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Abstract

We are helping to tackle one of the most challenging tasks of our time:
Understanding how air quality evolves and implementing intelligent
strategies to make earth stay habitable for generations to come.

Current air pollution analysis and control algorithms that are based
on data science concepts often fail to produce satisfactory results.
Firstly, the data used as input to such algorithms are often neither
accurate nor reliable, which especially impacts data-driven approaches.
Secondly, long-term operation of a dense sensor deployment incurs
enormous maintenance expenses and efforts. Lastly, current prediction
methods are inaccurate, which restricts real-time control and multi-region
applications.

In this thesis, we propose a closed-loop solution that leverages
machine intelligence for environmental analysis and control, bridging the
gap between environmental monitoring and immediate cyber-physical
or administrative response. Specifically, we offer a holistic view of
data analysis by improving the quality of input data, enabling the cost-
effective dense deployment, and combining advanced data analysis with
model development. This unified view on the whole pipeline from data
acquisition to knowledge extraction and decision-making enables the
deployment of short-term and long-term mitigation strategies. The main
contributions of this thesis are:

• We propose a generalized many-to-many calibration scheme called
SensorFormer based on the successful Transformer model which
takes both past and future raw measurements into account. The
procedure is able to (ii) significantly improve the calibration
accuracy, (ii) boost the performance of compensating altered
sensitivity, (iii) efficiently run on low-power microcontrollers with
very limited computational and storage capabilities.

• We propose In-field Calibration Transfer (ICT), a calibration scheme
that transfers the calibration parameters of source sensors (with
access to references) to target sensors (without access to references).
Experiments show that ICT is able to calibrate the target sensors as
if they had direct access to the references.

• We design MapTransfer, an air quality map generation scheme
which augments the current sensor measurements from the
downscaled sparse deployment with appropriate historical data
from the initial dense deployment. This approach greatly improves
the cost-effectiveness of dense sensor deployment.
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• We propose a new attention based seq2seq model to track pollution
propagation for accurate air quality prediction. We evaluate our
model on datasets from Beijing area and compare the results
to several state-of-the-art baselines. Experiments show that the
proposed approach can successfully capture pollution transfer
patterns between different sites in the area, which is crucial
knowledge for making pollution control strategies.

• We propose iSpray, the first-of-its-kind data analytics engine for
fine-grained PM2.5 and PM10 control at key urban areas via cost-
effective water spraying. iSpray combines domain knowledge with
machine learning to profile and model how water spraying affects
PM2.5 and PM10 concentrations in time and space. It also utilizes
predictions of pollution propagation paths to schedule a minimal
number of sprayers to keep the pollution concentrations at key spots
under control. In-field evaluations reveal the effectiveness of iSpray.



Zusammenfassung

Wir tragen dazu bei, eine der größten Herausforderungen unserer Zeit
zu bewältigen: Zu verstehen, wie sich die Luftqualität entwickelt, und
intelligente Strategien umzusetzen, damit die Erde auch für kommende
Generationen bewohnbar bleibt.

Aktuelle Algorithmen zur Analyse und Kontrolle der Luftverschmut-
zung, die auf datenwissenschaftlichen Konzepten beruhen, liefern oft
keine zufriedenstellenden Ergebnisse. Erstens sind die Daten, die als
Input für solche Algorithmen verwendet werden, oft weder genau noch
zuverlässig, was insbesondere datengesteuerte Ansätze beeinträchtigt.
Zweitens verursacht der langfristige Betrieb eines dichten Sensoreinsatzes
enorme Wartungskosten und -aufwände. Und schließlich sind die
derzeitigen Vorhersagemethoden ungenau, was die Echtzeitsteuerung
und Anwendungen mit mehreren Regionen einschränkt.

In dieser Arbeit schlagen wir eine geschlossene Lösung vor, die
maschinelle Intelligenz für die Umweltanalyse und -kontrolle einsetzt
und die Lücke zwischen Umweltüberwachung und unmittelbarer cyber-
physikalischer oder administrativer Reaktion überbrückt. Wir bieten
eine ganzheitliche Sichtweise der Datenanalyse, indem wir die Qualität
der Eingabedaten verbessern, eine kosteneffiziente, dichte Bereitstellung
ermöglichen und fortschrittliche Datenanalyse mit Modellentwicklung
kombinieren. Diese einheitliche Sicht auf die gesamte Pipeline von der
Datenerfassung bis zur Wissensextraktion und Entscheidungsfindung
ermöglicht den Einsatz kurz- und langfristiger Abhilfestrategien. Die
wichtigsten Beiträge dieser Arbeit sind:

• Wir schlagen ein verallgemeinertes Many-to-Many-
Kalibrierungsschema namens SensorFormer vor, das auf
dem erfolgreichen Transformer-Modell basiert und sowohl
vergangene als auch zukünftige Rohmessungen berücksichtigt.
Das Verfahren ist in der Lage (ii) die Kalibrierungsgenauigkeit
deutlich zu verbessern, (ii) verbesserung der Leistung der
kompensierenden geänderten Empfindlichkeit, (iii) effizient auf
stromsparenden Mikrocontrollern mit sehr begrenzten Rechen-
und Speicherkapazitäten laufen.

• Wir schlagen In-Field Calibration Transfer (ICT) vor, ein Kalibrie-
rungsschema, das die Kalibrierungsparameter von Quellensensoren
(mit Zugang zu Referenzen) auf Zielsensoren (ohne Zugang zu
Referenzen) überträgt. Experimente zeigen, dass ICT in der Lage
ist, die Zielsensoren so zu kalibrieren, als ob sie direkten Zugang zu
den Referenzen hätten.
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• Wir entwickeln MapTransfer, ein Verfahren zur Erstellung von
Luftqualitätskarten, das die aktuellen Sensormessungen aus dem
herunterskalierten spärlichen Einsatz mit geeigneten historischen
Daten aus dem anfänglichen dichten Einsatz ergänzt. Dieser
Ansatz verbessert die Kosteneffizienz des dichten Sensoreinsatzes
erheblich.

• Wir schlagen ein neues, auf Aufmerksamkeit basierendes seq2seq-
Modell vor, um die Ausbreitung der Verschmutzung zu ver-
folgen und die Luftqualität genau vorherzusagen. Wir evalu-
ieren unser Modell anhand von Datensätzen aus dem Raum
Peking und vergleichen die Ergebnisse mit verschiedenen State-
of-the-Art-Baselines. Experimente zeigen, dass der vorgeschlagene
Ansatz erfolgreich Verschmutzungsübertragungsmuster zwischen
verschiedenen Standorten in der Region erfassen kann, was ein
entscheidendes Wissen für die Entwicklung von Strategien zur
Verschmutzungskontrolle ist.

• Wir schlagen iSpray vor, die erste Datenanalysemaschine ihrer
Art für die feinkörnige Kontrolle von PM2.5 und PM10 in wichti-
gen städtischen Gebieten durch kosteneffizientes Wassersprühen.
iSpray kombiniert Fachwissen mit maschinellem Lernen, um ein
Profil zu erstellen und zu modellieren, wie sich das Sprühen
von Wasser auf die Konzentrationen von PM2.5 und PM10 in
Zeit und Raum auswirkt. Es nutzt auch Vorhersagen über die
Ausbreitungswege der Verschmutzung, um eine minimale Anzahl
von Sprühern zu planen, um die Verschmutzungskonzentrationen
an Schlüsselstellen unter Kontrolle zu halten. Die Wirksamkeit von
iSpray wurde in Feldversuchen unter Beweis gestellt.
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1
Introduction

Urban air pollution threatens the health of the world’s population. Yet
91% of all humans live in areas where air quality levels exceed WHO
limits, which causes 8.8 million extra deaths a year worldwide. In
response, many cities have deployed large-scale sensor networks to
monitor urban air pollution, generate fine-grained air quality maps, and
forecast heavily polluted areas for citizens to adjust their journey plans
accordingly.

In addition to passive monitoring of urban air pollution, active control
strategies are critical for improving urban air quality. Governments and
agencies have implemented various policies and regulations to reduce
emissions from factories, transportation, and households in order to
improve overall air quality (e.g., at the city scale or annual average).
However, these regulations currently rely on potentially inaccurate
and non-real-time inputs and do not provide smart, balanced control
suggestions. For example, current city-scale strategies may propose
closing all nearby factories to meet requirements, rather than identifying
and shutting down the polluters who dominate the current pollution in
relevant regions. There is also a lack of fine-grained (e.g., specific districts,
hourly averages) air pollution control measures. Administrators need
explainable decision support to control and reduce air pollution for the
benefit of society.

Deriving useful knowledge from low-cost air quality sensor data
and proving intelligent control strategies in multiple scales (e.g., city-
scales and district-scale) is challenging. Firstly, there is no systematic
data processing pipeline to calibrate the low-cost sensors in the wild.
These imprecise data make it difficult to extract useful knowledge from
them. Secondly, maintaining the large-scale sensor network needs huge
amounts of efforts and naïvely downscaling the deployment brings
significant errors. Thirdly, current data-driven air quality prediction
methods fail to capture the pollution transfer between cities, which are not
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able to generate accurate prediction results and hurt the performance of
pollution control. Lastly, there lack precise pollution reduction strategies
with water spraying system.

In this dissertation, we propose components for a closed-loop solution
that uses machine intelligence for environmental analysis and control.
Those components apply data-driven approaches to provide accurate and
reliable analysis results and intelligent control solutions. The presented
solutions bridge the gap between air quality detection and pollution
control. It is equipped with a data calibration and transfer module
to improve the accuracy of measurement data, making them useful
for the subsequent analysis pipeline. A map generation method with
downscaled deployment is proposed to transfer the knowledge from
historical dense data and boost the performance of current sparse data,
thus leading to a cost-effective sensor deployment. To characterize the
pollution transfer patterns between cities, we use the air flow trajectory
data in a data-driven prediction framework. Lastly, we invented a first-
of-its-kind precise control measures to protect critical urban spots from
heavy air pollution.

Deploying and analyzing air quality sensing network requires a
careful design of the system and needs to solve the following critical
challenges.

Calibration in the Wild. The deployed low-cost sensor network
needs regular calibration to assure the accuracy and reliability of
the measurements. Providing powerful calibration models and their
transferability to other sensor nodes is the key of this problem.

Cost-effective Deployment. Dense deployed low-cost sensor networks
need huge efforts to maintain their running stage. How to reduce the cost
while keeping an acceptable analysis accuracy remains to be solved.

Prediction and Control. Current air quality prediction models still lack
precision, especially during those sudden change periods, which are,
however, critical time slots for air pollution control. Additionally, they
lack find-grained air pollution control relying on water spraying systems.

In the rest of this chapter, we will give a detailed review of the above
three challenges and provide intuitions of how to solve them.

1.1 Calibrating Air Quality Networks in the Wild

We are considering air quality networks that typically consist of tens
to hundreds of low-cost sensors installed either at static locations or on
mobile vehicles to measure major air pollutant concentrations in real time
[CLL+14b, JSBT+15, SHT15a]. If deployed in long-term and at large-
scale, the network can provide fine-grained air quality information for
quantitative studies and public services [YLM+15].
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Unfortunately, the raw measurements reported by these low-cost air
quality sensors can be seriously inaccurate compared to the measure-
ments of expensive monitoring stations [CDS+17, JHW+16b]. Researchers
report a significant accuracy drift in sensor measurements after only 1
month of deployment [MMH17a], making these measurements unreliable
for quantitative studies. The reasons for such an accuracy degradation are
linked to various limitations of low-cost air quality sensors, such as low
selectivity and environment-dependent interference [SGV+15, SGV+17].

An effective approach to improve the data quality of low-cost air
quality sensors is calibration [MZT18a]. By calibrating a low-cost sensor, its
measurements are transformed in a way that the calibrated measurements
agree with the measurements of a highly accurate reference e.g., the
monitoring station. Although air quality sensors are often calibrated
before deployment, the calibration parameters of the entire air quality
network have to be frequently updated after deployment to maintain
consistency among distributed sensors and ensure data quality of long-
term deployments.

1.1.1 Calibration Method

A low-cost air quality sensor is calibrated via a calibration model to improve
its data quality. A calibration model takes the raw measurements of
a low-cost sensor and transforms them to calibrated measurements,
leveraging prior knowledge e.g., data sheets or additional information
e.g., measurements from auxiliary sensors. Various mathematical
methods can be applied.

A sensor array is formed to compensate for low-selectivity and
environmental dependencies of low-cost air quality sensors. A sensor
array consists of co-located sensors that measure, in addition to the target
air pollutants, a set of correlated pollutants and environmental parameters
e.g., temperature. By concurrently measuring all the cross-sensitivities it
is possible to compensate for all interfering pollutants and environmental
factors. In fact, an increasing number of customized [TDMP16] and
commercial [SGX14] air quality sensing nodes are integrated with
multiple correlated sensors and report measurements of pollutants and
environmental parameters simultaneously.

Popular mathematical methods for sensor array calibration include
Multiple Least Squares (MLS) and Neural Networks (NN).

• Multiple Least Squares (MLS). A linear calibration model is
sufficient for cross-sensitivity problems of certain gases. One
of the most popular examples is the cross-sensitivity of NOx

electrochemical sensors on O3 concentrations [MSHT16a], and vice-
versa [PSL+17]. The effect of these cross-sensitivities follow a linear
behavior. Hence a linear multiple least squares calibration can
be successfully applied. It is shown that the measurement error
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of the cross-sensitive NO2 sensor can be reduced by over 80% by
simply incorporating measurements of an additional O3 sensor in
the calibration [MSHT16a].

• Neural Networks (NN). It is shown that for a wide range of low-
cost gas sensors, neural network based sensor array calibration
outperforms linear models such as multiple least squares [SGV+15,
SGV+17, VPMF09, VES+18]. For multiple O3 and NO2 sensors the
coefficient of determination R2 is improved from values below 0.3
to at least 0.85 and 0.55 respectively using neural networks instead
of linear models [SGV+15, SGV+17].

The common practice is to start with linear models before adopting
complex non-linear models such as neural networks for sensor array
calibration. Although neural networks dominate in non-linear sensor
array calibration models, other machine learning methods [VES+18]
also apply, e.g., Gaussian Process Regression [MLB+12], Support Vector
Regression [SWL+11, VVMH12], Random Forest [ZPK+18] etc.

1.1.2 Calibration Scheme

Many interesting environmental sensors require frequent calibration to
maintain high quality sensor measurements [MZT18b]. Existing machine
learning sensor calibration models can be classified with respect to the
dimensionality of their inputs and outputs into one-to-one and many-to-one
calibration methods.

One-to-one calibration models are parameterized mappings from
context measurements at a single time point to a calibrated value at
the same time point. Various machine learning methods are applied to
calibrate low-cost air quality sensor values under the one-to-one scheme.
Early linear regression models were used to improve field performance of
low-cost gas sensors [SHT15b, MSHT16b, MZST17a]. A neural network
was proposed to calibrate PM2.5 sensors in the field in [CLL+14c].
[LDC18a] proposed to combine a linear model with a random forest to
further improve calibration accuracy. We refer an interested reader to
two survey papers on sensor array calibration [MZT18b, CML+21] for an
in-depth overview.

Newly, a many-to-one approach was applied to sensor calibra-
tion [YLG+20]. The proposed encoder-decoder architecture takes historical
measurements into account for the next time step prediction. Two major
issues prevent this approach from being used in real settings. (1)
Reference data over the past time period must be provided as model
input. These historical reference values help to remove drift in the
next time step calibration and obtain accurate results. However, no
historical reference measurements are available for the vast majority of
deployed low-cost sensors. (2) The proposed deep learning model is
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Figure 1.1: An illustration of a static PM2.5 sensor network deployed in Beijing, China.
Among the 1, 000 low-cost PM2.5 sensors, only 7 are installed next to highly accurate
reference stations.

computationally expensive and hard to be deployed on edge sensors,
resource-constrained and often battery-powered IoT devices.

1.1.3 Calibration Opportunities

Recall that many error sources of low-cost air quality sensors are
environment-dependent. Thus periodic re-calibration is indispensable
even if the sensor was calibrated via proper calibration models before
its deployment. Both pre-deployment and post-deployment calibration
usually shares the same calibration model. However, post-deployment
calibration faces additional challenges because sensors often have
irregular or no access to references after deployment.

Figure 1.1 shows the sensor locations of a PM2.5 monitoring network
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R

Common Context

Figure 1.2: An illustration of calibration opportunities for air quality networks with
common contexts for static sensors. R denotes a highly accurate reference. As and At

represent sensors with and without access to a reference sensor after deployment.

in Beijing, China. Among the 1, 000 low-cost PM2.5 sensors deployed,
only 7 are next to highly accurate monitoring stations and thus have
access to references for calibration. Therefore, only these sensors can be
periodically re-calibrated after deployment [CHZT19a].

Network calibration aims to calibrate an air quality network where
not all sensors have access to highly accurate references. In principle,
network calibration methods exploit various calibration opportunities in
the air quality network to propagate the calibration from sensors which
have access to references to those which do not.

Calibration is possible only if the sensors involved are assumed to be
measuring the same physical phenomena. The calibration opportunity to
propagate calibration in an air quality network from sensors with access to
references to those without holds true if common contexts for static sensors
exist (see Figure 1.2).

Common contexts refer to situations when the air pollutant con-
centrations at different locations or their specific measures are expected
to be approximately the same. Identifying common contexts requires
extra domain knowledge or empirical studies. For example, to calibrate
low-cost O3 sensors, Moltchanov et al. [MLE+15] assume that the O3

concentration is uniform during nighttime (01:00-04:00 AM), when local
emissions of precursors, e.g., NO2 traffic emissions, are negligible. We
[CHZT19a] observe that the distributions of PM2.5 concentrations within
one month at different locations in the same city exhibit similar patterns
and can be utilized for calibration transfer.

1.2 Cost-effective In-field Deployment

Dense deployments of commodity air quality sensors have proven
effective to provide spatially-resolved information on urban air pollution
in real-time. However, long-term operation of a dense sensor deployment
incurs enormous maintenance expenses and efforts.
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1.2.1 Low-cost Sensor Deployment and Research

The availability of low-cost sensors and big urban data has revolutionized
the landscape of urban air quality monitoring. In addition to conventional
model-driven methods [HM06, VFPGF03], there is a growing research
interest to generate real-time, fine-grained air quality maps with a data-
driven approach [CDL+19a, ZSL15, CLL+14b, HSW+14, JLF14, LLZ+18,
ZLH13a].

One thread of data-driven methods emphasize fusion of heteroge-
neous urban data [CDL+19a, LLZ+18, WZY16, ZLH13a, ZYL+15a]. U-Air
[ZLH13a] infers fine-grained air quality information throughout Beijing,
China based on the air quality data reported by 35 monitoring stations and
a variety of urban data such as meteorology, traffic flow, human mobility,
road networks, and point of interests (POIs). Third-Eye [LLZ+18] feds
images, weather data, and PM2.5 data into two deep learning models
for accurate PM2.5 inference. PANDA [CDL+19a] utilizes a deep multi-
task learning based model for air quality prediction by using the 6
monitoring stations in Hangzhou, China and urban features including
meteorology, traffic, factory air pollutant emission, road network and
POIs. Wei et al. [WZY16] propose a multi-modal transfer learning method
to transfer knowledge on urban air quality from one city with sufficient
multi-modal data and labels, to cities lack of such data and labels.

The other category of popular data-driven methods relies more on
measurements collected from a large-scale monitoring system with low-
cost air quality sensors. The idea is to interpolate air quality reading from
measurements collect by sensors nearby. Wong et al. [WYP04] compare
different spatial interpolation methods for air quality inference and report
that Gaussian processes are fit for accurate air quality map generation.
AirCloud [CLL+14b] applies Gaussian process to generate high-quality
air quality maps with a large-scale static PM2.5 sensor deployment.
Jutzeler et al. [JLF14] design a region-based Gaussian process model
for ultra-fine particle concentration inference with a mobile low-cost
deployment, and show that the model yields higher accuracy than land-
use regression [HSW+14]. Cheng et al. [CLL+14a] compare different
spatial interpolation methods given a dense air quality monitoring
deployment and find that Gaussian process outperforms the others in
terms of the accuracy of the generated air quality maps. Since an initial
dense sensor deployment is available in our problem, we mainly adopt
Gaussian-based spatial interpolation methods for accurate air quality map
generation.

1.2.2 Downscaled Sensing Opportunities

Advances in air quality sensor technologies have enabled urban-scale
sensor deployments for fine-grained air pollution monitoring [CLL+14b,
GDG+16, HSW+14, XCL+16]. With densely deployed sensors, real-
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time, spatially-resolved air quality maps can be generated by spatial
interpolation models like Gaussian processes [Ras04], even without
training complex models and integrating heterogeneous data sources
[CLL+14a, CLL+14b, JLF14, WYP04]. The availability of such urban
air quality maps not only raises public awareness of air pollution,
but also empowers authorities to craft and evaluate policies. For
instance, the concentration of particulate matter (PM) with diameters
less than 2.5 micron (PM2.5), an air pollutant that may cause respiratory
diseases [BMLT+06], is constantly monitored in many major cities
in China via large-scale static [CLL+14b] or mobile sensor networks
[GDG+16, XCL+16]. The hourly updated PM2.5 city maps generated via
these sensor measurements facilitate citizens to adjust travel plans and
authorities to make policy and control emissions [HSW+15, RTMH18].

Although many dense air quality sensor deployments have been
reported from both the academia and industries [CLL+14b, GDG+16,
HSW+14, XCL+16], much fewer remain operating after certain period
of time. A major reason for the short life-time of dense deployments
is the tedious efforts and high costs for sensor maintenance. For
instance, low-cost air quality sensors have to be periodically re-calibrated
[MZT18b, SHT15a], and many may break after 3 months [CHZT19a].
In practice, many companies have to downscale their deployments (i.e.,
only keep a sensor subset of the initial deployment) for long-term air
quality monitoring due to budget concerns [KMM+15]. Particularly,
a downscaled deployment may only contain a small portion (e.g., 1/3
or 1/4) of sensors in the original dense deployment. Due to the
dynamics and complexity of urban air pollution, the fine-grained air
quality map generated with such a sparse sensor deployment is likely
to suffer significant accuracy drop. According to our experiments with
an urban PM2.5 monitoring deployment, the average mean absolute error
(MAE) of air quality maps generated using measurements from a dense
deployment of 200 sensors would dramatically increase from 5.1 to 21.8 if
measurement of merely 50 sensors are used, whereas an MAE below
10 is considered accurate for applications such as urban PM2.5 maps
[BJZOV17a, CLL+14b, CHZT19a].

1.3 Air Quality Prediction

Accurately predicting air quality, especially its sudden changes, is highly
valuable for citizens and governments to make personal and local
decisions, design intelligent policies and control pollution at minimal
cost. However, none of the existing methods achieves sufficient prediction
accuracy for time intervals of sudden pollution change due to inability
of existing models to take into account pollution propagation between
different areas caused by air mass movement.
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1.3.1 Literature Review

Recent works on air quality prediction mainly rely on deep learning
models. FFA [ZYL+15b] was one of the first attempts to apply a data-
driven method that considers the current meteorological data, weather
forecasts and air quality data. The proposed hybrid model learns the
relationship between spatial and temporal features. However, the shallow
ensemble method failed to capture the complex interactions between
influential factors. DeepAir [YZW+18] was proposed to learn air pollution
patterns in a deep manner by simultaneously considering the individual
and holistic influences.

To further improve the model capacity, GeoMAN [LKZ+18] used
a three stage attention applied to local features, global features and
temporal sequences for geo-sensory series prediction. This approach
shows a potential to learn the dynamic spatio-temporal correlations and
to interpret the model output. Lin et al. [LMG+18] tried to represent
the spatial correlation in a graph with automatically selected important
geographic feature types that largely affect PM2.5 concentrations, and uses
those important geographic features to compute the adjacency graph
for the model. To conquer the challenge of lacking training samples,
Chen et al. [CDL+19b] proposed a multi-task based approach to learn
the representations of the relevant spatial and sequential data, as well
as to build the correlation between air quality and these representations.
Zhang et al. [ZLG+19] found that local fine-grained weather data is helpful
for accurate air quality prediction. Their method fuses heterogeneous
weather, air quality and Point-of-Interest (POI) data to learn interactions
between different feature groups. Ensemble methods, such as the winning
solution to air quality prediction for KDD Cup 2018 [LHH+19], are also
used to further improve the accuracy of air quality prediction tasks. The
winning Solution to Air Quality Prediction for KDD Cup 2018 [LHH+19]
includes LightGBM, Gated-DNN and Seq2Seq models.

1.3.2 Challenges and Intuitions

Accurate air quality prediction, especially forecasting PM2.5 concentra-
tions, is an effective way of protecting public health by providing an
early warning against harmful air pollutants [BWML18]. For example,
air quality in Beijing can sometimes change from a good to an unhealthy
level within a few hours due to pollution transfer from sources outside of
the city, which is referred to as air quality sudden change. Being able to
predict such sudden changes is vital to inform people and governments
for decision-making, but very difficult to achieve due to sparsity of air
quality monitoring observations and the underlying complex evolving
environment [ZYL+15b].

As reported in the recent literature [ZLG+19, LKZ+18, ZYL+15b,
YZW+18, LHH+19], sudden change predictions are challenging and cause
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300
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Figure 1.3: Prediction challenge: Shaded areas show time periods of sudden pollution
change that appear difficult to handle by the state-of-art prediction methods leading to
high errors.

high prediction errors. For example, for one of the 35 public air quality
stations in Beijing, the mean value prediction for the next 19 to 24 hours
is shown in Figure 1.3. We choose two state-of-art methods to perform
the prediction task. Both methods take past air quality measurements
and weather information in Beijing as input to compute a short-term
prediction. We can observe that the overall mean absolute error (MAE)
achieved by the state-of-the-art methods GeoMAN [LKZ+18] and MGED-
Net [ZLG+19] is 22.4 and 20.2 respectively. However, both methods
exhibit high prediction inaccuracies in the shaded zones of the plot which
correspond to sudden change intervals.

Some existing works [ZZZ+17, DWC+19] already highlighted the im-
portance of pollution transfer from surrounding areas, the phenomenon
we refer to as pollution transfer. For example, pg-Causality [ZZZ+17]
uses frequent pattern mining and Bayesian learning to identify spatio-
temporal causal pathways for air pollutants of Beijing. In environmental
science, HYSPLIT [SDR+15] is widely adopted to identify regional
pollution sources [KVL+11] and propagation pathways [MC08].

As stated in research work [KVL+11], air flow trajectory analysis is
one of the standard procedures for determining the spatial locations
of possible emission sources affecting given receptors, and it is
frequently used to enhance receptor modeling results. Furthermore,
McGowan et al. [MC08] and Li et al. [LCCC17] identify regional pollution
sources and propagation pathways. Based on the air flow trajectory data,
Gao et al. [GTC+15] conduct research on the formation causes during
two haze pollution events in urban Beijing, China. The results show that
regional transport contributes to the elevated content of anthropogenic
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Figure 1.4: 24-hour HYSPLIT trajectories centred at Beijing, aggregated over a year and
colored by the concentration of PM2.5.

elements in PM2.5. Wang et al. [WCC+10] also show that air pollution in
urban cites is caused not only by local emission sources but also to a large
extent by regional atmospheric pollution transport from surrounding
areas, responsible for sudden pollution changes.

Back trajectories are extremely useful in air pollution and can provide
important information on air mass origins. Figure 1.4 shows backward air
flow trajectories aggregated over a year, centered in Beijing and colored
by measured PM2.5 values. We can observe that: (i) the air quality very
probably worsens when the main air flow comes from the south of Beijing,
and (ii) the air flow patterns and air quality evolving behavior differs
significantly over a year, which motivates the need to take the datetime
features into account to learn seasonal pollution variability.

Figure 1.5 plots the Potential Source Contribution Function (PSCF),
which calculates the probability that a source is located at latitude i and
longitude j [FMM12]. This result gives a clear indication that the principal
(high) sources are dominated by source origins in the south of Beijing,
predominantly in the south-west. The PSCF approach has been widely
used in the analysis of air mass back trajectories. In our settings, we can
use this approach to first analyze the air flow data in our target city and
find all related surround cities.

One intuition to generate accurate sudden change predictions comes
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Figure 1.5: Potential Source Contribution Function (PSCF) for Beijing, which yields the
probability that a pollution source is located at latitude i and longitude j [FMM12].

from the related works on pollution propagation analysis using HYSPLIT,
that the air flow trajectories provide a useful representation to model
pollution transfer between different areas.

1.4 Air Pollution Control

Despite regulations and policies to improve city-level air quality in the
long run, there lack precise control measures to protect critical urban spots
from heavy air pollution.

1.4.1 Ubiquitous Urban Air Pollution Sensing and Inference

The availability of portable sensors and urban data has enabled
ubiquitous urban air pollution monitoring and inference services.
Installed at hot spots [CLL+14b, CHZT20a, RSPB21], vehicles [HSW+15,
JLF14, MLX+20, WXL+20] or carried by citizens [MZT18c, TDMP16],
the low-cost gas and dust sensors provide real-time and fine-grained
measurements to analyze urban airborne pollutant concentrations. With
measurements collected from a large-scale deployment, the accurate
air quality map can be generated via spatial interpolation such as
Gaussian process [CLL+14b, CHZT20a, JLF14]. Access to air quality
related urban data such as meteorological conditions, traffic flows,
emission sources has enabled accurate air quality map generation with
sparse sensor deployments by designing dedicated inference models
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such as spatiotemporal co-training [ZLH13a], weather-aware auto-
encoder [MLX+20], etc. Integrating sensor measurements with urban
data also facilitates analytics beyond map generation. Examples include
simultaneous air quality estimation and prediction [CDL+19a, CST21],
pollution propagation pattern discovery [LCCC17], and sensor calibration
function transfer [CHZT19a].

Prior urban air pollution map generation proposals [CLL+14b,
CHZT20a, JLF14, MLX+20, ZLH13a] mainly model the dispersion of
airborne pollutants from emission sources. Previous air quality analytics
services only offer passive monitoring of pollution to raise awareness
[CLL+14b, HSW+15, LCCC17, MLX+20, ZLH13a]. State-of-art methods
do not characterize and model the absorption of pollutants due to water
spraying.

1.4.2 Water Spraying Systems for Dust Control

Water spraying is widely adopted for dust control in factories and mines
[Kis03, KSM14, TNHS+03] and its usage has recently been extended for
particulate matter control in urban areas [dCMP+17, Yu14, LTZ14]. Del
Corno et al. [dCMP+17] carry out an experiment of removing aerosols
with the help of high-pressure water spray nozzle as they generate water
droplets that are smaller in size compared to those from regular, low-
pressure nozzles. The experiment was conducted in a transparent glass
chamber of size 0.5m × 1m × 1.5m, equipped with a high-pressure spray
nozzle system. Yu et al. [Yu14] proposes a geoengineering scheme to
reduce air pollution in the cities of China with water spray technology.
The indoor experiment results show that the PM2.5 concentration can be
reduced significantly, the extent of which depends on the scavenging
coefficients. However, the authors did not evaluate the spraying system
in outdoor environment. Liu et al. [LTZ14] propose to use a sprinkling
system along the roadside to mitigate PM2.5 and PM10 concentrations.
However, it is only a conceptual system without quantitative analysis
and results.

From the above reviews of related works, we can find that: (i) The
current works on water spraying systems for dust control still focus on
single location (e.g., pollution sources) or indoor evaluations. How to
characterize the pollution reduction in outdoor environment for multiple
sprayer devices in still an unsolved research problem. (ii) Regarding
the air pollution sensing research, current research are mainly about
improving sensing data quality, generating air quality maps, doing spatial
inference or temporal predictions, etc. However, how to improve the air
quality with existing pollution control systems (e.g., spraying system) is
still missing.
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1.5 Thesis Outline and Contributions

Figure 1.6: Overview of the problems, challenges and the proposed solutions discussed
in each chapter of this thesis.

This thesis presents novel techniques and aims to push the boundaries
towards accurate measurements and intelligent prediction and pollution
control from low-cost air pollution sensors. To obtain a better
understanding of the air quality environment we live in, we develop
a new calibration model to calibrate the dense deployed low-cost sensors
(Chapter 2) and transfer it safely to other locations (Chapter 3) to generate
high-quality air quality maps. To reduce the long-term maintenance
effort and cost for such large-scale dense deployment, we proposed
new downscaled sensor deployment method (Chapter 4). Based on
the more accurate and robust air quality dataset, we can make more
accurate air quality predictions (Chapter 5), which can also explain
the prediction results with the spatial-temporal causal flow diagram.
Multi-stage air purification/control strategies could then be applied to
improve air quality. For example, sprayers can be used to intelligently
control air pollution in the local environment (Chapter 6) or to control
pollution sources in the global environment, such as opening or closing
factories, according to the spatial-temporal causal path graph (Chapter
5). The overview of this thesis and the specific topics are displayed in
Figure 1.6. In summary, we aim to apply a viable data-driven framework
and methods to predict and understand air pollution to control pollution
with a smarter and more efficient approach.

In the following, we present the main contributions of each individual
chapter.

Chapter 2: Efficient Sensor Array Calibration. In this chapter we tackle
the accurate and reliable sensor calibration in the wild. As shown in
Section 1.1.2, current approaches fail to include the recent history and
near future sensor measurements. Also, state-of-art methods are still
computation unfriendly, even when deployed to resource-constraint IOT
devices. Motivated by these problems and challenges, we propose
a generalized many-to-many calibration scheme called SensorFormer
based on the successful Transformer model which takes both past



1.5. Thesis Outline and Contributions 15

and future raw measurements into account. The procedure is able
to (ii) significantly improve the calibration accuracy, (ii) boost the
performance of compensating altered sensitivity, (iii) efficiently run on
low-power microcontrollers with very limited computational and storage
capabilities.

Chapter 3: In-field Calibration Transfer for Air Quality Sensor
Deployments. To guarantee data accuracy and consistency, low-
cost deployed sensors need periodic calibration after deployment.
Since access to ground truth references is often limited in large-scale
deployments, it is difficult to conduct city-wide post-deployment sensor
calibration. In this chapter we propose In-field Calibration Transfer (ICT),
a calibration scheme that transfers the calibration parameters of source
sensors (with access to references) to target sensors (without access to
references). Experiments show that ICT is able to calibrate the target
sensors as if they had direct access to the references.

Chapter 4: Urban Air Quality Map Generation for Downscaled Sensor
Deployments. This chapter focuses on cost-effective low-cost sensor
deployment. Dense deployments of commodity air quality sensors have
proven effective to provide spatially-resolved information on urban air
pollution in real-time. However, long-term operation of a dense sensor
deployment incurs enormous maintenance expenses and efforts. A cost-
effective alternative is to first collect measurements with an initial dense
deployment and then rely on a small subset of sensors for air quality
map generation. To avoid dramatic accuracy degradation in air quality
maps generated using the downscaled sparse deployment, we design
MapTransfer, an air quality map generation scheme which augments the
current sensor measurements from the downscaled sparse deployment
with appropriate historical data from the initial dense deployment. Due
to the spatiotemporal complexity of air pollution, it is challenging to
select the best historical data and fuse them with measurements from the
downscaled deployment to accurate map generation. To overcome this
challenge, MapTransfer adopts a learning-based data selection scheme
and integrates the best historical data with the current measurements via
a multi-output Gaussian process model at sub-region levels.

Chapter 5: Tracking Pollution Transfer for Accurate Air Quality
Prediction. Accurately predicting air quality, especially its sudden
changes, is highly valuable for citizens and governments to make personal
and local decisions, design intelligent policies and control pollution at
minimal cost. However, none of the existing methods achieves sufficient
prediction accuracy for time intervals of sudden pollution change due to
inability of existing models to take into account pollution propagation
between different areas caused by air mass movement. For the first time,
we consider pollution transfer in the context of short-term air quality
prediction and propose to use air flow trajectory data, widely used in
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environmental sciences, to represent pollution transfer patterns between
different locations. By learning trajectory representations, measurement
location embedding vectors, and interrelationships between local weather
at relevant locations, we propose a new attention based seq2seq model
to track pollution propagation for accurate air quality prediction. We
evaluate our model on datasets from Beijing area and compare the results
to several state-of-the-art baselines. Experiments show that the proposed
approach can successfully capture pollution transfer patterns between
different sites in the area.

Chapter 6: Reducing Urban Air Pollution with Intelligent Water
Spraying. In the last chapter we present a way to control the fine-
grained air pollution. Despite regulations and policies to improve city-
level air quality in the long run, there lack precise control measures to
protect critical urban spots from heavy air pollution. In this chapter,
we propose iSpray, the first-of-its-kind data analytics engine for fine-
grained PM2.5 and PM10 control at key urban areas via cost-effective
water spraying. iSpray combines domain knowledge with machine
learning to profile and model how water spraying affects PM2.5 and
PM10 concentrations in time and space. It also utilizes predictions of
pollution propagation paths to schedule a minimal number of sprayers to
keep the pollution concentrations at key spots under control. In-field
evaluations show that compared with scheduling based on real-time
pollution concentrations, iSpray reduces the total sprayer switch-on time
significantly while assuring the good air quality levels.



2
Efficient Sensor Array Calibration

In this chapter, we introduce the basics of this thesis, namely how to
improve the low-cost sensor quality with calibration methods. The
calibrated sensor measurements will be further analyzed and used in
subsequent tasks, such as air quality prediction and pollution sources
detections.

Over the past several years, many low-cost air pollution sensors
have been incorporated into platforms for measuring air quality. These
densely deployed air quality sensors can provide valuable information
about the underlying spatial and temporal pollution changing patterns.
However, low-cost sensors usually suffer from inaccurate and unreliable
measurements. In Section 1.1, we list various methods and schemes to
calibrate the low-cost sensor readings, but the widely applied linear or
non-linear methods only include the current measurements and are still
computation unfriendly, even when deployed to resource-constraint IOT
devices. These limitations pose a significant challenge to low-constraint
pollution sensors in real-world applications.

In this chapter, we propose a novel sequence-to-sequence method
to calibrate the low-cost sensor readings in the wild. The proposed
algorithm is based on the Transformer model, which takes both recent
past and close future raw measurements into account. We show that
the proposed approach (1) outperforms other methods by improving
calibration accuracy by 16.5 % to 20.4 % on public datasets and own field
data, and (2) can efficiently run on low-power microcontrollers with very
limited computational and storage capabilities. The latter is achieved by
a novel optimization technique based on learnable input sub-sampling
taking advantage of the properties of typical sensor data. We manage to
reduce the model size by 20 % to 33 % and minimize the overall operation
counts by 65 % while maintaining superior accuracy in comparison to
state-of-the-art methods.
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2.1 Introduction

Miniaturization of environmental sensors and their low power consump-
tion have enabled numerous large-scale and high-resolution monitoring
applications based on the Internet of Things (IoT) technology. Early
warning scenarios, such as air quality assessment in homes and cities,
monitoring of ammonia in agricultural fields, gas leakage detection,
benefit from availability of low-cost networked sensors. The value of
these systems, however, heavily depends on the quality of measured
data and the ability of the system to extract useful information about
the surrounding context. Since low-cost sensors often have reduced
resolution, suffer from sensor noise, baseline and sensitivity drifts,
environmental dependencies and other cross-sensitivities in the target
environment, in-field sensor calibration methods gained popularity in
recent years [CLL+14c, LDC18a, YLG+20], to improve the quality of
measured data. For example, measuring gaseous pollutants in ambient air
with low-cost technology requires periodic sensor calibration [MZT18b]
or calibration transfer methods [CHZT19b].

Most state-of-the-art sensor calibration methods, ranging from linear
regression [MSHT16c] to neural networks [CLL+14c], operate on an
array of feature vectors measured at a single time step to predict
a calibrated sensor value for the same time step (thus, one-to-one
calibration). Recent methods also include feature vectors measured in
the recent past to better capture the changing patterns of the measured
phenomena and the temporal dynamics of the sensitive material of a
low-cost sensor [MZT18b] (referred to as many-to-one calibration). These
methods, such as AirNet [YLG+20] yield best state-of-the-art calibration
performance. The schematic representation of one-to-one and many-to-
one calibration schemes can be found in Figure 2.1-(a). More details can
be found in Section 2.3

In this chapter, we take sensor calibration to the next level by
calibrating low-cost measurements over multiple time steps in one
inference pass through a many-to-many calibration model as shown in
Figure 2.1-(a). The approach supports a gradual calibration refinement
over time by taking future process development into account. This
approach, however, faces several technical challenges.

Challenges. While calibration accuracy gains obtained by the inclusion
of the recent past measurements into the calibration procedure seem
obvious, the dependency of the correct calibration on the close future
measurements is not. Low-cost sensors often suffer from slow response
times [MZT18b], making future knowledge valuable to compensate for
their delayed response. We include a motivating example in Section 2.3
to support the intuition. Being able to leverage future measurements,
however, leads to a delayed availability of accurate calibrated outputs,
which may not be tolerated in early-warning and disaster surveillance
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Figure 2.1: Motivation example: Why past and future data helps to achieve accurate

calibration? (a) Schematic representation of different calibration schemes. (b) Synthetic
data for testing sensor calibration methods; shaded green zone denotes the test set. (c)
Results obtained by different calibration methods on synthetic dataset. RF: Random
Forest. See detailed analysis in Section 2.3.2.
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systems. We solve the problem by providing immediate calibration
with its gradual refinement as further measurements become available,
leading to a many-to-many calibration approach. The main challenge
of implementing our method on resource-constrained devices is its high
computation and storage overhead, which may hinder practical use of the
proposed method despite its superior accuracy. We propose to tackle the
challenge at multiple levels and show that the solution is implementable
on a Cortex-M4 microcontroller with only 256 kB of RAM, while the
optimized model still outperforms other methods.

Contributions and road-map. We are the first to propose many-to-
many calibration, which shows significant benefits over existing one-
to-one and many-to-one calibration methods with up to 20.4 % accuracy
improvement, as shown on synthetic and real data in Section 2.3 and
Section 2.6 respectively. Our many-to-many calibration method, called
SensorFormer is based on the Transformer model discussed in Section 2.4,
which has proven its efficiency in sequence-to-sequence prediction tasks.
We leverage the fact that sensor data is often oversampled and propose
a novel optimization procedure tailored to environmental sensor data
to significantly reduce computation and storage overhead of the multi-
head attention mechanism, which is the most resource-intensive block
of Transformer models. Our optimized SensorFormer Lite model is
detailed in Section 2.5. It reduces the model size by up to 33 %, requires
65 % fewer FLOPs to run and consumes only 38.8 mJ of energy on
Arduino Nano 33 BLE Sense to compute a prediction. In Section 2.6
we show the benefits of SensorFormer and SensorFormer Lite on two
datasets comprising PM2.5, PM10 1 and ozone measurements gathered
by low-cost IoT sensors. Section 2.2 summarizes related literature and
Section 2.7 concludes this chapter. The source code is available at:
https://github.com/CalibrationMe/SensorFormer

2.2 Related Work

As illustrated in Section 1.1, accurate sensor calibration is crucial for
environmental sensors to capture relevant state information about the
environment [MZT18b]. State-of-art models apply one-to-one or many-
to-one calibration schemes to improve the sensor data quality. To the
best of our knowledge, we are the first to propose a family of many-to-
many sensor calibration methods and show their superior performance
over existing works. This work touches upon two topics that have
recently enjoyed significant progress in terms of algorithm development
and their applications to solving real-world problems. (1) Sequence-
to-sequence models gained popularity in processing time series data.

1Particulate matter with diameter less than 10 and 2.5 micrometer are denoted as
PM10 and PM2.5, repectively.
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In particular, Transformers emerged as a successful model architecture
providing accuracy gains. Their high computational complexity is now
in focus of the research community [RSVG21]. (2) optimizing machine
learning models for microcontrollers gave rise to a tighter integration of
hardware and software for specific tasks, and boosted the development
of software frameworks and methods providing significant memory
footprint reductions, energy savings and speed-ups [Goo]. This section
puts our work in the context of these recent developments.

Transformers and Optimizations. Transformer [LWLQ21] is a prominent
deep learning model that was originally proposed as a sequence-to-
sequence model for machine translation. Due to its effectiveness over
existing methods, it has been adopted in computer vision [CMS+20],
audio processing [CWW+21] and even boosted progress in other
disciplines, such as chemistry [SLG+19] and life sciences [RMS+21].
In the context of time series analysis, Transformer has been used for
prediction tasks [ZZP+21], anomaly detection [CCZ+21] and domain
adaptation [YLXH21].

To support efficient implementation of Transformer based models,
in particular for its operation in resource-constrained environments,
modeling advances and architectural innovations are proposed to
tackle the computational complexity issue of the self-attention mecha-
nism [TDBM20]. State-of-the-art efficient Transformer implementations
approximate the quadratic cost attention matrix by applying some notion
of sparsity to the otherwise dense attention mechanism. For example,
limiting the field of view of attention results in local attention [PVU+18]
or in a dilated window attention [BPC20]. Related literature further
proposes to combine the distinct access patterns mentioned above. For
example, Sparse Transformer [CGRS19] combines strides with local
attention. In contrast to fixed attention patterns, researchers have recently
proposed learnable sparse attention [KKL20, RSVG21], i.e., the attention
access patterns are learned by a data-driven end-to-end approach to
further reduce computational overhead. We refer an interested reader
to a detailed survey on efficient transformers [TDBM20].

This work introduces Transformer optimizations based on information
redundancy in measured sensor data to minimize the overall size of the
self-attention matrix. The method is orthogonal to existing techniques.

Optimizing Machine Learning Models. A number of libraries,
algorithms and tools have been developed to support ML on resource-
constrained platforms. One example is TensorFlow Lite [Goo19], which
includes a set of tools that enables on-device efficient machine learning.
Various optimizations in TensorFlow Lite can be applied to models
so that they can run within limited memory or computational power
constraints of edge IoT devices. The effectiveness comes from the fact
that deep networks are highly redundant and their model size can
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be reduced without decreasing model accuracy. This motivated many
network compression techniques and search for efficient subnetworks.
For example, quantization and binarization rely on weights with discrete
values, e.g., used by [WLe16] to quantize filters of a CNN. Decomposition
and factorization explore low-rank basis of filters [GNGA20] to reduce
model size and achieve inference speed-up.

This work proposes an optimization technique based on signal sub-
sampling which is orthogonal to the existing optimization methods
provided by TensorFlow Lite.

2.3 Problem Definition and Analysis

This section formulates the sensor calibration problem, highlights the gap
in the existing literature addressed in this chapter, and presents analysis
of the problem on synthetic data.

2.3.1 Sensor Calibration Schemes

Consider a low-cost sensor is co-located with a reference station.
Measured data from both devices is collected over a period of time T.
Low-cost sensor values are denoted as a time series X ∈ R|T|×d, where |T|
is the length of the time series and d is the dimension of the input vectors
measured at each time step. We further denote reference measurements
Y ∈ R|T|×1 as a sequence of scalar values measured over T by an accurate
and reliable reference sensor. We treat reference measurements as ground
truth. Let xt ∈ X and yt ∈ Y represent a low-cost sensor measurement and
a ground truth value at a time step t. The goal of sensor calibration is to
learn a calibration model Cθ : Rp×d → Rq×1 with input and output lengths
p and q, and learnable parameters θ such that the distance between the
calibrated values Ŷ = Cθ(X) and the ground truth measurements Y is
minimized.

The most common calibration scheme is one-to-one [MZT18b] for
which at each time step a function Cθ(xt) maps a single raw measurement
xt to its calibrated value (p = q = 1). To obtain calibrated values {Cθ(xt)}
from raw measurements {xt} during a time period T one iterates over time
steps t ∈ T.

We propose to include uncalibrated low-cost sensor measurements
xt over the past 〈t − τ1, t〉 or future 〈t, t + τ2〉 time intervals as input to
the calibration model Cθ. The intuition comes from the observation that
the changing rates of multi-dimensional input features contained in the
recent past and close future values is valuable to accurately calibrate the
present measurement. many-to-one calibration schemes take the past
low-cost sensor measurements as model input (p > 1) to produce a single
calibrated output value (q = 1) at each time step t. In contrast, many-
to-many methods calibrate multiple values within a window in one time
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Table 2.1: Summary of calibration schemes. Cθ is a calibration function with learnable
parameters θ.

Objective function argminθ(·)
one-to-one

∑T
t=1L(yt,Cθ(xt))

many-to-one
∑T

t=1L(yt,Cθ(x〈t−τ1,t〉))
many-to-many

∑T
t=1L(y〈t−τ1,t+τ2〉,Cθ(x〈t−τ1,t+τ2〉))

step (p > 1, q > 1). The objective functions of different calibration schemes
are summarized in Table 2.1 and visualized in Figure 2.1-(a). many-to-
many methods produce multiple consecutive calibrated values in each
time step. The most accurate calibration result is achieved when future
inputs 〈t, t + τ2〉 with respect to the target calibrated value at time t are
known. This, however, introduces a calibration delay τ2. If only past sensor
measurements 〈t − τ1, t〉 are used to calibrate the current value, many-to-
many schemes allow for a real-time or instant calibration at a price of a
possibly reduced accuracy.

2.3.2 Calibration Analysis on Synthetically Generated Data

We use a synthetically generated dataset to validate the effectiveness
of taking both past and future raw sensor measurements into account
when learning a calibration model. The detailed data generation and
experiment results can be found in the source code.

Setup. Synthetic data, comprising raw measurements {x(t)} and reference
values {y(t)}, is sampled equidistantly within the time interval t ∼
U(0, 20π) as follows:

x(t) = 0.02 · sin(t · (0.99 − 0.01
⌊ t
π

⌋
)) + 4.5 −

⌊ t
π

⌋
+ δ (2.1)

y(t) = 3 · sin(t − π
⌊ t
π

⌋
) + 3.5 (2.2)

where �·� is the floor operator. Reference data y(t) is a periodic function
with the period π.

The phase difference (0.99 − 0.01
⌊

t
π

⌋
) over time t is used to simulate

sensitivity drift of a low-cost sensor over time. The amplitude and bias
difference between the two functions x(t) and y(t) capture other error
sources such as environmental dependencies and cross-sensitivities to
other gases. An extra noise term δ ∼ N(0, 1) is added to simulate
the random noise of the low-cost sensor. Additionally, we introduce
a response time delay by setting x(t′) = x(t + 2), i.e., low-cost sensor
responses 2 time steps later to the signal. The generated dataset comprises
3138 samples, where the first 70% is used for training a calibration model
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Table 2.2: Performance evaluation of different calibration schemes on a synthetically

generated dataset. Taking both current, past and future values as input yields best
accuracy.

No calibration Random Forest
[current value] +[past] +[past, future]

MAE 0.804 0.650 0.295 0.195
RMSE 0.841 0.570 0.159 0.066

and the remaining 30% for testing its quality. The synthetic dataset and
a train-test split are shown in Figure 2.1-(b). The goal is to accurately
calibrate {x(t)} during the test period and evaluate accuracy gains due to
the inclusion of the recent past and close future raw sensor measurements
into the model input. We adopt root mean square error (RMSE) and mean
absolute error (MAE) as accuracy measures.

Results. We chose Random Forest (RF) regression as a sample model
in this study due to its simplicity and prior successful use in sensor
calibration [LDC18a, MZT18b]. Its performance on synthetic data is
shown in Figure 2.1-(c) and summarized in Table 2.2. We observe that
MAE of uncalibrated sensor data is high (0.804). MAE can be reduced to
0.650 if the current time value is used as input to calibration, i.e., one-to-
one approach. However, an artificially introduced sensitivity drift causes
large errors on future test data. This large error is caused by the fact that
one-to-one approach only takes current values into account and fails to
capture the sequence alignment pattern, which is crucial for compensating
sensor drift and improving calibration accuracy [YLG+20].

The calibration error gets dramatically reduced if both current value
and two recent values are input to the RF model, i.e., many-to-one
approach. MAE drops down to 0.295 providing over 55.0% reduction
compared to using the current value only. The error can be further
reduced to 0.195 (70.0% reduction compared to the same baseline as
before) if both two past and two future raw measurements are input
to the model. Results presented in Figure 2.1-(c) suggest that augmenting
current measurements with both recent past and close future data better
addresses the simulated sensor drift and delayed response issues and
achieves accurate calibration.

Intuition. Synthetic data analysis lets us conclude: (i) Recent history
greatly helps to learn an accurate calibration function, since consecutive
past values contain information about temporal characteristics of a low-
cost sensor and the measured process, e.g., the slope of the sensor drift
and the speed of the process change. (ii) Including future data helps
to further improve calibration accuracy, especially for the peak areas.
This shows that the future signal dynamics can be used to improve
calibration. We refer to this setting as to delayed calibration. To achieve real-
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time calibration, the model has to produce multiple outputs for the same
input while providing improved calibration as the time progresses and
later measurements become available. The above observations motivate
a calibration model structure with both multiple inputs and multiple
outputs, i.e., a many-to-many calibration model, detailed in the next
section.

2.4 Many-to-Many Sensor Calibration

This section first provides a preliminary background on the key modules
of Transformer structure, then follows an overview of SensorFormer, our
proposed many-to-many sensor calibration method.

2.4.1 Preliminary: Multi-Head Self Attention

Transformer utilizes a multi-headed self attention (MSA) mechanism to
learn an alignment in which each element in the sequence learns to gather
information from other tokens in the sequence. Using this mechanism,
we can compensate sensor information, i.e., the hidden representations of
the Transformer, from both the past and the future to calibriate the sensor
values. Specifically, given a sequence input X ∈ R|τ|×d, where |τ| denotes
the length of the sequence and d is the feature dimensions. The operation
for a single head is denoted as:

Ah = Softmax
(
αQhK
h

)
Vh (2.3)

where Qh =WqX,Kh =WkX and Vh =WvX are linear transformations
applied on original input X with learnable weights Wq,Wk and Wv. α is a
scaling factor that is typically set to 1/

√
d to alleviate gradient vanishing

problem of the softmax function. In practice, multi-heads, A1,A2, . . .AH,
are used to derive the underlying complex relations among sequence data,
and the outputs of heads are concatenated together to produce the final
attention weights. More details can be found in [TDBM20, LWLQ21].

2.4.2 SensorFormer

The architecture of the proposed SensorFormer model is shown in
Figure 2.2. SensorFormer takes sequential sensor readings over a time
window τ as input and produces calibrated values in each time step.
Similarly to the study on synthetic data, we assume that input to the
model is Xτ ∈ R|τ|×d, where |τ| represents the sequence length and d
denotes the dimension of the input vector in each step. The output of the
model is Ŷτ ∈ R|τ|×1, where a scalar value is used as the ground truth in
each time step.

Similarly to the usage of Transformers in natural language processing
(NLP) [LWLQ21] or computer vision [DBK+20] domains, we propose to
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τ τ τ

α βα β

Figure 2.2: SensorFormer architecture. Our many-to-many calibration model based on
the Transformer architecture.

use a learnable embedding module to map the original sensor features to
a hidden representation. In our implementation, a multilayer perceptron
(MLP) is chosen to embed the original input Xτ to its embedding E ∈ R|τ|×s,
where s is the dimension of the hidden embedding.

The Position Embedding module is used to retain positional
information in the sequential input. We use the normalized absolute
positional encoding Epos in our model, since more complex methods show
no benefit on our tested datasets.

The Transformer Encoder block computes a representation of all
inputs. It consists of K blocks connected in a sequence. The computation
proceeds as follows. First, a concatenation of E and Epos is used as
construct the input z0. Then, for a block k ∈ 1..K, the input first goes
to the Multi-head Self Attention (MSA) module to learn an alignment
of each element in the sequence with respect to other elements in the
sequence [LWLQ21]. The residual connections follow the MSA block to
learn deeper networks. Batch norm (BL) is applied at the end of each
Transformer Encoder block to stabilize the training process. The overall
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(a) MSE=0.888 (b) MSE=0.888 (c) MSE=0.888

Figure 2.3: Limitation of the MSE loss. The three predictions (a), (b) and (c) have
similar MSE but quite different shape.

equations are as follows:

z0 = [E; Epos], z0 ∈ Rτ×s

z′k =MSA (zk−1) + zk−1, k = 1..K

zk = BN
(
z′k

)
, k = 1..K

(2.4)

Following the last block of Transformer Encoder, the output zK is
used as input to the MLP layer to produce the final predictions Ŷτ, that
represent calibrated values computed by SensorFormer over all τ steps.

2.4.3 Loss Function

It is critical and challenging to define an effective loss function in multi-
output regression problems. A widely used approach is based on the
value difference, i.e., average error within each time window τ. Given a
series of reference measurements Yτ, the mean squared error (MSE) loss
is defined as Lv = (1/|τ|) ×∑|τ|

i=1(Yi − Ŷi)2.
However, relying on MSE may be inappropriate in our situation, as

illustrated in Figure 2.3. Here, the target ground truth is shown in black
line, and we present three predictions, shown in Figure 2.3-(a), (b) and (c),
which share a similar MSE loss compared to the target, but quite different
prediction shape. Prediction (a) fails to capture the overall shape of the
target value. The predictions (b) and (c) reflect the real change of regime
much better, as the changing shape is actually predicted, but with a slight
advance in time (b) or with a slight error in magnitude (c).

A sudden change of the process of interest presents the most
challenging scenario for accurate sensor calibration. Correctly capturing
the shape of the change is thus an important task of a calibration
algorithm. Motivated by the above example that time series with quite
different shapes may share similar MSE, the loss between time series shape
is now a hot research topic for multi-output regression problems. For
example, [GT19] propose a differentiable loss function based on Dynamic
Time Warping (DTW) to align different time series. We adopt the idea
to compute the shape distortion between Ŷ and Y and denote the new
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shape loss asLw. This new shape loss between group truth and predicted
time series is used to penalize those unsimilar shape predictions. With
this novel loss constraint provided by Lw, the many-to-many calibration
model tends to generate prediction similar to Figure 2.3-(b), (c) instead of
(a). A successful multi-output loss function should be the combination
of both MSE loss Lv and the time series shape loss Lw. Thus, the overall
loss of SensorFormer is defined as follows.

LSF = αLv + βLw (2.5)

whereα and β balance the importance between distance-based and shape-
based loss functions.

2.5 SensorFormer Lite for Low-Power Microcontrollers

This section first gives an intuition what makes SensorFormer optimiza-
tion possible. We then present the SensorFormer Lite architecture and
discuss how its efficiency can be further improved when our optimization
is coupled with standard optimization tools.

2.5.1 Learnable Sub-Sampling

The computation and memory bottleneck of the Transformer models
mainly comes from the MSA module, since its computational complexity
is O(τ3), where τ represents the length of the input sequence [LWLQ21].
For example, the Transformer Encoder block of our method (see
Section 2.4), whose main part is the MSA module, is responsible for over
91.96 % of total model’s parameters and 96.30 % of multiply–accumulate
(MAC) operations. The SensorFormer usability on resource-constrained
devices thus depends on our ability to reduce the computational and
storage complexity of the MSA module.

In this work, we propose to downsample the input sequence and
to considerably decrease the input dimension τ. The key intuition
comes from the observation that, in contrast to the problems in NLP
and computer vision domains, time series measured by IoT sensors, as
visualized on the bottom of Figure 2.4, are often oversampled to comply
to the Nyquist sampling theorem [Vai01]. Sensor noise can be reduced by
post-processing. Moreover, it is possible to represent changing patterns
in time series using downsampled points, as shown on the upper of
Figure 2.4. We will show in the evaluation section that those changing
patterns rather than the raw time series values are more useful for sensor
array calibration task. This motivates us to downsample a sub-sequence
to represent the original time series data before using it in later blocks.

There are multiple ways to choose a sub-sampling strategy, such as
random or uniform sub-sampling of the original input sequence, or by
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Figure 2.4: Group-wise input sampling. Input downsampling by group splitting and
learning weighted embedding parameters.

using the mean of the adjacent values. These naïve and statistically
inspired sub-sampling strategies yield poor calibration results, as
argued in Section 2.6. We therefore propose a data-driven input sub-
sampling method trained end-to-end simultaneously with other blocks
of SensorFormer. We refer to the SensorFormer model with the proposed
sub-sampling optimization as SensorFormer Lite. The design choices are
detailed in the following subsection.

2.5.2 SensorFormer Lite

The architecture of the SensorFormer Lite model is shown in Figure 2.5.
It differs from SensorFormer in the following three aspects: (1) A
differentiable downsampling module, denoted as Group-wise Input
Sampling (GIS), is added to decrease the length of the input τ to the
Transformer Encoder block. (2) Following Transformer Encoder, a Group-
wise Attention Sharing (GAS) module is added to share the attention
weights among the members of the same group. It uses a simple but
effective “copy-and-paste” approach and introduces no extra parameters.
(3) Finally, the loss function used to train SensorFormer Lite includes
a regularization of the learnable parameters in GIS. The details are
explained below.

Given the input sequence data X ∈ Rτ×d and using the same
pipeline as described in Section 2.4, we obtain hidden embeddings
with positional information as z0 ∈ Rτ×D. Instead of using z0 directly
as input to K Transformer Encoder blocks, the input goes to the GIS
block for downsampling performed in two steps by group splitting and
subsequently computing a weighted embedding.

Group Splitting. We evenly divide each input sequence τ into ng adjoint
subgroups, each with �τ/ng
 members. ng is a hyperparameter. For
example in Figure 2.4, τ = 16, ng = 4, and the original data is divided into
4 subgroups g1 through g4.

Weighted Embedding. The downsampled measurement zg
i is a linear
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τ τ τ

α β γα β γ

Figure 2.5: SensorFormer Lite architecture. The model learns an input sub-sampling
strategy via Group-wise Input Sample (GIS) and Group-wise Attention Sharing (GAS)
blocks.

combination of the samples in each group:

zg
i =

∑
j∈gi

wjzj, (2.6)

where zj ∈ RD denotes the j-th instance of z0 ∈ Rτ×D, j ∈ [1, τ], wj

represents the weight to zj, and zg
i is a weighted embedding of all zj

comprising the group gi.
We use the mean mgi over all instances in the group gi to initialize the

representation of the group before training. For an instance zj in the group
gi, its distance to mgi is calculated as dj = ||zj − mgi ||2, which denotes the
relative importance of zj in the group representation. Following [LMA20],
we scale dj with a learnable temperature coefficient t and compute the
importance distribution in each group as follows

wj =
e−d2

j /t
2

∑
s∈S(gi) e−d2

s /t2
. (2.7)
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Following the GIS module, the original z0 is mapped to the group-wise
downsampled z

g
0 ∈ Rng×D, where ng < τ. For example, in Figure 2.4

the weighted embedding of each subgroup is used as its downsampled
representation. Downsampled data still retain the changing pattern
characteristics of the original time series data.

The downsampled z
g
0 is input to the Transformer Encoder block. The

latter yields the output zK ∈ Rng×H given by Eq. (2.4). GAS module
shares the same hidden attention representation among all members of
the group. The output zK is then mapped to zg

K ∈ Rτ×H. A residual
connection is added to retain the original information of each single input.
The final prediction values are computed as follows:

Ŷ =MLP(zg
K + z0) (2.8)

Loss Function. In the weighted embedding of our new GIS module,
the weight wj can be viewed as a probability distribution function over
the points zj. The temperature coefficient t controls the shape of this
distribution. To regularize this new differentiable GIS module, we add a
new loss term as Lg = t2. The loss function of SensorFormer Lite consists
of three terms: MSE loss Lv, time series shape loss Lw and the new Group-
wise Input Sampling regularization loss Lg. The overall loss is a balanced
combination of all of them:

LSFL = αLv + βLw + γLg (2.9)

where α, β and γ balance the importance between distance-based, shape-
based and group regularization based loss functions.

2.5.3 Discussion

To the best of our knowledge, we are the first to leverage the properties
of sensor data that allow downsampling the input sequence to reduce
both computational and memory complexity of the critical MSA block.
The proposed method is orthogonal to other Transformer optimization
techniques and can be combined with the methods proposed in the
literature. One research line on improving Transformer efficiency
focuses on sparsifying attention matrix, e.g., by using approximation
techniques. These can directly be added to the Transformer encoder in
SensorFormer Lite. Another direction to compress deep learning models
is to quantize their weights and reduce the model size for resource-
constrained platforms. We empirically show that SensorFormer Lite can
benefit from these compression techniques to further reduce the model’s
memory, compute and energy consumption overheads.

SensorFormer takes up relative large space and make it hard to be
deployed on resource constraint IOT devices such as microcontrollers,
especially when the calibration module is only one component of a
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complex IOT system and limited space is allocated. In our scenario, we
convert the trained model to TensorFlow Lite and quantizing its weights
to reduce the model size, and only the sensing and calibration modules
are tested.

2.6 Experimental Evaluation

This section discusses the performance results of the proposed models.
We introduce two datasets and five baselines used to evaluate the accuracy
achieved by SensorFormer and SensorFormer Lite. Then, we report the
performance of the optimized SensorFormer Lite on Arduino Nano 33
BLE Sense featuring Contex-M4 microcontroller with 256 kB of RAM.

2.6.1 Datasets and Evaluation Metrics

We use two datasets collected in Beijing and Zurich to evaluate the
proposed many-to-many calibration approach. At each deployed
location, a low-cost air quality sensor is co-located with a governmental
reference station providing ground truth data.

Beijing Dataset. The dataset comprises particulate matter measurements
PM2.5 and PM10 (particles of diameter less than 2.5 and 10 microns,
respectively) gathered at 7 locations in Beijing. Hourly measurements
obtained with a low-cost Plantower sensor [pan] and ground truth data
are collected between Mar 2018 and May 2019. The low-cost particle
sensor is based on laser scattering technology. Those low-cost PM2.5
and PM10 sensors reports 7 low-level features, which are used to train
a calibration model for accurate PM measurements.In each sample, we
define a vector consisting of all 7 features as the input value, and a scale
PM value from the reference station as the output we wish to align. In
total, 60’450 samples are used in the experiments.

Zurich Dataset. A low-cost ozone (O3) sensor is deployed on the rooftop
of a reference station. The sensor is MiCS-OZ-47 [et] based on the metal
oxide semiconductor sensitive material, known to exhibit baseline and
sensitivity drifts over time [MZT18b]. The low-cost sensor is located
next to the air intakes of the highly accurate devices. In this way, low-
cost sensors and reference devices can be measured at the same time.
Low-cost ozone sensor samples are comprised of 3 features: ozone value,
temperature, and humidity, and the scale value from the reference station
is used as the ground truth. The data is collected hourly between Jan and
Oct 2016 [MHS+19] and contains 5’180 samples.

We split all datasets into train, validation and test in chronological
order at a ratio 6:2:2. Mean absolute error (MAE) is used to evaluate
the accuracy of the proposed calibration models, while floating point
operations per second (FLOPs) and the number of model parameters
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(#param) are used to show resource-efficiency of SensorFormer Lite.

2.6.2 Benchmarks and Model details

We compare SensorFormer to the following state-of-the-art methods for
sensor calibration described in the literature:

• Naïve: No calibration is performed. Raw values measured by a
low-cost sensor are reported as calibrated values.

• MLS [MSHT16c]: Multiple linear regression is commonly used for
sensor calibration, 7 and 3 input features are used as the independent
variables for PM and ozone calibration scenario.

• RF [MZT18b]: Random Forest is widely used for sensor calibration
due to its ability to learn non-linear functions.

• MLS+RF [LDC18a]: A method combines a linear model (MLS) and
a non-linear model (RF).

• AirNet [YLG+20]: An RNN-based sequence model that leverages
past data in the context of sensor array calibration.

In our experiments we fix the input sequence length |τ| = 12 and the
number of heads to 2. The number of hidden units in MLP blocks is
set to 18. The number of transformer blocks K is 2 for PM2.5, and 1 for
PM10 and O3 calibration. We use α = 0.15, β = 1, γ = 0.5 as trade-off
parameters of the loss functions. The model is written in Python and
evaluated on Nvidia RTX 2080 Ti. Different sizes of the ng groups are
used to evaluate resource-efficiency of SensorFormer Lite, which is also
evaluated on Arduino Nano 33 BLE Sense. More details can be found in
the provided source code.

2.6.3 SensorFormer

Overall Performance. The results in Table 2.3 show that Sen-
sorFormer model outperforms other methods in all considered sce-
narios. State-of-the-art one-to-one schemes, i.e., fitting a linear
(MLS [MSHT16c]), non-linear function (RF [MZT18b]) or a combination
thereof (MLP+RF [LDC18a]), decrease calibration errors by learning an
alignment between low-cost sensor features and ground truth labels.
However as we illustrated in Section 2.3, by using only current time
step features one-to-one methods are not capable of capturing time series
changing patterns, and thus fail to achieve high calibration accuracy.

By contrast, many-to-one and many-to-many schemes solve the above
challenge by using many sequential inputs to learn the underlying
alignment function. The recently proposed AirNet [YLG+20] method
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Table 2.3: Accuracy of different calibration methods. Performance results shown as
MAE (μg/m3). The proposed many-to-many models outperform other methods.

Model family Model PM2.5 PM10 O3

one-to-one

Naïve 31.25 37.68 6.63
MLS [MSHT16c] 23.78 25.13 4.72
RF [MZT18b] 21.34 24.61 4.61
MLS+RF[LDC18a] 19.89 20.56 4.32

many-to-one
AirNet[YLG+20] 16.67 18.90 4.12
SF-mo 15.11 17.18 3.82

many-to-many
SF-RT 13.86 15.05 3.44
SF-W 12.65 13.45 3.13

yields significantly better results than one-to-one models. This shows
that historical data contains valuable information for accurate sensor
calibration. We denote the many-to-one version of our SensorFormer
scheme, i.e., the version that uses past data to compute a single output
(without Lw term in the loss function in Eq. (2.5)) as SF-mo. The
results in Table 2.3 show that SF-mo, compared to AirNet, decreases
MAE for PM2.5, PM10 and O3 by 9.36%, 9.10% and 7.28%, respectively.
Compared to AirNet, SF-mo behaves better during peak periods as shown
in Figure 2.6. The reason for this improvement is the power of the self-
attention mechanism in SensorFormer over traditional RNN architectures
used in AirNet.

When investigating the performance of the many-to-many method
family, we first test SensorFormer for real-time calibration (denoted as
SF-RT), i.e., only the first calibrated output in a sliding window is used
even though multiple outputs are predicted. SF-RT thus includes Lw in
its loss function in Eq. (2.5). The error achieved by SF-RT compared to
AirNet is further decreased by 16.9 %, 20.4 % and 16.5 %, respectively. This
highlights the effectiveness of SensorFormer when capturing patterns in
time series data and learning the alignment between low-cost sensor
values and the ground truth. If calibration latency can be tolerated, mean
calibrated value over all time windows that include a given input is used.
As a result, MAE can be further reduced by 24.1 %, 28.8 % and 24.0 %
compared to AirNet for PM2.5, PM10 and O3, respectively. We refer to
this approach as SF-W.

The calibration output for PM2.5 and O3 on test data is visualized
in Figure 2.6. AirNet fails to capture the changing patterns, especially
the peaks, and is not accurate enough for a practical use as discussed
in [MZT18b]. SF-RT partly addresses the challenge while using only the
first calibrated output, whereas SF-W achieves the best result by averaging
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calibration outputs over multiple time windows for the same input. SF-W
not only acquires the best calibration accuracy but captures the correct
time series trend as the ground truth due to the constraint of our novel
loss functions.

SensorFormer Analysis. We use an example to show the details
of SensorFormer and argue why it outperforms state-of-art methods.
Figure 2.7-(a) shows the calibration results for the input and output
length |τ| = 12. Shaded grey areas represent the variance of the calibration
outputs over all sliding windows for a specific input. The solid line shows
the mean of these calibration outputs, i.e., over 12 calibrated values. The
grey area is narrow if air quality is stable or changes slowly, yet widens
during the periods of sudden change of the measured process. Thus, large
grey area can be interpreted as model’s uncertainty in the correctness of
the calibration result.

To better understand the model, we selected three time points A, B
and C annotated in Figure 2.7-(a) and examine attention maps for the
real-time calibration values for those points. Example A is located during
a stable period, whereas B and C are chosen at peak points of signal
variability. Figure 2.7-(b)-(d) show raw sensor input preceding the current
time point. The 12 calibrated outputs from each calibration window
forming the shaded area in Figure 2.7-(a) are shown in Figure 2.7-(e)-(g).
The ground truth (black line) are located inside the variance zones. We
plot attention maps learned by Transformer Encoder block 1 and head 1
to get an idea of the area the model is focusing on when processing the
above sequential inputs. As shown in Figure 2.7-(h)-(j), the model pays
attention to the changing period in all examples (see Figure 2.7-(b)-(d)).
The model indeed learned to recognize that changing patterns are critical
for sensor calibration. Figure 2.7-(h) assigns similar weights to all inputs,
which indicates that the model relies on the mean from all inputs during
a stable period. Another finding is that attention maps reveal group
clusters, i.e., similar inputs share similar attention weights. This supports
the intuition behind the proposed group-wise input downsampling and
later upsampling optimization realized in SensorFormer Lite.

2.6.4 SensorFormer Lite

Overall Evaluation. The effect of subgroup sizes ng on the number of
floating point operations per second (FLOPs) and calibration error MAE
is shown in Table 2.4. SensorFormer can be seen as an extreme case of
SensorFormer Lite with ng = τ, i.e., 12 inputs in our case. We set ng to 4
and 6 sequentially to evaluate the performance of the calibration models
on different datasets. Compared to SensorFormer, SensorFormer Lite
with ng = 6 decreases the number of FLOPs by over 48 % at a cost of less
than 3.2 % increased MAE by downsampling the original sequence by the
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(a) SensorFormer prediction interval.

(b) Example A (c) Example B (d) Example C

(e) Calibration A (f) Calibration B (g) Calibration C

(h) Attention Map A (i) Attention Map B (j) Attention Map C

(k) Attention Lite A (l) Attention Lite B (m) Attention Lite C

Figure 2.7: Example-based SensorFormer and SensorFormer Lite model analysis on

PM2.5 dataset. Example A is located during a stable period; B and C are chosen at
peak points shown in (a). (b)-(d) show model inputs for each example; (e)-(g) show the
window-based calibration results, solid line is the ground truth; (h)-(j) depict attention
maps of SensorFormer with a focus on variable parts of the input; (k)-(m) show attention
maps of the optimized SensorFormer Lite model.

factor of 2. If the downsampling factor increases to 3 with ng = 4, MAE
increases by 6.1 %.

SensorFormer Lite Analysis. Using the same examples A, B and
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Table 2.4: Performance evaluation of SensorFormer Lite. FLOPs (×1000), #param
(×1000) and MAE (μg/m3)

Metric
SensorFormer SensorFormer Lite

ng = 12 ng = 6 ng = 4

PM2.5
FLOPs 127.10 64.90 (-49%) 44.16 (-65%)
#param 5.80 - -
MAE 12.65 12.92 (+2.1%) 13.20 (+4.3%)

PM10
FLOPs 64.75 33.64 (-48%) 23.28 (-64%)
#param 5.80 - -
MAE 13.45 13.80 (+2.6%) 14.21 (+5.7%)

O3
FLOPs 13.42 33.56(-48%) 22.98(-65%)
#param 1.42 - -
MAE 3.13 3.23(+3.2%) 3.32 (+6.1%)

(a) PM2.5 (b) PM10 (c) O3

Figure 2.8: Efficiency of weighted embedding. Learned weighted embedding
outperforms mean and random baselines.

C shown in Figure 2.7-(a), we plot the SensorFormer Lite attention
maps with ng = 6 in Figure 2.7-(k)-(m). The downsampled attention
maps by SensorFormer Lite share similar patterns with those learned
by SensorFormer. Specifically, SensorFormer Lite attention map of
example B captures the same changing patterns as SensorFormer, thus
can be expected to yield similar calibration accuracy. SensorFormer Lite
attention maps of examples A and C lack minor input signal variations,
e.g., at the end of each sequence, due to a limited resolution of the attention
mechanism. This explains minor accuracy drop reported in Table 2.4.

To illustrate effectiveness of the proposed weighted embedding
method in SensorFormer Lite, we compare its performance to the
following two baselines: (i) randomly selecting one sample to represent
the group, and (ii) using mean value over all group members. Our method
uses a weighted combination of group members as shown in Figure 2.4.
The results in Figure 2.8 suggest that our method yields better results on
all datasets. The effect is more pronounced for larger groups.
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Table 2.5: Model generalization Comparison. ng = 4 and performance results shown
as MAE (μg/m3).

Naïve AirNet SensorFormer SensorFormer Lite

PM2.5 42.1 23.5 15.0 15.8
PM10 49.8 30.1 17.8 18.4

2.6.5 Model Generalization Study

We design the following experiment to test the generalization ability of
our proposed SensorFormer and SensorFormer Lite on unseen data in the
distant future. A new PM2.5 and PM10 dataset was collected between
Dec 2019 and Mar 2020 following the same setup described in Beijing
Dataset. The data comes from a different spatial location and time period
compared to the original Beijing Dataset. We evaluate the calibration
performance of all related models trained with Beijing Dataset on the
newly collected data.

The results in Table 2.5 show that Naïve MAE is higher (42.1μg/m3

and 49.8μg/m3 for PM2.5 and PM10) than previously reported due to
a generally more significant and faster changing air pollution levels in
winter 2020 in the new dataset than in the data from 2019. AirNet
[YLG+20] reduces MAE by including history data. However, it fails to
correctly capture the underlying changing patterns of low-cost sensors.
The calibration error is too high for a real use case [CHZT19b].

SensorFormer acquires the best calibration performance by including
both history and future readings to derive the changing patterns and
learn the correct alignment function using self-attention mechanism. Our
designed method tends to focus more on the critical time series changing
patterns instead of only raw values, thus leads to a more stable calibration
performance. SensorFormer Lite also acquires a reasonable accuracy
while reducing computational overhead significantly.

2.6.6 Analysis of the Evaluation Results

The evaluation results on SensorFormer and SensorFormer Lite reveal
that sensor data alignment task benefits from both historical and future
data, and our proposed approach successfully capture their interactions.
SensorFormer Lite acquires comparable accuracy due to ability to learn
the input sequence changing patterns, which reflects that those changing
patterns instead of the raw values play more important role in boosting
the performance of sensor array alignment task. We can also validate this
phenomenon from the attention maps in Figure 2.7, SensorFormer Lite
successfully derives the sequence changing patterns as SensorFormer and
generate accurate calibration results.

SensorFormer is preferred when the calibration accuracy is critical
and energy is not a concern. Given the limited budget of usable energy,
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Table 2.6: Further model optimization using standard methods. Achieved accuracy
(MAE) after conversion to TensorFlow Lite and weight quantization. Percentage in
brackets shows MAE increase relative to the model before optimization.

Model
Model Size [kb] MAE
+TF Lite +Quant. [μg/m3]

PM2.5 SensorFormer 48 40 12.86 (+1.7 %)
SensorFormer Lite 40 32 13.44 (+6.2 %)

PM10 SensorFormer 44 36 13.74 (+2.2 %)
SensorFormer Lite 36 28 14.30 (+6.3 %)

O3 SensorFormer 28 24 3.19 (+1.9 %)
SensorFormer Lite 20 16 3.34 (+6.7 %)

SensorFormer Lite is viewed as a more suitable choice as it balances both
energy and acceptable accuracy.

2.6.7 Further Model Optimization for IoT Devices

In this section, we evaluate the performance of SensorFormer and
SensorFormer Lite (ng = 4) in combination with other standard deep
model optimization methods. By converting the trained model to
TensorFlow Lite [Goo] and quantizing its weights we further optimize the
model with insignificant performance decay. The results in Table 2.6 show
that (i) optimized SensorFormer Lite has 20–33 % smaller model size than
SensorFormer, and (ii) the performance of the optimized SensorFormer
Lite drops by up to 6.7 % compared to results reported in Table 2.3.
Nevertheless, the achieved accuracy is higher than achieved by the state-
of-art methods.

SensorFormer Lite optimization reduces the number of FLOPs by up
to 65 % and decreases the model size by up to 33 % for different datasets at
a cost of up to 6.7 % decline in accuracy. Thus, the proposed SensorFormer
Lite significantly reduces resource requirements on the target platform,
and can now run on IoT devices. We deploy the proposed methods on
Arduino Nano 33 BLE Sense featuring the Cortex-M4 microcontroller, and
the power consumption for the calibration process was measured using
the RocketLogger [SGL+16]. Taking PM2.5 as an example, each calibration
operation consumes extra 110.4 mJ for SensorFormer and 38.8 mJ for
SensorFormer Lite, while the sensing module itself consumes 302.5 mJ.
Thus, each reported calibrated sensor reading requires 302.5 + 38.8 =
341.3 mJ energy with SensorFormer Lite, which means an error reduction
of over 57.8 % compared to an uncalibrated reading with an overhead of
only 38.8/(38.8 + 302.5) = 11.4 % of additionally consumed energy.
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2.6.8 Model Performance on Other Dataset and Task

To further validate the effectiveness of our proposed SensorFormer
framework, one additional public MOX sensors dataset 2 is used. The task
is to recover accurate continuous-sensor measurements from transient
responses obtained from a duty cycled sensor and compensate for
an altered multi-gas cross-sensitivity profile using machine learning
methods. More details regarding the dataset and task can be found in
[GCGS21].

The dimension of the input data is R12×160, where 12 is the number of
transient responses and 160 is the dimension of each transient response.
The target is to recover the continuous sensor readings for each step. The
state-of-art method proposed in [GCGS21] used a GRU-based encoder-
decoder framework to generate the predictions and the result is shown in
Figure 2.9-(a) with an overall MAE of 179.0. We can find that the prediction
model behaves poorly during the changing periods. Compared to GRU-
based models, our proposed SensorFormer decreases the MAE from 179.0
to 134.7, with a reduction of over 24.7%. SensorFormer also predict
accurately during those changing periods, which makes it reliable for air
quality analysis.

From the above evaluation results, we can safely conclude that
SensorFormer based models are effective in capturing the relationships
among sequence data from sensor readings and can generate accurate
prediction results.

2.7 Summary

In this chapter, we show that including both recent past and close future
raw sensor measurements in sensor calibration model improves model
accuracy. The observation can be justified by slow response times of low-
cost sensors, their cross-sensitivities and sensitivity drifts, that become
apparent when future measurements are available. This motivates the
design of a new family of many-to-many calibration methods, and
its instance called SensorFormer proposed in this work. To reduce
high resource consumption of the proposed method, due to redundant
computations and a high overhead of the multi-head attention block, we
propose a novel optimization technique based on signal sub-sampling,
specifically tailored to often oversampled sensor data. The optimized
SensorFormer Lite model is effective under resource constrains of a
typical microcontroller, yet yields superior performance than state-of-the-
art benchmarks. We believe the proposed algorithm can be an essential
step in the design of the low-cost air quality sensor network.

Many-to-many calibration methods, such as those presented in this
work, make the distinction between sensor calibration and short-term

2https://github.com/TUG-EIP/MOX-Compensation-SGP30
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prediction vanish. One future direction is to investigate this intriguing
property in other related tasks, such as warning systems with real-time
low-cost sensor readings.

The calibration method presented in this chapter improves the sensor
readings accuracy and makes the follow-up analysis tasks reliable, e.g.,
finding and controlling the pollution sources based on sensor readings
will be more efficient in Chapter 6. However, in real deployment, most
of the sensors have no access to references and makes it challenges to
calibrate those low-cost sensor measurements. In the next chapter, we
will detail the problems and present our solutions on how to transfer the
calibration model from source sensors (with access to references) to target
sensors (without access to references).
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3
In-field Calibration Transfer for Air

Quality Sensor Deployments

In recent years, hundreds of inexpensive air quality sensors have been
deployed citywide to monitor urban air pollution. To guarantee data
accuracy and consistency, these sensors need periodic calibration after
deployment. As we discussed in Chapter 2, given the coexisting low-
cost sensor measurements and the ground truth data, various on-site
calibration models can be applied to improve the accuracy of those low-
cost sensors. Specifically, our proposed SensorFormer method, which
uses both recent history and close future data, acquires the best calibration
accuracy and has the ability to be deployed to resource-constraint IOT
devices. However, since access to ground truth references is often limited
in large-scale deployments (see examples in Section 1.1.3), it is difficult
to conduct city-wide post-deployment sensor calibration. In this chapter,
we propose In-field Calibration Transfer (ICT), a calibration scheme that
transfers the calibration parameters of source sensors (with access to
references) to target sensors (without access to references). ICT is capable
of transferring different types of calibration models, linear or non-linear
ones (Section 1.1.1), to target sensors and acquire satisfactory results.
The key observations are that (i) the distributions of ground truth in
both source and target locations are similar, and (ii) the transformation is
approximately linear. Therefore, ICT derives the transformation based on
the similarity of distributions with a novel optimization formulation. The
performance of ICT is further improved by exploiting spatial prediction
of air quality levels and multi-source fusion. Experiments show that ICT
is able to calibrate the target sensors as if they had direct access to the
references.
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3.1 Introduction

Motivation. Recently, many large-scale air pollution monitoring
systems have been deployed, where tens to hundreds of low-cost air
quality sensors are installed across the city to measure air pollution
concentrations in real time [FRD17, SHT15a, CLL+14b, XCL+16].However,
the raw measurements of these deployments often lack sufficient
accuracy due to sensor noise, inter-device differences or environmental
interference [JHW+16a, MZT18a].

An effective approach to improve the data quality of air quality
sensors is calibration [XBP+12, SHT15a, LDC18b, MZT18a]. To calibrate
a low-cost sensor, its measurements are transformed in a way that
the calibrated measurements agree with the measurements of a highly
accurate reference. While air quality sensors are usually calibrated
before deployment (pre-deployment calibration), the calibration parameters
still need to be frequently adjusted in the field after deployment (post-
deployment calibration) [MZT18a]. It is reported that the calibration
parameters may drift within one month after sensor deployment without
re-calibration [MMH17b].

Challenges. Post-deployment calibration is challenging particularly
for large-scale static air pollution monitoring deployments. This is
because once deployed, these sensors tend to have irregular or even
no access to references. Figure 3.1 shows a real sensor deployment
for PM2.5 monitoring in Beijing, China. Among the 1, 000 PM2.5 sensors
deployed, only 7 are installed next to highly accurate reference stations.
Most existing post-deployment calibration schemes focus on mobile
deployments, where virtual references are created when sensors meet
in space and time, i.e., sensor rendezvous [XBP+12, SHT15a, XCL+16,
MZST17b]. However, since the sensors do not physically meet in a
static deployment, rendezvous-based calibration does not apply. A few
pioneer proposals [TYIM05, MMH17b] leverage special situations when
pollution concentrations are expected to be uniform in certain regions to
calibrate sensors in a static deployment. This approach offers calibration
opportunities of near-zero concentrations and is only useful for simple
offset and gain calibration [MZT18a]. Yet the calibration model for
PM2.5 can be complex [CLL+14b, LDC18b] and needs to be derived with
measurements covering a wide concentration range. It remains open
how to calibrate a PM2.5 sensor without access to a reference, a common
problem faced in urban-scale static deployments.

Our Approach. To conduct post-deployment calibration for static
sensor deployments, we take an approach inspired by calibration
transfer [ZTK+11, YZ16] in pre-deployment calibration. Calibration transfer
is a calibration paradigm for sensors without access to references (target
sensors) leveraging those with access to references (source sensors). It
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Figure 3.1: An illustration of sensors deployed in Beijing, China for PM2.5 monitoring.
Among the 1000 sensors deployed, only a few are installed close to the public
environment monitoring stations, which are used as reference stations.

calibrates a target sensor by transferring the calibration parameters of
a source sensor to a target sensor. The method has been adopted
to reduce the pre-deployment calibration overhead in mass sensor
production [ZTK+11, YZ16, YKZ18]. A pre-requisite of conventional
calibration transfer is that measurements of the source and target sensors
should be synchronized, i.e., the two sets of measurements from both
sensors can be organized into pairs, in which both measurements are
made upon the same ground truth. Synchronized measurements are
guaranteed in pre-deployment calibration by putting both the source and
the target sensors in the same testing environment. However, for post-
deployment calibration, there is often limited, if any, prior knowledge
on which pair of measurements from the source and the target sensors
are made upon the same ground truth. That is, the measurements are
largely unsynchronized. Hence conventional calibration transfer for pre-
deployment calibration cannot be directly applied to post-deployment
calibration.

In this chapter, we ask the question: can we transfer the calibration
parameters of source sensors to a target sensor, when no synchronized
measurements are available? We formulate the question as an unsynchronized
calibration transfer problem, which aims to learn a transformation of
the calibration parameters of the source sensors, and applies the
transferred calibration on the target sensor to achieve high accuracy,
even if the measurements of the source and the target sensors are
unsynchronized. Note that unsynchronized measurements are not



48 Chapter 3. In-field Calibration Transfer for Air Quality Sensor Deployments

comparable, and it can be erroneous to directly learn a transformation
using unsynchronized measurements. Although it is difficult to solve
the generic unsynchronized calibration transfer problem, we make a key
observation that helps to solve the unsynchronized calibration transfer
problem for urban air pollution monitoring deployments. Specifically, we
observe that the PM2.5 concentrations at two separate yet sufficiently close
locations during the same period of time exhibit similar distributions. It
implies that for a source sensor and a target sensor deployed at different
locations, the ground truth concentrations of their measurements during
the same period of time conform to similar distributions. Using this
similarity between distributions of ground truth as a common reference,
we develop a solution called statistical calibration transfer to this special
unsynchronized calibration transfer problem.

On this basis, we propose In-field Calibration Transfer (ICT), an
optimization based solution to the unsynchronized calibration transfer
problem for static air quality sensor deployments. ICT has three technical
novelties.

• We introduce statistical calibration transfer, which makes use of the
similarity in distributions of the ground truth at different locations as
common references rather than rely on synchronized measurements.
Statistical calibration transfer learns the transformation from the
estimated distribution of measurements using a novel optimization
objective, which can be solved via Bayesian optimization.

• We reduce the search space in statistical calibration transfer
by assuming a linear transformation between the calibration
parameters between the source and target sensors. This assumption
has been tested in labs [ZTK+11, YZ16, YKZ18] and we extend it into
in-field scenarios.

• We further improve the accuracy of statistical calibration transfer
by using an extra air pollution inference engine to generate PM2.5

concentration level estimates for the target location. We augment
the original optimization objective of statistical calibration transfer
with an additional term. We empirically show that even coarse-
grained PM2.5 concentration levels suffice to improve the calibration
accuracy.

Contributions and Roadmap. The main contributions of this work
are summarized as follows. (i) To the best of our knowledge, ICT is
the first solution to the unsynchronized calibration transfer problem for
low-cost air quality sensors. It offers a practical solution to conduct
post-deployment calibration for large-scale static urban air pollution
monitoring deployments. (ii) We evaluate the performance of ICT on
real deployment data and experimental results show that ICT is able to
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provide approximately equally good calibration performance as if the
target sensors have direct access to references, which could potentially
increase the usability of large-scale air pollution monitoring sensor
deployments.

In the rest of the chapter, we first review relevant literature (Section 3.2)
and present the background and the problem (Section 3.3). Then we
elaborate on the ICT (Section 3.4) and its evaluation (Section 3.5). Finally
we conclude this work (Section 3.6).

3.2 Related Work

Our work is a post-deployment sensor calibration scheme for static air
pollution monitoring deployments. It is inspired by applications of
transfer learning in sensor calibration. We review the closely related
literature below.

3.2.1 Post-deployment Calibration for Air Quality Sensors

Although low-cost air quality sensors are usually calibrated before
installation, periodic post-deployment calibration is still necessary to
ensure long-term data accuracy of urban air pollution monitoring
systems. Unlike pre-deployment calibration, where every sensor has a
reference e.g., in labs, a unique challenge in post-deployment calibration
is the lack of references. Virtual references can be created if the sensors
are mobile and meet in space and time, i.e., sensor rendezvous [XBP+12].
Sensors in a rendezvous are supposed to sense the same phenomenon
and can be utilized as references for calibration [SHT15a, MZST17b].
However, rendezvous-based calibration only applies to mobile sensors
and a sensor with no rendezvous cannot be calibrated [FRD17].

For static sensors, post-deployment calibration is viable by exploiting
situations where all sensors measure the same pollution concentrations
so that they can share the same reference for calibration. Tsu-
jita et al. [TYIM05] the NO2 concentrations are almost uniform within
the city if the concentrations are low. Thus they propose to calibrate
the offset of NO2 sensors deployed in the city to four references once a
NO2 concentration below 10 ppb is reported. Mueller et al. [MMH17b]
assume that O3 and NO2 concentrations are uniform during night at
inner city locations and during the afternoon at outer city locations.
Correspondingly, the sensors in the inner/outer city can be calibrated
to a remote reference in the inner/outer city during night/afternoon.

Our work is also a post-deployment calibration scheme for static
sensors, but differs from existing efforts in two-fold. (i) Previous studies
on gas sensors [TYIM05, MMH17b] are built upon linear calibration
models. As we will show in Section 3.3.2, linear models are insufficient
for dust sensors e.g., PM2.5 in our case. (ii) The calibration opportunities
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in [TYIM05, MMH17b] only provide near-zero concentrations, which
will yield large calibration errors if they are used in complex non-linear
calibration models (see the NZ-ICT baseline in Section 3.5). Therefore
these two prior studies are not directly applicable to in-field PM2.5

calibration transfer. In contrast, our work applies to both simple and
complex calibration models.

3.2.2 Transfer Learning in Sensor Calibration

Transfer learning is a machine learning paradigm aims to improve the
learning of the target predictive function in the target domain using the
knowledge in a source domain and a source learning task [PY10a]. It has
broad applications in text mining [PTKY11], computer vision [OBLS14],
urban computing [WZY16, GLZ+18], etc.

In the sensor and measurement research, the concept of transfer
learning has been mainly applied in calibrating electronic noses (e-
noses). E-noses are sensor arrays for hazardous odor detection. Due
to their significant inter-device differences, per-instrument calibration
is necessary, and transfer learning is utilized to reduce the calibration
overhead in mass production [ZTK+11, FFGG+16, YZ16, YKZ18]. Assume
a source e-nose and a target e-nose. The raw measurements of the target
are first standardized to those of the source e-nose. Then the source e-nose
is calibrated to a reference and finally the calibration parameters can be
directly adopted on the target e-nose.

Our work is inspired by the concept of calibration transfer in e-noses.
However, most e-nose calibration transfer studies are performed in labs
for pre-deployment calibration while we focus on in-field calibration transfer
for post-deployment calibration. The former assumes the source and the
target sensors are measuring the same phenomenon in the same lab
setting, i.e., synchronized. Yet the latter is more challenging because
the source and the target sensors are installed at different locations and
their measurements are largely unsynchronized.

3.3 Problem Definition and Analysis

In this section, we first introduce the basics of sensor calibration
(Section 3.3.1) and then conduct a measurement study on a PM2.5

monitoring deployment to motivate the need for calibration transfer
(Section 3.3.2). Finally we formally define the unsynchronized calibration
transfer problem (Section 3.3.3).

3.3.1 Primer on Air Pollution Sensor Calibration

Calibration is an efficient approach to improve the data quality of low-
cost sensors. It finds a calibration model that maps the measurements of
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a low-cost sensor to those of an accurate reference sensor [MZT18a]. Given
a set of measurements X = {x1, x2, . . . , xN} of a low-cost sensor and a set
of measurements Y = {y1, y2, . . . , yN} of a reference sensor, a calibration
model C establishes a relationship between X and Y such that certain
error metric between the calibrated measurements C(X) and the reference
measurements Y is minimized. There has been extensive research
on how to derive calibration models suited for different air pollution
sensors and error sources. We refer interested readers to [MZT18a] for a
comprehensive review.

For air pollution sensors, it is crucial to conduct both pre-deployment
and post-deployment calibration. Pre-deployment calibration identifies the
proper calibration model, while periodic post-deployment calibration is
important to maintain the data quality of long-term deployment. One
major challenge in post-deployment calibration is the lack of reference
sensors to re-calibrate the low-cost sensors. This is particularly the case
for large-scale static air pollution sensor deployments, which our work
focuses on.

3.3.2 Measurement Study

This subsection presents a measurement study on a real-world PM2.5

sensor deployment to motivate the need for calibration transfer.
Specifically, the measurement study aims to answer three questions: (i)
Is a linear calibration model sufficient for PM2.5 sensor calibration? (ii) Is
it necessary to periodically re-calibrate PM2.5 sensors? (iii) Is it feasible
to directly apply calibration parameters of one sensor to sensors at other
locations?

Sensor Deployment and Dataset. We collect measurements from a
large-scale PM2.5 monitoring system deployed in Beijing, China. It
consists of 1, 000 low-cost sensors measuring PM2.5, temperature and
humidity (see Figure 3.1). In addition to PM2.5 concentration, the PM
sensor [Yun18] in each sensor box (see Figure 3.2-(b)) also reports 12 low-
level features. Each sensor uploads its readings to a back end server
every minute. Among the 1, 000 low-cost sensors, only 7 (denoted
as S1 to S7 in Figure 3.2-(a)) are installed next to highly accurate air
pollution monitoring stations as references (see Figure 3.2-(c)). The
remaining sensors have no access to the reference stations. The low-
cost PM2.5 sensors are based on light scattering principles [Yun18], while
the reference stations are based on beta-attenuation or tapered element
oscillating microbalance method [oEE18].

For the measurement study, we collect readings (PM2.5 concentration
and the 12 low-level features) from the 7 sensors as well as the
PM2.5 readings from the corresponding 7 reference stations as ground
truth [Bei18]. The dataset collected covers a time period of 10 months
from October 1, 2017 to July 31, 2018.
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Figure 3.2: Illustration of sensor deployment. (a) Locations of sensors (S1 to S7) with
access to public reference stations (R1 to R7). (b) Hardware of sensor. (c) Installation of
a sensor next to a reference station.

Table 3.1: MAEs of different calibration models.

Calibration Model Raw Data Multiple Regression Random Forest

MAE 30 22 9

Whether a Linear Calibration Model is Sufficient for PM2.5 Calibration.
While linear calibration models are prevalent in gas sensor calibra-
tion [TYIM05, MMH17b], non-linear models are often needed for dust
sensor calibration such as PM2.5 [LDC18b]. Table 3.1 shows the mean
absolute errors (MAE) of applying the popular linear (multiple linear
regression [TYIM05, MMH17b]) and non-linear (random forest [LDC18b])
models to calibrate the raw measurements of the low-cost PM2.5 sensor
with reference to their co-located highly accurate reference station. MAE
is a widely used metric to evaluate the data accuracy of air pollution
sensors [MZT18a]. For PM2.5 concentration, a MAE below 10 is considered
accurate for data mining applications [BJZOV17b]. The evaluation is
conducted on the sensor node S6 and the MAEs are averaged over 10
months (October 1, 2017 to July 31, 2018). For each month, 70% of the data
are used for training and 30% for testing to calculate the MAEs of different
calibration methods. The results show that linear calibration models fail to
yield satisfactory accuracy of calibration on PM2.5 sensors. This suggests
that previous calibration transfer studies [TYIM05, MMH17b], which are
built upon linear calibration models, are not directly applicable. In the
rest of this chapter, we take the random forest described in [LDC18b] as
the calibration model for PM2.5 sensors.

Whether Periodic Calibration is Necessary. Figure 3.3a shows the MAEs
of the uncalibrated raw measurements of Sensor S1, and two different
calibration approach applied on it. The first approach is to train the
calibration model on the 70% training set in the first month, and then test
it on the 30% testing set in the next 7 months. The second approach is
to directly train the calibration model on the current month’s training
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Figure 3.3: MAEs of directly applying the calibration model learned from measurements
of S1 collected in first month to calibrate (a) measurements of S1 collected from second
month to the eighth month and (b) measurements of the other 6 sensors (S2 to S7)
collected in the first month.

set and test on the testing set. As shown in the figure, the second
approach provides lower MAEs. This result indicates that the optimal
calibration parameters for the same sensor do vary over time. It may
induce large errors by directly adopting a previously trained calibration
model to calibrate even the same sensor after a long period of time.

Whether One Set of Calibration Parameters is applicable to Sensors
at Different Locations. Figure 3.3b plots the MAEs by applying the
calibration model of S1 to calibrate the PM2.5 measurements of the other 6
sensors collected in the same month. The results show that the MAEs can
be even larger than those of the raw measurements without calibration,
which indicates that the optimal calibration parameters for sensors at
different locations can differ significantly. Therefore, the calibration
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Source Location Target Location

R sA tA

sX tXsY

sC F t sC C FF

Figure 3.4: An illustration of calibration transfer problem. A source sensor As is co-
located with a reference sensor R at the source location, while a target sensor At has
no access to any reference at the target location. Their measurements are Xs, Ys, and
Xt, respectively. A calibration model Cs for As can be learned from Xs and Ys. The
calibration transfer problem tries to derive a function F using Xs and Xt such that the
calibration model Cs can be transferred to At, where the calibration model for At can be
calculated as Ct = Cs ◦ F.

model learned for one sensor requires to be adapted (transferred) to be
used on other sensors.

Summary. PM2.5 sensor calibration needs non-linear models e.g., random
forests. It is necessary to conduct periodic re-calibration for each deployed
sensor, which can be expensive and labor-intensive. This is particularly
the case when large numbers of sensors are static and have no access to
the references. To reduce the overhead of post-deployment calibration,
we explore to transfer the calibration results from source sensors (with
access to references) to target sensors (without access to references).

3.3.3 Unsynchronized Calibration Transfer Problem

For ease of presentation, we explain our problem by using one source
sensor and one target sensor (Figure 3.4). We discuss extensions to multi-
source scenarios in Section 3.4.4. The calibration transfer problem is
defined as follows.

Denote As as a source sensor, which is co-located with a highly accurate
reference station Rs. We use Xs = {x(i)

s }Ns
i=1 to represent the measurements

of As, where x(i)
s ∈ Rd is the ith measurement, i.e., a d-dimension

feature vector, and Ns is the number of measurements of As. Similarly,
Ys = {y(i)

s }Ns
i=1 represents the measurements of Rs, where y(i)

s ∈ R is the ith

measurement, i.e., the ground truth PM2.5 concentration corresponding to
the measurement x(i)

s . Then a calibration model Cs : Rd → R can be learned
for the source sensor As from Xs and Ys, as discussed in Section 3.3.1 by
minimizing ‖Ys − Cs(Xs)‖2F, where ‖ · ‖F is the Frobenius Norm. Finally,
denote At as a target sensor, and Xt = {x(i)

t }Nt
i=1 as its measurements (x(i)

t ∈ Rd,
and Nt is the number of measurements of At). Yt is used to denote the
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corresponding ground truth PM2.5 concentration at the target location.
The calibration transfer problem aims to find a transformation function
F : Rd → Rd, such that ‖Yt −Cs(F(Xt))‖2F is minimized. In other words, the
calibration model Cs for As is transferred to Ct = Cs ◦ F for At.

There are two types of calibration transfer problems, synchronized
calibration transfer problem and unsynchronized calibration transfer
problem. The former assumes that the measurement set Xs and Xt

are synchronized, i.e., Ns = Nt = N and for each i = 1 . . .N, and we
have y(i)

s = y(i)
t . This type of calibration transfer can be solved by direct

standardization [FFGG+16], which assumes the transformation function F
to be linear. It has been applied to calibrate large numbers of instruments
in labs when it is time-consuming to learn a (often complex) calibration
model for each instrument [ZTK+11, FFGG+16, YZ16, YKZ18]. In our
particular interest is the latter, i.e., unsynchronized calibration transfer
problem, where Yt is not known, and Xt cannot be synchronized to Xs. This
is the common case for static air pollution sensor deployments. In this
case, it remains open how to learn F from Xt and Xs, which is the focus of
this work.

3.4 In-field Calibration Transfer

To solve the unsynchronized calibration transfer problem, we propose
ICT (in-field calibration transfer). We elaborate each technique in ICT for
single-source calibration transfer, including statistical calibration transfer
(Section 3.4.1), exploiting linearity of the transformation (Section 3.4.2),
and exploiting results from spatial predictions (Section 3.4.3). Then we
extend ICT to the multi-source scenario (Section 3.4.4).

3.4.1 Statistical Calibration Transfer

Main Idea. One fundamental challenge in the unsynchronized calibration
transfer problem is that Yt is unknown, so there is no common reference
to synchronize Xt and Xs. The key idea of our solution is based on
the following assumption: for the same period of time, and when the
distance between As and At are small enough, we have p(Ys) ≈ p(Yt),
where p(·) denotes the probability distribution. Based on this assumption,
it is possible to find the transformation function F by solving the following
optimization problem:

argmin
F

dKL[p̂(Ys), p̂(Cs(F(Xt)))] (3.1)

where p̂ is a histogram density estimator, and dKL[·, ·] is the Kullback-
Leibler (KL) divergence. Instead of synchronizing individual measure-
ments, we learn the transformation F by minimizing the difference
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Figure 3.5: The ground truth distribution of reference sensor R6 and R7, co-located near
the low cost sensor S6 and S7, respectively, as shown in Figure 3.2. The distribution of
different reference sensors in the same month is similar, while the distribution of even
the same sensor among different months varies a lot.

between the estimated distribution of calibrated target measurement and the
ground truth at source location.

While conventional calibration transfer requires explicit pre-
knowledge of Yt, such that both measurement sets Xs and Xt can be
synchronized accordingly, our statistical calibration transfer loosens this
requirement: when the distributions of ground truth in both location,
p(Ys) and p(Yt), are known to be similar, it is enough to transfer the
calibration.

Empirical Validation of Key Assumption. The effectiveness of statistical
calibration transfer relies on the key assumption that for the same period
of time, and when the distance between As and At are small enough, we
have p(Ys) ≈ p(Yt). This assumption is built upon our observation that
during the same period of time, when the source location and target location
both locate near to each other (e.g., in the same city), the distributions of
the true PM2.5 concentrations in both location are similar. Below we
empirically demonstrate this observation.

While the PM2.5 concentration usually varies in space and time,
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its distributions over a certain period of time may be similar at
different locations because of e.g., similar land-use and pollution sources.
Figure 3.5 plots the ground truth PM2.5 concentrations measured by
reference stations R6 and R7, co-located next to the low-cost sensors S6
and S7 shown in Figure 3.2 over two different months. Figure 3.5a and
Figure 3.5b shows the histogram and density distributions of reference
sensor R6 and R7 during May, 2018, which are quite similar to each
other. The same phenomenon can also be observed in Figure 3.5c and
Figure 3.5d. However, on the other hand, the distribution in different
months of the same reference sensors varies greatly (e.g., Figure 3.5a vs.
Figure 3.5c).

To explore whether this observation is an artefact of the Beijing dataset,
we collect PM2.5 measurements from public stations in three other major
cities in China, Tianjin, Shanghai and Shenzhen, which are 130, 1200 and
1900 kilometres away from Beijing, respectively. From each of these cities,
9 public stations are selected. KL divergence is calculated between the
monthly PM2.5 concentration distributions of two sensors, and averaged
over the 12 months from October, 2017 to October, 2018. The results are
shown in Figure 3.6.

In Figure 3.6-(a)–(d), we calculate the KL divergence among PM2.5

measurement distributions of different public stations located within
each of the four cities. The overall KL divergence of the other three
cities is at the same low level as Beijing. As shown in Section 3.5, the
similarity among the measurement distributions within Beijing suffices
for our ICT to provide a solid calibration performance. Since the same
level of similarity is also observed in other cities, we believe that ICT is
generally applicable to intracity post-deployment calibration problems.

To further investigate the similarity of PM2.5 measurement distribu-
tions from sensors in different locations, we compare sensors located in
different cities with each other and summarise the results in Figure 3.6-
(e)–(g). As shown in the figure, the PM2.5 measurement distributions in
Beijing & Tianjin have higher similarity than Beijing & Shanghai, which
then have higher similarity than Beijing & Shenzhen. In general, we
observed that the similarity of PM2.5 measurement distributions between
two cities is negatively correlated to the geological distance between them.

We make the following comments on the usage of the observation.

• We only consider mapping the measurements between the source
and the target collected during the same period of time in statistical
calibration transfer. We do not consider transferring measurements
of different months because their distributions are likely to differ
due to seasonal changes.

• We limit the spatial range between the source and the target within
a city for statistical calibration transfer. It is also possible that
the observation may not hold at certain locations within the city.
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Nevertheless, as we will introduce in Section 3.4.4, our method still
works because it can regard these locations as negative transfer
samples with the help of multi-source calibration transfer.

3.4.2 Exploiting Linearity of Transformation Function F
As discussed earlier, direct standardization [FFGG+16] learns F directly
from Xs and Xt. Previous studies [ZTK+11, FFGG+16, YZ16, YKZ18] have
assumed that the transformation function F to be linear and have shown
that this assumption works well for gas sensors in labs. We extend this
assumption to in-field scenario, i.e., we assume transformation function
F is also a linear function in in-field situation.

The experiment results Section 3.5 shows that this assumption allows
ICT to provide decent calibration accuracy, while notably reducing the
searching space of F and increases the efficiency of the algorithm.

3.4.3 Exploiting Spatial Prediction Results

In practice, sometimes there are inferences of the ground truth at the target
area provided by other methods, e.g., air quality map. The performance
of ICT can be further improved by making use of these inferred target
ground truth, denoted as Y′t. Specifically, a new term can be added to
Eq. (3.1):

argmin
F

dKL[p̂(Ys), p̂(Cs(F(Xt)))] + λ · dc[Y
′
t,Cs(F(X

′
t))] (3.2)

where dc[·, ·] is a measure of distance between two sample sets and λ is a
parameter used to adjust the influence of the inferred target ground truth.

In this work, we take PM2.5 concentration levels inferred by an air
quality map as Y′t at the location of the target sensor. Instead of accurate
PM2.5 concentration, Y′t consists of integer value ranging from 1 to 6, which
represent different PM2.5 concentration levels. Hence dc[·, ·] in Eq. (3.3) is
defined as the classification error rate. As we will show in the evaluation
section, a small fraction of inferences with high confidence suffices to
provide considerable improvement in calibration transfer.

In ICT, we apply Gaussian process regression [CLL+14b] for inferred
ground truth generation. While other models for air quality inference
also apply, we choose Gaussian process regression for its simplicity and
efficiency. We take sensor readings from high quality public stations, GPS
location information, eight categories of POI data (culture & education,
parks, sports, hotels, shopping malls & supermarkets, entertainment,
decoration & furniture markets, and vehicle services) and meteorological
data (temperature, humidity, wind speed, wind direction) as the input
of the spatial predictor and the output is y′t

(i) with an according variance
σ(i)

t , which indicates the confidence of the prediction. We only use the
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prediction data y′t
(i) with σ(i)

t smaller than some threshold τ. We form a
prediction set Yτt = {y′t(i)|σ(i)

t < τ} and its corresponding measurement set
from target sensor Xτt , and Eq. (3.2) then becomes

argmin
F

dKL[p̂(Ys), p̂(Cs(F(Xt)))] + λ · dc[Yτt ,Cs(F(Xτt ))] (3.3)

3.4.4 Extension to Multi-source Calibration Transfer

This subsection extends ICT to support calibration transfer from multiple
source sensors. The main challenge is to select the most promising sources
to avoid negative transfer [GGN+14].

To support multi-source selection and transfer, we first need to
quantify the differences between the environment of the source sensors
and that of the target sensor. We use a classifier induced divergence
measure called H distance [KBDG04] which measures the divergence
that only affects the classification accuracy. We use Ds to represent the
source domains, which has reference sensors and calibration models,
while Dt is used to represent the target domain. We want to transfer
the models learned in Ds to the target domain Dt. Then, we use
dy
H (Ds,Dt) to represent the distance between the source environment

and the target environment. The smaller the distance, the more similar
the two environments are. We define the similarity between a source and
the target as below.

Φy(s, t) = 1 − dy
H (Ds,Dt) (3.4)

Then we select the most promising sources according to their relative
similarity weight, which is defined as:

Ψ
(
sj

)
=
Φ

(
Dsj ,Dt

)
∑m

s=1Φ (Ds,Dt)
(3.5)

where sj is the jth source domain among m source domains, and Ψ
(
sj

)
is the weight used for ensemble. We can use these similarity weights to
calculate the ensemble calibration transfer result. The similarity between
feature values of the source and target domains reflects the similarity of
domains. If a pair of domains are more similar, we can rely more on the
calibration transfer result between them and put more weight on it.

Algorithm 1 shows the entire process of ICT for multi-source in-field
calibration transfer.

3.5 Experimental Evaluation

This section presents the evaluations of ICT. We introduce the experiment
setups (Section 3.5.1), present the overall performance (Section 3.5.2),
and then conduct micro-benchmark evaluations to understand the
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Algorithm 1: In-field calibration transfer
Input: m source measurement and ground truth pairs (Xsj ,Ysj ), target

measurements Xt, certainty threshold τ, readings from other high
quality public stations, GPS location information, POI data, and
meteorological data

Output: Ensembled calibrated measurements of target sensor Ye
t

1 Conduct spatial prediction and forms the data tuple (Xτt ,Y
τ
t )

2 for each source sensor j ∈ 1...m do
3 Get calibration model Csj of source sensor Asj using the data pairs (Xsj ,Ysj )
4 Using the Bayesian optimization to solve the objective function and get

transformation matrix Fj

5 Calculate the similarity weightΨ
(
sj

)
6 end

7 Ye
t =

∑m
j=1Ψ

(
sj

)
(Csj (Fj(Xt)))

8 return Ye
t

performance of each module in ICT (Section 3.5.3). Finally we conduct a
case study on pollution source localization as an application of calibration
transfer (Section 3.5.4).

3.5.1 Experiment Setup

Datasets. We mainly evaluate the performance of ICT using measure-
ments from the 7 low-cost sensors, denoted as S1 . . . S7, which are installed
next to public stations (Figure 3.1). These public stations are also called
reference stations, denoted as R1 . . .R7. For each sensor, we collect the
12 low-level features as well as its PM2.5 readings, which is called a
measurement. The PM2.5 concentration recorded by each reference station
is collected as ground truth. Each measurement and ground truth at the
same time are formed as a tuple. We collect one tuple per hour for 10
months (from October 1, 2017 to July 31, 2018), which covers various
weather conditions and PM2.5 concentration range. In total, there are
more than 50,210 tuples. In our experiments, 70% of the collected data
are used as training set, and 30% as test set.

Note that ICT also needs data to infer ground truth via spatial
prediction (see Section 3.4.3). To built up the spatial prediction model,
we collect PM2.5 concentration data from all the 35 public stations
in Beijing [Bei18] (including R1 . . .R7), meteorological data [The18]
(including temperature, humidity, wind speed, wind direction), GPS
location information, as well as POI data [Inc21] (see Section 3.4.3 for
details) for the same time period.

Metrics. Mean absolute error (MAE) after calibration is the main
metric used to assess the performance of ICT. To make the results more
semantically useful for end users, we also calculate the classification
accuracy on the officially defined 6 discrete PM2.5 levels [CLL+14b], which
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is indicated as L1 . . . L6.

Baselines. The following baselines are used.

• Direct Transfer: It directly use the calibration parameters of a source
sensor to a target sensor without any transformation.

• TCA: It is a popular transfer learning method in computer vision.
Some research [MZT18a] suggests it is also a potential solution to
calibration transfer. TCA [PTKY11] calculates a common transfer Φ
which applies on both Xs and Xt. The source calibration model Cs is
learned by minimizing ‖Ys − Cs(Φ(Xs))‖2F, rather than ‖Ys − Cs(Xs)‖2F.
This source calibration is then applied on the transformed target
measurement, i.e., CS(Φ(Xt)), which is evaluated with the ground
truth Yt. We use TCA with a polynomial kernel to reduce the feature
space to 10 dimensions, i.e., Φ(x(i)

s ) ∈ R10.

• NZ-ICT: It represents ICT using only near-zero measurements as
references. Some studies on gas sensors [TYIM05, MMH17b] use
near-zero measurements for calibration transfer. We consider PM2.5

concentrations under 35, i.e., level 1 as near zero data, and feed them
into the standard ICT for calibration transfer.

When comparing the performance of the above baselines in multi-source
calibration transfer scenario, we use the corresponding ensemble solution
of these methods.

3.5.2 Overall Performance

Table 3.2, Table 3.3, Table 3.4 and Table 3.5 show the results of single-source
calibration transfer using different methods for all of the seven sensor
pairs. The MAEs greater than 20 are marked in red. As is shown, direct
transfer has the worst MAEs. TCA and NZ-ICT yields smaller MAEs but
there are still some large MAEs marked in red. In contrast, all the MAEs
of ICT are below 18. Worth mentioning is that the emboldened diagonal
elements of these three tables represent the calibration transfer of the 7
sensors with themselves. In other words, they are directly calibrated with
their co-located reference stations R1 . . .R7. As we can see from Table 3.5,
the performance of ICT (non-diagonal elements) is already close to that
of direct calibration (diagonal elements). This can be seen as a proof of
the effectiveness of ICT.

Table 3.6 shows the cross-validation results using multi-source
calibration transfer. Each sensor is set as target sensor and we transfer
the calibration model from all other sensors. Again, direct calibration
represents the performance of the calibration model learned directly using
target sensor data and the the ground truths, which can be seen as the
best possible performance for any calibration transfer method. The result
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Table 3.2: Direct transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur

ce
se

ns
or

S1 10 14 15 21 36 28 17
S2 13 12 12 12 31 22 15
S3 18 18 9 9 28 17 12
S4 25 21 13 7 25 14 14
S5 53 49 42 34 11 26 43
S6 39 36 24 15 22 10 24
S7 19 19 12 15 30 18 9

Table 3.3: TCA transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur

ce
se

ns
or

S1 10 19 24 23 19 28 15
S2 19 12 18 13 22 27 18
S3 21 15 9 12 18 17 21
S4 30 19 10 7 12 18 19
S5 18 18 29 12 11 17 18
S6 21 32 15 25 22 10 31
S7 29 15 14 15 18 22 9

Table 3.4: NZ-ICT transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur

ce
se

ns
or

S1 10 17 18 22 24 23 16
S2 17 12 19 15 26 31 20
S3 17 16 9 15 22 19 18
S4 36 22 13 7 13 21 17
S5 31 29 22 24 11 19 25
S6 31 22 17 21 17 10 26
S7 22 17 12 18 23 17 9

Table 3.5: ICT transfer result

target sensor
S1 S2 S3 S4 S5 S6 S7

so
ur

ce
se

ns
or

S1 10 15 12 13 14 13 13
S2 12 12 12 9 14 10 13
S3 13 14 9 10 15 10 12
S4 13 13 11 7 15 9 11
S5 13 15 12 11 11 14 16
S6 13 13 11 7 14 10 11
S7 13 16 11 11 17 10 9

shows that ICT in the multi-source scenario achieves the best performance
among all the methods, and it provides an almost equal performance as
the direct calibration.

Table 3.6: Cross-validation results using multi-source calibration transfer

S1 S2 S3 S4 S5 S6 S7

Ensemble Direct Transfer 23 20 19 16 24 28 17
Ensemble TCA 18 17 18 15 14 14 15
Ensemble NZ-ICT 16 18 17 14 18 21 14
Ensemble ICT 11 12 10 8 11 8 11
Direct Calibration 10 12 9 7 11 10 9

3.5.3 Micro-benchmarks

In this series of experiments, we set S6 as the target sensor and the other
six sensors (S1 . . . S5,S7) as the source sensors, and evaluate the impact of
different techniques in ICT on the overall performance.
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Table 3.7: Direct transfer matrix
MAE=36, Acc=0.48

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 444 265 16 2 3 0 0.61

R
e

ca
ll

L2 26 228 169 15 3 3 0.51
L3 1 4 89 120 75 8 0.30
L4 1 0 4 22 109 17 0.14
L5 0 0 6 5 47 119 0.27
L6 0 0 0 0 0 62 1.00

0.94 0.46 0.31 0.13 0.20 0.30
Precision

Table 3.8: TCA transfer matrix
MAE=17, Acc=0.68

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 516 211 1 2 1 0 0.71

R
e

ca
ll

L2 25 391 15 1 2 0 0.90
L3 0 120 137 33 6 1 0.46
L4 1 9 42 81 20 0 0.53
L5 0 8 8 29 119 13 0.67
L6 0 0 0 0 39 23 0.37

0.95 0.53 0.67 0.55 0.64 0.62
Precision

Table 3.9: NZ-ICT transfer matrix
MAE=24, Acc=0.58

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 685 43 3 0 0 0 0.94

R
e
ca

ll

L2 147 275 11 0 1 0 0.63
L3 2 208 83 2 2 0 0.28
L4 1 13 130 9 0 0 0.06
L5 0 10 57 86 24 0 0.14
L6 0 0 0 12 48 2 0.03

0.82 0.50 0.29 0.08 0.32 1.0
Precision

Table 3.10: ICT transfer matrix
MAE=13, Acc=0.78

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 577 146 5 2 1 0 0.79

R
e
ca

ll

L2 27 351 53 1 2 0 0.81
L3 1 34 239 17 5 1 0.80
L4 1 2 38 99 12 1 0.65
L5 0 1 14 25 135 2 0.76
L6 0 0 0 0 26 36 0.58

0.95 0.66 0.68 0.69 0.75 0.9
Precision

Performance of Single-source Calibration Transfer. Here we show the
calibration transfer results from S7 to S6. Table 3.7 shows the performance
of direct transfer. The MAE is 36 and the classification accuracy of the 6
PM2.5 levels (L1 . . . L6) is only 0.48, which are almost unusable. Table 3.8
shows the results of TCA. The MAE decreases to 17 and the overall
accuracy improves to 0.68. Table 3.9 shows the results of NZ-ICT. Using
only near-zero measurements as references, NZ-ICT provides only MAE
of 24 and accuracy of 0.58, which is even not as good as TCA. Finally,
Table 3.10 shows the results of our ICT, with λ in Eq. (3.3) set to 0.3. The
MAE and classification accuracy is improved to 13 and 0.78, respectively.
Moreover, the recall of each level is generally better than the other three
methods.

Performance of Multi-source Calibration Transfer. Table 3.11 shows
the resulting ensemble weights. The weights of S5 and S7 are relatively
large because they are close to S6 and may have a similar environment.
Table 3.12 shows the results using ensemble direct transfer. The MAE
decreases from 36 in the single-source scenario to 28 in the multi-source
scenario, and the accuracy improves from 0.48 to 0.55. Ensemble TCA also
achieves a better result than the single-source scenario, with MAE = 14
and Acc = 0.76, as shown in Table 3.13. Ensemble NZ-ICT acquires
only a slightly better transfer result when compared with ensemble direct
transfer, with MAE = 21 and ACC = 0.621, as shown in Table 3.14. Using
the full ensemble ICT approach, however, the final MAE is improved
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Table 3.11: Ensemble weights for different source sensors.

Source Sensor S1 S2 S3 S4 S5 S7

Ensemble Weight 0.07 0.16 0.15 0.13 0.22 0.27

Table 3.12: Ensemble direct transfer
MAE=28, Acc=0.55

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 470 242 15 1 3 0 0.64

R
e

ca
ll

L2 18 264 136 12 2 2 0.61
L3 1 7 120 119 46 4 0.40
L4 1 0 5 34 109 4 0.22
L5 0 0 7 7 73 90 0.41
L6 0 0 0 0 0 62 1.00

0.96 0.51 0.42 0.20 0.31 0.38
Precision

Table 3.13: ensemble TCA transfer
MAE=14, Acc=0.76

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 568 153 7 2 1 0 0.78

R
e

ca
ll

L2 24 337 68 3 2 0 0.78
L3 1 25 231 31 6 3 0.78
L4 1 0 27 93 30 2 0.61
L5 0 2 13 17 133 12 0.75
L6 0 0 0 0 10 52 0.84

0.96 0.65 0.67 0.64 0.73 0.75
Precision

Table 3.14: ensemble NZ-ICT transfer
MAE=21, Acc=0.61

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 678 49 4 0 0 0 0.93

R
e
ca

ll

L2 131 289 14 0 0 0 0.67
L3 2 183 106 4 2 0 0.35
L4 1 7 124 20 1 0 0.13
L5 0 9 41 88 39 0 0.22
L6 0 0 0 3 56 3 0.05

0.83 0.54 0.37 0.17 0.39 1.0
Precision

Table 3.15: ensemble ICT transfer
MAE=8, Acc=0.86

Ground Predictions
Truth L1 L2 L3 L4 L5 L6

L1 666 65 0 0 0 0 0.91

R
e

ca
ll

L2 33 372 29 0 0 0 0.86
L3 1 33 243 20 0 0 0.82
L4 0 2 18 115 18 0 0.75
L5 0 1 9 17 142 8 0.80
L6 0 0 0 2 5 55 0.89

0.95 0.79 0.81 0.75 0.86 0.87
Precision

to 8 and accuracy to 0.86, as shown in Table 3.15, which is significantly
better than the other methods. The results show that in general, multi-
source calibration transfer outperforms the corresponding single-source
calibration transfer, and our ensemble ICT also outperforms the other
methods.

Validation of Linear Transformation Function F. To validate the linearity
of the transformation function, we deploy an extra low-cost sensor S6′

near the reference sensor R6. Figure 3.7 illustrates the transformation
function F derived from direct standardization [FFGG+16]. The diagonal
elements represent the linear relationship between the same features
of the two sensors, while the non-diagonal elements can be seen as
the linear relationship between different features, i.e., cross-features or
cross-sensitivity [LCL+12]. As is shown, the diagonal elements are
more dominant than the non-diagonal ones, indicating that F can be
approximated as a linear function.

Impact of Spatial Prediction. In Eq. (3.3), we add the second term
dc[Yτt ,Cs(F(Xτt ))] to the optimization objective to improve the performance
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Figure 3.7: Transformation matrix derived from direct standardization. Blocks marked
with nets are weights greater than 0.5. The diagonal elements are more dominant than
the non-diagonal ones.

of ICT via spatial prediction. Figure 3.8a shows the MAEs of ICT with
and without the help of spatial prediction. For comparison, we also plot
the MAEs using direct transfer. ICT without spatial prediction already
decreases the MAEs from 28 to 11 compared with direct transfer. ICT
with the help of spatial prediction can further reduce the MAEs by 12%.

We are also interested in how many spatial prediction results are
necessary to improve the performance of ICT. We select different fractions
of predicted PM2.5 concentration level Y′t by changing the threshold τ and
forming Yτt . Note that the smaller τ is, the higher average accuracy of
Yτt is. By setting τ = 100, we select around 25% of all predicted PM2.5

concentration level in the location where S6 is installed, which yields an
overall accuracy of 0.96. Then we select different sizes of Yτt and evaluate
the MAEs of ICT.

Figure 3.8b shows the MAEs to transfer calibration parameters from
different sources to S6 using ICT with different sizes of Yτt , ranging from
5% to 25% (the percentage represents ‖Yτt ‖/‖Y′t‖). When the size of Yτt
increases from 5% to 15%, the MAE decreases. However, the decreasing of
MAE stops after that. This suggests 15% of the most accurate predictions
from Y′t is sufficient.

Visualization of Transferred Measurements. To better understand the
cause behind the varying results of four approaches, we use principal
component analysis (PCA) to illustrate the difference between the
transformed measurements of source sensor S7 and target sensor S6,
i.e., Xs and F(Xt). In order to enable a visualization of the results, we
choose the two largest components and show them in a 2 dimensional
visualization in Figure 3.9. Since we have already empirically proven
that the distribution of ground truth in both source and target locations
are similar in Figure 3.5, i.e., p(Ys) ≈ p(Yt), and the same calibration
model is applied on both the transformed measurements of source and
target sensor, we can reasonably assume that the overlapping area of the
largest two components is positively correlated to the calibration transfer
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Figure 3.8: Impact of spatial prediction. (a) Performance of ICT with and without spatial
prediction (dc). (b) Performance using different size of Yτt . The percentage represents
‖Yτt ‖/‖Y′t‖.

accuracy.
In direct transfer, since no transformation is applied, i.e., F(Xt) = Xt,

the PCA results directly represent the original measurements Xs and Xt, as
shown in Figure 3.9a. There are obvious shifts and misalignments shown
in the figure, which could explain the reason why the performance of
direct transfer is limited. TCA tries to correct the shifts between the
measurement features by applying dimension reduction, i.e., removing
less important feature dimensions. As shown in Figure 3.9b, the two
largest PCA components of Φ(Xs) and Φ(Xt) have a larger overlapping
area, which could explain the reason of accuracy improvement. Instead,
ICT does not reduce dimensions and use the original measurement
features to find the linear transformation. Figure 3.9d shows that the
overlapping area between the components of Xs and F(Xt) is much larger
compared to direct transfer and TCA method. Notice that if only the near
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Figure 3.9: PCA visualization between the transformed measurements of source sensor
S7 and target sensor S6. (a) Blue dots represent the largest two PCA components of
Xt from S6, while red dots represent Xs from S7; (b) TCA transfer method; (c)NZ-ICT
transfer method; (d) ICT transfer method.

zero data is used (NZ-ICT), the overlapping area is smaller and has a
visible shift compared with the full ICT, as shown in Figure 3.9c.

3.5.4 Case Study: Pollution Source Location Inference

Due to lack of ground truth of PM2.5 concentrations from co-located
reference stations, it is difficult to evaluate the performance of ICT on
a sensor deployed at an arbitrary location in Beijing. Alternatively, this
subsection aims to indirectly assess the performance of different algorithms
via a case study, in which calibration parameters are transferred from a
single source sensor to tens of target sensors in arbitrary locations within a
certain range. Specifically, we apply different calibration transfer methods
on the raw sensor readings, and compare their performance to infer the
locations of pollution sources from the calibrated sensor readings. The
rationale is that pollution concentrations should be high at locations close
to the pollution sources. Therefore an intuitive way to locate pollution
sources is to firstly generate a heat map of air pollution concentration
from the sensor measurements, then find locations/areas where the
concentration peaks. The accuracy of pollution source localization is
correlated to the accuracy of the calibrated sensor measurements, thus
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Figure 3.10: (a) Locations of 30 low-cost sensors within a 5km× 5km area around S6 and
heat maps generated with measurements of the 30 sensors calibrated by using (b) direct
transfer, (c) TCA and (d) ICT. The ground truth pollution source locations are marked
by stars.

an indirect assessment of the effectiveness of different sensor calibration
algorithms.

We conduct a case study in a 5km × 5km area around S6, where 30
low-cost sensors (including S6) are deployed. Figure 3.10-(a) shows the
locations of the 30 low-cost sensors. The squared spot is the location of
the high-cost reference station co-located with S6. We focus on this area
because we have access to the ground truth locations of the pollution
sources of PM2.5 within this area, which is generally inaccessible for other
areas in Beijing. We use the pollution source locations as the ground truth
for pollution source location inference. We perform calibration transfer
using three methods: (i) direct transfer, (ii) TCA and (iii) ICT. Then we
average the calibrated sensor measurements over one month and use the
Gaussian process regression model in [CLL+14b] to generate the heat map
of the area. The locations of the ground truth pollution sources within this
area are marked by stars. Ideally, the peaks (high concentration locations)
in the heat map should match with the pollution source locations.

Figure 3.10-(b), Figure 3.10-(c) and Figure 3.10-(d) show the heat maps
generated by applying direct transfer, TCA and ICT for sensor calibration.
By comparing the highly polluted locations in the heat maps to the ground
truth pollution source locations, we observe that the heat map generated
by sensor measurements calibrated by direct transfer is able to correctly
locates three out of the eight pollution sources, while five are located when
applying TCA. With ICT, however, all eight pollution sources are correctly
located. These results indicate that ICT outperforms direct transfer and
TCA in calibration accuracy on these 30 sensors.

3.6 Summary

The low-cost air quality sensor network introduced the opportunity
for large scale deployments with high spatial coverage. However,
how to maintain the sensor accuracy and reliability in the wild remain
an unsolved challenge. In Chapter 2, we explore calibrating sensor
measurements with a novel many-to-many scheme. Using the proposed
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SensorFormer method, low-cost sensor readings can be calibrated.
However, as illustrated in Section 3.3, transferring the calibration model
to locations without access to ground truth will lead to huge errors.

In this chapter, we propose In-field Calibration Transfer (ICT), a
calibration scheme that transfers the calibration parameters of sensors
with access to references (source sensors) to those without access
to references (target sensors). It is challenging to derive such a
transformation between the source and target sensors installed at different
locations because their measurements are unsynchronized. On observing
that (i) the distributions of ground truth in both source and target locations
are similar and (ii) the transformation is approximately linear, ICT learns
the transformation based on the similarity of distributions with a novel
optimization formulation. The performance of ICT is further improved by
using spatial prediction of air quality level as an aid for calibration transfer
task, and using ensemble techniques to enable multi-source calibration
transfer. Experiments show that ICT is able to provide approximately
equal calibration performance as if the target sensors have direct access to
references. We believe ICT notably increases the usability of large-scale
air pollution monitoring deployments. Those calibrated sensor readings
can be safely used for the analysis and predictions tasks introduced in the
following chapters.

The novel calibration method SensorFormer in Chapter 2 and the
calibration transfer method ICT introduced in this chapter are orthogonal
and can be used in parallel to improve the air quality sensor network
accuracy. i.e., SensorFormer can be used to learn the accurate calibration
model at locations with access to references, then ICT can transfer this
model to arbitrary locations. To this end, we can safely argue that the
sensor network is accurate sufficient to generate reliable air quality maps
or be used for analysis tasks.

One future extension of this work is to explore the possibility
of conduct ICT on larger scale scenarios e.g., inter-city calibration
transfer. We can also extend ICT for moving sensors by augmenting
the measurements of the moving sensor collected from multiple locations
to perform multi-source multi-target calibration transfer.



4
Urban Air Quality Map Generation for

Downscaled Deployments

It has been proven that dense deployments of commodity air quality
sensors can provide spatially-resolved urban air quality data in real time.
However, long-term operation of a dense sensor deployment requires
enormous maintenance efforts and costs. To guarantee the accuracy
and reliability of the sensing measurements, a novel on-site calibration
method called SensorFormer is introduced in Chapter 2, which acquires
the best performance. Furthermore, a calibration transfer model called
ICT is presented in Chapter 3 to assure that the on-site calibration model
can be safely used in target sensors (without access to reference). The
sensor measurements are sufficiently accurate for the following analysis
tasks. Nevertheless, sensor deployments still pose a big challenge
because of their sheer number. In this chapter, we propose MapTransfer,
a method for accurate air quality map generation for downscaled
deployments. To avoid dramatic accuracy degradation in air quality
maps generated using the downscaled sparse deployment, we design
MapTransfer, an air quality map generation scheme which augments the
current sensor measurements from the downscaled sparse deployment
with appropriate historical data from the initial dense deployment. Due
to the spatiotemporal complexity of air pollution, it is challenging to
select the best historical data and fuse them with measurements from the
downscaled deployment to accurate map generation. To overcome this
challenge, MapTransfer adopts a learning-based data selection scheme
and integrates the best historical data with the current measurements via
a multi-output Gaussian process model at sub-region levels. Evaluations
on a large-scale PM2.5 sensor deployment show that MapTransfer reduces
the overall mean absolute error of air quality maps by 45.9%, compared
with using data from the downscaled deployment alone.
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4.1 Introduction

The deployment of dense air quality sensors has been reported both by
academia and industries [CLL+14b, GDG+16, HSW+14, XCL+16], only a
small number remain active after a certain time. The tedious maintenance
and high costs involved in dense deployments are two major reasons for
their short lifespans. One practical approach to reduce the cost is to
downscale the deployment [KMM+15]. However, as we illustrated in
Section 1.2, naïvely downscaling the sensor deployment (e.g., to 1/3 or
1/4) will dramatically increase the air quality map generation error.

To improve the accuracy of air quality maps generated with only
real-time measurements from a sparse downscaled deployment, one
generic solution framework is map generation transfer, which augments
the current measurements with appropriate historical data collected
from the initial dense deployment for map generation. The underlying
rationale is intuitive: the downscaled deployment monitors the same region
as the initial dense deployment, and hence it is probable that the current
air quality distribution over the whole region is the same or very similar to
that at some time point in the history. Therefore it may improve the
accuracy of the air quality map generated with the sparse deployment
by properly transferring knowledge of air quality in this region from the
historical data obtained in the dense deployment. In environmental
science, a popular approach to transfer knowledge between Gaussian
process modeled environmental phenomena is Multi-Output Gaussian
Process (MOGP) [LCO18], which learns the air quality distribution on
both the real-time measurements from downscaled deployment and
historical measurements from initial dense deployment. MOGP-based
knowledge transfer schemes have proven effective in many applications
such as weather estimation [ORR+08], soil heavy metal prediction [ZY17],
groundwater depth estimation [AS08].

However, designing an MOGP-based map generation transfer scheme
suited for air quality is challenging. A prerequisite for MOGP-based
methods to work on air quality map generation transfer is that only
historical data from the dense deployment strongly correlated to the
current data in the downscaled deployment are selected, so as to enable
positive knowledge transfer for the underlying phenomenon (PM2.5

concentrations in our case). Due to the complexity and dynamics of urban
PM2.5 concentrations, it is non-trivial to select the best measurements for
transfer. On the one hand, previous studies [ORR+08, G+97, ZY17] adopt
simple unsupervised selection criteria such as Root Mean Square Error
(RMSE) or Correlation Coefficient (CORR). As we show in real-world
air quality measurements, these criteria often lead to negative transfer,
which refers to the phenomenon that the model hurts the performance
in the target domain[PY10b], in the generated air quality map. On the
other hand, we observe that the correlation between measurements in



4.2. Preliminaries 73

the initial and the downscaled deployments is not homogeneous over the
entire monitoring region. Such spatial locality in correlation indicates that
transferring knowledge at the scale of the entire region as prior research
may also impair the performance of map generation transfer.

To address the challenges above, we propose MapTransfer, a new
MOGP-based scheme for accurate air quality map generation transfer.
To avoid negative transfer due to improperly selected measurements
from the dense deployment, MapTransfer adopts learning-based instance
selection (LIS). It extracts a rich set of features from both PM2.5

measurements as auxiliary meta data sources e.g., meteorological
information, and exploits an artificial neural network to select the best
instances for map generation transfer. To exploit spatial locality during
map generation transfer, MapTransfer utilizes sub-region selection (SRS)
to split the whole region into sub-regions and search for the best transfer
option for each sub-region. Evaluations on measurements collected from
a real-world sensor deployment show that MapTransfer is able to reduce
the overall MAE by 45.9%, compared with the air quality maps generated
with data merely from the downscaled deployment.

The contributions of this chapter are summarized as follows.

• We propose MapTransfer, the first practical urban air quality
map generation scheme for downscaled sensor deployments by
transferring knowledge and augmenting historical data from the
initial dense deployment.

• We comprehensively evaluate the performance of MapTransfer
with measurements collected from a large-scale PM2.5 monitoring
system consisting of 260 sensors over one and a half years.
Experimental results show that MapTransfer is able to reduce
the overall MAE of PM2.5 maps generated with a downscaled
deployment by 45.9% (from 21.8 to 11.8), achieving an accuracy
suited to raise public awareness and take measures for emission
control [HSW+15, RTMH18], as well as data mining applications
[BJZOV17a, LCCC17].

In the rest of this chapter, we formally define our problem and
introduce our datasets in Section 4.2. Then we present an overview
of our MapTransfer method in Section 4.3 and explain its core modules
in Section 4.4, Section 4.5 and Section 4.6. The evaluations are shown in
Section 4.7 and we discuss the limitations of our method in Section 4.8.
We finally conclude in Section 4.9.

4.2 Preliminaries

In this section, we formally define the problem of air quality map
generation from downscaled sensor deployments, and then introduce
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(a) Sensor (b) Dense Deployment (c) Sparse Deployment

Figure 4.1: Deployment of air quality sensors in a 50 km × 30 km region: (a) illustration
of an air quality sensor; (b) dense initial deployment with 200 sensors; (c) sparse
downscaled deployment with 50 sensors.

the datasets collected from a large-scale PM2.5 sensor deployment that
will be used throughout this chapter.

4.2.1 Problem Definition

We start by defining some basic concepts that will be used throughout
this chapter.

Definition 4.1 (deployment). A deployment refers to a sensor network
activated during a certain period of time.

In our first-dense-then-sparse scenario, a dense sensor network is used
for air quality monitoring only during the initial phase. It is then
downscaled to a sparse sensor network by activating only a subset of
the original sensors.

Definition 4.2 (dense deployment). A dense deployment is a sensor network
used during the initial phase. All sensors are activated in a dense deployment.

Definition 4.3 (sparse deployment). The sparse deployment is the downscaled
sensor network. Only a subset of the sensors in the initial phase are activated in
the sparse deployment.

Definition 4.4 (Air Quality Map Generation for Downscaled Sensor
Deployments Problem). Given a dense and a sparse deployment covering
the same urban region, the problem is to effectively utilize the historical sensor
measurements from the dense deployment to increase the accuracy of the air
quality map generated from the sparse deployment.

4.2.2 Datasets

We collect measurements from a large-scale PM2.5 monitoring deployment
consisting of 260 low-cost sensors (see Figure 4.1a) in Beijing, China. The
sensors upload their readings to a server every minute. We collect PM2.5
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readings from the 260 sensors over a period of 18 months from January
1st, 2018 to July 1st, 2019. These 260 sensors are randomly divided into
two groups with 200 and 60 sensors. The data collected from the 200
sensors are used to generate hourly air quality maps for the 50 km ×
30 km rectangular area in Figure 4.1b and Figure 4.1c with a resolution
of 1 km × 1 km, which is denoted as grid in this chapter. The other 60
sensors are used for testing the accuracy of the generated maps. Since we
aim to generate hourly air quality maps, we down-sample the per minute
raw sensor measurements to per hour by averaging all the measurements
within each hour.

We simulate the scenario from an initial dense deployment to a
downscaled sparse sensor deployment as follows. The 200 sensors
during the whole year of 2018 are regarded as the dense deployment.
Then during the first half year of 2019, it is downscaled to the sparse
deployment with 50 randomly picked sensors from the original 200
sensors. Consequently, the PM2.5 measurements collected from these
200 sensors form two datasets:

• dense dataset: It contains the hourly PM2.5 measurements from all
200 sensors (dense deployment) from January 1st, 2018 to January
1st, 2019.

• sparse dataset: It contains the hourly PM2.5 measurements from the
50 sensors (sparse deployment) from January 2nd, 2019 to July 1st,
2019.

For ease of presentation, we call one instance (i.e., the hourly averaged
PM2.5 measurements from a sensor deployment) in the dense (sparse)
dataset as a dense (sparse) instance.

4.3 MapTransfer Overview

MapTransfer adopts multi-output Gaussian process (MOGP) to integrate
data from both the dense and the sparse deployments for map generation.
Furthermore, to boost the accuracy of air quality map generation, we add
two novel modules before MOGP: learning-based dense instance selection
(LIS) and sub-region selection (SRS), which are illustrated in Figure 4.2.

• Multi-Output Gaussian Process (MOGP): MOGP serves as a
unified map generation model which takes multiple instances to
generate air quality maps. Specifically, a current sparse instance
and an appropriate historical dense instance are used as the input
of MOGP, whereas the output is the improved air quality map
of the sparse instance. Details are explained in Section 4.4. In
the workflow of MapTransfer, MOGP is also used to generate the
training dataset for the Learning-based Instance Selection module,
which is described in Section 4.5.
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Figure 4.2: Workflow of MapTransfer.

• Learning-based Instance Selection (LIS): The aim of LIS is to avoid
negative transfer in dense instance selection. LIS extracts a rich
set of features from both the dense and the sparse datasets as well
as auxiliary meta data sources such as meteorological data, then it
selects the best dense instances using an artificial neural network
(ANN). Given a current sparse instance, LIS selects the top-n best
dense instances, which will be used together with the current sparse
instance in the following Sub-Region Section module. Details are
explained in Section 4.5.

• Sub-Region Selection (SRS): The aim of SRS is to further improve
the accuracy of air quality map generation by exploiting spatial
locality. SRS explores different region splitting scheme to divide
the whole region into sub-regions, and searches among the top-n
dense instances selected by LIS for the one that yields the most
accurate air quality map in each sub-region for the current sparse
instance. Then these sub-regions of different dense instances are
stitched into a fictive dense instance, which is fed into MOGP
with the current sparse instance for map generation. Details are
explained in Section 4.6.



4.4. Multi-Output Gaussian Process Model 77

In real-world situation, the constantly changing environment provides
challenges for MapTransfer to be effective over long-term sparse
deployments. Significant changes in the urban environment, like new
high-rise buildings causing changes in meteorological dynamics, will
severely reduce the transferable knowledge in the local region. Therefore,
when the accuracy of the air quality map generated by MapTransfer
severely decreases in some local regions, new sensors need to be deployed
to explore and learn the changes of the environment. Furthermore, when
the changed environment is monitored by the added sensors after some
period of time, these sensors can be downscaled again in order to reduce
maintenance costs. The data collected during this temporary local dense
deployment can be used by MapTransfer to improve the air quality map
in the future. The detailed procedures of this mechanism is however out
of the scope of this chapter.

4.4 Multi-Output Gaussian Process Model

In this section, we first review how to generate an air quality map from a
dense (sparse) instance and then explain how to integrate a dense and a
sparse instance for map generation.

4.4.1 Map Generation via Gaussian Process

To generate an air quality map, we need a mapping x �→ f (x), where
x ∈ R2 is a 2-dimensional geographical coordinate, and f (x) ∈ R is the
real-valued air quality index. Gaussian processes (GP) [Ras04] proves
effective to model and learn this mapping when measurements from a
dense deployment are available [CLL+14b, CLL+14a]. They assume that
the function f is distributed as a GP with mean function m and covariance
function k [Ras04], which can be written as:

f ∼ GP(m, k) (4.1)

Given a measurement instance, the parameters in the mean function m
and covariance function k are learned on this instance, then the learned
GP distribution is used to calculate the real-valued air quality indices at
each grid (1 km × 1 km). Finally we have an air quality map generated by
the measurement via GP.

The accuracy of the air quality map generated by GP heavily relies on
the density of the sensor deployment. As an example, we compare the
accuracy of the air quality maps generated by the dense instances and
the sparse instances collected from the two deployments in Section 4.2.2
using GP. Specifically, we use measurements from the two deployments
collected during the same period of time (January 1st, 2019 to July
1st, 2019), and assess the accuracy of the generated air quality maps.
The map accuracy is assessed by MAEs calculated at the locations of
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the 60 test sensors. The MAEs of maps generated using dense and
sparse instances are 5.1 and 21.8, respectively. For PM2.5 concentration,
an MAE below 10 is considered accurate for data mining applications
[BJZOV17a]. The example shows that air quality maps generated with
merely sparse instances have limited accuracy and augmenting historical
dense instances is necessary.

4.4.2 Map Generation via Multi-Output Gaussian Process

To augment the current sparse instances with historical dense instances
for air quality map generation, we adopt Multi-Output Gaussian Process
[LCO18]. It is an extension of GP which jointly considers multiple
correlated distributions. Suppose we have one sparse instance and
one dense instance. f1(x) and f2(x) are the air quality indices over the
monitored region at the hour of the sparse and dense instance. MOGP
assumes that the distributions of f1 and f2 are correlated, and they conform
to a multi-output Gaussian process:

[
f1

f2

]
∼ GP

([
m1

m2

]
,

[
k1,1 k1,2

k2,1 k2,2

])
(4.2)

where the multi-output mean functions
[
m1

m2

]
and multi-output covariance

functions
[
k1,1 k1,2

k2,1 k2,2

]
are learned on both the sparse and dense instance.

Here we still use f1(x) to generate the air quality map at the hour of the
sparse instance. However, instead of being solely decided by the sparse
instance, this air quality map generated via MOGP also takes the dense
instance into account.

A crucial assumption for MOGP yielding high-accuracy air quality
maps is that the selected dense instance is strongly correlated to the sparse
instance in question, which is necessary to enable positive knowledge
transfer for the underlying phenomenon (PM2.5 in our case). If the
sparse and dense instances are similar, the accuracy of the dense map
will also benefit from the measurements of sparse instance. Due to the
complexity and dynamics of urban PM2.5 concentrations, it is challenging
to select the best dense instance and properly apply MOGP for accurate
PM2.5 map generation.

4.5 Learning-based Dense Instance Selection

This section first shows that traditional unsupervised criteria for dense
instance selection leads to negative transfer, and then explains our
learning-based dense instance selection in detail.
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(a) (b)

Figure 4.3: Accuracy improvement in air quality map versus similarity between the
sparse and the best dense instance, where the similarity is measured by (a) RMSE and
(b) correlation coefficient.

4.5.1 Dense Instance Selection via Unsupervised Criteria

RMSE and correlation coefficient (CORR) are two commonly used
unsupervised criteria for instance selection in environmental science
[Ros07, ZY17, ORR+08, AS08]. As a measurement study, we first
randomly pick one sparse instance to generate an air quality map using
GP and measure its MAE (denoted as EGP) by comparing with the 60
test sensors. Then we select one dense instance with the two selection
criteria and generate another air quality map via MOGP, where its
MAE is denoted by EMOGP. Hence we can quantify the transfer gain by
ΔE = EGP − EMOGP, where a positive value means an improvement in air
quality map accuracy, and a negative value means a degradation due to
negative transfer.

Figure 4.3 plots the relationship between transfer gainΔE and the value
of used instance selection criterion, i.e., RMSE (Figure 4.3a) or CORR
(Figure 4.3b). As shown in the figures, there is no strong relationship
between the transfer gain and the two criteria. In many cases, the value
of ΔE becomes negative, indicating dense instances selected by RMSE or
CORR may often decrease the air quality map accuracy.

4.5.2 Dense Instance Selection via Supervised Learning

Figure 4.4 shows the structure of our learning-based instance selection
(LIS) scheme. The core of LIS is a neural network which captures the
potential non-linear relationship between the accuracy improvement and
the instance similarity. The neural network compares the current sparse
instance with each historical dense instance and predicts the transfer gain
of the dense instance, i.e., how much the accuracy of the generated
air quality map will improve by using both the dense and the sparse
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Figure 4.4: An illustration of learning-based dense instance selection (LIS).

Table 4.1: All features used in LIS.

Categories Features No.
FT hour of day, day of week, month and isHoliday 4 × 2

FM
temperature, humidity, pressure, wind speed and
wind power 5 × 2 × 9

FGP

GP Features : nug_psill, nug_range,
nug_kapple, sph_psill, sph_range, sph_kapple;
Statistical Features : mean/minimum/maximum
values of all the observations; Cross
validation features : mae, rmse

11 × 2 × 3

FC
RMSE and correlation coefficient; co_rmse,
co_mae 4

instances via MOGP, over using only the sparse instance via GP. The
neural network also accounts for other meta data such as time and
meteorological information when assessing the transfer gain. Given a
current sparse instance, LIS will go over all the historical dense instances,
selects the top-n dense instances with the highest predicted transfer gain,
and then passes these dense instances to the SRS module.

4.5.2.1 Input Features

We pick features from both the dense and sparse instances as well as the
corresponding meta data. Specifically, the following categories of features
are considered. (see Table 4.1 for a complete list of features used in LIS).

• Date time feature vector FT. Intuitively, month and day of week are
correlated to the periodical changes in air quality [ZCWY14]. So we
use hour of day, day of week, month and isHoliday from both the dense
and sparse instances as our date time feature vectors FT.
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• Meteorological feature vector FM. Air quality is influenced by many
meteorological factors. We use five meteorological features for
instance selection: temperature, humidity, pressure, wind speed and
wind power. These features are collected from 9 meteorological
stations in our deployment (see Figure 4.3a).

• GP summary feature vectors FGP. Since our end goal is to improve
the accuracy of the generated air quality maps, it is reasonable
to utilize the parameters of the maps i.e., parameters of the
Gaussian processes as features for instance selection. We choose
all the optimized GP parameters as FGP which includes nug_psill,
nug_range, nug_kapple, sph_psill, sph_range, sph_kapple [Ros07,
Mat63]. In addition to the above GP parameters features, we also
add the statistical values such as mean/minimum/maximum values of
all the observations, and prediction power index such as the Leave-
p-out cross-validation error [Mur12] from both the dense and sparse
instances, which is denoted as s_mae,s_rmse, t_mae, t_rmse. What’s
more, to account for the temporal dynamics of air quality maps, we
also include the GP summary features one hour before and after the
current instance.

• Cross-instance feature vectors FC. Apart from the commonly
used unsupervised criterion of RMSE and correlation coefficient
as the interaction feature vectors between dense and sparse
instances, we also add another Leave-p-out cross-validation error
measurement [Mur12] as an index of how the dense instance
helps. This index uses p observations in sparse instance as the
validation set, MOGP uses the observations in dense instance and
the remaining observations in sparse instance as the training set and
test the errors on validation set. This is repeated for all observation
in sparse instance in which sparse observations can be separated
this way, and then the error is averaged for all trials, to give overall
effectiveness. We denote this error as co_rmse,co_mae.

4.5.2.2 Training

We only rely on the historical dense data to train the neural network.
Specifically, we use the data collected by the sensors in the sparse
deployment in the year of 2018 as training sparse data. The data from
the remaining 150 sensors in the dense deployment in the year of 2018
are used as target data. The number of dense instances and the number
of sparse instances used for training are both 8650.

To generate the ground truth labels to train the neural network,
consider one instance from the training sparse data (training sparse
instance), one instance at the same hour from the target data (target
instance), and one arbitrary dense instance. Etrain

MOGP is the MAE of predicting
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(a) Sparse (b) Dense-R (c) Dense-L

Figure 4.5: Air quality maps generated by (a) a sparse instance on February 23rd, 2019;
(b) one dense instance in the selected from history based on RMSE; and (c) another dense
instance selected from history based on RMSE.

the target instance using both the training sparse instance and the dense
instance via MOGP, and Etrain

GP is that using only the training sparse instance
via GP. Then the ground truthΔE = Etrain

GP −Etrain
MOGP is used to train the neural

network.

4.6 Sub-Region Selection

Recall that SRS aims to improve the accuracy of generated air quality
maps by exploit spatial locality in correlation among instances. In this
section, we first demonstrate the spatial locality via measurements, and
then explain the two core issues in sub-region selection.

4.6.1 Spatial Locality of Correlation between Instances

Here we show that directly using the entire monitoring region of dense
instances may lead to sub-optimal performance. Figure 4.5a shows an
air quality map generated by one sparse instance on February 23rd, 2019,
with EGP = 23.5. We then select two historical dense instances with lowest
RMSE, denoted by Dense-L and Dense-R, and use MOGP to generate two
air quality maps, as shown in Figure 4.5b and Figure 4.5c, respectively.
When using these two dense instances for MOGP-based map generation
transfer, the transfer gains are 6.9 and 7.6, indicating an improvement
to a certain degree. However, it is easy to observe that the left half of
Figure 4.5b looks very similar to the same left half of Figure 4.5a. Also the
right half of Figure 4.5c looks similar to the right half of Figure 4.5a. This
indicates that the dense instance Dense-L correlated to the sparse instance
more in the left half sub-region, and the Dense-R more in the right half
sub-region. If we stitch the left half sub-region of the Dense-L and right
half sub-region of the Dense-R together to form a stitched instance, and
then use this to augment the current sparse instance, the resulting transfer
gain increases to ΔE = 13.4, which almost doubles the transfer gain than
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…
Selected Most Similar Historical Dense Instances Sparse Instance

a

b
c

a՛

b՛
c՛ + (a,a՛)

(b,b՛)
(c,c՛)

SRS

Figure 4.6: Proposed Sub-Region Selection method. Suppose the sparse instance is split
into three zones (a, b, c) according to a splitting point, SRS method tries to find the best
match subset in dense instances with the same splitting grid. Then, subset MOGP could
be done in each subset zone and produce the overall result.

using the entire monitoring region of Dense-L or Dense-R individually.
Hence due to the spatial locality of correlations between sparse instances
and historical dense instances, it is preferable to transfer information from
sub-regions of different dense instances, instead of the whole monitoring
region of one single dense instance.

4.6.2 Sub-Region Selection as Two-Step Optimization

The output of SRS is one stitched instance, which is made up of several
sub-regions from different dense instances. SRS needs to address the
following two issues: (i) how to split the sub-regions, and (ii) which
dense instance contributes the most in each sub-region. This can be seen
as a two-step optimization problem whose objective is to maximize the
transfer gain of the final stitched instance.

4.6.2.1 Finding the most suitable dense instance for each sub-region

To solve this two-step optimization problem, we start with the second
step. Consider one sparse instance A and one dense instance B. Assume
that the whole monitoring region is already divided into several sub-
regions. In one of the sub-regions, the measurements of instance A form
a sub-instance a, and that of instance B form b. We calculate the cross
validation error of MOGP with a and b, i.e., for each measurement in
sub-instance a, we use the rest of the measurements and also sub-instance
b to estimate this measurement via MOGP and calculate the estimation
error. Then the estimation error is averaged over all measurements in
a, and we get the cross validation MOGP (CV-MOGP) error metric. For
each sub-region, we select the dense instance with the lowest CV-MOGP
error and stitch them together to output the stitched instance.

4.6.2.2 Dividing monitoring region into sub-regions

Given the most suitable dense instance for each sub-region, we can now
search for the best splitting scheme to divide the whole monitoring
region into sub-regions. We introduce a splitting point to divide the
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Figure 4.7: Potential different splitting methods to split the whole region to 2, 3 or 4
sub-regions.

monitoring region into multiple adjacent rectangular sub zones, as shown
in Figure 4.7. Given a splitting point location and a splitting method,
we could use the CV-MOGP error metric to find the most suitable dense
instances for each sub-region and compute the overall CV-MOGP error,
i.e., the summation of CV-MOGP error of each sub-region. Hence we can
use Dual Annealing method [M+14] to find the best splitting point and
best splitting method, which yield the lowest overall CV-MOGP error.

4.6.2.3 Two-step Optimization

We denote the location of splitting point in 2D space with (lx, ly), and
splitting method with m, which is an categorical variable from (a) to (g)
as shown in Figure 4.7. The LIS module outputs Nd dense instances, and
the number of split sub-regions is denoted by Ns. For the current sparse
instance, we denote the CV-MOGP error in the i-th sub-region with the
j-th dense instance as ECV

i, j , where i = 1, · · · ,Ns and j = 1, · · · ,Nd. The SRS
module addresses the two-step optimization:

min
(lx,ly),m

Ns∑
i=1

min
j

ECV
i, j (4.3)

Finally, SRS combines the sub-region of each selected dense instance
into one stitched instance, which is then combined with the current sparse
instance to generate an air quality map via MOGP, as shown in Figure 4.2.

4.7 Evaluation

This section presents the evaluation of MapTransfer. We first introduce the
experiment setup (Section 4.7.1) and then present the overall performance
(Section 4.7.2). Finally we show the effectiveness of each module
(Section 4.7.3 and Section 4.7.4).

4.7.1 Experiment Setup

Datasets and Metrics. We evaluate the performance of different map
generation transfer schemes using the same setting and datasets in
Section 4.2.2. That is, for a given sparse instance from the sparse dataset,
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each map generation transfer scheme selects dense instances from the
dense dataset and generates an air quality map. We then assess the
accuracy of the map using measurements from the 60 testing sensors.
Although we conduct our evaluations using data collected in Beijing,
China, the principles of our method is not specific to Beijing and applies
to other regions as well. We mainly evaluate the accuracy of the air
quality map by the mean absolute error (MAE), because MAE is used in
various air quality related research, including sensor calibration, spatial
interpolation [CLL+14a], temporal prediction [LBC19] and data mining
[LCCC17].

Baselines. We compare the performance of our MapTransfer (LIS + SRS
+MOGP) with the following baselines.

• Sparse GP: It directly generates an air quality map with a sparse
instance without any dense instance.

• RMSE + MOGP: It adopts RMSE for dense instance selection and
MOGP for map generation transfer.

• CORR + MOGP: It applies the correlation coefficient (CORR) for
dense instance selection and MOGP for map generation transfer.

• RMSE + SRS + MOGP: It uses RMSE for dense instance selection
and SRS to stitch dense instances, before applying MOGP for map
generation transfer.

• CORR + SRS + MOGP: It uses CORR for dense instance selection
and SRS to stitch dense instances, before applying MOGP for map
generation transfer.

• LIS + MOGP: It uses LIS for dense instance selection and then
MOGP for map generation transfer without using SRS to stitch dense
instances.

Other Experimental Settings. We implement the LIS module using a
fully-connected neural network with the architecture of (168,84,22,1),
where 168 is the dimension of input features (see Table 4.1) of the
neural network and 1 is the dimension of the output i.e., transfer gain
ΔE = EGP − EMOGP. The hyper-parameter of the two hidden layer
dimensions, (84,21) are selected via grid search [GBC16]. All the codes
are implemented in python and the experiments were conducted with a
Linux machine with 32 cores.

4.7.2 Overall Performance

Table 4.2 shows the overall performance of different map generation
transfer methods. We are also interested in the performance of these
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Figure 4.8: Histograms of MAEs of air quality maps generated using different transfer
methods.

methods in case of heavy pollution (PM2.5 concentration > 150 ug/m3)
because accurate air quality maps during heavily polluted days are
particularly important for authorities to take proper actions. The overall
MAE is 21.8 if only a sparse instance is used to generate the air quality
map. Without the assist of any dense instance, the MAE increases to
36.4 in case of high PM2.5 concentration. Even the basic map generation
transfer methods help reduce the MAEs, i.e., a reduction of 16.5% in
overall MAE with RMSE +MOGP and 21.6% with CORR +MOGP. Our
LIS method notably outperforms the two conventional criteria (RMSE
and CORR), achieving a reduction of 37.6% in overall MAE and 42.9%
in case of heavy pollution, compared with the air quality map generated
with only a sparse instance. Our SRS scheme reduces the MAEs with all
the three dense instance selection methods. Combining LIS and SRS, our
MapTransfer yields the best performance: a reduction of 45.9% in overall
MAE and 50.8% in high pollution cases, compared with Sparse GP. The
overall MAE is reduced to 11.8.

Figure 4.8 shows distributions of MAEs using our method. We also
plot the MAE distribution using Sparse GP and Dense GP, where the latter
refers to generating air quality maps with a dense instance. The accuracy
of the maps generated by Sparse GP and Dense GP serves as the upper
and lower bounds of map generation transfer. As is shown, MapTransfer
not only reduces the average MAEs, but also significantly decreases the
variance of MAEs.

Summary of Results. MapTransfer is the most effective among all map
generation transfer schemes. Compared with air quality maps generated
using sparse instances only, it reduces the overall MAE of air quality
maps from 21.8 to 11.8, a reduction of 45.9%. The improvement is more
significant in case of heavy pollution, where the reduction in MAE reaches
50.8%. Meanwhile, MapTransfer also dramatically reduces the variations
of errors in the generated air quality maps.
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(a) ACC=0.68 (b) ACC=0.75

(c) ACC=0.83 (d) ACC=0.88

Figure 4.9: Confusion matrices of prediction accuracy ofΔE by using only RMSE+CORR;
and sequentially adding (b) all cross-instance features, (c) GP summary features, and
(d) meteorological features.

4.7.3 Effectiveness of Learning-based Dense Instance Selection

This series of experiments investigates the contributions of different
features in LIS on the performance of map generation transfer. For ease
of illustration, the predicted transfer gain is quantized into integer labels
from −2 to 2, which correspond to ΔE in the following ranges: below −10,
−10 to −5, −5 to 5, 5 to 10, and above 10 .

Figure 4.9 shows the normalized confusion matrices of the prediction
accuracy of ΔE (quantized into an integer from −2 to 2) using different
feature vectors described in Section 4.5. If only RMSE + CORR are
used, the prediction accuracy is only 0.68 with a large variance. The
prediction accuracy increases to 0.75 and 0.83 after adding all the cross-
instance features and the GP summary features, respectively. When
the meteorological features are also added, the final prediction accuracy
reaches 0.88. Compared with using only the conventional RMSE+CORR,
the prediction accuracy improves by about 20% when all features are
used.
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Figure 4.10: Feature importance for predicting the transfer gain ΔE.

(a) GP(Sparse) (b) GP(Dense-L) (c) GP(Dense-R) (d) GP(Dense-S)

Figure 4.11: Air quality maps generated by GP with (a) a sparse instance (denoted as
Sparse); (b) one best dense instance selected by LIS (denoted as Dense-L); (c) another best
dense instance selected by LIS (denoted as Dense-R); and (d) a dense instance stitched
by SRS (denoted as Dense-S).

Figure 4.10 shows the importance of each feature used in LIS. As is
shown, cross-instance features such as co_mae, co_rmse are significant. GP
summary features such as sph_psill, nug_psill and meteorological features
also help improve the prediction accuracy of the transfer gain.

Summary of Results. Using a rich feature set for dense instance selection
(see Table 4.1) improves the prediction accuracy of transfer gain ΔE by
about 20% than using merely RMSE and CORR. Cross-instance features
and Gaussian process summary features are essential for dense instance
selection.

4.7.4 Effectiveness of Sub-Region Selection

In this subsection, we first take a closer look at the performance of SRS
on map generation transfer for a single sparse instance, and then analyze
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(a) Ground Truth (b) MOGP(S,D-L) (c) MOGP(S,D-R) (d) MOGP(S,D-S)

Figure 4.12: (a) Group truth; air quality maps generated by MOGP with the sparse
instance i.e., Sparse, and (b) Dense-L, (c) Dense-R, (d) Dense-S. The black circles are
areas with large errors.

(a) GP(S) (b) MOGP(S,D-L) (c) MOGP(S,D-R) (d) MOGP(S,D-S)

Figure 4.13: Errors of air quality maps generated by (a) GP with Sparse; (b) MOGP with
Sparse and Dense-L; (c) MOGP with Sparse and Dense-R; (d) MOGP with Sparse and
Dense-S.

the sub-regions selected by SRS.
Figure 4.11a shows an air quality map generated by GP using a sparse

instance collected at 4:00 a.m. on February 23rd, 2019. Figure 4.11b
and Figure 4.11c plot the maps generated by GP using the two best
dense instances selected by LIS (denoted as Dense-L and Dense-R,
respectively). Figure 4.11d illustrates the map generated by GP using
the best dense instance stitched by SRS (denoted by Dense-S). We plot
the maps generated by GP rather than the raw instances for ease of
visualization. As is shown, even the best historical dense instances
selected by LIS do not resemble the sparse instance in the entire region.
Conversely, the dense instance output by SRS, which properly stitches
certain sub-regions of the two best dense instances, looks notably more
similar to the sparse instance, and potentially results in an air quality
map with a higher accuracy. Figure 4.12b, Figure 4.12c and Figure 4.12d
show the air quality maps generated by MOGP using the sparse instance
and the two best dense instances (Dense-L and Dense-R) as well as the
stitched dense instance (Dense-S). Compared with the ground truth in
Figure 4.12a, the map generated by augmenting the sparse instance with
the stitched instance is the most similar to the ground truth. The results
are more obvious when we plot the errors of the generated maps in
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(a) 21.8% (b) 25.5% (c) 8.1% (d) 9.0%

(e) 14.4% (f) 17.1% (g) 4.1%

Figure 4.14: Splitting points distributions and ratios. The points in (a) and (b) split
the regions into 2 sub-regions; The points in (c), (d), (e) and (f) split the region into 3
sub-regions; The points in (g) splits the regions into 4 sub-regions.

Figure 4.13, using only the sparse instance, or augmented by either dense
instance or the stitched one. The average MAE of using the sparse
instance is 23.5, whereas the average MAE reduces to 14.3 or 15.2 if
Dense-L or Dense-R is combined with the sparse instance. The errors are
still unsatisfactory and there are notable high-error areas in Figure 4.13b
and Figure 4.13c. In contrast, when the stitched dense instance is used
along with the sparse instance, the average MAE drops to 10.1, which
is acceptable in many data mining applications. More importantly, we
observe more evenly distributed errors across the entire region of interests
(see Figure 4.13d). The results show that SRS is able to eliminate high-
error areas in air quality maps and thus improves the overall accuracy of
air quality maps.

To understand how the regions are split when applying SRS on the
sparse instances, we plot the distributions of splitting points and the
number of split sub-regions in Figure 4.14. We have the following
observations. (i) Most splitting points locate around the center of whole
monitoring region, which avoids sub-regions with very few sensors. (ii)
For all the 7 splitting methods described in Section 4.6, the methods which
splits the region to 2 sub-regions (Figure 4.14a and Figure 4.14b) account
for 47.3% of all the sparse instances. The methods which split the region
to 3 sub-regions (see Figure 4.14c, Figure 4.14d, Figure 4.14e, Figure 4.14f)
take up 8.1%, 9.0%, 14.4% and 17.1% of all the cases. Finally the method
that splits the region to 4 sub-regions (Figure 4.14g) only has 4.1% shares
among the splitting results.
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Figure 4.15: Impact of number of sensors in sparse deployment on air quality map
generation accuracy.

Summary of Results. Directly transferring a dense instance of the entire
region improve the accuracy of the generated air quality maps (an average
MAE of about 14.7), yet leads to high-error sub-regions. SRS wisely
stitches dense instances, which potentially eliminates high-error sub-
regions and thus yields air quality maps of higher accuracy (an average
MAE of 10.1). For a rectangular region of 50 km× 30 km, splitting it into 2
to 3 sub-regions suffices to achieve high accuracy.

4.7.5 Impact of Numbers of Sensors in Sparse Deployment

In this subsection, we evaluate how the number of sensors in the sparse
deployment affects the accuracy of the air quality maps and identifies the
number of sensors needed to obtain an MAE < 10.

Figure 4.15 shows the MAE of the air quality maps generated with
sparse instances of different numbers of sensors. When the number of
sensor in the sparse deployment increases from 50 to 150, the MAE of
sparse GP, which directly generates an air quality map with a sparse
instance without any dense instance, decreases from 21.8 to 11.7.

The MAE of MapTransfer also decreases constantly with the increasing
number of sensors in the sparse deployment. When using 70 sensors,
the MAE of air quality map generation drops to below 10 (9.8). When
increasing the number of sensors in the sparse deployment to 100 and 150,
the MAE of MapTransfer is further reduced to 8.1 and 7.2, respectively.
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4.8 Discussions

Gaussian Process Regression for Map Generation. Our air quality map
generation method is based on the Gaussian Process Regression for the
following two reasons. (i) We aim to take advantage of the historical
data from a dense deployment to improve the air quality map accuracy
generated from the sparse deployment. We do not assume access to rich
heterogeneous urban data, as required in many other air quality map
generation schemes [CDL+19a, LLZ+18, ZLH13a]. Our work is a best-
effort exploration on the accuracy maintainable after a dense deployment
is downscaled to a sparse one. (ii) Gaussian Process regression proves
effective in case of a dense sensor deployment [CLL+14a]. Fusion of
additional urban data is complementary to our work and may further
improve the accuracy of air quality map generation. However, due to
limited access to urban data in the region where our sensors are deployed,
it is difficult to implement urban data based air quality inference methods
[CDL+19a, LLZ+18, ZLH13a] for direct performance comparison.

Dealing with Changes of Environmental Characteristics. Our solution
explicitly assumes that the environmental characteristics relevant to air
quality are relatively stable in the long-term. This assumption may
break in case of abnormal climate changes. Hence it is important to
detect the changes of environmental characteristics in the monitored area.
One solution is to exploit the uncertainty of the air quality estimates.
Specifically, given the sparse instances, we can use spatial interpolation
methods to predict the air quality index with the corresponding
uncertainty at a given location, as in [HLZ15, YZB+18, NAB20]. If the
uncertainty at certain locations changes frequently, it indicates that the
environmental characteristics have changed and new sensors should be
deployed.

Data Duration and Imputation. We choose one year as the length of
training dataset based on the following observations: (i) Our target is
to select the best dense instance from historical data, so one year is a
reasonable choice which covers seasonal variations of urban air quality;
(ii) We only have access to 18 months of data, so we split the data to
2:1 as the training data (one year training data) and test data (half year
test data). Note that there can be missing sensor measurements in long-
term sensor deployments. In case of missing data, existing missing data
completion methods for air quality data such as [ZTXF19] can be applied
before inputting the data into our method.

4.9 Summary

In this chapter, we propose MapTransfer, an air quality map generation
method for downscaled sensor deployments. Key novelties of
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MapTransfer include a multi-output Gaussian process model to integrate
both the sparse and the dense instances, a learning-based dense instance
selection module that avoids negative transfer, and a sub-region selection
scheme that exploits spatial locality among instances to improve accuracy
of air quality map generation. Experiments on real-world air quality
sensor deployments show that compared with air quality maps generated
with a sparse instance only, MapTransfer reduces the overall MAEs by
45.9%, achieving an air quality map accuracy sufficient for many data
mining applications. We envision our work as a practical solution for
long-term cost-effective urban air quality monitoring with a downscaled
sensor deployment.

An accurate and cost-effective sensor network is now available by
applying the calibration method in Chapter 2, Chapter 3 and the sensor
downscale approach in this chapter. Those features ensure the usability
and scalability of the sensor network, which is critical for long term
deployments. In the next chapters of this thesis, we aim to answer the
following research questions: what can be obtained with the accurate and
reliable air quality sensor network? Specifically, an accurate prediction
method will be presented in Chapter 5 and a data-driven immediate
cyber-physical response system will be introduced in Chapter 6.



5
Tracking Pollution Transfer for Accurate

Air Quality Prediction

So far, we have presented a novel calibration method called SensorFormer
(Chapter 2) to derive the underlying time series alignment patterns
and generate state-of-art calibration performance. To guarantee the
calibration results in all sensor locations, especially those without access
to reference, ICT (Chapter 3) is proposed to enable the calibration model
transfer from on-site location to target locations. The sensor measurement
after the above pipelines can be viewed as accurate and reliable to be
used for analysis. Furthermore, MapTransfer (Chapter 4) is introduced to
improve the map generation accuracy for downscaled deployment, which
significantly reduces the deployment cost while keeping reasonable
accuracy. A follow-up question then arises: Could we analyze the data
and use the derived knowledge to reduce the pollution? We positively answer
this question and present the pollution suppression research results in
city-level (in this chapter) and street level (Chapter 6). In this chapter,
we design a data-driven method to characterize the pollution transfer
between cities, which can be used to boost the performance of air quality
prediction. Specifically, accurately predicting air quality, especially its
sudden changes, is highly valuable for citizens and governments to
make personal and local decisions, design intelligent policies and control
pollution at minimal cost. However, none of the existing data-driven
methods achieves sufficient prediction accuracy for time intervals of
sudden pollution change due to inability of existing models to take
into account pollution propagation between different areas caused by
air mass movement. For the first time, we consider pollution transfer
in the context of short-term air quality prediction and propose to use air
flow trajectory data, widely used in environmental sciences, to represent
pollution transfer patterns between different locations. By learning
trajectory representations, measurement location embedding vectors, and
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interrelationships between local weather at relevant locations, we propose
a new attention based seq2seq model to track pollution propagation for
accurate air quality prediction. We evaluate our model on datasets from
Beijing area and compare the results to several state-of-the-art baselines.
Experiments show that the proposed approach can successfully capture
pollution transfer patterns between different sites in the area. Our model
outperforms all the baselines and decreases prediction errors by 9.6%
to 22.4%. The method allows interpreting prediction results visually and
analytically, and provides tools for making pollution reduction strategies.

5.1 Introduction

Air quality is of vital importance to human health. Medical studies have
shown that PM2.5 (particulate matter of diameter less than 2.5 micron)
can be easily absorbed by the lungs, and prolonged exposure to its high
concentrations may lead to respiratory impairments, blood diseases and
neuro developmental disorders, such as autism, attention deficit disorders
and cognitive delays [CSSM+19]. Air pollution is also found to have a
negative effect on the cognitive functions in elderly adults [RSS+09].

In the context of current pandemic, recent studies show that long-
term exposure to PM2.5 and NO2 increases our susceptibility to SARS-
CoV-2 [HLL+20, LPP+20] and contributes to higher fatality rates [Oge20,
WNS+20]. There is also a worrying evidence that the virus can be
found in outdoor particulate matter [SPDG+20]. Therefore, accurate
air quality prediction, especially forecasting PM2.5 concentrations, is an
effective way of protecting public health by providing an early warning
against harmful air pollutants [BWML18]. For example, air quality in
Beijing can sometimes change from a good to an unhealthy level within
a few hours due to pollution transfer from sources outside of the city,
which is referred to as air quality sudden change. Being able to predict
such sudden changes is vital to inform people and governments for
decision making, but very difficult to achieve due to sparsity of air
quality monitoring observations and the underlying complex evolving
environment [ZYL+15b].

Some existing works [ZZZ+17, DWC+19] already highlighted the im-
portance of pollution transfer from surrounding areas, the phenomenon
we refer to as pollution transfer. For example, pg-Causality [ZZZ+17]
uses frequent pattern mining and Bayesian learning to identify spatio-
temporal causal pathways for air pollutants of Beijing. The results show
that the surrounding cities play important roles in propagating pollution,
as shown in Figure 5.1-(a). One naïve approach to encode this knowledge
is to consider the air quality readings in the surrounding cities and use
them in the prediction task. However, our experimental results described
in Section 5.5 show that naïvelly concatenating air quality readings from
the surrounding stations is not helpful and may even worsen the final
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Figure 5.1: Pollution transfer and the role of air flow trajectories. (a) 9 main cities around
Beijing involved into air pollution transfer. (b) Schematic view of a possible pollution
transfer from a remote city C1 to a group of locations S1 − 4 in the same city S. (c) An
air flow trajectory. (d) Aggregated air flow trajectories over a year colored by measured
PM2.5 values.

prediction.

In environmental science, HYSPLIT [SDR+15] is widely adopted
to identify regional pollution sources [KVL+11] and propagation
pathways [MC08]. Based on meteorological data, HYSPLIT attempts to
trace back the trajectories of many air parcels starting from a given area for
each timestamp. Figure 5.1-(c) shows one such forward trajectory starting
in city A. Every dot in the shown sequence represents the GPS coordinate
location at hourly resolution. In this figure we can observe that the air flow
propagates the pollutants from city A to Beijing. Figure 5.1-(d) shows all
trajectories aggregated over one year, colored by their PM2.5 concentration
values. We can see that the main air flow trajectories coming from the
south of Beijing bring polluted air to the city, while northern trajectories
seem to contribute cleaner air.
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Based on the previous observations and findings, we know that (i) air
quality readings from more surrounding cities may be helpful to improve
the accuracy of air quality prediction; and (ii) air flow trajectories could be
closely related to the pollution transfer between cities. However, using all
this data and encoding this knowledge into a model is not straightforward
for the following reasons. Firstly, the relationship between air quality
among surrounding cities is complex and constantly changing due to the
dynamic environment. Secondly, it is unclear how to encode the 2-D air
flow trajectory data and how to use it efficiently in a predictive model.

In this chapter, we propose a novel approach, called TIP-Air, to track
pollution transfer based on air quality readings and air flow trajectory
data. As shown in Figure 5.1-(b), our model captures the underlying
complex relationship encoded in air quality readings between the current
prediction target (S3) and all other locations (S1 − S4 in the same city;
C1 in a remote city) by extracting knowledge from air flow trajectory
data. Furthermore, the model is able to interpret the prediction results
and to provide a reasonable evidence of why sudden changes happen,
which is important for governments to design intelligent air pollution
reduction strategies. To the best of our knowledge, this is the first deep
learning model that captures pollution transfer between different areas
and predicts sudden pollution changes with reasonable accuracy.

Overall, the contributions of TIP-Air are:

• We propose a seq2seq model to learn air flow trajectory represen-
tations to model pollution transfer between different areas. The
representation is robust and easy to apply to other research tasks in
the context of air quality research.

• For the purpose of learning spatial weights, we develop a
new attention mechanism based on the air flow trajectories and
representations of locations of air quality measurement stations.

• We conduct experiments on real world datasets from the greater
Beijing area. The results offer evidence that the proposed method
outperforms existing air quality predictive models in terms of both
accuracy and interpretation, especially for the intervals of sudden
pollution changes.

5.2 Related Work

In this section, we briefly review related literature on attention mechanism
in deep learning and pollution propagation analysis using HYSPLIT.

Attention Mechanism. Recently, attention mechanisms have become
popular due to their success in general sequence-to-sequence problems.
Bahdanau et al. [BCB14] first introduced a general attention model that
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did not assume a monotonic alignment. Qin et al. [QSC+17] proposed a
dual-stage attention-based recurrent neural network (DA-RNN) to select
the relevant driving series at each time interval. They introduced an
input attention mechanism to adaptively extract relevant driving series
(so called input features) at each time step by referring to the previous
encoder hidden state. Following a similar input attention mechanism,
Liang et al. [LKZ+18] predicted the air quality index by putting attention
weights on the input data. Apart from the input attention mechanism,
temporal attention is also used widely to align the temporal patterns
between encoder and decoder states. Shin et al. [SSL19] used a set of
filters to extract time-invariant temporal patterns and capture temporal
patterns across multiple time steps. Muralidhar et al. [MMR19] proposed
a novel hierarchical attention mechanism for long-term time series state
forecasting.

Pollution Propagation Analysis Using HYSPLIT. For the model-based
analysis of air pollution propagation, HYSPLIT [SDR+15], developed by
NOAA’s Air Resources Laboratory, is one of the most widely used models
for atmospheric trajectory and dispersion calculations. As stated in
research work [KVL+11], air flow trajectory analysis is one of the standard
procedures for determining the spatial locations of possible emission
sources affecting given receptors, and it is frequently used to enhance
receptor modeling results. Furthermore, McGowan et al. [MC08] and
Li et al. [LCCC17] identify regional pollution sources and propagation
pathways. Based on the air flow trajectory data, Gao et al. [GTC+15]
conduct research on the formation causes during two haze pollution
events in urban Beijing, China. The results show that regional transport
contributes the elevated content of anthropogenic elements in PM2.5.
Wang et al. [WCC+10] also show that air pollution in urban cites is caused
not only by local emission sources but also to a large extent by regional
atmospheric pollution transport from surrounding areas, responsible for
sudden pollution changes.

Our intuition comes from the related works on pollution propagation
analysis using HYSPLIT, that the air flow trajectories provide a useful
representation to model pollution transfer between different areas. In
contrast to the current approaches described in the air quality prediction
section (Section 1.3), we consider local air pollution emissions and remote
pollution propagation from surround cities simultaneously, and propose
a novel attention mechanism to learn the weights for all air quality and
weather stations dynamically.

5.3 Problem Definition and Analysis

Definition 5.1. (Air flow trajectory) An air flow trajectory is a sequence of
sample points from the underlying route of the moving air flow [SDR+15].
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At each timestamp i, staring from a city k, we collect air flow trajectory
data Ji

k ∈ Rτ×2 for the next τ hours, where Ji
k denotes the air flow GPS

coordinates. Trajectories starting from multiple surrounding cities Nc

are aggregated into an overall air flow pattern Ji =
∑Nc

k=1 Ji
k for our target

station at timestamp i.
Suppose we have Ng air quality stations located in the target area

as well as surrounding areas or cities. Xi ∈ RNg×m and Wi ∈ RNg×n

represent air quality readings and weather readings from all stations at
time i, respectively, where m and n are the number of observed features.
Given a time window of length T, air quality features are specified
as X = (X1,X2, . . . ,XT), and forecast weather features are specified as
W =

(
WT+1,WT+2, . . . ,WT+τ

)
, where τ is the length of the forecasting time

window. Similarly, the forecast air flow trajectory data staring from city
k in the next τ hours is denotes as Jk =

(
JT+1

k , J
T+2
k , . . . , J

T+τ
k

)
∈ Rτ×2×τ. Then,

J =
(
J1, J2, . . . , JNc

)
represents all forecast trajectory data from Nc cities for

the next τ hours. Time features [ZLG+19], such as day-of-week and hour-
of-day etc., are specified as D ∈ Rp, where p is the number of time features
extracted from timestamps of data points.

Problem Statement. Given historical data over the past T hours and the
weather forecast data for the next τ hours, we predict the air quality at
the target location in the next τ hours as ŷ = (ŷT+1, ŷT+2, . . . ŷT+τ) ∈ Rτ. The
purpose of the model is thus to predict:

ŷ = F (X,W,D, J) (5.1)

where F is the prediction function to be learned.

5.4 Proposed Model

This section presents our novel TIP-Air air pollution modeling approach
which incorporates air flow trajectory data coupled with the spatiotem-
poral attention mechanisms.

5.4.1 Overall Framework

Figure 5.2 shows the overall framework of our proposed TIP-Air
approach. We use representation learning to embed air flow trajectory
data and GPS coordinates of the measurement stations into vectors as
will be described in the Representation Learning subsection. Then, we
propose a new spatial attention mechanism to learn the weights for the
readings of each air quality station. The trajectory and station location
vectors are used as input to the spatial attention module to learn the
attention weights for sensor readings from each station. For example, if
the air flow trajectory arrives from the south of the target in the next hours,
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the model should pay more attention (weight) to the station nodes along
the path, and vice versa. See details in the Spatial Attention section.

By multiplying the spatial attention weights with the raw air quality
data and weather data, we get new weighted air quality and weather data.
They will be used as the new input data for our seq2seq based prediction
network. In the encoder, each block denotes the air quality readings
from all stations at a given timestamp, which in general includes all the
historical air quality data from all stations (Ng) during the historical time
period T. Then, for each block of the decoder, the input contains three
parts: (1) The context vector, which is a weighted combination of all the
hidden states of the encoder. To solve the difficulty of capturing long-
term dependency, we apply a temporal attention mechanism to learn the
weights, see details in the Temporal Attention section. (2) The weather
vector and the air flow trajectory vector. The weather information, which
represents the local pollution evolving patterns at the target as well as at
remote locations, is useful for accurate air quality predictions. This data
is included as input to each decoder block. The air flow trajectory vector,
which denotes the global pollution transfer pattern, is also included to
capture the pollution transfer. (3) The prediction value of the previous
time step. We are using a seq2seq framework to predict the next τ hours,
and therefore the prediction values of previous step are beneficial for the
current prediction.

5.4.2 Representation Learning

Trajectory Representation Learning. Learning representations for
specific tasks has been a longstanding open problem in machine
learning. Recently, inspired by the success of word2vec [MCCD13],
the idea of learning general representations has been extended to
paragraphs [LM14], networks [PARS14], trajectories [LZC+18], etc. To
capture the sequential order information emerging in sequence processing
tasks, encoder-decoder based Recurrent Neural Network models (RNNs)
have been developed, such as sequence to sequence learning [CVMG+14],
and skip-through vectors [KZS+15]. For our first task of learning trajectory
representations, we use a sequence encoder-decoder model to encode
each trajectory starting from city k at time i, namely Ji

k ∈ Rτ×2, into one
vector Vi

k ∈ Rq×1, where q is the dimension of the vector.
The whole module consists of a fully connected neural network and

an encoder-decoder [CVMG+14] RNN, as shown in Figure 5.3. A fully
connected network is applied to each single trajectory point to embed
the point into a space with the same dimension as the desired trajectory
representation. The embedded vectors are then input to the RNN encoder
in a chronological order. We choose GRU to be the recurrent unit as
in [CGCB14] as this architecture is empirically shown to be more efficient
and requires less parameters than LSTM. The logic of adopting an RNN
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Figure 5.3: Representation learning for air flow trajectories using a sequence encoder-
decoder model.

decoder here is similar to the way people come up with natural features
of trajectories. If the decoder can restore the trajectory from the encoded
feature representation, then we can assume that there is little information
lost in the encoding, and the representation is thus suitable to facilitate
PM2.5 prediction.

The loss function is the square loss between the input and the restored
trajectories. Formally, we denote two sequences x = 〈xt〉|x|t=1 and y =

〈
yt
〉|y|

t=1

as the encoder (Ji
k) and decoder (Ĵ

i
k) trajectory data, respectively. Each xt

and yt denotes the trajectory point representation, and |x| and |y| represent
the length of the trajectories. In our task, we model

P

(
y1, . . . , y|y||x1, . . . , x|x|

)
= P

(
y1|x)

|y|∏
t=2

P
(
yt|y1:t−1, x

)
. (5.2)

The encoder reads in and encodes the sequence x into a fixed-dimensional
vector v. Since v encodes sequential information in x, we have

P
(
yt|y1:t−1, x

)
= P

(
yt|y1:t−1, v

)
. (5.3)

The decoder computes the probability P
(
yt|y1:t−1, v

)
at every position t by

squashing y1:t−1 and v into a hidden state. Then the loss is calculated by
L =MSE(y, x). Since the context vector v acts as the initial hidden state of
the decoder, it can be used as a representation vector of the trajectory path,
which is denoted as Vi

k. Then, Vi
J =

∑Nc
k=1 Vi

k represents all the trajectory
representations at time i.

Node Representation Learning. A straightforward approach to represent
a station location is by using the centroid coordinates of the station
(GPS coordinates) directly. The centroid coordinates of the stations
naturally encode the spatial proximity for the stations but restrict the
representations to a two-dimensional space. This makes it difficult for the
loss function to further optimize the representations in their parameter
space. Another widely used technique in representation learning is the
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Figure 5.4: Spatial attention mechanism based on the sequence-to-sequence architecture
with a dense layer (FCN) with air flow trajectory data and station coordinate information
as input.

one-hot encoding, especially in the NLP domain [LZC+18]. One-hot
representation could represent more meaningful underlying relationship
between different words by learning a high dimensional vector for each
word. However, the one-hot representation loses the spatial distance
relation of the stations as all stations are then treated independently.

We borrow the idea of high dimension representations for each
station location from one-hot encoding and map the i-th station location
information (Li) to a high dimension representation (Vi

L) via a fully
connected network:

Vi
L = FCN(Li). (5.4)

This FCN is connected to the whole TIP-Air framework and parameters
are learned by back propagation. The learned high dimension
representations are supposed to be easier to discover and represent spatial
relations between stations.

5.4.3 Spatial Attention

In the previous section, we encoded the air flow trajectory and station
location data into vectors via representation learning. Following the
previous example in the Introduction section, the air flow trajectory data
imply the air pollution propagation patterns in the future. In other words,
it can be used as an indicator of sudden changes. Therefore, instead of
using all air quality measurements to make a prediction, we design a
spatial attention module to learn the weights for each sensor reading.

Given all the trajectory data J =
(
J1, J2, . . . , JNc

)
from Nc cities in the

next τ hours, we encode the trajectory data into vectors according to
the method described in Trajectory Representation Learning, which is
referred as VJ =

(
VT+1

J ,V
T+2
J , . . . ,V

T+τ
J

)
∈ R|VT+i

J |×τ, where |VT+i
J | denotes

the length of the encoded trajectory vector. Let L =
(
L1,L2, . . . ,LNg

)
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represent the GPS coordinates of the station. Then, the corresponding
high dimension representation is denoted as VL =

(
V1

L,V
2
L, . . . ,V

Ng

L

)
,

where |Vi
L| denotes the length of the encoded station location vector.

To incorporate the knowledge of air flow patterns over the next τ
hours, a sequence to sequence architecture with a dense layer [HBB19]
is proposed to learn the embedded hidden vector for VJ, as shown in
Figure 5.4. VT+i

J is the i-th input to the block of the LSTM architecture.
The output of the last block denotes a vector with the hidden information
from the previous blocks defined as:

P

(
V
′
J|VT+1

J ,V
T+2
J , . . . ,V

T+τ
J

)
(5.5)

After having obtained the embedded trajectory vector V
′
J in each

prediction iteration, it is combined with the station location vector Vk
L.

The spatial attention αk is then applied as follows:

ek = Ve tanh
(
WeV

′
J +UeV

k
L + Be

)
(5.6)

αk =
exp

(
ek
)

∑Ng

i exp (ei)
, (5.7)

where We, Ve, Ue and Be are parameters to be learned. The spatial attention
weights E =

(
e1, e2, . . . , eNg

)
are treated with a softmax function to ensure

their sum equals to 1. The output vector of the spatial attention layer is
represented as

(
α1X1, α2X2, . . . , αNgXNg

)
∈ RNg×T, where Xi is the i-th station

readings during the time period T. The aforementioned output vector is

processed by a LSTM layer to get the encoder output Zt =
(
z1

t , z
2
t , . . . , z

s
t

)T ∈
R

s×T, where s is the dimension of the hidden state. The encoder output
serves as the input to the temporal attention layer.

5.4.4 Temporal Attention

Since the performance of the proposed encoder-decoder architecture will
degrade rapidly as the encoder length increases [CVMG+14], we apply
a temporal attention mechanism to adaptively select the relevant hidden
states of the encoder and to produce the context vector, which is then
used as part of the input to the decoder. Specifically, the attention weight
of each hidden state of the encoder at time t is calculated based on the
previous decoder hidden state dt−1 ∈ Rp and the cell state of the LSTM
unit s′t−1 ∈ Rp with

li
t = v
d tanh

(
Wd

[
dt−1; s′t−1

]
+Udhi

)
, 1 ≤ i ≤ τ (5.8)

and

βi
t =

exp
(
li
t

)
∑T

j=1 exp
(
lj
t

) , (5.9)
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Figure 5.5: Granger causality test [Gra69] confusion matrices between air quality
measurements in Beijing and the wind speed data in both Beijing and surrounding
cities.

where
[
dt−1; s′t−1

]
∈ R2p is a concatenation of the previous hidden state and

cell state of the LSTM unit. hi denotes the i-th encoder hidden state, and
vd, Wd, Ud are parameters to be learned. Then, the attention mechanism
computes the context vector ct as a weighted sum of all the encoder hidden
states {h1,h2, · · · ,hT} as

ct =

T∑
i=1

βi
thi. (5.10)

5.4.5 Weather Fusion Module

The Granger causality test [Gra69] is used to determine if one time
series is useful to forecast another variable by investigating causality
between two variables in a time series. Figure 5.5 plots the Granger
causality test confusion matrices between the air quality readings and the
corresponding wind speeds for every air quality station. The result shows
that (i) the local wind speed for every air quality station is closely related
to the future air quality; and (ii) the wind speed at remote locations helps
to predict the air quality in Beijing.

Instead of using the local weather data, we propose to include all
weather data including the data from remote locations based on the
following intuition. We argue that the air quality at remote locations
affects the air quality evolving patterns at the target location, i.e., the
pollution may propagate from remote cities to the target city. Under
this setting, weather conditions at remote locations provide important
information about the future air quality changes. For example, strong
wind at remote locations locally decrease the local pollution levels and
thus less pollution propagates to the target location. Based on this
intuition, we use a combination of the weighted data W̃, especially the
wind speed data, to represent the overall influence of weather conditions
on the air quality evolution in the future as shown in Figure 5.2.
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5.4.6 Encoder Decoder and Model Training

In the encoder, after getting the spatial attention weights for each station
αk

(
1 ≤ k ≤ Ng

)
, we multiply the attention values with raw station readings

to get the newly weighted air quality data X̃. We feed them as the new
input to the encoder and update the hidden state at time t by using
ht = fe

(
ht−1, X̃t

)
, where fe denotes an LSTM unit.

In the decoder, once we get the weighted sum context vector ct′ at
a future time t′, we combine it with external factors, such as weighted
weather vector W̃t′ and air flow trajectory vector Vt′

J , and the last output
of decoder ŷt′−1 in order to update the decoder hidden state with dt′ =

fd

(
dt′−1,

[
ŷi

t′−1; W̃t′ ; Vt′
J ; ct′

])
, where fd is an LSTM unit used in the decoder.

Then, we concatenate the context vector ct with the hidden state dt′ , which
becomes the new hidden state from which we make final predictions as
follows:

ŷt′ = v
y (Wm [ct′ ; dt′] + bm) + by, (5.11)

where v
y , Wm, bm and by are parameters to be learned. The mean squared
error (MSE) loss is minimized by the Adam optimizer [KB14].

5.5 Experimental Evaluation

In this section, we first introduce the datasets used, list relevant baselines
we compare to, and provide implementation details. Then, we show that
the proposed approach outperforms the state-of-art by a fair margin. We
then empirically verify the influence of main architectural decisions on
the prediction quality through ablation studies. Finally, a case study is
given to show the effectiveness of the sudden change prediction and the
interpretability of the results.

5.5.1 Experimental setup

Datasets. We collect air quality data1, including PM2.5, PM10, O3,
NO2, CO and SO2, from 35 stations in Beijing and 55 stations in the
surrounding cities between Jan 1, 2016 and Jan 31, 2018. The system
collects meteorological data2 from related cities/districts every hour. Beijing
has district-level granularity for the data, while surrounding cities have a
city-level report. Each record consists of weather (sunny, cloudy, overcast,
foggy, snow, small rain, moderate rain, and heavy rain), humidity,
temperature, pressure, wind speed, and wind direction. To represent
the air flow propagation between cities, we include the air flow trajectory
data produced by National Oceanic and Atmospheric Administration

1https://quotsoft.net/air/
2https://rda.ucar.edu/datasets/ds084.1/
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Table 5.1: Performance comparisons of different models.

1-6h 7-12h 13-18h 19-24h
14.87 26.00 32.21 35.45Naïve
14.17 25.88 32.67 37.04LSTM
14.13 23.99 30.14 33.61Seq2Seq
14.03 19.42 22.95 24.23GeoMAN
13.44 18.05 20.95 21.91MGED-Net
12.15 15.34 16.25 17.21TIP-Air

(NOAA). In our study, we crawl HYSPLIT’s forward trajectories3 starting
from surrounding 9 cities of Beijing. Each trajectory represents the
predicted air flow propagation path over 24 hours.

Baselines. We compare TIP-Air to the following baselines:

• Naïve approach: Uses the current hour as the predicted value for
all future hours.

• LSTM: Uses historical 24 hour readings to predict the future.

• Seq2Seq: The architecture features stacked LSTMs in both encoder
and decoder and uses historical data over the past 24 hours for
future predictions.

• GeoMAN [LKZ+18]: A feature fusion encoder-decoder architecture
with multi-level attention to learn feature importance.

• MGED-Net [ZLG+19]: A deep model to fuse heterogeneous fine-
grained weather data for air quality prediction.

Evaluation Metrics and Model Details. We use MAE to evaluate our
algorithms on predicting the values of all 35 stations in Beijing for the
next 24 hours. The sequence length for both encoder and decoder is
set to 24. Grid search is used to decide on the optimal hyperparameter
combination. We set the learning rate to 0.001, batch size to 64, and apply
early stopping for model training. We use Adam to update parameters
and Mean Squared Error (MSE) as loss function. All experiments are
performed on a machine with two NVIDIA GTX 2080 Ti GPUs.

5.5.2 Experiment Results

Overall Performance Comparison. Table 5.1 presents achieved
prediction performance of all methods introduced above. Among all

3https://ready.arl.noaa.gov/HYSPLIT_traj.php
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Figure 5.6: The original air flow trajectory (in blue) and the corresponding decoder
output from the embedding representations (in red). Figures (a)-(d) show several
examples of different complexity.

models, the proposed TIP-Air approach yields the best performance for
1 to 24 hours predictions. We can also observe that GeoMAN achieves
a significantly better performance for longer time horizons than LSTM
and Seq2Seq methods. The major drawback of GeoMAN is that feature
interactions are not well modeled by its feature fusion architecture.
MGED-Net solves this problem by including a group interactions module
to fuse the data from multi-domains and further improve the prediction
accuracy. However, both GeoMAN and MGED-Net fail to capture
pollution transfer from remote locations. Therefore, TIP-Air outperforms
all baselines and achieves between 9.6% and 22.4 % improvement in MAE.

Evaluation on Feature Representations. For the trajectory representation
learning, the encoder and decoder length are both 24 and the dimension
of the context vector Vi

k is 10 × 1. The dimension of node representation
Vi

L is 256×1. Figure 5.6 shows the effectiveness of the proposed trajectory
representation learning method. The embedding representation vector
Vi

k could successfully recover air flow trajectories of various shape,
which means the vector captures the fundamental features well, removes
potential noise and can be used to represent the air flow data.

We compare two different options to represent air flow trajectory data
and station GPS coordinates: (i) raw values of the data, or (ii) embedded
into a vector space via representation learning. They are applied to both
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Table 5.2: Evaluation of feature representation. rawTraj denotes raw trajectory data;
rawGPS denotes raw GPS coordinates.

1-6h 7-12h 13-18h 19-24h
13.21 16.45 18.34 19.22TIP-Air-rawTraj
12.85 16.12 17.23 18.11TIP-Air-rawGPS
12.15 15.34 16.25 17.21TIP-Air

Table 5.3: Evaluation of spatial attention. A denotes addition of air quality readings
from other cities; J denotes trajectory data; na means no spatial attention on air quality
data; nw means no spatial attention on weather data; ns means no spatial attention.

1-6h 7-12h 13-18h 19-24h
14.09 19.58 24.36 26.16GeoMAN+A
13.89 19.01 21.03 22.62GeoMAN+A + J
13.64 18.91 22.56 23.85MGED-Net+A
13.01 17.78 19.88 20.15MGED-Net+A + J
13.22 18.78 20.65 21.01TIP-Air-na
12.88 15.92 16.99 18.20TIP-Air-nw
13.76 18.92 20.78 21.45TIP-Air-ns
12.15 15.34 16.25 17.21TIP-Air

encoder and decoder. As shown in Table 5.2, using air flow trajectory
data leads to a significant improvement of the prediction quality, even
if raw trajectory data is used directly. The result of using raw air flow
trajectory data is already better than what can be achieved by the state-
of-art methods. The same phenomenon applies to the GPS data. In this
case, the prediction performance is not as good as for our full TIP-Air
model, since two-dimensional GPS coordinates are not powerful enough
to encode the station location information. This hinders the positive effect
of the spatial attention.

Evaluation of Spatial Attention. To evaluate the effect of the proposed
spatial attention mechanism on both air quality data and weather data,
we test all combinations and list the result in Table 5.3. We observe
that: (i) The combination of the spatial attention mechanism for both
air quality data and weather data shows great improvement against
each individual contribution, which shows the importance of using a
joint spatial attention mechanism on both air quality data and weather
data. (ii) The fact that TIP-Air outperforms GeoMAN and MGED-Net,
which both include the air quality data in remote cities and air flow
trajectory data, verifies the advantages of our spatial attention against the
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Table 5.4: Evaluation of the impact of weather factors. nl denotes no local weather
data; ng means no global weather data; ne denotes no weather data.

1-6h 7-12h 13-18h 19-24h
12.18 15.88 16.99 18.02TIP-Air-nl
12.89 16.03 17.23 18.82TIP-Air-ng
13.01 16.72 18.01 19.34TIP-Air-ne
12.15 15.34 16.25 17.21TIP-Air

modules used in the previous methods. Here, they intend to learn the
similarity between measurements from different stations from historical
data and assign higher weights when station readings are more similar
to the target one. In such settings, including extra air quality readings
in surrounding cities has a negative influence on the results, as shown in
Table 5.3. However, as we illustrated in the initial example, the air flow
trajectory data in the future indicate the pollution propagation patterns,
especially pollution transfer between cities. Therefore, our proposed
spatial attention mechanism, which is derived from air flow trajectory
data and station location data, is more appropriate to capture pollution
propagation patterns and assign higher weights to the measurements
from relevant station.

Evaluation of External Weather Factors. Current works take only local
weather into account to predict air quality, i.e., the weather close to the
target location. However, both air quality and local weather at remote
locations matter in the context of pollution transfer. From the results
shown in Table 5.4, we make the following observations: (1) Without
using weather data, the prediction performance is worse compared to
other baselines. (2) Including only the local weather data at the target
location is not enough to capture the air quality development, especially
when the air pollution transfers from remote cites. Similarly, the weather
data in remote cites alone can not reflect the pollution dispersion in the
target environment. (3) TIP-Air with the inclusion of weather data at
local and remote locations works best and shows that the proposed
weather attention and fusion mechanism is necessary to capture the
aforementioned relationships.

Case Study. We use a case study to evaluate the interpretation ability of
TIP-Air. Figure 5.7-(a) shows the air quality readings of Beijing and City
1 (C1), which is located in the south of Beijing and thought as one of the
major causes of pollution for Beijing. At two prediction timestamps Ta

and Tb, we make predictions for the next 19-24 hours indicated as shaded
zones in the plot. Current approaches include solely historical data of
Beijing and predict the air quality to be at a normal level in the future.
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Figure 5.7: A case study to evaluate the TIP-Air interpretation ability: (a) Air quality
readings. (b) Wind speed readings. (c) Spatial attention weights for prediction time Ta

and Tb. (d) Prediction for the mean value of next 19-24 hours.

However, the spatial attention weights in TIP-Air show that the pollution
propagate from City 1 (C1) to Beijing in both time periods, as shown in
Figure 5.7-(c). The air quality data in C1 should also be included to make
accurate predictions.

The prediction behaviors at timestamps Ta and Tb also differ a lot in
terms of how the air quality in remote cities changes in the future. As
shown in Figure 5.7-(c), at both timestamps, our spatial attention results
indicate that more attention should be focused on the south of Beijing,
e.g., C1. At timestamp Ta, pollution propagates from C1 to Beijing but the
weather situation in C1, e.g., the low wind speed as shown in Figure 5.7-
(b), is appropriate for pollution accumulation. While for prediction at
Tb, the wind speed in C1 is quite strong in the future, which facilitates
pollution dispersion and the air quality in C1 will probably decrease to
low levels. In this scenario, even if air flow propagates pollution from C1
to Beijing, the effect is largely weakened and the air quality in Beijing will
stay at a normal level instead of a hazardous. Compared with the state-of-
art prediction results, our proposed method can capture the underlying
pollution transfer between cities while taking local dynamics into account
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and results in more accurate predictions, especially for sudden changes
(shaded zones in the plot), as shown in Figure 5.7-(d).

5.5.3 Discussion

The use of the TIP-Air framework in other areas. We use Beijing
as an example to illustrate and evaluate the proposed framework,
however, TIP-Air is generalizable and can be easily adapted to predict
air quality, especially sudden changes, in other areas. First, given a set of
measurement stations in the area and a target, we can detect influential
pollution sources by analyzing the backward air flow trajectories as shown
in Section 5.3, then following the method proposed in Section 5.4, the
prediction model could consider air quality and weather information
in both target and surrounding locations to provide more accurate and
interpretable predictions.

The use of the TIP-Air framework in other air quality contexts. The
effectiveness of the proposed framework shows that pollution transfer is
an important phenomenon in the air quality research domain, necessary to
be considered for accurate prediction of complex pollution patterns. This
motivates further research in the following air quality research contexts:

Air quality spatial interpolation. Current approaches [ZLH13b,
CLL+14c] apply data-driven and deep learning methods to learn the
relationship between sparsely deployed stations and infer the air quality
values for unknown locations. Accompanied by the proven effective air
flow trajectory data, new spatial interpolation method can be proposed
to derive the pollution patterns and generate more accurate fine-grained
air quality maps in large-scale area (e.g., 16,410.5 km2 of Beijing) with a
small number of stations (e.g., 35 in Beijing). Furthermore, those learned
patterns could be more robust to air quality map transfer and downscaled
sensor deployment tasks [CHZT20b].

Air quality missing data imputation. Current approaches [LZCY19] for
missing air quality imputation fill missing values with values computed
from local air quality data, local weather or land use data. New models
which include air flow data and attention mechanisms can be designed
to achieve better accuracy with interpretability.

The robust trajectory representation learning and attention-based
prediction could be easily adapted to the above mentioned research
problems.

5.6 Summary

In this chapter, we proposed TIP-Air, an attention based seq2seq model
to predict the air quality, especially for those sudden changes, by
tracking intercity pollution propagation. In the first time, we propose
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to use the air flow trajectory data to represent the pollution propagation
phenomenon between cities and embed the 2D trajectory data into vectors
via representation learning, which could be used as pollution propagation
representation vectors and applied in various applications and models. To
derive the underlying complex interactions of the air quality and weather
data between local and remote cities stations, we invented a novel spatial
attention mechanism based on the air flow and sensor location data,
which encodes the pollution propagation patterns during the future hours
and then maps them to the weighed air quality and weather data used
for the final seq2seq framework. In the seq2seq framework, a temporal
attention mechanism is applies to capture the relationship between long
term encoder steps and decoder step. Also, a weather fusion module
is combined to include all the weather conditions in related locations
and helps to predict those sudden changes. The experiments on real
data set shows that our proposed method outperforms all the state-
of-art baselines in a large margin, especially for those sudden change
predictions. It also reveals a potential to interpret the prediction results
visually and analytically, which is helpful for the government to make
intelligent policies.

Predicting the city-scale air quality changes accurately is beneficial
for administrators to make intelligent decisions. For example, where
and when to close the pollution sources in order to reduce the pollution
transfer to target cities. In the next chapter, we will introduce how to
reduce the local air pollution with a novel water spraying system.



6
Reducing Urban Air Pollution with

Intelligent Water Spraying

Various regulations and policies are made to improve city-level air quality
in the long run, e.g., accurate predictions can help the government to
make intelligent control policies (Chapter 5). Those pollution control
strategies include policies such as closing the factories, traffic control etc..
However, there lack precise control measures to protect critical urban
spots from heavy air pollution. In this chapter, we propose iSpray, the
first-of-its-kind data analytics engine for fine-grained PM2.5 and PM10

control at key urban areas via cost-effective water spraying. iSpray is
a data-driven approach and uses the low-cost sensor measurements as
its input to the analytics engine. The calibration model introduced in
Chapter 2 and transfer method presented in Chapter 3 guarantee the
accuracy of the low-cost sensing data, and the map generation method
with downscaled deployment, i.e., MapTransfer in Chapter 4 enables
a cost-effective sensing system. Those methods server as the building
block of an accurate, reliable and affordable air quality sensing system,
and will be an essential step on the success of our iSpray system. To
effectively reduce the pollution, iSpray combines domain knowledge with
machine learning to profile and model how water spraying affects PM2.5

and PM10 concentrations in time and space. It also utilizes predictions of
pollution propagation paths to schedule a minimal number of sprayers to
keep the pollution concentrations at key spots under control. In-field
evaluations show that compared with scheduling based on real-time
pollution concentrations, iSpray reduces the total sprayer switch-on time
by 32%, equivalent to 1, 782 m3 water and 18, 262 kWh electricity in our
deployment, while decreasing the days of poor air quality at key spots by
up to 16%.
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6.1 Introduction

In addition to passive monitoring of urban air pollution, active control
strategies are also crucial. Governments and authorities have launched
various policies and regulations to reduce emissions from factories,
transport, and household to improve the overall (e.g., city-level, annual
average) air quality [OWS+20, CWZ+17]. However, there lacks measures
for fine-grained (e.g., specific districts, hourly average) air pollution
control. Such measures are complementary to the city-level policies and
regulations and aim to offer precise protection to critical points of interest
(POIs) such as residential areas, schools, hospitals, etc. within the city.

In this chapter, we explore water spraying for precise PM2.5 and PM10

control at key urban POIs. Water spraying proves effective for dust
control at construction and mining sites [Kis03, KSM14, TNHS+03] and
has recently been applied for PM reduction in urban areas [Yu14]. The
principle is to atomize water into micro droplets to fall in combination
with ambient dusts [Pro13]. The fog produced by commodity sprayers
can spread 10 to 100 meters and our field studies show water spraying
reduces PM2.5 and PM10 concentrations by 20% to 30% (up to 13 μg/m3

for PM2.5 and 19 μg/m3 for PM10), in various weather conditions (see
Section 6.4.1), which is considered significant improvements in air
pollution control [GS18]. Note that a reduction of 10μg/m3 in PM2.5 and
PM10 concentrations is valuable for the health of residents, especially on
human respiratory system [XXSL16]. Clinical research indicated that the
average life span was extended by 0.35 years for every 10μg/m3 decrease
of PM2.5 [CPID+13], whereas the mortality of cardiopulmonary diseases
and lung cancer increased by 6% and 8%, respectively, for every 10μg/m3

increase of PM2.5 [TKPI+11]. It is also shown that for each increase of
PM10 by 10μg/m3, the overall morbidity increased by 0.38% [KC89], and
the mortality related to respiratory diseases increased by 0.58% [AKD+06].
Therefore, water spraying holds potential for effective urban PM2.5 and
PM10 control at fine spatiotemporal granularity, and provides valuable
benefits for human health, especially when the pollution reduction is
over 10 μg/m3.

Designing an urban water spraying system, however, faces multiple
technical challenges. (i) There lacks quantitative models on how water
spraying reduces PM2.5 and PM10 concentrations in the urban outdoor
space. Existing models are primarily derived for indoor environments
with controlled ventilation [Yu14, dCMP+17]. They are unfit for profiling
pollution reduction outdoors due to the complex aerodynamics and
meteorological factors in the open urban space. It is difficult to decide
which sprayers to switch on without a quantitative pollution reduction
model. (ii) The water spraying system should be cost-effective, i.e., a
minimal number of sprayers are switched on to keep the PM2.5 and PM10

concentrations at the key POIs within the desired range. For example,
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a single sprayer in our deployment consumes 0.6 m3 water and 5 kWh
electricity per hour, which adds up to 792 m3 water and 6600 kWh
electricity a day if all the sprayers are operating non-stop. We empirically
show that a strategically selected sprayer subset would suffice to ensure
the air quality level at given POIs.

To this end, we propose iSpray, a data analytics engine for fine-grained
air pollution control at key urban POIs via cost-effective water spraying.
We exploit both domain knowledge and data-driven approaches to
characterize and model the spraying-induced pollution reduction in time
and space. The hybrid approach enables accurate pollution reduction
modeling even with limited spraying data for training. We further
propose a sprayer scheduling scheme based on the predictions of
pollution propagation paths. By prioritizing water spraying along the
pollution propagation paths, we avoid unnecessary spraying that only
marginally suppresses the pollution at the targeting POIs. The main
contributions of this chapter are summarized as follows.

• To the best of our knowledge, we are the first to characterize the
effect of commodity water sprayers on PM2.5 and PM10 reduction in
outdoor urban areas. Field studies show that the spraying-induced
pollutant reduction at the sprayer’s location is non-linearly weather-
dependent, which can be modeled via a neural network, and the
model generalizes across sprayer locations.

• We design an explainable model to integrate water spraying into
urban air quality map generation. We exploit domain knowledge to
isolate the impact of spraying on the pollutant’s spatial distribution
for easy sprayer scheduling and accurate map generation with
limited spraying data. Evaluations show that our approach
outperforms pure data-driven map generation by 7.9 to 9.3 in mean
absolute error (MAE).

• We propose a propagation-aware sprayer scheduling algorithm for
cost-effective air pollution control at key urban spots. Compared
with the baseline strategy that switches on sprayers according to the
current pollutant concentration, our scheduling scheme reduces the
total sprayer switch-on time by 32%, or equivalently 1, 782 m3 water
and 18, 262 kWh electricity for our deployment, while decreasing
the days of poor PM2.5 and PM10 air quality at key POIs by 13% and
16%.

In the rest of this chapter, we provide an overview of iSpray in
Section 6.2, explain the deployment and data collection in Section 6.3,
and elaborate on each module in Section 6.4, Section 6.5 and Section 6.6.
We present the overall evaluations of iSpray in Section 6.7 and conclude
in Section 6.8.
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6.2 iSpray Overview

iSpray is a data analytics engine for urban air pollution control with
commodity sprayer hardware. It offers (i) pollution reduction modeling
at single sprayer locations, (ii) pollution map generation, and (iii) cost-
effective sprayer scheduling. Figure 6.1 illustrates the functional modules
in iSpray. Table 6.1 summarizes the major notations that will be used
throughout this chapter.

The pollution reduction modeling module (see Section 6.4) characterizes
and quantifies the impact of water spraying on PM2.5 and PM10

concentrations at the locations where the sprayers are installed. It is the
foundation to integrate the impact of water spraying into air quality map
generation (i.e., spatial distribution of pollutant concentration). Existing
pollution reduction models for water spraying either halt at simulations
[Yu14] or are designed for indoor scenarios with controlled ventilation
[Kis03, KSM14]. They are unfit for modeling pollution reduction
outdoors because they fail to account for the complex aerodynamics and
meteorological factors in the open urban space. iSpray takes a data-driven
approach to model how water spraying reduces outdoor air pollution
under various environmental conditions. Through in-field studies, iSpray
learns a neural network that quantifies the reduction in PM2.5 or PM10

concentration at single sprayer locations given specific spraying time,
meteorological conditions, and other environmental factors.

The pollution map generation module (see Section 6.5) models how water
spraying affects the spatial distribution of PM2.5 and PM10 concentrations.
Due to limited spraying data for effective training, we model the
spatial pollution reduction with both domain knowledge and data-driven
approaches. Instead of feeding all data into a machine learning model as
previous studies [HSW+15, CLL+14a, CDL+19a], we exploit a Gaussian
plume model [Zan90, Ary04] to simulate pollution reduction in space by
regarding the sprayer as a sink that absorbs pollution. We also propose
a parameter learning strategy to estimate the inaccessible parameters
in the Gaussian plume model from historical data. Evaluations show
our hybrid modeling method outperforms pure data-driven schemes in
modeling spraying-induced pollution reduction maps (see Section 6.5.4).

The sprayer scheduling module (see Section 6.6) aims to keep the air
pollution at crucial POIs under predefined thresholds by switching on
a minimal set of sprayers. Our measurements show that the spraying-
induced pollution reduction is non-uniform across space (e.g., due to
wind direction) and is non-linear to multiple environmental factors (e.g.,
weather). Therefore, the amount of pollution reduction at a given POI
varies if a different sprayer is switched on. iSpray proposes a propagation-
path-based heuristic to rank the importance of sprayers to the pollutant
reduction at each POI, so as to turn on a minimal number of sprayers
without exceeding the targeting pollution threshold at crucial POIs.
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Table 6.1: Summary of major notations.

Notation Explanation

C(g) ground truth pollution concentration in grid g
Ĉ(g) estimated pollution concentration in grid g
Cd(g) pollution concentration in grid g due to dispersion
R(g) overall pollution reduction in grid g due to water spraying
dcross(.) crosswind distance between two grids
ddown(.) downwind distance between two grids
g grid in 2-dimensional space
i index for POI
k index for sprayer
Li location of POI
m mean function of Gaussian process
v covariance function of Gaussian process
K total number of sprayers in the region of interest
o operating status of a sprayer, which can be on or off
r(g|sk) pollutant reduction in grid g with sprayer sk switched on
sk =< gk, ok > sprayer sk in grid gk with operating status ok
t discrete time index
Δt time duration, set to 1 to 6 hours
φ(.) learned function for Gaussian plume dispersion parameter σ
Qair pollution emission rate
Qsk (Δt) accumulative pollution reduction in grid of sprayer sk
Qsk abbreviation for Qsk (Δt) when Δt is set to 1 hour
σ Gaussian plume dispersion parameter
w̄ average horizontal wind speed

6.3 Hardware Deployment and Data Collection

iSpray is designed as a software solution that works with commodity
sprayer hardware. We used an existing deployment infrastructure, which
includes both air quality sensors and sprayers, in this chapter to design
and evaluate our algorithm. The full access to this deployment enables us
to select the experiment areas, design the evaluation methods and test our
proposed algorithms, which are our main contributions. In this section,
we will present the sprayer hardware deployment and data collection in
this study.

6.3.1 Sprayer Hardware and Deployment

Water spraying is widely used for dust control in the construction and
mining industries [Kis03, KSM14, TNHS+03] and has also been applied for
ambient particulate matter reduction in urban areas [Yu14]. The principle
of water spraying for dust suppression is to atomize water into droplets
of size comparable to fine particulate matters e.g., 1μm to 8μm. These
droplets can stay suspended in the air for a long time and will then fall in
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Figure 6.2: Ground hardware components of a commodity water sprayer: (a) exterior
of the atomization system and the water tank; (b) internal design of the atomization
system. (c) Example sprayer deployment at critical urban POIs: School, Hospital, Road
and Factory. Note that only the multi-nozzle sprinkler of the sprayers are shown.

combination with the ambient dusts and particulate matters [Pro13].
A commodity sprayer exploits an electric motor to press water through

high-pressure resistant pipes and atomizing nozzles to produce micro
droplets. A single nozzle can produce fog lengths of 3 to 5 meters, which
can spread 10 to 30 meters in windless conditions and 100 meters in
windy conditions. A typical sprayer consists of an atomization system,
a water tank, a multi-nozzle sprinkler and other control modules. The
atomization system and water tank are normally installed on the ground
(see Figure 6.2-a and Figure 6.2-b) while the sprinkler is usually installed
high above the ground e.g., at the edge of rooftops, for better dust
suppression performance (see Figure 6.2-c). iSpray is designed as part
of the control module to intelligently switch on and off the sprayer.

Since we aim at cost-effective air pollution control at critical urban
POIs, we use sprayers at various pollution-sensitive POIs such as schools
and hospitals. We also use sprayers at locations of representative PM2.5

and PM10 sources such as factories and roadsides to profile the impact of
water spraying on air pollution reduction. 55 sprayers were installed at
diverse urban POIs covering an area of 18 km × 24 km in a metropolis
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in China. A portable air quality sensing box is also installed in the close
vicinity of each sprayer to collect real-time PM2.5 and PM10 concentrations
as well as weather measurements including air temperature, relative
humidity, air pressure, wind speed and wind direction. All the data
are transmitted via NB-IoT to a central server.

We partition our sprayer deployment into three groups: Research Area,
Target Area and Control Area (see Figure 6.3-c). The principles of area
selection are as follows.

• The Research Area covers sprayers with co-located air quality sensing
boxes. That is, each site within the Research Area consists of a sprayer
and an air quality sensing box as shown in Figure 6.3-b. There are 55
such pairs of sprayers and air quality sensing boxes in the Research
Area. This area is used for modeling and testing single-location
pollution reduction (Section 6.4) as well as pollution reduction maps
(Section 6.5).

• The Target Area is a sub-area of the Research Area where we would
like to control the PM2.5 and PM10 levels. It covers critical POIs as
those shown in Figure 6.2-(c). We randomly pick two Target Areas
that contain diverse POIs. Target Area 1 contains 7 pairs of sprayers
and sensing boxes and Target Area 2 contains 8. We mainly use Target
Area 1 to test the sprayer scheduling performance of iSpray in the
evaluations (Section 6.7) and the slightly smaller Target Area 2 to
assess the generalization of iSpray (Section 6.7.4).

• The Control Areas are used as control groups against the Target Areas
to evaluate the effectiveness of water spraying. Each site in the
Control Areas only has an air quality sensing box without a sprayer.
We select Control Areas with the following criteria. First, the PM2.5

and PM10 distributions of the Control Area should be similar to those
in the Target Areas when the sprayers are closed. The similarity is
measured by the Kullback-Leibler (KL) divergence as in [CHZT19a].
Second, the Control Areas are located at different orientations relative
to the Target Areas. In total, three Control Areas are chosen, with 5,4
and 5 air quality boxes, respectively. We use the average PM2.5 and
PM10 concentrations of the three Control Areas as the control group
for the Target Areas.

6.3.2 Data Collection

We collected measurements from the 55 sprayers and their co-located air
quality sensing boxes in Research Area, including data from 7 air quality
sensing boxes from Target Area 1, and 8 from Target Area 2. Meanwhile,
data from the 14 (5 + 4 + 5) air quality sensing boxes data in the three
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Control Areas are also collected. The dataset contains the following data
collected spanning from September 1st, 2019 to November 1st, 2021.

• Air quality and local weather data: We sample real-time air quality
and weather-related readings from the air quality sensing boxes at
every minute. The air quality readings include PM2.5, and PM10. The
local weather information includes Air Temperature (AT), Relative
Humidity (RH), Air Pressure (AP), Wind Speed (WS), and Wind
Direction (WD) measured at the location of the sensing box. Prior
research [ZLH13a, CLL+14b, CDL+19a, MLX+20] showed that these
factors affect the PM2.5 and PM10 concentration. The values of all
the weather variables are normalized to the range of [0, 1].

• Sprayer data: We record sprayer data including sprayer operating
status, which is either on or off, as well as the usage of water and
electricity. The sampling rate is also every minute.

• Forecast weather data: In addition to the local weather data sampled
at each air quality sensing box, we also collect public weather forecast
data 1 for the entire region of interest. These weather records contain
1km×1km grid-level air temperature, relative humidity, air pressure,
wind speed, and wind direction for every hour. These data will be
used in the air quality map prediction module (see Section 6.5.1).

Figure 6.3-(d) summarizes our data collection campaigns.

• Data collection for single-location pollution reduction. We use
data correspond to the three locations L1, L2, and L3 in Figure 6.3-
(a) for characterizing and modeling air pollution at single locations
(see Section 6.4). The selection of these three locations is deferred
to Section 6.4.1. Its data collection period is from September
1st, 2019 to April 30th, 2020. Specifically, two two-week pilot
studies, from September 1st, 2019 to September 15th, 2019, and
from September 16th, 2019 to September 30th, 2019, respectively,
are adopted to analyze the spraying-induced air pollution reduction
at single locations (see Section 6.4.1). Afterwards, we use the
data collected from October 2019, as well as from November 2019
(Autumn dataset) and April 2020 (Spring dataset), to train and test
our single-location air pollution reduction model .

• Data collection for pollution reduction map generation. We use
data collected from the Research Area for training and testing air
pollution map generation (Section 6.5). Specifically, we use the
data from September 1st, 2019 to April 30th, 2020 for training the
pollution map prediction without spraying (Section 6.5.1) and data
in March and August 2021 for testing (Section 6.5.4). Similarly, we

1https://www.ecmwf.int/en/forecasts/datasets visited 2021-11-01
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use the data from May 1st, 2020 to August 31st, 2020 for training
the pollution reduction map (Section 6.5.2), and data in April,
September, and October 2021 for testing (Section 6.5.4).

• Data collection for sprayer scheduling. Note that the scheduling
algorithm of iSpray does not involve training other than the above
models for pollution reduction (see Section 6.6). Therefore, we only
need datasets for testing. Specifically, we use the data collected (i)
in October 2020 from Target Area 1 to compare different scheduling
strategies (see Section 6.7.2); (ii) in April 2021 and September 2021
from Target Area 1 to test the performance of iSpray scheduling (see
Section 6.7.3); and (iii) in October 2021 from Target Area 2 to test the
generalization of iSpray scheduling (see Section 6.7.4). Meanwhile,
we collect the data from the Control Areas for the corresponding
months as the control group, i.e., without any water spraying.

Note that both PM2.5 and PM10 are particulate matters and the only
difference lies in size of the particle. Also PM2.5 is more critical to
the human health [XXSL16]. Therefore, in the rest of this chapter, we
will mainly use PM2.5 to illustrate our technical details, but provide the
evaluations for PM10 mainly in Section 6.7.

6.4 Characterizing Spraying on Single-Spot Air Pollution

Reduction

In this section, we conduct preliminary studies to answer the following
two questions: (i) Does water spraying reduce air pollution at single POIs?
(ii) Can we model the amount of air pollution reduction at a single POI as
a function of sprayer time and other environmental factors? We answer
these questions with data collected at the three locations in Figure 6.3-a.

6.4.1 Water Spraying Suppresses Air Pollution at Single Locations

We first investigate whether water spraying notably decreases air
pollution concentrations in the outdoor open air via two field studies.

Pollution Reduction over Time. We randomly choose six sprayers (with
co-located air quality sensing boxes) from the Research Area in Figure 6.3-
(c) for a two-week field study (from September 1st, 2019 to September
15th, 2019). Specifically, sprayers from three locations are selected, where
there are two closely deployed (< 100 meters) sprayers at these three
locations (see Figure 6.3-(a)). The sprayers labeled as A at each location
are used as the control group. That is, they are kept switch off during the
entire two weeks. The sprayers labeled as B at each location are switched
off in the first week and switched on in the second week. We use the
PM2.5 and PM10 concentrations as well as the local weather data (i.e., air
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Figure 6.4: Impact of water spraying on hourly averaged PM2.5 concentration measured
at two closely deployed sprayers (A and B) at L1. (a) PM2.5 concentrations measured at A
and B over time. Both A and B were switched off in the first week and B was switched on
in the second week (portions with green background). (b) Distributions of local weather
data in the first and the second week.

temperature AT, relative humidity RH, air pressure AP, wind speed WS,
wind direction WD) for this study.

Figure 6.4-(a) plots the PM2.5 concentrations measured at sprayer A
and B at location L1 (factory) in these two weeks. We average the
minute-resolution PM2.5 values into hourly resolution to highlight the
general trend over two weeks. In the first week, where both sprayers
were switched off, the mean absolute difference in the PM2.5 readings
of sprayer A and B is within 0.5μg/m3. In contrast, this difference in
PM2.5 concentration increases to 13.0μg/m3 for the second week, where
sprayer A remained off while sprayer B was switched on (portions with
green background in Figure 6.4-(a)). Similar results are observed for
sprayer A and B at location L2 and L3. Specifically, for location L2, the
mean absolute difference between sprayer A and B is 0.6μg/m3 in the
first week, and 10.7μg/m3 in the second week. For location L3, the mean
absolute difference between sprayer A and B is 0.8μg/m3 in the first week,
and 9.5μg/m3 in the second week. The significant change in the PM2.5

measurements at the two closely deployed sprayers indicates that water
spraying notably affects the air pollution.
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Table 6.2: Results of t-tests for weather conditions.

(a) p-values for weather conditions
between the first and second week.

AT AP RH WD WS

L1 0.32 0.44 0.66 0.69 0.79
L2 0.33 0.42 0.65 0.71 0.77
L3 0.30 0.42 0.66 0.72 0.76

(b) p-values for weather conditions
between sprayer A and B.

AT AP RH WD WS

L1 0.90 0.90 0.89 0.92 0.93
L2 0.89 0.91 0.90 0.92 0.93
L3 0.92 0.90 0.89 0.93 0.94

The difference in PM2.5 concentration might be caused by notable
changes in environmental conditions in the first and the second week.
For example, factors such as wind are known to affect the spatiotemporal
distribution of PM2.5 concentrations [ZLH13a, CDL+19a]. Figure 6.4-(b)
plots the distributions of the weather data (i.e., air temperature AT,
relative humidity RH, wind speed WS, wind direction WD and air
pressure AP in the first and the second week. It is observed that the
weather conditions are similar for the first and the second week. It
implies that the change in PM2.5 concentrations at the two sprayers is
mainly due to change in sprayer status i.e., B was switched on in the
second week. As a more quantitative measure, we use t-test to assess the
difference in weather conditions across both weeks for L1,L2 and L3. For
each weather variable measured at each location, measurements in the
first week and the second week are used as the two independent inputs for
the t-test. The hypothesis is that two independent samples have identical
average (expected) values and a p-value larger than 0.05 is explained as a
positive signal to support the hypothesis. Table 6.2a shows the p-values
for all meteorological variables, which range from 0.30 to 0.79. Therefore,
the measurements of weather conditions from these two weeks can be
considered drawn from the same distribution, i.e., similar to each other.

Table 6.3 shows the difference in pollution concentrations measured
at sprayer A and B at the three locations in the second week. As
is shown, water spraying decreases PM2.5 and PM10 concentrations by
over 20% at representative urban POIs, which is considered remarkable
improvements in air pollution control [GS18].

Pollution Reduction at Finer Time Granularity. In this field study, the
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Table 6.3: Difference in hourly averaged PM2.5/PM10 concentration of sprayer B
compared with sprayer A in the second week. (A → B)/reduction means the mean
value changes from A to B, and the reduction percentage.

L1 (Factory) L2 (Roadside) L3 (Residential)

PM2.5 (49.5→ 36.5)/ − 26.2% (45.0→ 34.3)/ − 23.6% (41.2→ 31.8)/ − 22.9%
PM10 (65.8→ 46.7)/ − 29.1% (62.1→ 46.3)/ − 25.4% (55.0→ 42.3)/ − 23.1%

0 200 400 600 800 1000
index

−75

−50

−25

0

P
M
2.
5
D
iff
er
en
ce

(μ
g
/m

3 )

Diff

(a)

AT RH WS WD AP
0.00

0.25

0.50

0.75

1.00

P1

(b)

AT RH WS WD AP
0.00

0.25

0.50

0.75

1.00

P2

(c)

AT RH WS WD AP
0.00

0.25

0.50

0.75

1.00

P3

(d)

Figure 6.5: Illustration of weather-dependent pollution reduction: (a) difference of
PM2.5 between B and A at location L1, where P1 to P3 are three random periods of the
same duration when B is switched on; (b)-(d): local weather data during P1-P3.

setups follow those in the above section, except that instead of keeping
the sprayers B at locations L1 to L3 switched on continuously in the
second week, we regularly switched these sprayers on and off for a
random duration from 15 minutes to 24 hours. The study was conducted
from September 16th, 2019 to September 30th, 2019. The local weather
conditions can be considered as similar between two nearby locations
(i.e., A and B at each location) during these two weeks. As a quantitative
measure, we conduct a t-test for all weather variables between A and B.
The p-values are between 0.89 to 0.94, which are larger than 0.05 (see
Table 6.2b), indicating the weather data at A and B are similar. Thus, the
difference of pollution concentrations between sprayer A and B at these
locations is primarily due to spraying.

Figure 6.5-(a) plots the difference of the PM2.5 concentrations (averaged
for every 15 minutes) between B and A for these 14 days. The zones
colored in green are periods with sprayer B switched on. We make
the following observations. (i) The PM2.5 difference in the uncolored
zones is almost zero, meaning the PM2.5 concentrations at A and B are
almost the same. This is expected because A and B experience similar
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weather conditions and there is no air pollution reduction by water
spraying during these periods. (ii) The PM2.5 difference in the green
zones ranges from 5.5μg/m3 to 62.0μg/m3. The air pollution reduction
owes to water spraying. However, the amount of reduction varies over
time. To understand the reasons for such variations, we investigate the air
pollution reduction from three random periods of the same duration (10
hours), P1 to P3 in Figure 6.5-(a). Our hypothesis is that the spraying-
induced pollution reduction is weather-dependent. Figure 6.5-(b) to
Figure 6.5-(d) show the local normalized weather data during the three
periods P1 to P3. The average PM2.5 reduction in these three periods
are 8.8μg/m3, 22.9μg/m3, and 15.4μg/m3, which notably differ. The local
weather data during these three periods also vary. For example, the wind
direction of P1, P2 and P3 differs from each other (with mean values of
0.81, 0.49 and 0.62). This indicates pollution propagates to location L1 from
different locations during P1, P2 and P3, which might partially explain
the difference in spraying-induced pollution reduction. In fact, the heavy
precipitation and strong wind in P2 facilitates pollution dispersion and
increases the pollution reduction rate. The analysis implies that the varied
PM2.5 reduction in the same time duration at the same location attributes
to the difference in local weather conditions, as will be shown next.

6.4.2 Modeling Air Pollution Reduction at Single Locations

From the field studies in Section 6.4.1, water spraying reduces air
pollution at single locations but the reduction varies and is likely weather-
dependent. In this subsection, we aim to quantify the accumulative
pollution reduction over time as a function of weather conditions. We
prefer modeling accumulative to instant pollution reduction since the
accumulative reduction model facilitates decisions on whether to switch
off a sprayer after a given period. That is, given a time slotΔt at sprayer sk

and all the needed features, the air pollution reduction model will predict
the accumulative pollution reduction Qsk(Δt).

Neural Network Based Pollution Reduction Model. To model the
accumulative pollution reduction as a function of weather conditions,
we explore both linear (multi-variant linear regression) and non-linear
(neural network) models. Specifically, we feed all the forecast weather
data as input features. Additionally, we also include (i) pollution levels
features, such as PM2.5 levels; (ii) POI features such as road, park, factory;
(iii) time unit features and (iv) date features such as hour of day. Previous
studies [CHZT19a, HSW+15] show that these features also benefit air
pollution related modeling. Table 6.4 summarizes all the input features.

Comparisons of Single-Location Pollution Reduction Models. We
empirically explore whether the non-linear or the linear model is suited
for single-location pollution reduction.
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Table 6.4: List of input features for single-location pollution reduction.

Category Features
Weather air temperature, air pressure, wind speed, wind direction etc.
Pollution Level We defined 6 discrete PM2.5 levels [CLL+14b]
POI We selected 10 common POIs from [Inc21]
Time Unit Time unit after the opening of spraying system
Date Hour-of-Day, Day-of-Week, Month-of-year, isHoliday

Table 6.5: Accuracy of single-location pollution reduction models (μg/m3).

#hours Model Autumn (RM→) Spring (RM→)
L1 L2 L3 L1 L2 L3

2 linear (linear regression) 20.2 25.6 19.5 25.9 24.3 29.0
non-linear (neural network) 3.2 3.4 3.9 4.6 4.1 3.5

4 linear (linear regression) 28.3 32.1 26.7 34.9 33.1 38.0
non-linear (neural network 5.9 7.1 4.3 6.1 6.5 4.8

6 linear (linear regression) 33.2 35.6 38.1 40.3 48.8 45.6
non-linear (neural network 6.3 7.8 5.2 6.1 8.0 9.1

We collect data from L1, L2, and L3 during October 2019 for training,
and November 2019 and April 2020 for testing. During these periods,
the sprayers were set to be switched on when the PM2.5 concentration
exceeded 35μg/m3, the excellent air quality level defined in Section 6.7.1;
and switched off when the PM2.5 concentration dropped below the
threshold. We define the data from November 2019 as the Autumn
dataset and the one from April 2020 as the Spring dataset. The
architecture and hyperparameters of the neural network are automatically
optimized using grid-search in Sweeps2, the final structure used for MLP
model is 24(input layer) × 35( f irst hidden layer) × 10(second hidden layer) ×
1(output layer) with a dropout rate of 0.2.

Table 6.5 shows the accuracy of single-location pollution reduction
models (RM) on predicting next 2 to 6 hours reduction values using the
Autumn and Spring test sets. RM is trained using the data from L1 on
Autumn dataset and used to test the performance from L1 to L3. Neural
network works best for all test sets with MAE errors ranging from 3.2 to
9.1, much less than the results from linear model (MAEs from 19.5 to 48.8).
Also, we can find that neural network generalize well in a different season
(Spring) and locations (L2 and L3). Those results reveal the necessity of
using neural network in modeling the single-location pollution reduction.

As a case study, we also test the above models on data collected from

2https://docs.wandb.ai/guides/sweeps
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Figure 6.6: Testing single-location pollution reduction models on (a) P1 (b) P2 and (c)
P3 in Figure 6.5-(a).

P1, P2, and P3 in Figure 6.5-(a). As shown in Figure 6.6, the linear model
fails to capture the complex relationship between the input features and
the accumulative PM2.5 reduction (MAE of 59.2), whereas the estimations
of the neural network are highly accurate (MAE of 5.5).

6.5 Spatial Modeling of Water Spraying on Air Pollution

In addition to the pollution reduction at single locations, we also need
to model how water spraying affects the spatial distribution of pollutant
concentration so as to schedule the sprayers for effective pollution control
at key urban POIs. Specifically, suppose a set of sprayers are switched
on at time t and operate for Δt, we aim to generate an air pollution
reduction map to depict spraying-induced pollution reduction in space at
time t + Δt. In this section, we first present a scheme for air quality map
prediction without water spraying (Section 6.5.1), based on which we
propose an accurate air pollution reduction map generation (Section 6.5.2)
and its parameter learning method (Section 6.5.3). Finally, we present the
evaluations for air pollution reduction map generation (Section 6.5.4).

6.5.1 Air Quality Map Prediction without Water Spraying

Although a new air quality map prediction model (without water
spraying) is not our focus, highly accurate predictions are important
because they will be used for parameter learning of the pollution
reduction model (see Section 6.5.3) and pollution propagation path
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generation. In response, we adapt a state-of-the-art air quality prediction
model [LBC20] which is built upon convolutional long-short-term-
memory (convLSTM) modules [SCW+15]. Specifically, we add two
modifications to improve the prediction accuracy. (i) We feed the model
with air quality readings from a dense deployment rather than a sparse
one to improve the sensor data quality. (ii) We design a new weather
encoder module to better incorporate the weather influence on air quality
changes. Figure 6.7 shows our air quality prediction model called Air-
convLSTM. Assume that air quality map data and weather data are both
on grid-level with shape of (M × N), the historical length and prediction
steps are equal as τ, our model consists of the following submodules:

• Air Encoder: it takes the historical air quality map data as input
with shape of (τ ×M ×N) and produces the hidden encoding state
Hair with shape of (M × N × |Hair|), where |Hair| denotes its hidden
dimension.

• Weather Encoder: it inputs the gird-level weather data with shape
of (τ ×M × N × Nwea), where Nwea is the weather data dimensions.
We use the hidden state of each convLSTM cell as the output of this
encoder with the shape of (τ ×M × N × |Hwea|), where |Hwea| is the
hidden dimension of the weather encoder.

• Air Decoder: it takes the air encoder results as input and produces
an output with the shape of (τ ×M ×N × |Hair_dec|), where |Hair_dec| is
its hidden state dimension.

• Weather Fusion: For each decoder step i, i ∈ (1 . . . τ), concatenate
the hidden state of air decoder and weather encoder and prepare
the input to a fully-connected network (FCN). The input dimension
is (M × N × |Hair+wea|), where |Hair+wea| = |Hair_dec| + |Hwea|. The FCN
will incorporate the weather influence on air quality changes and
produce the adapted values with shape of (M×N) at each decoding
step. The overall dimension of prediction map is (τ ×M ×N).

6.5.2 Building Air Pollution Reduction Map with Domain Knowledge

Following the conventions in the air pollution map generation literature
[CLL+14a, HSW+15], we discretize the entire 2-dimensional region of
interest into grids {g}. Consider K sprayers deployed in the entire region
where a set of sprayers are switched on at time t and will be operating
for duration Δt, our aim is to estimate the reduction R(g) in pollutant
concentration for every grid at time t + Δt. We consider a grid size
of 1km × 1km and a time resolution of 1 hour because (i) 1km × 1km is
widely used in related research [ZLH13a, ZYL+15a, CDL+19a]; (ii) 1 hour
is a common time resolution to evaluate the air quality. We use Qsk to
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represent the accumulative pollution reduction at a single location over
Δt hours afterwards.

One may integrate the sprayer data with emission source and weather
data to directly learn an air quality map prediction model. We separately
consider pollution absorption and dispersion due to limited water spraying
data for effective training. The limited water spraying data also motivate
us to model air pollution reduction maps with domain knowledge. We
empirically compare the accuracy of our approach with jointly learning
of both pollution absorption and dispersion in Section 6.5.4.

6.5.2.1 Spatial Pollution Reduction of a Single Sprayer

We first model the pollution reduction r(g|sk) in grid g due to sprayer sk.
The model is inspired by the classical Gaussian plume model to assess
the impacts of emission sources on urban air pollution [Zan90, Ary04].
Specifically, the Gaussian plume model describes the pollution dispersion
c(g|e) in grid g (in 2-dimension) due to an emission source e as a Gaussian
distribution in vertical directions.

c(g|e) =
Qair

2πσw̄
exp

⎛⎜⎜⎜⎜⎝−1
2

(
dcross(g, e)
σ

)2⎞⎟⎟⎟⎟⎠ (6.1)

where Qair is the pollution emission rate, dcross(g, e) is the crosswind
distance 3 between g and the grid of e. w̄ is the average horizontal wind
speed, and σ is the Gaussian plume dispersion parameter, which is a
function of the downwind distance ddown(g, e) between g and the grid of e
(see footnotes for definition).

Since pollution absorption, i.e., pollution reduction due to water
spraying in our case, can be considered as the inverse process of dispersion,
we hypothesize the pollution reduction r(g|sk) in grid g due to sprayer sk

behaves similar as in Eq. (6.1). Due to the difficulty to obtain parameters
such as δ, we modify the original Gaussian plume model to characterize
pollution reduction r(g|sk) in grid g due to sprayer sk as follows:

r(g|sk) =
Qsk

2πφ(ddown(g, gk), feta)w̄sk

exp

⎛⎜⎜⎜⎜⎝−1
2

(
dcross(g, gk)

φ(ddown(g, gk), feta)

)2⎞⎟⎟⎟⎟⎠ (6.2)

where Qsk is the pollution reduction over time period Δt in the grid where
sprayer sk is installed, which is modeled as Section 6.4.2, ddown(g, gk) and
dcross(g, gk) are the downwind and crosswind distances between g and the
grid gk of sprayer sk, respectively. w̄sk is the average horizontal wind speed.
φ(.) is a learnable function to determine δ. The input to φ(.) is downwind

3Let’s make a 2-D coordinate axis with the wind direction as x and the orthogonal
one as y, which centers at e. For grid g, the distance between the vertical mapping of
g to x axis and e is called the downwind distance, while the distance between vertical
mapping of g to y axis and e is called the crosswind distance.
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distance dcross(g, gk) and extra features feta as described in Table 6.4. We
use a multi-layer perceptron (MLP) to implement the function ofφ(.). The
detailed parameter learning procedure is deferred to Section 6.5.3.

6.5.2.2 Spatial Pollution Reduction of Multiple Sprayers

Consider K sprayers deployed in the entire region of interest. Then the
total pollution reduction R(g) in grid g over time period Δt is given by:

R(g) =
K∑

k=1

I(sk)c(g|sk) (6.3)

where I(sk) is an indicator function of the operating status ok of sprayer sk,
i.e.,

I(sk) =
{

1 if ok is on
0 if ok is off (6.4)

6.5.3 Parameter Learning for Air Pollution Reduction Maps

Although our air pollution reduction map modeling is built upon domain
knowledge, some parameters are still difficult to access, which are
captured by the MLP parameters in φ(.) of Eq. (6.2). This subsection
explains how to learn these MLP parameters (see Figure 6.8). Our idea
is to first generate the air quality map due to pollution dispersion Cd(g)
for t + Δt via the air quality prediction model in Section 6.5.1. Then we
calculate the air quality reduction map R(g) at t + Δt following Eq. (6.3).
The final air quality map at t + Δt is calculated as:

Ĉ(g) = Cd(g) − R(g) (6.5)

This map can be compared with the ground truth air quality map C(g) by
interpolating the air quality sensor measurements at t+Δt. The difference
between these two maps enables us to update the parameters in φ(.).

As we will show in Section 6.5.4, the air quality map prediction model
without spraying influence is accurate for small Δt. It means the main
air quality estimation error comes from R(g), i.e., the MLP parameters we
would like to learn. Given the sensor measurements at t + Δt, we can
generate the ground truth air quality map C(g) by Gaussian processes
[Ras04]:

C(g) ∼ GP(m,v) (6.6)

where m and v are the mean and covariance function, respectively.
Gaussian process based interpolation proves highly accurate with a dense
pollutant sensor deployment [CLL+14b, CHZT20a], which is the case
in our scenario. We define the loss function as the difference between
ground truth C(g) and predicted one Ĉ(g). Using this procedure and loss
function, we can successfully learn the parameters in φ(.) by optimizing
and decreasing the loss.
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Figure 6.8: Parameter learning in air pollution reduction map R(g). The air quality
map without water spraying Cd(g) is generated via the air quality prediction model in
Section 6.5.1. The ground truth air quality map C(g) is generated by interpolating the
air quality sensor measurements.

6.5.4 Evaluations on Air Pollution Reduction Map Generation

As mentioned, accurate air pollution reduction map generation is crucial
for effective sprayer scheduling. Next, we assess the accuracy of air
pollution map generation ignoring and considering water spraying in
sequel.

Effectiveness of Air Quality Map Prediction without Spraying. We
first evaluate the air quality map prediction without considering water
spraying.

We compare our Air-convLSTM (see Section 6.5.1) with three baselines:

• Naïve: use the current timestamp value as the predictions for future
hours.

• ConvLSTM: use historical air quality map as input and ConvLSTM
[SCW+15] to predict future maps [LBC20],

• w-ConvLSTM: concatenate weather maps with air quality maps, and
use ConvLSTM [SCW+15] for prediction.

We use the air quality sensor box data of the Research Area from
September 1st, 2019 to April 30th, 2020 for training of each algorithm.
Then we use the data in March, 2021 as the Spring test dataset and those
from August, 2021 as the Summer test dataset. We assess the air quality
map prediction accuracy for the next 6 hours since the prediction for the
next 6 hours suffice for our scheduling algorithm (see Section 6.6).

Table 6.6 shows the MAEs for air quality map prediction. Air-
ConvLSTM acquires the best overall prediction accuracy in both test
sets. Compared with w-ConvLSTM, our method decreases the prediction
error of PM2.5 and PM10 by 25.0% and 46.4% in Spring test period,
and 40.0% and 46.2% in Summer test period. More importantly, Air-
ConvLSTM also successfully predicts the air quality changing patterns.
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Table 6.6: Accuracy of air quality map prediction (without water spraying) measured
by MAE.

Model Spring (Mar. 2021) Summer (Aug. 2021)
PM2.5 (μg/m3) PM10 (μg/m3) PM2.5 (μg/m3) PM10 (μg/m3)

Naive 4.5 5.6 3.8 4.9
ConvLSTM 3.4 4.7 3.2 4.1
w-ConvLSTM 1.6 2.8 1.5 2.6
Air-ConvLSTM 1.2 1.5 0.9 1.4

Figure 6.9: Air quality map prediction case with weather data.

i.e., forecasting the air quality map sudden changing time slots and
pollution evolving patterns. This is the key prerequisite for the success of
the air pollution propagation path algorithm in Section 6.6.2. Figure 6.9
shows an example of predicting the pollution sudden change patterns
using all methods. We can find that ConvLSTM fails to predict accurately
without using the weather data. w-ConvLSTM partially solves the problem
and improves the performance by including weather features. However,
simply concatenating weather data fails to learn the air quality changing
patterns, and leads to constant good air quality predictions in all future
hours as shown in Figure 6.9. Instead, Air-ConvLSTM concatenates the
weather encoder information with the air quality map predictions, thus
predicting the changing patterns from bad to good with precise time slots.
This greatly helps for the pollution propagation path detection and thus
the overall success of iSpray.

We also evaluate the impact of prediction steps (in hours) and training
data length on the accuracy of Air-ConvLSTM. As shown in Figure 6.10-
(a), increasing the prediction steps from 1 to 8, the MAE of Air-ConvLSTM
increases from 0.6 to 1.8. We choose to predict the next 6 hours in iSpray
because the prediction MAE 1.4 is relatively low and 6-hour predictions
are also suitable for our scheduling algorithm (see Section 6.6). When
increasing the training data length from 2 to 8 months, the prediction
MAE of Air-ConvLSTM decreases from 2.3 to 1.4 (see Figure 6.10-(b)). This
is expected because more historical data improves prediction accuracy.
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Figure 6.10: Parameter study of air quality map prediction. (a) Impact of prediction
steps; (b) Impact of training data amount.

Effectiveness of Spraying-induced Air Pollution Reduction Map. Next
we verify the effectiveness of our air pollution reduction map for iSpray.
The main aim is to show the necessity to separate pollution reduction
map generation as in Section 6.5.2.

We compare our method for pollution reduction map generation with
the following three baselines:

• Nav̈e: use the current air quality map as the prediction of next step
with spraying influence.

• Land Use Regression: use Land use regression model [HSW+15] and
spraying information as input and predict the air quality map at
next step.

• Prediction-based: concatenate spraying data to the input of FCN
module in Air-ConvLSTM for prediction.

We use data from the Research Area during May 1st, 2020 to August 31st,
2020 for training, and data collected in April 2021 (Spring dataset), and
September 1st, 2021 to October 31st, 2021 (Autumn dataset) for testing.
The sprayer scheduling strategies for the training and testing periods
are as follows. During the training period, we follow the same sprayer
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Table 6.7: Air pollution reduction map accuracy comparison for PM2.5 (μg/m3) measured
by MAE.

Dataset Naïve Land use regression Prediction-based Reduction Map
Spring 16.4 14.3 9.8 1.9
Autumn 19.2 15.6 11.9 2.6

Figure 6.11: Air pollution reduction map accuracy comparison case study: (a) air quality
map at t, which is also the output of Naïve; (b) ground truth air quality map at t + 1; (c)
Land use regression baseline; (d) Prediction-based baseline; (e) iSpray.

scheduling scheme as described in Section 6.4.2, i.e., opening the sprayer
once the local air quality in above the good air quality threshold. During
the testing periods, the sprayer devices are operated by following the
schedule timetable produced by iSpray Section 6.6.2.

Given the current air quality sensing box measurements and the
sprayer status information for the next hour, the task is to predict the
air quality map in the next hour. We use MAE to quantify the prediction
accuracy of each algorithm.

Table 6.7 shows the overall results. Land use regression model and
Prediction-based model fail to generate accurate air quality map with the
spraying influence. By decomposing the problem into air quality map
prediction without spraying influence and spraying-based air quality
modeling, iSpray successfully learns the unknown parameters in the
model and make accurate air quality map with a small amount of data.
iSpray achieves MAEs of 1.9 and 2.6 for Spring and Autumn datasets, a
significant improvement over all the baselines.

Figure 6.11 shows the example maps generated by different methods.
iSpray benefits from the air pollution reduction model and generates
the most accurate map with spraying influence, which is an essential
component for our scheduling algorithm.

6.6 Cost-Effective Sprayer Scheduling

The air pollution reduction map (Section 6.5) enables us to quantify
the impact of switching on each sprayer on the spatial distribution of
pollutant concentrations. We now present our cost-effective sprayer
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Figure 6.12: Example of cost-effective scheduling intuition: (a) an example setting; (b)
scheduling based on real-time PM2.5 values fails, while switching on the sprayer (and
those along the pollution propagation path) in advance may keep the PM2.5 concentration
within the threshold with less total switch-on time.

scheduling scheme to the control the air pollution at key POIs with
minimal number of operating sprayers.

6.6.1 Feasibility of Cost-Effective Sprayer Scheduling

Given certain POIs in the region of interest, we aim to make a spraying
schedule for the next τ hours (i.e., whether each sprayer should be
switched on or off in each hour) such that (i) the pollution concentrations
in the grids where the POIs reside are within a given threshold and (ii)
the total switch-on hours are minimized. Minimizing the total switch-on
hours is necessary because a single sprayer consumes 120 kWh electricity
and 14.4 m3 water if operating non-stop in a day. We explain the intuitions
for cost-effective scheduling via an example below.

Figure 6.12-(a) shows a simplified setting of our problem, where the
space is partitioned into 9 grids and there is a sprayer and a co-located
air quality sensing box in each grid. Our goal is to decide the scheduling
timetable for all the 9 sprayers such that the PM2.5 concentration in the
target grid i.e., grid 4 in Figure 6.12-(a) is under a given threshold, which is
shown by the red dotted line in Figure 6.12-(b). One scheduling strategy is
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Figure 6.13: Overview of our cost-effective sprayer scheduling scheme.

to decide whether to switch on a sprayer according to the real-time PM2.5

measurements at the co-located air quality sensing box. Suppose the real-
time PM2.5 concentration in grid 4 exceeds the threshold at time Tb. This
strategy will then switch on the sprayer in grid 4 at time Tb till Td, when
the real-time PM2.5 concentration falls below the threshold, as shown by
the yellow dotted line in Figure 6.12-(b). Since the pollution reduction is
not instant, this method will fail to keep the PM2.5 concentration within
the threshold during Tb to Td. Our solution is to switch on the sprayer
in grid 4 in advance as well as the a set of sprayers along the pollution
propagation path towards grid 4. That is, we switch on the sprayer in grid
4 at time Ta, when the PM2.5 concentration is still within the threshold.
This way, the peak PM2.5 concentration at Tc will be under the threshold,
as shown by the green dotted line in Figure 6.12-(b). Note that the switch-
on time of the sprayer in grid 4 can be short if certain sprayers along
the propagation path (i.e., grid 1, 2 and 3, where the arrow denotes the
direction of pollution propagation) have been switched on before the
pollution propagates to grid 4. The example implies the following:

• Switching on sprayers based on real-time pollution concentration
fails to keep the pollution at target POIs under control due to
delays in spraying-induced pollution reduction. Therefore, it is
important to predict the future pollution concentration and switch
on the sprayers in advance.

• Switching on sprayers along the pollution propagation path holds
promise to keep the pollution at target POIs under control and
reduce the total switch-on time by suppressing the pollution near
the source.

6.6.2 Scheduling Method

Inspired by the motivation example in Section 6.6.1, Figure 6.13 illustrates
our cost-effective sprayer scheduling scheme. It first predicts the air
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Figure 6.14: (a) Air pollution propagation path to one target location. (b) one example
of spraying scheduling along the air pollution propagation path.

quality maps for the next τ hours without water spraying (Section 6.5.1)
and then generate the pollution propagation path towards the target grids.
Then we take the predictions, propagation path and the given threshold to
make a scheduling timetable to guarantee the air quality in the target grids
with small total sprayer switch-on time. We give the implementation
details below.

Deriving Pollution Propagation Path. We identify pollution propagation
paths by adapting the method in [LCCC17]. The key observation is that
if the uptrend interval (pollution propagation) of grid a is ahead of b,
then a is considered a causal parent node of b. Their method builds
causal graphs and finds the top-k patterns from all generated graphs
using historical data. These patterns are the statistically frequent pollution
propagation behaviors. For our case, however, we should identify the
predicted pollution propagation patterns at the current timestamp. Given
the spatiotemporal air quality data, we aim to estimate the pollution
propagation paths. Algorithm 2 illustrates the entire process.

• Firstly, we characterize the causal parent nodes of each grid as
[LCCC17]. However, we add two more constraints: (i) the
maximum values of parent nodes should be larger than the ones
of child node; and (ii) the distance between them should be smaller
than some threshold. These two constraints facilitate finding the
pollution propagation path for a single timestamp.

• Secondly, we introduce the pollution influence circles to iteratively find
the causal parent nodes of target grid from inner circles to outside
ones (see the circles centered at the target grid in Figure 6.14-(a)).

• Finally, we apply the above two steps for each target grid, and
then we can derive the propagation path, as the arrows shown in
Figure 6.14-(a).
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Algorithm 2: Deriving propagation paths
Input: Predicted air quality readings at all locations for next Δt hours,

pollution influence circles list PC, target locations L, distance threshold d
Output: Air pollution propagation paths Path to target locations L

1 for each target location Li in L do
2 Pathi = [Li] ; // initialize the propagation path for location Li
3 Conduct pollution influence circles (Cj, j ∈ (1 . . . l), where smaller index

represents small diameter) centered in target location Li using the given
values in PC (black circles in Figure 6.14);

4 for j ∈ (1 . . . l) do
5 Find all stations Sc located in Cj apart from stations in Pathi;
6 for for each station x in Sc and each y in Pathi do
7 if (the distance between (x, y) ≤ d) and (max value of x ≥ max value of y)

and the uptrend interval of x is ahead of y then
8 add station x to Pathi
9 end

10 end

11 end

12 end
13 Concatenate all propagation path Pathi and get the overall propagation path

Path
14 return Path

Putting it Together. Algorithm 3 illustrates our sprayer scheduling
algorithm, which generates a timetable for all the sprayers in the next
τ hours. The algorithm works as follows.

• For each target location, we first compute the highest prediction
pollution concentration in next τ hours. If the peak concentration
exceeds the threshold, the propagation path estimation module is
called to identify the propagation path to this target location, e.g.,
the arrows in Figure 6.14-(a).

• Given the pollution propagation path in previous step, we greedily
decide the sprayer status. We start with the first time slot and set the
sprayers along the propagation path as open if the concentrations
in the grids of these sprayers are above the threshold. After each
time slot, we update the future air quality predictions to incorporate
the influence of spraying. We continue the process till the predicted
pollution concentrations are below the threshold or all sprayers
are switched on. One example scheduling timetable is shown in
Figure 6.14-(b).

• We apply the same pipeline to all target locations until their
predicted peak concentrations are below the threshold or all
sprayers are used.

Visualization of iSpray Scheduling. We use one real water spraying
control case to illustrate the effectiveness of the scheduling algorithm in
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Algorithm 3: Scheduling algorithm
Input: Predicted air quality map in next τ hours; target locations L; threshold

value Vthres; air quality map prediction model and air pollution
reduction map model

Output: Schedule timetable Tskd for all sprayer systems in next τ hours
1 For all target locations L, find the highest predicted air quality readings VLi at

location Li in next τ hours, assume the timestamp is Δt
2 if VLi >Vthres then
3 Conduct the pollution propagation path for target location Li using

Algorithm 2
4 for t′ ∈ (1 . . .Δt) do
5 Set sprayer to open if the local predicted PM2.5 values are greater than

Vthres
6 Conduct air pollution reduction map for t′ using the method in

Section 6.5
7 Update air quality map predictions after the current timestamp

// update predictions after each scheduling step to
incorporate the influence of spraying

8 end

9 Get the scheduling timetable Ti
skd for location Li

10 end
11 Go to step 1 until convergence or all sprayer systems have been scheduled.
12 Concatenate all scheduling timetable Ti

skd and get the overall scheduling
timetable Tskd

13 return Tskd

iSpray, i.e., Algorithm 3. Assume the current timestamp is t and we
try to decide the scheduling timetable for next τ hours (in our case,
τ = 6) to suppress the air pollution in the target area. Following the
scheduling algorithm in Algorithm 3, iSpray works as follows to produce
the scheduling timetable for all spraying systems.

• iSpray first predicts the air quality maps for the next 6 hours as
shown in first row of Figure 6.15. The highest prediction values for
target area is in t + 4, so Δt = 4.

• Using the propagation path found using Algorithm 2, iSpray
schedules the sprayers from the sources to target area step by step,
and generates the new air quality map with spraying influence.
iSpray only schedules those sprayers along the propagation path
instead of all where the predicted concentrations are above the
threshold.

• After deciding the sprayers to switch on in the next 4 hours, iSpray
generates new air quality maps with spraying influence (third row
in Figure 6.15). The air quality readings in the target area are now
below the threshold, so iSpray terminates.

We can see that iSpray only schedules the necessary sprayers along the
propagation path which affect the Target Area. Therefore our sprayer
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Figure 6.15: One real water spraying control use case using iSpray. Black box represents
the Target Area.

scheduling is cost-effective. The difference between the predicted air
quality map and the ground truth one (generated by Gaussian process
interpolation, see Section 6.5.3) is small (see Section 6.5.4 and Section 6.5.4
for quantitative results), which also validating the effectiveness of iSpray.

6.7 Evaluation of iSpray Scheduling

This section evaluates the scheduling of iSpray and discuss its limitations
and extensions.

6.7.1 Overall Experiment Setups

Since it is impossible to test sprayer scheduling schemes simultaneously
at the same location, we test sprayer scheduling in the Target Areas and
use the Control Areas as the control group without spraying to derive
quantitative performance metrics. Note that the scheduling algorithm
involves training expect those for air quality prediction and pollution
reduction map generation. In the following evaluations, these models are
trained using the datasets in Section 6.5. We only explain the detailed
setups for the testing datasets in each experiment below.

We use water usage (m3) and electricity usage (kWh) to compare the
cost-effectiveness of different sprayer scheduling methods. We use the
mean of real-time and 24-hour average value of PM2.5 and PM10 (μg/m3),
as well as the excellent quality rate of PM2.5 and PM10 (PM2.5 ≤ 35μg/m3

according to China Strandard 4, PM10 ≤ 40μg/m3 as adopted in the
chapter) to assess the air quality, which are also used as the threshold in

4China National Standard: https://healthandsafetyinshanghai.com/china-air-quality/
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our model. One sprayer consumes 5 kW electricity 0.6 m3 water per hour.
We consider a scheduling resolution of an hour, as in Section 6.6.1. For
all the evaluations below, we use the average performance of the three
Control Areas shown in Figure 6.3-(c) to mitigate the impact of relative
orientations to the Target Areas.

6.7.2 Performance of Different Scheduling Algorithms

We mainly compare iSpray with the baseline method that controls
sprayers based on the real-time pollution concentrations measured at the
co-located sensing box, which is denoted as Real-Time-Values afterwards.

Setups. We test these two sprayer scheduling schemes in October 2020
in Target Area 1. For fair comparison, we choose the first 30 days and split
them into 15 pairs. In each pair of two days, we randomly choose iSpray
or the baseline for scheduling in the first day and the other for the second
day. Therefore we have 15 test rounds in total, as shown in Figure 6.3-(d).
We report the average performance of these 15 test rounds.

Results. Table 6.8 summarizes the performance of iSpray and the Real-
time-values baseline. If all the sprayers are operating non-stop for 15
days, the water and electricity usage are 11, 880 m3 (0.6 ∗ 24 ∗ 55 ∗ 15) and
99, 000 kWh (5∗24∗55∗15), respectively. Both scheduling schemes notably
reduce the usage of water and electricity, where our iSpray requires
only 3, 326 m3 water and 24, 309 kWh electricity, which reduces the water
and electricity usage by 34.8% and 42.3% compared with the Real-time-
values baseline. Meanwhile, the mean values of real-time PM2.5 and PM10

decrease by 6μg/m3 and 10μg/m3, which accounts for 15.0% and 21.7%.
The mean values of 24-hour average PM2.5 and PM10 also decrease by
5μg/m3 and 8μg/m3, which accounts for 13.2% and 18.2%. The excellent
quality rate of PM2.5 and PM10 increase by 13% and 16%.

6.7.3 Performance with and without iSpray Scheduling

This experiment quantifies the air pollution reduction due to iSpray.
Since it is difficult to directly measure the air quality with and without
water spraying at the same location and time, we adopt the distribution
similarity concept [CHZT19a] for indirect comparison. Specifically, it is
observed that the air quality distributions of different regions within a city
are similar in the same time period [CHZT19a]. This allows us to assess
the impact of water spraying for the same time period by comparing with
the Control Areas.

Setups. We select March to April 2021 for testing in Spring, and August
to September 2021 for testing in Autumn. Specifically, we switch off all
the sprayers in Target Area 1 in March 2021 and August 2021, and schedule
the sprayers by iSpray in Target Area 1 in April 2021 and September 2021.
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Table 6.9: Comparison between the PM2.5/PM10 distributions of Control Areas and Target
Area 1.

Time Areas iSpray min 1st quartile median 3rd quartile max

Mar. 2021 Control - 4/20 39/86 60/135 100/193 194/371
Target 1 OFF 7/18 41/87 63/133 103/187 186/366

Apr. 2021 Control - 4/18 22/52 33/76 47/111 267/455
Target 1 ON 4/13 20/33 27/46 33/65 146/379

Aug. 2021 Control - 3/4 12/26 19/40 33/59 138/201
Target 1 OFF 4/5 14/22 21/36 32/56 137/215

Sep. 2021 Control - 4/5 17/41 33/76 61/129 188/326
Target 1 ON 4/4 20/31 25/58 39/81 119/265

We use the air quality data during the same months from the three Control
Areas as the control group (by averaging across the three Control Areas.

Results. We first show that the distribution similarity proposed in
[CHZT19a] holds for our deployment. Specifically, we plot the air
quality distributions of Target Area 1 and the Control Areas in March 2021
and August 2021, when all sprayers were switched off. As shown in
Figure 6.16-(a),(e) and Figure 6.16-(c),(g), the two distributions of the
target and the control groups are similar. Therefore, the differences in
air quality distributions during the same time period are mainly due
to water spraying. This is shown in Figure 6.16-(b),(f) and Figure 6.16-
(d),(h), where the only difference is that the sprayers in Target Area 1 were
switched on by iSpray. We can observe notable air pollution reduction.

More quantitatively, we use a 5-number-summary (min,1st quartile,
median, 3rd quartile and max) to compare the distribution difference
between the target area and the control area in April 2021 and September
2021. Table 6.9 summarizes the differences. According to Table 6.9, in
April 2021, the PM2.5 median and 3rd quartile in Target Area 1 are 27 and
33, which are reduced by 21.2% and 29.8% compared with those in the
Control Areas. The PM10 median and 3rd quartile of Target Area 1 are
46 and 65, a reduction of 39.5% and 41.2% compared with those in the
Control Areas. Similarly, in September 2021, the PM2.5 median and 3rd
quartile in Target Area 1 are 25 and 39, which are reduced by 24.2% and
36.1% compared with those in the Control Areas. The PM10 median and
3rd quartile of Target Area 1 are 58 and 81, yielding a reduction of 23.7%
and 37.2% compared with those in the Control Areas.

To clearly illustrate the pollution reduction on a daily basis, we plot
the daily PM2.5 box-plots of Target Area 1 and the Control Areas for
April and September, 2021 in Figure 6.17-(a),(b). We have the following
observations. (i) The PM2.5 distributions of Target Area 1 and the Control
Areas are similar if the PM2.5 concentrations are low. This is because



6.7. Evaluation of iSpray Scheduling 149

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
2.

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(a
) M

ar
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
2.

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(b
) A

pr
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
2.

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(c
) A

ug
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
2.

5

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(d
) S

ep
. 2

02
1

C
on

tro
l

Ta
rg

et

0
50

10
0

15
0

20
0

25
0

30
0

PM
10

0.
00

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0

0.
01

2

0.
01

4

0.
01

6

Density

(e
) M

ar
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
10

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(f)
 A

pr
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
10

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(g
) A

ug
. 2

02
1

C
on

tro
l

Ta
rg

et

0
25

50
75

10
0

12
5

15
0

17
5

20
0

PM
10

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

Density

(h
) S

ep
. 2

02
1

C
on

tro
l

Ta
rg

et

F
ig

u
re

6
.1

6
:

V
is

ua
liz

at
io

n
of

ai
r

qu
al

it
y

(P
M

2.
5/

PM
10

)d
is

tr
ib

ut
io

ns
of

th
e

C
on

tr
ol

A
re

as
an

d
Ta

rg
et

A
re

a
1.



150 Chapter 6. Reducing Urban Air Pollution with Intelligent Water Spraying

010203040506070809101112131415161718192021222324252627282930
D
ay

0 50

100

150

PM2.5(μg/m3)

C
ontrol
Target

(a)PM
2.5 ,A

pril

010203040506070809101112131415161718192021222324252627282930
D
ay

0 50

100

150

200

PM2.5(μg/m3)

C
ontrol
Target

(b)PM
2.5 ,Septem

ber

010203040506070809101112131415161718192021222324252627282930
D
ay

0

100

200

300

PM10(μg/m3)

C
ontrol
Target

(c)PM
10 ,A

pril

010203040506070809101112131415161718192021222324252627282930
D
ay

0

100

200

300

PM10(μg/m3)

C
ontrol
Target

(d)PM
10 ,Septem

ber

F
ig

u
re

6
.1

7
:

D
aily

pollution
controlresults

in
TargetA

rea
1

com
pared

w
ith

C
ontrolA

reas
in

2021.



6.7. Evaluation of iSpray Scheduling 151

Table 6.10: Total days above excellent air quality level in Target Area 1 compared with
Control Areas in 2021.

Pollution Type April September
Control Area Target Area Control Area Target Area

PM2.5 (> 35μg/m3) 14 3 19 9
PM10 (> 40μg/m3) 28 17 29 17

iSpray will switch off the sprayers when the pollution level is low.
(ii) The median and max values are significantly reduced during high
PM2.5 period, indicating that iSpray switches on the sprayers to suppress
pollution during these times. The observations also hold for PM10, as
shown in Figure 6.17-(c),(d).

To further analyze the performance of iSpray in reducing the air
pollution, especially its effectiveness in dropping the pollution from a
polluted level to an excellent one, the total number of days above the
excellent air quality level is calculated by comparing the 24-hour average
value. The results in Table 6.10 show that the total number of pollutant
days in April are 14 and 28 for PM2.5 and PM10 in Control Area, and
they are reduced to 3 and 17 days by applying iSpray in Target Area 1,
which accounts for a reduction of 79% and 39%, respectively. Similarly,
a reduction of 53% and 41% can also be found for PM2.5 and PM10 in the
September dataset.

6.7.4 Performance in Different Target Areas

This experiment demonstrates the generality of iSpray.

Setups. We select a different target area as shown in Figure 6.3-(c),
denoted as Target Area 2 to test our iSpray scheduling algorithm. The
test took place in October 2021. As with Section 6.7.3, we use the air
quality data of the Control Areas from the same period as the control
group.

Results. Figure 6.18-(a) plots the pollution concentration distribution in
Target Area 2 and the Control Areas. We observe notable reduction of high
pollution concentrations in the Target Area 2. Quantitatively, the PM2.5

median and 3rd quartile in Target Area 2 are 30 and 45, which are reduced
by 23.1% and 35.7% compared with those in the Control Areas. The PM10

median and 3rd quartile of Target Area 2 are 51 and 75, resulting in a
reduction of 32.6% and 37.5% compared with those in the Control Areas.
Figure 6.18-(b) further illustrates the daily air pollution distributions. We
observe the same patterns for Target Area 1. The days above the excellent
air quality level for Control Area are 16 and 26 for PM2.5 and PM10,
and iSpray reduces them to 8 and 16 days for Target Area 2, yielding a
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Figure 6.18: (a) PM2.5 and (c) PM10 distributions of the Control Areas and Target Area 2;
Daily (b) PM2.5 and (d) PM10 control results comparison between Target Area 2 and the
Control Areas.

reduction of 50% and 31%, respectively.
In summary, the extent of pollution reduction by iSpray is similar in

Target Area 2 as in Target Area 1, validating the generality of our method.

6.7.5 Discussions

We briefly discuss the hyperparameter selection in iSpray and the
potential extensions to mobile deployments.

Hyperparameters in iSpray. We set the threshold values (Vthres in
Algorithm 3) of PM2.5 and PM10 to 35μg/m3 and 40μg/m3, respectively,
which are also the excellent air quality threshold in China, where our
system is deployed. In practice, reducing the threshold values Vthres

to near zero tends to keep all the sprayer switched on in Algorithm 3,
leading to non-stop water spraying. Increasing the Vthres to higher values
will decrease the water sprayer usage time. For our evaluation, we aim
to control the pollution level according to the local standards. The spray
schedule timetable of the proposed approach depends on the selected
threshold, and iSpray aims to clean the local air quality to a level below the
threshold. When it is impossible to achieve the local standard, all available
sprayers will be open. In this case, the mobile sprayer solutions or hybrid
one may help to further suppress the pollution level, as described below.

Extensions to Mobile Sprayer Deployments. In addition to the static
deployments like iSpray, there is also extensive research interest in
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exploiting mobile sensor deployments for air pollution monitoring
[DYW+21, GDG+16, HSW+15, JLF14, MLX+20, WXL+20]. We can also
extend our scheduling algorithms to mobile settings e.g., with water
sprayers mounted on trucks as follows. (i) Derive the pollution
propagation paths in the next few hours as Algorithm 2. (ii) Revise
the schedule algorithm in Algorithm 3 with two more considerations:
limited water storage and the travel time of the mobile sprayer to specific
locations. One solution is to decide locations where sprayers are needed
in each time slot using Algorithm 3, and then adapt existing route
planning algorithms for spatial crowdsourcing [TTL+21, TZZ+18, ZTC19]
to dispatch mobile sprayers to these locations at the targeting time slots
while satisfying the water storage constraints.

A further extension is a hybrid mobile and static water spraying
system where mobile sprayers act as backups when pollution control
with static water spraying fails (line 9 in Algorithm 3). In this case,
mobile sprayers can be scheduled to further suppress the pollution level.

6.8 Summary

In this chapter, we propose iSpray, a data analytics engine for PM2.5 and
PM10 control at critical POIs by cost-effective water spraying. Its design
systematically combines domain knowledge from environmental sciences
and machine learning techniques. iSpray offers learnable pollution
reduction modeling at single locations, accurate air pollution reduction
map generation, and propagation-path-aware sprayer scheduling.
Evaluations with in-field sprayer deployments show that iSpray reduces
the total sprayer switch-on time by 32%, while decreasing the days of high
PM2.5 and PM10 concentrations at key POIs by 12% and 16%. We envision
our work as one of the first endeavors for precise urban air pollution
control with ubiquitous data and commodity hardware. In practice, the
pollution reduction strategies may have to refer to the results from both
the intercity pollution transfer analysis (Chapter 5) and the water spraying
system introduced in this chapter. Firstly, the pollution transfer result
reveals the interactions between cities and provides the insight of whether
to close the pollution sources in remote cities. Secondly, the local water
spraying system can be applied to further reduce the pollution under
health levels, especially for those key POI locations. A cost-effective and
efficient pollution reduction strategy is supposed to be a combination of
the above two pipelines, which could be a future research direction.



154 Chapter 6. Reducing Urban Air Pollution with Intelligent Water Spraying



7
Conclusion and Outlook

Air quality research still remains a hot topic in recent years. Main
directions include air quality monitoring, data analysis, air quality
predictions and generating pollution reduction strategies, etc. Dense
deployed low-cost sensor network normally consists of tens to hundreds
of low-cost sensors, which measures fine-grained spatial and temporal
signals at a high frequency. These large scale sensor networks are able to
generate high spatial and temporal resolution air pollution data, which
can be further used for data analysis such as finding the pollution sources,
air quality predictions or making strategies to reduce the pollution.

However, common air quality monitoring and analysis works suffer
from multiple limitations and challenges. Firstly, the accuracy and
reliability of low-cost sensors drop significantly during the deployment,
which hurts the follow-up data analysis tasks. Furthermore, it takes
huge efforts to maintain such large-scaled sensor networks. Lastly,
current intercity pollution transfer is not well characterized, and the
prediction accuracy is not sufficient to generate efficient pollution
reduction strategies. Also, the fine-grained pollution control with water
spraying is not studied.

The aim of this thesis is to develop data-driven methods to improve the
performance of air quality analysis and pollution control. We developed
different calibration methods to increase the low-cost sensor accuracy.
We focus on providing cost-effective downscaled deployment while
maintaining a satisfactory map generation accuracy. By characterizing
the pollution transfer patterns between cities and deriving pollution
propagation paths among dense deployed sensors, we are able to generate
accurate predictions for administrative or immediate cyber-physical
response.

In the remainder of this chapter we present the main contribution of
this thesis and layout possible future research directions.
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7.1 Contributions

Efficient Sensor Array Calibration (Chapter 2). Low-cost sensors need
frequent post-calibration to maintain the accuracy. However, current
calibration approaches only include the current measurements and still
suffer from the poor data quality. To improve the accuracy, a generalized
many-to-many calibration scheme is presented as SensorFormer. The
calibration scheme accounts for both past and future raw measurements.
Evaluation shows that our approach significantly boost the performance,
which can also be used in resource-constraint IOT devices.

In-field Calibration Transfer (Chapter 3). Since access to ground truth
references is often limited in large-scale deployments, it is difficult to
conduct city-wide post-deployment sensor calibration. We design ICT,
a novel calibration scheme which transfers the calibration parameters to
target sensors without access to reference data. To be the best of our
knowledge, we are the first to conduct the in-field calibration transfer for
large-scaled sensor deployment. Experiments show that ICT is able to
calibrate the target sensors as if they had direct access to the references.

Downscaled Map generation (Chapter 4). The deployment of sensors
poses many challenges due to their sheer number. One widely applied
approach is to downscale the deployment size. However, dramatic
accuracy degradation occurs in air quality maps generated using the
downscaled sparse deployment. To overcome this problem, MapTransfer
is proposed to complement downscaled sparse sensor measurements
with historical information about the initial dense deployment. A
learning-based pipeline is introduced to find the best-fit snapshot from
history, which transfers the underlying knowledge to the current sparse
deployment.

Tracking Pollution Transfer for Prediction (Chapter 5). Accurate air
quality prediction is an essential step towards efficient pollution reduction
strategies. Nevertheless, none of the existing data-driven methods
achieves sufficient prediction accuracy for time intervals of sudden
pollution change due to the inability of existing data-driven models to
take into account pollution propagation between different areas caused
by air mass movement. We consider pollution transfer for the first time
when predicting air quality over the short term, and propose the use of
air flow trajectory data in our data-driven framework. The results can be
used for making pollution control strategies.

Pollution Reduction with Water Spraying (Chapter 6). Finally, the
intelligent water spraying system to reduce the urban pollution is
investigated. We proposed the first-of-its-kind analysis engine to profile
and model how water spraying affects PM2.5 and PM10 concentrations
in time and space, and evaluate a cost-effective system in real-world
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deployment. This work brings the gap between air quality monitoring
and pollution control, and can be views as one of the first attempts for air
pollution control in urban areas using ubiquitous data and commodity
hardware.

7.2 Possible Future Directions

Context-aware Network Calibration. As presented in Chapter 3,
network calibration for static air quality networks need to identify
common contexts where it is safe to assume multiple sensors at
different locations are measuring the same or similar phenomenon. The
availability of big data and urban computing offers additional contextual
information to identify the potential common contexts. For example,
by classifying sensor locations according to their land-use context, e.g.,
nearby traffic, elevation or population density, a number of confident and
new calibration opportunities can be increased.

Few-data Calibration. Machine learning methods, such as SensorFormer
presented in Chapter 2, are becoming popular mathematical methods
for air quality sensor calibration. Along with their capability to model
complex non-linear relationships for sensor calibration, they require large
amounts of measurements for training. This can be a burden for sensors
that have limited reference samples. Some recent study [MZT18c] has
exploited techniques such as semi-supervised learning to reduce the
amounts of training data for sensor array calibration. However, it remains
open how to reduce the measurements needed for network calibration
and achieve consistent calibration accuracy for all sensors in the network.

Quantification of Uncertainty. Due to limited access to reference data
in an air quality sensor network, not only is network calibration a
challenge but also the evaluation of the calibration performance. Metrics
such as accuracy bounds for sensor measurements [HST13] and discrete
reputation scores [GBS08] can be applied in a network-wide trust model
to provide a notion of quality of service of the air quality network. With
an uncertainty metric, one can apply filtering methods to assure high
data quality in calibration methods such as SensorFormer (Chapter 2) or
calibration transfer approaches like ICT (Chapter 3). However, a unified
uncertainty metric and its unified usage in air quality network calibration
are still largely open.

On-demand Sensing. As we illustrated in Chapter 4, it is promising
to improve the map generation accuracy for downscaled deployment
by transferring the knowledge from historical data. However, the
downscaled size is fixed in MapTransfer. One future work is to analyze
the possibility of on-demand sensing network. i.e., the number of active
sensing nodes is dynamic during the deployment and is determined
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by satisfying some optimization targets. One challenge will be how
to transfer the knowledge among those dynamically changing sensing
networks.

Conteract air quality prediction and pollution control. Air pollution is a
complex environment problem and involves various underlying evolving
patters. Those pose big challenges to understand how the pollution
changes and how to effectively reduce the pollution. In this thesis,
we separately analyze the pollution changing behaviors between cities
(TIP-Air in Chapter 5) and among urban grids (iSpray in Chapter 6).
However, the best solution will be a combination of multiple analysis
results, including both TIP-Air and iSpray. The research question then
becomes how to fuse the derived knowledge from multimodality results
and generate strategies to reduce the pollution.
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B. Pokrić, and Z. Ristovski. On the use of small and cheaper sensors



Bibliography 165

and devices for indicative citizen-based monitoring of respirable
particulate matter. Environmental Pollution, 206:696 – 704, 2015.

[KB14] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KBDG04] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data
streams. In VLDB, volume 4, pages 180–191. Toronto, Canada,
2004.

[KC89] H. Kan and B. Chen. Analysis of exposure-response relationships
of air particulate matter and adverse health outcomes in china.
Journal of Environment and Health, 1989.

[Kis03] F. N. Kissell. Handbook for Dust Control in Mining. NIOSH,
Cincinnati, OH, USA, 2003.

[KKL20] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

[KMM+15] P. Kumar, L. Morawska, C. Martani, G. Biskos, M. Neophytou,
S. Di Sabatino, M. Bell, L. Norford, and R. Britter. The rise of
low-cost sensing for managing air pollution in cities. Environment
international, 75:199–205, 2015.

[KSM14] J. C. Kurnia, A. P. Sasmito, and A. S. Mujumdar. Dust dispersion and
management in underground mining faces. International Journal of
Mining Science and Technology, 24(1):39–44, 2014.

[KVL+11] D. Koracin, R. Vellore, D. H. Lowenthal, J. G. Watson, J. Koracin,
T. McCord, D. W. DuBois, L.-W. A. Chen, N. Kumar, E. M. Knipping,
et al. Regional source identification using lagrangian stochastic
particle dispersion and hysplit backward-trajectory models. Journal
of the Air & Waste Management Association, 61(6):660–672, 2011.

[KZS+15] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,
A. Torralba, and S. Fidler. Skip-thought vectors. In Advances in
neural information processing systems, pages 3294–3302, 2015.

[LBC19] V.-D. Le, T.-C. Bui, and S. K. Cha. Spatiotemporal deep learning
model for citywide air pollution interpolation and prediction. arXiv
preprint arXiv:1911.12919, 2019.

[LBC20] V.-D. Le, T.-C. Bui, and S.-K. Cha. Spatiotemporal deep learning
model for citywide air pollution interpolation and prediction. In
Proceedings of the IEEE International Conference on Big Data and Smart
Computing, pages 55–62, Piscataway, NJ, USA, 2020. IEEE Press.

[LCCC17] X. Li, Y. Cheng, G. Cong, and L. Chen. Discovering pollution
sources and propagation patterns in urban area. In Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1863–1872, 2017.



166 Bibliography

[LCL+12] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning. A survey
on gas sensing technology. Sensors, 12(7):9635–9665, 2012.

[LCO18] H. Liu, J. Cai, and Y.-S. Ong. Remarks on multi-output gaussian
process regression. Knowledge-Based Systems, 144:102–121, 2018.

[LDC18a] Y. Lin, W. Dong, and Y. Chen. Calibrating low-cost sensors by a
two-phase learning approach for urban air quality measurement.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(1):1–18, 2018.

[LDC18b] Y. Lin, W. Dong, and Y. Chen. Calibrating low-cost sensors by a
two-phase learning approach for urban air quality measurement.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2(1):18:1–18:18, 2018.

[LHH+19] Z. Luo, J. Huang, K. Hu, X. Li, and P. Zhang. Accuair: Winning
solution to air quality prediction for kdd cup 2018. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1842–1850, 2019.

[LKZ+18] Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng. Geoman: Multi-level
attention networks for geo-sensory time series prediction. In IJCAI,
pages 3428–3434, 2018.

[LLZ+18] L. Liu, W. Liu, Y. Zheng, H. Ma, and C. Zhang. Third-
eye: a mobilephone-enabled crowdsensing system for air quality
monitoring. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2(1):20, 2018.

[LM14] Q. Le and T. Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages
1188–1196, 2014.

[LMA20] I. Lang, A. Manor, and S. Avidan. Samplenet: Differentiable
point cloud sampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7578–7588, 2020.

[LMG+18] Y. Lin, N. Mago, Y. Gao, Y. Li, Y.-Y. Chiang, C. Shahabi, and
J. L. Ambite. Exploiting spatiotemporal patterns for accurate air
quality forecasting using deep learning. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 359–368, 2018.

[LPP+20] J. Lelieveld, A. Pozzer, U. Pöschl, M. Fnais, A. Haines, and
T. Münzel. Loss of life expectancy from air pollution compared to
other risk factors: a worldwide perspective. Cardiovascular Research,
2020.

[LTZ14] S. Liu, K. Triantis, and L. Zhang. The design of an urban roadside
automatic sprinkling system: Mitigation of pm2. 5–10 in ambient
air in megacities. Chinese Journal of Engineering, 2014:1–12, 2014.



Bibliography 167

[LWLQ21] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. arXiv
preprint arXiv:2106.04554, 2021.

[LZC+18] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei. Deep
representation learning for trajectory similarity computation. In
2018 IEEE 34th International Conference on Data Engineering (ICDE),
pages 617–628. IEEE, 2018.

[LZCY19] Y. Luo, Y. Zhang, X. Cai, and X. Yuan. E2gan: End-to-end generative
adversarial network for multivariate time series imputation. In
Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 3094–3100. AAAI Press, 2019.

[M+14] K. M. Mullen et al. Continuous global optimization in r. Journal of
Statistical Software, 60(6):1–45, 2014.

[Mat63] G. Matheron. Principles of geostatistics. Economic Geology,
58(8):1246–1266, 1963.

[MC08] H. McGowan and A. Clark. Identification of dust transport
pathways from lake eyre, australia using hysplit. Atmospheric
Environment, 42(29):6915–6925, 2008.

[MCCD13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[MHS+19] B. Maag, D. Hasenfratz, O. Saukh, Z. Zhou, C. Walser, J. Beutel,
and L. Thiele. Ozone and carbon monoxide dataset collected by
the opensense zurich mobile sensor network, 2019.

[MLB+12] J. G. Monroy, A. Lilienthal, J. L. Blanco, J. González-Jimenez, and
M. Trincavelli. Calibration of mox gas sensors in open sampling
systems based on gaussian processes. In SENSORS, 2012 IEEE,
pages 1–4. IEEE, 2012.

[MLE+15] S. Moltchanov, I. Levy, Y. Etzion, U. Lerner, D. M. Broday, and
B. Fishbain. On the feasibility of measuring urban air pollution
by wireless distributed sensor networks. Science of The Total
Environment, 502:537 – 547, 2015.

[MLX+20] R. Ma, N. Liu, X. Xu, Y. Wang, H. Y. Noh, P. Zhang, and L. Zhang.
Fine-grained air pollution inference with mobile sensing systems:
A weather-related deep autoencoder model. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2):52:1–
52:21, 2020.

[MMH17a] M. Mueller, J. Meyer, and C. Hueglin. Design of an ozone and
nitrogen dioxide sensor unit and its long-term operation within
a sensor network in the city of zurich. Atmospheric Measurement
Techniques, 10(10):3783–3799, 2017.



168 Bibliography

[MMH17b] M. Mueller, J. Meyer, and C. Hueglin. Design of an ozone and
nitrogen dioxide sensor unit and its long-term operation within
a sensor network in the city of zurich. Atmospheric Measurement
Techniques, 10(10):3783–3799, 2017.

[MMR19] N. Muralidhar, S. Muthiah, and N. Ramakrishnan. Dyat nets:
dynamic attention networks for state forecasting in cyber-physical
systems. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence, pages 3180–3186. AAAI Press, 2019.

[MSHT16a] B. Maag, O. Saukh, D. Hasenfratz, and L. Thiele. Pre-deployment
testing, augmentation and calibration of cross-sensitive sensors. In
Proceedings of International Conference on Embedded Wireless Systems
and Networks, pages 169–180. ACM, 2016.

[MSHT16b] B. Maag, O. Saukh, D. Hasenfratz, and L. Thiele. Pre-deployment
testing, augmentation and calibration of cross-sensitive sensors.
In Conference on Embedded Wireless Systems and Networks (EWSN),
pages 169–180, 2016.

[MSHT16c] B. Maag, O. Saukh, D. Hasenfratz, and L. Thiele. Pre-deployment
testing, augmentation and calibration of cross-sensitive sensors. In
EWSN, pages 169–180, 2016.

[Mur12] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[MZST17a] B. Maag, Z. Zhou, O. Saukh, and L. Thiele. SCAN: Multi-
hop calibration for mobile sensor arrays. ACM Journal on
Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT
and UBICOMP), 1(2):19:1–19:21, 2017.

[MZST17b] B. Maag, Z. Zhou, O. Saukh, and L. Thiele. Scan: Multi-hop
calibration for mobile sensor arrays. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2):19:1–
19:21, 2017.

[MZT18a] B. Maag, Z. Zhou, and L. Thiele. A survey on sensor calibration
in air pollution monitoring deployments. IEEE Internet of Things
Journal, 5(6):4857–4870, 2018.

[MZT18b] B. Maag, Z. Zhou, and L. Thiele. A survey on sensor calibration
in air pollution monitoring deployments. IEEE Internet of Things
Journal, 5(6):4857–4870, 2018.

[MZT18c] B. Maag, Z. Zhou, and L. Thiele. W-air: Enabling personal air
pollution monitoring on wearables. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):24:1–
24:25, 2018.

[NAB20] S. D. Narayanan, A. Agnihotri, and N. Batra. Active learning for
air quality station location recommendation. In Proceedings of the
7th ACM IKDD CoDS and 25th COMAD, pages 326–327, 2020.



Bibliography 169

[OBLS14] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolutional
neural networks. In Proceedings of Conference on Computer Vision and
Pattern Recognition, pages 1717–1724. IEEE, 2014.

[oEE18] M. of Ecology and Environment. Ambient air quality standards.
https://tinyurl.com/ybqnswnc, 2018.

[Oge20] Y. Ogen. Assessing nitrogen dioxide (no2) levels as a contributing
factor to the coronavirus (covid-19) fatality rate. Science of The Total
Environment, page 138605, 2020.

[ORR+08] M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and
N. R. Jennings. Towards real-time information processing of
sensor network data using computationally efficient multi-output
gaussian processes. In Proceedings of International Conference on
Information Processing in Sensor Networks, pages 109–120. IEEE, 2008.

[OWS+20] Y. Ou, J. J. West, S. J. Smith, C. G. Nolte, and D. H. Loughlin.
Air pollution control strategies directly limiting national health
damages in the us. Nature Communications, 11(1):1–11, 2020.

[pan] panttwower. panttwower sensor. http://www.plantower.com/.
Accessed: 2021-09-30.

[PARS14] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
701–710, 2014.
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