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Abstract

Datacenter networking undergoes a silent transition driven by the emergence of
Converged Enhanced Ethernet (CEE) and network virtualization.
CEE aims to converge all the traffic generated by the previously disjoint local, sys-
tem and storage networks on a single physical infrastructure. Traditionally, Ethernet
did not guarantee losslessness: packets were dropped whenever a buffer reached its
maximum capacity. This behavior does not match the semantics of modern data-
center applications used for storage or low-latency communications. CEE segregates
Ethernet frames into eight different hardware priorities. Each priority may be con-
figured as either lossy or lossless. Within a lossless priority, Priority Flow Control
(PFC) prevents buffer overflows in a hop-by-hop manner. In this thesis, we will
show that lossless Ethernet clusters can improve the performance of on-line data
intensive applications. In particular, lossless fabrics avoid TCP incast throughput
collapse, and can reduce the completion times by up to an order of magnitude.
Virtualization aims to consolidate different applications on the same hardware, thus
increasing the average utilization of both the servers and communication equipment.
The drawback of virtualization is that the TCP/IP stack, which was originally
created and optimized to run directly over the network hardware, now runs over
a new stack of layers responsible for virtualization, isolation, and encapsulation.
In this thesis we will show that is possible to deconstruct the TCP protocol and
redistribute its functions between the guest OS and the hypervisor. We will show
that it is possible to conserve the existing features but with a much lower overhead.
In our proposed architecture the hypervisor takes over most of reliability, flow and
congestion control functions from the guest OS.
In this work we will will provide a practical way of virtualizing CEE. We will show
how current hypervisor software lags behind network hardware by arbitrarily drop-
ping frames in the virtualization layers, despite the fact modern Ethernet provides
lossless traffic classes. Therefore, we will take corrective actions and we will in-
troduce the first CEE-ready virtual switch. Next we will design a hypervisor that
prevents misconfigured or malicious virtual machines (VMs) from filling the lossless
cluster with stalled packets and compromising tenant isolation. We will prove the
benefits of our new network hypervisor using a prototype implementation deployed
on production-ready datacenter hardware.
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Résumé

Les réseaux de centres de données subissent une transition silencieuse entraînée par
l’émergence de Converged Enhanced Ethernet (CEE) et la virtualisation du réseau.
L’objectif de CEE est de faire converger tout le trafic généré par les réseaux locaux,
systèmes et de stockage, auparavant disjoints, sur une seule infrastructure physique.
Traditionnellement, Ethernet n’était pas sans perte: des trames ont été supprimées
chaque fois qu’un mémoire tampon a atteint sa capacité maximale. Ce comporte-
ment ne correspond pas aux applications de centres de données modernes utilisées
pour le stockage ou les communications à faible latence. CEE sépare les trames
Ethernet en huit priorités différentes. Chaque priorité peut être configuré soit avec
ou sans perte. Dans une priorité sans perte, Priority Flow Control (PFC) empêche
les débordements des mémoires tampons. Dans cette thèse, nous allons montrer
qu’Ethernet sans perte peut améliorer les performances des applications en ligne.
En particulier, les réseaux sans perte peuvent éviter « TCP incast » et peuvent
réduire les délais d’exécution jusqu’à un ordre de grandeur.
Virtualisation vise à consolider les différentes applications sur le même matériel,
augmentant ainsi le taux d’utilisation moyen des serveurs et des équipements de
communication. L’inconvénient de la virtualisation est que la pile TCP/IP, qui a été
initialement créé et optimisé pour fonctionner proche de matériel, fonctionne main-
tenant sur une nouvelle pile de couches responsables de la virtualisation, l’isolement
et l’encapsulation. Dans cette thèse, nous montrons qu’il est possible de déconstruire
le protocole TCP et de redistribuer ses fonctions entre le système d’exploitation de
la machine virtuelle et l’hyperviseur. Nous montrons qu’il est possible de conserver
les fonctionnalités existantes mais avec un cout beaucoup plus faible. Dans notre
architecture proposée, l’hyperviseur prend les fonctions de fiabilité, de contrôle de
débit et de congestion du système d’exploitation de la machine virtuelle.
Dans ce travail, nous allons fournir un moyen pratique pour virtualisation de CEE.
Nous allons montrer comment les hyperviseurs courant suppriment arbitrairement
des trames dans les couches de virtualisation, en dépit du fait qu’Ethernet fournit
des classes de trafic sans perte. Par conséquent, nous allons prendre des mesures
correctives et nous allons introduire le premier commutateur virtuel pour CEE.
Ensuite, nous allons concevoir un hyperviseur qui empêche les machines virtuelles
mal configurés ou malveillantes de remplir le cluster sans perte de paquets bloqués
et de compromettre l’isolement. Nous allons prouver les avantages de notre nouvel
hyperviseur de réseau à l’aide d’un prototype de l’application déployée sur le matériel
du centre de données prêt pour la production.
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1. Introduction

Datacenter networking undergoes a silent transition driven by the emergence of new
fabrics, protocols and workloads. On the hardware side, we assist to the introduction
of Converged Enhanced Ethernet (CEE) [13, 11, 12]. CEE is motivated by the desire
to reduce capital and operational expenditures by converging the cluster, storage
and high-performance computing fabrics into a single physical network. On the
software side, the established TCP/IP protocol stack is disrupted by virtualization
and overlay virtual networks [88, 81, 110, 37]. Virtualization aims to cut costs
through increasing the average utilization of hardware.
In parallel, we observe the rise of new workloads that increase the pressure on the
datacenter network. Notable here are the Online Data Intensive (OLDI) applications
[115] that need to obey tight latency constraints to provide a satisfactory user ex-
perience. Another class of emerging applications such as MapReduce [42], Hadoop,
Dryad [64] aim to ease the processing of large quantities of data but also generate
increased intra-datacenter traffic. How these new workloads behave in a virtualized
environment remains an open problem.
In this thesis we aim to virtualize and exploit the HPC-like losslessness of mod-
ern Ethernet, while maintaining the socket programming interface. We will show
that the emerging CEE networks convey performance benefits for cluster traffic, for
example by eliminating TCP incast throughput collapse and by reducing the flow-
completion time of latency-critical applications. On the other hand the virtualiza-
tion mechanisms are responsible for new bottlenecks on the critically fast data-path.
We will identify and quantify these bottlenecks by measuring the increases of flow
completion times they produce.
Furthermore, we will show how current hypervisor software lags behind network
hardware by arbitrarily dropping frames in the virtualization layers, despite the
fact modern Ethernet supports the segregation of traffic in different lossy or loss-
less classes. Therefore, we will take corrective actions and we will introduce the first
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1. Introduction

CEE-ready virtual switch. Next we will design a hypervisor that prevents misconfig-
ured or malicious virtual machines (VMs) from filling the lossless cluster with stalled
packets and compromising tenant isolation. By taking advantage of the CEE-ready
virtual switch, we will deconstruct the existing virtualized networking stack into its
core functions and consolidate them into an efficient hypervisor stack.

1.1. Virtualized Networking Stack

The bulk of datacenter communications is based on the TCP/IP protocol stack,
designed in the 70’s. The end-to-end principle [106] suggested that functions placed
on lower layers simply duplicate the functions placed at higher layers with little
value added to the end-user compared to their implementation cost. The canoni-
cal example given is that of reliable delivery of messages between two end-points.
According to the end-to-end argument, implementing reliability between the inter-
mediate hops makes little sense because the end-points must also provide end-to-end
reliability anyway. In the case of the TCP/IP stack the Transmission Control Pro-
tocol (TCP) is responsible for reliability, flow and congestion control, and runs on
top of minimal network hardware performing packet forwarding.

The virtualization was driven by the need to reduce the capital and operational
expenditures. This objective is achieved by consolidating different applications on
the same hardware thus increasing the average utilization of both the servers and
communication equipment. The applications belong to different tenants, and each
tenant rents a slice of the datacenter hardware from the datacenter operator. The
applications run in virtual machines (VM) that are fully functional operating sys-
tems (OS) under the full control of the tenant. Therefore in a virtualized datacenter
we have multiple guest operating systems running on top of a host operating system
or hypervisor. The guest OS can be arbitrarily modified by the tenants, that can
change both the drivers and the network protocols. On the other hand tenants can-
not tamper with the hypervisor application which is controlled by the datacenter
operator.

In Chapter 5 of this thesis, we argue that the TCP/IP stack, designed and optimized
to run on top of hardware, ended up running on top of a brand new hypervisor stack
responsible for virtualization. The minimal functions performed by the hypervisor
stack are forwarding, routing, multiplexing and demultiplexing of the VM traffic.
Second, the same layers are often enriched with additional policy enforcing features,
e.g., decide whether two VMs are allowed to communicate or not. The VMs can be
instantiated, migrated or deleted at a much faster pace than the hardware can be
added, moved or removed from the datacenter. The agility of the VMs can cause ma-
jor trouble in the communication hardware, such as, forwarding or routing loops, loss
of connectivity, or overflows of the switching or routing tables. Therefore the VMs
must be isolated from the physical infrastructure and this is done mainly through

2



1.2. Converged Enhanced Ethernet

encapsulation as shown in [88, 37, 81, 110]. Encapsulation requires additional op-
erations performed on every flow, or even packet, and significantly contributes to
data-path performance penalties as will be detailed in Chapter 3.

The bandwidth available to each server is shared between different VMs. The more
aggressive tenants of a virtualized datacenter have incentives to abandon TCP in
favor of customized lighter protocols, derived from UDP [108, 68]. These typically
TCP-unfriendly protocols can hog unfair bandwidth shares and harm TCP-based
applications. To counteract the problems of misbehaving or malicious flows, VMs or
tenants, recent solutions [68, 108, 22, 56, 99, 23, 74] stack up additional layers that
perform flow and congestion control within the hypervisor. Therefore, we observe
the rise of a hypervisor transport that replicates some functions of TCP, further
increasing the per-packet processing overhead, while rendering the TCP-unfriendly
transports fairer.

To sum up, the TCP/IP stack, which was originally created and optimized to run
directly over the network hardware, now runs over a new stack of layers responsible
for virtualization, isolation, and encapsulation. In this thesis we will deconstruct
the TCP protocol and redistribute its functions between the guest OS and the
hypervisor. We will show that it is possible to conserve the existing features but
with a much lower overhead. In our proposed architecture the hypervisor takes
over most of reliability, flow and congestion control functions from the guest OS.
The TCP layer in the guest OS is left only with simple connection management
and segmentation functions. This redistribution of functionality is compatible with
the end-to-end argument, i.e., the functions move between different layers of the
virtualized stack.

1.2. Converged Enhanced Ethernet

Also driven by the need to reduce capital and operational expenditures, the IEEE
802 Data Center Bridging task group recently standardized Converged Enhanced
Ethernet (CEE). CEE aims to converge all the traffic generated by the previously
disjoint local, system and storage networks on a single physical infrastructure. First
generation 10G products are already on the market, and CEE fabrics at 40G, or
even 100G, have been announced by several vendors.

Upcoming datacenter networks based on 802 CEE are short and fat: up to one
million nodes are connected in a single Layer 2 domain with abundant multipathing
across 10-100 Gbps links of a few tens of meters (at most). Typical round-trip times
(RTTs) range from 1-2 µs up to a few tens of µs, except under hotspot congestion,
when the end-to-end delays can grow by several orders of magnitude, reaching into
tens of ms [57]. Unlike wide area networks, the datacenter RTT is dominated by
queuing delays, which under bursty workloads [16, 27, 26, 33, 72, 111, 117, 42], lead
to a difficult traffic engineering and control problem.
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Traditionally, Ethernet did not guarantee losslessness: packets were dropped when-
ever a buffer reached its maximum capacity. This behavior does not match the
modern semantics of datacenter applications, including High-Performance Comput-
ing (HPC) environments [41], storage (Fibre Channel over Ethernet [10]), or Remote
Direct Memory Access (RDMA) over Ethernet [36]. This problem is corrected in
CEE, that segregates Ethernet frames into eight different hardware priorities. Each
priority may be configured as either lossy or lossless. Within a lossless priority, Pri-
ority Flow Control (PFC) [13] acts as the earlier 802.3x PAUSE, preventing buffer
overflows in a hop-by-hop manner – except that a paused priority does not affect
other priorities. PFC is matched with the Enhanced Transmission Selection (ETS)
[12] mechanism that provides a framework to support bandwidth allocation to traffic
classes with different bandwidth and latency requirements.

In Chapter 2 of this thesis, we will show that besides enabling network convergence,
lossless Ethernet clusters can improve the performance of soft real-time, scale-out
applications, that harness big-data. In particular, lossless fabrics avoid TCP incast
throughput collapse, and can reduce the completion times by up to an order of
magnitude. Motivated by these findings, in Chapter 4, we will extend the losslessness
of Ethernet into the virtual domain and we will introduce a zero-loss Overlay Virtual
Network (zOVN) built around a CEE compatible lossless virtual switch.

However, the benefits of PFC come at a price: besides the potential for deadlock
in certain topologies and switch architectures, it introduces exposure to saturation
tree congestion. To counteract the potentially severe performance degradation due
to such congestion, IEEE has recently standardized a congestion control scheme,
Quantized Congestion Notification (QCN) [11]. Another drawback of PFC is that
it introduces head-of-line (HOL) blocking. For example, consider two flows that
share a congested link in a lossless cluster. The first flow, i.e., ’culprit’, targets a
busy destination that can only receive packets at a fraction of the link speed. The
second flow, i.e., ’victim’, targets an uncongested destination. Unable to proceed
towards the blocked destination, the packets of the culprit flow monopolize the
shared buffer space in the upstream switches. The net result is that the throughput
of the victimized flow drops to the level of the culprit. Using a similar strategy,
a malicious tenant could easily fill the lossless cluster with stalled packets, thus
compromising bandwidth sharing and tenant isolation.

While two priorities do not interfere, flows of the same priority can HOL-block
each other. Obviously, the 8 priority levels of PFC cannot separate and isolate the
potentially millions of active flows. As we will show later, QCN is also ineffective
in solving HOL-blocking between VM-to-VM flows. In Chapter 5 we will introduce
a new hypervisor stack that ensures reliable delivery of the messages and uses a
VM-to-VM proactive buffer management scheme to avoid HOL blocking and the
ensuing interference between VMs.
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1.3. Research Questions

The results presented in this work aim to defend the following hypotheses:
1. It is possible to reduce the flow completion times of latency sensitive applica-

tions by avoiding packet drops in the virtualized networking stack.
2. Furthermore, it is possible to simplify the heavy networking stack by moving

functionality from the TCP stack in the guest OS to the hypervisor, and by
exploiting the hardware link-level flow control from CEE.

While defending these hypotheses we also answer to the following open research
questions:

• What is the influence of CEE protocols on the completion time of TCP based
applications?

• How do latency sensitive applications perform in a virtualized environment?
What are the main performance gating factors of overlay virtual networks?

• What is the cause of packet drops in virtualized networks? What is the perfor-
mance penalty of the packet drops? How can they be avoided?

• Can we design a lighter virtualized stack that improves performance of socket-
based application, running on top of CEE hardware?

1.4. Contributions and Thesis Outline

Lossless Overlay 

Virtual Networks  

Chapter 4 

Hypervisor Stack for 

Lossless Ethernet 

Chapter 5 

CEE ➊ Lossless Ethernet 

Chapter 2 

Overlay Virtual Networks 

Chapter 3 

Figure 1.1.: Thesis structure.

The material is structured in four chapters organized as shown in Figure 1.1. The
results introduced in Chapter 2 and Chapter 3 serve as basis for the proposals from
Chapter 4, that are further extended in Chapter 5.

Chapter 2

In Chapter 2 we present the protocols implemented in Converged Enhance Ether-
net. We perform the first evaluation of TCP performance in lossless CEE networks.
First, we contribute the necessary parameter changes for TCP over 10Gbps CEE.
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Next, we show evidence of PFC’s benefits to TCP, leading to our recommendation
to enable PFC also for TCP applications. In addition, we identify cases in which
QCN is beneficial, respectively detrimental, to L4 transports. For this evaluation we
extracted a full TCP stack from FreeBSD v9 and ported it to our simulation envi-
ronment. Therefore we mix production-ready software with detailed L2 simulation
models of CEE switches and adapters. On top of the TCP stack we run different
workloads representative for datacenter traffic.
Next, we introduce the first source-based adaptive routing, proposed for CEE, using
the established VLAN mechanism from Ethernet in conjunction with the recently
standardized QCN. We introduce a simple reactive route control R2C2, and respec-
tively, its higher performance counterpart, a reactive route & rate control R3C2, and
we quantitatively examine the performance of our proposals against other routing
algorithms.

Chapter 3

In Chapter 3 we present the virtualized network stack. We show that network
virtualization requires new protocols responsible for the forwarding, filtering and
multiplexing of traffic from different VMs. These layers are inserted between the
TCP stack from the guest operating system and the CEE network hardware. The
virtualization layers must ease the creation, deletion and migration of virtual ma-
chines. Furthermore the virtual networks connecting different VMs must be isolated
from the physical network.
In this chapter we identify the main drawbacks of the overlay networks. We con-
tribute the first completion time-based evaluation of partition/aggregate and 3-tier
applications in a realistically virtualized datacenter network, using an actual TCP
stack running over a detailed L2 CEE fabric model. We provide the first measure-
ments of the OVN design parameters on the user-perceived performance of on-line
and data-intensive applications.

Chapter 4

In Chapter 4 we show that the performance of applications in virtualized networks
is harmed by the non-deterministic packet drops in the virtualization layers. We
introduce the novel zero-loss Overlay Virtual Network (zOVN) that extends the
CEE features described in Chapter 2 into the overlay virtual networks studied in
Chapter 3.
We identify and characterize the problem of packet drops in overlay virtual networks.
We show that virtual networks are affected by considerable and non-deterministic
losses caused by the process and interrupt scheduling within the host OS. We im-
plement the first zero-loss Overlay Virtual Network (zOVN) to address the prob-
lem of packet drops in converged multi-tenant datacenters. We quantitatively verify
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how zOVN improves the standard TCP performance for data-intensive applications.
Testing Partition-Aggregate on top of zOVN, we achieved up to 15-fold reductions
in flow completion times using two distinct testbeds with 1G and 10G Ethernet re-
spectively, and three standard TCPs. Finally, we investigate the scalability of zOVN
by means of accurate full system cross-layer simulations.

Chapter 5

In Chapter 5 we deconstruct the existing TCP stack from the VMs kernel and
consolidate its functions into zFabric, a new hypervisor build around the lossless
virtual switch introduced in Chapter 4. We redistribute congestion management
responsibilities from the guest OS, which does less, to the hypervisor and virtual
NIC, which does more. Next we replace reactive schemes, used in prior work, with a
VM-to-VM proactive credit-based buffer reservation scheme, better suited to lossless
networks to avoid stalled frames potentially blocking the network.
We contribute a slim hypervisor stack, named zFabric, optimized for lossless Eth-
ernet. It avoids HOL blocking – and the ensuing interference between VMs – by
managing the buffers between each vNIC communication pair through a VM-to-VM
credit-based scheme. For the reliable delivery of both user data and credit messages,
zFabric implements a thin reliability scheme on top of the lossless CEE hardware.
A deployment of zFabric requires no changes to the applications and to the CEE
hardware. We propose TCPlight, a slim replacement for the TCP sockets. Although
zFabric works with any user transport, optimal results are obtained with the newly
introduced lightweight TCPlight socket, which is responsible for connection handling
and data segmentation. We build a working zFabric prototype and evaluate it using
long throughput-bounded transfers and short latency sensitive flows.
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2. Converged Enhanced Ethernet:
Application Performance Booster

In this chapter we present the new standards implemented in Converged Enhanced
Ethernet (CEE) responsible for hardware flow and congestion control. We begin
with an evaluation of the influence of these new features on the performance of
TCP application. Next, we show that CEE enables the use of innovative source
routing schemes that make routing decisions based on information obtained from
the load sensors of the hardware congestion control.

Losslessness is one of the consequential new features of emerging datacenter net-
works, achieved by means of Priority Flow Control (PFC). Despite PFC’s key role
in the datacenter and its increasing availability – supported by virtually all CEE
products – its impact remains largely unknown. This has motivated us to eval-
uate the sensitivity of three widespread TCP versions to PFC, as well as to the
more involved Quantized Congestion Notification (QCN) congestion management
mechanism.

As datacenter workloads we have adopted several representative commercial and
scientific applications. A somewhat unexpected outcome of this investigation is
that PFC significantly improves TCP performance across all tested configurations
and workloads, hence our recommendation to enable PFC whenever possible. In
contrast, QCN can help or harm depending on its parameter settings, which are
currently neither adaptive nor universal for datacenters. To the best of our knowl-
edge this is the first performance evaluation of TCP performance in lossless CEE
networks.

Next, we propose two novel source-based adaptive routing schemes exploiting the
features of CEE-based. We develop a basic source-driven Reactive Route Control
(R2C2) adaptive routing scheme. In response to congestion notifications, the source
activates additional paths to re-route traffic around potential congestion points.
Using industry standard virtual local area networks (VLANs), a source node can
effectively control the path choices in the network. This approach goes beyond
conventional QCN limitations by replacing its reaction point with a VLAN-based
multipath route controller.

Finally, we combine R2C2 with the QCN reaction point, resulting in the higher
performance Reactive Route & Rate Controller (R3C2). In case of persistent or
multiple hotspots when VLAN route selection alone is insufficient, the R3C2 source
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will throttle its packet injection rates individually along each congested route of
a multipath bundle. Detailed simulations against established datacenter and HPC
benchmarks show the practical benefits in performance and stability.

2.1. Introduction

Besides power, the top three technical obstacles, according to [20], hindering the
adoption and growth of Cloud computing are directly related to networking. The
first obstacle is confidentiality of private data, such as medical, corporate, or govern-
ment records. This data is most vulnerable on the network, where security concerns
are typically addressed by encryption, VLANs, packet filtering, firewalls, etc. The
second obstacle is data transfer bottlenecks, both within and between datacenters.
In particular, for latency sensitive applications such as HPC and financial trading, a
difference of a few microseconds can significantly affect the cost/performance ratio
of the network. When compared against widely used alternatives such as overnight
hard disk shipping, datacenter networks need a two orders of magnitude improve-
ment in cost/performance. This requirement affects the entire hierarchy of protocol
stacks, communication libraries, adapters, switches, and routers exceeding 1 Gbps.
The third obstacle is performance unpredictability, resulting from I/O sharing and
interference between scheduling virtual machines. These issues make networking
critical for the future of datacenter and Cloud.
Nowadays datacenter networks and HPC installations are composed of multiple
disjoint networks: (i) a Local Area Network – Ethernet or Gigabit Ethernet, (ii) a
System Area Network – Myrinet, Quadrics or InfiniBand, and (iii) a Storage Area
Network – FibreChannel or InfiniBand. Yet the currently distinct networks remain
expensive to buy, wasteful to operate, and, complex to deploy/upgrade and manage.
While for now 1-10 Gbps Ethernet, 10-40 Gbps Infiniband, 2-8 Gbps Fibre Channel,
Quadrics and Myrinet may still coexist in the same Cloud, eventually their traffic
will be aggregated on a single network. Consolidation into a single network is the
only practical solution to reduce Cloud’s cost, complexity and power consumption
– a promise now starting to materialize.
The technology recently promoted by the industry and standardized by IEEE as
universal network fabric is the Converged Enhanced Ethernet. It provides a unified
Layer 2 network that carries all the traffic generated by the applications running in
a datacenter using a single physical infrastructure. Upcoming datacenter networks
based on 802 CEE are short and fat: up to one million nodes are connected in a single
Layer 2 domain with abundant multipathing across 10-100 Gbps links of a few tens
of meters (at most). Typical round-trip times (RTTs) range from 1-2 µs up to a few
tens of µs, except under hotspot congestion, when the end-to-end delays can grow by
several orders of magnitude, reaching into tens of ms [57]. Unlike wide area networks,
the datacenter RTT is dominated by queuing delays, which under bursty workloads
[16, 27, 26, 33, 72, 111, 117, 42], lead to a difficult traffic engineering and control

10



2.1. Introduction

problem. Hence the recent surge in research and standardization efforts addressing
the new challenges in datacenter virtualization, flow and congestion control, routing
and high performance transports.
One of CEE core new features is Layer 2 (L2) losslessness, achieved via per prior-
ity link-level flow control as defined by 802.1Qbb PFC [13]. It enables convergence
of legacy and future datacenter applications, such as Fibre Channel over Ethernet
(FCoE), business analytics, low latency algorithmic trading, high performance net-
work storage, and MPI workloads currently still running on Myrinet and InfiniBand
networks. However, the benefits of PFC come at a price: besides the potential for
deadlock in certain topologies and switch architectures, it introduces exposure to
saturation tree congestion. To counteract the potentially severe performance degra-
dation due to such congestion, IEEE has recently standardized a new L2 congestion
control scheme, Quantized Congestion Notification (QCN, 802.1Qau) [11].

2.1.1. Guiding Questions

The bulk of datacenter communications is based on Layer 4 (L4) transports, i.e.,
predominantly TCP with some notable RDMA, SCTP and UDP exceptions. TCP,
has traditionally relied on loss as congestion feedback from uncorrelated single bot-
tlenecks, whereas in CEE, loss and congestion are avoided by PFC and QCN re-
spectively. Therefore an overarching question is: How disruptive are the new CEE
features? We aim to find how do the typical datacenter applications perform in a
CEE environment. To this end, we ask the following question:
(Q1) How does TCP perform over CEE networks? Is PFC – with its potential
saturation trees – beneficial or detrimental to TCP? Is QCN beneficial or detrimental
to TCP?
Next, we observe that although Ethernet is not source routed, alternative paths are
possible, with the condition that they belong to different VLANs. The source can
determine the route towards destination by pre-selecting the VLAN number before
injecting a new frame. We aim to answer the following question:
(Q2) Assuming QCN-compliant adapters will follow an accelerated CEE-adoption
curve, can we reap any sizable benefits by combining VLAN-based route control
with QCN rate control? Our aim is to design a “route & rate” controller using
QCN’s feedback as the congestion price, while avoiding the interference and potential
instabilities of two intercoupled control loops, with their respective timescales. QCN
is a rate, not route, control feedback loop, therefore stability and performance of
source-driven route changes are unknown in 10-100Gbps. Next, can a source-based
adaptive routing scheme show performance benefits with simpler adapters that do
not implement QCN?
In addressing these questions we hope to provide some useful guidance to datacenter
architects, network vendors, as well as operating system, hypervisor and application
designers.
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2.1.2. Contributions and Structure

The contributions of this chapter are as follows:
1. We extracted a full TCP stack from FreeBSD v9 and ported it to our simulation

environment. Therefore we mix production-ready software with detailed L2
simulation models of CEE switches and adapters. On top of the TCP stack
we run different workloads representative for datacenter traffic.

2. We perform the first evaluation of TCP performance in lossless CEE net-
works. First, we contribute the necessary parameter changes for TCP over
10Gbps CEE. Next, we present evidence of PFC’s benefits to TCP, leading to
our recommendation to enable PFC also for TCP applications. In addition,
we identify cases in which QCN is beneficial, respectively detrimental, to L4
transports.

3. To the best of our knowledge, this is the first source-based adaptive routing,
proposed for CEE, using the established VLAN mechanism in conjunction with
the recently standardized QCN. We introduce a simple reactive route control
R2C2, and respectively, its higher performance counterpart, a reactive route
& rate control R3C2.

4. Finally we quantitatively examine performance of our proposals against pre-
viously introduced routing algorithms for CEE.

The remainder of this chapter is structured as follows: The datacenter network stack
is briefly described in Section 2.2. In Section 2.3 we review the routing schemes se-
lected as candidates for CEE-based datacenter interconnects. Next, in Section 2.4
we introduce our proposed adaptive routing algorithms. Section 2.5 describes the
simulation environment, network models, and the workloads and traffic scenarios,
that we have used to validate, and to quantitatively examine performance at appli-
cation level. We answer to the first guiding question in Section 2.6 and to the second
guiding question in Section 2.7. Finally, we present a selection of some related work
in Section 2.9, after which we conclude in Section 2.10.

2.2. Datacenter Network Stack

2.2.1. Layer 1 Topology - Fat-Trees

Future datacenters will typically consist of 1K–100K processing nodes intercon-
nected by a blend of 1-10-100Gbps Ethernet networks. The classical topology for
datacenter networks follows a tiered approach as shown in Figure 2.1. The process-
ing nodes are connected to edge switches that provide the connectivity between the
nodes collocated in the same rack. The edge switches in turn are connected to an
intermediate layer of aggregation switches that connect different racks together to
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Figure 2.1.: Multi-tiered datacenter with edge, aggregation and core switches.

form a cluster. The clusters can be further linked through another layer of core
switches [14, 89].
The packets generated by one of the processing nodes have to traverse a few levels of
switches before reaching the destination nodes. A common multi-stage interconnect
is the fat-tree or k-ary n-tree.
A k-ary n-tree consists of N = kn processing nodes and n · kn−1 switch nodes. The
switch nodes are organized on n levels, each level having kn−1 switches. All switches
have the same arity 2k, excepting the top switches, which have arity k. This type
of network has full bisection bandwidth and path redundancy [94]. The k-ary n-
trees can be slimed by populating the upper layers with less than kn−1 switches. A
slimmed fat-tree is cheaper to build because it requires fewer core and aggregation
switches but it doest not provide full bisection bandwidth. An example of a 2-ary
3-tree can be seen in Figure 2.2, and a slimed versions of the same tree is shown in
Figure 2.1.
The k-ary n-trees and their slimmed versions belong to the family of extended
generalized fat-trees (XGFT) as described in [91]. An XGFT (h;m1, ...mh;w1, ...wh)
has h+1 levels of nodes. The nodes on level 0 are called leaf-nodes and the nodes on
level h are called root-nodes. The processing nodes occupy the ∏h

i=1 mi leaf-nodes
on level 0. The switches occupy the other nodes on levels 1 to h. Each non-leaf
node on level i has mi child nodes and each non-root node on level j has wj+1 parent
nodes.
A deadlock free path in a fat-tree is computed by selecting an intermediate switch
from the set of Nearest Common Ancestors (NCA) of the source and the destination
node [93]. A NCA is a common root of both the source and the destination located
at the lowest possible level. Packets are following an up-phase from the source to
the NCA, and then a down-phase from the NCA to the destination node.
For example in Figure 2.5, to send data from source P0 to source P7, there are two
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Figure 2.2.: Saturation tree formation in a fat-tree network. End-node P7 is slow in processing
incoming packets sent from nodes P0 ... P3. In the first step, congestion appears
on the edge link connecting P7 with the corresponding level 1 switch. In the second
step, the dashed links from level 2 to level 1 are affected. In the third step, congestion
propagates up to root level. Other flows that do not even target P7 are now potentially
affected (e.g. P3 → P4). If the initial hotspot persists long enough, the domino effect
created by the link-level flow-control continues and the congestion propagates further
back to level 2 and level 1 (not drawn). The network experiences a catastrophic loss
of throughput affecting all the nodes.

NCAs: the two switches on level 3. Packets leaving source P0 travel upward until
they reach one of the level 3 switches, then downward to destination P7.

2.2.2. Layer 2 - Converged Enhanced Ethernet (CEE)

There is a growing interest in consolidated network solutions that meet the require-
ments of datacenter applications, i.e., low latency, no loss, burst tolerance, energy
efficiency etc. One possible universal datacenter fabric is Converged Enhanced Eth-
ernet (CEE) with the following key features: (i) per-priority link-level flow-control
and traffic differentiation, i.e., Priority Flow Control (PFC; 802.1Qbb) [13]; (ii)
congestion management, i.e., Quantized Congestion Notification (QCN, optional
in CEE; 802.1Qau) [11]; (iii) transmission scheduling, i.e., Enhanced Transmission
Selection (ETS; 802.1Qaz) [12].

2.2.2.1. Priority Flow Control (PFC)

Traditionally Ethernet does not guarantee lossless frame reception; instead, packets
will be dropped whenever a receive buffer reaches its maximum capacity. Reliable
upper-layer transports such as TCP interpret this event as implicit congestion feed-
back triggering congestion window or injection rate corrections. This lossy network
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behavior, however, does not meet the semantics of applications such as Fibre Chan-
nel over Ethernet, MPI or low-latency messaging for Business Analytics.
CEE networks are specifically designed to prevent frame losses, by using a link-
level flow-control mechanism named Priority Flow Control (PFC), defined in the
IEEE standard 802.1Qbb [13]. It works by pausing the transmission on an input
link when the corresponding buffer occupancy exceeds a certain maximum thresh-
old. The transmission is paused using a special XOFF control frame sent to the
upstream device. When the buffer occupancy drops below a minimum threshold,
the transmission is resumed using a XON control frame sent to the upstream device.
The desired effect is that the congestion information is propagated from the conges-
tion point to the upstream devices. Hence, eventually the core congestion is pushed
to the network edge. On the other hand, when a link is paused, the buffers of the
upstream device fill up and new upstream links will have to be paused. This has the
potential to continue recursively affecting more and more devices. Therefore if the
congestion persists, it can spread from one network device to another forming a con-
gestion tree [96, 97]. Previous studies [96] showed that a congestion tree can fill all
the buffers in only a few round-trip times, too fast for software to react. An example
about how a congestion tree can form in a network is shown in Figure 2.2. This un-
desired effect of link-level flow-control can cause a catastrophic loss of throughput
of the entire network. To make the situation worse, after the original congestion
subsides, the congestion tree dissipates slowly, because all the buffers involved must
first drain [57].
PFC divides the traffic into 8 priority classes based on the IEEE 802.1p Class of
Service field. Each priority class has its own buffer and link-level flow-control pro-
tocol. Congestion generated by a priority class does not influence the other priority
classes.

2.2.2.2. Quantized Congestion Notification (QCN)

QCN, a congestion management scheme that attempts to match a source node’s
injection rate to the available capacity, as signaled by the QCN-monitored switches,
see [79, 83] for a full description.
QCN is defined in the IEEE standard 802.1Qau [11]. The final version of the stan-
dard provides a set of protocols and procedures for congestion management of long-
lived data flows. QCN-compliant switches can detect and signal congestion to the
end-nodes via explicit congestion feedback. The QCN-capable end-nodes respond
to the congestion information by limiting their transmission rate to the available
network capacity.
QCN consists of two algorithms:
(i) Congestion detection: An instantaneous queue load sensor is implemented at each
potential congestion point, e.g. switch buffer. Each congestion point sensor observes
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Figure 2.3.: QCN load sensor mechanism. The sampling rate Ps is a function of the measured
feedback Fb. For low congestion levels, one every 100 received frames is sampled.
Sampling rate increases linearly with the severity up to one every 10 received frames.

the state of the network and detects congestion by sampling the incoming frames
with a variable and randomized sampling rate (see Figure 2.3). For each frame
sampled, the switch measures the output queue occupancy and computes a feedback
value Fb. The feedback value is computed as Fb = −(Qoff + w ·Qdelta). Qoff is the
difference between the measured queue occupancy Qlen and an equilibrium queue
occupancy Qeq, considered normal during the operation: Qoff = Qlen −Qeq. Qdelta

is the change of the queue occupancy from the preceding sample instant: Qdelta =
Qlen −Qold. If the computed Fb is negative, the switch generates a 64B congestion
notification message, sent back to the end-point that generated the sampled frame,
i.e., culprit source. The congestion notification informs the source about the hotspot,
essentially conveying its location via the Congestion Point ID, whereas the feedback
value Fb provides a 6-bit quantitative indication of how severe the bottleneck is.
When a higher precision is required, the congestion notification also entails two
16-bit values, i.e., the raw queue offset and delta.

(ii) Source reaction: This is a mechanism by which the source limits its transmis-
sion rate in response to the congestion notifications received from the QCN-enabled
switches. When a notification is received, the source instantiates a Rate Limiter
(RL) that adjusts the transmission rate according to the feedback received: the
higher the feedback, the higher the rate reduction. The RL also provides a way to
recover: if no congestion notification has been received for a certain number of sent
frames, it can be assumed that congestion has vanished and the source can increase
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its transmission rate.
The above description shows that the QCN algorithm matches the transmission
rate of an end-node with the available bandwidth in the network. Unlike in earlier
proposals (Ethernet Congestion Management – see [83] for a full description) there
is no positive feedback in QCN. Hence, the source has to recover the bandwidth
autonomously. This rate recovery is performed in three phases. In the first phase
(Fast Recovery), a few binary increase steps are performed similar to BIC-TCP
[120]. In the second phase (Active Increase), several linear increase steps take place,
followed by an optional superlinear increase regime (Hyper-Active Increase) in the
third phase.
Despite the merits of a datacenter-tailored congestion management solution, QCN
has also been criticized because of its:
(i) Increased switch and adapter complexity: QCN’s congestion point sensor
runs at line speed, 10-100 Gbps, at each monitored queue (ports× priorities). The
hundreds of high-speed congestion point engines per CEE switch add complexity,
power and costs. Similarly, QCN’s reaction point requires a line-speed rate con-
troller, hence a new scheduling stage – a potentially large set of Rate Limiters (RL)
in QCN terminology – to be added per priority to every network adapter. The
tens to thousands of RL engines per adapter increase the cost and power budget,
expected to grow with virtualization.
(ii) Lack of application control: HPC applications assume end-nodes’ direct
control of task placement and routing, without any interfering form of rate control by
congestion management schemes such as QCN. Increasingly often since MapReduce,
Hadoop, Dryad, the datacenter application developers prefer to explicitly control
their workload, its injection, routing and service level agreement (SLA) monitoring.
At least for the critical traffic classes (analytics, trading, mission-critical applications
mapped to high priorities), one must ensure that the Layer 2 traffic management
modules do not conflict with the higher-layer SLA. Often, to prevent interference
with the main application and its communication stack, the QCN reaction point is
disabled – thus orphaning the investments in QCN-compliant networks. In either
case the source end-node must actively control the routing and/or the injection rate,
ideally in conjunction with the application, communication library, operating system
and virtual machine. Currently the QCN operation on Layer 2, albeit fast, remains
opaque from an application and virtual machine perspective.

2.2.2.3. Enhanced Transmission Selection (ETS)

The Enhanced Transmission Selection mechanism provides a framework to support
bandwidth allocation to traffic classes. This is needed because different classes
have different bandwidth and latency requirements. For time-sensitive applications
requiring minimum latency, a strict priority scheduling is needed. Active priorities
that generate bursty traffic can share bandwidth. When a priority is not using its
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Figure 2.4.: Enhanced Transmission Selection bandwidth allocation for a 10Gbps link with three
priorities: low, medium and high. The offered traffic intensity for the low-priority is
constant: 5Gbps. Between T2 and T6 the intensity of the medium and high-priority
traffic is higher than 5Gbps, thus reducing the capacity left to the low-priority. The
low-priority bandwidth share shrinks under the pressure of the higher priorities. The
flows mapped to the low-priority encounter an artificial bottleneck.

allocation other priorities can use the bandwidth. An example of the operation of
ETS in a datacenter with three priority classes is depicted in Figure 2.4. Note how
the low-priority traffic bandwidth slice shrinks under the pressure of the high-priority
traffic.

2.2.3. Layer 3 - Explicit Congestion Notifications (ECN)

Random Early Detection [49] (RED) is a Layer 3 Active Queue Management (AQM)
congestion avoidance technique for packet-switched networks. Unlike QCN whose
congestion estimation is based on instantaneous queue size measurements, RED
detects network congestion by computing the average queue length and comparing
it with a given threshold. The RED-enabled queue has a minimum and a maximum
threshold. If the average queue length is below the minimum threshold, all incoming
packets are forwarded unchanged. If the average queue length is above the maximum
threshold, all the incoming packets are dropped. Finally, if the average queue length
is between the threshold values, some of the incoming packets are dropped according
to a linear probability which is function of the average queue length. RED allows
the network to absorb a limited amount of bursty traffic with little performance
degradation. Unlike the QCN load sensor mechanism which uses the instantaneous
queue length, RED uses the average queue length to detect congestion, therefore
being more tolerant to bursts as confirmed later in this chapter.
Explicit Congestion Notification (ECN) is a Layer 3-4 end-to-end congestion man-
agement protocol defined in RFC 3168. In order to be operational and efficiently
used, ECN has to be supported by both endpoints and also by the intermediate
network devices. ECN uses the two least significant bits of the Differential Services
(DiffServ) field in the IP header. Once the communicating end-nodes have negoti-
ated ECN, the transport layer of the source node sets the ECN-capable code in the
IP header of the packet and sends the packet to the destination. When the ECN-
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capable packet arrives at a RED-enabled queue that is experiencing a congestion,
the router may decide to mark the packet instead of dropping it. Upon receiving the
marked packet, the destination sends back to the source an ACK packet with the
ECN-Echo bit set in the TCP header. The destination repeats sending the ECN-
Echo bit until the source acknowledges having received the congestion indication.

2.2.4. Layer 4 - TCP Congestion Avoidance Algorithms

We have selected three representative TCP congestion avoidance algorithms:

1. TCP New Reno [48] - the most studied and the most implemented version;

2. TCP Cubic [60] - the default congestion avoidance in today’s Linux kernels;

3. TCP Vegas [30] - uses delay probing for congestion window adjustments.

TCP New Reno, like Reno, includes the slow-start, congestion avoidance, and fast
recovery states. Its congestion feedback is either packet loss and/or ECN-marked
packets. TCP New Reno outperforms TCP Reno in the presence of multiple holes
in the sequence space, but performs worse in case of reordering due to useless re-
transmissions. It was the default TCP algorithm in Linux kernels till version 2.6.8.

TCP Cubic is RTT-independent. It has been optimized for high speed networks
with high latency (due to flight delays) and is a less aggressive derivative of TCP
BIC (Binary Increase Congestion control). TCP BIC uses a binary search to probe
the maximum congestion window size. TCP Cubic replaces the binary search with a
cubic function. The concave region of the function is used to quickly recover band-
width after a congestion event happened, while the convex part is used to probe for
more bandwidth, slowly at first and then very rapidly. The time spent in the plateau
between the concave and convex regions allows the network to stabilize before TCP
Cubic starts looking for more bandwidth. TCP Cubic replaced TCP BIC as the
default TCP implementation in Linux kernels from version 2.6.19 onwards.

While both TCP New Reno and TCP Cubic rely on losses to detect congestion and
react accordingly, Vegas avoids congestion by comparing the expected throughput
in the absence of congestion with the actually achieved throughput and then it
adjusts the transmitter window size accordingly. TCP Vegas is representative for
the delay-probing class of TCPs similar to Adaptive Reno and Compound TCP.

2.3. Routing in Converged Enhanced Ethernet

In the following paragraphs we will describe the routing schemes selected as the
most promising for Cloud apps. We assume networks based on k-ary n-trees.
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Figure 2.5.: VLAN source routing. To send data from source P0 to destination P3 two paths are
available: through switch S0 or through S1. Source P0 selects the path via VLAN 0
or VLAN 1.

2.3.1. Source Routing Using Virtual LANs

Traditional Ethernet networks guarantee loop-free routing using the Spanning Tree
Protocol (STP). The STP algorithm transforms a physical network that may contain
loops into a loop-free single-rooted tree graph by disabling the loop-inducing edges.
Hence, even if the original topology has path diversity, e.g. fat-tree (inherently loop-
free with up/down routing), STP will reduce it to a unique path network, thus also
reducing its performance and reliability.

We remove this limitation by using the VLAN mechanism defined by IEEE standard
802.1q. This enables the coexistence of multiple spanning trees, one per VLAN.
Thus alternative paths are possible, with the condition that they belong to different
VLANs.

A method of VLAN assignment and route selection in k-ary n-trees was introduced in
[73, 87], which assigns a VLAN number to each top-level switch. The corresponding
VLAN contains that particular top-level switch, plus all its ‘children’: switches
accessible from it through descending links, including the end-nodes.

As depicted in Figure 2.5 each end-node is configured as member of all the VLANs.
Before injecting a new frame, a source has to pre-select the desired VLAN, which
determines the route to destination. Thus one can implement source routing without
changing the Ethernet frame format, nor the switch VLAN routing mechanism.

With 4096 VLANs, assuming future CEE switches with arity 64, the network scales
up to 100K nodes. Next, 802.1ad provides two VLAN tags per Ethernet frame,
scaling beyond 1M nodes; such physical scalability, however, is limited by other
constraints, e.g. power and cooling.
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Figure 2.6.: D-mod-k routing in a 2-ary 3-tree (k = 2). Source P0 sends a packet for destination P6
(D = 110). The packet arrives at switch S1 at level 1, which computes

⌊
D
k0

⌋
mod k = 0

and selects parent #0. Then the packet arrives at switch S2 at level 2, which computes⌊
D
k1

⌋
mod k = 1 and selects parent #1. The packet reaches the root switch S3, which

is NCA for P0 and P6. From the NCA, there is a single downward path available to
the destination P6.

2.3.2. Deterministic Routing

Deterministic routing always uses a single fixed path from a given source S to a
given destination D. The choice of paths is done such that the load is distributed
evenly across the switches that act as Nearest Common Ancestors (NCA) between
different sources/destinations.
An extensively studied deterministic routing technique is the modulo-based D-mod-
k routing [78, 69, 121] also know as Stage And Destination Priority - SADP [52, 53].
To establish a path S → D, the algorithm chooses the parent

⌊
D
kl−1

⌋
mod k at the

level l in the upwards phase of the routing until a NCA is reached. An example of D-
mod-k routing is given in Figure 2.6. The NCA choice is dictated by the destination
address. Consequently flows with different destinations use different NCAs and the
traffic sent to different destinations is distributed statically over alternative paths.
Another approach uses the source address in the choice of the NCA. This is accom-
plished by the modulo-based S-mod-k routing that chooses the parent

⌊
S

kl−1

⌋
mod k

at every level l in the upwards phase. Using this algorithm the flows with different
sources use different NCAs.
Various studies [52, 104] proved that D-mod-k is one of the best performing deter-
ministic routing algorithms. Additionally it has the advantage of in-order delivery,
hence no need for resequencing buffers at the destination. Nonetheless, its through-
put can suffer because of resource conflicts and head-of-line blocking. It is always
possible to find particular traffic patterns under which two or more flows contend
on the same link. Such conflicts are unavoidable owing to the static nature of the
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algorithm [104, 53].

2.3.3. Random Routing

Random routing [114, 47, 76] uses all available paths from S to D with equal prob-
ability. This approach distributes the loads across the different links and switches.
The Valiant routing algorithm [114] states that, in a network with an arbitrary
topology, for each packet from S to D, a random intermediate node R must be
selected and the packet is then routed along the path S → R→ D. In fat-trees the
role of the intermediate nodes is taken by the NCAs. To route a packet from S to
D, a random NCA is chosen and the packet sent through that NCA. The choice of
NCA can be done at the source, as in [47], or at each step of the upward phase as
in the Connection Machine CM-5 [76].
Misordering is possible, hence any traffic type that requires in-order delivery needs a
resequencing buffer at the destination. The throughput may be reduced by uneven
loading of the alternative paths. If one of the NCAs is loaded more than others, still
it will receive the same amount of traffic, because the division is statical.

2.3.4. Hash-based Routing

Hashed routing is a special case of Equal-Cost Multi-Path routing detailed in [63,
113]. In hashed routing, each flow from S to the D is characterized by a flow
identifier. The source uses a hash function that takes as input a flow identifier and
outputs a path selected from the set of alternative paths to the destination. The
flow is usually identified by a 5-tuple containing the source and destination address
(Layer 2 or 3), the source and destination port, and the protocol number.
For fat-trees, the number of alternative paths is determined by the number of NCAs.
Hence the hash function has to select an NCA for each flow identifier given as input.
This distributes the flows evenly over different links. Since all packets of a flow
follow the same path, as in deterministic routing, no resequencing is required. Care
is still needed for a flow level ordering.
Hashed routing performs similar to random routing for sources that generate a large
number of “mice” flows, which will select different paths because of hashing, thus
the load is distributed across the network. On the other hand, if the number of
flows between S and D is small, hashing degenerates into deterministic routing and
a single path will be used.

2.3.5. Switch Adaptive Routing

Switch Adaptive Routing (Switch AR) [84, 86] uses the QCN congestion information
to steer the traffic. Switches are QCN-enabled and continuously monitor the status
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of their outbound queues. If congestion is detected in one of these queues, the switch
generates a congestion notification that travels upstream from the congestion point
to the originating source of the packets deemed as culprits.

Congestion notifications are snooped by the upstream switches, which thus learn
about the downstream congestion. When a switch detects congestion, it can reroute
the traffic to alternative paths, to avoid the hotspots, and to allow the congested
buffers to drain. In this way, the path diversity is exploited, theoretically better
than by the load-oblivious schemes.

If the new path, however, is also congested, the Switch AR algorithm will revert
to the original path, hence oscillations are possible. These are likely to appear in
networks with multiple hotspots or, when multiple flows contend as observed in [51].

The switch uses the snooped congestion information to annotate its routing table
with a congestion level for each port through which a given destination is reachable.
When a frame for this destination arrives, it will be routed through the port with
the minimum congestion level. By marking the ports as congested with respect to
each destination, the switch reorders its routing preferences to favor the uncongested
ports. The algorithm must ensure that all the upstream switches learn about con-
gestion. Congestion notifications are routed randomly towards the culprit source.
Thus all the upstream switches of all the alternative paths can detect the hotspot.

The Switch AR algorithm is using binary route split ratios. When congestion is
detected on one path, the entire traffic flow is switched to an alternative path. The
advantage is in simplicity and low-cost. The resources required are minimal because
only some additional per-port data needs to be stored [84, 86]. Another advantage
is that the switch forwarding logic is unchanged. Only the routing table is updated
in response to congestion notifications.

One can argue that the binary split can lead to oscillations. In order to avoid
oscillations, fractional route split ratios can be used: in response to congestion only
a fraction of the traffic is rerouted to an alternative path. However, this comes
at a higher cost, as the switch will have to store per-flow information. Extensive
changes to the forwarding logic are required. For example, in order to divert 20%
of the traffic to an alternative path, every 10 packets, 2 packet have to be rerouted.
We are currently working to improve Switch AR’s stability by a less aggressive load
re-routing decision while keeping the hardware requirements as low as possible.

Since Switch AR is a route-only scheme, we also want to test its coupling with a
congestion management scheme such as the QCN. Therefore we devise a new version,
called Switch AR with Rate Limiters, whereby QCN compliant rate limiters can
be instantiated at each source, for each “culprit” flow. These flows are identified
solely using the destination address carried by the congestion notifications. When a
congestion notification is received, a rate limiter is instantiated at the flow source.
The algorithm used for rate limitation is identical with the one described in the
802.1Qau standard.
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(a) (b) (c)

Figure 2.7.: R3C2 – Reaction to congestion. Four paths are available between S and D:
Path1, Path2, Path3 and Path4. The default path that is Path1.In the absence of
congestion, 100% of the traffic from S to D takes the default path as in (a). In case
of congestion this path’s load must be reduced, done by instantiating the rate limiter,
RL1, according to the received congestion notification feedback. An additional path,
Path3, is activated for the excess load (see (b)) which should eliminate the original
bottleneck on Path1. Assuming that the load on Path1 was reduced to 25%, the ex-
cess 75% is routed on Path3. However this may in turn, generate a hotspot on Path3.
Hence, RL3 must be instantiated while a new alternative, Path2, is activated as in
(c).

2.4. Reactive Source-based Adaptive Routing

In this section we describe the proposed R2C2, respectively the R3C2 algorithms.
The former is a route-only scheme that in response to congestion notifications can
exploit the available path diversity of the network – even when the source adapter
is not QCN-compliant. The latter scheme, R3C2, combines the R2C2 scheme with
QCN rate control. Both algorithms are reactive: traffic sources react to hotspots,
signaled by QCN-compliant switches via congestion notifications. Route reaction is
by steering the traffic away from the overloaded paths toward the remaining, if any,
uncongested paths.

2.4.1. Concept and Assumptions

At initialization time, the traffic sources learn the network topology to discover
alternate paths. In the absence of congestion, a unique default path is used –
selected using a deterministic algorithm with static load balancing. Whenever a
congestive event is signaled, the notified source will first attempt to re-route, i.e.,
its excess demand will be transferred to the additional alternative paths. Therefore,
under persistent congestion, new paths are incrementally activated by the ‘culprit’
source – thus diverting its load away from the initial hotspot, as characterized by
a congestion-point ID (location) and feedback value (severity). When all the paths
are exhausted, if necessary, rate control will be activated: a basic form of application
flow control or TCP for R2C2, or, selective QCN for R3C2.
The R3C2 scheme benefits from QCN-compliant adapters with Rate Limiters (RL).
In addition to re-routing, it can also activate a RL for each path in use that is
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Algorithm 2.1: R2C2 transmission from source S to destination D

globals: Q, AvailablePaths, DefaultPath, PathsInUse, CurrentRate
on initialization

Q.initialize()
AvailablePaths ← Routing(D)
DefaultPath ← DeterministicRouting(AvailablePaths)
PathsInUse ← {DefaultPath}

end
on congestion notification arrival

if AvailablePaths\PathsInUse not empty then
NewPath ← SelectPath(AvailablePaths \ PathsInUse)
PathsInUse ← PathsInUse ∪ {NewPath}

end
end
on frame received from upper layers

Q.enqueue(frame)
end
on Pathi ready to send

if not Q.empty then
Frame ← Q.dequeue
send Frame on Pathi

end
end
on timer

OldRate ← CurrentRate
CurrentRate ← flow S → D rate
if OldRate > CurrentRate then

reduce number of paths
end

end

signaled as congested. The injection rate can be controlled independently per path.
To conserve resources, the R2C2 deactivates its paths based on load reduction, after
a timeout. The R3C2 attempts to deactivate paths based on their respective RL
state.

2.4.2. Pseudocode

Source S sends to destination D. S stores the packets to be sent to D in a
transmission queue Q. By calling the routing function Routing, S obtains the
set AvailablePaths = Path1, Path2, ..., Pathn. Initially, the DeterministicRouting
function will select a DefaultPath from the set. The paths currently in use by S
are stored in the PathsInUse subset. Unlike R2C2, whose global rate control is
performed by application’s flow control, the R3C2 algorithm can instantiate inde-
pendent rate limiters RLi for each Pathi.
The pseudocode is shown in Algorithm 2.1 and Algorithm 2.2, together with an
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Algorithm 2.2: R3C2 transmission from source S to destination D

globals: Q, AvailablePaths, DefaultPath, PathsInUse, RL
on initialization

Q.initialize()
AvailablePaths ← Routing(D)
DefaultPath ← DeterministicRouting(AvailablePaths)
PathsInUse ← {DefaultPath}
foreach Pathi ∈ AvailablePaths do

RLi ← null
end

end
on congestion notification arrival from Pathi

if RLi is null then
RLi.initialize()

end
if (AvailablePaths\PathsInUse not empty) and (∀Pathi ∈ PathsInUse, RLi not null) then

NewPath ← SelectPath(AvailablePaths \ PathsInUse)
PathsInUse ← PathsInUse ∪ {NewPath}

end
end
on frame received from upper layers

Q.enqueue(frame)
end
on Pathi ready to send and (RLi is null or (RLi not null and RLi ready to send))

if not Q.empty then
Frame ← Q.dequeue
send Frame on Pathi

end
end
on timer

if |PathsInUse| > 1 and ∃Pathi ∈ PathsInUse such that RLi not null then
reduce number of paths

end
end

R3C2 example in Figure 2.7. In response to congestion notifications, the R3C2 algo-
rithm updates two variables: (i) number of active paths, increased when congestion
notifications are received / decreased with a time-out after the last notification re-
ceived; (ii) per path injection rate, controlled by the respective RLi. The simpler
R2C2 can change only the number of active paths.

2.4.3. Hardware Requirements

Traffic sources need to be topology-aware, namely to store the set of VLAN IDs
usable to reach the required destinations. As this feature is also required for
other functions, e.g. security and traffic segregation, the additional cost is mod-
est. Next, for both proposals, an adapter must detect the new EtherType of the
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Figure 2.8.: The structure of the Venus [85] simulation environment. The MPI applications are
run on a real parallel machine. Traces of the MPI calls are stored in files, which
are replayed by the Dimemas simulator. Venus initializes the simulation using the
provided topology, routes, mappings and configuration file. The messages generated by
Dimemas are transported by the network simulated in Venus and eventually returned
to Dimemas. Both simulators output statistics that can be visualized with specific
tools and used for analysis and validation.

incoming QCN frames, and implement the route control mechanism. Whereas an
R2C2 adapter needs no other QCN support, thus sparing the cost and delays of
QCN rate limiters, the R3C2 adapter relies on the rate limiters for rate control
(#active flows × average path diversity). No changes are made to the switching
fabric and the Ethernet frame format.

2.5. Evaluation Methodology: Environment, Models,
Workloads

Our simulation environment, entails two simulators coupled in an end-to-end frame-
work: Dimemas and Venus [85]. We have decided to port a full TCP stack from
a production-ready operating system to our environment. Next, we calibrate the
parameters of the resulting model agains the actual OS stack running on real hard-
ware.

2.5.1. Simulation Environment

Venus is an event-driven simulator developed at IBM Research – Zürich, capable of
flit level simulations of processing nodes, switches and links. It is based on OM-
NeT++ [116], an extensible, C++ simulation library. It was developed as an exten-
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sion of the Mars network simulator [43]. Venus supports various network topologies
such as fat-trees, tori, meshes, and hypercubes. It can simulate different network
hardware technologies, such as Ethernet, InfiniBand, and Myrinet. Additionally, it
can also model irregular networks topologies and new types of hardware.
Dimemas is a Message Passing Interface (MPI) simulator, developed at Barcelona
Supercomputing Center, that models the semantics of the MPI calls. The two
simulators communicate through a co-simulation interface. When an MPI message
is produced, Dimemas passes the message to Venus, which models the segmentation,
buffering, switching, routing, reassembly and eventually delivers the message back
to Dimemas.
A brief scheme of the simulation environment is shown in Figure 2.8; a more detailed
description can be found in [85]. Moreover, Venus can operate as a standalone
simulator; in this case the traffic is generated by synthetic traffic sources used to
simulate various traffic patterns, such as Bernoulli, bursty, on/off or Markov traffic.
Also we can simulate communication patterns ranging from simple permutations to
more complex sweeping hotspot scenarios. The simulation environment has already
been tested in InfiniBand, Myrinet and 802/CEE simulations.

2.5.2. Network Models

The network we are modeling in Venus has the following components:
(1) Processing nodes – The processing nodes are the sources and destinations of
the network traffic. They are assumed to have an infinite bandwidth link with the
network adapters. In the processing nodes, we gather statistics such as the delay.
They are computed as the difference between the time the packet was generated at
the source and the time it was received at the destination. Thus we make sure the
simulator also accounts for the time spent by the packets waiting before entering
the network.
(2) Network adapters – The network adapters are responsible for link-level flow
control and the source reaction algorithm for congestion management. Out-of-order
arrivals are resequenced in the receive buffer. The input adapters provide one virtual
output queue (VOQ) for each destination. This avoids most of the head-of-line
blocking, which can be further exacerbated by the QCN rate limiters.
(3) Switches – The switches are network devices that transfer packets from their
input links to the output links. They are responsible for link-level flow control, con-
tention resolution and congestion detection. In switch-controlled routing schemes,
also the routing decisions are made by the switches.
Switches are modeled as ideal input-buffered output-queued switches (IBOQ) – con-
sistent with 802.1Qau’s choice. When a packet arrives on an input link, it is buffered
in the input buffer associated with that link. Simultaneously, an output port is se-
lected according to the routing algorithm in use. The incoming packet is enqueued
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Figure 2.9.: Two-tiered data center network topology with edge and aggregation switches and 64
end-nodes distributed in 4 racks. This topology is an XGFT(2;16,4;1,2). The 16
external query sources are acting as the HLAs for the Scatter/Gather communication
pattern generated by the commercial application traffic. These external sources inject
TCP queries in the datacenter network through the Level 2 aggregation switches.

in the output queue associated with the output port selected. If the output queue is
empty, the packet will be sent out immediately. If there is contention on the output
port, the packets will be sent out in FIFO order. The switch we model implements
a cut-through switching policy.
There are two main differences between the ideal switch we are using and a real
switch:

• N× speedup: The input bandwidth in each switch output queue is N times the
line rate. Hence, it is possible for all input ports to simultaneously enqueue
a packet in an output queue. In a real system, for a high arity switch, this is
unrealistic because of physical limitations.

• Full buffer sharing: The size of each switch output queue is only bounded by
the sum of all the input buffers for all ports. In a real system, the size of the
output queue is bounded to a smaller value than the sum of all the buffers
capacities in the device. Hence a single output queue can not use the entire
buffer memory in the device.

2.5.2.1. Datacenter Topology

The first part of the evaluation will outline the impact that the newly introduced
CEE protocols have on TCP performance in three scenarios: (i) commercial ap-
plication over TPC, (ii) commercial application over TCP mixed with UDP, (iii)
scientific workloads over TCP. For the commercial application we use two practical,
albeit scaled down in size, extended generalized fat tree (XGFT) [91] topologies:
XGFT(2;32,4;1,2) and XGFT(2;16,4;1,2). The latter is shown in Figure 2.9. In
the first scenario, described in Section 2.6.2, we inject solely TCP traffic in the
XGFT(2;16,4;1,2) network. In the second scenario, used in Section 2.6.3, we inject
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both TCP and UDP traffic in the XGFT(2;32,4;1,2) network. In the third scenario,
for the scientific workloads in Section 2.6.4, we used two slightly different topologies:
XGFT(2;16,7;1,2) and XGFT(2;32,7;1,2).

The second part of the evaluation will measure the impact of the proposed routing
schemes on scientific workloads running over UDP. Here we have simulated a 2-
ary k-tree of 5 to 8 levels, with 32 up to 256 end-nodes. This simulation model
we consider representative – with respect to RTT and average hop count – for an
average datacenter of 10-50K nodes, with 32...64-port CEE switches.

2.5.3. TCP Transport Model

We extended the existing Venus network simulator with a model of the TCP trans-
port. To be as close as possible to reality, we ported the TCP implementation code
directly from the FreeBSD v9 kernel into our simulation framework, performing
only compulsory (minimal) changes. They are mostly related to the allocation and
deallocation of segments. Different TCP sockets are served in round-robin order
to prevent one socket from monopolizing the entire network adapter memory. The
FreeBSD v9 kernel has two important features: (i) connection cache: the congestion
window and the RTT estimation are inherited from one connection to the next; (ii)
adaptive buffers: the receive and transmit buffers are increased in response to an
RTT increase.

Based on our network measurements and on previous work [117, 33] we modified
the following parameters of the TCP stack:

(i) Kernel timer quanta: During the calibration runs we noticed that the typical
RTT of our network was in the range of tens of microseconds. This RTT was two
order of magnitude smaller than the kernel timer quanta – by default 1 ms. With
this setup both the Retransmission Time-Out (RTO) estimator and the TCP Vegas
RTT measurement were ineffective. The accuracy of the RTT estimation is critical
especially for delay-probing TCP protocols such as Vegas and Compound TCP [112].
TCP Vegas relies on fine resolution timers for accurate timing measurements needed
to compute the actual and the expected throughputs, and to accordingly adjust
its congestion window. Therefore for all the experiments we reduced the timer
granularity to 1 µs.

(ii) RTO defaults: Next, we reduced the value of the minimum RTO (RTO min)
from 30 ms to 2 ms, based on our network measurements and [117, 33]. In the
absence of updated information, the kernel defaults to RTO = 3 s. Thus a loss of
the initial SYN segment will drastically penalize the flow completion time, which
occurred with PFC disabled. We reduced the default RTO (RTO base) from 3000 ms
to 10 ms, larger than the maximum RTT of our network. The RTO is computed
using Jacobson’s estimator; a constant term is added to the estimation, accounting
for the variance in segment processing at the end-point kernels. In FreeBSD this
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(b) Reception delays.

Figure 2.10.: Linux kernel TCP stack delay measurements. The measurements were performed
with different types of background traffic: None, TCP, or UDP on the source or on
the destination.

term is conservatively set to 200 ms, accommodating slower legacy machines. We
set the RTO variance (RTO slop) to 20 ms to match current processors.

2.5.3.1. TCP Stack Delay Evaluation

When a packet is sent from an application, it is first copied to the kernel memory
space, then appended to the TCP transmission buffer. Next, it is pushed to the
IP layer and, if the transmission queue tx_qdisc is not full, a pointer to the packet
is enqueued in the tx_qdisc. The NIC device driver removes the packet from the
tx_qdisc and maps it into a transmission circular buffer called tx_ring. Finally, if
resources are available, the packet is transferred using DMA to the memory of the
network adapter that sends it out on the wire.
When a packet is received, the NIC transfers the packet via DMA into a free slot in
the the reception circular buffer called rx_ring. After the DMA transfer an interrupt
is raised to signal the new packet to the device driver. The device driver takes the
packet out of the rx_ring and sends it to the network stack. The packet is first
analyzed by the IP layer and then, if it is destined to the local stack, it is appended
to the TCP reception buffer. Finally the packet is eventually copied to user space
and consumed by the application.
We determined the delay of the TCP stack by modifying a Linux 2.6.32.24 kernel
running on an Intel i5 3.2GHz machine with 4 GB of memory. The transmission
delay was measured as the time elapsed from the moment the application sends a
packet, to the moment the packet is enqueued in the tx_ring. Similarly, the reception
delay was measured as the time elapsed from the moment a frame was taken out of
the rx_ring, to the moment the application receives the data. The delay introduced
by the DMA transfer and the hardware operation is not measurable from software.
We instrumented the E1000e Ethernet device driver of an Intel Gigabit Ethernet
controller 82578DM to timestamp each frame. In parallel with the data flow subject
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Table 2.1.: Simulation parameters
Parameter Value Unit Parameter Value Unit

TCP

buffer size 128 KB TX delay 9.5 µs

max buffer size 256 KB RX delay 24 µs

RTO base 10 ms timer quanta 1 µs

RTO min 2 ms reassembly queue 200 seg.

RTO slop 20 ms

ECN-RED

min thresh. 25.6 KB Wq 0.002

max thresh. 76.8 KB Pmax 0.02

QCN

Qeq 20 or 66 KB fast recovery thresh. 5

Wd 2 min. rate 100 Kb/s

Gd 0.5 active incr. 5 Mb/s

CM timer 15 ms hyperactive incr. 50 Mb/s

sample interval 150 KB min decr. factor 0.5

byte count limit 150 KB extra fast recovery enabled

PFC

min thresh. 80 KB max thresh. 97 KB

Network hardware

link speed 10 Gb/s adapter delay 500 ns

frame size 1500 B switch buffer size/port 100 KB

adapter buffer size 512 KB switch delay 100 ns

to measurements we injected TCP or UDP background traffic. The results of the
experiments repeated for 10K packets are reported in Figure 2.10.

2.5.4. Simulation Parameters

The 802 congestion management algorithm implemented is QCN 2.4. The CEE-
based network is 10Gbps, with packet size 1500B. The switches have QCN congestion-
points and support ECN/RED active queue management. Table 2.1 contains the
key parameters of the network.

2.5.5. Applications, Workloads and Traffic

We have selected a few datacenter applications, divided in two groups: commercial
and scientific workloads. These application generate congestive traffic patterns that
could benefit from the new features of CEE.
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Figure 2.11.: Flow inter-arrival and size distributions. For background flows we use the inter-
arrival time and flow size distributions given in [16, 26]. The queries (foreground
traffic) follow the inter-arrival time distribution from [16] accelerated 100×.

2.5.5.1. Commercial Applications

We have designed our commercial traffic generator based on findings from a few
recent papers. In [27] the authors instrumented 19 datacenters to find evidence of
On-Off traffic behavior. In [26] they perform an in-depth study of the spatial and
temporal distribution of the flows in 10 production datacenters. In [16] the authors
use a similar approach to measure the size and inter-arrival time distribution of the
flows. Another study [72] observed that modern applications use a Scatter/Gather
communication pattern. The traffic study from [16] confirms that finding.

We place the High Level Aggregators (HLA) as in Figure 2.9. The HLAs execute
queries triggered from external HTTP requests. The queries have an inter-arrival
time as in [16]. When an HLA launches a query it contacts some randomly chosen
Mid-Level Aggregators (MLA) – one in each rack – and sends them a subquery. An
MLA that receives a subquery will distribute it to all the other servers in the same
rack – and then, later, it will collect the partial results. When all the results have
been received, the MLA will send back its aggregated response to the HLA. Using
the real-life data from [16, 26] we have created a traffic generator that injects a
foreground traffic matrix of queries (’mice’) on top of a background traffic matrix of
longer lived flows (’elephants’). The queries are generated as outlined in the previous
paragraph, have a fixed size of 20 KB and the inter-arrival time distribution shown in
Figure 2.11a. For the background flows each source randomly chooses a destination
in order to match the ratio of intra-rack to inter-rack traffic of 30%. Then each
source draws from the inter-arrival time (Figure 2.11a) and flow size distributions
(Figure 2.11b) and sends the data. For the queries as well as for the background flows
we collect the completion time as an application level metric [46]. Each experiment
lasts until 10K queries are completed.
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2.5.5.2. Scientific Applications

We have selected nine MPI applications. Five of them belong to the NAS Parallel
Benchmark [21]: BT, CG, FT, IS and MG. This benchmark aims to measure the
performance of highly parallel supercomputers. In addition we used another 4 appli-
cations for weather prediction (WRF), parallel molecular simulations (NAMD) and
fluid dynamics simulations (LISO and Airbus). All the above applications were run
on the MareNostrum cluster at the Barcelona Supercomputing Center; during the
run, the MPI calls of the applications were recorded into trace files. The collected
traces were then fed into our end-to-end simulation environment; for a detailed de-
scription of this methodology, please refer to [85]. We assume that the MPI library
on each processing node uses TCP or UDP sockets as underlying transport. The
collected traces are in the order of a few seconds. When using TCP, the connection
between a source and a destination of an MPI communication is established only
once, when the first transfer occurs and it is kept open during the entire run of the
trace.

2.6. CEE and TCP Simulation Results

In this section, we aim to evaluate the impact of different L2, L3 and L4 protocols on
performance measured at application level, centered on revealing the TCP sensitiv-
ities to the two new CEE features: PFC and QCN. We use the following notations:
Base – no congestion management scheme enabled; QCN 20/66 – Quantized Con-
gestion Notifications (QCN) enabled with Qeq = 20KB or 66KB respectively; RED
– Random Early Detection with Explicit Congestion Notifications (ECN-RED) en-
abled. We run each of these congestion management schemes with or without PFC
enabled and with different TCP congestion control algorithms: New Reno, Vegas,
and Cubic.

2.6.1. Congestive Synthetic Traffic

To debug the simulation model and calibrate our expectations, we initially use TCP
New Reno in a congestive synthetic traffic scenario, described in Figure 2.12, derived
from the 802.1Qau input-generated hotspot benchmark.

Base Figure 2.12a shows the evolution of the congested queue. Figure 2.12c shows
the congestion window of one of the TCP sources. Without PFC (red) we observe
the typical sawtooth graph. TCP increases the window size until the first segment is
dropped; detected via duplicate ACKs and handled by the Fast Retransmit. With
PFC (blue) there are no losses, therefore at t1 the RTT increases abruptly; detected
by the automatic buffer resizing mechanism that increases the receiver buffer size to
allow further augmentation of congestion window.
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Figure 2.12.: Congestive synthetic traffic: many to one. 7 TCP sources send to the same destina-
tion. From t0 = 0 ms to t1 = 100 ms admissible offered load. t1 to t2 = 110 ms burst:
all 7 sources inject a 4× overload of the destination sink capacity. After t2 admissible
load. The congestive event extends past t2 due to backlog draining.

ECN-RED Figure 2.12(b,d) show the congested queue and one TCP source con-
gestion window evolution, respectively. With PFC enabled (red) the behavior is
similar to the base. The difference is in the much lower queue occupancy during
the congestive event which extends past t2 due to backlog draining. Source reduces
the injection rate based on ECN feedback. Disabling PFC leads to lower ECN-RED
performance. When the queue fills, the TCP sources receive ECN feedback and
enter Congestion Recovery. This however is too late to avoid loss, as the load has
already been injected. The received duplicate ACKs are ignored since the sources
are already in recovery, hence no Fast Retransmit before the retransmission timeout,
resulting in throughput loss between 0.17s and 0.53s. This is a situation in which
additional feedback, i.e., ECN leads to a wrong decision.

QCN 66 Figure 2.13a shows the congested queue, while Figure 2.13b shows the
evolution of the QCN rate limiters. QCN’s unfairness [44] causes a single flow to
monopolize more than 40% of the capacity: the ’winner’ flow ends its transmissions
first. However, the other flows still cannot increase their injection rate because of
the recovery phase. Figure 2.13(c,d) show the congestion window with and without
PFC, respectively. QCN per se is capable of avoiding all the losses but one (of the
’winner’).
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Figure 2.13.: Congestive synthetic traffic: many to one. Same traffic pattern as in Figure 2.12. The
rate limiters for the QCN+PFC configuration are not shown because they exhibit
the same unfairness as those without PFC i.e. flow 5 gets more than 40% of the
bandwidth.

2.6.2. Commercial Workload with TCP Background Traffic

The traffic pattern is described in Section 2.5.5.1. Figure 2.14, 2.15a and 2.15b
show the average flow completion time using 3 background traffic flow sizes. Fig-
ure 2.14 corresponds to query traffic (’mice’) without background flows; Figure 2.15a
and Figure 2.15b show the same query traffic with medium, large sized ’elephants’
respectively, as background traffic.

TCP Vegas Despite the different configurations, Vegas does not reveal significant
impact in flow completion time. It adjusts the congestion window based on the
measured delays. Since PFC is effective only when flows experience drops which
Vegas avoids, PFC plays a secondary role here. Ditto for the other L2 and L3
congestion management schemes.

TCP Cubic Cubic [60] performs worse than New Reno and Vegas in this environ-
ment. We observed that the aggressive increases in the congestion window generate
more losses than New Reno, therefore penalizing the query completion time. This is
corroborated with Cubic’s RTT independence, leading to increased losses and poor
performance in a datacenter environment.
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Figure 2.14.: Commercial Workload average query completion time without background traffic.
The bars are grouped in three categories, based on the TCP version. Within a
category bars are sorted increasing with average query completion time without PFC.

PFC In all the tests, PFC reduces the flow completion time, with the exception of
QCN 20 configuration. We attribute the PFC gains to avoiding TCP stalls waiting
for retransmissions. They are caused by Jacobson’s RTO estimator, in the datacen-
ter environment, where the RTT is dominated by queuing, instead of flight delays
[57]. Whereas link delays are constant, the datacenter’s queuing delays are extremely
dynamic: they can increase 100 to 1000 fold within milliseconds. The original RTO
estimator, however, reacts slowly. This is compounded with its kernel calculation:
a constant term is added that accounts for the cumulated variances in the segment
processing at the two end-point kernels. This constant is orders of magnitude higher
than the typical datacenter RTT.
QCN For comparison with [16] we choose two Qeq setpoints : (i) the value recom-
mended by the IEEE standards committee – 20% of the queue size, i.e. 20 KB,
(ii) an experimental value i.e. 66 KB. QCN 66 is always better than QCN 20 in
Figure 2.15 mostly due to its higher tolerance to the intrinsic burstiness of the trans-
port layer. The TCP source sends a burst of segments until either the congestion
window or the receiver window is exhausted. The first burst of segments will trigger
a reverse burst of ACKs, which in turn will produce a second burst of segments etc.
This is supported by measurements in [27]. Generally QCN is highly sensitive to
burstiness.
ECN-RED With this workload ECN-RED delivers the best performance, further
improved by enabling PFC. ECN-RED outperforms QCN because:
(i) burst sensitivity - ECN-RED congestion feedback is based on averaged, whereas
QCN is based on instantaneous, queue length. Therefore a transient burst will not
trigger a reduction of the injection rate with RED.
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(a) Medium sized background flows.
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(b) Large sized background flows.

Figure 2.15.: Commercial Workload with TCP Background Traffic. The upper part of the graphs
shows the average query completion time, while the lower part shows the average
completion time of the background flows. The bars are grouped in three categories,
based on the TCP version. Within a category bars are sorted increasing with average
query completion time without PFC.
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(ii) interaction with L4 - the congestion notifications generated by RED are pro-
cessed directly at the transport layer which adjusts the congestion window accord-
ingly. On the other hand, TCP remains oblivious of Layer 2 congestion feedback.
(iii) data/control differentiation - RED can generate congestion notifications only
for segments carrying data. The reduction of the congestion window only affects
the data flow while the control segments can still move freely. On the other hand,
QCN’s rate limiters can not distinguish between control and data. For example,
we found that some queries were delayed because the initial SYN segments were
throttled by the rate limiter.

2.6.3. Commercial Workload with UDP Background Traffic

We also tested mixed TCP-UDP performance. In addition to the previous sec-
tion, TCP has to compete against aggressive UDP background sources (’elephants’).
Therefore, we double the number of end-nodes: half of the end-nodes are TCP, while
the other half are UDP sources. UDP sources inject bursty traffic with average burst
sizes of 28 KB and 583 K. The UDP burst sizes are selected according to the back-
ground flow size distributions from Figure 2.11b.
The average flow completion time for the TCP queries are shown in Figure 2.16.
We also measure the loss ratio for TCP and UDP flows – the loss ratio is computed
as the percentage of dropped bytes vs. the total injected bytes (see Figure 2.16 –
lower half).
Most of the dropped bytes are UDP. This is because TCP reduces its window when-
ever losses are detected. In contrast with the previous section, here we observe that
Vegas is sensitive to ECN and QCN. Again, enabling PFC improves performance.
Overall, the best performer is QCN 66. When we introduce non-cooperative UDP
sources, only QCN’s rate limiters can restore some of the fairness lost by TCP in
competing against UDP.

2.6.4. Scientific Workloads

The simulated MPI traces are described in Section 2.5.5.2. Initially we run each
benchmark on a reference system where we assume we have a perfect hardware ac-
celerated transport and lossless network. We run every benchmark on each configu-
ration while measuring the execution times. Then we compute the relative slowdown
of each benchmark vs. the ideal reference. Finally we average all the slowdowns
across the nine benchmarks, plotted in Figure 2.17.
Enabling PFC improves performance across all the configurations. The previous
observations from Section 2.6.2 apply also to this workload. The best performer
is ECN-RED with PFC enabled. With PFC disabled, however, QCN 20 produces
better results. In contrast with the commercial traffic, QCN 20 was the worst
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Figure 2.16.: Commercial Workload with UDP Background Traffic. The upper part of the graphs
shows the average query completion time, while the lower part shows the loss ratios of
the background UDP flows. Bars are grouped in three categories based on the TCP
version. Within a category bars are sorted increasing with average query completion
time without PFC.
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Figure 2.17.: Scientific Workload: MPI Traces relative slowdowns. Bars are grouped in three
categories based on the TCP version. Within a category bars are in increasing order
of the relative slowdown factors with PFC disabled.

performer. Commercial workloads exhibit only sparse transient congestive events,
whereas in the scientific workload the congestive events are sustained and involve all
the end-nodes. The MPI applications use barriers to synchronize between execution
phases. All the nodes start communicating almost at the same time and this gener-
ates heavy congestion. The aggressive Qeq setpoint of QCN 20 effectively mitigates
such congestive cases.

2.7. CEE Routing Simulation Results

In this section, we aim to evaluate the influence of different routing schemes on
performance measured at application level. In Section 2.6 we showed that PFC
reduced completion times across all configurations. Therefore in this section we
will enable PFC for all experiments. Activation of PFC allows us to run all the
benchmarks over UDP. The idea of using PFC to simplify the transport layer will
be further developed in Chapter 5 in a virtualized datacenter context.

We extended the Venus simulator to include the routing algorithms described in
Section 2.3 and Section 2.4. From the load-oblivious class we assess the random and
the hashed routing. From the deterministic class we evaluate the best performing
algorithm, i.e., D-mod-k routing. In the adaptive class, we also assess the switch-
based adaptive routing. For these algorithms we consider a version with, and another
version without, rate limiters, the former bearing the suffix ”RL“. All are compared
against the R2C2 and R3C2.
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2.7.1. Congestive Synthetic Traffic

Some of the synthetic traffic patterns we use in the following subsections are part
of the Hotspot Benchmark used by IBM Research and 802 Task Groups. One or
more sources can generate a hotspot at a given location in the network by injecting
a predetermined amount of (in)admissible traffic for that location. Flows that pass
through the hotspot are referred as hot flows, while the others are referred as cold
flows.

Hotspots are classified using the following criteria:

• Type

– Input Generated – The inputs (sources) require more bandwidth than avail-
able in the network. Typical examples are the patterns when flows from dif-
ferent sources converge into the same link exceeding its capacity.

– Output Generated – An output (network device) is slow in processing incom-
ing packets. For example, a traffic destination can be slowed down because
of a CPU overload. Another possible cause can be a switch servicing traffic
from different priorities. In this case, output generated hotspots can appear
because a part of the available bandwidth is reserved for the higher priorities.

• Severity – measures the ratio between offered and accepted traffic (the drain
rate of the bottleneck link during congested phase).

– mild – smaller than 2

– moderate – between 2 and 10

– severe – higher than 10

• Degree – the fan-in of the congestive tree at the hotspot (i.e. the percentage
of all sources that inject hot flows into the hotspot).

– small – less than 10%

– medium – 20% to 60%

– large – more than 90%

We use a network with 32 processing nodes connected by a 2-ary 5-tree network.
This network has the round-trip time and average hop count of a large datacenter
interconnect. In an average datacenter, the number of nodes is on the order of 10K,
but also the arity of switches is much higher (32 to 64 ports). Because of these
factors, a large interconnect will still have a small number of levels (3-5), as in our
simulation.

Next, we continue with three types of synthetic traffic: permutation patterns, input-
generated hotspots, and output-generated hotspots.
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Figure 2.18.: Permutation traffic. All end-nodes communicate in a one-to-one permutation pattern.
The sources inject traffic in the network at 90% of the link capacity. Simulation
length is 30 ms. The chart above displays the relative throughput of each routing
scheme. As reference we consider the throughput of the same traffic pattern using
an ideal crossbar. R2C2 and R3C2 achieve 98% of the ideal throughput. Idem
for random and hashed routing. For this simulation, the hashing-key is computed
per-packet; hence, random and hashed routing show identical results. Deterministic
routing (static) cannot reroute the traffic if two flows collide, therefore it looses up to
70% in throughput. Switch AR with RLs looses 40% owing to multiple hotspots. A
flow that is being rerouted to avoid a congested link could still hit another bottleneck.
Eventually this will activate the rate limiters.

2.7.1.1. Worst-case Scenario – Permutation Traffic

We have initially used uniform traffic generators. Since all the selected routing
candidates successfully handle the uniform distributions up to loads of >98%, we
omit these results. The permutation traffic pattern is a worst-case scenario. Results
are shown in Figure 2.18. We expect large multi-tenant virtualized datacenters
to benefit from statistical multiplexing. Hence, the network nodes will not always
synchronize their communication patterns – except the HPC and special operations,
such as synchronization primitives, large MapReduce computations, distributed in-
memory databases etc.

2.7.1.2. Input-generated Hotspot at Edge Links

The objective of this test is to check whether the routing algorithms are generating
congestion trees. We create an input-generated hotspot of mild severity and small
degree. To achieve this, we direct 45% of the traffic from 4 different nodes to a single
destination node for 20 ms. The entire simulation lasts 50 ms. The congestion
tree evolution can be directly visualized by inspecting the length of the queues for
different switches during simulation, or indirectly by measuring the throughput of
a cold flow.
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(b) Tput Switch AR.
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(c) Tput Deterministic.

Figure 2.19.: Input generated hotspot at edge links: victim flow throughput. The ideal throughput
is 95% of link speed (1187MB/s). Random and switch adaptive schemes without RLs
generate large congestion trees. Consequently, the victim flow’s throughput drops
during the congestive pattern. Deterministic routing limits the expansion of the
congestion tree.

We adopt the second method; in Figure 2.19 we show the throughput of the ”victim“
cold flow when using different routing schemes. The hot flows converge only on the
edge link connecting the destination with the network. The cold flow does not pass
through that link, hence its throughput should not be affected by the bottleneck.
However, when a congestion tree is formed, many other links can saturate, as shown
in Figure 2.2. Hence the cold flow can be indirectly affected by the secondary
hotspots belonging to the same congestion tree.
As seen in Figure 2.19a and Figure 2.19b, both random routing without RL and
switch adaptive routing without RL can generate congestion trees. On the other
hand, activation of rate limiters will eliminate this issue. We observe from Fig-
ure 2.19c that deterministic routing is less strongly affected. This is because random
routing and switch adaptive use of all the available alternative paths. Hence, they
tend to spread the congestion. Deterministic routing uses a single path all the time,
hence congestion is limited to that path. These results confirm the observations
from [53] about the undesired effects of adaptivity.

2.7.1.3. Output-generated Hotspot at Root Links

Figure 2.20.: Congestion scenario: hotspots on each of the four paths between S and D. The
hotspots decrease the capacity as shown.

The objective is to study the effects of multiple output-generated hotspots of dif-
ferent severities. Multiple hotspots can appear in datacenters running different
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(a) Tput deterministic. (b) Tput random.

(c) Tput Switch AR. (d) Tput R3C2.

Figure 2.21.: Throughput evolution for the congestive pattern shown in Figure 2.20. The ideal
throughput is 90% of link speed (1125MB/s) – horizontal dashed line. Congestion
lasts 80 ms from tHSs = 10 ms to tHSe = 90 ms – vertical dashed lines.

applications on different priority levels that might employ distinct routing strate-
gies. We simulate this scenario by reducing the service rate of root level links. This
is equivalent to providing multiple paths, each path of different capacity. As shown
in Figure 2.20 there are four paths between the source and the destination. On each
path we place a different bottleneck, hence multiple hotspots. Path capacities are
25%, 10%, 10% and 50%, respectively.

S injects packets at 90% of the link capacity. In Figure 2.21(a,b,c,d) we observe the
throughput at D. The ideal throughput is 90% of the 10Gbps Ethernet link speed
(1125MB/s). The congestive pattern lasts 80 ms.

Deterministic routing Figure 2.21a uses Path1 only, hence, achieves only 25% (312MB/s).
It is outperformed by R3C2 that adaptively avoids the most severe bottlenecks by
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(a) Queue deterministic. (b) Queues random.

(c) Queues Switch AR. (d) Queues R3C2.

Figure 2.22.: Queues evolution for the congestive pattern shown in Figure 2.20. Congestion lasts
80 ms from tHSs = 10 ms to tHSe = 90 ms – vertical dashed lines.

re-routing most of the traffic on the higher capacity links.

Random routing Figure 2.21b is limited by head-of-line blocking in switch S1 to
ca. 40% throughput (500MB/s). At ingress, the packets are uniformly distributed
across the four paths. The low capacity paths (2 and 3) slow down the high capacity
ones (1 and 4) hence the 40% throughput. This is confirmed by inspecting the queue
lengths at the congestion points in Figure 2.22b. The queues for Path2 and Path3
are congested, while the queues 1 and 4 are nearly empty generating misordering
and delay jitter. The activation of rate limiters brings little benefit. The R3C2

outperforms the random: not only it uses multiple paths in parallel, but it can also
match the injection rate to the current hotspot severity.

Switch AR achieves on average 60% throughput (750MB/s). In Figure 2.21c oscil-
lations are visible, caused by switching the full load and further amplified by the
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resequencing process at the destination. We observe that the queue occupancies
are comparable (Figure 2.22c). Switch AR manages to discover the severity of each
hotspot, albeit it is partly penalized by oscillations. Subject of ongoing research,
Switch AR’s instability could be improved by adopting fractional split ratios, instead
of switching the full load from one path to another. However, the current Switch
AR is outperformed by R3C2, which despite its higher control loop delays, is more
stable.
R3C2 throughput is shown in Figure 2.21d. During the first 15 ms it oscillates as
its switch-based counterpart. Sufficient congestion notifications are needed by the
source to trigger the activation of alternative paths – route control. Once the paths
are activated, further notifications are needed for rate control to adjust the injection
rate to the individual hotspot severity. During the learning phase, similar to Switch
AR, our proposal will flood each of the alternate paths until it eventually converges
to a stable rate. This is reflected by the queues’ occupancies (in Figure 2.22d) that
drain and converge to the Qeq value set by the QCN configuration.
To sum up, R3C2 wins owing to three features. (i) It adapts the routes, unlike
the deterministic routing. (ii) It has built-in rate adaptivity, which allows it to
outperform random routing. (iii) Finally, it reacts less aggressively than Switch AR
to congestion notifications, evincing improved stability.

2.7.2. Scientific Workloads

2.7.2.1. MPI Traces

Evaluation results are plotted in Figure 2.23a and Figure 2.23b. In order to facilitate
the comparison, we display the relative slowdown of each routing scheme. The time
needed to run a trace on an ideal crossbar is our base reference for this Section’s
figures (base=1.0) and relative percentages (normalized to base=100%). For all
simulations we employed random task placement. In a virtualized datacenter we
expect tasks will be arbitrarily assigned to nodes, depending on factors such as the
load, priority, cluster fragmentation, service level agreement, power constraints etc.
We consider two scenarios.
In the first one (see Figure 2.23a) we run the application on an empty un-impaired
network, with no other traffic present. The application can use each link’s full
capacity.
In the second, more realistic, scenario (see Figure 2.23b) we reduce the capacity of
a level-two link, hence simulate an output-generated hotspot. We thus measure the
performance of the medium/low priority traffic, assuming per-priority flow-control
and Enhanced Transmission Selection are implemented. The high priority traffic
is preemptively scheduled, it has a guaranteed fraction of the capacity. The low
priorities can use this fraction only when no high priority traffic is active. Else, as
the most common case in multi-tenant datacenters, the low priority traffic will be
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(a) Without high priority traffic. Random routing produces the smallest execution times followed
by R2C2 and R3C2. The switch adaptive losses throughput because of frequent oscillations.
Deterministic and hashed lack adaptivity.

(b) Simulated high priority traffic. R3C2 provides the smallest execution time followed by Switch
AR. Adaptive routing schemes can detect the hotspot and avoid it while random routing con-
tinues to send packets through the congested link. Deterministic does not use the congested
link for half of the connections, in average. Hence it outperforms the random.

Figure 2.23.: HPC workloads relative slowdowns (smaller is better). As reference we use the ex-
ecution time of the same respective traces running on a single-stage ideal crossbar
(base=1.0). Results are sorted by their average slowdowns. In (a) the HPC applica-
tion can use the full capacity of each link, whereas in (b) we simulate the impact of
the high priority on the rest of the traffic. In this particular case we reduce a single
link’s capacity to 33%.
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scheduled as if the links have variable, lower, capacities – modulated by the high
priorities active above.

Figure 2.23a shows that R3C2 improves the performance: up to 161.3% over deter-
ministic, on average 45.2%; 28.8% over Switch AR, on average 13.3%. Nonetheless,
random routing is, on average, 17.2% faster than R3C2. Random immediately uses
all the available paths, whereas R2C2 and R3C2 must first wait for sufficient con-
gestion notifications to arrive, before activating any alternative paths. Therefore,
in a dedicated single application per cluster, the random scheme still leads in price-
performance.

Nevertheless, when we introduce output-generated hotspots, e.g. a link capacity
reduction (by 66%), R3C2 takes the lead with the shortest execution time (Fig-
ure 2.23b): up to 98.2% faster than random, on average 40.2%; up to 36.4% faster
than Switch AR, on average 14.9%. Generally, with the slightest asymmetry in link
capacity, random is exposed to head-of-line blocking and throughput loss. We be-
lieve Switch AR still has ample room for improvement, although beyond our scope
here.

Our proposal is up to 81.1% faster than deterministic, and up to 133.5% faster
than hashed. Deterministic shows execution delays, missing adaptivity and load
balancing. This is particularly visible with applications that generate long messages,
e.g., CG produces 750KB messages. The delay can be substantially increased by a
conflict between two long messages. Ditto for the hashed routing, which also shows
slowdowns.

2.7.2.2. Scaled MPI Traces

For some of the applications listed in Section 2.5.5.2, we observed that they do
not put pressure on the communication network. For others such as IS or LISO,
the differences observed between the routing schemes were minor. This was due to
the fact the applications rarely exchanged small messages. For such applications,
contention was infrequent, hence the adaptive routing algorithms could not provide
any benefit. This is confirmed by previous work. In [53] the authors showed that
the adaptivity does not provide any improvement for some categories of workloads.

To stress the communication network more and to emphasize the differences between
the various routing schemes, we scaled the trace files. When a trace is scaled the
size of all the messages generated by its execution is multiplied with a given scale
factor. We used different scale factors to ensure that the communication demands
of the application are high enough to generate contention. Table 2.2 lists the scale
factors used and the average and maximum message size the scaled application uses.
For most of the applications the maximum message size is on the order of MB.

The results are in Figure 2.24a and Figure 2.24b. Scaling of traces does not radi-
cally changes the ranking of the routing schemes, but will accentuate the differences
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(a) Without high priority traffic.

(b) Simulated high priority traffic.

Figure 2.24.: Relative slowdowns of scaled HPC workloads (smaller is better). The reference is the
runtime needed to execute the trace on a single-hop ideal crossbar. Results are sorted
by their average slowdown. In (a) the HPC applications can use the full bandwidth
of each link, while in (b) we simulate the impact of high-priority traffic by reducing
the bandwidth of a single link to 33% (by 66%). Same observations as for Figure 2.23
apply. The rate-limited versions or random routing and Switch AR, respectively,
produce the shortest execution times because they avoid the end-point congestion
generated by scaling.
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Table 2.2.: Trace scaling factors
Trace Scale factor Mean size Max size
BT 10x 69.4 KB 1.23 MB
CG 10x 1.61 MB 7.5 MB
FT 30x 1.31 MB 3.9 MB
IS 1000x 158 KB 2.06 MB

LISO 10x 40 KB 121 KB
MG 100x 2.96 MB 13.5 MB
WRF 100x 0.93 MB 9.7 MB

between them. For empty network the random routing is still the best followed by
R2C2 and R3C2, Switch AR, deterministic and hashed routing. As in the previ-
ous section, for a network where high-priority traffic is present, the R3C2 provides
the shortest execution time followed by the Switch AR, deterministic and random
routing.

We can notice that the rate-limited versions of random routing and Switch AR per-
form better than the versions without RLs. As a side effect of trace scaling end-point
congestion is generated in workloads like MG or WRF. The adverse effects of this
end-point congestion are eliminated by the use of RLs as explained in Section 2.7.1.2.

2.8. Results Analysis

We summarize the results discussion by answering our initial questions from Sec-
tion 2.1.1.

(Q1) How does TCP perform over CEE networks? Is PFC beneficial or detrimental
to TCP? Is QCN beneficial or detrimental to TCP?

The delay-probing TCP Vegas performs the best, requiring arguably minimal changes,
i.e., high resolution timers. By contrast, RTT-independent TCP Cubic entails the
most adaptation effort for datacenter environments, eliciting exhaustive parameter
retuning and potentially core algorithm changes. In our experiments, Cubic suffers
from aggressivity and slow convergence of congestion windows. New Reno lies in
between, requiring more parametrical retuning than Vegas, but no invasive changes
such as Cubic. Whether RTT independence, as in BIC and Cubic, is actually harm-
ful in CEE networks with a wide dynamic range of queuing delays (sub-µs up to
tens of ms) remains an open research problem.

Next, despite our contrary expectations, PFC has consistently improved the per-
formance across all the tested configurations and benchmarks. The commercial
workload completion time improves by 27% on average, and up to 91%. Scientific
workloads show higher gains by enabling PFC: 45% on average, and up to 92%.
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On the positive side, properly tuned for commercial TCP with UDP applications,
QCN 66 with PFC improves performance on average by 49%, up to 70%. When we
introduce non-cooperative UDP flows in the network QCN 66 keeps congestion under
control regardless of the upper layer protocols. For scientific workloads, QCN 20
without PFC – currently an uncommon HPC configuration – improves performance
on average by 31%, up to 59%. HPC applications typically exhibit alternating
phases of computation and communication. During the latter, typically all nodes
start communicating quasi-simultaneously, which can generate overload episodes
and hotspots – especially in slim networks as reproduced here. The aggressive Qeq

setpoint of QCN 20 effectively mitigates such congestive events. On the negative side,
mistuned QCN can severely degrade performance. E.g., in commercial workloads
relying exclusively on TCP – without competing UDP traffic sources – QCN 20
without PFC degrades performance on average 131%, up to 311% for New Reno and
321% for Cubic. For scientific workloads QCN 66 with PFC degrades performance
on average by 5.4%, up to 8.2% – hence leaving QCN enabled is acceptable whenever
its Qeq is set 2× to 4× higher than the standard recommendation.

Our results show that RED handles the transient congestion episodes generated by
commercial applications better than QCN. This reveals a preventable (by careful
tuning) QCN weakness: burst sensitivity. A properly configured RED is less sen-
sitive to burstiness, mainly because it relies on smoothed (low pass filtered) queue
length. This can reduce the query completion time by up to 76%. Aggravating the
performance penalty with bursty commercial workloads, QCN suffers from inherent
unfairness: it tends to arbitrarily favor some ’winner’ flows over the others, harming
the average completion time.

(Q2) Can we reap any benefits by combining VLAN-based route control with QCN
rate control? Can a source-based adaptive routing scheme show performance benefits
with adapters that do not implement QCN?

Our evaluations showed that for HPC benchmarks, combined VLAN-based route
control with QCN rate control (R3C2) can be up to 98% faster than random routing,
on average 40%. Compared to deterministic and hashed routing schemes, it reduces
the execution time up to 133%. The synthetic traffic benchmarks have also confirmed
its stability gains. Finally, we showed that a performant and stable source adaptive
routing (R2C2) is indeed possible for CEE-based networks, even when the lower cost
end-nodes are not fully QCN compliant, i.e., they don’t implement rate limiters.

2.9. Related Work

Our work is at the confluence of established, e.g., TCP, and emerging research
areas, such as datacenter workload analysis and new L2 networking protocols. Our
commercial workload traffic generator is based on [27, 26, 16, 72]. In [83] the authors
provide an overview of the congestion management schemes proposed for CEE. QCN
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is standardized in [11]. Its unfairness and lack of RTT adaptivity [16] have been
addressed by E2CM [59]. An alternative solution is proposed in [70]. While to the
best of our knowledge this is the first comparative evaluation of ’short-fat’ TCP
for datacenters, a few performance reviews of modern TCP variants for ’long-fat’
networks are available, e.g. in [77, 32].
The TCP Incast problem has been analyzed in [33, 117], where a 10− 1000× RTO
reduction and high resolution timers have been proposed. Another TCP Incast
solution is DCTCP [16], using a modified RED/ECN and a new multibit feedback
estimator that filters the incoming single-bit ECN stream. This compensates the stiff
adaptive queue management setup in the DCTCP congestion point (partly similar
to QCN’s sensor) with a smooth congestion window reduction function, reminiscent
of QCN’s rate decrease – hence departing from TCP’s halving of the congestion
window. Closely related is [44] which analyzes the TCP Incast problem in a QCN-
enabled lossy network – arguably in conflict with default assumption of lossless CEE.
The main drawbacks are the use of NS-2 simulations and the overly aggressive
sampling proposal. TCP Incast is studied in [111] using SCTP and ECN with
hardware experiments. The performance improvements range from 5.5% to 7.9%,
limited by the experimental platform.
An extensive overview of routing mechanisms is presented in [41] Chapter 8 to 11
and [45] Chapter 4. Deterministic routing was analyzed in [53]. Random routing
was studied in [114, 76]. Hashed routing is presented in [63] as a particular case
of Equal-Cost Multi-Path routing described in [113]. Switch adaptive routing was
introduced in [84]. An alternative, delay-based congestion management scheme is
introduced in [57]. [103] introduces a pattern-aware routing scheme suitable for
HPC environments whereby the workload is a priori known. Closest to our proposal
is the Distributed Routing Balancing algorithm [50] that creates alternative paths
in a 2D mesh and balances the traffic across them, using a delay-based estimation
of the path congestion. This is extended in [80], where a congestion management
scheme is evaluated. The method requires changes to the switching fabric and, does
not address the endpoint congestion.

2.10. Discussion

We showed that PFC significantly improves TCP performance across all tested con-
figurations and workloads, hence our recommendation to enable PFC whenever
possible. QCN on the other hand elicits further investigation and improvement,
particularly with respect to its lack of adaptivity and fairness. Meanwhile we rec-
ommend that QCN should be conservatively tuned and enabled whenever hetero-
geneous transports – e.g., TCP with UDP, RDMA, FCoE, RoCEE etc. – will be
expected to share, even briefly, the same hardware priority in the CEE datacenter
network. Finally, we proved that a judicious combination of VLAN-based routing
with with QCN’s rate limiters (R3C2) can improve both performance and stability
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beyond the current state of the art routing in datacenters. Overall, we have shown
that a control shift from the network core toward the edge can benefit the Cloud
and HPC applications, while improving their performance and stability.
Summing up, we have contributed: (1) A simulation environment combining a real
TCP stack with detailed L2 simulation models of CEE switches and adapters, (2)
the first evaluation of TCP performance in lossless CEE networks, (3) a novel source-
based adaptive routing algorithm for CEE, using the established VLAN mechanism
in conjunction with the recently standardized QCN, and, (4) a quantitative perfor-
mance comparison of the datacenter routing algorithms.
A few aspect of this work could be certainly improved. Both R2C2 and R3C2

introduced in this chapter are reactive. By waiting on the QCN feedback from
congested switches, any reactive scheme will inherently incur additional, potentially
destabilizing, delays. Another destabilizing factor is QCN’s centralized multi-rate
sampling, adaptive with the congestion severity, but not with the flow RTT. The
main limitation of our model is the canonical implementation of queries with a strict
synchronization barrier; this exacerbates QCN’s unfairness, thus further degrading
performance.
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Layer Between TCP and CEE

In Chapter 2 we focused on the performance of TCP applications running in a tra-
ditional non-virtualized environment. In this chapter we will show that datacenter-
based Cloud computing has induced new disruptive trends in networking, key among
which is network virtualization. We will present the architecture of overlay virtual
networks (OVN) that introduce a new layer between the TCP software stack run-
ning in each virtual machine (VM) and the Converged Enhanced Ethernet (CEE)
hardware.
Overlays aim to improve the efficiency of the next generation multitenant data-
centers. While early overlay prototypes are already available, they focus mainly on
core functionality, with little being known yet about their impact on the system level
performance. Using query completion time as our primary performance metric, we
evaluate the overlay network impact on two representative datacenter workloads,
Partition/Aggregate and 3-Tier. We measure how much performance is traded for
overlay’s benefits in manageability, security and policing. Finally, we aim to assist
the datacenter architects by providing a detailed evaluation of the main overlay
choices, all made possible by our accurate cross-layer hybrid/mesoscale simulation
platform.

3.1. Introduction

In addition to faster line rates, new features such as multicore CPUs, Software-
Defined Networking (SDN), virtualization, workload-optimized datacenter transport
protocols, and, 40G–1Tbps Converged Enhanced Ethernet (CEE) fabrics, are inde-
pendently responsible for arguably a networking revolution. Future datacenters are
expected to scale beyond millions of VMs, assuming servers with 32-512 cores/server
[2] and thousands of simultaneous tenants. This, together with the extreme variety
of solutions – from physical fabrics up to hypervisors – renders the evaluation of
virtualized datacenters an exceedingly complex task.
Traditional datacenters consist of lightly utilized servers running a “bare-metal”
operating system or a hypervisor with a small number of virtual machines (VMs)
running the applications. Their networks are static and manually managed – a
costly and unsustainable mode of operation. The modern multitenant datacenters
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are transitioning towards a dynamic infrastructure, including highly utilized servers
running many VMs. While server virtualization has been used in IBM mainframes
since the early ’60s, it has only recently become widely available on commodity x86
servers. The same holds for storage virtualization.

3.1.1. Obstacles to Network Virtualization

From networking perspective, the main obstacles of large scale virtualization are:
state explosion, arbitrary addressing constraints, and management difficulties. The
upcoming multitenant datacenters contain up to multi-million physical servers, each
potentially hosting tens, soon hundreds, of VMs. They impose new requirements on
the datacenter network, which must now cope with multi-tenancy and automated
provisioning, deletion, and migration of VMs.
The simplest solution would start with a large flat L2 network for each tenant.
However, this approach does not scale within the practical constraints of current
network devices, switches and routers. Each VM has its own virtual MAC, thus
the size of the switch forwarding tables has to grow accordingly with one – soon
two – orders of magnitude. Also the dynamic VM management stresses the broad-
cast domains. Using Q-in-Q or MAC-in-MAC encapsulation to overcome today’s
insufficient 4K Ethernet VLANs limit, squares the amount of state in each network
switch. Furthermore, the datacenter network must support automatic provision-
ing and migration of VMs and virtual disks without imposing arbitrary constraints,
such as VLAN/IP/MAC address, allowing tenants to choose their preferred address-
ing scheme without interfering with each other. Finally, network devices must be
reconfigured at each new provisioning, deletion or migration of VMs. In a large
heterogeneous network, containing different generations of devices, possibly from
different vendors, the reconfiguration is both complex and error-prone requiring the
management of multiple intricate scripts and configuration files.

3.1.2. Overlay Virtual Networks (OVN)

OVNs, prominent application of Software Defined Networking (SDN), are the emerg-
ing solution to overcome the problems outlined above and reach the next and final
step: full network virtualization. Although a number of different overlays have been
recently proposed [55, 110, 81, 88, 37, 24], their key architectural abstraction lies
in the separation of virtual networking from the underlying physical infrastructure.
Overlays enable the arbitrary deployment of VMs within a datacenter, independent
of the physical network – even at runtime – without changing or reconfiguring the
existing hardware.
The current overlays are predominantly built using Layer 2 to 4 encapsulation in
UDP, whereby the virtual switches – typically located within the physical hosts –
intercept the VM traffic, perform en-/de-capsulation and tunnel it over the physical
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network. Each VM has an associated network state residing only in the adjacent
virtual switch. Upon VM migration, virtual switches update their forwarding tables
to reflect the new location. Using encapsulation over IP [88, 81, 37, 24], the VM lo-
cations are neither limited by the L2 broadcast domains, nor by VLAN exhaustion.
Instead, the full IP functionality is preserved, including QoS and load balancing,
independent of location, domains and the physical networking capabilities. Thus,
virtual switches are similar to the traditional hypervisor switches, but with addi-
tional functions as overlay nodes. Virtual switches separate the datacenter tenants,
both from each other and from the network devices, reducing the amount of state
and simplifying the configuration.
There are a few aspects in which OVNs influence the datacenter networking. Firstly,
on the data plane: OVNs use encapsulation to build tunnels between the virtual
switches that host a connection’s source and destination. Current encapsulation
solutions such as, VXLAN [81] and NVGRE [110], solve the original VLAN lim-
itation while reducing the management overhead. However, no performance eval-
uation of these encapsulation techniques has been published so far. Secondly, on
the management plane: Network configuration, distribution and learning protocols
are necessary for tunnel creation at each virtual switch. To create a tunnel, the
overlay switch needs to map the destination address to its physical location. The
overlay configuration management can be performed either by learning or in a cen-
tralized fashion. The learning approach, chosen for VXLAN [81], floods the packets
with unknown destinations. In the centralized approach, virtual switches are re-
sponsible for retrieving the information required for encapsulation. In NetLord [88],
this information is learnt by switches through communication with each other, and,
from a central configuration repository. In Distributed Overlay Virtual Ethernet
(DOVE) implementation [24, 37], this configuration information is retrieved from a
centralized database.
Both the central configuration repository in NetLord and the centralized database in
DOVE must be highly available and persistent, which poses a challenge for the multi-
million node datacenters – thus raising the future third option of a distributed repos-
itory approach and its coherency protocols. For now the former two approaches,
learning and centralized, are simpler to design and manage. Notably, the central-
ized method also inherently prevents flooding - unavoidable with learning. For our
DOVE-like overlay investigation we have adopted and extended the centralized ap-
proach.

3.1.3. Why a per-Workload, Cross-layer OVN Study?

Given their rapid deployment, the SDN-based overlays throw the proverbial wrench
in the datacenter network stack of socket-based transports (TCP and UDP) and con-
gestion controls such as Random Early Detection (RED) and Quantized Congestion
Notification (QCN). Despite their obvious benefits, some overlay-related drawbacks
must be explicitly identified, investigated and addressed.
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1. Heavier networking stack: An overlay introduces additional protocol layers
that touch every flow, or even every packet, with the corresponding scalability
implications for 10-100G Ethernet.

2. Transports, sensitivity to congestion and packet loss: The datacenter tenants
aim to harvest maximum performance from the rented infrastructure. There-
fore, we expect an increasing number of applications based on proprietary
transports, many of them UDP based, which are neither congestion sensitive,
nor react to losses in a TCP-friendly manner. This shifts the balance be-
tween TCP – approx. 97% of all the current datacenter traffic – and the other
transports. How does this affect the future of congestion control?

3. Practically scalable and efficient implementations of the overlay control: State
acquisition, distribution, communication, fault tolerance are yet to be proven.
The same holds for state caching, which constitute a key design parameter
studied in more detail here.

4. Legacy protocols getting “lost in translation”: As one example, the Explicit
Congestion Notification (ECN) markings are lost unless they are extended
across the OVN. As this has critically affected our study, we have addressed
the issue by contributing a simple, yet effective, OVN-aware ECN translation
protocol.

Therefore, researchers as well as datacenter operators, and application writers have
justified concerns about OVNs.

3.1.4. Workloads, Metrics and Guiding Questions

The above motivates us to investigate two well-known datacenter workloads. One
is Partition/Aggregate (PA), a network- and protocol-sensitive application, the core
of MapReduce and Hadoop, notoriously exposed to a particular form of conges-
tion known as TCP incast [33, 117]. The other workload is a common datacenter
workload, namely the 3-Tier (3T) application. Using query completion time as our
primary metric, we study the OVN impact on these two applications’ behaviors,
their performance bounds with overlays, and whether RED or QCN can be adapted
to this new environment.
Anecdotal evidence suggests performance degradation for the datacenter applica-
tions in a virtualized environment. Here we ask three guiding questions related to
the above OVN issues:

1. What is the influence of TCP parameters on the application performance in
an OVN environment?

2. Does a DOVE-like OVN impact the performance of our two workloads? What
are the primary performance gating factors of a datacenter’s overlay?

3. What are the best metrics to quantify the saturation of network resources in
overlay virtual networks?
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Figure 3.1.: Datacenter network topology with three layers of switches forming an Extended Gen-
eralized Fat Tree [91] XGFT(3;16,4,4;1,2,2). The top ISP uplinks are used by the
external clients to inject HTTP queries that are served by the tenants’ VMs. The
bottom 256 servers, grouped in 4 racks each rack containing 4 chassis, are virtualized
holding up to 16 VMs each. The overlay controller is distributed and attached to the
core switches.

In addressing these issues we hope to provide insights and guidance for the datacenter
and overlay architects.

3.1.5. Contributions and Structure

The contributions of this chapter are are twofold:
1. We provide the first completion time-based evaluation of Partition/Aggregate

and 3-Tier applications in a realistically virtualized datacenter network, using
an actual TCP stack running over a detailed L2 CEE fabric model.

2. We measure the influence of the OVN design parameters on the user-perceived
performance.

The rest of the chapter is structured as follows: In Section 3.2 we present the
virtualized datacenter network stack, including a description of the overlay virtual
networks. We describe the selected applications in Section 3.3 and the evaluation
methodology in Section 3.4. We discuss the results and answer the three guiding
questions in Section 3.5, Section 3.6 and Section 3.7, respectively. Finally, we present
a selection of some related work in Section 3.8, and we conclude in Section 3.9.

3.2. Virtualized Datacenter Network Stack

In this section we present the networking stack of a virtualized datacenter. In
contrast with the traditional non-virtualized stack presented in Section 2.2, a new
layer is inserted between TCP and the network hardware. Table 3.1 summarizes all
the main parameters of this section.
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Table 3.1.: Model parameters
Parameter Value Unit Parameter Value Unit

(L2) Network hardware

link speed 10 Gb/s adapter delay 500 ns

frame size 1518 B switch buffer size/port 100 KB

adapter buffer size 512 KB switch delay 500 ns

(L2) Congestion management (QCN)

Qeq 66 KB fast recovery thresh. 5

Wd 2 min. rate 100 Kb/s

Gd 0.5 active incr. 5 Mb/s

CM timer 15 ms hyperactive incr. 50 Mb/s

sample interval 150 KB min decr. factor 0.5

byte count limit 150 KB extra fast recovery enabled

(L3) ECN-RED

min thresh. 25.6 KB Wq 0.002

max thresh. 76.8 KB Pmax 0.02

(L2-4) SDN Overlay

request size 64 B encap. overhead 54 B

reply size 64 B request RTO 10 ms

delay 20 µs

(L4) TCP

buffer size 128 KB TX delay 9.5 µs

max buffer size 256 KB RX delay 24 µs

timer quanta 1 µs reassembly queue 200 seg.

(L4) UDP

TX delay 9.5 µs buffer size 128 KB

RX delay 24 µs

3.2.1. Layer 2: Converged Enhanced Ethernet

We use an Extended Generalized Fat-Tree (XGFT) [91], which is a common topol-
ogy in today’s datacenters [14, 89, 54]. The details of the topology are given in
Figure 3.1. The fabric is based on 10G Ethernet. Each network adapter uses virtual
output queues (VOQ), one for each destination, to avoid the primary head-of-line
blocking. Switches use an input-buffered output-queued architecture to store the
incoming frames in the input buffer, and in parallel also enqueue them in the out-
put queue. We assume N -fold (ideal) internal speedup and full buffer sharing for
optimal performance. Although idealized, some of these characteristics are available
in high-end products e.g. [1].

Adapters and switches optionally support QCN [11] as a L2 congestion management
scheme. The QCN load sensors, placed in each switch output port, sample the
instantaneous output queue occupancy. If the queue is deemed congested, feedback
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is sent back to the traffic sources identified as culprits. Here the associated QCN
reaction points will control the injection rate to match the available network capacity.

3.2.2. Layer 3: RED and ECN

Random Early Detection [49] (RED) detects congestion based on the average queue
length. Unlike the QCN load sensor, a well tuned [111] RED is burst-tolerant
by design. The onset of congestion is usually notified though Explicit Congestion
Notification (ECN), which marks the suspected culprit packets at L3 and provides
feedback to the originating source at L4. The ECN marking is done only if the IP
packet is flagged as ECN capable.
In an overlay network environment the original packets are encapsulated. Thus the
two IP headers can potentially confuse the switches and routers that perform ECN
marking. In a first approach, switches must correctly detect the encapsulated frames,
parse the headers and mark the inner IP header. This method lacks flexibility
and requires hardware support. Therefore we adopted a second approach in which
physical switches mark the encapsulation header only. The virtual switches must
transfer the ECN bits from the inner IP header to the encapsulation IP header and
back. We include in the model this transfer mechanism, similar to [31], in order to
preserve the ECN information during en-/de-capsulation across the overlay.

3.2.3. Overlay Network

In between the Ethernet hardware and the TCP stack we add a model of the
overlay network. The generic overlay network architecture—inspired by DOVE
[37, 24]—contains at least (i) a controller, and, (ii) a set of virtual switches. Each
server is virtualized, hosting several VMs and a virtual switch. The VMs may belong
to different applications, potentially owned by different tenants. The virtual switch
extends a traditional hypervisor switch with added overlay functionality. This can
be also located within a physical SDN-enabled switch, acting as gateway for legacy
networks and appliances.
An example of the basic operation of the virtual overlay network is presented in
Figure 3.2. The administrator defines the overlay connectivity and policy configu-
rations rules. The controller stores these rules, which are thereafter enforced by the
designated virtual switches. Each VM interface is assigned by the switch to a specific
overlay instance by the management plane and this is reflected in the configuration
of the virtual switch hosting the VM instance.
More in detail, the SDN overlay switches are placed at the edges of the physical
network and host the endpoints of the overlay. These switches can be both SDN-
enabled physical switches or, as mentioned previously, placed inside the hypervisor
hosting virtual machines. The OVN switches must: (i) make the overlay transparent
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Figure 3.2.: Overlay network operation. When receiving a packet from source VM (1), the virtual
switch must first learn the location (trivial if local) and policies of the destination VM.
First the switch checks the cache. If miss, the switch will query the overlay controller
(2), by sending a request. The controller will eventually send a reply (3) containing
the L2/L3 address of the destination server. Upon receiving the reply, the requesting
switch caches the location and policy of the destination VM for further use. If hit, or
after the controller reply was received, the triggering data packet is tunneled across
the physical network, encapsulated within a new Ethernet header, IP header, UDP
header and encapsulation header (4). The destination switch terminates the tunnel
and delivers the data packets to the destination VM (5).

to the endnodes, and, (ii) enforce the overlay connectivity and policy rules. Both are
achieved using tunneling. Tunnel encapsulation allows full network virtualization,
but incurs an additional per frame overhead. The encapsulation headers are used to
identify the endpoints on the overlay and to send the encapsulated packets to the
overlay switch hosting the destination endnode under the constraints of the OVN
policy rules. To avoid the harmful effects of fragmentation, we assume that the MTU
on the endnodes is decreased proportionally to the added encapsulation overhead.

The OVN controller is used to store the connectivity configuration (address map-
pings) and policy rules for the SDN overlay. The controller is queried by the OVN
switches. As we focus on the data-plane rather than on the control plane: (i) we
consider a centralized overlay controller and (ii) we do not try to enforce partic-
ular policy rules. Overlay switches communicate with the controller over UDP. A
retransmit timer is used to recover lost queries.

3.2.3.1. Encapsulation and Tunneling

The L2 traffic crossing the physical network is encapsulated to provide traffic iso-
lation between different virtual networks and multi-tenancy support: e.g., preserve
tenants’ original IP and MAC addressing schemes. The encapsulation per se adds
at least the cost of an additional per frame header, and possibly more. A few dif-
ferent encapsulation protocols have been proposed prior to DOVE, which itself is
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Figure 3.3.: Traffic parameters. (a) Background flows and HTTP queries inter-arrivals for 3T and
PA. (b) Overlay controller delays. (c) Flow size distributions for 3T and PA workloads.
(d) Background flows size distributions given in [16, 26].

encapsulation-agnostic. In our overlay model, however, we add 54B reflecting a
VXLAN-type encapsulation: 18B outer Ethernet header + 20B outer IP header +
8B UDP header + 8B VXLAN header. To avoid fragmentation we decrease accord-
ingly the MTU from 1500B to 1446B. Modern CEE hardware can instead increase
their physical MTUs by a few tens to a hundreds of bytes, thus preserving the default
software application settings. Host-local traffic is not encapsulated in our model.

3.2.3.2. Overlay Cache

In order to retrieve the connectivity and policy configurations, virtual switches send
queries to the controller. To avoid per frame queries, each switch has a cache, in
which we have implemented 5 eviction strategies. Depending on its implementation
in either hardware or software, the cache can be either fast and small, or slow and
big, respectively. To capture the cache influence on the workload completion times,
we have artificially downscaled the cache sizes to reflect our proportionally smaller
environment. All the controller queries are sent over UDP. A configurable retrans-
mission timer is used to recover lost queries/replies. For the overlay configuration
entries, we use 64B queries and replies. Queries are replied after a processing de-
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Table 3.2.: TCP RTO parameters
Parameter Value Unit Parameter Value Unit

Default configuration

RTO base 3 s RTO slop 200 ms

RTO min 30 ms

Tuned & RED configurations

RTO base 20 ms RTO slop 20 ms

RTO min 2 ms

lay, extracted from the distribution shown in Figure 3.3b. The average measured
response time is 0.03 ms with a standard deviation of 0.07 ms. This we have mea-
sured from a threaded UDP daemon with in-memory hash tables for fast lookups
running on a Intel i5 3.2GHz machine with 4 GB of memory and an Intel e1000e 1G
Ethernet NIC. This values account only for the software delays, thus disregarding
the network. These samples were collected under low load to reflect the infinite
CPU capacity assumption of the simulator, i.e. query response times independent
of the controller load.

3.2.4. Layer 4: TCP Stack

We consider three TCP versions: NewReno, CUBIC and Vegas. NewReno is an
improvement of Reno, also the default in Linux kernels up to version 2.6.8. CU-
BIC [60] has been optimized for fast networks with high delay (due to flight lags
in WANs); it is an RTT-independent scheme, namely a less aggressive derivative
of Binary Increase Congestion control (BIC) using a cubic function to probe for
the maximum congestion window. This provides faster bandwidth recovery after
congestion. From version 2.6.19 onwards, CUBIC is the Linux kernel default. Both
NewReno and CUBIC rely on lost and/or ECN-marked packets as congestion feed-
back. In contrast, Vegas [30] uses the RTT delay as primary congestion measure and
represents the delay-probing class of TCPs, including Compound TCP and Adap-
tive Reno. Vegas avoids congestion by comparing the expected throughput in the
absence of congestion with the actually achieved throughput.

We ported the TCP stack from a FreeBSD v9 kernel into Venus with minimal
changes, mostly related to memory management. As we focus on the network, we do
not model the CPUs, assuming that the endnodes can process data segments as fast
as they arrive, and that the applications can immediately reply - hence an idealized
computational model that increases the communication pressure. The TCP stack
adds only a fixed delay to each segment, calibrated from our prior test-bed experi-
ments. Even if idealized, these assumptions are consistent with our network-centric
methodology. To calibrate the model, we instrumented the TCP stack running on
the same hardware as previously described.
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The original set of TCP parameters was conservatively chosen to accommodate the
link speeds and router hardware of two decades ago. During the calibration runs
we noticed that the minimum RTT was much smaller than the kernel timer quanta,
which equals 1 ms by default. With this setup the retransmission time-out (RTO)
estimator was ineffective. Therefore for all the experiments we reduced the timer
granularity to 1 µs. Based on [117, 33] and our own measurements we found that
the choice of the RTO parameters can strongly impact the performance. The BSD
kernel has three such parameters: the default RTO (RTO base), the minimum RTO
(RTO min) and the RTO variance (RTO slop). RTO base is used by the kernel in
the absence of information when a connection is initialized. RTO slop is a constant
factor, accounting for the variable delays in segment processing at the endnode
kernels. It is added to the RTO value computed in real time using Karn’s algorithm
and Jacobson’s algorithm [65].
We used the two sets of RTO parameters from Table 3.2. The first set, called
Default, is using the default parameters from the BSD kernel i.e. RTO base = 3 s,
RTO min = 30 ms and RTO slop = 200 ms. The Default set is built conservatively
to accommodate slow dial-up links and legacy hardware. We constructed a second
set named Tuned to match the modern processors and the delays found in current
datacenters i.e. RTO base = 20 ms, RTO min = 2 ms and RTO slop = 20 ms. The
base RTO for the Tuned parameter set is chosen to be larger than the worst case
RTT of network – less than 10 ms – to which we added the RTO of the OVN request
– another 10 ms.
Table 3.1 and Table 3.2 summarize the main parameters for the TCP stack used in
our simulations. The simulator also incorporates a thin UDP layer used for back-
ground flows, performing simple segmentation and encapsulation of the application
data.

3.3. Application Models

We evaluate the cross-layer performance impact of different L2, L3 and L4 proto-
cols. As mentioned before we selected Partition/Aggregate and 3-Tier web server
systems. While the 3T applications are widely used, [72] and [16] show that the scat-
ter/gather communication pattern, as in PA, is representative of modern datacenter
applications.
We have designed our commercial traffic generator based on findings from a few re-
cent papers. [26] presents an in-depth study of the spatial and temporal distribution
of the flows in ten production datacenters. [16] uses a similar approach to measure
the size and inter-arrival time distribution of the flows. [72] observed that modern
applications use a Scatter/Gather communication pattern. The traffic study from
[16] confirms that finding.
In a realistic environment, multiple applications run in parallel and the multitenant
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Figure 3.4.: Partition/Aggregate operation: External clients produce HTTP requests served by
the High-Level Aggregators (HLA) randomly distributed within the datacenter (1).
Upon the reception of such a request, the HLA contacts randomly selected Mid-Level
Aggregators (MLA)—one per chassis—and sends them a subquery (2). The MLAs
further split the subquery across their workers, one in each server from the same chassis
(3). Eventually each worker replies to the MLA by sending back a response. The MLA
collects the partial results from workers. When all the results have been received, the
MLA sends back its aggregated response to the HLA. The query is completed when
the HLA receives the aggregated response from each MLA.

performance inelasticity/isolation is subject of ongoing research [39]. Using the real-
life data from [16, 26] we created a traffic generator that injects a foreground traffic
matrix of queries on top of a background traffic matrix of random flows. The queries
are generated as outlined in the following two sections. For the background flows,
each source randomly chooses a destination constrained by the ratio of intra-chassis
to inter-chassis traffic of 30% reported in [26]. Then each source draws from the
inter-arrival time (Figure 3.3a) and flow size distributions (Figure 3.3d) and sends
the background traffic over a TCP or UDP socket. We use two background flow size
distributions – short and long – to model a low loaded network as well as a medium
loaded one.

The simulation is ended after a fixed number of queries are processed. For the
queries as well as for the background flows we collect the completion time as an
application level metric [46].

3.3.1. Partition/Aggregate Workload (PA)

The operation of a PA web server is described in Figure 3.4. For simplicity all mes-
sages exchanged between High-Level Aggregators (HLAs), Mid-Level Aggregators
(MLAs) and workers have a fixed size of 20KB in both directions. Each of the 256
servers from Figure 3.1 contains VMs that allow it to simultaneously act as HLA,
MLA or worker for different queries. The external client HTTP queries are injected
with inter-arrival times shown in Figure 3.3a and with the flow sizes shown in Fig-
ure 3.3c. The inter-arrival distribution is based on [16] but accelerated 100-fold to
reflect our environment, i.e., faster links, larger switch buffers and lower delays.
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Figure 3.5.: 3-Tier operation: The entry points for external client HTTP requests are the load
balancers (1), which forward the request to a random web server (2). 28% of the
requests require additional dynamic content that is retrieved from a database server
(3). Once the SQL result has been received, the web server assembles the HTTP
response and sends it back to the load balancer, which forwards it to the originating
client.

3.3.2. 3-Tier Workload (3T)

Similar to the PA, the 3T application receives HTTP requests from external users.
However, instead of splitting and processing them in parallel as in PA, here, at each
level, the request is handled by a single VM. As shown in Figure 3.5, three types of
VM servers are involved: load balancer (LB), web server (WS) and database server
(DB). We assume that 256 tenants share the datacenter, each one deploying a 3T
application with 8 VMs: 1 load balancer, 5 web servers, and 2 database servers
(see Figure 3.5). We anti-collocate these 8 VMs by randomly placing them across
physical servers, with up to 16 VMs/server, and no 2 VMs of a tenant hosted on the
same server. Thus the primary bottlenecks are the physical datacenter fabric and
the overlay. Furthermore, each tenant receives external queries through a dedicated
uplink, thus avoiding ISP-related congestion. The size of the requests and replies
are drawn from the distributions shown in Figure 3.3c. We have extracted these
distributions by instrumenting a 3T workload based on RUBiS v1.4.3 [9]. The
instrumented system was installed on four physical machines, one for each tier, plus
one for RUBiS emulating 80 external clients. The inter-arrival distribution for the
3T application is also measured using the instrumented system previously described.
As before, we apply a 50-fold acceleration factor.

3.4. Methodology

3.4.1. Simulation Environment

For our performance evaluation we rely on cross-layer simulations augmented with
experimental hardware results as described below. Simulation-base modeling has
the following merits. (a) Observability: The path of each packet can be traced,
every link and queue can be measured. (b) Repeatability: Traffic patterns and event
ordering are deterministic. (c) Flexibility: Can implement new L2 features that re-
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quire changes of protocols, scheduling or queuing disciplines. (d) Availability: One
can test CEE-hardware with functions that are still in early-design phases, expen-
sive or not commercially available. However, simulations may lack (a) Accuracy:
Models, however accurate, may not reproduce all the subtle interaction facets of
a real implementation; and (b) Speed: Event-based simulations require the serial
processing of many billions of events, hence a 2 to 4 orders of magnitude slowdown
compared to hardware FPGA emulators or ASIC-based product implementation,
respectively.
Although ns2/ns3 [6] are well established in the research community, they focus
on higher abstraction levels. Our research requires realistic L2 simulations of CEE
switch and adapter micro-architectures including management and monitoring of
the queues and buffers, scheduling, link-level flow control and memory management.
Furthermore the TCP models implemented in NS are different from the actual TCP
versions implemented in BSD, AIX and Linux kernels. The NS-3 TCP libraries are
streamlined and simplified, thus trading accuracy for simulation efficiency.
Hence we settled on a custom-built L2 network simulator called Venus [85] and
described in Section 2.5.1 and Section 2.5.2. The simulator is extended with a
port of the TCP/IP stack extracted from the FreeBSD v9.0 kernel as described in
Section 2.5.3.

3.4.2. Experiments

The experiments are arranged in three groups:
1. In Section 3.5, we begin with an investigation of the performance impact of

TCP parameters in an overlay network environment.
2. Next, in Section 3.6, we analyze the influence of the overlay network compo-

nents on the flow completion times of the 3T and PA applications.
3. Finally, in Section 3.7, we study the saturation of network resources in overlay

virtual networks.

3.5. TCP Parameters Influence

In this section we use the following names. Default, Tuned and RED identify the
TCP configuration. Default and Tuned use the two sets of TCP parameters de-
scribed in Section 3.2.4. RED has the same TCP parameters as the Tuned configu-
ration in addition with ECN/RED enabled in the network.
No OVN, Per flow Cache, 8-entry Cache, and Infinite Cache are the OVN config-
urations. The No OVN configuration is our baseline running without SDN-based
overlay virtual networking. When running with OVN, we tested three different
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Cache
Default Tuned

mean std OVN losses mean std OVN losses
[ms] [ms] cost [%] [‰] [ms] [ms] cost [%] [‰]

B
ac
kg

ro
un

d
F
lo
w
s

Sh
or
t No OVN 6.16 71.21 0.00 0.14 3.65 14.40 0.00 0.25

8-entry 8.97 123.35 45.62 0.09 5.16 10.68 41.37 0.13
Per Flow 10.86 129.35 76.30 0.12 4.39 17.51 20.27 0.24
Infinite 9.73 119.60 57.95 0.12 3.70 13.50 1.37 0.26

L
on

g No OVN 20.88 178.63 0.00 0.85 11.11 28.65 0.00 2.83
8-entry 27.15 237.11 30.03 1.01 10.11 16.49 -9.00 2.75
Per Flow 22.54 198.13 7.95 0.86 11.94 30.68 7.47 2.58
Infinite 25.99 227.02 24.47 0.95 11.50 29.97 3.51 2.85

Cache
RED

mean std OVN losses
[ms] [ms] cost [%] [‰]
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kg
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un

d
F
lo
w
s

Sh
or
t No OVN 1.85 1.95 0.00 0.01

8-entry 3.57 2.91 92.97 0.02
Per Flow 3.15 10.12 70.27 0.03
Infinite 1.93 2.75 4.32 0.02

L
on

g No OVN 2.60 5.13 0.00 0.07
8-entry 4.66 5.88 79.23 0.08
Per Flow 3.36 5.87 29.23 0.09
Infinite 2.75 7.25 5.77 0.08

Table 3.3.: Query completion time (mean / standard deviation) and losses.

cache policies for the OVN cache. The Per flow Cache makes a single request to the
controller for each TCP connection. This approach is similar with OpenFlow [82]
where the switch tables are populated per flow. This cache penalizes the completion
time of short flows that have to wait for the reply of the controller before sending
a few packets. On the other hand, for the long flows, the delay of the request is
amortized over a large number of packets.
The 8-entry Cache configuration uses a small cache with 8 entries with FIFO evic-
tion. This cache is expected to trigger frequent misses for the workloads that con-
tact more than 8 destinations in parallel. The Infinite Cache assumes a cache large
enough to store all the possible destinations. Therefore it will issue a request only
for the first packet addressed to each destination.
The results are gathered in Table 3.3, which shows the mean and standard deviations
of the query completion times in the above configurations. In addition we compute
a OVN cost i.e. the degradation of the query completion time with respect to
the No OVN configuration. The OVN cost includes both the cache price and the
encapsulation overhead. Figure 3.6, Figure 3.7 and Figure 3.8 show the cumulative
distributions of the query completion times for small and large background flows
respectively.

3.5.1. TCP Configuration Impact

The first observation is that the Default TCP parameters were unsuitable for the
simulated datacenter networks. When we compare Default with Tuned in the No
OVN configuration we find that the average completion time deteriorated by 68%
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Figure 3.6.: Partition/Aggregate query completion time with Default TCP.
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Figure 3.7.: Partition/Aggregate query completion time Tuned TCP.

and 87%. Importantly, the standard deviation was one order of magnitude larger
than the average. This happened because the very few transactions that lost a SYN
or SYN/ACK segment had to wait as long as 3s for the RTO before resuming. The
distributions from Figure 3.6a and Figure 3.6b have long tails. We conclude that
the Default configuration is highly unreliable.

The activation of the OVN had no effect Tuned behaving consistently better than
Default. We observed that the large standard deviation compared to the average
still persisted despite the tuning. The problem was solved by activating RED:
with RED, standard deviation values were much closer to the average compared to
the other configurations. Note that RED also improved OVN performance. These
results demonstrate that the OVN must offer support for RED, REM or other L3
congestion management techniques.
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Figure 3.8.: Partition/Aggregate query completion time with RED TCP.

3.5.2. OVN Performance Impact

Generally the activation of the OVN led to a degradation of the performance. The
partition/aggregate applications were heavily penalized by the 8-entry cache as vis-
ible for example in Figure 3.7a where we see a deterioration with 41% of the average
completion time in the Tuned 8-entry configuration with short flows. The worst
results are in the RED 8-entry configuration where the completion time almost
doubled – up to 92% deterioration. This is because the partition/aggregate has to
contact in parallel all the other 15 workers in the same rack. This leads to frequent
evictions from the insufficient cache and lot of extra traffic directed towards the
OVN controller.
An unexpected result is the 9% improvement caused by the 8-entry cache in the
Tuned configuration with long background flows. The partition/aggregate workloads
produce the TCP incast congestion because in most of the cases the workers send
their responses synchronized. Because of the small cache some of the workers have
to wait for the OVN controller to reply before answering to the MLA. Therefore the
workers are desynchronized and the TCP incast congestion is reduced.
The per flow cache in general exhibited a better performance than the 8-entry cache.
But still the partition/aggregate suffers a lot because it generates short 20KB flows.
As expected, the clear winner was the infinite cache configuration. We observe
that in Tuned and RED configurations in Figure 3.7 and Figure 3.8 the difference
between the baseline No OVN and Infinite Cache is negligible. The OVN controller
is interrogated only for the first partition/aggregate query and subsequent queries
use the already cached information. Hence the performance degradation can mostly
be attributed to the lower efficiency induced by the encapsulation overhead.
This results confirmed our expectation that the performance degradation induced
by the OVN is caused by two factors: OVN controller request/reply delays and
encapsulation overhead. We discovered that the delays induced by OVN requests
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Figure 3.9.: Background flow completion time.

can be alleviated using proper caching whereas the encapsulation overhead delays
are negligible.

3.5.3. Background Flows

The background flows are by nature desynchronized whereas the queries are syn-
chronized. Therefore, the TCP incast phenomenon observed for the queries did not
affect the background flows. This was the cause of the almost identical completion
times that we observed for both short and long background flows in Figure 3.9a and
Figure 3.9b (note the logarithmic scale). In the Default configuration we observed
the long tailed distribution of completion times similar to what we observed for the
queries.

3.6. Overlay Network Evaluation

We run the two datacenter applications (3T and PA) described in Section 3.3 in
different setups. In this section we use the following naming convention. The con-
gestion management (CM) scheme in use is either absent (w/o CM ), RED or QCN.
Our applications run over a background traffic matrix that can be either absent
(w/o BKGD), TCP-based or UDP-based. The TCP versions are NewReno, Cubic
and Vegas. As shown in the previous section, the Tuned parameters reduces flow
completion times, therefore in this section we will use exclusively these parameters.
In addition, we vary the parameters of the overlay network as described below.
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B
K
G
D

Overlay

RED QCN

5-p. median 95-p. cost loss 5-p. median 95-p. cost loss
[ms] [ms] [ms] [%] [‰] [ms] [ms] [ms] [%] [‰]

w
/o

Base 3.66 25.82 69.38 0.0 3.95 5.38 47.54 90.06 0.0 7.99
Encap 3.99 46.93 69.97 81.74 7.02 24.96 47.96 90.22 0.89 11.24
Inf 4.28 47.40 70.48 83.56 7.25 25.07 48.20 91.60 1.38 11.16

T
C
P Base 5.44 28.10 70.71 0.0 5.07 26.62 49.88 76.11 0.0 9.91

Encap 6.23 48.23 71.28 71.62 8.33 26.97 50.41 93.35 1.07 12.91
Inf 25.57 48.70 72.05 73.31 8.47 27.67 51.17 94.20 2.59 12.98

U
D
P Base 25.93 48.45 92.82 0.0 7.27 25.85 49.57 114.64 0.0 11.96

Encap 26.39 49.49 93.74 2.15 10.12 26.15 51.29 115.88 3.46 15.34
Inf 26.58 49.74 96.55 2.67 9.88 26.27 49.62 93.43 0.09 14.42

Table 3.4.: Partition/Aggregate: Query completion time and losses with TCP NewReno.

B
K
G
D

Overlay

RED QCN

5-p. median 95-p. cost loss 5-p. median 95-p. cost loss
[ms] [ms] [ms] [%] [‰] [ms] [ms] [ms] [%] [‰]

w
/o

Base 0.91 1.70 5.04 0.0 2.93 0.84 1.51 47.10 0.0 8.77
Encap 0.92 1.85 24.04 9.43 6.81 0.87 1.66 73.01 10.48 13.43
Inf 0.93 1.87 24.16 10.32 7.02 0.87 1.65 79.33 9.75 15.36

T
C
P Base 1.20 2.97 48.45 0.0 12.02 1.36 28.60 526.61 0.0 17.52

Encap 1.23 3.22 70.92 8.39 19.22 1.37 34.72 555.40 21.40 18.53
Inf 1.22 3.21 71.08 7.92 19.66 1.38 38.20 540.41 33.57 18.14

U
D
P Base 1.09 3.29 73.21 0.0 50.39 1.06 5.91 246.89 0.0 41.44

Encap 1.17 4.24 97.33 28.94 68.59 1.09 12.23 313.17 106.96 50.50
Inf 1.15 3.78 94.44 14.87 61.68 1.07 9.72 274.50 64.42 49.49

Table 3.5.: 3-Tier: Query completion time and losses with TCP NewReno.

3.6.1. Overlay Network Performance Impact

The overlay network introduces two types of overhead: encapsulation and discovery
overheads. The encapsulation overhead is caused by the additional 54B header.
Each overlay cache miss incurs a discovery overhead. In this case, the virtual switch
has to query the central controller to find out the physical IP and MAC address of
the destination VM. To estimate the two overheads we start with a baseline (Base
configuration) without encapsulation and discovery overhead. This is equivalent to
a non-virtualized network where the virtual switches forward raw packets from one
interface to another. Next we add encapsulation (Encap configuration) to separate
the tenants from each other. Finally we account also for the discovery overhead (Inf
configuration). In this case we assume – an idealized – infinite cache scenario.

In Table 3.6 and 3.5 we print the completion times of the client queries for both the
PA and 3T application. In Figure 3.11 we plot the cumulative distributions of com-
pletion times for PA and 3T only in the scenarios without congestion management
(space constraint). As seen in Figure 3.11 the result distributions are non-normal,
hence we report the 5-percentile, the median (50-percentile) and the 95-percentile
of the completion times rather than the mean and standard deviations. We observe
the completion times for PA are 10× to 50× larger than for 3T. In PA, packets
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B
K
G
D

Overlay

Partition/Aggregate 3-Tier

5-p. median 95-p. cost loss 5-p. median 95-p. cost loss
[ms] [ms] [ms] [%] [‰] [ms] [ms] [ms] [%] [‰]

w
/o

Base 3.81 47.53 70.55 0.0 7.94 0.84 1.51 24.12 0.0 13.14
Encap 24.81 47.80 71.46 0.58 11.10 0.89 1.69 28.14 12.17 25.46
Inf 25.24 48.23 91.99 1.48 11.37 0.89 1.71 30.12 13.40 26.30

T
C
P Base 26.87 49.94 92.10 0.0 10.66 1.24 3.79 120.96 0.0 46.57

Encap 27.41 50.54 93.69 1.19 14.23 1.25 4.42 146.98 16.74 53.01
Inf 27.89 51.49 94.19 3.11 13.59 1.24 4.35 144.70 14.89 43.24

U
D
P Base 26.15 49.61 95.41 0.0 11.68 1.03 3.15 95.13 0.0 79.91

Encap 26.51 50.70 95.04 2.20 15.10 1.08 4.17 122.21 32.50 103.62
Inf 26.94 58.66 113.00 18.25 14.81 1.06 3.67 117.93 16.50 96.75

Table 3.6.: Without congestion management: Query completion time and losses with TCP
NewReno for Partition/Aggregate and 3-Tier applications.

are dropped in each of the two aggregate phases, whereas for 3T the congestive
events are rare. Therefore the completion times for PA incorporate more RTOs,
of at least 20ms each. As figure of merit, we report the overlay performance cost
with respect to the Base configuration, computed on the median completion times
as CT−CTBase

CTBase
· 100.

For PA without congestion management, we observe that the encapsulation overhead
affects the median completion times with an increase from 0.58% up to 2.20%.
Similar results are obtained with QCN where the cost is at most 3.46%. Enabling
RED reduces the completion times by over 40% with respect to the Base case.
Activating the encapsulation increases the completion time up to 81.74%. The RED
control loop is destabilized by encapsulation because the TCP control segments
– not RED controlled – double up in size. Ditto for the 3T workload. Without
congestion management the 3T performance impact ranges from 12.17% to 32.50%.
The PA application performance is mainly impacted by TCP incast when up to
16 flows simultaneously target the same bottleneck. On the other hand, the 3T
workload is mainly impacted by the effective flow size increase, therefore the effect
of encapsulation is more visible here.
Next we add the infinite cache. As expected for the PA application, with and
without RED, the cache slows down the queries even more than in the previous
case. This additional delay is around 2% in most cases, up to 16.05% (see black
vs. blue figures in Table 3.6 and 3.5). The unexpected result is the slight gain
in performance experienced by the 3T application when the background flows are
active (see black vs. red figures in Table 3.6 and 3.5). The background traffic is
stalled by the cache queries, therefore its injection rate is lowered leading to reduced
completion times. We observe a similar phenomenon for the PA with QCN and
UDP background flows.
The main cause of the performance degradation is the increase in traffic caused by
encapsulation. In Figure 3.11 we can see that the line corresponding to infinite
cache almost coincides with the encapsulation only line. Thus, for such workloads
where the sources and destinations of each flow belong to the same constant set, the
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Figure 3.10.: Cumulative distributions of completion times for TCP NewReno, without congestion
management, without background flows.

discovery overhead is low compared to the encapsulation overhead. The distribu-
tions have a stair-like appearance because of the discrete values of the RTOs. The
distributions’ tails coincide because for some flows the repeated packet loss or loss
of initial SYN segment raises the RTO into 100s of milliseconds.

We conclude that in the absence of congestion management the overlay network
introduces up to 20% of additional delays. The RED and QCN control loops might
need redesign to take into account the overlay network – subject of future research.

3.6.2. Virtual Switch Cache Design

The previous assumption of ideal infinite cache is unrealistic. Next we consider finite
size caches of sizes from 16 to 256 entries. The lower bound is chosen because a
VM running PA has at least 16 concurrent flows. The total amount of VMs in the
network is 4096, i.e., 256 servers with 16 VMs each. However it is highly unlikely
that a server communicates simultaneously with all the other VMs. We observe that
across all runs the 256-entries cache yields results identical to the infinite cache. For
larger topologies these values should be scaled accordingly.

Furthermore, due to the finite cache size, old entries have to be evicted. As a second
parameter in the cache design space we consider the following 5 eviction policies:
First In First Out (FIFO), evict the oldest cache entry; Random (RND), evict a
random entry; Least Used (LU), evict the entry which the smallest number of hits;
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Figure 3.11.: Cumulative distributions of completion times for TCP NewReno, without congestion
management.
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Figure 3.12.: Cache eviction policy and cache size impact on median completion time.
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Figure 3.13.: 3T, TCP Vegas, UDP background. Cache eviction policy and cache size impact on
median completion time.

Least Recently Used (LRU), evict the entry not used for the longest time; Most
Recently Used (MRU), evict the latest used entry. Adding these two parameters to
the setups described at the onset of Section 3.6 yields over 4000 simulation runs.
Here we select only the most relevant results.

Figure 3.12a shows the PA performance with NewReno and TCP background flows.
All other TCP versions and background flow types produce similar results. FIFO
and Random policies consistently yield the best results, while LU and LRU are the
worst because the entry selected for eviction is generally the one corresponding to
the reply that has to be sent back to the MLA, HLA or client. The Random heuristic
is better because it has higher chances of evicting a background UDP flow. FIFO
is efficient because it evicts the dead flows, whereas MRU has the tendency to evict
live flows. Systematically across all configurations, the completion time decreases
with the increase of the cache size. Figure 3.14 shows the miss ratios for the same
configuration. Qualitatively comparing the plot shapes we conclude that the virtual
switch misses are responsible for the deterioration of completion times.

The results for 3T are shown in Figure 3.12b. Cache size is less influential for the 3T
since a 64-entries cache performs as well as an infinite cache. Here a VM contacts
only one or two other VMs at a time. On the other hand, a PA’s MLA or HLA can
contact up to 16 VMs in parallel. Therefore the completion time converges faster for
3T than for PA. With UDP background flows, the pressure on the cache increases
as shown in Figure 3.13. When enabling QCN (Figure 3.12(b)(c)) we observe the
counter-intuitive effect that a smaller cache performs better than a larger one. The
completion time is influenced by two factors: the intensity of the background flows
and the cache misses. When the cache is small it produces more misses, but it also
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Figure 3.14.: PA, TCP NewReno, TCP background. Aggregated miss ratio of caches from all
virtual switches. Observe the similarity with Figure 3.12a.

reduces the background load. When the cache is large there are only compulsory
misses, but the background load increases. For example in Figure 3.12b with QCN
and FIFO heuristic the best execution times are obtained for a 64-entries cache.
More insights about the QCN performance are given in Section 3.6.5.2.

3.6.3. Controller Design

The centralized controller is replicated for redundancy into four replicas (C1 to C4),
each attached to one of the core switches shown in Figure 3.1. We assume that all
four controllers have a coherent view of the network maintained by the means of a
lightweight protocol, trivial in the absence of migration. Each virtual switch holds
the address of each controller. For load balancing, each request is sent to a randomly
selected controller.

Figure 3.15 shows the average load per controller for PA over TCP Vegas without
background flows. This setup generates the largest average load of 3.83MReq/s
for RED with Random eviction and a 16-entries cache. This corresponds to an
average load of 451MB/s apparently far below the ideal 625MB/s limit. This is
indeed half of the line speed of 1250MB/s when each 64B request or reply receives
18B Ethernet headers while the switch internal fabric operates in 64B buffer units.
Hence each controller request or reply requires two internal buffers. Despite the low
average load, the controller links are saturated for tens of milliseconds, making the
controller into a major bottleneck that elicits further attention.
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Figure 3.15.: PA, TCP Vegas, No background. Average controller load over the entire application
run.

3.6.4. TCP Version Selection

Here we compare the selected three TCP versions. In Figure 3.16 we plot the
corresponding median completion times for an infinite cache.

3.6.4.1. Vegas

Vegas [30] adjusts the congestion window based on the measured delays. For the
PA workload (see Figure 3.16a) Vegas produces the shortest completion times, up
to 49.7% better than NewReno with UDP background flows. This is because Vegas
has the lowest drop rate of all the three TCP versions. RED brings no additional
benefits. Yet for the 3T workload in Figure 3.16b the differences between Vegas and
NewReno are smaller, at most 12% improvement with TCP background flows. Also,
with 3T, Vegas does not always outperform NewReno: e.g., without background
flows. RED is beneficial only in the presence of backlog and drops, which Vegas
avoids.

3.6.4.2. CUBIC

Across all the PA runs CUBIC [60] performs worse than NewReno (Figure 3.16a). Its
aggressive increase of the congestion window aggravates the TCP incast congestion.
With the 3T workload (Figure 3.16b) the rapid increase of the congestion window
is beneficial only in the absence of background traffic. With background flows,
CUBIC increases the loss ratios, hence longer execution times. Finally, here RED
helps CUBIC to reduce its congestion windows.
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Figure 3.16.: The impact of TCP version on median completion times. The overlay network is
active with infinite cache in each virtual switch.
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3.6.5. Congestion Management Effectiveness

3.6.5.1. RED

Intuitively one of the main factors affecting the flow completion time is the number
of packet drops. Drops occur during the TCP incast episodes in the PA aggregation
phase. Because the bursty replies cannot fit into the switch buffers, some segments
are tail-dropped. Sometimes the TCP fast-retransmit mechanism promptly recovers
the drop, but often this is nullified by the small replies (20KB) fitting into 14 seg-
ments. The last segments, however, have higher drop probability due to their arrival
when the buffer is already filled by the previous segments. Dropping these segments
does not allow the fast-retransmit to receive the required number of duplicate ACKs
(3) to activate and, therefore, the sender has to wait for the RTO timer.

Another extreme example is when the initial SYN is lost. The RTO estimator is then
initialized with the (high) default value, thus heavily punishing the flow completion
time. RED helps to avoid drops by keeping the queue occupancies low, hence in
most of the runs it leads to shorter execution times. Counter-example: NewReno,
3T in the absence of background flows (Figure 3.16b). A possible problem that the
overlay network can cause with RED is the doubling in size of the control segments,
i.e., ACKs. These segments cannot be ECN marked but still they occupy buffer
space contributing to congestion.

3.6.5.2. QCN

QCN avoids losses by reducing the injection rate of the flows that take more than
their fair share of bandwidth, and implicitly hog too much buffer space. We observe
that the 3T queries with active background flows are penalized by the QCN acti-
vation (compare QCN median completion times from Table 3.5 with those without
CM). There are two main reasons.

First, the TCP traffic is inherently bursty, because the TCP sources segment the data
to be transmitted and then inject as many consecutive packets as necessary to fill
the congestion window. This leads to sudden increases of the buffer occupancies in
switches. In contrast to RED, which operates on a low-pass smoothed queue length,
QCN samples the instantaneous queue length. The TCP bursts produce spikes
in the queue occupancy signaled via the QCN feedback. This triggers superfluous
congestion notification messages that instantiate unnecessary rate limiters.

Second, the activation of QCN rate limiters leads to filling the transmission queues
of the network adapters. This in turn leads to buffers filling and drops in the
virtual switch upstream of the QCN rate limiters. We conclude that under these
circumstances the standard-tuned QCN interacts poorly with our overlay. This issue
is the subject of future research.
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3.7. Saturation Results

3.7.1. Evaluation Metrics

Resource saturation is a well-known problem. Rather than addressing it by itself,
here we aim at studying how network resources saturate by using the novel notion
of elasticity derived from the mathematical concept of point elasticity. Informally,
elasticity denotes the sensitivity of a dependent variable to changes in one or more
other variables (parameters). An elastic supply should be sensitive to small changes
in load. For example, if the traffic load increases, additional bandwidth should be
provisioned. Supply elasticity with respect to load seems intuitively desirable in a
datacenter. On the other hand, an inelastic variable should remain insensitive to
changes in other variables (parameters). For example, the performance experienced
by a tenant should remain oblivious to the other tenants sharing the same physical
infrastructure.
Depending on the operator I-/P-/S-aaS model, the datacenter resources can be allo-
cated to tenants, either physically, by adding or moving new machines and switches,
or virtually, by provisioning and migrating VMs and virtual networks (VNs). The
latter replicates the virtual resources – server, switch, adapter, link – to create the
illusion of new additional servers and networks. As long as the existent physical
resources are under-utilized, their virtualization increases the supply elasticity. The
supply of VMs and/or VNs increases with the tenant load, ideally along a linear
curve. However, the linear dynamic range is practically limited by several factors:
workload type, traffic patterns, as well as the capacities of the physical resources,
and increasingly, their virtualization technologies. For example, a current quad-core
CPU may support 8-16, but not yet 256 VMs.
The most vexing issue is: Which metrics are are suitable to best quantify the per-
formance – and ultimately, the elasticity of the resources? We propose the following
set of five simple, but descriptive, metrics:

1. Aggregate throughput, Tput, expressed in HTTP queries per second – as op-
erator metric.

2. Query completion times, Tc, representative as primary tenant performance
metric.

3. Packet loss ratio, as a metric for the network service quality.
4. Power [66], P = Tput

Tc
, a metric revealing the throughput-delay tradeoffs be-

tween operator and tenants.
5. Global efficiency, W = ∑

t Ut(Tc), sum of all tenant utilities Ut as a function
of Tc such that Ut ∈ [0, 1].

We also argue that the first two metrics are intrinsic to the SLAs between operator
and tenants.
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3.7.2. Traffic Scenario

In the following, we focus on a simple and concrete, albeit limited, example of the
above investigating a homogenous set of tenants running 3-tier workloads in a generic
virtualized datacenter. Although extremely interesting, for space reasons, alternate
scenarios such as different workloads, e.g. map-reduce, and/or heterogeneous sets
of tenants have to be left for future work.

We perform our investigation as follows. (i) We vary the consolidation factor, i.e.,
the number of tenants, from 32 to 512, each deploying the 3-tier workload described
previously. As all tenants share the same physical network, its load increases with
the number of tenants. (ii) Furthermore, we vary the load factor, starting from
the reference load (1x), then progressively increasing it up to 200x – corresponding
to more external clients per tenant. In all simulations, a tenant serves precisely
1000 HTTP queries. When all tenants have finished, the simulation is stopped, and
statistics are gathered. For each query, we measure the completion time, accounting
for all physical and virtual network-induced delays, including the end-node protocol
stacks. We assume that all servers have infinite CPU resources, and that a VM
serves each request in zero delay. Even if a bit unrealistic, this assumption helps
isolate the communication bottlenecks from the end-node processing variability as
well as the VM scheduling side-effects, which are not of interest here.

3.7.3. Aggregate Throughput and Query Completion Time

The datacenter Tput is calculated by dividing the total number of HTTP requests
by the time needed to serve 99% of them to completion. We use the 99th percentile
for being robuster to outliers. The results are plotted in Figure 3.17a. Increasing
the number of tenants is beneficial to the aggregate throughput until a peak is
reached at around 500K requests/s. The peak is reached earlier when inter-arrivals
are shortened, corresponding to higher load factors per tenant. After the peak,
the datacenter network saturates. The number of tenants grows linearly, but the
completion times grow with higher slopes (Figure 3.17b), and therefore the aggregate
throughput decreases (saturation). The drop in throughput is caused by the increase
in packet loss, which further overloads the fabric because of retransmits. All flows
contain at most 15 segments. This is far too short for the TCP control loop to react
properly.

For low to medium load factors (/ 80x), the measured throughput monotonically
increases with a higher slope than the query completion time (delay). As seen in
Figure 3.17a, the saturation peak is variable with both the consolidation and the
load factor. In the linear region below saturation, increasing the consolidation factor,
e.g., by adding new tenants, does not influence the median completion times beyond
the set threshold. Thus, in the linear region, each new tenant positively contributes
to the OVN aggregate throughput, whereas beyond the saturation point each new
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Figure 3.17.: Established performance metrics.
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Figure 3.18.: Packet loss ratios.

tenant will diminish it and increase the latency, with a relatively smooth roll-off.
The datacenter fabric is elastic if and only if its performance is inelastic. This is
true in the linear operation region of the datacenter network.

3.7.4. Packet Loss Ratios

Packet loss ratios, plotted in Figure 3.18, are required for completeness because the
modeled commodity 10GigE infrastructure does not employ link level flow control
(i.e. Priority Flow Control), and are obtained by dividing the total number of
bytes sent by all VMs to the total number of bytes dropped by all the switches.
After the throughput peak is reached, the network saturates, as well as the queues’
occupancies at the physical switches. The percentage of losses grows accordingly,
leading to longer execution times.

3.7.5. Network Power

The network power is the ratio of throughput to completion time. It reveals the
throughput-delay tradeoffs between the datacenter operator and its tenants. While
the operator maximizes the datacenter throughput by provisioning additional VMs,
the query completion time, i.e., the main tenant performance metric, is adversely
affected. Neither of the two individual metrics in Figure 3.17 conveys the undesir-
able performance elasticity. This, however, is clearly revealed by the power metric
plotted in Figure 3.19a. We observe a more pronounced peak to surface around
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Figure 3.19.: Adapted performance metrics.
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the saturation point, followed by a sudden drop to nearly zero. In contrast, this
behavior is not distinguishable in the aggregate throughput, hence the expressivity
of power.

3.7.6. Global Efficiency

We define the datacenter efficiency as a tenant-oriented metric that sums the utility
of all active tenants. Specifically, as utility per tenant Ut we build a synthetic linear
function Ut(Tc) = max(0, 1− α Tc) of the median query completion time Tc, which
we derived based on data from various search engine usage models, e.g. [109]. The
tenant utility is maximized (1.0) when the completion time (ideally) converges to
zero; then it decreases linearly and remains zero (coarse approximation of a non-
linear decay) for completion times larger than 1

α
= 800ms. The global efficiency

under these conditions is shown in Figure 3.19b. At low load factors (/ 40x) the
efficiency increases monotonically. This validates the intuition that additional new
tenants do not influence the completion times past the accepted threshold. Be-
fore saturation, a new tenant contributes to the datacenter efficiency, but beyond
saturation diminishes it. At high loads, new tenants saturate the network earlier,
hence the global efficiency peaks around 320 tenants. In addition to the elasticity
information derived from power, now we can clearly distinguish – from the saddle-
shaped maximum surface – that the optimal consolidation factor across multiple
load factors is ≈ 320. However, this value is highly dependent of the choice of ten-
ant utility function, which remains an open issue of operational research for cloud
and datacenters.

3.8. Related Work

Several performance evaluations were recently published, addressing different as-
pects of datacenter networking. Overlay networks were proposed in [55, 110, 81, 88,
37, 24]. In [118], the impact of server virtualization on the network performance in
datacenter is studied. In [72], the datacenter traffic was measured and characterized
in a large operational cluster. Unlike the above studies, we perform here a cross-
layer study measuring the influence of overlays on applications performance. Our
commercial workload traffic generator is based on [72, 16, 26, 27]. QCN is defined
in [11] and further analyzed in [83] and [70]. Its main challenges, i.e., unfairness and
lack of RTT adaptivity [16] have been addressed by E2CM [59], AF-QCN [70], and
FQCN [123]. A first comparative evaluation of Short-Fat TCP for CEE datacenter
networks is done in [38]. Performance reviews of modern TCP variants for long-fat
networks are available in [77, 32]. Regarding PA traffic patterns, the TCP Incast
problem has been analyzed in [33, 117], where a 10− 1000× retransmission timeout
reduction and high resolution timers have been proposed. Another TCP Incast solu-
tion is DCTCP [16], using a modified RED/ECN and a multibit feedback estimator
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that filters the incoming single-bit ECN stream. Also related is [44] which analyzes
the TCP Incast problem in a QCN-enabled lossy network. More practically, the
TCP Incast is studied in [111] using Stream Control Transmission Protocol (SCTP)
and ECN.

3.9. Discussion

We summarize the results of our evaluation by answering the questions set forth in
Section 3.1.4.
(Q1) What is the influence of TCP parameters on the application performance in
an OVN environment?
The first observation is that the Default TCP parameters were unsuitable for the
simulated datacenter networks producing up to 87% longer flow completion times
when compared with the Tuned TCP parameters. Furthermore, the activation of
the overlay virtual network did not change the figure Tuned behaving consistently
better than Default.
(Q2) Does a DOVE-like OVN impact the performance of our two workloads? If yes,
how much? What are the expected performance bounds over overlays?
Overlays diminish the performance of the two selected workloads due to encapsu-
lation and discovery overhead. In Section 3.6 we showed that the increase in the
completion time of the HTTP queries ranges from 1.5% up to 18.2%. However,
we argue that even the worst case provides an acceptable trade-off in return for
the overlay’s benefits in terms of manageability and security. The primary perfor-
mance gating factor is the cache size and eviction policy, as shown in Section 3.6.2.
The optimal cache size was shown to be dependent on the amount of concurrent
flows initiated by each VM. Therefore, the 3T requires smaller caches than the PA
application. The Random and FIFO eviction policies were proven to be the best
strategies, even for modest caches. The secondary performance gating factor is the
overlay tunnel efficiency. As shown in Table 3.6 and 3.5 the impact ranges between
0.6% and 32.5%.
At a given moment in time, each source VM has a set of destination VMs to which
it communicates. Our results show that for scenarios where this set is small and
constant over time, the overlay performance impact is lower than for scenarios where
this set is large and variable. Additionally for short flows, specific to 3T and PA,
the overlay impact is larger than for long transfers in which the discovery overhead
is negligible relative to the entire flow duration.
Finally, RED improves the query completion time up to 27% – thus a low cost
addition with a positive impact. Because of the higher network load and differ-
ent traffic pattern, the RED-induced improvements are not as large as previously
shown in [28]. RED has no perceptible influence on Vegas, whereas, with NewReno
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and CUBIC, RED reduces the loss rate, thus lowering the completion times. In its
default configuration tested here, QCN currently interacts negatively with the over-
lay. By activating its rate limiters, QCN shifts the congestion point and increases
the loss ratio in the upstream virtual switch. This provides an interesting research
opportunity.
(Q3) What are the best metrics to quantify the saturation of network resources in
overlay virtual networks?
We selected and adapted five descriptive metrics to our method: aggregate through-
put, median query completion time, packet loss ratio, datacenter network power,
and its global efficiency. With these, we investigated the performance of homoge-
nous sets of tenants running 3-tier workloads in a realistic virtualized datacenter
network. As shown in Section 3.7, the datacenter has a linear region of operation
– elastic scalability with inelastic performance. Herein the load growth, induced by
the consolidation factor, the load factor, or both, contributes positively to the aggre-
gate throughput, without negatively influencing the completion times. On the other
hand, outside the linear region, the datacenter performance becomes elastic with
respect to load, i.e., inelastic scalability. Thus we empirically found the boundaries
of the linear operation region.
In addressing these issues we hope to provide insights and guidance for the data-
center and overlay architects. To the best of our knowledge we have contributed
the following: (1) We provided the first completion time cross-layer evaluation of
partition/aggregate and 3-tier applications in a realistically virtualized datacenter
network, using an actual TCP stack running over a detailed L2 CEE fabric model.
(2) We measured the influence of the OVN design parameters on the system level
performance.
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In Chapter 2 we showed that the new features of Converged Enhanced Ethernet
(CEE) can reduce the completion time of various commercial and scientific appli-
cations. Next, in Chapter 3, we described overlay virtual networks, an emerging
solution aiming to overcome the obstacles to network virtualization. As shown in
Chapter 3 the overlay networks introduce additional protocols between the tradi-
tional TCP stack and the physical layer. In this chapter we show that the perfor-
mance of applications in virtualized networks is harmed by the non-deterministic
packet drops in these new layers. We introduce the novel zero-loss Overlay Virtual
Network (zOVN) that extends the CEE features described in Chapter 2 into the
overlay virtual networks studied in Chapter 3.
Datacenter networking is currently dominated by two major trends. One aims to-
ward lossless, flat layer-2 fabrics based on Converged Enhanced Ethernet or In-
finiBand, with benefits in efficiency and performance. The other targets flexibility
based on Software Defined Networking, which enables Overlay Virtual Network-
ing. Although clearly complementary, these trends also exhibit some conflicts: In
contrast to physical fabrics, which avoid packet drops by means of flow control,
practically all current virtual networks are lossy. In this chapter we quantify these
losses for several common combinations of hypervisors and virtual switches, and
show their detrimental effect on application performance.
Next, we propose a zero-loss Overlay Virtual Network (zOVN) designed to reduce
the query and flow completion time of latency-sensitive datacenter applications. We
describe its architecture and detail the design of its key component, the zVALE
lossless virtual switch. As proof of concept, we implemented a zOVN prototype
and benchmark it with Partition-Aggregate in two testbeds, achieving an up to 15-
fold reduction of the mean completion time with three widespread TCP versions.
For larger-scale validation and deeper introspection into zOVN, we developed an
OMNeT++ model for accurate cross-layer simulations of a virtualized datacenter,
which confirm the validity of our results.

4.1. Introduction

In recent years, profound changes have occurred in datacenter networking that are
likely to impact the performance of latency-sensitive workloads, collectively referred
to as on-line and data-intensive [115]. Particularly relevant are the rise of Overlay
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Virtual Networking (OVN) – remarkable application of Software-Defined Network-
ing (SDN) – and, simultaneously, the shift to lossless layer-2 fabrics based on Con-
verged Enhanced Ethernet (CEE) or InfiniBand. So far, the trends in virtualization
and the commoditization of high-performance-computing-like lossless1 fabrics have
been decoupled, each making independent inroads into the datacenter.
While the research community increasingly focuses on the performance of horizontally-
distributed data-intensive applications [33, 16, 17, 71, 115, 119, 122], and recently
also on virtualization overlays for multitenant datacenters [88, 118, 37], we argue
that the combination of virtualization and such workloads merits closer scrutiny
[28]. Our main objective is to analyze the impact of the absence versus presence
of flow control on workload performance in a virtualized network. As our study
specifically focuses on latency-sensitive, data-intensive workloads, the performance
metric of interest is flow completion time (FCT) [46]. As a representative workload
model, we selected Partition-Aggregate [16, 119].

4.1.1. Network Virtualization

As server virtualization allows dynamic and automatic creation, deletion, and migra-
tion of virtual machines (VMs), the datacenter network must support these functions
without imposing restrictions, such as IP subnet and state requirements. In addition
to VM mobility and ease of management, complete traffic isolation is desirable for
improved security, which can be achieved by layer-2 and -3 virtualization. Rather
than treating the virtual network as a dumb extension of the physical network, these
requirements can be effectively met by creating SDN-based overlays such as VXLAN
[81] and DOVE [37]. An exemplary architectural exposition of modern virtual over-
lays is NetLord [88], which covers the key motivations and design principles.
SDN as a concept decouples the control and data planes, introducing programma-
bility and presenting applications with an abstraction of the underlying physical
network. Scalable and flexible “soft” networks can thus be designed to adapt to
changing workloads and to datacenter tenants and operators needs. In a nutshell,
SDN trades some degree of performance to simplify network control and manage-
ment, to automate virtualization services, and to provide a platform upon which
new network functionalities can be built. In doing so, it leverages both the Open-
Flow [82, 95] and the IETF network virtualization overlay [110, 81] standards.
Based on the adoption rate of virtualization in datacenters, the underlying assump-
tion is that virtual networks (VN) will be deployed in practically most, if not all,
multitenant datacenters, providing a fully virtualized Cloud platform by default.

1In this chapter we use lossless and zero-loss in the sense of avoiding packet drops due to con-
gestion. Packets might still be discarded because of CRC errors in the physical links. These,
however, are extremely rare events under normal conditions (typical bit error rates are 10−12

or less) and recovered by TCP. In Chapter 5 we will show how the overlay virtual network can
be further extended to also recover these errors.
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For the remainder of this chapter, we presume that VN overlay is an intrinsic part
of the extended datacenter network infrastructure. Thus we envision a fully virtu-
alized datacenter in which “bare-metal” workloads become the exception, even for
mission-critical applications.

However, current hypervisors, virtual switches (vSwitches) and virtual network in-
terface cards (vNICs) critically differ from their modern physical counterparts. In
fact, they have a propensity to liberally drop packets even under minor congestive
transients. These losses can be considerable and non-deterministic, as will be pre-
sented in Section 4.2.3. Consequently, current non-flow-controlled virtual networks
will significantly cancel out the investments of upgrading datacenter networks with
flow-controlled CEE and InfiniBand fabrics. We argue that this lossy legacy un-
necessarily hinders both the application performance and the progress of future
datacenters.

4.1.2. Lossless Fabrics

The recent standardization of 802 Data Center Bridging for 10-100 Gbps CEE trig-
gered the commoditization of high-performance lossless fabrics. First generation
10G products are already on the market, and CEE fabrics at 40G, or even 100G,
have been announced by several vendors.

Traditionally, Ethernet did not guarantee losslessness: packets were dropped when-
ever a buffer reached its maximum capacity. This behavior does not match the
modern semantics of datacenter applications, including High-Performance Comput-
ing (HPC) environments [41], storage (Fibre Channel over Ethernet [10]), or Remote
Direct Memory Access (RDMA) over Ethernet [36].

CEE upgrades Ethernet with two new mechanisms of interest here: A link-level
flow control, i.e., Priority Flow Control (PFC) [13], and an end-to-end congestion
management known as Quantized Congestion Notification (QCN). PFC divides the
controlled traffic into eight priority classes based on the 802.1p Class of Service
field. Within each priority PFC acts as the prior 802.3x PAUSE, except that a
paused priority will not affect the others. Hence, a 10-100G link is not fully stopped
whenever a particularly aggressive flow exceeds its allotted buffer share. Despite
the marked improvement over the original PAUSE, a side-effect of PFC still remains
the potential global throughput collapse, which differs from the lossy case. The
buffer of a flow-controlled blocked receiver may recursively block buffers upstream,
spreading the initial congestion into a saturation tree [97]. To address these head-of-
line blocking issues, QCN was defined and extensively simulated prior to releasing
PFC. For a comprehensive description of the aforementioned CEE protocols the
reader is directed to Chapter 2.
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4.1.3. Contributions and Structure

The contributions of this chapter are as follows:
1. We identify and characterize the problem of packet drops in virtual net-

works. We show that virtual networks are affected by considerable and non-
deterministic losses that harm performance of latency sensitive applications.

2. We implement the first zero-loss Overlay Virtual Network (zOVN) to address
the problem of packet drops in converged multitenant datacenters.

3. We quantitatively verify how zOVN improves the standard TCP performance
for data-intensive applications. Testing Partition-Aggregate on top of zOVN,
we achieved up to 15-fold reductions in flow completion times using two distinct
testbeds with 1G and 10G Ethernet respectively, and three standard TCPs.

4. Finally, we investigate the scalability of zOVN by means of accurate full system
cross-layer simulations.

The remainder of this chapter is structured as follows: In Section 4.2 we present the
main issues of current virtual networks. In Section 4.3 we explore the design space
of virtual overlays. We provide the details of our zOVN prototype in Section 4.4
and evaluate its performance in Section 4.5. We analyze the results in Section 4.6
and we summarize the related work in Section 4.7. Finally we conclude the chapter
in Section 4.8.

4.2. Virtual Networks Challenges

The two deficiencies of current virtual networks are latency penalties and excessive
packet dropping.

4.2.1. Latency

A virtual link does not present a well-defined channel capacity. Neither arrivals
nor departures can be strictly bounded. The virtual link service time remains a
stochastic process depending on the processor design, kernel interrupts, and process
scheduling. This negatively affects jitter, burstiness, and quality-of-service. Hence,
virtual networks without dedicated real-time CPU support remain a hard networking
problem. In addition, virtual networks introduce new protocols spanning layer-2 to
4 and touch every flow or, in extreme cases, even every packet [88, 37]. The result is
a heavier stack, with encapsulation-induced delays and overheads possibly leading
to fragmentation and inefficient offload processing.
However, the more critical performance aspect is the impact on latency-sensitive
datacenter applications. Latency and flow-completion time have been recently es-
tablished as crucial for horizontally-distributed workloads such as Partition - Aggre-
gate, typically classified as soft real-time. The 200ms end-user deadline [16, 119, 62]
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Figure 4.1.: Experimental setup for virtual network loss measurements.

translates into constraints of few 10s of milliseconds for the lower-level workers. Al-
though the additional VN-induced delay may be negligible in a basic ping test [88],
its impact on more realistic Partition-Aggregate workloads can lead to an increase in
the mean flow completion time of up to 82% [28]. This raises concerns about poten-
tially unacceptable VN performance degradations for such critical latency-sensitive
applications in a virtualized multitenant environment.

4.2.2. Losslessness

Ideally a VN should preserve the lossless abstraction assumed by converged data-
center applications such as Fibre Channel over Ethernet [10], RDMA over Ethernet
[36] or HPC environments [41]. Yet currently all the commercial and open-source
VNs that we have tested are lossy. As losslessness is a critical qualitative feature
for the future of converged datacenter networking, CEE spared no effort to ensure
zero-loss operation by using two complementary flow and congestion control pro-
tocols, namely, PFC and QCN. The same holds for InfiniBand, with its link level
credit-based flow control and its FECN/BECN-based end-to-end Congestion Control
Annex. In comparison, despite the possibility of relatively simpler and lower-cost
flow control implementations, current VNs still resort to packet drop during con-
gestion. This not only degrades datacenter performance, but also fails to correctly
terminate modern flow-controlled fabrics, canceling out the investments in a lossless
physical network. As an alternative, we demonstrate how a zero-loss Overlay Vir-
tual Network (zOVN) can meet both the desired losslessness and the performance
requirements.

4.2.3. Loss measurements

To support the above claims, we assess the extent of packet drops using commonly
available virtualization solutions. We perform the experiment shown in Figure 4.1
in which VM1 and VM2 act as sources and send their traffic towards VM3, which
acts as sink, creating a common congestion scenario. We evaluate (i) where and how
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Hypervisor vNIC vSwitch
C1 Qemu/KVM virtio Linux Bridge
C2 Qemu/KVM virtio Open vSwitch
C3 Qemu/KVM virtio VALE
C4 H2 N2 S4
C5 H2 e1000 S4
C6 Qemu/KVM e1000 Linux Bridge
C7 Qemu/KVM e1000 Open vSwitch

Table 4.1.: Configurations for loss measurements.

 0

 0.5

 1

 1.5

 2

C1 C2 C3 C4 C5 C6 C7

In
g

re
s
s
 T

ra
ff

ic
 [

G
B

y
te

s
]

virtio N2 e1000

Received vSwitch loss Stack loss

Figure 4.2.: Causes of packet losses. Configurations C1-C7 defined in Table 4.1.

frequently losses occur, and (ii) the maximum bandwidth that a virtual switch can
sustain without dropping packets.

We considered the combinations of hypervisors, vNICs, and virtual switches shown
in Table 4.1. Qemu/KVM is an open-source hypervisor, whereas H2 is a commercial
x86 hypervisor. They were used with two types of vNICs: virtio [105] and N2 are
virtualization optimized vNICs designed for Qemu and H2, respectively, whereas
e1000 fully emulates the common Intel2 e1000 adapter. In combination with Qemu,
we used three virtual switches: Linux Bridge [4], Open vSwitch [7] and VALE [102].
The first two are stable products used in various production deployments whereas
VALE is currently a prototype. The combination Qemu-e1000-VALE was omitted
as it was affected by an implementation bug that allows internal queues to grow
indefinitely, resulting in substantially diverging results between runs. With H2 we
used its own internal virtual switch S4. All configurations have been tested on a
Lenovo T60p Laptop (part of Testbed 1 detailed in Figure 4.7). Across all experi-
ments, iperf [3] injects 1514B frames of UDP traffic. We determine the losses and
bandwidths using the six measurement points shown in Figure 4.1: (1) and (6) are
inside the application itself, (2) and (5) are on the TX and RX side of each vNIC,
whereas (3) and (4) are at the virtual switch ports.
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Figure 4.3.: vSwitch forwarding performance.

Experiment 1: Both generators injected traffic at full speed for 10s, with the last
packet being marked. We computed the number of lost packets as the difference
between the number of packets transmitted and received at the other end. We
investigate (i) vSwitch losses, i.e., packets received by the vSwitch input ports (3)
and never forwarded to the vSwitch output port (4), and (ii) receive stack losses,
i.e., packets received by the destination vNIC (5) and never forwarded to the sink
(6). The TX path is backpressured up to the vSwitch, hence no losses were observed
between other measurement points. A more accurate analysis of the possible loss
points is presented in Section 4.4. With VALE and S4, we could not access the
points (3) and (4). Hereby the difference between the sender vNIC and the receiver
vNIC counters (points (2) and (5), respectively) was accounted as virtual switch
losses. The results are plotted in Figure 4.2.

Depending on configuration, the total traffic forwarded during the 10s window var-
ied widely. In virtualized networks performance is bounded by the computational
resources assigned to each block by the host operating system. Compute-intensive
configurations score lower throughputs, inducing less losses in the vSwitch. An ex-
ample is given by the e1000-based configurations that emulate a fake hardware to
“deceive” the guest driver. The virtualization-optimized vNICs – i.e., virtio and N2
– achieved higher rates, thus causing overflows in the virtual switch. The perfor-
mance optimized VALE switch shifted the bottleneck further along the path, into
the destination VM stack. All these results are evidence of the lack of flow control
between the virtual network devices, and confirm our initial conjecture.

Experiment 2: To analyze the maximum sustainable bandwidth for the virtual
switches, we varied the target injection rate at each generator in increments of 5
Mb/s, starting from 5 Mb/s. The aggregated virtual switch input traffic is the
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Figure 4.4.: Experimental loss results. The losses are measured between points 1 and 6 from
Figure 4.1.

98



4.3. zOVN Design

sum, i.e., twice the injection rate. Figure 4.3 and Figure 4.4a plot, respectively, the
RX rate and loss ratio as a function of the total injection rate. Both were calcu-
lated at application level (points (1) and (6)). All configurations exhibit saturation
behaviors. The RX rate first increases linearly with the TX rate, up to a satura-
tion peak. Beyond this, with the exception of C4, we observe a drop indicating a
lossy congestive collapse, rather than the desired steady saturation plateau. The
overloaded system wastes resources to generate more packets, instead of dedicating
sufficient resources to the virtual switch and destination VM to actually forward
and consume the packets. Although the saturation point varied considerably across
configurations, loss rates well in excess of 50% were observed for all configurations
(Figure 4.4a). Even far below the saturation load, marked by vertical lines, we mea-
sured losses in the virtual network (Figure 4.4b) that were significantly above the
loss rates expected in its physical counterpart, i.e., up to 10−2 instead of 10−8 for
MTU-sized frames with a typical bit-error rate of 10−12.

The “noise” in Figure 4.4b confirms our intuitive hypothesis about large non-causal
performance variability in virtual networks. In fact, the service rate of each virtual
link depends critically on the CPU, load, process scheduling, and the computational
intensity of the virtual network code. Suboptimal and load oblivious scheduling
causes frequent losses, e.g., by scheduling a sender prior to a backlogged receiver.
Lossless virtual switches would be of great interest, not only in terms of efficiency
but also for performance predictability. The next sections will present how flow
control can be implemented in virtualized datacenter networks.

4.3. zOVN Design

In this section we outline the core principles that guided the design of our lossless
virtual network.

4.3.1. Objectives

A converged virtualized network infrastructure must simultaneously satisfy the re-
quirements from the domains being converged. As mentioned above, losslessness is
a functional requirement of various HPC, storage and IO applications, whereas on-
line data-intensive workloads impose performance requirements of 200 ms user-level
response times.

We base our lossless virtual datacenter stack on CEE-compatible flow control. Transport-
wise, we anchor zOVN’s design on the established TCP stack combined with lossless
overlays as proposed here. Our objectives are :

1) Reconcile the flow completion time application performance with datacenter ef-
ficiency and ease of management. This proves that network virtualization and
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horizontally-distributed latency-sensitive applications are not mutually exclusive.
This may remove an obstacle for virtual network deployment in performance-
oriented datacenters.
2) Prove that commodity solutions can be adapted for sizable performance gains.
As shown in Section 4.5, a 15-fold flow completion time reduction is also attainable
without a clean-slate deconstruction of the existing fabrics and stacks. One can
achieve comparable performance gains with CEE fabrics and standard TCP stacks.
Considering the total costs of ownership, this evolutionary reconstruction approach
is likely to outperform other, possibly technically superior, alternatives in terms of
cost/performance ratios.
3) Expose packet loss as a costly and avertable singularity for modern datacen-
ters, and, conversely, losslessness as a key enabler in multitenant datacenters for
both (i) the query and flow completion time performance of horizontally-distributed
latency-sensitive workloads, and (ii) the convergence of loss-sensitive storage and
HPC applications. This basic HPC principle has already been proved by decades of
experiences in large-scale deployments. As faster InfiniBand and CEE fabrics are
widely available at decreasing prices, datacenters could also now benefit from prior
HPC investments in lossless networks.
4) Design and implement a proof-of-concept zero-loss virtual network prototype to
experimentally validate the above design principles in a controllable hardware and
software environment.
5) Finally, extend and validate at scale the experimental prototype with a detailed
cross-layer simulation model.

4.3.2. End-to-end Argument

The wide availability of lossless fabrics and the thrust of SDN/OpenFlow have
prompted us to reconsider the end-to-end and “dumb network” arguments in the
context of datacenters. The end-to-end principle [106] can be traced back to the
inception of packet networks [25]. Briefly stated, application-specific functions are
better implemented in the end nodes than in the intermediate nodes: for example,
error detection and correction should reside in NICs and operating system stacks and
not in switches and routers. While one of the most enduring design principles, this
can also restrict the system level performance in end-to-end delay, flow completion
time and throughput [29].
In datacenters, the delay of latency-sensitive flows is impacted not only by net-
work congestion, but also by the end-node protocol stacks [101]. Historically, for
low-latency communications, both Arpanet and Internet adopted “raw” transports -
unreliable, yet light and fast - instead of TCP-like stacks. Similarly, InfiniBand em-
ploys an Unreliable Datagram protocol for faster and more scalable “light” commu-
nications. Also HPC protocols have traditionally used low-latency end-node stacks
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based on the assumption of a lossless network with very low bit-error rates. Given
the increasing relevance of latency-sensitive datacenter applications, current solu-
tions [16, 17, 119, 115] adopted an intriguing option: decouple flow control from the
fabric. Here we show that coupling flow control with the fabric positively impacts
the workload performance.

4.3.3. Overlay Virtual Network Design Space

The simplest virtual network would start with a large flat layer-2 network for each
tenant. However, this approach does not scale within the practical constraints of
current datacenter network technologies. The increasing number of VMs has led to a
MAC address explosion, whereby switches need increasingly larger forwarding tables.
Also, dynamic VM management stresses the broadcast domains [88]. Moreover,
today’s limit of 4K Ethernet VLANs is insufficient for multitenant datacenters unless
Q-in-Q/MAC-in-MAC encapsulation is used. Finally, the datacenter network must
support dynamic and automatic provisioning and migration of VMs and virtual disks
without layer-2 or -3 addressing constraints. The emerging solution to full network
virtualization are the overlay virtual networks. A number of overlays have recently
been proposed [55, 110, 81, 88, 24, 37]. Their key architectural abstraction lies in
the separation of virtual networking from the underlying physical infrastructure.
Overlays enable an arbitrary deployment of VMs within a datacenter, independent
of the underlying layout and configuration of the physical network, without changing
or reconfiguring the existing hardware.

Current overlays are predominantly built using layer-2 to -4 encapsulation in UDP,
whereby the virtual switches intercept the VM traffic, perform the en-/de-capsulation,
and tunnel the traffic over the physical network. Each VM has an associated net-
work state residing in the adjacent switch. Upon VM migration, the virtual switches
update their forwarding tables to reflect the new location. Using encapsulation over
IP [88, 81, 24, 37], the VM locations are neither limited by the layer-2 broadcast
domains, nor by VLAN exhaustion. Instead, full IP functionality is preserved, in-
cluding QoS and load balancing. Furthermore overlays are independent of location,
domains and the physical networking capabilities. Thus these virtual switches are
similar to traditional hypervisor switches, but now with additional functionality as
overlay nodes. Inherently an overlay network trades some of the bare-metal perfor-
mance for manageability, flexibility and security.

Performance-wise, such overlays influence datacenter’s efficiency and scalability.
First, on the data plane: they use encapsulation to build tunnels between virtual
switches. Current encapsulation solutions, such as VXLAN [81] and NVGRE [110],
solve the original VLAN limitation while reducing the configuration and manage-
ment overhead. Second, on the management plane: configuration, distribution, and
learning protocols are necessary to create tunnels at each virtual switch. To create a
tunnel, the overlay switch must map the destination address to its physical location
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Figure 4.5.: Flat layer-2 fabric with 256 servers.

using either the learning or the centralized approach. The learning approach, used by
VXLAN [81], floods packets with unknown destinations. The centralized approach
relies on the virtual switches to retrieve the information required for encapsulation.
In NetLord [88], this information is learnt by the switches as they communicate
with each other and from a central configuration repository. In DOVE [24, 37], this
configuration information is retrieved from a centralized database. Both the central
configuration repository in NetLord and the centralized database in DOVE must
be highly available and persistent. This poses a challenge for multi-million node
datacenters, thus indicating a future third option of a distributed repository ap-
proach, presuming the entailing coherency issues can be solved efficiently. For now,
the learning and centralized approaches are simpler to design and manage. Notably,
the centralized method also inherently prevents flooding, the main drawback of the
learning approach. For zOVN we have adopted and extended DOVE’s centralized
approach with a custom encapsulation header.

4.4. zOVN Implementation

In this section we describe the details of the implementation of our proposed lossless
overlay network (zOVN). We assume a collection of virtualized servers, each running
a set of virtual machines. The servers are interconnected through a flat layer-2 fabric
(an example is shown in Figure 4.5). The physical network has per-priority flow
control, allowing the network administrator to configure one or more priorities as
lossless. The physical per-priority flow control is extended into the virtual domain
by our proposed zOVN hypervisor software.

Without loss of generality, to simplify the description, we assume that a single
lossless priority is used. In a real setup, different priority classes can be configured
to segregate loss tolerant traffic, from mission-critical latency-sensitive traffic that
benefits from losslessness, as shown in the next sections.
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4.4.1. Path of a Packet in zOVN

The data packets travel between processes (applications) running inside VMs. Along
the way, packets are moved from queue to queue within different software and hard-
ware components. Here we describe the details of this queuing system, with emphasis
on the flow control mechanism between each queue pair. The packet path trace is
shown in Figure 4.6.

After processing the packets in the VM’s guest kernel, they are transferred to the
hypervisor through a vNIC. The hypervisor forwards them to the virtual switch,
which provides the communication between VMs and the physical adapter. Packets
destined to remote VMs are taken over by a bridge with OVN tunneling functionality
that encapsulates and moves them into the physical adapter queues. After traversing
the physical network, they are delivered to the destination server, where they are
received by the remote bridge, which terminates the OVN tunnel by decapsulating
and moving them into the destination’s virtual switch input queues. The virtual
switch forwards the decapsulated packets to the local hypervisor, which in turn
forwards them to the guest OS. After processing in the guest kernel, the received
packets are eventually delivered to the destination application. Based on a careful
analysis of the end-to-end path, we identified and fixed the points of potential loss,
labeled in white on black in Figure 4.6, i.e., the vSwitch and the reception path in
the guest kernel.

4.4.1.1. Transmission Path

On the transmit side, packets are generated by the user-space processes. As shown
in Figure 4.6, the process issues a send system call that copies a packet from user
space into the guest kernel space. Next, packets are stored in an sk_buff data
structure and enqueued in the transmit (TX) buffer of the socket opened by the
application. The application knows whether the TX buffer is full from the return
value of the system call, making this a lossless operation.

Packets from the socket TX buffer are enqueued in the Qdisc associated with the
virtual interface. The Qdisc stores a list of pointers to the packets belonging to
each socket. These pointers are sorted according to the selected discipline, FIFO by
default. To avoid losses at this step, we increase the length of the Qdisc to match
the sum of all socket TX queues. This change requires negligible extra memory. The
Qdisc tries to send the packets by enqueuing them into the adapter TX queue. If
the TX queue reaches a threshold – typically one MTU below maximum – the Qdisc
is stopped and the transmission is paused, thus avoiding losses on the TX path of
the kernel. When the TX queue drops below the threshold, the Qdisc is restarted
and new packets can be enqueued in the TX queue of the virtual adapter. Hence,
the transmission path in the guest OS remains lossless as long as the Qdisc length
is properly sized.
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Figure 4.6.: Life of a packet in a virtualized network.

Our architecture is based on virtio technology [105], hence the virtual adapter queues
are shared between the guest kernel and the underlying hypervisor software running
in the host user space. The virtio adapter informs the hypervisor when new packets
are enqueued in the TX queue. The hypervisor software is based on Qemu [8] and
is responsible for dequeuing packets from the TX queue of the virtual adapter and
copying them to the TX queue of the zOVN virtual switch.

The Qemu networking code contains two components: virtual network devices and
network backends. We use the virtio network device coupled to a Netmap [101]
backend. We took the Netmap backend code of the VALE [102] virtual switch and
ported it to the latest version of Qemu with the necessary bug fixes, mainly related
to concurrent access to the Netmap rings. We use a lossless coupling between the
device and the backend, avoiding – via configuration flags – the lossy Qemu VLANs.
Packets arrive at the vSwitch TX queue of the port to which the VM is attached.
The vSwitch forwards packets from the TX queues of the input ports to the RX
queues of the output ports using a forwarding (FIB) table that contains only the
MAC addresses of the locally connected VMs. If the destination is found to be
local, the respective packets are moved to the corresponding RX queue; else they
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are enqueued in the RX port corresponding to the physical interface. From here,
packets are consumed by a bridge that encapsulates and enqueues them in the TX
queue of the physical adapter. Then the lossless CEE physical network delivers the
packets to the destination server’s physical RX queue.
As shown in Section 4.2.3, none of the current virtual switches implement flow
control, as also confirmed by our discussions with some of the virtualization vendors.
Therefore we have redesigned the VALE vSwitch to add internal flow control and
to make the TX path fully lossless, as described in Section 4.4.2.

4.4.1.2. Reception Path

The incoming packets are consumed and decapsulated by the OVN tunneling bridge
from the RX queue of the physical NIC. Next, they are enqueued in the TX queue
of the virtual switch that forwards them to the RX queue corresponding to the
destination VM. This forwarding is again lossless, see Section 4.4.2. The packets are
consumed by the Qemu hypervisor, which copies them into the virtio virtual device.
The virtual device RX queue is shared between the hypervisor and the guest kernel.
The hypervisor notifies the guest when a packet has been received and the guest
OS receives an interrupt. This interrupt is handled according to the Linux2 NAPI
framework. A softirq is raised, which triggers packet consumption from the RX
queue. The packet is transferred to the netif_receive_skb function that performs
IP routing and filtering. If the packet is destined to the local stack, it is enqueued
in the destination socket RX buffer based on the port number. If the destination
socket is full, then the packet is discarded. With TCP sockets this should never
happen because TCP has end-to-end flow control that limits the number of injected
packets to the advertised window of the receiver. UDP sockets, however, require
additional care. We modified the Linux kernel such that when the destination socket
RX queue occupancy reaches a threshold – i.e., one MTU below maximum – the
softirq is canceled and reception is paused. Once the process consumes data from
the socket, reception is resumed. This ensures full lossless operation for both TCP
and UDP sockets.

4.4.2. zVALE: Lossless virtual Switch

As stated before, our lossless vSwitch is derived from VALE [102], which is based
on the Netmap architecture [101]. It has one port for each active VM, plus one
additional port for the physical interface. Each port has an input (TX) queue
for the packets produced by the VMs or received from the physical link, and an
output (RX) queue for the packets to be consumed by VMs or sent out over the
physical link. The lossy state-of-the-art implementation forwards packets from input
to output queues as fast as they arrive. If an output queue is full, packets are locally
discarded.
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Algorithm 4.1: Lossless Virtual Switch Operation
globals: N input queues Ij , N output queues Ok

on send(input queue Ij, frame F)
if input queue Ij full then

sleep
else

Ij .enqueue(F )
start forwarder(Ij)

end
end
on receive(output queue Ok, frame F)

if output queue Ok empty then
for j ← 1..N do

start forwarder(Ij)
end

end
if output queue Ok empty then

sleep
else

F ← Ok.dequeue()
end

end
on forwarder(input queue Ij)

foreach frame F in input queue Ij do
output port k ← forwarding table lookup(F.dstMAC)
if not output queue Ok full then

Ij .remove(F )
Ok.enqueue(F )
wake_up receiver(Ok) and sender(Ij)

end
end

end

To make such a software switch lossless, we designed and implemented the pseu-
docode shown in Algorithm 4.1. Each sender (producer) is connected to an input
queue Ij, and each receiver (consumer) is connected to an output queue Ok. After a
packet has been produced, the sender checks whether the associated input queue is
full. If the queue is full, the sender goes to sleep until a free buffer becomes available,
else the sender enqueues the packet in the input queue and then starts a forwarding
process to try to push packets from the input to the output queues. The forwarder
checks each output queue for available space. If a queue has room, the forwarder
transfers the packets to the output queue and wakes up the corresponding consumers
that might be waiting for new packets. On the receiver side, the associated output
queue is checked; if not empty, a packet is consumed from it, else the forwarding
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Figure 4.7.: Real implementation testbeds.

Testbed 1 Testbed 2
Lenovo T60p IBM System x3550 M4

System Type Laptops Rack Servers

CPU
1x Intel Core 2 2x Intel Xeon

T7600 E5-2690
Total cores 2 16

Clock speed [GHz] 2.33 2.90
Memory [GB] 3 96

Physical machines 8 4
VMs/machine 4 16
Data network 1G Ethernet 10G CEE
Physical switch HP 1810-8G IBM RackSwitch G8264
Control network wireless 1G wired
Linux kernel 3.0.3 64-bit 3.0.3 64-bit

Table 4.2.: Experimental testbed configurations.

process is started to pull packets from the input queues to this output queue. If
data is actually pulled, it is consumed; else the receiver sleeps until woken up by
the sender.

The vSwitch is designed to operate in a dual push/pull mode. When the sender
is faster (than the receiver), it will sleep most of the time waiting for free buffers,
while the receiver will wake it up only when it consumes data. When the receiver
is faster (than the sender), it will sleep most of the time, while the sender will wake
it up only when new data becomes available. The overhead of lossless operation is
thus reduced to a minimum.

4.5. Evaluation

In this section we evaluate our proposed lossless vSwitch architecture, applying the
Partition-Aggregate (PA) workload described in Section 4.5.1. We run this workload
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Figure 4.8.: Partition-Aggregate (PA) application.

both in two lab-scale experiments with 32 VMs and in a larger-scale simulation using
an OMNeT++ model of a 256-server network.

4.5.1. Partition-Aggregate Workload

A generic 3-tier PA application is presented in [16, 119] and illustrated in Figure 4.8.
At the top tier, a high-level aggregator (HLA) receives HTTP queries from external
clients (1). Upon reception of such a request, the HLA contacts randomly selected
Mid-Level Aggregators (MLA) and sends them a subquery (2). The MLAs further
split the subquery across their workers, one in each server in the same chassis (3).
Eventually, each worker replies to the MLA by returning a response. The MLA
collects the partial results from workers. When all results have been received, the
MLA sends its aggregated response to the HLA. The query is completed when the
HLA receives the aggregated response from each MLA. The key metric of interest
is the flow (or query) completion time, measured from arrival of the external query
until query completion at the HLA. In the prototype experiments, similar with the
experiments described in [16, 119], we use a reduced two-tier PA workload, in which
the MLAs have been omitted, and the HLAs contact the workers directly. In the
simulations, on the other hand, we use the full configuration. In both cases, the
flows are sent over TCP. The connections between the various components are kept
open during the runs to allow TCP to find the optimal congestion window sizes and
to avoid slow start.

4.5.2. Microbenchmarks

First, we deployed our prototype implementation on two Lenovo M91p-7034 desk-
tops (Intel i5-2400 @ 3.10GHz CPU, 8GB memory, Linux 3.0.3 64-bit kernel both
for host and guests). The machines were connected through a 1 Gbps 3com 3GSU05
consumer-level Ethernet switch supporting IEEE 802.3x. The host kernel was
patched with the Netmap [101] extensions and our zOVN switch and bridge. The
guest kernel was patched with our lossless UDP socket extension.
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Figure 4.9.: Microbenchmarks: 6 VMs PA.
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We ran PA queries with a single aggregator and five workers. In Figure 4.9 we
report the mean query completion time. In Figure 4.9a the aggregators and the
workers resided in VMs on the same server (1-server setup), whereas in Figure 4.9b
the aggregator was on a different server than the workers (2-server setup). We
varied the size of the workers response to the aggregator from 2 to 2048 MTUs. To
achieve statistical confidence, each run consisted of 10K repetitions. We compared
the Linux Bridge [4] with the lossy VALE implementation [102] and our proposed
lossless zOVN. On the 2-server setup, the Netmap-based solutions outperformed
the Linux Bridge, but only for small response sizes (up to 30% for 2 MTUs). For
medium-sized flows, the Linux Bridge was better (e.g., 8% performance degradation
for 64 MTUs when using zOVN). For large response sizes, the three implementations
exhibited similar response times. The physical link has a constant service rate, so
that TCP was able to find the proper congestion window to avoid most losses.
On the desktop machines, the vSwitch could support up to 1.45 Gbps of traffic
without losses, compared with the 256 Mbps for the laptop machines. However, the
maximum bandwidth through the vSwitch was limited to the 1 Gbps of the physical
link, which was the bottleneck in this case. Accordingly, we measured loss ratios of
less than 0.02%. Enabling losslessness on such a configuration brings no additional
benefits. However, this result validates the efficiency of our implementation.

In the 1-server setup, the zOVN switch was consistently better than the lossy VALE
switch across all runs. The Linux Bridge exhibited performance variabilities (up
to +19% improvement for the 16 MTU responses over zOVN, but as much as –
65% degradation over zOVN for 128 MTU responses). The architecture of the
Linux Bridge requires one extra copy for each packet sent or received. This extra
overhead slows down the workers reducing the pressure on the vSwitch, thereby
reducing packet losses. In the 2-server scenario, the extra overhead was hidden by
the physical link bottleneck.

4.5.3. Lab-Scale Experiments

Next, we deployed zOVN over the two testbeds described in Figure 4.7. We ran a PA
workload using 32 VMs with the same methodology and flow sizes as in the previous
paragraph. In addition, we varied the TCP version between NewReno, Vegas and
Cubic. As shown in Figure 4.7, each physical machine has two network interfaces.
The PA traffic that is subject to measurements flows through an isolated data net-
work. The workers, aggregators and background traffic generators are started and
killed through a separate control network, which is also used to configure the data
network before each run and to gather the statistics at the end without interfering
with the experiments.

Testbed 1: Laptops. In Figure 4.11a and 4.11b, we report the mean completion
time and performance gain of zero-loss (Z) over lossy (L). The zero-loss configuration
has flow control enabled both in the physical and the virtual network, whereas the
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Figure 4.11.: Testbed 1 results: 32 VMs PA running on 8 laptops.

lossy configuration has no flow control in any of the two networks. The mean flow
completion time was reduced by a factor of up to 19.1×. The highest benefit was
achieved for flow sizes between 6 KB and 48 KB (4 and 32 packets). For very
small flows, the total size of all worker responses was too small to cause any buffer
overflow. For long flows, the losses were recovered through fast-retransmit and
selective acknowledgments. All TCP versions performed about equally.

In Figure 4.11c and 4.11d, we report the same metrics, but with background traffic.
In this scenario, each VM hosts an additional traffic generator producing background
flows. The generator chooses a random uniformly distributed destination, then it
sends to it a TCP flow with the length drawn from the distribution in Figure 4.10a.
Afterward, the generator sleeps according to the background flow inter-arrival dis-
tribution shown in Figure 4.10b. Both the PA and the background flows use the
same TCP version. The gain is smaller than in the previous scenario, because the
background flows also benefit from losslessness obtaining a higher throughput. In
particular, the congestion window of NewReno and Cubic are kept open due to the
absence of losses. On the other hand, the latency sensitive Vegas injects background
traffic at a lower rate, thus the completion times are shorter.
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Figure 4.12.: Testbed 2 results: Without background flows, 32 VMs PA running on 4 rack servers.
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Figure 4.13.: Testbed 2 results: With background flows, 32 VMs PA running on 4 rack servers.
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Figure 4.14.: Simulation results: Without background flows. 768 VMs PA with 256 servers.

Testbed 2: Rack Servers. We repeat the above experiments on 4 rack servers
with a 10G CEE network. Each server hosts 16 VMs: 8 for PA traffic and 8 VMs
for generating background traffic. We studied four flow control configurations: no
flow control (LL), flow control activated in the physical network (LZ), flow control
activated in the virtual network (ZL), and flow control activated in both (ZZ). The
mean completion times and gains over LL are reported in Figure 4.12a and 4.12b.
The mean completion times are reduced by a factor up to 15.95×, similar to the
laptop experiments. Although the server CPUs have more resources than the laptop
CPUs, they have to handle more VMs and more traffic from a 10× faster network.
Activating flow control only in the physical network (LZ) showed no major benefit
in this scenario, where the primary bottleneck is in the vSwitches. Also, enabling
flow control only in the vSwitch (ZL) shifted the drop point from the virtual to the
physical domain. Finally, in Figure 4.13a and 4.13b, we repeated the experiments
with background traffic, confirming the findings from Testbed 1.

4.5.4. Simulation Experiments

To finalize our validation, we implemented a model of the zOVN system on top
of the OMNeT++ network simulator. The simulator models a 10G CEE fabric at
frame level with generic input-buffered output-queued switches. As the TCP models
implemented in OMNeT++, as well as those from NS2/3, are highly simplified, we
ported the TCP stack from a FreeBSD v9 kernel into this simulator with only
minimal changes, most of them related to memory management. As we focus on
the network, we did not model the endnode CPUs, assuming that the endnodes
can process the segments as fast as they arrive, and that the applications can reply
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Figure 4.15.: Simulation results: 768 VMs PA with 256 servers.
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immediately. The stack adds only a fixed delay to each segment, calibrated from
our prior hardware experiments. Even if idealized, these assumptions are consistent
with our network-centric methodology. The simulator also incorporates a thin UDP
layer used for background flows performing simple segmentation and encapsulation
of the application data.

The zOVN model performs switching and bridging in the same way as in the testbed
experiment. However, here we chose a different encapsulation size of 54B, reflecting
a VXLAN-type encapsulation: 18B outer Ethernet header + 20B outer IP header
+ 8B UDP header + 8B VXLAN header. To avoid fragmentation, we decreased
the MTU value accordingly from 1500B to 1446B. Modern CEE hardware is able to
increase its physical MTUs, thus preserving the default settings.

The simulated network topology is shown in Figure 4.5. It consists of 256 servers,
distributed in 16 chassis, and interconnected through a three-layer fat tree. Clients
attached to the up-links inject HTTP queries that are served by the VMs residing
on each virtualized server. The queries were generated according to the inter-arrival
times shown in Figure 4.10b. Each server hosts 3 VMs, one HLA, one MLA and
one worker. The client query reaches a randomly chosen HLA that in turns chooses
16 MLAs, one in each chassis. Each MLA contacts all worker VMs from the same
chassis. The messages exchanged between the HLA, MLAs and workers have a fixed
size of 20KB.

Figure 4.15 compares the mean completion times and the 5- and 95-percentiles for
different flow control configurations under no, light, and heavy background traffic.
We studied the four flow control configurations introduced above (LL, LZ, ZL, and
ZZ) and the same three TCP versions as before. Enabling flow control in only one
network (either physical or virtual) is not beneficial, because packet losses are merely
shifted from one domain to the other. However, the effects were not altogether
identical, because the virtual flow control still benefited inter-VM communications
on the same host. Therefore, enabling only the virtual flow control (ZL) still led to
a performance improvement, although smaller than in the ZZ case. Enabling both
flow controls (ZZ) achieved significant gains, similar to those observed in the testbed:
a reduction in FCT of up to 10.1× with Cubic, and no background flows. When
adding light background traffic, we observed similar gain decreases. However, a new
insight is that in the presence of heavy UDP background traffic, enabling flow control
will harm performance. In this case, the uncooperative background UDP packets
did no longer get dropped and, consequently, hogged link capacity and harmed the
foreground PA workload traffic. These results confirmed the need to segregate the
traffic into PFC priorities with true resource separation and scheduling. It may also
suggest the need for a layer-2 congestion management loop as in [38].

With background traffic, Vegas outperformed NewReno and Cubic, confirming the
results obtained on the testbed setups. In the case without background traffic Vegas
was again better. Nonetheless, on the testbeds, all TCP versions produced similar
results. The difference here is due to the more complex communication pattern with
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more hops, as more flows share the same path. This causes longer queues, especially
in the core switches. The longer delays are detected by Vegas, which will reduce its
congestion window, thus obtaining shorter completion times.

4.6. Results Analysis

Here we review the main takeaways from the results presented in this chapter. Us-
ing zOVN’s experimental platform, we demonstrated both absence of packet drops
– in support of converged storage and HPC applications – and improved flow com-
pletion time (FCT) performance. Thus, we have achieved our primary objective of
reconciling performance with losslessness for overlay virtual networks.

Is lossless flow control more relevant for physical or for virtual networks? Having
tested all four combinations of lossy and lossless physical and virtual flow control
both in our testbed and in simulations, we found that contiguous end-to-end flow
control, hop-by-hop within each domain, yields the largest reductions in FCT: PA
over zOVN with 32 virtual workers distributed across four physical rack servers
achieved up to 15-fold peak speedup. Relevant to on-line and data-intensive work-
loads in general, the highest speedups recorded are for flows between 6 and 50 KB.
Unexpectedly, if a suboptimal choice between flow control in either the physical or
the virtual network must still be made, the latter is better for FCT performance,
as demonstrated by the results for ZL vs. LZ in Figure 4.15. As noted initially, this
situation entails a paradoxical twist: Although CEE and InfiniBand fabrics have
already implemented the costlier (buffers, logic, and signaling) hardware flow con-
trol, this remains practically non-existent in today’s virtual networks - despite much
lower implementation efforts.

Are our modest experimental platforms relevant for hundreds of blade-based racks
and top-of-rack switches with 40-100 Gbps uplinks? While the definitive answer
would entail a multi-million dollar datacenter setup, we are confident in the relevance
of our admittedly limited prototype platforms. Thin and embedded low-power CPUs
as used in microservers as well as fully virtualized, and hence loaded, “fat” CPUs
are likely to exhibit qualitatively similar behaviors as these measured on our two
testbeds.

During zOVN experiments we consistently observed how the loss ratio is influenced
by the CPU/network speed ratio. On the transmit side, a fast Intel Xeon2 CPU can
easily overload a slower 1G network, producing more losses in the vSwitch than a
slower CPU (Intel Core 2) with the same 1G NIC does. On the other hand, on the
receive side, a fast 10G network coupled with a loaded Intel Xeon CPU produces
more drops than the 1G network with the same CPU does. As TX is network-
limited, a fast network is beneficial on the TX side – but hurts performance on the
RX side – whereas a fast CPU is beneficial on the RX side – processor-limited –
while it hurts the TX side. In conclusion, a different CPU/network speed ratio is
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not a viable substitute for a correct implementation of flow control in the virtual
network.

4.7. Related Work

In recent years, the TCP incast and flow completion time performance of Partition-
Aggregate applications has been extensively analyzed. For example, [33, 117] suggest
a 10-1000× retransmission timeout reduction. Other proposals achieve sizable flow
completion time reductions for typical datacenter workloads using new single-path
[16, 17, 119, 115] or multi-path [122, 62, 107, 15] transports. These are coupled with
deadline-aware or agnostic schedulers and per-flow queuing. Related to our work
and to [58, 38], DeTail [122] identifies packet loss in physical networks as one of the
three main issues. The authors enable flow control, i.e., PFC, and introduce a new
multi-path congestion management scheme targeted against flash hotspots typical
of Partition-Aggregate workloads. They also employ explicit congestion notification
(ECN) against persistent congestion. DeTail uses a modified version of NewReno
to reduce flow completion time by 50% at the 99.9-percentile, but does not address
virtual overlays.
pFabric [18] re-evaluates the end-to-end argument. It introduces a “deconstructed”
light transport stack resident in the end node and re-designed specifically for latency-
sensitive datacenter applications. Furthermore, a greedy scheduler implements a
deadline-aware global scheduling and a simplified retransmission scheme recovers
losses. By replacing both the TCP stack and the standard datacenter fabric, this
scheme achieves near-ideal performance for short flows. Open issues are the scalabil-
ity to datacenter-scale port counts, costs of replacing commodity fabrics and TCP
version, fairness, and compatibility with the lossless converged datacenter applica-
tions.
DCTCP [16] uses a modified ECN feedback loop with a multibit feedback estima-
tor filtering the incoming ECN stream. This compensates the stiff active queue
management in the congestion point detector with a smooth congestion window
reduction function reminiscent of QCN’s rate decrease. DCTCP reduces the flow
completion time by 29%, however, as a deadline-agnostic TCP it misses about 7%
of the deadlines. D3 [119] is a deadline-aware first-come first-reserved non-TCP
transport. Its performance comes at the cost of priority inversions for about 33%
of the requests [115] and a new protocol stack. PDQ [62] introduces a multi-path
preemptive scheduling layer for meeting flow deadlines using a FIFO taildrop similar
to D3. By allocating resources to the most critical flows first, PDQ improves on D3,
RCP and TCP by circa 30%. As it is not TCP, its fairness remains to be studied.
D2TCP [115] improves on D3 and DCTCP, with which it shares common features
in the ECN filter, by penalizing the window size with a gamma factor. Thus, it pro-
vides iterative feedback to near-deadline flows and prevents congestive collapse. This
deadline-aware TCP-friendly proposal yields 75% and 50% fewer deadline misses
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than DCTCP and D3, respectively. Hedera and MP-TPC [15, 61, 100] propose
multi-path TCP versions optimized for load balancing and persistent congestion.
However, short flows with fewer than 10 packets or FCT-sensitive applications do
not benefit, despite the complexity of introducing new sub-sequence numbers in the
multi-path TCP loop.

4.8. Discussion

Fabric-level per-lane flow control to prevent packet loss due to contention and tran-
sient congestion has long been the signature feature of high-end networks and HPC
interconnects. The recent introduction of CEE priority flow control has now made
it a commodity. In spite of the advances at layer-2, we have shown that present
virtual overlays lag behind. Congestion, whether inherent in the traffic pattern or
as an artifact of transient CPU overloads, is still handled here by dropping packets,
thus breaking convergence requirements, degrading performance, and wasting CPU
and network resources.
In this chapter we provided first evidence that, for latency-sensitive virtualized dat-
acenter applications, packet loss is a costly singularity in terms of performance. To
remedy this situation, we have identified the origins of packet drops across the en-
tire virtualized communication stack, and then designed and implemented a fully
lossless virtual network prototype.
Based on the experimental results using our prototype implementations and also
larger-scale simulations, we have demonstrated average FCT improvements of one
order of magnitude. Additional takeaways are that (i) packet loss in virtualized
datacenters is even costlier than previously studied in physical networking; (ii) FCT
performance of Partition-Aggregate workloads is greatly improved by losslessness
in the virtualized network; (iii) commodity CEE fabrics and standard TCP stacks
still have untapped performance benefits. Furthermore, zOVN can be orthogonally
composed with other schemes for functional or performance enhancements on layers
2 to 5.
Next, in Chapter 5, we will further extend zOVN with an optimized hypervisor-
based transport layer and new mechanisms to improved security and reliability even
in the presence of aggressive traffic sources.
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Converged Enhanced Ethernet

In Chapter 4 we proposed a zero-loss Overlay Virtual Network (zOVN) and the
associated lossless virtual switch. We showed that zOVN achieves up to one order of
magnitude reductions of the flow completion times for latency sensitive applications.
This is acomplished by extending the link-level flow control of Converged Enhanced
Ethernet (CEE), described in Chapter 2, into the virtual domain. In this chapter
we deconstruct the existing TCP stack from the VMs kernel and consolitate its
functions into zFabric, a new hypervisor build around the lossless virtual switch
introduced in Chapter 4.
Lossless CEE is a crucial step in embracing storage, cluster, and high-performance
computing fabrics under a converged network. However, the adoption of CEE in
virtualized datacenters is hindered by the lack of hypervisor software that addresses
the major issues of losslessness, i.e., head-of-line blocking and saturation trees.
Our objective is to design a hypervisor that prevents misconfigured or malicious
virtual machines (VMs) from filling the lossless cluster with stalled packets, thus
compromising tenant isolation. Furthermore, we observe that current hypervisors
perform compulsory isolation, management, and mobility functions, but introduce
new bottlenecks on the datapath. By taking advantage of the lossless fabric, we
deconstruct the existing virtualized networking stack into its core functions and
consolidate them into zFabric, an efficient hypervisor that meets our aforementioned
goals. In addition, zFabric allows us to optimize the performance of TCP.
To demonstrate zFabric’s benefits, we evaluate a prototype implementation on a
datacenter testbed. Besides resolving HOL-blocking, zFabric improves throughputs
for long flows by up to 56%, lowers CPU utilization by up to 63%, and shortens
completion times by up to 7x for partition-aggregate queries when compared with
current virtualized TCP stacks.

5.1. Introduction

Driven by new datacenter workloads, standards and technologies –e.g. Software
Defined Networking (SDN), flattened datacenter fabrics, and Converged Enhanced
Ethernet (CEE)– wired networking undergoes a silent, yet disruptive transition pe-
riod. Concurring to a ’perfect storm’ in the datacenter, virtualization and SDN
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technologies introduce new protocols [108, 68, 88, 37], inserted between the TCP
stack and the physical network. The minimal functions implemented by most hyper-
visors include forwarding, filtering and multiplexing of virtual machine (VM) traffic.
On top of these, hypervisors must also perform congestion control to enforce fairness
between VMs [68, 108, 22, 56, 99, 23, 74]. Furthermore, hypervisors must isolate
the agile virtual networks from the physical infrastructure [88, 37, 81, 110].
We argue that these layers, although compulsory, create new bottlenecks. Indeed,
thus far the SDN community has focused on the control plane, –i.e., management,
security, VM mobility– and less on the datapath performance, whether from a work-
load or individual flow’s perspective.
A challenging opportunity in the datacenter is the rise of lossless Converged En-
hanced Ethernet. CEE was driven by the desire to reduce costs through the con-
vergence of cluster, storage and high-performance computing networks. In addition,
lossless CEE networks convey performance benefits for cluster traffic, for example
by eliminating TCP incast throughput collapse and by reducing the flow-completion
time of latency-critical applications [98, 40].
Previous work [68, 108, 22, 56, 99, 23, 74] outlined that, in the case of lossy networks,
hypervisor level mechanisms are needed to deal with malicious or misconfigured VMs
and applications that use TCP-unfriendly protocols. We will show that analogous
mechanisms are needed for sharing lossless networks. Currently, lossless Ethernet
lacks such a hypervisor software capable of avoiding saturation trees and head-of-
line blocking caused by misbehaving or buggy VMs. Effectively, this slows down the
adoption of CEE in virtualized environments, despite the fact that CEE hardware
is available from most commercial vendors.
Our objective is to design and implement a hypervisor that will prevent misbehaving
or malicious flows, VMs or tenants from filling the lossless cluster with stalled pack-
ets, thus compromising tenant isolation. Our design is guided by the following key
observations: (i) the hypervisor-based flow and congestion control partly overlaps
with functions of the VM’s transport; and (ii) in a lossless Ethernet, drops are rare
events, hence the original reliability functions of the transport can be accelerated
by the new Ethernet.

5.1.1. Contributions and Structure

The contributions of this chapter are as follows:
1. We introduce a slim hypervisor stack, named zFabric, optimized for lossless

Ethernet. It avoids HOL blocking –and the ensuing interference between VMs–
by managing the buffers between each vNIC communication pair through a
VM-to-VM credit-based scheme. For the reliable delivery of both user data
and credit messages, zFabric implements a thin reliability scheme on top of
the lossless CEE hardware. The so created zFabric channels are shown in Fig-
ure 5.1, whereas the main differences between the standard vs. the proposed
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Server 2 Server 1 

VM-to-VM  
reliable channels 

VM 1 vNIC vNIC VM 3 

TCPlight 
sockets 

VM 2 vNIC vNIC VM 4 

Figure 5.1.: zFabric channels. Segments of TCPlight flows are send through end-to-end reliable
and flow-controlled VM-to-VM channels managed by the hypervisor.

stack are shown in Figure 5.2. A deployment of zFabric requires no changes
to the applications and to the CEE hardware.

2. We propose TCPlight, a slim replacement for the TCP sockets. Although zFab-
ric works with any user transport, optimal results are obtained with the newly
introduced lightweight TCPlight socket, which is responsible for connection
handling and data segmentation.

3. We build a working zFabric prototype and evaluate it using long throughput-
bounded transfers and short latency sensitive flows. Section 5.4. zFabric: (i)
increases the throughput of long VM-to-VM flows by up to 56%; (ii) effectively
solves CEE’s HOL-blocking problem; (iii) enforces TCP-friendly fairness in-
dependent of the user transport type; (iv) achieves 7x - 14x shorter completion
times for partition-aggregate workloads; (v) while also lowering the CPU uti-
lization up to 63%.

The rest of this chapter is structured as follows: In Section 5.2 we detail our back-
ground and motivation. In Section 5.3 we present the architecture of our proposal,
obtained by deconstructing the VM and hypervisor transports, and redistributing
their core functions. We evaluate our zFabric implementation in Section 5.4. We
discuss some practical deployment issues in Section 5.5 and present the related work
in Section 5.6. Finally we conclude the chapter in Section 5.7.

5.2. Background and Motivation

5.2.1. Virtualized Stacks and Sharing the Datacenter with Noisy
Neighbors

Literature [68, 108, 22, 56, 99, 74, 23, 88, 37, 110, 81] suggests that the current
virtualized datacenter stacks are increasingly heavy, often sacrificing datapath per-
formance in favor of advanced functionality on the control path. First, virtualization
inserts additional networking layers in the hypervisor for routing, forwarding and
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Application 
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(a)
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(b)

Figure 5.2.: (a) Current architecture: ’Fat’ transport layer within the VM, with duplicated trans-
port functions in the hypervisor. (b) Proposed zFabric architecture: ’Light’ transport
layer within the VM; all key transport functions moved to the hypervisor.

multiplexing of the VM traffic. Second, the same layers are often enriched with
additional policy enforcing features. Revealing of the latency consequences, a ping
test between two distinct physical servers in our testbed yields an average RTT of
27µs. However, the average RTT between two VMs collocated on the same two
physical machines is 221µs. This order of magnitude increase in RTT, caused by
the virtualization and the VM scheduling within the host OS, severely impacts the
TCP performance for short flows.

As another manifestation of the ’heavy’ virtualized stacks, Figure 5.3a compares the
average throughputs of a 5GB flow using TCP and UDP between two VMs hosted
on different physical servers connected by 10 Gbps. The experiment is repeated 30
times; the same connection is reused for all repetitions to avoid slow-start, while
the hypervisors perform only basic packet forwarding. UDP reaches a 57% higher
throughput than TCP. We attribute TCP’s throughput penalty: (i) to the overhead
of TCP acknowledgements, which pass through all the hypervisor layers, thus con-
suming CPU cycles that could be otherwise used for forwarding data segments; and
(ii) to its more complex per packet processing as compared to UDP. Even if the
typical path of a segment in TCP may be short, each segment has to undergo more
checks to evaluate the large amount of possible TCP options and features.

Therefore, the more aggressive tenants of a virtualized datacenter (aka, ’noisy
neighbors’) have incentives to abandon TCP in favor of customized lighter pro-
tocols, derived from UDP [108, 68]. These typically TCP-unfriendly protocols can
hog unfair bandwidth shares and harm TCP-based applications. To counteract
the problems of misbehaving or malicious flows, VMs or tenants, recent solutions
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Figure 5.3.: Throughput and head-of-line blocking issues (PFC enabled).

[68, 108, 22, 56, 99, 23, 74] stack up additional layers that perform flow and con-
gestion control within the hypervisor. Therefore, we observe the rise of a hypervisor
transport that replicates some functions of TCP, further increasing the per-packet
processing overhead, while rendering the TCP-unfriendly transports fairer.
Furthermore, within the control plane of a virtualized datacenter, the hypervisor is
responsible for the isolation of address spaces of different tenants, using encapsula-
tion – see Overlay Virtual Networks, such as VXLAN [81], NetLord [88], and DOVE
[37]. The increasing complexity of such operations performed on every flow, or even
packet, significantly contributes to datapath performance penalties.
TCP offload techniques available in the host OS are not readily accessible from
the guest OS. Allowing the guest OS to directly communicate with the hardware
would break the security guarantees. The lack of standardization of these techniques
precludes the migration of VMs between servers with different network adapters.
A summary of the current network stack architecture, as envisioned in several prior
works [68, 108, 22, 56, 99, 74, 23, 88, 37, 110, 81], is shown in Figure 5.2a. The
takeaway from this section is that the TCP stack, which was originally created
and optimized to run directly over the network hardware, now runs over a new
stack of layers responsible for virtualization, isolation, and encapsulation. Our main
contribution is an alternative slimmer and more efficient –higher throughput, lower
latency– software stack for lossless virtualized fabrics.

5.2.2. Emerging Lossless Fabrics

Traditionally Ethernet was lossy. Frames were dropped whenever a receive buffer
had reached its capacity, under the generally accepted end-to-end assumption [106]
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that an upper layer protocol such as TCP will take the corrective steps to recover.
Such a lossy network does not properly meet the semantics of the converged dat-
acenter applications such as Fibre Channel over Ethernet (FCoE) [10] or Remote
Direct Memory Access (RDMA) over Ethernet [36].
This mismatch has been recently corrected in Converged Enhanced Ethernet (CEE),
that segregates Ethernet frames into eight different hardware priorities. Each prior-
ity may be configured as either lossy or lossless. Within a lossless priority, Priority
Flow Control (PFC) acts as the earlier 802.3x PAUSE, preventing buffer overflows in
a hop-by-hop manner – except that a paused priority does not affect other priorities.
Prior work has demonstrated that besides enabling network convergence, lossless
Ethernet clusters can improve the performance of soft real-time, scale-out applica-
tions, that harness big-data. In particular, lossless fabrics avoid TCP incast through-
put collapse, and can reduce the completion times by up to an order of magnitude
[98, 40].
Despite the potential improvements, PFC introduces head-of-line (HOL) blocking.
While two priorities do not interfere, flows of the same priority can HOL-block
each other. Obviously, the 8 priority levels of PFC cannot separate and isolate the
potentially millions of active flows. For example, consider two flows that share a
congested link in a lossless cluster, as in the setup from Figure 5.8a. The first flow,
i.e., ’culprit’, targets a busy destination that can only receive packets at a fraction
of the link speed. The second flow, i.e., ’victim’, targets an uncongested destination.
Figure 5.3b shows the measured throughputs. Using TCP, the culprit flow does not
impact the victim flow: TCP adapts the transmission rate of the culprit flow to
the slow receiver. UDP, however, lacks any flow or congestion control mechanism.
Unable to proceed towards the blocked destination, the packets of the culprit flow
monopolize the shared buffer space in the upstream switches. The net result is that
the throughput of the victimized flow drops to the level of the culprit. Using a
similar strategy, a malicious tenant could easily fill the lossless cluster with stalled
packets, thus compromising bandwidth sharing and tenant isolation. Given the fact
that the cluster administrator has no control over the code running within the VMs,
our objective is to avoid such unfair situations by adding a hypervisor transport for
lossless cluster fabrics.

5.2.3. TCP Tunnels

We aim to design an optimized hypervisor stack for virtualization of the emerging
lossless fabrics. This stack should mitigate or eliminate HOL blocking and the
ensuing interferences among tenants.
We first consider TCP tunnels [75]. The hypervisor captures all VM traffic and,
based on its destination, encapsulates it into TCP flows. The destination hypervisor
terminates the tunnel and delivers it to the targeted VM. Note that all the inter-VM
flows will be using this tunnel, irrespective of their original transport.
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In Figure 5.3b, we observe that encapsulating UDP flows into TCP tunnels avoids
HOL blocking, but induces a throughput degradation as seen in Figure 5.3a. The
throughput degradation is mild for UDP flows: i.e., 6.3%. However, for TCP flows,
the degradation exceeds 40%, since the TCP layer is duplicated within the hypervi-
sor. Furthermore, our results in Section 5.4 show that TCP tunnels deteriorate the
completion times of latency-critical flows.
We observe that UDP in TCP obtains a 47% higher throughput than TCP alone.
Both configurations run the same TCP protocol, but located at different levels of
the virtualized stack. With TCP in the guest VM the ACKs must pass through all
virtualization layers and therefore suffer from the VM scheduling delays revealed by
the previous ping test in Section 5.2.1.
This result motivates us to move transport functions from VM to the hypervisor,
where they can be handled more efficiently – e.g., by shortening the path of the
control messages.

5.3. zFabric Architecture

We now present the architecture of the proposed lossless communication stack for
virtualized datacenters. First, we will decompose the VM and hypervisor transports,
and distribute their core functions between the upper and lower layer. Effectively,
we will obtain a slim and efficient hypervisor networking stack, zFabric, that avoids
HOL blocking in lossless Ethernet, and TCPlight, a lightweight TCP for lossless
virtualized datacenters.
We shall assume a datacenter as a collection of virtualized physical servers, each
hosting a set of virtual machines. The proposed zFabric is currently included in the
hypervisor and intended for communications between the VMs on the same host
as well as VMs located on different hosts interconnected by a physical network.
Furthermore, we assume the interconnection network to be a flat 10Gbps layer-2
CEE fabric with PFC enabled on some, not necessarily all, priorities. Hence, with
zFabric we target communications between VMs belonging to the same PFC domain.
As we discuss, owing to the losslessness of the underlying fabric, zFabric imposes
significantly less overhead compared to similar solutions [68, 108, 22, 56, 99, 23, 74]
that focused on lossy networks. The latter solutions can be used for ’remote’ flows,
which leave this PFC domain, or for flows and services that run on lossy network
priorities.
zFabric comprises two key mechanisms: zCredit, for flow and congestion control,
which as explained in Section 5.2.1 is needed at the hypervisor level to enforce
fairness and isolation between the VMs; and zBridge, which guarantees reliable
host-to-host delivery, i.e., unique reception of in-order packets.
The reasons why we implement a reliable delivery within the hypervisor, and not
rely on reliable user-level transports, are twofold. First, zCredit and some of the
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Figure 5.4.: The zFabric lossless virtualized communication stack. The proposed components are:
(1) lightweight TCP socket (TCPlight), (2) credit-based flow control between vNICs
(zCredit), and, (3) reliable overlay virtual network bridge (zBridge).

services that run in the VMs assume guaranteed delivery of messages. Although
a network that employs PFC does not drop packets, we need to protect zCredit
control messages (and user data) from occasional in-flight errors: zBridge imple-
ments a slim automatic repeat request scheme that minimizes the acknowledgement
traffic to correct these errors. Second, by processing the acknowledgements in the
zBridge, i.e., at the hypervisor’s interface with the physical network, we reduce the
acknowledgements processing overhead. Observe that zBridge is used only by flows
that leave the local server – we ignore losses due to memory corruption or software
bugs.

Although zFabric works with any user transport, it provides the opportunity to
strip the VM’s transport layer of the now redundant functions. Hence, our overall
proposal encompasses a ’deconstructed’ TCP socket, TCPlight, that runs in the VM
on top of the zFabric hypervisor. TCPlight is left solely with the main functions of
connection handling, data addressing/multiplexing, and data segmentation.
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5.3.1. Packet Path Overview

Data packets travel between processes (applications) running inside the VMs. Along
the datapath, packets are moved from queue to queue by different software and
hardware entities. Next we describe this queuing system. Without loss of generality,
we focus on the (i) lossless stack, whereby we (ii) assume a single active priority.
Figure 5.4 shows in detail the packet path corresponding to this scenario.
The application starts by opening a TCPlight socket with the same interface and
guarantees as a traditional TCP socket. The vNIC Tx queue forwards its packets to
the zCredit layer. The zCredit transmission manager will enforce the SDN-required
control policies, e.g., are source and destination VMs allowed to communicate. If yes,
the appropriate amount of credits is requested from the destination VM hypervisor.
When these credits are eventually granted, the data packets are forwarded to the
vSwitch, which provides connectivity between the local VMs and also towards the
physical layer, with the guarantees of no-drop and no misordering. Whenever the
destination VM is local, the packets are directly forwarded.
Packets for remote VMs are taken over by the zBridge layer, which performs two
functions. First, it acts as an overlay tunnel endpoint, performing encapsulation and
decapsulation [88, 37]. This is needed to ’hide’ the VMs from the physical fabric and
to facilitate their automatic migration, creation and deletion, without configuration
changes in the tables of the physical switches/routers. Second, it extends the lossless
Ethernet fabric with a (thin) reliability layer. The encapsulation header includes a
sequence number to identify losses and correct misordering events.
The encapsulated packets are enqueued in the physical NIC transmission queues and
traverse the flow-controlled physical Ethernet network until delivered to the ingress
port of the destination server. From there, they are processed by the zBridge that
decapsulates them, performs reordering, if needed, and delivers them in-order to the
zCredit unit. The latter updates the credit counters and delivers the packets to the
vNIC Rx queue. From the vNIC, they are processed by the TCPlight socket and
delivered to the application. With respect to the unmodified virtualized stack, our
proposal requires only one extra memory copy operation.

5.3.2. Lightweight Socket: TCPlight

The transmission path in the Linux kernel has built-in flow control. If the user
properly configures the size of the Qdisc associated with the virtual interface, no
packets will be dropped. However, the reception path is exposed to packet drops.
When a packet is enqueued by the hypervisor in the vNIC Rx queue, the guest OS
receives an interrupt. This schedules the NET Rx softirq [5], which consumes packets
from the vNIC queue and starts processing the packet headers. Packets destined
to the local stack are enqueued in the destination socket RX buffer, based on their
protocol and port number. Standard sockets are not flow-controlled, hence if the
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application is slow in consuming data, the destination RX socket buffer can fill up
and eventually segments are dropped within the stack. Thus we patched the Linux
kernel such that when the destination RX socket occupancy reaches a threshold –
i.e., one MTU below maximum size– the softirq is canceled and reception is paused.
Once the process consumes data from the socket, reception is resumed. Head-of-
line blocking within the kernel can be avoided using a garbage collector periodically
removing stalling packets of crashed applications not implemented in our prototype.
The TCPlight socket API is identical with TCP. Hence, adapting existing applica-
tions from TCP to TCPlight socket is trivial, or automatic if, for example a wrapper
library is used to intercept the socket system calls. The TCPlight sockets are primar-
ily optimized for efficiency, low complexity and low latency operation made possible
by shifting most transport functionalities to the hypervisor. We argue that TCP-
light sockets are the only ones needed by future virtualized applications where the
hypervisor provides the transport functionalities.

5.3.3. Congestion Management: zCredit

The zCredit layer within the zFabric is responsible for multiplexing the VM-to-VM
traffic. The main objectives are: (i) to avoid HOL-blocking and saturation trees
collapse, specific to lossless fabrics; and (ii) to fairly multiplex VM-to-VM traffic,
enforcing TCP-friendly fairness across all VMs, irrespective of the protocols used by
the applications.
Our mechanism cannot rely on loss for congestion signaling, as flow control pre-
vents losses due to congestion. Instead, zCredit resolves congestion in an admission-
oriented, request-grant scheme. Thus, zCredit also tolerates a cold startup delay of
one RTT for the request-grant to complete. Observe that this latency overhead is
compensated by the lack of slow start. Once granted, an uncontested flow can have
its transmission window fully open.
When PFC is enabled, unconsumed packets can potentially block, causing satu-
ration trees. For example, a crashed VM and does not consume packets from its
associated vNIC RX queue. This queue fills up and the stalled packets consume the
vSwitch buffer space and eventually spread to the buffers of the physical network.
To avoid such a congestion propagation, any packet injected must be guaranteed to
be consumed. However, with current hypervisors, a VM can inject an unbounded
number of packets, either by opening multiple parallel TCP connections or by using
TCP-unfriendly protocols such as UDP.
The zCredit design guarantees packet consumption at the receiver and a bounded
number of in-flight packets. Before a packet is injected, buffer space is reserved at the
receiving vNIC, by acquiring credits from the receiver. Effectively, if a destination
is slow, a new packet will be injected towards it only after an old packet departs –
a self-clocking property similar to that of TCP. In this case the self-clocking applies
to the aggregate flow heading to a particular destination.
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Algorithm 5.1: Credit Management – Transmission
globals: tx_occupancy, cdt_received, cdt_requested
on arrival(frame)

tx_occupancy++
wake_up forwarder

end
on forwarder

if cdt_received > 0 then
cdt_received--
tx_occupancy--
forward frame

else
if tx_occupancy > cdt_requested then

delta ← tx_occupancy - cdt_requested
request delta
cdt_requested += delta

else sleep
end

end
on credit grant(num_credits)

cdt_received += num_credits
cdt_requested -= num_credits
wake_up forwarder

end

As shown in Figure 5.4, zCredit operates at the hypervisor’s vNIC backend level.
The transmission side implements Algorithm 5.1. When a packet arrives from the
sender VM, the transmitter schedules a forwarder to send the packet out. The
forwarder checks if it has enough credits for the targeted VM. If not, it sends out a
credit request and sleeps until a credit grant is received. When the grant is received,
new packets can be injected in the network.

The receive side runs Algorithm 5.2. We assume that each vNIC can hold up to
RXQsize packets in its receive queue. This is the fundamental parameter for the
credit congestion management scheme. The VM-to-VM credit protocol makes sure
that this queue never fills and never has to exert backpressure. Its size should be
at least one RTT worth of packets, but for safety it can be much larger. On the
other hand, the smaller the value is, the fewer packets will be in-flight towards a
congested server, targeting any of its VMs. This opens the possibility to prevent
filling up the (physical) switch-to-server output queue by configuring a low RXQsize.
In our experiments we used RXQsize=512.

Upon a credit request, zCredit receive side will check if new credits can be granted.
If yes, a credit grant is sent, else the request is enqueued in a waiting list associated
with the targeted vNIC. To schedule fairly between multiple source VMs targeting
the same destination VM, each vNIC maintains a separate waiting list per source
VM. A work-conserving weighted-round-robin scheduler selects among them. As
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Algorithm 5.2: Credit Management – Reception
globals: total_granted, waitQ
on departure(frame)

total_granted--
source ← waitQ.WRR()
if source then

cdt_req ← waitQ.dequeue(source)
grant min(cdt_req, RXQsize - total_granted)

end
end
on credit request(source,cdt_req)

if total_granted < RXQsize then
delta ← min(cdt_req, RXQsize - total_granted)
grant delta
total_granted += delta

else waitQ.enqueue(source,cdt_req)
end

the data packets are consumed by the destination VM, new Rx vNIC buffer space
is freed and credit requests from the associated waiting lists can be served.

This zCredit mechanism, running in the hypervisor, beyond the tenant’s reach,
strictly bounds the number of packets in-flight towards each vNIC, serializing the
competing source VMs, according to the desired quality-of-service (QoS).

In our proof of concept implementation, credit requests and grants are standalone
frames with a particular EtherType to allow the vNIC to filter them from regular
data frames. The algorithms were implemented in QEMU-KVM [8] and Virtio vNIC
[105].

Dealing with internal congestion. The zCredit mechanism eliminates the sat-
uration trees that are rooted at the receiving vNICs. Furthermore, as mentioned
above, by configuring a low RXQsize, zCredit can also resolve congestion at the
switch-to-server ports of the physical network. In addition, zCredit helps to miti-
gate the effects of internal saturation trees: if the network is congested, both data
and credit messages will be proportionally paced down, thus slowing the flow in-
jection rates. However, zCredit is an end-point mechanism and cannot completely
resolve saturation trees rooted at arbitrary points in the network. Nevertheless,
similar to EyeQ [68], our solution benefits from the fact that most modern data-
center fabrics are based on full-bisection fat-trees. As shown in EyeQ, but also in
previous papers on multi-stage fabrics [92, 35], in non-blocking topologies with fine-
grained multi-path routing –e.g. packet-spraying or ECMP–, dealing with end-point
congestion virtually eliminates saturation trees throughout the fabric.
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Algorithm 5.3: hBridge – Reliability
globals: inflight, timer
on transmission(frame)

if inflight >= BUF then sleep
else

mark every P frame with ACK request
send frame
inflight++
reset timer

end
end
on timer

send ACK request
end
on ACK(N frames)

inflight -= N
if inflight = 0 then kill timer

end
on NACK(N frames)

resend N frames
end

on reception(frame)
if inorder then forward frame
else send NACK for missing frames

end
on ACK request

send ACK/NACK for received/missing frames
end

5.3.4. Reliability: zBridge

This layer provides reliable server-to-server channels over the physical network and is
optimized for flow-controlled Ethernet. The activation of PFC does not guarantee by
itself the reliable in-order delivery of frames. First, the frames can be lost due to in-
flight corruption. Second, Ethernet does not guarantee in-order delivery. Improper
configuration of link bundling schemes, transient routing errors, optimizations in
the switch micro-architecture, etc., can all lead to out-of-order deliveries.
The reliability protocol is optimized to operate over flow-controlled Ethernet net-
works where frame corruptions and losses are rare events. Therefore, according to
the design principle “make the common case fast, and the uncommon case correct”,
we keep the overhead of a correct transmission –the most likely outcome– as low as
possible.
Unlike TCP, which aggregates reliability, flow control, and congestion management,
we implemented the reliability as a distinct layer. This solution has three advan-
tages. First, the reliability layer is redundant for local traffic, between VMs hosted
on the same machine, since packets remain within the same system memory and
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the vSwitch already guarantees reliable in-order delivery. A possible VM place-
ment strategy could minimize the latency by collocating VM’s that exchange large
amounts of data. Second, we expect that in the future this feature will be accel-
erated in commodity hardware even for Ethernet. For example InfiniBand already
provides guaranteed in order delivery in hardware; here the zBridge can be safely
disabled. Third, all packets must be encapsulated before they reach the physical
network [88, 37, 81, 110]. Here we propose to also use these encapsulation headers
to provide reliability.
The reliability protocol is shown in Figure 5.4 and its operation is described in
Algorithm 5.3. The scheme establishes initial sequence numbers through a 3-way
handshake identical to TCP’s. Each VM-to-VM flow has its own sequence number
to allow equal-cost multi-path (ECMP) routing between servers. Each data frame
is encapsulated in a reliability header containing a sequence number, an acknowl-
edgement number, a checksum, and a flag field signaling the type of frame: i.e.,
Data, Ack, Nack, or Ack Request. The sender stores a copy of every sent frame
in a retransmission buffer of fixed size BUF. To avoid throughput penalties, this
buffer should be larger than the maximum bandwidth-delay product within the dat-
acenter network. We avoid per frame Acks. The receiver sends back Acks only on
explicit requests of the sender, through an Ack Request. The receiver answers to the
Ack requests by Ack-ing or Nack-ing any frame that was received or missing. The
Nacks carry a range of contiguous sequence numbers of the packets that have to be
retransmitted.
The sender asks periodically for Acks, in order to free up the retransmission buffer.
The Ack request are sent every P frames to avoid filling the buffer or after a timeout
to avoid stalling the connection, whichever condition happens first. The receiver
verifies the checksums and the sequence numbers of each data frame coming from
the physical NIC. If the frames are not corrupted and in-order, they are decapsulated
and handed to the vSwitch, which forwards them to the upper layers.
We can control the overhead of the acknowledgements by setting the P parameter
and timeout. The only condition on the choice of the timeout is to be large enough to
avoid injecting duplicate frames. In our experiments the timeout is set three orders
of magnitude higher than the base RTT, and we send an Ack request every P=1024
frames. Lost Nacks and Ack requests are recovered through the same timeout.
For systems where a vNIC-to-vNIC pair uses a single routing path in each direc-
tion, we can perform the following optimization, to accelerate the retransmission
of corrupted packets. When the receiver detects a gap in the sequence numbers, it
transmits a Nack back to the sender, which retransmits the lost frame(s) from its
retransmission buffer.
In a lossy network, TCP interprets any packet drop as an indication of congestion,
as hardware failures are rare events. Hence, reducing the rate in response to packet
drops in a lossy network is almost always a good choice. On the other hand, in a
lossless datacenter network the opposite is true, i.e., drops are caused exclusively by

134



5.4. Evaluation

System Type IBM System x3550 M4 Rack Servers
CPU 2x Intel Xeon E5-2690

Total cores 16
Clock speed [GHz] 2.90
Memory [GB] 96

Physical machines 6
VMs/machine 16
Data network 10G CEE
Physical switch IBM RackSwitch G8264
Control network 1G Ethernet
Linux kernel 3.0.3 64-bit

Table 5.1.: Testbed configuration parameters.

hardware failures. Hence it is not necessary for the zBridge to reduce the injection
rate upon detecting a loss.
To summarize, any application running on top of the zBridge layer will have the
illusion of a reliable Ethernet network with low overhead.

5.4. Evaluation

In this section we evaluate the proposed TCPlight and zFabric architecture, outlined
in the previous section, using a prototype implementation running on our hardware
testbed.

5.4.1. Methodology and Testbed

This work involved changes in the kernel of the guest OS where the TCPlight sockets
reside, in the host OS where the vSwitch runs and in the hypervisor software where
the zCredit mechanism is implemented. Analytical models or simulations are not
currently appropriate for evaluating the full system performance that is influenced by
the OS scheduling, buffering, and CPU architecture. Therefore we rely on prototypes
running on actual hardware.
We use two racks, each populated with Intel-based servers and a top-of-the-rack
switch. The network is 10Gbps CEE, hence commodity lossless Ethernet. This
network is used for all the test traffic subject to our measurements. In parallel,
we use another 1Gbps control network to configure the data network and servers,
to gather the statistics, and to start and kill the traffic generators - all without
interfering with the data network. Figure 5.5 shows the testbed topology, whereas
Table 5.1 lists the configuration details.
We compare several protocol combinations. We vary two components of the stack:
the VM transport, used by the applications running within the guest OS, and the
hypervisor transport. For the VM transport we use either the unmodified TCP
socket or our TCPlight simplified socket. For the hypervisor transport we choose
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Figure 5.5.: Testbed setup.

between: Lossy, PFC, TCP and zFabric. Lossy stands for the traditional virtualized
network stack, with a lossy virtual switch that performs no flow control and runs
over a physical network without flow control (PFC disabled). In the Lossy setup
both the vSwitch and the physical network can drop packets. PFC enables priority
flow control in the physical network, paired with a lossless vSwitch. Both Lossy and
PFC lack hypervisor flow control, making them both unsafe and allowing malicious
or noisy tenants to negatively impact the well-behaved tenants. The TCP hypervisor
configuration tunnels all the traffic between VMs through TCP connections over a
lossless network. Finally, zFabric runs our proposed zCredit flow and congestion
control layer and the zBridge reliability layer.
From a performance perspective, the overhead of Lossy and PFC is zero, while
TCP is the heaviest hypervisor-based flow control. The solutions proposed for lossy
networks in [68, 108, 22, 56, 99, 23, 74] are expected to have an overhead situated
between the two extreme configurations that are our baselines. The proposed TCP-
light socket only works when paired with PFC, TCP or zFabric hypervisors. On the
other hand the unmodified TCP socket can be paired with any of the four hyper-
visors. The TCP congestion management algorithm in Linux is by default CUBIC
[60].
Performance Metrics: For each experiment we measure throughputs and completion
times at application level. All the data transfers are VM-to-VM. To gain additional
insights into the HOL-blocking behaviors, we also measure the average throughput
at 1s granularity. Finally, parsing /proc/stat in the host OS, before and after each
experiment, on all servers involved, we compute the total CPU utilization, measured
in seconds, and representing the total time the processor spent working, i.e., not idle.
On the servers and VMs involved we used a customized Debian-based distribution
where we removed all the background services that could bias our CPU statistics.
The benchmark application always executes the same code for all experiments thus
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Figure 5.6.: Single flow experiment.

the same amount of work. Despite these precautions we cannot attribute the entire
CPU utilization to the transport layer, meaning that the absolute value per se carries
no useful information. A profiling of multiple kernels running in parallel to extract
only the part of the CPU utilization that is caused by the transport is out of the
scope of this work. Yet the relative variation of the total CPU utilization can be
safely attributed to the only component that has changed between experiments, i.e.,
the transport layers of the VMs and hypervisors.

5.4.2. Single Flow Throughput

We begin with a single 5GB transfer between two VMs, repeated 30 times for im-
proved confidence. The TCP sockets are reused between experiments. In this way
only the first repetition can be potentially affected by TCP’s slow start. We distin-
guish two VM placements: either on distinct servers, i.e., server to server traffic, or
collocated, i.e., hairpin traffic.

Figure 5.6 shows both the average throughputs and CPU utilizations. The CPU
utilizations are computed only once over all repetitions to reduce the CPU noise due
to statistics gathering. TCP+zFabric shows a 15% throughput deterioration when
compared to TCP+Lossy. However, TCP+TCP degrades the throughput even more
– i.e., 41% with respect to TCP+Lossy. For hairpin traffic, TCP+zFabric produces
only a 5% deterioration. TCPlight+zFabric, compared to TCP+Lossy, shows a 1.56x
throughput improvement for server-to-server traffic, and a 1.63x CPU utilization
reduction for hairpin traffic.
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Next we consider 2GB transfers between two VMs located on two distinct servers. To
emulate different application transfer speeds, the receiver sleeps for a configurable
time every 100 received packets. Hence, varying the sleep time will modify the
average throughput and the transfer completion time. We perform the experiment
for the 6 combinations under scrutiny, and sleep times between 0 and 100µs. We
repeat each experiment 20 times, reusing the sockets, and we measure the CPU
utilization for the entire 20×2GB transfer. The flows achieve variable throughputs
between 100Mbps and 4Gbps.

Figure 5.7 plots the CPU utilization against the receiver sleep time. Besides TCP+TCP,
all other combinations show that the number of CPU cycles needed to perform a
transfer does not depend on the speed of the transfer, being an invariant of the
protocol itself.

The results are divided into two groups. The stacks using TCP in the VMs are
heavier, consuming up to 2x more CPU cycles than their TCPlight counterparts.
This is caused in part by the per-segment acknowledgements that TCP uses, which
add overhead in a virtualized network – these packets must traverse various software
layers before reaching the VM’s TCP. This is confirmed by the fact that TCP+Lossy
requires 1.7x more CPU cycles than TCPlight+TCP. On the other hand the TCP
tunnels add an overhead of 45% to the VM’s running unmodified TCP. The proposed
zFabric adds a maximum 15% overhead –larger for TCP and smaller for TCPlight–
when compared with the versions without hypervisor transports. On average, TCP-
light+zFabric requires 1.8x less CPU cycles than TCP+Lossy demonstrating the
efficiency of our proposal.
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Figure 5.9.: Throughput evolution under the HOL-blocking scenario presented in Figure 5.8a.

5.4.3. Head-of-Line Blocking

We evaluate the resilience to HOL-blocking. This occurs when flows share one or
more links while targeting congested and uncongested destinations. As before, we
call these flows culprit and victim flows, respectively. If congestion management is
absent, backlogged packets belonging to the culprit flows can hog the shared buffers,
preventing the progress of victim flows.

We distinguish two types of congestion. (i) Output-generated hotspot: Packets
are not consumed fast enough by the destination VM. E.g., a remote file transfer
written to a slow medium at the destination. Here the bottleneck is the processing
capacity at the destination. (ii) Input-generated hotspot: Traffic from multiple
inputs target the same overwhelmed destination. An example is the Aggregate
phase of a Partition-Aggregate job when many worker flows target the aggregator.

2 Flows (Output-Generated) We consider the scenario shown in Figure 5.8a.
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Figure 5.10.: Throughput under the HOL-blocking scenario presented in Figure 5.8b.

The destination of the H2-H4 flow (culprit) is slow and receives packets at maximum
100Mbps. The H1-H3 flow (victim) should not be obstructed by the packets of the
culprit flow.

Figure 5.9 depicts the throughputs of both flows under different protocol stacks.
All standard TCP based protocols and TCPlight+zFabric avoid the HOL-blocking.
We observe that with TCPlight+PFC, which lacks hypervisor congestion manage-
ment, the throughput of the victim flow drops to the level of the culprit flow –i.e.,
around 100Mbps– due to HOL-blocking. This is why we need the zCredit congestion
management, which successfully resolves the blocking.

9 Flows (Input-Generated)Next we consider a more complex scenario depicted in
Figure 5.8b. 8 flows target the destination H3: 4 originating from H1 and 4 from H4.
The 4 flows from H4 to H3 share the link with a victim flow from H4 to H2. Ideally,
the first 4 flows H4-H3 should get half of the bandwidth of the link H4-S2, whereas
the other half should be available to the victim flow H4-H2. Due to HOL-blocking the
victim throughput goes down to 1

8 of the link bandwidth, the same level as the other
8 flows in the scenario. Figure 5.10 plots the average throughput of the culprit flows
and victim flow. TCPlight+PFC suffers from HOL-blocking, whereas the credit-
based congestion management solves the issue. Furthermore, TCPlight+zFabric
produces a higher throughput than the standard TCP-based setups because of lower
CPU utilization.

5.4.4. Fairness

We measure the fairness in link bandwidth sharing using Jain’s fairness index [66].
We consider scenarios with TCP flows only, TCPlight flows only, and a mix of TCP
and TCPlight flows, all with and without the zFabric hypervisor transport. The
results are shown in Figure 5.12.
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Figure 5.11.: Fairness traffic scenarios. (a) Each flow should receive 1
16 of the link bandwidth. (b)

Each flow should receive 1
5 of the link bandwidth.
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Figure 5.12.: Jain’s fairness index for the scenarios shown in Figure 5.11.

16 Flows We look at the fairness of link sharing between 16 flows sharing a bot-
tleneck as shown in Figure 5.11a. In this scenario both TCP and TCPlight reach
an almost perfect fair share –i.e., index equal to 1– of the common link S1-S2. Our
zFabric does not harm the fairness neither for TCP (left) nor for TCPlight (middle).
Furthermore, it exhibits a good fairness index when TCPlight flows share the link
with standard TCP flows (right), hence demonstrating TCP friendliness.

Parking-lot fairness Next we consider the parking-lot traffic scenario from Fig-
ure 5.11b. The flow H4-H3 shares the link S2-H3 with 4 others originating from
H1. The switch S2 enforces fairness between its input ports hence the traffic from
H4 might receive almost half of the bandwidth of the link S2-H3 while the other 4
flows from H1 must share the remaining bandwidth. This unfair allocation is seen
in Figure 5.12 (middle) where TCPlight’s fairness index drops to 0.64. Enabling
the zFabric restores a fair allocation. Examining the TCP friendliness (right), the
allocation between the competing 4 H1-H3 TCP flows and the H4-H3 TCPlight flow
is unfair. As can be seen, enabling congestion management restores fairness.
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Figure 5.13.: Partition-Aggregate performance.

5.4.5. Partition-Aggregate Traffic

In this section, we use a two-tier Partition-Aggregate workload similar to [16, 119].
An aggregator receives a query from a client and distributes it to a set of workers,
which then will reply back to the aggregator. When the workers send the data to
the aggregator, packets from multiple flows will meet in the switch buffer causing
TCP-incast in a lossy network harming the flow completion time [33, 44].
We vary the response size between 2 and 512 MTU-sized packets. The metric of
interest is the query completion time measured from the arrival of the external query
until the reception of all the workers’ responses. We run this workload using 32 VMs
distributed over 4 physical machines in our testbed.
Figure 5.13 shows the mean completion times and standard deviations measured
over 10K repetitions of the same query. Figure 5.14 shows the performance gains
over TCP+TCP using as metric the completion time. Replacing the TCP tunnels
with zFabric tunnels delivers a reduction of up to 7x of the mean completion time
for 64 packets responses. Next, when running over zFabric, replacing TCP with
TCPlight in the VM brings an additional 2x improvement – i.e., 14x peak.
By running only TCPlight without any hypervisor transport, one obtains even
shorter completion times. However, as shown in the previous experiments, the lack
of a hypervisor flow control makes the fabric operation unsafe and unreliable. The
proposed zFabric scheme also cuts the tail of flow completion times compared to the
other configurations, as shown by smaller standard deviation values. Not shown are
the CPU utilizations. We measured them and observed similar improvements as in
the previous long flow scenarios.
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Figure 5.15.: Performance robustness under increasing link bit error rates.

5.4.6. Link Error Rate Influence

Finally we evaluate the behavior of zFabric under different bit error rates (BER).
The physical links that we used in our testbed have a declared BER < 10−12. To
consider BERs ranging from 10−12 to 10−6, we artificially emulate drops of corrupted
frames by randomly discarding frames in the physical NIC driver at the receiving
side. The scenario consists of a single 250GB flow running between two VMs located
on different servers. The large enough size of the transfer guarantees that even for
low error probabilities some frames will be discarded.

Figure 5.15 depicts the average throughput for different BER values. Corrupted
frame losses on high reliability links with BERs between 10−12 and 10−10 have no
impact on throughput, whereas BER values above 10−9 increasingly impact the
performance. Especially TCP is affected, either when running over a lossy or over
flow-controlled physical network. As with wireless and satellite channels, here the
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vNIC eth0 eth1
VM Transport TCPlite/TCP/UDP TCP/UDP

Hypervisor Stack hFabric lossy stack
PFC priority lossless lossy

Table 5.2.: Example deployment configuration.

TCP incorrectly interprets the drops as congestion signals reducing the injection
rate, whereas in this scenario the drops are exclusively caused by an unreliable link.
This tests prove the correctness of zFabric’s reliability protocol.

5.5. Deployment Considerations

Here we address some of the practical implementation and deployment issues. These
are likely to confront those willing to replicate our results or further develop the
zFabric concepts.

What is zFabric’s scope of application? The proposed credit-based hypervisor
transport was designed and optimized specifically for intra-datacenter transfers using
lossless Ethernet-based networks.

How would the zFabric be practically deployed? How invasive is it? In
the first step, a practical zFabric deployment requires an update of the hypervisor
software in all involved end-nodes. While arguably invasive, this is the minimal
requirement for any hypervisor and SDN improvement. In the second step, the OS
images of all the VMs involved can be patched with the TCPlight code. This step,
however, is optional because all the legacy TCP stacks also run over zFabric, albeit
non-optimally as we showed in Section 5.4. Essentially, no changes are required to
the application structure in order to perform the migration from TCP to TCPlight
sockets. Also no changes are needed to the existing network infrastructure, with the
only constraint of PFC-compliant switches and network adapters, available from
practically all commercial 10GigE vendors as of 2014.

What scope and size of deployment? We have tested zFabric in a limited 2-
rack testbed. Although a large scale deployment in a large commercial datacenter
may not be straightforward (see step 1 above), one could start by deploying it
within small- to medium-scale performance optimized clusters, before committing
to production datacenters.

Communication with remote hosts? zFabric does not preclude the use of
lossy hypervisor stacks. E.g., each VM could be configured with two vNICs, one
attached to the zFabric and the other to the default stack; here the zFabric should
be natively mapped to a lossless PFC priority, whereas the default stack to a lossy
priority. Table 5.2 shows possible protocols that can be used with each interface in
this scenario. The second interface can be used for communications with any remote
host on the Internet, using standard protocols.
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5.6. Related Work

New hypervisor extensions were recently proposed to enforce the fair utilization of
the virtualized network. Nearest related to our approach is EyeQ [68], which uses
per VM rate limiters and end-to-end flow control between sources and destinations.
Seawall [108] encapsulates the VM traffic within TCP-like tunnels. Oktopus [22]
and SecondNet [56] use fixed bandwidth allocations between different tenants. Net-
Share [74] uses the QoS features available in routers, in association with a bandwidth
allocator. FairCloud [99] explores different bandwidth allocation policies. The im-
plications of the increased inter-tenants traffic within a virtualized datacenter are in-
vestigated in [23]; accordingly, the Hadrian network-sharing framework is proposed.
Generally, these proposals increase the weight of the hypervisor stack, mostly by
inserting new layers responsible for QoS and bandwidth allocation between TCP
and the physical network. Instead, for zFabric we adopted the more radical –yet
still dirty-slate– approach of relocating (most of the) TCP stack functions from VM
to hypervisor. Our resulting transport can thus be orthogonally combined with any
of the above proposals into a more efficient stack. Notably, the prior art above does
not addresses the problems specific to the emerging lossless fabrics.
The datacenter research community increasingly focuses on the performance of
horizontally-distributed online data-intensive workloads [33, 16, 17, 71, 115, 119,
122], while the industry promotes SDNs and virtualization, e.g., overlay virtual net-
works were proposed in [88, 118, 37, 81, 110, 24]. Network resource sharing issues for
virtualized datacenters are studied in [90], whereas [67] studies a multi-datacenter
setup. PVTCP [34] exposes the problems of the TCP stack running in a virtualized
environment. The network virtualization performance in a large scale deployment
is evaluated in [118].
A retransmission timeout reduction to alleviate TCP incast is proposed in [33, 117].
Other proposals achieve flow completion time reductions using new single-path [16,
17, 119, 115, 62] or multi-path [122, 62, 107, 15, 100, 61] transports. DeTail [122]
enables Ethernet’s PFC to prevent packet loss. pFabric [18, 19] re-evaluates the
end-to-end argument and introduces a clean-slate transport stack resident in the
end node, re-designed specifically for latency-sensitive datacenter applications. Our
zFabric proposal, running over lossless fabrics, offers outstanding reductions of flow
completion times in virtualized environments.

5.7. Discussion

We have argued that the current virtualized datacenter stacks are necessarily heavy,
often sacrificing datapath performance in favor of advanced functionality on the
control path. Independently, the recent introduction of Priority Flow Control has
made lossless Ethernet fabrics a commodity. This opens new practical opportunities
for simplification of the networking stack.
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In this chapter we have contributed zFabric, a new hypervisor stack, optimized for
intra-datacenter transfers over lossless Ethernet. By judiciously deconstructing and
reallocating the transport functionalities, the zFabric manages the buffers between
each virtual NIC pair through a VM-to-VM credit-based scheme. zFabric imple-
ments a slim reliability scheme, providing reliable server-to-server channels on top
of the lossless CEE hardware. Although zFabric works with any traditional trans-
port, optimal results have been shown here with the newly proposed lightweight
TCPlight socket.
We have evaluated zFabric on a hardware testbed and shown significant improve-
ments: (i) increases VM-to-VM throughput up to 56%; (ii) solves lossless Ethernet’s
HOL-blocking; (iii) enforces TCP-friendly fairness independent of the VM trans-
port type; (iv) 7x - 14x shorter flow completion times for partition-aggregate; (v)
all the above while also lowering the CPU utilization up to 63%. A practical de-
ployment can be incremental and requires changes only to the hypervisor software –
and optionally to the guest OS for further improvements. As limitations, the zFab-
ric scheme is expected to operate within the domains of a performance optimized
cluster. We plan to extend it to larger production-sized datacenters.
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In this thesis we showed that it is possible to reduce the flow completion times of
latency sensitive applications by avoiding packet drops in the virtualized networking
stack. Furthermore, we proved that it is possible to simplify the heavy networking
stack by moving functionality from the TCP stack in the guest OS to the hypervisor,
and by exploiting the hardware link-level flow control from CEE. We summarize the
work by answering our initial question from Chapter 1.

(Q1) What is the influence of CEE protocols on the completion time of TCP
based applications?

In Chapter 2, we showed that PFC significantly improves TCP performance across
all tested configurations and workloads, hence our recommendation to enable PFC
whenever possible. The commercial workload completion time improved by 27% on
average, and up to 91%. Scientific workloads showed higher gains by enabling PFC:
45% on average, and up to 92%.

Standard QCN, obtained mixed results, partly caused by its lack of adaptivity and
fairness. On the other hand, we showed that the QCN rate limiters can be combined
with VLAN-based routing and is possible to improve both performance and stability
beyond the current state of the art routing in datacenters. Our evaluations showed
that for HPC benchmarks, our proposed R3C2 routing scheme can be up to 98%
faster than random routing, on average 40%.

(Q2) How do latency sensitive applications perform in a virtualized
environment? What are the main performance gating factors of overlay
virtual networks?

In Chapter 3 we confirmed that overlays diminish the performance of Partition-
Aggregate and 3-Tier workloads. We showed that the increase in the completion
time of the HTTP queries ranges from 1.5% up to 18.2%. The main performance
gating factors are the encapsulation and discovery overhead. While the encapsu-
lation overhead produces a fixed decrease of throughput, the discovery overhead is
variable and influenced by the controller design and by the size of the cache used in
every virtual switch.
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(Q3) What is the cause of packet drops in virtualized networks? What is the
performance penalty of the packet drops? How can they be avoided?

In Chapter 4 we showed that packet drops in the network stack are caused by the lack
of flow control between different queues from the data path. We provided evidence
that, for latency-sensitive virtualized datacenter applications, packet loss is a costly
singularity in terms of performance. To remedy this situation, we have identified the
origins of packet drops across the entire virtualized communication stack, and then
designed and implemented a fully lossless virtual network prototype. Based on the
experimental results, obtained using our prototype implementations and larger-scale
simulations, we have demonstrated average flow completion time improvements of
one order of magnitude.

(Q4) Can we design a lighter virtualized stack that improves performance of
socket-based application, running on top of CEE hardware?

In Chapter 5 we showed that is possible to design a lighter stack by judiciously de-
constructing and reallocating the transport functionalities. We introduced zFabric, a
new hypervisor stack, optimized for intra-datacenter transfers over lossless Ethernet.
We have evaluated zFabric on a hardware testbed and shown significant improve-
ments: (i) increases VM-to-VM throughput up to 56%; (ii) solves lossless Ethernet’s
HOL-blocking; (iii) enforces TCP-friendly fairness independent of the VM transport
type; (iv) 7x - 14x shorter flow completion times for partition-aggregate; (v) all the
above while also lowering the CPU utilization up to 63%.
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