
Diss. ETH No. 16201

On Instruction-Set Generation for
Specialized Processors

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Technical Sciences

presented by
GERO DITTMANN

Dipl.-Ing.
born March 15, 1974
citizen of Germany

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Paolo Ienne, co-examiner

Prof. Dr. Andreas Herkersdorf, co-examiner

2005





Acknowledgments

First of all, I would like to thank my advisor, Lothar Thiele,for giving me the chance to
pursue a Ph.D. at ETH Zurich while working at IBM, and for encouraging me to delve
into this fascinating field of synthesis methods for embedded systems. The course on hard-
ware/software co-design by Marco Platzner provided my withan invaluable basis for my
research. At an advanced stage, my co-advisor, Paolo Ienne,was an important influence,
shaping my work by asking all the right questions.

The IBM Zurich Research Laboratory (ZRL) is a tremendously challenging and inspiring
work environment. I want to thank all the people who make thislab such a special place.
I am most indebted to Andreas Herkersdorf and Ton Engbersen who were my managers
and mentors at ZRL. They have been an enormous source of inspiration and motivation.
I very much appreciate the support by the lab’s technical andadministrative staff. I am
particularly grateful to Charlotte Bolliger for proofreading my papers and teaching me a lot
about the subtleties of the English language.

Thanks to the technical community for receiving me so openly. Special thanks go to
Gerhard Fohler and Peter Puschner for taking the time to discuss my ideas on real-time
scheduling in great length. I also want to thank my co-authors on papers and patents,
especially Paul Hurley for helping me cope with integer linear programs.

On a less technical note, I express my utmost gratitude to my office mates, Sonja Buch-
egger, Mark Verhappen, Silvio Dragone, as well as the plantsAlice and Bob, and to my
unfailing lunchtime companions for sedulously discussing—and solving—all major ques-
tions in politics, art, literature, philosophy, and bicycle repair. I thank all my friends, inside
and outside ZRL, for being there with encouragement or constructive doubt—whichever
was appropriate.

Finally, I am infinitely grateful to my parents and sister without whose moral support
this book would never have come into existence.

i





Abstract

Owing to the ever-decreasing feature size of today’s semiconductor processes, the cost
of a mask set has already crossed the one-million-dollar line. Given this investment, a
design must be applicable for multiple purposes. This flexibility is commonly provided
by programmable elements. A gradual trade-off between the flexibility of general-purpose
processor cores and the performance of hard-wired logic canbe achieved withapplication-
specific instruction-set processors(ASIPs).

Many automated ASIP design methods found in the literature today employ a library of
patterns that represent potential specialized instructions. As the libraries tend to grow large
their access times become a critical factor. However, no attempts have yet been made to
speed up these searches in the pattern libraries. Furthermore, there are no methods available
to recognize and exploit structural similarities between patterns.

Another deficiency in today’s ASIP design methodologies is their exclusive focus on the
data-dominated domain characterized by computation-intensive applications such as digi-
tal signal processing. This focus entails a lack of methods for control-dominated domains
such as network processing. These domains are characterized by branch-intensive applica-
tions with fine-grained timing constraints imposed by frequent interactions with the ASIP
environment. The major challenge here is not to speed up the over-all runtime of the ap-
plications, but to meet the many timing constraints. This challenge can be addressed by
introducing special instructions that speed up the timing-critical paths.

In this thesis we propose a hierarchical organization for pattern libraries that removes
the dependency of search times on the library size. In this way, much larger libraries can
be handled which removes the need for heuristics to prune patterns from the library. Exact
methods become possible. In our experiments we found that searches in our structure
are orders of magnitude faster than in a linked-list library. Furthermore, we introduce a
method that employs identity operands to find synergies between similar patterns. These
similarities can be exploited to achieve leaner instruction sets and for data-path sharing.

On top of these library structures, we propose the first integrated ASIP design methodol-
ogy for the control-dominated domain. We introduce novel methods to specify fine-grained
timing constraints in ANSI C, to include them in an intermediate representation that facili-
tates compiler optimizations, and to derive an instructionset that enables the ASIP to meet
the timing constraints. We present a case study that demonstrates the feasibility of our
methods and the quality of the results.

iii





Zusammenfassung

Die stetig schrumpfenden Strukturgrößen moderner Halbleiterprozesse haben dazu geführt,
dass die Kosten für einen Belichtungssatz bereits eine Million Dollarüberschreiten. Damit
sich diese Investition auszahlt, muss ein Design vielfältig einsetzbar sein. Die erforderliche
Flexibilität wird üblicherweise mit Hilfe von programmierbaren Bausteinen erreicht. Eine
feinstufige Abẅagung zwischen der Flexibilität von General-Purpose-Prozessoren auf der
einen Seite und der Leistungsfähigkeit von fest verdrahteten Schaltungen auf der anderen
Seite wird erm̈oglicht vonapplication-specific instruction-set processors(ASIPs).

Viele der ver̈offentlichten automatisierten ASIP-Design-Methoden bedienen sich einer
Bibliothek von Mustern, die Kandidaten für Spezialbefehle darstellen. Da diese Biblio-
theken sehr groß werden können, spielt ihre Zugriffszeit eine entscheidende Rolle.Den-
noch wurde bisher nicht untersucht, wie die Suche in einer Musterbibliothek beschleunigt
werden kann. Darüberhinaus sind keine Methoden bekannt, um Gemeinsamkeiten in der
Struktur zweier Muster zu erkennen und auszunutzen.

Eine weitere Einschränkung heutiger ASIP-Design-Methodologien ist ihre ausschließli-
che Bescḧaftigung mit der Klasse der rechenintensiven, datendominierten Anwendungen
wie digitaler Signalverarbeitung. Es fehlt daher an Methoden für kontrolldominierte An-
wendungsklassen wie der Verarbeitung von Netzwerkprotokollen. Diese Klassen sind ge-
kennzeichnet durch Anwendungen mit vielen Verzweigungen und detaillierten Zeitanfor-
derungen, die von ḧaufigen Interaktionen mit der Umgebung herrühren. Unter diesen Be-
dingungen besteht die Herausforderung nicht darin, die Gesamtlaufzeit der Anwendungen
zu verringern, sondern sämtliche Zeitanforderungen zu erfüllen. Dies kann erreicht werden
mit Hilfe von Spezialbefehlen, die die Ausführung von zeitkritischen Pfaden beschleuni-
gen.

Diese Dissertation führt eine hierarchische Organisation für Musterbibliotheken ein, die
die Abḧangigkeit der Suchgeschwindigkeit von der Größe der Bibliothek aufhebt. Diese Ei-
genschaft macht wesentlich größere Bibliotheken beherrschbar, wodurch Heuristiken zum
Verwerfen von Mustern vermieden werden können. Exakte Methoden werden möglich. Ex-
perimente zeigen, dass das Suchen in dieser Struktur um Größenordnungen schneller ist als
in einer Bibliothek, die als verkettete Liste aufgebaut ist. Weiterhin wird eine Methode vor-
gestellt, die mit Hilfe von Identiẗatsoperanden Synergien zwischen sichähnelnden Mustern
findet. DieÄhnlichkeiten bieten die M̈oglichkeit, schlankere Befehlssätze zu erreichen und
Datenpfade mehrfach zu nutzen.

Aufbauend auf diesen Bibliotheksstrukturen wird die ersteintegrierte ASIP-Entwick-
lungsmethodologie für kontrolldominierte Anwendungsklassen vorgestellt. Eswerden neu-
artige Methoden entwickelt, um detaillierte Zeitanforderungen in ANSI-C zu spezifizieren,
sie in eine Graphendarstellung für Compileroptimierungen einzubinden und daraus schließ-
lich einen Befehlssatz abzuleiten, der es dem ASIP ermöglicht, die Zeitanforderungen ein-
zuhalten. Abschließend wird anhand einer Fallstudie die Machbarkeit der Methoden und
die Qualiẗat der Ergebnisse demonstriert.

v





Contents

1 Introduction 1

1.1 The Case for Specialized Processor Cores . . . . . . . . . . . . .. . . . . 1

1.1.1 Systems on a Chip . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Networking SoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Current ASIP Design Methods . . . . . . . . . . . . . . . . . . . . . . . .4

1.2.1 A Generic Design Flow . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Instruction-Set Generation . . . . . . . . . . . . . . . . . . . . .. 5

1.3 A New Methodology for Control-Dominated ASIPs . . . . . . . .. . . . . 6

1.3.1 Control-Dominated vs. Data-Dominated ASIPs . . . . . . .. . . . 6

1.3.2 The Design Methodology and its Challenges . . . . . . . . . .. . 9

1.3.3 Data-Push Communication . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Assumptions on Processor Architecture . . . . . . . . . . . .. . . 11

1.4 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Pattern Library for Fast Searches and Synergies 15

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Pattern Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Searching and Pattern Matching . . . . . . . . . . . . . . . . . . .16

2.1.3 Identity Operands and Datapath Sharing . . . . . . . . . . . .. . . 16

2.2 Hierarchical Library Organization . . . . . . . . . . . . . . . . .. . . . . 17

2.2.1 The Pattern Search Graph . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Searching a Pattern in a PSG . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Inserting Patterns into a PSG . . . . . . . . . . . . . . . . . . . . .21

2.2.4 Extension for DAG Patterns . . . . . . . . . . . . . . . . . . . . . 22

2.3 Exploiting Similarities between Patterns . . . . . . . . . . .. . . . . . . . 23

2.3.1 Identity Operands . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 The Identity Operand Graph . . . . . . . . . . . . . . . . . . . . . 24

vii



viii Contents

2.3.3 Inserting Patterns into an IOG . . . . . . . . . . . . . . . . . . . .26

2.3.4 IOGs of DAG Patterns . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Library Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Patterns in a PSG . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Analytical Bounds for IOGs . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Comparing IOGs with Unordered Libraries . . . . . . . . . . .. . 34

2.5 Summary of Pattern-Library Organization . . . . . . . . . . . .. . . . . . 35

3 Compiler Methods for Fine-Grained Timing Constraints 37

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Specifying Timing Constraints . . . . . . . . . . . . . . . . . . .. 38

3.1.2 Intermediate Representations . . . . . . . . . . . . . . . . . . .. . 38

3.2 Integrating Timing Constraints into ANSI C . . . . . . . . . . .. . . . . . 40

3.2.1 Fixed Timing Constraints between Operations . . . . . . .. . . . . 41

3.2.2 Data-Dependent Wait . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Multi-Layer Intermediate Representation . . . . . . . . . . .. . . . . . . . 44

3.3.1 Data-Flow Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Control Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Meta-DFG Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Timing Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.5 Putting it all Together . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Timing Layer Transformations . . . . . . . . . . . . . . . . . . . . . .. . 47

3.4.1 Parsing Timing Annotations in C . . . . . . . . . . . . . . . . . . .48

3.4.2 Implementing a Data-Dependent Wait . . . . . . . . . . . . . . .. 49

3.5 Branch Postponing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Applicability and Relevance . . . . . . . . . . . . . . . . . . . . .54

3.6 Summary of Compiler Methods . . . . . . . . . . . . . . . . . . . . . . . 55

4 Instruction-Set Generation for Precise Timing 57

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Contents ix

4.1.1 Operation Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Scheduling with Timing Constraints . . . . . . . . . . . . . . .. . 59

4.2 Timing-Forced Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59

4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Constraining Parallel Instruction Issues . . . . . . . . . . .. . . . . . . . 66

4.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Using IOGs to Eliminate Instructions . . . . . . . . . . . . . .. . 70

4.4 Handling Control Constructs . . . . . . . . . . . . . . . . . . . . . . .. . 71

4.4.1 Loop Ripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Wait-Node Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.3 Branches, Nop, WFC . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Summary of Instruction-Set Generation . . . . . . . . . . . . . .. . . . . 73

5 Experimental Results 75

5.1 Pattern-Library Performance: Speed and Size . . . . . . . . .. . . . . . . 75

5.1.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.2 Performance in PSGs . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.3 Performance in Combined PSG/IOGs . . . . . . . . . . . . . . . . 76

5.2 Example of a Control-Dominated ASIP Design . . . . . . . . . . .. . . . 78

5.2.1 A Parser for Protocol Headers in Network Packets . . . . .. . . . 78

5.2.2 Specification of Benchmark Applications . . . . . . . . . . .. . . 80

5.2.3 Timing-Forced Instructions . . . . . . . . . . . . . . . . . . . . .. 81

5.2.4 Constraining Parallelism . . . . . . . . . . . . . . . . . . . . . . .86

5.2.5 Comparison with Manual Design . . . . . . . . . . . . . . . . . . 87

5.3 Summary of Experimental Results . . . . . . . . . . . . . . . . . . . .. . 89

6 Conclusions 91

6.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . .. . . 91



x Contents

6.1.1 Efficient Pattern Libraries . . . . . . . . . . . . . . . . . . . . . .91

6.1.2 Design Methodology for Control-Dominated ASIPs . . . .. . . . 92

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Pattern Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 ASIP Design Methodology . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

Biography 103

Publications 105



List of Figures

1.1 Performance/flexibility trade-off. . . . . . . . . . . . . . . . .. . . . . . . 2

1.2 NP with ASIP-based fast path. . . . . . . . . . . . . . . . . . . . . . . .. 3

1.3 A generic ASIP design methodology. . . . . . . . . . . . . . . . . . .. . . 4

1.4 A control-dominated ASIP. . . . . . . . . . . . . . . . . . . . . . . . . .. 8

1.5 Design methodology for control-dominated ASIPs. . . . . .. . . . . . . . 9

1.6 From spacial to temporal addressing. . . . . . . . . . . . . . . . .. . . . . 11

1.7 Overview of the contributions. . . . . . . . . . . . . . . . . . . . . .. . . 12

2.1 Example of a pattern search graph. . . . . . . . . . . . . . . . . . . .. . . 18

2.2 Pseudo code: Pattern search in a PSG. . . . . . . . . . . . . . . . . .. . . 19

2.3 Tree-pattern search in a PSG. . . . . . . . . . . . . . . . . . . . . . . .. . 19

2.4 Operand numbering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Pseudo code: Inserting a tree pattern into a PSG. . . . . . . .. . . . . . . 21

2.6 Pseudo code: DAG pattern search in a PSG. . . . . . . . . . . . . . .. . . 22

2.7 Pseudo code: Inserting a DAG pattern into a PSG. . . . . . . . .. . . . . . 23

2.8 IOG of a pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Combined PSG/IOG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Fragment combination. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27

2.11 Pseudo code: Insert a pattern into an IOG. . . . . . . . . . . . .. . . . . . 29

2.12 Pseudo code: Combine fragments with next pattern node.. . . . . . . . . . 30

2.13 Pseudo code: Compute next active operand. . . . . . . . . . . .. . . . . . 31

2.14 Family tree of fragments. . . . . . . . . . . . . . . . . . . . . . . . . .. . 31

2.15 IOG of a DAG pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 A simple CDFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Example of C code with timing constraints. . . . . . . . . . . . .. . . . . 44

3.3 Example of multi-layer IR graph. . . . . . . . . . . . . . . . . . . . .. . . 47

xi



xii List of Figures

3.4 Parser productions for the basic timing constructs. . . .. . . . . . . . . . . 48

3.5 Parser production for the wait pragma. . . . . . . . . . . . . . . .. . . . . 49

3.6 Example code transformed to mlIR. . . . . . . . . . . . . . . . . . . .. . 50

3.7 Wait-node implementation. . . . . . . . . . . . . . . . . . . . . . . . .. . 50

3.8 Wait-node adjustment for scheduling. . . . . . . . . . . . . . . .. . . . . 51

3.9 Branch postponing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Pseudo code: Branch postponing. . . . . . . . . . . . . . . . . . . .. . . . 54

4.1 Scheduling matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Considering one constraint at a time is not sufficient. . .. . . . . . . . . . 62

4.3 Constraint propagation. . . . . . . . . . . . . . . . . . . . . . . . . . .. . 63

4.4 Combined timing edges overrulingtmin. . . . . . . . . . . . . . . . . . . . 63

4.5 Pseudo code: Generate timing-forced patterns. . . . . . . .. . . . . . . . . 64

4.6 Three-dimensional scheduling array. . . . . . . . . . . . . . . .. . . . . . 66

4.7 Partial schedule with parallelism values. . . . . . . . . . . .. . . . . . . . 68

4.8 Pairing edges with parallel values in a PSG. . . . . . . . . . . .. . . . . . 69

4.9 Pseudo code: Constrain parallel instruction issues. . .. . . . . . . . . . . . 70

4.10 Loop ripping: concatenating two iterations. . . . . . . . .. . . . . . . . . 71

5.1 Search speed-up for DAG patterns in a PSG. . . . . . . . . . . . . .. . . . 76

5.2 Search speed-up and library size for tree patterns in a combined PSG/IOG. . 77

5.3 Header-parser interfaces. . . . . . . . . . . . . . . . . . . . . . . . .. . . 78

5.4 Patterns of manually designed data instructions. . . . . .. . . . . . . . . . 80

5.5 Timed C code for IPv4 parsing. . . . . . . . . . . . . . . . . . . . . . . .. 81

5.6 Timed C code for IPv6 parsing. . . . . . . . . . . . . . . . . . . . . . . .. 82

5.7 Multi-layer IR graph for IPv4 header parsing. . . . . . . . . .. . . . . . . 83

5.8 Multi-layer IR graph for IPv6 header parsing. . . . . . . . . .. . . . . . . 84

5.9 IPv6 graph after loop ripping. . . . . . . . . . . . . . . . . . . . . . .. . . 85

5.10 Forced patterns and pairing edges. . . . . . . . . . . . . . . . . .. . . . . 87

5.11 Manually derived compound instructions. . . . . . . . . . . .. . . . . . . 88

5.12 Automatically derived compound instructions. . . . . . .. . . . . . . . . . 88

6.1 The complete methodology. . . . . . . . . . . . . . . . . . . . . . . . . .. 92



List of Tables

1.1 Characteristics of application domains. . . . . . . . . . . . .. . . . . . . . 7

2.1 Identity operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3.1 Scheduling freedom through branch postponing. . . . . . . .. . . . . . . . 55

5.1 Relevant header fields in IPv4. . . . . . . . . . . . . . . . . . . . . . .. . 79

5.2 Relevant header fields in IPv6. . . . . . . . . . . . . . . . . . . . . . .. . 79

5.3 Manually designed header-parser instruction-set. . . .. . . . . . . . . . . 79

5.4 Partial schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

xiii





1 Introduction

In this chapter we motivate the design of specialized processors in general and the intro-
duction of a new design methodology for control-dominated processors in particular. In
Section 1.1 we describe the role of specialized processors in systems on a chip and how
they compare to general purpose processors and to hardwiredlogic in this environment.
Related work on design methods for specialized processors is presented in Section 1.2. In
Section 1.3 we sketch our new methodology for the control-dominated domain and point
out its challenges. Finally, Section 1.4 gives an overview of the remaining chapters of this
thesis.

1.1 The Case for Specialized Processor Cores

1.1.1 Systems on a Chip

A major challenge the semiconductor industry is facing today is being discussed under the
nameproductivity gap: Advances in process technology provide an ever increasingnumber
of available transistors per design while, on the other hand, chip designers are struggling
to handle the complexity of such systems. As a consequence, the designed application-
specific integrated circuits (ASICs) fail to take advantageof what the technology offers.

A promising approach to bridge the gap is theSystem-on-a-Chip (SoC)design princi-
ple: A complex ASIC is composed of several small processing elements connected by a
communication infrastructure. The processing elements can be taken from a library of pre-
defined, optimized building blocks. If the communication infrastructure is standardized by
a specified SoCplatformthe building blocks can be plugged together easily.

The SoC approach boosts the designer’s productivity for several reasons:

• A new abstraction level is introduced which increases the level of complexity that
can be handled.

• The use of component libraries fosters the reuse of design elements. Since the com-
ponents in the libraries have been tested and used before, the approach reduces the
probability of design errors.

• The regularity in an SoC architecture enables support by high-level design tools
and has already given rise to pertinent specification languages such as SystemC
[OSCI02].

The resulting productivity boost increases the chances fora first-time-right design and sig-
nificantly reduces the time to market.

Another severe problem in chip design are non-recurring engineering costs (NRE). As
the feature size decreases the cost of masks grows rapidly. For 90-nm processes Semat-
ech expects mask-set costs to exceed one million dollars. The NRE of a design is better

1



2 Chapter 1. Introduction

F
le

xi
bi

lit
y

Performance

GPP

ASIC

ASIP

Figure 1.1: Performance/flexibility trade-off.

amortized if the chip can be reused for multiple purposes. This flexibility is achieved with
the introduction of programmability, providing the means to adapt a design to one out of a
class of applications. Furthermore, programmability alleviates some other issues:

• The complexity of SoCs makes the design process error-prone. With programmable
elements bugs can be fixed without redesigning the hardware,avoiding another iter-
ation of NRE and reducing the economic risk.

• The software part of a programmable SoC can be designed in parallel to the hardware
which improves the time to market.

• The software can be adapted to changing requirements after the hardware has been
produced. This increases the life-span of the design and thetime in market.

Consequently, already in early 2004, 90% of new 130-nm ASIC designs included a proces-
sor core [Jer04] and there is a trend to increase the number ofprocessors in a single SoC
up to several hundreds [AKMN02].

Methods that are employed in the design of programmable SoCsare collected under the
title hardware/software co-design (HSCD). The main problems that these methods address
are:

Hardware/software partitioning: The partitioning of applications into a first part that
is implemented in software running on programmable processor cores, and a second
part that is implemented in “hardware”, i.e., in hard-wiredASIC technology or in
programmable logic.

Design-space exploration: Which and how many of the available building blocks to
choose and how to arrange them on the chip.

Communication synthesis: How to organize communication between the parts of an
application that are distributed across different components on the chip.

The larger the hardware partition of the SoC the higher is theperformance but the lower
the flexibility of the design. A more fine-grained and gradualtrade-off between flexibility
and performance, or programmability and efficiency, can be achieved withapplication-
specific instruction-set processors (ASIPs). The instruction set of an ASIP is specialized
towards a particular class of applications by compound instructions that speed up critical



1.1. The Case for Specialized Processor Cores 3

parts of the applications without compromising the flexibility of the processorin its appli-
cation domain. In this way, ASIPs combine the flexibility of general-purpose processors
(GPPs) with the performance of hard-wired logic (see Figure1.1). Since most SoCs are
specialized towards a particular application domain, the ASIP concept is a good match
and ASIP cores are a valuable extension for the building-block libraries in SoC design
[AKMN02].

Some vendors offer extensible processor platforms which consist of a standard processor
core that can be augmented with specialized instructions, e.g., the Tensilica Xtensa [Ten] or
the ARCtangent by ARC [Arc]. The platforms are supported by atool environment, e.g.,
in Tensilica’s case centered around the Tensilica instruction extension (TIE) language to
describe the instruction-set extensions [Gon00]. The tools typically support synthesizing
new instructions for the processor and adding support for new instructions to compilers by
means of intrinsics, i.e., explicit calls to the special instructions in the high-level language.

1.1.2 Networking SoCs

In the networking field, protocol standards keep changing and evolving and new features
are introduced at a high rate. Therefore, the time-to-market advantages and the flexibility
that SoCs offer are in high demand in this domain.

Considerable research has been conducted on the architecture level of networking SoCs.
An approach to quickly implement new communication protocols in a mixed hardware/
software system can be found in [SC98]. Although in principle programmable, the system
is not supposed to run any other protocol after implementation. Flexibility is not a design
goal here but the cost-performance trade-off is optimized.

Approaches for more flexible network processors (NPs) are described in [Ben01, SM01,
VLW00]. The hardware/software partitioning of these designs is rather coarse-grained:
Flexibility is achieved by integrating processor cores with general-purpose instruction-sets
while performance critical parts of an application are offloaded to hardwired logic. A
commercial example of such an NP architecture is the Intel IXP1200 which comprises

Buffer /
Queue Mgr

Police

Tx Link i/f

Modify

Shape

Schedule

Intelligent Data Flow

Lookup

Parse

Rx Link i/f

Rapid IO

UART
I2C

GPIO

Data/Control Memory

eXRAM SDRAM

Processor Complex

PowerPC
cores

Co -
Processors

Interconnect

Control

PowerPC
cores

Figure 1.2: NP with ASIP-based fast path.



4 Chapter 1. Introduction

six GPP cores, called ‘micro-engines’, and hardware assists for hash functions, queuing,
and bit operations. An exhaustive survey of commercially available NPs can be found in
[Sha01].

In our NP architecture, depicted in Figure 1.2, we follow thefine-grained ASIP ap-
proach [GDD+03]. The core of the NP is a fast path (intelligent data flow; IDF) consisting
of highly specialized processor cores for basic network processing tasks, such as header
parsing, table look-up, or scheduling. These ASIPs are arranged in a pipelined fashion,
passing the result of their computation on to the next processing element directly rather
than through central memory. Only special packets that require complex handling are off-
loaded to the GPP cores in the slow path. In this way, the ASIPsprovide wire-speed packet
handling with programmability for future adaptations while the GPPs provide extra flexi-
bility for tasks that are too complex for wire-speed processing. In either case, the ASIPs
perform fast pre- and post-processing on which also the GPPscan rely.

Another research project that follows a similar approach isthe PRO3 processor
[VNO+03]. An industrial example of such an architecture are the EZchip NPs with their
TOPcore ASIPs [EZ99]. The projects vary in the flexibility ofthe ASIPs, the on-chip
interconnects, and the integration of the GPPs.

1.2 Current ASIP Design Methods

1.2.1 A Generic Design Flow

To derive an ASIP from applications in the target domain, a number of techniques is com-
bined into a design methodology for ASIPs. Figure 1.3 shows atypical ASIP design flow.
The designer specifies a suite of applications or parts of applications that are character-
istic for the target application-domain. This is done in a high-level language, such as C.
A compiler front-end translates this specification to an intermediate representation (IR),
which can usually be visualized as a graph, e.g. a control/data flow graph (CDFG), of basic
instructions, such as add, subtract, shift, multiply, divide, etc.

Application
Specification

Intermediate
Representation

Compiler
Front End

Optimizer,
Scheduler,

Pattern Finder

Patterns,
Statistics

e.g., C

e.g., CDFG

Instruction Set
Definition

ASIP
Description

Basic
Processor

Architecture

Tool
Generator

AssemblerSimulator Compiler

H/W Implementation

Figure 1.3: A generic ASIP design methodology.

Based on an architecture template, this graph is optimized,employing methods found
in the compiler literature [ASU86, Muc97, Mor98], and graphnodes are scheduled into



1.2. Current ASIP Design Methods 5

time steps. Recurring instruction patterns are identified that are candidates for hardware
implementation to render code execution more efficient. Optimizations, scheduling, and
pattern finding have a significant impact on each other and arethus interwoven. The result
of this process is a set of candidate patterns along with statistical information about their
occurrence and their benefit. This is also the point where information from the individual
applications in the set is merged because the value of a pattern is independent of the appli-
cation in which it appears. Based on the statistics, patterns are selected to be implemented
as instructions, and a processor description is generated.

The processor description is implemented and retargetabletool suites are used to quickly
build a development environment around the processor, including simulator, assembler,
compiler, and debugger [PKB01]. A recent development is that an implementation in a
hardware description language (HDL) as well as tools can even be generated automatically
for the new processor from a formal processor definition in anarchitecture description
language (ADL) [PHZM99, ENF00]. The design of a compiler foran ASIP is tightly
coupled with the design of the ASIP itself because the approaches used in instruction-set
generation are similar to instruction selection in compilers. The automatic generation of
compilers from processor descriptions continues to be an active field of research.

In [WL01], the manual implementation of a C compiler for a particular network pro-
cessor is described. The focus is on operations on variable-length bit-vectors that are not
aligned on register boundaries and may even span across two registers. Also, support for
arrays of bit vectors is proposed.

1.2.2 Instruction-Set Generation

A simple approach for ASIP instruction-set design proposedin [vPGLM94] is to analyze
the data-flow graphs (DFGs) in a CDFG to find frequently recurring instructionsequences.
Appropriate hardware resources that implement these sequences are then manually added
to speed up program execution, and the code is modified to makeuse of the new resources.
These two steps, sequence analysis and adding corresponding resources to the hardware,
are iterated until the result is satisfactory for the designer.

The approach presented in [HD94] does the same consideringparallel operations rather
than sequences, and is targeted for pipelined processors. Parallel operations in DFGs are
scheduled into time steps, and operations in the same time step form an instruction. A
simulated annealing algorithm is then used to modify the original operation scheduling to
find better instruction sets. Moreover, different operand encodings are tried out in order to
meet a given instruction-size constraint.

Instead of starting from the most simple instruction set, other approaches are based on
existing processor cores, as described in e.g. [Gsc99], in an attempt to keep design cost
and time-to-market low. These cores are then manually extended with application-specific
instructions to speed up critical code sections.

In [AC01], parts of the above approaches are combined: Existing processors are ex-
tended for an application domain by finding two-dimensionalpatterns (i.e. consisting of
sequential and paralleloperations) that share at least one operand and implementing them
as special instructions. Applications are not representedby the compiler output directly but
by execution traces, thus enabling the detection of patterns across control-flow boundaries,
and a better estimate of their frequency of occurrence.

The pattern-matching algorithm that works on these traces develops a pattern library
on the fly: It starts with a library of basic operations and then iteratively adds all possible



6 Chapter 1. Introduction

combinations of each operation node with its neighbors, i.e., combinations with other nodes
that share at least one operand with it in the application graph. Patterns from this library
are then selected to cover the application graph such that each operation is covered by
exactly one pattern. This selection is called acoverof the application graph. A variation of
dynamic programming is employed to minimize the implementation cost of the cover.

The patterns in the library are sorted by the number of times they occur in the application
graphs and by the number of times they were selected for a cover. From this list, patterns
are manually selected, grouped, and implemented.

A different method to clusterparallel operations to form new instructions is proposed
in [BKKS02]. DFG nodes are scheduled as soon as possible and as late as possible to
determine their mobility. From this information, a graph isderived in which two nodes are
connected by an edge if they can be scheduled in the same schedule step. The edges are
weighted with the number of times the nodes can be scheduled together. For instruction
selection, a profiling function is employed to find the most frequently occurring operation
pairs. This function must maintain a library of candidate pairs in order to collect profiling
information, but it is not described in the paper.

Library based approaches suffer from the size of the libraries. In [Arn01], memory
requirements of more than 200 MB and a running time of more than 24 hours are given
for single benchmark applications. As a consequence, the author proposes a number of
heuristics to keep the library size low by removing less promising patterns from the library.
In this thesis we propose an exact solution to this problem bymeans of a new library
structure that enables orders of magnitude faster access.

A completely different approach is introduced in [API03]. The authors propose to or-
ganize the patterns of a basic block in a virtual search-tree. This tree enables effective
pruning of regions in the search space that violate design constraints. For each basic block,
a search algorithm finds the pattern with the highest speed-up. Of these patterns from all
basic blocks, the one with the highest speed-up is chosen as anew processor instruction.

The selection algorithm iterates, searching for an incremented number of non-over-
lapping patterns in the one basic block from which the new instruction was chosen. Again,
the result from the basic block with the highest speed-up is selected. The iterations continue
until a predefined number of new instructions is reached.

1.3 A New Methodology for Control-Dominated
ASIPs

This section motivates the introduction of a special designmethodology for control-domi-
nated ASIPs. We give an overview of our approach and state ourbasic assumptions on the
ASIP architecture.

1.3.1 Control-Dominated vs. Data-Dominated ASIPs

Most research publications on ASIPs concentrate on the design of digital signal processors
(DSPs) or, more generally, on the data-dominated application domain. Data-dominated
applications are characterized by long arithmetic sections between control-flow bound-
aries, i.e., between branches. Furthermore, they typically contain many computation-heavy
loops. Processing often starts with receiving a sample of data and ends with sending out



1.3. A New Methodology for Control-Dominated ASIPs 7

a resulting sample [MBL+96]. Between start and end there is no other I/O to be handled.
Hence, there is only one deadline to be met per algorithm run:The resulting frame has to be
output in time. This kind of timing constraint is called arate constraintbecause the overall
running time of an algorithm is constrained to guarantee that a required rate of samples per
time unit can be processed.

The properties of data-dominated applications are reflected in the ASIP design methods.
The special instructions of an ASIP speed up segments of the application code. With rate
constraints, any speed-up will improve the performance of the applications, irrespective of
the code part in which the improvement is achieved. Code in loop bodies is executed many
times and is therefore a preferred candidate for specialization efforts. Long arithmetic
code sections provide an appropriate search space to find patterns that occur often in the
applications to justify implementation as special instructions.

Control-dominated applications, in contrast, feature many branches interleaved with
short computation blocks, and loops are rare. In most control-dominated real-time systems,
such as backbone NPs1, there is not only one deadline at the end of a run but there aremany
I/O interactions with the environment and many of them have adeadline associated with
them.

For instance, in a network processor such as the one in Figure1.2, memory bandwidth
and bus contention are the major performance bottlenecks. Furthermore, accesses to such
shared resources introduce unpredictability [TW04] which compromises the deterministic
timing that control-dominated applications often require. One way to relieve this problem
is to process packet headers on the fly as they come in from a link instead of retrieving them
from memory for each processing step. But this means that every header word that contains
fields to be processed has a deadline associated with it because it has to be processed—or
at least saved to astableregister—before being overwritten by the next incoming header
word. On the other hand, different header words have completely different semantics and
trigger different types of processing, e.g., a header-length field compared with a protocol
number. Hence, we need to specify different timing constraints in many places in the
application. Moreover, some timing constraints depend on run-time information such as
the header length. In this case, the input data determines a number of cycles to wait for an
event to occur, e.g., to wait for the beginning of the next header in protocols with variable
header lengths.

Properties Data-dominated Control-dominated

Examples DSP, media processor NP, microcontroller
Arithmetic sections long short
Branches few many
Loops many few
Memory size large small
Arithmetic type fractional integer
Timing rate constraints fine-grained
Data-dependent wait no yes
Pattern purpose speed-up forced by timing
Pattern metric occurrence frequency meets timing constraints

Table 1.1: Characteristics of application domains.

1In the backbone of a network, the main task of an NP is header processing and routing—which is control-
dominated. In contrast, NPs in access routers at the fringe ofthe network often perform payload processing—
which is data-dominated. Throughout this thesis we only consider backbone NPs.



8 Chapter 1. Introduction

As a consequence of these fine-grained timing constraints, the focus moves away from
patterns that occur frequently and therefore provide an overall speed-up. Instead, patterns
must be implemented as instructions in order to meet the fine-grained timing constraints,
even if they occur only once in an application. Table 1.1 contrasts the properties of the two
application domains.

Figure 1.4: A control-dominated ASIP.

Some publications on control-dominated ASIPs exist, e.g. on a microcontroller [K̈uç99]
and a Prolog processor [Gsc99], but they focus on implementation details rather than on
algorithms for automatic instruction-set synthesis. Other examples of ASIPs in the control-
dominated domain are the building blocks of network processors, such as the header parser
shown in Figure 1.4 [Dit00], which extracts fields out of packet headers, or aprotocol
engine, which implements protocol FSMs. Both tasks consist mainlyof branch decisions
with only few computations. This is illustrated in Figure 1.4 by the fact that only the
right-hand quarter of the graph performs computations on input data while the other three
quarters are occupied with the control flow.

Implementation of controller FSMs has been investigated for ASIC high-level synthe-
sis (HLS) and HSCD, mainly for automotive applications as in[CGH+94], but not for
instruction-set synthesis. The main difference between these two approaches is the fact
that existing approaches optimize the circuits for a singleapplication whereas an ASIP
must support a variety of applications, including future applications that have not been
specified at design time. This introduces a flexibility factor that is hard to quantify.



1.3. A New Methodology for Control-Dominated ASIPs 9

1.3.2 The Design Methodology and its Challenges

All methods for instruction-set generation surveyed in Section 1.2.2 focus on the data-
dominated domain. Their metric for instruction selection is the speed-up achieved in the
applications but none of them considers fine-grained timingconstraints. In contrast, the
research presented in this thesis is targeted at ASIPs for the control-dominated domain.
Therefore, we consider fine-grained timing constraints throughout our design methodology
which is depicted in Figure 1.5.

Intermediate
Representation

Timing
Constraint
Analysis

Timing-Forced
Patterns

Scheduler

Constraining
Parallelism

Patterns and
Pattern Pairs

Identity
Simplification

ASIP
Instruction Set

Partial
Schedule

Application Specification
w/ Timing Constraints

Compiler Front End

Figure 1.5: Design methodology for control-dominated ASIPs.

The first step in working with timing constraints is to specify them along with the ap-
plications in a high-level language (HLL). Many applications in the embedded area are
programmed in C. However, the C language does not provide anyconstructs to specify
timing. Therefore, we have to augment C with timing constructs. The constructs should
be defined in a standard-compliant way to maintain compatibility with the existing tool
infrastructure. Furthermore, to provide an appropriate resolution for the timing constraints
they must be specified as accurately as possible. This is complicated by the fact that a
single C statement often corresponds to multiple basic operations which access an even
larger number of variables. The timing constructs must enable the programmer to associate
constraints with one particular variable access. We define aset of pragma directives that
meet all these requirements.

A compiler front-end translates this timing-annotated HLLto an IR on which compiler
transformations and analyses can operate. The IR must be able to represent the timing
constraints in addition to standard control and data flow. Weaddress this requirement with
a combination of appropriate IRs.

Once formally captured, we analyze the timing constraints to collect thetiming-forced
patternsthat are necessary to meet the constraints. A scheduler employs these patterns



10 Chapter 1. Introduction

and additional basic operations in computing partial schedules of the applications. The
scheduler assumes unbounded parallelism and is based on an analysis of the control, data,
and timing dependencies between the operations. A partial schedule provides statistical
information on how often pattern pairs occur in parallel in the same cycle.

Based on these statistics, the next method in the flow constrains the number of instruc-
tions issued in parallel. The method chooses the pattern pair that provides the highest
reduction of parallel issues and bundles it to form a single instruction. With the new bundle
in the instruction set, a new partial schedule is computed and the process is iterated until
the maximum number of parallel issues that the designer specified is no longer exceeded.

In a last step, the resulting instruction set is simplified employing identity operands to
merge related instructions for a leaner instruction set. This step is not specific to control-
dominated ASIPs but is useful for any instruction set.

1.3.3 Data-Push Communication

In our research we focus on highly-specialized small ASIP cores with deterministic per-
formance which guarantees to meet tight timing constraints. To avoid the unpredictability
that shared bus and memory accesses introduce the ASIP does not fetch input data from a
central memory. Instead, we rely on the communication modelthat we have sketched in
Section 1.3.1: The data ispushedto the ASIP’s input registers as soon as it is available
and data must be read before the register is overwritten withthe next input. Similarly, the
ASIP writes its results to the output registers in a write-and-forget fashion. The data in an
output register is then pushed to the input of the consuming building block. We call this
communication style adata-pushmodel.

The advantage of data-push communication is that it avoids any complexity associated
with queuing, buffer management, and access to shared busses and memory. The require-
ment that the ASIP precisely times reads and writes to the I/Oregister is met by our design
methodology for real-time ASIPs.

In the example case of our NP in Figure 1.2, the building blocks in the fast path (IDF)
are arranged in a pipeline so that one unit passes the resultsof its computations on to the
next one by means of data-push communication. When a packet arrives from the network,
the link interface writes the first word of the packet to the appropriate input register of the
parser and generates a signal to start header processing. The interface continues to write
packet data to the same input register until the packet ends.The parser pushes each header
field it extracts to an input register of the look-up processor, signaling the field type. The
header parser is described in more detail in Section 5.2.

Data-push communication is particularly well-suited for NPs: They require deterministic
performance, and bus and memory bandwidth are the main performance bottlenecks in
NPs. A data-push architecture addresses both problems by replacing the complexity of
queue and buffer management between building blocks with a scheme that requires neither
bus nor memory accesses. Furthermore, the data-push model provides full wire-speed
processing and matches the streaming character of the network traffic.

Moving from a memory-centric to a data-push model involves achange in the way data
is addressed. Figure 1.6 demonstrates this change for a network header structure. In the
memory-centric model, an element in a data structure is accessed by adding an offset to the
base address of the structure and reading from the resultingaddress. The offset corresponds
to the position of the element in the structure and is therefore aspacial address. In the
data-push model, in contrast, an element in the input data isaccessed by waiting for it to



1.3. A New Methodology for Control-Dominated ASIPs 11

struct IPHeader {
  uint4 version;
  uint4 ihl;
  uint8 tos;
  uint16 tot_len;
  uint16 id;
  uint16 frag_off;
  uint8 ttl;
  uint8 protocol;
  uint16 check;
  uint32 saddr;
  uint32 daddr;
};

Vers IHL ToS Total Length

ID Fragment Offset

TTL Header ChecksumProtocol

Source Address

Destination Address

Data-push Input RegisterData Structure

M
em

or
y 

A
dd

re
ss

es

W
ai

t T
im

e

1 cycle

2 cycles

3 cycles

4 cycles

start

1 word

2 words

3 words
4 words

base address

spacial addressing temporal addressing

Figure 1.6: From spacial to temporal addressing.

occur in an input register. The number of cycles to wait from the signaled start of a data
transmission corresponds to the position of the element in the input data and is therefore a
temporal address.

1.3.4 Assumptions on Processor Architecture

The architectural decisions we have made are the following:

VLIW format. To avoid the hardware overhead that superscalar architectures entail, we
opt for the very long instruction word (VLIW) approach in order to obtain a small
footprint for the ASIP [SRM+94]. With VLIW processors, it is up to the compiler to
pack multiple instructions into one memory word that will then be executed in par-
allel. The resulting binary incompatibility between processor models with different
issue widths is usually not a problem for embedded systems asit is possible to re-
compile code for a new processor. Moreover, controlling parallelism by the compiler
simplifies the scheduling under timing constraints becausethe scheduler does not
need to estimate the behavior of the hardware parallelization. VLIW architectures
have been very successful in the DSP and multi-media domain.

No pipelining. Control-dominated applications have many branches, whichis the classi-
cal stumbling block for processor pipelines. To keep the pipeline filled after a branch,
speculative execution can be employed but it is only effective if the speculation is
correct. Branch prediction is used to improve the rate of correct speculations but the
rare occurrence of loops in control-dominated applications renders branch prediction
largely ineffective. Furthermore, the short arithmetic sections in control-dominated
applications constrain opportunities for speculation. Finally, speculation is a proba-
bilistic technique that interferes with hard timing constraints [TW04]. We conclude
that pipelining and control-dominated applications do notmatch well because fre-
quent stalls make pipelining largely inefficient in this domain. Consequently, the
overhead in logic and the increased instruction completiontime due to pipeline reg-
isters and imbalances between the stages would not be justified.

No data memory. The reason to choose a data-push architecture was to avoid the un-
bounded delays of shared memory accesses in order to providedeterministic perfor-
mance. Caches are a probabilistic technique and therefore do not solve the problem
[TW04]. On the contrary, caches increase the worst-case access time. A viable solu-
tion is local scratch-pad memory [WM05]. To support memory, the data-dependency
analysis on which some of our design methods rely requires pointer analysis to find



12 Chapter 1. Introduction

dependencies through accesses to the same memory location.This process is also
called memory disambiguation. To avoid the complexity of this analysis we prelim-
inarily exclude data memory elements from our considerations. Instead, we assume

Unlimited registers. The control-dominated applications we analyze typically do not
have large storage requirements so that the required numberof registers will be low.
Not imposing constraints on the number of available registers significantly reduces
the complexity of scheduling.

No interrupts. Thanks to the data-push communication and the absence of caches the
ASIP does not need interrupts for I/O operations or the handling of memory page
faults. We therefore do not consider interrupts which removes yet another hazard to
predictable program behavior and deterministic timing.

Single-cycle instructions. Control-dominated applications typically do not use floa-
ting-point data-types but rely exclusively on integers. Therefore, it is not a severe
restriction to disregard multi-cycle instructions.

With these assumptions, the complexity of our methods is kept under control for this first
proof-of-concept methodology. However, our methodology can be combined with existing
methods to overcome its restrictions. In particular, it canbe complemented with pipeline
design methods, memory disambiguation algorithms, and register scheduling approaches to
support pipelined architectures with scratch-pad memory and a limited number of registers.

1.4 This Thesis

Data-dominated domain

Control-dominated domain

Pattern library:
Fast searching, Covering synergies
(Chapter 2)

Fine-grained timing constraints:
Specification, Intermediate representation, Transformation
(Chapter 3)

Instruction-set generation:
Timing-forced instructions, Constrained parallel issues
(Chapter 4)

Figure 1.7: Overview of the contributions.

The contribution of this thesis, as shown in Figure 1.7 comprises the following concepts:

• Chapter 2 introduces a hierarchical organization of pattern libraries. Our method sig-
nificantly improves the access times to the library which solves an important prob-
lem in existing ASIP design methods. Moreover, the hierarchical arrangement of



1.4. This Thesis 13

patterns reveals synergies between patterns that we exploit for leaner instruction sets
and data-path sharing between instructions.

• In Chapter 3 we present our application representation thatis particularly suited
for the control-dominated domain. We introduce fine-grained timing constraints
in ANSI C. These constraints are reflected in our intermediate representation. To
demonstrate the benefit of the proposed representation we introduce an optimiza-
tion technique we callbranch postponingthat resolves scheduling conflicts between
deadlines.

• In Chapter 4 we demonstrate how to construct the operation patterns necessary to
meet the given timing constraints. Furthermore, we introduce a method to merge
parallel patterns in order to handle a constrained number ofparallel instruction is-
sues required for the ASIP. A special section is devoted to the handling of the data-
dependent wait operations which are part of our applicationrepresentation.

In Chapter 5 we give performance results of our organizationmethod for pattern libraries.
We also demonstrate the application of our ASIP design methodology in a case study with
a real-life ASIP. Chapter 6 concludes the thesis.





2 Pattern Library for Fast Searches
and Synergies

A crucial step in ASIP design is the instruction-set generation. Methods for automating
this process, surveyed in Chapter 1, extract patterns from applications, usually in the form
of data-flow graphs (DFGs), and insert them into a pattern library. Along with each pat-
tern, statistical data is collected, such as the number of occurrences of a pattern in the
applications. Based on this data, a subset of the patterns inthe library is then selected for
implementation as specialized instructions.

For each pattern which is found in the applications, a searchin the library is performed
to check whether the pattern is already present, and the pattern is then either added to
the library or the statistics are updated. The complexity ofthis search has a significant
impact on the running time of instruction-set synthesis tools. Current algorithms have a
computational complexity ofO(n · p), with n the total number of operation nodes of all
patterns in the library andp the size of the pattern sought.

In this chapter, we introduce a novel organization for pattern libraries that enables a
search algorithm with onlyO(d), whered is the size of the pattern sought, up to the max-
imum pattern size in the library (d ≤ p). Furthermore, the library organization reveals
opportunities to substitute one pattern by another. This can be exploited for more efficient
instruction selection and code generation.

The chapter is structured as follows: In Section 2.1 we referto related work on the
generation of pattern libraries for instruction-set generation, on search algorithms, and on
methods based on identity operands. In Section 2.2 we introduce our concept of a novel
graph-based library organization that facilitates fast pattern searches. We present search
and insertion algorithms working on the graph. In Section 2.3 we extend this concept and
show how identity operands can be used to substitute a group of patterns by a super-pattern.
We summarize the chapter in Section 2.5.

2.1 Related Work

2.1.1 Pattern Libraries

While most approaches to instruction-set design for ASIPs involve the construction and
evaluation of a pattern library, the organization of these libraries has not been described in
the literature [vPGLM94, HD94, BKKS02].

The library-construction algorithm described in [AC01] tries to find pattern matches by
iterating over the operation nodes of the patterns in the library and comparing them with
the nodes in a subject pattern. We conclude that the library is an unordered collection
of patterns. In the worst case, a search algorithm on such a library has to compare all
operation nodes of the pattern in question with all operation nodes of all patterns in the
library. Hence, the computational complexity of this search is O(n · p), with n the total

15



16 Chapter 2. Pattern Library for Fast Searches and Synergies

number of operation nodes of all patterns in the library andp the size of the pattern sought.
In order to keepn low, the author introduces heuristics to limit the library size by excluding
patterns that do not seem beneficial.

Because a search is conducted for each pattern found in the applications and because
the pattern libraries tend to be large, the computational complexity of the search algorithm
has a significant impact on the total running time of the instruction-set generation process.
In [Arn01] for instance, memory requirements of more than 200 MB and a running time
of more than 24 hours are given for single benchmark applications—with a number of
heuristics already built in to keep library size low.

For technology mapping in logic synthesis, large cell libraries provide possible imple-
mentations of register-transfer level designs. The complexity of these libraries, however,
is not due to the number of different pattern structures but due to the number of physical
parameters, such as power levels, i.e., the large number of alternatives to implement the
same pattern [BHSV90].

2.1.2 Searching and Pattern Matching

Search algorithms have been the subject of research for a long time. Most efficient al-
gorithms that have been proposed apply, however, to one-dimensional data structures—in
particular to string searches [CLR90]. DFGs, in contrast, are two-dimensional structures.
While for strings it is clear that the next character will follow at the end of the string, in
DFGs the next operation node to be added can be operand to one of many nodes. [HO82]
proposes a method to transform trees into strings and then relies on string matching algo-
rithms. In contrast, our approach does not require a transformation of the DFG but actually
exploits its tree structure.

The covering of code sections with appropriate elements in apattern library for imple-
mentation has traditionally been performed by graph-basedpattern matching algorithms,
e.g., for code generation in compilers [HO82, AG85] and for technology mapping in logic
synthesis [Keu87, ZS01]. These algorithms assume a fixed setof patterns and they perform
preprocessing on this set to speed up the actual matching. Methods for instruction-set gen-
eration, in contrast, construct their libraries on the fly, iteratively filling the library with new
patterns. For such dynamic libraries the preprocessing of the entire pattern set would have
to be repeated for each new pattern. This problem renders thealgorithms very inefficient
in our context.

More recently, symbolic algebra [PSM02] and combinationalequivalence checking
[CPHC04] have been employed for this mapping. Symbolic algebra, however, is con-
strained to patterns that represent linear functions. Non-linear functions can only be ap-
proximated. Both symbolic algebra and combinational equivalence checking are very com-
plex and thus only feasible for small problems. They may be beneficial for canonicalization
of patterns in combination with fast matching methods such as those presented in this chap-
ter.

2.1.3 Identity Operands and Datapath Sharing

Identity operations, which we use to reduce patterns to simpler ones, have been ex-
ploited for basic algebraic transformations in compilers [Muc97] and in high-level syn-
thesis [LM97]. The idea to use identity operands for patternsimplification is mentioned



2.2. Hierarchical Library Organization 17

in [CKG+96] but the authors provide no algorithms. In [PD94] and [HE99], identity op-
erations areinsertedinto sequences of operation nodes in order to increase the number of
identical patterns. In contrast, we propose to use identityelements toeliminatenodes from
patterns. The library we construct in this way reveals the same opportunities to substi-
tute one pattern by another—and more, because our approach isnot constrained to small
sequential patterns.

Another approach to merge patterns for datapath sharing is presented in [MAHM02].
The authors present heuristics to map edges in a pattern to edges that connect similar nodes
in other patterns. The resulting combined pattern can then be configured to implement any
of the original patterns by disconnecting different sets ofedges.

The heuristic presented in [BKS04] decomposes the DFGs of complex instructions into a
set of leaf-to-root paths. In this set the algorithm finds thecommon operation subsequence
with the maximum area and merges instructions at this subsequence. The process is iterated
until no more merging or no further area improvement can be achieved.

The latter two approaches rely on reconfigurable interconnection networks and multi-
plexers to configure the merged datapath. This approach entails more complexity than
disabling operators by identity operands.

2.2 Hierarchical Library Organization

2.2.1 The Pattern Search Graph

Arranging patterns in a linked list results in a completely arbitrary order. There is no
relation in the order of the patterns that could be exploitedfor directed and therefore faster
searches. But patterns do have a structure that lends itselfto ordering. In particular, a
pattern can be a subgraph of another pattern, or two patternscan have common subgraphs.
In the following, we present a method to order patterns according to their structure and
the operation type of their nodes. First, we introduce the method for tree-shaped patterns
and then generalize it to patterns that are directed acyclicgraphs (DAGs) in Section 2.2.4.
The resulting new structure supports significantly faster searches than conventional library
structures.

We arrange the patterns in a tree. Each node in this tree represents a pattern. The root of
the tree has edges to all patterns that consist of a single basic operation, forming a first level
of patterns. The basic operations can be extended to form two-node patterns by connecting
the output of another operation to one of the basic operation’s operand inputs. Each of the
first-level patterns has edges to all two-node patterns withthe respective first-level pattern
as their root node. The two-node patterns are the second level of the library tree. This
process continues for more complex patterns, adding more levels to the library graph. We
call this tree graph apattern search graph (PSG)as it facilitates directed and fast searches
as we will show in Section 2.2.2. Figure 2.1 shows an example PSG of a pattern from an
application that parses headers of network packets [Dit00].

Compared with the linked list, the structure of a PSG is two-dimensional rather than
one-dimensional. This entails the following redundancy. Take a pattern consisting of three
operation nodes, two of which feed their result as operands to the root node. In this case, we
could have two PSG paths to the pattern: first adding the left operand to the root operation
and then right, or adding the right operand first and then the left. In order to have only one
path from the library root to each pattern, we posit that appropriate operations be connected



18 Chapter 2. Pattern Library for Fast Searches and Synergies

AND

x1

AND

SHR
SHR

x1

AND

SHR

SUB

SHR

SUB

AND

SUB

SUB

x1

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

Library
Root

Figure 2.1: Example of a pattern search graph.

first to right operands and then to left operands, assuming basic operation nodes with two
operands. The search algorithm presented in the next section requires only the remaining
PSG paths with precedence for the right operand.

The PSG organization has the side-effect that all patterns on the path to a complex pat-
tern must be present in the library. Hence, when inserting a pattern into the library, we
sometimes must also insert additional patterns that are on the PSG path to the new pattern
but that are not present in the library, yet. Our performancemeasurements in Chapter 5
show, however, that the overhead presented by this effect ismarginal.

2.2.2 Searching a Pattern in a PSG

The access to the pattern library can be accelerated significantly by exploiting the order
of the patterns in a PSG. When searching for a particular pattern in the library, we start
with one of the primitive operation nodes it comprises, namely, the root node. We then add
operation nodes in the pattern by following the edges in the search graph. In this way, we
arrive at the complete pattern, provided it exists in the library.

The recursive algorithm in Figure 2.2 implements the proposed search strategy. It tra-
verses the pattern sought depth-first and right-branch-first, corresponding to the rule for
avoiding redundant paths we posited earlier. The procedurereturns either the position of
the pattern in the library or NULL.

Consider the example PSG in Figure 2.3. In order to search this graph for, e.g., the pat-
tern in the upper right corner, the algorithm starts with thepattern root—in this case the
subtraction. In the first line of thefind function,libNode is set to the library entry corre-
sponding to the pattern root by following thenext-pointer indexed by the only operand of
the library root and by aSUBoperator. Then the right operand of the pattern root—labeled



2.2. Hierarchical Library Organization 19

activeOpnd = 0; /* global variable */
patternInLibrary = find( patRoot, libRoot );

LibNode find( patNode, libNode ) {
LibNode nextLibNode = libNode.next[activeOpnd][patNode.operator];

activeOpnd = 0; /* right operand is always 0 */
if (patNode has rightOpnd AND nextLibNode exists)
nextLibNode = find( patNode.rightOpnd, nextLibNode );

activeOpnd++;
if (patNode has leftOpnd AND nextLibNode exists)
nextLibNode = find( patNode.leftOpnd, nextLibNode );

return nextLibNode;
}

Figure 2.2: Pseudo code: Pattern search in a PSG.

x2—is examined, which is NULL because it is an external pattern input. Therefore, it is
skipped and the left operand is checked, which is not NULL because it is connected to the
output of the shift operator. Consequently, thefind function is called recursively with the
shift operation as the nextpatNode and the subtraction as thelibNode.

This time, the first line of thefind function follows thenext-pointer indexed by the
second operand of the subtraction and by aSHRoperator and hereby setslibNode to
the library entry we have been seeking. Both, the left and right operand ofpatNode
are NULL and therefore the library entry sought is returned,after unwinding the recursive
calls, to be assigned topatternInLibrary.

AND

x1

AND

SHR
SHR

x1

Library
Root

AND

SHR

SUB

SHR

SUB

AND

SUB

SUB

x1

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

SHR

SUB

x0 x1

x2

?

Figure 2.3: Tree-pattern search in a PSG.



20 Chapter 2. Pattern Library for Fast Searches and Synergies

Operand Numbering

The two-dimensional arrayLibNode.next holds references to all library entries that
are derived from the current entry by attaching one more operation node to the associated
pattern. The array is indexed by the operator of the attachednode and by the operand of
the current pattern to which the new node is attached.

To identify the operands they must be numbered. But not all operands are candidates
for attaching another operation node. Figure 2.4 illustrates why. The search algorithm first
traverses the right-most branch of the searched pattern until it has reached the end of the
branch in step 3. Only then it considers the left operands, recursively backtracking the
right-most branch. When the next operator node is attached instep 4, then all operands that
have been visited before will not be used anymore in the future because if there would be
an operation node to attach to any of them then this would havehappened at the first visit
to the operand. Hence, these operands are “dead” and need no entry in thenext-array, nor
do they need a number. The remaining numbered operands we call live operands.

The left-most right operand always is number 0. Left of operand number 0, the left
operands are numbered along the fringe of the pattern. That is why the pattern in step 4
of Figure 2.4 has one operand column less in itsnext-array than the pattern in step 3
although it has one external operand more.

1 0

1 0

1 0 1 0

2

2

23

Step 1 Step 2 Step 3 Step 4

Figure 2.4: Operand numbering.

In the algorithm in Figure 2.2,activeOpnd is set to 0 when a right branch is explored
because a right operand always has number 0. If there is no operator node attached at the
right branch then the algorithm continues with the left operand of the same node which then
has operand number1 = 0+1. If there is an operator attached and the recursion eventually
returns from a right branch then the algorithm will have visited some left operands in the
right branch and it will have setactiveOpnd accordingly. The left operand of the current
node is the next in line and its operand number is the value ofactiveOpnd plus one.
Therefore,activeOpnd is increased by one before exploring the left branch of the current
node.

This approach guarantees correct numbering of the operands, according to the numbers
in Figure 2.4, and results in the minimum possible size of thenext-array with each library
node.

Computational Complexity

Thefind function is called at most once for each node in the pattern sought. The pointers
to the next library nodes are stored in the arraylibNode.next with linear access time.
Therefore, this search isO(p), with p the number of operation nodes in the pattern sought.
If the pattern sought is larger than the largest pattern in the library then the search stops



2.2. Hierarchical Library Organization 21

activeOpnd = 0; /* global variable */
patternInLibrary = insert( patRoot, libRoot );

LibNode insert( patNode, libNode ) {
LibNode nextLibNode = libNode.next[activeOpnd][patNode.operator];
if (nextLibNode does not exist) {
liveOpnds = libNode.liveOpnds - activeOpnd + 1;
nextLibNode = new LibNode( liveOpnds );
libNode.next[activeOpnd][patNode.operator] = nextLibNode;

}

activeOpnd = 0; /* right operand is always 0 */
if (patNode has rightOpnd)
nextLibNode = insert( patNode.rightOpnd, nextLibNode );

activeOpnd++;
if (patNode has leftOpnd)
nextLibNode = insert( patNode.leftOpnd, nextLibNode );

return nextLibNode;
}

Figure 2.5: Pseudo code: Inserting a tree pattern into a PSG.

even earlier. Hence, the worst-case computational complexity of a search isO(d), with d
the size of the pattern sought, up to the maximum number of operation nodes in any pattern
in the library—which is equal to the maximum depth of the library search-graph. Note that
d ≤ p. Our experimental results presented in Chapter 5 show that indeed a search in a PSG
is orders of magnitude faster than a search in a linked list.

2.2.3 Inserting Patterns into a PSG

We insert a pattern into a PSG by searching it and complementing the path if it ends before
finding the pattern. The algorithm is given in Figure 2.5.

The difference to the search algorithm in Figure 2.2 is in creating a newLibNode if
nextLibNode does not yet exist. The parameter passed to the newLibNode is the
number of live operands that the associated pattern has. It is needed to dimension the
next-array correctly. Compared withlibNode, the number of live operands for the new
LibNode is reduced by the number of the current active operand where the next pattern
node is attached. This is because the number of an operand corresponds to the number
of live operands to the right of it, and all operands that are right of the operand where
a new node is attached are dead, as explained in Section 2.2.2. The resulting number
is then increased by one because the new node occupies the current active operand but
contributes two new operands—left and right. Hence, the number of live operands for the
newLibNode computes to

libNode.liveOpnds− activeOpnd + 1. (2.1)

The modification of the insert algorithm compared with the search algorithm does not
affect the computational complexity. It is alsoO(d), with d the size of the pattern sought,
up to the maximum number of operation nodes in any pattern in the library, andd ≤ p.



22 Chapter 2. Pattern Library for Fast Searches and Synergies

activeOpnd = 0; /* global variable */
patternInLibrary = find( patRoot, libRoot );

LibNode find( patNode, libNode ) {
LibNode nextLibNode;
if ( patNode.nodeNumber == libNode.nextNodeNumber )
nextLibNode = libNode.next[activeOpnd][patNode.operator];

else
nextLibNode = libNode.revisit[activeOpnd][patNode.nodeNumber];

activeOpnd = 0;
if (patNode has rightOpnd AND nextLibNode exists)
nextLibNode = find( patNode.rightOpnd, nextLibNode );

activeOpnd++;
if (patNode has leftOpnd AND nextLibNode exists)
nextLibNode = find( patNode.leftOpnd, nextLibNode );

return nextLibNode;
}

Figure 2.6: Pseudo code: DAG pattern search in a PSG.

2.2.4 Extension for DAG Patterns

In order to extend the PSG concept from trees to directed acyclic graphs, we need to cater
for operator nodes whose result feeds more than one operand of other operator nodes. We
support this by introducing arevisit-array with each PSG entry, similar to thenext-
array, through which operator nodes are revisited that havebeen encountered before via a
different operand. Therevisit-array is indexed by the operand number to which the
next node is attached, and by the unique number of the operator node that is being revisited
via this operand. Therefore, the operator nodes must be numbered which we do in the same
order in which the search and insert algorithms traverse them. In this way we can detect
that we revisit a pattern node because it will have a lower number than the current node
while otherwise, the number of the next node is one higher.

Thesearchalgorithm in Figure 2.6 has been extended by the comparison of the number
of the searched pattern node and the number of the next new node to be added to the library
entry. If they are not equal the pattern node has been visitedbefore. In this case, the PSG
is traversed through a pointer in arevisit-array. For newly discovered nodes of the
searched pattern, thenext-array is employed for traversal as before.

Analogously, theinsertalgorithm for DAG patterns in Figure 2.7 first tests whether the
next pattern node is being revisited or not. If it is being revisited the algorithm tries to find
the according library entry inrevisit-array, otherwise in thenext-array. If the library
entry does not exist it is created and entered in the appropriate array.

TheLibNode constructor now has the next node number as an additional argument.
This is the number of the next new node to be added to the pattern associated with the
library entry. If the current pattern node has been visited before the next node number is
the same as with the current library entry because there is nonew node being attached—it
is merely being revisited. In contrast, if the pattern node is new the next node number is
one higher than of the current library entry because the current number will be taken by the
new node.

We formulate the computational complexity of the DAG algorithms dependent on the
number of edges in the pattern rather than the number of operator nodes because it is the



2.3. Exploiting Similarities between Patterns 23

activeOpnd = 0; /* global variable */
patternInLibrary = insert( patRoot, libRoot );

LibNode insert( patNode, libNode ) {
bool revisit = ( patNode.nodeNumber == libNode.nextNodeNumber );
LibNode nextLibNode;
if (!revisit)
nextLibNode = libNode.next[activeOpnd][patNode.operator];

else
nextLibNode = libNode.revisit[activeOpnd][patNode.nodeNumber];

if (nextLibNode does not exist) {
liveOpnds = libNode.liveOpnds - activeOpnd + 1;
if (!revisit) {
nextLibNode = new LibNode( liveOpnds, libNode.nextNodeNumber + 1 );
libNode.next[activeOpnd][patNode.operator] = nextLibNode;
} else {
nextLibNode = new LibNode( liveOpnds, libNode.nextNodeNumber );
libNode.revisit[activeOpnd][patNode.nodeNumber] = nextLibNode;
}

}

activeOpnd = 0;
if (patNode has rightOpnd)
nextLibNode = insert( patNode.rightOpnd, nextLibNode );

activeOpnd++;
if (patNode has leftOpnd)
nextLibNode = insert( patNode.leftOpnd, nextLibNode );

return nextLibNode;
}

Figure 2.7: Pseudo code: Inserting a DAG pattern into a PSG.

edges that the algorithms traverse and in a DAG there can be more than one edge per node.
This, however, still results in a linear complexity:O(e), with e the number of edges in the
pattern sought, up to the maximum number of edges in any pattern in the library—which is
again equal to the maximum depth of the library search-graph—plus one because the first
step from the library root to the first library entry does not correspond to an edge in the
pattern. This complexity is equal to the tree-pattern case if we also formulate it dependent
on the number of edges in the searched pattern.

2.3 Exploiting Similarities between Patterns

The pattern search graph exploits relations between patterns for speeding up searches in
a library. There are similar relations based on which a pattern can be used to substitute a
class of simpler patterns by disabling different parts of the pattern. This can be exploited in
ASIP design to speed up different application patterns withonly one special instruction, in
this way resulting in a leaner instruction set. The method also supports finding more oppor-
tunities to employ complex instructions during code generation. Furthermore, it provides
a systematic approach to finding opportunities for datapathsharing in high-level synthesis.
In our method we use identity operands to disable operation nodes in a pattern in order to
mimic any of a group of simpler patterns.



24 Chapter 2. Pattern Library for Fast Searches and Synergies

2.3.1 Identity Operands

Most primitive operations that are found in the instructionsets of general-purpose proces-
sors can be used to map one input operanda to itself by applying an identity operandopid,
i.e. the algebraic identity element for that operator, to the other input such that

a ◦ opid = a, or

opid ◦ a = a,

turning the primitive operation◦ into an identity operation. Examples of identity operands
are given in Table 2.1.

primitive left right
operation operand operand

+ 0 0
− n/a 0
× 1 1
/ n/a 1

<<,>> n/a 0
AND all 1’s all 1’s

OR, XOR 0 0

Table 2.1: Identity operands.

An operand for an operation node in a DFG pattern is either generated by another node
in the same pattern or is an external input to the pattern. Depending on their operands, we
distinguish three types of nodes:

• A leaf nodehas two operands that are external inputs to the pattern.

• An internal nodehas two operands that are both generated by other nodes in the
same pattern.

• A cyclops nodehas only one operand that is an external input to the pattern and the
other operand is generated within the pattern. Depending onwhether the external
input is the right or left operand, we call the node aright cyclopsor a left cyclops,
respectively.

A complex pattern can be transformed into a simpler pattern by applying the identity
operands of its operation nodes to the appropriate inputs, thereby effectively eliminating
nodes from the pattern. Particular operands can be applied directly to leaf nodes and to
cyclops nodes. The non-commutative operations in Table 2.1have no left identity operand.
Nodes of these operation types must be leafs or right-cyclops nodes to be removable, i.e.,
their right input must be accessible from outside the pattern.1

2.3.2 The Identity Operand Graph

By applying identity operands to one node at a time, a patternof n nodes, of whichm are
removable can be transformed intom patterns ofn − 1 nodes. By recursively repeating

1Load and store operations have no identity operand at all, but because of their long latency they are less relevant
for instruction-set generation than arithmetic operations.



2.3. Exploiting Similarities between Patterns 25

this on each of the simpler patterns, the complex pattern caneventually be reduced to
primitive operations. If all leaf nodes and all cyclops nodes at any stage of the recursion
are removable then the set of primitive operations includesall operation types that occur in
the pattern. The primitive operations finally all converge to amoveoperation.

AND

x1

AND

SHR

x2 = 0

x1 =
0xFFFFFFFF

SHR

x1

MOV

x1 = 0

x1 =
0xFFFFFFFF

AND

SHR

SUB

x3 = 0

x2 = 0

x1 =
0xFFFFFFFF SHR

SUB

AND

SUB

x2 = 0

x1 = 0

SUB

x1

x2 = 0

x1 =
0xFFFFFFFF

x1 = 0

x0

x0

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

x3

Level 3 Level 2 Level 1 Level 0

Figure 2.8: IOG of a pattern.

The sequence of applying the identity operands can be used tosort the patterns. We
represent this sorting as a graph with the graph nodes being the patterns and the directed
graph edges representing the application of an identity operand to one particular operation
node in the pattern. The edges are directed from the more complex pattern to the derived
smaller one. We call this type of graph anidentity-operand graph (IOG)and say that
a complex patterndominatesthe simpler patterns in its IOG. Figure 2.8 shows the IOG
for the level-3 pattern in the PSG in Figure 2.1. Evidently, both graphs contain the same
patterns and only differ in the number and the orientation ofthe edges. This suggests that
both graphs can be efficiently constructed simultaneously and be held in a unified data
structure.

The library IOG shows which simpler patterns can be covered by a complex instruction
during code generation, again by applying the appropriate identity operands to its input.
Therefore, these simpler patterns need not be implemented as individual instructions if the
complex pattern is chosen for implementation—provided thatthe possibly slower execution
and the cost of applying the identity operands can be afforded. This cost may be, for
instance, additionalmoveinstructions. If the cost is lower than the benefit then the IOG
reveals opportunities to substitute patterns by more complex ones during instruction-set
synthesis and code generation, leading to a reduced number of special instructions that
provide the same benefit.

The power of a complex pattern to cover all derived simpler patterns seems to suggest
that only the most complex patterns should be chosen for implementation. But in ASIP
design methodologies there is an implementation cost functionC(pattern) associated with



26 Chapter 2. Pattern Library for Fast Searches and Synergies

the patterns that usually increases with pattern complexity, capturing for instance operand
encoding effort, die area, or latency. This cost function balances the derived tendency
towards more complex patterns for implementation.

In practice, nodes could also simply be deleted from the pattern for construction of the
library graph, whether there is an appropriate ID operand ornot. This approach would,
however, eliminate the IOG property that a pattern can substitute all other patterns in its
IOG by applying ID operands accordingly, a property that is needed for more efficient
instruction selection.

2.3.3 Inserting Patterns into an IOG

In an early article on IOGs [Dit03] we outlined an algorithm for inserting the IOG of a
pattern into a PSG library. First, we constructed the IOG of the new pattern and derived
the corresponding search graph. Then, for each path in this search graph, we tried to find
the corresponding path in the library. If a path did not existin its entirety in the library
then the part existing was connected to the remainder of the path in the search graph of the
new pattern. Those parts of the new search graph that alreadyexisted in the library were
deleted.

AND

AND

SHR
SHR

MOV

AND

SHR

SUB

SHR

SUB

AND

SUB

SUB

Level 3 Level 2 Level 1 Level 0

PSG edge

IOG edge

Figure 2.9: Combined PSG/IOG.

In the following we give a detailed description of a new algorithm that combines the
construction of the IOG of a pattern with its insertion into aPSG library. The resulting
combined pattern-search/identity-operand graph enablesfast searches and shows synergies
between patterns at the same time. Figure 2.9 shows the combined graph for the patterns
in Figures 2.1 and 2.8. The search algorithm requires only the PSG edges and therefore the
code in Figure 2.2 does not need to be modified. In contrast, the insertion algorithm has to
create also the IOG edges.



2.3. Exploiting Similarities between Patterns 27

The algorithm traverses the pattern to be inserted in the same way as the algorithms in
Section 2.2.1, discovering right branches first. While doingso the algorithm maintains
a list of patterns it has inserted, calledfragments, that are consecutively combined with
discovered pattern nodes to form all possible combinationsof pattern nodes that occur in
the IOG of the pattern. Each of these combinations is inserted into the PSG library and the
IOG edges are created, provided that the according node is removable.

Discovered pattern nodes must be combined with fragments insuch a way that only
patterns are generated that can be modeled by disabling operation nodes from the original
pattern to be inserted. In particular, a first node can only beoperand to a second node on
the same side—left or right—on which the pattern branch that contains the first node is
attached to the second node.

D C

E B

A

discover A

A

new fragment

discover B

A

possible
combination

original pattern

B

A

impossible
combination

B

discover C

A

C

new fragment

discover D

A

CD

impossible
combination

Figure 2.10: Fragment combination.

Consider, for instance, the pattern in Figure 2.10. The nodes are labeled in the order in
which they are discovered. Node A is discovered first and inserted into the library as well as
into the list of fragments. Node B is discovered next. Now, the only possible combination
with node A in the fragments list is to make B the right operandof A. There is no set of
nodes in the original pattern to be disabled such that node B would be the left operand of
A.

In order to ensure that discovered nodes are combined with fragments only in possi-
ble ways, each fragment has one operand marked asactive operand. When combining, a
discovered pattern node is always attached to the current active operand of the fragment.
Once the pattern branch attached to the active operand of a fragment has been completely
discovered, theactivemark is moved to the next possible operand of the fragment before
nodes in the branch attached to this new active operand are being discovered. If there is no
possible operand left to become active then all combinations with the fragment have been
generated and the fragment is deleted from the list of fragments.

Attaching a discovered node to the active operand of a fragment, however, can still result
in impossible combinations. This is the case if the pattern branch that is currently discov-
ered is a left branch of a pattern node that is not contained inthe fragment but the fragment
does contain a node from the right branch. The node from the right branch then blocks
the only operand where a node from the left branch could be attached to create a possible
combination.



28 Chapter 2. Pattern Library for Fast Searches and Synergies

To illustrate this, consider again the pattern in Figure 2.10. When node C is discovered
it is combined with node A from the fragment list as its right operand. As in the original
pattern none of C’s operands is fed by an operation node, the next possible operand of the
new fragment is A’s left operand which is therefore marked asthe active operand, indicated
by the dotted oval. If we now discover pattern node D and attach it to the active operand
of the fragment we just created, as shown in the figure, then wearrive at an impossible
combination again.

In order to prevent this type of impossible combination we temporarily disable fragments
if the equivalent to their active operand in the original pattern is not on the path to the
pattern node to be discovered next. In the example, A’s left operand is not on the path to
node D. Therefore, a fragment that has A’s left operand marked active has to be disabled at
this point. A disabled fragment is enabled as soon as the pattern node attached to its active
operand is being discovered. The example fragment is enabled when node E is discovered.

In the following we present a pseudo-code implementation ofthe algorithm with sub-
routines for the fragment combination and the computation of the next active operand.

The Top-level Routine

Figure 2.11 shows the pseudo code of the top level routine of our insertion algorithm, start-
ing with the root node of the pattern to be inserted. The discovered pattern node is combined
with the fragments infragList by callingcombineFrags(). For each operand that
exists, i.e., that is fed by another pattern node,insert() is called recursively, in this way
traversing the pattern.

After the right branch has been traversed, the active mark isupdated for all fragments
that have the right operand of the current node as their active operand. This set of frag-
ments coincides with the set that has been generated by the call to combineFrags().
All fragments generated later in the subsequent recursive call to insert() either do not
include the current node, or in combining the fragments the right operand in question has
been occupied.

For the fragment set, the active mark is moved from the right to the left operand—
provided that the left operand exists. At the same time, all other fragments are enabled
whose active operand is attached to the current node. This can be the case for any pattern
generated while traversing the right branch of the current node. Then the nodes in the left
branch are discovered.

After both branches have been traversed, the active mark forthe fragments whose active
operand is attached to the current node is advanced to the next active operand. Each of
these fragments is disabled until the recursion unwinds back to the node to which their
active operand is attached. If there was no valid next operand then all combinations with
the fragment have been generated and it is deleted from the list. Consequently, the fragment
list will be empty at the end of the insertion procedure.

Combining Fragments with a New Node

The algorithmcombineFrags() in Figure 2.12 combines each enabled fragment in
fragList with the operation node that is passed to it as an argument. Ifthe resulting
combination is not present in the library a new library entryis created and connected to a
PSG edge. The number of live operands for the new entry follows Equation (2.1). The IOG
edges from the new entry are held in theeliminate-array, indexed by the number of the



2.3. Exploiting Similarities between Patterns 29

FragmentsList fragList = empty; // globally accessed
insert( patRoot );

insert( patNode ) {
lastOldFrag = fragList.end();
combineFrags( patNode );
firstNewFrag = lastOldFrag.next;

if (patNode.rightOpnd exists) {
lastNewFrag = fragList.lastElement
insert( patNode.rightOpnd );

if (patNode.leftOpnd exists) {
for each frag in fragList from firstNewFrag to lastNewFrag {
frag.activeOpnd = FIRST_LEFT_OPND;
frag.nextActiveOpnd = newNextActiveOpnd( frag );
}
for each frag from lastNewFrag.next to fragList.lastElement
if (frag.activeOpnd is opnd to patNode)
enable fragment;

insert( patNode.leftOpnd );
}

} else if (patNode.leftOpnd exists) {
insert( patNode.leftOpnd );

} // else patNode has no opnds

if (any of patNode’s opnds exists) {
for each frag in fragList from firstNewFrag to fragList.end() {
if (frag.activeOpnd is opnd to patNode) {
frag.activeOpnd = frag.nextActiveOpnd;
frag.nextActiveOpnd = newNextActiveOpnd( frag );
disable frag;
}

if (frag.activeOpnd is invalid)
fragList.delete( frag );

}
}
}

Figure 2.11: Pseudo code: Insert a pattern into an IOG.

pattern node that is eliminated along the edge. For each nodethat can be eliminated from
the combination using ID operands, the resulting pattern issearched in the library and an
IOG edge to the according library entry is created.

In order to create a new entry for the fragments list, the active operand of the new frag-
ment is determined. Depending on which operands ofpatNode exist, i.e. which of them
are fed by other pattern nodes, the active operand is set to the right operand, the left operand,
or to the result of Equation (2.1). The next active operand iscomputed accordingly. With
these values, a new fragment is created and appended to the fragment list. According to
the operand-numbering scheme described in Section 2.2.2 the active operand of the new
fragment is not attached topatNode if activeOpnd is greater than 1. In this case,
the creator routine disables the new fragment until the operation node to which the active
operand is attached.

If none ofpatNode’s operands exist and the fragment with which it is combined has
no validnextActiveOpnd no new fragment is created as it would have no valid active
operand to which an operation node could be attached for combination.



30 Chapter 2. Pattern Library for Fast Searches and Synergies

combineFrags( patNode ) {
for each enabled frag in current fragList {
libNode = frag.libraryLocation;
nextLibNode = libNode.next[frag.activeOpnd][patNode.operator];

if (nextLibNode does not exist) {
liveOpnds = libNode.liveOpnds - frag.activeOpnd + 1;
nextLibNode = new LibNode( liveOpnds );
libNode.next[frag.activeOpnd][patNode.operator] = nextLibNode;

for each eliminatable node in the nextLibNode pattern {
iogChild = pattern w/o node;
activeOpnd = 0; // global variable for find()
edgeTarget = find( iogChild );
nextLibNode.eliminate[patNode.nodeNumber] = edgeTarget;

}
}

// create new fragment
if (patNode’s right or left opnd exists OR

frag has valid nextActiveOpnd) {

if (neither patNode’s right nor left operand exists) {
newActiveOpnd = frag.nextActiveOpnd - frag.activeOpnd + 1;
newNextActiveOpnd = newNextActiveOpnd( frag );
if ( newNextActiveOpnd is valid )
newNextActiveOpnd = newNextActiveOpnd - frag.activeOpnd + 1;

} else if (patNode’s right and left opnd exist) {
newActiveOpnd = RIGHT_OPND;
newNextActiveOpnd = FIRST_LEFT_OPND;

} else { // either left or right opnd exists
if (patNodes’s right opnd exists)
newActiveOpnd = RIGHT_OPND;

else
newActiveOpnd = FIRST_LEFT_OPND;

if (frag.nextActiveOpnd == INVALID)
newNextActiveOpnd = INVALID;

else
newNextActiveOpnd = frag.nextActiveOpnd - frag.activeOpnd + 1;

}

newFrag = new Frag( newActiveOpnd, newNextActiveOpnd,
frag, newLibNode );

// note that new Frag is disabled if active node is not the last added
fragList.append( newFrag );

}
}

}

Figure 2.12: Pseudo code: Combine fragments with next pattern node.

Computing the Next Active Operand

Figure 2.13 shows the pseudo code for computing the next active operand of a fragment,
assuming that the active operand has been advanced tonextActiveOpnd which there-
fore must be set to a new value. IfnextActiveOpnd is invalid then all combinations
with live operands of the fragment have been generated already and the next active operand
remains invalid. If the currentnextActiveOpnd is the left operand of the last added
node then thenextActiveOpnd of the parent fragment can be used to compute the next
active operand forfrag. Otherwise, thenextActiveOpnd of frag and its parent re-
fer to the same operand. Then we have to find the active operandafter that by recursively
callingnewNextActiveOpnd. In both cases, the foundparentNAO is transformed for
the current fragment by Equation (2.1).

The recursion unwinds if either a fragment with an invalidnextActiveOpnd is en-
countered, or if a fragment has been found where the next active operand is attached to



2.3. Exploiting Similarities between Patterns 31

int newNextActiveOpnd( frag ) {
returnOpnd = INVALID;

if (frag.nextActiveOpnd is valid) {
if (frag.nextActiveOpnd == FIRST_LEFT_OPND)
// found NAO => unwind recursion
parentNAO = frag.parent.nextActiveOpnd;
else
parentNAO = newNextActiveOpnd( frag.parent );

if (parentNAO is valid)
returnOpnd = parentNAO - (frag.opndToParent) + 1;

}

return returnOpnd;
}

Figure 2.13: Pseudo code: Compute next active operand.

the last added node because then, thenextActiveOpnd of its parent fragment directly
represents its own futurenextActiveOpnd.

To understand why this is so, consider the family tree of fragments in Figure 2.14. Frag-
ment 2 has been generated by combining fragment 1 with node B,and fragment 3 is the
combination of fragment 2 with node C. From the way the activeoperands are marked we
can conclude that the insertion algorithm is currently working on the left branch of node C.
If we now setactiveOpnd of fragment 3 to its next active operand and then try to find a
newnextActiveOpnd we see that its parent’snextActiveOpnd is indeed identical
with our oldnextActiveOpnd: They both mark the left operand of node B. We there-
fore have to call thenewNextActiveOpnd() procedure recursively with fragment 2.

C

B

A

B

A

parent of

A

parent of

= nextActiveOpnd

= activeOpnd

Fragment 1 Fragment 2 Fragment 3

Figure 2.14: Family tree of fragments.

The active operand of fragment 2 is directly attached to the last node that has been
added—compared with its parent. And indeed the parent’snextActiveOpnd is the
futurenextActiveOpnd we have been searching for. Therefore, the recursion unwinds
at this point.

2.3.4 IOGs of DAG Patterns

Some steps in a DAG search in a PSG do not add another operationnode to a pattern on
the search path. Instead they attach another operand input to the output of a node that is
already there. These steps cannot be reversed by applying IDoperands. Therefore, the IOG
for a DAG pattern does not necessarily contain the patterns on the search path in the PSG
for the same pattern.



32 Chapter 2. Pattern Library for Fast Searches and Synergies

AND

ADD

MUL

x0 x1

x2

AND

MUL

x0 x1

ADD

MUL

x0
x1

MUL

x0

ADD

1x0

x2 = 0

x1 =
0xFFFFFFFF

x1 =
0xFFFFFFFF

x1 = 1

x1 = 0
MOV

x0

Figure 2.15: IOG of a DAG pattern.

The IOG of a DAG, however, is still useful to find substitutionopportunities as in the tree
case. For this purpose it can be constructed separately fromthe search graph. Figure 2.15
shows an example of the IOG of a DAG pattern. Unlike the tree-pattern IOG in Figure 2.8,
the DAG-pattern IOG does not comprise the generic basic operations on level 1. The op-
erations are more constrained, e.g., in two inputs being equal—in this case resulting in a
squaring operation—or one input being a constant—in this caseresulting in an increment
operation. Furthermore, the IOG does not converge to a move operation at level 0.

The fragment technique used to construct the IOG for tree patterns is not easily adapted
to DAGs. It appears more promising to construct it top-down by eliminating each node for
which this is possible on each level of the IOG. In this work wewill only build IOGs for
tree patterns.

2.4 Library Size

2.4.1 Patterns in a PSG

As for the space per library entry, a linked-list library hasto store a complete representation
of the pattern with each entry. This amounts to a space ofn · SpacepatNode with n the total
number of operation nodes of all patterns in the library andSpacepatNode the space per
operation node. Moreover, there is some overhead for the list structure.

In contrast, the pattern represented by an entry in a PSG is given by the position of the
entry in the library, i.e., by the path from the library root to the entry. Hence, the patterns
do not have to be stored explicitly with each entry. What has tobe stored with each entry
are the arrays ofnext-pointers and, for DAG patterns, therevisit-arrays.

The number of possibilities to grow a pattern, i.e., the number ofnext-pointers stored
with a pattern corresponds to the number of possible continuations of a search for larger
patterns (see Section 2.2.2): the number of external left operands on the top left fringe of



2.4. Library Size 33

the pattern, plus one right operand, times the number of primitive operators in the library.

#NextPointers = (Operandstopleft + 1)Primitives

Of the external right operands of a pattern, only the left-most has to be considered because
the other right operands have been handled at lower levels ofthe search graph. The same
is true for left operands outside of the top left fringe. In the worst case, all left operands in
a pattern are on the top left fringe. Then the number of next-pointers for this pattern with
p nodes is(p + 1) · Primitives. Note that pointers that are NULL still have to be stored
because they are a termination condition of the recursion inthe search algorithm.

For each pattern in a PSG all patterns on the search path must also be present. In the
worst case this could result in an overhead of as many additional library entries as operation
nodes in a tree pattern. In practice, however, patterns on the search path will usually be
present anyway as the pattern generator will find them as sub-graphs in the application
graph, resulting in virtually no overhead entries at all. This reasoning is confirmed by our
experimental findings in Chapter 5.

2.4.2 Analytical Bounds for IOGs

The patterns with the largest IOGs are those for which each operation node can be elim-
inated by its ID operand. This is the case for patterns that consist only of right-cyclops
nodes with right identity operands, such as the pattern in Figure 2.8. These patterns form a
sequence of nodes, each of which obtains its left operand from a previous node—except for
the top leaf node—and that provides its result as the left operand to the following node—
except for the root node. All right operands are pattern-external inputs through which the
ID operands can be applied to eliminate any node at any level of the IOG. For the worst-case
number of IOG entries, we consider patterns of this kind in the following.

The derivation of patterns from a parent pattern can be formulated as a combinatorial
problem at each IOG level: On levelk, how many different ways are there to choosek
nodes out of then nodes in the parent pattern? Hence, a pattern ofn differentright-cyclops
nodes generates a graph of

n
∑

k=0

(

n

k

)

patterns through identity-operand transformations. Thisincludes the parent pattern itself,
the primitive operations, and the finalmovenode. For the first pattern to be inserted into an
empty library, this is also the number of new patterns for thelibrary.

When a parent pattern that is being inserted has offspring patterns that are already present
in the library then the number of new patterns that the parentintroduces into the library is
accordingly lower. Each sub-pattern that the library and the IOG of the new parent pattern
have in common comprises the merge pattern where both graphsmeet, and its complete
cone of ID transformations down to the finalmoveoperation. For a merge pattern that
comprisesm right-cyclops nodes out of then nodes of the parent, the number of additional
patterns that are introduced to the library by the parent pattern is only

n
∑

k=0

(

n

k

)

−

m
∑

i=0

(

m

i

)

.

If the library and the parent have more than one merge patternthen the IOGs of the
merge patterns may overlap. In this case, the overlapping region must be subtracted only



34 Chapter 2. Pattern Library for Fast Searches and Synergies

once from the contribution of the parent to the library. For aparent that has two merge
patterns with the library, comprisingm1 andm2 nodes, respectively, and the IOGs of the
two merge patterns merging at a pattern ofm3 nodes, the contribution of the parent to the
library is computed by

n
∑

k=0

(

n

k

)

−





m1
∑

i=0

(

m1

i

)

+

m2
∑

j=0

(

m2

j

)

−

m3
∑

g=0

(

m3

g

)



 .

The patterns with the smallest IOGs are those for which only one node can be removed
at each transformation level. This is true for patterns thatconsist only of left-cyclops nodes
of non-commutative operators. In these patterns, the only removable node is the leaf node
because it is the only node with a pattern-external right operand. The IOG of such a parent
has only one pattern at each level, namely, the pattern at onelevel higher without the leaf
node. If the parent comprisesn operation nodes its IOG will consists ofn patterns and the
movenode. This minimum set of patterns resembles the search pathof the parent pattern
and is therefore equal to the parent’s contribution to a PSG library.

Patterns that comprise multiple instances of the same operation will result in relatively
small IOGs as redundant child patterns will occur only once in the IOG. Each duplicated
operation node results in one primitive node fewer on level 1of the IOG. Furthermore,
duplicated operations will probably also result in redundant patterns on higher IOG levels.
Each of these redundancies reduces the number of patterns inthe IOG.

How many patterns a library will ultimately incorporate strongly depends on the com-
position of the parent patterns that have been inserted and therefore cannot be derived
analytically.

2.4.3 Comparing IOGs with Unordered Libraries

An unordered pattern library only comprises parent patterns. Many offspring patterns in
IOGs are also sub-graphs of the parent pattern. They would have been added to the library
by a conventional library-construction algorithm as well.But there are other patterns in
an IOG that are not sub-graphs of the parent and that therefore constitute an overhead
compared with conventional libraries.

For each transformation step from a parent pattern to primitive patterns, a simpler pattern
is a sub-graph of its parent if the operation node eliminatedwas a leaf or a root node,
i.e., the eliminated node had only pattern-external inputsor its only output was a pattern-
external output. Eliminating other nodes, i.e. cyclops nodes, always leads to connecting
previously unconnected nodes. This new connection cannot occur in sub-graphs of the
parent pattern. Hence, compared with an unordered pattern library, patterns that incorporate
such a connection represent the overhead of an IOG.

The number of patterns in the IOG that are sub-graphs of the parent is equal to the sum
of leaf nodes and removable root nodes of the parent pattern and those of all its generated
sub-graphs. If a leaf that is being eliminated from a patternfeeds into a cyclops node then
the child pattern generated has the same number of leaves. Ifthe leaf feeds into an internal
node then the child has one leaf less than its parent.

The patterns with the highest number of children that are notsub-graphs of the parent,
i.e. the patterns with the largest IOG overhead compared with unordered pattern libraries,
are again patterns of only right-cyclops nodes and a single leaf node which all represent
different operations, such as the pattern in Figure 2.8. Each IOG level from the parent



2.5. Summary of Pattern-Library Organization 35

pattern to level 1 has one real sub-graph more than the previous level—starting with one
in the highest level. The other patterns are not sub-graphs of the parent and constitute the
overhead. Subtracting the total number of sub-graphs from the total number of patterns in
the IOG of a pattern results in the following formula for the worst-case IOG overhead for a
parent pattern ofn nodes:

n
∑

k=0

(

n

k

)

−

n
∑

i=1

i = 1 +

n
∑

k=1

(

n

k

)

− k

In practice, inserted patterns will have a significant number of internal nodes that cannot
be eliminated. Moreover, they will comprise redundant sub-graphs that are inserted into the
library only once. Consequently, the overhead of such patterns is significantly lower than
in the worst case given here. This is confirmed by our experimental results in Chapter 5.

2.5 Summary of Pattern-Library Organization

In this chapter we have presented a novel method to organize libraries of tree and DAG
patterns by means of our pattern search graphs. Compared with conventional unordered
libraries, PSGs enable more efficient searches with a computational complexity ofO(d)
instead ofO(n · p), with d ≤ p. Our experiments presented in Chapter 5 confirm that our
PSG libraries can be searched orders of magnitude faster than state-of-the-art libraries, with
virtually no overhead in library size.

PSGs eliminate the dependency between computational complexity and library size and
therefore can handle large pattern libraries. Current methods for library organization rely
on heuristics that exclude less promising patterns in orderto keep the library access time
low. Given the memory size of today’s workstations, our approach eliminates the need
for such heuristics. Therefore, exact methods are now possible that do not risk to miss
beneficial patterns that heuristics might eliminate. This is of particular importance for
control-dominated applications where patterns that occuronly rarely may be indispensable
to meet fine-grained timing constraints.

Furthermore, we have introduced the concept of identity-operand graphs which reveal
opportunities to substitute patterns by others. This can beexploited for instruction-set
generation, resulting in a leaner instruction set with the same speed-up. Moreover, IOGs
can be used during code generation to increase the number of opportunities for the use of
specialized instructions, resulting in faster code. We also see an application of IOGs to find
opportunities for datapath sharing in synthesis systems. In this area, IOGs significantly
increase the application space for datapaths that result from pattern-merging methods such
as [MAHM02, BKS04]. While the merging methods construct super-patterns our IOG
shows all sub-patterns that can be implemented by the super-pattern employing identity
operands. Moreover, configuring a merged datapath with identity operands does not require
additional chip real-estate as opposed to reconfigurable interconnection networks or sets of
multiplexers which are commonly used in the literature.





3 Compiler Methods for
Fine-Grained Timing Constraints

This chapter discusses how to specify, represent, and transform the benchmark applications
that represent the domain for which the ASIP is to be designed. It is these applications that
will later be analyzed in order to derive the instruction setfor the ASIP.

Application Specification
w/ Timing Constraints

Intermediate
Representation

Compiler Front End

Timing
Constraint
Analysis

Timing-Forced
Patterns

Scheduler

Constraining
Parallelism

Patterns and
Pattern Pairs

Identity
Simplification

ASIP
Instruction Set

Partial
Schedule

The control-dominated domain is characterized by fine-grained timing constraints. If an
input register is not read in the right cycle it may be overwritten with a new value, and if
an output is not generated on time, it may not have the intended effect. Moreover, control-
dominated systems often have timing constraints that depend on input data at run-time, e.g.,
to process a stream of network-packet data depending on a header-length field.

For the automated design of an ASIP that meets these constraints, a designer must an-
notate the constraints in the benchmark applications. Common approaches to timing spec-
ification in behavioral HLLs provide only coarse-grained resolutions and data-dependent
constraints cannot be expressed with current language constructs. The control-dominated
domain, however, requires timing annotations with a precision of a single register access.
This calls for a novel system of annotations. In order to facilitate the reuse of existing HLL
code in the design process it is desirable that the constraint annotations do not require a re-
design of the code. For the application analysis, the code with the annotations must then be
transformed to a graph representation known asintermediate representation (IR)in com-
pilers. The IR must represent all constructs of the HLL and itmust support optimizations
that help meet the timing constraints.

37



38 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

In this chapter we propose solutions to these problems. After a survey of related work
in Section 3.1, we introduce a new method to express fine-grained timing constraints in
ANSI C in a standard-compliant way in Section 3.2. The methodincludes a novel con-
struct for data-dependent waiting. Section 3.3 presents our multi-layer IR which combines
representations for data and control flow with a new layer of timing constructs, including a
data-dependent wait. Section 3.4 describes the transformation from the timing annotations
in C to the timing graph in the multi-layer IR. Section 3.5 demonstrates the expressiveness
of our multi-layer IR by the example of an optimization technique that employs informa-
tion from each layer in the IR to resolve scheduling conflicts. Section 3.6 summarizes this
chapter.

3.1 Related Work

3.1.1 Specifying Timing Constraints

The fundamentals of the classification, specification and verification of timing constraints
have been studied in [Das85]. Most methods found in the literature express minimum and
maximum timing constraints as proposed there.

Interestingly, the classical hardware description languages (HDLs), such as VHDL
[VHDL02] or SystemC [OSCI02], only have a basic notion of time to specify strict sim-
ulation timing. They do not provide constructs to specify minimum, maximum, or range
constraints that allow optimizations for synthesis [EKPD95].

Various HLLs include constructs to specify timing constraints, e.g., an annotated ver-
sion of Esterel [CPP+01] and Real-Time for Java [RTJ]. While ANSI C [KR88] does
not provide any means to express timing information, there have been attempts to use C
derivatives as HDLs, e.g.,Cx [EB94] and HardwareC [KM90]. The programming style of
these derivatives, however, significantly differs from ANSI C [KR88], e.g., in constructs
to model parallel processes. Therefore, these languages require a fundamental rewrite of
existing applications. Moreover, the derivatives introduce extensions that are not standard-
compliant. Hence, the code can no longer be processed by common ANSI C tools. The
extensions are introduced to make C a suitable HLL for ASIC synthesis, but they make the
derivatives much more powerful and complex than necessary for ASIP design.

We take a different approach that is closer to ANSI C and also more suitable for an
algorithmic coding style as opposed to the hardware focus ofthe HDL derivatives of C.
Our approach is presented in Section 3.2.

3.1.2 Intermediate Representations

A crucial point for the design methodology is the intermediate representation (IR) of ap-
plications, which is analyzed to find optimizations and instruction patterns. Restrictions of
the IR inadvertently result in deficiencies for the entire process because the effectiveness
of optimizations depends on the set of available information.

In the data-dominated domain, the main optimization objective is to reduce the overall
running time of an algorithm. In the pursuit of this goal it makes no difference in which
section of the algorithm time is saved. Hence, loops are a promising optimization target
because each cycle saved in a loop is rewarded multiple timesif the loop is executed more



3.1. Related Work 39

than once. In estimating the leverage factor of a loop, branching probabilities play an
important role.

In [AC01] it was found that in the data-dominated domain, thecompiler perspective is
not a good application representation to work on because it provides no information about
the probability with which individual branches are taken. The consequence was to use
execution traces instead.

In our control-dominated domain, we must meet hard timing constraints under all cir-
cumstances. In this environment, branch probabilities do not help because we must always
assume the worst case. We propose to capture more information on the applications by
going to a higher abstraction level and introducing a program representation that enables
programmers to express more of their application expertise. For the loop-intensive data-
dominated domain, however, the annotation method introduced in Section 3.2 could easily
be extended to express branching probabilities or value ranges for variables.

The most commonly used models for hardware/software co-design, namely FSMs, dis-
crete-event systems, Petri nets, communicating processes, and synchronous/reactive mod-
els [CEP99], as well as several derivatives [CGH+94, TTSV00a, TTSV00b], have been in-
herited from the hardware domain. Consequently, they assume an independent type of con-
currency with reactive processes starting and running independently of each other. Schedul-
ing such concurrent specifications for single-thread processors is non-trivial [SLWSV99,
WBC+00, CPP+02].

var1 var2 var3 var4

var5

>> -

+

var0 0

==

var1 var2 var3 var4

var5

<< +

-

True False

var5 var1

+

var6

START

END

Figure 3.1: A simple CDFG.

On the instruction level of an ASIP, in contrast, we do not have this independent type
of concurrency. Assuming a VLIW architecture, instructions arestatically scheduled in
parallel. Therefore, a standard compiler IR, such as a control/data flow graph (CDFG), is
better suited for an ASIP design system, providing well known transformations from C to
the IR and a plethora of available optimizations. A CDFG is a combination of a control-
flow graph (CFG, a.k.a. flow graph) and data-flow graphs (DFGs). Figure 3.1 shows a



40 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

simple example of a CDFG with DFGs inside the dotted CFG nodes. For an overview of
other compiler IRs the reader is referred to [Muc97, Mor98, Wea95].

A CDFG can be transformed into the static single assignment (SSA) form [CFR+91] in
which each variable use has exactly one definition. Furthermore, the SSA form makes data
dependencies across control flow boundaries explicit and expands the scope of transforma-
tions.

An example of a graph representation of timing constraints is the output transition graph
(OTG) as introduced for controller FSMs in ASICs [NT92]. Theconstraints are represented
by edges between output events and the edges are annotated with the minimum and max-
imum time between the operations. Scheduled nodes are annotated with their associated
control step.

A CDFG must be extended to capture fine-grained timing constraints to be suitable for
the control-dominated domain. The extensions we propose are presented in Section 3.3.

3.2 Integrating Timing Constraints into ANSI C

Most existing software for embedded systems is available inC only, tested and well under-
stood. But C does not provide means to express any kind of timing information [KR88].
Re-implementation of all applications in another languagefor the ASIP design process is
not a viable option. Therefore, we need an extension to C thatenables the ASIP designer to
supplement existing software with timing constraints without requiring a major rewrite of
the code. In this section we describe a method to integrate timing information into C code
in an ANSI-C-compliant way.

In data-dominated systems, such as DSPs, processing often starts with receiving a sample
of data, called aframe, and ends with sending out a resulting frame [MBL+96]. Between
start and end there is no other I/O to be handled. Hence, thereis only one deadline to be
met per algorithm run: The resulting frame has to be output intime.

In control-dominated real-time systems, such as NPs, oftenthere is not only one deadline
at the end of a run but there are many I/O interactions with theenvironment and many
of them have a deadline associated with them. Each of these I/O interactions handles a
different type of information that, hence, needs to be processed by a different part of the
software, resulting in many different fine-grained deadlines at many different points in the
application.

In particular with a data-push architecture, every relevant value in an input register has
a deadline associated with it because it has to be processed—or at least saved to astable
register—before being overwritten by the next value. Furthermore, different input data
may have completely different semantics and trigger different types of processing, e.g., a
header-length field vs. a protocol number. Hence, we need to specify fine-grained timing
constraints in many places in the application.

A timing constraint is defined by the following set of information [Das85]:

• The two points in the code, namely two instructions, betweenwhich the constraint
applies.

• The minimum time that must elapse between the execution of the two instructions.



3.2. Integrating Timing Constraints into ANSI C 41

• The maximum time that must not be exceeded between the execution of the two
instructions.

We found that the time to pass between two operations can alsodepend on input data, i.e.,
the value in an input register may encode a time that must passbetween two events.

The unit in which the time is given can be seconds or clock cycles of the ASIP to be
designed. Time values in seconds will have to be rounded to a multiple of the cycle time of
the ASIP once this has been determined. Time values in clock cycles require that the cycle
time of the ASIP be determined already when specifying the constraints.

In the following we assume time values in clock cycles because in a data-push architec-
ture the cycle time corresponds to the communication rate with the environment, i.e., the
rate by which the input registers are written and the output registers are read by the envi-
ronment. Therefore, the cycle time will be part of the systems requirements and is known
at the beginning of the ASIP design process.

All timing constraints are positive numbers. They are always specified in the same di-
rection as the control/data flow. A timing constraint that spans a loop is treated as if the
loop is not taken because the execution time of a loop is unbounded and therefore cannot
be covered by timing analysis. The only exception is a timingconstraint that spans exactly
one iteration of a loop, i.e., a constraint that starts and ends at the same operation. Such a
constraint represents a rate constraint on the loop.

3.2.1 Fixed Timing Constraints between Operations

To mark the points in the code that are hooks for constraints,we use standard C labels. As
their only purpose in C is to mark jump targets, they do not alter the behavior of the code.
A completelabeled statementin C comprises an identifier with a colon followed by the
statement it marks. We define reserved “START” and “END” labels as hooks for timing
constraints relative to the start or the end of a program.

To convey minimum and maximum time between labels we need to pass values to the
compiler. ANSI C provides#pragma statements to pass more information to a compiler
than has been defined in the standard. The compiler designer can freely define the syntax of
what follows the#pragma token. If a compiler can parse this syntax it can use the extra
information for the compilation process. If a compiler doesnot understand a#pragma
it encounters, the standard requires it to ignore the statement. Accordingly,#pragma-
annotated code can still be processed by any ANSI C compiler.

We define a#pragma syntax to express timing constraints. The first statements specify
a minimum or maximum time:

#pragma mintime <src_label> <dest_label> = <time>
#pragma maxtime <src_label> <dest_label> = <time>

In our#pragma syntax,src label anddest label are the names of the C labels
between which the constraints apply. The amount of time is given bytime. To conve-
niently specify both minimum and maximum time at the same time, we define:

#pragma time <src_label> <dst_label> = <mintime> <maxtime>
#pragma time <src_label> <dst_label> = <time>



42 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

The second statement sets the minimum and maximum time to thesame value. Both
statements are shorthand for combinations of the two#pragma statements defined before.

The combination of C labels and#pragma statements enables a programmer to specify
timing constraints between two C statements. A statement inC, however, can comprise
multiple basic operations. Therefore, we need to improve the resolution of the labeling.

The actual time-critical part of an application is the communication with the environ-
ment. In a data-push architecture, this communication has the form of read and write
accesses to I/O registers. In order to attach timing constraints to these accesses, we intro-
duce another#pragma statement to declare that a particular variable name represents an
I/O register:1

#pragma io <procedure>::<variable>

The name of the variable is given byvariable, andprocedure gives the name
of the procedure in which the variable is declared. Within a Cstatement identified by a
label, a timing constraint will now be attached to that basicoperation which accesses an
I/O variable, as identified by a#pragma io. We have thus devised a method to provide
a coarse-grained HLL with fine-grained timing constraints.

The programmers must ensure that only one I/O variable is accessed in such a C state-
ment. They can achieve this by splitting statements with more than one I/O variable and
introducing new variables for intermediate results. For instance, ifin andout are I/O
variables, the statement

out = in + 5;

with two I/O variables can be split into

temp = in + 5;
out = temp;

resulting in two statements with only one I/O variable each,as required.

With a resolution of a single IR operation we can now specify where exactly the tim-
ing constraints apply. Formintime = maxtime = 0, the identified operations must
be scheduled in the same cycle. Formintime = maxtime = 1, the second operation
has to be scheduled in the cycle following the first operation. With mintime = 0 and
maxtime = 1, the operations are scheduled either in the same cycle or onecycle apart.
Timing constraints with larger values are interpreted in the same fashion.

Note that the timing-critical action is only the access to I/O variables, i.e., I/O registers.
In contrast, algorithmic operations are not directly observable from the outside of the ASIP
system and their timing is therefore only relevant where they feed I/O operations that have
a timing constraint. An algorithmic operation derives a latest possible execution time from
such an I/O operation if

• the I/O operation has a data dependency on the algorithmic operation, or

1It might be more elegant to use theregister keyword in C to declare I/O variables. However, we use
the SUIF2/Machine-SUIF compiler framework [SUIF, MS] for ourimplementation and the only available C
front-end for SUIF2 does not transformregister statements correctly.



3.2. Integrating Timing Constraints into ANSI C 43

• the result of the algorithmic operation is needed to computean execution condition
of the I/O operation.

Hence, timing constraints do not necessarily include any algorithmic operations on the
values of these registers. To meet the timing constraint of aread access to an I/O register
it is sufficient to save the register value to an internal register before the I/O register is
overwritten by the environment. This fact can be exploited in operation scheduling.

3.2.2 Data-Dependent Wait

In control-dominated applications timing constraints areoften data-dependent, i.e., a sys-
tem input determines the time required between two events. Data-dependent delay op-
erations have been proposed for high-level synthesis to model communication with the
environment or conditional blocks whose total execution time depends on a runtime con-
dition because one branch takes longer than the other [KM92]. We extend this concept by
an explicit wait operation. This operation has one operand that is computed at runtime and
specifies a time to wait in clock cycles.

An example scenario requiring a data-dependent wait is the task of finding the beginning
of a TCP packet header after a variable-length IP header in a network processor [Dit00].
The length is encoded in a header field and its value corresponds to the number of input
words to bide before the TCP header appears at the network interface.

To express such a dependency between input data and timing, we introduce another
#pragma statement:

#pragma wait <src_label> <dest_label> <variable> <min_val>

Here,variable is the variable that determines the number of cycles to wait.The labels
src label anddest label mark the points in the code between which the wait time
must elapse. The minimum value thatvariable can possibly have, by the programmers
expertise, is provided bymin val. This value provides the freedom to schedule the be-
ginning of the wait anytime betweenimmediatelyandmin val. We will use this freedom
in Chapter 4.

Note that thevariablemust be valid in the scope of thedest label so that its value
is accessible to the wait operation. There must be only one assignment to thevariable
to avoid ambiguities. Moreover, the operation atdest label is not executed in the same
cycle when the wait triggers, but will be scheduled in thenextcycle. Therefore,min val
must not be less than 1 to allow for this one cycle delay.

3.2.3 Code Example

For an example of C code with timing annotations, consider the program in Figure 3.2. The
variablesdata in anddata out are marked as I/O variables by the first two#pragma
statements. The next two statements specify a timing constraint betweenlabel1 and
label2, and introduce a data-dependent wait betweenlabel1 andlabel3, respec-
tively, with a minimum wait input of 5.

The timing constraint betweenlabel1 andlabel2 is zero cycles. This means that
the I/O variables in each statement must be accessed in the same cycle. The accesses in



44 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

#pragma io main::data_in
#pragma io main::data_out

#pragma time label1 label2 = 0
#pragma wait label1 label3 counter 6

int main(int argc, char argv[]) {
int counter; /* wait register */
int data_in; /* input register */
int data_out; /* output register */
int temp;

label1:
counter = ( (data_in & 0x0f000000) >> 24) + 5;
label2:
temp = (data_in & 0x00ff0000) >> 16;

/* wait on counter */

label3:
data_out = temp;

}

Figure 3.2: Example of C code with timing constraints.

both cases are reading fromdata in. The timing critical operation is to read the I/O
variable before it is changed by the environment. The computations that havedata in as
an operand are not affected by this timing constraint and canbe scheduled in a different
cycle.

The value that is assigned tocounter determines the number of cycles to pass between
readingdata in at label1 and writing the resulting value oftemp to data out at
label3. The minimum value forcounter is given as 5 because even ifdata in is
0 the addition of 5 in the computation ofcounter makes 5 the minimum value and the
programmer here thinks that the parantheses will always yield at least 1.

3.3 Multi-Layer Intermediate Representation

In this section we propose a novel intermediate representation (IR) that carries more infor-
mation than the IRs do that are commonly used in ASIP design. The additional information
includes the timing constraints, expressed in C as described in Section 3.2.

IRs have a graph structure with nodes and directed edges thatrepresent dependencies
between nodes. Nodes and edges are annotated with necessaryinformation. For control-
dominated applications we need to express the following information:

• data dependencies for computations using results of other computations in the same
basic block;

• control dependencies that determine the control-flow through an application;

• data dependencies across control-flow boundaries to support optimization, and



3.3. Multi-Layer Intermediate Representation 45

• time dependencies to express timing constraints and synchronization with the envi-
ronment, including our data-dependent wait construct.

The IR commonly used in the literature on ASIP design is a CDFG. The employed
pattern-finding algorithms are constrained to the data-flowgraphs (DFGs) within a basic
block of the CDFG. In control-dominated applications, the basic blocks are very small
which significantly constrains the effectiveness of such pattern finding. Furthermore, tim-
ing information is not part of a CDFG at all. To overcome theserestrictions, we combine
graph notations that have the required properties, forminga new IR with several layers, and
new concepts, such as data-dependent wait operations. We call it the multi-layer Interme-
diate Representation (mlIR).

3.3.1 Data-Flow Layer

Data dependencies between operations in a basic block are expressed using data-flow
graphs (DFGs), where nodes represent the operations, incoming edges the operands, and
outgoing edges the results.

3.3.2 Control Layer

FSM-based IRs require an FSM-based language for application specification [CGH+94,
TTSV00b]. In contrast, the benchmark applications that areused in ASIP design will
mostly be specified in procedural languages, such as C. Common compiler front-ends trans-
form the control flow of these languages into a CFG representation. Hence, the control layer
of our IR is also based on this graph type. Moreover, a CFG representation gives access to
standard compiler transformations and optimization runs.

The nodes in a CFG represent basic blocks of operations. In a sequential program a
new basic block begins after each branch instruction and before each branch target. The
computations within a basic block are represented by DFGs inthe data-flow layer that are
associated with the according node in the control layer. In practice, there will be dummy
nodes representing the start and end of a control node that will connect to all leaves and
roots of the enclosed DFGs. In the interest of clarity, however, we will omit these dummy
nodes in our figures.

The edges of the control layer show where the control flow leads, and can be uncondi-
tional or conditional. Conditional edges originate in a data node of a DFG internal to a
control node. The false-edge is taken if the result of the data node is zero. The true-edge
is taken if the result is not equal zero. Moreover, the model not only allows the expression
of if-else constructs but also of case statements. For this purpose, the edges are annotated
with the value for which they are taken. A default edge must always be provided to prevent
deadlocks. The control graph is delimited by two empty nodes, the start node and the end
node.

3.3.3 Meta-DFG Layer

As the DFGs in control nodes rely on computation results of other control nodes, data
dependencies also exist between control nodes, forming a second level of DFG. Thismeta-
DFG overcomes the imperative to storeall results of computations ateverycontrol-flow
boundary in either registers or memory, and allows optimization runs to move computation



46 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

nodes across control-flow boundaries. This is particularlyuseful for control-dominated ap-
plications in which the size of DFGs in control nodes is oftenvery small and their extension
across control-flow boundaries will allow a more effective optimization.

A control node, however, may be reached by more than one control edge and each of
these control edges may require a different set of meta-DFG edges to be used for the com-
putation in the control node. Hence, sources must be selectable by the control edges. This
is represented by a multiplexer consisting of one box per arriving control edge. Each box
joins a control edge with the meta-DFG edges it requires.

The meta-DFG is essentially a graphical representation of the static single assignment
(SSA) form [CFR+91]. The multiplexers correspond to the SSAφ-functions and the meta-
DFG edges represent the connection between the definition and the use of variables—the
def-use chain.

3.3.4 Timing Layer

In Section 3.2 we described a method to specify fine-grained timing constraints in ANSI C.
In order to capture these constraints in the multi-layer IR,we introduce a timing layer that
can be compared to output transition graphs for FSMs [NT92].Graph edges in the timing
layer are annotated with the minimum and maximum time between nodes. Scheduled nodes
are annotated with the determined time step.

The nodes in the timing layer between which timing constraints exist are start and end
nodes, I/O nodes, and wait nodes. I/O nodes represent communication with the environ-
ment of the ASIP, i.e., read or write accesses to variables that have been declared as I/O
registers in the C code by a#pragma io. I/O nodes act as operands to operation nodes
in the data-flow layer.

In order to provide a representation of the wait statements introduced in Section 3.2.2,
our multi-layer IR features a new type of operation node thatconnects the DFG layer with
the timing layer. We call this node await node. It has one DFG edge as an input whose
value determines the delay the node represents, given in clock cycles. Furthermore, to be
meaningful, a wait node must have at least one incoming and one outgoing timing edge
because it provides a delay between two other nodes. Finally, a wait node also represents
a control construct in that it blocks the control flow until its timer triggers. Therefore, just
like a branch instruction, a wait node ends a basic block, anda control edge connects it to
the next basic block.

3.3.5 Putting it all Together

We combine DFG, CFG, meta-DFG, and our timing layer into amulti-layer IRwith a single
start node and a single end node. Existing optimization runsthat have been proposed for
one of the original graphs can still be used on the corresponding layer. Modifying adjacent
edges of a node in one layer does not affect the edges of another layer. Figure 3.3 shows
the different layers in a simple example graph.

As graph operations need more information, nodes and edges can be further annotated,
e.g., scheduled data nodes will have an associated time step, conditional control edges are
annotated with the minimum and maximum number of times they are taken in one run,
or DFG edges have constrained value ranges imposed on the variables they represent. The



3.4. Timing Layer Transformations 47

timing
layer

var1 var2

IN -

+

var0 0

==

var1 var2

<< IN

-

true false

WAIT

START

END

OUT

data_in data_in

data_out

t=1 t=1

t=1

control
layer

var1 var2

IN -

+

var0 0

==

var1 var2

<< IN

-

true false

WAIT

START

END

OUT

data_in data_in

data_out

t=1 t=1

t=1

meta-DFG
layer

var1 var2

IN -

+

var0 0

==

var1 var2

<< IN

-

true false

WAIT

END

OUT

data_in data_in

data_out

t=1 t=1

t=1

var1 var2

IN -

+

var0 0

==

var1 var2

<< IN

-

true false

WAIT

START

END

OUT

data_in data_in

data_out

t=1 t=1

t=1

data-flow
layer

START

Figure 3.3: Example of multi-layer IR graph.

information is given either explicitly by a programmer, using further#pragma statements,
or is derived from program analysis, e.g., by back-annotation of profiling results.

The proposed multi-layer IR fulfills all requirements postulated at the beginning of Sec-
tion 3.3 and it captures all information that the#pragma-annotated C code provides.

The transformation of C source code to CFGs and DFGs, i.e. to aCDFG, is standard
technique performed by many C compilers [ASU86]. Algorithms have been proposed to
derive the SSA form for the meta-DFG layer from a CDFG [BCHS98]. The following sec-
tion describes the transformation of timing annotations inthe C source code to the timing
layer in the multi-layer IR. This completes the construction of the multi-layer IR from the
C source code.

3.4 Timing Layer Transformations

In this section we show how to parse the#pragma timing-annotations to construct the
timing layer, and how to generate code from wait nodes.



48 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

IoPragma→ #pragma io id:procedure :: id : variable
{ symbolTable. findVariable ( procedure , variable ). isTimingHook =true; }

Label → id :
{
while true {
proceed to next statement ;
for each operand in statement

variable = symbolTable. findVariable ( currentProcedure , operand.name )
if ( variable . isTimingHook )
break;

}
symbolTable.findLabel ( id ). timingHook = operand;
}

TimePragma→ #pragma time id:srcLabel id : dstLabel number:time1 number:time2
{ new TimingEdge( srcLable.timingHook, destLable . timingHook, time1, time2 );}

| #pragma time id:srcLabel id : dstLabel number:time1
{ new TimingEdge( srcLable.timingHook, destLable . timingHook, time1, time1 );}

| #pragma mintime id:srcLabel id : dstLabel number:time1
{ new TimingEdge( srcLable.timingHook, destLable . timingHook, time1, null );}

| #pragma maxtime id:srcLabel id:dstLabel number:time1
{ new TimingEdge( srcLable.timingHook, destLable . timingHook, null , time1 );}

Figure 3.4: Parser productions for the basic timing constructs.

3.4.1 Parsing Timing Annotations in C

The#pragma statements defined in Section 3.2 have to be transformed to elements of the
multi-layer IR by the parser of a compiler front-end. Figures 3.4 and Figure 3.5 give the
productions that have to be included in the context-free grammar of a C-language parser
[ASU86] in order to create the timing layer of the multi-layer IR.

Figure 3.4 shows the productions for the basic timing constructs. The first two produc-
tions generate the hooks to which timing edges can be attached. These hooks are points
where an I/O variable is accessed, i.e., where it is used as anoperand. An I/O variable is
declared by a#pragma io and we mark each of these variables in the symbol table as
a potential timing hook. Subsequently, for each label in theprogram we search the first
access to an I/O variable in the code following the label. Theoperand that constitutes this
access is then stored in the symbol table as the timing hook with that label.

After the timing hooks have been generated we create a timingedge for each#pragma
time, #pragma mintime, and#pragma maxtime between the timing hooks asso-
ciated with the given labels. We annotate the edge with the minimum and maximum timing
values given by the#pragma.

In the production for a#pragma wait in Figure 3.5 we first locate the only assignment
to the input variable that determines the time to wait. We start the search from the beginning
of the current scope. Once found, we create a DFG edge from this assignment to the
operand input of a new wait node. Furthermore, we create timing edges between the wait
node and the timing hooks associated with thesrc label and thedest label. The
instruction following the wait node cannot be fetched before the next cycle. Therefore, the
timing edgefrom the wait node todest label hasmintimeout = maxtimeout = 1.
The other time values must be adjusted as follows.



3.4. Timing Layer Transformations 49

WaitPragma→ #pragma wait id:srcLabel id : dstLabel
id : variable number:minTime

{
go to scope. start ;
while true {
proceed to next statement ;
if ( statement contains assignment to variable ){
waitInput = statement . targetOperand ;
break;
}
}
newWait =new Wait( waitInput );
new SubtractionNode( waitInput , minVal, newWait.input );
offset = minVal− 1;
new TimingEdge( srcLabel, newWait, offset , offset );
new TimingEdge( newWait, destLabel, 1, 1 );
}

Figure 3.5: Parser production for the wait pragma.

The constraint on the timing edge fromsrc label to the wait node as well as the
wait-time input are dependent on the minimum value of the wait time as provided by
min val in the#pragma wait. Subtracting the one cycle for the outgoing edge, we
getmintimein = maxtimein = min val − 1. This timing edge, however, requires the
wait to be started only after the minimum wait time has elapsed already. We therefore need
to adjust the wait-time computation accordingly and inserta subtraction node between the
wait input variable and the wait node. We subtract the minimum value from the wait input
twait , yieldingt′

wait
. With the subtraction ofmin val the minimum input value of the wait

nodet′
wait

is zero. The time betweensrc label anddest label then is

t = mintimein + (twait −min val) + mintimeout = (min val − 1) + t′
wait

+ 1.

The scheduler can trade off time before and after the wait by subtracting time from one
edge and adding it to the other. Furthermore, it can trade offtime at the incoming timing
edge against the wait-input offset: the lower the time of theincoming edge the larger the
wait input.

As an example of the timing-layer transformation, Figure 3.6 shows the mlIR result of
the example code in Figure 3.2. Note how themin val specified in the code has been
distributed across the two timing edges connected with the wait node. The offset at the
wait input has been adjusted accordingly.

Following the above scheme, we have extended the existing C front-end of the SUIF2/
Machine-SUIF compiler framework [SUIF, MS] to translate the #pragma statements to
the corresponding graph structures in our multi-layer IR [Lae03].

3.4.2 Implementing a Data-Dependent Wait

The wait node does not translate directly into a primitive processor instruction. Instead, it
is transformed into one of two possible implementation types as the example in Figure 3.7
demonstrates. The wait node, depicted on the left-hand side, can be implemented

1. entirely in software, as shown on the right-hand side of Figure 3.7, by moving a
start valuedata in into a registerwait, decrementing this register in appropriate



50 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

&

0x0F000000

>>

24

WAIT

data_out

OUT

t=1

data_in

IN

-

1

t=5

&

0x00FF0000

>>

16

data_in

INt=0

label1 label2

label3

Figure 3.6: Example code transformed to mlIR.

intervals with an explicit subtraction, and branching whenthe register reaches zero,
or

2. partially in hardware, as shown in the middle column of Figure 3.7, by providing
a counter register that is decremented implicitly by a constant value—typically by
one—and compared with zero in each clock cycle. The counter isset by writing
a value into the counter register. Then the processor is stalled by a special control
instruction, which we callwait-for-counter (WFC), until the counter reaches zero.
The WFC instruction stops the execution of all instructions at the end of the cycle in
which it has been issued. When the counter triggers, the processor resumes execution
in the following cycle.

t=1
data_in

IN

WAIT

data_in

IN

t=0

MOV

counter := data_in
WFC

temp := data_in

  wait := data_in
  if wait = 0 goto CONT

LOOP:
  wait := wait - 1
  if wait > 0 goto LOOP

CONT:
  temp := data_in

mlIR
graph

with hardware counter software count-down

temp

control
step

1

2

3

Figure 3.7: Wait-node implementation.



3.4. Timing Layer Transformations 51

The software implementation requires more instructions inthe application code for the
repeated subtractions and tests for zero. Each additional instruction complicates the in-
struction-scheduling process. Note also that updating thewait variable and testing it for
zero have to be scheduled in the same cycle.

The hardware solution, on the other hand, relies on additional infrastructure. Moreover,
a counter can be used for only one wait node at a time. This, however, is not a severe
constraint as a wait stalls the entire processor for an unbounded time, and hence there
cannot be two waits in parallel.

Using the hardware counter in the application code requirestwo instructions: amoveto
set the start value of the counter, and the WFC instruction. Writing the start value to the
counter, however, needs to be scheduled exactly in the cyclerequired by the timing edges
that lead to the wait node. Otherwise, the counter would not go off at the intended point in
time.

For both implementations there is the freedom to schedule the counter start earlier or
later by introducing anotheradd or subtractnode, respectively, to adjust the start value
accordingly. This additional node may be arithmetically merged with other nodes in the
delay computation by appropriate optimization methods.

The adjustment value depends on the final scheduling of the instruction that starts the
counter. Hence, the value can only be determined after the final instruction scheduling and
might then even be zero. The scheduler needs to be aware of operations that implement
wait nodes in the application so that it can decide whether itshould introduce an adjustment
node.

Moreover, the scheduling freedom of the counter start depends on the minimum possible
start value of the counter. This value determines the time after which the counter must be
tested for zero for the first time. It is the latest possible start time of the counter—even with
adjustments. The designer must specify the minimum value ofthe wait input, using the
min val of our wait-pragma. The larger this value, the larger the scheduling freedom. In
Section 4.4.2 we will employ this method to schedule waits.

>>

8

+

4

WAIT

data_in

IN

t=0

min_val = 4

temp := data_in >> 8
counter := temp + 3 temp := data_in >> 8

counter := temp + 2

no adjustment adjustment by 1
control
step

1

2

temp := data_in >> 8

nop

counter := temp + 1

adjustment by 2

1

2

3

Figure 3.8: Wait-node adjustment for scheduling.

Figure 3.8 shows an example of a wait node with three possibleschedules. Themin val,
after subtraction of 1 for the transition to the operation following the wait, allows an adjust-
ment of up to 3. The adjustment value is subtracted from the operand of the addition node.
In the first implementation with no adjustments, both instructions must be executed in the
same cycle to start the counter correctly. Using adjustments this situation can be relaxed.
With an adjustment value of 2, there is even an idle slot, marked by thenop, that can be



52 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

filled with a productive instruction. The WFC instruction is not shown here because it does
not have to occupy an instruction slot as explained in Section 4.4.3.

For a software implementation of a wait node, an enumerationof the possible delay val-
ues by the programmer offers another optimization opportunity. Gaps between the values
correspond to scheduling slots in which the register used for the countdown does not have
to be decremented or tested for zero. To compensate the gaps,the counter merely has to be
decremented by a higher value later.

In conclusion, the wait node offers the programmer an additional abstract expression,
and enables the instruction scheduler to select an optimum implementation strategy for the
expression.

3.5 Branch Postponing

Once an application suite of the target domain has been captured in the multi-layer IR it can
be optimized and scheduled to meet timing requirements. By means of a novel optimization
algorithm we now demonstrate how the combined information in the multi-layer IR can be
used to resolve scheduling conflicts that would otherwise inhibit the timely execution of an
algorithm.

In Section 3.2 we motivated the introduction of a timing layer with the fine-grained
timing constraints that are characteristic of control-dominated applications. With several
deadlines in short sections of code, the need for fine-grained timing optimization arises.
An example of a problem that can occur is given in Figure 3.9.

On the left-hand side, condition computation, branch, and then-clause are all scheduled
in the same time stepX. Assume that the then-clause alone needs a full time step to be
computed. As it has the annotated requirement to be scheduled in time stepX, e.g. because
of input data that only occurs in this particular cycle, the other control nodes must be moved
to another time step.

The technique we use to achieve this is similar to speculative execution in that it changes
the execution order of a conditional branch and subsequent code. Speculative execution
does this to fill processing slots before the branch in order to minimize the execution time
of the average case and the critical path through the program. For choosing the right code to
speculate, branch prediction is employed. Reverse speculation [GSK+01] does the opposite
by moving unconditional operations into conditional basicblocks. The objective is, again,
to minimize the over-all critical path.

In contrast, branch postponing improves the schedulability rather than the average or
maximum execution time. It might even grow the critical paththrough the else-clause. But
it allows code to be scheduled that otherwise could not meet its timing constraints. We
do this independently of what the average case is and hence, we make no assumptions on
branch probabilities.

3.5.1 The Algorithm

The first step to solve the problem in Figure 3.9 is to move the condition computation to
the preceding time step, as shown on the right-hand side. Assume that time stepX − 1
is now fully occupied. This means that the branch cannot be moved to the preceding time
step as well. Then the only remaining solution is to move the branch to timeX + 1. But



3.5. Branch Postponing 53

IN

condition
computation

=

TRUE FALSE

branch

then
clause

t=X

else
clause

time X

time X+1

t_min=1

further
code

condition
computation

=

TRUE
FALSE

branch

then
clause
t=X

else
clause

time X

time X+1

t_min=1

further
code

IN

IN

IN

Figure 3.9: Branch postponing.

that would mean to move the branch after a code section that should only be executed if the
branch has actually been taken, as also shown on the right-hand side.

This transformation does not change the result of the program if the then-clause is not
“harmful”, i.e., if it does not change any data used in the else-branch. This condition is met
if

• no output to the ASIP environment occurs in the DFG nodes of the then-clause be-
cause this communication is part of the program result that must not be altered by
the transformation;

• no memory writes occur in the DFG nodes of the then-clause because any data writ-
ten might be read in the else-branch. This criterion can be further relaxed by examin-
ing memory accesses more closely and comparing write addresses in the then-clause
with read addresses in the else-branch. This can, however, be a complex task be-
cause of the memory alias problem of two different expressions that denote the same
memory location.



54 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

while ( (latency of BBs) > (time between deadlines) ) {
while ( time slots available before first deadline )

push mobile BBs beyond first deadline;
push mobile BBs beyond second deadline;
for each remaining BB (in bottom-up order)

with a conditional branch {
if ( then-clause must stay before second deadline

AND then-clause is harmless to else-clause )
move then-clause before branch;

if ( else-clause must stay before second deadline
AND else-clause is harmless to then-clause )
move else-clause before branch;

if BB is now mobile
push BB beyond second deadline;

}
}

Figure 3.10: Pseudo code: Branch postponing.

In control-dominated applications this situation occurs frequently, for instance, when the
branch tests a termination condition and the else-branch starts an alternative algorithm that
does not use any result from the first algorithm because it handles a special case for which
the first algorithm is not suitable.

A basic block ismobile if it can be pushed beyond a deadline without violating given
timing, data, or control dependencies. A generic pseudo-code representation of the branch-
postponing algorithm for a set of basic blocks (BBs) betweentwo deadlines is shown in
Figure 3.10.

Note that branch postponing adds only little to the criticalpath in the else-branch, be-
cause the else-clause in Figure 3.9 would in any case have to wait for timeX + 1 to arrive
owing to the given minimum time distance to the then-clause of 1. The time added by
moving the branch to the same time step in many cases is not critical, such as in the above-
mentioned case when it terminates the algorithm. The gain, on the other hand, is significant
as it allows the then-clause to be scheduled, which otherwise could not be accommodated.

3.5.2 Applicability and Relevance

To illustrate the relevance of branch postponing in a real-world example, we compiled
the header-compression code in [Jac90] with the gcc compiler for IA-32 processors and
isolated the compress and uncompress routines in the assembly code. Header compression
is a typical control-dominated application. We found that 9% of all assembly instructions
are conditional branches, each of which represents a potential scheduling problem that
branch postponing can solve.

For closer examination, we implemented the compress routine in the multi-layer IR.
The routine handles only common-case packets and delegateserror handling to another
processing entity. The target ASIP is a protocol engine witha data-push architecture as
introduced in Section 1.3.3 as part of a network processor. Therefore, the deadlines between
two reads of header fields are very tight; for instance, with a32-bit input register and a
network data-rate of 10 Gb/s the time between two header words is only 3 ns. Under such
tight constraints, any gain of scheduling freedom is highlyvaluable.



3.6. Summary of Compiler Methods 55

We found that 33% of the conditional branches in the program are of the above-men-
tioned termination-condition type that branch out of the algorithm between tight deadlines.
This is a typical situation where branch postponing ensuresschedulability within the timing
constraints. It can, however, also be applied to the remaining conditional branches.

We examined each conditional branch in the compress routinethat is locked between
deadlines of one or two input cycles. According to the example above, this equals deadlines
of 3 to 6 ns. Table 3.1 shows the number of operation nodes thatbranch postponing will
move out of the critical path at these branches. In this way, the operation count in the
examined sections is reduced by 36 to 93%. The remaining nodes will at least move header
words from the input register to another register before theinput register is overwritten
with the next header word. With the scheduling freedom gained, moved operation nodes
can then be scheduled in less timing-critical sections.

Branch no. 1 2,3 4 5 6,7 8

Movable 13 8 3 7 10 3
nodes
Remaining 1 3 2 2 2 2
nodes
Deadline 1 2 1 1 1 1
in cycles

Improvement 93% 36% 60% 78% 83% 60%
per cycle

Table 3.1: Scheduling freedom through branch postponing.

In consequence, the required deadlines can be met. Thanks tothe better balancing of the
number of operation nodes per cycle, the circuit may even be clocked faster than projected.

Branch postponing makes use of all four layers of the multi-layer IR:

• The control layer represents the branch.

• The timing layer expresses the deadline problem.

• The DFG layer is used to analyze whether the then-clause block is harmful.

• The meta-DFG layer makes data dependencies between controlnodes obvious.
Therefore, possible conflicts when moving the branch are found on this layer.

The branch-postponing algorithm demonstrates the potential of combining information in
the multi-layer IR.

3.6 Summary of Compiler Methods

In this chapter we have introduced a new method to annotate existing C code with fine-
grained timing constraints and data-dependent waits, bothof which are typical for control-
dominated applications. Unlike other known methods, our approach does not require a
significant rewrite of the code. Hence, existing application code for which an ASIP is to be
designed can be used as-is and only needs to be annotated withthe timing requirements.
Moreover, our method increases the resolution of the timingconstraints to a single basic
IR operation on the level of a coarse-grained HLL, compared to a resolution of an entire C
statement in other approaches.



56 Chapter 3. Compiler Methods for Fine-Grained Timing Constraints

Our multi-layer IR captures the timing constraints provided by the C annotations and we
provided parser productions to transform the annotations to the timing layer. In the timing
layer we introduce the new concept of a wait operation that delays the program execution
for a number of cycles computed at run time. The wait operation simplifies the timing
specification of I/O operations for the communication with the environment and enables
automated scheduling support for the implementation of thespecified timing.

Based on the multi-layer IR we introduced branch postponing, a novel variation on spec-
ulative execution. The method resolves a type of schedulingconflict that occurs frequently
in control-dominated applications due to tight timing constraints. Branch postponing com-
bines information from all layers of our IR and demonstratesthe potential of the multi-layer
IR.



4 Instruction-Set Generation for
Precise Timing

Application Specification
w/ Timing Constraints

Intermediate
Representation

Compiler Front End

Timing
Constraint
Analysis

Timing-Forced
Patterns

Scheduler

Constraining
Parallelism

Patterns and
Pattern Pairs

Identity
Simplification

ASIP
Instruction Set

Partial
Schedule

In this chapter we introduce our algorithms to choose patterns for implementation as
special instructions. The resulting instruction set has toenable an implementation of the
benchmark applications such that two kinds of constraints are met:

• the timing constraints given by the timing layer of the multi-layer IR and

• a maximum number of parallel instruction issues, specified by the ASIP designer.

An instruction set that meets these constraints is to be optimized in two respects:

• The primary goal is to minimize the maximum latency of any instruction in the in-
struction set. This goal improves the implementability of the instruction set with the
required cycle time.

• The secondary goal is to minimize the number of instructionsin the instruction set.
This goal minimizes the number of bits needed for the instruction encoding.

We formulate these optimizations as two consecutive scheduling problems. The first prob-
lem is to segment each path that is covered by a timing constraint into patterns such that
the constraint is met while balancing the latency of the patterns to work towards the pri-
mary optimization goal. The second problem is to bundle parallel patterns such that the
constraint on parallel issues is met while keeping the number of incurred instructions low
in order to work towards the secondary optimization goal.

57



58 Chapter 4. Instruction-Set Generation for Precise Timing

This chapter is organized as follows: Related work on operation scheduling is presented
in Section 4.1. In Section 4.2 we introduce a method to find thetiming-forced patterns that
must be implemented as instructions in order to meet the specified timing constraints. A
path between the start and end point of a timing edge in the application graph is segmented
such that the timing constraint will be met if each of the segments is implemented as a one-
cycle instruction. In Section 4.3 the number of parallel instruction issues is constrained
to the number specified by the designer. Our method generatesa partial schedule with
unbounded parallelism and then bundles patterns that are frequently used in parallel to
compound instructions. The process takes into account the effect that the bundling has
on scheduling freedom. How wait operations and other control constructs are handled in
the methodology is the subject of Section 4.4. Section 4.5 summarizes the chapter. To
our knowledge, this is the first complete instruction-set design flow for control-dominated
applications.

4.1 Related Work

4.1.1 Operation Scheduling

The simplest scheduling algorithms used in high-level synthesis areas-soon-as-possible
(ASAP)andas-late-as-possible (ALAP). ASAP positions each operation in the first step in
which all its inputs are available. Similarly, the ALAP schedule positions each operation
just before all operations that read its output and in the latest control step possible without
adding another step to the total schedule. In both cases, thetotal schedule length is equal
to the length of the critical paths. The termmobility for the difference between ASAP and
ALAP schedules was coined in [PG87]. ASAP and ALAP schedulesdo not take resource
constraints into consideration.

An early algorithm for resource-constrained scheduling islist scheduling (LS)[Hu61]. In
LS, operations are ordered according to their dependencieson other operations. A priority
function assigns precedence values to the operations. Based on these values the operations
are then iteratively assigned to control steps. LS and its many variations are widely used in
synthesis systems because they are simple and efficient [CSS98, ACD74].

Another popular algorithm isforce-directed scheduling (FDS)[PK89]. FDS is time-
constrained, i.e., it tries to minimize the resources required to achieve a given maximum
schedule length. The priority function in FDS is based on themobility of operations and the
resource requirements in each control step. Operations with the lowest mobility, the least
effect on the mobility of other operations, and the lowest resource increase are scheduled
first.

More complex scheduling algorithms include iterative scheduling [PK91] and the formu-
lation of scheduling as an integer linear program (ILP) [LHL89], which has been extended
to include parallel scheduling of instructions for VLIW processors [KW01]. Solving an
ILP provides optimum schedules. However, it is generally anNP-complete problem and
therefore it is practical only for small problems.

A comprehensive introduction to the scheduling problem followed by a survey of the
most popular scheduling algorithms for high-level synthesis can be found in [WC95].



4.2. Timing-Forced Patterns 59

4.1.2 Scheduling with Timing Constraints

For scheduling applications with timing constraints it is assumed that the specification of
the timing constraints is feasible, consistent, and complete, i.e., minimum values are not
larger than maximum values, there are no contradictory constraints, and all timing-critical
paths in an application graph have associated timing constraints. Methods to ensure these
properties have been presented in [KM92, GM97].

Most HLS systems do only allow for the specification of statictiming constraints. They
do not consider minimum, maximum, or range constraints for optimization and scheduling.
A notable exception of a constructive scheduling algorithmthat considers these types of
timing constraints for the synthesis process has been described in [KM92].

4.2 Timing-Forced Patterns

4.2.1 Problem Statement

The main concern in developing an ASIP for control-dominated applications is to meet the
timing constraints specified by the benchmarks. The generated instruction set must be able
to implement the applications with the required timing. Therefore, our first step is to find
the operation patterns that areforcedto be part of the pattern set by the timing constraints.
In this selection process, it is important to balance the size of patterns in the pattern set
because all patterns will have to be implemented in a single processor cycle and therefore
the most complex pattern will determine the critical path inthe processor design. In order
to maintain control-flow dependencies, a pattern does not cross branches.

The scheduling algorithms mentioned in Section 4.1 determine how to distribute oper-
ations over a given or minimum number of time steps with a given or minimum number
of resources. None of them, however, addresses the questionof how to bundle operations
in an instruction to obtain a lean instruction set that meetsall constraints and in which
instruction latencies are balanced. Therefore, our objective is different from the general
scheduling problem.

To analyze applications we have to traverse the control and data-flow layers of their
mlIR. To facilitate the traversal, we combine these layers in a single CDFG,G = (V,E),
with V a set of nodes andE a set of directed edgese = (u, v) ∈ E with u, v ∈ V . There
are two types of nodes in the setV = Vop ∪ Vdmy: the set of operation nodes in the data-
flow layer of the mlIR,Vop, and dummy nodes,Vdmy, that connect the control layer with
the data-flow layer.

The dummy nodes serve as unified entry or exit points for the control nodes, i.e., for the
basic blocks. An entry node connects all leaves of all DFGs ina control node, and an exit
node connects all roots of the DFGs. The edges from the control layer connect the exit
node of their source with the entry node of their destinationin the CDFG. Basic blocks
with a conditional branch get one exit node for each outgoingcontrol edge.

The set of edges inG therefore consists of edgesEdmy between dummy nodes and leaves
or roots of DFGs, and regular control and data-flow edges,Ec andEd, respectively, in the
mlIR: E = Edmy ∪ Ec ∪ Ed. An edge in the CDFG is denotedvi → vk, wherevi is an
immediate predecessor ofvk.



60 Chapter 4. Instruction-Set Generation for Precise Timing

The edges in the timing layer of the mlIR impose maximum or minimum constraints on
the time between the operands at their ends. This representsan optimization problem on
the CDFG, namely, how to schedule the operantion nodes alongeach timing edge. In the
following sections we will first develop a formal definition of the problem and then give a
heuristic to solve it with limited computational complexity.

4.2.2 ILP Formulation

We formalize the optimization problem in the form of an integer linear program (ILP)
[NW99]. The result of the optimization will be a set ofm patternsSt = {I1, . . . , Im},
with each pattern being a DFG. The latency of patterns ∈ {1, . . . ,m} is the length of its
critical path, denoted|Is|. Our global objective is to balance the latency of the selected
patterns, i.e., to minimize the maximum latency in the pattern set:

min{max(|Is| : 1 ≤ s ≤ m) }. (4.1)

Let X = [xi,j ]|Vop|,jmax
be a scheduling matrix of 0-1 integer variables withvi ∈ Vop,

j ∈ {1, . . . , jmax}, andxi,j = 1 iff vi is scheduled in time stepj (see Figure 4.1).|Vop| is
the number of operation nodes inG andjmax is a maximum length of the schedule in time
steps. Note that the matrix considers only operation nodes.The dummy nodes, in contrast,
are not to be scheduled as they do not represent any operations.

X =











x1,1 x1,2 . . . x1,jmax

x2,1 x2,2 . . . x2,jmax

...
...

. ..
...

x|Vop|,1 x|Vop|,2 . . . x|Vop|,jmax











↑
operation

nodes
↓

←− time steps−→

Figure 4.1: Scheduling matrix.

Let Gt = (Vt, Et) be the subgraph ofG between the endpoints of a timing edget. LetPt

be the set of all acyclic pathsp throughGt from one timing-edge endpoint to the other. A
path is defined by a vectorp ∈ B

|Vop| such thatpi = 1 iff vi is on the path. Component-wise
multiplication of the vector(x1,j , . . . , x|Vop|,j) for one time stepj in X with a path vector
p yields acharacteristic vectorof those operation nodes on the path that are scheduled in
that time step. As these nodes must be implemented by the samepattern, the number of
1’s in the characteristic vector is equivalent to the numberof operation nodes of the path
in that time step, which corresponds to the latency of the path segment. We can write this
latency as the scalar product of the path vector with the column vectorxj of the time step
j in the scheduling matrix:

|p(j)| = p1x1,j + . . . + p|Vop|x|Vop|,j = p · xj . (4.2)

The path segment with the largest latency corresponds to thecritical path in the slowest
pattern. Therefore, the objective in Eq. (4.1) can be recastas a function of all path vectors
of all timing edges, which are combined in the setP :

min{max(
|Vop|
∑

i=1

pi xi,j , ∀ p ∈ P, j ∈ {1, . . . , jmax}) }



4.2. Timing-Forced Patterns 61

= min{max(p · xj , ∀ p ∈ P, j ∈ {1, . . . , jmax}) }. (4.3)

This is the objective function for the ILP. Now the constraints a valid schedule must meet
can be developed. The first requires that each operation nodebe scheduled in exactly one
time step:

jmax
∑

j=1

xi,j = 1, ∀ i : vi ∈ Vop. (4.4)

The precedence of nodes in the CDFG must be preserved. We achieve this by requiring
that the time step of a node be equal to or higher than the time step of its predecessors. If
gl is the time step forvl, we obtain

gi ≤ gk, ∀ (i, k) : vi → vk. (4.5)

The time stepgl of a nodel is expressed by the sum

gl =

jmax
∑

j=1

j xl,j . (4.6)

Transforming the inequality togi − gk ≤ 0 and substituting with Eq. (4.6), we get the
precedence constraint:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ 0, ∀ (i, k) : vi → vk, vi, vk ∈ Vop. (4.7)

This constraint only applies to operation nodes because dummy nodes are not assigned to
any time step. Therefore, another constraint to preserve precedence across dummy nodes
is needed:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ −1, ∀ (i, k) : vi → vexit→ ventry→ vk,

vi, vk ∈ Vop, vexit, ventry ∈ Vdmy.

(4.8)

The left-hand side of the inequality must be negative because operation nodes connected
across dummy nodes belong to different basic blocks and thusmust not be scheduled in
the same time step. As a consequence of this constraint, the ILP has no solution if there
exists a path having more control nodes than the timing edgesallow cycles. In this case,
transformations such as if-conversion [AKPW83, AHM97] mustbe used to decrease the
number of control nodes and resolve the situation.

Finally, the timing constraints must be considered. For each maximum timevi
tmax−−→ vk

between two operation nodesvi andvk with I/O nodes as operands,gk − gi ≤ tmax is
required for their assigned time stepsgi and gk. Similarly, from each minimum time

vi
tmin−−→ vk follows gk − gi ≥ tmin. Substituting with Eq. (4.6) results in:

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≤ tmax, ∀ (i, k) : vi
tmax−−→ vk, vi, vk ∈ Vop (4.9)

jmax
∑

j=1

j xi,j −

jmax
∑

j=1

j xk,j ≥ tmin, ∀ (i, k) : vi
tmin−−→ vk, vi, vk ∈ Vop. (4.10)

This completes our formulation with the objective function(4.3) and the constraints
(4.4) for assignment, (4.7) and (4.8) for precedence between operation nodes, and (4.9) and



62 Chapter 4. Instruction-Set Generation for Precise Timing

(4.10) for timing. In a solution to the optimization problem, each set of nodes scheduled in
the same time step and connected by data dependencies in the CDFG represents a pattern
in the pattern setSt. However, solving an ILP quickly becomes intractable with increasing
problem size. The search space for the ILP solver can be somewhat reduced by techniques
such as constraint propagation. This, however, does not reduce the exponential worst-case
complexity of the problem. To enable the handling of large application graphs we present
a heuristic for the optimization problem in the following section. A heuristic represents a
trade-off between optimality and time complexity.

4.2.3 Heuristic

Interactions between Timing Constraints

For scheduling an operation node in the CDFG, multiple timing constraints may have to be
considered at once. Figure 4.2 gives an example why considering only one constraint at a
time can lead to an incorrect schedule. The left-hand side ofthe figure shows a data-flow
graph with two timing constraints. Considering only the constraint between nodes A and
E and attempting to balance the size of the resulting patterns, we would cut the path from
A to E in half as shown on the right-hand side of the figure. Thispartitioning, however,
makes it impossible to meet the constraint between node B andD: The constraint requires
nodes B, C, and D to be executed in the same cycle but the cut pushes node D to a different
cycle than the others.

t=1

t=0 t0

t1

t=0

A B

C

D

E

A B

C

D

E

Figure 4.2: Considering one constraint at a time is not sufficient.

We solve this problem by annotating each operation node withthe set of cycles in which
it can be scheduled without violating any constraint. This set, D, is called adomain. We
start by annotating nodes that are hooks to timing edges withthe constraints or domains
that follow from these edges. This is shown on the left-hand side of Figure 4.3. We then
propagate the constraints to neighboring nodes until each node has its consistent domain,
as shown on the right-hand side of the figure. Note that data dependencies in the graph
represent precedence constraints as expressed by Eq. (4.5):

gi ≤ gk, ∀ (i, k) : vi → vk, vi, vk ∈ Vop (4.11)

Control dependencies represent a precedence constraint according to Eq. (4.8):

gi < gk, ∀ (i, k) : vi → vexit→ ventry→ vk, vi, vk ∈ Vop, vexit, ventry ∈ Vdmy (4.12)

As for the ILP in Section 4.2.2, a path that consists of more control nodes than the tim-
ing edge allows cycles represents an inconsistency in the constraint specification. Again,



4.2. Timing-Forced Patterns 63

transformations such as if-conversion [AKPW83, AHM97] mustbe used to decrease the
number of control nodes and resolve the situation.

t=1

t=0

A B

C

D

E

A B

C

D

E

tA tB {t , t +1}

t =t =t D

{t }A

{t +1}A

B

t =t +1AE

t =tD B

C

t =t =t CBD

t =t =t DCB

AA

{t , t +1}AA

{t , t +1}AA

Figure 4.3: Constraint propagation.

Constraint propagation has been investigated for a long time in the field of constraint
programming [Tsa93]. A fundamental and widely used class ofpropagation algorithms
can be found in [Mac77], each with polynomial time complexity [MF85]. These algorithms
provide an efficient means to automate the transformation inFigure 4.3. In the following
we will use the AC-3 algorithm. It has a time complexity ofO(a3n2) for a number of nodes
n and a maximum domain sizea.

A

B

C

t  =3min

t  =2min

t  =2min

Figure 4.4: Combined timing edges overrulingtmin.

The common propagation algorithms require that the domainsbe finite. The natural
lower bound for the domains in a scheduling problem is cycle 0. For the upper bound,
t∞, we must find a value that does not constrain the scheduling, i.e., a value that does not
inhibit the longest conceivable optimal schedule. In a scenario as shown in Figure 4.4,
minimum timing constraints can force two adjacent nodes to be scheduled further apart
than the largesttmin. Therefore, to be on the safe side and not prevent an optimal schedule,
we chooset∞ such that it allows each pair of nodes in the graph to be as far apart as the
sum of all minimum timing constraints,

t∞ = n ·
∑

tmin.

The domains of all operation nodes before constraint propagation are then initialized to

Di = {0, 1, . . . , t∞} ∀ i : vi ∈ Vop.

Scheduling Heuristic

After constraint propagation the schedule may still be underdetermined, i.e., there are still
node domains with more than one cycle in which the node can be scheduled. In Figure 4.3



64 Chapter 4. Instruction-Set Generation for Precise Timing

generateForcedPatterns( graph ) {
propagateConstraints( graph.startNode );
dfsVisit( graph.startNode, {} );
}

dfsVisist( node, path ) {
path.append( node );
node.visited = true;
lastInPath = true;
for each sucessor of node
if successor.visited == false {
lastInPath = false;
dfsVisist( sucessor, path )
path = {node};
}

if lastInPath == true
balance( path );

}

balance( path ) {
earliest = path.startNode.earliest();
tMax = path.endNode.latest() - earliest;
midTime = earliest + ceiling( tMax / 2 );
fixNode = path.middle(); // if middle is between two nodes pick second one
assignedCycle = fixNode.domain.closestMember( midTime );
if fixNode.domain.size > 1 {
fixNode.domain = {assignedCycle};
propagateConstraints( fixNode );

}
if path.successor( startNode ) != fixNode
balance( path.subPath( startNode, fixNode ) );

if path.successor( fixNode ) != endNode
balance( path.subPath( fixNode, path.endNode ) );

}

Figure 4.5: Pseudo code: Generate timing-forced patterns.

this is true for nodes B, C, and D which can be scheduled in cycletA or tA+1. We therefore
introduce a heuristic to choose a cycle from each node domain.

The basic idea of the heuristic is this:

• Traverse the graph in depth-first search (DFS) order;

• on the way, cut each taken path in half,

• schedule the middle node such that the maximum time allowed for the path is evenly
distributed between both halves, and

• recurse over the halves until all nodes are scheduled.

Distributing the available time evenly across the graph works towards the optimization goal
of having evenly sized patterns.

Figure 4.5 shows the algorithm, beginning with the top-level function generate-
ForcedPatterns. After the initial constraint propagation, we start the graph traversal
with a call todfsVisit. This procedure implements the DFS [CLR90] with additional
functionality to record the paths and to call thebalance procedure on each complete path
for scheduling. First, we append the discovered node to the current path and mark it as vis-
ited. The following loop examines if the successor nodes have been visited before. If an
unvisited node is discovered we visit it by a recursive call todfsVisit. Upon return from



4.2. Timing-Forced Patterns 65

the call all nodes in the path have been scheduled. To construct the next path of successors
we need only the current node as a start node. Therefore, we reset the path to contain only
the current node before continuing with the next successor.If, on the other hand, all of the
successor nodes had been visited before then the current node is at the end of a path. In this
case, we call thebalance procedure to schedule all nodes on the complete path.

The balance procedure first computes the available time for the given path as the
difference between the earliest possible time for the startnode and the latest possible time
for the end node, according to their domains. As we will schedule the middle node of the
path we then computemidTime, the absolute time in the middle of the available time
range, rounded up to the next integer number. This rounding up corresponds to picking
the node just after the middle of the path aspath.middle() does forfixNode if
the middle is between two nodes. In this manner, the available time is evenly distributed
between two halves of the path.

The cycle then assigned tofixNode is the member of its domain closest tomidTime.
Fixing a node to a cycle effectively means eliminating all but one element from the node
domain. If the domain contained more than one element beforethen this may further con-
strain the legal cycles of other nodes. Hence, we have to propagate constraints again to
restore consistency with the surrounding node domains. Forefficiency, we passfixNode
to the propagation algorithm which enables it to start at themodified domain rather than
traversing once again the entire graph. With consistency reestablished thebalance pro-
cedure recurses on both halves of the path. The recursion terminates when there are no
more nodes between the start and end node of the passed path.

Just as with the ILP, after scheduling, each set of nodes thathave been scheduled in the
same time step and are connected by data-dependencies in theCDFG represents a pattern
in the pattern setSt. The patterns generated in this way are inserted into the pattern library,
employing the PSG structure from Chapter 2. As a result, the library contains all patterns
necessary to implement the application graph.

Computational Complexity

The computational complexity of the heuristic is dominatedby the constraint propagation.
The AC-3 algorithm has been shown to have a complexity ofO(a3n2) with n the number
of nodes anda the maximum size of their domains [MF85]. We call constraintpropagation
once at the beginning and then at most once in thebalance procedure, which in turn
is called at most once for each node in the graph except for thestart node. This yields a
worst-case complexity ofO(n · (a3n2)) = O(a3n3).

The remainingdfsVisist procedure implements the DFS. For a bipolar graph with all
visited-flags initialized tofalse, DFS is known to beO(e), with e the number of edges
in the graph, because it traverses each edge in the graph exactly once [CLR90]. Expressing
e as a function ofn we getO(e) = O(n2) which is dominated by then3 in the complexity
we already have. The running time of the entire algorithm is thereforeO(a3n3). We have
achieved a polynomial time complexity as opposed to the exponential complexity of an ILP
solver.



66 Chapter 4. Instruction-Set Generation for Precise Timing

4.3 Constraining Parallel Instruction Issues

4.3.1 Problem Statement

The methods to find timing-forced patterns described in Section 4.2 consider constraints on
the number of instructions in a sequence, defined in the form of timing constraints. Another
type of constraint provided by the designer in our methodology is the maximum number of
instructions issued in parallel by the ASIP to be designed,kmax. Our approach to meet this
constraint is to bundle patterns that frequently occur in parallel.

Building upon the results of the preceding section, we replace the operation nodes in the
CDFG with their associated patterns inSt, resulting in a set of pattern nodesVpat. We get a
graphG′ = (V ′, E′) with a set of nodesV ′ = Vpat∪Vdmy and edgesE′. It is not necessary
to migrate the timing edges as they are attached to I/O operands, which have not changed
in the process.

The optimization problem to be solved on this graph is how to schedule the nodes in
time steps with the minimum number of incurred bundles of parallel patterns. Again, we
first develop a formal definition of the problem and then introduce a heuristic to limit the
computational complexity of the process.

4.3.2 ILP Formulation

We also state the second optimization problem in the form of an ILP. The result will be a
set of instructionsSp. Our objective is to keep the number of instructions inSp as low as
possible:

min{ |Sp| }. (4.13)

Let Y = [yi,j,k]|Vpat|,jmax,kmax
be a three-dimensional scheduling array of 0-1 integer vari-

ables withvi ∈ Vpat, j ∈ {1, . . . , jmax}, k ∈ {1, . . . , kmax}, and yi,j,k = 1 iff vi is
scheduled in time stepj and parallel-issue slotk (see Figure 4.6).|Vpat| is the number of
pattern nodes inG′. The dummy nodes are not represented in the array.

time steps

issue slots

pattern
nodes

Y =

Figure 4.6: Three-dimensional scheduling array.

Each issue slotk in each time stepj is represented by acharacteristic vectoryj,k =
(y1,j,k, . . . , y|Vpat|,j,k) in the array with a 1 at each node that is scheduled in that particular
slot. The pattern associated with each node is determined bya functionτ : Vpat→ St. The



4.3. Constraining Parallel Instruction Issues 67

combination of patterns in one issue slot forms a pattern bundle inSp. Hence, the number
of different pattern bundles in all issue slots yields|Sp| for the objective function.

The first constraint for a valid schedule is an assignment constraint, requiring that each
pattern be scheduled in exactly one time step and exactly oneissue slot:

jmax
∑

j=1

kmax
∑

k=1

yi,j,k = 1, ∀ i : vi ∈ Vpat. (4.14)

The precedence constraint requires that each node be scheduled later than its predeces-
sors. Unlike the problem in Section 4.2.2, it is not possibleto schedule dependent nodes in
the same cycle. Ifgl is the time step forvl we get

gi < gh, ∀ (i, h) : vi → vh. (4.15)

To express the time stepgl of a nodel, all time steps and issue slots are scanned:

gl =

jmax
∑

j=1

kmax
∑

k=1

j yl,j,k. (4.16)

Tranforming Eq. (4.15) togi − gh ≤ −1 and substituting with Eq. (4.16) yields the prece-
dence constraint:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ −1, ∀ (i, h) : vi → vh, vi, vh ∈ Vop. (4.17)

In order to cover also the dummy nodes a second precedence constraint is needed:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ −1, ∀ (i, h) : vi → vexit→ ventry→ vh,

vexit, ventry ∈ Vdmy.

(4.18)

Finally, the timing constraints are taken into account. We derive the constraint similarly
to Eqs. (4.9) and (4.10), with Eq. (4.16) for the scheduled time steps:

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≤ tmax, ∀ (i, h) : vi
tmax−−→ vh, vi, vk ∈ Vop (4.19)

jmax
∑

j=1

kmax
∑

k=1

j yi,j,k −

jmax
∑

j=1

kmax
∑

k=1

j yh,j,k ≥ tmin, ∀ (i, h) : vi
tmin−−→ vh, vi, vk ∈ Vop. (4.20)

This completes the formulation with objective function (4.13), and constraints (4.14)
for assignment, (4.17) and (4.18) for precedence between operation nodes, and (4.19) and
(4.20) for timing. The result of the optimization is the set of pattern bundlesSp. To over-
come the intractability of ILP optimization for large problems we introduce a heuristic in
the next section.



68 Chapter 4. Instruction-Set Generation for Precise Timing

4.3.3 Heuristic

The basic idea of our heuristic is as follows:

• Compute partial schedule to analyze which pairs of patternscould be scheduled in
parallel.

• For each pair, compute a value that captures the frequency ofoccurrences of the pair
as well as the constraining effect it has on scheduling freedom.

• Sum up these values per control step as a metric for the parallelism demand in a
control step.

• From the control steps with the largest parallelism demand,choose the pair with the
largest value as a new compound instruction.

• Iterate until the constraint on parallelism is met:k ≤ kmax, wherek is the maximum
number of patterns scheduled in parallel.

We again start by propagating the constraints across the graph to determine the domains
of possible control steps for each pattern. The difference between the earliest and the latest
possible control step in which a pattern can be scheduled, i.e., the difference between the
smallest and the largest value in its domain is called themobility [PG87] of a pattern. The
mobility is a metric for scheduling freedom. We represent this in a partial schedulein
which patterns that have no mobility are assigned to a particular control step while mobile
patterns are assigned to their range of possible control steps. Figure 4.7 shows an example
of a partial schedule. The table shows which patterns may be scheduled in parallel in the
same cycle. Patterns that cannot be scheduled in parallel due to dependencies are placed
in the same column. The tables of partial schedules can be constructed separately for each
control node because only patterns in the same control node can be scheduled in parallel.

Step Patterns parstep

1 A D 2
2 B 1/3
3 | C E 1/3 + 1
4 ⊻ | F 1/3 + 1
5 ⊻ G 1/3 + 1
6 H I 2

Figure 4.7: Partial schedule with parallelism values.

In order to measure the benefit we would gain from bundling twopatterns in a compound
instruction we define aparallel value, inspired by a method for regularity extraction that
was sketched in [BKKS02]. The parallel valuevpar of a patternwe define as the inverse of
the number of control stepsm in which it can be scheduled, according to its mobility. This
is similar to the probabilities used in FDS [PK89]. We define the parallel value of apattern
pair to be the product of the values of its patterns:

vpar(pair12) = vpar(pattern1) · vpar(pattern2) : vpar(pattern) =
1

m

This definition of the parallel value corresponds to the probability of the patterns in a pair
being scheduled in the same control step, assuming equal scheduling probability for each
step in the mobility range of a pattern. The value is 1 if both patterns in the pair have no



4.3. Constraining Parallel Instruction Issues 69

mobility. Otherwise, the value is a fraction of 1. This mechanism assigns a lower value
to pairs that constrain the scheduling freedom more: Pairing binds one pattern to another,
hence constraining the mobility of the pair to the intersection of the patterns’ mobility.

For each control step in the partial schedule we generate allpossible pairs of patterns.
For each pair we insert apairing edgebetween the according pattern entries in the PSG
library, annotated with theparallel valueof the pair. Each time a pair is generated for
which the according pairing edge already exists we add the parallel value of the occurrence
to the value counter in the library. If a pair occurs more thanonce in the same control step
then we count only the highest parallel value.

A/H

D/I

B

C

G

E/F1+1

1/3

2 * 1/3

2 * 1/3

pairing edge

PSG edge

Figure 4.8: Pairing edges with parallel values in a PSG.

Figure 4.8 shows a fragment of a PSG with pairing edges and annotated parallel values
for the schedule in Figure 4.7, assuming that patterns A/H, D/I, and E/F are pairwise iden-
tical. Pattern C, for instance, can be scheduled in three time steps. Hence, it has a parallel
value ofvpar = 1/3. As it shares time steps 3 and 4 with the identical patters E and F, the
parallel value for the pair isvpar(C ↔ E/F ) = 2 · 1/3.

The parallel values provide a ranking by the benefit that the implementation of the pairs
as an instruction would provide. We use this ranking to iteratively choose from the pairs
in control steps with the highest parallelism. We define the parallelismparstep per control
step as the sum over the maximum parallel value of alli operations in each columnc:

parstep =
∑

c

maxi{ vpar(patternc,i) }.

This again takes into account the probability for a pattern to be scheduled in the particular
control step, given its mobility. Patterns B and C in Figure 4.7 each have a parallel value
of vpar = 1/3. All other patterns have no mobility and have a parallel value of one. Adding
up the parallel values, for instance, in step 4 is1/3 for either B or C, as they are in the same
column, plus one for node F and yields1/3 + 1 = 4/3.

From the control steps with the highest parallelism we choose the pattern pair with the
highest parallel value. In this way we give precedence to pairs that occur often which also
tend to be simpler pairs, composed of fewer operation nodes.We replace all occurrences of
the pair in the applications with the new bundle. If the patterns in the pair do not not occur
anywhere else in the applications their entries in the sequential pattern library are removed.
Then we start another iteration of the process by computing the new partial schedule. We
iterate until the given constraint on parallel instruction-issues is not violated anymore.

Figure 4.9 shows the pseudo code for the entire procedure. The firstfor-loop builds
the schedule table, and the second loop computes the parallel value for each pattern pair
and the parallelism for each cycle. The third loop finds the pattern pair to be chosen for



70 Chapter 4. Instruction-Set Generation for Precise Timing

while k > k_max {
propagateConstraints();
for each cycle in each pattern.domain {
scheduleTable.insert(pattern, cycle, cntrlNode);
// considers pattern dependencies by column assignment

}
for each cycle in scheduleTable {
cycle.parallelism = sum of all column.maxPatternValue() in cycle;
for each pair of patterns in different columns in cycle
psg.pairingEdge( pair ).value += pair.value;

}
for each pair in each cycle with cycle.parallelism = maxParallism
if psg.pairingEdge( pair ).value > maxValue {
candidate = pair;
maxValue = psg.pairingEdge( pair ).value;
}

psg.insert( candidate );
for each occurrence of candidate in graph {
replace occurrence by candidate;

}
for each pattern in candiate
if no more occurrence of pattern in graph
psg.remove( pattern );

}

Figure 4.9: Pseudo code: Constrain parallel instruction issues.

implementation which is then inserted into the PSG and the application graph. If a pattern
in the pair does not occur in the graph individually any longer it is removed from the library.

The worst-case computational complexity of the constraintpropagation isO(a3n2). For
table construction, each domain member of each node is visited exactly once and each
dependency in the graph is analyzed. Withe dependencies, this yields a complexity of
O(an+ e) = O(an+n2) for table construction. The next twofor-loops analyze all pairs
of patterns which cannot have higher complexity than visiting all possible pairs of patterns
in each cycle which isO(an2). The entire procedure iterates at mostn times. This results
in a total worst-case complexity ofO( n · (a3n2 + an + n2 + an2) ) = O(a3n3). Again
we have achieved a polynomial time complexity as opposed to the exponential complexity
of an ILP solver.

4.3.4 Using IOGs to Eliminate Instructions

In Chapter 2.2 we described the IOG method based on ID operands to substitute patterns
by others in order to simplify an instruction set. This method can also be applied to patterns
in a pair. Therefore, a pair can implement combinations of simpler patterns that are part of
the IOGs of the pair patterns. We use the IOGs of the patterns to find all pairs of simpler
patterns that are dominated by a pair. Any pair inSp that is dominated by another chosen
pair inSp is removed from the instruction set and its occurrences in the graph are covered
by the dominating pair.

We also construct the IOG library of the sequential patternsneeded to cover the remain-
ing operations that are not covered by any chosen parallel pair. From this IOG, we select
all those patterns that are not dominated by any other pattern as instructions. The final
instruction set for the ASIP consists of those sequential patterns and the chosen parallel
pattern pairs.



4.4. Handling Control Constructs 71

4.4 Handling Control Constructs

Some control constructs in the mlIR need to be converted in a preprocessing step before
they can be handled by the methods described earlier in this chapter. In the following
sections we show how we cope with loops and wait nodes, as wellas branch, nop, and
WFC operations.

4.4.1 Loop Ripping

The constraints we formulated in the previous sections, e.g. Eq. (4.8), require that a control
node be scheduled later than its predecessors. In a loop thisis impossible to achieve because
here each node is its own predecessor and successor at the same time. Therefore, we must
cut open each loop, transforming the application graph intoadirected acyclic graph (DAG),
while maintaining the timing and data dependencies betweennodes, inside and outside the
loop.

OP

IN

BRANCH

t=x

START

END

OP

IN

BRANCH

START

BRANCH

OP

IN

END

t=x t=t L

t=t L

Figure 4.10: Loop ripping: concatenating two iterations.

We solve this problem by concatenating two iterations of theloop with all their depen-
dencies between each other. Instead of closing the loop again, we assign the end node as
the successor of the last node in the loop. In this manner, theloop has beenripped open
while any dependencies between loop iterations are represented by dependencies between



72 Chapter 4. Instruction-Set Generation for Precise Timing

the two concatenated iterations. To maintain the same timing between nodes across itera-
tions we pose the additional constraint that all nodes must have the same time distance to
their clones in the next iteration.

Figure 4.10 gives an example. On the left-hand side, there isa graph with a loop in which
an I/O node has a timing constraint on itself. This constraint represents a rate constraint
on the loop. On the right-hand side, the loop has been ripped open, two iterations are
concatenated, and the rate constraint now spans from one iteration to the next. Furthermore,
there is a constraint between each node and its clone with an identical loop constraint tL to
ensure equal spacing between nodes across iterations.

This approach also enables us to maintain dependencies between nodes in the first loop
iteration and predecessors outside the loop. Moreover, to also cater for constraints between
nodes in the last iteration and successors outside the loop,we can copy an iterationbefore
the original branch. The first node of this copy would have thestart node as its predecessor.
The constraints and the spacing between iterations are maintained in the same manner as
before.

The result of thisloop rippingconversion is a DAG for which the precedence constraints
between control nodes can be met. We have arrived at a structure on which our methods for
instruction-set generation can work. Note that in our methodology the cloned iterations are
only necessary for constraint propagation. The other algorithms in the pattern construction
process ignore the clones.

4.4.2 Wait-Node Scheduling

In Section 3.3.4 we have suggested hardware and software implementations of wait nodes.
Following the considerations presented there we implementwait nodes by a dedicated
counter register in order to control the complexity of scheduling. Consequently, a wait
node is composed of two instructions: one to write the start value to the counter register—a
simple move operation that we callcounter start—and one to block the control flow until
the counter reaches zero—the WFC instruction. The WFC instruction stops the fetching
of instructions and the incrementation of the program counter (PC) until the wait counter
triggers. Therefore, the next instruction to be executed after the wait is the one atPCwait+1.

The counter start can be scheduled in the same cycle as the WFC or earlier. When shift-
ing the counter start to earlier cycles the waiting time mustbe increased in order to maintain
the original trigger time. Hence, we adjust the input value to the wait node accordingly by
adding the number of cycles by which the counter start has been shifted. In the mlIR, we
represent this shifting to an earlier slot by subtracting cycles from each incoming timing
edge and adding them to each outgoing timing edge. In this waythe wait node represents
setting the start value of the counter register.

The WFC either remains in the cycle before the wait target or itis also shifted to an
earlier slot, filling the resulting gap with other instructions. If the WFC is shifted the start
value must be adjusted accordingly. Moving the WFC closer to the counter start we have
to subtract the number of cycles by which the WFC has been shifted. Note that the total
offset incurred by this scheduling and themin val provided by the wait#pragma must
not be negative in order to prevent negative wait times:

offset= min val + offsetschedule≥ 0

All these adjustments must be performed consistently on allincoming or outgoing edges
of a wait node.



4.5. Summary of Instruction-Set Generation 73

For pattern construction we require each wait node to be preceded by an adder to allow
for scheduling adjustments. If there is no addition or subtraction before a wait node in an
application then an addition node is inserted before pattern construction commences. The
adjustment adder assumes the task to move the start value into the counter register, making
a dedicated move operation obsolete.

The incoming and outgoing timing edges of each wait#pragma are joined for pattern
construction to form a single timing edge between the sourceof the incoming and the
destination of the outgoing edge. The timing values of the two edges are summed up. The
dynamic run-time delay that the wait node represents is considered to be zero for pattern
generation because the timing constraints must also be met if at run time the input to the
wait node turns out to be zero. After the construction of the timing-forced patterns, the
values of the original timing edges are adjusted according to the resulting distribution of
cycles before and after the wait.

4.4.3 Branches, Nop, WFC

Conditional branches can form a pattern with the arithmeticoperations that compute the
branching condition. Their scheduling, however, is constrained by the fact that they transfer
the control to another basic block and therefore must alwaysbe scheduled in the last cycle
of their basic block. We integrate this requirement into ourconstraint framework by means
of timing edges from the other DFGs in the same basic block to the conditional branch with
t ≥ 0.

In contrast, unconditional branches have no dynamic data input and can therefore not be
part of a DFG pattern. We implement these branches by a goto-offset that is available in
every cycle in parallel to other instructions. The offset requires only few bits as control-
dominated applications are characterized by small basic blocks and skipping these basic
blocks requires only short jumps. On the other hand, small basic blocks result in frequent
branches which means that the goto-offsets are used frequently. These considerations jus-
tify having dedicated bits in the ASIP’s instruction format.

Similarly, the WFC operation can be activated by a single bit in an instruction word
rather than occupying an entire instruction slot. Furthermore, we assumenop to be part of
any instruction set. This approach coincides with the fact that nop, goto, and WFC oper-
ations are not represented by operation nodes in a data-flow graph because they are only
introduced by the scheduler. The approach enables the instruction generator to concen-
trate on the operations that are connected to the data-flow layer, thereby simplifying the
employed scheduling methods.

4.5 Summary of Instruction-Set Generation

In this chapter we have completed our methodology to generate an instruction set for
control-dominated applications. In a first step, we devisedan algorithm to derive timing-
forced patterns from fine-grained timing constraints, specified by the ASIP designer in an
HLL as suggested in Section 3.2. The resulting patterns guarantee that the timing constrains
of the applications can be met with the final instruction set.

In a second step, we suggested a method to constrain parallelinstruction issues to a num-
ber requested by the ASIP designer. The algorithm bundles patterns that occur in parallel,
taking into account their mobility and the overall contribution of a pair to reducing the



74 Chapter 4. Instruction-Set Generation for Precise Timing

number of parallel issues. We furthermore elaborated on howto handle control constructs
such as wait nodes and loops in our pattern construction flow.

The final instruction set consists of timing-forced instructions, pattern pairs, and the in-
dividual operations needed for a complete covering of the application graphs. The timing-
forced patterns guarantee that the given applications can be implemented with this instruc-
tion set in a way that meets the timing constraints which the designer specified. Thanks to
our bundling technique the instruction set complies with the required maximum number of
instructions issued in parallel. The use of IOGs in the process exploits synergies between
patterns, leading to a leaner instruction set.



5 Experimental Results

In this chapter, we first examine the performance of PSG and PSG/IOG libraries compared
with traditional linked-list implementations in Section 5.1. In Section 5.2 we demonstrate
the feasibility of our methodology by generating an instruction set in a network-processing
application domain with our algorithms. We assess the quality of the result by comparing it
with a manually designed instruction set for the same domain. In Section 5.3 we summarize
our findings.

5.1 Pattern-Library Performance: Speed and Size

In this section we present the performance measurements we have conducted on our C++
implementation of the PSG and IOG data structures and algorithms.

5.1.1 Workload

We have implemented a pattern generator within the Machine-SUIF compiler framework
[MS]. To grow the scope for the pattern generator beyond basic-block boundaries, the gen-
erator works on a static single assignment (SSA) representation which extends the DFGs to
operand definitions in other basic blocks. We include operations in other DFGs in a pattern
if these operations are reached directly, not through aφ-function, because these operations
can easily be moved across control-flow boundaries.

We feed the patterns to one of four types of pattern libraries:

• A PSG for DAG patterns, constructing only the search path to each pattern.

• A combined PSG/IOG for tree patterns, constructing the entire IOG for each pattern.

• Unordered linked-list libraries for trees and DAGs, respectively, for comparison with
the state of the art.

We tested the libraries on a subset of the MediaBench benchmark suite [LPMS97]. We
measured the search times while the library was being constructed, i.e., from the first in-
serted pattern to the last. Furthermore, we measured the number of entries in each library
after the last pattern had been inserted. The pattern generator passed between 60 and 41233
patterns per run to the library.

5.1.2 Performance in PSGs

Figure 5.1 compares the search times for DAG patterns, giving the speed-up of PSG li-
braries over linked lists. The size of both library types is basically identical because we

75



76 Chapter 5. Experimental Results

Figure 5.1: Search speed-up for DAG patterns in a PSG.

only supplement patterns on the search path to each pattern rather than constructing the en-
tire IOG for each inserted pattern. The benchmarks are ordered by the number of different
patterns that the pattern generator passed to the library.

The more patterns in the library the longer the linked list grows and the longer the worst-
case search time in the list. In contrast, the search time on aPSG is independent of the
library size. Hence, the larger the library the more significant becomes the advantage in
search speed of the PSG. In the JPEG library with 41233 DAG patterns we measured a
PSG speed-up factor compared with the linked list of 1743.

5.1.3 Performance in Combined PSG/IOGs

In a second set of experiments, we constructed the entire IOGfor each inserted pattern. As
we showed in Section 2.3.4, a PSG/IOG library can only be constructed for tree-shaped
patterns. Because of the increase in size due to constructing an IOG for each pattern a
PSG/IOG organization is viable only for medium-sized libraries. The largest library in
our experiments was the rasta benchmark with 11371 patternsin the PSG/IOG. The upper
graph in Figure 5.2 shows the resulting speed-up for searches for tree patterns, comparing
a PSG/IOG with a linked list. The lower graph shows the increase in size of the PSG/IOG
over the linked list for the same workload.

Our results show that the overhead due to constructing the IOG for each entered pattern
grows the library to up to nine-fold size compared with a linked list which holds only the
entered patterns—which is the minimal set. However, the hierarchical organization of the
PSG/IOG still reduces the search times as dramatically as the pure PSG—in spite of the
larger size. Moreover, the size overhead of constructing anIOG for real workload is far
below the theoretical worst case indicated in Chapter 2. Note that only the IOG enables
the use of complex patterns to substitute simpler ones. The linked list does not provide this
advantage.



5.1. Pattern-Library Performance: Speed and Size 77

Figure 5.2: Search speed-up and library size for tree patterns in a combined PSG/IOG.



78 Chapter 5. Experimental Results

5.2 Example of a Control-Dominated ASIP Design

In order to prove the concept of our design methodology in a real-life case, we apply our
methodology to a representative control-dominated ASIP: aparser for packet headers as
a building block for a network processor (NP). We compare theresult with a manually
designed header parser to assess the quality of our automatically generated instruction set.

In the following, we first describe the manually designed header parser. Then we il-
lustrate each step taken in our methodology to arrive at an instruction set for the same
application domain. Finally, we compare the two results.

5.2.1 A Parser for Protocol Headers in Network Packets

Clock

Reset

Protocol
Data

Delimiter

Configuration
Data

Address

Write
Enable

Configuration
Interface

Header
Parser

Extracted
Data

ID

Figure 5.3: Header-parser interfaces.

The manual design and optimization of a header parser for network processing has been
described in [Dit00]. Figure 5.3 shows the interfaces of theparser. Protocol data is applied
to the 32-bit input port, and a packet start is indicated by a delimiter flag. The flag starts the
analysis of the packet header. Communication with the environment of the parser follows
the data-push paradigm defined in Section 1.3.3, i.e., the data words are expected to be
available in an input register for only one cycle. The parserextracts the protocol fields that
other building blocks in the NP need and writes the extracteddata to the 32-bit output port
together with a 4-bit ID that identifies the type of output data.

The network protocols considered are versions 4 and 6 of the Internet protocol (IPv4,
IPv6). The relevant header fields to be extracted are given inTables 5.1 and 5.2, indicating
the clock cycle in which a field occurs, its position in the 32-bit input word, and whether it
is needed for processing within the parser or by an external building block.

The resulting instruction set is given in Table 5.3, roughlyordered into four data-only
and five control-related instructions. The patterns that the compound data-only instruc-
tions implement are shown in Figure 5.4. Programmable operands which are encoded in
the op-code of the instruction are labeled in bold italics. The internal architecture of the
parser is depicted in Figure 1.4 in Chapter 1. The parser can issue two instructions in par-
allel in a VLIW fashion. Moreover, an offset can be added to the program counter for an
unconditional branch and the wait counter can be tested in any cycle.



5.2. Example of a Control-Dominated ASIP Design 79

Fields relevant
Cycle # internally externally

1 IP Header Length (IHL) [4–7] Type of Service (ToS) [8–15]
2 – –
3 – Protocol [8–15]
4 – Source Address [0–31]
5 – Destination Address [0–31]

wait (IHL-5) max. 10 TCP / UDP:
for layer-4 header – Source Port [0–15],

Destination Port [16–31]

Table 5.1: Relevant header fields in IPv4.

Fields relevant
Cycle # internally externally

1 – Traffic Class [4–11],
Flow Label [12–31]

2 Next Header [16–23] –
3–6 – Source Address [0–31]
7–10 – Destination Address [0–31]

wait until Next Header [0–7], stored layer-4 NextHeader
NextHeader= layer-4 header HdrExtLen [8–15]

wait for end of IP header TCP / UDP:
⇒ layer-4 header – Source Port [0–15]

Destination Port [16-31]

Table 5.2: Relevant header fields in IPv6.

Instruction Effect

Send Extract field from input, write it to output together with ID.
Send Reg Write register to output together with ID.
Write Reg Extract field from input, write it to register.
IP6 Counter Extract field from input, compute IPv6 header length, write it to

wait counter.
Nop No operation, i.e., wait one cycle.
Goto Unconditional branch.
If Counter Conditional branch depending on wait-counter value. (∼WFC)
Init Case Multi-way branch.
Ld Const Move conditions intoInit Case configuration registers.

Table 5.3: Manually designed header-parser instruction-set.



80 Chapter 5. Experimental Results

AND

Operand1

Data_out

SHR

Operand2

ID_out

OUT

Operand 3

Header

IN

OUT

Send

Data_out ID_out

OUT

Operand1

OUT

Register

Send_Reg

AND

Operand1

Register

SHR

Operand2

Header

IN

Write_Reg

AND

0x00FF0000

SHR

15

Header

IN

WAIT

ADD

1

IP6_Counter

MOV

MOV MOV

Figure 5.4: Patterns of manually designed data instructions.

The parser has been synthesized for a 0.18-µm technology, supporting data rates close
to 10 Gb/s. The size of the parser, including a small instruction memory, is on the order of
0.45 mm2, which demonstrates the area efficiency of the ASIP approach.

In the following we demonstrate how to employ our methodology to derive an instruction
set for the header parser. We will then compare the result with the design described above.

5.2.2 Specification of Benchmark Applications

The first step in our methodology is to specify a set of benchmark applications that are
representative for the target domain. Integrated in the application code are the timing an-
notations as introduced in Section 3.2.

Deriving from Table 5.1 an algorithm to parse an IPv4 header,we arrive at the C code
with timing annotations given in Figure 5.5. For readability, the number in the label names
corresponds to the number of cycles from the start. The timing constraints are defined such
that the input registerin is read in the cycle in which the expected header word appears.
The extracted data are written to the output registerout in the same cycle in order to have
the output register available in the following cycle for thenext header field. After parsing
the relevant fields in the standard IP header the wait statement finds the beginning of the
transport header and extracts the port numbers.

Figure 5.6 shows the timed code for IPv6 header parsing, derived in the same manner
from Table 5.2. After parsing the IP header the switch statement handles the subsequent
extension header or layer-4 header. If an extension header has aHdrExtLenfield its header
length is computed and written to thecounter variable. This variable is used as the input
to a wait node in order to find the beginning of the next header—another extension header



5.2. Example of a Control-Dominated ASIP Design 81

#pragma io main::in
#pragma io main::out
#pragma io main::id
#pragma time START l_1 = 0
#pragma time l_1 l_1a = 0
#pragma time l_1a l_1b = 0
#pragma time l_1b l_1c = 0
#pragma time START l_3a = 3
#pragma time l_3a l_3b = 0
#pragma time l_3b l_3c = 0
#pragma time START l_4a = 4
#pragma time l_4a l_4b = 0
#pragma time l_4b l_4c = 0
#pragma time START l_5a = 5
#pragma time l_5a l_5b = 0
#pragma time l_5b l_5c = 0
#pragma wait l_5a l_6a counter 5
#pragma time l_6a l_6b = 0
#pragma time l_6b l_6c = 0

int main(int argc, char argv[]) {
int in, out, id, counter;
int ToS, Proto, SrcAddr, DestAddr;
int L4Ports;

l_1:
counter = ( (in & 0x0f000000) >> 24 );

l_1a:
ToS = (in & 0x00ff0000) >> 16;

l_1b:
out = ToS;

l_1c:
id = 1;

l_3a:
Proto = (in & 0x00ff0000) >> 24;

l_3b:
out = Proto;

l_3c:
id = 2;

l_4a:
SrcAddr = in;

l_4b:
out = SrcAddr;

l_4c:
id = 3;

l_5a:
DestAddr = in;

l_5b:
out = DestAddr;

l_5c:
id = 4;

/* wait on counter */
l_6a:
L4Ports = in;

l_6b:
out = L4Ports;

l_6c:
id = 5;

}

Figure 5.5: Timed C code for IPv4 parsing.

or a layer-4 header. The parsing terminates if either a TCP orUDP header or an unknown
header is encountered.

A compiler front-end transforms the annotated C code into anmlIR graph as defined in
Section 3.3. The timing annotations are parsed employing the productions in Section 3.4.
Figure 5.7 shows the multi-layer IR representation for the IPv4 code. Figure 5.8 shows the
graph for IPv6. The I/O variables and wait nodes are marked bydashed circles. For each
wait node, the minimum input value given by the wait#pragma has been used to derive
the timing edge to the wait node and to adjust the offset at thewait node input according
to Section 4.4.2. Time is one less than the available minimumvalue because the outgoing
timing edge consumes one cycle. To unclutter the representation some timing edges have
already been replaced by the appropriate fixed cycle number next to the corresponding I/O
variable.

5.2.3 Timing-Forced Instructions

Before pattern construction the loop in the IPv6 graph must be unrolled with the loop
ripping method in Section 4.4.1. Figure 5.9 shows the CDFG and timing layer with two
concatenated iterations and the additional timing edges toguarantee equal schedules in each
iteration. The cloned iteration is shaded to mark that it is needed for constraint propagation
only but not for pattern construction. The wait node has beenreplaced by a direct timing
edge as required by Section 4.4.2. Timing edges that startedand ended at the same node
now span across iterations.

The case operation in Figure 5.8 has a timing problem: The preceding control node has
operations scheduled in clock cycle 10 and the following control nodes have operations
scheduled in cycle 11. As control nodes must not overlap in any clock cycle there is no
schedule slot left for the case operation. This problem is reported to the designer. The



82 Chapter 5. Experimental Results

#pragma io main::in
#pragma io main::out
#pragma io main::id
#pragma time START l_1a = 1
#pragma time l_1a l_1b = 0
#pragma time l_1b l_1c = 0
#pragma time START l_2 = 2
#pragma time START l_3a = 3
#pragma time l_3a l_3b = 0
#pragma time l_3b l_3c = 0
/* ...continue for l_4* to l_9* */
#pragma time START l_10a = 10
#pragma time l_10a l_10b = 0
#pragma time l_10b l_10c = 0
#pragma time START l_11a1 = 11
#pragma time l_11a1 l_11b1 = 0
#pragma time l_11b1 l_11c1 = 0
#pragma time START l_12a1 = 12
#pragma time l_12a1 l_12b1 = 0
#pragma time START l_11a2 = 11
#pragma time l_11a2 l_11a2 = 2
#pragma time START l_11a3 = 11
#pragma time l_11a3 l_11b3 = 0
#pragma time START l_11a4 = 11
#pragma time l_11a4 l_11b4 = 0
#pragma wait l_11a3 l_11a3 counter 2

int main(int argc, char argv[]) {
int in, out, id, counter;
int Flow, NextHdr;
int SrcAddr, DestAddr, L4Ports;

l_1a:
Flow = in & 0x0fffffff;

l_1b:
out = Flow;

l_1c:
id = 1;

l_2:
NextHdr = (in & 0x0000ff00) >> 8;

l_3a:
SrcAddr = in;

l_3b:
out = SrcAddr;

l_3c:
id = 2;

/* ...continue for 2nd SrcAddr *
* to 3rd DestAddr word */

l_10a:
DestAddr = in;

l_10b:
out = DestAddr;

l_10c:
id = 9;

next_header:
switch ( NextHdr ) {
case 6: case 17: /* TCP or UDP */

l_11a1:
L4Ports = in;

l_11b1:
out = L4Ports;

l_11c1:
id = 10;

l_12a1:
out = NextHdr;

l_12b1:
id = 11;
break;

case 44: /* Fragment Header */
l_11a2:

NextHdr = (in & 0xff000000) >> 24;
goto next_header;

case 0: case 43: case 51: case 60:
/* all other extension headers */

l_11a3:
NextHdr = (in & 0xff000000) >> 24;

l_11b3:
counter =

( (in & 0x00ff0000) >> 15 ) + 2;
/* wait for counter */
goto next_header;

default: /* unknown header */
l_11a4:

out = NextHdr;
l_11b4:

id = 11;
} /* switch */

}

Figure 5.6: Timed C code for IPv6 parsing.



5.2. Example of a Control-Dominated ASIP Design 83

START

AND

0x0F000000
1

SHR

24

AND

0x00FF0000
1

ToS

Data_out

SHR

16

ID_out

OUT

1 AND

0x00FF0000

3

Protocol

SHR

16

ID_out

OUT

2

4

Source
Address

Data_out ID_out

OUT

3

Destination
Address

WAIT

OUT

5

Data_out

4

OUT

L4 Port
Numbers

Data_out ID_out

OUT

5

t=0
OUT

END

t=1

Header

IN

Header

IN

Header

IN

Header

IN

Header

IN

Header

IN

OUT

Data_out

OUT
ADD

(-5)
t=0 t=0

t=0

IHL

1 3

4 5

t=4

MOV MOV

MOV MOV

t=0

MOV

t=0

MOV

ID_out

OUT

MOVMOV

A

B

C

D E F G

H I J K

L M

W

{1}

{1} {1}

{1} {3}

{3} {3}

{4} {4} {5} {5}

{1,2,3,4,5}

{6} {6}

{1,2,3,4,5}

Figure 5.7: Multi-layer IR graph for IPv4 header parsing.

solution shown in Figure 5.9 is to merge the first instance of the case control-node with the
first control node. In Section 4.4.3 we found that a conditional branch must always be the
last operation in a basic block. Therefore, the case operation has implicit timing edges to
the other DFGs in its basic block witht ≥ 0.

According to our heuristic in Section 4.2.3, constraint propagation determines the sched-
uling freedom for each node. The resulting domains with all possible clock cycles are
annotated in curly brackets with the nodes in Figures 5.7 and5.9. ThedfsVisit proce-
dure traverses the graphs to schedule any nodes with undetermined clock cycle, i.e., nodes
with more than one value in their domain. In Figure 5.7 this isthe case for the nodes
marked with a bold B and C. In the process, thebalance procedure is called for the path
A → B → C → L with a midTime of 4. The middle of this path is node C which
has a 4 in its domain and is therefore scheduled in cycle 4. Then balance recurses for
A → B → C with a midTime of 3 which is therefore assigned to node B. Similarly, in
Figure 5.9, node D is scheduled in cycle 6.

In the final schedule, each set of nodes that have been scheduled in the same time step
and are connected by data dependencies in the CDFG represents a pattern. The timing-
forced sequential patterns in the IPv4 case are the DFGs marked D and F, and in the IPv6
case, P, Q, and R. The result for IPv4 is intuitive as D and F arelocked in a timing constraint
with t = 0. A, B, and C, on the other hand, are three nodes with a timing constraint of
t = 4, granting each node a private clock cycle. For IPv6, the patterns are forced in the
loop which has a timing constraint oft = 2 between iterations. As the loop comprises
two control nodes, each has only one cycle available, forcing all DFGs in the loop as
sequential patterns. Nodes C, D, and I, on the other hand, together with an operation from
the following control node, are four nodes with a timing constraint of t = 9, granting each
an individual cycle.



84 Chapter 5. Experimental Results

START

END

11

Layer 4
Ports

Data_out ID_out

OUT

10 Layer 4
Protocol
Number

OUT

Data_out ID_out

OUT

11

OUT

Header

IN

6|17

AND

0xFF000000
11

Next
Header SHR

24

Header

IN

44

AND

0x00FF0000
11

HdrExtLen

SHR

15

Header

IN

WAIT

ADD

0

0|43|51|60

else

t=1

CASE

11 12 12

Layer 4
Protocol
Number

Data_out ID_out

OUT

11

OUT11 11

AND

0xFF000000
11

Next
Header SHR

24

Header

IN

t=2 t=1

t=9

AND

0x0FFFFFFF
1

Traffic
Class,
Flow
Label

Data_out ID_out

OUT

1

t=0

Header

IN

OUT

AND

0x0000FF00
2

Next
Header SHR

8

Header

IN 3

Source
Address 1

Data_out

ID_out

OUT

2

OUT

Header

IN 10

Destination
Address 4

Data_out

ID_out

OUT

9

OUT

Header

IN

(...)

1

3 10

t=1

t=1

MOV

MOVMOV
t=0

MOV

t=0

MOV

t=0

MOV MOV MOVMOV MOV MOV

A

B

C

D

E

F

G

H

I

J

K

L

M N O

P Q
R

W

Figure 5.8: Multi-layer IR graph for IPv6 header parsing.



5.2. Example of a Control-Dominated ASIP Design 85

START

END

11

Data_out ID_out

OUTOUT

Data_out ID_out

OUTOUT

Header

IN

6|17

AND

11

SHR

Header

IN

44

AND

11

SHR

Header

IN

ADD

0|43|51|60else

CASE

11 12 12

Data_out ID_out

OUTOUT11 11

AND

11

SHR

Header

IN

t=9

AND

1

Data_out ID_out

OUT

t=0

Header

IN

OUT

AND

2

SHR

Header

IN 3

Data_out

ID_out

OUT

OUT

Header

IN 10

Data_out

ID_out

OUT

OUT

Header

IN

(...)

1

3 10

MOV

MOVMOV
t=0

MOV

t=0

MOV

t=0

MOV MOV MOVMOV MOV MOV

A
B C

D

E

F

G

H

I

J
K L M N O

P Q R

AND

13

SHR

Header

IN

AND

13

SHR

Header

IN

ADD

CASE

AND

13

SHR

Header

IN

t=2 t=2

t=2

t=t L t=t L t=t L t=t L t=t Lt=t L t=t L

{13} {13} {13}

{13} {13} {13}

{13}

{12}

{11} {11} {11}

{11} {11} {11}

{11}

{11}{11}{12}{12}{11}{11}

{1} {1} {2} {3}

{3}

{10}

{10}

{2,...,10}

{10}

CASE{14}
t=t L

S

Figure 5.9: IPv6 graph after loop ripping.



86 Chapter 5. Experimental Results

5.2.4 Constraining Parallelism

The manually designed header parser can issue two instructions in parallel. In order to get
comparable results we also constrain the number of parallelinstruction issues to two as
an input parameter for our second heuristic, described in Section 4.3.3. The first step in
the heuristic is to derive the partial schedule for both application graphs, using the forced
patterns from the first heuristic as instructions. Table 5.4shows both schedules, includ-
ing the parallelismparstep for each control step. The letters refer to the pattern labels in
Figures 5.7 and 5.9, respectively. Horizontal lines mark the borders of basic blocks. The
arrows indicate the mobility of an instruction.

(a) IPv4 Parsing.

Step Patterns parstep

1 A D E 3
2 B 1/3
3 | C F G 7/3
4 ⊻ | H I 7/3
5 ⊻ J K 7/3
6 L M 2

(b) IPv6 Parsing.

Step Patterns parstep

1 A B 2
2 C 1
3 D E F 15/7
4 | E′ F′ 15/7
· · · · · · · · · · · · · · ·
8 | EV FV 15/7
9 ⊻ EVI FVI 15/7
10 I G H 3
11 J K 2
12 L M 2
11 N O 2
11 P 1
11 Q R 2
12 S 1

Table 5.4: Partial schedules.

Combining the patterns in each control step and inserting the according pairing edges
into the the pattern library results in the library PSG shownin Figure 5.10. The pairing
edges are annotated with their parallel values. Based on theparallel values we choose a
pair from the control steps with the highest parallelism: step 1 in Table 5.3(a) and step 10
in Table 5.3(b). The pairs that occur in these steps are(and ‖ and→ shr), (and ‖ mov),
(and → shr ‖ mov), (mov ‖ mov), and(case ‖ mov) with the parallel values 1, 2,
2, 14, and 1, respectively. Hence, the first choice is(mov ‖ mov) and all occurrences of
two parallel moves are replaced by a single pair instruction. The process iterates two more
times before the parallelism constraint is satisfied, choosing two more pairs:(and ‖ mov)
and(and → shr ‖ mov). This set of pairs covers all occurrences of a move operation.
Therefore, the individual move is dropped from the pattern set.

In a final step, the IOG of the instruction set is constructed in order to remove instructions
that are covered by others. The operationsandandmovboth appear in the IOG ofand→
shr. Therefore, the pair(and → shr ‖ mov) dominates the other two chosen pairs
which are consequently removed from the instruction set. All operations that have not
been covered by pattern pairs are covered by single patterns. In the IPv4 graph these are
the patterns B, C, and D, and in the IPv6 graph C, D, I, P, Q, R, and S. Of these patterns
the ones that are not dominated by any other pattern in the IOGin Figure 5.10 are thecase
operation andand→ shr → add. The final instruction set therefore consists of the derived
patternsand → shr → add, (and → shr ‖ mov) andcase, and the mandatory control



5.2. Example of a Control-Dominated ASIP Design 87

AND

x1

AND

SHR
SHR

x1

MOV

AND

SHR

ADD

SHR

ADD

ADD

x1

x0

x0

x0

x0
x0

x0

x0

x1

x1

x1

x2

x2

x2

x3

CASE

x0

1

2

2

5/3

1/3

1/3

1

14

1

1

pairing edge

PSG edge

Figure 5.10: Forced patterns and pairing edges.

instructionsnop, gotoandWFC. Figure 5.12 shows the compound patterns that have been
chosen.

5.2.5 Comparison with Manual Design

The mandatory control instructionsnop, goto, andWFCas well as thecaseinstruction are
present in the manually designed instruction set as well as the one derived by our methodol-
ogy. The difference between the two sets are in the compound data-only instructions shown
in Figure 5.11 for the manual design1 and in Figure 5.12 for our methodology.

The Send instruction in Figure 5.11 matchesInstruction2 in Figure 5.12 and
IP6 Counter matchesInstruction1. In both cases, our methodology suggests in-
structions with the same structure as the manually designedones. The reason why the re-
maining instructionsSend Reg andWrite Reg are not part of our derived instruction set
is that the IOG showed that they are dominated by the two otherinstructions, respectively—
they can be implemented with the present instructions by means of ID operands. Applying
a zero as operand 4 toInstruction1 results in theWrite Reg instruction; applying
zeros as operands 2 and 3 transformsInstruction2 toSend Reg. Therefore, the dom-
inated patterns have been eliminated from the instruction set in the last steps of the previous
section.

The result is an instruction set that is functionally equivalent to the manual design since
all manually derived instructions are covered. However, the instruction set is leaner because
it exploits the synergies between patterns provided by identity-operand transformations.

The manual design of the header-parser instruction-set is acomplex and therefore time-
consuming and error-prone task. In the case study we have shown that our methodology

1Since our methodology does not constrain the operand types, fixed operands have been replaced by generic
operands in the figure for comparison.



88 Chapter 5. Experimental Results

Send
Operand2

Send_Reg

AND

Operand2

Target

SHR

Operand3

Write_Reg

IP6_Counter

MOV MOV

AND

Operand2

SHR

Operand3 Operand 4

MOV

Operand1

Target1 Target2

Operand1

Operand1

Target1 Target2

AND

SHR

ADD

Operand1 Operand2

Operand3

Operand 4

Target

Figure 5.11: Manually derived compound instructions.

AND

Operand2

SHR

Operand3 Operand 4

Instruction 2

MOV

Operand1
AND

SHR

ADD

Instruction 1

Operand1 Operand2

Operand3

Operand 4

Target Target1 Target2

Figure 5.12: Automatically derived compound instructions.



5.3. Summary of Experimental Results 89

comes to a result that is superior to the manual design. This demonstrates the viability of
our approach. Moreover, our methodology speeds up the design process through automa-
tion and it can handle more complex designs than would be possible manually.

5.3 Summary of Experimental Results

In this chapter we presented performance measurements for our graph-based organization
of pattern libraries and compared them with the commonly used linked-list implemen-
tations. The results demonstrate that our PSG improves search times on large libraries by
orders of magnitude and that the performance gains grow withthe library size. For a library
of 41233 DAG patterns we measured a maximum speed-up by a factor of 1743. Further-
more, we demonstrated that the size penalty for constructing a combined PSG/IOG stays
significantly below the theoretical maximum while the search time advantage is equal to
the PSG case. We conclude that using an IOG is viable also for larger problems, providing
synergies between patterns.

In the second part of the chapter we presented a case study of an ASIP for network
header parsing. We showed step by step how our methods analyze the specified appli-
cations and derive an instruction set that meets the timing constraints. We compared the
generated instruction set with a manually designed ASIP andshowed that our methods
arrive at an instruction set that provides the same performance as the manual design but
with fewer instructions. The study demonstrates that our methodology is suitable to auto-
mate instruction-set generation for control-dominated applications. Automation not only
speeds up the design process significantly; automation enables the design of ASIPs for
larger benchmark suites that are too complex to be handled manually with reasonable ef-
fort.





6 Conclusions

In this thesis, we investigated problems in designing ASIPsin both data-dominated and
control-dominated application domains. We observed that current methods focus exclu-
sively on the data-dominated domain and that many of these methods suffer from slow
searches in unstructured pattern libraries. Furthermore,none of the known ASIP design
methods takes into consideration the synergies between similar patterns that can be com-
bined for leaner implementation.

For instruction-set generation in the control-dominated domain we argued that the main
concern is to meet fine-grained timing constraints. None of the known approaches caters
for timing. The control-dominated ASIPs described in the literature have been designed by
intuition rather than with the help of formal methods.

In the research presented here, we addressed these problemsby means of a new library
organization on the one hand, and by introducing the first design methodology for control-
dominated ASIPs on the other hand. Our proposed solutions are summarized in Section 6.1.
We conclude the thesis in Section 6.2 with an outlook on future work for which this research
laid the foundation.

6.1 Contributions of this Thesis

The research presented in this thesis has contributed two major concepts to the field of
instruction-set generation for ASIPs: a set of new organization methods for pattern libraries
and the first ASIP design methodology in the control-dominated domain.

6.1.1 Efficient Pattern Libraries

• We have proposed a novel structure for pattern libraries which we call pattern search
graph (PSG). In a PSG, the patterns are arranged as a tree thatexploits the structure
of patterns to order them hierarchically. We have given algorithms for inserting and
searching patterns that have a linear computational complexity w.r.t. the number of
edges in the pattern. This is a significant improvement over the multiplicative com-
plexity in linked-list libraries, in particular as PSGs remove the dependency between
search time and library size. Hence, PSGs enable the handling of large libraries,
eliminating the need for pruning heuristics and permittingthe use of exact methods.
In our experiments, searches in a PSG were up to 1700 times as fast as in a linked
list. The speed-up grows with the library size.

• We have introduced a new method that employs identity operands to disable opera-
tion nodes in a tree pattern, in this way reducing it to simpler patterns. The original
pattern together with the simpler patterns generated from it are arranged in an identity
operand graph (IOG). Each pattern in the IOG can be implemented with the parent
pattern by disabling operations using identity operands. Therefore, the IOG repre-
sents synergies between patterns that can be exploited for leaner instruction sets and

91



92 Chapter 6. Conclusions

Application Specification
w/ timing constraints

Intermediate
Representation

Compiler Front End

Timing
Constraint
Analysis

Timing-forced
Patterns

Scheduler

Constraining
Parallelism

Patterns and
Pattern Pairs

Identity
Simplification

ASIP
Instruction Set

Partial
Schedule

Chapter 3

Chapter 4

Chapter 2

Figure 6.1: The complete methodology.

data-path sharing. We have given algorithms to efficiently construct an IOG together
with the according PSG, providing the IOG with the PSG accessspeed. In our exper-
iments, the overhead in library size due to the additional patterns in the IOGs was up
to nine-fold compared to a linked list which is far below the theoretical worst-case
overhead.

6.1.2 Design Methodology for Control-Dominated ASIPs

• For the specification of the fine-grained timing constraintsthat are characteristic of
control-dominated applications we have integrated new constructs into a C compiler
front-end. By declaring variables to be timing-critical wecan specify the timing
constraints with a granularity of an individual register access. Our method is ANSI C
compliant for compatibility with existing tools. Furthermore, C compatibility allows
the reuse of an existing code base which for embedded systemsin most cases has
been written in C.

• We have integrated the application information required for the control-dominated
domain in our multi-layer IR (mlIR). It combines the following IRs: DFGs for the
data flow within a basic block; the SSA form for the data flow between basic blocks;
a CFG for the control flow; a timing layer for the timing constraints between inter-
actions with the environment. We have demonstrated the expressiveness of the mlIR
by the example of an optimization technique we call branch postponing that requires
information from each layer in the IR. Branch postponing is anew variation of spec-



6.2. Future Work 93

ulative execution that moves operations out of the criticalpath of fine-grained timing
constraints.

• Control-dominated applications often wait for events in their environment whose
timing is only determined by system input at runtime. To model these cases we
have introduced a novel data-dependent wait operation, in our timing constructs in
C as well as the timing layer of the mlIR. The wait operation can be implemented in
several ways, with or without hardware support and with several scheduling possibil-
ities. Our abstract notation makes wait constructs amenable to optimization. We have
devised methods to include wait operations in pattern construction and scheduling.

• We have formally defined the optimization problem of instruction-set generation un-
der fine-grained timing constraints. We have presented a heuristic that analyzes given
timing constraints and derives the patterns that are necessary to meet the constraints.
We achieve this with a novel scheduling algorithm that distributes the available time
evenly along paths through the IR. Dependent operations that are scheduled in the
same cycle form a timing-forced pattern. The algorithm aimsto balance the size of
the resulting patterns.

• We have proposed a new method to constrain the number of parallel instruction issues
needed by the ASIP down to a number specified by the designer. Applications are
partially scheduled to determine the mobility of patterns.Patterns that are scheduled
in parallel are bundled into pairs. The pattern pair that hasthe highest potential to re-
duce the required parallelism is chosen to be implemented asa combined instruction.
The process is iterated until the constraint on parallel issues is met.

We have integrated our methods into a design methodology forcontrol-dominated
ASIPs, depicted in Figure 6.1. To our knowledge this is the first methodology that has
been proposed in that domain. By comparison with a manually designed ASIP we have
demonstrated the viability of our approach: The resulting instructions are similar in both
cases, but the IOG optimization results in a leaner instruction set at the end of our for-
mal approach. Moreover, our methodology automates the process which not only provides
faster turnaround times but also handles more complex designs than would be possible
manually.

6.2 Future Work

6.2.1 Pattern Libraries

The advantageous properties of the PSG opens new possibilities for any method that relies
on large pattern libraries. Besides the immediate gain in access speed it will be interesting
to see what impact the possibility to handle very large libraries will have. There remains
a problem, however, that the PSG shares with many other structures: How to recognize
patterns that expose the same behavior but have different internal structures due to commu-
tativity and associativity?

For the IOG we see a applications in HLS for data-path sharingand in code generation
for processors with complex instructions.



94 Chapter 6. Conclusions

6.2.2 ASIP Design Methodology

In our design methodology we see two major areas for improvement:

1. In Section 1.3.4 we stated the underlying assumptions andlimitations of this work.
The most severe of these assumptions is the exclusion of datamemories that led
to the assumption of unlimited registers. These can be alleviated by the memory-
disambiguation techniques devised for VLIW compilers [Ell85]. Furthermore, the
inclusion of multi-cycle instructions could take pressurefrom the register file as it
would provide a path to pass data from one cycle to another without touching the
register file.

2. Our heuristics leave a lot of room for optimization. Many sophisticated algorithms
can be found in other fields, in particular the scheduling algorithms and optimiza-
tion runs proposed for HLS and compilers. We have mentioned anumber of them
throughout this work. Transferring these methods to ASIP design will likely improve
the results of our methodology significantly.



Bibliography

[AC01] Marnix Arnold and Henk Corporaal. Designing domain-specific processors.
In Proceedings of the Ninth International Symposium on Hardware/Software
Codesign (CODES’01), pages 61–66, April 2001.

[ACD74] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list
schedules for parallel processing systems.Communications of the ACM,
17(12):685–690, 1974.

[AG85] Alfred V. Aho and Mahadevan Ganapathi. Efficient treepattern matching: an
aid to code generation. InProceedings of the 12th SIGACT-SIGPLAN, pages
334–340. ACM Press, 1985.

[AHM97] David I. August, Wen-mei W. Hwu, and Scott A. Mahlke.A framework
for balancing control flow and predication. InProceedings of the 30th an-
nual ACM/IEEE international symposium on Microarchitecture, pages 92–
103, 1997.

[AKMN02] D.I. August, K. Keutzer, S. Malik, and AR Newton. A disciplined ap-
proach to the development of platform architectures.Microelectronics Jour-
nal, 33:881–890, 2002.

[AKPW83] J. R. Allen, Ken Kennedy, Carrie Porterfield, and JoeWarren. Conversion of
control dependence to data dependence. InProceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 177–189, 1983.

[API03] Kubilay Atasu, Laura Pozzi, and Paolo Ienne. Atomatic application-specific
instruction-set extensions under microarchitecutral constraints. InProceed-
ings of 40th DAC, pages 256–261, June 2003.

[Arc] Arc International.http://www.arc.com/.

[Arn01] Marnix Arnold. Instruction Set Extension for Embedded Processors. PhD
thesis, Delft University of Technology, Delft, The Netherlands, March 2001.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[BCHS98] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical improvements to the construction and destruction of static single
assignment form.Software Practice and Experience, 28(8):859–881, July
1998.

[Ben01] Mirko Benz. An architecture and prototype implementation for TCP/IP sup-
port. In Proceedings of the TERENA Networking Conference 2001, May
2001.

[BHSV90] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel
logic synthesis.Proceedings of the IEEE, 78(2):264–300, February 1990.

95



96 Bibliography

[BKKS02] Philip Brisk, Adam Kaplan, Ryan Kastner, and MajidSarrafzadeh. Instruc-
tion generation and regularity extraction for reconfigurable processors. In
Proceedings of CASES 2002, pages 262–269, October 2002.

[BKS04] Philip Brisk, Adam Kaplan, and Majid Sarrafzadeh. Area-efficient instruc-
tion set synthesis for reconfigurable system-on-chip designs. In Proceed-
ings of the 41st Design Automation Conference (DAC 2004), pages 395–400.
ACM Press, 2004.

[CEP99] Luis Alejandro Cort́es, Petru Eles, and Zebo Peng. A survey on hard-
ware/software codesign representation models. Technicalreport, Dept. of
Computer and Information Science, Linköping University, June 1999.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the
control dependence graph.ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991.

[CGH+94] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, AttilaJurecska, Luciano
Lavagno, and Alberto Sangiovanni-Vincentelli. A formal methodology for
hardware/software co-design of embedded systems.IEEE Micro, 14(4):26–
36, August 1994.

[CKG+96] Miguel R. Corazao, Marwan A. Khalaf, Lisa M. Guerra, Miodrag Potkonjak,
and Jan M. Rabaey. Performance optimization using templatemapping for
datapath-intensive high-level synthesis.IEEE Trans. on CAD, 15(8):877–
888, August 1996.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[CPHC04] Newton Cheung, Sri Parameswaran, Jörg Henkel, and Jeremy Chan. MINCE:
Matching instructions using combinational equivalence for extensible proces-
sor. InProceedings of DATE’04, Paris, France, February 2004. ACM Press.

[CPP+01] Etienne Closse, Michel Poize, Jacques Pulou, Joseph Sifakis, Patrick Venter,
Daniel Weil, and Sergio Yovine. TAXYS: A tool for the development and
verification of real-time embedded systems. InProceedings of Computer
Aided Verification 2001, pages 391–395, July 2001.

[CPP+02] Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel
Weil. SAXO-RT: Interpreting ESTEREL semantic on a sequential execution
structure. InElectronic Notes in Theoretical Computer Science, volume 65.
Elsevier, 2002.

[CSS98] Keith Cooper, Philip Schielke, and Devika Subramanian. An experimental
evaluation of list scheduling. Technical Report TR98-326,Rice University,
Houston, TX, September 1998.

[Das85] B. Dasarathy. Timing constraints of real-time systems: Constructs for ex-
pressing them, methods of validating them.IEEE Transactions on Software
Engineering, SE-11(1):80–86, January 1985.

[Dit00] Gero Dittmann. Programmable finite state machines for high-speed commu-
nication components. Master’s thesis, Darmstadt University of Technology,
http://www.zurich.ibm.com/∼ged/, 2000.



Bibliography 97

[Dit03] Gero Dittmann. Organizing pattern libraries for ASIP design. Technical
Report RZ3488, IBM Research,www.zurich.ibm.com/∼ged/, April
2003.

[EB94] R. Ernst and Th. Benner. Communication, constraintsand user directives
in COSYMA. Technical Report CY-94-2, Technical Universityof Braun-
schweig, Institute of Computer Engineering, Germany, June1994.

[EKPD95] Petru Eles, Krzysztof Kuchcinski, Zebo Peng, and Alexa Doboli. Timing
constraint specification and synthesis in behavioral VHDL.In Proceedings
of EURO-DAC/EURO-VHDL 95, pages 452–457, Brighton, UK, September
1995.

[Ell85] John R. Ellis.Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale
University, 1985.

[ENF00] Frank Engel, Johannes Nuhrenberg, and Gerhard P. Fettweis. A generic
tool set for application specific processor architectures.In Proceedings of
the Eighth International Workshop on Hardware/Software Codesign (CODES
2000), pages 126–130, May 2000.

[EZ99] Network processor designs for next-generation networking equipment.
White paper, EZchip Technologies, December 1999.

[GDD+03] Maria Gabrani, Gero Dittmann, Andreas Doering, AndreasHerkersdorf, Pa-
tricia Sagmeister, and Jan van Lunteren. Design methodology for a mod-
ular service-driven network processor architecture.Computer Networks,
41(5):623–640, April 2003.

[GM97] Rajesh K. Gupta and Giovanni De Micheli. Specification and analysis of
timing constraints for embedded systems.IEEE Transactions on Computer-
aided Design of Integrated Circuits and Systems, 16(3):240–256, March
1997.

[Gon00] Ricardo E. Gonzalez. Xtensa: A configurable and extensible processor.IEEE
Micro, 20(2):60–70, March/April 2000.

[Gsc99] Michael Gschwind. Instruction set selection for ASIP design. InProceed-
ings of the Seventh International Workshop on Hardware/Software Codesign
(CODES’99), pages 7–11, May 1999.

[GSK+01] Sumit Gupta, Nick Savoiu, Sunwoo Kim, Nikil D. Dutt, Rajesh K. Gupta,
and Alexandru Nicolau. Speculation techniques for high level synthesis of
control intensive designs. InProceedings of DAC’01, pages 269–272, 2001.

[HD94] Ing-Jer Huang and Alvin M. Despain. Generating instruction sets and mi-
croarchitectures from applications. InProceedings of ICCAD-94, pages 391–
396, November 1994.

[HE99] Dirk Herrmann and Rolf Ernst. Improved interconnectsharing by identity
operation insertion. InProceedings of ICCAD-1999, pages 489–493, 1999.

[HO82] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees.
Journal of the ACM (JACM), 29(1):68–95, 1982.

[Hu61] T. C. Hu. Parallel sequencing and assembly line problems.Journal of Oper-
ations Research, 9(6):841–848, November 1961.



98 Bibliography

[Jac90] Van Jacobson. Compressing TCP/IP headers for low-speed serial links. IETF
RFC 1144, February 1990.

[Jer04] Ahmend A. Jerraya. HW-SW interfaces abstraction for multi-processor SoC.
In Tutorial at Design, Automation and Text in Europe (DATE’04), chapter
Programming Models for Multiprocessor SoC. Paris, February 2004.

[Keu87] Kurt Keutzer. DAGON: technology binding and local optimization by DAG
matching. InProceedings of the 24th DAC, pages 341–347. ACM Press, June
1987.

[KM90] David Ku and Giovanni De Micheli. HardwareC - a language for hardware
design. Technical Report CSL-TR-90-419, Stanford University, April 1990.

[KM92] David C. Ku and Giovanni De Micheli.High Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Kluwer, Norwell, MA, USA, 1992.

[KR88] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language.
Prentice-Hall, 1988.

[Küç99] Kayhan K̈uçükçakar. An ASIP design methodology for embedded systems.
In Proceedings of the Seventh International Workshop on Hardware/Software
Codesign (CODES’99), pages 17–21, May 1999.

[KW01] Daniel Kästner and Sebastian Winkel. ILP-based instruction scheduling for
IA-64. In Proceedings of LCTES, pages 145–154. ACM Press, 2001.

[Lae03] Christian Laetsch. A multi-layer intermediate representation for ASIP de-
sign. Master’s thesis, EPFL, Lausanne, Switzerland, September 2003.

[LHL89] J. Lee, Y. Hsu, and Y. Lin. A new integer linear programming formulation for
the scheduling problem in data-path synthesis. InProceedings of the IEEE
ICCAD, pages 20–23, November 1989.

[LM97] Birger Landwehr and Peter Marwedel. A new optimization technique for im-
proving resource exploitation and critical path minimization. In Proceedings
of ISSS’97, pages 65–72, 1997.

[LPMS97] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBench: A tool for
evaluating and synthesizing multimedia and communications systems. In
Proc. of the 30th Annual Intl. Symp. on Microarchitecture, pages 330–335,
Dec. 1997.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

[MAHM02] Nahri Moreano, Guido Araujo, Zhining Huang, and Sharad Malik. Datap-
ath merging and interconnection sharing for reconfigurablearchitectures. In
Proceedings of the 15th International Symposium on System Synthesis, pages
38–43. ACM Press, 2002.

[MBL +96] H. De Man, I. Bolsens, B. Lin, K. van Rompaey, S. Vercauteren, and D. Verk-
est. Co-design of DSP systems. In G. De Micheli and M. Sami, editors,
Hardware/Software Co-Design, pages 75–104. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1996.

[MF85] Alan K. Mackworth and Eugene C. Freuder. The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction problems.
Artificial Intelligence, 25(1):65–74, 1985.



Bibliography 99

[Mor98] Robert Morgan. Building an Optimizing Compiler. Elsevier Science,
Burlington, 1998.

[MS] Michael D. Smith’s Research Group on Compilation and Computer Architec-
ture, http://www.eecs.harvard.edu/∼hube/software/. Ma-
chine SUIF.

[Muc97] Steven S. Muchnick.Advanced Compiler Design & Implementation. Morgan
Kaufmann Publishers, San Francisco, 1997.

[NT92] John A. Nestor and Vili Tamas. Exploiting schedulingfreedom in controller
synthesis. InProceedings of the Sixth International Workshop on High-Level
Synthesis, pages 74–86, November 1992.

[NW99] George L. Nemhauser and Laurence A. Wolsey.Integer and Combinatorial
Optimization. John Wiley & Sons, New York, 1999.

[OSCI02] The Open SystemC Initiative (OSCI).Functional Specification for Sys-
temC 2.0, version 2.0-q edition, April 2002.

[PD94] Miodrag Potkonjak and Sujit Dey. Optimizing resource utilization and testa-
bility using hot potato techniques. InProceedings of DAC’94, pages 201–
205, 1994.

[PG87] Barry Michael Pangrle and Daniel D. Gajski. Design tools for intelligent
silicon compilation. IEEE Transactions on Computer-Aided Design, CAD-
6(6):1098–1112, November 1987.

[PHZM99] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic,and Heinrich Meyr.
LISA: Machine description language for cycle-accurate models of pro-
grammable DSP architectures. InProceedings of the 35th Design Automation
Conference (DAC’99), pages 933–938, June 1999.

[PK89] Pierre G. Paulin and John P. Knight. Force-directed scheduling for the behav-
ioral synthesis of ASIC’s.IEEE Transactions on Computer-Aided Design,
8(6):661–678, June 1989.

[PK91] In-Cheol Park and Chong-Min Kyung. Fast and near optimal scheduling in
automatic data path synthesis. InProceedings of the 28th DAC, pages 680–
685, 1991.

[PKB01] Pierre G. Paulin, Faraydon Karim, and Paul Bromley.Network processors:
A perspective on market requirements, processor architectures and embedded
S/W tools. InProceedings of Design Automation & Test in Europe (DATE
2001), pages 420–429, March 2001.

[PSM02] Armita Peymandoust, Tajana Simunic, and Giovanni De Micheli. Low power
embedded software optimization using symbolic algebra. InProceedings of
DATE’02, 2002.

[RTJ] Real-time for Java.http://www.rtj.org/.

[SC98] Jochen H. Schiller and Georg J. Carle. Semi-automated design of high-
performance communication subsystems. InProceedings of the 31th An-
nual IEEE Hawaii International Conference on System Sciences (HICCS’98),
1998.

[Sha01] Niraj Shah. Understanding network processors. Master’s thesis, University
of California, Berkeley, September 2001.



100 Bibliography

[SLWSV99] Marco Sgroi, Luciano Lavagno, Yosinori Watanabe,and Alberto
Sangiovanni-Vincentelli. Synthesis of embedded softwareusing free-choice
Petri nets. InProceedings of DAC’99, pages 805–810. ACM, June 1999.

[SM01] Hideyuki Shimonishi and Tutomu Murase. A network processor architecture
for very high speed line interfaces.Journal of Communications and Net-
works, 3(1), March 2001.

[SRM+94] M. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik,
and S. G. Abraham. Achieving high levels of instruction-level parallelism
with reduced hardware complexity. Technical Report HPL-96-120, HP Labs,
November 1994.

[SUIF] The Stanford SUIF Compiler Group,http://suif.stanford.edu/.
SUIF2.

[Ten] Tensilica Inc.http://www.tensilica.com/.

[Tsa93] Edward Tsang.Foundations of Constraint Satisfaction. Academic Press,
London and San Diego, 1993.

[TTSV00a] Bassam Tabbara, Abdallah Tabbara, and Alberto Sangiovanni-Vincentelli.
Hardware and software representation, optimization, and co-synthesis for em-
bedded systems. Technical Report UCB/ERL M00/7, University of Califor-
nia at Berkeley Electronics Research Laboratory, January 2000.

[TTSV00b] Bassam Tabbara, Abdallah Tabbara, and Alberto Sangiovanni-Vincentelli.
Task response time optimization using cost based operationmotion. InPro-
ceedings of the Eighth International Workshop on Hardware/Software Code-
sign (CODES 2000), pages 110–114, May 2000.

[TW04] Lothar Thiele and Reinhard Wilhelm. Design for timingpredictability.Real-
Time Systems, 28(2/3):157–177, November / December 2004.

[VHDL02] IEEE, New York, NY. Standard VHDL Language Reference Manual, 2002.

[VLW00] Seppo Virtanen, Johan Lilius, and Tomi Westerlund. Aprocessor architecture
for the TACO protocol processor development framework. InProceedings of
the 18th IEEE NorChip conference, November 2000.

[VNO+03] K. Vlachos, N. Nikolaou, T. Orphanoudakis, S. Perissakis, D. Pnevmatikatos,
G. Kornaros, J. A Sanchez, and G. Konstantoulakis. Processing and schedul-
ing components in an innovative network processor architecture. InProceed-
ings of the 16th International Conference on VLSI Design, pages 195–201,
New Delhi, India, January 2003.

[vPGLM94] J. van Praet, G. Goossens, D. Lanner, and H. De Man.Instruction set defini-
tion and instruction selection for ASIPs. InProceedings of the 7th IEEE/ACM
International Symposium on High-Level Synthesis, May 1994.

[WBC+00] Daniel Weil, Vaĺerie Bertin, Etienne Closse, Michel Poize, Patrick Venier,and
Jacques Pulou. Efficient compilation of ESTEREL for real-time embedded
systems. InProceedings of CASES’00, pages 2–8. ACM Press, 2000.

[WC95] Robert A. Walker and Samit Chaudhuri. Introduction tothe scheduling prob-
lem. IEEE Design and Test of Computers, 12(2):60–69, 1995.

[Wea95] G. Weaver. Compiler representations for heterogeneous processing. Techni-
cal Report UM-CS-1995-102, University of Massachusetts, November 1995.



Bibliography 101

[WL01] Jens Wagner and Rainer Leupers. C compiler design for an industrial network
processor. InProceedings of the ACM SIGPLAN 2001 Workshop on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’2001), pages
155–164, June 2001.

[WM05] Lars Wehmeyer and Peter Marwedel. Influence of memory hierarchies on
predictability for time constrained embedded software. InProceedings of
Design, Automation and Test in Europe (DATE’05), pages 600–605, Munich,
Germany, March 2005. IEEE.

[ZS01] Min Zhao and Sachin S. Sapatnekar. A new structural pattern matching al-
gorithm for technology mapping. InProceedings of the 38th Conference on
Design Automation, pages 371–376. ACM Press, 2001.





Biography

Gero Dittmann was born in R̈usselsheim, Germany. During his studies at Darmstadt Uni-
versity of Technology (TU Darmstadt), Germany, he worked asan intern for EDS in Plano,
TX, U.S.A., in 1997, and for IBM Research, Zurich Research Laboratory (IBM ZRL),
Switzerland, in 1999. Also in 1999, he wrote a research thesis entitled “Intelligent ATM VC
Management for Quality of Service Sensitive IP Flows” at theMultimedia Communications
Lab of TU Darmstadt. In 2000, he completed his graduate thesis entitled “Programmable
Finite State Machines for High-speed Communication Components” at IBM ZRL and re-
ceived aDipl.-Ing. degree in Electrical Engineering (∼MSEE) from TU Darmstadt. In the
same year, he joined IBM ZRL as a researcher, first in the Network Processor Hardware
group, later in the I/O Network Architecture group.

103





Publications

• David E. Taylor, Andreas Herkersdorf, Andreas Doering, andGero Dittmann. Ro-
bust Header Compression (ROHC) in Next-Generation NetworkProcessors. In
IEEE/ACM Transactions on Networking, Vol. 13, No. 4, pp. 755–768. August
2005.

• Gero Dittmann and Paul Hurley. Instruction-Set Synthesis for Reactive Real-Time
Processors. An ILP Formulation. IBM Research Report RZ3611, June 2005.

• Gero Dittmann and Andreas Herkersdorf. Fine-Grained Timing Constraints for Re-
active Systems in ANSI C. InProceedings of the 25th IEEE International Real-Time
Systems Symposium (RTSS 2004) – WIP Session, Lisbon, Portugal. December 2004.

• Gero Dittmann. Pattern Libraries for Fast Searching and Data-Path Sharing. In
Proceedings of the 3rd Workshop on Application Specific Processors (WASP 2004),
Stockholm, Sweden, pp. 76–83. September 2004.

• Gero Dittmann. US Patent Application, US 10/776788, February 2004. To appear.

• Gero Dittmann. Organizing Libraries of DFG Patterns. InProceedings of Design,
Automation and Test in Europe (DATE’04), Paris, France. February 2004.

• Gero Dittmann, Laurent Frelechoux, and Andreas Herkersdorf. Method and System
for Processing Data Packets. US Patent Application, US 2004/0042456 A1, August
2003. Pending.

• Maria Gabrani, Gero Dittmann, Andreas Doering, Andreas Herkersdorf, Patricia
Sagmeister, and Jan van Lunteren. Design Methodology for a Modular Service-
Driven Network Processor Architecture. InComputer Networks - Special Issue on
Network Processors, Elsevier Science, Vol. 41, No. 5, pp. 623–640, April 2003.

• Gero Dittmann Organizing Pattern Libraries for ASIP Design. IBM Research Report
RZ3488, April 2003.

• Gero Dittmann and Andreas Herkersdorf. Timeout Determination Method and Ap-
paratus. US Patent Application, US 2003/0202482 A1, April 2003. Pending.

• Gero Dittmann and Andreas Herkersdorf. Multi-Layer Intermediate Representation
for ASIP Design and Critical-Path Optimization. IBM Research Report RZ3484,
February 2003.

• François Abel, Alan Benner, Gero Dittmann, and Andreas Herkersdorf. Method and
Systems for Ordered Dynamic Distribution of Packet Flows over Network Process-
ing Means. International Patent Application, WO 03/075520A2, February 2003.
Pending.

• David E. Taylor, Andreas Herkersdorf, Andreas Doering and Gero Dittmann. Header
Compression (ROHC) in Next-Generation Network Processors. Washington Univer-
sity in Saint Louis Technical Report WUCSE-2004-70, September 2002.

105



106 Publications

• Gero Dittmann and Andreas Herkersdorf. Network Processor Load Balancing for
High-Speed Links. InProceedings of the International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 2002), San Die-
go, California, pp. 727–735. SCS, July 2002. IBM research report RZ3418.

• Gero Dittmann. Load balancer - switch - interface. InResearch Disclosure, num-
ber 454, pages 354–355, disclosure number 454184. Kenneth Mason Publications,
February 2002.

• P. Sagmeister, G. Dittmann, A. Herkersdorf, and D. Webb. Scaling Network Proces-
sor Performance to 40 Gbps (extended abstract).IEEE Gigabit Networking Work-
shop (GBN 2001), Anchorage, Alaska, April 2001.

• P. Sagmeister, G. Dittmann, A. Herkersdorf, and D. Webb. Methodology for Test-
ing High-Speed Network Devices with Predicted Traffic (extended abstract).IEEE
Gigabit Networking Workshop (GBN 2001), Anchorage, Alaska, April 2001.

• Gero Dittmann. Programmable Finite State Machines for High-speed Communica-
tion Components. Master’s Thesis, Darmstadt University ofTechnology, Germany,
March 2000.

• Gero Dittmann. Intelligent ATM VC Management for Quality ofService Sensitive
IP Flows. Research Thesis, Darmstadt University of Technology, Germany, October
1999.


