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Abstract

Wireless Sensor Networks (WSN) have reached a level of maturity, at
which they have become a feasible option for monitoring processes of
interest, when wired infrastructure is not possible. Due to remote and
inaccessible deployment sites of such networks, they can generally not
rely on reliable power sources, but require batteries to supply the energy
for the system to perform its intended task. However, the finite energy
store imposed by batteries directly limits the system’s performance and
lifetime. Ambient energy harvesting has been shown to be a promising
way to boost the performance and lifetime of WSNs. Unfortunately,
enhancing a battery powered device with energy harvesting capabilities
will by itself neither provide a lower bound on the expected sustainable
performance level, nor guarantee uninterrupted long-term operation.

This thesis addresses the design and runtime management of the
power subsystem for solar energy harvesting embedded systems. We
demonstrate that for enabling long-term operation of such systems, a
paradigm shift both in the design approach, and the runtime management
of the energy is necessary. We provide an end-to-end power management
solution, which consists of (i) a power subsystem capacity planning ap-
proach, and (ii) two novel dynamic power management schemes that
maximize the minimum achievable performance level, while ensuring
that long-term, i.e., multi-year operation can be sustained. Compared
to three State-of-the-Art approaches, our solution maximizes the long-
term sustainable minimum system performance or perform equivalently,
but require a smaller solar panel and/or smaller battery. Our theoreti-
cal results are supported by simulations using 10 years of solar energy
measurements from various geographical locations. To demonstrate the
improvements of proper power subsystem design and management, we
further present a case study with a real-world WSN deployment for geo-
scientific research in a high-alpine environment.

Specifically, this thesis presents the following contributions to the
State-of-the-Art:

• We present a systematic method for power subsystem capacity plan-
ning, i.e., proper sizing of the solar panel and battery, for solar en-
ergy harvesting embedded systems.
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• We present two novel dynamic power management schemes that
enable the system to maximize the minimum performance level
at runtime, while ensuring that uninterrupted operation over time
periods on the order of years may be sustained.

• We present a light-weight battery State-of-Charge approximation
algorithm that can provide runtime information about the battery
fill level without requiring special purpose hardware. Moreover, we
show that this approach can be used to infer the harvested energy.

• Through extensive simulation we show that our end-to-end solution
achieves significantly better results in terms of minimum long-term
sustainable performance level, duty-cycle stability, and overall en-
ergy efficiency when compared to 3 State-of-the-Art approaches.

• Finally, using a real-world scientific project, we demonstrate the
improvements in system utility for the end-user application that
can be gained with our solution.



Zusammenfassung

Drahtlose Sensornetzwerke (WSN) haben einen hohen Reifegrad erreicht,
so dass sie eine praktikable Lösung für die Überwachung von verschie-
denen Prozessen sind, wenn verdrahtete Infrastruktur nicht möglich ist.
Aufgrund der oft schwer zugänglichen Einsatzorte solcher Netzwerke
können die einzelnen Geräte in der Regel nicht zuverlässig mit Strom
versorgt werden, sondern es sind Batterien erforderlich, um die Ener-
gie für das System zu liefern. Allerdings begrenzt der endliche Ener-
giespeicher von Batterien die Leistung und Lebensdauer des Systems.
Energieentnahme aus der Umgebung (ambient energy harvesting) ist ein
vielversprechender Weg, um die Leistung und Lebensdauer des WSNs
zu steigern. Leider verbessert die Bestückung eines batteriebetriebenen
Gerätes mit Energy-Harvesting-Fähigkeiten weder automatisch das er-
wartete Leistungsniveau, noch garantiert es ununterbrochenen Langzeit-
betrieb.

Diese Dissertation befasst sich mit dem Design und der Laufzeit-
verwaltung des Stromversorgungs-System für eingebettete Systeme mit
Sonnenenergiegewinnungsfähigkeiten. Es wird gezeigt, dass zur Ermög-
lichung von langfristigem Betrieb dieser Systeme ein Paradigmenwech-
sel sowohl für den Designansatz als auch für die Laufzeitverwaltung
der verfügbaren Energie notwendig ist. Es wird eine komplette Power-
Management-Lösung vorgestellt, welche aus einem Kapazitätsplanun-
gansatz des Energieversorgungssystem und aus zwei neuen dynami-
schen Power-Management-Algorithmen besteht, welche dafür sorgen,
das minimale Leistungsniveau zu maximieren. Sie stellen gleichzeitig si-
cher, dass langfristiger, das heisst, mehrjähriger Betrieb aufrechterhalten
werden kann.

Im Vergleich zum letzten Stand der Technik, maximiert unsere Lösung
die langfristige nachhaltige Mindestleistung des Systems oder erreicht
mindestens äquivalente Performanz, aber mit einer kleineren Solarzelle
und/oder kleineren Batterie. Unsere theoretischen Ergebnisse werden
durch Simulationen mit Sonnenenergiemessungen während 10 Jahren an
verschiedenen geografischen Standorten unterstützt. Um die Nutzungs-
steigerung unseres Ansatzes zu demonstrieren, evaluierten wir unsere
Lösung anhand einer Fallstudie mit einer realen WSN-Installation für die
geowissenschaftliche Forschung in einer hochalpinen Umgebung.
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Diese Dissertation macht die folgenden Beiträge zum letzten Stand
der Technik:

• Wir präsentieren eine systematische Methode für die Kapazitätspla-
nung des Stromversorgungs-System, das heisst, die richtige Dimen-
sionierung der Solarzelle und Batterie für eingebettete System mit
Sonnenenergiegewinnung.

• Wir präsentieren zwei neue dynamische Power-Management-
Algorithmen, die dem System ermöglichen das minimale Leistungs-
niveau während der Laufzeit zu maximieren und gleichzeitig si-
cherzustellen, dass ein ununterbrochener Betrieb über Zeiträume in
der Größenordnung von mehreren Jahren aufrechterhalten werden
kann.

• Wir präsentieren einen Batteriefüllstand Approximations-
Algorithmus, welcher während der Laufzeit, ohne auf spezielle
Hardware angewiesen zu sein, Informationen über den Batterie-
füllstand zur Verfügung stellt. Darüber hinaus zeigen wir, dass mit
diesem Ansatz auch die gewonnene Energie approximiert werden
kann.

• Durch umfangreiche Simulationen zeigen wir, dass unsere Lösung
deutlich bessere Ergebnisse in Bezug auf das minimale, und lang-
fristig aufrechterhaltene Leistungsniveau, die Stabilität des Ausla-
stungsgrades und der gesamten Energieeffizienz erzielt als 3 An-
sätze aus der Literatur.

• Mit einem realen, wissenschaftlichen Projekt zeigen wir die Verbes-
serungen in der Nützlichkeit des Systems für die Endnutzeranwen-
dung, welche mit unserer Lösung gewonnen werden können.
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1
Introduction

This thesis presents novel techniques for the design and runtime man-
agement of the power subsystem for energy harvesting networked em-
bedded systems. While our methods are generally applicable to a wide
range of systems that leverage regenerative energy sources, throughout
this thesis, we focus on solar powered Wireless Sensor Networks as the
primary application scenario, and discuss how the proposed end-to-end
power management solution enables dependable, uninterrupted system
operation over multiple years despite relying on a highly variable energy
source.

In Section 1.1 we briefly discuss the relevant characteristics of Wire-
less Sensor Networks, and review common application scenarios. In
Section 1.2 we detail the benefits of energy harvesting in Wireless Sen-
sor Networks scenarios, and elaborate on the new challenges presented
by operating such systems over long time periods. Then, in Section 1.3,
we survey State-of-the-Art energy management strategies. Finally, in
Section 1.4 we present an outline of this thesis, and summarize the key
contributions.

1.1 Wireless Sensor Networks
While there exist many different types of applications scenarios, the class
of Wireless Sensor Networks (WSNs) that we consider in this thesis con-
sist of a network of autonomously operating, self-powered sensor sys-
tems that monitor various processes or events of interest and coopera-
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tively communicate the measurements to a central basestation. WSNs
are a valid option whenever wired infrastructure is impractical or infea-
sible. The sensing systems, or so-called mote-class computing devices,
are comprised of a low-power micro-controller, internal and/or external,
non-volatile memory, a radio chip, and any number of sensors and/or
actuators. These sensors may include simple humidity and temperature
sensors [HTB+08], or may consist of more complex sensing systems like
audio/video equipment [GSGSGH11], tilt- and seismometers [WALR+06],
or GPS receivers [BBF+11], among others.

Advances in miniaturization and low-power design of electronic de-
vices have allowed WSNs to reach a state at which they represent a fea-
sible option for long-term continuous observation of various processes
at high temporal and spatial resolution. Exemplary WSN deployments
include a variety of application scenarios: they range from patient mon-
itoring in health care settings, e.g., [KLS+10], over wild-life surveillance,
e.g., [ZSLM04, SKMJ14, DEM+10], to biological and geological processes
monitoring, e.g., [WALR+06, HTB+08, WBB+13, CB10, BBF+11], and in-
frastructure monitoring and failure warning, e.g., [BRVK11, FGJK13,
AAA+07], to name a few.

While the application scenarios mentioned above target different ob-
jectives, the systems employed for their respective purpose exhibit several
common requirements. First, the potentially large number of deployed
motes and their possibly sacrificial nature, i.e., the motes may not be recov-
erable once deployed, dictate that the motes are manufactured cheaply.
Second, to reduce the intrusiveness in the environment to be monitored,
and lessen the deployment cost, the individual mote should be small and
lightweight. Finally, and most importantly, the motes are expected to op-
erate reliably, and cooperatively over time periods on the order of months
to years under possibly very challenging conditions.

Due to the prevalence of remote or inaccessible deployment sites dic-
tated by many application scenarios, and the resulting lack of power
sources, WSN motes are usually battery powered devices [ML09]. How-
ever, batteries impose a finite energy store, which severely limits the
achievable performance level and/or system lifetime. This is particularly
true for application scenarios with high energy demands, e.g., the opera-
tion of a power-hungry GPS receiver [BSB12], since the achievable lifetime
is proportional to the ratio of battery capacity and energy consumption.
Therefore, to increase the system lifetime, one may equip the mote with
a battery of higher capacity. However, increasing the battery capacity
may not be feasible for cost, and/or form factor limitations, as a battery’s
physical size tends to grow proportionally with its capacity. Another
approach to extending the lifetime of a system is by lowering its energy
consumption. This can be accomplished by reducing the system’s power
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dissipation and/or duty-cycling, i.e., enable individual system compo-
nents according to a defined schedule. However, reducing the system’s
energy footprint by enforcing aggressive duty-cycles results in reduced
system availability and performance, which generally conflicts with the
application goals, i.e., maximized system utility.

To overcome the lifetime restrictions imposed by purely battery oper-
ated systems, and so approach dependable and uninterrupted operation
over time periods of multiple years, ambient energy harvesting, particu-
larly in the form of solar energy harvesting has been established [SK11].
While the design of battery operated systems is well understood, the de-
sign and operation of energy harvesting systems presents new challenges
both in terms of hardware and software. In fact, as will be shown in this
thesis, for energy harvesting systems that aim at long-term operation,
a paradigm shift in the design and runtime management of the power
subsystem is required. Rather than predicting or reacting to the source’s
short-term variations, the long-term dynamics should be considered both
for dimensioning the power subsystem and devising a dynamic energy
management scheme that can maximize the usage of available energy
[BSBT14b, BSBT14a].

1.2 Energy Harvesting in WSNs
One main advantage of WSNs is that they do not require pre-established
infrastructure to function. However, motes are severely power and en-
ergy constrained: The instantaneous power dissipation is limited by the
battery performance, and the total energy consumption is restricted by
the battery capacity. Consequently, the battery presents a major bottle-
neck that implies a limited achievable lifetime, or, alternatively, requires
periodic system maintenance to replace depleted batteries. However, re-
placing the batteries may not be feasible due to the large number of motes
deployed, and/or restricted access to the deployment site. Ambient en-
ergy harvesting therefore presents a promising solution to improve (i)
system performance, (ii) lifetime, and (iii) maintenance-free autonomous
operation. However, as will be discussed in the remainder of this section,
simply adding energy harvesting capabilities to the system generally does
not suffice to achieve these possible improvements.

In Section 1.2.1 we give a short overview of energy harvesting tech-
niques. In Section 1.2.2 we discuss the benefits that can be achieved by
leveraging renewable energy sources. In Section 1.2.3 we point out several
challenges that arise in the design and operation of energy harvesting sys-
tems, therewith motivating the end-to-end power management solution
proposed in this thesis.
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(a) (b)

Fig. 1.1: (a) Wireless Sensor Network (WSN) mote from Jeelabs powered by a AA Battery
[Wip10]. (b) PermaDAQ WSN mote for Permafrost research powered by a D cell
battery [BGH+09].

1.2.1 Ambient Energy Harvesting
In the context of WSNs we are mainly concerned with ambient energy
sources, i.e., solar, wind, vibration, temperature gradients, etc. The en-
ergy generated by these sources can be converted to electrical energy by
use of an appropriate energy transducer. Examples of such energy trans-
ducers include photovoltaic cells, wind turbines, piezoelectric devices,
and thermoelectric generators. Details on energy conversion is beyond
the scope of this thesis, reviews of energy harvesting sources and trans-
ducers can be found in e.g., [SK11, CC08].

Naturally, depending on the source, the frequency and magnitude of
energy availability can vary greatly. Thus, to sustain a minimum expected
system operation, it is crucially important that the power subsystem is
provisioned adequately for the respective source, and the system has a
mechanism to plan and schedule the energy usage. For outdoor WSN ap-
plications, photovoltaic energy harvesting with the sun as energy source,
i.e., solar harvesting, has been established as the most promising energy
harvesting approach. Despite being an uncontrollable source [KHZS07],
it follows a well understood diurnal and annual cycle, knowledge of
which can be leveraged for designing the power subsystem, and planning
the system’s energy usage at runtime. Moreover, among the common en-
ergy harvesting techniques mentioned, solar harvesting yields the highest
power density [CC08]. The mechanically robust energy transducer, which
lacks moving parts, further reduces the possibility of failures in the power
supply. A failure in the power subsystem can have catastrophic effects
in terms of system reliability. Due to the prevalence of solar harvesting
in environmental WSN scenarios, this thesis focuses on the design and
runtime management of the power subsystem for solar energy harvesting
embedded systems.
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Fig. 1.2: A solar energy harvesting WSN mote packaged in a weather proof case
[RKH+05].

1.2.2 Benefits of Solar Energy Harvesting
Over the past decade, energy harvesting has gained significant interest for
application in outdoor WSN deployments. The are a number of reasons
for this. First and foremost, the prospective of continuous system opera-
tion over time periods on the order of multiple years enables previously
impossible application scenarios. For example, many researchers in en-
vironmental sciences, e.g., Permafrost research [WBB+13, WGGP15], rely
on monitoring of processes over very long time periods, and therefore
benefit from multi-year sensing. Further, aside from the operational ad-
vantage of extended lifetime, energy harvesting can significantly reduce
the system cost in terms of packaging, development, as well as installation
and maintenance. The battery’s physical size, which is roughly propor-
tional to the capacity, is often the major contributor to the battery-powered
WSN mote’s size, see for example Figure 1.1. Considering that, for energy
harvesting systems, the battery acts as an energy buffer, rather than an
energy source, the required battery capacity, and therefore its physical
size, may be reduced without impacting the system operation (see Fig-
ure 1.2). Moreover, the reduction in size not only affects the mote’s overall
component cost, but also deployment cost, as the individual motes may
become significantly smaller and lighter. On the flip-side, energy harvest-
ing incurs additional expenditures in terms of components (e.g., energy
transducer), and design and implementation (e.g., control circuitry). Con-
sidering the commercial availability of low-cost solar panels and charge
control circuitry, the benefits of energy harvesting tend to outweigh the
overhead. The challenges in design and operation of solar energy har-
vesting embedded systems are further discussed in the following section.

In outdoor wireless sensor network deployments, solar energy har-
vesting with photo-voltaic energy transducers, i.e., solar panel, is most
commonly employed. There are a number of reasons for the prevalence of
solar energy harvesting. First, solar panels achieve a high energy density,
even in indoor scenarios [Ran06]. Low-cost commercial availability and
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relatively high conversion efficiency [Jam08], reliability, and a periodi-
cally recurring energy source – the sun – are further contributing success
factors. The cyclic behavior of the sun guarantees periodic opportuni-
ties for recharging the batteries. In theory, this enables perpetual system
operation, which eliminates the need for periodic and costly battery re-
placement trips.

1.2.3 Challenges in Design and Operation of Solar Energy
Harvesting Systems

As mentioned in the previous section, energy harvesting systems incur
additional cost in terms of harvesting and storage components, as well
as control and supervisory circuitry. Further, an efficient utilization of
the hardware implies appropriate software control, such that safe battery
usage can be achieved while minimizing charging/discharging related
battery deterioration. Clearly, the hardware should be designed properly,
keeping design trade-offs in mind. For example, while a Maximum Power
Point Tracking (MPPT) charge controller can maximize the harvestable
energy [BBMT08], it can incur significant cost and operational overhead.
This means that the system’s entire energy budget must be considered to
determine whether the added complexity can be amortized, as suggested
in e.g., [BBMT08, CVS+07], or if the extra expenditures, both in terms
of component cost and energy consumption, outweigh the benefits, as
argued in e.g., [RC06, RGS06, TJC08]. Similarly, the software overhead
to manage the hardware must be carefully weighed against the benefits
in system utility and longevity. While the hardware and software design
presents important considerations and trade-off decisions, in this thesis
we are not concerned with intricacies of digital system design, but focus
on (i) appropriately provisioning the power subsystem (i.e., panel and
battery), and (ii) a light-weight approach to dynamically adapting the
system performance at runtime.

WSNs are generally viewed as distributed systems, in which the en-
semble of motes performs the intended task collectively. Hence, attempts
have been made at making the network communication protocols energy
harvesting aware, e.g., [ZRLM09, VST13, CSSJ11]. The fundamental idea
is to make routing decisions based on the knowledge of energy harvested
at the individual motes and so improve the overall network lifetime. In
the case of solar powered networks, this can be achieved by ensuring
that the motes that are exposed to direct sunlight can off-load the motes
with reduced harvesting opportunities due, e.g., shading. Shading can
originate from transient weather conditions, i.e., clouds, as well as fixed
structures such as buildings, trees, and other obstructions. However, only
considering network-wide optimization can potentially lead to the mote
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Fig. 1.3: Power profile for 4 days in January and June respectively (CA dataset, see
Table 2.1), illustrating significant difference in harvestable energy for different
months (due to the earth’s orbit around the sun) and within the same month
(due to weather).

with the lowest energy availability dictating the entire network’s perfor-
mance. On the other hand, individual motes are often able to perform
their intended task even if they are temporarily disconnected from the
network by logging the sensed data to non-volatile storage, and commu-
nicating the stored data upon re-connecting to the network. Therefore,
optimally, the energy usage should be optimized locally, i.e., on a per mote
basis, and for the entire distributed system [MBTB07]. Nevertheless, in
this thesis we are concerned with local optimization by enabling the sys-
tem to deal with temporal variations of harvestable energy experienced
at a single mote, rather than the spatial variations between all the motes
within the network.

Figure 1.3 exemplifies the temporal variations of solar energy observed
by an outdoor installation of a solar panel in Los Angeles, California (see
Table 2.1 for details). By comparing the power profile of the harvested
energy on January 4 with that on January 22, it is evident that the source
exhibits high short term variations, which originate from varying weather
conditions. Similarly, when comparing the energy harvested in January
and June, it is obvious that the harvested energy varies seasonally, which
is related to the relative position of the earth with respect to the sun.
Moreover, as is evident from Figure 1.4, the harvested energy can only
be considered constant on average from a long-term perspective (Fig-
ure 1.4b). Additionally, the average power observed takes significantly
different values depending on the time period considered and the instant
in time at which the observation period begins (Figure 1.4a). From a short-
term perspective, however, the source is highly unstable, as illustrated in
Figure 1.3 and Figure 1.4a.
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(b) The average accumulated energy observed over 10 years exhibits a drasti-
cally different profile than when considering the short-term variations shown
in Figure 1.4a.

Fig. 1.4: Evolution of accumulated energy harvested over the given time span with a
specific harvesting setup (CA dataset, see Table 2.1). A representative indication
of average harvestable energy can only be obtained by considering multiple
years.

Therefore, in order to deal with the highly non-deterministic short
term variability of the source, a feasible power management solution re-
lies on a reasonably accurate prediction of the expected future energy
input. For this reason, numerous prediction schemes have been pro-
posed in literature. These schemes, to name a few, include Exponen-
tially Weighted Moving Average filters (EWMA), e.g., [KS03], Weather
Conditioned Moving Average (WCMA) [PBAR09], leveraging weather
forecasts, e.g., [SGIS10], as well as predictions based on an astronomical
model, e.g., [TJC08, BSBT14a]. The dynamic power management solu-
tion then computes the future use of energy based on the prediction for a
particular time slot. The draw-back of presently proposed solutions lies
in the limited prediction accuracy for time horizons exceeding a few min-
utes, therewith eliminating its application to scenarios where long-term
operation is of utmost importance.

In application scenarios where dependable and uninterrupted long-
term operation at a deterministic minimum performance level is expected,
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a new approach to the design of power management schemes is required.
While low-power design principles, and power saving techniques com-
monly used in battery operated systems are indispensable, we further
require a harvesting aware power management that can adapt to the high
variability both in time and amount of energy availability.

For example, an approach that greedily uses available energy in an
attempt to maximize the utility instead of provisioning for times of deficit
may cause system outages at a later time. Not only does this incur high
penalties due to low-voltage re-connect hysteresis [BSBT14b], but it also
violates the minimum performance objective. On the other hand, conser-
vative short term usage may lead to low minimal service, and the risk of
battery overflow. A battery is said to overflow when the battery is full
and the surplus energy exceeds the maximum system consumption. This
significantly reduces the energy efficiency because the excess energy can
neither be stored nor consumed. However, wasting energy is undesirable
as it negatively affects the overall system utility.

Therefore, a harvesting-aware dynamic power management scheme
aims at scheduling the energy such that the system utility can be efficiently
maximized without risking battery over- or underflows, i.e., no energy
is wasted due to overflow, and no breakdowns due to underflow. The
resulting operating mode is commonly called energy neutral operation
[KPS04]. Informally, a system is said to operate in an energy neutral mode
if the energy consumed over a given time period is less than or equal to
the energy harvested during the same time period. As is intuitively clear,
uninterrupted operation over long time periods is only possible when
energy neutral operation can be achieved.

In summary, this thesis addresses important questions in the design
and operation of solar energy harvesting systems, summarized in the
following.

• How should the power subsystem, i.e., solar panel and energy stor-
age element, be provisioned such that the system can optimally deal
with the high variations of the underlying source.

• At what point should the system use energy to perform its task,
and when should it reduce its energy demand so to conserve energy
and/or enable recharging the energy storage element?

• If the energy storage is depleted, the system must shut down and
can not perform its intended task. How can such storage underflows
be avoided?
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• Similarly, if the storage element is full, the harvested energy can
not be stored, resulting in wasted energy resources. How can such
storage overflows, i.e., wasted energy, be avoided, while ensuring
useful utilization of the available energy?

• By definition, WSN motes are highly resource constrained in terms
of processing power and memory. Consequently, this thesis ad-
dresses implementation details such that the resource constraints
can be met while simultaneously improving the overall system util-
ity.

1.3 Review of Power Management Strategies
This section presents a brief overview of State-of-the-Art approaches to
power subsystem capacity planning in Section 1.3.1, and dynamic power
management for energy harvesting systems in Section 1.3.2. A review
of battery State-of-Charge approximation techniques is deferred to Sec-
tion 5.2.

1.3.1 Capacity Planning
Many design examples of energy harvesting wireless sensing systems can
be found in literature, e.g., ZebraNet [ZSLM04], Heliomote [RKH+05],
Ambimax [PC06], Fleck [SCO+07], Rivermote [GHSW10], etc. However,
they fail to provide systematic approaches for power subsystem capac-
ity planning, and instead present anecdotal, application specific design
choices that are based on simplified assumptions. Since the realization
that energy harvesting is not necessarily sufficient to guarantee uninter-
rupted operation [TJC08], efforts have primarily focused on mitigating
the impacts of an inappropriately provisioned power subsystem with en-
ergy prediction schemes, e.g., [LW12, SSIS11, BMN09], and dynamic load
scheduling based on short-term predictions [PBAR09, VGB07, LSB+12,
KDMB12]. Three notable exceptions are [KHZS07, TJC08, JC12], which
are briefly discussed in the following.

In [KHZS07] an analytical model for long-term sustainable operation
is presented. The authors consider battery capacity planning based on a
representative power profile, inferring that the panel size is fixed. The
approach is evaluated with a network of Heliomotes over two months
during Summer in Los Angeles. The approach relies on the availabil-
ity of a representative energy generation profile and the known system
consumption to compute the battery capacity. The limitations of this
approach are two-fold. First, the input trace, i.e., energy profile, must
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be representative of the conditions at the intended deployment site, and
cover at least one full annual solar cycle to yield a suitable battery capacity.
Second, the panel size is not considered a design parameter, thus prevent-
ing the designer from optimizing the power subsystem with respect to
cost, physical form-factor, etc. Nevertheless, to the best of our knowledge,
this is the only approach that presents systematic guidelines for offline
capacity planning. It will be discussed in more detail in Section 2.5 and
used as a baseline for evaluation throughout this thesis.

Design experiences of the HydroSolar micro-solar power subsystem
are presented in [TJC08]. Despite leveraging the same astronomical model
[DHM75] as used in this thesis, the authors compute the panel size under
the assumption that at most 30 minutes of daily charging would have
to meet the daily energy requirements, essentially provisioning the so-
lar panel for the worst case scenario. The battery is selected such that
it can support 30 days of operation without harvesting opportunities.
However, their deployment did not achieve uninterrupted operation de-
spite seemingly overprovisioning the power subsystem. Interestingly,
the authors mention that capacity planning for long-term operation is
reasonable, if not necessary, and may be beneficial for improved system
utility; however, they do not further investigate this insight.

Another work that is closely related to this thesis in that it relies on
a similar astronomical model is presented in [JC12]. The authors empir-
ically validate the model and show that it is, despite its low complexity,
very applicable to real-world scenarios. However, the authors are not
concerned with capacity planning, but rather focus on runtime predic-
tion of harvesting opportunities with an extended astronomical model.
The same battery and panel sizing guidelines as in [TJC08] are used,
which may result in an underprovisioned power subsystem.

Adequate capacity planning is commonly accepted as an important
design criteria. Nevertheless, little effort has been expended to devise a
systematic approach that enables a designer to determine the appropriate
battery capacity and panel size for a given application scenario. The only
approach that we are aware of [KHZS07], relies on the availability of rep-
resentative energy traces, which are usually not available. In an attempt
to solve this problem, we propose a systematic approach to power sub-
system capacity planning for solar energy harvesting embedded systems,
such that uninterrupted operation over multiple years at a predefined
performance level may be achieved [BSBT14b]. This capacity planning
algorithm, which is fully described in Chapter 2, leverages a modified
astronomical model to approximate the harvestable energy, and thus re-
quires no representative energy traces or other calibration data. The algo-
rithm takes as input the deployment site’s latitude, the panel orientation
and inclination angles to compute the appropriate battery capacity. An
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indication of the expected meteorological and environmental conditions
at the intended deployment site is the only unknown input parameter.
While this parameter can be easily obtained if energy traces exist, we
discuss how it can be obtained when traces are not readily available. The
modified astronomical model’s ability to predict the harvestable energy is
validated with power measurements of a solar panel. Through simulation
with 10 years of solar traces from three different geographical locations
and four harvesting setups, we demonstrate that our capacity-planning
algorithm enables uninterrupted system operation, i.e., 100% availability,
at up to 53% smaller batteries when compared to the State-of-the-Art.

1.3.2 Dynamic Power Management
In the seminal work on energy harvesting theory [KS03, KPS04, KHZS07],
the first dynamic duty-cycling scheme for solar energy harvesting systems
was proposed within a theoretical framework that defines Energy Neutral
Operation as the fundamental requirement of energy harvesting systems
so to sustain perpetual operation. Energy Neutral Operation is achieved if
the system never consumes more energy than what it can harvest over
a given time period δ, i.e., the battery fill-level B f ill(t + δ) is greater than
or equal to B f ill(t). With their approach, a day is discretized into slots of
equal duration δ, and the expected energy input for each slot is learned
with an Exponentially Weighted Moving Average (EWMA) filter. Each
slot’s respective duty-cycle is then computed by considering the mismatch
between expected and actual energy input. EWMA filters have long been
used [Hun86] for data prediction because of its simplicity and relatively
good accuracy. However, due to limited correlation between past and
future weather conditions, this approach achieves acceptable prediction
accuracy only for prediction windows on the order of hours.

Weather Conditioned Moving Average (WCMA), proposed in
[PBAR09], improves upon EWMA’s prediction accuracy. The authors
not only consider the harvested energy in the same time slot during pre-
vious days, but also incorporate current weather conditions to obtain the
expected energy input in the current slot. While achieving an almost
three-fold improvement in prediction accuracy over EWMA, it is not
clear if and how this improvement translates into increased system per-
formance and/or energy neutrality. Just as the EWMA approach, WCMA
is also constrained by short prediction windows, and thus tends to suffer
from high duty-cycle variance.

More recently, the use of professional weather forecast services have
been considered to predict the disposable energy [SGIS10]. The authors
formulate a model to translate weather forecasts into solar or wind energy
harvesting predictions. While it is unclear what baseline is used, the
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authors conclude that their energy predictions are more accurate than
those based on past local observations.

In [LSB+12] and [VGB07], model-free approaches to dynamic perfor-
mance scaling are presented. In [VGB07], a technique from adaptive
control theory, i.e., Linear-Quadratic Tracking, is used to dynamically
adapt the system’s duty-cycle based on the battery State-of-Charge and
so ensure Energy Neutral Operation. For the datasets evaluated, the au-
thors report between 6 and 32% improvement in mean duty-cycle, and
between 6 and 69% reduction in duty-cycle variance when compared to
EWMA. Similarly, in [LSB+12] a Proportional-Integral-Derivative (PID)
controller monitors the energy storage element, and dynamically adapts
the duty-cycle such that an expected voltage level of the storage element
(a super-capacitor in this case) can be maintained. While presenting low-
complexity solutions, both of these approaches suffer from high duty-
cycle variability, and rely on a well performing battery State-of-Charge
approximation algorithm. The PID approach additionally requires pa-
rameter tuning, for which, however, solutions exist in the literature.

In contrast to the above solutions, which tend to focus on dealing
with the short-term energy variations, in Chapter 3 we present a new
and promising approach that takes uninterrupted long-term operation
at a predefined minimum performance level as the ultimate goal. This
scheme takes the astronomical model discussed in Chapter 2 to provision
the power subsystem, i.e., battery and panel, and leverages the same
model at runtime to adjust the utilization such that long-term energy
neutral operation may be maintained. Through extensive simulation we
show that the approach can adjust to deviations from the design time
expectations, while maintaining a significantly higher minimum service-
level than the approaches discussed above.

The problem of optimal energy allocation, which we address in Chap-
ter 4, is closely related to the work in [CSSJ11]. The authors consider
the problem of maximizing the throughput of a network of sensor nodes
powered by harvesting energy. They study the problem for a single node,
and then as a distributed algorithm for multiple nodes. They establish a
relation to the shortest path problem in a simply connected space for a sin-
gle node with known harvested energy. For multiple nodes they propose
a heuristic that is optimal under the assumption that each node receives
homogeneous harvested energy. In contrast to [CSSJ11], , in Chapter 4 we
study the objective of maximizing the minimum used energy over all time
steps for a single node. Interestingly, we also establish a relation between
this problem and a Euclidean path minimization problem. Further, we
study how to model and factor the expected variability in the input har-
vested energy. In contrast to [CSSJ11], we also extensively validate our
approach with real-world data from known databases.
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Fig. 1.5: Chapter structure of this thesis. The energy availability model developed in
Chapter 2 will be used in Chapters 3 and 4. The dynamic power management
schemes developed in Chapters 3 and 4 as well as the battery State-of-Charge
approximation algorithm will be further evaluated using a real-world WSN
deployment.

1.4 Thesis Outline and Contributions
In this thesis we present a novel end-to-end power management solution
for solar energy harvesting systems consisting of (i) power subsystem
capacity planning, and (ii) dynamic power management. We will use
solar energy harvesting Wireless Sensor Networks (WSNs) as exemplary
application scenario, but note that our approach is applicable to other
application scenarios that leverage a periodic energy source. Figure 1.5
presents an overview of the chapter structure of this thesis. We will start
with a discussion of power subsystem capacity planning in Chapter 2,
and present a systematic approach such that an appropriate solar panel
size and battery capacity for a given application scenario can be obtained
without the need for solar trace data. Then, assuming a suitable power
subsystem has been defined, in Chapter 3, we investigate a runtime al-
gorithm that aims at ensuring dependable and uninterrupted long-term
system operation at a predefined minimum performance level. In Chap-
ter 4, we present the first formal study on optimizing the energy utilization
of energy harvesting embedded system while giving bounds on the min-
imum energy usage. We further define an optimal energy scheduling
algorithm that can give guarantees on minimum energy utilization. In
order for the dynamic power management scheme to be able to make
informed decisions on future energy usage, the system requires a means
to obtain the residual charge stored in the battery. Hence, in Chapter 5 we
present a light-weight battery State-of-Charge approximation algorithm
that can provide accurate indications of residual charge without requir-
ing hardware support that exceeds standard system monitoring circuitry.
Finally, in Chapter 6, we further illustrate the benefits of our end-to-end
power management approach using a real-world sensor network deploy-
ment in the Swiss alps [BBF+11]. Throughout this thesis we assume a



1.4. THESIS OUTLINE AND CONTRIBUTIONS 15

Fig. 1.6: System architecture assumed throughout this thesis. The system is partitioned
into harvesting subsystem (solar panel), storage subsystem (battery and charge
controller) and the load to be supported (wireless sensing system). The flow of
generated energy is indicated with dotted lines, while the dashed lines represent
the energy consumed.

system architecture as illustrated in Figure 1.6, where we combine the
Harvesting and Storage subsystems into the power subsystem. The load is
assumed to be a WSN mote that executes a given task, which results in an
energy consumption that is characteristic of the task. The system model
will be refined as required in the following chapters.

A brief introduction, and summary of contributions of the individual
chapters is presented in the following.

Chapter 2: Power Subsystem Design

Chapter 2 presents and evaluates a novel capacity planning algorithm to
compute the battery capacity and solar panel size necessary for a given
application scenario and expected geographical deployment location. In
contrast to the State-of-the-Art, no energy traces are necessary for the
algorithm to obtain an adequate power subsystem specification. This is
very desirable, as representative energy traces for a particular location
may not be readily available. The technique discussed in this chapter can
be used as design space exploration tool that enables the system designer
to investigate size, weight and power trade-offs and so identify the most
cost-efficient combination of battery and solar panel for a particular ap-
plication. The energy availability model developed in this chapter is later
exploited in Chapters 3 and 4 for devising dynamic power management
schemes that enable dependable and uninterrupted long-term operation
for state-of-the-art energy harvesting embedded systems. In summary,
Chapter 2 makes the following contributions.
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• We propose a novel power subsystem capacity planning algorithm
based on a modified astronomical model [DHM75] that serves as
the energy availability model. The benefit of using the astronomical
model lies in the fact that it eliminates the need for detailed power
traces or calibration data.

• We validate the energy availability model’s ability to approximate
the harvestable energy with power measurements of a solar panel,
and show that it performs very well at predicting long-term energy
availability.

• Through extensive simulation we evaluate the capacity planning
approach, and show that it yields smaller batteries than the State-of-
the-Art [KHZS07] capacity planning algorithm without impacting
minimum system performance.

• We further show that our approach outperforms the State-of-the-
Art by achieving 100% system availability over ten years for three
different data traces, while requiring up to 53% smaller batteries for
the evaluated datasets.

Chapter 3: Long-Term Dynamic Power Management
While it will be shown that the capacity planning algorithm introduced
in Chapter 2 computes a suitable power subsystem specification, achiev-
ing long-term operation is only possible if the design-time assumptions
do not deviate significantly from the true energy conditions observed at
the intended deployment site. Therefore, in Chapter 3 we present and
evaluate a novel algorithm to dynamically adjust the system duty-cycle
of solar energy harvesting embedded systems such that uninterrupted
operation, even in the presence of large deviations from design-time as-
sumptions, can be sustained over time periods on the order of multiple
years. Contrary to previously proposed techniques, our approach takes
(i) a long-term view of the energy source, and (ii) explicit knowledge of
the power subsystem capacity to satisfy energy neutrality. In this chapter
we leverage the results from Chapter 2 to devise a dynamic power man-
agement scheme that maximizes both minimum and average duty-cycle,
as well as duty-cycle stability. More specifically, the contributions of this
chapter is given in the following.

• We show how the energy availability model from Chapter 2 can be
adapted such that it serves as a suitable online energy predictor with
little runtime overhead.
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• We present a new dynamic power management algorithm that uses
the online energy predictor to compute the long-term sustainable
performance level, i.e., duty-cycle, at runtime.

• We show that dynamic power management significantly improves
system utility when compared to applying appropriate design-time
capacity planning only.

• We show that the duty-cycle computed with our approach exhibits
very low variability, despite relying on, and reacting to a highly
variable energy source. Achieving high duty-cycle stability can
be a strong requirement in a broad range of application scenarios,
e.g., [VKR+05, CB10, WBB+13].

• Through simulation with eleven years of data at three different
geographical locations we show that our algorithm outperforms
the State-of-the-Art in energy-predictive [KHZS07, PBAR09], and
battery-reactive [VGB07] performance scaling approaches in all rel-
evant performance metrics.

• Extensive performance evaluation shows that our approach im-
proves on the State-of-the-Art approaches in terms of average sus-
tainable performance level by up to 177%, energy efficiency by up to
184%, and duty-cycle stability by up to three orders of magnitude,
while incurring zero downtime, i.e., system availability of 100%.

In order to investigate the approach from this chapter in a realistic
setting, and to validate the simulation framework, we present a case study
in Chapter 6. The case study evaluates the performance of our approach
using an X-Sense environmental monitoring system [BBF+11] deployed
over two years in a remote and inaccessible high-alpine environment. We
further demonstrate that significant improvements in system utility can
be achieved without risking downtime due to power outages.

Chapter 4: Optimal Power Management
In Chapter 4 we present the first formal study on optimizing the energy
utilization of energy harvesting embedded systems while simultaneously
providing bounds on the minimum achievable energy utilization. To this
end, we formally study the energy harvesting problem with the objec-
tive of maximizing the minimum energy used across all time intervals.
We first consider a simplified clairvoyant setting wherein the harvested
energy for a given time interval is exactly known in advance. With this
assumption, we derive and prove an optimal algorithm that computes
the amount of energy to be used in each time interval, such that the mini-
mum energy used is maximized over all intervals. To identify an efficient
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algorithm to compute the optimal use function, we establish a relation
between the energy harvesting problem and the shortest Euclidean path
problem. This relation allows us to use well-studied and efficient algo-
rithms for the clairvoyant energy harvesting problem. Then we study
the more general and realistic problem in which the harvested energy
is not known exactly; instead we know only a conservative estimate of
it. With this assumption, we show how a finite horizon scheme can be
used to adaptively update the energy utilization at runtime. We prove
that, under certain realistic assumptions of the energy estimate, such a
finite horizon scheme is guaranteed to provide a certain minimum energy
usage that is better than a non-adaptive scheme.

The contributions of Chapter 4 can be summarized as follows.

• We define optimality criteria that an optimal power management
controller must satisfy.

• We present and prove the optimality of a clairvoyant algorithm to
compute the optimal use function such that (i) the minimum uti-
lization is maximized, and (ii) the total system utility is maximized.

• We adapt the clairvoyant algorithm using a finite horizon scheme
to the realistic scenario in which the harvested energy is not known
a priori.

• We prove that the finite horizon scheme achieves a guaranteed min-
imum energy utilization that is larger than what can be achieved
with a non-adaptive scheme.

• We show that the energy availability model from Chapter 2 can be
adapted with a non-uniform linear scaling function, and show that
a single scaling function can be used to obtain a suitable energy
predictor for 8 different geographical locations.

• We describe a look-up table based implementation of the finite hori-
zon scheme, which results in very low runtime overhead.

• With extensive experimental evaluation using 8 publicly available
datasets, we quantitatively establish that the proposed solution sig-
nificantly outperforms four previously proposed State-of-the-Art
solutions. In fact, at best, our approach reaches to within 9.9% of
the theoretical optimal performance.

Just as with the algorithm from Chapter 3, the power management
algorithm presented in this chapter will be further evaluated using the
case study in Chapter 6.
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Chapter 5: State-of-Charge Approximation

In Chapter 5 we present a light-weight and cost-effective approach to ap-
proximating the battery State-of-Charge based on voltage measurements
only, which is highly desirable for systems with limited hardware sup-
port. It has been shown that awareness of the energy available to the
individual motes [PLR05], and the entire network [CD05] can signifi-
cantly improve overall system lifetime and utility. However, accurately
determining the battery fill level, referred to as battery State-of-Charge,
presents a non-trivial problem to solve. This is because a battery’s State-
of-Charge depends on many battery internal and external factors, such as
size and type of battery, the rate at which it is discharged, as well as tem-
perature and battery condition (e.g., age, present State-of-Charge, etc.).
While knowledge of the State-of-Charge may not be mission-critical for
traditional battery powered WSN applications, improved observability,
predictability, and utility [PAG09, TJC08] tend to outweigh the efforts in
implementing the necessary functionality for energy harvesting systems.
In fact, accurate approximation of the battery State-of-Charge is crucial for
harvesting-aware dynamic power management schemes such that a safe,
but competitive system duty-cycle can be computed. We show that with
our approach, State-of-Charge approximations with up to 95% accuracy
are possible, while taking battery inefficiencies due to e.g., temperature
and aging into consideration, despite not explicitly modeling these effects.

In summary, Chapter 5 presents the following contributions.

• We present a practical, trace-based, direct-measurement [BKN02]
method for online battery State-of-Charge approximation that does
not rely on special purpose hardware.

• We show how leveraging known characteristics of the solar panel
and battery behavior under load can be used to devise a computa-
tionally light-weight method to State-of-Charge approximation.

• We present a state machine for tracking the charging and discharg-
ing phases at runtime.

• We show how the battery can be profiled such that the model param-
eters can be defined even for batteries that differ from the profiled
battery in terms of battery age and capacity, as well as operating
temperature.

• We perform extensive experiments under different conditions (op-
erating temperature, load variations, battery age).
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• Using the experiments, we show that our direct-measurement ap-
proach achieves State-of-Charge approximation with an average
error below 5% when compared to discharge tests.

• Finally, we show that accurate lifetime predictions even with tem-
perature fluctuations and varying battery and load conditions are
possible, as our method implicitly accounts for battery inefficiencies
due to e.g., temperature and aging.

Chapter 6: Case Study
In Chapter 6, we consider a real-world environmental monitoring scenario
that requires uninterrupted system operation over time periods on the or-
der of multiple years. To achieve this goal, we leverage the techniques
discussed in the previous chapters. More specifically, we demonstrate
the benefits of the proposed end-to-end power management solution,
i.e., power subsystem capacity planning (Chapter 2), dynamic power man-
agement schemes (Chapters 3 and 4), and the State-of-Charge algorithm
(Chapter 5), using the X-Sense wireless sensor systems [BYL+11, BSB12]
deployed for on-site design-space exploration in a remote, high-alpine en-
vironment as a case study [BBF+11]. A performance evaluation over two
years reveals that dynamic power management significantly improves
the system utility when compared to only applying appropriate capacity
planning.

The key results obtained with the case study are summarized as fol-
lows.

• We show how the battery State-of-Charge algorithm from Chapter 5
can be adapted to provide the information required by the dynamic
power management algorithms.

• We describe a minor modification to the algorithm from Chapter 3
such that the surplus energy during summer can be better utilized.
This is necessary as the X-Sense platform’s power subsystem is in-
adequately provisioned.

• We show that with the real-world datasets, the optimal algorithm
from Chapter 4 reaches the minimum utilization to within 21.1% of
the theoretical optimal, and the average utility to within 8.3% of the
optimal.

• Finally, we show that dynamic power management yields signif-
icant improvements over only applying capacity planning, while
exhibiting robustness against variations in the observed energy pro-
file, irrespective of the source of deviations from the model.



2
Power Subsystem Capacity

Planning

2.1 Introduction
Wireless Sensor Networks (WSNs) are predominantly deployed in remote
and inaccessible sites. Due to lack of power sources at these sites, the
motes comprising such a network are usually battery powered devices.
However, the finite energy store imposed by non-rechargeable batteries
severely limits the lifetime and achievable performance level of applica-
tion scenarios with increased energy demands, e.g., [BSB12]. Ambient
energy harvesting, particularly in the form of solar energy harvesting
[CC08, SK11], has thus attracted much attention as a promising solution
for enabling perpetual system operation.

However, simply enhancing a system with energy harvesting capa-
bilities may not suffice to achieve uninterrupted long-term operation at
a predefined minimum performance level [HG10, STC13]. This is be-
cause solar energy harvesting opportunities depend both on static and
dynamic factors, e.g., efficiencies of the solar panel, energy storage ele-
ment and charge controller, solar panel installation parameters [HG10],
and time-varying meteorological conditions, and transient local obstruc-
tions. Despite the many design examples that can be found in literature
describing solar energy harvesting systems specifically designed for long-
term WSN applications, the problem of how to size the energy store and
solar panel capacities such that uninterrupted, long-term operation at a
defined performance level can be achieved, remains an open task. The
work presented in this chapter addresses this issue and provides a tool
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for systematic design space exploration and identification of the smallest
combination of battery and solar panel for a particular application.

Challenges

While the design of the power subsystem for battery powered electronic
systems has been relatively well understood, appropriately provisioning
the battery capacity and solar panel size for a given application scenario
and environmental conditions presents new challenges. Ultimately, the
performance level achievable by an embedded computing system is lim-
ited by the available energy. Thus, the battery capacity must be large
enough to cover the longest period without harvesting opportunities,
and the panel must be able to generate sufficient amounts of energy to
replenish the battery within an acceptable time frame. However, due to
highly dynamic meteorological conditions, it can be difficult to define ei-
ther of these periods without resorting to overly pessimistic assumptions
[TJC08].

In fact, literature review shows that most efforts attempt to miti-
gate the effects of an inadequately provisioned power subsystems with
dynamic load scaling schemes, e.g., [VST13, LSB+12], which are based
on expected harvesting opportunities predicted by an energy prediction
scheme, e.g., [CPS12, VGB07, PBAR09]. While runtime energy awareness
and reactivity is important for achieving improved system utility and
energy efficiency, we argue that it can not replace appropriate design-
time power subsystem capacity planning. Even a perfect, yet fictional
energy predictor could achieve continuous operation only if the entire
power subsystem is provisioned to support the given load. Hence, for
application scenarios that require uninterrupted long-term operation at a
pre-defined minimum performance level, runtime approaches alone are
unsatisfactory because they do not consider the limitations of the power
subsystem.

Contributions

To alleviate the above we propose a design-time, i.e., offline power sub-
system capacity planning algorithm for solar energy harvesting systems.
The approach considers seasonal variations of the energy source, the sun,
to approximate the harvestable energy and compute the required battery
capacity given a panel size and deployment information, i.e., geographi-
cal location and panel orientation and inclination angles. Assuming that
the modeled conditions reflect actual conditions, the power subsystem
capacity obtained with this approach enables uninterrupted operation at
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a defined performance level, subject only to hardware failure, or envi-
ronmental phenomena with a long-term effect on harvesting opportuni-
ties, e.g., shadowing due to growing vegetation, dirt, etc.. For scenarios
where the observed conditions at runtime deviate significantly from ex-
pected conditions, the dynamic power management techniques discussed
in Chapters 3 and 4 ensure that the system can react to the variations and
so maintain the minimum performance objective.

The contributions of this chapter are summarized as follows.

• Firstly, we propose a power subsystem capacity planning algorithm
based on an astronomical model [DHM75] that we adapt to obtain
an energy availability model that can approximate the harvestable
energy for a given geographical location and harvesting setup.

• Secondly, we perform measurements with a solar panel to verify the
energy availability model’s ability to approximate the harvestable
energy, and show that it is sufficiently accurate for estimation of
long-term solar energy harvesting opportunities.

• Thirdly, we evaluate the capacity planning approach through sim-
ulation, and show that it yields smaller batteries than the State-of-
the-Art capacity planning algorithm [KHZS07].

• We further show that our approach outperforms the State-of-the-Art
by achieving 100% availability over ten years for three different test
datasets, while requiring up to 53% smaller batteries. In contrast to
the State-of-the-Art, our approach does not rely on detailed power
traces or calibration data, but only requires a crude estimate of
average meteorological conditions at the intended deployment site.

Roadmap

The remainder of this chapter is structured as follows. In Section 2.2 we
introduce the high-level concept of the power subsystem capacity plan-
ning approach. Then in Section 2.3 we provide a detailed discussion of
the harvesting conditioned energy availability model that forms the basis
of the capacity planning algorithm, which is detailed in Section 2.4. In
Section 2.5, we evaluate the proposed method’s ability to achieve uninter-
rupted long-term operation, and its sensitivity to parameter variations.
Finally, Section 2.7 concludes this chapter with a short summary.
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Technology Parameters:

System Parameters:

Deployment Parameters:
Latitude, Orientation, Inclination

Capacity Sizing (2.4)

Energy Availability Model (2.3.1)

Harv. Cond. Energy Model (2.3.2)Apv, Ppv, ηpv, ηcc, ηvr, ηin, ηout

Psys, DCsys, Pvr, Pcc Battery Capacty: Bnom

Performance Level:
DCsupported

Environmental Parameter: Ω

Fig. 2.1: Design flow for power subsystem capacity planning. Dashed boxes and arrows
represent user inputs based on which the supported duty-cycle and required
battery capacity are computed. Note, numbers in parentheses refer to sections.

2.2 Concept
The ability to achieve uninterrupted long-term operation for solar energy
harvesting systems depends on a properly dimensioned power subsys-
tem that can support the expected load. Figure 2.1 shows the high-level
design flow of the proposed capacity planning approach that satisfies
this objective. The dashed boxes represent user inputs that characterize
the deployment setup, hardware technology employed, electrical load,
and expected meteorological conditions. The capacity planning algo-
rithm discussed in Section 2.4 then uses these parameters to compute the
battery capacity required that can indefinitely sustain a user-specified
performance level DCsys.

For estimating the theoretically harvestable energy, we leverage the
fact that the energy source, the sun, follows both a diurnal and annual
cycle. These cycles and the resulting solar energy can be approximated
very well with an astronomical model [DHM75]. This model, which is
fully described in Section 2.3.1, requires deployment location and solar
panel setup information as input, i.e. latitude of the deployment site,
and orientation and inclination angles of the solar panel, to which we
collectively refer as deployment parameters.

The astronomical model further depends on three parameters that
account for the atmosphere’s optical characteristics and the reflective
properties of the ground. However, the exact values for these param-
eters are highly dependent on time-varying meteorological phenomena.
In Section 2.3.1 we explain how the model parameterization is reduced
such that it takes a single input parameter to account for atmospheric and
reflective properties. We call this parameter the environmental parameter
Ω.

The energy that can effectively be harvested on a given day further
depends on the technology parameters, which are described in Section 2.3.2.
These parameters characterize the technologies employed by specifying
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the solar panel’s surface area Apv, its conversion efficiency ηpv, and maxi-
mum power rating Ppv, the efficiencies of the power conditioning circuitry
(ηvr and ηcc), and the charge and discharge efficiencies (ηin and ηout) of the
chosen storage element. Note that in this work we are not concerned with
the selection of optimal storage technology and energy conversion archi-
tecture, as this is highly application specific, but rather aim at finding the
minimum feasible power subsystem as characterized by the above pa-
rameters. Further note that we intentionally leave the selection of panel
size to the designer and compute the battery capacity for the given panel
and application requirements. This is not a limitation, but rather a choice,
as our approach can easily be adapted to compute the panel size required
for a given battery capacity.

Finally, the system parameters, i.e. power dissipation Psys, and mini-
mum expected duty-cycle DCsys, as well as power dissipation by power-
conditioning circuitry, i.e., power dissipation Pvr and Pcc of the voltage
regulator and charge controller respectively, characterize the load im-
posed on the battery. The system’s total energy requirement then defines
the performance level expected by the designer, while the supported duty-
cycle DCsupported, computed by the capacity planning algorithm defines the
fraction of the expected performance level that can be sustained with
the computed battery capacity Bnom. Ideally, the computed duty-cycle
DCsupported is equal to expected duty-cycle DCsys. However, when discrete
panel sizes are considered, the supported duty-cycle may be slightly
higher or lower than the duty-cycle DCsys desired by the designer. Note
that Psys and DCsys may be a vector of length M, specifying the power
dissipation and duty-cycle of the M system components. Further note
that in this chapter we assume constant power dissipation by the load
(but not necessarily constant energy consumption); however, the model
also applies to variable power profiles if the average load behavior can
be approximated at design time.

In summary, the input parameters discussed in this section charac-
terize the system and expected meteorological conditions such that the
energy availability model in Section 2.3.1 can accurately approximate the
long-term energy harvesting opportunities.

2.3 System Model
A crucial step in capacity planning consists of estimating the theoretically
harvestable energy at a specific point in space and time. To achieve this,
we leverage an astronomical energy model [DHM75]. Section 2.3.1 dis-
cusses three modifications to this model such that varying environmental
conditions can be taken into consideration. Section 2.3.2 describes the load
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model and the harvesting conditioned energy availability model, which
incorporates conversion and storage inefficiencies.

2.3.1 Energy Availability Model

According to [DHM75], the total solar energy Eastro(·), incident on a flat
surface is a function of the time of the year, the area of the surface, the de-
ployment location’s latitude L, and azimuth (orientation) and inclination
angles φp, and θp respectively. As shown in Equation (2.1), it is defined as
the sum of the energy contained in direct solar radiation Esun(·), the diffuse
radiation by the sky Esky(·), and the reflection of direct and diffuse radia-
tion by the ground Egnd(·), on a given day d, and time of day t [DHM75].
The magnitude of Eastro(·), given in Wh · m−2, further depends on the dis-
tribution and optical characteristics of absorbent gases in the atmosphere,
represented by diffuse sky radiation parameter k, optical thickness of the
atmosphere τ, and the reflective properties of the ground R, all of which
are unit-less. More details on this model and the impact of varying optical
characteristics are given in [DHM75], and [BC06, HLG06] respectively.

Eastro(·) = Esun(d, t,L, φp, θp, τ) + Esky(d, t,L, k, θp, τ) + Egnd(d, t,L, k,R, θp, τ)
(2.1)

Local obstructions, such as trees, buildings, and meteorological fac-
tors (i.e. clouds, snow) also affect the solar energy incident on the panel.
Accounting for these effects relies on extensive knowledge of the topo-
graphical and meteorological conditions at the deployment site, hence
they are not directly considered by the astronomical model. As discussed
later in this section, we account for these effects in the calculation of the
environmental parameter Ω.

The astronomical model is further expressed in terms of k and τ, both
of which are dependent on time-varying optical characteristics of the
atmosphere that are difficult to predict [HLG06]. The authors in [DHM75]
suggest values of k = 0 and k = 1 for absolute lower and upper bounds
to obtain the contribution by diffuse sky radiation. For the atmosphere’s
optical thickness, τ, values between 0.1 and 0.4 are recommended, where
the former represents a very clear sky, and the latter a very hazy sky
[DHM75, BC06]. However, for energy harvesting purposes, an upper
bound of τ = 1, i.e., no solar harvesting is possible, can be assumed.

In an effort to quantify the parameters k and τ, we note that solar
power traces (see Section 2.5.1) can be closely approximated with Eastro(·)
by letting k = 0.1 and varying τ, such that

∑T Eastro(·) �
∑T Eactual(d),

where T >> 1 day. We leverage this observation and define the so called
environmental parameter Ω in Equation (2.2) to replace τ. The parameter
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δi represents the proportion of time during which the atmosphere exhibits
the optical thickness τi.

Ω =

N∑
i

δiτi , where
N∑
i

δi = 1 (2.2)

To obtain a representative indication of the atmosphere’s long-term
average optical property, the granularity of the weather conditions is
represented by N. For example, for a particular geographical location,
and with N = 4, we might let δ = [0.25, 0.35, 0.2, 0.2] to represent 25%
of the time with clear sky conditions (τ1 = 0.1), 35% and 20% with light
(τ2 = 0.4), and heavy (τ3 = 0.7) occlusions respectively, and 20% with no
harvesting opportunities at all (τ4 = 1) (see also Sections 2.5.2 and 2.6).

As is evident from Equation (2.1), τ appears in the expressions for
Esun, Esky, and Egnd. However, due to fixing k and varying τ, Ω may take
values larger than the quantities recommended for τ in the original model.
Hence, to minimize the error due to diffuse sky radiation [GGP12], we
replace τ with min(Ω, 0.4) in the expression for Esky.

The astronomical model assumes a flat horizontal terrain, which, de-
pending on the topography of the deployment site, may not be a valid
assumption. The authors in [DHM75] state that the magnitude of Egnd(·)
is subject to large error because of topographical variations. However,
with a solar panel located at 40◦N, oriented due south (i.e., φp = 180◦)
with 40◦ inclination angle, and τ = 0.2, k = 0.3, the total annual solar
energy incident with R = 0 is only 2.94% lower than assuming ground
reflectivity of bare ground, i.e., R = 0.3 [DHM75]. Therefore, unless the
effects of ground reflection at a particular deployment site can be obtained
through profiling or detailed surface models, it is reasonable to ignore the
effect of ground reflection, and assume R = 0.

2.3.2 Harvesting Conditioned Energy Model

The model introduced in the previous section is used to compute the
energy incident on a flat surface with a surface area of 1m2 for a given
time of the year. However, when concerned with electrical energy as
opposed to solar energy, various losses due to conversion inefficiencies
and self-consumption must be considered [HG10]. This section discusses
the effects of non-ideal harvesting and storage elements.
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System Architecture

In this work we assume a harvest-store-use system architecture as defined
in [SK11]. In such an architecture, the energy to operate the load is always
supplied by the battery, and no bypass path exists that allows operating
the load directly from the solar panel when the battery is full, and surplus
energy is available. However, since there is no dependence on the type
of energy store employed, alternative harvesting architectures may also
be used. We further assume a stationary solar harvesting installation
without sun-tracking capabilities, i.e. orientation and inclination angles
are fixed.

Panel Characteristics

Only a fraction of the solar energy incident on a solar panel is actually
converted to electrical energy. Depending on technology, the panel’s con-
version efficiency ηpv achieves a few percent for thin-film technologies,
and exceeds 40% for high-end multi-junction cells [GEH+12]. Further-
more, a solar panel has a manufacturer specified maximum output power
Ppv. This is typically given for Standard Test Conditions (STC), hence the
peak power output is not an optimal indication of maximum power. Nev-
ertheless, we assume the maximum possible harvested energy Epv(·) over
a time period δt to be limited by δt · Ppv.

In the context of WSN application scenarios, it is desirable to keep the
solar panel small in size so to match the mote’s housing and meet low cost
expectations [WLLP01, HG10, STC13]. Large-scale photo-voltaic installa-
tions are usually only used for WSN base stations and experimental units
when mains power is not available. Therefore, since the energy model
is defined in units of energy per square meter, we account for different
solar panel sizes by scaling the total daily electrical energy output by the
panel’s surface area Apv. Hence, the total harvested energy on a given
day d is approximated with Equation (2.3), where ηcc represent the charge
controller’s efficiency.

Epv(d,Ω) = Apv ·ηcc ·ηpv

t=23hr∑
t=0hr

min
{
1hr · Ppv,Eastro(d, t,L, k,R, θp, φp,Ω)

}
(2.3)

Charge Controller Characteristics

Before the energy transformed by the solar panel can be stored in the
battery, a fraction 1 − ηcc of the total energy is lost due to the conver-
sion inefficiency imposed by the charge controller, as indicated by the
multiplicative factor ηcc in Equation (2.3). Depending on the chosen tech-
nology, the conversion efficiency ηcc, can range from 50% for low cost
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controllers, up to 95% for high-end, i.e., Maximum Power-Point Tracking
controllers [TJC08]. The choice of technology is very application spe-
cific, and there are arguments advocating advanced charge controllers
[BBMT08, CVS+07], while others argue that, for micro-solar energy har-
vesting systems, the gain is dwarfed by the energy expenditure of the
controller [TJC08]. It is also possible to operate without a charge con-
troller [PC06], but the lack of over-voltage protection may significantly
reduce battery life [CVS+07].

Charge controllers often implement a battery protection mechanism,
known as low-voltage disconnect [BAB13]. This means that if the battery
is fully depleted at any point in time, the load will only be re-connected
after the battery state-of-charge has reached a certain percentage of Bnom.
Details on how we take this feature into consideration are discussed in
Section 2.5.1. Clearly, while a battery protection mechanism is desirable,
prolonged downtime due to protection against deep discharge cycles can
incur significant performance penalties. Moreover, deep discharge cycles
severely affect the battery health and its expected lifetime, and should
therefore be avoided.

Battery Characteristics

The purpose of the battery is to store harvested energy for supporting
the electrical load during periods when energy harvesting is not possible.
However, a battery is not a perfect energy storage element. It suffers
from a variety of deficiencies that depend on the battery’s chemistry,
temperature, discharge rate, fill-level, and charging strategy [BAB13].

Hence, to account for charging and discharging inefficiencies of the
battery during simulation (see Section 2.5), the energy flowing into and
out of the battery is scaled by the respective efficiency factors ηin and ηout,
as shown in Equations (2.4) and (2.5). The loss in the charging process due
to battery internal resistance and electrochemical processes is represented
by ηin. The factor 1/ηout accounts for the fact that only a fraction of the
charge transferred into the battery during charging can be recovered when
discharging the battery [BAB13].

Ein(d) = min
[
ηin · Epv(d,Ω),min

{
0, ηout · Bnom − B(d − 1) − Eout(d)

}]
(2.4)

Eout(d) = Eload(d)/ηout + Eleak (2.5)

Since a battery has a finite capacity, not all energy generated by the
panel may actually flow into the battery, as indicated by the min(·) function
in Equation (2.4). Similarly, to support the energy consumption Eload(d),
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which represents all energy consumers regardless of function (see Equa-
tion (2.7)), the current battery level and harvested energy must exceed the
amount to be withdrawn from the battery, i.e., B(d − 1) + Ein(d) > Eout(d).
The battery specific leakage Eleak is assumed to be constant [KHZS07].
Then, with the battery characterized by Equations (2.4) and (2.5), the bat-
tery State-of-Charge at the end of a given day is obtained with Equation
(2.6). Bnom is the manufacturer rated nominal capacity, which is generally
given in Ampere-hours, but converted to Watt-hours for our purpose.
For consistency, B(d) ≥ 0 ∀d, which means that the expected load may not
always be sustained. To circumvent this, the designer may overprovision
the battery to enable minimal operation, i.e., B(d) ≥ Bmin ∀d.

B(d) = min
{
ηout · Bnom,B(d − 1) + Ein(d) − Eout(d)

}
(2.6)

We ignore aging effects of the battery [BAB13]. However, we note
that our approach results in very shallow discharge cycles and so protects
the expected battery lifetime [BAB13]. In fact, our method results in one
full discharge cycle per year; hence, assuming a battery rated for a few
hundred discharge cycles [BKN02], the battery is expected to outlast other
system components.

Load Model

The electrical load on the battery consists of all energy consumers present
in the system. In addition to the electronic system that performs a par-
ticular task, the consumers may include power conditioning, and other
supervisory circuitry. For the purpose of capacity planning, the load is
specified as the system’s total average power dissipation that must be
supported by the battery. It is obtained by summing the products of the
M system components’ duty-cycle (DCsysi

) and respective active (Poni) and
inactive (Po f f i

) power dissipation . The total daily energy required to op-
erate at the expected performance level is then defined by Equation (2.7),
where γ = 24 hours.

Eload(d) = γ ·

Pcc + Pvr +

M∑
i

(
DCsysi

· Poni + (1 −DCsysi
) · Po f f i

) (2.7)

The power dissipation by the charge controller and input voltage
regulator is represented by Pcc and Pvr, respectively. These are assumed
to be always operational. Depending on design optimizations, however,
both of them may be duty-cycled to reduce energy consumption. In that
case, their average power dissipation is computed identically to that of
the system components.
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Fig. 2.2: Actual (Ereal(d)), and modeled daily energy input (Ein(d)) and output (Eout(d)) for
panel area Apv = 0.02m2 and the CA dataset (see Section 2.5.1). Surplus energy
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shows the required battery capacity.

2.4 Capacity Planning Algorithm
As discussed in the previous section, the harvestable energy can be closely
approximated if setup and technology parameters are known. To account
for the effects of meteorological conditions, and thus more closely approx-
imate the long-term energy input, the environmental parameter Ω was
defined. This parameter can be obtained with Equation (2.2), or, if avail-
able, by profiling a representative dataset. The total energy consumption,
defined in Equation (2.5), completes the necessary information required
for long-term capacity planning.

Intuitively, a battery should be sized exactly such that (i) it can sup-
port the expected operation during periods of solar energy deficit, and
(ii) be replenished by the panel during times of solar energy surplus (see
Figure 2.2). We consider the annual solar cycle to compute the power
subsystem capacity such that uninterrupted long-term system operation
with a minimum battery capacity and solar panel size can be achieved.
One such cycle is illustrated in Figure 2.2, which shows the actual energy
input Ereal(d) observed Los Angeles, California (CA dataset, see Section 2.5
and Table 2.1), the daily system consumption Eout(d) to be supported, and
the energy input approximation Ein(d) such that

∑T Ereal(d) �
∑T Ein(d)

over T = 365 days. Note that, depending on the panel installation param-
eters, i.e., orientation and inclination angles, the harvesting profile may
exhibit two peaks per year (see Figure 2.6b) as opposed to just one like in
Figure 2.2. This is not a problem, as our algorithm will still ensure that
the period of surplus preceding the period of deficit can ensure that the
battery is fully recharged before the start of the period of deficit.

The battery capacity, B, required to operate the system during times of
deficit, i.e., Eout(d) > Ein(d), d ∈ [d1, ..., d2], is given in Equation (2.8) and il-
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lustrated by the cross-hatched area in Figure 2.2. Note that we assume the
battery to be fully charged on day d1. The first term on the left-hand side
in Equation (2.8) specifies the amount of energy that is necessary to sup-
port the system operation, while the second term represents the modeled
energy input expectations. The difference is then the minimum required
battery capacity Bnom. Note that inefficiencies are already considered in
Eout(d) and Ein(d) (see Equations (2.4) and (2.5)).

d2∑
d1

(Eout(d) − Ein(d)) = Bnom (2.8)

Similarly, Equation (2.9) specifies the amount of energy that is har-
vested in excess of what is required to sustain short term operation dur-
ing periods of surplus, i.e., over the interval [d0, ..., d1] (hatched area in
Figure 2.2). As mentioned previously, the harvested energy during peri-
ods of surplus must be able to recharge the battery. Therefore, to achieve
perpetual operation over multiple years, the left-hand term in Equation
(2.9) must be at least as large as the left-hand term in Equation (2.8). Note
that satisfying Equation (2.8) alone does not allow long-term continuous
operation, as Eout(d) may not be sustained.

d1∑
d0

(Ein(d) − Eout(d)) ≥ Bnom (2.9)

Then, assuming the panel size is fixed, and we wish to find the min-
imum required battery capacity Bnom, we vary the energy consumption
Eout (via the duty-cycle) until Equations (2.8) and (2.9) hold. For exam-
ple, with the dataset shown in Figure 2.2, and a panel size of 20cm2 and
Eload = 227.8mW, the required battery capacity is approximately 68Wh (see
Section 2.5.3). When reducing the panel size by 50%, the battery capac-
ity must be increased by roughly 67% in order to achieve a performance
level of 65% of the larger panel setup. This example clearly illustrates the
non-linear relationship between battery capacity and solar panel size.

Note that with this approach we can also determine the required panel
size when the battery capacity is given. In this case, we vary the panel
size, and so change the energy generation Ein(d), until Equations (2.8) and
(2.9) hold.

2.5 Evaluation
This section evaluates the proposed method’s ability to compute a bat-
tery capacity, given a solar panel size, such that uninterrupted long-term
operation of solar energy harvesting systems can be ensured.
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Tab. 2.1: Name, time-period, and location of NSRD1 datasets used for evaluation of the
proposed approach. Maximum, mean, minimum and variance of solar radiation
are given in Wh/0.01m2.

Name Time Period Latitude Longitude Maximum Mean Minimum Variance
CA 01/01/99 – 12/31/09 34.05 -117.95 10.37 7.03 0.92 5.62
MI 01/01/99 – 12/31/09 42.05 -86.05 10.55 5.34 0.53 9.05
ON 01/01/99 – 12/31/09 48.05 -87.65 10.98 5.07 0.44 11.24

2.5.1 Evaluation Methodology, Validation Data, and Per-
formance Metrics

Methodology

To validate the energy availability model, we first compare its energy
estimation accuracy to measurements performed with a solar panel. As a
second step, we perform extensive simulations to evaluate the proposed
method’s ability to yield a battery capacity that can support long-term
operation. The simulation framework simulates a system according to
Sections 2.3 and 2.4 and the input data discussed in the following.

Model Validation Input Data

For validation of the energy availability model, we obtain ground-truth
data by measuring the power generated by a 0.1725m2 mono-crystalline
solar panel (cleversolar CS-30 [cle]) rated at 30 Watt over a period of 41
days (22/07/2013 - 08/31/2013). The power generated by the panel, and
dissipated over a purely resistive load was sampled at 1Hz with a cus-
tom measurement circuit. The panel was placed on the roof-top of our
university building at 47.37◦N, 8.55◦E, and oriented with azimuth, and
inclination angles of 170◦ and 70◦ respectively. This particular location
has clear view of the sky without any obstructions that could lead to shad-
ing, hence deviations from the model can be assumed to originate from
weather effects only. Ground reflections are assumed to be negligible.

Simulation Input Data

For the simulation input data, we resort to the National Solar Radiation
Database1 (NSRD) from where we obtain hourly, global (i.e. direct and
diffuse) solar radiation for three locations in California (CA), Michigan
(MI), and Ontario (ON) (see Table 2.1). We use 11 years of data, from
which the first year (i.e., days 1-365) of each location is used as calibration

1http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
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data (see Section 2.5.3), while the data for the remaining 10 years is used
as input for the simulation discussed in Section 2.5.3.

The data traces from NSRD are given in Wh · m−2 of solar en-
ergy incident on a flat surface with zero inclination. To account for
smaller panel sizes, inefficiencies of individual components, and losses
in energy storage during simulation, the data is conditioned as ex-
plained in Section 2.3.2. For the battery technology parameters we
assume ηin = 0.9, ηout = 0.7, which is commonly done in literature,
e.g., [KPS04, TJC08, PBAR09, VGB07]. For the charge controlling and
power conditioning circuitry we assume zero loss, i.e., ηcc = ηvr = 1. Fi-
nally, for the panel paramters we assume a typical midrange efficiency of
ηpv = 10% [GEH+12], and zero inclination angle. The reconnect hysteresis
(see Section 2.3.2) is set at 30% of the battery capacity B = ηout · Bnom.

Performance Metrics

For performance comparison between the approach discussed in this
chapter and the State-of-the-Art [KHZS07], we define the following met-
rics. Since size and cost considerations play a major role in WSN sce-
narios, an optimal energy harvesting system is one with the smallest
hardware configuration that is able to achieve the expected performance
level, i.e., when Eload is sustained over the entire simulation.

For evaluating the performance of the two approaches, we assume that
the maximum feasible panel size is given, and wish to obtain the minimum
battery capacity such that uninterrupted operation can be achieved. We
report the computed battery capacities, and percentage of time spent
with depleted battery for each configuration and dataset. Any set of
input parameters that cannot support long-term operation at the expected
performance level is considered invalid.

2.5.2 Energy Availability Model Validation

The measurement data described in Section 2.5.1 is used as ground-truth
for validation of the energy availability model. Here we are concerned
with how well the actual energy input can be approximated with a given
environmental parameter Ω. We assume Ω = 0.51 as per Equation (2.3)
with τ = [0.1, 0.4, 0.7, 1] and δ = [0.25, 0.35, 0.2, 0.2] to represent the ex-
pected weather condition. For the panel efficiency we use ηpv = 21.5%
according to the panel’s specification, and the technology and deployment
parameters from Section 2.5.1.
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Fig. 2.3: Ratio of total daily energy predicted with our approach (Epv(d,Ω = 0.51), and
actual energy input (Ereal(d)) for each day. Note: bars are capped at 2, and
labeled with actual value.

As is evident from Figure 2.3, which shows the ratio of estimated and
actual energy input for each day, the model tends to significantly overes-
timate available energy for days with little, to no energy harvesting op-
portunities. However, for the majority of days the ratio is close to unity,
illustrating the model’s ability to closely approximate the harvestable en-
ergy. Table 2.2a lists statistics for the same 41-day period. Table 2.2b shows
the results when considering an estimation granularity of one week. On
average over the entire period, the actual conditions are overestimated
by 20.04%. This is a good result, considering that even more elaborate
models tend to suffer a great deal from uncertainties, particularly due to
modeling of diffuse sky radiation [GGP12].

2.5.3 Capacity Planning Performance Evaluation
The previous section showed that our energy availability model can
closely approximate actual conditions. This section now demonstrates
that our approach in fact supports uninterrupted long-term operation of
a simulated system for a variety of input data. Aside from the current
State-of-the-Art [KHZS07], we are not aware of any other concrete al-
gorithms for power subsystem capacity planning of energy harvesting
systems. Thus, the method described in [KPS04, KHSR06, KHZS07] is
used as a baseline and briefly reviewed in the following.

2.5.3.1 Reference Model

In [KPS04, KHSR06, KHZS07] the authors present a set of abstractions for
capacity planning of energy harvesting systems that can be considered the
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Tab. 2.2: Energy availability model validation statistics.

(a) Statistics for Epv/Ereal for the 41 day experiment shown in Figure 2.3.

Min Mode Max St. Dev. Mean Range Median

0.7947 0.7947 26.87 5.737 3.389 26.07 1.01

(b) Weekly energy sums. Ereal refers to measurements with solar panel.

Week

1 2 3 4 5 6 Total

Epv [Wh] 4844 5646 5034 5109 5164 3706 29503

Ereal [Wh] 3773 5775 3155 4929 3605 3255 24492

Epv/Ereal 1.28 0.98 1.6 1.04 1.43 1.14 1.20

State-of-the-Art in harvesting theory. The authors define Energy-Neutral
Operation as a performance metric, and formally state the conditions that
must be met to achieve Energy-Neutral Operation. The authors show that
a system’s total average power dissipation, ρc, must always be less than,
or equal to the source’s average power generation, ρs. If energy ineffi-
ciency is acceptable, i.e., dissipating the power generated by the panel as
heat when the battery is full, the minimum battery capacity is defined by
the sum of the maximum negative deviation from ρs, and the maximum
positive deviation from ρc. If wasting is not permitted, the battery capac-
ity must be increased by the maximum positive deviation from ρs such
that surplus energy can be buffered [KPS04]. Despite defining a battery
capacity for long-term continuous operation, the authors conclude that,
for achieving Energy-Neutral Operation, the battery state-of-charge B(d)
on day d must be no less than B(d − 1). With this approach the benefits
of capacity planning are not fully leveraged; instead the system must
rely on a well performing energy prediction scheme to achieve acceptable
long-term performance.

The main limitation of this approach is its dependence on appropriate
energy traces. In order to extract ρs, this algorithm requires a dataset
that is representative of the conditions at the deployment site. However,
when applying the method described in [KPS04, KHSR06, KHZS07] to
obtain this quantity, it is found that their approach yields significantly
different performance levels depending on the particular time period
used (see Figure 1.4). In fact, even for datasets with little variance, e.g., the
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CA dataset (see Table 2.1), ρs converges to its average value only after a
few seasonal cycles. This exemplifies that, when attempting to achieve
uninterrupted long-term operation at a predefined performance level,
consideration of the source’s longest cycle is crucial. In the case of solar
harvesting, the period can generally be assumed to be one year. However,
in areas where significant meteorological phenomena with a periodicity
of multiple years occur, improved results may be obtained if the analysis
is performed over the respective period.

2.5.3.2 Simulation

The State-of-the-Art approach, i.e., the technique described in [KPS04,
KHSR06, KHZS07], to which we refer as baseline as we use it as baseline al-
gorithm for comparison, attempts to compute the supported performance
level and required battery size based on a representative power profile.
Our approach, on the other hand, takes the expected performance level
as input. Hence, to evaluate and compare the two approaches through
simulation, we first obtain the respective performance levels and battery
capacities as follows. With the setup and technology parameters defined
in Section 2.5.1, we find the battery capacity and supported performance
level with the baseline approach from [KHZS07] and one year of calibra-
tion data for all three datasets listed in Table 2.1 and four panel sizes,
i.e., . 5cm2, 10cm2, 15cm2, and 20cm2. The respective performance levels
obtained are then used as input to our model to compute the minimum
battery capacities required for each dataset. Once these quantities have
been found for the baseline and our approach (as discussed in Section 2.4),
we run a simulation with the remaining 10 years of data.

Note that our approach does not necessarily require calibration data.
However, since the baseline approach relies on a representative power
trace, we allow our approach to extract the weather conditions from the
calibration data to compute Ω (see Section 2.3.1). We useτ = [0.1, 0.4, 0.7, 1]
and N = 4 in Equation (2.2) and let δi be the days with more than 75%, 50%,
25%, and 0% of the maximum expected energy, i.e., the energy obtained
with Eastro(·,Ω = 0.1). Since meteorological conditions tend to follow a
certain periodicity, Ω may be obtained with very little data. In fact, we
did not find significant improvements when using more than half a year
of calibration data, as long as the data is representative of the conditions
during the critical periods of continuous solar energy deficit, i.e., winter.

2.5.3.3 Results

The results obtained from simulation are summarized in Table 2.3, and
discussed in the following. As is evident from the table, the baseline
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approach achieves an acceptable performance only for the CA dataset.
As defined in Section 2.5.1, acceptable performance means that the battery
can support the user-specified performance level indefinitely.

While the baseline approach yields smaller battery capacities for the
MI and ON datasets compared to our approach, the configurations fail to
sustain the expected performance level over the entire simulation period.
Our approach, on the other hand, achieves the expected performance
level with zero down-time for all configurations and simulations.
CA Dataset. With the CA dataset (see Table 2.1 for details), the baseline
approach achieves the expected performance level for the entire 10 year
period with all simulated panel sizes. This comes at no surprise; the
authors of the baseline approach are located in Southern California and
used locally measured data for design and verification of their approach.
From Table 2.1 we see that this particular dataset has the lowest input data
variance, with roughly half of that of the other datasets. Nevertheless,
with Apv = 0.005m2 and Apv = 0.01m2, the baseline approach yields a battery
size that is about 1.48 times the size of the absolute minimum required
battery capacity. For the other two panel sizes, the baseline algorithm
overestimates the absolute minimum possible capacity by a factor of 1.86,
and 2.7, respectively.

For the same dataset, our approach yields smaller battery capacities
that can sustain the expected performance level over the entire simula-
tion period. When compared to the baseline, a reduction of roughly 8%
in capacities are obtained with Apv = 0.005m2 and Apv = 0.01m2. For
Apv = 0.015m2 and Apv = 0.02m2 our approach yields 17.25% and 46.8%
smaller capacities than the baseline. This is an important result because it
shows that average generation, ρs, is not a good indicator of the long-term
sustainable performance level. With increasing panel size, ρs behaves in a
manner that may not be representative of the long-term dynamics, caus-
ing the baseline model to assume an overly pessimistic negative deviation
from ρs, and therefore yield a larger battery capacity than necessary.
MI and ON Datasets. The results in Table 2.3 show that the baseline
approach does not achieve satisfactory performance for the datasets from
Michigan and Ontario (MI and ON, see Table 2.3). Hence, we only focus
on the results of our approach. For the MI dataset, the minimal possible
battery capacity is overestimated by a maximum of 13.5%. For the ON
dataset, our approach overestimates by up to 22.1%. This constant, but
reasonable overestimate is due to assuming Ω larger than absolutely nec-
essary. In fact, reducing Ω by 20% for ON leads to an overestimate of only
1.4%. For the MI dataset, Ω must be reduced by 7% to achieve the same
result. However, doing so would result in dangerously low battery fill-
levels during times of deficit, causing the system to become susceptible
to low-voltage disconnects, and associated performance penalties.
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When given the opportunity to analyze two full years of calibration
data, the baseline approach fails to achieve the expected performance level
only for one of the configurations of the MI dataset. With Apv = 0.015m2,
the system spends 0.59%, or 21.5 days of the time with a drained battery.
Considering that the baseline’s performance depends on the closeness of
ρs to actual average generation, longer data traces are expected to im-
prove its performance. Interestingly, the baseline approach overestimates
the battery capacities for the CA dataset almost identically when only
one year of data is available, which is due to the low variance in the
energy input. For the other two datasets, the baseline and our approach
yield comparable capacities, despite giving the baseline the advantage of
analyzing two years of calibration data, while our method only used one
year of calibration data.
Energy Approximation. In this chapter we focus on long-term provision-
ing because short-term deviations from the model should be absorbed by
a properly sized battery. Here we investigate how our model copes with
source variations that lead to an energy deficit. Figure 2.4 shows the ra-
tio of total energy approximated by the model, and effectively harvested
energy for each year on the left, and the same for the periods of deficit,
i.e., on the interval [d1, d2], on the right. As is evident, with the largest
panel size used (Apv = 0.02), the model assumes on average around 95%
of the actual annual energy input for the CA and MI datasets, and roughly
88% for ON. The ratios of approximated and actual energy input for the
panels with area 0.005m2 and 0.01m2 are about 85% for CA and MI, and
around 78% for ON.

For the periods of deficit, i.e., the time periods during which the en-
ergy consumption is less than the generation (see Figure 2.2), shown on the
right hand graphs in Figure 2.4, much more variation is evident from one
year to the next. However, the approximations with different panel sizes
are much less scattered, and the approximation with the larger panel size
is not always best. Nevertheless, on average, the model underestimates
actual conditions by roughly 20% for the CA and MI datasets, and about
25% for ON. This shows that the battery obtained is reasonably over-
provisioned, and will be able to safely bridge short periods that exhibit
harvesting opportunities well below the modeled long-term expectations.

2.6 Sensitivity Analysis
In this section we investigate the model’s sensitivity to the selection of
the environmental parameter Ω. We further exemplify the importance of
choosing inclination, and azimuth angles such that they represent the
actual deployment setup. Technology paramters (see Figure 2.1), i.e., the
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energy conversion and storage efficiency factors, and panel parameters,
i.e., size and maximum power output are not discussed, as they linearly
scale the observed energy input and energy consumption. Values for
these parameters can be obtained from datasheets, or, if not available,
from profiling the system.

2.6.1 Environmental Parameter

As is evident from Section 2.5.2, the model’s ability to accurately esti-
mate the long-term expected energy input depends on proper choice of
Ω. This parameter is used to account for environmental effects due to
e.g., meteorological conditions and local obstructions. These effects can
cause the model to overestimate actual energy input, which is equivalent
to assuming too low of a value for Ω.

Hence, to investigate these effects on the model’s estimation accuracy,
we scale Ω with a scaling factor S (i.e., Epv(...,S ·Ω) in Equation (2.4)), and
simulate the system as discussed in Section 2.5.1. The achieved mean duty-
cycle over ten years for the three datasets are shown in Figure 2.5. The
results show that the supported duty-cycle can be maintained without
interruption, as long as the observed environmental conditions (as defined
by Ω, see Section 2.3.1) are at least 75%, 85%, and 90% of the expected
environmental conditions for the CA, ON, and MI datasets respectively.

2.6.2 Setup Parameters

The effects of varying the setup parameters, i.e. inclination and orien-
tation angles, on the harvestable energy are illustrated in Figure 2.6a. It
shows the total annual energy incident on a panel with a surface area of
10cm2 over the course of one year for the three datasets in Table 2.1 and
various inclination angles as a function of the panel orientation. As is
intuitively clear, for an inclination angle of 0◦, i.e. the panel is placed
parallel to the ground, the orientation has no effect.

Similarly, Figure 2.6b shows the total daily energy incident on the same
panel for various inclination angles. The effect on the harvestable en-
ergy due to setup parameters, and seasonal variations is clearly visible,
solidifying our argument that the source’s seasonal behavior must be con-
sidered when aiming at enabling uninterrupted long-term operation at a
predefined performance level.
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2.7 Chapter Summary
In this chapter we presented a novel approach to systematic offline ca-
pacity planning of the power subsystem for solar energy harvesting sys-
tems. The approach is based on a modified astronomical model and takes
into account seasonal variations of the energy source to enable uninter-
rupted long-term operation. Solar power measurements of a real panel
are used to validate the modified astronomical model, which serves as
the energy availability model. We further compared our approach to the
State-of-the-art [KHZS07] in harvesting theory through simulation with
real-world input data, and showed that the proposed method achieves
zero down-time (compared to up to 10% for [KHZS07]) for three different
locations and four different panel sizes while requiring up to 53% smaller
batteries. The results show that pre-deployment design considerations
are absolutely inevitable for achieving long-term uninterrupted system
operation. In order to enable the system to adapt to significant deviations
from the model, and therefore improve the energy efficiency, Chapters 3
and 4 extend this work with low-complexity energy harvesting aware
dynamic duty-cycling schemes.



3
Dynamic Power Management for

Long-Term Operation

3.1 Introduction
In the previous chapter we addressed the problem of power subsystem
capacity planning for solar energy harvesting embedded systems. We pre-
sented a systematic approach that can, given deployment and technology
parameters, aid the designer in finding an appropriate battery capacity
for a given application scenario without requiring representative power
traces. However, we also noted that, if the conditions observed at the
deployment site deviate too significantly from the expectations, a design-
time approach alone may not suffice to achieve uninterrupted operation.
On the one hand, if the input is below a certain percentage of the mod-
eled expectation, the system may risk premature depletion of the battery
because it is unaware of the deviations from the model. On the other
hand, if the energy generation by the panel exceeds the expectations, pre-
cious energy will go unused that otherwise could have been leveraged
by a dynamic approach to improve the system utility. Therefore, to en-
sure that the system can efficiently use the available energy and operate
without interruption over time periods on the order of multiple years,
even in the presence of large deviations from the modeled energy input
expectations, a mechanism to dynamically adapt the system consump-
tion at runtime is required. Such a mechanism is provided by a so called
dynamic power management scheme that adjusts the system performance,
and therefore its energy consumption, in response to deviations from the
expected conditions such that the above objective may be satisfied.
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In this chapter we turn our attention to enabling long-term energy neu-
tral operation for solar energy harvesting systems, and apply the insights
gained from the development of the capacity planning algorithm to de-
vise a harvesting-aware dynamic power management scheme. In the context of
long-term application scenarios, e.g., [VKR+05, DEM+10, CB10, WBB+13],
this scheme’s objective is to compute a system duty-cycle as high as
possible that can be sustained. More specifically, the desired dynamic
power management scheme maximizes the minimum achievable duty-
cycle, i.e., performance level, at which the system can operate without
interruption over long time periods.

Challenges

A broad range of application scenarios, e.g., [VKR+05, DEM+10, CB10,
WBB+13], benefit from a minimum supported performance level that can
be sustained over time periods on the order of multiple years. A system
enhanced with energy harvesting capabilities can – in theory – operate
indefinitely since the energy store can be replenished periodically. Ex-
perience has shown, however, that enhancing a battery powered device
with energy harvesting capabilities will by itself neither provide a lower
bound on the expected sustainable performance level, nor guarantee un-
interrupted long-term operation [TJC08]. The reason for this is the depen-
dence on an uncontrollable energy source [KHZS07], i.e., the sun, which
exhibits high short-term fluctuations due to meteorological conditions
that are hard to model [Buz08] and difficult to predict [HLG06].

Contemporary power management techniques deal with the highly
variable energy harvesting opportunities by dynamically adapting the
system’s performance level at runtime in an attempt to satisfy Energy Neu-
tral Operation, i.e., on average the system consumes only as much energy
as the panel can generate. Given Energy Neutral Operation as the funda-
mental requirement for energy harvesting systems to achieve long-term
operation, numerous methods that attempt to achieve this objective have
been proposed, e.g., [KHZS07, VGB07, PBAR09, LW12, LSB+12]. These
can be classified as (i) predictive, and (ii) reactive approaches. Predictive
approaches, e.g., [KHZS07, PBAR09], attempt to satisfy Energy Neutral
Operation by predicting the harvestable energy during a future time slot,
and adapt the performance level accordingly. However, predicting future
meteorological conditions is highly complex and may be computationally
prohibitive [Buz08]. Therefore, acceptable prediction accuracy with the
limited computational resources available on contemporary motes has so
far only been possible for short prediction windows, i.e., on the order of
minutes to hours. Reactive approaches, on the other hand, attempt to
satisfy energy neutrality by scheduling the performance level in response
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to changes in the source. This can be done by measuring the energy
generation directly, or, as is commonly done, through monitoring the
battery fill-level [VGB07], or super-capacitor voltage [LSB+12]. The per-
formance of a storage-reactive approach strongly relies on the accuracy
of the battery State-of-Charge approximation, and tend to exhibit high
duty-cycle variance. Duty-cycle variance is an important consideration,
e.g., for surveillance applications, where the system should be available
with equal probability at any given point in time [HVY+06].

In contrast to previously proposed techniques, we take a radically
different approach. In the previous chapter we argued that the source’s
long-term dynamics must be considered for dimensioning the power sub-
system, i.e., battery and solar panel, such that short-term fluctuations may
be absorbed. Here we will show, that, when aiming at dependable long-
term operation, the same holds true for the dynamic power management
scheme. Rather than attempting to predict or react to the source’s short-
term variations, as the above approaches do, we show that considering
the source’s long-term dynamics enables us to devise an efficient dynamic
power management scheme that can compute a stable, long-term sustain-
able performance level at runtime with little computational overhead.
Moreover, our approach does not rely on special purpose hardware, as
will be shown in Chapters 5 and 6.

Contributions

In this chapter we advance the State-of-the-Art in enabling long-term
operation of solar powered embedded systems by making the following
contributions.

• Firstly, we present a novel end-to-end solution for enabling long-
term Energy Neutral Operation for solar energy harvesting systems.
Our approach encompasses (i) a power subsystem capacity planning
approach, which is fully discussed in Chapter 2, and (ii) a dynamic
power management scheme, which is shown to be able to achieve long-
term uninterrupted operation with very low duty-cycle variance.

• Secondly, we evaluate and discuss the advantages of dynamic power
management over only employing appropriate power subsystem ca-
pacity planning.

• Thirdly, we present a sensitivity analysis for all relevant parameters
involved in our approach.

• Fourthly, we present a discussion of practical issues that must be
considered for implementation on resource constrained systems.
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• Finally, through simulation with eleven years of data at three differ-
ent geographical locations, we show that our algorithm outperforms
the State-of-the-Art in energy-predictive [KHZS07, PBAR09], and
battery-reactive [VGB07] performance scaling approaches in terms
of average sustainable performance level by up to 177%, energy
efficiency by up to 184%, and duty-cycle stability by up to three
orders of magnitude, while incurring zero downtime, i.e., system
availability of 100%.

Roadmap

The rest of this chapter is structured as follows. Section 3.2 briefly re-
views the power subsystem capacity planning approach from Chapter 2.
The proposed dynamic power management scheme is discussed in detail in
Section 3.3. In Section 3.4 we evaluate the proposed technique through
simulation with eleven years of data for three different locations. The
benefits of dynamic power management over capacity planning alone is
discussed in Section 3.5, and a sensitivity analysis of all relevant model
parameters is given in Section 3.6. In Section 3.7 we discuss considerations
for practical implementations on resource constrained systems. Finally,
Section 3.8 concludes this work with a summary of key findings.

In Chapter 6 we will further exemplify the benefits of our dynamic power
management scheme using an X-Sense environmental monitoring system
[BBF+11] deployed over two years as a case study, and demonstrate that
significant improvements in system utility can be achieved without risk-
ing downtime due to power outages.

3.2 Capacity Planning for Long-Term Energy
Neutral Operation

Rather than modeling the energy source’s highly variable short-term dy-
namics and adjust the performance level accordingly, we propose a long-
term energy neutral power management scheme for solar energy har-
vesting systems. Our approach, illustrated in Figure 3.1, first invokes a
design-time power subsystem capacity planning algorithm to determine
the required battery capacity given a set of input parameters that charac-
terize the system and its environment. The intricate trade-offs between
battery capacity, and the system and environmental parameters are fully
discussed in Chapter 2. This capacity planning approach uses an astro-
nomical model to estimate the long-term energy availability based on the
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annual solar cycle. Then, at runtime, the algorithm proposed in this chap-
ter dynamically computes the performance level, i.e., duty-cycle, based
on an adjusted energy availability model such that long-term energy neu-
trality can be sustained.

3.2.1 System Architecture, Load Model, and System Util-
ity

In this work we assume a harvest-store-use architecture, as described in
[SK11], in which the energy to operate the system is always supplied by
the battery. There is no bypass path that allows operating the load directly
by the panel when surplus energy is available. The system used for the
case study presented in Chapter 6 represents such a harverst-store-use
architecture. The load is specified as the system’s total average power
dissipation that must be supported by the battery. It is obtained by
summing the products of the M system components’ duty-cycle (DCsysi

)
and respective active (Poni) and inacitve (Po f f i

) power dissipation . The
total daily energy required to operate at the expected performance level
is then defined by Equation (3.1), where γ = 24 hours.

Eout(d) = γ ·

Pcc + Pvr +

M∑
i

(
DCsysi

· Poni + (1 −DCsysi
) · Po f f i

) (3.1)

For now, we assume a one-to-one relationship between performance
level DCsys(d) and utility of the system U, i.e., U(DCsys(d)) = DCsys(d)
[CB10]. We revisit this topic in Chapter 6, where we refine the defini-
tion of system utility in the context of a real system. Note that we are
not concerned with how the energy is scheduled and consumed over the
course of the day, but rather provide information about disposable energy
to an application specific task scheduler. Details on local scheduling of
the available energy, and network-wide balancing of the energy budget
by changing the communication and/or sensing patterns are beyond the
scope of this work, as they are highly application specific. For exam-
ple, a scheduler’s primary focus may be planning the available energy
such that a minimum level of operation may be sustained [MBTB07].
Any excess energy may then be used to improve sensing, processing or
communication.

3.2.2 Harvesting Conditioned Energy Availability Model
A crucial step in capacity planning consists of estimating the theoreti-
cally harvestable energy at a specific point in space and time. Figure 3.2
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Fig. 3.2: Exemplarary solar energy profile. Surplus energy generated by the panel is
indicated with the hatched area; the energy deficit is shown by the cross-hatched
area.

illustrates the amount of solar energy that can be harvested at a particu-
lar geographical location and given harvesting configuration. The figure
shows the total daily energy input Ereal(d) at the end of each calendar day d,
and illustrates the high short-term (day-to-day) variability and long-term
periodicity (year-to-year) of the source. Also shown is the modeled total
expected harvestable energy Ein(d) on calendar day d such that true en-
ergy conditions are closely approximated, i.e., Equation (3.2) holds where
N is the number of days.

N∑
d=1

Ein(d) �
N∑

d=1

Ereal(d), N >> 1 (3.2)

The method to compute Ein(d) is based on a simplified astronomical
model to estimate the theoretical solar radiation Eastro(t, d,L, θp, φp,Ω). It
is parameterized by the time t in hours of calendar day d, the intended
deployment site’s latitude L, and the panel’s orientation and inclination
angles φp and θp, respectively. Finally, the environmental parameter Ω
represents the expected average meteorological conditions. This is the
only unknown input parameter, and can be approximated as described
in Section 2.3.1. Although not absolutely necessary, the availability of
solar maps or solar energy traces can improve the approximation of the
parameter Ω.

Since we are concerned with electrical, as opposed to solar energy,
the output of Eastro(·) must be conditioned by the technology parame-
ters in Figure 3.1. These specify the panel’s surface area Apv, conver-
sion efficiency ηpv, battery inherent charging inefficiency ηin, and self-
consumption and efficiency factors for supervisory and power condition-
ing circuitry, e.g., battery charge controller efficiency ηcc, and consumption
Pcc. The maximum rated power output of the panel Ppv is used to eval-
uate the maximum energy Epv generated during one hour. Then, with
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the above parameters specified, the total electrical energy that can be
harvested on calendar day d is approximated with Equation (3.3).

Ein(d) = Apv · ηcc · ηpv · ηin ·

23hr∑
t=0

min
{
Epv,Eastro(t, d, ...)

}
(3.3)

While the astronomical energy model Eastro(·) may yield any resolution
t, for the purpose of long-term energy neutral operation discussed in this
work, daily sums are sufficient.

3.2.3 Power Subsystem Dimensioning
In this section we review the process of computing the power subsystem
capacity using the energy availability model such that energy neutral
operation over the source’s seasonal cycle, i.e., one year, may be achieved.
At this point we assume a perfect battery, i.e., no inefficiencies. For a
discussion including various battery inefficiencies, the reader is referred
to Chapter 2.

For the purpose of power subsystem capacity planning we assume
a constant daily energy demand Eout(d) that must be met. Note that
we explicitly keep the dependence on calendar day d, since the energy
consumption at runtime varies with the dynamically chosen daily duty-
cycle (see Section 3.3). Referring to Figure 3.2, we observe that the in-
tersections between the energy consumption Eout(d) and approximated
energy input Ein(d) partition the annual solar cycle into time regions
of energy surplus, i.e., Ein(d) > Eout(d) ∀d ∈ [d0, d1), and energy deficit,
i.e., Ein(d) < Eout(d) ∀d ∈ [d1, d2).

According to the model assumptions, the minimum battery capacity
B required to support the system during periods of energy deficit is in-
dicated with the cross-hatched area in Figure 3.2, and formally stated in
Equation (3.4). The first term on the left-hand side defines the amount
of energy that is necessary to support the system operation, while the
second term represents the expected energy input. The difference is then
the minimum required battery capacity.

d2∑
d1

(Eout(d) − Ein(d)) = B (3.4)

In order to achieve uninterrupted operation over multiple years, it is
not sufficient to only provision the battery for the period of deficit. The
panel must be able to generate enough energy to recharge the battery in
addition to what is required in order to sustain operation during periods
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of energy surplus, i.e., d ∈ [d0, d1). The constraint on energy generation
by the panel is given in Equation (3.5).

d1∑
d0

(Ein(d) − Eout(d)) ≥ B (3.5)

The required battery capacity B can then be obtained by varying the
performance level (i.e., DCsys(d)) and/or the panel area Apv such that Equa-
tions (3.4) and (3.5) hold.

3.3 Dynamic Power Management
In the previous section we described the design-time energy availability
model and power subsystem capacity planning based on the long-term
characteristics of the energy source. If we can assume that the design-
time model reflects the conditions at the deployment location to within
some bounds, the system will be able to run at the performance level
for which the power subsystem was designed [BSBT14b]. However, in
practice significant deviations from the model must be expected. Such
deviations may be caused by transient phenomena, e.g., snow cover and
foliage, or persistent occlusions due to trees and buildings. In this sec-
tion we propose a dynamic power management scheme that can adapt to
deviations from the modeled assumptions by dynamically scaling the sys-
tem performance level, and by doing so enable long-term Energy Neutral
Operation.

3.3.1 Dynamic Performance Scaling
As discussed in Section 3.2.3, in order to achieve long-term energy neu-
trality, the two constraints from Equations (3.4) and (3.5) must be satisfied.
The constraint in Equation (3.4) states that the battery must be able to
supply the difference in energy consumption and generation during pe-
riods of energy deficit, i.e., d ∈ [d1, d2) (as shown in Figure 3.2). The
second constraint states that, in order to ensure that the battery can be
fully recharged during periods of energy surplus (d ∈ [d0, d1)), the panel
must generate energy in excess of what is required to sustain short-term
operation. To satisfy these two constraints, we leverage the offline energy
model to determine the sustainable system performance level.

To exemplify our approach we consider a concrete example as il-
lustrated in Figure 3.3. Without loss of generality, we assume that the
design-time model Ein(d), which was used to obtain the battery capacity B
given panel size Apv, over-estimates the actual energy conditions Ereal(d).
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For simplicity we ignore battery inefficiencies in this discussion, but note
that Algorithm 1 and the evaluation in Section 3.4 account for these effects.
In the following we consider the end of day d and wish to compute the
duty-cycle for the entire day d + 1 such that long-term energy neutrality
may be sustained.

To react to deviations from the modeled energy expectation, we first
need to adjust the design-time energy model Ein(d) at runtime according to
observed conditions. For this purpose, we define the model adjustment
factor α in Equation (3.6) to scale Ein(d), i.e., Êin(d) = αEin(d), ∀d. The
adjustment factor depends on the history window size W in days, which
is used to tune the duty-cycle stability. The choice of W has a direct
impact on the system’s responsiveness to variations in the energy profile,
and therefore imposes a trade-off decision between duty-cycle stability
and achievable performance level. The effects of the choice of the history
window size W are discussed in Section 3.6.3.

α =

∑d
d−W Ereal(d)∑d
d−W Ein(d)

, 0 < W ≤ d (3.6)

Then, referring to Figure 3.3, it is evident that, given B and the ad-
justed energy model Êin(d), the modeled consumption Eout(d) may not
be sustained. For example, a battery capacity dimensioned for bridging
the period starting at d∗1 and ending at d∗2, instead of d1 and d2 would be
necessary to support Eout(d) in Figure 3.3. Therefore, to fully, but safely
leverage the available battery capacity given Êin(d) < Ein(d) ∀d, we need to
find the energy consumption Êout(d) = DC(d) · Psys · γ, where γ = 24 hours
such that the battery and panel constraints in Equation (3.7) hold.

d′2∑
d′1

(
Êout(d) − Êin(d)

)
≤ B ≤

d′1∑
d′0

(
Êin(d) − Êout(d)

)
(3.7)

The limits of summation in Equation (3.7) are unknown and depend
on Êout(d), the quantity we wish to find. However, since the modeled
limits are known, or can be computed at runtime, d′0, d′1, and d′2 can be
found iteratively in discrete time steps, e.g., days, starting with intervals
Ds = [d0, d1], Dd = [d1, d2], which represent the surplus and deficit regions
respectively, and adjusting them according to Algorithm 1 until Equation
(3.8) evaluates true. D0

s and D0
d in Equation (3.8) denote the first elements

in the intervals Ds and Dd respectively.

|Dd|Êin(D0
d) −

Dd∑
Êin(d) ≤

Ds∑
Êin(d) − |Ds|Êin(D0

s ) ≤ B (3.8)
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Algorithm 1: Computation of the duty-cycle for day d+1 performed
at end of day d. In this example we use a daily resolution, which
can be adapted to other time steps. Note that battery charging (ηin)
and discharging efficiencies (ηout) are incorporated, as the nominal
capacity Bnom = B/ηout.

Input: current day d, observed energy input Ereal;
Output: duty-cycle for day d+1;

α =
∑d

d−w Ereal(d)∑d
d−w Ein(d)

;

Êin = α · ηcc · ηin · Ein;
d′1 = d1; d′2 = d2; d′0 = d0;

Esurplus =
∑d′1

d′0
Êin(d) −

(
Êin(d′1) · (d′1 − d′0 + 1)

)
;

Ede f icit =
(
Êin(d′1) · (d′2 − d′1 + 1)

)
−

∑d′2
d′1

Êin(d);

while ((Ede f icit ≤ Esurplus) && (Esurplus ≤ Bnom)) do
if α < 1 then

d′0 = d′0 + 1; d′1 = d′1 − 1; d′2 = d′2 + 1;
else

d′0 = d′0 − 1; d′1 = d′1 + 1; d′2 = d′2 − 1;
end

Esurplus =
∑d′1

d′0
Êin(d) −

(
Êin(d′1) · (d′1 − d′0 + 1)

)
;

Ede f icit =
(
Êin(d′1) · (d′2 − d′1 + 1)

)
−

∑d′2
d′1

Êin(d);

if (Esurplus < Ede f icit) then
[d′0, d′1, d′2] = Dprev;

Esurplus =
∑d′1

d′0
Êin(d) −

(
Êin(d′1) · (d′1 − d′0 + 1)

)
;

Ede f icit =
(
Êin(d′1) · (d′2 − d′1 + 1)

)
−

∑d′2
d′1

Êin(d);
break;

end
Dprev = [d′0, d

′

1, d
′

2];
end

DC(d + 1) =
min(B,Esurplus)+

∑d′2
d′1

Êin(d)

Psys·(d′2−d′1+1) ;

The relation in Equation (3.8) is obtained from Equation (3.7) by noting
that, under our model assumptions, the energy generation at the start of
the deficit period is equal to the consumption on that day (see Figure 3.3).
Since we assume a constant energy consumption (i.e., a stable duty-cycle)
is desirable, we substitute Êin(D0

d) and Êin(D0
d) respectively, for Êout(d) in

Equation (3.7), and replace the summations by multiplications.
Note that the maximum battery size that can be supported, given the

energy conditions observed, is limited by the energy that can be harvested
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during the surplus period, i.e., B ≤ Esurplus =
(∑Ds Êin(d)

)
− Êin(d′1) · |Ds|.

Taking this limitation into consideration, we can use Equation (3.9) to
compute the sustainable performance level for day d + 1 at the end of day
d. Note, γ = 24 hours, and Esurplus is computed as shown in Algorithm 1.

DC(d + 1) =
min(B,Esurplus) +

∑Dd Êin(d)
Psys · γ · |Dd|

(3.9)

In summary, with the adjusted energy model we can approximate the
expected energy input over the annual solar cycle according to recent
conditions. This information is used to continually adjust the long-term
sustainable performance supported by the power subsystem. In other
words, to ensure that the battery can be replenished during periods of
surplus, and adequately used during periods of deficit, the performance
level is computed by considering a full annual solar cycle. Note, in the
above discussion we assumed that the design-time model overestimates
true conditions. However, the approach, as shown in Algorithm 1 is
equally applicable to model underestimation.

3.3.2 Worst Case Energy Conditions
The energy neutral dynamic power management approach presented in
the previous section relies on the solar energy profile to compute the
system’s performance level. Under normal circumstances, this is not a
problem, as the duty-cycle is adapted according to the long-term dynam-
ics of the source. However, in the case of a prolonged lack of harvesting
opportunities, e.g., due to snow cover, the battery must be dimensioned
such that this period can be bridged, and the dynamic power manage-
ment scheme requires a mechanism to deal with the situation. To the best
of our knowledge, no other approach considers this scenario.

In order to provision for such conditions, the duration of the expected
worst case period, τ days, can be approximated at design-time, and
the battery over-provisioned accordingly. Then, at runtime, the power
management scheme switches into an emergency mode. For example,
we might over-provision the battery with

∑τ
(
DCe(d) · Psys · 24 hours

)
, and

let the duty-cycle be an exponentially decaying function for those days
that are below some threshold Et, i.e., DCe(d) = (DCmin)

d+1
τ ∀{d|Êin(d) < Et},

where DCmin is the minimum acceptable duty-cycle.
Using our approach to capacity planning from Chapter 2, and the dy-

namic power management approach enhanced with the above emergency
provisioning, healthy discharge cycles during normal operation can be
achieved, as the emergency store is only used in exceptional situations.
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3.4 Evaluation
In this section we use extensive trace-driven simulations to compare the
proposed dynamic power management scheme against several State-of-
the-Art approaches. We show that the proposed algorithm achieves un-
interrupted long-term operation, while outperforming the baseline tech-
niques over a range of performance metrics. In Chapter 6 we further
exemplify the proposed technique’s performance using a real-world en-
ergy harvesting wireless sensing system.

3.4.1 Experimental Setup
3.4.1.1 Baseline Algorithms

We compare our approach through simulation against State-of-the-Art
implementations of energy-predictive and battery-reactive approaches.
Specifically, we implement the predictive duty-cycling scheme from
[KHZS07] with two different energy predictors, i.e., EWMA [KHZS07]
and WCMA [PBAR09], and one reactive approach, i.e., ENO-MAX
[VGB07]. Note that the method from [PBAR09] only provides an energy
prediction algorithm but does not discuss dynamic performance scaling,
hence we use the algorithm from [KHZS07] to compute the duty-cycle.

We have selected these particular algorithms for the following rea-
sons. The approach from [KHZS07] achieves very good performance
with minimal overhead, and is commonly used as a baseline for compar-
ative analysis, e.g., [PBAR09, VGB07]. It is also one of the few techniques
that combines prediction and scheduling for solar harvesting systems.
The technique in [PBAR09] has been shown to improve the prediction
accuracy, but it has not been investigated if the improvement translates
into increased system performance. Finally, the method from [VGB07]
is a very well-performing representative of the class of storage-reactive
approaches.

3.4.1.2 Methodology and Simulation Input Data

To evaluate and compare the performance of the proposed solution, we
simulate a solar energy harvesting system with the power management
schemes introduced in Section 3.4.1.1 and the trace data discussed in the
following. The simulation environment has been validated as discussed
in Section 6.4.

For the simulation input data, we resort to the National Solar Radia-
tion Database1 (NSRD) to obtain a twelve year dataset containing hourly
solar radiation measurements at a single observation point in California

1http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2010
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Tab. 3.1: Name, time-period, and location of NSRD1 datasets used for evaluation of the
proposed approach. Maximum, mean, minimum and variance of solar radiation
are given in Wh/0.01m2.

Name Time Period Latitude Longitude Maximum Mean Minimum Variance
CA 01/01/99 – 12/31/09 34.05 -117.95 10.37 7.03 0.92 5.62
MI 01/01/99 – 12/31/09 42.05 -86.05 10.55 5.34 0.53 9.05
ON 01/01/99 – 12/31/09 48.05 -87.65 10.98 5.07 0.44 11.24

(CA), Michigan (MI), and Ontario (ON) respectively. The data for the
first year of each dataset is used for calibration, and the remaining eleven
years are used for simulation input data. The data traces (see Table 3.1 for
details) from the National Solar Radiation Database are given in Wh ·m−2

of solar energy incident on a flat surface with zero inclination. Hence, to
account for smaller panel sizes, inefficiencies of individual components,
and losses in energy conversion and storage during simulation, the data is
conditioned with an efficiency of a typical midrange solar panelηpv = 10%,
orientation angle φp = 180◦, and inclination angle θp = 0◦. We evaluated
different panel sizes, but the results are comparable, hence we only show
and discuss results for a panel with Apv = 5cm2. Finally, we consider
battery charging and discharging efficiencies with ηin = 0.9 and ηout = 0.7,
which are reasonable efficiency factors for Nickel-Metal Hydrid (NiMH)
batteries, see e.g., [KPS04, TJC08, PBAR09, VGB07], and empirically vali-
dated in [Ste13]. We assume no charge controller inefficiencies, however,
i.e., ηcc = 1.

3.4.1.3 Simulation Details

The capacity planning technique from [KHZS07] is used to obtain the
battery capacity B and supported power level Psys at full performance
(i.e., DC = 100%) using one year of calibration data for each of the three
datasets. We do the same with the capacity planning algorithm from Sec-
tion 3.2.3, but do not provision for emergency situations (see Section 3.3.2).
The results are shown in Tables 3.2 and 3.3, and discussed in Section 3.4.2.

For each of the baseline implementations we use the authors’ recom-
mended parameters, i.e., K = 3, D = 4, α = 0.3 for WCMA [PBAR09], and
α = 0.5 for EWMA [KHZS07]. For ENO-MAX [VGB07], we use α = 1/24,
and β = 0.25. The authors suggest values between 0.25 and 0.75 for β,
where lower values are claimed to improve the duty-cycle stability at the
cost of performance. We experimented with different values and noted
negligible improvements in performance but noticeable increase in duty-
cycle variance with increasing values for β. Finally, due to the hourly
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Tab. 3.2: Battery capacities and supported power levels obtained with the baseline capac-
ity planning approach from [KHZS07] and our approach (LT-CP) proposed in
Chapter 2 for the three datasets MI, ON, and CA (see Table 3.1), and a panel size
Apv = 5cm2.

MI ON CA

baseline LT-CP baseline LT-CP baseline LT-CP

B [Wh] 42.51 93.6 61.48 98.61 56.96 88.96
Psys [mW] 55.73 57 56.75 47.5 73.17 83

Tab. 3.3: Simulation results for the baseline approach and our proposed approach (LT-CP)
with batteries and expected performance level (i.e., DC(d) = 100% ∀d) from
Table 3.2.

MI ON CA

baseline LT-CP baseline LT-CP baseline LT-CP

Offline [%] 28.13 0 33.4 0 24.66 0
Pmean [mW] 40.04 57 37.79 47.5 55.11 83
Pmin [mW] 0 57 0 47.5 0 83
DC Var. [ 1

mW2 ] 53.98 0 62.8 0 31.83 0

values given by the National Solar Radiation Database, we use Nw = 24
instead of 48 daily update slots for EWMA, WCMA, and ENO-MAX as
is done in the respective original implementation. This results in a slight
penalty in prediction accuracy, but significantly reduces computational
complexity. Recall that our approach performs only one update per day,
i.e., Nw = 1.

We assume the battery to be fully charged at the start of the simulation,
and simulate a low-voltage disconnect hysteresis of 60%, as commonly
enforced by modern charge controllers [BAB13]. This means that, if at
any time the battery is fully depleted, the load will be reconnected only
once the battery has been recharged to 60% of its capacity.

For the history window size W used by our proposed algorithm, we
assume W = 63 days for all three datasets. The effects of this parameter
are further discussed in Section 3.6.
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3.4.1.4 Performance Metrics

Each of the algorithms are evaluated according to the following five per-
formance metrics:
Percent Time Offline. For each experiment we report the percentage of
the total simulation time during which the system was offline due to a
depleted battery.
Mean Power Level. According to Section 3.2.1, the system utility is de-
fined by the achievable duty-cycle. However, since the methods evaluated
yield different sustainable power levels (see Table 3.2), we can not use the
duty-cycle alone as a performance metric. Rather, we report the average
power level achieved over all simulation time steps (including overriding
zeros due to low-voltage disconnects), i.e., Pmean = mean(DC(d)) · Psys.
Minimum Power Level. Achieving a minimum performance level can
be crucial in certain application scenarios, e.g., safety-critical systems. We
therefore report the absolute minimum power level that the evaluated
approaches achieve.
Duty-Cycle Variance. We report the duty-cycle variance, normalized
by the variance of the energy input Ereal(d) over all simulation time steps,
i.e., VarDC = var{DC(d)}

var{Ereal(d)} ∀d
Energy Efficiency. To compare the energy efficiency of the algorithms,
we report the percentage of total energy input that went unused.

3.4.2 Experimental Results
3.4.2.1 Capacity Planning

The State-of-the-Art capacity planning algorithm discussed in [KHZS07]
yields the required battery capacity B and sustainable power level Psys,
given an energy input trace representative of the conditions at the in-
tended deployment site. Here, we investigate if Psys can indeed be sup-
ported over long time periods by simulating the system equipped with
a battery of capacity B as obtained with the capacity planning algorithm
from [KHZS07], and running at a fixed, full performance power level Psys,
i.e., DC(d) = 100% ∀d. Note that any non-zero duty-cycle could have
been chosen, as we aim at validating the technique’s ability to maintain
the expected performance, i.e., in this case full performance. We selected a
duty-cycle of 100% since this represents an extreme case. Ultimately, how-
ever, the battery should be provisioned with a reasonable lower bound on
the duty-cycle required by the application. The dynamic power manage-
ment scheme then attempts to maximize the duty-cycle at runtime, while
taking the battery capacity and panel constraints into consideration.

The results in Table 3.3 show that the approach from [KHZS07] does
not always support the expected performance. The battery obtained with
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the long-term energy neutral capacity planning approach from Chapter 2,
on the other hand, can sustain the expected performance level over the
entire eleven years of simulation time. It is worth stating at this point
that while in this case our approach also used one year of trace data to
approximate Ω, in contrast to [KHZS07], our scheme does not absolutely
depend on the availability of such data.

3.4.2.2 Dynamic Power Management

According to the authors, if the calibration data is representative of the ac-
tual conditions, the power level Psys obtained with the capacity planning
technique from [KHZS07] should be supported at all times. However, the
previous experiment showed that this may not always be the case, clearly
demonstrating the need for dynamic power management. We thus evalu-
ate and compare the dynamic power management approach proposed in
this work against the performance of the power management techniques
from [KHZS07] with EWMA and WCMA [PBAR09] predictors, and ENO-
MAX [VGB07]. For these algorithms we assume the power subsystem
capacity planning from [KHZS07], while our approach uses our capac-
ity planning approach from Chapter 2 and reviewed in Section 3.2.3. We
also analyze the scenario in which the baseline algorithms use batteries
obtained with our approach.

For simulation we fix the minimum acceptable duty-cycle at
DCmin = 50%. While this may seem like an unusually high duty-cycle,
recall that the power subsystem is designed such that a power level cor-
responding to DC = 100% should be possible, and therefore a reasonable
lower bound. We then simulate the different approaches with the en-
ergy input traces scaled from 50% to 150% to artificially cause model
deviations. The results are shown in Figure 3.4, and Table 3.4 lists the per-
formance results averaged over all simulation runs for a static approach
(i.e., , no duty-cycling is employed), the three baseline algorithms and our
proposed scheme, which we call LT-ENO.

From Figure 3.4, and Table 3.4 it is evident that our approach outper-
forms the baseline algorithms in all respects, except for a few instances
where the performance is comparable to that achieved by ENO-MAX. It is
particularly noteworthy that the achieved mean power level is bounded
closely by the minimum and maximum power levels respectively, il-
lustrating a low duty-cycle variance. For the baseline algorithms, the
achieved minimum power level is at most equal to the minimum ac-
ceptable power level, i.e., Pmin = Psys · DCmin. This means that for the
baseline approaches, the minimum achieved power level follows the
minimum acceptable duty-cycle defined at design time. With the pro-
posed approach, however, the minimum achievable duty-cycle follows
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Tab. 3.4: Simulation results averaged over all simulation runs shown in Figure 3.4 for the
three datasets, i.e., MI, ON, CA, and the parameters listed in Table 3.3. Note:
Static refers to capacity planning alone, i.e., no dynamic power management is
used. LT-ENO refers to our approach proposed in this chapter.

Algorithm

Static EWMA WCMA ENO-MAX LT-ENO

M
I

Offline [%] 5.75 0.12 0.26 0.54 0
Pmean [mW] 53.71 33.22 32.42 48.63 52.77
Pmin [mW] 36.27 25.33 25.33 25.33 49.49
DC Var. [ 1

mW2 ] 0.0001 2.5 2.29 5.35 0.0016
Efficiency [%] 71.6 42.82 41.68 62.87 69.68

O
N

Offline [%] 4.8 0.57 0.66 2.16 0
Pmean [mW] 45.21 32.65 31.66 45.45 45.25
Pmin [mW] 30.22 25.79 25.79 23.22 41.97
DC Var. [ 1

mW2 ] 0.0005 2.47 2.06 8.25 0.001
Efficiency [%] 64.6 45.3 43.82 62.58 64.4

C
A

Offline [%] 6.29 0 0 0 0
Pmean [mW] 77.85 44.79 42.75 68.94 75.45
Pmin [mW] 52.81 36.59 36.59 46.56 69.01
DC Var. [ 1

mW2 ] 0.0009 1.86 1.33 1.88 0.002
Efficiency [%] 75.74 41.5 39.39 64.9 72.4

the long-term dynamics of the observed energy profile without requiring
the designer to specify DCmin. Furthermore, considering long-term in-
stead of short-term dynamics has a direct impact on duty-cycle variance.
From Figure 3.4 and Table 3.4 it is evident that the duty-cycle variance is
orders of magnitude lower than that obtained with any of the baseline
algorithms. Achieving high duty-cycle stability over long time periods
can be a strong requirement in a broad range of application scenarios,
e.g., [VKR+05, CB10, WBB+13].

We further note that, while our approach achieves 100% availability in
all simulation runs, the baseline algorithms suffer from depleted batteries
for two of the three datasets. In the worst case, this results in system
unavailability of up to 620 days (ENO-MAX with ON dataset scaled by
0.5). This behavior is expected since the baseline algorithms are battery
and/or source agnostic and, and, more importantly, as has been shown in
Section 3.4.2.1, the power subsystem is under-dimensioned. In order to
perform a fair analysis, and determine if these algorithms could do better,
we next evaluate the baseline algorithms with a power subsystem from
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Section 3.2.2.
The only significant difference to the results discussed above is with

respect to the system’s availability, i.e., the percentage time offline met-
ric. With a battery capacity computed by our approach, the baseline
algorithms now achieve 100% availability, i.e., 0% offline, for all datasets.
The little improvement in the other performance metrics is attributed to
the battery agnostic nature of the baseline algorithms. In the case of the
two predictive approaches, i.e., EWMA and WCMA, an appropriately
dimensioned battery only helps to overcome fundamental limitations of
the approach, i.e., limited prediction accuracy. The reactive approach,
i.e., ENO-MAX, could benefit substantially from an adequate battery if
the set-point required by this algorithm was computed dynamically ac-
cording to an expected discharge profile that takes the battery capacity
into consideration.

In this section, we have shown through simulation that our approach
excels in all five performance metrics defined in Section 3.4.1.4. The
proposed dynamic power management scheme achieves 100% system
availability in simulation with eleven years of trace data for different
geographical locations. We have shown that the minimum and mean ex-
pected performance level can be sustained even when there are deviations
from the design-time model assumptions. Since our algorithm leverages
the source’s long-term dynamics, a very low duty-cycle variance can be
maintained while still achieving highly efficient energy usage.

3.5 Benefits of Dynamic Power Management
In the previous section we have shown that the proposed approach, which
combines power subsystem capacity planning and a dynamic power
management scheme, yields considerable performance and reliability im-
provements when compared to the State-of-the-Art approaches proposed
in literature. In this section we discuss the benefits of using our dynamic
power management algorithm when compared to relying on capacity
planning alone.

For this purpose, we performed the same simulation discussed in the
previous section, but set a static duty-cycle, as obtained from capacity
planning. The results, averaged over all simulation runs are shown in the
first column of Table 3.4. As is evident, the mean achievable duty-cycle
without dynamic power management support is close to what is achieved
by our dynamic approach. However, if we consider the minimum achiev-
able duty-cycle, the static approach performs significantly worse than our
dynamic approach. This is because the static approach can not adjust the
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Fig. 3.5: Benefits of dynamic power management. Comparison of mean and minimum
achievable duty-cycle with and without dynamic power management.

performance level in response to deviations from the model, and experi-
ences battery depletions when true conditions are below some percentage
of the expected conditions.

This is illustrated in Figure 3.5, which shows the minimum and mean
duty-cycle achieved with the combination of capacity planning (for an
expected duty-cycle DCsys = 70%) and the proposed dynamic power
management algorithm over a range of scaling factors by which the energy
input was scaled. The same is shown for capacity planning alone, i.e., the
static approach. Note that in region (a), i.e., for scaling factors 0.5 to
0.9, the static approach was unable to sustain a non-zero minimum duty-
cycle, inferring that the system suffered power outages. In this region,
the dynamic power management approach achieves a performance level
roughly proportional to the expected duty-cycle scaled by the energy
input scaling factor. In other words, the dynamic power management
approach trades off performance for ensuring continuous operation at
an adjusted minimum expected duty-cycle that is dependent only on
the energy input. This feature is a clear benefit for systems that require
continuous operation.

Region (b) in Figure 3.5, i.e., between 0.9 and 1.2 in this case, is a transi-
tion region where the static approach achieves slightly higher minimum
performance than the dynamic power management scheme. Neverthe-
less, it is evident that the dynamic power management enabled system
is able to improve the performance level in response to increased energy
availability. The lower bound of this region depends on the degree of
overestimating true conditions, i.e., an effect of capacity planning, while
the upper bound of this region is dependent on the reactivity of the dy-
namic power management algorithm, and therefore related to the history
window size W (see Section 3.6.3). Finally, region (c) shows the full po-
tential of dynamic power management. That is, the dynamic approach
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Fig. 3.6: Achievable maximum, mean, and minimum duty-cycle (top), and duty-cycle
variance (bottom) with inclination angle φp ranging from 0◦ to 90◦ for the CA
dataset.

continues to adapt to the surplus energy and increases the performance
level accordingly.

In summary, in this section we have shown that, unless the expected
conditions at the intended deployment site can be very closely approxi-
mated, our dynamic power management scheme provides two clear ben-
efits. First, it allows reliable operation even when the expected conditions
were overestimated at design time. Second, the algorithm can adapt to
surplus energy, and safely increase the performance level accordingly.

3.6 Sensitivity Analysis

3.6.1 Energy Profile Periodicity

The proposed dynamic power management scheme assumes a certain
periodicity and sinusoidal behavior of the energy source. This is a valid
assumption, since the tilt in the earth’s axis of rotation will cause different
incident angles depending on the earth’s orbit around the sun, which has
a direct impact on the harvestable energy [DHM75]. Despite assuming
a stationary solar harvesting setup (i.e., no tracking capabilities), it is
nevertheless possible that the expected sinusoidal behavior fails to appear.
For example, a natural, or man-made structure may shade the panel
over the course of the year such that the typical peaks and troughs (see
Figure 2.6) are obscured. Occurrences of these environmental effects are
considered extenuating circumstances, and therefore not considered in
this work. Nevertheless, in the following, we briefly investigate a similar
effect due to panel inclination and orientation angles.
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3.6.2 Panel Inclination and Orientation
The proposed approach builds upon an energy availability model with
deployment specific input parameters. Here we briefly discuss the effects
of orientation angle φp and inclination angle θp of the solar panel. First,
the effect of φp has been considered in Section 3.4.2, where it was shown
that the approach can handle significant deviations from the expected
conditions. The inclination angle, however, changes the shape of the
annual solar energy profile (see also Section 2.6.2). Hence, to evaluate
this effect, we simulate the system with the battery provisioned as before,
i.e., θp = 0◦ for the CA dataset, but vary the panel inclination angle
θp from 0◦ to 90◦ for the simulation. Figure 3.6 shows the maximum,
mean, and minimum achievable duty-cycle for the CA dataset. Note that
the minimum allowable duty-cycle is fixed at 1%. The results clearly
show that the proposed dynamic power management scheme can adapt
to unexpected energy profiles, while maintaining very low duty-cycle
variance.

3.6.3 History Window Size
As discussed in Section 3.3.1, the design-time energy availability model
is scaled according to observed conditions over a history window of size
W. When applying a large history window size W, the scaling factor α
contains information about environmental conditions W days in the past.
Large W values reduce the model’s reactivity to significant variations in
the present energy profile, which has the potential to threaten uninter-
rupted operation. On the other hand, a short history window enables the
system to react to short-term variations of the source, but at the cost of
increased duty-cycle variance.

In order to find a suitable trade-off between achievable performance
level and duty-cycle stability, we evaluate the adjusted model’s approxi-
mation accuracy with different values for W. For this we define the per-
formance metric given in Equation (3.10), which considers the model’s ap-
proximation accuracy through Mean Absolute Percentage Error (MAPE)
[AC92], scaled by the variance of α over a time period of N days.

σ =
var(α)

N

N∑
i=1

∣∣∣∣∣∣Ereal(di) − Êin(di)
Ereal(di)

∣∣∣∣∣∣
 (3.10)

The result for W ∈ [7, 14, 21, ..., 140] days, and N = 365 days is il-
lustrated in Figure 3.7, which shows σ for the three different datasets,
normalized by the respective maximum value of σ. As expected, the per-
formance metric σ approaches a value, past which there is diminishing
improvement in approximation accuracy or stability with increasing W.
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Fig. 3.7: Evaluation of history window size W, normalized to maximum value of σ for
the respective dataset.

Intuitively, the optimal value for W is likely dependent on the source
characteristics, i.e., the variability of the energy profile, and on the length
of the deficit period that the battery must be able to bridge. Based on
the results in Figure 3.7, a history window of W = 63 days for all three
datasets is considered a suitable parameterization.

3.7 Practical Considerations
In this section we discuss implementation specific considerations and
limitations of the proposed approach.

3.7.1 Measurement Support
The proposed dynamic power management scheme requires that the sys-
tem can measure or approximate the total daily harvested energy. This
can be accomplished by measuring the power output by the panel, or
inferring the harvested energy through battery State-of-Charge informa-
tion e.g., [BAB13, SKJ13]. The former is the preferred choice, but incurs
additional overhead in terms of measurement circuitry and continual
processing [BKN02]. In Chapter 5 we present an accurate online battery
State-of-Charge approximation algorithm for energy harvesting systems
that does not require special purpose hardware. In Chapter 6, we show
that it is indeed possible to use the technique discussed herein with the
State-of-Charge approximation approach from Chapter 5 when the sys-
tem is incapable of directly measuring the energy generated by the solar
panel.

3.7.2 Global Time Knowledge
Clearly, the proposed technique requires knowledge of global time in
order to determine the current calendar day d. Considering that our
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approach achieves long-term energy neutrality, and may therefore oper-
ate without interruption (see Sections 3.4.2 and 6.4), this is not consid-
ered a limitation. There exist numerous time synchronization protocols,
e.g., [FZTS11, BPBB12], which can be used to synchronize the individual
motes’ clock with that of a basestation. The basestation, in turn, can keep
its local clock up-to-date with the Network Time Protocol (NTP). Details
on clock synchronization, however, is beyond the scope of this work.

3.7.3 Battery Inefficiencies
Batteries are non-ideal storage elements, which suffer from a variety of
inefficiencies that are dependent on the specific battery chemistry and
load behavior [BKN02]. In our model, charging and discharging inefficien-
cies are incorporated through ηin and ηout respectively, as specified by the
system designer (see Figure 3.1). Leakage power is ignored in this discus-
sion. Considering the periodically recurring recharging opportunities,
accounting for leakage is not as crucial as it is for purely battery oper-
ated devices. Temperature, on the other hand, may impact the battery’s
apparent capacity [BAB13]. Thus, for deployments that are exposed to
low temperatures over extended periods of time, it may be necessary to
account for the temporarily reduced battery capacity imposed by tem-
perature effects. Finally, battery aging is not likely to be a problem, since
batteries are generally rated for a few hundred deep discharge cycles,
after which a maximum of 80% of the battery’s initial capacity can be
recovered [BKN02]. With our approach, the battery experiences only one
deep discharge cycle per year, and is therefore expected to outlast the
lifetime of other system components, e.g., electronics, mechanical parts,
etc. Note that the solar panel may also experience degradation. However,
it has been shown that this tends to be aesthetic in nature, and does not
significantly affect the panel’s efficiency [CVS+07]. A panel’s manufac-
turer generally gives warranties for 20 years, at which point the panel is
expected to generate at least 80% of its rated output.

3.7.4 Algorithm Considerations
The proposed algorithm requires a constant amount of non-volatile mem-
ory to maintain W values of Ereal(d), which are necessary to compute α.
Furthermore, the system must be able to compute Ein(d) ∀d ∈ [1, 365] at
runtime, or alternatively store 365 values representing Ein(d) as a look-up
table. The computation time is linear with respect to the number of days
for which Ein(d) is to be determined. Since our approach considers the
source’s long-term characteristics, we are not concerned with sub-daily
energy fluctuations. Hence, the sustainable performance level, i.e., duty-
cycle, for the entire day d + 1 is computed only once at the end of day
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d. Finally, note that the capacity planning algorithm from Chapter 2, and
reviewed in Section 3.2.3 is computed offline and relies only on one un-
known parameter, i.e., Ω, which can be approximated easily. Similarly,
for the dynamic performance scaling algorithm from Section 3.3.1, only
the history window size W must be determined (see Section 3.6.3).

Note that the algorithm presented in Section 3.3.1 may be optimized.
For example, rather than always starting with the modeled limits d0,
d1, and d2, we may store the limits obtained on day d and use those
as initial conditions on day d + 1. However, for the proof-of-concept
implementation discussed herein, we are not concerned with the most
efficient way to find the intersection of the two functions.

3.8 Chapter Summary
In this work we have demonstrated that appropriate design-time con-
siderations, together with a novel dynamic power management scheme
can indeed enable energy neutral operation of solar energy harvesting
systems over time periods on the order of multiple years. The proposed
dynamic power management scheme leverages an astronomical energy
availability model that is also used to dimension the energy harvesting
power subsystem.

Rather than considering the energy source’s short-term fluctuations,
our approach uses the source’s known long-term tendencies to compute
the sustainable duty-cycle. This allows the system to fully, but safely,
leverage the power subsystem and so achieve stable performance over
long time periods without incurring downtime. Additionally, the sys-
tematic end-to-end solution enables efficient use of the power subsystem,
resulting in major savings in terms of system cost and physical form factor.

When compared to the State-of-the-Art implementations, the pro-
posed approach achieves a reduction in duty-cycle variance by up to three
orders of magnitude without impeding the achievable performance level.
Trace-driven simulation with eleven years of real-world data showed that
the achieved minimum, and mean duty-cycle improve upon existing tech-
niques by up to 195% and 177% respectively. We have further shown that
the proposed approach can significantly improve system utility, while
exhibiting robustness against variations in the observed energy profile,
irrespective of the source of model deviations, i.e., environmental and
deployment variations.
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4
Optimal Power Management

4.1 Introduction
In the previous chapter we presented a novel dynamic power manage-
ment technique for energy harvesting systems based on a heuristic. In this
chapter we formally study the energy harvesting problem with the ob-
jective of maximizing the minimum energy used, and present a dynamic
power management scheme with guaranteed minimum energy utilization
[BKT15].

In Chapter 3 we showed that lifetime and performance improvements
stem from a combination of appropriate power subsystem planning,
e.g., [KHZS07, BSBT14b], and energy harvesting-aware dynamic power
management, e.g., [VGB07, PBAR09, BSBT14a]. Despite significant re-
search efforts, particularly in the area of runtime power management,
the proposed schemes generally aim at maximizing short-term energy
efficiency and operate on a best-effort basis. Achieving dependable
operation over time periods on the order of multiple years has shown
to be difficult despite leveraging a periodically recurring energy source
[TJC08]. The inability to provide minimum performance guarantees have
so far prevented solar energy harvesting wireless sensor networks to en-
ter important application domains, e.g., safety-critical [AAA+07], and
long-term monitoring and surveillance [BBF+11], where minimum per-
formance guarantees must be given.

In order to advance energy harvesting wireless sensor network tech-
nology to the domain of safety-critical systems, we must address the
question on how to guarantee a minimal service despite relying on an
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energy source that is highly variable both in time and amount of energy
availability. Informally, a system that can sustain a pre-defined minimum
performance level without interruption is said to provide a minimal ac-
ceptable service. If this service-level is not achieved, the system may not
be responsive, which – for safety reasons – must be avoided at all cost. As
a secondary objective we would like to maximize the utility of the system
by leveraging the energy surplus that may likely be available during sum-
mer. This “free” energy can be used to e.g., increase the sensing resolution
both in time and precision, perform local processing, communicate more
frequently, and, in multi-hop networks, participate in forwarding so to
relieve the burden from energy starved or otherwise overloaded nodes.

Challenges

Achieving the above objectives is complicated due to the highly variable,
and only partially predictable energy profile. An approach that greedily
uses the available energy in an attempt to maximize the utility instead
of provisioning for times of deficit may cause system outages at a later
time. Not only does this incur high penalties due to low-voltage re-
connect hysteresis generally enforced by charge controllers [BSBT14b],
but it also violates the minimal service objective. On the other hand,
conservative short term usage may lead to low minimum service, and the
risk of battery overflows. A battery overflow happens when the battery is
full and the surplus energy exceeds the maximum system consumption,
significantly reducing the energy efficiency because the excess energy
can neither be stored nor consumed. Wasting energy is undesirable as it
negatively affects the overall system utility. As will be shown, however,
in reality it is practically impossible to always fully utilize all available
energy without wastage.

As already discussed in Chapter 3, contemporary approaches are gen-
erally based on feedback-control, and heuristically attempt to trade-off
the above objectives without formally defining the underlying optimiza-
tion problem to be solved. Furthermore, optimality and superiority of a
particular approach very much depend on the application scenario un-
der consideration, and the applied evaluation criteria. Most importantly,
however, despite over a decade of research in this domain [KS03], to the
best of our knowledge, none of the approaches published so far are able
to provide minimum performance guarantees for solar energy harvesting
systems.
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Approach and Summary of Results

In contrast to previous work, we aim to formally study the problem of
energy harvesting with the objective of maximizing the minimum energy
used across all time intervals. First, we study the simplified clairvoyant
setting wherein the harvested energy for any given time interval is exactly
known in advance. With this assumption, we derive an optimal algorithm
that computes the amount of energy to be used in each time interval such
that the minimum energy used, i.e., use function, across all intervals is
maximized. To identify an efficient algorithm to compute the optimal use
function, we establish a relation between the energy harvesting problem
and the shortest Euclidean path problem. This relation then allows us
to use well-studied and efficient algorithms for the clairvoyant energy
harvesting problem.

Then we study the more general and realistic problem where the har-
vested energy is not known exactly; instead we only know a conservative
estimate of it. With this assumption, we show how a finite horizon control
scheme can be used to adaptively update the use function. We prove that
under certain assumptions of the estimate, such a finite horizon scheme
is guaranteed to provide a certain minimum energy usage that is better
than a non-adaptive scheme.

A natural concern with the finite horizon scheme is whether it can
be implemented on resource constrained low-power embedded devices
used typically in wireless sensor network setups. We therefore study an
approximated scheme where certain use functions are planned offline and
represented in a look-up table. At runtime, only a few simple operations
with the values in the look-up table must be performed to compute the
appropriate use function.

The final point to consider is the large variability in the harvested
energy. This variability is not modeled in the algorithm, and instead
must be adequately represented in the estimate. To this end, we propose a
non-uniform scaling function to conservatively scale down the harvested
energy estimation.

We experimentally validate the different proposed theoretical ideas
with datasets available in a public database and, in Chapter 6, with raw
data collected from our own long-term deployment. While the theoretical
analysis is presented without taking conversion and storage inefficiencies
into account, the experiments consider various efficiency factors to eval-
uate our approach in a realistic setting. With these experiments we show
the following key results.

1. The clairvoyant algorithm computes optimal use functions which
satisfy certain necessary conditions, as required by the connection
to the Euclidean shortest path problem.
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2. When relying on the energy estimation from [BSBT14a], the non-
clairvoyant, optimal algorithm can lead to failure states, i.e., the
battery drains prematurely. However, with our proposed non-
uniformly scaled estimator, the algorithm computes sustainable use
functions for datasets from diverse locations.

3. The proposed finite horizon scheme improves the minimum energy
usage, and greatly increases the total used energy when compared
to State-of-the-Art approaches.

4. We show that the efficient look-up table approach results in a
marginal loss in performance with respect to the finite horizon
scheme. In addition, the memory overhead of the look-up table
is found to be reasonably small (about 500 floats) for various data
sets.

5. Finally, we show that the proposed approach significantly out-
performs all four State-of-the-Art algorithms that are used as base-
line for performance comparison. In fact, at best, our approach
reaches to within 9.9% of the performance of the optimal clairvoy-
ant algorithm. At worst, the achieved minimum performance is
within 29.5% of the clairvoyant approach.

Roadmap

The remainder of this chapter is structured as follows. Section 4.2 presents
a formal system model and defines the optimality criteria for an optimal
controller. Then in Section 4.3 we discuss optimal control of solar energy
harvesting systems when the energy input is known in advance. In Sec-
tion 4.4 we consider the realistic scenario, where the energy input is not
available a priori, and present a finite horizon control scheme that achieves
a guaranteed minimum utilization. In Section 4.6 we provide details on
the parameterization of our approach. Then Section 4.7 presents an exten-
sive discussion of performance results obtained from simulation.Finally,
Section 4.8 presents a brief summary of this chapter.

4.2 Problem Definition
This section introduces a formal system model including the correspond-
ing power management problem. We will also discuss the reasoning
behind the model abstractions and show that they are reasonable for
a large class of energy harvesting systems. Further discussions on the
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usefulness of the model and necessary adaptations if applied to realistic
scenarios are described in Sections 4.6 and 4.7, and Chapter 6.

4.2.1 System Model
The system model used in this chapter is characterized by the following
quantities and relations.

Usually, a control algorithm that influences the energy consumption
and service of an application will perform its function not continuously
but at multiples of a fixed time interval. Therefore, we will use a discrete
time system model, i.e., time t ∈ N. The time difference of one is named
a unit time interval, it could represent a minute, a day, a week or even a
month. The time horizon of interest is some known interval [0,T].

The energy storage element (battery) has stored energy b(t) at time t.
The maximal capacity of the battery is B. For the formal discussion we
suppose a loss-free model, i.e., there are no leakage or store-consume inef-
ficiencies. However, for experimental validation we use a realistic model
that considers various inefficiencies (see Section 4.7). Leakage is ignored,
but could be considered by assuming a virtual energy consumption of the
application.

The harvested and used energy during the time interval [t, t + 1) are
denoted as p(t) and u(t), respectively. While the harvested energy p(t) is
provided by the environment (conditioned by the technology parameters,
as described in Section 2.3.2), the used energy u(t) is under the influence
of the harvesting controller. We suppose that the controller can change
parameters and modes of the running applications and the underlying
hardware device such that the used energy matches any value u(t). As
a typical example, the controller may change the duty-cycle of sensing,
communication or computation activities, and/or switch certain device
components on or off to adjust the consumed energy for a given time
interval. Note that we are interested in providing a minimal service-level
at all times, hence the duty-cycle will not take arbitrarily low values and
so introduce undue overhead. Moreover, we assume a properly provi-
sioned power subsystem, e.g., from Chapter 2, which can safely provide
the maximum power drawn by the system. A more refined model that
takes into account an upper-bound on the energy consumption will be
introduced in the experimental section, see Section 4.7.

Given the current state of the battery b(t), the harvested energy p(t)
and the used energy u(t), the harvesting system can be described by

b(t + 1) = min
{
b(t) + p(t) − u(t),B

}
. (4.1)

If b(t) + p(t) − u(t) < 0, the system is in a failure state at time t, due to the
battery underflow. We call a use function u(t) feasible only if there are no
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consequent failure states in [0,T). In practical scenarios, a battery may
not be allowed to drop to a zero energy level, which can be considered by
assuming a virtually smaller battery than B for the algorithm discussed
in the following.

As described above, the controller can influence the energy consump-
tion of the device by changing u(t). Generally, a lower energy also leads to
a lower service, e.g., a lower sampling rate or lower data resolution. This
fact will be modeled by defining the utility U(t1, t2) of the use function in
time interval [t1, t2) as follows

U(t1, t2) =

t2−1∑
τ=t1

µ(u(τ)) (4.2)

for some strictly concave1 utility function µ : R≥0 → R>0. The concavity
constraint leads to a diminishing utility if the application consumes more
energy, i.e., additional energy is more important in case of a low energy
level than in case of an already high energy level. With µ one can also
model that beyond a certain consumed energy value there is no additional
device utility.

4.2.2 Optimality Criteria of the Controller
Based on the above system model, we can now define reasonable opti-
mality criteria for the controller. Given the stored energy at time t = 0,
the required stored energy at end of the time-horizon T, and the harvest
function p(t) for all 0 ≤ t < T, we are interested in an optimal use function
u∗(t) that satisfies the following conditions:

• C1: The system never enters a failure state, i.e., we have
b∗(t) + p(t) − u∗(t) ≥ 0, ∀0 ≤ t < T, where b∗(t) denotes the stored en-
ergy with harvest function p(t) and use function u∗(t).

• C2: There is no feasible use function u(t) with a larger minimal
energy, i.e., min0≤t<T{u(t)} ≤ min0≤t<T{u∗(t)} for all feasible u(t). This
condition is important as we aim to continuously provide a minimal
service as high as possible .

There may be multiple use functions that satisfy the defined conditions
above. In this case, we may want to choose the optimal use function u∗(t)
that maximizes a secondary objective function, such as the following.

1A strictly concave function µ satisfies µ(αx + (1 − α)y) > αµ(x) + (1 − α)µ(y) for any
0 ≤ α ≤ 1, x ∈ R≥0, y ∈ R≥0.
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• C3: Amongst all use functions u(t) that satisfy C1 and C2, we choose
the one that maximizes the total utility (see Equation (4.2)), i.e., max-
imizes

∑
t={0,1,...,T−1} µ(u(t)).

It is by no means obvious if the above criteria can be satisfied simul-
taneously, or if they are conflicting objectives. At every unit-step, the
controller needs to decide whether to use more energy, which would in-
crease the use function for that unit time interval. On the other hand, it
removes energy from the battery, which may cause a battery underflow
or a lower use function at a future time interval. Furthermore, it is also
not known whether there exists an efficient algorithm to determine the
optimal use function u∗(t), if it exists. The final challenge is uncertainty
and variability in the harvested energy p(t). Due to this, we cannot restrict
our focus to the clairvoyant case where p(t) is exactly known in advance.

4.3 Optimal Control

In this section, we will study the problem of computing u∗(t) when p(t) is
known in advance. In other words, we consider a clairvoyant algorithm
which has perfect knowledge of the harvested energy that can be expected
throughout the interval [0,T). Though not practical, this simplified set-
ting allows us to identify the main theoretical ideas that characterize this
problem. Subsequently, in Section 4.4 we will consider the realistic prob-
lem when only an estimate of the harvested energy is known.

4.3.1 Necessary Conditions for Optimality

The main result of this subsection can be formulated by the following
theorem.

Thm. 4.1: Given a use function u∗(t) such that the system never enters a failure state. If the
following relations hold

u∗(s − 1) < u∗(s)⇒ b∗(s) = 0
u∗(t − 1) > u∗(t)⇒ b∗(t) = B

(4.3)

then u∗(t) is (a) optimal with respect to maximizing the minimal used energy
among all use functions, and (b) unique.
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In other words, if we are able to construct a use function that satisfies
Equation (4.3) and never leads to a failure, then the minimal used energy is
optimally maximized. We refer to this use function u∗(t) as the optimal use
function. This result defines a necessary and sufficient condition on the
optimality to satisfy criteria C1 and C2. Further, as only one use function
satisfies this necessary condition, it also trivially satisfies the criterion C3.

We will now show the sequence of lemmas that lead to the above
fundamental result.

Lem. 4.1: (Necessary Condition) Any optimal use function u∗(t) satisfies

∀s ≤ τ ≤ t : 0 < b∗(τ) < B⇒ ∀s − 1 ≤ τ ≤ t : u∗(τ) = u∗(t). (4.4)

and

u∗(s − 1) < u∗(s)⇒ b∗(s) = 0
u∗(t − 1) > u∗(t)⇒ b∗(t) = B.

(4.5)

Proof. We first show that

∀s ≤ τ ≤ t : 0 < b∗(τ) < B⇒ ∀s − 1 ≤ τ ≤ t : u∗(τ) = u∗(t).

We show that a use function u(τ) that does not satisfy the above crite-
rion can be replaced by a use function u′(τ) with a higher minimum used
energy. The change will be local, i.e., it will only influence two values of
u(τ) in s− 1 ≤ τ ≤ t, i.e., u(τ1) and u(τ2). Moreover, we will guarantee that∑t
τ=s−1 u(τ) =

∑t
τ=s−1 u′(τ) and therefore, the stored energy functions will

satisfy b′(τ) = b(τ) for all 0 ≤ τ ≤ s − 1 and t + 1 ≤ τ ≤ T. This is achieved
by setting u(τ1) + u(τ2) = u′(τ1) + u′(τ2).

The change of some values of u(τ) must not violate the conditions on
the stored energy. The maximum allowed variation on u(τ1) and u(τ2) is
ε = mins≤τ≤t{|b(τ)|, |B − b(τ)|} > 0

As u(τ) is not constant in s ≤ τ ≤ t, there exists a maximum and a
minimum u(τ) in s ≤ τ ≤ t, say u(τ1) and u(τ2), respectively with τ1 , τ2.
We now choose

u′(τ1) = u(τ1) − δ u′(τ2) = u(τ2) + δ

with

δ = min
{

u(τ1) − u(τ2)
2

, ε

}
> 0.

We finally have to show that this change leads to a higher minimum
used energy, and hence u(τ) was not optimal as assumed.
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Now we show that

u∗(s − 1) < u∗(s)⇒ b∗(s) = 0,

u∗(t − 1) > u∗(t)⇒ b∗(t) = B.

From the earlier condition, we know that
u∗(τ − 1) , u∗(τ)⇒ b∗(τ) = 0 ∨ b∗(τ) = B. Suppose now that there is
some use function with u(s − 1) < u(s) and b(s) = B. Then we can use the
same method as in the proof of the first part of Lemma 4.1 to show that in
this case, u was not optimal. To this end, we replace the value of u at s− 1
by the larger value u(s−1) +δ and that at s by the smaller value u(s)−δ by
choosing a suitably small positive value of δ ≤ (u(s)−u(s−1))/2 which does
not lead to a failure or waste state. The stored energy at time s is now B−δ
which is still feasible, but the overall utilization would be larger. There-
fore, u was not optimal. The proof for the second relation is analogous. �

According to this Lemma, the used energy should be constant as long
as the battery is neither full nor empty. In addition, if an optimal use
function grows (shrinks), then the corresponding battery level must be
empty (full). Interestingly, this necessary condition applies for all possible
harvested energy functions p(t).

Lem. 4.2: (Uniqueness) If there exists a use function u∗(t) that satisfies the necessary
optimality conditions of Lemma 4.1 and that does not lead to a failure, then it is
unique.

Proof. Let us suppose that there are two different feasible solutions u1

and u2 that satisfy the conditions of Lemma 4.1. At time τ = 0, the stored
energy is given as b(0), both use functions result in the same given stored
energy at the end of interval b(T), and no use function leads to a failure
or waste state.

As u1 and u2 are different, there is some first time instance τ = s where
both functions are different, e.g. u1(s) > u2(s). As the total harvested
energy equals the used energy (no waste state) we have

T−1∑
τ=0

u1(τ) =

T−1∑
τ=0

u2(τ).

Therefore, there must exists a time τ = t > s where u1(t) < u2(t). We
will show that such a time instance can not exist under the conditions of
the Lemma.

Let us suppose that t is the first time instance with u1(t) < u2(t),
i.e., u1(τ) ≥ u2(τ) for all 0 ≤ τ ≤ t − 1. The stored energy under the
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Fig. 4.1: (top) Example of an optimal use function u∗(t) for a given harvest function p(t)
and (bottom) the corresponding stored energy b∗(t).

use function ui is denoted as bi. From bi(τ + 1) = bi(τ) + p(τ) − ui(τ) and
the existence of time s we find that b1(t) < b2(t).

In order to realize such a situation, we either have u1(t − 1) > u1(t)
or u2(t − 1) < u2(t) or both conditions hold. We will show that none of
the conditions is feasible. Suppose we have u1(t − 1) > u1(t). Because of
Lemma 4.1 we find b1(t) = B. But this is not possible as b1(t) < b2(t) and
b2(t) < B. Suppose we have u2(t − 1) < u2(t), then we find b2(t) = 0, again
due to Lemma 4.1. But this is not possible as b1(t) < b2(t) and b1(t) > 0. �

The above result is quite surprising but an example may help to inter-
pret it. To this end, we use a data trace of harvested solar energy with a
time granularity of one week. Figure 4.1 shows 100 weeks of an optimal
use function u∗(t) and the corresponding battery state b∗(t). As is evident,
when the battery is neither full or empty, u∗(t) is constant. Further, if u∗(t)
decreases, then the battery is full and if u∗(t) increases, then the battery
is empty. This seems highly counterintuitive as one would expect that in
case of a full battery it is reasonable to increase the energy usage, and in
case of an empty battery one would decrease the energy usage. However,
considering that the algorithm seeks to fully leverage the available en-
ergy (including the energy that is stored in the battery), an empty battery
marks the end of a period of deficit, i.e., the period during which the bat-
tery is being fully discharged (see Figure 4.1). Therefore, it makes sense
to increase the energy usage upon entering such a period as now there
is more harvested energy available. Conversely, a full battery marks the
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end of a surplus period and therefore, the usage of energy needs to be
reduced.

After having shown the conditions for an optimal use function u∗(t) it
remains to be shown whether there is an efficient algorithm to determine
the same for any given energy input p(t).

4.3.2 Algorithm
In this section we will show that there is an unexpected relation between
the optimal power management problem for harvesting systems as de-
fined above and a problem in computational geometry, i.e., the shortest
Euclidean path in simple polygons. The geometric problem has been
widely studied and efficient algorithms are available. In particular, in
[GHL+87] an O(n) algorithm is described where n denotes the number
of polygon vertices. Hence, it can be expected that the optimal control
problem can be solved efficiently as well.

Similar to [CSSJ11], we will first establish a connection between the
two seemingly unrelated problems. To this end, we define a (harvesting)
polygon by all points (t, σ) with integer time t ∈ [0,T] and σl(t) ≤ σ ≤ σu(t)
where

σl(t) =

t∑
τ=1

p(τ − 1) ∀ 1 ≤ t ≤ T (4.6)

σu(t) = σl(t) + B (4.7)

and σl(0) = 0. In other words, σl(t) denotes the harvested energy in the
time interval [0, t]. Therefore, the polygon contains all points (t, σ) where
σ is between the energy harvested in [0, t] and this value shifted up by the
capacity of the battery B.

Now, a feasible path f (t) in the (harvesting) polygon starts at f (0) =
B−b(0), ends at f (T) = σu(T)−b(T), is monotonically increasing, and never
leaves the polygon, i.e., σl(t) ≤ f (t) ≤ σu(t) for all t ∈ [0,T]. Furthermore,
as we consider a discrete time model, f is assumed to be piecewise-linear
with discontinuities only at integral time units.

As has been shown in [CSSJ11], there is an one-to-one correspondence
between any feasible path f (t) in the harvesting polygon and a feasible
use function u(t) with no waste where

u(t) = f (t + 1) − f (t) ∀ 0 ≤ t < T. (4.8)

Moreover, the shortest feasible path f ∗(t) in the harvesting polygon
yields the optimal use function u∗(t) that maximizes the throughput in the
network [CSSJ11].
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Algorithm 2: Iterative algorithm for optimal power management.
Data: b(0); b(T); B; ε; T; (∀ 0 ≤ t < T : p(t));
Ensure (∀0 ≤ t < T : u(t));
for 0 < t ≤ T do

σl(t)←
∑t
τ=1 p(τ − 1);

σu(t)← σl(t) + B ;
end
f (0)← B − b(0);
f (T)← σu(T) − b(T) ;
forall 0 < t < T do

f (t)← (σu(t) + σl(t))/2 ;
end
repeat

f ′ ← f ;
for t = 1 to T − 1 do

f (t)← ( f (t − 1) + f (t + 1))/2 ;
f (t)← max

[
min

{
f (t), σu(t)

}
, σl(t)

]
;

end
until max

{
| f ′ − f |

}
< ε ;

forall 0 ≤ t < T do
u(t)← f (t + 1) − f (t) ;

end

It appears that the runtime optimal algorithm [GHL+87] is difficult
to implement due to the use of advanced data structures and complex
operations. In Section 4.5 we will propose a strategy to determine explicit
solutions to the optimal power management problem that can be easily
stored and used on resource-constrained platforms. Here, we will de-
scribe a very efficient iterative algorithm that can be used on resource-rich
platforms or server-controlled devices. This approximation algorithm has
guaranteed convergence properties in terms of precision vs. runtime and
is based on the ideas presented in [LK07], [LK11]. Algorithm 2 uses the
parameter ε as a stopping criterion, i.e., the maximal change in any path
coordinate from one iteration to the next.

The first lines in Algorithm 2 define the harvesting polygon as defined
in Equations (4.6) and (4.7) as well as the initial and final point of a feasible
path. Then, the initial path is chosen to be in the middle between the upper
and lower boundaries of the harvesting polygon. The main iteration
attempts to make an as straight as possible path within the polygon,
i.e., it puts a point in the middle between its neighbors unless it touches
the upper or lower boundary. This algorithm appears to be very efficient;
runtime results are described in the experimental Section 4.7.
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4.4 Finite Horizon Control
The previous section provided conditions and an algorithm for optimal
clairvoyant control: If the initial state b(0), the final state b(T) of the battery,
as well as the harvested energy p(t) for all time intervals in [0,T) are given,
then the optimal and unique use function u∗(t) can be determined. But
in reality, only an estimate of the harvested energy in the future can be
provided. In this section, we present a finite horizon control scheme that
allows to formulate bounds on the achieved optimality despite of the fact
that only an approximation of the future energy intake is available.

To this end, we suppose that for all time instances t ≥ 0 there is an
estimated harvested energy function p̃(t) available that provides a lower
bound on the actually harvested energy p(t) in [t, t + 1):

p(t) ≥ p̃(t) ∀ t ≥ 0

Due to the fact that we deal with solar energy harvesting systems, we
can suppose that p̃(t) shows periodic behavior, e.g., a yearly repeating
summer/winter pattern. We further suppose that the periodicity is P, and
therefore we have

p̃(t) = p̃(t + P) ∀ t ≥ 0

Moreover, the time interval we consider is expected to be an integral
multiple of the period, i.e., T = P, 2P, . . ..

The derivation of the finite horizon control scheme and its correctness
proof involves three steps: At first, we will derive the optimal control for
the above periodic estimated harvested energy. In the second step, we
will use this result to derive the adaptive finite horizon scheme. Finally,
we will show that the adaptive finite horizon scheme will never provide
worse results than the optimal control for the estimated harvested energy
p̃(t). This way, the three optimality criteria from Section 4.2.2 can be
satisfied, i.e., (a) the system never enters a failure state, (b) a lower bound
of the use function can be provided as well as (c) a lower bound on the
utility of the use function. Note that the specific choice of utility function
is very application specific (see also Section 4.7).

4.4.1 Optimal Periodic Control
As described above, we suppose a periodic estimated harvested energy
function p̃(t). By assuming that the state of the battery b̃(P) at the end
of the period equals that at the beginning b̃(0), we find that all essential
quantities are periodic in case of the optimal control, i.e., optimal use
function, energy harvesting function and battery state: ũ∗(t) = ũ∗(t + P)
and b̃∗(t) = b̃∗(t + P).
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Algorithm 3: Iterative algorithm for periodic optimal control.
Data: P ; B ; ε ; (∀0 ≤ t < P : p̃(t)) ;
Ensure: (∀0 ≤ t < P : ũ(t)) ; (∀0 ≤ t < P : b̃(t)) ;
forall 0 < t ≤ P do

σl(t)←
∑t
τ=1 p̃(τ − 1) ;

σu(t)← σl(t) + B ;
end
f (0) = B/2 ;
f (P) = σl(P) + B/2;
forall 0 < t < P do

f (t)← (σu(t) + σl(t))/2 ;
end
repeat

f ′ ← f ;
f (0)← ( f (P − 1) − σl(P) + f (1))/2 ;
f (0)← max

[
min

{
f (0),B

}
, 0

]
;

for t = 1 to P − 1 do
f (t)← ( f (t − 1) + f (t + 1))/2 ;
f (t)← max

[
min

{
f (t), σu(t)

}
, σl(t)

]
;

end
f (P)← f (0) + σl(P) ;

until max
{
| f ′ − f |

}
< ε ;

forall 0 ≤ t < P do
ũ(t)← f (t + 1) − f (t) ;
b̃(t)← σu(t) − f (t) ;

end

Let us suppose now that the control horizon T equals the period of
the harvested energy: T = P. The optimized use function can now
be determined using a periodic variant of Algorithm 2 where we as-
sume b̃(0) = b̃(P) and we iterate the path update in a circular way with
f (t + P) = f (t) + σl(P), see Algorithm 3.

In summary, Algorithm 3 computes an optimal periodic battery state
b̃ and use function ũ given a periodic energy harvesting function p̃, its
period P and the battery capacity B. Based on this result, we will define
the finite horizon scheme in the next subsection.

4.4.2 Finite Horizon Scheme
Following the ideas of receding horizon control, see e.g., [KH06], we
replace the unknown harvested energy function p(t) with its estimate p̃(t)
and optimize the future use function assuming the current battery state.
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Algorithm 4: Finite horizon control for the optimized control of solar
harvesting systems.

Data: t; b; T; b̃(t + T); (∀0 ≤ τ < T : p̃(t + τ)) ;
Ensure: u ;
b(0)← b ; b(T)← b̃(t + T) ;
forall 0 ≤ τ < T do

p(τ)← p̃(t + τ) ;
end
execute Algorithm 2 with the above inputs and the result
(∀0 ≤ t < T : u(t)) ;
u← u(0) ;

From this optimized use function, we only execute the first time step.
After this time step, we again optimize the future use function, and so on.

Algorithm 4 implements this strategy, i.e., at each time step t it uses
the current battery state b(t) and provides the optimized use function
u(t). The algorithm requires the following static input data: the estimated
energy function p̃(t), the optimized battery value b̃(t + T) from Algorithm
3 and the length of the finite horizon T. Note that p̃ and b̃ are periodic in
P, i.e., p̃(t) = p̃(t + P) and b̃(t) = b̃(t + P).

The performance of the finite horizon scheme crucially depends on
the accuracy of the estimate p̃(t). If we over-estimate the actual harvested
energy, then it is possible that Algorithm 4 computes an aggressive use
function which leads to a failure state, i.e., the battery drains out. To
avoid this we must have a conservative estimate where p(t) ≥ p̃(t). In the
next subsection we will identify what guarantees can be provided with
such an estimator.

4.4.3 Guarantees
The results of this subsection are presented assuming that the estimate
p̃(t) is static. By this we mean that the estimate for the amount of harvested
energy in any given time interval within the period is a constant across
all periods. For instance, for the solar data, we assume that the estimate
of the harvested energy in a certain week is the same across all years. As
we illustrate in Section 4.7, identifying and using such a constant estimate
based on an astronomical model is effective for datasets from several
locations. Further, we consider a conservative estimate, i.e., the estimate
at each time step does not exceed the actual harvested energy: p̃(t) ≤ p(t).

With a static estimate p̃(t), there are two options for designing a non-
clairvoyant algorithm. First, with Algorithm 2 we can use the estimate p̃(t)
to compute a static use function ũ(t) for time steps within the periodic
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window [0,P). Second, with the finite horizon scheme from Algorithm 4
we can recompute the use function ũ(t) at each time step. The general
expectation is that the finite horizon scheme will perform better than the
static scheme. Can we formally establish such a relation? In other words,
can we prove that the minimum use function under the finite horizon
scheme is not less than that of the static scheme? Such a result will enable
us to guarantee performance with respect to the estimate p̃(t).

In Algorithm 4, we execute a clairvoyant optimal control at every time
step t. Let us suppose that the initial battery at time t = 0 equals b̃(0) as
determined by Algorithm 3. Then the first control step is u(0) = ũ(0). If the
actual harvested energy is larger than or equal to the estimated one, the
initial battery state for the next time step is larger than the estimated ũ(1).
Suppose that the optimal use function satisfies some monotonicity, then
we will never have a smaller use function value than in the case of the
estimated harvested energy. Such a monotonicity should state that the
optimal use function can never increase with (a) increasing initial battery
state and (b) increasing energy harvesting function.

We now show this monotonicity property and based on this, the guar-
antees we can provide for the finite horizon control algorithm.

Thm. 4.2: Given an initial and final battery state b(0) and b(T), respectively, the battery
capacity B, and the harvested energy function p(t) for all 0 ≤ t < T. Then all
values u∗(t) for 0 ≤ t < T of the optimal use function u∗(t) according to Theorem
4.1 are monotonically increasing with increasing b(0), B, p(t) for 0 ≤ t < T, and
with decreasing b(T).

Proof. We use a constructive proof principle. We are given the optimal
use function u∗(t) before applying any change to (b(0), B, p(t) for 0 ≤ t < T,
b(T)). Then we can construct an adapted feasible use function for the new
input parameters that has no smaller use function values than u∗(t). The
optimal use function for the changed input parameters can only be better.

If b(0) increases by some value ∆, then we replace u∗(0) by u∗(0) + ∆.
All other values u∗(t), t > 0, remain unchanged. If b(T) decreases by
some value ∆, then we replace u∗(T − 1) by u∗(T − 1) + ∆. If B increases
by some value, then u∗(t) is still feasible, though not optimal in general.
If p(t) increases for some t by some value ∆, then we replace u∗(t) by
u∗(t)+∆ and the state of battery at time t+1 remains the same as before. �

Based on this property, we can now proof the main result for the finite
horizon control algorithm.
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Thm. 4.3: Given a periodic estimated energy harvesting function p̃(t) with period P, a
battery with capacity B, the corresponding optimal periodic use function ũ∗(t)
and the corresponding periodic battery state b̃∗(t). Furthermore, given an energy
harvesting system with the same capacity B but with an initial battery b(0) ≥ b̃(0)
and an actual energy harvesting function p(t) ≥ p̃(t) for all t ≥ 0. Then the
following holds: If we execute the finite horizon control according to Algorithm
4 for each time step t, then the resulting use function satisfies u(t) ≥ ũ∗(t) for all
t ≥ 0.

Proof. At every time step t when we execute Algorithm 4, we can
compare the situation to the optimal periodic case with the estimated
energy harvesting function. We use an inductive argument. Initially, the
battery state is larger than that of the optimal periodic case as b(0) ≥ b̃(0).
Suppose now we are at time t and the current battery state satisfies
b(t) ≥ b̃(t). Then we will show that the determined use function is larger
or equal than ũ∗(t) and that b(t + 1) ≥ b̃(t + 1). The finite horizon control
determines at time t a use function based on the horizon [t, t + T] and
the estimated harvested energy in this interval. As the final battery state
at time t + T equals that of the optimal periodic case and as the initial
battery state is higher, the determined use function is larger than ũ∗(t).
The battery state at time t + 1 is larger or equal due to two independent
reasons. At first, the actual harvested energy in [t, t + 1) is larger or
equal than the estimated one. Moreover, a larger initial battery at t leads
to a larger battery at the next time step t + 1 even in the case of equal
harvested energy due to the triangle inequality in the equivalent shortest
path problem. �

In other words, the use function when executing the finite horizon
control algorithm is always larger than the optimal periodic one, e.g., as
computed using Algorithm 3. Therefore, the minimal value of the use
function as well as its utility are lower bounds for the online horizon
control. This way, under the assumptions mentioned in Theorem 4.3 we
can provide the following off-line guarantees: The system will never enter
a failure state, and the minimal use function value as well as the utility
values are larger than those from Algorithm 3.

4.5 Implementation
A natural concern with the proposed finite horizon control is the need to
execute the clairvoyant algorithm for each time-step. This can be challeng-
ing on resource-constrained embedded processors of typical WSN motes.
As a response to this challenge, in this section we study the possibility to
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Tab. 4.1: Non-volatile memory requirements for the LUT approach (in floats). See
Table 4.2 for details about the eight datasets.

Dataset Mean

TX2 TX1 CA MD MI OR ON AK 515454 494 478 555 542 580 507 509

offload the computing complexity to an offline phase and export only a
small look-up table which is then used online. In Section 4.7, we quanti-
tatively study the loss in optimality due to this approximate solution for
real data-sets.

Under the assumption of a static estimate of the harvested energy,
we can consider the finite horizon scheme as identifying the current use
function u(t) as an explicit function F of the current time-step t (with
respect to the period) and the current battery state b(t). In this sense, we
can offline pre-compute this explicit function F. At runtime, we sense the
battery state and read off the use function from F.

For a given time-step, F(t, ·) is a function of only the battery. We con-
sider approximating F(t, ·) by a piecewise-linear function Ft. The function
Ft can be computed offline for each possible battery state, discretized by a
certain step. In our experiments, we discretize the battery by steps of 1%.
Note that the discretization has a direct effect on the LUT size. However,
considering that sub-percentage battery State-of-Charge approximation
accuracies are unlikely (see Chapter 5), this is considered a reasonable
lower bound on discretization steps. Therefore, the values given in Ta-
ble 4.1 are an upper bound on the storage requirements. For each battery
state, we explicitly use Algorithm 2 to compute the optimal clairvoyant
use function and thereby identify the use function for the first time-step.
These linear functions can then be represented concisely in a look-up ta-
ble. The non-volatile storage requirements of these tables for the datasets
used are listed in Table 4.1. As a result of using a look-up table, the corre-
sponding online algorithm is reduced to very few operations, as shown in
Equation (4.9), where bd refers to the current battery fill level, and c(·) and
f (·) refer to ceiling and floor functions respectively, which are assumed to
return integer values.

u(d) = LUT
[
d, f (bd)

]
·
(
bd − f (bd)

)
+ LUT [d, c(bd)] · (c(bd) − bd) (4.9)

The major concern of this approach is the loss in optimality due to
the approximation. In Section 4.7 we quantify the marginal loss, and
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demonstrate that such a look-up table is an effective and efficient solution
with very little runtime overhead.

4.6 Algorithm Parameterization

The control scheme introduced in the previous section requires an esti-
mation of the harvestable energy for each unit time interval to compute
the optimal use function. While many different estimation approaches
may be possible, we opted to use an astronomical model [DHM75] as the
basis for the energy estimation model. In this section we briefly review
the astronomical model that serves as a dynamic energy estimator, and
discuss parameter selection for the proposed control scheme.

4.6.1 Energy Estimation Model

To estimate the total solar energy available at a particular geographical
location without requiring trace data, we leverage the energy estimator
discussed in detail in Section 3.2.2. It has been shown to very accurately
approximate the average harvestable energy for a given geographical
location and time of year [BSBT14b, TJC08].

4.6.2 Horizon of Control

With the objective of achieving long-term minimum performance guar-
antees, it is reasonable to consider the annual, rather than diurnal solar
cycle for the control horizon. This means that at any time instance τ,
the algorithm from Section 4.4.2 is given p̃(t) ∀t ∈ [τ, τ + T) as estimation
input, where T = 1 year.

The algorithm further requires current and expected final battery fill
levels as input, i.e., b(τ) and b(τ + T), to compute the optimal energy
allocation. We assume the battery to be initially charged to 50% of its
capacity, i.e., b(0) = B/2, and the expected final fill-level to be equal to the
optimal fill-level, i.e., b(τ + T) = b̃(τ). The optimal fill-level b̃(t) is found by
executing Algorithm 3 with the energy model from the previous section
as input.
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Fig. 4.2: (top) Average achieved minimum utilization and (bottom) utility for all datasets
(normalized to maximum values). Note the different scales. Errorbars represent
the maximum deviation from the mean for all datasets.

4.6.3 Frequency of Control

With the energy estimation model and the control horizon established,
we now investigate the necessary and appropriate duration of the unit
time interval t for which the algorithm is to compute the supported energy
utilization u(t). It is generally desirable to keep the update intervals
long so to reduce the algorithm’s computational overhead and keep a
stable service-level. However, in the case of solar energy harvesting,
meteorological conditions, which are known to be difficult to predict
[HLG06], are the major contributor to variations from the astronomical
model expectations. Hence, the high variability in the energy profile may
necessitate shorter intervals, so to allow the control algorithm to react to
model deviations.

In order to find the appropriate update interval, we simulate our
algorithm (see Section 4.7 for simulation details) with t ∈ [1, 2, 4, 6, 8]
weeks and all datasets listed in Table 4.2. The resulting average minimum
utilization and utility achieved are shown in Figure 4.2 (both normalized
to their respective maximum values). As is to be expected, shorter update
periods allow the algorithm to make most efficient use of the available
energy, while increasing t adversely impacts both the utility and minimum
due to somewhat conservative estimation.

With the goal of enabling competitive long-term minimum perfor-
mance guarantees, we opt for a unit time interval of t = 1 week, which
is considerably longer than the baseline algorithms that we use to bench-
mark our approach in the next section.
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4.7 Evaluation

4.7.1 Experimental Setup
4.7.1.1 Baseline Algorithms

We compare our approach against a number of State-of-the-Art imple-
mentations of energy-predictive and battery-reactive power manage-
ment approaches. Specifically, we implement the predictive duty-cycling
scheme from [KHZS07] with two different energy predictors, i.e., EWMA
[KHZS07] and WCMA [PBAR09], and one reactive approach, i.e., ENO-
MAX [VGB07]. We also compare it to the dynamic power management
technique presented in Chapter 3, to which we refer as LT-ENO. For each
of the baseline implementations we use the authors’ recommended pa-
rameters, i.e., K = 3, D = 4, α = 0.3 for WCMA [PBAR09], and α = 0.5 for
EWMA [KHZS07]. For ENO-MAX [VGB07], we use α = 1/24, β = 0.25,
and Btarget = 65%. Finally, due to the hourly values given by the National
Solar Radiation Database, we use Nw = 24 instead of 48 daily update
slots for EWMA, WCMA, and ENO-MAX. This results in a slight penalty
in prediction accuracy, but significantly reduces computation complexity.
For the LT-ENO approach from Chapter 3, we assume daily control up-
dates, i.e., Nw = 1, while our approach operates according to Section 4.6.2
with weekly control updates. Moreover, note that while LT-ENO uses
W = 9 weeks in order to trade off reactivity to variations with duty-cycle
stability, the optimal algorithm’s performance improves with increasing
history window size, as the true average conditions are approximated
with increasing accuracy. Experiments have shown that a history size
of W = 52 weeks presents a reasonable trade-off between non-volatile
memory requirements and algorithm performance.

4.7.1.2 Methodology and Input Data

To compare the proposed algorithm’s performance against the baseline
implementations, we leverage the simulation framework from Chapters 2
and 3. This framework has been shown to accurately simulate an energy
harvesting system as described in [BYL+11], and incorporates various
efficiency parameters, such as charging (ηin) and discharging (ηout) effi-
ciencies. We let ηin = 0.9, and ηout = 0.7 respectively, but ignore all other
battery inherent inefficiencies. As was already discussed in Section 3.7
battery degradation is not considered a problem: with our approach the
battery experiences a single charge/discharge cycle per year. Considering
that batteries are rated for a few hundred cycles, it is expected to outlast
other system components, e.g., electronics, mechanical parts, etc. We also
enforce a low-voltage disconnect hysteresis of 60% [BAB13]. This means
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that, if at any time the battery is fully depleted, the load will only be
reconnected once the battery has been recharged to 60% of its capacity.

For the input data we leverage the publicly available2 National Solar
Radiation Database (NSRD), from where we acquired 12 years worth of
trace data for each of the 8 different locations listed in Table 4.2. The first
year for each trace is used as training data for the different approaches,
while the remaining 11 years is used for simulation. Note that the data
traces are given in Wh ·m−2 of solar energy incident on a flat surface with
zero inclination. Hence, to account for smaller panel sizes, inefficiencies of
individual components, and losses in energy storage during simulation,
the data is conditioned equivalently to what is described in Chapter 2.
In Chapter 6, we will further exemplify our approach with data traces
collected over two years with our own long-term deployment [BBF+11]

In order to enable a fair comparison, we provide each of the algorithms
the same power subsystem, i.e., battery and solar panel. The power
subsystem is obtained according to the technique described in Chapter 2,
whereby we assume a target duty-cycle ρ = 40%, and a battery capacity
of B = 100Wh to find the appropriate panel size from a set of four sizes,
i.e., 5cm2, 10cm2, 15cm2, or 20cm2, with a panel efficiency ηPV = 10%, and
power level Pmax that maximizes the resource utilization. Note that Pmax

is the maximum power dissipation at full system performance, hence a
system can consume a maximum of Emax = Pmax · 24 hours of energy. This
means that the utilization computed by any algorithm will be capped at
Emax. The values used for each of the datasets are listed in Table 4.2. Also
shown is the environmental parameter Ω, which is used for the energy
approximation, and obtained from profiling the first year of each dataset.

4.7.1.3 Performance Metrics

For the performance evaluation we consider the following performance
metrics:

Minimum Energy Utilization. Achieving a minimum performance level
is the main objective in this study as it can be crucial in certain application
scenarios, e.g., safety-critical systems. We report the minimum energy
utilization for each of the approaches. Note that any outages due to
a depleted battery causes the minimum to be 0, which also affects the
application utility.

Application Utility. While the definition of utility is very application
specific, for performance analysis we assume the utility U to be defined

2http://rredc.nrel.gov/solar/old_data/nsrdb/
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as shown in Equation (4.10), where µ(u(τ)) =
√

u(τ).

U(t1, t2) =

t2−1∑
τ=t1

µ(u(τ)) (4.10)

4.7.2 Experimental Results
4.7.2.1 OPT with Energy Estimation Model

Having shown the optimality of the algorithm with the clairvoyant es-
timator both by example and analytically, here we investigate the per-
formance of the proposed algorithm with the realistic energy estimator
proposed in Section 4.6.1, and the datasets from Table 4.2.
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Fig. 4.3: (top) Use function u(t) computed by OPT for a given harvest function p(t) and
the estimator p̃(t) from Section 4.6.1 and (bottom) the corresponding stored
energy b(t).

Figure 4.3 shows two years of simulation results with the MI dataset,
and the energy estimator discussed in Section 4.6.1. We first note the
obvious clipping due to Pmax as discussed in Section 4.7.1.2. As expected
when the battery is full, the OPT algorithm follows the input (i.e., p̃(t))
until the net expected energy generation is less than the consumption.
At that point OPT is appropriately pessimistic, while growing more opti-
mistic in an attempt to fully leverage the battery as the winter progresses.
The conservative increase in utilization is of course a desirable behavior.
Nevertheless, as is visible in the figure, small negative deviation from the
estimation can be fatal, particularly at times when the battery reserves are
low and therefore do not suffice to make up for the mis-prediction.
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Fig. 4.4: Empirically obtained piecewise linear scaling function g(t) for 1 year. Note the
scales.

By closer inspection of different datasets, we find that the estimation
should be more pessimistic during critical times, i.e., when the battery is
nearly empty, and note that there are two intuitive approaches to achieve
this: (1) force higher utilization in fall/early winter, or (2) force lower
utilization in late winter/early spring. Solution (2) makes more sense
for two reasons. First it is hard to know how optimistic the system
can be in the beginning of the winter, and second, for maximizing the
minimum utilization, it is less critical to throttle at a point where the
utilization is significantly higher than the minimum observed (which
happens at the beginning of the winter). This reasoning is validated when
we consider the perfect utilization achieved with a clairvoyant OPT for
the same trace (see Figure 4.1). It shows that the utilization could be higher
in the beginning of the winter (including summer & fall in this particular
case), but should be lower at the end of winter and well into spring.

From the preceding discussion we conclude that the energy estimation
should be scaled by a non-uniform scaling function g(t) across different
weeks, as exemplified in Figure 4.4. While likely not optimal for every
possible situation, the general tendency has been empirically identified to
fit well for all 8 datasets that we used for evaluation. The result of applying
this scaling function on the same dataset (MI) is shown in Figure 4.5. We
note that the minimum use function (ignoring the low-power outage for
the moment) is reduced by only 4% from Figure 4.5 to Figure 4.4, as the
minimum tends to occur in the beginning of the winter, where the scaling
assumes a relatively high value.

In summary, the runtime estimation model consists of an astronomical
model scaled by a dynamically adapted factor α (see Section 3.3.1), and
the statically defined, non-uniform piece-wise linear function g(t). With
this approach we can satisfy the objective of maximizing the minimum
achievable use function, while avoiding failure states.
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Fig. 4.5: (top) Use functions u(t) and uLUT(t) computed by OPT with the estimator p̃(t)
from Section 4.6.1 and with the LUT approach, respectively. (bottom) The corre-
sponding stored energy b(t) and bLUT(t).

4.7.2.2 OPT with Look-up Table

Next we discuss the behavior of the look-up-table implementation from
Section 4.5. Note that we obtained Ft as discussed in Section 4.5 using
the piecewise linearly scaled estimator from the previous subsection. At
runtime, the system indexes the look-up table with the current time t and
battery fill-level b(t) and performs a few basic operations (see Equation
(4.9)) to compute the corresponding utilization. The resulting utilization
uLUT(t) for the MI dataset is shown along-side the computationally more
complex original approach in Figure 4.3. We notice that both implementa-
tions perform very similarly. However the look-up table approach tends
to suffer a small penalty in minimum utilization by being too conservative
early in winter. Section 4.7 further discusses the marginal performance
loss due to the look-up table approach.

4.7.2.3 Comparison to LT-ENO

In this section we compare the OPT algorithm to the dynamic power
management scheme from Chapter 3, to which we refer as LT-ENO. We
discuss it separately from the other baseline algorithms, as it is the only
algorithm that is specifically designed for solar energy harvesting systems
to achieve long-term uninterrupted operation at a stable and deterministic
minimum utilization. For comparison we consider the same dataset as in
the previous sections. Refer to Section 4.7.2.5 for a complete discussion of
the results for all datasets and algorithms.
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Fig. 4.6: (top) Use functions u(t) computed by LT-ENO for a given harvest function p(t),
and, for reference, the use function computed by the OPT approach uOPT(t).
(bottom) The corresponding stored energy b(t) for LT-ENO.

Figure 4.6 shows the use function u(t) for LT-ENO, along with the
input energy p(t), the design-time energy approximation model p̃(t). For
reference, we also show the utilization with the OPT algorithm uopt(t).

We first note that the LT-ENO algorithm exhibits remarkably low uti-
lization variance that is maintained throughout the year. This stems
from the fact that this algorithm takes a long-term approach to compute
the utilization by considering both the periods of deficit, i.e., when the
generation is below consumption, and the periods of surplus, i.e., the
generation exceeds consumption. This conservative approach allows the
battery to bridge the periods of deficit, while simultaneously ensuring
that the employed panel can actually recharge the battery during periods
of surplus.

This pessimistic approach has a very negative impact on the total
achievable system utility, however. From the battery profile shown on
the bottom axis in Figure 4.6 it is obvious that the battery is full for most
of the summer, yet the algorithm neither leverages the battery or surplus
energy by increasing the utilization. This stems from a fundamentally
different approach, which attempts to ensure that the battery is full at
the beginning of winter, at the cost of significantly reduced total system
utility. In comparison, the OPT algorithm is able to leverage the surplus
energy during the summer and so maximize the total system utility, while
ensuring that the battery is full at the appropriate time, and so ensure
continuous operation.
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Finally, we note that the minimum service-level achieved in this partic-
ular example is roughly equivalent during winter. In fact, on the period
t ∈ [250, 270] and t ∈ [304, 320], OPT improves over LT-ENO’s perfor-
mance by only 0.9% and 2.8% respectively. However, when considering
the entire period shown, the optimal algorithm OPT achieves roughly
12.5% higher minimum utilization than LT-ENO. This improvement is
mainly due to LT-ENO’s pessimistic behavior during summer, where it
tends to achieve lowest utilization despite the significant energy surplus
that keeps the battery at full capacity.

In summary, the comparable utilization during winter can be mainly
attributed to the fact that both algorithms use a very similar estimation
model, and are able to leverage the available battery capacity. LT-ENO’s
very pessimistic approach that fails to leverage surplus energy during
summer, significantly hurts its performance. The service-level achieved
by the OPT algorithm, on the other hand, is constrained only by the
approximation accuracy of the estimator p̃(t), and can simultaneously
maximize both the minimum utilization and total system utility.

4.7.2.4 Baseline Algorithms

In the following we briefly discuss the behavior of the remaining three
algorithms used for benchmarking our approach, i.e., EWMA [KHZS07],
WCMA [PBAR09], and ENO-MAX [VGB07]. A detailed performance
comparison is deferred to Section 4.7.2.5.

Recall that we parameterized each of the algorithms with the author’s
recommended, and arguably best parameters. Furthermore, they are
given the same adequately provisioned power subsystem for simulation.
However, due to limited prediction accuracy, EWMA and WCMA are
required to operate at a relatively high control frequency to achieve ac-
ceptable performance. While ENO-MAX is theoretically able to run at
much lower control frequencies, the original parameterization was done
for half hour update periods. Since the datasets used are given in hourly
values, we use t = 1 hour for simulation of these baseline algorithms.

EWMA. This approach uses a simple prediction scheme based on an
Exponentially Weighted Moving Average (EWMA) of past observations,
and an energy allocation scheme that attempts to continually correct mis-
predictions by increasing or decreasing the energy usage in future slots
[KS03]. This algorithm is frequently used as baseline for comparison of
energy prediction and allocation algorithms, and performs very well with
little overhead. However, this algorithm is designed to predict energy on
a horizon of a few minutes to hours, and hence will not be able to make full
use of the allocated battery capacity. In fact, the algorithm may reduce
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the utilization as low as ρmin, despite the battery being full. Here, ρmin

specifies the user defined minimum acceptable utilization.
WCMA. The Weather Conditioned Moving Average (WCMA) approach
has been shown to outperform the prediction accuracy of EWMA,
e.g., [BBB09]. However, this does not translate into significant per-
formance improvements with the energy allocation algorithm from
[KHZS07]. This approach is significantly more computationally involved
than the previous approach, but behaves very similar. Just like EWMA, it
also requires a system that is capable of measuring (or somehow approx-
imating) the energy generated by the panel.
ENO-MAX. ENO-MAX uses well-established control theory to determine
the utilization that will result in maximum energy efficiency, while ensur-
ing Energy Neutral Operation, i.e., consumption is always less than gener-
ation. More specifically, this algorithm adjusts the utilization such that a
pre-defined, static battery threshold Btarget may be maintained. While it is
very effective in achieving its maximization objective, the Energy Neutral
Operation objective causes the algorithm to aggressively adjust the uti-
lization when Btarget may not be maintained and therefore leads to high
variability. On the one hand, the ability to maximize the energy usage
when the battery fill level b(t) is above Btarget, leads to high overall utility.
On the other hand, the aggressive downscaling when b(t) < Btarget results
in minimum utilization that follow a user-specified minimum accepted
level ρmin.

Clearly, the ability to satisfy ρmin depends on proper selection of Btarget

and ultimately on the proper battery and panel size. In fact, we believe
that the main weakness of this approach is the use of a static threshold
value Btarget. The algorithm could perform much better with a dynamically
computed setpoint, possibly based on the same energy model that is used
in this chapter.

4.7.2.5 Performance Comparison

In this section we discuss the performance results for the proposed ap-
proach, as well as the previously introduced algorithms for all datasets
listed in Table 4.2. The results are summarized in Table 4.3. Note that
for EWMA, WCMA, and ENO-MAX, we report the result for both a pes-
simistic ρmin = 1% (as is done in e.g., [VGB07, KHZS07]), and, listed in
parentheses in Table 4.3, a more realistic value of ρmin = 30% (recall that
the power subsystem is designed with an expected duty-cycle ρ = 40%).

First, as expected the EWMA and WCMA algorithms perform com-
parably. This is not surprising, as the same energy allocation scheme is
used. Hence the difference stems from differing prediction accuracies. In
fact, WCMA achieves a better minimum utilization only for two datasets
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(ON, AK), but improves over EWMA by up to 20.5% in system utility for
ρmin = 1% and 6.5% for ρmin = 30%. Both of these algorithms are unable to
leverage the battery, causing the minimum achieved utilization to follow
the user-defined ρmin, even when the battery is full. However, as has
been shown in Chapter 3, if the battery is not appropriately provisioned,
achieving even ρmin may not be possible.

The ENO-MAX algorithm has a similar limitation. While achieving the
highest utility of all algorithms, the minimum utilization varies greatly,
and tends to be the lowest of all evaluated algorithms when using ρmin =
1%. For ρmin = 30% the minimum performance is equivalent to that
achieved of EWMA and WCMA. This is to be expected, as the range of
acceptable utilization to chose from is significantly reduced. In fact, the
utilization computed by these algorithms is overridden by ρmin most of
the time. The pessimistic behavior in terms of minimum utilization of
these three algorithms is attributed to their battery agnostic nature.
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Tab. 4.3: Summary of performance results for the clairvoyant optimal algorithm (CV),
the optimal algorithm with the energy estimator from Section 4.7.2.1 (OPT), the
look-up table implementation (LUT), and the baselines LT-ENO, ENO-MAX,
EWMA, and WCMA. Values in parentheses are for ρmin = 30%. For EWMA,
WCMA, and ENO-MAX, the absolute minimum utilization follows the user-
defined minimum acceptable performance level ρmin.

Dataset

TX2 TX1 CA MD MI OR ON AK

C
V Min 3.62 4.19 3.76 3.88 3.04 2.63 2.76 1.58

U 3235.2 3625.4 3439.4 3603.1 3453.6 3349.5 3612.3 3070.9

O
PT

Min 2.86 3.76 3.42 3.38 2.73 2.36 2.32 1.22
U 3026.1 3399.9 3244.1 3407.5 3272.0 3139.6 3210.0 2336.4

LU
T Min 3.01 3.71 3.01 3.03 2.53 2.35 2.30 1.21

U 3023.7 3474.1 3177.0 3437.7 3278.2 3086.4 3201.7 2320.9

LT
-E

N
O Min 3.00 3.66 2.98 3.06 2.4 2.04 2.19 1.09

U 2854.5 3082.6 2857.8 2806.5 2549.1 2380.5 2385.8 1727.4

EN
O

-M
A

X Min 0.10 0.10 0.54 0.09 0.52 0.06 0.66 0.03
(2.98) (3.13) (2.54) (2.82) (2.06) (1.93) (1.79) (0.92)

U 3198.4 3600.3 3409.1 3566.7 3317.9 3143.5 3170.1 2236.5
(3205.4) (3601.2) (3410.3) (3568.5) (3317.7) (3147.1) (3167.6) (2248.4)

W
C

M
A Min 0.18 0.19 0.15 0.17 0.12 0.12 0.11 0.06

(2.98) (3.13) (2.54) (2.82) (2.06) (1.93) (1.79) (0.92)

U 1989.0 2266.8 2104.1 2101.5 1858.0 1789.4 1706.2 1356.4
(2878.7) (3073.2) (2815.9) (2796.6) (2505.2) (2322.1) (2312.6) (1712.2)

EW
M

A

Min 0.18 0.19 0.15 0.17 0.12 0.12 0.06 0.03
(2.98) (3.13) (2.54) (2.82) (2.06) (1.93) (1.79) (0.92)

U 1735.2 1877.0 1859.1 1907.4 1775.8 1616.7 1549.2 1124.9
(2766.0) (2887.0) (2686.2) (2716.2) (2490.9) (2313.8) (2291.8) (1652.7)

Next, the LT-ENO achieves significantly higher minimum utilization
than the algorithms discussed so far. In the best case, LT-ENO outper-
forms ENO-MAX (with ρmin = 1%) by 3660%. In the worst case, the mini-
mum service-level achieved by LT-ENO is only approximately 0.7% better
than that of the baselines with ρmin = 30%. While the achieved utility is
generally higher than EWMA and WCMA, it lags behind ENO-MAX. At
worst, the utility achieved by LT-ENO is 32% below ENO-MAX, and at
best up to 64% higher than EWMA.

The OPT algorithm with the explicit energy model outperforms all ap-
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proaches in terms of minimum service-level, except with the TX2 dataset,
for which it performs only 4% worse than LT-ENO, but still better than all
other baselines. In fact, our approach comes to within 9.9% of the clair-
voyant approach (CV) at best, and 29.5% at worst. The utility achieved by
OPT is only surpassed by ENO-MAX, which exhibits significantly lower
minimum utilization and significant variability.

Finally, the look-up table implementation performs negligibly worse
than the approach that explicitly computes the algorithm. This demon-
strates that our approach can offload the computational effort to design-
time, and achieve very good performance at the cost of a few simple
operations once a week with the values in the look-up table.

4.7.3 Practical Considerations: Energy Estimation
The computational overhead of our solution has been detailed in Sec-
tion 4.5. Here we briefly discuss practical considerations related to the
energy estimation. Chapter 3 already presented considerations regarding
measurement support, global time knowledge, and battery inefficiencies.

It is clear that the performance achievable by the algorithm is ulti-
mately limited by the estimation. Finding an appropriate energy estima-
tion model that is neither too conservative nor too optimistic has been
shown to be difficult, as the weather patterns that affect the solar en-
ergy incident are hard to model [Buz08] and difficult to predict [HLG06].
Nevertheless, the non-uniformly scaled energy model proposed in Sec-
tion 4.7.2.1 allows the algorithm to achieve a minimum performance level
to within 9.9% of the optimal (with clairvoyant estimator) at best, and
29.5% at worst. Similarly, the application utility achieved with our ap-
proach reaches the optimal utility to within 5.5% at best, and 31.4% at
worst. While the estimation model, and particularly the scaling function
may be fine tuned for the different datasets to improve these results, we
opted to use one model for all datasets.

4.8 Chapter Summary
We have shown that the proposed approach successfully achieves the
objective of providing a guaranteed minimum energy utilization, and
therefore minimum service-level. In fact, we believe to be the first to pro-
vide an analytic solution for solar energy harvesting embedded systems,
which ensures uninterrupted operation at a maximized minimum uti-
lization. Using eight datasets, we show that our approach significantly
outperforms four baseline implementations both in terms of minimum
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utilization and total utility. In Chapter 6 we will provide further perfor-
mance results and show that the proposed scheme is highly effective for
realistic scenarios. Finally, it is important to note that our algorithm is
applicable to any harvesting source, presuming that an adequate energy
estimator can be defined.
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5
State-of-Charge Approximation

5.1 Introduction
In the previous two chapters we presented novel runtime energy man-
agement schemes with the objective of maximizing the minimum system
utility for solar energy harvesting systems. For these schemes to work,
the system requires a means to approximate the harvested energy and
residual charge stored in the battery at any given instant in time. In this
chapter we therefore present an approach to approximating the battery’s
fill-level, which, as we will show in Chapter 6, can also be used to in-
fer the harvested energy without relying on dedicated, special-purpose
hardware.

It has been shown that awareness of the energy available to the in-
dividual motes [PLR05], and the entire network [CD05] can significantly
improve overall system lifetime and utility. However, accurately deter-
mining the battery fill level, referred to as battery State-of-Charge, presents
a non-trivial problem to solve. This is because a battery’s State-of-Charge
depends on many battery internal and external factors, such as size and
type of battery, the rate at which it is being discharged, as well as temper-
ature and battery condition (e.g., age, present State-of-Charge, etc.). Nev-
ertheless, the implementation cost of a State-of-Charge approximation
technique is likely outweighed by the possible improvements in system
observability, predictability, and utility [PAG09, TJC08], which stem from
runtime knowledge of the battery’s State-of-Charge.

Many existing approaches to determine a battery’s State-of-Charge de-
pend on dedicated hardware to monitor the energy flux into and out of the
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battery. However, addition of special-purpose hardware not only increases
design complexity but also system cost [DOTH07]. Furthermore, upgrad-
ing existing systems with the hardware necessary may not be practical or
even possible. Other approaches use complex software models that incor-
porate the non-linear characteristics of batteries under varying and un-
controllable conditions. However, many of the proposed models present
significant configuration and computational overhead [RVR03]. Consid-
ering the limited computational resources available on typical wireless
sensor network platforms, these models may thus not be feasible for im-
plementation on such systems.

Contributions

In this chapter we present a practical trace-based, direct-measurement
[BKN02] method for online battery State-of-Charge approximation. It
is aimed at off-the-shelf photo-voltaic harvesting setups, and therefore
does not rely on special purpose hardware, but only requires low-cost
sensors that are commonly available on contemporary wireless sensor
network platforms for system health monitoring. Moreover, the method
is computationally inexpensive as it does not depend on complex battery
models. Instead, we leverage the known characteristics of the charge
controller and the battery’s behavior under load.

More specifically, the contributions of this chapter can be summarized
as follows.

• We present a practical, trace-based, direct-measurement [BKN02]
method for online battery State-of-Charge approximation that does
not rely on special purpose hardware.

• We show how leveraging known characteristics of the battery behav-
ior under load can be used to devise a computationally light-weight
method to State-of-Charge approximation.

• We present a state machine for tracking the different phases of the
charging and discharging process at runtime.

• We show how the battery can be profiled such that the model param-
eters can be defined even for batteries that differ from the profiled
battery in terms of battery age and capacity, as well as operating
temperature.

• We perform extensive experiments under different conditions, such
as operating temperature, load variations, and battery age.
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• With the experiments we show that our direct-measurement ap-
proach achieves State-of-Charge approximation with an average
error below 5% when compared to the State-of-Charge inferred by
the measurements of a coulomb counter.

• Finally, we demonstrate that accurate lifetime predictions even with
temperature fluctuations and varying battery, and load conditions
are possible, as our method implicitly accounts for battery ineffi-
ciencies such as temperature and aging.

Roadmap

The remainder of this chapter is structured as follows. In Section 5.2 we
discuss common approaches to battery State-of-Charge determination,
and adaptations to wireless sensor network scenarios. In Section 5.3 we
provide a conceptual overview of the approach, while the system archi-
tecture and battery characteristics that that form the foundation of the
proposed approach are discussed in Section 5.4. In Section 5.6 we then
discuss the runtime State-of-Charge approximation in detail. Section 5.7
describes the experimental set up and presents a performance evaluation
of the approach. In Section 5.8 we elaborate on runtime measurement
considerations. Finally, Section 5.9 presents the concluding remarks.

5.2 State-of-Charge Approximation Methods
Efforts to estimate the residual charge contained in a battery have been
made for almost as long as rechargeable batteries exist, and increasing
popularity of hybrid electric vehicles has further pushed this research
topic. Hence, literature review reveals a host of battery State-of-Charge
approximation methods, of which common techniques are presented in
this section. A brief review of wireless sensor network specific approaches
is also provided.

General State-of-Charge approximation methods

One of the earliest techniques is in the form of current integration, usu-
ally referred to as coulomb counting [PBNR05, PPJ01, BKN02]. With this
approach, charge flowing from (in case of discharging), or to the battery
(charging) is measured with a dedicated piece of hardware, and inte-
grated over time. After subtracting the net charge from the capacity of a
full battery, the residual charge contained in the battery can be obtained.
Although widely used today, this approach suffers from a number of is-
sues. First, to yield an acceptable accuracy, battery inefficiencies that are
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not directly measurable must be compensated for. Second, inaccurate
current readings lead to an accumulation of error. However, accurate
current measurements are expensive, and the addition of the necessary
hardware can add substantial design complexity and development cost.
Finally, since the performance depends on known initial conditions, reg-
ular re-calibrations are necessary [PPJ01, PBNR05].

A technique that attempts to improve the performance of coulomb
counting is called book-keeping [BKN02]. With this approach, common
battery inefficiencies, such as discharging efficiency, self-discharge, and
capacity losses are taken into consideration through software, and so yield
a more accurate State-of-Charge indication. The battery inefficiencies, and
details on how the model proposed in this chapter copes with their effects
are discussed in Section 5.7.

A discharge test under controlled conditions is considered to be the
most reliable means of approximating a battery’s State-of-Charge [PPJ01],
and commonly performed by the battery manufacturer [Con11]. For this
reason, discharge tests with a coulomb counter are used as ground-truth
for the evaluation of the proposed approximation method. Nevertheless,
discharge test during the deployment are not feasible for most if not
all practical applications because system operation must be interrupted
willingly and possibly for long periods of time.

Another technique that is applicable to vented lead-acid (LA) batteries
with liquid electrolytes is in the form of measuring the electrolytes’ phys-
ical properties. LA batteries, which are common in cars and stationary
photo-voltaic energy harvesting systems, exhibit a relationship between
the electrolyte’s properties and the battery’s State of-Charge. Therefore,
by measuring e.g., specific gravity, conductivity, and ion-concentration,
the battery’s State-of-Charge can be determined. However, to obtain
an accurate approximation, the temperature must be considered, and
measurements may only be taken after a proper charging cycle and ap-
propriate resting period of the battery. This, together with the need for
measuring the battery’s internal properties limit the applicability of this
approach.

A lead-acid battery’s electrolytes’ properties are directly related to the
open-circuit voltage [Con11]. Hence, the State-of-Charge can be obtained
by measuring the battery’s terminal voltage when no load is connected.
However, this necessitates periodic load disconnects, which requires spe-
cial design considerations. Just like with the previous approach, appro-
priate resting times are required to obtain meaningful measurements.

Recently, there has been significant efforts in devising analytic mod-
els for batteries and State-of-Charge approximation. An excellent re-
view is given in [RVR03]. These models range from electric circuit
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equivalents, over stochastic load modeling, to mixed models that in-
corporate both experimental data and physical laws. In particular, ex-
tended [VPB07], and adaptive [HKS09] Kalman filtering techniques have
emerged. Unfortunately, these approaches require significant configura-
tion efforts and exhibit computational complexity and therefore preclude
application in low-performance systems such as wireless sensor network
motes [RVR03].

Finally, the approach most closely related to the one discussed in this
work consists of direct voltage measurements [PBNR05]. Voltage mea-
surements are generally considered to yield inaccurate State-of-Charge
indication because a battery’s voltage profile depends on discharge rate,
temperature effects, and age of the battery to name a few. However, as
will be elaborated in the remainder of this work, if the battery’s behav-
ior under load, and the discharge current are known (or measurable),
the State-of-Charge can be obtained with relatively good accuracy even
under varying battery operating conditions.

Wireless sensor network specific State-of-Charge approximation. Of
the approaches discussed so far, only a subset is feasible for implemen-
tation in wireless sensor network scenarios. This is mainly due to cost
considerations, physical constraints, and limited processing power avail-
able on the motes. In addition to techniques that leverage special-purpose
hardware [RKH+05, JDCS07], fully software [CPBA12, KPA+10, DOTH07]
based approaches to State-of-Charge approximation have also been pro-
posed, and are briefly introduced in the following.

In [CPBA12] a software based model for lifetime prediction is pre-
sented in the context of solar energy harvesting. The platform load is
characterized by a constant average current for each activity (i.e., sensing,
processing, and transmission). The State-of-Charge is then approximated
in software by “counting” the charge over the period of time a given com-
ponent is active. The authors report a lifetime estimation error below 10%.
However, their approach requires measurements of the current generated
by the energy solar panel, or, alternatively a light meter to approximate
the current. Both require pre-deployment design considerations, which
precludes its use in existing systems.

Although not aimed at energy harvesting systems, [DOTH07]
and [KPA+10] follow a similar approach. Software routines are imple-
mented that are executed every time a certain hardware component is
switched on or off. The total time a given component is active is then mul-
tiplied by its average current drain, which is obtained by pre-deployment
power profiling of the system. Finally, to obtain the overall system en-
ergy consumption (and hence infer the State-of-Charge), all components
are summed up. It is not clear what accuracy either of these approaches
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achieve, but considering that coulomb counting Integrated Circuits re-
quire frequent re-calibration, it can be assumed that the error in purely
software counting techniques accumulates just as rapidly.

In contrast to purely software based approaches, [RKH+05] presents
Heliomote, a custom energy harvesting hardware module as add-on for
Berkley/Crossbow motes. It is a complete power management solution
that autonomously controls solar harvesting, charging of the battery, stor-
age and power routing, and provides harvesting and battery state infor-
mation to the host platform. While not exclusively aimed at provid-
ing State-of-Charge information, the authors show that harvesting aware
power management can significantly improve system utility.

Similarly, SPOT [JDCS07] is another application specific custom micro
power meter for energy monitoring of the popular MicaZ motes. As mo-
tivation, the authors state that commercially available Integrated Circuits
are not designed to meet WSN application requirements. Similar to He-
liomote, the immediate aim is not battery State-of Charge approximation,
but rather empirical on-site evaluation of low power designs at scale. A
price tag of $25 is stated, but it is not clear how much re-design and in-
tegration effort would be necessary to adapt the SPOT module to other
mote platforms.

5.3 Concept
When a battery is discharged, its terminals exhibit a voltage profile over
time that is characteristic to the specific battery chemistry, the magni-
tude of the discharge current, the condition of the battery, and operating
temperature. In this chapter we leverage this fact and devise a battery
State-of-Charge approximation model that is based on low-cost voltage
and current senor readings. Our approach consists of an offline, pre-
deployment phase to profile the battery, and an online, runtime phase
during which the instantaneous battery State-of-Charge is computed.

The offline phase consists of a three-step procedure: we first profile
the battery with different discharge (charge) currents (Section 5.5.5.1) to
obtain battery terminal voltage and discharge (charge) current traces. As
a second step (Section 5.5.5.2) we transform the traces from voltage as a
function of time to Depth-of-Discharge as a function of voltage. For this
we take the charge controller’s characteristics into consideration to define
100% Depth-of-Discharge (equivalent to 0% State-of-Charge, since Depth-
of-Discharge is the complement of State-of-Charge). Finally, we extract
the required parameters for runtime discharge (charge) approximation
from the recorded traces (Section 5.5.5.3).
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Solar Panel

Load

IPV ISYS

VSYS

Battery

Charge Controller

Vbat

Fig. 5.1: High-level system architecture with off-the-shelf energy harvesting components
(solar panel, battery, charge controller), and electrical load, e.g., a mote. Isys and
Vsys are assumed to be observable. Note the charge controller’s low-voltage
disconnect switch.

At runtime, the system periodically obtains system input voltage
and current measurements and executes a Finite-State Machine (see Sec-
tion 5.6.1) to track the battery’s states (discharging, bulk charging, etc.).
Then, depending on the battery’s current state, the instantaneous State-
of-Charge is computed with the respective equation developed in Sec-
tions 5.5.3 and 5.5.4 and the coefficients obtained during the offline phase.

5.4 System Architecture and Assumptions
For the proof-of-concept implementation discussed in this chapter, we
assume an off-the-shelf energy harvesting set-up illustrated in Figure 5.1.
It consists of an energy harvesting module, such as a solar panel e.g., [cle],
a low-cost Pulse-Width Modulation charge controller, e.g., [Mor09], and
one or multiple Valve Regulated-Absorbent Glass Mat (VR-AGM) sealed
lead-acid batteries, e.g., [Con11]. While this is not a typical set-up
for low-power wireless sensor network motes with simple sense-and-
transmit applications it can be considered a reasonable, low-cost set-up
for systems with high-energy consumption due to, e.g., high-power sen-
sors and/or increased duty-cycles. Aside from wireless sensor network
basestations [MOH04] that usually have considerable energy demands on
the order of Watts, recently proposed application scenarios like continu-
ous GPS [BSB12], acoustic emission [WGGB12], or Audio/Video surveil-
lance [AAP+12] further validate such a set-up.

With such an off-the-shelf set-up, the charge controller regulates
proper charging of the battery, but does not provide State-of-Charge in-
formation. Therefore, the proposed approach aims at approximating the
State-of-Charge in a battery type, and set-up independent manner. The
goal is to provide a solution that does not depend on extensive hard-
ware support, but gets by with low-cost sensors commonly available
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Fig. 5.2: Manufacturer provided Depth-of-Discharge versus terminal voltage [Con11] for
1, 2, 4, 8, 20, and 120-hour discharge rate (as a percentage of 20-hour rate) of a
VR-AGM battery.

on contemporary wireless sensor network motes for health monitoring
purposes. Furthermore, accurate State-of-Charge indication should be
possible without requiring extensive processing at runtime.

Although we assume a lead-acid battery chemistry in this work, the
approach applies to other battery chemistry with an appropriate discharge
profile, i.e., similar to what is shown in Figure 5.2. In [Ste13] we validated
the approach discussed herein with Nickel-Metal Hydride (NiMH) batter-
ies and a TinyNode [DFFMM06] wireless sensor network mote depicted in
Figure 1.1b, and show that for NiMH batteries minor modifications to our
model are necessary. Moreover, the proposed approach is agnostic to a
particular set-up and harvesting source, and only requires a well-defined
behavior of the charge-controller and battery under load.

5.5 Battery Model

Devising an analytic battery model that takes all the battery’s non-
linearities into consideration has proven to be complex [BKN02]
and, depending on application, computationally prohibitively expen-
sive [RVR03]. However, incorporating all inefficiencies into the model
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may not be necessary for achieving acceptable State-of-Charge approxi-
mation. Instead, from the illustration of a battery’s voltage profile (ob-
tained from its data-sheet [Con11]) in Figure 5.2, we observe that this
particular battery type exhibits qualitatively very similar voltage versus
Depth-of-Discharge1 curves for different discharge rates. In the following
we describe how this observation can be leveraged to approximate the
battery’s State-of-Charge by observing only the battery’s terminal voltage
and system drain current.

In Section 5.5.1 we first define a battery’s rated capacity and the charge
controller’s role in our model. In Section 5.5.2 we present a high-level dis-
cussion of the battery’s charging and discharging characteristics. Then,
in Sections 5.5.3 and 5.5.4 we explain how these characteristics are lever-
aged to devise a battery model for the charging and discharging process.
Finally, in Section 5.6 we present the runtime battery State-of-Charge ap-
proximation approach.

5.5.1 Capacity and Cut-off Voltage

The manufacturer provided capacity rating specifies the battery’s nominal
capacity C, which refers to the maximum charge that can be withdrawn
before fully depleting the battery (i.e., 100% Depth-of-Discharge) at a
specified discharge rate and temperature. Usually, the discharge rate
and temperature are assumed to be C/20 and 25 ◦C respectively, which
means that the battery is discharged at a rate such that it is fully depleted
in 20 hours at a temperature of 25 ◦C. However, since deep discharge
cycles cause irreversible chemical reactions, the battery should not be
fully discharged. Therefore, in addition to regulating proper, i.e., safe,
charging of the battery, commercial charge controllers implement a cut-
off voltage Vcuto f f , below which the load is disconnected until the battery
recovers to a certain State-of-Charge (usually 60% of nominal capacity).
This mechanism protects the battery from deep-discharge cycles and thus
maximize its lifetime.

The known cut-off voltage provides two pieces of information that
we leverage in the proposed model. First, the cut-off voltage is used to
define 0% State-of-Charge (equivalent to 100% Depth-of-Discharge) of the
battery. Second, since the assumed charge controller sets this voltage such
that the Depth-of-Discharge is limited to 80%, if we ignore the battery’s
discharging efficiency, it can be assumed that the battery can deliver
80% of the nominal capacity. This assumption has been experimentally
verified with a coulomb counter [Max98] in Section 5.7.

1Depth-of-Discharge DoD is the complement of State-of-Charge SoC, i.e., SoC = 1−DoD
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Fig. 5.3: Qualitative illustration of the relation between battery terminal voltage (top) and
current (bottom) during the charging and discharging processes.

5.5.2 Charge and Discharge Profiles

The behavior of a battery can be classified into two processes: charging
and discharging. The charging process can be further segmented into
three phases, enforced by the employed charge controller (SunSaver SS-
6L): Bulk, Absorption, and Float charging. These processes are illustrated in
Figure 5.3 and briefly introduced in the following. The battery and charge
controller’s characteristics during these phases will be exploited in Sec-
tions 5.5.3 and 5.5.4 where we devise a trace-based model to approximate
the battery’s State-of-Charge based on voltage and current measurements.
For simplicity, we assume ideal conditions, i.e., no charging inefficiencies,
and a stable power source.

Discharging. The battery is discharged with a certain drain current,
e.g., Idrain = C/20, that defines the rate of discharge. Electro-chemical
reactions lead to an increase in battery internal resistance, which causes
a drop of the battery’s terminal voltage directly related to the magni-
tude of the drain current. As illustrated in Figure 5.3, if the battery
experiences a load change, i.e., the drain current changes in magni-
tude, the battery voltage reacts accordingly. In case of an increase in
drain current, the battery voltage drops. Similarly, if the load is re-
duced, the drain current decreases and the battery’s terminal voltage
raises accordingly. It is important to note that the load caused by the
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drain current Idrain(t) is relative to the battery’s nominal capacity. For
example, a high current on a high-capacity battery imposes a similar
load as a proportionally lower current on a proportionally lower capac-
ity battery. For this reason, we introduce the relative load RL(t), which
normalizes the discharge current with the respect to the battery’s nom-
inal capacity, i.e., RL(t) = Idrain(t)/C. As we will show in Section 5.5.3,
this allows us to devise a State-of-Charge approximation model that is
independent of the battery’s capacity.

Bulk Charging. In this phase, the charge controller enforces a constant
current Ibulk, which causes the battery potential to increase until a pre-
defined, temperature dependent voltage Vbulk is reached. The time for
reaching this voltage depends on the magnitude of the net charging
current and the battery’s State-of-Charge at the beginning of the bulk
charging phase.

Absorption Charging. In this phase the charge controller keeps the
battery terminals at a constant voltage level Vabs defined by the bulk
phase. The charging current Iabs(t) is tapered off exponentially until
it drops below a certain percentage of the battery’s nominal capacity
(0.5% for the batteries assumed in this chapter [Con11]), after which
the battery can be considered fully charged.

Float Charging. During the final charging phase, the charge controller
attempts to keep the battery at 100% State-of-Charge. To prevent over-
charge, the voltage is reduced to a temperature dependent, constant
float voltage V f loat and the charging current I f loat is kept constant. De-
pending on the State-of-Charge at the beginning of the charge process,
and the magnitude of the charging and drain currents, the absorption
and float charing phases may not be reached.

5.5.3 Battery Discharging Model
In this section we devise a model that can approximate the State-of-Charge
given measurements of the system input voltage and drain current. To
this end we develop a set of equations to model the discharging process
based on the observations from Section 5.5.2. In Section 5.5.4 we present
the same for the charging process, while Section 5.6 discusses how the
system can determine the different phases of the charging/discharging
process at runtime.

Figure 5.4a provides a qualitative illustration of the battery’s voltage
profiles over time when discharged with two different relative loads. As
discussed in the previous section, the voltage observed is related to the
magnitude of the relative load RL(t), and, as illustrated, the time until
the charge controller performs a low-voltage disconnect is lesser with a
higher load. The start of each trace is indicated with point A, at which the
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battery is assumed to be fully charged. The time when the battery reaches
the cut-off voltage is denoted tcuto f f , at which point the battery can be be
considered empty (points B and C).

(a) Discharge traces at two different load levels. The charge
controller specific cut-off voltage is indicated by points B and
C.

(b) Voltage vs. DoD curves obtained through domain transforma-
tion and inversion of the discharge traces shown in Figure 5.4a.

Fig. 5.4: (a) Qualitative illustration of discharge traces, and (b) Depth-of-Discharge ap-
proximation as a function of voltage. Labels A–D are given to illustrate the
transformation from Figure 5.4a to Figure 5.4b

In the following we assume that i such discharge profiles for the par-
ticular battery chemistry and relative loads RLi(t) are available. In Sec-
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tion 5.5.5 we will discuss how to appropriately profile the battery such
that the proposed model can be parameterized adequately.

As is evident from Figure 5.4, the profiles for the two different loads
are given in terms of battery voltage over time. Since we would like to
obtain a representation of State-of-Charge as a function of battery voltage
and drain current, we perform the following procedure.

First, as illustrated in Figure 5.4, we transform the traces from voltage
as a function of time (Figure 5.4a) to Depth-of-Discharge as a function of
voltage (Figure 5.4b). To this end we use the known cut-off voltage of
the charge controller to define 100% Depth-of-Discharge, and the known
battery voltage of a fully charged battery to define 0% Depth-of-Discharge.
Further, since we assume the traces to be obtained with a constant relative
load (see Section 5.5.5), we use the recorded discharge time tcuto f f ,i until
the battery reaches the cut-off voltage to assign the Depth-of-Discharge
linearly in time, i.e., DoDi(t) = ti/tcuto f f ,i. This effectively transforms the
traces from the time domain to the Depth-of-Discharge domain, which
is defined for the interval [0,1]. Finally, we inverted the traces to obtain
the Depth-of-Discharge as a function of the battery voltage, as illustrated
in Figure 5.4b.

After transformation of the traces, Figure 5.4b suggests that we should
be able to closely approximate the battery voltage dependent Depth-of-
Discharge with a polynomial function of order n. The choice of n is a
trade-off between computational complexity and profiling overhead ver-
sus runtime accuracy of the model, but it has been found that a quadratic
approximation achieves very good results, except when the battery is
nearly full (see Section 5.7). Nevertheless, as is intuitively clear, each
traces’ polynomial approximation, shown in Equation (5.1), allows for
Depth-of-Discharge estimation only for the relative load with which the
trace was recorded.

D̂oDi(Vbat,i) = an,i · Vn
bat,i + an−1,i · Vn−1

bat,i + . . . a1,i · Vbat,i + a0,i (5.1)

However, we wish to represent the Depth-of-Discharge with a single
equation that covers the entire operating range, including relative loads
other than the ones used to record the traces. For this we leverage the
fact that the polynomials’ coefficients an,i are dependent on the respective
relative load RL, and rewrite Equation (5.1) as shown in Equation (5.2).

D̂oD(Vbat,RL) = an(RL) ·Vn
bat +an−1(RL) ·Vn−1

bat + . . . a1(RL) ·Vbat +a0(RL) (5.2)

Then, to obtain the coefficient functions an(RL), we fit n+1 polynomial
approximations of order m ≥ n over all i coefficients from Equation (5.1)
to find the coefficients bn,m in Equation (5.3). Clearly, the approximation
order m must be chosen such that the resulting interpolation best fits
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Fig. 5.5: Interpolated Depth-of-Discharge approximations by relative load.

all coefficients, which implies that at least m + 1 traces are recorded (see
Section 5.5.5).

an(RL) = bn,m · RLm + bn,m−1 · RLm−1 + · · · + bn,1 · RL + bn,0 m ≥ n (5.3)

A qualitative illustration of the interpolated polynomial Depth-of-
Discharge approximation is shown in Figure 5.5. The outermost two
curves (shown in blue) approximate the recorded traces, while the remain-
ing three curves (shown in red) are approximations with interpolated co-
efficients for relative loads other than those used for recording the traces,
i.e., RLi. As we will discuss in Section 5.5.5, the recorded traces should
bound the expected load of the system, i.e., RLsys,max ≥ RLi ≥ RLsys,min.

In summary, with the approach discussed so far, we characterize the
battery discharging process with a single expression that represents the
Depth-of-Discharge as a function of relative load and battery voltage, and
n + 1 equations for the coefficient functions an(RL). As we will explain
in Section 5.6, to obtain the instantaneous Depth-of-Discharge approxi-
mation D̂OD(·) at runtime, the system evaluates Equations (5.2) and (5.3).
Based on the result, the State-of-Charge approximation ŜOC(·) can be
trivially obtained as ŜOC(·) = 1 − D̂OD(·).

5.5.4 Battery Charging Model
Just as for the the discharging process, we want to approximate the State-
of-Charge during the charging process with current and voltage measure-
ments. However, since we assume an off-the-shelf set-up, the charging
current IPV(t) produced by the solar panel cannot be measured directly
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and must therefore be approximated. Moreover, depending on the mag-
nitude of IPV(t), and assuming non-zero drain current Isys(t), the net cur-
rent flowing into the battery may be positive (i.e., battery is charging,
Isys(t) < IPV(t)), negative (i.e., battery is discharging, Isys(t) > IPV), or zero,
i.e., Isys(t) = IPV(t). In the case of Isys(t) > IPV(t), the model from the pre-
vious section applies. In the following we discuss how we model the
charging process without requiring explicit knowledge of the charging
current.

5.5.4.1 Bulk Charging Model

As illustrated in Figure 5.3, in the ideal case, the bulk charging current,
Ibulk ≤ IPV flowing into the battery is constant, causing the voltage to
increase monotonically. Just as in the previous section, we use the rela-
tive charging current, i.e., RCbulk = (IPV − Isys)/C, to determine the current
State-of-Charge during the bulk phase in a conservative way (conserva-
tive because the current is relative to nominal, rather than apparent ca-
pacity, which is only a fraction of the nominal capacity, see Section 5.5.1).
However, the exact value for IPV is unknown, and RCbulk must therefore
be approximated. As illustrated in Figure 5.6, which shows qualitative
voltage traces during the bulk charging phase for two different charging
currents Ibulk,1 and Ibulk,2, where Ibulk,1 < Ibulk,2, the rate at which the voltage
increases is directly proportional to the net bulk charging current. There-
fore, we can estimate the relative charge with a first order approximation
as shown in Equation (5.4). The slope δV/δt of the voltage profile can be
obtained with a linear regression. The parameterization of Equation (5.4)
will be discussed in Section 5.5.5.

R̂Cbulk = c1 ·
δV
δt

+ c0 (5.4)

The change in State-of-Charge due to R̂Cbulk is relative to the State-of-
Charge before entering the bulk phase, i.e., the last State-of-Charge ap-
proximation during the discharge phase. Thus, the instantaneous State-of-
Charge is computed as shown in Equation (5.5), where tbulk represents the
time elapsed since entering the bulk phase.

ŜoC(t) = ŜoC(t − tbulk) + R̂Cbulk · tbulk (5.5)

5.5.4.2 Absorption Charging Model

Due to the constant terminal voltage during the absorption phase (see
Figure 5.3), the relative charge RCabs(t) = (IPV(t) − Isys(t))/C cannot be
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Fig. 5.6: Linear approximation of the voltage slope of two different net bulk charging
currents.

estimated through the battery’s terminal voltage in the same way it is
done for bulk charging. However, as explained in Section 5.5.2, and
assuming an ideal scenario, i.e., the current source does not fluctuate
significantly, the absorption phase is characterized by an exponentially
decreasing relative charge with initial value given by R̂Cbulk. We leverage
this fact, and estimate the true relative charge RCabs(t) during absorption as
shown in Equation (5.6), where λ̂ is the decay constant, which is dependent
on the relative charging current during the bulk phase.

R̂Cabs(t) = R̂Cbulk · e(̂λ(R̂Cbulk)·t) (5.6)

Since R̂Cbulk has been defined in the previous section, we only need
to define λ̂(·). For this we first find the true decay constants λi(RCi) for
each of the i charging traces with an exponential fit over the corresponding
trace. Then we can define λ̂(·) with a linear approximation over the i true
decay constants to obtain the expression shown in Equation (5.7).

λ̂(R̂Cbulk) = d1 · R̂Cbulk + d0 (5.7)

Finally, we can determine the State-of-Charge in a similar manner as
was done for the bulk phase. However, the relative charge during the
absorption phase is decreasing over time, hence we compute the State-
of-Charge differentially for each discrete approximation time step ∆t, as
shown in Equation (5.8).

ŜoC(t) = ŜoC(t − ∆t) + R̂Cabs(t) · ∆t (5.8)
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5.5.4.3 Float Charging Model

The State-of-Charge during the float phase is by definition 100%. As
discussed in Section 5.5.5, this phase can easily be detected by the float
voltage V f loat, which is given in the data-sheet of the battery [Con11],
and/or the charge controller.

5.5.5 Model Parameterization

To obtain the parameterization for the the charging and discharging model
discussed in Sections 5.5.3 and 5.5.4, we perform a three-step procedure
to extract the necessary information at design-time, i.e., in the laboratory,
as explained in the following subsections. Note that the trace genera-
tion (Section 5.5.5.1), trace transformation (Section 5.5.5.2), and coefficient
extraction (Section 5.5.5.3) must be performed only once for each battery
type, i.e., chemistry, under consideration. The model then also applies to
batteries of the same type, but different rated capacities. As we will show
in Section 5.7, other battery conditions, e.g., age and capacity, or operating
conditions, e.g., temperature, can be ignored during the offline phase. In
Section 5.6.1 we then elaborate on how the information collected during
the offline phase enables runtime State-of-Charge approximation.

5.5.5.1 Trace Generation

To characterize the discharging and charging behavior of the battery, we
first collect discharge and charge traces with different drain and charge
currents respectively. Such a trace consists of fixed interval measure-
ments of the system input voltage and constant drain current until the
charge controller performs a low-voltage disconnect of the load (see Sec-
tion 5.5.1). Optimally, a discharge (charge) trace is obtained for every
possible drain (charge) current that the battery may be exposed to during
deployment. However, this may not be feasible, or necessary. As will
become clear in Section 5.5.5.3, at least thee discharge traces should be
obtained, where the magnitude of the drain currents Idrain,i is chosen such
that the traces represent the expected operational range of the system,
i.e., Isys,max ≤ Idrain,i ≤ Isys,min. Similarly, the charge currents Icharge,i should be
chosen such that they cover the charge currents expected during deploy-
ment.

An illustration of manufacturer provided discharge traces for a Valve
Regulated-Absorbent Glass Mat sealed lead-acid battery [Con11] at var-
ious discharge rates is shown in Figure 5.2. However, since the data
provided by the manufacturer may be given for rates much higher than
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Fig. 5.7: (top) Discharge traces of BAT1 (see Table 5.3) and their approximations. (bottom)
The resulting residuals of the approximation. Note that the voltages are relative
to the cut-off voltage, i.e., Vcuto f f = 11.5V.

required, the battery may have to be profiled with discharge rates ap-
propriate for the particular system used. Here we assume the system
introduced in Chapter 6, and fully described in [BYL+11].

5.5.5.2 Trace Transformation

After having obtained appropriate charge and discharge traces, we trans-
form them from voltage as a function of time to Depth-of-Discharge as a
function of voltage, which is defined for the interval [0,1]. This transfor-
mation is fully described in Sections 5.5.3 and 5.5.4.

5.5.5.3 Coefficient Extraction

In the following we discuss the approximation and interpolation coeffi-
cients for the charging and discharging models presented in Sections 5.5.3
and 5.5.4. For the parameterization we profiled BAT1 (see Table 5.3) with
relative loads of 0.00471, 0.01194, and 0.01638.

Discharge Model Coefficients

Figure 5.7 shows three traces of the discharge process of battery BAT1 (see
Table 5.3) and their quadratic approximations on the top graph (i.e., n = 2
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in Equation (5.2)). The bottom graph in the figure shows the respective
approximation error over the entire trace. From the bottom graph it is
evident that the approximation achieves an accuracy of ±2% over the
entire period, except for when the State-of-Charge is above 80%. This can
be explained by the high dynamics during the transition from charging
to discharging. While a cubic fit may improve the accuracy for a State-of-
Charge larger than 80%, we found that it does not improve the model’s
performance appreciably. Moreover, a slightly higher error at a high
State-of-Charge can be considered acceptable.

With the three traces, we can perform a quadratic approximation for
the load interpolation, i.e., m = 2 in Equation (5.3). The respective coeffi-
cients are given in Table 5.1a. Note that if the quadratic interpolation ac-
curacy is not sufficient, more than three traces must be generated, i.e., the
number of traces i = m + 1. In the case under consideration, however, a
binomial approximation is found to be sufficiently accurate.

Bulk Charge Model Coefficients

Figure 5.8 shows two traces with the same battery as before, i.e., BAT1,
and two relative charging currents, i.e., RC1 = 0.03272, and RC2 = 0.07246.
Since the traces are collected with known relative charging current, the
corresponding slopes of the voltage profiles are used to extract the coeffi-
cients c0 and c1 of the first order approximation of R̂Cbulk, shown in Equation
(5.4). The coefficients obtained with these traces are listed in Table 5.1b.

Absorption Charge Model Coefficients

The coefficients for the approximation of the decay constant λ̂ from Equa-
tion (5.7) are listed in Table 5.1c. As explained in Section 5.5.4.2, these
coefficients are obtained by first finding the true decay constants λi(RCi)
for each of the i charging traces with an exponential fit of the correspond-
ing trace. Then we can define λ̂(·) with a linear approximation over the i
true decay constants to obtain the coefficients d1 and d2 for Equation (5.7).

Float Charge Model Coefficients

As discussed in Section 5.5.4.3, the State-of-Charge for the float phase
does not need to be approximated. However, as the float voltage V f loat is
dependent on the temperature T, we approximate it based on information
from the battery’s datasheet as shown in Equation (5.9). The temperature
dependence implies that if the State-of-Charge during charging must be
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Fig. 5.8: Linear approximation of the voltage slope of two different relative charging
currents, i.e., RC1 = 0.03272, RC2 = 0.07246.

available, the system requires a temperature sensor that can measure the
battery temperature.

V f loat(T) = max{13000, 0.239 · T2
− 35.94 · T + 14040} (5.9)

5.6 Online State-of-Charge Approximation
In this section we discuss how the models from the previous sections
enable online approximation of the battery State-of-Charge. We first
present a a Finite-State Machine in Section 5.6.1, which is used to track
the different charging and discharging phases, and compute the State-of-
Charge accordingly. Then, in Section 5.6.2 we briefly discuss measurement
specific considerations.

5.6.1 Battery State Tracking
For tracking the behavior of the battery over time and updating the State-
of-Charge according to the respective phase, we define a Finite-State
Machine, of which the states and transitions are illustrated in Figure 5.9.
The individual states correspond to the four charge and discharge phases
explained in Sections 5.5.3 and 5.5.4. An additional UNKNOWN state
is introduced to capture initial conditions. The individual states and
triggers for each of the state transitions are listed in Table 5.2, and briefly
described in the following.
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Tab. 5.1: Coefficients for Equations (5.3), (5.4), and (5.7) found by interpolation of traces.

(a) Coefficients for Equation (5.3)

Coefficient Value

b2,0 -8.321e-9

b2,1 -0.002257

b2,2 0.08133

Coefficient Value

b1,0 -0.07018

b1,1 4.492

b1,2 -204.7

Coefficient Value

b0,0 100

b0,1 0

b0,2 0

(b) Coefficients for Equation (5.4)

Coefficient Value

c0 0.005573

c1 1.296

(c) Coefficients for Equation (5.7)

Coefficient Value

d0 -0.003891

d1 -0.1091

UNKNOWN. This is the starting state. While in this state, the system
gathers information, i.e., system input voltage Vsys and drain current Isys

to determine the next state. The system monitors the evolution of the
battery voltage and drain current for detecting the triggers for the state
transitions shown in Table 5.2. If a dropping voltage tendency is observed,
the system enters the DISCHARGE state, irrespective of the current. On
the other hand, if an increasing voltage combined with a constant or
increasing current is observed, the state machine transitions to the BULK
state. Note that if the current decreases, the voltage will rise accordingly,
hence a decision is deferred as it is not clear if the battery is being charged
or discharged. The ABSORPTION state is entered if the voltage reaches
the absorption voltage level Vabs, and the FLOAT state is entered if the
measured voltage is less than the absorption voltage, but greater than
or equal to the float voltage level V f loat. Note that no State-of-Charge
computations are performed in this state.

DISCHARGE. This state represents the discharging process of the bat-
tery. The state machine remains in this state as long as the battery is being
discharged, i.e., while the voltage drops. In this state the system monitors
the battery voltage and the drain current for detecting the start of the
bulk phase, which is characterized by a monotonically increasing voltage
without a reduction in drain current. Upon detection of the bulk phase,
the system transitions into the BULK state. Note that in this discussion,
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Tab. 5.2: State transition matrix. ↑ and ↓ refer to ’increase’ and ’decrease’, respectively,
while ��↑ and ��↓ refer to ’no increase’ and ’no decrease’ of the respective parameter.
V refers to the measured battery voltage.

Next State

UNKNOWN DISCHARGE BULK ABSORPTION FLOAT

C
ur

re
nt

St
at

e

UNKNOWN No change V ↓ V ↑, Isys �↓ V ≥ Vabs V f loat ≤ V < Vabs

DISCHARGE – No change V ↑, Isys �↓ V ≥ Vabs V f loat ≤ V < Vabs

BULK – V ↓ No change V ≥ Vabs V f loat ≤ V < Vabs

ABSORPTION – V < V f loat – No change V f loat ≤ V < Vabs

FLOAT – V < V f loat – – No change

we assume a stable charging source, hence battery charging follows the
process described in Section 5.5.2. However, in the case of solar energy
harvesting, the charging source is not constant, and the DISCHARGE
state may have been entered from any of the other states because of an
interruption in the source, e.g., due to clouds. Then, if the source recovers,
it is possible that the bulk and/or absorption phases are skipped.

Fig. 5.9: State Machine for charge/discharge tracking. Transitions are listed in Table 5.2

When in the DISCHARGE state, Equation (5.2) is used to compute
the Depth-of-Discharge DoD(·), based on which the State-of-Charge is
obtained as SoC(·) = 1 −DoD(·).

BULK. This is the first of the three phases of the charging process. As
soon as the monotonically increasing voltage during this state reaches
the absorption threshold voltage Vabs, the state machine transitions to
the ABSORPTION state. Otherwise, when the battery is discharging,
indicated by a falling voltage tendency or even a sudden voltage drop, the



5.6. ONLINE STATE-OF-CHARGE APPROXIMATION 129

state machine transitions to the DISCHARGE state. The State-of-Charge
in the BULK state is computed with Equation (5.5).

ABSORPTION. The typical characteristic of the absorption phase is that
the battery voltage stays relatively stable and does not keep increasing,
as is the case for the bulk phase. The State-of-Charge in this state is
computed with Equation (5.8). Once the observed battery voltage drops
from the absorption voltage threshold Vabs to the float voltage level V f loat

the state machine transitions to the FLOAT state. If the battery voltage falls
below the float threshold voltage V f loat, the battery is not being charged
anymore, hence state machine transitions to the DISCHARGE state.

FLOAT. This is the final state of the charging process. In this state, the
battery is fully charged and kept at 100% with a small charging current.
If the observed voltage is below the float voltage level V f loat, the battery is
discharging and thus the system transitions into the DISCHARGE state.
By definition, the State-of-Charge in this state is 100%.

5.6.2 Voltage Measurements
Since we assume an off-the-shelf setup depicted in Figure 5.1, the input
voltage Vsys measured by the system does not correspond to the actual bat-
tery voltage. This is illustrated in Figure 5.10, which shows the electrical
circuit equivalent of the assumed system architecture. The charge con-
troller and power cable are assumed to be resistive loads. Note, that for
profiling purposes we can also assume the system to be a constant resis-
tive load. Now, since we need the battery terminal voltage to approximate
the State-of-Charge in a setup independent manner, we must account for
the voltage drops caused by the individual components, i.e., the charge
controller and the power cable, as shown in Equation (5.10). The unknown
battery terminal voltage is denoted Vbat, while Vsys represents the mea-
sured input voltage, Vcc stands for the voltage drop due to the charge
controller, and Vcable refers to the voltage drop caused by the power cable.

Vbat(t) = Vsys(t) + Vcc + Vcable(t) (5.10)

Note that we assume Vcc to be constant, obtained from the charge con-
troller’s data-sheet or experimentally approximated. Vcable can be com-
puted using the cable’s specific resistance ρ, its length l and cross-area
A, multiplied by the measured drain current Isys, as shown in Equation
(5.11).

Vcable(t) = ρ ·
l
A
· Isys(t) (5.11)
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Fig. 5.10: Simplified model of the voltages and currents of the system platform.

5.7 Evaluation

Next we present performance result of the proposed State-of-Charge ap-
proximation approach when used with an off-the-shelf power subsys-
tem and high energy consumer, e.g., wireless sensor network basesta-
tion [MOH04], or applications with high-power sensors and increased
duty-cycles [BSB12].

5.7.1 Experimental Set-up

5.7.1.1 Test Set-up

For evaluating the proposed approach, we carry out discharge tests are
in our lab with three Valve-Regulated Absorbent Glass-Matt (VR-AGM)
batteries [Con11] listed in Table 5.3. A custom platform, of which details
are given in [BYL+11], presents the load and executes the logic described
in Section 5.6 with the parameters shown in Table 5.4. To verify that
batteries of the same capacity yield the same results, a discharge test is
performed on two identical batteries. The differences are found to be
insignificant, hence only one set of results is presented in the following.

5.7.1.2 Model Parameters

General equations for obtaining the Dept-of-Discharge as a function of the
battery voltage and relative load have been developed in Section 5.5. The
model parameterization has been discussed in Section 5.5.5. Table 5.1 list
the respective coefficients, which have been found by analyzing discharge
traces of a single battery, i.e., BAT1 (see Table 5.3), which was profiled at
22 ◦C as described in Section 5.5.5.



5.7. EVALUATION 131

Tab. 5.3: Type, capacity, and condition of the batteries [Con11] used.

Name Type Capacity (C/20) Condition

BAT0 GPL-1400T 43 Ah Old

BAT1 GPL-U1T 33 Ah New

BAT2 GPL-1400T 43 Ah New

5.7.1.3 Evaluation Baseline

In order to evaluate the method’s ability to adapt to conditions that are
not explicitly modeled, such as varying size, condition, etc., a number of
discharge tests are carried out and discussed in the next section. Discharge
tests under controlled conditions are considered to yield accurate State-
of-Charge approximation [PPJ01, Con11]. Before starting each test, the
respective battery is fully charged and allowed to rest for 4 hours.

To obtain a baseline for performance comparison and validation of the
assumption about available battery capacity made in Section 5.5.1, an ex-
ternal coulomb counter [Max98] is placed between the charge controller
and the battery. The coulomb counter measures the current i(t) drawn
from the battery during the discharge tests discussed in the next sec-
tion. These measurements are converted to the baseline State-of-Charge
SoCCC(t) by assuming that the battery is charged to full capacity C at the
start of the discharge test, i.e., SoCCC(0) = C/C, and then defining the
baseline State-of-Charge as shown in Equation (5.12), where ∆t refers to
the sampling interval, and tcuto f f is the time when the charge controller
performs the low-voltage disconnect.

SoCCC(t) =
C − i(t) · ∆t

C
∀t[0, tcuto f f ] (5.12)

To minimize the errors introduced by the coulomb counter, it is cali-
brated according to its datasheet.

5.7.2 Experimental Results
In the discussion so far, we have ignored battery inherent inefficiencies.
However, when operated under varying, and uncontrollable conditions,
batteries exhibit non-linearities that cannot be neglected. Therefore, we
first evaluate the performance of the State-of-Charge approximation with
a battery exposed to varying temperatures in Section 5.7.2.1. As a second
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Tab. 5.4: Sampling rate and filter specification for smoothing of physical measurements.

Description Value

Sampling rate 30 sec.

Filter type EWMA

Filter length 10

step, in Section 5.7.2.2 we investigate the model’s ability to adapt to aging
batteries. Then, in Section 5.7.2.3 we present results obtained with vary-
ing loads. Finally, in Section 5.7.2.4 we discuss the model’s accuracy in
predicting remaining runtime. Note that the goal of the experiments is to
evaluate the performance of the proposed approach, and not the battery
behavior under the different conditions.

5.7.2.1 Temperature Effects

Temperature variations have a strong impact on the battery’s State-of-
Charge as they affect the apparent capacity [RVR03, Con11]. Low tem-
peratures cause a reduction of the electrochemical activity, which leads to
a (temporary) reduction of charge stored in the battery (relative to its rat-
ing), and to some extent the opposite is true for high temperatures. Since
the battery parameters were obtained at 22 ◦C, with the first experiment
we evaluate the model’s ability to adapt to lower temperatures. To this
end, BAT1 is cooled down and kept at −6 ◦C while being discharged with
a constant relative load of 0.0103. This specific temperature is selected
as it represents a typical average temperature during winter months at
a particular deployment location of interest, see Section 6. Figure 5.11
and Table 5.5 show the results, which we briefly discuss in the following.

The upper graph in Figure 5.11(a) shows the State-of-Charge approxi-
mation by the proposed approach and the ground-truth at constant−6 ◦C,
and for reference at 26 ◦C. The lower graph shows the State-of-Charge
approximation error, which is defined as SoCmodel(t) − SoCCC(t), i.e., the
difference between the State-of-Charge indicated by the model and that
inferred by the baseline. At −6 ◦C the maximum overestimate of 3.54%
occurs only in the very beginning but quickly drops during the first 6
hours until reaching a maximum underestimate of 1.17% after 12 hours.
After 25 hours, and for the remainder of the test, the error varies between
roughly 0.3% and 2% with a mean deviation from the ground-truth of
0.85%.
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Fig. 5.11: Constant power discharge test at constant 26 ◦C and −6 ◦C with battery BAT1.
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The reason for the initial overestimate is likely due to the increased
rate at which the voltage drop occurs due to the low temperature. This
causes the model to overestimate the State-of-Charge until the battery has
adjusted to the load, at which point the rate of change in the voltage profile
slows down and reflects the actual condition. The consistent overestimate
in both cases is likely because of considering too little voltage drop across
the charge controller and wires (see Section 5.6.2).

Another inefficiency that is highly temperature dependent and com-
mon to all batteries is referred to as self-discharge. This phenomenon
causes the battery to discharge at a type and temperature specific
rate [AUDT10] even when no load is connected. We disregard this ef-
fect as it is assumed that an off-the-shelf charge controller presents a load
that is always larger than the battery’s self-discharge.

In summary, the temperature, and – as we will show in the next sec-
tion – aging effects are indirectly considered through changes in terminal
voltage that occur due to temperature variations without a corresponding
change in drain current. The change in voltage induced by these effects
causes the model to yield a correspondingly lower or higher State-of-
Charge. It is important to note that 0% State-of-Charge is not affected
by temperature because the charge controller disconnects the load at a
temperature independent cut-off voltage.

5.7.2.2 Aging Effects

Each charge/discharge cycle causes irreversible chemical reactions within
the battery. This causes a gradual decrease in the maximum charge that
the battery can store and deliver [BKN02], and is referred to as capacity
loss. Conventionally, a battery has reached its end-of-life when it fails
to store and deliver a certain percentage (usually 80%) of its nominal
capacity [Con11]. Since capacity and voltage are directly related [PPJ01],
an old battery will exhibit a lower terminal voltage (compared to a new
battery) due to lower electrochemical activity. Therefore, identically to
temperature effects discussed in the previous section, the model indirectly
considers aging effects via its impact on terminal voltage.

Figure 5.12 and Table 5.5 show the results of the discharge test
with BAT0, which has reached its end-of-life. For reference, the same
discharge test is carried out with BAT2, which is of the same type and
capacity, but in new condition. The initial capacity is determined using
a coulomb counter, which indicates that only 52% of the nominal capac-
ity (equivalent to roughly 65% of apparent capacity) can be withdrawn
when BAT0 is fully charged. As is evident from the top most graph
in Figure 5.12(a), this agrees very well with the initial State-of-Charge ap-
proximated by the model. The maximum and mean deviation from the
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Fig. 5.12: Discharge test with aged (BAT0) and new (BAT2) batteries.
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ground-truth of -4.49%, and -1.69% respectively may seem rather high.
However, the negative values represent an underestimate, which is main-
tained almost over the entire range. This may be viewed as a conservative
indication of State-of-Charge, and, depending on application, may even
be desirable. It is worth noting that, except for in the beginning, both
discharge tests yield very similar profiles, which validates the method’s
applicability to varying battery conditions. Unfortunately, the model pa-
rameters, which are obtained with a battery size equivalent to BAT1, tend
to introduce some error when used with the larger batteries. The effect
is visible for both cases by the dip in the profile shortly after starting the
test.

5.7.2.3 Load Variations

In practical applications, the system typically does not exhibit constant
power dissipation, hence this section presents the model’s performance
when exposed to varying drain currents. Load changes frequently occur
in real systems, due to e.g., duty-cycling. It is well known that a battery
behaves non-linearly when discharged at different rates [Peu97, DAS06].
These rate dependent effects are known as rate-discharge and recovery
effects.

Figures 5.13 and 5.14 and Table 5.5 present the results of a discharge
test with bimodal load changes. As illustrated in the lower graph in
Figure 5.13, which shows the voltage profile, the high-power mode presents
a maximum relative load of 0.0170 and is active 35% of the time, while
the low-power mode presents a relative load of 0.0055 for the remaining
65%. In this discharge test, the rate-discharge and recovery effects become
visible. With variations in the load, the battery is allowed to recover some
of the charge regularly. Since this affects the battery’s terminal voltage,
the model tends to continuously fluctuate between slightly under- and
overestimating the State-of-Charge. Towards the end of the discharge
test, the maximum overestimate reaches 4.98%. Nevertheless, despite the
load changes and their visible effects on the voltage profile, the State-of-
Charge exhibits a relatively linear tendency with a mean deviation from
the expected value of 3.02%.

5.7.2.4 Lifetime Estimation

The ability to predict the remaining runtime is intuitively more benefi-
cial to the system than mere indication of battery State-of-Charge. For
this reason, in this section we investigate if the approximated State-of-
Charge can be easily used to predict remaining runtime. In addition to
the instantaneous State-of-Charge and drain current, the manufacturer
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Fig. 5.13: State-of-Charge approximation (top), and voltage profile (bottom) for bimodal
load.

specified nominal capacity C in mAh is used as basis for computing the
remaining lifetime L, as shown in Equation (5.13).

L(t) = SoC(t) ·
C

Isys(t)
· α (5.13)

The scaling factor α is introduced to account for rate-discharge and
recovery effects with variable loads. Therefore, all but the experiment
with varying loads use α = 1. In the more interesting case with varying
loads, rate-discharge and recovery effects have an impact on the assumed
capacity, which requires an appropriate scaling to yield acceptable life-
time prediction. For the results shown in Figure 5.14, α = 0.7 has been
experimentally found to yield the lowest average lifetime prediction error.

It is to be expected, however, that α does not behave linearly with the
discharge duty-cycle. To verify this, we carried out another set of tests
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Fig. 5.14: Runtime prediction (top) and prediction error (bottom) for bimodal load.

with a duty-cycle of 50% and periods of one (α = 0.85), two (α = 0.88), and
four hours (α = 0.88). This illustrates the fact that the rate at which the load
varies, affects the actually available charge in the battery [BKN02]. The
implication is that for a simple lifetime prediction approach like Equation
(5.13), α may have to be learned online if the duty-cycle is not known in
advance.

Another complication arises due to the discrete, and potentially noisy
current measurements Isys(t) to compute the lifetime. This is illustrated
in the upper graph in Figure 5.14, which shows the runtime predicted by
the model (see Table 5.4 for smoothing filter parameters). The smooth
curve represents the predicted lifetime with a running average for Isys(t),
while the dashed curve represents the prediction when using the instan-
taneous measured current instead. For reference, the lifetime prediction
with absolute average, i.e., averaging over all measurements observed
so far, for Isys(t) is represented with the dash-dotted line. As is to be
expected, when using instantaneous measurements, the prediction fol-
lows the voltage profile closely (which follows the drain current) and
so introduces relatively large errors. On the other hand, the averaging
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operation smoothens the measurements, which allows for predicting the
expected lifetime much more closely. Depending on application, either
of the approaches may be favorable.

Table 5.5 and the lower graph in Figure 5.14 show the prediction error
for the running, and absolute average respectively. It would not be fair
to compare the instantaneous lifetime prediction to the actual runtime,
which is a product of the discharge dynamics. Nevertheless, despite
initially exhibiting large deviations from the actual runtime by up to
−12.29%, the average error over the entire test is found to be only −0.85%.
This is a bit skewed due to the consistent, and quite significant underesti-
mation of the lifetime during the first half of the test, which exhibits high
dynamics in the load variation. However, for the second half, the mean
error is roughly 1.9% with an absolute maximum and minimum of 4.52%
and 0.04% respectively.

In summary, especially the rate-discharge and to some extent the
recovery effects have a large impact on lifetime prediction when load
changes occur. As expected, these effects are less pronounced when a
constant load is present. Overall, the simple lifetime prediction approach
from Equation (5.13) is able to quite accurately approximate the lifetime
with a maximum underestimation of 12.29% for the variable load test, and
a maximum overestimation of 9.21% for the test with the aged battery.

5.7.2.5 Charge Approximation

Approximation of the State-of-Charge during the charging process has
been tested under optimal conditions and works very well. However,
when dealing with real-world conditions where the solar panel’s perfor-
mance varies due to e.g., clouds, the state machine introduced in Sec-
tion 5.6.1 has difficulties properly tracking the states, which in turn causes
the approximation accuracy to suffer. Considering the good performance
during discharge – which is the time when State-of-Charge approxima-
tions are most useful – this is not considered an issue. Moreover, in the
case of solar energy harvesting, the system tends to spend the majority of
time in the discharging state.
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Tab. 5.5: Results of the State-of-Charge approximation performance shown in Figures 5.11
through 5.14.

(a) State-of-Charge error in % (SoCmodel - SoCCC).

Test Figure Maximum Minimum Mean Variance Std.

26 ◦C 5.11(a) 2.98 0.33 2.0 0.44 0.66

−6 ◦C 5.11(a) 3.54 -1.1 0.85 0.96 0.98

Aged 5.12(a) 2.41 -4.49 -1.69 3.24 1.8

New 5.12(a) 2.04 -5.32 -1.81 5.96 2.44

Var. RL 5.13 4.98 -0.79 3.02 4.53 2.13

Mean – 3.19 -2.27 0.47 3.03 1.6

(b) Lifetime error in % of actual runtime.

Test Figure Maximum Minimum Mean Var. Std. α

26 ◦C 5.11(b) 3.85 -1.38 1.4 2.95 1.72 1.0

−6 ◦C 5.11(b) 7.54 -1.34 1.95 2.87 1.7 1.0

Aged 5.12(b) 9.21 -3.52 -0.07 9.52 3.09 1.0

New 5.12(b) 7.04 -1.13 0.96 4.63 2.15 1.0

Var. RL 5.14 3.8 -12.29 -0.85 18.83 4.34 0.7

Mean – 6.29 -3.93 0.68 7.76 2.6 –

5.8 Measurement Considerations
In this chapter we devised a light-weight HW/SW approach to bat-
tery State-of-Charge approximation that does not depend on special-
purpose hardware. Nevertheless, since the approach relies on voltage
measurements, at least a voltage sensor is required that can measure
the unregulated system input voltage with sufficient resolution and ac-
curacy. The drain current can be obtained by profiling, as is done
in [CPBA12, DOTH07, KPA+10]. However, the instantaneous State-of-
Charge approximation can be improved by employing a current sensor to
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measure the true system drain current. If the State-of-Charge should also
be tracked during charging of the battery, a temperature sensor to measure
the battery’s temperature must also be available because the float voltage
is temperature sensitive, see Section 5.5.5.3. These sensors are generally
present on wireless sensor network motes for health monitoring purposes,
and are therefore not considered special-purpose hardware.

During discharging of the battery, the proposed algorithm is stateless
and only considers the present measurements to compute the State-of-
Charge. This means that the model’s accuracy is independent of the
sampling period, and the measurements for health monitoring of the
respective application can be conveniently re-used whenever they are
scheduled anyway. This eliminates measurement overhead and reduces
possible interference with normal system operation. However noise on
the sensor readings may affect the solution quality. For this reason, at
runtime, an exponentially weighted moving average (EWMA) filter with
length 10 is used to smoothen all physical measurements (see Table 5.4).

For the charging process, the State-of-Charge approximation depends
both on the present measurement and previous State-of-Charge. In this
case it is clearly beneficial to use a sampling period appropriate to capture
the dynamics of the energy source used. With solar harvesting the source
tends to fluctuate slowly, so a sampling period of a few minutes can be
considered sufficient.

With an off-the-shelf set-up assumed, as illustrated in Figure 5.1, the
system input voltage does not correspond to the actual battery voltage.
However, to approximate the State-of-Charge in a set-up independent
manner, the battery’s terminal voltage is required. Therefore, voltage
drops caused by the charge controller and the power cable, or any other
consumers must be explicitly accounted for, as described in Section 5.6.2.
Finally, it is worth noting that for this algorithm no State-of-Charge up-
dates can be made during system sleep periods, unless supervisory circuit
with the ability to read the sensors and execute the Finite-State Machine
introduced in Section 5.6.1 is available.

5.9 Chapter Summary
In this chapter we presented a light-weight approach to battery State-of-
Charge approximation that relies fully on closed-loop voltage and op-
tional drain current measurements and does not require any special pur-
pose hardware. Instead it leverages the behavior of the battery under load,
which is extracted from discharge traces. Therefore, it incurs only limited
implementation effort to adapt for a variety of systems. The proposed ap-
proach achieves state-of-charge approximation with up to 95% accuracy
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even under varying operating conditions. Minimal operational overhead
make this approach suitable for a wide variety of low-performance em-
bedded computing systems that leverage off-the-shelf energy harvesting
set-ups.



6
Case Study: X-Sense GPS System

6.1 Introduction

In this chapter we demonstrate the feasibility of the theoretical models
formulated in Chapters 2-5 for realization with a realistic system. We use
the context of the X-Sense project [BBF+11] as a case study, and quantify
the benefits of the proposed dynamic power management schemes from
Chapters 3 and 4 in terms of long-term operation and increased system
utility for the target application.

Motivation

The X-Sense project’s primary goals are to (i) apply WSN technology
to enable geoscientific characterization and quantification of cryosphre
phenomena, e.g., [WBB+13, WGGP15], and their transient responses to
climate change, and (ii) investigate the feasibility of WSN technology for
an early-warning system against destructive events triggered by these
phenomena. An integral requirement of the geoscientific aspects of the
project is the ability to accurately track variable slope movements that
range from a few centimeters per year to a few centimeters per day.
Moreover, considering that the intended deployment site is difficult to
access, we require a system that can reliably and autonomously provide
positioning with sub-centimeter accuracy over time periods on the order
of multiple years.
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Fig. 6.1: (a) System block diagram partitioned into harvesting subsystem (solar panel),
storage subsystem (battery and charge controller) and the load to be supported
(wireless sensing system). The flow of generated energy is indicated with dotted
lines, while the dashed lines represent the energy consumed. (b) Picture of the
X-Sense CoreStation evaluation platform installed at the high-alpine deployment
site. (c) Picture of the CoreStation evaluation platform, indicating the various
system components.
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To investigate the feasibility of the above two goals, a number of in-
situ evaluation and experimentation platforms, called CoreStation (see
Figure 6.1c), enhanced with commercially available single-frequency GPS
receivers (µ-blox LEA-6T) are installed at the high-alpine deployment site
(see Figure 6.1b). The raw L1 GPS data collected by these systems is sent to
our back-end servers, after which the data is differentially post-processed
[LGB+11, BSB12, SGL+14] to yield the positioning accuracy required by the
geoscientific project partners [WBB+13]. To achieve an acceptable solution
accuracy that allows tracking of slope movements with sub-centimeter
resolution, the GPS receiver must be active for time periods exceeding
2 hours (see Section 6.2.2). Therefore, given the long sampling intervals,
coupled with the GPS receivers’ high power demands [JCDS10], and the
need for unattended operation over multiple years, energy harvesting
technology is indispensable to power the CoreStation platform.

In summary, the project requirements and characteristics of the exper-
imentation platform present an ideal scenario for the validation of the
assumptions and models in the preceding chapters, and the evaluation of
the dynamic power management schemes from Chapters 3 and 4 under
real-world conditions.

6.2 System Model

6.2.1 System Architecture
The system architecture is illustrated in Figure 6.1a. From a high-level
perspective, the system consists of the solar energy harvesting and energy
storage subsystems, collectively referred to as power subsystem, and the
load, i.e., wireless sensing platform, to be supported.

To satisfy the project requirements from Section 6.1, we leverage a
custom-built, feature-rich hardware platform together with an extensible
middle-ware, briefly described in Section 6.2.1.1. With this platform we
trade off system flexibility, observability, and accessibility for relatively
high power dissipation (i.e., roughly 6 Watt at full performance). Since
batteries alone could not support the high power requirements over ex-
tended periods, the system is powered by the solar energy harvesting
system discussed in Section 6.2.1.2.

6.2.1.1 Wireless Sensing Platform: CoreStation

A picture of the deployed X-Sense CoreStation is shown in Figure 6.1b, and
Figure 6.1c shows a close-up of the CoreStation’s hardware platform en-
closed in a water-proof die-cast box with EMP-protected antenna, power,
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and debug connectors. The following two sections provide an overview
of the hard- and software architecture.

Hardware

To accommodate for the evaluation of diverse application scenarios, the
hardware architecture is partitioned into three layers: power and inter-
facing, processing, and networking.

Power and Interfacing. The Baseboard accepts 5.5V-18V unregulated
input and generates multiple software controlled and monitored power
domains. In addition to onboard temperature, humidity, voltage and
current sensors, two USB interfaces, one configurable serial interface, and
one I2C bus for connecting external sensors are available. The Baseboard
further provides interfaces and communication planes for the Gumstix
embedded PC [gum], a TinyNode [DFFMM06] (or compatible) mote, and
a GSM modem. Accurate time across power cycles is maintained by a
battery-backed real-time clock. Finally, for on-site maintenance, a serial
console can be accessed without the need to open the case.

Processing. The Gumstix verdex pro XL6P provides the main process-
ing element of the CoreStation. The 600MHz XScale CPU, together with
128MB of RAM, and 8GB of Flash memory provides enough resources to
run a Linux operating system, with most of the features and utilities avail-
able on desktop distributions. In the current set-up we further utilize a
TinyNode184 mote, which features an MSP430 low-power processor, run-
ning the TinyOS operating system [LMP+05]. The Gumstix and TinyNode
communicate via the TinyOS serial protocol over UART.

Networking. Our setup employs two redundant high-bandwidth links,
i.e., WLAN and GSM, which provide reliable access and visibility into
the system. The CoreStation further supports ethernet or satellite links.
The TinyNode’s radio permits integration into ultra low-power Dozer
[BVW07] networks. Using special Dozer beacons, commands to either of
the processing elements can be sent from remote via the ultra low-power
network.

Software

The custom software framework, called BackLog runs on top of the Linux
OS. It provides a plug-in API, power control module, scheduler for ex-
ecution of individual plug-ins, and optionally handles connection to the
GSN [AHS07] backend servers. Built-in monitoring and statistics, to-
gether with high-level language support and well-established utilities
(ssh, snmp, ntp, etc.) prove to be invaluable in rapidly implementing
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functionality and analyzing system performance trade-offs. BackLog fur-
ther provides communication interfaces with, and control over hardware
components. The ability to interact with individual components, such
as monitoring or reprogramming the TinyNode, polling sensors, or en-
able/disable wireless links and other system components, extends the
system functionality to an on-site testbed of low-power, TinyNode based
sensor nodes.

System Limitations

Although proven to be a very powerful and flexible tool for in-situ ex-
perimentation, the evaluation platform has one major limitation: it can
not measure the current generated by the panel Ipv, and only monitor
the system input voltage Vsys and current drawn Isys (see Figure 6.1a).
However, as discussed in Section 3.3, an approximation of the generated
energy Ereal(d), which can be derived from Ipv, is necessary for the dy-
namic power management algorithms from Chapters 3 and 4 to function.
In Section 6.3 we explain how the lack of appropriate hardware support
can be circumvented.

6.2.1.2 Power Subsystem

As illustrated in Figure 6.1a, and mentioned in Section 3.2.1, we assume a
harvest-store-use architecture [SK11], which is enforced by the employed
charge controller. This means that the battery is not bypassed when
the panel generates surplus energy, i.e., when the battery is full. The
implication is that inefficiencies due to battery charging and discharging
are incurred even if the panel could directly power the load.

We consider two installations that are identical with respect to tech-
nology and system parameters (see Figure 2.1 in Chapter 2): a 30 Watt
mono-crystalline solar panel (cleversolar CS-30) with a solar cell area of
0.1725m2, a SunSaver SS-6L PWM charge controller, a Lifeline AGM bat-
tery with a nominal capacity of 54Ah, and the CoreStation wireless sensing
system described above with a power dissipation of approximately 6 Watt
at full performance. Table 6.1 lists the relevant deployment parameters that
differ between the two installations.

Note that, according to our model in Chapter 2, neither of the above two
configurations is ideal with respect to the dimensioning of the energy har-
vesting power subsystem. The panel and battery are poorly matched: the
battery is under-provisioned for the given load (the deployed battery is
only dimensioned for 10 days of operation at a duty-cycle of 30%, i.e., av-
erage power dissipation of roughly 2 Watt, and hence not large enough to
bridge extended periods of snow cover during winter), and the panel is
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Tab. 6.1: Name, time-period, coordinates, and solar panel orientation (φp) and inclination
(θp) angles of the deployed systems used in the case study.

Name Time Period Lat [◦] Long [◦] φp [◦] θp [◦]
DH 02/01/12 – 03/22/14 46.1235531 7.82126695 195 57.5
GG 03/16/12 – 03/22/14 46.0901923 7.81339546 210 65

over-provisioned for the battery employed (resulting in available energy
being wasted during summer time). Nevertheless, using the capacity
planning algorithm from Section 2.3.1 and assuming environmental con-
ditions specified by Ω = 0.6, we find that this harvesting configuration
should be able to support 7.5 hours (i.e., DC = 31.25%) of daily system
operation for the DH location, and 6.7 hours for the GG location (see Ta-
ble 6.1), as long as any one period without harvesting opportunities does
not exceed 10 days.

In order to reduce the likelihood of a low-voltage disconnect due to
the under-provisioned battery, we adjust the parameterization for the
dynamic power management scheme from Chapter 3 to use a history
window size W = 10 days (see Sections 3.3.1 and 3.6.3) to match the period
that can be bridged by the battery. For the approach from Chapter 4 we
use the parameterization given in Section 4.6.

6.2.2 System Utility

In the previous chapters we assumed the system utility to be directly
proportional to the duty-cycle, which the system can achieve. Here we
refine it appropriately for the aforementioned case study.

As introduced in Section 6.1, the application scenario [BBF+11,
WBB+13] relies on a differential GPS processing algorithm, whose accept-
able error performance requires periodic sampling of the GPS receiver
(µ-blox LEA-6T) over at least two consecutive hours per day. This is
illustrated in the top graph in Figure 6.2, which shows the processing
algorithm’s error performance as a function of the measurement duty-
cycle [Lim]. From the figure, it is evident that the minimum acceptable
error, i.e., e(DC) ≤ 8mm, requires a duty-cycle of at least 8.33%, which
corresponds to a minimum of two hours of continuous sampling per day
[BSB12], above which the error decreases exponentially. Note that the
error is undefined for duty-cycles lower than 8.33%, as this is below the
minimum requirement imposed by the processing algorithm [Lim].
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Fig. 6.2: Error performance (based on [Lim]) of the processing algorithm versus duty-
cycle (top), and derived system utility versus duty-cycle (bottom). Note that the
error performance is undefined for a duty-cycle lower than 8%.

The application under consideration [WBB+13] directly benefits from
increased temporal resolution, e.g., to characterize sub-daily process vari-
ations, hence, sampling over longer time intervals increases the system
utility. Therefore, we define the system utility, as shown on the bottom
graph in Figure 6.2, to be U(DC) = 1 − enorm(DC), where enorm(DC) repre-
sents the normalized error performance e(DC) shifted by an offset to reach
the maximum utility at a duty-cycle of 100%. This is a realistic definition
of system utility for many application scenarios, e.g., [DEM+10, CB10].

6.3 Implementation Details
In the following we discuss implementation aspects that are relevant for
the particular wireless sensing system under consideration. In particular,
we discuss two adaptations due to technical limitations of the employed
system, and demonstrate the feasibility for implementation even in sys-
tems that are not specifically designed with our approach in mind.

6.3.1 Circumventing Limited Measurement Support
For a number of design decisions, e.g., to reduce failures due to external
wiring, the hardware platform is not designed to provide measurements
of the energy generated by the solar panel, or the energy actually flowing
into the battery. However, the dynamic power management schemes in-
troduced in this work rely on an approximation of the harvested energy
on a given day. In order to approximate the harvested energy without
appropriate hardware support, we leverage the battery State-of-Charge
algorithm proposed in Chapter 5. At an absolute minimum, this algorithm
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requires measurements of the system input voltage Vsys and current dis-
charge rate Isys (i.e., electric current drawn by the system) to approximate
the battery fill level, i.e., its State-of-Charge. The State-of-Charge indica-
tion and the length of daily charging cycles provided by this algorithm
are used to obtain an approximation of Ereal(d) as follows.

In the case when the power subsystem is not optimally provisioned,
the State-of-Charge alone is not sufficient to approximate the energy gen-
erated by the panel. For instance, if the battery is full, any surplus energy
generated by the panel will not be passed through the charge controller.
This condition will not be visible to the State-of-Charge algorithm used
herein. Therefore, we assume Tc(d) to be the duration of the daily charg-
ing cycle, i.e., the duration over which the panel generated enough power
to keep the charge controller in charging mode, as given by the State-of-
Charge algorithm. Then, given the panel’s maximum power rating Ppv,
we can approximate the maximum energy Ĥmax that can be harvested on
a given calendar day d as Ĥmax(d) = Tc(d) · Ppv.

Since we are interested in the energy actually generated by the panel,
and not its theoretical daily maximum, we scale Ĥmax(d) by a factor ζ to
approximate Ereal(d). The scaling factor ζ accounts for the fact that, with
the given configuration, a certain fraction of the energy generated by the
panel is wasted. We approximate this scaling factor as shown in Equation
(6.1) by considering only the days in the past on which the State-of-Charge
(SOC) approximation is below 80%.

ζd = mean

ζd−1 +
G(d)

Ĥmax(d)

 , i f SOC(d) ≤ 80%, ∀d (6.1)

The quantity G(d) is the daily energy generation approximated us-
ing measurement of the system’s current drain, and the State-of-Charge
approximation, as given in Equation (6.2). Note, Vbat is the operating volt-
age, i.e., Vbat = 12V in our case, and B is the apparent battery capacity,
i.e., B = ηout · Bnom.

G(d) =
Êout(d)
ηin · ηout

+
(SOC(d) − SOC(d − 1)) · B · Vbat

ηin
(6.2)

6.3.2 LT-ENO Algorithm Modification

The LT-ENO dynamic power management algorithm discussed in Chap-
ter 3 was designed for enabling uninterrupted long-term operation as
the primary goal. The algorithm assumes an appropriately provisioned
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battery and solar panel, as obtained with the capacity planning from Chap-
ter 2. However, as already discussed, the configuration under considera-
tion is suboptimal, therefore, in the following we discuss an adjustment
that aims at improving the algorithm’s performance with the given power
subsystem configuration.

Since the panel is over-provisioned, it will likely be able to generate
significantly more energy during periods of surplus than what can be
stored in the battery, and used by the system (see Chapter 2). Hence,
during periods of surplus (i.e., on the interval [d0, d1), see Figure 3.3),
we scale the duty-cycle computed by the DPM algorithm by a factor
ψ = 2. This value has been determined experimentally, which suggest
that the exact value for ψ depends on the ratio of energy consumption
and generation. Furthermore, to reduce excessive usage of the energy
stored in the battery during critical times, we introduce a guard time
Tg = 30 days, which has been defined based on experiments. Therefore,
the modification will only be used on day d, if and only if the following
inequality holds: d0 + Tg < d < d1−Tg. Recall that d0 and d1 are computed
dynamically (see Algorithm 1 in Section 3.3.1).

6.4 Performance Evaluation
In this section we present and discuss the results obtained from executing
the dynamic power management algorithms from Chapters 3 and 4 on the
system introduced in Section 6.2 so to expose it to realistic settings.

In order to verify the simulation framework’s applicability for inves-
tigation of different algorithm parameterizations, we first briefly discuss
our validation methodology: We recorded traces1 of battery State-of-
Charge, harvested energy, and load of the wireless sensor platform de-
scribed in Section 6.2.1. We then set the parameters of our simulation
framework to represent this system and compared the recorded State-
of-Charge trace to the output of the simulation framework for the same
period. We observed a Mean Absolute Percentage Error [AC92] between
measured and simulated battery State-of-Charge of 5.45% over the entire
trace. Therefore, we can conclude that a simulation with other algorithmic
parameterizations will exhibit similar low deviations.

6.4.1 Evaluation Results
In the following we first evaluate the dynamic power management
scheme from Chapter 3, with and without the modification discussed in

1All datasets used in this work are available at http://data.permasense.ch
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Section 6.3.2, to which we refer as LT − ENO+ and LT − ENO respectively.
Then, in Section 6.4.1.2 we evaluate the performance of the optimal power
management scheme from Chapter 4, to which we refer as OPT.

6.4.1.1 LT − ENO and LT − ENO+ Performance Results

The top graphs in Figures 6.3 and 6.4 show the daily energy Ereal(d) observed
by the respective system, together with the modeled energy expectation
Ein(d) and the modeled energy consumption Eout(d) for the two deployed
systems (see Section 6.2.1) over almost 700 days. Recall that Ein(d) is
derived from the astronomical model at design-time, which, depending
on its parameterization, can be an optimistic or pessimistic approxima-
tion. The bottom graphs show the static duty-cycle (Staticexp) that the
system is expected to support based on design-time model assumptions,
and the dynamically computed duty-cycle LT − ENO+, which incorpo-
rates the modification discussed in Section 6.3. For reference, we also
show the duty-cycle if this modification were to be disabled (referred to
as LT − ENO), and the static duty-cycle Staticmax that may actually be
supported by the respective energy harvesting configuration when no
dynamic power management is employed. Note that for the latter, we
assume that perfect knowledge of the true energy conditions are available
at design time.

From the top graphs in Figures 6.3 and 6.4, we first note that the ex-
pected harvesting opportunities were significantly overestimated with
the selection of the environmental parameter Ω = 0.6 (see Section 6.2.1).
A more appropriate, and safer parameterization would be Ω = 0.83 for
location DH, and Ω = 0.8 for location GG. This results in a supported
duty-cycle Staticmax = 12.9% for DH, and Staticmax = 10.8% for GG, assum-
ing all other parameters are unchanged.

By inspection of the bottom graphs in Figures 6.3 and 6.4 we note
that LT − ENO stays between the expected duty-cycle Staticexp based on
model assumptions and the supported static duty-cycle Staticmax for the
majority of the time. This clearly shows the proposed algorithm’s ability
to dynamically adapt the performance level in response to deviations from
the modeled expectation, without risking battery depletion. As is evident
from Table 6.2, the LT − ENO approach eliminates power outages due to
overestimating actual conditions, as experienced by the static approach,
i.e., Staticexp, while simultaneously improving both system utility and
energy efficiency. In fact, for the DH location, LT−ENO achieves over 43%
improvement in average system utility when compared to Staticmax. The
energy efficiency, i.e., the ratio of used and harvested energy, improves
by 66% over Staticmax. For the GG location, the improvements are even
more substantial.
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The results for the GG location, depicted in Figure 6.4 and summarized
in Table 6.2 show that, although the system achieves zero downtime, the
minimum achieved duty-cycle is below the minimum duty-cycle required
by the end-user application (see Section 6.2.2). The resulting periods with
zero utility are due to time periods with no harvesting opportunities that
significantly exceed the time period the battery can bridge, i.e., 10 days.
As discussed in Section 3.3.2, zero input conditions trigger an emergency
mechanism, which overrides the duty-cycle computed by our algorithm
due to lack of energy input. The effect of the emergency mechanism is
clearly visible on the bottom graph in Figure 6.4 on the intervals [31, 41],
[253, 262], and [601, 619], all of which are longer than, or equal to ten
days. Once the emergency mechanism is active, the resulting duty-cycle
may be below the minimum required by the processing algorithm until
a non-zero energy input is observed. Although experiencing days with
zero energy input at the DH location in Figure 6.3 as well, these instances
are not as prominent in the dataset.

Next we consider the modified approach, referred to as LT − ENO+,
which differs from LT − ENO only during periods of energy surplus,
i.e., summer. The effect of the modification discussed in Section 6.3.2 is
clearly visible by the sudden step in duty-cycle around days 300, 400,
and 670 for DH in Figure 6.3, and days 290, 430, and 650 for GG shown
in Figure 6.4. From the results in Table 6.2 we note that this modification
does not affect the minimum utility, but improves the average utility and
the system’s energy efficiency. In fact, for the DH location, LT − ENO+

achieves an improvement in average utility of 15%, and an impressive
80% in energy efficiency, when compared to LT − ENO. For the GG
location, the improvement amounts to 14% and 61% respectively.

The performance improvements due to the efficient use of the power
subsystem are ultimately expected to translate into increased system util-
ity for the end-user. Figure 6.5 shows the histogram of system utility
(defined in Section 6.2.2) achieved by the four different approaches. The
static approach with Staticmax achieves a constant, but clearly the lowest
utility. As is to be expected, the overly optimistic Staticexp increases the
overall utility at the cost of a few days with zero utility. Note that the
system achieved 100% uptime, but not always a sampling time of at least 2
hours, thus resulting in zero utility. As discussed in Section 3.5, LT−ENO
and LT−ENO+ trade-off performance for ensuring continuous operation.
When compared to statically setting the performance level, significantly
higher utility can be achieved with a dynamic scheme due to the system’s
ability to react to deviations from expected conditions, and the resulting
adjustment of the performance to safe levels.
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Fig. 6.5: Histogram of utility for the static (Staticmax and Staticexp), and dynamic ap-
proaches (LT − ENO and LT − ENO+).

Tab. 6.2: Percent Offline, mean (DC) and minimum (bDCc) duty-cycle, duty-cycle variance
normalized by the energy input variance (σ2), mean utility (U), minimum utility
(bUc), and energy efficiency (η) for DH and GG shown in Figures 6.3 and 6.4.
Note: LT − ENO+ and LT − ENO refer to the dynamic power management
algorithms with and without the modification discussed in Section 6.3.2,
while Staticexp and Staticmax are expected static duty-cycle according to model
assumptions.

Power Offline DC bDCc σ2 U bUc η
Management [%] [%] [%] [%] [%] [%]
Algorithm

D
H

LT − ENO+ 0 35.8 8.3 0.0167 81.2 22.4 80.3
LT − ENO 0 20.6 8.3 0.0021 70.3 22.4 44.5
Staticexp 7.9 28.8 0 0.0004 68.9 0 62.5
Staticmax 0 12.9 12.9 0 49.0 49.0 26.7

G
G

LT − ENO+ 0 34.79 1.43 0.0207 79.0 0 75.0
LT − ENO 0 21.7 1.43 0.0044 69.1 0 46.5
Staticexp 8.0 25.7 0 0.0004 69.2 0 54.6
Staticmax 0 10.8 10.8 0 38.6 38.6 21.7

6.4.1.2 OPT Performance Results

In the previous section we evaluated the dynamic power management
algorithm from Chapter 3. To the best of our knowledge, to date, this
is the only algorithm that is specifically designed for solar energy har-
vesting systems to achieve long-term uninterrupted operation at a stable
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and deterministic minimum utilization. Therefore, it presents the perfect
baseline for the evaluation of the optimal algorithm from Chapter 4.

The top graphs in Figures 6.6 and 6.7 show the energy utilization func-
tions for the DH and GG locations, computed with the baseline LT-ENO
uLT−ENO(t), the optimal explicit algorithm uOPT(t) from Section 4.3, and, for
reference, the clairvoyant optimal approach uCV(t) from Section 4.4, along
with the input energy p(t) and the corresponding battery states on the
bottom graphs. Recall from Section 4.2.1 that the energy utilization ux(t)
is defined in terms of Watt-hours.

We first note that both algorithms exhibits remarkably low utiliza-
tion variance that is maintained throughout the year. For the LT − ENO
approach, this stems from the fact that the algorithm takes a long-term
approach to compute the utilization by considering both the period of
deficit, i.e., when the generation is below consumption, and the period
of surplus, i.e., generation exceeds consumption. This approach attempts
to fully leverage the battery to bridge periods of deficit, while simultane-
ously ensuring that the employed panel can actually recharge the battery
during periods of surplus. The OPT approach, on the other hand, while
leveraging the same long-term energy estimation model, computes the
sustainable utilization by explicitly considering the battery state, which
allows it to make much better use of surplus energy during summer.

The conservative approach by LT − ENO not only affects the mini-
mum energy utilization, but also has a very detrimental effect on the total
achievable system utility. From the battery profile shown on the bottom
axes in Figures 6.6 and 6.7, it is obvious that the battery is full for most of
the summer, yet the algorithm leverages neither the battery nor surplus
energy by increasing the utilization. This stems from a fundamentally
different approach, which attempts to ensure that the battery is at full
capacity at the beginning of winter, at the cost of very conservative uti-
lization during summer, and therefore reduced total system utility. In
comparison, the OPT algorithm is able to leverage the surplus energy
during summer, while ensuring that the battery is full at the appropriate
time, and so ensure continuous operation and maximized total system
utility.

Finally, we note that the minimum service-levels achieved by LT−ENO
and the OPT approach are very similar during winter. In fact, during
the winter periods, no clear winner can be established. However, when
considering the entire period shown, the OPT algorithm achieves roughly
66% higher minimum utility, and 19% higher average energy use than LT-
ENO for the DH location. For the GG location, OPT improves on LT −
ENO’s average utility by 14%. The minimum utility is equivalent for both
approaches, i.e., zero, which is due to extended periods of zero energy
input, as discussed in the previous section. The worse performance by
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Tab. 6.3: Percent Offline, minimum weekly energy utilization (buc), total utilization (
∑

u),
utilization variance normalized by the energy input variance2 (σ2), average (U)
and minimum utility (bUc), and energy efficiency (η) for DH and GG shown in
Figures 6.6 and 6.7.
Note: CV refers to the optimal clairvoyant algorithm from Section 4.3, OPT refers
to the explicit algorithm from Section 4.4, while LT−ENO refers to the algorithm
from Chapter 3.

Power Offline buc
∑

u σ2 U bUc η
Management [%] [%] [%] [%]
Algorithm

D
H

CV 0 137.6 46,137 0.7088 90.5 59.1 100
OPT 0 108.5 30,644 0.1943 82.9 37.3 66.42
LT − ENO 0 84.0 20,176 1.7004 69.6 22.4 45.31

G
G

CV 0 123.3 46,122 0.6774 91.0 47.2 100
OPT 0 75.5 23,175 0.1347 80.1 0 50.24
LT − ENO 0 18.2 21,220 2.3613 69.7 0 45.36

LT −ENO is mainly due to its pessimistic behavior in summer, where the
use function tends to be lowest, despite the energy surplus that keeps the
battery at full capacity.

In summary, the comparable utilization during winter can be mainly
attributed to the fact that both algorithms use a very similar estimation
model, and are able to leverage the available battery capacity. LT−ENO’s
very pessimistic approach that fails to leverage surplus energy during
summer, significantly hurts its overall performance. The service-level
achieved by the OPT algorithm, on the other hand, is constrained only by
the approximation accuracy of the estimator p̃(t), and can maximize both
the minimum utilization and utility simultaneously.

6.5 Chapter Summary
In this chapter we have shown that both, the LT − ENO approach, which
is based on a heuristic, and the OPT approach, which has been shown in
Chapter 4 to be optimal, are able to adapt to sub-optimally provisioned
power subsystems and varying energy conditions, and still achieve un-
interrupted long-term operation. Using the X-Sense [BBF+11] project as
a concrete case study, we have exemplified how the lack of appropriate
sensors can be circumvented, and so demonstrated our dynamic power
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management schemes’ applicability to solar energy harvesting systems
with limited hardware support. Moreover, with evaluation over 700 days,
we have shown that long-term uninterrupted operation of solar energy
harvesting systems is indeed possible, and that the proposed approaches
result in significant improvements in system utility and energy efficiency.

It is worth noting at this point that the work described in this thesis has
enabled a number of interdisciplinary publications, a selection of which
is given below:

• Samuel Weber, Stephan Gruber, Lucas Girard, and Jan Beutel. De-
sign of a measurement assembly to study in-situ rock damage
driven by freezing. In Proceeding of the 10th Int. Conference on
Permafrost, Salekhard, Russia, 2012.

• Vanessa Wirz, Jan Beutel, Bernhard Buchli, Stephan Gruber,
and Philippe Limpach. Temporal characteristics of different
cryosphere-related slope movements in high mountains. In Land-
slide Science and Practice, pages 383–390. Springer, 2013.

• Zhenzhong Su, Alain Geiger, Philippe Limpach, Jan Beutel, Tonio
Gsell, Bernhard Buchli, Stephan Gruber, Vanessa Wirz, and Felix
Sutton. Online monitoring of alpine slope instabilities with L1
GPS Real Time Kinematic Positions. In EGU General Assembly
Conference Abstracts, volume 16, page 7733, 2014.

• Vanessa Wirz, Marten Geertsema, Stephan Gruber, and Ross S
Purves. Temporal variability of diverse mountain permafrost
slope movements derived from multi-year daily GPS data, Mat-
tertal, Switzerland. Landslides, pages 1–17, 2015.
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7
Conclusions

We conclude this work with a brief review of the main results in Section 7.1,
and a short discussion of possible further work in Section 7.2.

7.1 Main Results
This dissertation presented novel techniques for the design of the power
subsystem and runtime power management for energy harvesting net-
worked embedded systems. While our methods are generally applicable
to a wide range of systems that leverage regenerative energy sources,
throughout this thesis, we focused on solar powered Wireless Sensor
Networks as the primary application scenario. We discussed how the
proposed end-to-end power management solution enables uninterrupted
system operation over multiple years despite relying on a highly variable
energy source, the sun.

In this thesis we were not concerned with intricacies of digital system
design, but focus on (i) how to appropriately provision the power sub-
system (i.e., energy harvester and storage element), and (ii) light-weight
approaches to dynamically adapting the system performance at runtime.
Instead of attempting to reduce the system’s energy consumption, sub-
ject to given performance constraints, our approach’s goal is to maximize
the system performance given the time-varying energy availability con-
straints. Compared to the State-of-the-Art methods, our solution achieves
better, or at worst, equivalent performance but at a reduced system cost,
i.e., requiring a smaller solar panel and/or battery.
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In order to enable the system designer to adequately provision the
power subsystem, we presented a capacity planning algorithm that lever-
ages an energy availability model based on an astronomical radiation
model. We showed through measurements with a solar energy harvest-
ing setup that the proposed energy availability model can very accurately
predict the long-term average harvestable energy. Based on this model,
we presented an algorithm to compute the minimum battery and panel
combination, given installation and technology parameters. With exten-
sive simulation with input data for 10 years at 3 different geographical
locations, we illustrated that an appropriately provisioned power subsys-
tem is indispensable for achieving uninterrupted long-term operation.

A static, i.e., design-time approach, however, may not suffice to
achieve uninterrupted operation if the conditions observed at the de-
ployment site deviate too significantly from the design-time expectations.
Therefore, to ensure that the system can efficiently use the available en-
ergy and operate without interruption over long time periods even in
the presence of large deviations from the expectations, we presented
two methods to dynamically adapt the system consumption at runtime.
Through extensive simulation, we showed that our approaches enable
uninterrupted operation at a pre-defined, stable minimum performance
level over multiple years, despite the highly variable energy input ob-
served. Moreover, we showed both analytically and through simulation
that the proposed optimal approach maximizes both minimum and total
energy utilization, dependent only on the accuracy of the energy estima-
tion model. In comparison to three State-of-the-Art power management
algorithms, our algorithms significantly improve the system’s energy ef-
ficiency and so achieve improved system utility without experiencing
system outages due to depleted batteries.

Finally, to further illustrate the benefits of our end-to-end solution, we
evaluated it in the context of a case study based on a real-world scientific
project. Since the deployed systems lack appropriate hardware support,
we showed how a light-weight battery State-of-Charge algorithm can
mitigate the systems’ limitations, and so provide the dynamic power
management algorithm with the necessary runtime information. Using
two years of data collected with the deployed X-Sense wireless sensing
system, we demonstrated the significant improvements in system util-
ity that can be achieved with appropriate power subsystem design in
combination with runtime management.

In summary, the main results of this thesis are as follows.

• We proposed a novel power subsystem capacity planning algorithm
that leverages an energy availability model based on an astronom-
ical solar radiation model. Through measurements with a solar
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panel, we validated that the energy availability model, leveraged
by the capacity planning algorithm and the dynamic power manage-
ment schemes, performs very well at approximating the long-term
average harvestable energy. We further showed that our approach
outperforms the State-of-the-Art in capacity planning by achieving
100% system availability over ten years of simulation, while requir-
ing up to 53% smaller batteries for the evaluated datasets.

• We presented two new dynamic power management algo-
rithms that maximize the minimum, and total energy utilization,
i.e., service-level, with very little variance, i.e., high service-level sta-
bility. Through extensive simulation we show that our algorithms
significantly outperform the State-of-the-Art techniques in the ap-
plied metrics, while incurring zero downtime. In fact, the proposed
optimal algorithm achieves to within 9.9% of the theoretical optimal
performance. We presented light-weight implementation for both
algorithms, suitable for realization on resource-constrained systems.

• We introduced a practical, trace-based, direct-measurement method
for online battery State-of-Charge approximation. Through experi-
mentation we showed that acceptable approximation accuracies are
possible even for situations that are not explicitly modeled, e.g., ag-
ing and temperature effects. We further exemplified how the al-
gorithm can be leveraged to mitigate lack of adequate hardware
measurement support.

• Finally, using a concrete, real-world project as a case study, we
demonstrated that our end-to-end power management solution can
significantly improve the end-user application utility, without re-
quiring extensive information about the energy conditions at the
intended deployment site.

7.2 Possible Future Perspectives
The work discussed in this thesis presents fundamental insights into the
challenges in design and operation of solar energy harvesting systems.
While we believe that our approach has the potential to advance solar
energy harvesting systems from opportunistic consumers of “surplus”
energy to systems that efficiently, and most importantly, safely lever-
age available energy to achieve dependable long-term operation, we can
identify a number of topics that deserve further investigation. In the fol-
lowing we briefly identify avenues for potential future work for each of
the Chapters 2 through 5.
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Chapter 2: Power Subsystem Capacity Planning

From the discussion in Chapter 2, two possible improvements are evi-
dent. First, considering the highly non-linear behavior in energy con-
version and particularly storage, incorporation of these effects into the
energy availability and battery models may be beneficial. Specifically,
since we aim at multi-season operation, possibly large temperature varia-
tions may be observed. As explained in Chapter 5, reduced temperatures
result in lower apparent battery capacity. Since periods of lower temper-
atures coincide with periods of reduced solar radiation, accounting for
the reduced storage capacity may be critical in achieving uninterrupted
operation. Moreover, since batteries and solar panels tend to degrade
over time, the incorporation of degradation factors may further ensure
that the computed power subsystem can actually support the expected
performance over multiple years. Recall that the capacity planning is
performed offline, hence the incurred complexity due to more advanced
models is unlikely to be an issue.

Chapters 3 and 4: Dynamic Power Management

Incorporation of component degradation due to age and especially tem-
perature, as described above, is one of the immediate concerns for the
proposed dynamic power management schemes. In fact, considering
that the uncertainty in energy predictions is the main contributor devi-
ations from the optimal, it is intuitively clear that our proposed power
management schemes ultimately benefit from improved energy predic-
tion accuracy. In fact, for the evaluated datasets, the OPT approach from
Chapter 4 comes to within 9.9% of the theoretical possible, i.e., with per-
fect prediction accuracy. This illustrates that one of the most promising
directions for future work lies in the investigation of ways to improve the
energy prediction accuracy.

Chapter 5: Battery State-of-Charge

As already discussed in Chapter 5, the charging model and the finite
state machine to track the individual states present room for improve-
ment. While the proposed approach works well for system with limited
measurement support, a combination of coulomb counter and software
house-keeping is certainly the preferred method for State-of-Charge ap-
proximation. In fact, for certain battery chemistries, e.g., Lithium-ion or
Lithium-polymer batteries, the proposed approach would not work due
to the stable terminal voltage exhibited by these batteries.
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Distributed Applications and/or Different Harvesting Sources

The power management schemes discussed in this work are concerned
with local, i.e., per mote, optimization, and we have neglected network
wide optimization. However, in many application scenarios the motes
jointly maximize the application objective. In this case, the spatial varia-
tions in environmental energy availability mus be exploited. Moreover,
the individual systems may be powered by different sources, which may
exhibit very different energy availability profiles. Therefore, the prob-
ably most interesting venue is the extension of our work to distributed
application scenarios, possibly coupled with different harvesting sources.
Achieving multi-source, network-wide optimization would certainly be
an interesting and challenging problem to solve. Finally, it may be worth
the effort to investigate if, and how the techniques from Chapters 3 and 4
apply to systems that lack energy storage elements and can therefore only
operate when energy is being harvested from the environment.
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