a single long chain and n short chains (star) are extreme cases
of a tree. In the following, we explore the trade-off between accuracy and in-
equality of the number of communication events per time among the nodes in
an experimental study. In this study, we also compare these metrics with the
same metrics achieved by the interval-based approach.

Experimental setup
100 client nodes are randomly placed with a uniform probability distribution in
a square are of width 100. In addition, a reference node is placed in the center
of the square. With a given transmission range, a graph is constructed in which
the nodes are the vertices and every pair of nodes with a distance below the
transmission range is connected by an edge. In this graph, we construct two
trees, one according to a depth-first algorithm, a second according to a breadth-
first algorithm. These tree-based algorithms have been proposed for the use
in synchronization algorithms by [vGR03]. Figure 36 illustrates this setup for
three different transmission ranges.

For every generated tree, the maximal hop distance to the reference node and
the maximal degree of any node are evaluated. Figure 37 shows these values for
various transmission ranges from 10 to 70. For every value of the transmission
range, 50 graphs have been generated, and the maximal and minimal values are
shown in the figure.

To compare the tree-based approach with the interval-based approach, we
proceed as follows: In the randomly generated networks, we let every node
communicate with a randomly selected neighbor once in every interval with
real-time length ∆t. Thus, the total number of communication events per ∆t
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Fig. 36: Randomly generated networks for various transmission ranges. Left column shows
a breadth-first tree, the middle column shows a depth-first tree and the right column
shows the complete graph.

is the same as in the tree-based approaches. For every graph, this procedure
is executed during a total time of 1000∆t. A pseudo degree is computed by
computing the total number of communication events per node divided by 1000
and taking the maximum. A pseudo hop distance to the root is computed as
the maximal real-time length of any path in the scenario from a communication
event with the reference node to any of the client nodes divided by ∆t. The
results are also shown in Fig. 37.

Results
First consider the maximal degree of any node in the network, shown on the
right side of Fig. 37. For the depth-first tree, the maximal degree is fairly low
(≤ 4) and remains approximately constant for all transmission ranges. For the
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Fig. 37: Maximal distance to the reference node and maximal number of communication events
per node and per real-time interval ∆t. For every transmission range, 50 random net-
works are generated, the figure shows maximal (�) and minimal () values.

breadth-first tree, the maximal degree is small for a small transmission range and
then quickly increases. At the transmission range of 50

√
2 ≈ 71, the reference

node can reach every other node in the area and its degree is maximal, while all
other nodes have degree 1.

Now consider the maximal hop distance to the reference node. At a trans-
mission range of 10, there are nodes that cannot communicate with any other
node, thus the maximal distance is not shown. In some of the 50 graphs gen-
erated for every transmission range, this occurs up to a transmission range of
30. For the breadth-first tree, the maximal hop distance is fairly small (≤ 4 for
a transmission range of at least 30). For the depth-first tree, the hop distance
is much larger and increases quickly (≥ 83 for a transmission range of at least
30).

The interval-based approach distributes the communication events among
the nodes equally well as the depth-first-tree approach, which is far better than
in the case of the breadth-first-tree. The maximal hop distance, and thus the
worst-case accuracy, of the interval-based approach is much better than that of
the depth-first-tree, but approximately 5 times worse than that of the breadth-
first-tree (≤ 20 for a transmission range of at least 30).

4.2.4 Summary

In this section, we have presented interval-based synchronization as an ap-
proach for solving the multihop synchronization problem as it has been de-
fined in Sect. 4.1. It has been shown that the simple algorithm AIM, which
had been presented in [MO83], solves the problem worst-case-optimally. We
have also analyzed various tree-based synchronization approaches and derived
lower bounds for the worst-case accuracy they can achieve. Finally, we have
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compared interval-based and tree-based algorithms and identified various ad-
vantages of the interval-based approach:

• The interval-based algorithm AIM is worst-case-optimal in arbitrary scenarios
and thus allows to make optimal use of every scenario. An arbitrary scenario can
result from using a traffic pattern for synchronization that is generated by some
other, non-synchronization functionality of the network. It has been shown that
tree-based algorithms cannot be optimal in arbitrary scenarios.

• For a specified frequency of communication events, it has been shown (see
Fig. 37) that arbitrary communication events provide better synchronization ac-
curacy than a depth-first tree. The accuracy is only slightly worse than in a
breadth-first tree. The distribution of the communication events (and thus of
energy consumption) is equally good as in the case of a depth-first tree and far
better than in a breadth-first tree.

• Assume that some node fails due to depletion of batteries, physical damage,
etc. The tree-based algorithms now have to reestablish a tree structure of the
network, which is expensive in terms of communication overhead. [vGR03]
state that the communication overhead of breadth-first tree construction can be
reduced to 10 · n · m1/2, where n is the number of nodes and m the number of
edges in the network. The communication overhead of a distributed depth-first
tree construction algorithm is specified as 4 · m in 4 · n − 2 rounds. For the
networks we have studied above, the number of nodes is n = 100 and the av-
erage number of edges, assuming a transmission range of 30, is approximately
1100. Thus, the communication overhead of breadth-first tree construction is
approximately 13270 communication events and that of the depth-first tree is
approximately 4400 communication events. In contrast, the interval-based ap-
proach has zero overhead.

4.3 Back-Path Interval Synchronization
In this section, we present and analyze an improved version of the algorithm
IIM, the Back-Path Interval-Synchronization Algorithm IBP. Algorithm IBP

is worst-case-optimal like algorithm I IM, but achieves better results in typical
cases.

4.3.1 Worst Case and Typical Cases

Theorems 17 and 19 state bounds for the worst-case accuracy in an arbitrary
scenario. The different “cases” are different traces that correspond to a particu-
lar scenario and these traces differ in the drift rates of the nodes. In the proof of
Thm. 19, it has been shown that the worst-case trace corresponding to a particu-
lar scenario is the trace in which all nodes have the same drift rate and in which
this drift rate is maximal. Why is that so?
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Assume that two nodes Nu and Nv communicate twice without commu-
nicating with any other nodes in between. Such a scenario is shown in of
Fig. 38(a). Both nodes execute algorithm I IM. Immediately after the first com-
munication event (at t1), the lower- and upper-bound clocks of both nodes have
the same values. Let Ěu = Ču(Hu(t))− t be the error of the lower-bound clock
Ču of node Nu, and let Êu = Ĉu(Hu(t)) − t be the error of the corresponding
upper-bound clock. Similarly for node Nv.
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Fig. 38: (a) Scenario with two nodes. (b,c) Error of the lower- and upper-bound clocks of nodes
Nu (dashed) and Nv (dotted), computed by IIM with ρu = ρ̂ and different ρv.

In Fig. 38(b) and (c), the errors of the lower- and upper-bound clocks of the
two nodes are shown for two different cases, each with a different value of the
drift rate ρv . If ρv = ρu, then the second communication event does not have any
effect on either node’s clocks, since both the lower- and the upper-bound clocks
show exactly the same values. This is the case we have referred to as the worst
case. If the drift rate ρv is different from ρu, then the nodes can improve the
uncertainty at the second communication event. In the extreme case of ρu = ρ̂
and ρv = −ρ̂, the uncertainty after the second communication event is exactly
the same as after the first communication event; in this case, the two nodes have
maintained the uncertainty over time without any loss. This is the best case.

If we look at this best case a little bit closer, we see that on a node with
minimal drift, the error of the upper-bound clock does not increase (see Eq. 4.2).
On a node with maximal drift, the error of the lower-bound clock does not
increase (see Eq. 4.3). Thus diversity in the drift rate of the local clocks in a
network minimizes the uncertainty achieved by algorithm I IM, and thus also
improves the accuracy achieved by algorithm AIM.

4.3.2 Computing Back-Paths

In Sect. 4.3.1, we have shown that algorithm I IM achieves a better uncertainty
in typical cases than in the worst case because it makes use of the rate diversity
among the nodes in a network. In this section, we present algorithm IBP, which
is a modification of algorithm I IM and which makes even better use of this
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diversity.

Def. 35: (Algorithm IBP) In a network of nodes executing the interval-based algorithm
IBP, a communication event between nodes Nu and Nv consists of a sequence
of two message exchanges as specified in Alg. 7. The reference node does not
use Alg. 7; instead, it always sends (0,∞) in the first message exchange, and
the current real time (t, t) in the second.

In the following, we first describe the basic idea of algorithm IBP and then
give a concrete example to illustrate the various steps of Alg. 7.

Principle of Algorithm IBP

In contrast to algorithm I IM, algorithm IBP stores information about commu-
nication events in its memory. A node Nu stores for every other node Nv in
the network the local time and the lower- and upper-bound times of the last
encounter.

Whenever Nu communicates with some other node, it not only tries to im-
prove its current lower- and upper-bounds, but also the bounds of all previous
communication events stored in memory.

When node Nu meets for the second time with some node Nv, the nodes
first exchange the bounds corresponding to the previous communication event
between Nu and Nv, which they have stored locally. Due to some other com-
munication event with a third node, these bounds may have improved since the
nodes have met the last time. If so, these improved bounds are now used to try
to improve also the bounds of all other communication events stored in memory
and also the current bounds.

Only now the nodes Nu and Nv exchange and intersect their current bounds.
And again, the nodes try to improve the bounds of all communication events
stored in memory.

To further explain how algorithm IBP works, we now give a concrete ex-
ample. The example will also explain why the algorithm is dubbed “back-path”
interval-synchronization algorithm.

Ex. 13: Assume a scenario as it is shown in Fig. 39 (a). This scenario is the same as
that in Fig. 38, except that node Nu has an additional communication event with
the reference node between the two communication events with node Nv, and
thus the uncertainty of node Nu immediately after t2 is zero. Let the drift rates
ρu = ρ̂ and ρv = −ρ̂.

Fig. 39(b) shows the lower- and upper-bound clocks and the uncertainties if
nodes Nu and Nv use algorithm I IM. As node Nu has maximal drift, its lower-
bound clock can maintain zero error between t2 and t3, while the error of its
upper-bound clock increases. The error of node Nv’s clocks is not affected by
the communication event of node Nu with the reference node.

We now explain step by step how algorithm IBP achieves a smaller uncer-
tainty after t3, which is illustrated in Fig. 39(c).
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Algorithm 7 Algorithm IBP

Parameters: Number of nodes in the network n,
bound on clock drift ρ̂

State: Local times of prev. comm. events H[0 . . . n] = 0,
lower-bound times of prev. comm. events L[0 . . . n] = 0,
upper-bound times of prev. comm. events U [0 . . . n] = ∞
identifier of last node encountered l

Input: Current lower- and upper-bound clock times (čvi , ĉ
v
i ),

previous lower- and upper-bound clock times (čvj , ĉ
v
j )

Output: Lower-bound clock Ču
i ,

Upper-bound clock Ĉu
i

// STEP 1: Exchange previous bounds
send to Nv bounds (L[v], U [v]), receive from Nv bounds (čv

j , ĉ
v
j )

// Update all lower- and upper-bound times using (čvj , ĉ
v
j )

for w := 1 to n do
if H[w] < H[v] then

(L[w], U [w]) :=
(
max

(
L[w], čv

j + H[w]−H[v]
1−ρ̂

)
,min

(
U [w], ĉv

j + H[w]−H[v]
1+ρ̂

))
else

(L[w], U [w]) :=
(
max

(
L[w], čv

j + H[w]−H[v]
1+ρ̂

)
,min

(
U [w], ĉv

j + H[w]−H[v]
1−ρ̂

))
end if

end for

// compute current bounds
if l not initialized then

(ču
i , ĉu

i ) := (0,∞)
else

(ču
i , ĉu

i ) :=
(
L[l] + hu

i −H[l]
1+ρ̂ , U [l] + hu

i −H[l]
1−ρ̂

)
end if

// STEP 2: Exchange current bounds
send to Nv bounds (ču

i , ĉu
i ), receive from Nv bounds (čv

i , ĉ
v
i )

// intersect current bounds
(L[v], U [v],H[v]) := (max(ču

i , čv
i ),min(ĉu

i , ĉv
i ), h

u
i )

l := v

// Update all lower- and upper-bound times using (L[v], U [v])
for w := 1 to n do

(L[w], U [w]) :=
(
max(L[w], L[v] + H[w]−H[v]

1−ρ̂ ),min(U [w], U [v] + H[w]−H[v]
1+ρ̂ )

)
end for

// Finally compute the clocks(
Ču

i (Hu(t)), Ĉu
i (Hu(t))

)
:=
(
L[v] + Hu(t)−H[v]

1+ρ̂ , U [v] + Hu(t)−H[v]
1−ρ̂

)
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Fig. 39: Improvements by computing back paths. (a) Scenario. (b) Errors and uncertainties
achieved by IIM. (c) Errors and uncertainties achieved by IBP.

After t1, node Nu has stored lower- and upper-bound of the first commu-
nication event with Nv in L[v] and U [v]. At t2, node Nu improves its current
bounds and stores them in memory L[0] = U [0] = t2. It then also re-evaluates
the bounds for the past event at t1 (second for loop in Alg. 7), that is the lower-
bound time is re-evaluated as L[v] = max(L[v], t2 + (hu

1 − hu
2)/(1 − ρ̂)), and

the upper-bound time as U [v] = min(U [v], t2 + (hu
1 − hu

2)/(1 + ρ̂)). Note that
hu

1 − hu
2 is negative. Consequently, the rate-correction factors for the lower

and the upper bound are exchanged: While t2 ≥ t1 + (hu
2 − hu

1)/(1 + ρ̂), it
is t1 ≥ t2 + (hu

1 − hu
2)/(1 − ρ̂) and while t2 ≤ t1 + (hu

2 − hu
1)/(1 − ρ̂), it

is t1 ≤ t2 + (hu
1 − hu

2)/(1 + ρ̂). This means that a node with maximal drift
can maintain a lower bound without loss when time increases and an upper
bound when time decreases. For a node with minimal drift, the opposite is true.
Thus, node Nu computes U [v] = t1 with zero error. This is illustrated by the
dash-dotted line in Fig. 39(c).

At t3, node Nv first receives the improved bounds for the communication
event at t1. In particular, it receives the perfectly accurate upper bound t1. It
then reevaluates its current bounds, and as it has minimal drift, it computes the
current upper bound ĉv

3 = t1 + (hv
3 − hv

1)/(1 − ρ̂) = t3 with zero error. On
the other hand, node Nu running at maximal speed computes the lower bound
ču
3 = t2 + (hu

3 − hu
2)/(1 + ρ̂) = t3, also with zero error. When the nodes finally

intersect their current bounds, they arrive at t3 for both the lower and the upper
bound, thus achieve zero uncertainty.

While also algorithm I IM computes an accurate lower bound at t3, the up-
per bound is different. Algorithm IBP is better, because it computed the upper
bound over the “back path” shown in Fig. 39(a). At t2, it computed the first
section (a) of this path, and at t3, the second section (b) and the last section (c).
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4.3.3 Analysis

We show that in every scenario, algorithm IBP performs at least as well as the
algorithm I IM. Therefore the estimate-based algorithm ABP, derived according
to Def. 33, is worst-case-optimal. By means of a simple scenario, we illustrate
how and when IBP can provide better synchronization than I IM.

Thm. 21:(Worst-Case-Optimality of ABP) The uncertainty achieved by algorithm IBP

is never worse than the uncertainty achieved by algorithm I IM. Thus algorithm
ABP is worst-case-optimal.

Proof: We show that the lower-bound time computed by IBP is always equal or
higher than that computed by I IM. Analogously, it can be shown that the upper-
bound time is always equal or smaller. Then the accuracy of ABP is never worse
than that of AIM. Since AIM is worst-case-optimal (by Thm. 20), also ABP is
worst-case-optimal.

To show that the lower-bound time computed by IBP is always equal or
higher than that computed by I IM, assume that Alg. 7 consists only of the lines
labeled with “intersect current bounds” and “finally compute the clocks”. Then
it is exactly equal to algorithm I IM according to Def. 34. When adding the
other parts of Alg. 7 again, we see that these instructions either increase the
lower bound or do nothing. Therefore the final lower bound must be equal or
larger than that computed by I IM. �

Improvement in Typical Cases
The improvement in terms of uncertainty of IBP over IIM in Ex. 13 is 100%.
The reason for this impressive improvement is that the communication event at
t2 is with the reference node and that the rate difference between nodes Nu and
Nv is maximal. In the following, we systematically study the improvement in
the same kind of scenario, but assuming somewhat less favorable conditions.

In Fig. 40, a parameterized scenario similar to that of Ex. 13 is shown. The
parameter x specifies at what time node Nu communicates with a third node.
Assume that after the first communication event between Nu and Nv, the uncer-
tainty is u and after the communication event of Nu with a third node it is y · u.
Fig. 40 illustrates the improvement of the uncertainty computed by IBP relative
to that computed by I IM in function of the parameters x and y and the drift rates
ρu and ρv.

In the upper-right corner of Fig. 40, the communication event of Nu with
a third node occurs immediately after the communication event between Nu

and Nv (x ≈ 0), and this third node is the reference node, thus provides zero
uncertainty (y = 0). In this case, the improvement of IBP is 100% if the nodes’
rate-difference is maximal. The improvement is 0% if the drifts are equal.

The graphs in the center row of Fig. 40 explore the effect of the position
of the communication event of node Nu with a third node. The average im-
provement decreases with increasing distance between this event and the first
communication event between Nu and Nv. The maximal improvement is still
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Fig. 40: Improvement of IBP in the simple scenario depicted in the upper left corner. In all
figures, the drift rates of both nodes are varied between −ρ̂ and ρ̂. Each graph shows
one combination of the parameters x and y.

100% for maximal drift-rate difference, but the average (over all pairs of ρu and
ρv) decreases.

The graphs in the bottom row of Fig. 40 explore the effect of the time uncer-
tainty achieved at the communication event with the third node. With increasing
uncertainty, the maximal improvement decreases, for example at y = 0.5, IBP

can only achieve 34% less uncertainty than I IM if the drift-rate difference is
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maximal.

4.3.4 Experimental Study: Comparison of IBP and IIM

We now compare the interval-based algorithms IBP and IIM in large networks.
The networks are generated in the same way as in Sect. 4.2.3, where the worst-
case accuracy achieved by interval-based CSAs is compared to that achieved
by tree-based CSAs. In contrast, we now compare the accuracy in typical cases,
that is in networks of nodes that have different, non-maximal drift rates.

Experimental Setup
Traces of networks with 100 nodes and with a length of 500 hours are generated.
The nodes are placed randomly with a uniform distribution in a square area
of width 100. Every node has a constant drift rate which is chosen randomly
with a uniform distribution from the range [−ρ̂, ρ̂] with ρ̂ = 100ppm. In these
scenarios, the algorithms IBP and IIM are simulated and the average uncertainty
of the nodes is evaluated. By average we here understand the following: The
uncertainty is evaluated immediately after every communication event in the
network. If the uncertainty of a particular node after a particular communication
event is infinite, it is not considered in the calculation of the average. All other
values have equal weight concerning the average calculation.

In this evaluation, the following parameters are varied: (i) The transmission
range, influencing the number of neighbors a particular node can communicate
with (see Fig. 36). (ii) The frequency of communication events fC per node.
(iii) The number of reference nodes and (iv) the frequency of communication
events fR for reference nodes. For every parameter set, 50 traces are generated
and the average (of the average) uncertainty is evaluated.

The last two parameters, i.e., the number of reference nodes and their fre-
quency of communication events, require some explanation. In Sect. 4.2.3, only
one reference node has been used, since tree-based CSAs require that there is a
unique root of the tree. In contrast, interval-based algorithms do not make any
constraints on the number of reference nodes.

Results
Figure 41 displays the average uncertainty achieved by the two algorithms with
a transmission range of 20. The uncertainty decreases when communication
events becomes more frequent. Increasing the communication frequency among
client nodes decreases the uncertainty to a constant level, while increasing the
reference-communication frequency fR leads to arbitrarily small uncertainties.
Below, the relative improvement of IBP over IIM is displayed. The improve-
ment increases when the client nodes communicate more frequently among each
other. The improvement decreases if the client nodes communicate often with
the reference nodes. The improvement also decreases with increasing number
of reference nodes.

Figure 42 displays the relative improvement of IBP over IIM as a function of
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Fig. 41: Time uncertainty and relative improvement of IBP over IIM. Left: As a function of the
frequency of communication among client nodes fC , with fR = 1/h. Right: As as
function of the frequency of communication with reference nodes fR, with fC = 10/h.

the transmission range. The improvement increases significantly up to a trans-
mission range of ≈ 15 and remains approximately constant at larger values.
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Discussion
Depending on the parameters of the traces, the improvement of algorithm IBP

over IIM can be substantial, that is the average uncertainty can be more than
50% better. For other parameters, the improvement is only marginal, that is
smaller than 10%. As expected (see Thm. 21), the improvement is always posi-
tive, i.e., IBP always achieves a smaller uncertainty than I IM. In the following,
we discuss how the improvement depends on the parameters of the traces.

Consider the left column of Fig. 41. When the frequency of communication
events increases, the improvement increases, too. As the nodes communicate
with a randomly chosen neighbor, the number of neighbors with which a partic-
ular node communicates also increases when the frequency of communication
increases. In Sect. 4.3.3, we have identified the diversity of the drift rates among
the nodes that communicate as a source of improvements in the uncertainty. We
conjecture that this increased diversity of drift rates is responsible for the in-
creasing improvement.

On the other hand, the increasing frequency of communication events with
reference nodes decreases the improvement in the uncertainty, as can be seen
in the right column of Fig. 41. As we evaluate the uncertainty as the average of
the uncertainties immediately after all communication events, the influence of
the communication events with a reference node increases with the frequency
of such events. The uncertainty immediately after such an event is zero, both
for IBP and for IIM. We conjecture that this is the reason why the improvement
decreases. The same effect presumably is also responsible for the fact that in all
diagrams of Figs. 41 and 42, the improvement is smaller for a large number of
reference nodes than for a smaller number of reference nodes.

As shown in Fig. 42, the improvement first increases with the transmission
rate and then remains approximately constant. There are at least two plausible
explanations for the small improvement at small transmission ranges: (i) Many
nodes are not connected with a reference node, neither directly nor via other
intermediate client nodes (see Fig. 36, top row). These nodes are not included in
the evaluation of the average uncertainty, since their uncertainty is infinite. The
nodes that are connected with a reference node are rather close to the reference
node in terms of hop distance. These nodes thus have a small uncertainty for
both IBP and for IIM, thus the improvement is small. (ii) When the transmission
rate is small, all nodes have a small number of neighbors. Thus, also the drift
diversity is small and therefore also the improvement of IBP.

The experiment has shown that the improvement of algorithm IBP over al-
gorithm I IM is large when the drift diversity among neighboring client nodes
is large and the hop distance to a reference node is relatively large. We thus
expect that in scenarios with mobility of client nodes, the improvement of IBP

over IIM is even more important than in the static scenarios we have studied
here.
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4.4 Summary
In this chapter, we have introduced a system model for multihop synchroniza-
tion problems. The model makes a high-level abstraction of the communica-
tion: Two nodes can exchange an arbitrary amount of information with zero
delay. This abstraction has not been used in previous work on clock synchro-
nization. While it is somewhat unrealistic, this model has allowed to derive a
lower bound on the achievable accuracy in arbitrary networks and arbitrary sce-
narios. We have specialized this lower bound for networks with a chain or tree
topology.

We have presented interval-based synchronization as a novel, completely
local approach to the multihop synchronization problem. In contrast to tree-
based and clustering synchronization schemes, interval-based synchronization
is free of network-wide configuration. It is thus inherently tolerant against node
or link failures and naturally copes with node mobility. It has been shown that
worst-case-optimal interval-based synchronization can be realized at very low
cost, using algorithm I IM.

Finally, we have presented the more complicated interval-based algorithm
IBP, which performs at least equally well as I IM in all scenarios. In typical
scenarios, it can achieve substantially better performance. The cost of this im-
provement is a memory and computational overhead that is proportional to the
number of nodes in the network.
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5
Synthesis

In this chapter, it is shown how the results of the last two chapters can be com-
bined to construct a complete and practical time service. In Chap. 3, we have
presented algorithms that deal with variable message delay and clock drift in
a simple single-hop scenario. In Chap. 4, we have additionally dealt with the
problem of organizing synchronization in large multihop networks, but we have
ignored message delays. A complete time service has to deal with all three
problems, that is with variable delay, clock drift, and with the organization of
the synchronization process. A complete time service can be constructed if we
manage to combine the Local Selection CSAs from Chap. 3 with the interval-
based CSAs from Chap. 4.

The main difference between the system models used in the previous two
chapters is that in Chap. 3, the emphasis is put on various models for the de-
lay of time-stamp messages, whereas in Chap. 4, message delays are all zero.
To reconcile these two viewpoints, we assume now that these two models are
based on different time scales, as illustrated in Fig. 43: While the communi-
cation events introduced in Chap. 4 occur in intervals of seconds, minutes or
hours, the time-stamp messages introduced in Chap. 3 are sent in intervals of
milliseconds. A communication event can thus be interpreted as a high-level ab-
straction of a sequence of time-stamp message exchanges between two nodes.
In the following, it is shown how a communication event can be constructed
from two sequences of time-stamp messages using the Local-Selection CSAs.
Based on these constructed communication events, the interval-based CSAs can
then be used exactly as described in the last chapter.

The problem of constructing communication events is split in two parts:
In Sect. 5.1, it is shown how lower and upper bounds on real time have to be
transformed such that they are valid at the reception of a message with non-zero
delay. The proposed solution makes the assumption that the receiving node
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Fig. 43: Combining multihop synchronization (macroscopic view) with point-to-point synchro-
nization (microscopic view). A communication event in the macroscopic view consists
of a bidirectional sequence of message exchanges in the microscopic view.

maintains lower- and upper-bound clocks on the sending node’s local clock. In
Sect. 5.2, it is shown how the Local Selection algorithms from Chap. 3 can be
adapted for maintaining such lower- and upper-bound clocks on the sending
node’s local clock.

5.1 Multihop Synchronization with Message Delay

In this section, it is shown how valid lower and upper bounds čv
s and ĉv

s on the
real time ts when node Nv sends a message have to be transformed by node Nu,
such that they are valid at the real time tr when the message is received. This is
not a trivial task, since an upper bound on real time that is valid at the time of
sending a message is not necessarily valid at the time of receiving this message.

Thm. 22:(Bounds Transformation) Let a node Nv send a message containing the triple
(hv

s , č
v
s, ĉ

v
s) to Nu, where hv

s is the local time of Nv at real time ts, that is the time
of sending this message. Let čv

s and ĉv
s be the lower and upper bounds of node Nv

on real time ts . Let Nu’s logical clocks Ču,v and Ĉu,v be valid lower- and upper-
bound clocks on Nv’s local clock Hv, i.e., Ču,v(Hu(t)) ≤ Hv(t) ≤ Ĉu,v(Hu(t))
for all t. Then the node Nu computes valid lower and upper bounds ču

r and ĉu
r

on real time tr using
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ču
r = čv

s +
ču,v
r − hv

s

1 + ρ̂
(5.1)

ĉu
r = ĉv

s +
ĉu,v
r − hv

s

1 − ρ̂
. (5.2)

The uncertainty uu
r at the time of receiving the message at Nu is

uu
r ≤ uv

s + uu,v
r + 2ρ̂(ĉu,v

r − hv
s) , (5.3)

where uu,v is the uncertainty of the logical clocks Ču,v and Ĉu,v, and uv
s is the

uncertainty of the bounds on real time of node Nv at the time of sending the
message.

Proof: We give the proof for Eq. 5.1, the proof for Eq. 5.2 can be derived
analogously.

It is assumed that Ču,v is a valid lower-bound clock on the local clock H v

of node Nv . Thus the local time of Nv at the time of the message reception is
hv

r ≥ ču,v
r . As the local time at the time of sending the message is hv

s , the local-
time difference corresponding to the delay of the message is hv

r−hv
s ≥ ču,v

r −hv
s ,

and the corresponding real time difference is tr − ts ≥ ču,v
r −hv

s

1+ρ̂
. Therefore if

ts ≥ čv
s , then also tr ≥ čv

s + ču,v
r −hv

s

1+ρ̂
= ču

r .
To show that Eq. 5.3 is valid, we compute the difference between Eq. 5.2 and

Eq. 5.1, which results in uu
r = ĉu

r − ču
r = ĉv

s − čv
s + ĉu,v

r

1−ρ̂
− ču,v

r

1+ρ̂
− čv

s(
1

1−ρ̂
− 1

1+ρ̂
).

Thus uu
r = uv

s + 1
1−ρ̂2 (uu,v

r + ρ̂(ĉu,v
r − hv

s + ču,v
r − hv

s)). Since the maximal drift
rate ρ̂ is very small, we approximate 1

1−ρ̂2 ≈ 1. Replacing ču,v
s with ĉu,v

s , we get
the inequality uu

r ≤ uv
s + uu,v

r + 2ρ̂(ĉu,v
r − hv

s). �

Discussion
We have shown that a communication event can be constructed from a message
with delay containing the triple (hv

s , č
v
s , ĉ

v
s), if the receiving node Nu has the

logical clocks Ču,v and Ĉu,v, which are lower and upper bounds on the sending
node Nv’s local clock Hv. In contrast to the communication event from Chap. 4,
a communication event constructed using Thm. 22 does not provide both nodes
involved in a communication event with exactly the same bounds.

Equation 5.3 can be interpreted as follows: The uncertainty at the message
reception uu

r is equal to the uncertainty uv
s when the message was sent plus the

uncertainty uu,v
r of the receiving node Nu about the sending node Nv’s local

time. In addition, the uncertainty has to be increases by 2ρ̂(ĉu,v
r − hv

s), which
accounts for the time the message was in transit.

5.2 Local-Selection and Intervals
In this section, we discuss how the Local-Selection algorithms can be used to
construct the logical clocks Ču,v and Ĉu,v which are lower- and upper-bound
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clocks on the local clock Hv of Nv.

Non-Real-Time Reference
Remember that in Chap. 3, the client node received time-stamp messages from
a reference node, which has access to real time. In contrast, we now assume
that a client node Nu synchronizes to the local clock of another client node Nv.
We assume that Nv generates time-stamp messages containing time stamps hv

s

from its local clock Hv.
The difference between this scenario and the original setting of Chap. 3 is

that the maximal drift of a client node relative to real time (as provided by a
reference node) is ρ̂, but the maximal drift of a client node relative to another
client node’s local clock is 2ρ̂. Based on Lemma 3, it can be shown that using
any of the Local-Selection algorithms, node Nu computes a lower-bound clock
Ču,v on another node Nv’s local clock if the parameter ρ̂ used by the Local-
Selection algorithms is doubled. Also the maximal drift variation ϑ̂ used by the
Local-Selection algorithms with drift compensation has to be doubled.

Maintaining an Upper Bound
Computing an upper-bound clock Ĉu,v is more difficult. On the one hand, it is
unclear how an initial upper bound ĉu,v

r at the time of receiving a time-stamp
message should be derived. On the other hand, the Local-Selection algorithms
maintain a valid lower bound on the reference time, but not an upper bound.
In a first step, we assume that an initial upper bound ĉu,v

r is known and define
the complementary Local-Selection algorithms, which maintain a valid upper
bound on the reference time.

Def. 36: (Complementary Local-Selection Algorithm) The complementary algorithm
Ā of a Local-Selection algorithm A is equal to A, except that (i) all computed
logical clocks progress faster than the reference clock, (ii) all adjustments are
negative.

Figure 44 gives an illustration of the lower- and upper-bound clocks com-
puted by two Local-Selection algorithms and their complementaries.

To further illustrate the concept of a complementary Local-Selection algo-
rithm, we define the complementary algorithm of the Basic Local-Selection al-
gorithm Als. The maximal drift rate is doubled with regard to Def. 16 in order
to allow synchronization to another node’s local clock.

Ex. 14: (Complementary Basic Local Selection) The complementary Āls of the Basic
Local-Selection algorithm Als is a selective estimate-based CSA (Def. 7) that
computes candidate clocks C∗

i and decisions πi from the view Vi = {(ĉu,v
j , hu

j )|j ≤
i} and the parameter ρ̂ according to the following rules:

C∗
i (h

u) = ĉu,v
i +

hu − hu
i

1 − 2ρ̂
, ∀hu ≥ hu

i (5.4)

πi = (c∗i < c−i ), ∀i > 1 (5.5)
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Fig. 44: Node Nu can use Local-Selection Algorithms to compute a lower-bound clockČu,v on
the local time of node Nv. A complementary algorithm can be used to compute the
upper-bound clock Ĉu,v. On the left side, algorithm Als and its complementary Āls are
illustrated. The right side shows the same for algorithm Alsdc.

In comparison with Als (see Def. 16), the decision πi is different now: only
negative adjustments are made. The candidate clocks C∗

i have the rate 1+ρu

1−2ρ̂
,

which is larger than the rate of Hv, that is larger than 1 + ρv. Thus, these clocks
progress faster than the local clock Hv of node Nv.

Constructing an Initial Upper Bound
It now remains to compute the initial upper-bound ĉv,u

i . In the following, we
will only consider one time-stamp message, thus we will not use the subscript
i. Instead, we use the subscripts s and r to discern between the send time and
the receive time of a time-stamp message (similarly as in Sect. 5.1). The basic
idea is to transform a lower bound čv,u of node Nv on the local time of node Nu

into an upper bound ĉu,v of node Nu on the local time of node Nv. Figure 45
illustrates this procedure.

Thm. 23:Let two nodes Nu and Nv maintain a lower-bound clock Ču,v (respectively Čv,u)
on the other node’s local clock H v (respectively Hu). Let every message from
node Nv to Nu contain (i) the current local time hv

s and (ii) the current lower-
bound time on node Nu’s local clock, that is čv,u

s . At the reception of this mes-
sage, node Nu computes a valid upper-bound time ĉu,v

r according to

ĉu,v
r = hv

s + (hu
r − čv,u

s )
1 + ρ̂

1 − ρ̂
≥ hv

r . (5.6)

Proof: Since the drifts of both nodes’ local clocks are bounded, we have (hv
r −

hv
s) ≤ (hu

r − hu
s )

1+ρ̂
1−ρ̂

(in Fig. 45: c is at most equal to 1+ρ̂
1−ρ̂

times a). From

the assumption that Čv,u is a valid lower-bound clock on Hu, it follows that
čv,u
s ≤ hu

s , and thus (hu
r − hu

s ) ≤ (hu
r − čv,u

s ) (in Fig. 45: a is at most equal to
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Fig. 45: Transforming a lower bound on Nu’s local time into an upper bound on Nv’s local time.
The values with a shaded background are unknown to the nodes Nu and Nv. The left
side shows the lower bound čv,u

s at the send time of a message, and the right side shows
the corresponding upper bound ĉu,v

r at the receive time of this message.

b). Therefore, we can write (hv
r − hv

s) ≤ (hu
r − čv,u

s )1+ρ̂
1−ρ̂

(in Fig. 45: c is at most

equal to 1+ρ̂
1−ρ̂

times b). This expression is equivalent to hv
r ≤ hv

s +(hu
r − čv,u

s )1+ρ̂
1−ρ̂

(in Fig. 45: d is exactly 1+ρ̂
1−ρ̂

times b) . �

Discussion
In this section, we have presented two modifications to the Local-Selection al-
gorithms. (i) By doubling the maximal drift and the maximal drift variation,
Local-Selection algorithms can be used to synchronize to another client node
instead of to a reference node. (ii) If two nodes symmetrically generate time-
stamp messages and use Local-Selection algorithms to compute lower-bound
clocks, then the complementary Local-Selection algorithms can be used to com-
pute upper-bound clocks on the other node’s local clock.

Computing an initial upper bound on another node’s local clock can of
course also be achieved by using a simple round-trip experiment, that is by
sending a query message to a remote node and measuring the round-trip time
until the reply message from the remote node is received. But the proposed
solution of using two independent sequences of unidirectional time-stamp mes-
sages, transforming the lower-bound time of one node to an upper-bound time
of the other node, and then employing the complementary Local-Selection al-
gorithms has a number of advantages: (i) To achieve a small uncertainty using
the round-trip experiment, it is necessary that corresponding query and reply
messages both have a small delay. Our new approach achieves the same uncer-
tainty if any one message from Nu and any one message from Nv has a small
delay. It is not necessary that these messages with a short delay are immediately
consecutive. (ii) Both nodes can generate messages at arbitrary times, they do
not have to reply immediately to incoming queries. The time-stamp messages
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can even be broadcasted to a number of neighbor nodes.
The fact that lower and upper bounds on the reference time are known has

also implications on the drift-compensation mechanisms of the Local-Selection
algorithms as introduced in Sect. 3.4.1. It had been shown that an upper bound
on the jitter of the synchronized clock has to be known in order to compute a
valid upper bound on the drift of the local clock. Such an upper bound on peak
jitter can be derived from the uncertainty of the lower- and upper-bound clocks.
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6
Conclusion

The goal of this thesis was to explore different approaches to derive guarantees
on the quality of synchronization in a computer network. In contrast to related
work, this thesis confronts empirical measurements with analytically obtained
bounds. In the following, we discuss the three main contributions of this thesis.

6.1 Main Results

Algorithms for the Wireless Loudspeakers Application
In Chap. 3, the novel class of Local-Selection CSAs has been presented. The
main property of these algorithms is that synchronized clocks run slower than
the reference time. The algorithms require only unidirectional communication
and thus an arbitrary number of client nodes can be served with a constant over-
head for the reference node. The Basic Local-Selection and the Local Selection
with Drift Compensation algorithms have been published in [BT02], the main
property of slow synchronized clocks has been internationally patented [BD01].

In Chap. 2, we have presented a framework for the evaluation of the syn-
chronization quality achieved by a particular clock-synchronization algorithm
(CSA). The framework is novel for the evaluation of CSAs in two points: (i)
It combines the advantages of measurements and simulation, that is of realistic
input traces recorded in a real system and of reproducible evaluation of various
CSAs using simulation on the recorded traces. (ii) The framework incorporates
automatic optimization of the CSAs’ parameters. It has been shown that evolu-
tionary multiobjective optimization algorithms efficiently optimize a wide range
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of CSAs without requiring adaptation to a particular CSA. Automatic parame-
ter optimization provides to objectify the effort spent on optimizing a particular
CSA and thus guarantees fair comparison of different CSAs. The framework
has been published in [BT04]. An earlier version of the framework and a case
study with wired Ethernet has been published in [MB03].

We have applied our novel evaluation strategy for CSAs to the application
of wireless loudspeakers. We have identified a set of target performance metrics
that model the stringent requirements of the application, and compared various
CSAs. It has been shown that the Local-Selection algorithms can achieve the
required performance robustly, that is independently of the cross-traffic in the
network and with a single set of parameters for different scenarios and network-
load conditions.

Improved Modeling of Message Delays
In Chap. 2, we have introduced the novel delay-interval model for the charac-
terization of message-delay sequences. In Chap. 3, this model has been used
to derive smaller, thus better, upper-bounds on peak jitter than the widely-used
bounded-delay model. This is illustrated in Figure 46.

Measured
Maximum of Basic

Local Selection
(Ex. 9)

Basic Local Selection
and Delay-Interval

Model (Thm. 8)

Basic Local Selection
and Bounded-Delay

Model (Thm. 7)

Peak Jitter0.7ms

0.6ms

5ms

Measured Maximum
of Heuristic

Local Selection
(Sect. 3.6)

<0.1ms

Fig. 46: A comparison of the empirically and analytically obtained “guarantees” on the peak
jitter achieved by the Basic Local-Selection algorithm. The upper bound according
to the novel delay-interval model describes much more accurately the actual measure-
ment than the widely-used bounded-delay model. In the measurements, the heuristic
Local-Selection algorithms achieve a far smaller peak jitter because they use drift com-
pensation. However, no finite upper-bound can be derived because of their heuristic
nature.

A Novel Approach to Multihop Synchronization
In Chapter 4, which is joint work with Lennart Meier, we have proposed a novel
model for the analysis of multihop synchronization in ad-hoc networks. It has
been shown that interval-based CSAs are worst-case-optimal and can achieve a
similar and even better synchronization quality than the currently most popular
tree-based approaches. In contrast to the tree-based approaches, the interval-



6.2. Future Perspectives 125

based CSAs require no system-wide configuration or collaboration. Therefore,
interval-based CSAs robust against change in the system, that is node or link
failures, new nodes entering the system. Also multiple reference nodes does not
pose any problems. In [BMT04], we have proposed interval-based CSAs for
the first time as an approach to the multihop synchronization problem, demon-
strated the worst-case-optimality of Marzullo’s algorithm [MO83], and intro-
duced the novel Back-Path interval-based CSA. In [MBT04], we have identi-
fied the every-case optimal interval-based CSA, but this algorithm has not been
discussed in this thesis.

In Chap. 5, we have sketched how a complete time-synchronization service
can be constructed using the interval-based CSAs for system-wide synchroniza-
tion based on point-to-point synchronization using the Local-Selection CSAs.

6.2 Future Perspectives
Concerning point-to-point synchronization, we have confronted empirical mea-
surements with analytical results to discuss the suitability of message-delay and
clock-drift models. Concerning the multihop synchronization problem, we have
only presented analytical results and simulation, but no measurements. Measur-
ing the synchronization quality in a large-scale wireless sensor networks poses
many practical problems. Also, realistic application scenarios for such networks
are not yet clearly identified and real implementations of sensor nodes are still in
development. In future work, interval-based multihop synchronization schemes
will have to be implemented and evaluated in realistic scenarios. Hopefully, the
techniques provided in this thesis can contribute to this undertaking.
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A
CSAs used for the Case Study of Sect. 3.6

Algorithm 8 Adaptive Approximate Local Selection Aleak,app,adap

Parameters: Initial phase ι,
leak factor λ, minimal leak factor λmin, leak adaptation factor λµ,
queue size q
Input: View Vi = {(sj , hj)|j ∈ [1, i]}
Output: Logical clock Ci

Variables: FIFO queues Qj , Qh, Qc of size q

if i > ι then
ri := Ri−1(hi)
if si − c−i > 0 then

insert (si − c−i ) at head of Qj

insert si at head of Qc

insert hi at head of Qh

if Qj is full then
ri := hi−Qh.tail

si−Qc.tail−max(Qj)
+ 1

2 ϑ̂(si − Qc.tail + max(Qj)) − 1
λ := (1 − λµ)λ + λµλmin

end if
end if

else
ri := ρ̂

end if
Ci := Aleak(Vi, ri, λ) //(Def. 22)
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Algorithm 9 Adaptive Agnostic Leakage Local Selection Aleak,agn,adap

Parameters: Initial phase ι,
leak factor λ, minimal leak factor λmin, leak adaptation factor λµ,
drift compensation factor α, minimal drift compensation factor αmin, drift comp. adap-
tation factor αµ

Input: View Vi = {(sj , hj)|j ∈ [1, i]}
Output: Logical clock Ci

if i > ι then
ri := Ri−1(hi)
if si − c−i > 0 then

ri := Ri−1(hi) − α(si − c−i )
λ := (1 − λµ)λ + λµλmin

α := (1 − αµ)α + αµαmin

end if
else

ri := ρ̂
end if
Ci := Aleak(Vi, ri, λ) //(Def. 22)

Algorithm 10 Gradient CSA
Input: View Vi = {(hj , sj)|j ≤ i}
Output: Logical clock Ci

Parameters: Averaging-window size κ, initial phase ι
State: Sloc := Sref := Dloc := Dref := 0

// update predictor
Sloc := Sloc + hi

Sref := Sref + si

if i > ι then
Dloc := (κ − 1)/κ ∗ Dloc − 1/κ ∗ Sloc/(i − 1)
Dref := (κ − 1)/κ ∗ Dref − 1/κ ∗ Sref/(i − 1)

end if

// predict
if Dloc > 0 then

Ci(H(t)) := Sref/i + (H(t) − Sloc/i) ∗ Dloc/Dref

else
Ci(H(t)) := Sref/i + (H(t) − Sloc/i)

end if
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