
Research Collection

Doctoral Thesis

Deadline analysis of workflow graphs and workflow performance
optimization

Author(s): 
Botezatu, Mirela

Publication Date: 
2019

Permanent Link: 
https://doi.org/10.3929/ethz-b-000356588

Rights / License: 
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-b-000356588
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


DISS. ETH NO. 26035

Deadline Analysis of Workflow Graphs and Workflow
Performance Optimization

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

Mirela Madalina Botezatu

Bsc. Computer Science, Polytechnic University of Bucharest –
Bucharest, Romania

Msc. Data Mining - Universite Pierre et Marie Curie - Paris, France

born on 4 October 1987
citizen of Romania

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Wil M.P. van der Aalst, co-examiner
Dr. Hagen Völzer, co-examiner

2019

1



2



To my parents.

3



4



Acknowledgments

I am extremely thankful to my supervisor Dr. Hagen Völzer at IBM Research - Zurich. His
high standards, patience and deep expertise have guided me to the scientific explorations
and results I am the most proud of. It has been a privilege and an honor to have Prof.
Lothar Thiele as supervisor at ETH Zurich. Prof. Thiele, with his broad and deep scientific
insights, has turned any meeting into an ocean of pointers, ideas and questions.

I am very grateful to Prof. Aalst who has patiently read my whole thesis and provided
me with lots of insightful comments.

The group at IBM Research has been a source of fruitful collaborations and friendships.
I would like to thank my managers, Dorothea and Paolo who have supported this endeavour
through many inspiring conversations and funding. I would like to thank my co-authors
Jasmina, Ioana who kindly extended their research expertise through my work. I am very
grateful to my friends from the lab: Maria, Andreea, David with whom I share many joyful
memories.

I would like to thank my parents for offering an empowering blend of candid and firm
support in all my professional pursuits.

Last but surely not least, I would like to thank Michal, for always being there.

5



6



Abstract

A workflow process represents a collection of tasks, logically connected towards accom-
plishing a goal. Having a representation of the workflow, e.g., a workflow graph, this be-
comes the central element in identifying inefficiencies, bottlenecks towards accomplishing
the goal.

There are multiple aspects of interest in the analysis of a workflow graph such as the
structural correctness of the workflow graph, the data flow, the feasibility of the temporal
constraints. These elements can be grouped into qualitative analysis of the workflow graphs
and the quantitative analysis. While qualitative analysis provides valuable insights for the
execution of a process, its output lacks information that is relevant in decision making.
Namely, a process owner may be interested in the time or cost expected for running the
process or parts of it to substantiate a decision in quantitative terms.

In this thesis we perform deadline analysis of workflow graphs and performance op-
timization of workflows. Workflow graphs can be translated into workflow nets which in
turn are a class of Petri nets adapted for workflow analysis. The class of workflow graphs
we analyze are those that can be modeled by sound, free-choice workflow nets. The main
results in the deadline analysis of the workflow graphs presented in the thesis are:

• Polynomial time algorithm for computing the minimum duration of an execution of
a sound workflow graph executed by a single resource.

• Hardness result for computing the probability of a deadline transgression in a sound
workflow graph executed by a single resource.

• Polynomial time algorithm for computing the expected duration of a sound workflow
graph executed by a single resource.

• Polynomial time algorithm for computing the minimum duration of an execution of
a sound workflow graph executed by unbounded number of resources.

• Hardness result for computing the expected duration of an execution of a sound work-
flow graph executed by an unbounded number of resources.

Workflow optimization can bring direct benefits for achieving the objectives by improving
predefined performance indicators, such as the cost or the execution time. We analyze two
real world scenarios and we propose data-centric algorithms to streamline the execution

i



ii

of their corresponding processes. The main results in the performance optimization of
workflows presented in the thesis are:

• A novel technique to streamline the dispatching process in the IT Service Delivery
industry. At the core of this technique is a novel clustering algorithm to group in-
cident tickets into categories that both reflect the problem they document and are
homogeneous in the duration it takes an agent to resolve them.

• An algorithm to automate a part of the life cycle process of a computer’s hard disk.
Concretely, we devise a novel algorithm able to automatically predict the disk re-
placement with high accuracy.



Zusammenfassung

Ein Workflow-Prozess stellt eine Sammlung von Arbeitsschritten dar, die logisch verbunden
sind, um ein Ziel zu erreichen. Durch Darstellung des Workflows, zum Beispiel durch einen
Workflow-Graphen, wird dies das zentrale Element zum Identifizieren von Ineffizienzen
und Bottlenecks, um das Ziel zu erreichen.

Es gibt mehrere interessante Aspekte bei der Analyse eines Workflow-Graphen, wie die
strukturelle Korrektheit eines Workflow-Graphen, der Datenfluss, die Durchführbarkeit der
zeitlichen Einschränkungen. Diese Elemente können in qualitative Analysen des Workflow-
Graphen und quantitative Analysen eingeteilt werden. Während qualitative Analysen
wertvolle Einsichten in die Ausführung eines Prozesses geben, fehlt es ihrem Output an In-
formationen, die relevant sind zur Schlussfolgerung. Ein Prozess-Besitzer kann an Folgen-
dem interessiert sein: Der erwarteten Zeit, den Kosten zur Durchführung eines Prozesses
oder Teilen davon, um eine qualitative Entscheidung zu begründen.

In dieser Doktorarbeit führen wir eine Fristanalyse von Workflow-Graphen und Leis-
tungsoptimierungen von Workflows durch. Workflow-Graphen können in Workflow-Netze
konvertiert werden, die eine Klasse von Petri-Netzen sind, die für Workflow-Analysen
adaptiert sind. Wir analysieren jene Klasse von Workflow-Graphen, die durch korrekte
(im Englischen ”sound”) free-choice Workflow-Netze modelliert werden können.

Die Hauptresultate der Fristanalysen der Workflow-Graphen, die in dieser Doktorarbeit
vorgestellt werden, sind:

• Polynomialzeit-Algorithmus zum Berechnen der Minimalzeit einer Ausführung eines
korrekten Workflow-Graphen, ausgeführt von einer einzelnen Ressource.

• Schwere-Resultat zur Berechnung der Wahrscheinlichkeit einer Transgressionsfrist
in einem korrekten Workflow-Graphen, ausgeführt von einer einzelnen Ressource

• Polynomialzeit-Algorithmus zur Berechnung der erwarteten Dauer eines korrekten
Workflow-Graphen, ausgeführt von einer einzelnen Ressource.

• Polynomialzeit-Algorithmus zur Berechnung der minimalen Dauer der Ausführung
eines korrekten Workflow-Graphen, ausgeführt von einer unbeschränkten Anzahl von
Ressourcen.

• Schwere-Resultat zur Berechnung der erwarteten Dauern einer Ausführung eines ko-
rrekten Workflow-Graphen, ausgeführt von einer unbeschränkten Anzahl von
Ressourcen.

iii



iv

Workflow-Optimierungen können direkte Vorteile zum Erreichen der Ziele durch Verbessern
der vorbestimmten Leistungsindikatoren bringen, wie die Kosten oder Ausführungszeit.
Wir analysieren zwei Echtzeitszenarios und schlagen datenzentrierte Algorithmen vor, um
die Ausführung deren jeweiligen Prozesse zu streamlinen. Die Hauptresultate der Workflow-
Optimierungen, die in dieser Doktorarbeit vorgestellt werden, sind:

• Eine neue Technik zum Streamlinen der Verteilungsprozesse in der
IT-Servicebereitstellungsindustrie. Im Kern dieser Technik ist ein neuer Clustering-
Algorithmus zum Gruppieren von Tickets von Ausfällen in Kategorien, die sowohl
das Problem, das sie dokumentieren, reflektieren, wie auch homogen sind in der
Dauer, die es für einen Agenten braucht, um sie zu lösen.

• Ein Algorithmus zum Automatisieren eines Teils des Lebenszyklus einer Festplatte
eines Computers. Konkret, entwickeln wir einen neuen Algorithmus, der in der Lage
ist, automatisch das Ersetzen von Festplatten mit hoher Genauigkeit vorherzusagen.



Contents

1 Introduction 1
1.1 Formal representation of a process . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Deadline analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Incorporating time in workflows and analysis techniques . . . . . . 7
1.3 Performance optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Positioning with respect to the Process Mining Framework . . . . . 9
1.3.2 Optimizing the dispatching task in IT Service Delivery . . . . . . . 11
1.3.3 Automating disk replacement decisions . . . . . . . . . . . . . . . 12

1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I Deadline Analysis of Workflow Graphs 15

2 Foundations 17
2.1 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Workflow Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Workflow Graphs Semantics . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 An Algebraic Characterization of Workflow Graphs . . . . . . . . . 25

3 Workflow Graphs Executed by a Single Resource 29
3.1 Workflow graphs with nondeterministic choice . . . . . . . . . . . . . . . 30

3.1.1 The minimum duration of a workflow graph . . . . . . . . . . . . . 31
3.1.1.1 Minimum cost downstream from an edge . . . . . . . . . 31
3.1.1.2 Algorithm for computing the minimum duration of an

execution . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.1.3 Correctness proof of Algorithm 3.1 . . . . . . . . . . . . 36

3.1.2 The maximum duration of a workflow graph . . . . . . . . . . . . 40
3.1.3 Regular and acyclic Workflow Graphs . . . . . . . . . . . . . . . . 43

3.2 Workflow graphs with probabilistic choice . . . . . . . . . . . . . . . . . . 44
3.2.1 Probability of deadline transgression . . . . . . . . . . . . . . . . . 44
3.2.2 Expected duration . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



vi Contents

4 Workflow Graphs executed by Unbounded Resources 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Workflow graphs with nondeterministic choice . . . . . . . . . . . . . . . 51

4.2.1 The minimum duration of a workflow graph . . . . . . . . . . . . . 51
4.2.1.1 Correctness proof of Algorithm 4.1 . . . . . . . . . . . . 55

4.2.2 Regular and acyclic workflow graphs . . . . . . . . . . . . . . . . 59
4.3 Workflow graphs with probabilistic choice . . . . . . . . . . . . . . . . . . 60

4.3.1 Expected duration . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Minimum number of resources . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 An algorithm to compute the maximum degree of concurrency of a
workflow graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Workflow graphs executed by a fixed number of resources . . . . . . . . . 66
4.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6.1 Mining the loan application process . . . . . . . . . . . . . . . . . 67
4.6.2 Data and data processing . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

II Workflow Performance Optimization 77

5 Data-informed Work Assignment in Incident Ticket Resolution 79
5.1 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Incident ticket clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Multi-view similarity matrix with induced sparsity . . . . . . . . . 83
5.2.3 Semantic similarity metric between words . . . . . . . . . . . . . . 85
5.2.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Empirical evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Predicting Disk Replacement from Sensor Data 101
6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Predicting disk replacement . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Selection of relevant SMART attributes . . . . . . . . . . . . . . . 104
6.2.2 Compact time series representation . . . . . . . . . . . . . . . . . 105
6.2.3 Class balancing via informative downsampling . . . . . . . . . . . 106
6.2.4 Classification for disk replacements . . . . . . . . . . . . . . . . . 106
6.2.5 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.1 Data description and experimental setup . . . . . . . . . . . . . . . 108
6.3.2 Feature selection – computation of relevant SMART attributes . . . 109



Contents vii

6.3.3 Compact time series representations . . . . . . . . . . . . . . . . . 112
6.3.4 Classification for disk replacements . . . . . . . . . . . . . . . . . 113
6.3.5 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.6 Comparison with human designed replacement policies . . . . . . . 115
6.3.7 Early vs. late replacement detection . . . . . . . . . . . . . . . . . 116
6.3.8 SMART indicator rules . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6.1 Instantiation of the predictive pipeline to workflows . . . . . . . . . 121

7 Concluding Remarks 123

Curriculum Vitae 139





List of Figures

1.1 The relationship between process, event logs and the different analyses they
enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An example of a workflow graph and one of its executions (red) . . . . . . 3
1.3 Transition firing in a Petri net . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 A Petri net equivalent to the workflow graph in Fig. 1.2 . . . . . . . . . . . 4
1.5 A Petri net which is not free-choice . . . . . . . . . . . . . . . . . . . . . 5
1.6 Classes of wokflow graphs (left) and the research questions we tackle (right). 6
1.7 Overview of the refined process mining framework. . . . . . . . . . . . . . 10
1.8 A simple incident resolution process . . . . . . . . . . . . . . . . . . . . . 11
1.9 Our data processing pipeline for predicting disk replacement. . . . . . . . . 12

2.1 An example of a state machine - (a), and a marked graph - (b) . . . . . . . . 19
2.2 Workflow graph where a node has multiple incoming edges and multiple

otugoing edges (left) and an equivalent workflow graph (right) where we
convert the node into a merge followed by a split. . . . . . . . . . . . . . . 21

2.3 An example of a workflow graph modeling a booking request . . . . . . . . 21
2.4 Regular patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Regular graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Translation rules for the edges of the workflow graph. . . . . . . . . . . . . 22
2.7 A workflow graph, its edges and transitions . . . . . . . . . . . . . . . . . 26
2.8 A live and bounded Petri net . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 An unbounded Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Workflow graph with edge weights
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Minimum duration execution and the accumulated costs . . . . . . . . . . . 32
3.3 A cyclic workflow graph with edge weights . . . . . . . . . . . . . . . . . 35
3.4 A workflow graph with unstructured loops . . . . . . . . . . . . . . . . . . 40
3.5 Example of a workflow graph with loop constraints. . . . . . . . . . . . . . 41
3.6 Constructed workflow graph for proof of Thm. 3.2 . . . . . . . . . . . . . 42
3.7 A chain of XOR-blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Expected duration in a cyclic graph . . . . . . . . . . . . . . . . . . . . . . 46

ix



x List of Figures

4.1 A simple workflow graph with edge weights and a marking change. . . . . 51
4.2 Workflow graph with edge weights

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Minimum duration execution and the accumulated costs . . . . . . . . . . . 53
4.4 A cyclic workflow graph with edge weights . . . . . . . . . . . . . . . . . 54
4.5 A probabilistic workflow graph . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Tighter bound example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 An example of a workflow graph for which we want to compute the maxi-

mum degree of concurrency . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8 The decomposition for the workflow graph in Figure 4.7 into its fragments

and its corresponding RPST (a), the workflow graph and RPST after com-
puting the concurrency degree for the Marked Graph Fragment (b) the e
workflow graph and RPST after computing the concurrency degree for Se-
quence Fragment 1 (c) the workflow graph and RPST before the algorithm
ends (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Regular workflow graph with n parallel threads . . . . . . . . . . . . . . . 66
4.10 Histogram of durations of process runs. . . . . . . . . . . . . . . . . . . . 69
4.11 Workflow graph for the loan application process (part 1). . . . . . . . . . . 71
4.12 Workflow graph for the loan application process (part 2). . . . . . . . . . . 72
4.13 Workflow graph for the loan application process (part 3). . . . . . . . . . . 73
4.14 Workflow graph for the loan application process (part 4). . . . . . . . . . . 74
4.15 Workflow graph for the loan application process (part 5). . . . . . . . . . . 75

5.1 Integration of the clustering and dispatching component. . . . . . . . . . . 80
5.2 Illustration of a possible ticket partitioning (left) where tickets are seman-

tically related but not homogeneous in agent s performance and a different
partitioning (right) where tickets are again semantically related possibly de-
noting different categories and where tickets are homogeneous in an agent’s
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Example of similarity demotion between tickets T1 and T3 which have been
executed by the same agent in 6 and 80 minutes respectively and between
tickets T2 and T4 which have also been executed by the same agent in 5 and
70 minutes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Sparsity: similarity matrix (left), divergence matrix (right). . . . . . . . . . 87
5.5 Agent’s performance for a given cluster and complexity level. . . . . . . . 90
5.6 Percentage of edges removed when increasing λ (for DU1). . . . . . . . . . 92
5.7 Cluster abundances density plot. . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Number of tickets to move, tickets successfully placed in other clusters and

tickets dropped for each delivery unit (DU1, DU2, DU3). . . . . . . . . . . 94
5.9 Speed-up in service time for each delivery unit using the data-informed dis-

patching policy on the clustering obtained with fuzzy k-means – (DI) Fuzzy,
with spectral clustering – (DI) spectral and using the non data informed pol-
icy – (non DI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Differences in agent’s performance in resolving tickets of the same com-
plexity from different clusters. . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Figures xi

5.11 Resolution time for networking tickets in minutes to exemplify an agent
with skill level “A” being slower than an agent with skill level “B”. . . . . . 96

5.12 Homogeneity of different clustering methods. . . . . . . . . . . . . . . . . 97

6.1 Availability – number of read or write operations: without proactive/preventive
replacement (left) vs. with proactive replacement(right) . . . . . . . . . . . 102

6.2 Differences between the forecasted and the observed values for SMART 187 raw.110
6.3 Distribution of the temperature and of the power on/off cycles across the

replaced disks for Hitachi and Seagate. . . . . . . . . . . . . . . . . . . . . 110
6.4 Distribution of the number of days before replacement when the change-

point was observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Covariate shift for the two Seagate models . . . . . . . . . . . . . . . . . . 115
6.6 Percentage of disks correctly predicted as replaced on snapshots taken 1,3,10

and 30 days before the actual replacement event. . . . . . . . . . . . . . . 116
6.7 Integration of the predictive replacement component with storage arrays . . 119



xii List of Figures



List of Tables

3.1 Overview of results; new contributions in bold. . . . . . . . . . . . . . . . 29
3.2 Initial values for δ[e]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Values for δ[e] after one iteration of the algorithm. . . . . . . . . . . . . . . 36
3.4 Values for δ[e] after two iterations of the algorithm. . . . . . . . . . . . . . 36
3.5 Values for δ[e] after three iterations of the algorithm. . . . . . . . . . . . . 36

4.1 Overview of results; new contributions in bold, * we give a heuristic for
this in Sect. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Initial values for δ[e]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Values for δ[e] after one iteration of the algorithm. . . . . . . . . . . . . . . 54
4.4 Values for δ[e] after two iterations of the algorithm. . . . . . . . . . . . . . 55
4.5 Values for δ[e] after three iterations of the algorithm. . . . . . . . . . . . . 55
4.6 Examples of durations for the resume state of the tasks. . . . . . . . . . . . 68
4.7 Examples of computed probabilities for the source event to be followed by

the target event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Minimum duration, expected duration and the running times. . . . . . . . . 69
4.9 Minimum duration, expected duration and the running times on the process

with removed edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Example semantic similarity between the words corresponding to two tick-
ets T1 = w1, w2 and T2 = w3, w4. . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Percentage of synonyms identified. . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Examples of ticket descriptions. . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Frequent words in the clusters obtained by spectral clustering using S′ for

DU1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Values computed for τmin for each delivery unit . . . . . . . . . . . . . . . 93
5.6 Frequent words in the clusters obtained homogeneity optimized fuzzy k-

means for DU1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Healthy (H) vs. replaced (R) disks in the raw dataset and after data cleaning
and aggregation for Hitachi and Seagate. . . . . . . . . . . . . . . . . . . . 109

6.2 SMART correlation frequencies for SgtA and HitA. A Xindicates the pre-
dictor is included in the classification task. . . . . . . . . . . . . . . . . . . 111

xiii



xiv List of Tables

6.3 Precision, Recall, F-score, Deviation of different classifiers - median on
100 runs , each of which using randomly-drawn training and test data points 113

6.4 Precision, recall and F-score to illustrate the importance of transfer learning 116
6.5 Simple decision tree with (insufficient but commonly used) subset of SMART

indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Examples of rules extracted from a decision tree model trained on the Sea-

gate and Hitachi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.7 SMART attributes and their definitions. . . . . . . . . . . . . . . . . . . . 122



Chapter 1

Introduction

Process modeling is the activity of representing business operations within an enterprise
such that they can be better monitored or improved. Process modeling is wide spread across
multiple industries such as banking, insurance and logistics [77, 147, 160]. In process mod-
eling, the notion of a process is fundamental and serves as a starting point for visualizing
and understanding business operations. A workflow, or an executable process model [25],
captures all the activities and their execution order, the data that needs to be passed on and
the way the resources are involved.

An organization can benefit in multiple dimensions from having its processes modeled
such as: strategic – by facilitating long-range planning, mergers and acquisitions; organi-
zational – stemming from better visibility in process execution; or operational by revealing
opportunities for productivity improvement [106].

In the area of workflow management, detailed process descriptions are used to guide
the execution of business activities [25]. Work is assigned to specific resources – humans
or machines. Execution progress can be monitored and can enable escalations when com-
pletion takes longer than expected or deadlines are exceeded. Events such as the start and
completion of work items together with data regarding the executing agents can be persisted
in log files, which can be further examined for various types of analyses. Fig. 1.1 is inspired
from [155] and it illustrates the relationship between processes, logs and the different types
of run-time and design-time analyses they enable.

Figure 1.1: The relationship between process, event logs and the different analyses they enable.

From the design to the production phase, a process can be analyzed qualitatively or
quantitatively. Qualitative analysis consists in the verification and validation of certain se-

1



2 1. Introduction

mantic properties determined by the expected functionality. It can answer questions such
as: will a process element - given the structure of the process - ever be executed (reacha-
bility) or does the repeated execution of a process element prevent the execution of another
process element (fairness). On the other hand, quantitative analysis evaluates the workflow
against specific performance indicators, such as cycle time, waiting time or cost.

This thesis contributes to the area of quantitative analysis of workflows, and to the area
of process mining. Process mining is a discipline which connects model-based process
analysis and data-centric analysis techniques. It aims at improving process understanding
and process efficiency. The thesis consists of two parts. In the first part, we study the
workflow at design-time and we perform deadline analysis of the process models (e.g., we
study whether all executions can finish within a given deadline). It is important to analyze
a process before it is instantiated because an incorrect process definition may may lead
to delays or low service levels. In this chapter, we present novel algorithms for deadline
analysis of processes.

After presenting algorithms to be used at design-time, we move to the second part of the
thesis where we perform process mining. We combine historic event data of processes with
data collected at run-time (cf. Fig. 1.1) with the goal to achieve performance improvements.

Processes are very dynamic and complete information on process execution – such as
actual task durations – is rarely known before the actual instantiation. However, today’s
information systems generate detailed information on the completed activities. Such rich
event logs can provide a better understanding of the run-time behavior of the processes
[155]. Their analysis enables us to pinpoint runtime inefficiencies and places which could
benefit from improvements in process execution towards cost or performance gain. There-
fore, in this part, we analyze two real world scenarios and we propose algorithms to stream-
line the execution of their corresponding processes.

In the following, we will introduce the formal model we use to represent and analyze
processes, in Sect. 1.1. Subsequently, in Sect. 1.2 and Sect. 1.3, we will present the main
problems we tackle and the solutions we have devised in the two parts of the thesis.

1.1 Formal representation of a process

The core subject of our analysis is the notion of a process. A process can be modeled in
industrial process modeling languages such as BPMN [5], UML-Activity Diagrams [5], or
Event Process Chains [5].

While these languages are useful for devising comprehensible descriptions of an organi-
zation’s activities, most analysis techniques are based on a different formal model - namely,
on Petri nets. A Petri net is a mathematical modeling language for the description and anal-
ysis of concurrent processes. We will discuss about Petri nets in more detail shortly. Results
obtained through Petri net-based algorithms can not be applied directly for the processes
designed in a certain industrial language. The reason is that applying a Petri net-based algo-
rithm on such a process, requires the existence of a well-understood translation procedure
from Petri nets to the language the process was designed in [32], which may not always be
available.

To mediate these aspects, we use workflow graphs as a formal model to represent and



1.1. Formal representation of a process 3

analyze processes. Workflow graphs are control flow graphs extended by parallel fork and
join. They have the advantage that they are both expressive and easy to analyze with Petri
net based algorithms as they are equivalent to a certain class of Petri nets, as we will discuss
next.

In terms of expressiveness, workflow graphs can capture the main control flow of pro-
cesses modeled in languages such as BPMN, UML-Activity Diagrams, and Event Process
Chains, cf. [70]. That is, the core routing constructs of these languages can be mapped to
the routing constructs of workflow graphs, which are alternative choice and merge (XOR
gateways), and concurrent fork and join (AND gateways). However, not all constructs of
industrial languages can be translated to workflow graphs. Favre et al. proved in [33] that
there exist simple BPMN process models with an IOR-join whose synchronization behav-
ior cannot be modeled through any combination of AND and XOR gateways. Also, some
EPC constructs contain non-local semantics which cannot be translated to Petri net patterns
[32, 53].

In terms of analyzability, as mentioned above, workflow graphs are equivalent to a class
of Petri nets for which several analysis techniques are known, namely free choice workflow
nets [32].

Fig. 1.2 shows an example of a workflow graph modeling a ticket resolution workflow.
After a task to categorize the ticket (“Label ticket”), there is a choice s1 whether the ticket

Figure 1.2: An example of a workflow graph and one of its executions (red)

documents a database issue (DB) or a disk issue (HDD). Following the case of HDD, there
is a preliminary step to fetch the disk logs followed by a fork f2 that spawns two concurrent
threads. One thread follows “Consistency check”, the other thread follows “Analyze HDD
logs”. Then each thread is merged with the corresponding thread of the case DB through the
merge gatewaysm1 andm2. After merging, there are some additional tasks “Identify error”
and “Report usage pattern”, before the threads are synchronized at the join j1. Finally there
are some wrap-up tasks, common to both cases.

For a better understanding of Petri nets, we provide a simple example in Fig. 1.3. As
shown in Fig. 1.3 Petri nets are composed of places – for representing the state and transi-
tions – corresponding to the actions. Places are drawn as circles, transitions as rectangles,
and the flow relation is expressed using arcs connecting places and transitions. The state of
the Petri net is represented by tokens which are represented as black dots. The activities of
transitions can be divided into the removal of tokens from input places and the placement
of tokens in the output places. A formal description of the semantics of Petri nets is given
in Chapter 2. Due to the local state-based process description and the numerous analysis
techniques [153, 78], the use of Petri nets as the formal model for workflow analysis is an



4 1. Introduction

Figure 1.3: Transition firing in a Petri net

attractive option.
As mentioned above, the class of Petri nets workflow graphs are equivalent to is free-

choice Petri nets. A workflow graph can be represented as a two terminal free-choice Petri
net i.e., a connected net with a unique starting and ending place, satisfying the so called
free-choiceness property, and which is also called a free-choice workflow net [32]. An
example of a free-choice Petri net equivalent to the workflow graph in Fig. 1.2 is given in
Fig. 1.4, obtained in conformity with the translation rules presented in Chapter 2. Due to
this equivalence, the theory of free-choice Petri nets directly applies to workflow graphs. A
workflow graph can be seen as a compact representation of the corresponding free-choice
net.

Figure 1.4: A Petri net equivalent to the workflow graph in Fig. 1.2

Next we will explain what free-choice denotes. In order to do this, we need to introduce
some important structures that exist in Petri nets such as conflict and synchronization.

• Conflict arises when two transitions can fire, but the execution of one of them hinders
the execution of the other.

• Synchronization exists when a transition can only be executed if two or more inde-
pendent transitions have been executed before.

A Petri net is free-choice if the decision of which transition will be executed from a
certain state can never be influenced by the rest of the system - and therefore, choices are
free [78]. Free-choice rules out unexpected behavior due to dependence on the timing of
events. We illustrate this through an example net – Fig. 1.5 which we borrow from [78].



1.2. Deadline analysis 5

Figure 1.5: A Petri net which is not free-choice

In Fig. 1.5 we have a pattern which exists in general Petri nets but not in free-choice
nets. Transitions t1 and t3 are concurrent and causally independent, but the order in which
they fire determines whether a conflict between transitions t1 and t2 exists. Transitions t1
and t2 are not in conflict as t2 can not fire because it is missing inputs. However t2 will be
in conflict with t1 if t3 fires before t1. Therefore, due to the synchronization at t2, transition
t3 influences which one of the transitions t1 and t2 can fire.

In free-choice Petri nets, conflicts and synchronization can not interfere. More precisely,
if there is an arc from a place ps to a transition t, then either t is the only output transition
of p (which implies that t cannot be in conflict with any other transition) or p is the only
input place of t (which implies that there is no synchronization at t).

The expressiveness of free-choice workflow nets is strictly between the control-flow of
sequential programs (state machines, flow charts) and general concurrent processes (Petri
nets). While free-choice workflow nets permit concurrency as well as choice, the overlap
of concurrency and choice is restricted such that no race conditions can arise. While these
restrictions limit their usage, many processes in practice can be modeled in this formalism.
For example, the set of 735 of industrial process models used in [85] could be mapped
completely to workflow graphs. Some of these cases are complex and often represent time
critical processes.

An important property of the workflow graphs we analyze is soundness. Soundness is
a notion of correctness for workflow nets. Soundness requires that a workflow can always
terminate, that upon termination no other tokens remain elsewhere in the net, and that it
does not contain any dead tasks [161]. This notion is explained in more detail in Chapter 2.
Sect. 2.2.1.

1.2 Deadline analysis

In Fig. 1.6, we provide a brief overview of the classes of workflow graphs that we analyze
and the research questions we are trying to answer in the context of deadline analysis.

In the first part of the thesis, we study whether the executions of a sound workflow
graph meet a given deadline, where tasks are annotated with fixed durations. While this
assumption – tasks are assumed to have fixed durations – limits the applicability of our
model, it represents a stepping stone towards more realistic settings. We distinguish the
cases where the workflow graph is executed by a single resource (i.e., agent or processor,
and when the time that is needed to execute two concurrent tasks is the sum of the times



6 1. Introduction

Figure 1.6: Classes of wokflow graphs (left) and the research questions we tackle (right).

needed for each task) or an unbounded number of resources. We also briefly discuss the
case where a fixed number of resources is given. Resources are assumed to be independent,
identical and non-preemptive. Whenever a resource completes a task it immediately starts
executing the next pending task – there is no idle-time between the execution of tasks.

Some of the simplifying assumptions were made so that we can solve the problems we
tackle. For instance, in the case where a fixed number of resources is given, answering
whether all the executions meet a given deadline is an NP-hard problem. However, we are
able to provide polynomial algorithms for the single resource and the unbounded number
of resources cases. Also, the algorithms we provide under some simplifying assumptions
can be used as a basis for more complex models. For instance, when durations are specified
as intervals - the process owner may replace the given interval with a rough approximation
of the duration - e.g., with the average of the two extremes, and one can still have an idea
of the total duration of an execution of the process.

As shown in Fig. 1.6, some of the questions we consider are: can we say whether all the
executions of a workflow graph finish within a given amount of time? Or conversely, can
we guarantee that there exists an execution that meets a given deadline? Assessing whether
there exists an execution that meets a given deadline can be established by computing the
minimum duration of an execution of a workflow graph. Similarly, assessing whether all the
executions of the workflow graph meet the deadline corresponds to computing the maximum
duration of an execution of a workflow graph. The minimum duration and the maximum
duration of an execution are important attributes of processes which need to meet rigid
timing constraints, e.g., traffic control, flight mission control [88], etc.

In practice, it is likely that not all executions of a workflow graph are equally probable,
hence we also study the class of stochastic workflow graphs, where each choice of a path
in a workflow graph is annotated with the probability of being taken. In this setting, we
address a different set of questions such as: what is the probability that all executions of a
workflow graph meet a given deadline and what is the expected duration of an execution of
a workflow graph.



1.2. Deadline analysis 7

1.2.1 Incorporating time in workflows and analysis techniques

The importance of incorporating time in workflow analysis has been frequently addressed
in the literature, see [39, 79, 80]. There are multiple ways to introduce time in a Petri net
and a survey on the different approaches is given in [59]. The various ways to introduce
time in a Petri net differ from each other in several essential aspects such as: i) the type of
timing constraint that is assumed, ii) the Petri net element for which the timing constraint
is specified, iii) and the influence of time on the control of the net.

The timing constraint can be given deterministically, non-deterministically or stochas-
tically. A deterministic timing constraint is given by a fixed value – which may denote a
duration or a delay. A non-deterministic timing constraint is given by a time interval con-
straining the duration of execution of an activity. Lastly, a stochastic timing constraint is
given by a probability distribution of the duration or the delay. The temporal specifications
can be associated with any Petri net element: places, transitions, arcs or with the tokens.
In the majority of the Petri net models augmented with time, the delays are associated with
transitions, and only in a few, the delays are specified for places or arcs. The rationale
behind this is the fact that transitions represent activities and activities take time. In the lit-
erature, the term Timed Petri nets is used to refer Petri nets for which a finite firing duration
is associated to each transition in the net.

As mentioned, we consider deterministic timing constraints – tasks are annotated with
fixed durations. Our model of time annotated workflow graphs, where tasks have fixed
durations, can be modeled by Timed Petri nets. This can be achieved simply by adding in
the equivalent Petri net model, for each task of a workflow graph a transition with a delay
equal to the execution time of the corresponding task while all the other transitions have a
zero delay.

There are various methods for analyzing (Timed) Petri nets and these can be grouped
into three main categories: i) methods based on the reachability graph, ii) methods based
on the state equation and iii) methods based on reduction or decomposition techniques
[140]. The reachability graph entails the enumeration of all the reachable markings. On
the other hand, the latter two methods are more efficient but they are applicable only to
certain subclasses of Petri nets or to certain problems. In the following, we will discuss in
more detail the advantages and the shortcomings of these different approaches for timing
analysis.

General Petri nets can be analyzed for timing behavior in terms of their reachability
graph, and there are various techniques and tools that support this [151, 68, 108, 110, 76].
This holds also for non-Petri-net like models, e.g., timed automata where the minimum cost
reachability problem is addressed through exponential branch-and-bound based algorithms
[102]. Since the construction of the reachability graph incurs an exponential blowup, these
techniques do not run in polynomial time in the size of the original model.

A decomposition approach for the deadline analysis of free-choice workflow nets is
given in [94]. To perform temporal validation of the net, the authors present a procedure
to decompose a free-choice timed Petri net into a set of free-choice subnets each of which
describes a routing path. The method has exponential running time as the complexity grows
exponentially with the number of choice places. A different type of decomposition of the
net, proposed for computing the minimum execution time of a process, is given in [97].



8 1. Introduction

The authors map all the routing constructs of a workflow into a stochastic Petri net and they
give formulas for computing the execution time of elementary design blocks: sequence,
iteration, choice and parallelism. However this method can not be applied to a Petri net with
complex control structures, not just regular structures which we will explain in Chapter 2
(i.e., nesting of concurrent and alternative control structures as shown in Fig. 1.4).

As shown, many of the approaches face the combinatorial blow-up of the state-space
they analyze, a problem also known as the state space explosion. There are different ap-
proaches to deal with the state space explosion in the analysis of Petri nets. The most
prominent approach is the reduction of the Petri net specification while preserving impor-
tant properties with respect to a certain analysis problem (e.g., in the area of workflow
verification, the aim is to reduce the specification of the net while preserving soundness, or
for the timing analysis we study, the reduction should preserve the minimum or maximum
delays between events). There are several works that address the idea of reduction in Gen-
eral Petri nets, such as [61, 113], subclasses of Petri nets [78] or timed extensions of Petri
nets [128, 57].

The application of net reduction to timed versions of Petri nets is very limited due to
the challenges posed by the preservation of timing constraints [57]. That’s why the results
that are particularly relevant for us are the ones in [128, 57], as the authors apply reduction
techniques to study the timing behavior of Petri nets. However, they have the following
shortcomings. In [57] the authors show that the reduction rules in [128] do not guarantee
that the timing constraints are preserved from the original time Petri net to the reduced one.
On the other hand the reduction rules in [57] alleviate but do not fully rule out the state
space explosion rendering nets that are only more amenable to the reachability analysis.

Apart from the analytical techniques, simulation can also be a useful method for es-
timating durations of workflows [159] or to provide confidence intervals for performance
indicators in general and there are various tools that support it such as [11, 6]. However,
simulation can be expensive in terms of the compute time, and it can not be used to prove a
certain property (e.g., all executions can be executed within a given deadline).

Despite significant advances in the analysis of Petri nets, the sub-class of sound (no
local deadlock or lack of synchronization) free-choice Petri nets still lacked algorithms for
their temporal analysis (e.g., the computation of the minimum duration of an execution)
that exploit the specific properties of this model.

For certain subclasses of Timed Petri nets, i.e. the Petri nets where each place has
exactly one input and one output transition, also known as timed event-graphs or marked
graphs, the exact execution time can be computed efficiently, see e.g. [38, 116]. The same
holds for Petri nets where each transition has exactly one input and one output place.

In this work, we show that some deadline analysis problems for workflow graphs can
be solved in polynomial time. Our main contributions are polynomial-time algorithms for
computing the minimum duration of an execution of a sound workflow graph executed by
a single resource and by an unbounded number of resources respectively. We show that for
acyclic workflow graphs, the maximum duration can be computed in linear time both for
single and unbounded resources.

Note that when we fix the number of resources – to some value greater than one, then
all the questions that we consider cannot be solved in polynomial time. Even computing the
minimum duration of an execution of a sound acyclic workflow graph becomes NP-hard.



1.3. Performance optimization 9

As mentioned, we also study the class of stochastic workflow graphs, where each choice
of a path in a workflow graph is annotated with the probability of being taken. We prove
that computing the probability of a deadline transgression is an NP-hard problem. This is
proven for the single resource case and it also holds for the unbounded number of resources
case. We also show that for the single resource case, the expected duration of an execution
of a workflow graph can be computed in polynomial time. However, in contrast to this
result, we show that for workflow graphs executed by an unbounded number of resources,
computing the expected duration is NP-hard.

As shown, this part consists of algorithms to be used (largely) at design-time. We also
have some results on how we can optimize processes after they are established, based on
insights collected from past executions. These are presented in the second part of the thesis
where we perform process mining for performance optimization.

1.3 Performance optimization

In Part II of this thesis we study performance optimization of workflows. Performance
optimization of workflows consists in the development of tools or techniques to achieve
operational gains in process execution on predefined quantitative measures or performance
objectives.

A systematic optimization technology for workflows is challenging to devise. Workflow
optimization can adopt techniques from different disciplines such as operations research to
data mining or machine learning. However primary data mining approaches are process
agnostic so it is not immediately obvious how to incorporate such results. On the other
side the process centric approaches are rather focused on modeling [157]. When workflow
execution data is available, it opens the opportunity for process analysis and improvement.
The discipline which leverages all these three – data, processes and data science is process
mining.

Process mining can tell us what to improve by unveiling process issues that were not
visible at the design-time but that are apparent in practice, for example bottlenecks. It can
also tell how to improve the process by providing knowledge which can be directly used in
making better decisions at process run-time or in the automation of certain tasks as we will
illustrate in this thesis.

1.3.1 Positioning with respect to the Process Mining Framework
Before proceeding to presenting our work, we would like to provide an overview of the
Process Mining Framework, cf. [157], see Fig.1.7 and position our work with respect to it.

As described in [157], there are three main types of process mining: discovery, confor-
mance and enhancement. The first type – discovery – corresponds to a set of techniques
which process event logs to produce process models that explain the behavior observed in
the logs. Conformance analysis can tell whether the event logs conform to a given process
and the reciprocal. Enhancement aims at enriching process models with novel performance
information e.g., cycle times, processing times, identifying bottlenecks, etc. Orthogonal to
the types enumerated above are several distinct perspectives: the control-flow perspective



10 1. Introduction

Figure 1.7: Overview of the refined process mining framework.

– concerned with the ordering of activities, the organizational perspective – it focuses on
resources and their roles, and the case/data perspective – aims at understanding different
properties of cases, such as durations, resource utilization, etc.

Process models can be split into “de jure models” and “de facto” models. The former
represent normative process models which specify how work should be done and the latter
ones are descriptive, simply aiming at capturing reality.

Data in event logs is split into “pre mortem” and “post mortem” event data. “Pre
mortem” data corresponds to cases which are still alive and it can be used for better han-
dling the corresponding cases. In contrast, “post mortem” data corresponds to executed
cases and can be used for offline process analysis and improvement.

In part II of the thesis, we are mainly studying the data and organizational perspectives
but nonetheless we incorporate the control flow perspective as well. We use the “de facto”
process models obtained from process owners, we leverage the “pre mortem” and “post
mortem” data to enhance our understanding on the process, i.e., to identify bottlenecks
or wasted cycles and to provide recommendations on how the process execution can be
streamlined.

Research in process mining has brought new algorithms for processing event logs and
turning them into valuable process insights [105, 17, 103, 146]. More specifically, event
logs were used to check the recorded behavior against already defined process models to
identify potential deviations, see [23, 133]. Since processes are often not available, process
discovery has also been a prolific area of research [150, 156]. In [22], the authors aim at
the discovery of dependencies between the data and the routing decisions within a process.
This is largely what we do in Chapter 5 and Chapter 6 of the thesis. In Chapter 5 we use the
process execution logs and devise several text mining techniques to streamline the incident
ticket dispatching process. In Chapter 6 we use monitoring data (time series) from hard
disks to understand when their lifecycle is about to reach the end. The value of jointly
analyzing time series data with process information is stressed also in this paper [122]



1.3. Performance optimization 11

where the authors provide a method for incorporating time series data which is external to
the process into the log files.

We focus on two real world scenarios, and present how their afferent business process
can be improved by leveraging process execution data. In the first scenario, we show a
method to optimize the dispatching task in IT Service Delivery, and in the second scenario,
we show how log data can help in fully automating a business task, namely the task of
establishing when a hard disk needs to be replaced.

1.3.2 Optimizing the dispatching task in IT Service Delivery
For the first scenario, we analyze an incident resolution process in the IT Service Delivery
industry, as shown in Fig. 1.8. In such a process (see e.g. [3]), an incoming incident ticket is
dispatched to a solving agent by a human who reads the ticket to select a solving agent that
is trained on resolving the class of problems documented in the ticket and also matches the
required skill level. We noticed that in the past work [1, 16, 15], the historic execution data
which captures who solved which ticket and how long it took is disregarded . However, we
demonstrate in our study, that this data can serve to optimize and potentially automate the
dispatching task.

Figure 1.8: A simple incident resolution process

Optimizing the dispatching has multiple benefits: execution costs are decreased as the
human dispatcher is displaced and the dispatching decisions are more informed as historic
execution data is accounted for. This, in turn, as shown by our study, has the potential to
decrease the total resolution time for incident tickets, as historic execution data reveals the
agent which is provably fastest in resolving tickets documenting similar issues.

However, automating the dispatching task is a challenging problem. First, one needs to
understand the type of issue documented in the ticket from the short, unstructured text in
the ticket. Second, we need to discover classes of tickets that are homogeneous in the time
it takes an agent to solve it such that we can reliably dispatch the ticket without major varia-
tions in the execution time. To this end, we devise a novel technique able to cluster incident
tickets into categories that both reflect the problem they document and are homogeneous in
the duration it takes for an agent to solve them.

We are not aware of any previous work on ticket clustering that aims at discovering top-
ics which are semantically similar and are also homogeneous in the agent’s performance.
Clustering alerts and incident tickets has been attempted in the past [134, 46] for both struc-
tured and unstructured text using either graph theoretic approaches [46] or a combination
of a latent semantic indexing based technique with a hierarchical technique [134]. We have
observed that standard text similarity measures used by the authors in [46] perform poorly
when used in clustering tasks due to data sparseness and the lack of context. We differenti-
ate from these approaches by proposing a similarity metric between tickets that overcomes



12 1. Introduction

the vocabulary mismatch problem, by using semantic similarity between words inferred
from a large domain specific corpus. The main contribution of this first study is a novel
clustering algorithm which discovers incident categories that are both topically related but
also homogeneous in terms of agent’s performance which is of high importance for the
subsequent dispatching task.

1.3.3 Automating disk replacement decisions
The second scenario also illustrates an opportunity to automate a part of a business process
by considering log data. More specifically, we consider the life cycle of a computer’s hard
disk: a disk is installed, then monitored and ultimately when the administrator decides, the
disk is replaced. We devise a novel data mining technique able to automatically predict disk
replacements with high detection rate, i.e. 80-98%, whereas previous works only attained
50%-60% accuracy [62, 60]. Our prediction pipeline is based on time series data collected
from the disk self-monitoring subsystem, also known as SMART data. Our model can
automate the administrator’s decision for when to replace a disk. Our pipeline correctly
predicts the necessity of a disk replacement even 10-15 days in advance. This in turn
enables timely replacement decisions and better protection against data loss.

There are several challenges in building such a prediction pipeline (see e.g., Fig. 1.9).
As mentioned, the prediction pipeline receives as input the SMART data. The SMART
data consists of values for different disk health indicators such as internal temperature or
the number of uncorrected errors. Each such daily observation on its own is not stable
due to the recovery mechanisms embedded in the disk. That is, at a certain point, one
may see large number of errors but the next observation shows zero errors as all errors
have been corrected by the error correcting unit embedded in the hard disk. Second, due
to the lack of standards when implementing SMART attributes, e.g., manufacturer specific
normalizations in the SMART reporting, one needs to discover the SMART attributes that
are indicative of emerging failures for each disk model. Third, the disk data that we used
are highly imbalanced, viz. only about 2% of disks are replaced, which makes the task of
building high quality predictive models very challenging [137].

Figure 1.9: Our data processing pipeline for predicting disk replacement.

We devise a novel prediction pipeline that addresses all the challenges above and that
discriminates with high accuracy between healthy and failing disks. Our pipeline consists of
four steps as shown in Fig. 1.9. First, the important SMART attributes are selected through
changepoint detection. Next, each of the selected SMART attributes is brought to a more
compact representation via smoothing. The data is balanced through an informed down-



1.3. Performance optimization 13

sampling procedure and lastly the data is fed to a highly accurate classification algorithm.
All these steps are presented in detail in Chapter 6.

Predicting disk replacement is an instantiation of a more general topic – proactive main-
tenance. Proactive maintenance refers to a degradation-based anticipation on when a sys-
tem will fail or stop working as expected. Industries have shown a growing interest in this
field also known as condition based maintenance (CBM), see [19, 58]. As noted in [24],
a generic and scalable prognostic methodology does not exist, as most of the developed
prediction approaches are application or equipment specific.

Approaches to predict component failure vary wildly from simple failure rate models to
complex physics-based models [31]. They may rely on various inputs such as current and
past operating conditions, known fault patterns, engineering model, maintenance history,
etc. The approaches can be grouped into two categories: model-based approaches and
data-driven approaches [115].

Model-based approaches are used when a mathematical model can be built from first
principles as in [36, 63, 21]. In such a method, the metric used for predicting component
failure is the difference between the actual values of the real systems and the outcomes
of the mathematical model. A large difference in this value is indicative of anomalous
behavior. Threshold values for this difference such that one can distinguish between the
presence or absence of faults can be inferred statistically. One concrete example would be
the micro architectural thermal modeling tool for processors described in [95] that could be
used in assessing processor health based on monitored heat.

Data-driven approaches, on the other hand, use real data (such as sensor data) to identify
features that are indicative of component degradation and to predict the component’s behav-
ior. There are multiple techniques that can be employed here such as multivariate statistical
methods, discriminant analysis, signal analysis, neural networks, Bayesian networks, etc.,
and some examples of such data-driven approaches are [117, 138, 121].

Our approach for predicting disk replacement is a data-driven approach. The authors in
[145, 62, 60, 163] have also worked on building a predictive model for the timely discovery
of impending disk failures. There are several key differences between the aforementioned
studies and ours. First, our approach focuses on selecting the SMART indicators that cor-
relate with disk replacements unlike previous works where the authors guess the subset of
relevant attributes [62] or just use all predictors in the model [60]. In addition, we propose
stable representations of the time series data for each disk as input to the predictive model
unlike previous studies which operate directly on the raw data. Also, some studies are based
on monitoring data from drives used in accelerated life tests, whereas we rely solely on field
data collected when the disks were in actual use. The problem with data collected during
testing in uniform controlled environments is that although it can be insightful in under-
standing the role of certain environmental factors, it has been shown to be not informative
enough with respect to actual failure rates observed in the field [92]. Also, we note that
some manufacturers deploy the disks with embedded failure predictive models. However,
these models are based on simple methods, such as threshold-based normalizations. Ac-
cording to field observations, these models are built such that they avoid false alarms at the
expense of a weak predictive power.

The algorithms for deadline analysis of workflow graphs and the process mining based
solutions for performance optimization of workflows are presented in more detail in the rest



14 1. Introduction

of the thesis. In the following, we present the dissertation structure.

1.4 Dissertation Structure
The contents of the thesis are structured in two main parts: Part I – Deadline analysis of
workflow graphs, consisting of Chapter 2, Chapter 3, and Chapter 4 and Part II – Workflow
performance optimization which in turn consists of Chapter 5 and Chapter 6

In Chapter 2, we present formal definitions for the fundamental concepts of the thesis
such as workflow graphs and their semantics. In Chapters 3 and 4, we present the results in
the deadline analysis of workflow graphs executed by a single resource and by unbounded
resources respectively. We showecase on real data extracted from a Dutch financial insti-
tution the usefulness and the performance of these algorithms in practice, see 4.6. Next,
we move to the workflow optimization part and in Chapters 5 and 6, we present the two
use cases on which we show how log data can serve in optimizing processes. Finally, we
present our concluding remarks in Chapter 7.



Part I

Deadline Analysis of Workflow
Graphs

15





Chapter 2

Foundations

In this section, we define the necessary fundamental notions for understanding Chapter 3
and Chapter 4. We start by giving the formal definition of Petri nets and we present some of
the important subclasses of Petri nets such as: state machines, marked graphs and workflow
nets in Sect.2.1. Next, we introduce workflow graphs, their semantics and an algebraic
characterization of Petri nets in Sect.2.2.

2.1 Petri nets

A Petri net is a special type of a directed graph, see e.g., Fig. 1.4, which has an initial
state, also known as initial marking. The graph corresponding to a Petri net N is a directed,
bipartite graph which has two types of nodes: places and transitions and where arcs are
either from a place to a transition or from a transition to a place. Arcs between two nodes
of the same type are not allowed. More formally:

Definition 1 (Petri net). A Petri net is a triple N = (P, T, F ) where:

• P = {p1, p2, · · · , pm} is a finite set of places,

• T = {t1, t2, · · · , tn} is a finite set of transitions,

• P ∩ T = ∅ and,

• F ⊆ (P × T ) ∪ (T × P ) is the set of arcs corresponding to the flow relation F .

We write •p = {t | (t, p) ∈ F} and p• = {t | (p, t) ∈ F} to denote the input
and output transitions of a place p, respectively. Similarly •t = {p | (p, t) ∈ F} and
t• = {p | (t, p) ∈ F} for the input and output places of a transition t.

In the following, we present the semantics of Petri nets. First, we introduce some nec-
essary preliminary notions.

Definition 2 (Multi-set). Let A be a set. A multi-set over A is a mapping m : A→ N. For
two multi-sets m1, m2, and each x ∈ A, we have: (m1 + m2)(x) = m1(x) + m2(x) and
(m1 −m2)(x) = m1(x)−m2(x).

17



18 2. Foundations

A marking of a Petri net m : P → N is a multi-set over P.
We say a place p is marked by a marking m if m(p) > 1. A transition t ∈ T is enabled

in a marking m if m marks every place of •t.
A transition t, enabled in the markingm can fire, leading to a new markingm′, we write

this as m t−→ m′ and the following equation holds:

m′(p) =


m(p)− 1, if p ∈ •t
m(p) + 1, if p ∈ t•

m(p), otherwise

Some additional important concepts regarding Petri nets are the notions of liveness and
boundness.

Definition 3 (Live, bounded). Let N = (P, T, F ) be a strongly connected Petri net, and let
m0 be the initial marking.

• A transition t ∈ T is live if for each marking m reachable from m0 there exists a
marking m′ such that m′ is reachable from m and t is enabled in m′.

• The Petri net N is live if each transition in T is live.

• The Petri net N is k-bounded if for each reachable marking m and each place p ∈
P,m(p) ≤ k.

• N is bounded if there exists k such that N is k-bounded.

In this dissertation we use a restricted class of Petri nets for modeling and analyzing
workflows. One of the important properties of the nets we analyze is named free choice.

Definition 4 (Free choice). A Petri net N = (P, T, F ) is a free choice net if for every two
places p1, p2 ∈ P either p•1 ∩ p•2 = ∅ or p•1 = p•2.

Petri nets which model workflow procedures [152] have some particular properties.
Most importantly, they have two special places, i and o, also known as the source and the
sink of the net respectively. These places denote the beginning and the termination of a
procedure. These Petri nets are called Workflow nets. Formally, a Workflow net is defined
as follows:

Definition 5 (Workflow net). A Workflow net is a quintuple (P,T,F,i,o) where:

• (P, T, F ) is a Petri net,

• i, o ∈ P are places such that i has no incoming arcs and o has no outgoing arcs,

• The graph (P ∪ T, F ∪ (o, i)) is strongly connected.

A Petri net which is also a Workflow net is given in Fig. 1.4.
There are other interesting subclasses of general Petri nets also. These classes are of

interest because they model some specific applications of Petri nets and also some important
analysis problems in these classes can be solved, in contrast to the class of general Petri nets,
in polynomial time. The two classes we will present in the following are state machines
and marked graphs.



2.1. Petri nets 19

Figure 2.1: An example of a state machine - (a), and a marked graph - (b)

Definition 6 (State machine). A Petri net N is a state machine if and only if ∀t ∈ T, |•t| =
|t•| = 1.

An example of a state machine is given in Fig. 2.1 (a).

Definition 7 (Marked graph). A Petri net N is a marked graph if and only if ∀p ∈ P, |•p| =
|p•| = 1.

An example of a marked graph is given in Fig. 2.1 (b).
The nondeterministic nature of Petri net executions can lead to conflict. In conflict, one

place enables two or more transitions. One of the enabled transitions may fire and therefore
remove the enabling token for the other transitions. For example, when we have a token in
place p1 in Fig. 2.1 (a), transitions T1 and T3 are in conflict.

Concurrency in Petri nets is given by the existence of a forking transition that places
tokens simultaneously in two or more output places, as is the case for transition T1 in
Fig. 2.1 (b). As noted by Petri [40], concurrency can be seen as a binary relation which
is reflexive (transition T is concurrent with itself), symmetric (transitions Ti and Tj are
concurrent implies transitions Tj and Ti are concurrent) but not transitive (transitions Ti
and Tj are concurrent, transitions Tj and Tk are concurrent does not imply that transitions
Ti and Tk are concurrent). Petri nets can model also the mechanism of synchronization,
when an event occurs only after all the required inputs are available. For example in Fig. 2.1
(b), places p3 and p4 are synchronized for the firing of transition T3.

Marked graphs and state machines differ fundamentally in their modeling capability.
Marked graphs model concurrency and synchronization. A state machine admits no syn-
chronization and a marked graph allows no conflict.

An important partitioning of the set of places and of the set of transitions of the net is
the partitioning into certain subnets named clusters. Free choice nets can be decomposed
into a disjoint set of clusters [78].

Definition 8 (Cluster). The cluster of a node x ∈ P ∪ T , denoted as [x] is the unique
smallest set [x] ⊆ P ∪ T satisfying the following conditions:

• x ∈ [x]

• ∀p ∈ P ∩ [x], then p• ⊆ [x], and

• ∀t ∈ T ∩ [x], then •t ⊆ [x].

A set X ⊆ P ∪ T is a cluster if X = [x] for some x.



20 2. Foundations

For example, the cluster of p1 in Fig. 2.1 (a) is the set {p1, T1, T3}. Similarly, the cluster
of transition T3 in Fig. 2.1 (b), is the set {T3, p3, p4}.

2.2 Workflow Graphs
Workflow Graphs are a special type of multi-graphs where each node has a routing logic
associated with it. In the following, we will provide the definition of a workflow graph,
their semantics, and we introduce the notion of an execution of a workflow graph.

Definition 9 (Weighted, directed multi-graph). A weighted, directed multi-graph G =
(V,E, c, w) consists of a set of nodes V , a set of edges E, a mapping c : E → V × V
that maps each edge to an ordered pair of nodes and a mapping w : E → N that maps
each edge to a nonnegative integer, called its weight or duration. For each edge e with
c(e) = (v, z), we assume v 6= z for simplicity throughout the paper.

Definition 10 (Workflow graph). A workflow graph Γ = (V,E, c, l), is a multi-graph G =
(V,E, c) with distinct and unique source and sink nodes, denoted vsource and vsink , respec-
tively, equipped with an additional mapping l : V \{vsource , vsink} → {XOR,AND,TASK}
that associates a branching logic with XOR and AND. Furthermore, we assume that every
node is on a path from the source to the sink, that the source has a unique outgoing edge,
called the source edge (esource ), and that the sink has a unique incoming edge, called the
sink edge (esink ).

Tasks don’t affect the routing logic, from a control flow stand point being equivalent
with an AND or XOR -node with a single incoming edge and a single outgoing edge. It is
natural to assign durations to tasks.

Note: we will henceforth omit tasks for simplicity, and keep all the other types of nodes.
We annotate each edge e = c(u, v) with a duration w(e) such that w(e) represents the total
duration of the tasks that existed on the path between nodes u and v.

This leads us to the following definition:

Definition 11 (Workflow graph (omitting tasks)). A workflow graph Γ = (V,E, c, l, w),
is a weighted multi-graph G = (V,E, c, w) with distinct and unique source and sink
nodes, denoted vsource and vsink , respectively, equipped with an additional mapping l :
V \ {vsource , vsink} → {XOR,AND} that associates a branching logic with every node,
except for the source and the sink. Furthermore, we assume that every node is on a path
from the source to the sink, that the source has a unique outgoing edge, called the source
edge (esource ), and that the sink has a unique incoming edge, called the sink edge (esink ).

Similarly as for Petri nets, for each node v, we define the pre-set of v, •v = {e ∈ E |
∃ z ∈ V : c(e) = (z, v)} and the post-set of v, v• = {e ∈ E | ∃ z ∈ V : c(e) = (v, z)}.
A node with a single incoming edge and multiple outgoing edges is called a split . A node
with multiple incoming edges and a single outgoing edge is called a join .

We don’t allow any node that has multiple incoming edges as well as multiple outgoing
edges. Note that this does not restrict expressiveness as such a node can be converted into
a join followed by a split without changing the semantics, see an example in Fig.2.2.



2.2. Workflow Graphs 21

Figure 2.2: Workflow graph where a node has multiple incoming edges and multiple otugoing edges
(left) and an equivalent workflow graph (right) where we convert the node into a merge followed by a
split.

Figure 2.3: An example of a workflow graph modeling a booking request

Fig. 2.3 shows a workflow graph in BPMN notation, [5]: An XOR gateway is depicted
as a diamond, an AND gateway as a diamond decorated with a plus sign. Source and sink
are depicted as circles.

Let Γ be a workflow graph; Γ is sequential if it contains no AND-split and no AND-join.
It is acyclic if the underlying graph has no cycles.

A regular workflow graph is a workflow graph that can be generated from a regular
expression. To formalize, let ε be a workflow graph consisting of a single edge. Let us
also introduce the following operations on a pair of workflow graphs X and Y : (X ; Y )
– denoting workflow graphs X and Y are in a sequence, (X AND Y ) – X and Y are in a
parallel block, (X XOR Y ) – X and Y are in a choice block, and (X LOOP Y ) – X and
Y are in a loop. They can be visualized as shown in Fig. 2.4.

Let RWG represent the family of regular workflow graphs. We have Γ ∈ RWG if and
only if Γ = ε or there existX,Y ∈ RWG such that Γ equals one of (X ; Y ), (X AND Y ),
(X XOR Y ), and (X LOOP Y ). Such recursive definition is valid, as both X,Y have
smaller number of edges than Γ. Defining RWG in this way enables us to establish a
one-to-one correspondence between RWG and a family of regular expressions (i.e. formal
strings defined recursively in exactly the same way as RWG). For instance formal expres-
sion ((ε; ε) AND (ε LOOP ε)) has its corresponding regular graph as shown in Fig. 2.5.

It can be decided in linear time whether a workflow graph is a regular workflow graph
using graph parsing techniques [86].

Figure 2.4: Regular patterns Figure 2.5: Regular graph



22 2. Foundations

2.2.1 Workflow Graphs Semantics
As mentioned in Chapter 1, workflow graphs are equivalent to free-choice petri nets. In
[158], the authors provide a structural translation from workflow graphs to workflow nets,
based on a set of rules for translating the nodes of the workflow graph and a set of rules
for translating the edges. Each task and each AND-gateway X of the worklfow graph is
translated to a transition tx and each XOR-gateway Y is translated to a place Py . Next,
each edge between two nodes x and y is translated to a pattern for the corresponding Petri
net nodes, as shown in Fig.2.6. These rules can serve for translating any given workflow
graph into a free choice workflow net, however, they can not be used for translating in
the reverse direction. A different set of rules is given in [32]. These new rules permit
also the translation of every free-choice workflow net into an equivalent workflow graph.
The authors devise a normal form for workflow graphs and a normal form for free-choice
workflow nets and they show that these two normal forms are isomorphic.

Figure 2.6: Translation rules for the edges of the workflow graph.

The semantics of workflow graphs is defined as a token game as it is in Petri nets.
The execution of a node with AND-logic removes one token from each of its incoming
edges and adds one token to each of the outgoing edges. The execution of a node with a
XOR-logic removes non-deterministically a token from one of its incoming edges that has
a token, then non-deterministically adds one token to one of the outgoing edges. Although
we omit tasks, we allow nodes with just one incoming and one outgoing edge for technical
reasons. For such nodes, XOR- and AND-logic behave the same.

The state or marking of a workflow graph is a distribution of tokens over the edges.

Definition 12 (Marking). A markingm : E → N of a workflow graph Γ = (V,E, c, l, w) is



2.2. Workflow Graphs 23

a multi-set over E. If m(e) = i, we say that there are i tokens on edge e. The marking with
exactly one token on the source edge and no token elsewhere is called the initial marking
of Γ, denoted by ms. The marking with exactly one token on the sink edge and no token
elsewhere is called the final marking of Γ, denoted by mf .

Definition 13 (Transition). A triple t = (E1, v, E2) is called a transition of Γ if v ∈ V ,
E1 ⊆ •v, and E2 ⊆ v• such that:

• if l(v) = AND, then E1 = •v, and E2 = v•,

• if l(v) = XOR, and it is a split node, then E1 = •v and there exists an edge e ∈ v•
such that E2 = {e}.

• if l(v) = XOR, and it is a merge node, then E2 = v• and there exists an edge e ∈ •v
such that E1 = {e}.

A transition (E1, v, E2) is enabled in a marking m if for each edge e ∈ E1 we have
m(e) > 0.

We will use •t to denote E1 and t• to denote E2.
A transition t can be executed in a marking m if t is enabled in m. When t is executed

in m, a marking m′ results such that m′ = m − E1 + E2 (recall that we defined m as a
multi-set over E). We write m −→ m′ if there exists a transition t, enabled in a marking
m and its execution results in a marking m′. We write m t−→ m′ when the transition t is
enabled in a marking m and its execution results in the marking m′. We use ∗−→ to denote
the transitive and reflexive closure of −→. We say m′ is reachable from a marking m if
m
∗−→ m′. We say m′ is a reachable marking of Γ if ms

∗−→ m′.

Definition 14 (Execution of a workflow graph). An execution of a workflow graph Γ is an
alternating sequence σ = 〈ms, t0,m1, t1, · · · 〉 of markings mi of Γ and transitions ti such
thatmi

ti−→ mi+1, for each i ≥ 0, andm0 = ms. We will be using also the shorter notation
σ = 〈ms,m1, · · · 〉 to denote an execution.

Definition 15 (Transition sequence). If σ = 〈m0, t0,m1, t1, · · · , tn,mn+1〉 is an execu-
tion, then τσ = 〈t0, t1, · · · , tn〉 is a transition sequence leading from m0 to mn+1 and we
write m0

τσ−→ mn+1.

Definition 16 (Maximal execution). An execution σ of a workflow graph Γ is maximal
if either σ is of infinite length or σ ends in a marking from which no other marking is
reachable.

For example the execution 〈ms, t1,m1, t3,m2, t4,m3, t5,mf 〉 of the workflow graph in
Fig. 2.7 is a maximal execution , wherem1,m2,m3 are respectively equal to {e2}, {e4, e5}
and {e6}.

As defined, an execution of a Petri net is finite or infinite sequence of transition occur-
rences. We additionally impose a fairness assumption on infinite executions. An execution
in which some transition is enabled over and over again but does not occur from a point on
in the corresponding transition sequence is unfair.



24 2. Foundations

We say an edge e is taken at i in an execution σ = 〈ms, t0,m1, t1, · · · 〉 , if ∃ ti such that
e ∈ t•i . This is particularly relevant for XOR-split nodes where the taken edge corresponds
to the outcome of the choice.

Definition 17 (Fairness). A maximal execution σ, of a workflow graph Γ, is fair if for each
XOR-split v, that is executed infinitely often in σ, each edge e ∈ v• is taken infinitely often
in σ.

An important property of Petri nets which, informally speaking, reflects whether the
modeled system is correct or not is the soundness property. The notion of soundness was
originally given for workflow nets in [154]:

Definition 18 (Sound Workflow net). A workflow net N = (P, T, F, i, o) is sound if:

1. For every marking m, reachable from the initial marking of N , there exists an execu-
tion sequence σ such that m σ−→ mf and mf is the final marking of N .

2. The final marking of N is the only reachable marking of N which marks the final
place.

3. For every transition t ∈ T there is a reachable marking which enables t.

There exist multiple notions of soundness [161]. In our work, we consider soundness
in the classical sense, which means that every execution of a Petri net is maximal, and any
transition has a chance to fire.

In [158], van der Aalst et al. have proven that for acyclic workflow graphs, soundness
is equivalent to the condition that neither a local deadlock nor a an unsafe marking are
reachable from the initial state. To understand this statement, we need to define the notions
of local deadlock and unsafeness.

We use the definition of local deadlock of Favre et al. [34].

Definition 19 (Local deadlock). A marking m of a Petri net N is a local deadlock if there
exist a place p ∈ P which is not the final place of N , such that m marks p and all the
markings reachable from m mark p.

The name local deadlock is used to distinguish from the notion of global deadlock
which is a marking in which no transition is enabled. For example, for the workflow graph
in Fig. 2.7, the marking m = {e4, e3} is a local deadlock whereas the marking m = {e4}
is a global deadlock.

Definition 20 (Unsafeness). A reachable marking m is unsafe or exhibits lack of synchro-
nization if one edge has more than one token in m.

We say a workflow graph is safe if it has no unsafe reachable marking.
We use a generalization of the result of van der Aalst [158], to define soundness for

arbitrary workflow graphs as given in [85]. This definition gives a local view of correctness
for arbitrary workflow graphs:

Definition 21 (Equivalent soundness characterization). A workflow graph is said to be
sound if it has no local deadlock and no unsafe reachable marking.



2.2. Workflow Graphs 25

Definition 22 (Workflow graphs with probabilistic choice). A workflow graph has prob-
abilistic choice if each XOR-node v is assigned a distribution µ : v• → [0, 1] such that
µ(e) > 0 for each e ∈ v• and

∑
e∈v• µ(e) = 1.

We will henceforth also use the name probabilistic workflow graphs to denote workflow
graphs with probabilistic choice.

Soundness guarantees that every fair execution terminates in the final marking of Γ.
Soundness has various equivalent characterizations and can be decided in cubic time by
help of the rank theorem for free-choice Petri nets [78], also cf. [158].

2.2.2 An Algebraic Characterization of Workflow Graphs
Workflow graphs, similarly to Petri nets, can be represented as an incidence matrix. In
the following we give the algebraic characterization of workflow graphs by following the
algebraic characterization of Petri nets given by Desel and Esparza in [78]. Such a charac-
terization is useful because it allows us to use notions and results of linear algebra in the
domain of workflow graphs.

Several of the definitions and lemmas we will present in the following, are originally
phrased in the context of free choice Petri Nets. Due to the equivalence between workflow
graphs and free choice Petri Nets stated in [32], the results hold for workflow graphs as
well.

Definition 23 (Incidence matrix of a workflow graph). The incidence matrix N of a work-
flow graph is a matrix whose rows represent the edges of the workflow graph, and the
columns represent the transitions of the workflow graph. The entry N[i, j] corresponds
to the change of the marking of the edge i caused by the occurrence of the transition
j = (E1, v, E2).

N[i, j] =


−1 if i ∈ E1 \ E2

1 if i ∈ E2 \ E1

0 otherwise

In Fig. 2.7 we show a workflow graph where we label its AND and XOR -nodes, edges
and its transitions.

The transitions of this workflow graph are t1 = ({e1}, v1, {e2}), t2 = ({e1}, v1, {e3}),
t3 = ({e2}, v2, {e4, e5}), t4 = ({e4, e5}, v3, {e6}), t5 = ({e6}, v4, {e7}), and t6 =
({e3}, v4, {e7}).

The incidence matrix of the workflow graph in Fig. 2.7 is:

t1 t2 t3 t4 t5 t6



e1 −1 −1 0 0 0 0
e2 1 0 −1 0 0 0
e3 0 1 0 0 0 −1
e4 0 0 1 −1 0 0
e5 0 0 1 −1 0 0
e6 0 0 0 1 −1 0
e7 0 0 0 0 1 1



26 2. Foundations

Figure 2.7: A workflow graph, its edges and transitions

The Parikh vector of a transition sequence τ , written
→
τ , maps every transition t to the

number of occurrences of t in τ . More formally,

Definition 24 (Parikh vector). Let (P, T, F ) be a net and let σ be a finite transition se-
quence. The Parikh vector

→
τ : T → N of σ maps every transition t ∈ T to the number of

occurrences of t in σ. [78]

For example, let τ1 = 〈t1, t3, t4, t5〉, and τ2 = 〈t2, t6〉 be two transition sequences of
the workflow graph in Fig. 2.7. Note that for this workflow graph |T | = 6. The Parikh
vectors for the two transition sequences are

→
τ1= (1, 0, 1, 1, 1, 0) and

→
τ2= (0, 1, 0, 0, 0, 1)

respectively.
An important lemma that gives an algebraic description of the marking change in a

workflow graph is the marking equation lemma [78]:

Lemma 2.1 (Marking equation lemma). For every finite transition sequence τ of a work-
flow graph with the incidence matrix N, with m τ−→ m′, the following equation holds:

m′ = m+ N· →τ

The expression in Lemma 2.1 is also called the state equation of a workflow graph and it
compactly captures the relation between markings and the number of transition occurrences
within a transition sequence.

Lemma 2.1 gives a necessary condition for a marking m′ to be reachable. That is,
any reachable marking must fulfill the state equation but the converse is not true [149].
Conversely, if the marking equation does not have vector solution for

→
τ with its components

in N, then the marking m′ is not reachable from m.
Two transition sequences τ1 and τ2 of Γ are permutations of each other if

→
τ1=

→
τ2.

Let τ2 be a permutation of the transition sequence τ1. If m0
τ1−→ m and m0

τ2−→ m′,
then it follows from the marking equation lemma that m = m′.

We say a transition t is included in an execution σ, denoted t ∈ σ, if
→
τσ [t] > 0

(recall that the Parikh vector
→
τ , cf. Def. 24, maps every transition t ∈ T to the number of

occurences of t in σ). We write
→
σ instead of

→
τσ , henceforth, for convenience.

For two vectors
→
τ1 and

→
τ2 we set

→
τ1≤

→
τ2 if ∀ t, →τ1 [t] ≤→τ2 [t].

For two vectors
→
τ1 and

→
τ2 we will denote their coordinate wise difference by

→
τ1 -

→
τ2.



2.2. Workflow Graphs 27

Figure 2.8: A live and bounded Petri net

Figure 2.9: An unbounded Petri net

Let Trans(v) denote the set of transitions of a node v. Trans(v) = {t | t = (E1, v, E2)}
where E1 = •t and E2 = t•.

In the following we will present an important lemma proven by Gaujal et al. [27] for
live and bounded free choice Petri nets. We will use this lemma to prove the correctness of
the algorithms for computing the minimum duration of an execution of a workflow graph
executed by a single resource or by an unbounded number of resources. The lemma is as
follows (Corllary 3.1 in [27]):

Lemma 2.2. Let N be a live and bounded Free Choice net. Let b be any transition of N
and let [b] be the cluster of b. There exists a unique reachable marking m[b] in which the
set of enabled transitions is exactly the set of transitions in [b]. Furthermore, the marking
m[b] can be reached from any reachable marking and without firing any transitions in [b].

We will illustrate this lemma both through an example and a counterexample.
First let’s consider the (bounded) net in Fig. 2.8 with initial marking m0 = {p1}. We

can see that for the cluster [t3] = {p2, p3, t3}, where t3 is the only transition, there exists
a single marking reachable from m0 and in which t3 is the only enabled transition, namely
m′ = {p2, p3}.

Now, consider the net N in Fig. 2.9 with initial marking m0 = {p1}, obtained from the
previous net but by adding also arc (t1, p5). Note that this net is unbounded. We can see
that for the cluster [t3] = {p2, p3, t3}, there exist two markings reachable from m0 and in



28 2. Foundations

which t3 is the only enabled transition, namely m′ = {p2, p3} and m′′ = {p2, p3, p5}. If
we removed the arc (t1, p5).

Due to the equivalence between workflow graphs and free choice workflow nets [32],
Lemma 2.2 also holds for workflow graphs.



Chapter 3

Workflow Graphs Executed by
a Single Resource

In this chapter, we study whether the executions of a sound workflow graph (WFG) meet a
given deadline, where tasks, or, equivalently, edges are annotated with execution times.

Studying this problem is relevant for workflow graphs modeling processes which need
to respect precise timing and a high level of reliability. For such processes it is necessary to
guarantee their completion within certain timing constraints [30].

We restrict in this chapter to the case where all tasks are executed by a single resource.
The case where a workflow graph is executed by multiple resources is presented in the next
chapter.

1. All executions 2. Some execution 3. Probability of
transgression

4. Expected dura-
tion

A. Acyclic Se-
quential WFG

O(|V |+ |E|) O(|V |+ |E|) Weakly NP-hard O(|V |+ |E|)

B. Sequential
WFG

NP-hard O(|E|+ |V | · log|V |) Weakly NP-hard O(|E|3)

C. Regular WFG O(|V |+ |E|) O(|V |+ |E|) Weakly NP-hard O(|V |+ |E|)
D. Acyclic Sound
WFG

O(|V | + |E|) O(|V | + |E|) NP-hard O(|V | + |E|)

E. Sound WFG NP-hard O(|V ||E|) NP-hard O(|E|3)

Table 3.1: Overview of results; new contributions in bold.

Table 3.1 shows the results for deadline analysis for different classes of workflow
graphs, and our contributions are written in bold. The first two columns refer to the question
whether all executions or some execution of the workflow graph finish before the deadline,
respectively. These correspond to the problem of computing the maximum and the min-
imum duration of an execution respectively. In the former case, cycles in the graph are
constrained by a termination order. For the third and fourth columns of Table 3.1, alterna-
tive branches have probabilities associated to them and we ask whether the probability to
terminate within the given deadline is above a given threshold (third column) or what the
expected duration is (fourth column).

29



30 3. Workflow Graphs Executed by a Single Resource

Sequential graphs refers to the subclass of classical control-flow graphs without concur-
rency. We can use Dijkstra’s algorithm [52] for computing the shortest path of a sequential
graph and therefore determine the minimum duration (Cell B.2). If the sequential graph is
acyclic, then the shortest and the longest path can be computed in linear time through a com-
bination of topological sort and dynamic programming [144] (Cells A.1 and A.2). To define
the maximum duration of a workflow graph, we need to constrain the number of times a
loop can be traversed. We propose a general model of loop constraints for cyclic workflow
graphs in this chapter. For this general model, we adapt the known result that computing the
longest simple path in a sequential graph is NP-hard to show that it is NP-hard to compute
whether all admissible executions (we explain what an admissible execution is in Section
3.1.2) of a sequential workflow graph meet a given deadline (Cells B.1 and E.1).

The expected duration of a probabilistic sequential graph, i.e., Markov chain, can be
computed in polynomial time [35] (Cell B.4), and again there is a linear time solution for
the acyclic case [35] (Cell A.4). Regular graphs refers to the subclass where the graph
can be generated by a regular expression, i.e., every split corresponds to a join of the same
logic (alternative or concurrent), see Fig. 2.5 for an example. For regular workflow graphs,
solutions are simple recursive algorithms which we briefly mention in the paper and which
run in linear time (Cells C.1, C.2, and C.4).

The main contribution we present in this chapter is an algorithm that computes the
minimum duration of an execution of a sound workflow graph executed by a single resource
in polynomial time (Cell E.2). The algorithm together with the correctness proof are given
in Sect. 3.1.

Furthermore, we show that computing the probability of transgressing a deadline is
NP-hard even for sequential regular graphs (Cell D.3), while it is known that there is a
pseudo-polynomial solution for sequential graphs. This is shown in Sect. 3.2.

The chapter is structured as follows. In Section 3.1, we present a new algorithm for
computing the minimum duration for a worfklow graph in polynomial time, and we present
the NP-hardness proof for computing the maximum duration of an execution in our general
model. In Section 3.2, we present the hardness result for assessing the probability of dead-
line transgression and, we present a polynomial time algorithm for computing the expected
duration for probabilistic cyclic workflow graph.

3.1 Workflow graphs with nondeterministic choice

In this section, we study deadline analysis where choices in the workflow graph are assumed
to be nondeterministic. We distinguish two cases. First, we assume that choices are made
by the process internally, e.g., based on data-based decisions that we abstract from. In this
case, we are interested in whether the process always terminates within the deadline, i.e.,
whether all its fair executions meet the deadline. Secondly, we consider that the choices are
made by a superimposed scheduler that has the goal to make choices in order to meet the
deadline, i.e., we ask whether there exists an execution that meets the deadline. It is clear
that for the first case, it is sufficient to compute the maximum duration of an execution and
for the second case, the minimum duration of an execution.

In Sect. 3.1.1 , we present the polynomial time algorithm to determine the minimum



3.1. Workflow graphs with nondeterministic choice 31

duration of an execution of a sound workflow graph. In Sect. 3.1.2, we define a system
model to rule out infinite executions of a workflow graph and adapt the known NP-hardness
result of the longest path problem to that system model. Finally, we discuss in Sect 3.1.3,
the special cases of regular and acyclic workflow graphs.

3.1.1 The minimum duration of a workflow graph
In the following, we present, as a main contribution, an algorithm to compute the mini-
mum duration of an execution of a sound workflow graph. We start by presenting several
preliminaries that are needed for the algorithm such as the definition for the duration of an
execution. In the following, let Γ be a sound workflow graph.

Since we assume a single resource, i.e., processor or agent executing the workflow
graph, the duration (or cost) of a fair execution σ, of Γ, which we denote as c(σ), is defined
as follows:

Definition 25 (Duration of an execution - single resource). For a workflow graph executed
by a single resource, we define the duration of an execution σ as

c(σ) =
∑
e∈E

w(e) · σ(e) (3.1)

where σ(e) is the number of times edge e is marked in σ, which is either 0 or 1 if Γ is
acyclic, but can be any non-negative integer or∞, otherwise.

σ(e) =


|{i | mi,mi+1 are consecutive markings of σ such that mi(e) < mi+1(e)}|,

for e ∈ E \ {esource}
1, for e = esource .

(3.2)
As mentioned, in this chapter we provide an algorithm for computing the minimum

duration of an execution and we will prove its correctness. The algorithm for computing
the minimum duration of an execution of a workflow graph, works on a weighted workflow
graph, and for each node v, and each edge e ∈ •v, it updates a variable δ[e] that represents
the currently known minimum cost to reach the sink from e.

In the following we will formally define the minimum cost to reach the sink from e
which we will call the minimum cost downstream from e and next we will give the algo-
rithm that computes the minimum duration of an execution. Lastly, we will prove that upon
termination of the algorithm, the value associated to esource , δ[esource ], represents the min-
imum cost downstream from esource and hence, it represents the duration of the minimum
duration execution (see Algorithm 3.1 and Algorithm 3.2).

3.1.1.1 Minimum cost downstream from an edge

To understand what we denote by minimum cost downstream from e, we will re-write the
cost of a fair execution (3.1) in terms of recursive equations, that represent the accumulated
cost for reaching the sink from a given edge, for a chosen execution. This will serve us later



32 3. Workflow Graphs Executed by a Single Resource

Figure 3.1: Workflow graph with edge weights Figure 3.2: Minimum duration execution and the
accumulated costs

when we will prove that the algorithm we propose for computing the minimum duration of
an execution is correct.

We will define the (minimum) cost for reaching the sink in an execution for each edge.
The minimum cost for reaching the sink from esource represents the cost of the minimum
cost execution.

As an example, consider the workflow graph in Fig. 3.1. In Fig. 3.1, edges are labeled
(e.g. e8; 2) with an edge name (e8) and a duration (2). Fig. 3.2 represents the workflow
graph restricted to the elements that are contained in the execution with minimum duration,
i.e., it is a representation of the minimum duration execution. Each edge in Fig. 3.2 is
labeled with the cost for reaching the sink (the cost incurred traversing the workflow graph
backwards from the sink to the edge).

For e11, the cost to reach the sink is: w(e11) to which we add the cost of esink therefore,
6 + 3 = 9. Since in any fair execution in which edge e8 is marked, edge e9 is also marked
we carry the cost to reach the sink on only one of the edges (otherwise the cost is over-
counted). The cost associated to e9 stays w(e9) and the cost associated to e8 becomes
w(e8) plus the cost of e11, and we obtain 2+9=11, etc. The duration of the entire execution
(Fig. 3.2) equals the accumulated cost associated with esource which is 31.

As presented in the example, for each node v such that l(v) =AND, and |•v| > 1, the
cost associated to the outgoing edge is accumulated on only one incoming edge. For this,
we define a mapping sel : E → {0, 1} that specifies which of the incoming edges of an
AND-join, accumulates the cost of the outgoing edge. Note that for all the v of this type,∑
e∈•v sel(e) = 1.
In order to define the duration of an execution as a set of recursive equations that repre-

sent the accumulated cost for reaching the sink from a given edge, we need first to represent
a fair execution σ as the sequence of edges that get marked in σ. Let τσ = 〈T0, T1, · · · , Tn〉
be the transition sequence that corresponds to σ, and let Si denote the sequence composed
of the elements in T •i ordered by a predefined edge labeling. The sequence of edges that
get marked in σ is then given by 〈esource , S0, S1, · · · , Sn〉.

We use the notation σ = 〈esource , · · · , e, · · · , esink 〉 to express an execution σ as the
sequence of edges that get marked in σ. Recall that we refer to fair, maximal executions of
a sound workflow graph, and therefore the sequence of edges is finite and ends with esink .

Expressing a fair execution as the sequence of the edges that get marked in the execu-
tion serves to compute the accumulated cost of an edgein a particular fair execution. We
compute this cost by accumulating backwards the cost on the edges in the execution. By
this, we denote traversing the sequence of edges from the last to the first edge in the se-



3.1. Workflow graphs with nondeterministic choice 33

quence and updating the cost of an edge e ∈ •v at position i in the sequence based on the
cost already computed for the edges in the sequence that belong to v• at smallest positions
greater than i.

Let ei be the edge at position i in the sequence of edges that get marked in the execution.
Since we update based on the edges in v•, for the XOR nodes, we define a function

nextσ(ei) such that for the edge at position i, ei ∈ •v, it returns the edge in v• that get
marked after ei gets marked. Formally, for an edge e ∈ •v, at position i in an execution σ ,
nextσ(ei) = e{min j>i|ej∈v•}.

For each position i in the sequence of edges that get marked in the execution, starting
from the last index we update the cost of the edge ei, which we denote by dσ(ei).

Note that in this procedure, we may update the cost of an edge e multiple times. As the
final accumulated cost associated with the edge e in σ, we take the value of dσ(e) after the
last update.

dσ(ei) =



w(ei) if ei = esink

w(ei) + dσ(nextσ(ei)) if l(v) = XOR
w(ei) +

∑
e′∈v•

dσ(e′) if l(v) = AND and |v•| > 1

w(ei) + dσ(e′) if l(v) = AND and {e′} = v•

and sel(ei) = 1

w(ei) if l(v) = AND and |v•| = 1

and sel(ei) = 0

(3.3)

Since esource is always the first edge in the sequence of edges that get marked in a fair
execution that starts in the initial marking ms, it follows that e0 = esource and dσ(e0) =
dσ(esource). Since the computation of dσ(e) follows the semantics of workflow graphs, it
can be proven by induction on i that dσ(esource) = c(σ), the duration of the execution σ.

Let e be an edge of Γ and v the node of Γ such that e ∈ •v. We define an edge enabling
marking me, as a reachable marking for which me(e) = 1, v is enabled in me and no other
node is enabled in me.

Due to the Lemma 2.2 presented in Section 2.2.1, and due to the equivalence between
workflow graphs and free choice Petri nets proven in [32], it holds that for a sound workflow
graph, the edge enabling marking is unique.

We define d∗(e), the minimum cost downstream from e, by considering executions that
start in me. Note that ms is the edge enabling marking for esource.

d∗(e) = min{dσ(e) | σ is a fair execution that starts in me} (3.4)

Note that since me is a reachable marking, it holds that me
∗−→ mf . Recall that by mf

we denote the final marking.
Since dσ(esource) represents the cost of a fair execution σ, d∗(esource) represents the

duration of the minimum duration execution.



34 3. Workflow Graphs Executed by a Single Resource

3.1.1.2 Algorithm for computing the minimum duration of an execution

The algorithm that computes the minimum duration of an execution of Γ is Algorithm 3.1,
which contains a call to the subroutine represented by Algorithm 3.2. The outer loop of
the algorithm is similar to the Bellman-Ford algorithm [120] for sequential graphs, but in
order to deal with concurrency we need a different relaxation procedure. In addition, the
correctness proofs are more complex due to the characteristics of sound workflow graphs.

Algorithm 3.1 Minimum duration

1: function WFGMIN(Γ = {V,E, c, w})
2: for e ∈ E \ {esink} do
3: δ[e]←∞
4: end for
5: δ[esink ]← w(esink )

6: for i = 1 · · · |V | do
7: for all e ∈ E do
8: Let u, v be nodes of Γ s.t. e = c(u, v)

9: RELAX(e,v)
10: end for
11: end for
12: end function



3.1. Workflow graphs with nondeterministic choice 35

Algorithm 3.2 Relaxation of an edge e ∈ •v
1: function RELAX(e,v)
2: if l(v) = XOR, |v•| = 1, and {e′} = v• then
3: if δ[e] > w(e) + δ[e′] then
4: δ[e]← w(e) + δ[e′]

5: end if
6: end if
7: if l(v) = XOR, |v•| > 1, and e′ ∈ v• then
8: if δ[e] > w(e) + mine′(δ[e

′]) then
9: δ[e]← w(e) + mine′(δ[e

′]))

10: end if
11: end if
12: if l(v) = AND, |v•| = 1, and {e′} = v• then
13: if δ[e] > w(e) + δ[e′] then
14: if sel(e) = 1 then
15: δ[e]← w(e) + δ[e′]

16: else
17: δ[e]← w(e)

18: end if
19: end if
20: end if
21: if l(v)= AND and |v•| > 1 then
22: if δ[e] > w(e) +

∑
e′∈v•

δ[e′] then

23: δ[e]← w(e) +
∑

e′∈v•
δ[e′]

24: end if
25: end if
26: end function

For an example execution of the algorithm, consider the workflow graph in Fig. 3.3, and
let sel(e5) = 1 and sel(e6) = 0.

Figure 3.3: A cyclic workflow graph with edge weights

In Table 3.2, we have the initial values for δ[e] for each edge e of the workflow graph.



36 3. Workflow Graphs Executed by a Single Resource

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9
Initial ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 3.2: Initial values for δ[e].

After one iteration of the algorithm, considering the order of edge relaxations matches
the order of the edges in Table 3.3, we have the values for δ[e] shown in Table 3.3.

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the first iteration 0 ∞ 3 ∞ ∞ ∞ ∞ ∞ 4 2

Table 3.3: Values for δ[e] after one iteration of the algorithm.

After the second iteration, the values of δ[e] are given in Table 3.4.

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the second iteration 0 ∞ 3 6 3 7 5 12 4 2

Table 3.4: Values for δ[e] after two iterations of the algorithm.

After the third iteration, the values of δ[e] are given in Table 3.5.

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the third iteration 0 9 3 6 3 7 5 12 4 2

Table 3.5: Values for δ[e] after three iterations of the algorithm.

Notice that after this iteration all δ[e] have their final values (they won’t change in
potential subsequent iterations of the algorithm). Therefore, we have the minimum duration
of an execution – the value associated to e0, 12.

3.1.1.3 Correctness proof of Algorithm 3.1

In the following, we will show the correctness of the algorithm.

Lemma 3.1. Let e be an edge and v a node such that e ∈ •v. We always have δ[e] ≥ d∗(e).

Proof. We prove the lemma by induction on k, the number of calls of Relax(e, v).
Base case: k = 0 : δ[esink] = w(esink), therefore clearly, δ[esink] = d∗(esink), and

for all e ∈ E \ {esink} δ[e] =∞, and therefore δ[e] > d∗(e).
Induction step: Suppose that after the k-th call of Relax(e, v) we have δ[e] ≥ d∗(e)

for all e. At the (k + 1)-th call of Relax(e, v), only δ[e] may get updated, while all the
other δ[e′], e′ ∈ E \ {e} remain unchanged.

We will show that from the definition of d∗(e) and from the induction hypothesis, it
follows that δ[e] ≥ d∗(e), for each of the relaxation cases. We will present the reasoning
for one of the relaxation cases, as the justification for the remaining ones is similar.

Let v be a node, with l(v) = XOR and |v•| > 1. Let •v = {e} and v• = {e1, e2, · · · , em}.
Before the (k + 1)-th relaxation step, it holds that δ[ei] ≥ d∗(ei) ∀i, 1 ≤ i ≤ m. After the



3.1. Workflow graphs with nondeterministic choice 37

(k + 1)-th relaxation step, δ[e] gets updated, such that δ[e] becomes w(e) + min{δ[ei] |
ei ∈ v•}, as presented in Algorithm 3.2. Therefore, due to the induction hypothesis,
δ[e] ≥ w(e) +min{d∗(ei) | ei ∈ v•} (i).

Using the definition of d∗(e) and of dσ(e), we can prove that d∗(e) = w(e)+min{d∗(ei) |
ei ∈ v• } (ii). In the following, we provide the proof for (ii):

By definition, for e ∈ Γ, it holds that d∗(e) = min{dσ(e) | σ is a fair execution that
starts in me }.

Also, by definition, recall that for a fair execution σ and for an edge e ∈ Γ, dσ(e) =
w(e) + dσ(nextσ(e)) such that this is the last update.

d∗(e) = min{w(e)+dσ(nextσ(e)) | σ is a fair execution that starts inme}. Therefore,
since w(e) is constant:

d∗(e) = w(e) + min{dσ(nextσ(e)) | σ is a fair execution that starts in me}
Let mei be the marking obtained when executing v and choosing ei ∈ v• from the

marking me. Note that since me is an edge enabling marking, mei is also an edge enabling
marking. This can be easily verified by analyzing the different possibilities for l(v′) where
ei ∈ •v′.

Since nextσ(e) is any ei, ei ∈ v•, we can rewrite d∗(e):
d∗(e) = w(e) + min{dσ(ei) | σ is a fair execution that starts in mei}.
Let σi be the execution that starts inmei . For any choice of ei ∈ v•, σ(e) = 〈ei, σi(ei)〉.

We obtain:
d∗(e) = w(e) + min{dσi(ei) | σi is a fair execution that starts in mei}. Therefore,

d∗(e) = w(e) +min{d∗(ei) | ei ∈ v• }.
From (i) and (ii) it follows that δ[e] ≥ d∗(e).

Note that at each relaxation step, we can only decrease the value of δ[e]. Once δ[e] =
d∗(e), it doesn’t change (it can not decrease further) as otherwise it would contradict the
claim that δ[e] ≥ d∗(e).

Lemma 3.2. Let e be an edge. Let σ be a fair execution such that dσ(e) = d∗(e). Let
S = 〈ei−1, · · · , esink 〉 be the sequence of edges that get marked after e gets marked for
the last time in σ. Each sequence of calls of Relax(e, v) that has the property that edges
esink , · · · , ei−1, e have been relaxed in this order, after the sequence of calls toRelax(e, v)
we have δ[e] = d∗(e).

Proof. We prove the lemma by induction on k = |S|.
Base case: k=0: δ[esink] = w(esink), therefore δ[esink] = d∗(esink).
Induction step: Suppose that after having relaxed esink, · · · , ek−2, ek−1 in order, we have
that δ[ek−1] = d∗(ek−1). We will show that when we relax the edge ek, given the definition
of d∗(e) and the induction hypothesis, it follows that δ[ek] = d∗(ek). We present the
reasoning for one of the cases, as the justification for the remaining ones is similar.

Let v be a node, with l(v) = XOR and |v•| > 1. Let •v = {ek} and 〈ek−1, · · · , esink〉
are the edges that get marked after e gets marked, in σ. Assume without loss of generality
that ek−1 ∈ v•.

From the induction hypothesis, we have δ[ek−1] = d∗(ek−1). Since ek−1 is the edge
that gets marked after ek gets marked in σ for which dσ(ek) = d∗(ek), we have that
d∗(ek) = w(ek) + d∗(ek−1) (recall claim (ii) from the proof of Lemma 3.1).



38 3. Workflow Graphs Executed by a Single Resource

We have demonstrated in Lemma 3.1 that after each call of Relax(e, v) it holds that
δ[e] ≥ d∗(e), therefore for our case δ[ek] ≥ w(ek) + d∗(ek−1) (i).

Also, after the relaxation of ek we have that δ[ek] = w(ek) + min{δ[e′] | e′ ∈ v•}.
Since ek−1 ∈ v• it follows that δ[ek] ≤ w(ek) + δ[ek−1] and since δ[ek−1] = d∗(ek−1), it
follows δ[ek] ≤ w(ek) + d∗(ek−1). (ii)

From (i) and (ii) it follows that after relaxing ek, we have δ(ek) = w(ek) + d∗(ek−1),
and therefore δ[ek] = d∗(ek).

Definition 26 (Loop-free execution). A fair execution σ of Γ, is a loop-free execution if no
node is executed more than once in σ, and therefore no edge is marked more than once in
σ.

Lemma 3.3. Some fair execution of Γ with minimum duration is loop-free.

Proof. Let σ∗ be a fair execution of Γ of minimum cost. Suppose σ∗ is not loop-free. Then,
we have σ∗ = 〈m0, T0, · · · ,mi, Ti, · · · ,mj , Tj , · · · ,mf 〉 such that Ti = (E1, v, E2) and
Tj = (E′1, v, E

′
2) (there exists a node v such that a transition in Trans(v) is executed more

than once). Let τσ∗ be the transition sequence corresponding to σ∗.
We construct σ′ such that τσ′ is a permutation of τσ∗ . We will show that in σ′, a marking

is repeated which contradicts the claim that σ′ (implicitly σ∗) is an execution of minimum
cost of Γ.

We divide σ∗ into three parts:
σ∗ = 〈m0, · · · ,mi〉︸ ︷︷ ︸

α

〈Ti〉 〈mi+1, · · · ,mf 〉︸ ︷︷ ︸
β

The constructed sequence σ′ starts with α, followed by a permutation of the transitions
contained in τTiβ .

Let β′ = 〈m′0, · · · ,mk〉 be a maximal sequence such that:

1. m′0 = mi

2.
→
β′≤

→
β

Claim: T is enabled in mk implies T ∈ Trans(v).

We prove indirectly that such a β′ exists. Let A =
→
β −

→
β′ −[Ti]. Suppose ∃ T ′, T ′ ∈

Trans(v′) enabled in mk. We distinguish two cases:
Case 1: ∀ T ′′ ∈ A : T ′′ /∈ Trans(v′). In this case if we fire all the transitions in A

we obtain mf (due to the marking equation lemma). But mf enables T ′, because of the
assumption of case 1, therefore we reach a contradiction, namely that mf is not the final
marking.

Case 2: ∃ T ′′ ∈ A such that T ′′ ∈ Trans(v′). Then, T ′′ is enabled in mk and therefore
β′ is not maximal and we reach a contradiction.

At this point, we have an intermediary prefix for σ′, let’s call it σtemp, σtemp = α β′ Ti.
σtemp does not include all the transitions in σ∗, more precisely we still have to add the

transitions in
→
β −

→
β′.

Note that Tj ∈
→
β −

→
β′ −[Ti]. Let π denote the transition sequence obtained from τβ

after removing from it the transitions in τβ′ and Ti.



3.1. Workflow graphs with nondeterministic choice 39

Since m0
τα−→ mi

τβ′−−→ mk
Ti−→ m′k

π−→ mf , it means ∃ml ∈ π such that Tj is enabled
in ml (because Tj , Ti ∈ Trans(v) and they were both blocked in β′ and Tj ∈

→
π . We

repeat the same procedure for the sequence π as we did for the original sequence and we
reach a marking mp in which the only enabled transitions belong to Trans(v) (recall that
Tj ∈ Trans(v)).

It holds that, for l(v) ∈ {XOR-split, AND-split, AND-join }, mk = mp due to Lemma
2.2, stated by the authors in [27]. Since σ′ = 〈m0, · · · ,mk, · · · ,mp, Tp,mp+1 · · · ,mf 〉
andmk = mp, one can construct a lower cost execution σ′′ = 〈m0, · · · ,mk, Tp,mp+1 · · · ,mf 〉
by removing the execution in σ′ that led to the repetition of the marking. This implies that
σ∗ can not be the execution of minimum cost and tlghus we reach a contradiction.

If l(v) =XOR-join the result follows easily by noting that the edge e where {e} = v•

is marked twice and therefore the transition T = (E1, v, E2) such that e ∈ E1 is repeated,
and thus the unique edge enabling marking of e is repeated.

Lemma 3.4. For a sound workflow graph, after running Algorithm 3.1, it holds that δ[esource ] =
d∗(esource).

Before presenting the proof we would like to make some short remarks and establish a
notation that we will use in the proof.

An equivalent way of expressing Lemma 2.2 is by referring to edge enabling markings.
For any edge e of Γ, there exists a unique edge enabling marking me.

Gor a workflow graph Γ and a loop-free execution σ of Γ, we define Γσ as the workflow
graph Γ restricted to σ such that it contains only the nodes of Γ that are executed in σ and
the edges of Γ such that σ(e) = 1. For a loop-free execution σ of Γ, it follows that Γσ is an
acyclic workflow graph.

The elements of an acyclic workflow graph are in a partial order defined by the flow of
the graph: LetG = (V,E, c) be an acyclic multi-graph. If x1, x2 are two elements in V ∪E
such that there is a path from x1 to x2, then we say that x1 precedes x2, denoted x1 � x2,
and x2 follows x1.

Now we have all the ingredients necessary for proving Lemma 3.4.

Proof. Lemma 3.3 states that some fair execution of Γ, with minimum duration, is loop-free
(i). Recall that for a given fair execution σ, dσ(esource) represents the duration of execution
of σ (ii). From (i) and (ii) it follows that some execution that minimizes dσ(esource) is
loop-free (iii).

Note that ms is the edge enabling marking for esource .
Using (iii) and the definition for d∗(e) instantiated to esource , we obtain:
d∗(esource) = min{dσ(esource) | σ is a fair execution that starts inms }. It follows that

some σ∗ for which dσ∗(esource) = d∗(esource), is a loop-free execution.
Since σ∗ is loop-free, it means that at most |V | nodes are executed in σ∗. In each

complete relaxation step (one iteration of the loop in line 6 in Algorithm 3.1), we relax all
the edges. Therefore, at the |V |-th iteration we have relaxed all the edges, in decreasing
order with respect to the partial order on the edges of Γσ∗ . It means that at the |V |-th
iteration, we will have relaxed all the edges that get marked after e gets marked in σ∗.
Therefore, from Lemma 3.2, δ[e] = d∗(e).



40 3. Workflow Graphs Executed by a Single Resource

Therefore, we computed the duration of the minimum duration execution of the work-
flow graph, which is d∗(esource).

For Algorithm 3.1, the initialization of the edge costs takes O(|V |) time and each of the
|V | iterations over the edges of the workflow graph is performed in O(|E|) time. The cost
update is performed in constant time. Hence, we have proven the following:

Theorem 3.1. The minimum duration of a fair execution of a sound workflow graph can be
computed in time O(|V ||E|).

3.1.2 The maximum duration of a workflow graph
To define the maximum duration of a workflow graph, we need to constrain the number
of times a loop can be traversed. We propose a general model of loop constraints for
cyclic workflow graph in this section. For this general model, we show that it is NP
hard to compute whether all admissible executions of a sequential workflow graph meet
a given deadline by using the known result that computing the longest simple path in a
sequential graph is NP-hard. Note that a simple path is a path with no repeating vertices.

Figure 3.4: A work-
flow graph with un-
structured loops

For graphs with structured loops as produced by the structured con-
structs (while, repeat loops), loop bounds represent the maximum it-
eration count of the loop body relative to the header. In a workflow
graph however, there may be unstructured loops - loops with multiple
entry points.

For unstructured loops, the specification of loop bounds is more
complex [91] due to the multiple loop entries. An example of a graph
containing unstructured loops is given in Fig. 3.4. As a generalization
of loop bounds in regular graphs, we now define a system model that rules out infinite
executions and we then show that computing the maximum duration execution for workflow
graphs with cycles is NP-hard:

Assume a sound workflow graph Γ is given. We furthermore assume that the following
two specifications are given with Γ:

1. A partition V = V0, V1, · · · , Vk of the nodes V of Γ, where each Vi is called a
termination layer such that V0 contains only the sink, and each node in layer Vi is at
distance i from the sink.

2. For each XOR-split v a mapping φ : v• → N ∪ {∞}, called a decision outcome re-
striction, which denotes the maximal number of times an outcome edge (i.e., outgoing
edge of an XOR-split, i.e., partial loop condition) may be traversed in an admissible
execution such that

(i) each XOR-split v has an unrestricted outcome edge, such that φ(e) = ∞, and (ii) each
unrestricted edge leads into a lower termination layer, i.e., φ(e) =∞ where c(e) = (v, w)
implies v ∈ Vi, w ∈ Vj where i > j.

A workflow graph equipped with V and φ is then called a workflow graph with loop
constraints.



3.1. Workflow graphs with nondeterministic choice 41

Figure 3.5: Example of a workflow graph with loop constraints.

We then call an execution σ of Γ admissible if for each outcome edge o of Γ, σ(o) ≤
φ(o) , i.e., if the specified outcome restrictions are obeyed by σ. An example of such
an workflow graph is given in Fig. 3.5 with termination layers V0, V1, · · · , V5, and where
φ(e3) = 1, φ(e4) =∞, φ(e5) = 1, φ(e6) =∞.

An example of an admissible execution σ of the workflow graph in Fig. 3.5, which we
will give as the sequence of edges that get marked, is σ = 〈e0, e1, e2, e4, e3, e4, e6, e8, e7, e9〉.
In contrast, σ = 〈e0, e1, e2, e4, e3, e4, e3, e4, e6, e8, e7, e9〉 is not an admissible execution
as σ(e3) > φ(e3).

Proposition 3.1. Each admissible execution terminates.

Proof. First note that in any infinite exectuion there exists an XOR-split that is executed
infinitely often. We will provide a proof of this claim. Assume that we have an infinite
execution σ and from some point there exists no more XOR-split being executed. Let
σ = σ1, σ2 and let σ2 be the part of σ in which no XOR-split is executed. Since σ is
infinite then σ2 is infinite. There exists a node that is executed infinitely often in σ2 which
is not an XOR-split. We take such a node from the lowest termination layer, and let it be
v ∈ Vi. Note that from the construction of the layers, from any node in a layer there exists
an edge from this node to a node in the next lower termination layer. Therefore there exists
e = (v, w) where w ∈ Vi−1. Note that due to soundness and from the fact that v is not an
XOR-split, it implies that w also is executed infinitely often. But we had chosen v to be the
node that is executed infinitely and which is in the lowest termination layer, therefore we
have a contradiction.

Tot each admissible execution terminates we make use of the claim we have just proved.
We take the XOR-split that is executed infinitely often and which is in the lowest termina-
tion layer. Let it be v ∈ Vx. If this node is executed infinitely often, it means there exists
an outcome edge o ∈ v• which is taken infinitely often. This edge o, must be unrerstricted,
i.e. φ(o) =∞ and from the definition of φ we have that o must be an edge who connects v
to a node w ∈ Vi−1. Then this node w also is executed infinitely often. This node w must
also be an XOR-split and we reach a contradiction that v is not in the lowest termination
layer. Note that if w is not an XOR-split, then this node which also is executed infinitely
often and which has an edge from w to z ∈ Vi−2 will also cause z to be executed infinitely



42 3. Workflow Graphs Executed by a Single Resource

often, and so on, until we get a token in the lowest termination layer (which contains the
sink) – which means the exectuion is not infinite.

Proposition 3.2. The restrictions given by φ do not create an artificial deadlock, i.e., a par-
tial execution that cannot be extended into an admissible execution because of an exhausted
outcome restriction. Hence, an admissible execution always exists.

Proof. Any execution in Γ which has the restrictions given by φ is also an execution in
unrestricted Γ. Assume there exists a partial execution σ which can not be extended into
an admissible execution. It means that there exists a node v which can not be executed.
But since σ is also an execution in unrestricted Γ, and in Γ any partial execution can be
extended, it means that the node that can not be executed in σ is an XOR-split which can
not be executed due to the outcome restriction. But any XOR-split can be executed because
it has an unrestricted outcome edge. Therefore we have reached a contradiction, and hence
any partial execution can be extended into an admissible execution.

Any termination order that satisfies these two natural requirements may be specified
using the node partition and φ. We now present a hardness result for sequential workflow
graphs with cycles:

Theorem 3.2. The problem to determine whether all admissible executions of a sequential
workflow graph with loop constraints meet a given deadline is NP-hard.

Proof. We reduce from the problem of computing the longest simple path between any
nodes in a directed graph. This, in turn, is a reduction from the Hamiltonian path problem.
Given a weighted directed graph G, we construct a sequential workflow graph Γ with loop
constraints as follows, cf. Fig. 3.6.

Figure 3.6: Constructed workflow graph for proof of Thm. 3.2

First we expand each node of G that is a split as well as a join (e.g., the two interior
nodes of G in Fig. 3.6) into a separate join and a separate split with a single edge from
the join to the split. These added edges are weighted with duration 0. Note that we do not
represent these edge weights in Fig. 3.6 for simplicity. The obtained graph is called G′, cf.
subgraph of the right hand side graph in Fig. 3.6 encircled with label V 2. Note that each
path in G′ corresponds to a path in G of the same duration and vice versa.

We add a fresh source and a fresh sink and we add an edge from the source to each
node in G′ and an edge from each node in G′ to the sink, which all have duration 0 and are
unrestricted (φ(e) =∞). The termination layers are specified as in Fig. 3.6, all edges in G′



3.1. Workflow graphs with nondeterministic choice 43

are restricted with 1, i.e., must not be traversed more than once. It is easy to check that all
conditions of the system model above are met.

Suppose the maximum duration admissible execution in Γ can be computed in poly-
nomial time. That execution is a path from the source to the sink in Γ and due to the
construction of Γ, it contains the longest duration path π′ of G′ between any nodes that
contains each edge of G′ at most once. This path π′ of G′ corresponds to a path π in G
of the same duration that contains each node at most once and π must be the longest path
of G with that property. Any longer path of G that visits each node at most once would
correspond to path inG′ of the same duration that visits every edge at most once. Hence we
would be able to solve the longest simple path problem in polynomial time which is known
to be NP-complete.

Thm. 3.2 settles Cells B.1 and E.1 of Table 3.1.

3.1.3 Regular and acyclic Workflow Graphs

For a regular workflow graph, with a structured cycle, i.e., a while or repeat loop, or more
general, of the form X LOOP Y , cf. Fig. 2.4, in order to compute the maximum duration,
one needs the number of iterations for each loop. If we assume that the backedge of each
loop (i.e., edge “x” in Fig. 2.4) of the regular graph is annotated with a positive integer
k that represents the maximum number of times the backedge can be traversed, then the
maximum duration of X LOOP Y is (k + 1) · dX + k · dY where dX denotes the maxi-
mum duration of the loop body X , and dY represents the duration associated to re-entering
the loop. For computing the minimum duration we take k = 0. We still obtain the mini-
mum/maximum duration of such an annotated regular workflow graph in linear time (Cell
C.1, C.2 of Table 3.1).

If the graph is not regular but sequential, the minimum duration execution can be com-
puted using Dijkstra’s algorithm (Cell B.2 of Table 3.1).

If the acyclic graph is not regular, but sequential, there is still a well-known dynamic
programming solution to finding the longest path between two nodes, which runs in time
O(|V | + |E|) (Cell A.1 of Table 3.1). Analogously, the same algorithm can be applied to
compute the shortest simple path by taking the minimum (Cell A.2 of Table 3.1).



44 3. Workflow Graphs Executed by a Single Resource

Algorithm 3.3 Minimum duration, acyclic

1: function ACYCLICWFGMIN(Γ = {V,E, c, w})
2: for e ∈ E \ {esink} do
3: δ[e]←∞
4: end for
5: δ[esink ]← w(esink )

6: TOPOLOGICALSORT(Γ)
7: while V 6= ∅ do
8: Select v ∈ V s.t. v is maximal w.r.t the topological sort
9: V ← V \ {v}

10: for all e ∈ •v do
11: RELAX(e,v)
12: end for
13: end while
14: end function

For acyclic workflow graphs, we can use the algorithm for the cyclic case but without
the need to perform |V | iterations. Instead we exploit the fact that the elements of an acyclic
workflow graph are in a partial order defined by the flow of the graph. Therefore, in order
to make sure that the edges are relaxed respecting the partial order, first, the graph is sorted
topologically in time O(|V | + |E|). Secondly, the edges are relaxed in descending order
with respect to the topological sorting in time O(|E|). The algorithm that formalizes this
idea is Algorithm 3.3.

Theorem 3.3. The minimum duration of a fair execution of a sound acyclic workflow graph
can be computed in linear time O(|V |+ |E|).

Note that, in the acyclic case, for computing the maximum duration execution, one only
needs to select the maximum instead of the minimum in the Relax (e, v) procedure when
l(v) = XOR and |v•| > 1.

3.2 Workflow graphs with probabilistic choice
If not all executions of a workflow graph meet the deadline, we could ask whether at least a
large portion of the executions does. We approach this question by assuming that decisions
are resolved through a coin flip, i.e., the choices are probabilistic, see the definition in
Chapter 2. Although some executions may not terminate, their probability is zero. We can
then take the duration of an execution as a random variable and ask whether the probability
of an execution terminating before the deadline exceeds a given threshold. We address
this question in Sect. 3.2.1 and contrast the obtained results with results on computing the
expected duration in Sect. 3.2.2

3.2.1 Probability of deadline transgression
We will show that computing whether the probability of an execution terminating before
the deadline exceeds a given threshold is NP-hard. The hardness result can be obtained
even for the simplest of graphs:



3.2. Workflow graphs with probabilistic choice 45

Figure 3.7: A chain of XOR-blocks

Theorem 3.4. Given a regular, sequential, acyclic probabilistic workflow graph, a deadline
α ∈ N and a threshold p ∈ [0, 1], computing whether P(c(σ) ≤ α) ≥ p is NP-hard.

Proof. The proof consists of a reduction from the subset sum problem, which is, given a
set D = {d1, · · · , dn} of integers and an integer α, to determine whether any non-empty
subset sums up to exactly α. This problem is known to be NP-hard [139]. Given these
parameters, we consider the (regular, acyclic, sequential) probabilistic workflow graph in
Fig. 3.7, where each decision outcome has probability 0.5. Suppose we can answer in
polynomial time whether P(c(σ) ≤ α) ≤ p. We can then also compute P(c(σ) ≤ α) in
polynomial time. Note that for the class of graphs of Fig. 3.7, P(c(σ) ≤ α) = k

2n , for
some k where 0 < k < 2n and n is the number of XOR gateways. One way to compute
P(c(σ) ≤ α) is to run binary search with queries for P(c(σ) ≤ α) ≤ p with varying p.
Binary search takes log(2n) = n operations.

Because we now know P(c(σ) ≤ α), we can also answer in polynomial time if there
exists an execution σ such that c(σ) = α: We have P(c(σ) ≤ α − 1) 6= P(c(σ) ≤ α), if
and only if there exists σ such that c(σ) = α. This in turn is the case exactly when there is
a subset of {d1, d2, . . . dn} which sums to α.

The subset sum problem can be solved in pseudo-polynomial time, i.e., in polynomial
time if numbers are represented in unary form. One way to represent the durations in unary
form in a workflow graph is to assume that each edge needs one time unit and represent a
duration of k time units by a sequence of k edges. For such a model, it is known for the case
of sequential graphs, i.e., for Markov chains, that the probability of deadline transgression
can be computed in polynomial time, e.g., by using the model checking algorithm of pCTL
[107]. Therefore, the problem is said to be weakly NP-hard for sequential graphs. This
can be extended to regular graphs, because each regular AND-block with subblocks X and
Y can be treated as a sequence of X and Y under the assumption of a single resource.
Therefore, in this case, regular graphs can be reduced to sequential graphs.

3.2.2 Expected duration
In some use cases, it may be sufficient to compute the expected duration, which turns out
to be easier than the probability of transgression. The main contribution of this section is
a polynomial-time algorithm for computing the expected duration for general sound work-
flow graphs. Subsequently we discuss some subclasses which have a linear-time solution.

General sound workflow graphs. For probabilistic sequential graphs, i.e., Markov chains,
it is known that computing the expected duration can be done in polynomial time. In this
context, it is often phrased as computing the mean hitting hxy time in a Markov chain,
which is the expected time of a random walk starting at node x to reach node y. The mean



46 3. Workflow Graphs Executed by a Single Resource

Figure 3.8: Expected duration in a cyclic graph

hitting times are the minimal non-negative solution to a set of n linear equations, as in [45],
of which the computational cost is O(n3), cf. Cell B.4 of Table 3.1.

We can use a similar approach by identifying a suitable set of equations. Due to the lin-
earity of the expectation, we can compute the expected duration of an execution as follows:

E(c) = E(
∑
e∈E

w(e) ·Xe) =
∑
e∈E

w(e) · E(Xe) (3.5)

where the random variable Xe(σ) is defined as the number of times an execution σ
produces a token on e, defined in equation 2, which can be any non-negative integer in a
cyclic workflow graph. To compute E(Xe), we can define a set of equations. For each
AND-gateway v, we have E(Xe) = E(Xe′) for each e, e′ ∈ •v ∪ v•. For each XOR-
gateway v and each o ∈ v•, we have

E(Xo) = µ(o) ·
∑
e∈•v

E(Xe) (3.6)

In addition, we know E(Xe0) = 1 for the source edge e0. We can now solve this system of
linear equations in time O(|E|3) and we use Eq. (3.5) to compute the final result.

To sum up, we obtained the following result for Cell E.4 of Table 1:

Theorem 3.5. The expected duration of a sound, probabilistic workflow graph can be com-
puted in time O(|E|3).

As an example, we consider the cyclic workflow graph in Fig. 3.8.
For the example from Fig. 3.8, we obtain the following set of linear equations, where a

variable e stands for E(Xe):

e0 = e1 = e2 = 1 e5 = e3 + e4 e9 = e8 e10 = 0.4 · e11
e4 = 0.2 · e2 e6 = e7 = e10 e11 = e9 = e8

e3 = 0.8 · e2 e9 = e5 + e7 e12 = 0.6 · e11

For this example, assuming for simplicity, that all edges have duration 1, we obtain an
expected duration of 12.95.



3.3. Conclusion 47

Regular graphs with cycles. For regular workflow graphs, the expected duration can be
computed in linear time (Cell C.4 of Table 3.1) recursively, by exploiting the linearity of
the expectation, as follows:

• Sequential and concurrent composition: The expected duration of (X ; Y ) and
X AND Y is the sum of the expected durations of X and Y .

• Alternative composition: The expected duration of X XOR Y is pX · dX + pY · dY ,
where pX (pY = 1− pX ) is the probability of branching into subgraph X (Y resp.)
and dX is the expected duration of X .

• Loops: The expected duration of X LOOP Y , where 1 − p is the probability of
re-entering the loop and p is the probability of exiting, can be computed by solving
the system of two linear equations, which yields the following closed formula:

∞∑
k=0

p(1− p)k((k + 1)dX + kdY )

Sequential workflow graphs. It is known for acyclic sequential graphs that the expected
duration can be computed in linear time [50]. We approach the problem for acyclic sound
workflow graphs in a similar way. We compute the expected number of times each edge
is taken iteratively which is possible by processing the edges in the partial order defined
by the flow of the graph. Having computed the expected frequencies for each edge of the
graph, the expected duration is just the inner product of the expected frequencies and the
durations of the edges. This settles Cell D.4 of Table 3.1.

3.3 Conclusion
Accurate timing information of a processes model at design time can be useful in assessing
the exisiting processes and in generating new alternative ones that fulfil the timing con-
straints [30].

We presented new results on the deadline analysis of workflow graphs. In particular,
as a main contribution, we presented an algorithm that computes the minimum duration
execution of a sound workflow graph in polynomial time.

We have shown that where efficient algorithms for deadline analysis of sequential pro-
grams exist, we were able to define efficient algorithms for the corresponding workflow
graph classes executed by a single resource exploiting the linear-algebraic properties of
workflow graphs. In the next chapter we will address the case of workflow graphs executed
by more than one resource.



48 3. Workflow Graphs Executed by a Single Resource



Chapter 4

Workflow Graphs executed by
Unbounded Resources

4.1 Introduction

In this chapter, we study whether the executions of a time-annotated sound workflow graph
meet a given deadline when an unbounded number of resources (i.e., executing agents) is
available. We assume the resources are non-constraining (e.g., we abstract away from re-
sources’ schedules, working hours, and such). We present polynomial-time algorithms and
NP-hardness results for different cases. In particular, we show that it can be decided in
polynomial time whether some executions of a sound workflow graph meet the deadline.
For acyclic sound workflow graphs, it can be decided in linear time whether some or all exe-
cutions meet the deadline. Furthermore, we show that it is NP-hard to compute the expected
duration of a sound workflow graph for unbounded resources, which is contrasting the ear-
lier result that the expected duration of a workflow graph executed by a single resource can
be computed in cubic time. We also propose an algorithm for computing the maximum
concurrency of a workflow graph. Knowing the maximum degree of concurrency can serve
as an estimation of the number of resources needed for executing a workflow graph such
that at any time, any enabled task is executed by a different resource.

As in Chapter 3, we analyze whether the executions of a sound workflow graph meet
a given deadline, where tasks, or, equivalently, edges are annotated with execution times.
We are not aware of any similar work for the model class we investigate. In the previous
chapter we considered the case where the workflow graph is executed by a single resource
(i.e., executing agent). In this chapter, we provide results for the case where the workflow
graph is executed by an unbounded number of resources. We also discuss the case of a fixed
number n > 1 of resources in Section 4.5.

Table 4.1 shows the results for deadline analysis of sound workflow graphs with un-
bounded resources, where our new contributions in this chapter are written in bold.

First, we ask whether all executions of a workflow graph finish before a given deadline.
This is a question that arises when the choices made in the process at runtime are not under
our control. This corresponds to Column 1 in Table 4.1. For the general case (Cell A.1),
loops in the graph are constrained by a termination order. The complexity result for this

49



50 4. Workflow Graphs executed by Unbounded Resources

1. All executions 2. Some execu-
tion

3. Probability
of transgres-
sion

4. Ex-
pected
duration

5. Min. nr. re-
sources

A. Sound
WFG

NP-hard O(|V ||E|) NP-hard NP-hard open*

B. Acyclic
Sound WFG

O(|V | + |E|) O(|V | + |E|) NP-hard NP-hard open*

C. Regular
WFG

O(|V |+ |E|) O(|V |+ |E|) NP-hard NP-hard O(|V |+ |E|)

Table 4.1: Overview of results; new contributions in bold, * we give a heuristic for this in Sect. 5

case follows directly from Theorem 2 in the previous chapter, Sect. 3.1.2. For acyclic
workflow graphs, this question can be answered in linear time (Cell B.1) and we provide
an algorithm for this in Subsection 4.2.1. For regular graphs, ( as defined in Sect.2.2, see
Fig. 2.5 for an example), the solutions again consist of simple recursive algorithms that run
in linear time (Cell C.1).

Next, we assume we have control over the choices made in the process at runtime.
Therefore, we ask the question whether there exists an instantiation of the process – an
execution – that meets a given deadline. This corresponds to Column 2 in Table 4.1. In
particular, as one of our main contributions, we show that for general sound workflow
graphs, finding the minimum duration over all executions can be solved in polynomial time
(Cell A.2). When restricting to acyclic workflow graphs (Cell B.2, similarly as for Cell
B.1), the problem can be solved in linear time. As above, for regular graphs, the minimum
duration of an execution can be computed recursively in linear time (Cell C.2).

Suppose not all executions meet a given deadline but only some. We can then ask
whether the probability of a deadline transgression exceeds a given threshold - Column 3 in
Table 4.1. Results carry over from our previous results in Chapter 3 where we have proven
that computing whether the probability of an execution with a single resource terminating
before the deadline exceeds a given threshold is NP-hard (Cells A.3, B.3 and C.3).

Also in the probabilistic framework, another valuable information is the expected du-
ration of an execution of a given workflow graph. The results related to this question map
to Column 4 in Table 4.1. We show that computing the expected duration is NP-hard even
for regular graphs. This is in contrast to the execution with a single resource where, the
expected duration can be computed in cubic time for general sound workflow graphs, as
shown in Chapter 3.

Finally, we ask what is the optimal number of resources for the workflow graph where
optimal means the minimum number k of resources such that each execution achieves its
minimal execution time under k resources (Column 5 in Table 4.1). The maximum number
of tokens that can exist in the graph, Mt, is an upperbound for k. Note that if we have at
mostMt tokens in the graph, it means that at mostMt tasks can be enabled simultaneously,
and since we don’t consider task level parallelism, having more than Mt resources would
not help in reducing the execution time. We are not aware of any prior work for computing
Mt for workflow graphs. A simple algorithm to compute Mt would be to enumerate all the
reachable markings of the workflow graph and return the maximum number of tokens that
can exist in a marking. However, such algorithm runs in EXPTIME and in practice, this



4.2. Workflow graphs with nondeterministic choice 51

can be prohibitively expensive. We provide an algorithm to compute Mt, which despite not
being a polynomial time algorithm, in practice it can be fast as it runs in EXPTIME only
for some classes workflow graphs. We motivate the problem in more detail and we present
our algorithm for computing the maximum concurrency of a workflow graph in Sect. 4.4.

4.2 Workflow graphs with nondeterministic choice

In this section, we present a polynomial time algorithm that computes the minimum exe-
cution time of a workflow graph executed by an unbounded number of resources. This can
be used to determine whether some execution of a time annotated workflow graph with an
unbounded number of resources meets a given deadline.

4.2.1 The minimum duration of a workflow graph
We start by presenting several preliminary notions such as the definition of the duration of
an execution of a workflow graph executed by an unbounded number of resources.

To give the definition of the duration of an execution of a workflow graph, we make
use of the token game. We first equip each token with an integer-valued clock initialized
to zero. Then the state of the workflow graph is given by the tuple (m, c) where m is the
marking and c : E → N ∪ ∅, where c(e) = ∅ if m(e) = 0, i.e., when there is no token on
edge e. We extend the token-game semantics to clocks and we set (m, c)

T−→ (m′, c′) when
m

T−→ m′ and c′(e) = c(e) for e ∈ m′ \ T • and c′(e) = w(e) + max{ c(e′) | e′ ∈ •T} for
e ∈ T •.

In the initial marking, the state of the workflow graph is given by (ms, cs), where
cs(esource) = w(esource). Similarly, in the final marking, the state of the workflow graph
is given by (mf , cf ), where cf is determined through the sequence of transitions from the
initial state. In particular, the final state is not unique in general, as different during the
execution may lead to a different value of cf .

Definition 27 (Duration of an execution - unbounded number of resources). For a work-
flow graph executed by an unbounded number of resources, we define the duration of an
execution σ as cf (esink), where σ ends in the final marking mf .

Figure 4.1: A simple workflow graph with edge weights and a marking change.

For an example of the clock update with the marking change, consider Fig. 4.1. In
Fig. 4.1 a.), the state of the workflow graph is given by the marking m1 = {e1}, and clock



52 4. Workflow Graphs executed by Unbounded Resources

value 1 for the token on the edge in the marking. Upon the marking change, after t1 is
executed, we have a new state, as shown in Fig. 4.1 b.), given by the markingm2 = {e2, e3}
and clock values 4 and 6 respectively. We follow the same resoning for when t2 fires, and
thus the token reaching the sink has clock value 8 (max{4, 6}+ 2).

In this chapter, we will again use a notion of accumulated cost associated with an edge
in a fair execution similar to the approach in Chapter 3. We will adapt this definition for
the new setting - an unbounded number of resources are available to execute the workflow
graph and we will use it in proving the correctness of the algorithm that computes the
minimum duration of an execution of a workflow graph. As before, the cost accumulated
on the source edge represents the cost of a fair execution.

In the following, let Γ be a sound workflow graph.
To facilitate the computation of the cost accumulated on an edge in a fair execution σ,

we proceed similarly as in the previous chapter and we express the execution as the se-
quence of edges that get marked in σ and we write σ = 〈esource , · · · , e, · · · , esink 〉. Recall
that since we are interested in fair executions (and we assume soundness), the sequence of
edges is finite and ends with esink .

We similarly traverse the sequence backwards, from the last to the first edge in the
sequence and update the cost of an edge e ∈ •v at position i in the sequence – denoted by
ei– based on the cost already computed for the edges in the sequence that belong to v•.

However a difference appears in the definition of dσ(ei) - the function which we apply
at each position i in the sequence of edges that get marked in the execution, starting from
the last index, to compute the accumulated cost of an edge. Contrary to the definition of
dσ(ei)in Chapter 3, for updating the cost of an incoming edge of an AND-split we don’t take
the sum of the accumulated cost on the outgoing edges anymore but we take the maximum
of the accumulated costs on the outgoing edges. We have:

dσ(ei) =


w(ei) if ei = esink

w(ei) + dσ(nextσ(ei)) if l(v) = XOR
w(ei) + max{dσ(e′) | e′ ∈ v•} if l(v) = AND and |v•| > 1

w(ei) + dσ(e′) if l(v) = AND and {e′} = v•

As the final accumulated cost associated with the edge e in σ, we take the value of
dσ(e) after the last update and using the same arguments as in Chapter 3 we have that
dσ(esource) = c(σ), the duration of the execution σ.

As an example, consider the workflow graph in Fig. 4.2. In Fig. 4.2, edges are labeled
(e.g. e8; 2) with an edge name (e8) and a duration (2). Fig. 4.3 represents the workflow
graph restricted to the elements that are contained in the fair execution with minimum du-
ration, i.e., it is a representation of the minimum duration execution. Each edge in Fig. 4.3
is labeled with the accumulated cost for reaching the sink in that execution.

For e11, the accumulated cost to reach the sink is: w(e11) to which we add the cost of
esink therefore, 6+3 = 9. Based on our update rule for AND-join nodes, the cost associated
to e9 becomes w(e9) plus the cost of e11 and we obtain 14 and the cost associated to e8
becomes w(e8) plus the cost of e11, and we get 2+9=11. For edges e5 and e1, we update
the cost by adding the edge weight to the accumulated cost on the outgoing edge of the



4.2. Workflow graphs with nondeterministic choice 53

Figure 4.2: Workflow graph with edge weights Figure 4.3: Minimum duration execution and the
accumulated costs

XOR-split, and we obtain costs 16 (11+5) for e1 and 16 (14+2) for e5. We apply the same
rule for e4 and we obtain an accumulated cost of 19 (16+3) and subsequently also for e2
and we obtain 22 (19+3). Now we can compute the cost of the execution. Note that the
AND-split we are about to process spawns two threads. The cost of the execution is decided
by the longest thread (in terms of duration). Therefore, we update the cost accumulated on
esource to be equal to w(esource) + max(16, 22) which equals 24 and this equals the cost
of the execution.

The algorithm for computing the minimum duration of a fair execution of a workflow
graph with an unbounded number of resources, Algorithm 4.1, is given below and it re-
sembles Algorithm 3.1. Note however that the relaxation is not the same. It works on a
weighted workflow graph, and for each node v, and each edge e ∈ •v, it updates a value
δ[e] that represents the currently known minimum cost to reach the sink from e based on
relaxation rules specific to each node type (see Algorithm 4.2). All edge costs are updated
at most |V | times for a cyclic workflow graph (see Algorithm 4.1) and only once for an
acyclic workflow graph (see Algorithm 4.3). Upon termination of our algorithm, the value
associated to esource , δ[esource ], represents the duration of the minimum duration execution.

Algorithm 4.1 Minimum duration

1: function WFGMIN( Γ = {V,E, c, w})
2: for e ∈ E \ {esink} do
3: δ[e]←∞
4: end for
5: δ[esink ]← w(esink )

6: for i = 1 · · · |V | do
7: for all e ∈ E do
8: Let u, v be nodes of Γ s.t. e = c(u, v)

9: RELAX(e,v)
10: end for
11: end for
12: end function



54 4. Workflow Graphs executed by Unbounded Resources

Algorithm 4.2 Relaxation of an edge e ∈ •v
1: function RELAX(e,v)
2: if (l(v) = XOR or l(v) = AND) and {e′} = v• then
3: if δ[e] > w(e) + δ[e′] then
4: δ[e]← w(e) + δ[e′]

5: end if
6: end if
7: if l(v) = XOR and |v•| > 1 then
8: if δ[e] > w(e) + min{δ[e′] | e′ ∈ v•} then
9: δ[e]← w(e) + min{δ[e′] | e′ ∈ v•}

10: end if
11: end if
12: if l(v)= AND and |v•| > 1 then
13: if δ[e] > w(e) + max{δ[e′] | e′ ∈ v•} then
14: δ[e]← w(e) + max{δ[e′] | e′ ∈ v•}
15: end if
16: end if
17: end function

For an example execution of the algorithm, consider the workflow graph in Fig. 4.4.

Figure 4.4: A cyclic workflow graph with edge weights

In Table 4.2, we have the initial values for δ[e] for each edge e of the workflow graph.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9
Initial ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 4.2: Initial values for δ[e].

After one iteration of the algorithm, considering the order of edge relaxations matches
the order of the edges in Table 4.3, we have the values for δ[e] shown in Table 4.3.

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the first iteration 0 ∞ 3 ∞ ∞ ∞ ∞ ∞ 4 5

Table 4.3: Values for δ[e] after one iteration of the algorithm.

After the second iteration, the values of δ[e] are given in Table 4.4.



4.2. Workflow graphs with nondeterministic choice 55

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the second iteration 0 ∞ 3 6 6 10 5 10 4 5

Table 4.4: Values for δ[e] after two iterations of the algorithm.

After the third iteration, the values of δ[e] are given in Table 4.5.

e9 e8 e7 e3 e4 e2 e1 e0 e5 e6
After the third iteration 0 7 3 6 6 10 5 10 4 5

Table 4.5: Values for δ[e] after three iterations of the algorithm.

Notice that after this iteration all δ[e] have their final values (they won’t change in
potential subsequent iterations of the algorithm). Therefore, we have the minimum duration
of an execution – the value associated to e0, 10.

4.2.1.1 Correctness proof of Algorithm 4.1

In the following, we will show the correctness of the algorithm. For the correctness proof,
we will again make use of the notion of the minimum cost that can be accumulated on an
edge e: d∗(e). Recall the definition of d∗(e) which we gave in Eq.( 3.1.1.1):

d∗(e) = min{dσ(e) | σ is a fair execution that starts in me} (4.1)

The notion of minimum cost accumulated on an edge e is necessary for the proofs, as
we will demonstrate that the algorithm computes the minimum cost accumulated on the
source edge.

Some key ideas behind the proof, that we will present in detail next are:

1. While relaxations always decrease the accumulated cost of an edge e, at any point
of executing Algorithm 4.1, the accumulated cost on an edge e is always an upper
bound for d∗(e) – we will refer to this as the upper bound property, and,

2. There exists a property of a sequence of calls of Relax(e, v) which guarantees that
after performing it, δ[e] attains d∗(e), and we will show that our algorithm satisfies
this property.

Recall that since dσ(esource) represents the cost of a fair execution σ, d∗(esource) rep-
resents the duration of the minimum duration execution.

Next we will provide a set of lemmas and proofs, similarly to how we proceeded in
Chapter 3, that will contribute to the proof of the correctness of Algorithm 4.1. The lem-
mas that we will present next are similar to the lemmas we stated for proving Algorithm
3.1 but note that their interpretation and proofs are sometimes different as now we have
a underlying different model – a workflow graph executed by an unbounded number of
resources.

We will start by stating an important property of executions with minimum duration
which holds for both workflow graphs executed by a single resource and workflow gaphs
executed by an unbounded number of resources.



56 4. Workflow Graphs executed by Unbounded Resources

Lemma 4.1. Some fair execution of Γ with minimum duration is loop-free.

We had this lemma also in Chapter 3 when we considered workflow graphs executed
by a single resource and accordingly, we had a different definition of the duration of an
execution. However, technically, the proof of Lemma 4.1 is the same as the proof of Lemma
3.3.

This lemma is important because we will later use Γσ ( Γ restriced to the nodes that
are executed in σ and the edges of Γ such that σ(e) = 1) and the fact that for a loop-free
execution σ, Γσ is acyclic – as stated in Chapter 3.

Next, we will state and prove the lemma that gives the upperbound property.

Lemma 4.2. Let e be an edge and v a node such that e ∈ •v. We have at any point of
executing Algorithm 4.1 that δ[e] ≥ d∗(e).

Proof. We prove the lemma by induction on k, the number of calls of Relax(e, v).
Base case: k = 0 : δ[esink] = w(esink), therefore clearly, δ[esink] = d∗(esink), and

for all e ∈ E \ {esink}, δ[e] =∞, and therefore δ[e] > d∗(e).
Induction step: Suppose that after the k-th call of Relax(e, v) we have δ[e] ≥ d∗(e)

for all e. At the (k + 1)-th call of Relax(e, v), only δ[e] may get updated.
We will show that from the definition of d∗(e) and from the induction hypothesis, it

follows that δ[e] ≥ d∗(e), for each of the relaxation cases.
For the case l(v) = XOR and |v•| > 1, the proof relies on Lemma 4.2.1, and for the

case l(v) = AND and |v•| > 1, the proof relies on Lemma 4.2.2. In the following, we state
these necessary sub-lemmas (Lemma 4.2.1, Lemma 4.2.2) and their proofs and after that
we will finalize the proof of Lemma 4.2.

Lemma 4.2.1. Let v be a node such that l(v) = XOR and v• > 1. Let {e} = •v. We have
d∗(e) = w(e) +min{d∗(f) | f ∈ v•}.

Proof. From the definition of dσ(e), we have: dσ(e) = w(e) + dσ(nextσ(e)) (such that
this is the last update of dσ(e)). Also, by definition, we have: d∗(e) = min{dσ(e) | σ is
a fair execution that starts in me}. Therefore, d∗(e) = min{w(e) + dσ(nextσ(e)) | σ is a
fair execution that starts in me}.

As w(e) does not depend on σ, we have: d∗(e) = w(e) + min{dσ(nextσ(e)) | σ is a
fair execution that starts in me}.

Note that σ is an execution like: 〈e f · · · 〉 where f ∈ v•. Let σf be the execution when
f = nextσ(e).

We can re-write the definition of d∗(e):
d∗(e) = w(e) +minf∈v•min{dσ(f) | σ is a fair execution that starts in me }.

Recall that σ started in me. Upon executing v, we obtain the marking mf . Note that
since me is an edge enabling marking, mf is also an edge enabling marking. This can be
easily verified by analyzing the different possibilities for l(v′) where f ∈ •v′. We obtain:
d∗(e) = w(e) + minf∈v•min{dσ(f) | σ is a fair execution that starts in mf }. From this
it follows that d∗(e) = w(e) +minf∈v•d

∗(f).

Lemma 4.2.2. Let v be a node such that l(v) = AND and v• > 1. Let {e} = •v. We have
d∗(e) = w(e) +max{d∗(f) | f ∈ v•}.



4.2. Workflow graphs with nondeterministic choice 57

Proof. Our proof relies on some notions we would like to fix here:

• From Lemma 4.1 it follows we can choose σ∗ = argminσ{dσ(e) | σ is a fair
execution that starts in me}, such that σ∗ is a loop-free execution.

• For a loop-free execution σ, and an unbounded number of resources, the duration of
the execution is equal to the longest path in Γσ - the critical path [37].

I. We prove that d∗(e) ≥ w(e) +maxf∈v•d
∗(f).

From the definition of dσ(e) we have: dσ(e) = w(e) + max{dσ(f) | f ∈ v•}. Also,
by definition, we have: d∗(e) = min{dσ(e) | σ is a fair execution that starts in me}.

Therefore, d∗(e) = min{w(e) + max{dσ(f) | f ∈ v•} | σ is a fair execution that
starts in me }.

d∗(e) = w(e) +min{maxf∈v•dσ(f) | σ is a fair execution that starts in me}.
We use the max-min inequality [131] which says that, for any function f : Z×W → R

it holds that:

minw∈Wmaxz∈Zf(z, w) ≥ maxz∈Zminw∈W f(z, w) (4.2)

We obtain that:
min{maxf∈v•dσ(f) | σ is a fair execution that starts inme} ≥maxf∈v•min{dσ(f) |

σ is a fair execution that starts in me}. Therefore,

d∗(e) ≥ w(e) +maxf∈v•min{dσ(f) | σ is a fair execution that starts in me} (4.3)

Note that since we first take the minimum in the right hand side of the inequality, in
min{dσ(f) | σ is a fair execution that starts in me}, due to Lemma 4.1, we can restrict to
loop-free executions (some execution that minimizes dσ(f) is loop-free).

Note that for any σ starting in me, there exists σ′ starting in me such that σ′ =

〈me, · · · ,mf , · · · 〉, such that mf is the edge enabling marking for f ∈ v• and
→
σ=
→
σ′.

Let f = (uf , vf ). From Lemma 2.2, the edge enabling marking mf can be reached
without firing any transition in Trans(vf ).

σ′ = 〈me, · · · 〉︸ ︷︷ ︸
σPref

〈mf , · · · 〉︸ ︷︷ ︸
σSuf

.

We have that dσ′(f) = dσSuf (f) (i).

We also have that dσ′(f) = dσ(f) (ii). The reason for this is the fact that from
→
σ=
→
σ′

and from the acyclicity of σ and σ′ it follows that Γσ = Γσ′ . It is clear that dσ(f) = dσ′(f)
both represent the longest path starting from f in the same acyclic workflow graph.

From (i) and (ii) it follows that dσSuf (f) = dσ(f). Therefore, min{dσ(f) | σ is a
fair execution that starts in me} = min{dσ(f) | σ is a fair execution that starts in mf}.
Plugging this into Equation 4.3, we have that: d∗(e) ≥ w(e) +maxf∈v•min{dσ(f) | σ is
a fair execution that starts in mf}, and therefore d∗(e) ≥ w(e) +maxf∈v•d

∗(f).

II. We prove that d∗(e) ≤ w(e) +maxf∈v•d
∗(f).

We construct an execution σ′′ such that maxf∈v•(dσ′′(f)) ≤ maxf∈v•d∗(f).
Let Ψ = argmin{dσ(f) | σ is a fair execution that starts in mf}.



58 4. Workflow Graphs executed by Unbounded Resources

Case 1: All σ∗f ∈ Ψ agree on all choices ∀f ∈ v•, hence σ∗f is unique. Then σ′′ is σ∗f .
Case 2: In the opposite case, we need to construct σ′′. Let σ∗f ∈ Ψ. We will iteratively

modify σ∗f , ∀f ∈ v• without increasing dσ∗f (f) until all of them will become identical to
common σ′′.

Let v′ be a choice for which σ∗f don’t agree. Let Γσ∗f be a workflow graph restricted
to elements contained in σ∗f . Let also π(Γσ∗f , v

′) be the longest path in Γσ∗f , starting from
vertex v′. By taking fmin = argminf{π(Γσ∗f , v

′)}, to modify each σ∗f it is enough for
each of them to take choice(σ∗f , v

′) = choice(σ∗fmin , v
′). Due to the choice of fmin, such

modification will not increase dσ∗f (f) and will eventually converge to common σ′′ for all
f .

From the way we constructed σ′′, we have:

w(e) +maxf∈v•d
∗(f) ≥ w(e) +maxf∈v•dσ′′(f) (4.4)

From the definition, we have:

w(e) +maxf∈v•dσ′′(f) = dσ′′(e) (4.5)

We have:
dσ′′(e) ≥ d∗(e) (4.6)

From Eq. 4.4, Eq. 4.5 and Eq. 4.6 we have d∗(e) ≤ w(e) +maxf∈v•d
∗(f).

Now we can resume the proof of Lemma 4.2. We will present the reasoning for one of
the relaxation cases, as the justification for the remaining ones is similar.

Let l(v) = XOR and |v•| > 1. Let •v = {e} Before the (k + 1)-th relaxation step, it
holds that δ[f ] ≥ d∗(f) ∀f ∈ v• (due to the induction hypothesis). After the (k + 1)-th
relaxation step, δ[e] gets updated, such that δ[e] becomes w(e) + min{δ[f ] | f ∈ v•},
as presented in Algorithm 4.1. Therefore, due to the induction hypothesis, δ[e] ≥ w(e) +
min{d∗(f) | f ∈ v•} (i).

From Lemma 4.2.1, we have that d∗(e) = w(e) +min{d∗(f) | f ∈ v• } (ii).
From (i) and (ii), it follows that δ[e] ≥ d∗(e).

Note that at each relaxation step we can only decrease the value of δ[e]. Once δ[e] =
d∗(e), it doesn’t change (it can not decrease further) as otherwise it would contradict the
claim that δ[e] ≥ d∗(e).

Now that we have proven the upper bound property we will state formally and prove
the second key insight for demonstrating the correctness of Algorithm 4.1 – the sufficient
condition for attaining d∗(e).

Lemma 4.3. Let e be an edge. Let σ be a fair execution such that dσ(e) = d∗(e). Let
S = 〈ei−1, · · · , esink 〉 be the sequence edges that get marked after e gets marked for
the last time in σ. Each sequence of calls of Relax(e, v) that has the property that edges
esink , · · · , ei−1, e have been relaxed in this order, after the sequence of calls toRelax(e, v)
we have δ[e] = d∗(e).



4.2. Workflow graphs with nondeterministic choice 59

The proof of Lemma 4.3 is identical to the proof of Lemma 3.2.
Next, we will instantiate the lemmas given above, namely Lemma 4.2 and Lemma 4.3

to conclude the proof of the correctness of Algorithm 4.1.

Lemma 4.4. For a sound workflow graph, after running the Algorithm 4.1, it holds that
δ[esource ] = d∗(esource).

Proof. Lemma 4.1 states that some fair execution of Γ, with minimum duration, is loop-free
(i). Recall that for a given fair execution σ, dσ(esource) represents the duration of execution
of σ (ii). From (i) and (ii) it follows that some execution that minimizes dσ(esource) is
loop-free (iii).

Note that ms is the edge enabling marking for esource .
Using (iii) and the definition for d∗(e) instantiated to esource , we obtain:
d∗(esource) = min{dσ(esource) | σ is a fair execution that starts inms }. It follows that

some σ∗ for which dσ∗(esource) = d∗(esource), is a fair, loop-free execution.
Since σ∗ is loop-free, it means that at most |V | nodes are executed in σ∗. In each

complete relaxation step (one iteration of the loop in line 6 in Algorithm 4.1), we relax all
the edges. Therefore, at the |V |-th iteration we have relaxed all the edges, in decreasing
order with respect to the partial order on the edges of Γσ∗ (recall that Γσ∗ was defined in
Chapter 3) . It means that at the |V |-th iteration, we will have relaxed all the edges that get
marked after e gets marked in σ∗. Therefore, from Lemma 4.3, δ[e] = d∗(e).

Therefore, we computed the duration of the minimum duration execution of the work-
flow graph, which is d∗(esource).

Since Algorithm 4.1 and Algorithm 3.1 have the same complexity, we have proven the
following:

Theorem 4.1. The minimum duration execution time of a sound workflow graph with un-
bounded number of resources can be computed in time O(|V ||E|).

4.2.2 Regular and acyclic workflow graphs
In the following, we briefly present the ideas for computing the maximum duration of exe-
cution for regular and acyclic workflow graphs.

As for the single resource case, for a regular workflow graph executed by an unbounded
number of resources and with a structured cycle the computation of the maximum duration
requires the specification of the maximal number of iterations for each loop. As discussed
in Sect.3.1.3, if we assume that the backedge of each loop of the regular graph is annotated
with a positive integer k that represents the maximum number of times the backedge can be
traversed, then the maximum duration of a structured cycle is (k+1) ·dX+k ·dY where dX
denotes the maximum duration of the loop bodyX , and dY represents the maximal duration
associated to reentering the loop. For computing the minimum duration we take k = 0 and
the minimum duration of the loop body. We still obtain the minimum/maximum duration
of such an annotated regular workflow graph in linear time (Cell C.1, C.2 of Table 4.1).

For acyclic workflow graphs, we can exploit the fact that its elements are in a partial
order defined by the flow of the graph as we did in the previous chapter. To compute the
minimum duration of the workflow graph we only need to sort topologically its elements



60 4. Workflow Graphs executed by Unbounded Resources

and subsequently apply the relaxation procedure on edges in descending order with respect
to this sorting.

Algorithm 4.3 Min duration, acyclic

1: function ACYCLICWFGMIN(Γ = {V,E, c, w})
2: for e ∈ E \ {esink} do
3: δ[e]←∞
4: end for
5: δ[esink]← w(esink)

6: TOPOLOGICALSORT(Γ)
7: while V 6= ∅ do
8: Select v ∈ V s.t. v is maximal with respect to the topological sort
9: V ← {V \ v}

10: for all e ∈ •v do
11: RELAX(e,v)
12: end for
13: end while
14: end function

The algorithm that formalizes this idea is Algorithm 4.3, which similarly to Algorithm
3.3 has complexity O(|V |+ |E|). Therefore, it holds that:

Theorem 4.2. The minimum duration execution of a sound acyclic workflow graph with
unbounded number of resources can be computed in time O(|V |+ |E|).

Note that, in the acyclic case, for computing the maximum duration execution, one only
needs to select the maximum instead of the minimum in the Relax (e, v) procedure when
l(v) = XOR and |v•| > 1.

4.3 Workflow graphs with probabilistic choice
For workflow graphs with probabilistc choice, computing the probability of a deadline
transgression is NP-hard and this carries over directly from our previous result presented
in Chapter 3, Sect.3.2. The reason is that for proving Theorem 3.4 we are using a class
of workflow graphs which are sequential and therefore the time needed for executing the
workflow graph when a single resource is available is the same as when an unbounded
number of resources is available.

4.3.1 Expected duration
In the following we will prove that computing the expected duration of a workflow graph
executed by an unbounded number of resources is NP-hard in contrast to the single resource
case where the expected duration can be computed in polynomial time (see Chapter 3,
Sect.3.2.2).

Theorem 4.3. Given a regular, acyclic probabilistic workflow graph Γ, computing the ex-
pected duration of Γ executed by an unbounded set of resources is NP-hard.



4.3. Workflow graphs with probabilistic choice 61

Figure 4.5: A probabilistic workflow graph

The proof consists of a reduction from the subset sum problem. Recall that the statement
of the subset sum problem is: given a set D = {d1, · · · , dn} of integers and an integer S,
to determine whether any non-empty subset D′ ⊆ D sums up to exactly S. Note that this is
equivalent to solving a problem where all the values d1, · · · , dn, S are multiples of 4 (this
statement will be used in the proof of Theorem 4.3 below). For the proof, we use the class
of (regular, acyclic) probabilistic workflow graphs Γε,n in Fig. 4.5, where each decision
outcome has probability 0.5.

Proof. Let X,Y be random variables that denote the duration of each of the two parallel
flows of Γε,n. The expected duration of the workflow graph Γε,n is:

E(Γε,n) = E(max (X,Y ))

E(Γε,n) = 1
2E(max (S − ε, Y )) + 1

2E(max (S + ε, Y ))

Let f be the probability distribution of Y . We rewrite the terms of E(Γε,n) as follows:

E(max (Y, S − ε)) = (S − ε) Pr(Y ≤ S − ε) +
∑

y>S−ε
yf(y) (4.7)

E(max (Y, S + ε)) = (S + ε) Pr(Y ≤ S + ε) +
∑

y>S+ε

yf(y) (4.8)

By using equations (4.7), (4.8) we obtain the following expression for E(Γε,n):

E(Γε,n) = 1
2

[
(S + ε) Pr(Y ≤ S + ε) +

∑
y>S+ε

yf(y) + (S − ε) Pr(Y ≤ S − ε) +∑
y>S−ε

yf(y)
]
.

Let us choose ε > 0 such that no subset of {d1, · · · , dn} has sum in [S − ε, S) nor in
(S, S + ε]. Note that the sum, can still potentially equal exactly S. Such ε is easy to find. It
is enough to choose ε = 2 as all the numbers d1, · · · , dn, S are multiples of 4.

We will show that E(Γε,n) = E(Γ ε
2
) if there is no non-empty subset of {d1, · · · , dn}

that sums up to exactly S (i), and E(Γε,n) 6= E(Γ ε
2
) otherwise (ii). If we can compute the



62 4. Workflow Graphs executed by Unbounded Resources

expected duration of a workflow graph with unbounded resources in polynomial time, we
can solve the subset sum problem in polynomial time. Note that both ε and ε/2 are integers,
so we are always considering workflow graphs with integer weights.

(i) There is no non-empty subset of {d1, · · · , dn} that sums up to exactly S
.

In this case, it holds that Pr(Y ≤ S − ε) = Pr(Y ≤ S + ε). Therefore we update the
equation for E(Γε,n)):

E(Γε,n) = 1
2

[
Pr(Y ≤ S + ε)(S + ε+ S − ε) +

∑
y>S−ε

yf(y) +
∑

y>S+ε

yf(y)
]
.

E(Γε,n) = 1
2

[
2S Pr(Y ≤ S + ε) +

∑
y>S−ε

yf(y) +
∑

y>S+ε

yf(y)
]
. One can easily ob-

serve that E(Γε,n) = E(Γ ε
2
).

(ii) There exists a non-empty subset of {d1, · · · , dn} that sums up to exactly S
.

In this case, Pr(Y ≤ S − ε) 6= Pr(Y ≤ S + ε). Therefore,

E(Γε,n) = 1
2

[
(S + ε) Pr(Y ≤ S + ε) + (S − ε) Pr(Y ≤ S − ε) +

∑
y>S−ε

yf(y) +∑
y>S+ε

yf(y)
]
.

E(Γε,n) = 1
2

[
(S + ε)(Pr(Y ≤ S − ε) + Pr(Y = S)) + (S − ε) Pr(Y ≤ S − ε) +∑

y>S−ε
yf(y) +

∑
y>S+ε

yf(y)
]
.

E(Γε,n) = 1
2

[
2S Pr(Y ≤ S − ε)︸ ︷︷ ︸

T1

+ (S + ε) Pr(Y = S)︸ ︷︷ ︸
T2

+
∑

y>S−ε
yf(y) +

∑
y>S+ε

yf(y)
]

︸ ︷︷ ︸
T3

.

Please note that term T2 has different value for E(Γε,n) and E(Γ ε
2
), while T1 and T3

have the same value for E(Γε,n) and E(Γ ε
2
). Therefore, E(Γε,n) 6= E(Γ ε

2
).

4.4 Minimum number of resources

In this section, we compute the maximum degree of concurrency of Γ, i.e., the maximum
number of tokens that can exist in the graph in a reachable marking. Knowing the maxi-
mum number of tokens that can exist in the graph can help in answering a natural question
that arises in the quantitative timing analysis of a business process: What is the minimum
number k∗ of resources one needs, such that each execution achieves its minimal execution
time? Note that increasing the number of resources makes each execution faster up to a
point. This means that from a certain point there does not exist any execution for which
the duration could be decreased by having more than k∗ resources. The maximum number



4.4. Minimum number of resources 63

Figure 4.6: Tighter bound example

of tokens that can exist in the graph is an upper bound for k∗ as we presented in Sect.4.1.
There are cases where a tighter bound exists, as illustrated in Figure 4.6 where the max-
imum number of tokens is 3, obtained in the marking that marks edges e2, e3 and e4 but
2 resources would suffice for reaching the minimum duration, viz. 15. Note that two re-
sources could execute in parallel the tasks corresponding to edges e1 and e2 and after 5 time
units, the two resources can execute the tasks corresponding to edges e3 and e4 which take
other 10 time units. After 15 time units all the tasks of the workflow graph will have beeen
completed. Conversely, for each max concurrency k there are weights such that k = k∗

4.4.1 An algorithm to compute the maximum degree of concurrency
of a workflow graph

There is an EXPTIME algorithm for computing the maximum degree of concurrency for
general workflow graphs. It is based on computing the reachability graph of Γ, which is
the transition relation→ restricted to its reachable markings. Note that for sound workflow
graphs the reachability graph is finite, but exponential in the size of Γ. Each reachable
marking is visited to compute the maximum concurrency degree.

However, efficient algorithms for computing the maximum degree of concurrency are
known for subclasses such as marked graphs (see Def.7), regular or sequential workflow
graphs (state-machines). Therefore, we propose to leverage this fact and tackle the problem
through a divide and conquer strategy. In the following we will present our algorithm for
computing the maximum degree of concurrency, we will briefly jsutify its correctness and
illustrate the steps of the algorithm through an example.

The main idea behind divide and conquer solutions is to use the following three steps:

1. Divide - Decompose the problem into subproblems of the same type.

2. Conquer - Solve the newly devised subproblems recursively.

3. Combine - Combine the answers obtained in step (2).

This approach, which we will describe shortly for our problem, has the potential of
speeding up the computation of the maximum degree of concurrency of a workflow graph
in practice because it permits us to use the fact that certain subproblems we know how to
solve in polynomial time (e.g., computing the maximum degree of concurrency for marked
graphs).

In order to divide the problem into smaller parts, we compute the Refined Process Struc-
ture Tree (RPST) [86] of the workflow graph. The RPST represents a decomposition of a



64 4. Workflow Graphs executed by Unbounded Resources

workflow graph into a hierarchy of sub-workflows that are subgraphs with a single entry
and a single exit of control called fragments (see e.g., Figure 4.8 (a)). In [86], the authors
provide a linear time algorithm for computing the RPST. The decomposition results in a
parse tree which reflects the containment relationship of the fragments, see for example the
workflow graph in 4.7 and its decomposition in fragments in 4.8.

The algorithm for computing the maximum degree of concurrency works as follows:

1. Divide the problem of computing the maximum degree of concurrency to subprob-
lems by decomposing the workflow graph into its fragments. These fragments are
labeled with their corresponding subclass (e.g., marked graph, state-machine, etc.).

2. Conquer the problem by computing the maximum degree of concurrency of the work-
flow graph based on the maximum degree of concurrency computed for its fragments.
Note that we omit here trivial fragments consisting of a single edge.

3. Combine the results obtained in step (2) by replacing fragment for which we com-
puted the maximum degree of concurrency with an edge whose weight equals the
maximum degree of concurrency of that fragment.

The complexity of the algorithm depends on the subclass of the fragment f , as follows.
For a single edge, the degree of concurrency is given by the weight of the edge. The al-
gorithm runs in linear time for state-machines, where the returned value is the maximum
weight of an edge of this fragment. Similarly it runs in linear time for regular fragments.
For regular fragments modeling concurrency (cf. Figure 2.c) the maximum degree of con-
currency is the sum of the weights of the edges. For regular fragments modeling choice (cf.
Figures 2.b, d, e), the maximum degree of concurrency is the maximum of the weights of
the edges. The computation of the concurrency degree runs in polynomial time for marked
graphs and in exponential time for the complex fragments – the fragments which are not
regular nor marked-graphs nor state-machines.

In the following we will present some remarks with respect to the correctness of the
algorithm. Note that the algorithm finishes, as the RPST is a tree and we solve the problem
starting from the leafs and we finish when we reach the root. Also note that when we iterate,
the reduced graph – the one obtained following the combine step – has the same degree of
concurrency as the original. The reason is that due to the fact that the fragments are with a
single entry and a single exit of control, replacing a fragment with an edge whose weight
equals the maximum degree of concurreny of the corresponding fragment, does not change
the maximum degree of concurrency of the reduced graph.

An example for how our algorithm works is provided in Figure 4.8 where we show the
docomposition of the workflow graph in Figure 4.7. In Figure 4.8, edge weights represent
the concurrency degree. We decompose the original workflow graph into four fragments:
Sequence Fragment 2, Regular Fragment, Sequence Fragment 1, and Marked Graph. The
root fragment is Sequence Fragment 2, each node has exactly one child, and the tree has
one leaf – the Marked Graph Fragment, Figure 4.8 (a). After computing the concurrency
degree of the marked graph (value 3) the workflow graph is updated as shown in Figure 4.8
(b) where the Marked Graph Fragment has been replaced with an edge whose weight equals
the maximum degree of concurrency of that fragment. In the next iteration, we compute the



4.4. Minimum number of resources 65

maximum degree of concurrency of the new leaf - the Sequence Fragment 1, and we obtain
value 3. Next, the workflow graph is reduced to the graph composed of a regular fragment
contained in a sequence fragment, as shown in Figure 4.8 (c). The concurrency degree of
the regular fragment is computed (we obtain 3+1=4), we update the workflow graph and
we are left with a sequence fragment Figure 4.8 (d). The maximum degree of concurrency
of the workflow graph is the concurrency degree of this fragment (4).

Figure 4.7: An example of a workflow graph for which we want to compute the maximum degree of
concurrency

Figure 4.8: The decomposition for the workflow graph in Figure 4.7 into its fragments and its cor-
responding RPST (a), the workflow graph and RPST after computing the concurrency degree for the
Marked Graph Fragment (b) the e workflow graph and RPST after computing the concurrency degree
for Sequence Fragment 1 (c) the workflow graph and RPST before the algorithm ends (d)

In the following, we present the approaches for computing the maximum degree of
concurrency for marked graphs and for complex fragments.

Let ~w denote a |E|×1 column vector representing the degree of concurrency associated
with each edge of Γ. Finding the maximum degree of concurrency of a marked graph Γ,
deg(Γ), can be formulated as:

deg(Γ) = max{m · ~w | m is a marking reachable from m0} (4.9)



66 4. Workflow Graphs executed by Unbounded Resources

The solution we propose for computing deg(Γ) in a marked graph is identical to the compu-
tation of the maximum weighted sum of tokens in [140]. In [140] the author formulates this
problem as an integer programming (IP) problem with integer data and totally unimodular
constraint matrix. Note that any IP problem with with integer data and totally unimodular
constraint matrix is solvable in polynomial time.

The worst case complexity of the algorithm is therefore dominated by complex frag-
ments, for which we resort to the EXPTIME algorithm. Only a fragment which is not from
a category we can efficiently solve becomes subject to state space exploration. For all the
workflow graphs which don’t have any complex fragments our algorithm runs in polyno-
mial time. Since complex fragments are rare in practice, this approach has the potential of
speeding up the time it takes to compute the maximum degree of concurrency. In a previ-
ous study documented in [44] on 735 industrial business process which were translated to
workflow graphs, only about 4% of the total of their corresponding fragments were complex
with an average number of edges between 29 and 33. Also in [44] the authors noted in their
study that it seems difficult to design a sound process with complex fragments as 87% of
all complex fragments identified were unsound, 12% of the complex fragments were cyclic,
but less than 3% of them were sound.

We have attempted solving this problem in both directions – finding a polynomial time
algorithm for computing the maximum degree of concurrency or proving it is NP-hard to
compute it but we have not reached a conclusion yet. We have proven through a reduc-
tion from MAX-SAT problem [126] that it is NP-hard to compute the maximum degree of
concurrency for sound workflow nets that are not necessarily free-choice.

4.5 Workflow graphs executed by a fixed number of re-
sources

The questions we asked in Chapters 3 and 4 can be asked in settings when a fixed number
n > 1 of resources is available for executing the workflow graph.

Figure 4.9: Regular workflow graph
with n parallel threads

This constraint makes it hard to find efficient so-
lutions to the questions we were trying to solve.
The probability of deadline transgression and the
expected duration remain NP-hard and this follows
from our justifications in the current work. More
specifically to prove that the probability of a dead-
line transgression to occur in a workflow graph ex-
ecuted by a fixed number of resources is NP-hard,
we can use the same reduction we proposed for the
single resource case. The same holds for computing
the expected duration where we can use the reduction for the same class of graphs as we
used in Section 4.3.1.

For the maximum duration – the worst case execution time is attained when we require
all the tasks to be executed by a single resource, which we have studied in Chapter 3. What
is different, is the fact that computing the minimum duration of execution becomes NP-
hard for a fixed number n > 1 of resources. For example, for a simple workflow graph as



4.6. Case Study 67

the one in Figure 4.9, let’s assume we need to complete n tasks T1, · · · , Tn and we have k
identical agents to solve them. Finding an assignment of the tasks to the agents such that the
duration of execution (makespan) is minimized is NP-hard as one can reduce 2-PARTITION
to finding the minimum duration when there are exactly two resources available [111].

4.6 Case Study

In the following, we present a case study where we employ the algorithms presented in this
and the previous chapter on real data.The data we use [29] originates from a Dutch financial
institution, and it consists of events generated along a loan approval process.

This data is suitable for various types of analyses. We commence by performing a de-
scriptive analysis where we mine the underlying business process. This enables us to visu-
alize the process and understand interdependencies between tasks. The latter is particularly
important for us, as capturing the control flow is a mandatory prerequisite for performing
the timing analysis.

This process is translated to its equivalent workflow graph representation, which we
provide in Fig. 4.11, Fig. 4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15.

The original mined process is a cyclic process consisting of 64 tasks and 115 edges.
The translated workflow graph is a cyclic workflow graph with 64 tasks, 94 gatways and
141 edges.

Next, we mine the average duration of execution of different tasks in the process, as
well as the probability of transitioning from a task to another. Finally, we run some of our
algorithms for deadline analysis, and we report two aspects from the result of running them.
The first result we report is the actual output of the algorithms, i.e., the expected time to
process an application, or the minimum duration of an execution. The second result we
report is the running time of our algorithms on this process.

4.6.1 Mining the loan application process

Process mining allows us to discover the different steps taken in the loan application pro-
ces and their ordering. A process model was obtained by importing the logs in ProM and
running the fuzzy miner. To unclutter the process and have a clearer picture, the best edges
filter was applied which keeps the best incoming and outgoing edge for each activity [10].
This process was translated to a workflow graph such that we have a process representation
compatible with our algorithm. This transformation was made in accordance with our re-
strictions presented in Chapter 2 (free choice workflow graph, we don’t allow any node that
has multiple incoming edges as well as multiple outgoing edges, etc.).

4.6.2 Data and data processing

The data consists of all the loan applications filed trough an online system. The logs consist
of 262200 events in 13087 cases collected along 6 months. The events are labeled with the
state in their life-cycle, namely: “schedule”, “start”, “resume”, “abort” and “complete”.



68 4. Workflow Graphs executed by Unbounded Resources

Event name Event duration (seconds)
W Handle leads 219
W Assess potential fraud 2529
W Complete application 249
W Call incomplete files 254
W Call after offer 94383
W Personal loan collection 37
W Shortened completion 1655
W Validate application 646

Table 4.6: Examples of durations for the resume state of the tasks.

The data contained in each event is the event id, the step in the approval process, whether
it is a start/complete or schedule event, the resource id, the time-stamp and the case identi-
fier.

The way we obtained the duration of an event was by subtracting the timestamp of the
event from the timestamp of the next event – where the two events occur in the same case.
For example, for the “resume” work item events we have the durations shown in Table 4.6:

After obtaining these durations, we notice that the most time consuming events are
W Call after offer and W Personal loan collection which in the suspend state (when perhaps
some user interaction is involved) they take approximately 5 and 7 days respectively.

As one can imagine, to know the appropriate rate/probability to be associated to each
event of the stochastic model of a business process may not be a trivial task. In some cases,
the rates/probabilities can be defined by a business specialist, based in his/her knowledge of
the domain. In other cases, when the real system is already implemented and in use, these
values can be inspired by the times/frequencies observed in the real system

Computing the appropriate transition probabilities might be a non-trivial task. In some
studies we have seen authors assuming uniform distribution regarding possible process ex-
ecution flows at conditional routing [132]. In some cases, the transition probabilities are al-
ready provided by the business specialist based on his prior knowledge. In other cases when
process execution data is available, these values can be inspired by the times/frequencies
observed [99].

To compute the transition probabilities we also rely on the observed frequencies with
which events occur. Therefore, we devise a squared matrix Mn,n, where n is the number
of events. M [i, j] represents the number of time event i was succeeded by event j divided
by total number of occurrences of event i. Some examples of the obtained probabilities are
provided in the Table 4.7:

At this point, we have all the prerequisites necessary for running the algorithms for com-
puting the minimum duration and the expected duration of an execution. In the following,
we present the results obtained from running them.

After running our algorithms we obtained results for minimum duration of an execu-
tion and expected duration and the running times of the respective algorithms. As shown
in Table 4.8, the minimum duration of an execution is of 248125 seconds, which means
approximatey 3 days. The expected duration of an execution is of 41 days. The runtime
of the algorithms on this process are of 40ms for computing the minimum duration of an



4.6. Case Study 69

Source event name Target event name Probability
O Created:complete O Sent (online only) 0.04
O Created:complete O Sent (mail and online) 0.82
A Concept:complete A Accepted:complete 0.29
A Concept:complete W Complete application:start 0.47
W Call after offers:suspend A Cancelled:complete 0.12

Table 4.7: Examples of computed probabilities for the source event to be followed by the target event.

Value Runtime
Minimum duration of an execution 270722s 40ms
Exepected duration 3570240s 9ms

Table 4.8: Minimum duration, expected duration and the running times.

execution and 9ms for computing the expected duration of an execution.
We have adapted the algorithm to compute the minimum duration of an execution to

also trace back the path that achieves the minimum duration. Therefore, the minimum dura-
tion of an execution corresponds to the following sequence of activities: A Create applica-
tion:complete, A Submitted:complete, W Handle leads:schedule, W Handle leads:withdraw,
W Complete application:schedule, W Complete application:start, O Create offer:complete,
O Created:complete, O Sent (mail and online) complete, W Complete application:complete,
W Call after offers:schedule, W Call after offer:withdraw, W Validate application:schedule,
W Validate application:start, O Received:complete, W Validate application:suspend,
O Accepted complete, A Pending:complete, W Validate application:complete.

We also compute the distribution of the durations of process runs (traces).

Figure 4.10: Histogram of durations of process runs.

As seen in Fig. 4.13, indeed the minimum duration of an execution is about 5 days and
the expected duration is about 35 days.



70 4. Workflow Graphs executed by Unbounded Resources

Value Runtime
Minimum duration of an execution 854478s 37ms
Exepected duration 4291460s 9ms

Table 4.9: Minimum duration, expected duration and the running times on the process with removed
edges

After looking more closely at the execution path corresponding to the minimum du-
ration – as outputed by our algorithm – we notice that it goes through several withdrawn
tasks, e.g., W Handle leads:withdraw, W Call after offer:withdraw which correlated to the
histogram in Fig. 4.13, makes us suspect that this execution might be rather an exception.
To analyze an execution that contains less of these withdrawals, we remove the path be-
tween V0 and V77, V43 and V51, V44 and V51 - which basically exclude the possibility of
going through the withdraw state of the aforementioned tasks.

The new path we obtain is: A Create application:complete, A Submitted:complete,
W Handle leads:schedule, W Handle leads:start, W Handle leads:complete, W Complete
application:schedule, W Complete application:start, O Create offer:complete,
O created:complete, O Sent (mail and online):complete, W Complete application:complete,
W Call after offers:schedule, W Call after offers:start, W Call after offers:suspend, W Call
after offers:resume, W Validate application:schedule, W Validate application:start,
O Received:complete, W Validate application:suspend, O Accepted complete,
A Pending:complete, W Validate application:complete.

The minimum duration is of approximately 10 days and the expected duration of an
execution is of approximately 49 days, cf. Table 4.9. The runtime of the algorithms has not
changed significantly.



4.6. Case Study 71

Figure 4.11: Workflow graph for the loan application process (part 1).



72 4. Workflow Graphs executed by Unbounded Resources

Figure 4.12: Workflow graph for the loan application process (part 2).



4.6. Case Study 73

Figure 4.13: Workflow graph for the loan application process (part 3).



74 4. Workflow Graphs executed by Unbounded Resources

Figure 4.14: Workflow graph for the loan application process (part 4).



4.6. Case Study 75

Figure 4.15: Workflow graph for the loan application process (part 5).



76 4. Workflow Graphs executed by Unbounded Resources

4.7 Conclusion
We presented new results on the deadline analysis of workflow graphs with an unbounded
number of resources.

We have shown that computing the minimum duration of an execution of a workflow
graph executed by an unbounded number of resources can be obtained in polynomial time.
In contrast to the single resource case however, computing the expected duration is NP-
hard. We have also discussed the case when a fixed number of resources is given where we
have shown that all the problems we studied become NP-hard.

Since the timing perspective and the resource perspective are tightly connected, we
were also interested in the number of resources required to attain the minimum duration
of an execution. In this regard, we proposed an algorithm for computing the maximum
number of tokens that can exist in the graph which has the potential to run fast in practice
(as it only resorts to state space exploration for complex fragments).

We have also performed a case study, on data obtained from a Dutch financial institu-
tion. In this case study we mined the underlying business process, then translated it to the
workflow graph representation, we computed the event durations and transition probabili-
ties and finally employed our algorithms on this data. We concluded that our algorithms are
feasible to use in practice and can provide additional insights on the process.



Part II

Workflow Performance
Optimization

77





Chapter 5

Data-informed Work Assignment
in Incident Ticket Resolution

In this chapter, we present a novel technique that optimizes the dispatching of incident
tickets to the agents in an IT Service Support Environment. Unlike the common skill-
based dispatching, our approach also takes empirical evidence on the agent’s efficiency
from historical data into account.

Our solution consists of two parts. First, a novel technique clusters historic tickets into
incident categories that are discriminative in terms of an agent’s performance. Second, a
dispatching policy selects, for an incoming ticket, the fastest available agent according to
the target cluster. We show that, for ticket data collected from several Service Delivery
Units, our new dispatching technique can reduce service time between 35% and 44%.

5.1 Problem context
Enterprises and IT service providers are constantly striving to improve the quality of service
and in the same time maintain or reduce the cost of service delivery. One of the major
challenges in service delivery is resolving the incidents as efficiently as possible. This is
an important but labor intensive task, assigned to the service agents that are responsible for
solving the customer’s incident reports.

In our setting, incidents in the customer environment are submitted to the IT Service
Provider in the form of a ticket which is a snippet of text describing a particular IT prob-
lem. The reported problems range widely from authentication errors, application crashes,
to broken transactions or server unavailabilities.

The dispatching to the service agent is generally done on two levels. First, a human
dispatcher reviews the problem description text and decides which delivery unit (a team of
service agents) is responsible for addressing that type of ticket. Second, within the delivery
unit, a service agent is either chosen by the group leader or on a voluntary basis. The
dispatching at this level is based on the qualification of the agents, the availability and the
workload of the agents, as well as the complexity of the ticket (a label assigned to the ticket
reflecting the difficulty level of the problem documented in the ticket). At this level we
have identified an opportunity for automation and optimization of the dispatching process.

79



80 5. Data-informed Work Assignment in Incident Ticket Resolution

Figure 5.1: Integration of the clustering and dispatching component.

Empirical evidence on which agent is most efficient in solving a certain category of tickets
is not explicitly taken into consideration. We consider this as a missed opportunity as we
believe and we will show later in this chapter, that considering this information can help
reduce the time required for solving a set of tickets. Therefore, we derive a method for
ticket clustering, which identifies ticket topics (categories) that are discriminative in terms
of an agent’s efficiency and dispatches each ticket from every category to the agent that is
the most efficient in executing it.

The clustering and dispatching component is designed to be integrated in the IT Service
Delivery Environment as shown in Figure 5.1. In this chapter, we show that the existence
of such a component that takes informed dispatching decisions, can reduce the resolution
time and by extension, the business costs. We demonstrate this by conducting experiments
on real data collected from different service delivery units.

More precisely we gathered data from three IBM Service Delivery units which repre-
sents logs of past incident resolutions. It corresponds to approximately 8000 tickets. This
data comprises:

• Incident information: a) the ticket description, e.g., Server unresponsive, can not
ping, and b) the ticket complexity, as assessed by the first human dispatcher.

• Agent information: the name and the email address of the person who resolved the
ticket.

• Incident resolution information: timestamps corresponding to the moment the ticket
was received and when it was closed and some text describing how the incident was
resolved.

Our approach partitions the tickets into clusters that are relevant with respect to the
problem they describe and that are also homogeneous in terms of the agent’s performance.
We exemplify such a desirable partitioning in Figure 5.2 where ticket data is represented as
circles. In this example there are two ticket categories denoted by “Topic 1” and “Topic 2”.



5.1. Problem context 81

Figure 5.2: Illustration of a possible ticket partitioning (left) where tickets are semantically related but
not homogeneous in agent s performance and a different partitioning (right) where tickets are again
semantically related possibly denoting different categories and where tickets are homogeneous in an
agent’s performance.

All the tickets within the cluster of a certain topic should document approximately the same
problem. At the same time, if an agent has solved multiple tickets pertaining to a certain
cluster, the duration of execution of these tickets (executed by the same agent) should not
vary much. If the variation in the time it takes for an agent to solve tickets from a certain
cluster is small (the distribution is narrow, as illustrated in Figure 5.2) then we say a cluster
is homogeneous in terms of an agent’s performance.

We achieve such a partitioning by leveraging the multiple views of the ticket data (e.g.,
ticket description, ticket complexity, resolving agent, duration for resolving it, etc.). Having
such a partitioning, when a new ticket arrives, we can infer its category and the approximate
duration needed for an agent to solve the ticket. Further, we use this information in the
dispatching process, by always assigning the ticket of a given cluster, to the agent that is
the most efficient in solving tickets of that cluster.

The difficulty in finding these clusters is that applying a standard algorithm that groups
the tickets based solely on their most prominent topics, leads to clusters that are non-
homogenous in terms of the agent’s performance. On the other hand, clustering based on
the duration of resolution would not allow us to discriminate well between such groups as
the duration of resolution is not data intrinsic to the ticket but more to the ticket and resolv-
ing agent pair. This poses a novel clustering problem - because we are restricted in the way
we combine these main features – textual description and duration it took an agent for solv-
ing it. Practically, this problem is challenging also because we don’t have a huge amount of
data ( about 8000 tickets) and the ticket descriptions are small and they have a very specific
vocabulary – pertaining to the IT domain. Therefore, to assess the topical similarity we first
perform a semi transfer-learning approach where to understand word similarity we gather
some statistics on word co-occurrences on a large corpus of text representing the manuals
for IT incident resolution.

Therefore, we propose a clustering approach that performs a partitioning that can dis-
cover meaningful ticket categories with homogeneous agent performance.

Our contributions are manifold:

1. A clustering method capable to identify ticket categories that are also homogeneous



82 5. Data-informed Work Assignment in Incident Ticket Resolution

in terms of the agent’s performance;

2. A data-informed dispatching policy that assigns an incoming ticket to the agent that
is the most efficient in resolving it;

3. An integrated solution to reduce the service costs.

The outline of this chapter is as follows. Section 5.2 presents the incident ticket cluster-
ing method. Section 5.3 provides an overview of the data-informed dispatching policy. The
experimental evaluation on real-world datasets is presented in Section 5.4, followed by the
related work in Section 5.5 and the conclusions in Section 5.6.

5.2 Incident ticket clustering

To achieve the partitioning described in the previous section and exemplified in Figure 5.2
we devise a method that clusters the set of tickets into groups of similar tickets both in
terms of the incident they report and the time needed for an agent to resolve them. The
method utilizes the matrix of semantic similarities between tickets – a matrix which for any
two tickets contains a score of how close the two tickets are from a semantical perspective
and the divergence matrix - a matrix which captures information on the difference in the
duration of resolution of two tickets assigned to the same agent. More specifically, we
first modify the semantic similarity matrix based on the information represented in the
divergence matrix, and then, we run a clustering algorithm that operates on the resulting
matrix. For each cluster, we derive an estimate for the time each agent needs to resolve
tickets pertaining to that cluster. Ultimately, we devise a dispatching policy that assigns
each ticket to the agent who is the fastest at resolving it and compute the achieved reduction
in terms of service time due to the new assignment.

In Figure 5.3, we show an example of the desired clustering assuming we had only four
tickets. Even though the semantic similarity between tickets T1 and T3 and tickets T2 and T4
is high, we do not put them in the same cluster due to the large difference in the resolution
times. Instead we cut the edge that links them in the similarity graph. Therefore, for this
example, instead of reporting the two clusters “servers issues” and “DB issues”, we would
discover “network issues” (as denoted by bigrams “lost connection” or “ping statistics”)
and “functional errors” (as denoted by bigrams “server crashed” or “inconsistent state”).

5.2.1 Preliminaries
Let T be a the sequence of words representing a ticket consisting of |T |wordsw1, · · · , w|T |
and let K = {T1, T2, · · · , Tn} be a set of n tickets. Also, let A = {a1, a2, · · · , a|A|}
denote the set of agents who resolved the tickets. Each ticket Ti, is associated with several
fields: d(Ti) the duration for resolving it, a(Ti) the agent who resolved it and c(Ti) ∈ W =
{“A”,“B”,“C”} the complexity of the ticket (where “A” denotes the highest complexity and
“C” the lowest).

For each agent ai there is a mapping to its skill level s(ai) ∈ W . An agent with skill
level “A” is entitled to resolve tickets of any complexity class, an agent with skill level “B”



5.2. Incident ticket clustering 83

Figure 5.3: Example of similarity demotion between tickets T1 and T3 which have been executed by
the same agent in 6 and 80 minutes respectively and between tickets T2 and T4 which have also been
executed by the same agent in 5 and 70 minutes respectively.

is entitled to resolve tickets of complexity “B” and “C”, and an agent with skill level “C” is
entitled to resolve only tickets of complexity “C”.

5.2.2 Multi-view similarity matrix with induced sparsity

The typical approach to measuring the similarity between two blocks of text is to use a lex-
ical matching method, and compute a similarity score based on the number of lexical units
(words) that occur in both input texts. Pre-processing the texts via stemming, removal of
the stop words, longest subsequence matching and additional normalization and weighting
factors have shown to improve the results of such lexical methods [47, 143]. However the
lexical similarity measures alone have an important limitation: they fail in identifying the
semantic similarity between texts (i.e., the similarity score between “process shutdown”
and “application terminated” would be zero).

In this section, we describe the method [125] we used to compute the semantic similarity
metric between tickets. It is derived from the semantic similarity metric between words,
described in the next section. We define the semantic similarity between two tickets Ti and
Tj , given the semantic similarity between words. Each word w in Ti is assigned a semantic
similarity score maxSim(w, Tj), which represents the similarity score between w and the
most similar word in Tj . The procedure is applied symmetrically, for each word in Tj .
The word similarity scores for each ticket are added and each summation is normalized
with the length of its corresponding ticket. The final result is the average of the normalized
summation of each ticket:



84 5. Data-informed Work Assignment in Incident Ticket Resolution

Similarity(Ti, Tj) =
1

2
(

∑
w∈Ti maxSim(w, Tj)

|Ti|
+

+

∑
w∈Tj maxSim(w, Ti)

|Tj |
)

(5.1)

For example, assuming we have a ticket T1 = w1, w2 and a ticket T2 = w3, w4 and the
semantic similarity scores between words of these two tickets as given in Table 5.1, then
the semantic similarity between the two tickets according to equation 5.1 is 0.7.

w3 w4

w1 0.1 0.6
w2 0.4 0.9

Table 5.1: Example semantic similarity between the words corresponding to two tickets T1 = w1, w2

and T2 = w3, w4.

Let S ∈ Rn×n denote the ticket-ticket semantic similarity matrix, where Sij =
Similarity(Ti, Tj).

Another type of proximity relation between tickets is given by the divergence matrix
described below. If two tickets Ti and Tj , that are annotated with the same complexity level
(i.e., c(i) = c(j)) have been resolved by the same agent (a(i) = a(j)) and the ratio in their
corresponding resolution times is higher than a certain threshold λ then they have different
level of difficulty and they should not be clustered in the same group of incidents. We define
the divergence matrix D ∈ Rn×n:

Dij =


1 if a(i) = a(j) and c(i) = c(j) and

min(d(i), d(j))

max (d(i), d(j))
> λ;

0 otherwise

(5.2)

Two tickets which are similar in terms of both their topics and the duration it took an agent
to resolve them may reveal stronger connection than two other tickets which are similar
only in terms of topic.

An example of such a case we have shown in Figure 5.3 where tickets T1 and T3 both
document a server error. However when these two tickets were executed by the same agent,
for T1 it took 6 minutes to be resolved and for T3 it took 80 minutes to be resolved. This
hints the fact that the category “server error” is not informative enough and that possibly
attaching T1 to the category of networking errors and T3 to some other outage might be
more accurate.

Motivated by these observations we combine the two proximity relations (views) into
one matrix S′ ∈ Rn×n as follows:

S′ = S− S ◦D. (5.3)

where S ◦D is the element wise product of the two matrices. We induced sparsity on
S by setting the similarity scores in S to 0 when Dij = 1. Intuitively, when two tickets



5.2. Incident ticket clustering 85

are executed by the same agent and seemingly have similar topics, but which take very
different amounts of time to be resolved by the same agent, it might mean that there is a
subtle difference in the problem they descirbe and hence, these two tickets should not be
clustered together.

5.2.3 Semantic similarity metric between words
As the same incident may be documented with different words, see e.g., tickets T1 and T2
in Figure 5.3, we are interested in assessing the degree of similarity between words in the
specific IT Service Delivery domain.

For extracting the semantic similarity scores between pairs of words, we have explored
three corpus-based methods which have been reported to give good results [65, 56]. The
methods are: PMI-IR [142], the Google similarity distance (GSD) [129] and LSA [118].

PMI-IR only requires simple statistics about two words: their marginal frequencies and
their co-occurrence frequency in a corpus.

PMIIR(w1, w2) = log
p(w1, w2)

p(w1) ∗ p(w2)
(5.4)

where p(wi, wj) denotes the probability that words w1, w2 co-occur in the same ticket,
p(w) is the probability that the word w occurs in a ticket. Please note that we do not need
to specify a window size for estimating the co-occurrence frequencies of w1 and w2 as the
ticket descriptions are usually short (< 20 words).

GSD is based on information distance and Kolmogorov complexity. In the original
paper, the authors rely on Google to retrieve pages for co-occurrence statistics. We adapt
the extraction of co-occurrence statistics to our setting, as follows:

GSD(w1, w2) =
max{log(|f(w1)|, log(|f(w2)|}

log(Q)−min{log(|f(w1)|), log(|f(w2)|)}
−

− log(|f(w1, w2)|)
log(Q)−min{log(|f(w1)|), log(|f(w2)|)}

(5.5)

where f(w1, · · · , wk) represents the set of all tickets in which the words w1, · · · , wk
appear together and Q =

∑
w1∈T1,w2∈T2

|f(w1, w2)| is the sum of the numbers of occur-
rences of search terms in each ticket, summed over all tickets.

In LSA, term co-occurrences in a corpus are captured via dimensionality reduction
operated by a singular value decomposition (SVD) on the term-by-document matrix repre-
senting the corpus.

While, as we will show in Section 5.4, all the methods gave meaningful results regard-
ing the relatedness of words in a broader sense (i.e., flagging associations between pairs of
words such as “hung” and “ping” or “disk” and “full” as significant), LSA outperformed
the other two methods in identifying synonyms. In order to perform a quantiative evalua-
tion of how well each method performs on our dataset (comprised of a large set of ticket
descriptions and ticket resolutions) we did the following:



86 5. Data-informed Work Assignment in Incident Ticket Resolution

• We have tagged the words in the corpus into their parts-of-speech (e.g., a noun, a
verb, an adjective, etc.) and labeled them accordingly (pos tagging [96]);

• We selected pairs of words with the same pos tag (lexical category) and with high
association score with any of the three methods;

• We asked a domain expert to select out of the pairs given above, pairs of words that
are synonyms in the IT Service Delivery domain;

• We evaluated the methods based on their performance in detecting these pairs of
synonyms.

The process described above has resulted in a list of 72 pairs of words that are synonyms
in the IT Service Delivery domain (e.g., “pingable” and “responsive” or “archive” and
“backup” ). We say that a method/algorithm has “discovered” a pair of synonyms (w1, w2)
if the scaled semantic similarity score between (w1, w2) is above the mean of the semantic
similarity scores between w1 and any other word in the corpus (or w2 and any other word
in the corpus).

We count the number of synonyms identified by each method and divide the result by
the total number of pairs of synonyms. The results are shown in Table 5.2.

LSA GSD PMI-IR
0.83 0.42 0.3

Table 5.2: Percentage of synonyms identified.

There are several reasons why LSA outperformed the other two methods. First, the
conventional wisdom is that synonym words, with a high degree of relatedness are unlikely
to co-occur in a small window size (very close to each other). Second, it is plausible to
represent the meaning of a word by a context vector of co-occuring words and the corre-
sponding co-occurrence counts measured in a text window context. LSA does exactly this,
as the assumption is that words that are close in meaning will occur in similar context and
in addition, it transforms the context vectors to a lower dimensional space by applying sin-
gular value decomposition (SVD). The similarity is further reduced to the similarity of the
context vectors where the cosine of the angle is employed as a similarity metric.

5.2.4 Clustering
The tickets are related via two types of similarity measures that originate from different
sources: one that comes from the ticket content - the ticket similarity matrix S, and one that
comes from the agents who resolved the tickets - the divergence matrix D.

In Figure 5.4 we show two square matrices (n × n, where n is the number of tickets),
the similarity matrix between tickets (left) and the divergence matrix (right). This is just
for the reader to visualize the discrepancy in the information content between these two
matrices. I.e., due to the extreme sparsity, the divergence matrix alone does not contain
complete information of the structure of the clusters. Since both matrices capture important
information, we propose an approach that uses the two matrices in the combined matrix S′

as defined in equation (5.3) and has the following objectives:



5.2. Incident ticket clustering 87

Figure 5.4: Sparsity: similarity matrix (left), divergence matrix (right).

I Cluster similar tickets together (we want to be able to extract topic information from
these clusters);

II Minimize the number of pairs of tickets in the same cluster that have similarity equal
to zero (we want homogeneous clusters in terms of the agent’s performance, which is
why we enforced the S′ij = 0 when Dij = 1).

We achieve this using three candidate clustering algorithms namely: hierarchical clus-
tering with complete linkage [43], spectral clustering [164] and our adjusted version of
fuzzy k-means [90]: homogeneity optimized fuzzy k-means.

Hierarchical clustering and spectral clustering are hard clustering algorithms, i.e., each
ticket is a member of exactly one cluster. The input for these algorithms is the matrix S′.

Fuzzy k-means is a soft clustering algorithm - and therefore returns a partition of the
n tickets {T1, T2, · · · , Tn} into k clusters {C1, C2, · · · , Ck} specified by a membership
matrix M ∈ Rn×k, Mij ≥ 0 and

∑k
j=1 Mij = 1, whose components quantify the mem-

bership probability of ticket Ti in cluster Ck. The input for fuzzy k-means is the similarity
matrix S. We optimize the homogeneity of these clusters by iteratively moving tickets from
their most probable clusters to the second, third, up to the least probable clusters, as will
be described later on. We selected fuzzy k-means and not LDA – a generative statistical
model, which assumes that each document is a mixture of a small number of topics and that
each word’s creation is attributable to one of the document’s topics [49] – because the ticket
descriptions are very short, which is too sparse for traditional topic modeling. Therefore
we used a soft clustering algorithm that is able to leverage the similarity matrix S.

While hierarchical clustering does not require the specification of the number of clus-
ters, k, spectral clustering and fuzzy k-means take k as input. In order to estimate the
optimal number of clusters for the two latter algorithms we use the silhouette statistic, a
well-balanced coefficient introduced in [101] and which has shown good performance in
experiments, as we will show in Section 5.4.

LetC = {C1, C2, · · · , Ck} be a clustering of the set of tickets. For each clusterCi ∈ C,
for each complexity class c ∈W and for each agent ac ∈ A (such that ac has solved tickets
in Ci of complexity c) , one can measure the dispersion in the duration of resolution. The
metric we propose for this is the coefficient of variation (CV), defined as the ratio of the
standard deviation of these durations to their mean:



88 5. Data-informed Work Assignment in Incident Ticket Resolution

CV =
sx
x

(5.6)

where sx is the standard deviation of a set of samples xi and x is their mean.
The motivation for using the coefficient of variation is the following: the standard devi-

ations of two sets are not comparable to each other in a meaningful way to determine which
set has greater dispersion because the values in the sets may have different magnitudes. The
coefficient of variation does however show the extent of variability in relation to the mean.

Hierarchical Clustering with Complete Linkage The agglomerative hierarchical clus-
tering algorithm with complete linkage [64], works as follows:

1. The algorithm starts with n clusters, each containing one object.

2. The most similar pair of clustersCi,Cj is found using the combined similarity matrix
S′ and merged into a single cluster.

3. The similarity matrix is updated (its order is reduced by one by substituting the indi-
vidual clusters with the newly merged one).

Steps (2) and (3) are repeated until a certain stopping criterion is reached.
This method is relevant for our study because of the distance measure that is used be-

tween two clusters in the merging step in the algorithm: Ci, Cj : dcomplete(Ci, Cj) =
maxl∈Ci,m∈Cj (1 − S′lm). If sk denotes the similarity of the two clusters merged in step
k, this distance measure ensures that no pair of tickets with similarity 0 (distance 1) will be
put in the same cluster. The clusters at step k are maximal sets of points that are completely
connected with each other by edges of weights (similarity) s ≥ sk.

Spectral Clustering Using the combined similarity matrix S′ in a spectral clustering al-
gorithm [164], there will result a partitioning obtained by minimizing sum of the weights
of the edges belonging to the graph cuts in the input graph and thus implicitly maximally
satisfying the objective II above.

Spectral clustering works as follows:

1. Construct the Graph Laplacian L from the combined similarity matrix S′ such that
L = D−

1
2S′D−

1
2 where Dii =

∑n
j=1 S

′
ij ;

2. Select the first k eigenvalues λ1, · · · , λk of L and determine their corresponding
eigenvectors v1, · · · , vk and let M ∈ Rn×k be the matrix containing the vectors
v1, · · · , vk as columns, This matrix is furhter normalized;

3. Perform clustering in the new subspace (new matrix M) using K-means.

Homogeneity Optimized Fuzzy K-means We use the similarity matrix S to perform
the soft clustering with fuzzy k-means. The resulting clusters will not be homogeneous in
terms of duration because we only pass the semantic similarity matrix to the algorithm. In
the following, we propose an approach that utilizes the clusters returned by fuzzy k-means
and reduces the variation in duration inside the cluster by iteratively removing tickets.



5.2. Incident ticket clustering 89

Let C = {C1, C2, · · · , Ck} be the clusters returned by fuzzy k-means and Pr (T | Ci)
denote the probability of ticket T belonging to cluster Ci. At each step, the algorithm
selects the ticket that minimizes the variation from a sub-cluster C(a)(c)

i ⊆ Ci (subset of
tickets in Ci that have been solved by agent a and have complexity c) and removes it from
the cluster. The ticket is then tentatively inserted in the the next most probable clusters in
an order given by the ranking from fuzzy k-means. A ticket is inserted in another cluster
if the variation in duration of the cluster with the ticket does not increase. If the ticket
can not be inserted in any of the clusters it is dropped. This procedure continues until the
variation in duration inside C(a)(c)

i reaches a target value τ . These steps are formalized in
our algorithms: Algorithm 5.1 and Algorithm 5.2:

Algorithm 5.1 Optimize homogeneity of the clusters.

1: function OPTIMIZE(C , τ )
2: for all Ci ∈ C do
3: for all C(a)(c)

i ⊆ Ci do
4: while CV

C
(a)(c)
i

≥ τ do
5: T = argminT CVC(a)(c)

i \{T}

6: C
(a)(c)
i ← C

(a)(c)
i \ {T}

7: MOVE(T ) (see Algorithm 5.2)
8: end while
9: end for

10: end for
11: end function

Algorithm 5.2 Move a ticket.

1: function MOVE(T )
2: for Ci ∈ C \ {T} sorted in decreasing order of Pr (T | Ci) do
3: if CV

C
(a)(c)
i ∪{T} ≤ CVC(a)(c)

i
then

4: C
(a)(c)
i ← C

(a)(c)
i ∪ {T}

5: return
6: else
7: drop the ticket T
8: end if
9: end for

10: end function

Homogeneity optimized fuzzy k-means has the following properties: (i) the variation
inside the final clusters is not an output of the algorithm but an input parameter of the
algorithm and this fact enables finer control. The variation of the resulting clustering will
not exceed the one given as an input. (ii) The algorithm can be used for identifying the
outliers in the data set. To achieve this we only move the ticket to the second or the third
most probable clusters and drop it if it cannot be placed. The advantage of doing this is



90 5. Data-informed Work Assignment in Incident Ticket Resolution

Figure 5.5: Agent’s performance for a given cluster and complexity level.

that the coherence of the clusters with respect to the topics remains unaltered (unlike the
base algorithm where we tradeoff topic relevance for high homogeneity). Additionally one
can inspect the set of dropped tickets and observe which type of incidents have inherently
higher variation in the resolution time. A discussion on the behaviour of these algorithms
on our dataset is given in Section 5.4.

5.3 Dispatching

For a given partitioning C = {C1, C2, · · · , C|C |}, we build a matrix P ∈ R|A|×|C |×|W |
which stores the median duration for the execution time for each agent a ∈ A in resolving
a ticket pertaining to one of the clusters in C for a certain complexity class k ∈ W . Some
entries in this matrix will be −1. When an entry Pijk = −1 it means that there are no
records in the data of agent ai working on a ticket from cluster Cj of complexity k where
k is an id for each complexity class {“A”, “B”, “C”}.

We implement the data-informed dispatching policy and the non data-informed dis-
patching policies which we will describe next. Unlike a non data-informed dispatching
policy, the data-informed policy, dispatches a ticket T from a cluster C to the agent that
is the most efficient in resolving it from all the agents that are available, i.e., it selects ai.
such that Pijk is minimal. The implementation of the dispatching aligns with the following
assumptions:

• The maximum number of working hours of an agent is less than 8. When an agent
reaches 8 hours of work in one day, the agent is removed from the pool of available
agents to which tickets can be dispatched on that day;

• No tickets are passed from one day to another. This assumption is enforced by the
original data, where the ticket resolution is started and completed in the same day in
99.5% of the cases;

• The complexity of the ticket must match the qualification of the resolving agent.
Therefore, an agent with skill level “A” is entitled to resolve tickets of any complexity
class, an agent with skill level “B” is entitled to resolve tickets of complexity “B” and



5.4. Empirical evaluation 91

serverXYXY error : DISK Utilization :Object = /dev/sda3/var :
percent full: 95% : MB free: 219 MB
New User Request Form: XYXY backup missed on this server
We are unable to connect to hosts serverXYXY.
Please investigate

Table 5.3: Examples of ticket descriptions.

“C”, and an agent with skill level “C” is entitled to resolve only tickets of complexity
“C”;

• When measuring the service time which represents the total duration of execution of
the tickets we did not add any waiting time;

• The arrival order of the tickets based on which we perform the dispatching is the
original order, as documented in the dataset.

For the implementation of the dispatching, we split the data in separate chunks, each chunk
containing the tickets arrived in a certain working day. For every chunk, we store a list with
all the agents available that day by mining the log for agents that have tickets associated to
their id in that particular day. We also maintain a queue with the tickets that need to be com-
pleted that day by extracting the list of tickets from the logs that were recorded as started
and completed that day. Ultimately, we run the data-informed dispatching policy and the
policy that works under exactly the same assumptions, but without being data-informed
(equivalent to the setting when an agent voluntarily selects the next ticket to resolve, pro-
vided that the agent has the necessary qualification - skill based dispatching [127]), and
compare the recorded service times for each delivery unit.

5.4 Empirical evaluation

5.4.1 Data preparation

We use three datasets: DU1, DU2, DU3 from three service delivery units comprising 3696,
2373 and 1916 tickets respectively.

The first step in the analysis is the data cleaning procedure where we take the raw
unstructured data and remove unnecessary information such as email headers, punctuation,
html formatting, server names, stop words and we also perform stemming [109]. This step
is important as due to the fact that ticket descriptions are very short, such “noise” in the data
severely impacts the performance of the algorithms. The ticket descriptions are a mixture
of machine and human-generated text and contain many domain-specific technical words,
some of which are not present in a standard dictionary (e.g., “unpingable”, “ssd”, “hw”), but
are still relevant in identifying the incident category. Some examples of ticket descriptions
are given in Table 5.3.



92 5. Data-informed Work Assignment in Incident Ticket Resolution

Figure 5.6: Percentage of edges removed when increasing λ (for DU1).

5.4.2 Experiments

In the experiments, we set the threshold to λ = 0.8, meaning that for two tickets from
the same cluster, solved by the same agent and of the same complexity the variation of
duration of executing them is within 20%. Using such small variation is reflected in the
connectedness of the similarity graph. In Figure 5.6, we show how the percentage of deleted
edges in the similarity graph increases by increasing the value of λ.

Clustering In what follows, we show that spectral clustering and homogeneity optimized
fuzzy k-means exhibit the best performance for this task in terms of cluster purity and
homogeneity in terms of agent perforamnce.

We run hierarchical clustering with complete linkage (stopped at dissimilarity threshold
0.8). For DU1 we obtain a large set of clusters (176 clusters) with a low abundance of tickets
(on average 19 tickets per cluster), and also the clusters tend to have similar sizes. This is
illustrated in Figure 5.7 where we can observe a skewed distribution when plotting the
cluster abundances. The results remain similar when varying both λ and the dissimilarity
threshold for stopping (i.e., for λ = 0.8, dissimilarity threshold=0.9 we obtain 130 clusters,
or for λ = 0.5, dissimilarity threshold=0.8 we obtain 92 clusters). The resulting clusters
are small and with low variation in both topic and resolution time per agent, but they are
not unique, i.e., they are fragments of larger clusters.

With spectral clustering, we obtain 12 clusters with sizes between 193 and 659 tickets
for DU1, 7 clusters with sizes between 232 and 601 for DU2 and 5 clusters with sizes
between 134 and 385 for DU3. By analyzing the frequent words in the clusters together
with the domain experts, we observed that the algorithm is able to correctly capture relevant
incident ticket categories in each cluster. This is shown in the Table 5.4

Homogeneity optimized fuzzy k-means exhibits also good performance in identifying
incident categories. We obtain 12 clusters with sizes between 195 and 429 tickets for DU1,
7 clusters with sizes between 206 and 387 for DU2 and 5 clusters with sizes between 127



5.4. Empirical evaluation 93

Figure 5.7: Cluster abundances density plot.

Cluster Frequent words
C1 lost, contact, agent
C2 ssd, internal, error
C3 file, system, space, full
C4 prod, issue, faulty, disk
C5 cluster, bottleneck
C6 system, restart, request
C7 backup, error
C8 scsi, retry, failed
C9 server, physical, failure
C10 application, problem, not, responding
C11 node, down, power, supply
C12 limit, exceeded, file

Table 5.4: Frequent words in the clusters obtained by spectral clustering using S′ for DU1.

and 368 for DU3.
We first run the algorithm such that no tickets are dropped. We compute the minimum

value for the target coefficient of variation, τmin, for each delivery unit, such that all the
tickets are assigned to a cluster. The values for τmin when no tickets are dropped for each
delivery unit are given in Table 5.5. Note that the values for the coefficient of variation
are small, due to the fact that we allow tickets to be assigned to less probable clusters.
The frequent words in the clusters discovered are presented in Table 5.6. We observe that
both clustering approaches identify ticket categories documenting “file limit exceeded”,
problems related to the “power supply”, or “backup” related issues. While the clusters
obtained with spectral clustering place all the disk related tickets in one single cluster,

Delivery Unit DU1 DU2 DU3
τmin 0.17 0.23 0.21

Table 5.5: Values computed for τmin for each delivery unit



94 5. Data-informed Work Assignment in Incident Ticket Resolution

Cluster Frequent words
C1 monitoring, cluster, disk, replacement
C2 fsd, code, error
C3 command, retry, reboot, server
C4 client, backup, file
C5 ssd, database, memory, corruption
C6 disk, error, scsi
C7 node, down, agent, contact
C8 disk, fan, sensor, faulty
C9 docket, frame, replacement
C10 power, supply, fault
C11 transport, lost, retry
C12 limit, exceeded, file

Table 5.6: Frequent words in the clusters obtained homogeneity optimized fuzzy k-means for DU1.

with the homogeneity optimized fuzzy k-means, we obtain two clusters documenting disk
errors: one which was documenting disk replacement, and one reporting disk fan sensor
issues. Also for homogeneity optimized fuzzy k-means it is not always straightforward to
establish the incident category of a certain cluster. One such example is the cluster with
top words “ssd, database, memory, corruption”. Also, it merged tickets documenting “node
down” with tickets documenting “lost, contact, agent”. This hints to the fact that for an
agent, these two categories of incidents take similar amount of time to be resolved.

When we introduced homogeneity optimized fuzzy k-means, we also mentioned the
possibility of identifying outliers, tickets that take either too long or too little time to be
resolved by an agent relative to the cluster they pertain to. This can be achieved by modify-
ing the algorithm to move tickets only in the first three most likely clusters. This leads to a
significant number of tickets dropped and this grows inversely proportional with the value
of τ as illustrated in Figure 5.8. By inspecting the dropped tickets we observe that they

Figure 5.8: Number of tickets to move, tickets successfully placed in other clusters and tickets
dropped for each delivery unit (DU1, DU2, DU3).



5.4. Empirical evaluation 95

Figure 5.9: Speed-up in service time for each delivery unit using the data-informed dispatching policy
on the clustering obtained with fuzzy k-means – (DI) Fuzzy, with spectral clustering – (DI) spectral
and using the non data informed policy – (non DI).

mostly document disk errors, and filesystem issues. The recorded duration for the dropped
tickets is either very short or very large. This indicates that in the dispatching, for those
tickets with larger duration one needs to have some margin with respect to filling the day
completely.

In the following, we evaluate the quality of the clustering obtained from running spectral
clustering with the combined similarity matrix, and homogeneity optimized fuzzy k-means
with the minimum values of τ for which no tickets are dropped, τmin. We inspect both the
reduction in service time from implementing the data informed dispatching policy and the
homogeneity in agent’s performance.

Speed-up in service time Let C = {C1, C2, · · · , Cn} be the partitioning of the corpus of
tickets C. We measure the service time which is the total number of working hours needed
for resolving all the tickets in a given period of time. This is formally defined as:

ServiceT ime(C) =

n∑
i=1

|Ci|∑
j=1

Pe,j,k (5.7)

In equation 5.7, the matrix P was used, which for a resolving agent e, for a ticket from a
cluster Cj of complexity k, stores the estimated duration for resolving the ticket.

Next, we run the data-informed dispatching policy, both on the clustering obtained with
spectral clustering and with the homogeneity optimized fuzzy k-means. The data informed
dispatching policy is evaluated against the dispatching that does not take the insight from
the data into account (which agent is fastest in resolving an incoming ticket).

We observe a major reduction in the service time up to 44% (for DU2) when running
the data-informed dispatching policy non data-informed policy. The reductions are apparent
for dispatching based on both the homogeneity optimized fuzzy k-means clustering and the



96 5. Data-informed Work Assignment in Incident Ticket Resolution

Figure 5.10: Differences in agent’s performance
in resolving tickets of the same complexity from
different clusters. Figure 5.11: Resolution time for networking tick-

ets in minutes to exemplify an agent with skill level
“A” being slower than an agent with skill level “B”.

spectral clustering, slightly better in the former one (possibly due to the more uniform
cluster sizes). The speedup is shown in Figure 5.9 where we denote by (DI) the data-
informed dispatching policy and by (non-DI) the non data informed dispatching policy.

Figure 5.11 shows that the discrepancies in agent’s performance for a given cluster and
complexity are large and exploiting these differences in dispatching leads to a significant
reduction in the service time. Also we have identified that agents with skill level “B” are
faster than agents with skill level “A” in solving tickets documenting “network errors” of
complexity “B”, shown in Figure 5.10. This illustrates that a higher skill (which is estab-
lished based on experience or training level) does not directly translate into higher speed
(which can only be established empirically, by analyzing the historical data). Note that we
did not include service level agreements in both dispatching policies. A service level agree-
ment (SLA) is a commitment established between the client and the service provider. An
example of such an SLA is: “90% of tickets have to be resolved within 24 hours”. We kept
the order of ticket arrival, but assumed that a ticket can be resolved by the optimal agent
even if that meant ticket resolution could only start when this agent becomes free. Nat-
urally this might delay ticket resolution potentially conflicting with SLA requirements on
resolution times. In contexts with such SLA constraints, a simulation taking arrival patterns
into account can yield more precise assessments. Please note however that both dispatching
policies considered in our experiments, work under exactly the same assumptions and are
therefore comparable.

Homogeneity in terms of agent’s performance As the quality of the clustering is given
by the qualities of the individual clusters, we define the homongeneity of a clustering as the



5.4. Empirical evaluation 97

Figure 5.12: Homogeneity of different clustering methods.

average of the homogeneity of each cluster:

hom(C) =
1

|C|
∑
Ci∈C

hom(Ci) (5.8)

The homogeneity of the cluster Ci is defined as the average coefficient of variation for
the durations recorded for a certain agent and complexity class. Formally, let C(a)(c)

i =
{d(k) for Tk ∈ Ci|a(k) = a and c(k) = c} and CV

C
(a)(c)
i

denote the coefficient of variation

of C(a)(c)
i . Then, we define the homogeneity of a cluster Ci as:

hom(Ci) =
1

|Z|
∑

C
(a)(c)
i ∈Z

CV
C

(a)(c)
i

(5.9)

where Z = {C(a)(c)
i ⊆ Ci | C(a)(c)

i 6= ∅}
For the spectral clustering, the results are shown in Figure 5.12 where we compared

the homogeneity in terms of agent’s performance for the algorithm that uses the combined
matrix S′ to the algorithm ran on the semantic similarity matrix S.

We compare these two version to illustrate the homogeneity gain obtained when using
the divergence matrix. This also demonstrates that topics alone are not informative enough
for estimating the agent’s performance.

For homogeneity optimized fuzzy k-means, the coefficient of variation provided as input
will reflect the homogeneity of the final clustering. The minimum values for the coefficient
of variation for which no tickets are dropped, for each delivery unit, were given previously
in Table 5.5.



98 5. Data-informed Work Assignment in Incident Ticket Resolution

Deployment As mentioned previously, the clustering and dispatching component is de-
signed to be integrated in the IT Service Delivery Environment and a depiction of the ele-
ments the component interfaces with is shown in Figure 1. Our method succeeded in the
evaluation phase and demonstrated effectiveness.

One important aspect that must be noted in deploying the dispatcher is the handling of
a new agent. A new agent is assigned a default duration for solving a ticket of a particular
topic, more precisely the median duration across agents for solving tasks of that topic. This
way we ensure that enough tickets are sent to the new agent and therefore, the system can
rapidly estimate the agent’s actual speed.

Another aspect of the dispatching component is that since it favors the best agent for
each ticket category, this may potentially lead to uneven workload distribution. To avoid
this, one can adjust the greedy dispatching policy to include some regularization.

The performance gaps between agents need to be continuously reduced. Apart from its
utility in the automatic dispatching, our system finds execution differences among agents
and can show agent training needs and best practices. It can serve in targeted mentoring for
ramp-up of skills for new employees which is very useful in a high turn-over environment.

5.5 Related work

Several works have previously addressed the possibility of improving the efficiency of ticket
routing by mining ticket resolution sequence data or ticket descriptions [119, 130]. The au-
thors in [119] capture the ticket transfer decisions embedded in ticket resolution sequences
to develop a model to generate ticket routing recommendations. In [130] supervised learn-
ing techniques (SVM) and a discriminative term based heuristic are used to analyze ticket
descriptions and predict the most appropriate resolution group. While we also investigate
optimal ticket routing based on ticket descriptions, our focus is not matching the correct
resolution group for a given ticket but rather on matching the most cost effective agent to
resolve the ticket within a resolution group.

Researchers have also previously looked into clustering alerts and incident tickets [46,
134] for both structured and unstructured text using either graph theoretic approaches [46]
or a combination of a latent semantic indexing based technique with a hierarchical n-gram
based technique [134]. We have observed through our experiments that standard text sim-
ilarity measures as Jaccard used by the authors in [46] perform poorly when used in clus-
tering tasks due to data sparseness and the lack of context. We differentiate from these
approaches by proposing a similarity metric between tickets that tries to overcome the vo-
cabulary mismatch problem [67], by using semantic similarity between words inferred from
a large corpus.

We are not aware of any previous work on ticket clustering that aims at discovering
topics with high homogeneity in the agent’s performance. From a theoretical point of view,
the problem we are trying to solve is similar to clustering with multiple graphs. Cluster-
ing with multiple graphs aims to fully exploit the links between different dimensions of a
given network. While there is a rich body of work in the context of single graph clustering
[41, 162, 82, 18, 75] the problem of clustering with multiple graphs has gained interest only
recently [141, 55, 48]. In [141] the authors propose a factorization method based on linked



5.6. Conclusion 99

matrices to solve the multi-graph clustering problem. In this model, each graph is approxi-
mated by a graph specific factor with a common factor shared by all the graphs. In [55] the
authors propose two multi-graph clustering techniques (one tailored for unweighted graphs
and one that performs well also on weighted graphs) with the goal of finding well-defined
clusters across all the views of the graph. In [48] the authors propose a generalization of
normalized cut for multi-dimensional graphs. Their model leads to a mixture of Markov
chains defined on the different graphs.

We want to identify clusters that persist under different measures. Leskovec et al. have
shown in [83] that strong communities are still identifiable under various measures. We
choose to combine the adjacency matrices in one in a way such that the information in
the divergence matrix is manifested in the final matrix as pairwise cannot-link constraints
(constraints that express that entity i and entity j should be in different clusters). Having
a single matrix, the problem becomes again a single graph clustering problem which we
try to solve employing matrix factorization based clustering algorithms or by iteratively
adjusting a fuzzy partitioning. The work by Leskovec et al. has recently demonstrated that,
although different quality measures produce differences in terms of specific communities,
strong communities persist under a variety of measures.

A combination of text mining and process analysis is also present in the work of van
der Aa [73, 72]. The author also notes the event logs provide valuable information on data
attributes, event durations, and other aspects specifically associated with the enactment of
a process. We both try to surface interesting process related information from the logs. Van
der Aa focused mostly on the link between logs and process models, e.g., assessing the
compliance of process models to textual descriptions [73]. Our contributions correspond to
a different path – in the sense that we make some assumptions on what the process looks
like – and we try to optimize the process execution. However, the algorithms in the thesis of
Van der Aa [7] could be used to confirm such hypotheses as the one we made on the model.

For integration such inference and dispatching pipeline with a workflow management
system, we would like to refer to the work of Mans et al., e.g., [124]. They present a
proposal on how a workflow management system can be integrated with scheduling facili-
ties rather than simply extending the functionality of a workflow management system or a
scheduling system. As a modeling and execution tool they use CPN Tools [104], a modeling
and execution tool for Colored Petri Nets. They explain how a workflow language can be
augmented with information relevant for scheduling and present the design of a workflow
management ststem integrated with scheduling together with a concrete implementation.
Their architecture consists of four components: a) a workflow engine which routes cases,
b) a workflow client application c) a scheduling service and d) a separate calendar compo-
nent.

5.6 Conclusion

In this chapter, we presented a novel approach that optimizes the service time in IT Service
Delivery industry. We demonstrated on real data that considering empirical evidence on
which agent is the most efficient on resolving certain incident tickets in the dispatching
process significantly reduces service time.



100 5. Data-informed Work Assignment in Incident Ticket Resolution

We first build a model able to cluster the tickets into categories that both reflect the
problem they document and are homogeneous in the duration time for an agent to solve
them. Then we devise a data-informed dispatching policy that assigns an incoming ticket to
the agent that is the fastest in resolving it. Experiments conducted on real data from several
IBM Service Delivery Units demonstrate the benefits of our approach. More specifically,
we compare the data-informed dispatching with the non-data informed dispatching and
observe that the former exhibits 35% to 44% reduction in the service time.

In workflow management systems, various forms of scheduling have been studied from
a theoretical perspective, by providing patterns of work item assignment that can be sup-
ported by workflow management systems [114]. In current workflow management systems,
scheduling is primarily based on the availability of resources that match a role that is autho-
rized to execute a work item. In addition, there exist other algorithms that take qualitative
properties into account, such as the suitability of a resource for a particular work item [71],
or the appropriateness of a resource, given other resources that worked on the same case
[20]. All these approaches could be labeled as qualitative scheduling.

Because human resources are one of the most significant factors in the operational
cost of workflow, it is also interesting to consider quantitative approaches to scheduling.
Scheduling can be quantitative in at least two different ways. First, it can be seen not only
as a constraint satisfaction problem but as an optimization problem to minimize certain
measures of cost – such as service time for our use case – or maximize certain measures of
service quality. Second, the suitability of a resource is not a qualitative relation anymore
but becomes a measure.

In this chapter, we considered the time a person needs to complete a certain work item
– a ticket in this case – as such a measure of resource suitability. It is clear that such a mea-
sure can be obtained and adapted over time from information in execution logs. There are
very few prior studies for BPM systems that take work item scheduling as an optimization
problem and use a measure of resource suitability. We are not aware of any approaches
where work item scheduling is based on execution log data.

A scheduling component could be easily embedded into the architecture of a business
process execution engine. In order for the scheduler to make use of the new data gen-
erated by the engine, we would propose an incremental schema to feed the scheduler by
sending the new data to it in batches, one at a time, so that the scheduler can update itself
appropriately.



Chapter 6

Predicting Disk Replacement from
Sensor Data

Disks are among the most frequently failing components in today’s IT environments [4].
Despite a set of defense mechanisms such as RAID, the availability and reliability of the
system are still often impacted severely [148].

In this chapter, we present a novel, highly accurate SMART-based analysis pipeline that
can correctly predict the necessity of a disk replacement 10-15 days in advance. Our method
has been built and evaluated on more than 30000 disks from two major manufacturers,
monitored over 17 months. Our approach employs statistical techniques to automatically
detect which parameters from the self monitoring facility of drives (SMART) correlate with
disk replacement and uses them to predict the replacement of a disk with 98% accuracy.

6.1 Context

Data center downtime costs have increased sharply in the past years from $5,600/minute in
2010 to $8,851/minute in 2016 according to a study conducted on 63 data center organiza-
tions in the U.S. [8]. IT equipment failure is a significant contributor to such downtimes.
Disks are among the most frequently failing components in today’s IT environments. It
appears that field behavior of disks, in particular failure rates, are fairly different than the
one described in the datasheet specifications [28]. Factors such as temperature, operation
cycles or workloads may significantly affect both the reliability and the performance of hard
drives. Reliability issues are more severe than performance issues as they pose the risk of
data loss and manifest themselves as disk failures leading to replacements.

Disk failures can be either predictable or unpredictable. On the one hand, unpredictable
failures, ranging from electronic components becoming defective to sudden crashes due
to improper handling, cannot be foreseen by monitoring. On the other hand, predictable
failures mainly result from slow processes such as wear-and-tear that typically progress
over months or years (for example disk head degradation). The latter ones make it possible
for predictive failure analysis.

In this chapter, we introduce a novel data mining approach able to automatically predict
disk replacements based on historic disk replacement data from an expert-maintained disk

101



102 6. Predicting Disk Replacement from Sensor Data

environment [9] and hence minimize the effects of component failure as shown in Figure
6.1.

Figure 6.1: Availability – number of read or write operations: without proactive/preventive replace-
ment (left) vs. with proactive replacement(right)

SMART monitoring (disk sensors’ data, for which we provide a detailed description in
Table 6.7) can be used to determine when disk failures become more likely. Some man-
ufacturers even use them to deploy drives with embedded predictive models. However,
these models are proprietary and often times, simple, threshold-based normalizations, that
are more conservative – designed to avoid false alarms and therefore have a very weak
predictive power [28, 54, 74] .

In this chapter, we focus on the automatic forecasting of disk replacements using SMART
attributes. For this purpose, we use data collected from a large population of disks (more
than 30000 disks) monitored over 17 months [9]. A drive is labeled as failed when it stopped
working, it is non-responsive to commands, the RAID system reports that the drive cannot
be written or read, or it shows evidence of failing soon [9]. Therefore, the model goes be-
yond the expert knowledge used in proactive replacements and is able to detect failures that
this knowledge can not capture (see Section 6.3.6).

The goals of our analysis are two-fold: (1) to provide the set of SMART attributes that
are indicative for disk replacements; (2) to use these attributes to build a statistical model
that automatically predicts impending replacements with high accuracy (81-98%). Such a
model not only automates the disk replacement decision, but also allows administrators to
proactively replace disks at risk, days in advance.

To achieve these goals, we employ an approach that comprises four steps. First, we use
changepoint detection in time series to identify the SMART attributes indicative of impend-
ing replacements. Second, we transform the event sequence into a set of examples [66] by
encoding multiple events as individual points such that we achieve a compact, yet informa-
tive representation of the time series of each disk. Next, we build a predictive classification
model that is able to discriminate between healthy and failure-impending drives, by using
these data points as inputs. Finally, we propose a transfer learning [135] approach to enable
replacement decision prediction on data from novel disk models.

There are several challenges one may encounter when performing the aforementioned
steps. In the following, we list a few of them. Since SMART indicators are manufacturer-
specific, their encoding and normalization varies widely across manufacturers (for instance
attribute 9 raw – power on cycles can be reported in differing time units). This hinders



6.2. Predicting disk replacement 103

the possibility to fit one predictive model for all different disk manufacturers. A separate
model needs to be trained for each individual disk manufacturer. Further, due to the lack of
standards when implementing SMART attributes, one needs to discover the ones that are
indicative of failures. Finally, the disk data are highly unbalanced (only about 2% of disks
are replaced), which makes the task of fitting high quality models very challenging.

Therefore, we build and evaluate our approach for disks from two individual manufac-
turers. Following our efforts to choose the right SMART indicators and tuning the predic-
tive model, results show up to 98% accuracy in identifying both disks that are about to be
replaced and those that are healthy, when using only a small set of SMART parameters.

The remainder of this chapter is organized as follows. In Section 6.2, we describe the
predictive pipeline, whereas in Section 6.3 we present experimental results. We discuss de-
ployment in Section 6.4 and finally review the state-of-the-art in Section 6.5 and conclude
in Section 6.6.

6.2 Predicting disk replacement

Given the longitudinal measurements of the SMART attributes for a large set of disks,
from a specific disk model of interest and information on their replacements, we develop a
fully automated approach for solving the disk replacement prediction problem. Our method
is summarized in Algorithm 6.1 and consists of four consecutive steps: (1) selection of
relevant SMART attributes, (2) compact time-series representation, (3) balancing of the
healthy and unhealthy disk classes via informed downsampling, and (4) classification model
for disk replacements. In the following, we present the details of each step.

Algorithm 6.1 Disk replacement prediction algorithm
Input: A time series collection of SMART attributes along with the disk replacement in-
formation for a given target disk type.

1. Find the subset of SMART attributes indicative of disk replacements by identifying
significant changepoints in their corresponding time series;

2. Compute a highly-informative compact representation for the time series correspond-
ing to each relevant attribute from Step 1 via exponential smoothing;

3. Perform informative downsampling via K-means clustering to address the high class
imbalance in the disk replacement datasets;

4. Use the training dataset from Step 3 to fit a classification model that predicts disk
replacements.

Output: Predictive model for disk replacement using a small set of SMART attributes.



104 6. Predicting Disk Replacement from Sensor Data

6.2.1 Selection of relevant SMART attributes
The main goal of this step is to automatically discover the set of SMART attributes that are
indicative of impending disk replacements. This will reveal the most informative predictors
with respect to the disks at risk to the domain experts. As SMART attribute data are gath-
ered over time, we address this feature selection problem through changepoint detection in
time series. More specifically, when a SMART attribute is informative of disk replacement,
we expect a significant shift in its values at some time point before the actual replacement,
i.e., at the changepoint. Moreover, this shift should be permanent and unrecoverable to be
indicative of a disk replacement (an illustration of such a shift is given in Fig. 6.2. In the
following we provide a more formal description of the approach for detecting the perma-
nent changepoints for SMART attributes.

Let Si = (s1, s2, · · · , sp) denote the time series (collected at a daily granularity) for a
certain SMART attribute comprising p measurements ordered by their timestamps, where
sp is the most recent one when the disk replacement has occurred. If there exists a times-
tamp t < pwhen a significant change in the values of the attribute Si occurs (e.g., the values
start increasing), then we consider Si a potential attribute relevant for the disk replacement.
We determine the time point t that indicates a significant change using the approach de-
scribed in [98]. Briefly, we use a maximum likelihood (ML) based approach as follows:
t = argmax τML(τ) provided that ML(t) is significantly larger than log p(s1:p | θ̂), where
θ is the maximum likelihood estimator of the parameter, and:

ML(τ) = log(p(s1:τ | θ̂1)) + log(p(sτ+1:p | θ̂2)). (6.1)

The intuition behind the equation above is that we need to split the data into two parts
– before the change occured and after the change and we use maximum likelihood to fit
the parameters to each of those parts. The reason for this is that we don’t know before-
hand where the change occured so we compute the likelihood of each potential time point.
The most likely one is selected as the changepoint. Next, we verify whether the change
is permanent by checking whether the difference between the time series of the potential
SMART attribute and the corresponding time series of the same attribute in the absence of
the observed change at time point t is significant. We do this as follows. First, let the time
series Γt = (st, · · · , sp) denote the subsequent values recorded for the potential SMART
indicator Si starting from the timestamp t to the time of the replacement p.

We then compare this time series with the one that would have been observed for this
indicator in the absence of a significant change on day k, noted Ψ = (s̃k+1, · · · , s̃p). If
there is a significant difference between these two, then the indicator values are correlated
with the disk failure where Ψ, the synthetic control, is generated via time-series modeling.

More specifically, we compute the posterior distribution of Ψ, p(s̃(t+1):p | s1:(t),x1:p)
given the value of the series in the pre-change period s1:t along with the values of the control
time series x1:p using a Bayesian structural time-series model. The control time series is a
sample of the values of the target SMART attribute collected for a healthy disk. Finally, the
target SMART attribute is indicative of a disk replacement if the probability distributions
of the actual time series measured after the detected change point and the synthetic one
generated based on the values of a healthy disk are significantly different. We assess the
difference via hypothesis testing [81]. Formally, let Γk and Ψ be samples generated from



6.2. Predicting disk replacement 105

unknown distributions P and Q, respectively. As in any hypothesis testing, we have a
null hypothesis H0 – associated with the theory we want to disprove and an alternative
hypothesis H1 associated with theory we want to prove. The hypothesis to test for our case
is the following: {

H0 : P = Q

H1 : P 6= Q
(6.2)

Then we check whether we can reject the null hypothesis H0 that the two probability
distributions P and Q are equal with high confidence.

6.2.2 Compact time series representation
The previous step results in the set of relevant SMART indicators for the disk replacement
problem. Now we move to the next step, whose goal is to provide a compact (reduced to a
single data point), but highly informative representation of the time series of each indicator
that can readily be employed in the predictive model.

There are several observations that hint the necessity of a compact representation for the
time series data: (i) Each daily observation on its own is not enough - we need to consider
a time frame longer than a day - this is because the single day record is not stable (it may
change from a bad state to a good state) due to the recovery mechanisms embedded in the
disk. (ii) Also, if we considered as observations for the failed class only the entries from
the last day of the life of the disk then the model will not be able to predict replacement in
advance as it can only recognize the instances when drive fails not before.

Therefore, we use a window to split the raw data set into segments. We aggregate each
of the relevant time series to a single value using exponential smoothing over a specific
time window. This way, we assign the highest weights to the most recent observations and
exponentially decreasing weights to the remaining observations as they get older. Intuitively
we expect that the observations closer to the time point of the disk replacement are more
informative compared to the older ones. The raw data sequence is represented by Yt, with
Yt starting at time t = 0, and the output of the smoothing procedure is denoted by St.
Formally, for every indicator variable we have:

St = α · Yt + (1− α) · St−1 (6.3)

In the equation above, the smoothed value at time t, St is computed recursively based on
the observation at time t and the smoothed value at time t− 1.

St = αYt + (1− α)St−1

= αYt + α(1− α)Yt−1 + (1− α)2St−2

= α
[
Yt + (1− α)Yt−1 + (1− α)2Yt−2 + · · ·+ (1− α)t−1Y1

]
+ (1− α)tx0.

When fixing the width of the window to a value k (instead of smoothing over all the
observations starting from t = 0), St becomes the weighted average of a certain number of
the past observations up to Yt−k.



106 6. Predicting Disk Replacement from Sensor Data

A smaller value of k causes a weaker smoothing effect which enables higher sensitivity
to new changes in the data. The parameter α controls the speed at which the older observa-
tions are dampened. A large α is used for assigning lower weights to observations from the
more distant past.

For each relevant SMART attribute, the width of the time window used in the smoothing
process is chosen as the median of the distribution of the time stamps of their corresponding
significant change computed as described in Section 6.2.2.

6.2.3 Class balancing via informative downsampling
The data to be used in the predictive model is highly imbalanced, as only a small percentage
of all disks are replaced over time. Since classification algorithms are typically optimized to
maximize the overall accuracy, when trained using imbalanced datasets they often exhibit
poor predictive performance. To address this issue, we balance the training dataset for
our predictive model by using a representative subset of the data for the dense class – in
our case the healthy disks. This representative subset is chosen such that it comprises the
most informative samples with low or no redundancy. We achieve this by clustering the
observations pertaining to the healthy disk set into k clusters using the K-means clustering
algorithm [112]. Next, for each cluster, we select the data points closest to the respective
cluster centroid as representatives for the healthy disk class. Finally, we generate a balanced
training dataset by choosing k close to the number of samples available for the replaced
disks. Using this technique is a pretty common way to tradeoff between using the complete
dataset which might give us a poor or overfitted model and randomly sampling some data
which might lead to underfitting.

6.2.4 Classification for disk replacements
In the following we will describe the classification algorithm we use for deciding whether
a disk needs to be replaced or not.

In the final step of our approach we fit a model that utilizes the training dataset generated
in the previous step and provides high quality disk replacement predictions for new, unseen
data. Formally, let D = {(xi, yi)}ni=1 denote the training dataset, where xi ∈ X is a
multivariate temporal observation. In this data, xi is not the raw data point anymore but it
is the aggregate value between time points ti−k and ti (using procedures described in Sect.
6.2.2 and Sect. 6.2.3) for the set of relevant SMART attributes, and y is a binary response
variable (y ∈ {0, 1}) representing the replacement outcome. We want to learn a function
h : X → {0, 1} that minimizes a loss function [87] `(h(x); y) that quantifies the prediction
quality. Intuitively the goal is to train a model that correctly predicts whether a disk needs
replacement (y = 1) or not (y = 0).

We tackle this problem using an ensemble model – the regularized greedy forests (RGF)
[123] approach that is a powerful, non-linear classification method. Ensemble models con-
sist of multiple base learners (e.g., decision trees) which are trained on random selections
of the input variables and on different bootrstrap samples from the training data. For pro-
ducing a class label, the input feature vector is fed to each base learner in the ensemble,
starting from the root, until it gets to the leaves. As each tree provides a class prediction,



6.2. Predicting disk replacement 107

the class label is computed through a voting mechanism (the class label with most votes is
returned).

We show that, for this task RGF delivers better quality predictions compared to other
tree ensemble based methods such as gradient boosted decision trees (GBDT) [89] or ran-
dom forests [100] and also outperforms other classification methods such as SVM [42], or
logistic regression [51].

The RGF algorithm is a variation of GBDT in which the structure search and the opti-
mization are decoupled. More specifically, the main differences are the following:

• RGF introduces an explicit regularization term, R(h), that takes advantage of indi-
vidual tree structures.

ĥ = argminh∈H [`(h(x); y) +R(h)] (6.4)

• RGF employs a fully-corrective greedy algorithm which iteratively modifies the weights
of all the leaf nodes (decision rules) currently obtained while new rules are added into
the forest by greedy search. Here, an explicit regularization is also included to avoid
overfitting and very large models.

• RGF utilizes the concept of structured sparsity [69] to perform greedy search directly
over the forest nodes based on the forest structure.

The general framework of RGF is given in Algorithm 6.2 which we describe in the follow-
ing. F represents a forest, and each node v of F is associated with the pair (bv, av), where
bv denotes the nonlinear function – which we also refer as basis function of node v, and av
the weight assigned to this node. The model of F is given by hF (x) =

∑
v∈F avbv(x) with

av = 0 for any internal node v.
In this setting, the regularized loss specified in Eq. 6.4 is a function of F : Q(F ) =

`(hF (x), y) + R(hF ). Further, S(F ) represents the set of all forest structure-changing
operations (i.e. the split of a node or the addition of a new tree) applicable to F .

Algorithm 6.2 Regularized Greedy Forest framework

F ← {}
while stopping criterion not met do

Fix weights and adjust forest structure s:
ŝ ← argmins∈S(F )Q(s(F )) (the optimum s that minimizes Q(F ) among all the

structures that can be obtained by applying one structure-changing operation to F ).
if some criterion is met then

Fix the structure and change the weights in F s.t. the loss is minimized in
Q(F ) (it can be optimized using a standard procedure (such as coordinate descent) if
the regularization penalty is standard e.g., L2-loss

end if
end while
Optimize leaf weights in F to minimize loss in Q(F )
return hF (x)



108 6. Predicting Disk Replacement from Sensor Data

6.2.5 Transfer learning
As illustrated in Figure 6.5, the data collected from different disk models are different. We
observe that different models of a single disk manufacturer have similar SMART reporting
but different distributions of the values reported for the SMART attributes. Therefore, uti-
lizing an existing predictive model created on the training data of a specific disk model will
not deliver the optimal predictive performance when directly applied on the data collected
from a different disk model from the same manufacturer. In data mining, this problem is
referred to as sample selection bias, covariate shift or dataset shift. Therefore, we apply a
transfer learning approach, in order to be able to use a prediction model trained on specific
disk model for a new disk model of the same manufacturer.

Note that such an approach is valuable as it transfers the expert knowledge gathered
over the years through historic data to a new disk model from a given manufacturer of
interest. We tackle the described dataset shift issue we have across disk models of a given
manufacturer as follows. We leverage the unlabeled data for the target (new) disk model to
conduct a sample selection de-biasing, as described in Algorithm 6.3.

The idea behind Algorithm 6.3 is to train a classifier that can rank the observations
linked to a specific disk model based on their similarity to observations pertaining to the
target disk model – the disk model for which we have labeled data. This corresponds to
the function f in our algorithm. Using this function, we can select a sample from the la-
beled disk data which is more representative for the disk population pertaining to the model
for which we don’t have labeled data. This data is then used to build a disk replacement
prediction model for the disk model which did not have labeled data.

As a paranthesis, this is a central idea to transfer learning – borrowing examples. In
[84], the authors exemplify this concept in the context of building a sofa detector, where
they borrow examples of other related classes, such as annotated images of armchairs. This
approach enables us to sample the observations from the original disk model (which are
already labeled) that are more representative for learning the class labels for the target disk
model, i.e. that matches the distribution of the original disk model to the target disk model.
Learning a predictive model using a training sample that reflects the distribution of the new
disk model results in higher quality predictions.

6.3 Evaluation
In the following, we present our experimental setup and the results obtained in each step of
our approach.

6.3.1 Data description and experimental setup
Our analysis is based on the Backblaze dataset [2]. The set contains public data collected
from 50984 hard disks, monitored over 27 months (April 2013 to June 2015), and each entry
corresponds to the sensor data for a day. Each entry of the dataset contains the following:
(1) timestamp, (2) disk serial number, (3) disk model, (4) disk capacity, (5) failure - ’0’ if
the drive is alive and ’1’ if the disk has been replaced the following day, and (6) SMART
monitoring data. From the disk models, we extract the manufacturers and we restrict our



6.3. Evaluation 109

Algorithm 6.3 Transfer learning for different models
Input: DDM1

= {xi, yi}ni , the labeled data collected from disk model 1, and DDM2
=

{x′i}mi the unlabeled data from disk model 2, where xi, x′i represent features and yi are the
labels.

1. Let DDM1
= {xi, yi}ni be the labeled data collected from disk model 1, and

DDM2
= {x′i}mi be the unlabeled data from disk model 2.

2. Let Daug = {xi, “DM1”}ni ∪ {x′i, “DM2”}mi . Note that we left out the labels yi
from DDM2 .

3. Use Daug to learn a function f : X → [0, 1], (e.g. logistic regression), such that
f(x) represents the probability of a disk being of type “DM2”.

4. Sample a subset Dsub from DDM1
such that probability of selecting a point x =

f(x).

5. Use Dsub to learn a function g : X → [0, 1] (call the procedure in Algorithm 6.2)
such that g(x) represents the probability of a disk of typeDM2 needing replacement.

Output: Predictive model for disk replacement for disk model 2.

analysis to Hitachi2 and Seagate1 due to the fact that for the other manufacturers, there are
only few samples in the dataset, or poor population of the SMART parameters. We also
exclude all monitoring data between April 2013 and January 2014, as more than 70% of
the SMART parameters are not collected. Thus the dataset we consider is gathered over 17
months.

First, we build and evaluate the predictive model described in this chapter for Seagate
ST4000DM000 (SgtA) and Hitachi HDS722020ALA330 (HitA). Then, we evaluate the
transfer learning approach on Seagate ST31500541AS (SgtB) and Hitachi HDS5C3030ALA630
(HitB), respectively. Further details on the data are presented in Table 6.1.

Original Post-aggregation
H R H R

SgtA 247524 543 17769 457
SgtB 30859 375 2188 227
HitA 75618 150 4616 115
HitB 74040 80 4662 73

Table 6.1: Healthy (H) vs. replaced (R) disks in the raw dataset and after data cleaning and aggrega-
tion for Hitachi and Seagate.

6.3.2 Feature selection – computation of relevant SMART attributes
First, note that for each SMART indicator there are two values recorded – the raw value,
and the normalized value. The raw value often represents counts or a physical unit (e.g., de-
grees Celsius or milliseconds). The normalized values are a vendor specific mapping of the



110 6. Predicting Disk Replacement from Sensor Data

Figure 6.2: Differences between the forecasted and the observed values for SMART 187 raw.

raw values such that, typically, higher values indicate healthy disks with some exceptions
(e.g., the temperature attribute for Seagate models). A detailed breakdown of the SMART
parameters is found in [14].

As presented in Section 2, we find the SMART indicators relevant for disk replacements
via changepoint analysis.

In Figure 6.2, we illustrate the evolution of the time series for a parameter, namely,
SMART 187 raw (reported uncorrectable errors) over 80 days for SgtA disk. Note that
after 50 days of usage the disk starts to accumulate uncorrectable errors, up to the point
where a replacement is necessary. Since there is a significant difference between the time
series observed on days 1 to 50 and the one observed on days 50 to 80, our algorithm detects
a changepoint 30 days before the disk has been replaced.

Figure 6.3: Distribution of the temperature and of the power on/off cycles across the replaced disks
for Hitachi and Seagate.

We perform the changepoint analysis for both Seagate and Hitachi disks and present
the results in Table 6.2. For each of the considered SMART parameters we report the
percentage of drives for which a correlation with disk is observed.

For Seagate, 63% of the replaced drives correlate with an increase in SMART 193 raw



6.3. Evaluation 111

SgtA HitA
Ratio Inp. Ratio Inp.

SMART 1 norm 23% X 28% X
SMART 1 raw 2% X 15% X
SMART 3 norm − × 13% X
SMART 3 raw − × 15% X
SMART 5 norm 2% X 22% X
SMART 5 raw 19% X 31% X
SMART 7 norm 14% X − ×
SMART 7 raw 26% X − ×
SMART 183 norm 0.5% × − ×
SMART 183 raw 0.5% × − ×
SMART 184 norm 1% X − ×
SMART 184 raw 1% X − ×
SMART 187 norm 21% X − ×
SMART 187 raw 21% X − ×
SMART 188 norm 0% × − ×
SMART 188 raw 10% X − ×
SMART 189 norm 1% X − ×
SMART 189 raw 1% X − ×
SMART 190 norm 2% X − ×
SMART 190 raw 2% X − ×
SMART 193 norm 10% X − ×
SMART 193 raw 63% X − ×
SMART 194 norm 2% X 31% X
SMART 194 raw 2% X 2% X
SMART 196 norm − × 20% X
SMART 196 raw − × 26% X
SMART 197 norm 5% X 4% X
SMART 197 raw 27% X 22% X
SMART 198 norm 6% X − ×
SMART 198 raw 27% X − ×
SMART 199 norm 0% × − ×
SMART 199 raw 0.5% × − ×
SMART 240 norm 0.5% × − ×
SMART 240 raw 21% X − ×
SMART 241 norm 0% − − ×
SMART 241 raw 15% X − ×
SMART 242 norm 0% × − ×
SMART 242 raw 19% X − ×

Table 6.2: SMART correlation frequencies for SgtA and HitA. A Xindicates the predictor is included
in the classification task.

(the load cycle count), and between 19 and 26% of them also correlate with SMART 7 raw
(seek error count), SMART 1 normalized (read error rate), SMART 240 raw (transfer er-
ror rate), SMART 197 raw (nr. of pending sectors), SMART 198 raw (uncorrectable sector
count), SMART 187 raw (number of uncorrectable errors), as well as SMART 5 raw (re-
allocated sector count).

For Hitachi, only some of these SMART parameters are indicative of drive replace-
ments. Among the top correlated indicators for Hitachi (30-47%), we note SMART 196 raw
(reallocation event count), SMART 194 normalized (internal temperature), SMART 5 raw



112 6. Predicting Disk Replacement from Sensor Data

Figure 6.4: Distribution of the number of days before replacement when the changepoint was ob-
served.

and SMART 197 raw.
We also note that it’s mostly the raw values of SMART indicators that correlate with

impending replacements. This is expected, since, the normalized values are computed based
on generous thresholds, where a replacement can also occur before the normalized value
changes at all.

The changepoint analysis also shows that some SMART indicators correlate stronger
with the replacements of the Seagate model than with those of the Hitachi model, and vice
versa. We discuss these differences in the context of SMART 194 (the disk internal temper-
ature). Relative to temperature, as we can see in Table 6.2 31% of the Hitachi replaced disks
correlate to disk replacement, compared to only 2% for Seagate. By correlation we denote
that a significant change in a given attribute occurred before the replacement occurred. We
attribute this to the overall higher temperatures that characterize the Hitachi disks, as shown
through the comparative plots in Fig. 6.3. Although the distributions are similar, there is a
clear shift towards higher temperature for Hitachi, by 5 to 10 degrees Celsius.

6.3.3 Compact time series representations
Fig. 6.4 shows the distribution of the number of days before replacement when the change-
point was observed for six SMART indicators (SMART 1 raw – read error rate , SMART 5
raw – the number of reallocated sectors, SMART 197 raw – the number of pending sec-
tors, SMART 187 raw – the reported uncorrectable errors, SMART 7 raw – the seek error
count and SMART 240 raw – the transfer error rate). Note how the median values are dif-
ferent from one predictor to another. We use these median values to select the length of the
window of the time series when creating the compact representation.

We notice that on the one hand, for the number of reallocated sectors and of pend-
ing sectors (SMART 5 raw and SMART 197 raw), considering the last 12 and 10 days,
respectively, before the disk replacement in the predictive model is sufficient. This is be-
cause an increase in either of these two parameters indicates that a remapping operation
is necessary (i.e., data from the defective sector is transferred to a spare area). As shown



6.3. Evaluation 113

RGF GBDT RF SVM LR DT
SgtA HitA SgtA HitA SgtA HitA SgtA HitA SgtA HitA SgtA HitA

P 0.98 0.84 0.97 0.82 0.93 0.82 0.93 0.72 0.73 0.72 0.89 0.74
Replaced R 0.98 0.79 0.96 0.78 0.94 0.76 0.95 0.65 0.81 0.59 0.87 0.61

F 0.98 0.81 0.96 0.80 0.94 0.79 0.94 0.68 0.77 0.65 0.88 0.67
Sd 0.01 0.02 0.01 0.04 0.05 0.08 0.02 0.05 0.07 0.1 0.04 0.03
P 0.99 0.93 0.98 0.92 0.97 0.92 0.97 0.87 0.89 0.85 0.94 0.86

Healthy R 0.98 0.95 0.98 0.94 0.96 0.93 0.96 0.90 0.85 0.90 0.95 0.91
F 0.98 0.94 0.98 0.93 0.97 0.92 0.96 0.88 0.87 0.87 0.94 0.88
Sd 0.01 0.02 0.02 0.03 0.04 0.05 0.02 0.04 0.08 0.05 0.02 0.02

Table 6.3: Precision, Recall, F-score, Deviation of different classifiers - median on 100 runs , each of
which using randomly-drawn training and test data points

in [54], a drive which has had any reallocated or pending sectors at all is significantly more
likely to fail in the nearest future. An even stronger indicator for replacement is the read
error rate (SMART 1 raw), which represents the rate of hardware read errors while reading
data from the disk surface. It indicates a critical problem with the read/write heads (e.g.,
head resonance or contamination, broken head, etc.) and in most cases an imminent failure.
From our dataset, we find that for this predictor, looking back only 4 days in the past is
sufficient for the predictive model. Similarly, a drive with uncorrectable errors as indicated
by SMART 187 raw (i.e., cannot be recovered using hardware ECC) may need to replaced
about 15 days after the event.

On the other hand, for the seek error rate and for the transfer error rate, SMART 7 raw
and SMART 240 raw respectively, the algorithm considers the past 25 days in the aggrega-
tion process. Both are indicative of malfunctions of the magnetic heads, but hinder perfor-
mance primarily and lead to failures only in a second phase. For instance, seek errors hint
at the drive overshooting or undershooting the correct track when it moves the heads. This
implies it will need to perform another seek to acquire the track before it can read or write
data.

6.3.4 Classification for disk replacements
Since only 2.5 to 3% of the disks for both SgtA and HitA models are replaced, the classifier
will be biased towards the healthy drives. Thus, we downsample the healthy class to an
amount that is close to the size of the replaced class. We choose to downsample to 1000
for SgtA and to 500 for HitA. These values are chosen based on the error estimate of the
Regularized Greedy Forest (RGF) classifier. Consequently, we run K-means with 100 and
50 clusters as inputs and subsequently for each cluster we select the top 10 data points
closest to the centroid of each cluster.

The SMART attributes used to build the predictive model correspond to the rows that
have non-null entries and values higher than 1% in Table 6.2. In essence, for the Seagate
model we use 26 SMART predictors and for the Hitachi model only 12. This discrepancy
in the amount of predictors we feed to the Seagate model versus the Hitachi one will be
reflected in the difference in performance of the classifiers.

To evaluate the classifier’s performance, we measure precision, recall and F-score as
defined below, for both replaced and healthy classes. Precision (P) is used to measure the
ability of the classifier to correctly identify disks at risk. Recall (R) measures the classifier’s
sensitivity, i.e the the ability of the classifier to capture all replaced disks. A higher recall



114 6. Predicting Disk Replacement from Sensor Data

is equivalent to minimizing the number of false negatives (i.e., the number of disks labeled
as healthy when they were actually replaced). The F-score is the combined score between
precision and recall, or the weighted harmonic mean.

P =
tp

tp+ fp
R =

tp

tp+ fn
F-score =

2PR

P +R

In the definitions above, tp, tn stand for true positives and negatives respectively, whereas
fp, fn stand for false positives and negatives respectively. We perform a systematic com-
parison with different classifiers. In order to assess the goodness of each classifier we run
the following experiment. We generate 100 random splits of the dataset into training (80%)
and test (20%). The split is done through sampling without replacement of a disk model
from the population of disks. For each such split, we train the model on the training set and
evaluate it on the test set and compare the performance of RGF with that of other classifiers
such as Random Forests (RF), Gradient Boosted Decision Trees (GBDT), Support Vector
Machines (SVM), Logistic Regression (LR) and decision trees (DT).

For a fair comparison, we have performed parameter tuning (grid search on parameter
space to maximize accuracy) for all the parametric classifiers. For RGF, we have obtained
the best performance when using the L2 regularizer. There were two L2 regularization
parameters to be tuned: one for weight optimization – which was set to 1 and and the other
for tree learning which was set to 0.005 following the results obtained in the grid search.
The model size in terms of the number of leaf nodes in the forest was set to 10000 leafs.
The results are given in Table 6.3.

In case of the replaced disks, the model exhibits better prediction quality for Seagate,
where we have 4x more data points and 2x more non-null SMART indicators, with 98%
accuracy and 1-2% error over 100 runs. The precision, recall and F-score for Hitachi are
lower by 14-19% and the error is higher – 2%, due to a smaller number of drives in the set
and 60% less predictors.

For the healthy class, the model achieves similar performance for Seagate as on the
replaced class, with 99% precision and 98% recall and F-score. In the case of Hitachi,
the model achieves better performance in discriminating the healthy drives as compared to
the faulty ones, by 15% on average. We attribute this boost in accuracy to the fact that
healthy disks are easier to identify due to the lower variability in the values of the SMART
parameters recorded for them.

6.3.5 Transfer learning
Figure 5 illustrates the covariate shift for various relevant predictors between different disk
models from the same manufacturer. This demonstrates that if we want to reuse the data
from one model to build a predictive model for another one, we need to employ appropriate
transfer learning.

To illustrate the usefulness of our transfer learning approach we compare the models
trained and evaluated on SgtA and HitA with the models built with transfer learning and
tested on SgtB and HitB, respectively. The results are given in Table 6.4.

The gain in predictive performance achieved from using transfer learning when building
the new disk models (SgtB and HitB, respectively) compared to directly evaluating the base



6.3. Evaluation 115

Figure 6.5: Covariate shift for the two Seagate models

model (trained on SgtA and HitA, respectively) on the new disk models is shown in Table
6.4. We obtain 50% increase in the accuracy of the model with transfer learning compared
to the accuracy of the base for model SgtA. Also for Hitachi, transfer learning boosts the
accuracy of the model by 20%.

6.3.6 Comparison with human designed replacement policies
As mentioned in Section 6.1, a drive is labeled as failed when it stopped working, it is non-
responsive to commands, the RAID system reports that the drive cannot be written or read,
or it shows evidence of failing soon [9]. Currently, datacenter administrators at Backblaze
only focus on a very small set of SMART indicators (5, 187, 188, 197, 198) [9]. However,
we illustrate that if one were to do proactive replacement using only this small subset of
indicators, the number of disks one could correctly identify drops by almost 50%.

In order to mimic a set of such replacement rules we train a decision tree on the afore-
mentioned subset of SMART indicators. We report the results in Table 6.5.

Note the differences in recall for SgtA and HitA for our model (98% and 81% respec-
tively) compared to a simple rules based model (53% and 44% respectively) – see Table 6.5
vs. Table 6.3. Our solution employs powerful learning methods, leverages a larger set of
relevant SMART attributes and hence has numerous advantages: captures a higher amount
of the failure patterns of disks (high recall), it has low false alarm rate, early detection
of disks that need to be replaced, and enables transferring the knowledge acquired by ex-



116 6. Predicting Disk Replacement from Sensor Data

SgtB HitB
Base Tr. Learn. Base Tr. Learn.

Replaced P 0.65 0.90 0.53 0.76
R 0.52 0.82 0.84 0.78
F 0.58 0.86 0.65 0.77

Healthy P 0.89 0.96 0.92 0.83
R 0.93 0.98 0.73 0.82
F 0.91 0.97 0.81 0.83

Table 6.4: Precision, recall and F-score to illustrate the importance of transfer learning

DT on the reduced subset
SgtA HitA

Precision 0.95 0.66
Replaced Recall 0.53 0.44

F-score 0.68 0.51
Sd 0.06 0.15
Precision 0.70 0.84

Healthy Recall 0.98 0.96
F-score 0.81 0.92
Sd 0.02 0.12

Table 6.5: Simple decision tree with (insufficient but commonly used) subset of SMART indicators

pert data center administrators on specific disk models to new disk models from the same
manufacturer.

6.3.7 Early vs. late replacement detection
While one would prefer to use as much as possible from the lifespan of a disk, being able
to detect an impending failure early on allows administrators to plan properly for replace-
ments. Therefore, we evaluate how many of the replaced disks our model correctly captures
based on snapshots of the SMART indicators taken 1, 3, 10 and 30 days prior to the actual
replacement. We expect this amount to be higher when using the snapshots closer to the
failure event, since SMART attributes would become more indicative of the impeding re-
placement, thus making the model more accurate. Figure 6.6 shows the results obtained for

Figure 6.6: Percentage of disks correctly predicted as replaced on snapshots taken 1,3,10 and 30 days
before the actual replacement event.



6.3. Evaluation 117

Line Model Rule Output Conf
1 Seagate If SMART 197 raw < 2 and SMART 188 raw > 0 Healthy 100%

and SMART 1 normalized ∈ [0, 117)
2 Seagate If SMART 197 raw ≥ 2 Replace 100%
3 Seagate If SMART 197 raw < 2 and SMART 188 raw > 0 Replace 80%

and SMART 1 normalized > 117
4 Seagate If SMART 197 raw < 2 and SMART 188 raw = 0 Replace 97%

and SMART 187 normalized < 100
and SMART 240 raw < 14780 billion

5 Hitachi If SMART 197 raw > 1 and SMART 3 raw > 626 Replace 100%
6 Hitachi If SMART 197 raw > 5 and SMART 3 raw < 626 Replace 92%

and SMART 5 raw > 17
7 Hitachi If SMART 197 raw > 1 and SMART 3 raw < 626 Replace 100%

and SMART 5 raw < 17
8 Hitachi If SMART 197 raw < 1 and SMART 5 raw < 7200 Healthy 97%

and SMART 3 raw > 629 and SMART 1 raw ∈ [0, 109]

Table 6.6: Examples of rules extracted from a decision tree model trained on the Seagate and Hitachi.

both Seagate and Hitachi. On the one hand, for SgtA, the model correctly identifies 97%
of the faulty disks 3 days prior, 92% of them 10 days in advance and, then, sees a more
significant decrease to 73% for up to 30 days in the past. On the other hand, for HitA,
the decrease in percentage is less dramatic, as 84% of replaced disks are predicted 3 days
before the event and 75% of them 30 days prior. The ratio late vs. early detection is similar
for the model built with transfer learning for SgtB and HitB. Compared to the current pre-
dictive model implemented in SMART, which mostly warns about a disk failure in the last
minute, our model has a major advantage. For both Seagate and Hitachi, an administrator
can identify 73 to 75% of the disks to replace a month in advance, which provides her/him
with the possibility of planning the replacement in advance, while still using the drives for
another 25-30 days.

6.3.8 SMART indicator rules
Once we have the balanced training dataset comprising the informative SMART attributes
in a compact form (this is obtained by running steps 1 through 3 in Algorithm 1) we can use
it to fit a decision tree and extract a set of rules that can be used to predict disk replacements.
We present rules that are of the form of the underlying learner, more specifically:

Rule(x) =
∏
j

I (x[ij ] ≤ tj)
∏
k

I (x[ik] > tk) (6.5)

where {(ij , tj), (ik, tk)} represent a set of (smart attribute index, threshold) pairs and I (z) =
1 if z is true and 0 otherwise. The rules provide a detailed insight into the information on
the relation among the relevant SMART attributes and the disk replacements available in
our training dataset.

Examples of such rules for both SgtA and HitA are provided in Table 6.6, together with
the predicted outcome for the disks adhering to these rules and the prediction confidence.
Each rule is composed of one or more single SMART parameter conditions. The fewer con-
ditions, the higher the correlation of the corresponding SMART indicators to the healthy or



118 6. Predicting Disk Replacement from Sensor Data

faulty state of the disks. For instance, in the case of Seagate, the second rule states with
100% confidence that if SMART 197 raw is at least 2, that is the disk has at least two pend-
ing sectors, it should be replaced. On the other hand, if its value is below 2, the outcome
of the prediction can go both ways, depending on other parameters’ values. As an exam-
ple, consider rules 1 and 3, in which the one indicator that changes the prediction output is
the normalized read error rate (SMART 1 normalized). As predicted by our decision tree
model, if the number of read errors exceeds 800 thousand, then the disk status is unhealthy.

For Hitachi, the majority contain at most three conditions. As seen in lines 5–8, an
indicative combination of attributes is (SMART 197 raw, SMART 3 raw). Line 5 shows
that if the number of pending sectors is higher than 1 and the average time spent during a
spin up operation exceeds 626 milliseconds, the model predicts an impending faulty state
of the disk with 100% confidence. However, if the spin up time is lower, it also considers
the number of reallocated sectors in its decision and determines that even with less than 17
such sectors, the disk should be replaced (Line 7). A healthy state is predicted with 97%
confidence when the disk has no pending and at most 7200 reallocated sectors, a slow spin
up time (i.e., higher than 629 milliseconds) and less than 109 read errors.

Comparing Seagate and Hitachi, we make the following remarks. First, the primarily
important SMART indicators are sowewhat different. The pending sector count and the read
error rate seem to be model and even manufacturer agnostic, while the command timeout
(SMART 188), the average spin up time and the reallocated sectors count are disk model-
specific. Second, we note a very large difference in the number of read errors that determine
a faulty disk state. For Seagate, this threshold is in hundreds of millions, while for Hitachi
they are 6 orders of magnitude lower. We attribute this gap to the fact that this indicator is
vendor specific, and therefore a comparison across manufacturers is not feasible.

6.4 Deployment

Our predictive model has been designed foresee when a disk replacement is needed and al-
low for more efficient, scheduled maintenance processes in place of the inefficient, reactive
repairs procedures. Especially for enterprise workloads, where at least three nines (99.9%)
data availability needs to be guaranteed, current storage systems (e.g., IBM DS8000/8800)
use an incorporated Predictive Failure Analysis (PFA) component jointly with RAID (Re-
dundant Array of Independent Disks) to anticipate certain forms of disk failures. Such a
model is threshold-based and uses only read and write error statistics to nominate disks for
replacement. As shown in Table 6.5, thresholds lead to less accurate replacement decisions,
therefore integrating our approach in the PFA enables more accurate replacement strategies.
RAID on the other side is an implementation of the idea of combining several (often cheap)
drives into a single volume with higher capacity. It was thought for redundancy such that
the data remains available in the presence of a failure. There are multiple types of RAID
implementations [12], the most common of which being RAID 5 and RAID 6.

We exemplify how our component could be integrated for rebuilding a RAID 5 array
when a disk is signaled as likely to fail, through smart rebuild [13]. An early signal enables
the disk to still be available for I/O operations, and thus kept in the array, rather than being
rejected because of a standard rebuild. A spare disk can be either used from the array or



6.5. Related work 119

brought in if none is available. The signaled drive and the spare are put in a temporary
RAID 1 (full mirroring), therefore allowing the duplication of the faulty drive onto the
spare, rather than performing full RAID reconstruction which slows down the entire array’s
performance. The spare becomes a regular member of the array and the signaled-to-be-
faulty disk can be safely removed from the disk, without any risk of data loss.

By using such models that can detect failures early in advance and have low ratios
of false positives, the array would never go through a time consuming n-1 stage where it
would be exposed to complete RAID failure if another drive fails in the meantime. Thus,
the benefits – time saving and increased availability – are substantial.

Figure 6.7: Integration of the predictive replacement component with storage arrays

In Figure 7, we show how our predictive component could be used in interaction with
the RAID array and the steps necessary for the automatic rebuild: the predictive component
signals a disk with impending failure (1), mirroring is started on the spare (2), unhealthy
disk is replaced by its healthy mirror (3). The process falls back to RAID rebuild only if
necessary.

Our failure model can be deployed in large scale environments (e.g data centers), pro-
vided that two conditions are fulfilled. First, the SMART parameters identified as relevant
(see Table 6.2) should be continuously measured by the manufacturer. Second in order
to learn such model for different manufacturers, even though failed disks represent only a
small fraction compared to the healthy ones, in absolute terms, these need to be in the order
of hundreds for the model to achieve precision and recall higher than 80%.

6.5 Related work
Researchers have performed a couple of large-scale studies on disk failures, the most no-
table ones pertaining to the authors of [28, 54]. They observed that the field replacement
rates of drives are significantly higher than those in the technical datasheets – 2-10 times
higher for disks aged less than 5 years and up to 30 times higher for disks between 5 and
8 years. They also demonstrate a significant overestimation of MTTF by the manufacturer.
The authors also observed a continuous increase in the replacement rates, starting already



120 6. Predicting Disk Replacement from Sensor Data

in the second year of operation and a high correlation between the first error and a later disk
failure. Our analysis also confirms these findings.

This line of research is complemented by works of [145, 62, 60, 92, 163] where the
focus is on building a predictive model for the timely discovery of impending disk fail-
ures. In [62], the authors employ Bayesian methods to model disk drive failures based on
SMART data. First, they solve an anomaly detection problem (i.e., by looking back in the
life-span of the drive and establishing if any of the previous observations is an anomaly).
They achieve this by applying a mixture model based on naive Bayes clusters trained using
expectation-maximization. Second, they train a naive Bayes classifier which predicts that a
drive will fail if any of its snapshots are identified as anomalous or as failures. They evalu-
ate the approach on a smaller dataset, consisting of 1936 drives, out of which only 9 were
marked as failed, with a detection rate of up to 55% only.

The authors of [60] explore the capabilities of statistical tests such as the multivariate
rank sum test to improve failure warning accuracy and lower false alarms. Their dataset is
also fairly small with only 3744 drives (out of which 36 failures), coming from two different
models and with each set containing at most 3 months of reliability design test data. The
highest accuracies achieved were modest (40%-60%) at 5% anual failure rate. A different
model for predicting failures is proposed in [92], comprising of an algorithm based on the
multiple-instance learning framework and the naive Bayes classifier. The dataset used was
again very small - only data from 369 drives.

There are several key differences between the aforementioned studies and ours. First,
the number of disks we consider is significantly larger, with over 23000 drives. Second, our
approach focuses on selecting the SMART indicators that correlate with disk replacements
and proposes stable representations of the time series data for each disk as input to the pre-
dictive model. Last, but not least, some studies are based on monitoring data from drives
used in accelerated life tests, whereas we rely only on field data collected when the disks
where in actual use. The problem with data collected during testing in uniform controlled
environments is that although it can be insightful in understanding the role of certain en-
vironmental factors, it has been shown to be not informative enough with respect to actual
failure rates observed in the field [93].

Finally, we note that some manufacturers deploy the disks with embedded failure pre-
dictive models. However, these models are based on simple methods, such as threshold-
based normalizations which according to field observations these models are built such that
they avoid false alarms at the expense of a weak predictive power [28, 54, 74].

The computational complexity of the proposed approach is rather low, as most time is
spent in the training phase (which may take a few seconds) while the prediction is very fast
- within less than one second.

6.6 Conclusions

In this chapter, we presented a machine learning-based pipeline for predicting disk replace-
ments, built and evaluated on real data from a large disk population from two different
manufacturers. We demonstrate the ability of our model built using SMART data to predict
disk replacements with high accuracy. A changepoint based selection and a compact rep-



6.6. Conclusions 121

resentation of the time series data for the SMART indicators plugged into a RGF classifier
achieves up to 98% accuracy in predicting replacements, 10-15 days in advance. As ex-
pected, such models are sensitive to the number of SMART attributes they learn from and
the size of the available training data. Given that in our original dataset there were consid-
erably less indicators with non-null values for Seagate, we were able to build a model with
24 attributes for Seagate contrary to 12 only for Hitachi. This together with the dataset size
explains the 17% difference in accuracy for the two disk models – 98% and 81%, respec-
tively. We also demonstrated how transfer learning can be used to reuse the information
available in the labeled dataset for a disk model from a specific manufacturer to build a
high quality predictive model for a new disk model from the same manufacturer with no
available labeled data.

We believe that such high quality models have many practical benefits. First of all, they
can be easily applied to any disk model or manufacturer as long as SMART data is col-
lected. Second, they provide an automatic tool for the disk replacement problem that can
be a valuable asset enabling the administrators to identify faulty disks in due time. Last but
not least, the predictive models mitigate the reliability issues of storage service providers
by allowing administrators to backup the data and plan the actual replacement in advance.
Also note that all these benefits are achievable based only on data that is automatically
collected from the disk and no extra effort is necessary.

6.6.1 Instantiation of the predictive pipeline to workflows
Since the work we described in this chapter was driven by a specific use case – prediction
of disk replacement, we have highlighted its potential mostly with regard to the use case.
However, its scope can be extended to other use cases, especially in the space of workflows.

Monitoring and analyzing process execution is important for understanding and antic-
ipating the evolution of the process, as this can increase the effectiveness of the business
operation and help in dealing with operational risk [136]. Broadly speaking, if we want
to predict the next state (given there is a choice) or the outcome of a process instance, our
pipeline requires the existence of a set of parameters that are considered to be indicative for
the purpose and whose values can be fetched periodically. The particular characteristics of
the data and of the problem at hand might make some of the modules in our pipeline redun-
dant (e.g., assume we have a balanced dataset and downsampling is not necessary anymore)
or it might be the case that additional modules might be necessary such as an imputation
[26] module for the cases where we are confronted with the problem of missing data.

1Seagate is a trademark of Seagate Technology LLC.
2Hitachi is a registered trademark of Hitachi, Ltd., and/or its affiliates in the United States and other countries.



122 6. Predicting Disk Replacement from Sensor Data

A
ttribute

code
D

efinition
SM

A
R

T
1

R
ead

errorrate
–

o
the

rate
ofhardw

are
read

errors
thatoccurred

w
hen

reading
data

from
a

disk
surface

SM
A

R
T

3
Spin-U

p
Tim

e
–

average
tim

e
ofspindle

spin
up

SM
A

R
T

5
R

eallocated
sectors

count–
raw

value
represents

a
countofthe

bad
sectors

found
and

rem
apped

SM
A

R
T

7
Seek

errorcount–
rate

ofseek
errors

ofthe
m

agnetic
heads

SM
A

R
T

183
SA

TA
dow

nshifterrorcountorruntim
e

bad
block

–nr.ofdata
blocks

w
ith

detected,uncorrectable
errors

SM
A

R
T

184
C

ountofparity
errors

w
hich

occurin
the

data
path

to
the

m
edia

via
the

drive’s
cache

R
A

M
SM

A
R

T
187

R
eported

uncorrectable
errors

–
countoferrors

thatcould
notbe

recovered
using

hardw
are

E
C

C
SM

A
R

T
188

C
ountofaborted

operations
due

to
H

D
D

tim
eout

SM
A

R
T

189
C

ountoftim
es

w
hen

a
recording

head
is

flying
outside

its
norm

alrange
SM

A
R

T
190

A
irflow

tem
perature

SM
A

R
T

193
C

ountofload/unload
cycles

into
head

landing
zone

position
SM

A
R

T
194

C
urrentinternaltem

perature
SM

A
R

T
196

R
eallocation

eventcount–
countofattem

pts
to

transferdata
from

reallocated
sectors

to
a

spare
area

SM
A

R
T

197
C

ountofunstable
sectors

because
ofunrecoverable

read
errors

SM
A

R
T

198
U

ncorrectable
Sector–

countofuncorrectable
errors

w
hen

reading/w
riting

a
sector

SM
A

R
T

199
U

ltraD
M

A
C

R
C

errorcount–countoferrors
in

data
transfervia

the
interface

cable
as

given
by

IC
R

C
SM

A
R

T
240

Transfererrorrate
–

countoftim
es

the
link

is
resetduring

a
data

transfer
SM

A
R

T
241

TotalL
B

A
s

w
ritten

SM
A

R
T

242
TotalL

B
A

s
read

Table
6.7:SM

A
R

T
attributes

and
theirdefinitions.



Chapter 7

Concluding Remarks

Business processes management is comprised of several parts such as the process speci-
fication, the modeling, the analysis and the process execution. Observations collected on
process execution might lead to iterations on the aforementioned steps.

In our thesis we focused on the analysis of processes from different perspectives. The
static perspective when we are given the process, duration estimates and resource count
assumptions and a dynamic perspective when the focus is on the data inputs and process
execution logs.

We have devised new polynomial-time algorithms that extend the understanding of the
timing behavior of business processes. First, we assumed that we have control over the
choices made in the process at runtime and we asked whether there exists an execution of
the process which meets a given deadline. This boils down to computing the minimum
duration of an execution. We have shown that the minimum duration of an execution of a
workflow graph executed by a single resource or by an unbounded number of resources can
be computed in polynomial time.

For workflow graphs with probabilistic choice we studied different problems such as the
probability of a deadline transgression to occur and the expected duration of an execution.
We have proven that computing whether the probability of an execution with a single re-
source terminating before the deadline exceeds a given threshold is NP-hard. The hardness
results carries over for the case when we assume an unbounded number of resources.

We showed that computing the expected duration of a workflow graph executed by a
single resource can be achieved in polynomial time. In contrast to this result, when we
assume an unbounded number of resources, we have proven that computing the expected
duration is NP-hard even for regular graphs.

Often, there exists a gap in between what is sought in practice for business process
management and the theoretical accomplishments in the Petri nets field. This motivated us
to also performed a case study, on data obtained from a Dutch financial institution. In this
case study, we mined the logs for the underlying business process, then translated it to the
workflow graph representation, we computed the event durations and transition probabili-
ties and finally employed our algorithms on this data. We showed that our algorithms are
feasible to use in practice, as their runtime is negligible they can provide additional insights
on the process.

In the second part of this dissertation we analyzed the processes taking a data-centric

123



124 7. Concluding Remarks

approach. We tapped into the field of process mining by unveiling root causes of workflow
execution issues which were not visible at design-time but were apparent in practice.

We focused on historic execution logs and sought opportunities for improving the per-
formance of the process, by making better decisions at run-time or by automating certain
tasks. To this end, we have shown in two different case studies, that process execution data
is valuable in developing tools for process automation that can save costs and/or decrease
the execution time of business processes.

We demonstrated on real data that considering empirical evidence on which agent is the
most efficient on resolving incident tickets in the dispatching process significantly reduces
service time. The main observation and contribution was the discovery of incident ticket
categories which are both topically similar but also homogeneous in terms of the execution
time for a particular agent.

Lastly, we looked into the hard disk’s life cycle process and the possibility of predicting
when a disk needs to be replaced. We presented a machine learning-based pipeline for
predicting disk replacements, built and evaluated on real data from a large disk population
from two different manufacturers. We demonstrated the ability of our model to predict disk
replacements with high accuracy.



Bibliography

[1] Automatic ticket dispatching. https://www.manageengine.com/
products/service-desk-msp/automatic-ticket-dispatch.
html.

[2] Backblaze dataset. https://www.backblaze.com/
hard-drive-test-data.html.

[3] Best practice incident resolution workflow. http://wiki.servicenow.
com/index.php?title=Best_Practice_Incident_Resolution_
Workflow.

[4] Best practice incident resolution workflow. http://www.
datacenterknowledge.com/archives/2008/05/30/
failure-rates-in-google-data-centers/.

[5] Bpmn specification. http://www.omg.org/spec/BPMN/2.0/.

[6] Business process simulation with jbpm. http://camunda.com/download/
20080201-bernd-ruecker-business-process-simulation-with-jbpm.
pdf.

[7] Comparing and aligning process representations. http:
//hanvanderaa.com/wp-content/uploads/2017/11/
PhDThesis2018-Comparing-and-Aligning-Process-Representations-preprint-1.
pdf.

[8] Data center downtime costs. http://www.emerson.com/en-us/News/
Pages/Net-Power-Study-Data-Center.aspx.

[9] Hard drive smart stats. https://www.backblaze.com/blog/
hard-drive-smart-stats/.

[10] Process mining on the loan application process of a dutch financial insti-
tute. https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=
2017:bpi2017_winner_professional.pdf. Accessed: 2018-06-30.

125

https://www.manageengine.com/products/service-desk-msp/automatic-ticket-dispatch.html
https://www.manageengine.com/products/service-desk-msp/automatic-ticket-dispatch.html
https://www.manageengine.com/products/service-desk-msp/automatic-ticket-dispatch.html
https://www.backblaze.com/hard-drive-test-data.html
https://www.backblaze.com/hard-drive-test-data.html
http://wiki.servicenow.com/index.php?title=Best_Practice_Incident_Resolution_Workflow
http://wiki.servicenow.com/index.php?title=Best_Practice_Incident_Resolution_Workflow
http://wiki.servicenow.com/index.php?title=Best_Practice_Incident_Resolution_Workflow
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.datacenterknowledge.com/archives/2008/05/30/failure-rates-in-google-data-centers/
http://www.omg.org/spec/BPMN/2.0/
http://camunda.com/download/20080201-bernd-ruecker-business-process-simulation-with-jbpm.pdf
http://camunda.com/download/20080201-bernd-ruecker-business-process-simulation-with-jbpm.pdf
http://camunda.com/download/20080201-bernd-ruecker-business-process-simulation-with-jbpm.pdf
http://hanvanderaa.com/wp-content/uploads/2017/11/PhDThesis2018-Comparing-and-Aligning-Process-Representations-preprint-1.pdf
http://hanvanderaa.com/wp-content/uploads/2017/11/PhDThesis2018-Comparing-and-Aligning-Process-Representations-preprint-1.pdf
http://hanvanderaa.com/wp-content/uploads/2017/11/PhDThesis2018-Comparing-and-Aligning-Process-Representations-preprint-1.pdf
http://hanvanderaa.com/wp-content/uploads/2017/11/PhDThesis2018-Comparing-and-Aligning-Process-Representations-preprint-1.pdf
http://www.emerson.com/en-us/News/Pages/Net-Power-Study-Data-Center.aspx
http://www.emerson.com/en-us/News/Pages/Net-Power-Study-Data-Center.aspx
https://www.backblaze.com/blog/hard-drive-smart-stats/
https://www.backblaze.com/blog/hard-drive-smart-stats/
https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_winner_professional.pdf
https://www.win.tue.nl/bpi/lib/exe/fetch.php?media=2017:bpi2017_winner_professional.pdf


126 Bibliography

[11] Signavio - bpm and simulation white paper. https://
www.signavio.com/wp-content/uploads/2012/09/
BPM-and-Simulation-white-paper.pdf.

[12] Standard raid levels. https://en.wikipedia.org/wiki/Standard_
RAID_levels.

[13] IBM system storage DS8000 architecture and implementation. http://www.
redbooks.ibm.com/redbooks/pdfs/sg248886.pdf.

[14] S.M.A.R.T. https://en.wikipedia.org/wiki/S.M.A.R.T.

[15] The ticket dispatching process. https://www.
researchgate.net/figure/259551586_fig1_
FIGURE-1-Ticket-dispatching-process.

[16] Using auto dispatching. http://wiki.servicenow.com/index.php?
title=Using_Auto-Dispatch#gsc.tab=0.

[17] Adriansyah A. and Buijs J. Mining process performance from event logs. In Marcello
La Rosa and Pnina Soffer, editors, Business Process Management Workshops, pages
217–218, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[18] Gionis A., Mannila H., and Tsaparas P. Clustering aggregation. ACM Transactions
on Knowledge Discovery from Data, 1(1), March 2007.

[19] Jardine A., Lin D., and Banjevic D. A review on machinery diagnostics and prog-
nostics implementing condition-based maintenance. Mechanical systems and signal
processing, 20(7):1483–1510, 2006.

[20] Kumar A., Dijkman R.M., and Song M. Optimal resource assignment in workflows
for maximizing cooperation. In BPM, pages 235–250, 2013.

[21] Ray A. and Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line
failure prognostics. IEEE Transactions on Control Systems Technology, 4(4):443–
451, 1996.

[22] Rozinat A. and Van der Aalst W.M.P. Decision mining in business processes. Beta,
Research School for Operations Management and Logistics, 2006.

[23] Rozinat A. and Van der Aalst W.M.P. Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[24] Voisin A., Levrat E., P. Cocheteux, and Iung B. Generic prognosis model for proac-
tive maintenance decision support: application to pre-industrial e-maintenance test
bed. Journal of Intelligent Manufacturing, 21(2):177–193, 2010.

[25] Ter Hofstede A.H.M., Van der Aalst W.M.P., Adams M., and Russell N., edi-
tors. Modern Business Process Automation - YAWL and its Support Environment.
Springer, 2010.

https://www.signavio.com/wp-content/uploads/2012/09/BPM-and-Simulation-white-paper.pdf
https://www.signavio.com/wp-content/uploads/2012/09/BPM-and-Simulation-white-paper.pdf
https://www.signavio.com/wp-content/uploads/2012/09/BPM-and-Simulation-white-paper.pdf
https://en.wikipedia.org/wiki/Standard_RAID_levels
https://en.wikipedia.org/wiki/Standard_RAID_levels
http://www.redbooks.ibm.com/redbooks/pdfs/sg248886.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg248886.pdf
https://en.wikipedia.org/wiki/S.M.A.R.T.
https://www.researchgate.net/figure/259551586_fig1_FIGURE-1-Ticket-dispatching-process 
https://www.researchgate.net/figure/259551586_fig1_FIGURE-1-Ticket-dispatching-process 
https://www.researchgate.net/figure/259551586_fig1_FIGURE-1-Ticket-dispatching-process 
http://wiki.servicenow.com/index.php?title=Using_Auto-Dispatch#gsc.tab=0 
http://wiki.servicenow.com/index.php?title=Using_Auto-Dispatch#gsc.tab=0 


Bibliography 127

[26] Efron B. Missing data, imputation, and the bootstrap. Journal of the American
Statistical Association, 89(426):463–475, 1994.

[27] Gaujal B., Haar S., and Mairesse J. Blocking a transition in a free choice net and what
it tells about its throughput. Journal of Computer and System Sciences, 66(3):515 –
548, 2003.

[28] Schroeder B. and Gibson G.A. Disk failures in the real world: What does an mttf
of 1,000,000 hours mean to you? FAST 2007, Berkeley, CA, USA, 2007. USENIX
Association.

[29] Van Dongen B.F. Event log for the bpi challenge 2012.
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[30] Ha B.H., Reijers H.A., Bae J., and Bae H. An Approximate Analysis of Expected
Cycle Time in Business Process Execution, pages 65–74. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[31] Byington C., Roemer M., and Galie T. Prognostic enhancements to diagnostic sys-
tems for improved condition-based maintenance [military aircraft]. In Aerospace
Conference Proceedings, 2002. IEEE, volume 6, pages 6–6. IEEE, 2002.

[32] Favre C., Fahland D., and Völzer H. The relationship between workflow graphs and
free-choice workflow nets. Inf. Syst., 47:197–219, 2015.

[33] Favre C. and Völzer H. The Difficulty of Replacing an Inclusive OR-Join, pages
156–171. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[34] Favre C., Völzer H., and Müller P. Diagnostic information for control-flow analysis
of workflow graphs a.k.a. free-choice workflow nets. In Proceedings of the 22Nd
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems - Volume 9636, pages 463–479, New York, NY, USA, 2016. Springer-
Verlag New York, Inc.

[35] Haiyan C. and Fuji Z. The expected hitting times for finite markov chains. Linear
Algebra and its Applications, 428(1112):2730 – 2749, 2008.

[36] Oppenheimer C. and Loparo K. Physically based diagnosis and prognosis of cracked
rotor shafts. In AeroSense 2002, pages 122–132. International Society for Optics and
Photonics, 2002.

[37] Yang C.-Q. and Miller B.P. Critical path analysis for the execution of parallel and
distributed programs. In Distributed Computing Systems, 1988., 8th International
Conference on, pages 366–373, Jun 1988.

[38] Ramamoorthy C. V. and Ho G. S. Performance evaluation of asynchronous con-
current systems using petri nets. IEEE Transactions on Software Engineering, SE-
6(5):440–449, Sept 1980.



128 Bibliography

[39] Ellis C.A. and Nutt G.J. Modeling and enactment of workflow systems, pages 1–16.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[40] Petri C.A. Introduction to general net theory. In Net theory and applications, pages
1–19. Springer, 1980.

[41] Aggarwal C.C. and Wang H. Managing and Mining Graph Data. Springer Publish-
ing Company, Incorporated, 1st edition, 2010.

[42] Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data
Min. Knowl. Discov., 2(2):121–167, June 1998.

[43] Defays D. An efficient algorithm for a complete link method. Comput. J., 20(4):364–
366, 1977.

[44] Fahland D., Favre C., Koehler J., Lohmann N., Völzer H., and Wolf K. Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng., 70(5):448–466, 2011.

[45] Levin D., Peres Y., and Wilmer E. Markov chains and mixing times. American
Mathematical Society, 2006.

[46] Lin D., Raghu R., Ramamurthy V., Yu J., Radhakrishnan R., and Fernandez J. Un-
veiling clusters of events for alert and incident management in large-scale enterprise
it. In Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, pages 1630–1639, New York, NY, USA,
2014. ACM.

[47] Metzler D., Dumais S., and Meek C. Similarity measures for short segments of text.
In Proceedings of the 29th European Conference on IR Research, ECIR’07, pages
16–27, Berlin, Heidelberg, 2007. Springer-Verlag.

[48] Zhou D. and Burges C.J.C. Spectral clustering and transductive learning with multi-
ple views. In Proceedings of the 24th International Conference on Machine Learn-
ing, ICML ’07, pages 1159–1166, New York, NY, USA, 2007. ACM.

[49] Blei D. M., Ng A. Y., and Jordan M.I. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, March 2003.

[50] Levin D.A., Peres Y., and Wilmer E.L. Markov chains and mixing times. American
Mathematical Society, 2006.

[51] Cox D.R. The regression analysis of binary sequences (with discussion). J Roy Stat
Soc B, 20:215–242, 1958.

[52] Dijkstra E. A note on two problems in connexion with graphs. Numer. Math., 1:269–
271, 1959.

[53] Kindler E. On the semantics of epcs: Resolving the vicious circle. Data & Knowl-
edge Engineering, 56(1):23–40, 2006.



Bibliography 129

[54] Pinheiro E., Weber W.D., and Barroso L.A. Failure trends in a large disk drive
population. FAST 2007, Berkeley, CA, USA, 2007. USENIX Association.

[55] Papalexakis E.E., Akoglu L., and Ience D. Do more views of a graph help? com-
munity detection and clustering in multi-graphs. In FUSION, pages 899–905. IEEE,
2013.

[56] R. El-Yaniv and D. Yanay. Supervised learning of semantic relatedness. In PeterA.
Flach, Tijl De Bie, and Nello Cristianini, editors, Machine Learning and Knowledge
Discovery in Databases, volume 7523 of Lecture Notes in Computer Science, pages
744–759. Springer Berlin Heidelberg, 2012.

[57] Juan E.Y.T., Tsai J.P., Murata T., and Zhou Y. Reduction methods for real-time
systems using delay time petri nets. IEEE Trans. Softw. Eng., 27(5):422–448, May
2001.

[58] Ciarapica F. and Giacchetta G. Managing the condition-based maintenance of a
combined-cycle power plant: an approach using soft computing techniques. Journal
of Loss Prevention in the Process Industries, 19(4):316–325, 2006.

[59] Bowden F.D.J. A brief survey and synthesis of the roles of time in petri nets. Math-
ematical and Computer Modelling, 31(10):55 – 68, 2000.

[60] Hughes F.G., Murray J.F., Kreutz-Delgado K., and Elkan C. Improved disk-drive
failure warnings. IEEE Transactions on Reliability, 51(3):350–357, 2002.

[61] Berthelot G. Transformations and decompositions of nets. In Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an
Advanced Course, Bad Honnef, 8.-19. September 1986, pages 359–376, 1986.

[62] Hamerly G. and Elkan C. Bayesian approaches to failure prediction for disk drives.
ICML ’01, pages 202–209, San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc.

[63] Kacprzynski G., Sarlashkar A., Roemer M., Hess A., and Hardman B. Predicting
remaining life by fusing the physics of failure modeling with diagnostics. JOM
Journal of the Minerals, Metals and Materials Society, 56(3):29–35, 2004.

[64] Lange G. and Williams W.T. A general theory of classificatory sorting strategies. i.
hierarchical systems. Computer Journal, 9:373–380, 1967.

[65] Recchia G. and Jones M. More data trumps smarter algorithms: Comparing point-
wise mutual information with latent semantic analysis. Behavior Research Methods,
41(3):647–656, 2009.

[66] Weiss G.M. and Hirsh H. Learning to predict rare events in event sequences. In KDD
1998, pages 359–363. AAAI Press, 1998.



130 Bibliography

[67] Furnas G.W., Landauer T.K., Gomez L.M., and Dumais S.T. The vocabulary prob-
lem in human-system communication. Commun. ACM, 30(11):964–971, November
1987.

[68] Hansson H. and Jonsson B. A framework for reasoning about time and reliability. In
Real Time Systems Symposium, 1989., Proceedings., pages 102–111, Dec 1989.

[69] Junzhou H., Tong Z., and Dimitris M. Learning with structured sparsity. Journal of
Machine Learning Research, 12(Nov):3371–3412, 2011.

[70] Mili H., Tremblay G., Jaoude G., Lefebvre É., Elabed L., and El Boussaidi G. Busi-
ness process modeling languages: Sorting through the alphabet soup. ACM Comput.
Surv., 43(1):4:1–4:56, December 2010.

[71] Reijers H., Jansen-Vullers M., Zur Muehlen M., and Appl W. Workflow manage-
ment systems + swarm intelligence = dynamic task assignment for emergency man-
agement applications. In Business Process Management, volume 4714 of Lecture
Notes in Computer Science, pages 125–140. Springer Berlin Heidelberg, 2007.

[72] Van der Aa H., Leopold H., and Reijers H.A. Checking process compliance on the
basis of uncertain event-to-activity mappings. In CAiSE, volume 10253 of Lecture
Notes in Computer Science, pages 79–93. Springer, 2017.

[73] Van der Aa H., Leopold H., and Reijers H.A. Comparing textual descriptions to
process models - the automatic detection of inconsistencies. Inf. Syst., 64:447–460,
2017.

[74] How does S.M.A.R.T. function of hard disks work?
www.hdsentinel.com/smart/index.php.

[75] Kriegel H.P., P. Kröger, and Zimek A. Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data, 3(1):1:1–1:58, March 2009.

[76] Camerzan I. Determining best-case and worst-case times of unknown paths in time
workflow nets. The Computer Science Journal of Moldova, 18(1):59–69, 2010.

[77] Becker J., Weiss B., and Winkelman A. Developing a business process modeling lan-
guage for the banking sector-a design science approach. AMCIS 2009 Proceedings,
page 709, 2009.

[78] Desel J. and Esparza J. Free Choice Petri Nets. Cambridge University Press, New
York, NY, USA, 1995.

[79] Eder J., Panagos E., and Rabinovich M. Time Constraints in Workflow Systems,
pages 286–300. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[80] Eder J., Pozewaunig H., and Liebhart W. epert: Extending pert for workflow manage-
ment systems. In First East-European Symposium on Advances in Database and In-
formation Systems (ADBIS 1997), pages 217–224. Nevsky Dialect, September 1997.



Bibliography 131

[81] Klayman J. and Ha Y.W. Confirmation, disconfirmation, and information in hypoth-
esis testing. Psychological review, 94(2):211, 1987.

[82] Kleinberg J. An impossibility theorem for clustering. pages 446–453. MIT Press,
2002.

[83] Leskovec J., Lang K.J., and Mahoney M. Empirical comparison of algorithms for
network community detection. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pages 631–640, New York, NY, USA, 2010. ACM.

[84] Lim J., Salakhutdinov R., and Torralbo A. Transfer learning by borrowing exam-
ples for multiclass object detection. In Advances in neural information processing
systems, pages 118–126, 2011.

[85] Vanhatalo J., Völzer H., and Leymann F. Faster and more focused control-flow
analysis for business process models through sese decomposition. In Kraemer B.,
Lin K.J., and Narasimhan P., editors, Service-Oriented Computing – ICSOC 2007,
volume 4749 of Lecture Notes in Computer Science, pages 43–55. Springer Berlin
Heidelberg, 2007.

[86] Vanhatalo J., Völzer H., and Koehler J. The refined process structure tree. Data
Knowl. Eng., 68(9):793–818, 2009.

[87] William J. and Charles S. Estimation with quadratic loss. In Proceedings of the
fourth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 361–379, 1961.

[88] Xu J. and Parnas D.L. On satisfying timing constraints in hard-real-time systems.
IEEE transactions on software engineering, 19(1):70–84, 1993.

[89] Ye J., Chow J.H., Chen J., and Zheng Z. Stochastic gradient boosted distributed
decision trees. CIKM 2009, pages 2061–2064. ACM, 2009.

[90] Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer
Academic Publishers, Norwell, MA, USA, 1981.

[91] Kleinsorge J.C., Falk H., and Marwedel P. Simple analysis of partial worst-case
execution paths on general control flow graphs. In Embedded Software (EMSOFT),
2013 Proceedings of the International Conference on, pages 1–10, Sept 2013.

[92] Murray J.F., Hughes G.F., and Schuurmans D. Machine learning methods for pre-
dicting failures in hard drives: A multiple-instance application. Journal of Machine
Learning research, 6:816, 2005.

[93] Elerath J.G. and Shah S. Server class disk drives: how reliable are they? In Relia-
bility and Maintainability, 2004 Annual Symposium - RAMS, pages 151–156.

[94] Li J.Q., Fan Y., and Zhou M.C. Performance modeling and analysis of workflow.
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Hu-
mans, 34(2):229–242, March 2004.



132 Bibliography

[95] Sankaranarayanan K. Thermal Modeling and Management of Microprocessors. PhD
thesis, Charlottesville, VA, USA, 2009. AAI3353832.

[96] Toutanova K., Klein D., Manning C.D., and Singer Y. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Stroudsburg,
PA, USA, 2003.

[97] Van Hee K. and Reijers H.A. Using formal analysis techniques in business process
redesign. In Business Process Management, Models, Techniques, and Empirical
Studies, pages 142–160, London, UK, UK, 2000. Springer-Verlag.

[98] Brodersen K.H., Gallusser F., Koehler J., Remy N., and Scott S.L. Inferring causal
impact using bayesian structural time-series models. Annals of Applied Statistics,
9:247–274, 2015.

[99] Braghetto K.R, Ferreira J.E., and Vincent J.M. From Business Process Model and
Notation to Stochastic Automata Network. Research report, 2011.

[100] Breiman L. Random forests. Machine Learning, 45(1):5–32.

[101] Kaufman L. and Rousseeuw P.J. Finding Groups in Data: An Introduction to Cluster
Analysis, pages 1–67. John Wiley and Sons, Inc., 2008.

[102] Popova-Zeugmann L. and Heiner M. Worst-case analysis of concurrent systems with
duration interval petri nets. In BTU COTTBUS, pages 162–179, 1996.

[103] Alizadeh M., Lu X., Fahland D., Zannone N., and Van der Aalst W.M.P. Linking data
and process perspectives for conformance analysis. Computers & Security, 73:172–
193, 2018.

[104] Beaudouin-Lafon M., Mackay W.E., Andersen P., Janecek P., Jensen M., Lassen M.,
Lund K., Mortensen K., Munck S., Ratzer A., Ravn K., Christensen S., and Jensen
K. Cpn/tools: A post-wimp interface for editing and simulating coloured petri nets.
In José-Manuel Colom and Maciej Koutny, editors, Applications and Theory of Petri
Nets 2001, pages 71–80, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[105] De Leoni M., Maggi F.M., and Van der Aalst W.M.P. An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Information Systems, 47(1):258–277, 2015.

[106] Indulska M., Green P., Recker J., and Rosemann M. Business Process Modeling:
Perceived Benefits, pages 458–471. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009.

[107] Kwiatkowska M. and Parker D. Advances in probabilistic model checking. In T. Nip-
kow, O. Grumberg, and B. Hauptmann, editors, Software Safety and Security - Tools
for Analysis and Verification, volume 33 of NATO Science for Peace and Security



Bibliography 133

Series - D: Information and Communication Security, pages 126–151. IOS Press,
2012.

[108] Kwiatkowska M., Norman G., and Parker D. Prism 4.0: Verification of probabilistic
real-time systems. In Proceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, pages 585–591, Berlin, Heidelberg, 2011. Springer-
Verlag.

[109] Porter M. The Porter Stemming Algorithm.

[110] Wan M. and Ciardo G. Symbolic reachability analysis of integer timed petri nets. In
SOFSEM 2009: Theory and Practice of Computer Science, volume 5404 of Lecture
Notes in Computer Science, pages 595–608. Springer Berlin Heidelberg, 2009.

[111] Garey M. R. and Johnson D. S. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[112] J. Macqueen. Some methods for classification and analysis of multivariate obser-
vations. In Berkeley Symposium on Mathematical Statistics and Probability, pages
281–297, 1967.

[113] Wynn M.T., Verbeek M., Van der Aalst W.M.P., Ter Hofstede A., and Edmond D.
Business process verification–finally a reality! Business Process Management Jour-
nal, 15(1):74–92, 2009.

[114] Russell N., Van der Aalst W.M.P., Hofstede A., and Edmond D. Workflow resource
patterns: Identification, representation and tool support. In Advanced Information
Systems Engineering, volume 3520 of Lecture Notes in Computer Science, pages
216–232. Springer Berlin Heidelberg, 2005.

[115] Dragomir O.E., Gouriveau R., Dragomir F., Minca E., and Zerhouni N. Review of
prognostic problem in condition-based maintenance. In Control Conference (ECC),
2009 European, pages 1587–1592. IEEE, 2009.

[116] Chrétienne P. Timed event graphs: A complete study of their controlled executions.
In International Workshop on Timed Petri Nets, Torino, Italy, July 1-3, 1985, pages
47–54, 1985.

[117] Wang P. and Vachtsevanos G. Fault prognostics using dynamic wavelet neural net-
works. AI EDAM, 15(4):349–365, 2001.

[118] Turney P. D. Mining the web for synonyms: Pmi-ir versus lsa on toefl. In Pro-
ceedings of the 12th European Conference on Machine Learning, EMCL ’01, pages
491–502, London, UK, UK, 2001. Springer-Verlag.

[119] Shao Q., Chen Y., Tao S., Yan X., and Anerousis N. Efficient ticket routing by
resolution sequence mining. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’08, pages 605–613,
New York, NY, USA, 2008. ACM.



134 Bibliography

[120] Bellman R. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

[121] Chinnam R. and Baruah P. Autonomous diagnostics and prognostics through com-
petitive learning driven hmm-based clustering. In Neural Networks, 2003. Proceed-
ings of the International Joint Conference on, volume 4, pages 2466–2471. IEEE,
2003.

[122] Dunkl R., Rinderle-Ma S., Grossmann W., and Fröschl K.A. Decision point analysis
of time series data in process-aware information systems. In CAiSE (Forum/Doctoral
Consortium), volume 1164 of CEUR Workshop Proceedings, pages 33–40. CEUR-
WS.org, 2014.

[123] Johnson R. and Tong Z. Learning nonlinear functions using regularized greedy for-
est. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5):942–
954, May 2014.

[124] Mans R., Russell N., Van der Aalst W.M.P., Moleman A., and Bakker P. Schedule-
aware workflow management systems. T. Petri Nets and Other Models of Concur-
rency, 4:121–143, 01 2010.

[125] Mihalcea R., Corley C., and Strapparava C. Corpus-based and knowledge-based
measures of text semantic similarity. In Proceedings of the 21st National Conference
on Artificial Intelligence - Volume 1, AAAI’06, pages 775–780. AAAI Press, 2006.

[126] Protasi R., Battiti M. Approximate Algorithms and Heuristics for MAX-SAT, pages
77–148. Springer US, Boston, MA, 1999.

[127] Wallace R.B. and Whitt W. A staffing algorithm for call centers with skill-based
routing. Manufacturing & Service Operations Management, 7(4):276–294, October
2005.

[128] Sloan R.H. and Buy U. Reduction rules for time petri nets. Acta Informatica,
33(7):687–706, 1996.

[129] Cilibrasi R.L. and Vitanyi P.M.B. The google similarity distance. Knowledge and
Data Engineering, IEEE Transactions on, 19(3):370–383, March 2007.

[130] Agarwal S., Sindhgatta R., and Sengupta B. Smartdispatch: Enabling efficient ticket
dispatch in an it service environment. In Proceedings of the 18th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’12, pages
1393–1401, New York, NY, USA, 2012. ACM.

[131] Boyd S. and Vandenberghe L. Convex Optimization. Cambridge University Press,
New York, NY, USA, 2004.

[132] Fenz S., Ekelhart A., and Neubauer T. Business process-based resource importance
determination. In Umeshwar Dayal, Johann Eder, Jana Koehler, and Hajo A. Reijers,
editors, Business Process Management, pages 113–127, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.



Bibliography 135

[133] Leemans S., Fahland D., and Van der Aalst W.M.P. Scalable process discovery and
conformance checking. Software & Systems Modeling, pages 1–33, 2016.

[134] Mani S., Sankaranarayanan K., Sinha V.S., and Devanbu P. Panning requirement
nuggets in stream of software maintenance tickets. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 678–688, New York, NY, USA, 2014. ACM.

[135] Pan S. and Yang Q. A survey on transfer learning. IEEE Trans. on Knowl. and Data
Eng., 22(10):1345–1359, October 2010.

[136] Rozsnyai S., Lakshmanan G., Muthusamy V., Khalaf R., and Duftler M. Business
process insight: An approach and platform for the discovery and analysis of end-
to-end business processes. In SRII Global Conference (SRII), 2012 Annual, pages
80–89. IEEE, 2012.

[137] Visa S. and Ralescu A. Issues in mining imbalanced data sets-a review paper. In
Proceedings of the sixteen midwest artificial intelligence and cognitive science con-
ference, volume 2005, pages 67–73. sn, 2005.

[138] Zhang S. and Ganesan R. Multivariable trend analysis using neural networks for
intelligent diagnostics of rotating machinery. TRANSACTIONS-AMERICAN SOCI-
ETY OF MECHANICAL ENGINEERS JOURNAL OF ENGINEERING FOR GAS
TURBINES AND POWER, 119:378–384, 1997.

[139] Cormen T., Stein C., Rivest R., and Leiserson C.E. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

[140] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, Apr 1989.

[141] Wei T., Zhengdong L., and Dhillon I.S. Clustering with multiple graphs. In Data
Mining, 2009. ICDM ’09. Ninth IEEE International Conference on, pages 1016–
1021, Dec 2009.

[142] Landauer T. K., Foltz P. W., and Laham D. An introduction to latent semantic anal-
ysis. Discourse Processes, 25:259–284, 1998.

[143] Haveliwala T.H., Gionis A., Klein D., and Indyk P. Evaluating strategies for similar-
ity search on the web. In Proceedings of the 11th International Conference on World
Wide Web, WWW ’02, pages 432–442, New York, NY, USA, 2002. ACM.

[144] Zwick U. Exact and approximate distances in graphs a survey. In Algorithms ESA
2001, volume 2161 of Lecture Notes in Computer Science, pages 33–48. Springer
Berlin Heidelberg, 2001.

[145] Agarwal V., Bhattacharyya C., Niranjan T., and Susarla S. Discovering rules from
disk events for predicting hard drive failures. ICMLA ’09, pages 782–786, Dec 2009.



136 Bibliography

[146] Denisov V., Fahland D., and Van der Aalst W.M.P. Unbiased, fine-grained descrip-
tion of processes performance from event data. In BPM, volume 11080 of Lecture
Notes in Computer Science, pages 139–157. Springer, 2018.

[147] Derguech W., Gao F., and Bhiri S. Configurable Process Models for Logistics Case
Study for Customs Clearance Processes, pages 119–130. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[148] Jiang W., Hu C., Zhou Y., and Kanevsky A. Are disks the dominant contributor for
storage failures?: A comprehensive study of storage subsystem failure characteris-
tics. Trans. Storage, 4(3):7:1–7:25, November 2008.

[149] Reisig W. and Rozenberg G., editors. Lectures on Petri Nets I: Basic Models, Ad-
vances in Petri Nets, the Volumes Are Based on the Advanced Course on Petri Nets,
London, UK, UK, 1998. Springer-Verlag.

[150] Van der Aalst W.M.P. van der (2011). process mining: Discovery, conformance and
enhancement of business processes.

[151] Van der Aalst W.M.P. Using interval timed coloured petri nets to calculate perfor-
mance bounds. In Proceedings of the 7th International Conference on Computer
Performance Evaluation : Modelling Techniques and Tools: Modelling Techniques
and Tools, pages 425–444, Secaucus, NJ, USA, 1994. Springer-Verlag New York,
Inc.

[152] Van der Aalst W.M.P. Verification of workflow nets, pages 407–426. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[153] Van der Aalst W.M.P. Three Good Reasons for Using a Petri-Net-Based Workflow
Management System, pages 161–182. Springer US, Boston, MA, 1998.

[154] Van der Aalst W.M.P. Workflow verification: Finding control-flow errors using petri-
net-based techniques. In Business Process Management, pages 161–183. Springer,
2000.

[155] Van der Aalst W.M.P. Trends in business process analysis - from verification to
process mining. In ICEIS 2007 - Proceedings of the Ninth International Conference
on Enterprise Information Systems, Volume DISI, Funchal, Madeira, Portugal, June
12-16, 2007, pages 5–9, 2007.

[156] Van der Aalst W.M.P. Process discovery: capturing the invisible. IEEE Computa-
tional Intelligence Magazine, 5(1):28–41, 2010.

[157] Van der Aalst W.M.P. Process Mining: Data Science in Action. Springer Publishing
Company, Incorporated, 2nd edition, 2016.

[158] Van der Aalst W.M.P., Hirnschall A., and Verbeek H. M. W. Advanced Information
Systems Engineering: 14th International Conference, CAiSE 2002 Toronto, Canada,
May 27–31, 2002 Proceedings, chapter An Alternative Way to Analyze Workflow
Graphs, pages 535–552. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.



Bibliography 137

[159] Van der Aalst W.M.P., Nakatumba J., Rozinat A., and Russell N. Business pro-
cess simulation. In Handbook on Business Process Management 1, pages 313–338.
Springer, 2010.

[160] Van der Aalst W.M.P. and Van Hee K.M. Framework for business process redesign.
In Enabling Technologies: Infrastructure for Collaborative Enterprises, 1995., Pro-
ceedings of the Fourth Workshop on, pages 36–45. IEEE, 1995.

[161] Van der Aalst W.M.P., Van Hee K.M., Ter Hofstede A.H.M., Sidorova N., Verbeek
H.M.W., Voorhoeve M., and Wynn M.T. Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects of Computing, 23(3):333–363, 2011.

[162] Chen Y., Sanghavi S., and Xu H. Clustering sparse graphs. In F. Pereira, C.J.C.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2204–2212. Curran Associates, Inc., 2012.

[163] Tan Y. and Gu X. On predictability of system anomalies in real world. In IEEE
MASCOTS, 2010, pages 133–140, Aug 2010.

[164] Ng Y. A., Jordan M. I., and Weiss Y. On spectral clustering: Analysis and an algo-
rithm. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, pages 849–856. MIT Press, 2002.



138 Bibliography



Curriculum Vitae

Mirela Madalina Botezatu

Date of Birth: 04.10.1987

Nationality: Romanian

Address: Zürich, Switzerland

Email: mirela.botezatu@gmail.com

EDUCATION

2013 - p.t. Eidgenössische Technische Hochschule Zürich (ETH Zurich)
Ph.D. Candidate at Department of Information Technology and
Electrical Engineering
Thesis: Deadline Analysis of Workflow Graphs and Workflow
Performance Optimization

2010 - 2012 Universite Pierre et Marie Curie
Master in Data Mining
Thesis: Predicting Compiler Optimizations from Performance Events

2006 - 2010 Polytechnic University of Bucharest
Bachelor in Computer Science
Thesis: Gateway Personal Firewall

WORK EXPERIENCE

139



140 Curriculum Vitae

2017 - p.t Google – Zürich, Switzerland
Software Engineer

2013 - 2017 IBM Research – Zürich, Switzerland
Predoctoral Researcher at Computer Science Department

2012 - 2013 CERN, collaborating with Intel – Geneva, Switzerland
Technical Student

Summer, 2011 Laboratoire d’Informatique Paris 6 – Paris, France
Research Internship

Summer, 2010 BitDefender – Bucharest, Romania
Internship Software Developer

Summer, 2009 Avira Antivirus – Bucharest, Romania
Internship Software Developer

Summer, 2008 Jinny Software – Bucharest, Romania
Internship Software Developer

PUBLICATIONS

7. Mirela Botezatu, Hagen Völzer and Lothar Thiele. The Complexity of Deadline
Analysis for Workflow Graphs with Multiple Resources. In BPM 2016:252-268.

6. Mirela Botezatu, Ioana Giurgiu, Jasmina Bogojeska and Dorothea Wiesmann. Pre-
dicting Disk Replacement towards Reliable Data Centers. In ACM SIGKDD 2016:39-
48.

5. Mirela Botezatu, Hagen Völzer and Lothar Thiele. The Complexity of Deadline
Analysis for Workflow Graphs with a Single Resource. In IEEE ICECCS 2015:110-
119.

4. Mirela Botezatu, Jasmina Bogojeska, Ioana Giurgiu, Hagen Völzer and Dorothea
Wiesmann. Multi-View Incident Ticket Clustering for Optimal Ticket Dispatching.
In ACM SIGKDD 2015:1711-1720.

3. Mirela Botezatu, Hagen Völzer and Remco M. Dijkman. A Case Study in Workflow
Scheduling Driven by Log Data. In BPI Workshop 2014:251-263.

2. Anne Baumgrass, Mirela Botezatu, Claudio Di Ciccio, Remco Dijkman, Paul Grefen,
Marcin Hewelt, Jan Mendling, Andreas Meyer, Shaya Pourmirza and Hagen Völzer.
Towards a Methodology for the Engineering of Event-driven Process Applications.
In BPI Workshop 2015:501-514.

1. Ioana Giurgiu, Mirela Botezatu and Dorothea Wiesmann. Comprehensible Models
for Reconfiguring Enterprise Relational Databases. In ACM CIKM 2015:1371-1380.

AWARDS

2003, 2004, 2005 Participation in the National Olympiad in Mathematics – Romania.
Won Honorable Mention.

2010 – 2012 Full scholarship awarded by the European Commission for MSc. in
Data Mining.

2015 Won 3rd place in Swiss semi-finals for the International Competition
for Mathematical and Logical games.


	Introduction
	Formal representation of a process
	Deadline analysis
	Incorporating time in workflows and analysis techniques

	Performance optimization
	Positioning with respect to the Process Mining Framework
	Optimizing the dispatching task in IT Service Delivery
	Automating disk replacement decisions

	Dissertation Structure

	I Deadline Analysis of Workflow Graphs
	Foundations
	Petri nets
	Workflow Graphs
	Workflow Graphs Semantics
	An Algebraic Characterization of Workflow Graphs


	Workflow Graphs Executed by a Single Resource
	Workflow graphs with nondeterministic choice
	The minimum duration of a workflow graph
	Minimum cost downstream from an edge
	Algorithm for computing the minimum duration of an execution
	Correctness proof of Algorithm 3.1

	The maximum duration of a workflow graph
	Regular and acyclic Workflow Graphs

	Workflow graphs with probabilistic choice
	Probability of deadline transgression
	Expected duration

	Conclusion

	Workflow Graphs executed by Unbounded Resources
	Introduction
	Workflow graphs with nondeterministic choice
	The minimum duration of a workflow graph
	Correctness proof of Algorithm 4.1

	Regular and acyclic workflow graphs

	Workflow graphs with probabilistic choice
	Expected duration

	Minimum number of resources
	An algorithm to compute the maximum degree of concurrency of a workflow graph

	Workflow graphs executed by a fixed number of resources
	Case Study
	Mining the loan application process
	Data and data processing

	Conclusion


	II Workflow Performance Optimization
	Data-informed Work Assignment in Incident Ticket Resolution
	Problem context
	Incident ticket clustering
	Preliminaries
	Multi-view similarity matrix with induced sparsity
	Semantic similarity metric between words
	Clustering

	Dispatching
	Empirical evaluation
	Data preparation
	Experiments

	Related work
	Conclusion

	Predicting Disk Replacement from Sensor Data
	Context
	Predicting disk replacement
	Selection of relevant SMART attributes
	Compact time series representation
	Class balancing via informative downsampling
	Classification for disk replacements
	Transfer learning

	Evaluation
	Data description and experimental setup
	Feature selection – computation of relevant SMART attributes
	Compact time series representations
	Classification for disk replacements
	Transfer learning
	Comparison with human designed replacement policies
	Early vs. late replacement detection
	SMART indicator rules

	Deployment
	Related work
	Conclusions
	Instantiation of the predictive pipeline to workflows


	Concluding Remarks
	Curriculum Vitae


