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Abstract

Owing to the ever-decreasing feature size of today’s semdiector processes, the cost
of a mask set has already crossed the one-million-dolla: liGiven this investment, a
design must be applicable for multiple purposes. This fiéikis commonly provided
by programmable elements. A gradual trade-off between éxéflity of general-purpose
processor cores and the performance of hard-wired logibeathieved witkapplication-
specific instruction-set processdisSIPS).

Many automated ASIP design methods found in the literatdlay employ a library of
patterns that represent potential specialized instmstids the libraries tend to grow large
their access times become a critical factor. However, rergits have yet been made to
speed up these searches in the pattern libraries. Furtherthere are no methods available
to recognize and exploit structural similarities betweattgrns.

Another deficiency in today’s ASIP design methodologies&rtexclusive focus on the
data-dominated domain characterized by computatiomsite applications such as digi-
tal signal processing. This focus entails a lack of methodsdntrol-dominated domains
such as network processing. These domains are charadtbsizganch-intensive applica-
tions with fine-grained timing constraints imposed by frelguinteractions with the ASIP
environment. The major challenge here is not to speed upwieadl runtime of the ap-
plications, but to meet the many timing constraints. Thiallemge can be addressed by
introducing special instructions that speed up the timdritieal paths.

In this thesis we propose a hierarchical organization fdatepa libraries that removes
the dependency of search times on the library size. In this mach larger libraries can
be handled which removes the need for heuristics to prurierpatfrom the library. Exact
methods become possible. In our experiments we found tleetlses in our structure
are orders of magnitude faster than in a linked-list librafyrthermore, we introduce a
method that employs identity operands to find synergies eatvsimilar patterns. These
similarities can be exploited to achieve leaner instructiets and for data-path sharing.

On top of these library structures, we propose the first nattegl ASIP design methodol-
ogy for the control-dominated domain. We introduce novethrods to specify fine-grained
timing constraints in ANSI C, to include them in an internedirepresentation that facili-
tates compiler optimizations, and to derive an instructietthat enables the ASIP to meet
the timing constraints. We present a case study that denatestthe feasibility of our
methods and the quality of the results.






Zusammenfassung

Die stetig schrumpfenden Struktuéd®en moderner Halbleiterprozesse haben dazihgef
dass die Kosteriif einen Belichtungssatz bereits eine Million Dolldrerschreiten. Damit
sich diese Investition auszahlt, muss ein Design &it{f einsetzbar sein. Die erforderliche
Flexibilitat wird Ublicherweise mit Hilfe von programmierbaren Bausteingrieht. Eine
feinstufige Abviagung zwischen der Flexibit von General-Purpose-Prozessoren auf der
einen Seite und der Leistungs$iigkeit von fest verdrahteten Schaltungen auf der anderen
Seite wird ernmdglicht vonapplication-specific instruction-set process(sSIPs).

Viele der vebffentlichten automatisierten ASIP-Design-Methodenieeen sich einer
Bibliothek von Mustern, die Kandidatenirf Spezialbefehle darstellen. Da diese Biblio-
theken sehr gro3 werderdknen, spielt ihre Zugriffszeit eine entscheidende Rdlen-
noch wurde bisher nicht untersucht, wie die Suche in einestbtbibliothek beschleunigt
werden kann. Ddiberhinaus sind keine Methoden bekannt, um Gemeinsamkieitgder
Struktur zweier Muster zu erkennen und auszunutzen.

Eine weitere Einsclinkung heutiger ASIP-Design-Methodologien ist ihre alksgli-
che Beschftigung mit der Klasse der rechenintensiven, datendartegm Anwendungen
wie digitaler Signalverarbeitung. Es fehlt daher an Methofiir kontrolldominierte An-
wendungsklassen wie der Verarbeitung von NetzwerkprdteikoDiese Klassen sind ge-
kennzeichnet durch Anwendungen mit vielen Verzweigungah detaillierten Zeitanfor-
derungen, die vondufigen Interaktionen mit der Umgebung ligmren. Unter diesen Be-
dingungen besteht die Herausforderung nicht darin, die@@#daufzeit der Anwendungen
zu verringern, sonderramtliche Zeitanforderungen zu &Hen. Dies kann erreicht werden
mit Hilfe von Spezialbefehlen, die die Ausgfrung von zeitkritischen Pfaden beschleuni-
gen.

Diese Dissertationiihrt eine hierarchische Organisatiam Musterbibliotheken ein, die
die Abhangigkeit der Suchgeschwindigkeit von deibGe der Bibliothek aufhebt. Diese Ei-
genschaft macht wesentlicht$ere Bibliotheken beherrschbar, wodurch Heuristiken zum
Verwerfen von Mustern vermieden werdeirkien. Exakte Methoden werderigtich. Ex-
perimente zeigen, dass das Suchen in dieser Struktur 6ffe@ordnungen schneller ist als
in einer Bibliothek, die als verkettete Liste aufgebaut\geiterhin wird eine Methode vor-
gestellt, die mit Hilfe von Ident#tsoperanden Synergien zwischen gibhelnden Mustern
findet. DieAhnlichkeiten bieten die Mglichkeit, schlankere Befehie zu erreichen und
Datenpfade mehrfach zu nutzen.

Aufbauend auf diesen Bibliotheksstrukturen wird die eistegrierte ASIP-Entwick-
lungsmethodologidlir kontrolldominierte Anwendungsklassen vorgestelltwesden neu-
artige Methoden entwickelt, um detaillierte Zeitanfordtegen in ANSI-C zu spezifizieren,
sie in eine GraphendarstellurigriCompileroptimierungen einzubinden und daraus schlief3-
lich einen Befehlssatz abzuleiten, der es dem ASIRgiitht, die Zeitanforderungen ein-
zuhalten. Abschlie3end wird anhand einer Fallstudie dielWarkeit der Methoden und
die Qualitit der Ergebnisse demonstriert.
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1 Introduction

In this chapter we motivate the design of specialized pmssin general and the intro-
duction of a new design methodology for control-dominateatpssors in particular. In
Section 1.1 we describe the role of specialized procesamsgstems on a chip and how
they compare to general purpose processors and to hardwgidin this environment.
Related work on design methods for specialized processgnesented in Section 1.2. In
Section 1.3 we sketch our new methodology for the controfidated domain and point
out its challenges. Finally, Section 1.4 gives an overviéthe remaining chapters of this
thesis.

1.1 The Case for Specialized Processor Cores

1.1.1 Systems on a Chip

A major challenge the semiconductor industry is facing yaddeing discussed under the
nameproductivity gap Advances in process technology provide an ever increasinger
of available transistors per design while, on the other hahip designers are struggling
to handle the complexity of such systems. As a consequehealesigned application-
specific integrated circuits (ASICs) fail to take advantafeshat the technology offers.

A promising approach to bridge the gap is tBgstem-on-a-Chip (So@gsign princi-
ple: A complex ASIC is composed of several small processlaments connected by a
communication infrastructure. The processing elemenibeaaken from a library of pre-
defined, optimized building blocks. If the communicatiofrastructure is standardized by
a specified So@latformthe building blocks can be plugged together easily.

The SoC approach boosts the designer’s productivity fogrseveasons:

e A new abstraction level is introduced which increases thellef complexity that
can be handled.

e The use of component libraries fosters the reuse of desgmezits. Since the com-
ponents in the libraries have been tested and used beferapfiroach reduces the
probability of design errors.

e The regularity in an SoC architecture enables support bii-légel design tools
and has already given rise to pertinent specification laggsiasuch as SystemC
[OSCI02].

The resulting productivity boost increases the chancea fisst-time-right design and sig-
nificantly reduces the time to market.

Another severe problem in chip design are non-recurringneeging costs (NRE). As
the feature size decreases the cost of masks grows rapidhy@0-nm processes Semat-
ech expects mask-set costs to exceed one million dollare. NRE of a design is better
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>

Flexibility

>

Performance

Figure 1.1: Performance/flexibility trade-off.

amortized if the chip can be reused for multiple purposess fléxibility is achieved with
the introduction of programmability, providing the meaastiapt a design to one out of a
class of applications. Furthermore, programmability\édiees some other issues:

e The complexity of SoCs makes the design process error-pkite programmable
elements bugs can be fixed without redesigning the hardwaogding another iter-
ation of NRE and reducing the economic risk.

e The software part of a programmable SoC can be designedatiglao the hardware
which improves the time to market.

e The software can be adapted to changing requirements hétdrardware has been
produced. This increases the life-span of the design antintieein market.

Consequently, already in early 2004, 90% of new 130-nm ASi§ighs included a proces-
sor core [Jer04] and there is a trend to increase the numh@ooéssors in a single SoC
up to several hundreds [AKMNO2].

Methods that are employed in the design of programmable So€sollected under the
titte hardware/software co-design (HSCDO)he main problems that these methods address
are:

Hardware/software partitioning: ~ The partitioning of applications into a first part that
is implemented in software running on programmable praressres, and a second
part that is implemented in “hardware”, i.e., in hard-wir8IC technology or in
programmable logic.

Design-space exploration:  Which and how many of the available building blocks to
choose and how to arrange them on the chip.

Communication synthesis:  How to organize communication between the parts of an
application that are distributed across different comptsen the chip.

The larger the hardware partition of the SoC the higher igp#réormance but the lower
the flexibility of the design. A more fine-grained and graduadie-off between flexibility
and performance, or programmability and efficiency, can diéesed withapplication-
specific instruction-set processors (ASIP$he instruction set of an ASIP is specialized
towards a particular class of applications by compounduesibns that speed up critical
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parts of the applications without compromising the flexipibf the processoin its appli-
cation domain In this way, ASIPs combine the flexibility of general-pusgoprocessors
(GPPs) with the performance of hard-wired logic (see Fiduflg. Since most SoCs are
specialized towards a particular application domain, tt&FPAconcept is a good match
and ASIP cores are a valuable extension for the buildingblibraries in SoC design
[AKMNO2].

Some vendors offer extensible processor platforms whiokisbof a standard processor
core that can be augmented with specialized instructiogs,tee Tensilica Xtensa [Ten] or
the ARCtangent by ARC [Arc]. The platforms are supported ga environment, e.g.,
in Tensilica’s case centered around the Tensilica insomaxtension (TIE) language to
describe the instruction-set extensions [Gon00]. Thestogically support synthesizing
new instructions for the processor and adding support farinstructions to compilers by
means of intrinsics, i.e., explicit calls to the speciatinstions in the high-level language.

1.1.2 Networking SoCs

In the networking field, protocol standards keep changirdyelving and new features
are introduced at a high rate. Therefore, the time-to-matteantages and the flexibility
that SoCs offer are in high demand in this domain.

Considerable research has been conducted on the arcretéstal of networking SoCs.
An approach to quickly implement new communication protedn a mixed hardware/
software system can be found in [SC98]. Although in prireiptogrammable, the system
is not supposed to run any other protocol after implemeoratlexibility is not a design
goal here but the cost-performance trade-off is optimized.

Approaches for more flexible network processors (NPs) aserideed in [Ben01, SM01,
VLWO0O0]. The hardware/software partitioning of these desiggrather coarse-grained:
Flexibility is achieved by integrating processor coreswgieneral-purpose instruction-sets
while performance critical parts of an application are @ffled to hardwired logic. A
commercial example of such an NP architecture is the Int&11200 which comprises

Processor Complex Data/Control Memory Control
Co - PowerPC PowerPC
Processors cores | eXRAM SDRAM cores
[ A A [ A [ A Al
v | [ ¥ v | v | [ v
Interconnect |
A A [ A
3% Intelligent Data Flow vi
Poli Schedul
| _poice | [m[m) [ serecue | o
min
uffer UART
et = &
P Modify
=] S
[
Rx Link i/f Tx Link i/f
AAAAA [T T 1]
111 YYYYY

Figure 1.2: NP with ASIP-based fast path.
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six GPP cores, called ‘micro-engines’, and hardware asfisthash functions, queuing,
and bit operations. An exhaustive survey of commercialilable NPs can be found in
[Sha01].

In our NP architecture, depicted in Figure 1.2, we follow fime-grained ASIP ap-
proach [GDD 03]. The core of the NP is a fast path (intelligent data flowE)@onsisting
of highly specialized processor cores for basic networlcg@ssing tasks, such as header
parsing, table look-up, or scheduling. These ASIPs arenged in a pipelined fashion,
passing the result of their computation on to the next pingselement directly rather
than through central memory. Only special packets thatireqomplex handling are off-
loaded to the GPP cores in the slow path. In this way, the ABi@gde wire-speed packet
handling with programmability for future adaptations vehihe GPPs provide extra flexi-
bility for tasks that are too complex for wire-speed progggsIn either case, the ASIPs
perform fast pre- and post-processing on which also the GRPsely.

Another research project that follows a similar approachthe PRO3 processor
[VNOT03]. An industrial example of such an architecture are theHfZNPs with their
TOPcore ASIPs [EZ99]. The projects vary in the flexibility the ASIPs, the on-chip
interconnects, and the integration of the GPPs.

1.2 Current ASIP Design Methods

1.2.1 A Generic Design Flow

To derive an ASIP from applications in the target domain, mler of techniques is com-
bined into a design methodology for ASIPs. Figure 1.3 shotypigal ASIP design flow.
The designer specifies a suite of applications or parts oficgtipns that are character-
istic for the target application-domain. This is done in ghhlevel language, such as C.
A compiler front-end translates this specification to amriimtediate representation (IR),
which can usually be visualized as a graph, e.g. a conttalfttav graph (CDFG), of basic
instructions, such as add, subtract, shift, multiply, divietc.

Application eg. C 1
Specification

Patterns,
Compiler
Front End

Statistics
Instruction Set
Definition
Basic
Processor Intermediate
Architecture Representation

e.g., CDFG ASIP
Description

Tool
Generator

’ Simulator ‘ ’Assembler‘ ’ Compiler ‘

> H/W Implementation

Optimizer,
Scheduler,
Pattern Finder

Figure 1.3: A generic ASIP design methodology.

Based on an architecture template, this graph is optimieeghloying methods found
in the compiler literature [ASU86, Muc97, Mor98], and grapbdes are scheduled into
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time steps. Recurring instruction patterns are identified are candidates for hardware
implementation to render code execution more efficient.if@ipations, scheduling, and
pattern finding have a significant impact on each other anthaseinterwoven. The result
of this process is a set of candidate patterns along witfstta information about their
occurrence and their benefit. This is also the point whem@imétion from the individual
applications in the set is merged because the value of ap&tmdependent of the appli-
cation in which it appears. Based on the statistics, pattera selected to be implemented
as instructions, and a processor description is generated.

The processor description is implemented and retargetablsuites are used to quickly
build a development environment around the processormdirag simulator, assembler,
compiler, and debugger [PKBO1]. A recent development i$ émimplementation in a
hardware description language (HDL) as well as tools can beegenerated automatically
for the new processor from a formal processor definition inaerhitecture description
language (ADL) [PHZM99, ENFOQ]. The design of a compiler or ASIP is tightly
coupled with the design of the ASIP itself because the aghemused in instruction-set
generation are similar to instruction selection in comgileThe automatic generation of
compilers from processor descriptions continues to be awedteld of research.

In [WLO1], the manual implementation of a C compiler for a parar network pro-
cessor is described. The focus is on operations on variabtgh bit-vectors that are not
aligned on register boundaries and may even span acros&gigtars. Also, support for
arrays of bit vectors is proposed.

1.2.2 Instruction-Set Generation

A simple approach for ASIP instruction-set design propdsdsPGLM94] is to analyze
the data-flow graphs (DFGs) in a CDFG to find frequently réngrinstructionsequences
Appropriate hardware resources that implement these sega&are then manually added
to speed up program execution, and the code is modified to oskef the new resources.
These two steps, sequence analysis and adding corresgaediources to the hardware,
are iterated until the result is satisfactory for the design

The approach presented in [HD94] does the same consideairadjel operations rather
than sequences, and is targeted for pipelined processaralld? operations in DFGs are
scheduled into time steps, and operations in the same tiepefetm an instruction. A
simulated annealing algorithm is then used to modify thginal operation scheduling to
find better instruction sets. Moreover, different operancoglings are tried out in order to
meet a given instruction-size constraint.

Instead of starting from the most simple instruction seteolpproaches are based on
existing processor cores, as described in e.g. [Gsc99)y iatt@mpt to keep design cost
and time-to-market low. These cores are then manually detkwith application-specific
instructions to speed up critical code sections.

In [ACO1], parts of the above approaches are combined: iBgigirocessors are ex-
tended for an application domain by finding two-dimensiqguetterns (i.e. consisting of
sequential and parallabperations) that share at least one operand and implergghgm
as special instructions. Applications are not represelyaétie compiler output directly but
by execution traces, thus enabling the detection of pati@cross control-flow boundaries,
and a better estimate of their frequency of occurrence.

The pattern-matching algorithm that works on these traes®ldps a pattern library
on the fly: It starts with a library of basic operations andtiteratively adds all possible
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combinations of each operation node with its neighbors,damnbinations with other nodes
that share at least one operand with it in the applicatioplgr&atterns from this library
are then selected to cover the application graph such tltét @geration is covered by
exactly one pattern. This selection is callecbaerof the application graph. A variation of
dynamic programming is employed to minimize the implemgaitecost of the cover.

The patterns in the library are sorted by the number of tileg dccur in the application
graphs and by the number of times they were selected for a.cbram this list, patterns
are manually selected, grouped, and implemented.

A different method to clusteparallel operations to form new instructions is proposed
in [BKKS02]. DFG nodes are scheduled as soon as possible sitateaas possible to
determine their mobility. From this information, a grapluésived in which two nodes are
connected by an edge if they can be scheduled in the sameutelstelp. The edges are
weighted with the number of times the nodes can be schedotgditer. For instruction
selection, a profiling function is employed to find the mostjinently occurring operation
pairs. This function must maintain a library of candidatesan order to collect profiling
information, but it is not described in the paper.

Library based approaches suffer from the size of the libsariln [Arn01], memory
requirements of more than 200 MB and a running time of mora 2% hours are given
for single benchmark applications. As a consequence, ttf@aproposes a humber of
heuristics to keep the library size low by removing less psimg patterns from the library.
In this thesis we propose an exact solution to this problenmlesans of a new library
structure that enables orders of magnitude faster access.

A completely different approach is introduced in [APIO3]hélauthors propose to or-
ganize the patterns of a basic block in a virtual search-tiE@s tree enables effective
pruning of regions in the search space that violate desigsatraints. For each basic block,
a search algorithm finds the pattern with the highest spgeda these patterns from all
basic blocks, the one with the highest speed-up is chosenas arocessor instruction.

The selection algorithm iterates, searching for an incréete number of non-over-
lapping patterns in the one basic block from which the newusion was chosen. Again,
the result from the basic block with the highest speed-uplex$ed. The iterations continue
until a predefined number of new instructions is reached.

1.3 A New Methodology for Control-Dominated
ASIPs

This section motivates the introduction of a special desigthodology for control-domi-
nated ASIPs. We give an overview of our approach and statbasic assumptions on the
ASIP architecture.

1.3.1 Control-Dominated vs. Data-Dominated ASIPs

Most research publications on ASIPs concentrate on thgulesidigital signal processors
(DSPs) or, more generally, on the data-dominated apmicatomain. Data-dominated
applications are characterized by long arithmetic sestioetween control-flow bound-
aries, i.e., between branches. Furthermore, they tygicatitain many computation-heavy
loops. Processing often starts with receiving a sample t@f dad ends with sending out
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a resulting sample [MB1-96]. Between start and end there is no other I/O to be handled.
Hence, there is only one deadline to be met per algorithmThe:resulting frame has to be
output in time. This kind of timing constraint is calledate constraintbecause the overall
running time of an algorithm is constrained to guaranteeataquired rate of samples per
time unit can be processed.

The properties of data-dominated applications are reflantthe ASIP design methods.
The special instructions of an ASIP speed up segments ofptbiécation code. With rate
constraints, any speed-up will improve the performancéefipplications, irrespective of
the code part in which the improvement is achieved. Codedp ldies is executed many
times and is therefore a preferred candidate for speciaiza&fforts. Long arithmetic
code sections provide an appropriate search space to fitetmmathat occur often in the
applications to justify implementation as special instiQts.

Control-dominated applications, in contrast, feature ynbranches interleaved with
short computation blocks, and loops are rare. In most cbdominated real-time systems,
such as backbone NRshere is not only one deadline at the end of a run but theremargy
I/O interactions with the environment and many of them hadeadline associated with
them.

For instance, in a network processor such as the one in FigBrenemory bandwidth
and bus contention are the major performance bottleneakshéfrmore, accesses to such
shared resources introduce unpredictability [TWO04] whislmpromises the deterministic
timing that control-dominated applications often requi@me way to relieve this problem
is to process packet headers on the fly as they come in frork mtead of retrieving them
from memory for each processing step. But this means thay &eader word that contains
fields to be processed has a deadline associated with it §edzheas to be processed—or
at least saved to stableregister—before being overwritten by the next incoming leead
word. On the other hand, different header words have coelpldifferent semantics and
trigger different types of processing, e.g., a headertkefigld compared with a protocol
number. Hence, we need to specify different timing constsain many places in the
application. Moreover, some timing constraints dependumtime information such as
the header length. In this case, the input data determinamaer of cycles to wait for an
event to occur, e.g., to wait for the beginning of the nextdeean protocols with variable
header lengths.

Properties | Data-dominated | Control-dominated
Examples DSP, media processar NP, microcontroller
Arithmetic sections long short
Branches few many

Loops many few
Memory size large small
Arithmetic type fractional integer
Timing rate constraints fine-grained
Data-dependent wait no yes

Pattern purpose speed-up forced by timing
Pattern metric occurrence frequency meets timing constraints

Table 1.1: Characteristics of application domains.

In the backbone of a network, the main task of an NP is headeepsing and routing—which is control-
dominated. In contrast, NPs in access routers at the frineafetwork often perform payload processing—
which is data-dominated. Throughout this thesis we only icensackbone NPs.
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As a consequence of these fine-grained timing constralmesfocus moves away from
patterns that occur frequently and therefore provide amativepeed-up. Instead, patterns
must be implemented as instructions in order to meet thegiiaged timing constraints,
even if they occur only once in an application. Table 1.1 @sts the properties of the two
application domains.
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Figure 1.4: A control-dominated ASIP.

Some publications on control-dominated ASIPs exist, exga microcontroller [Kig99]
and a Prolog processor [Gsc99], but they focus on implertientdetails rather than on
algorithms for automatic instruction-set synthesis. @txamples of ASIPs in the control-
dominated domain are the building blocks of network prosessuch as the header parser
shown in Figure 1.4 [Dit00], which extracts fields out of packeaders, or @rotocol
engine which implements protocol FSMs. Both tasks consist maifilpranch decisions
with only few computations. This is illustrated in Figuretly the fact that only the
right-hand quarter of the graph performs computations patidata while the other three
guarters are occupied with the control flow.

Implementation of controller FSMs has been investigatedAsIC high-level synthe-
sis (HLS) and HSCD, mainly for automotive applications agd@H"94], but not for
instruction-set synthesis. The main difference betweesdahwo approaches is the fact
that existing approaches optimize the circuits for a sirggiplication whereas an ASIP
must support a variety of applications, including futurelagations that have not been
specified at design time. This introduces a flexibility fadtat is hard to quantify.
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1.3.2 The Design Methodology and its Challenges

All methods for instruction-set generation surveyed int®ecl.2.2 focus on the data-

dominated domain. Their metric for instruction selectisriie speed-up achieved in the
applications but none of them considers fine-grained tingimigstraints. In contrast, the
research presented in this thesis is targeted at ASIPs éocdhtrol-dominated domain.

Therefore, we consider fine-grained timing constraintsughout our design methodology
which is depicted in Figure 1.5.

Application Specification
w/ Timing Constraints

Compiler Front End

Intermediate Scheduler

Representation | [~

Partial
Schedule

Constraining
Parallelism

Patterns and
Pattern Pairs

Identity
Simplification

ASIP
Instruction Set

Timing
Constraint
Analysis

Timing-Forced
Patterns

Figure 1.5: Design methodology for control-dominated ASIPs.

The first step in working with timing constraints is to spgdiiem along with the ap-
plications in a high-level language (HLL). Many applicaiioin the embedded area are
programmed in C. However, the C language does not providecangtructs to specify
timing. Therefore, we have to augment C with timing condsudhe constructs should
be defined in a standard-compliant way to maintain compggibiith the existing tool
infrastructure. Furthermore, to provide an appropriasehgion for the timing constraints
they must be specified as accurately as possible. This islaatgn by the fact that a
single C statement often corresponds to multiple basicatjpers which access an even
larger number of variables. The timing constructs must kerthle programmer to associate
constraints with one particular variable access. We defiset @f pragma directives that
meet all these requirements.

A compiler front-end translates this timing-annotated Hblan IR on which compiler
transformations and analyses can operate. The IR must ket@iépresent the timing
constraints in addition to standard control and data flow.ad#ress this requirement with
a combination of appropriate IRs.

Once formally captured, we analyze the timing constraimtsdilect thetiming-forced
patternsthat are necessary to meet the constraints. A schedulegmfiiese patterns
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and additional basic operations in computing partial salesdof the applications. The
scheduler assumes unbounded parallelism and is based oalgeis of the control, data,
and timing dependencies between the operations. A padieddsle provides statistical
information on how often pattern pairs occur in parallelie same cycle.

Based on these statistics, the next method in the flow canstifae number of instruc-
tions issued in parallel. The method chooses the pattemtipa provides the highest
reduction of parallel issues and bundles it to form a singgéruction. With the new bundle
in the instruction set, a new partial schedule is computetitae process is iterated until
the maximum number of parallel issues that the designeifggmbis no longer exceeded.

In a last step, the resulting instruction set is simplifiedolaying identity operands to
merge related instructions for a leaner instruction sets $tep is not specific to control-
dominated ASIPs but is useful for any instruction set.

1.3.3 Data-Push Communication

In our research we focus on highly-specialized small ASIRRgavith deterministic per-
formance which guarantees to meet tight timing constraifdsavoid the unpredictability
that shared bus and memory accesses introduce the ASIP alofesal input data from a
central memory. Instead, we rely on the communication mtttl we have sketched in
Section 1.3.1: The data jsushedto the ASIP’s input registers as soon as it is available
and data must be read before the register is overwrittenthvitimext input. Similarly, the
ASIP writes its results to the output registers in a write-&orget fashion. The data in an
output register is then pushed to the input of the consumirilgibg block. We call this
communication style data-pusimodel.

The advantage of data-push communication is that it avaigscamplexity associated
with queuing, buffer management, and access to sharedsbasdanemory. The require-
ment that the ASIP precisely times reads and writes to theddter is met by our design
methodology for real-time ASIPs.

In the example case of our NP in Figure 1.2, the building bdackthe fast path (IDF)
are arranged in a pipeline so that one unit passes the reguéscomputations on to the
next one by means of data-push communication. When a packetsairom the network,
the link interface writes the first word of the packet to thempriate input register of the
parser and generates a signal to start header processiegntéiface continues to write
packet data to the same input register until the packet @ridsparser pushes each header
field it extracts to an input register of the look-up processignaling the field type. The
header parser is described in more detail in Section 5.2.

Data-push communication is particularly well-suited fd?$\l They require deterministic
performance, and bus and memory bandwidth are the mainrpefe bottlenecks in
NPs. A data-push architecture addresses both problemsplaciregy the complexity of
gueue and buffer management between building blocks witherse that requires neither
bus nor memory accesses. Furthermore, the data-push mamlédes full wire-speed
processing and matches the streaming character of the nhetnatiic.

Moving from a memory-centric to a data-push model involvebange in the way data
is addressed. Figure 1.6 demonstrates this change for amebheader structure. In the
memory-centric model, an element in a data structure issaeckby adding an offset to the
base address of the structure and reading from the resalfithg@ss. The offset corresponds
to the position of the element in the structure and is theeeéspacial address In the
data-push model, in contrast, an element in the input dadadsssed by waiting for it to
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Figure 1.6: From spacial to temporal addressing.

occur in an input register. The number of cycles to wait fréwa signaled start of a data
transmission corresponds to the position of the elememtdnrput data and is therefore a

temporal address

1.3.4 Assumptions on Processor Architecture

The architectural decisions we have made are the following:

VLIW format. To avoid the hardware overhead that superscalar archigscantail, we

No pipelining.

opt for the very long instruction word (VLIW) approach in orde obtain a small
footprint for the ASIP [SRN94]. With VLIW processors, it is up to the compiler to
pack multiple instructions into one memory word that wikthbe executed in par-
allel. The resulting binary incompatibility between preser models with different
issue widths is usually not a problem for embedded systenitsiapossible to re-
compile code for a new processor. Moreover, controllingf@lism by the compiler
simplifies the scheduling under timing constraints becdaheescheduler does not
need to estimate the behavior of the hardware paralledizati/LIW architectures
have been very successful in the DSP and multi-media domain.

Control-dominated applications have many branches, wikitite classi-
cal stumbling block for processor pipelines. To keep thelme filled after a branch,
speculative execution can be employed but it is only effecti the speculation is
correct. Branch prediction is used to improve the rate ofemirspeculations but the
rare occurrence of loops in control-dominated applicati@mnders branch prediction
largely ineffective. Furthermore, the short arithmetictgmns in control-dominated
applications constrain opportunities for speculatiomally, speculation is a proba-
bilistic technique that interferes with hard timing coagtts [TWO04]. We conclude
that pipelining and control-dominated applications do maitch well because fre-
quent stalls make pipelining largely inefficient in this dam Consequently, the
overhead in logic and the increased instruction compldtie due to pipeline reg-
isters and imbalances between the stages would not begdstifi

No data memory. The reason to choose a data-push architecture was to awighth

bounded delays of shared memory accesses in order to preideministic perfor-
mance. Caches are a probabilistic technique and therefonetdsolve the problem
[TWO04]. On the contrary, caches increase the worst-casesatioee. A viable solu-
tion is local scratch-pad memory [WMO5]. To support memdrg, data-dependency
analysis on which some of our design methods rely requiradqraanalysis to find
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dependencies through accesses to the same memory locatimprocess is also
called memory disambiguation. To avoid the complexity o imalysis we prelim-
inarily exclude data memory elements from our considenatiénstead, we assume

Unlimited registers. The control-dominated applications we analyze typicalbyribt
have large storage requirements so that the required nushbegisters will be low.
Not imposing constraints on the number of available reggssegnificantly reduces
the complexity of scheduling.

No interrupts. Thanks to the data-push communication and the absence loé<dice
ASIP does not need interrupts for 1/0O operations or the hagdif memory page
faults. We therefore do not consider interrupts which re@soyet another hazard to
predictable program behavior and deterministic timing.

Single-cycle instructions.  Control-dominated applications typically do not use floa-
ting-point data-types but rely exclusively on integers.efdiore, it is not a severe
restriction to disregard multi-cycle instructions.

With these assumptions, the complexity of our methods istkeger control for this first
proof-of-concept methodology. However, our methodology be combined with existing
methods to overcome its restrictions. In particular, it barcomplemented with pipeline
design methods, memory disambiguation algorithms, aridteggcheduling approaches to
support pipelined architectures with scratch-pad memodyadimited number of registers.

1.4 This Thesis

4 N\
Data-dominated domain

Pattern library:
Fast searching, Covering synergies
(Chapter 2)

Fine-grained timing constraints:
Specification, Intermediate representation, Transformation
(Chapter 3)

Instruction-set generation:
Timing-forced instructions, Constrained parallel issues
(Chapter 4)

Control-dominated domain

Figure 1.7: Overview of the contributions.

The contribution of this thesis, as shown in Figure 1.7 casasrthe following concepts:

e Chapter 2 introduces a hierarchical organization of paftbraries. Our method sig-
nificantly improves the access times to the library whiclveslan important prob-
lem in existing ASIP design methods. Moreover, the hieraatharrangement of
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patterns reveals synergies between patterns that we efglt#aner instruction sets
and data-path sharing between instructions.

e In Chapter 3 we present our application representationithparticularly suited
for the control-dominated domain. We introduce fine-grditiening constraints
in ANSI C. These constraints are reflected in our intermediapresentation. To
demonstrate the benefit of the proposed representation twelirce an optimiza-
tion technique we calbranch postponinghat resolves scheduling conflicts between
deadlines.

¢ In Chapter 4 we demonstrate how to construct the operatittierpa necessary to
meet the given timing constraints. Furthermore, we intoeda method to merge
parallel patterns in order to handle a constrained numbearddllel instruction is-
sues required for the ASIP. A special section is devotedeadtindling of the data-
dependent wait operations which are part of our applicagépnesentation.

In Chapter 5 we give performance results of our organizatiethod for pattern libraries.
We also demonstrate the application of our ASIP design ndetlogy in a case study with
a real-life ASIP. Chapter 6 concludes the thesis.






2 Pattern Library for Fast Searches
and Synergies

A crucial step in ASIP design is the instruction-set genenat Methods for automating
this process, surveyed in Chapter 1, extract patterns frptications, usually in the form

of data-flow graphs (DFGs), and insert them into a pattematib Along with each pat-

tern, statistical data is collected, such as the number cfiroences of a pattern in the
applications. Based on this data, a subset of the patteithg ilibrary is then selected for
implementation as specialized instructions.

For each pattern which is found in the applications, a seiarte library is performed
to check whether the pattern is already present, and therpdt then either added to
the library or the statistics are updated. The complexityhif search has a significant
impact on the running time of instruction-set synthesidsto&urrent algorithms have a
computational complexity oD (n - p), with n the total number of operation nodes of all
patterns in the library angthe size of the pattern sought.

In this chapter, we introduce a novel organization for patiéraries that enables a
search algorithm with onl{)(d), whered is the size of the pattern sought, up to the max-
imum pattern size in the libraryl(< p). Furthermore, the library organization reveals
opportunities to substitute one pattern by another. Thisbeaexploited for more efficient
instruction selection and code generation.

The chapter is structured as follows: In Section 2.1 we raderelated work on the
generation of pattern libraries for instruction-set gatien, on search algorithms, and on
methods based on identity operands. In Section 2.2 we mt@dur concept of a novel
graph-based library organization that facilitates fagtqua searches. We present search
and insertion algorithms working on the graph. In Sectidhwe extend this concept and
show how identity operands can be used to substitute a gfqaiterns by a super-pattern.
We summarize the chapter in Section 2.5.

2.1 Related Work

2.1.1 Pattern Libraries

While most approaches to instruction-set design for ASINsl#e the construction and
evaluation of a pattern library, the organization of thélseties has not been described in
the literature [vPGLM94, HD94, BKKS02].

The library-construction algorithm described in [ACOlig# to find pattern matches by
iterating over the operation nodes of the patterns in thafjband comparing them with
the nodes in a subject pattern. We conclude that the libsagniunordered collection
of patterns. In the worst case, a search algorithm on sucdbraryi has to compare all
operation nodes of the pattern in question with all openatiodes of all patterns in the
library. Hence, the computational complexity of this séacO(n - p), with n the total

15
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number of operation nodes of all patterns in the library atite size of the pattern sought.
In order to keem low, the author introduces heuristics to limit the libraigesby excluding
patterns that do not seem beneficial.

Because a search is conducted for each pattern found in glieapns and because
the pattern libraries tend to be large, the computationadpgtexity of the search algorithm
has a significant impact on the total running time of the ington-set generation process.
In [Arn01] for instance, memory requirements of more thafl 2B and a running time
of more than 24 hours are given for single benchmark appicst—with a number of
heuristics already built in to keep library size low.

For technology mapping in logic synthesis, large cell lites provide possible imple-
mentations of register-transfer level designs. The corityl®f these libraries, however,
is not due to the number of different pattern structures et th the number of physical
parameters, such as power levels, i.e., the large numbédteohatives to implement the
same pattern [BHSV90].

2.1.2 Searching and Pattern Matching

Search algorithms have been the subject of research forgatime. Most efficient al-
gorithms that have been proposed apply, however, to onerdional data structures—in
particular to string searches [CLR90]. DFGs, in contrasd,tevo-dimensional structures.
While for strings it is clear that the next character will @il at the end of the string, in
DFGs the next operation node to be added can be operand td oreng nodes. [HO82]
proposes a method to transform trees into strings and thies mn string matching algo-
rithms. In contrast, our approach does not require a tramsftion of the DFG but actually
exploits its tree structure.

The covering of code sections with appropriate elementspatiern library for imple-
mentation has traditionally been performed by graph-basgttrn matching algorithms,
e.g., for code generation in compilers [HO82, AG85] and émhinology mapping in logic
synthesis [Keu87, ZS01]. These algorithms assume a fixaaf patterns and they perform
preprocessing on this set to speed up the actual matchindpolliefor instruction-set gen-
eration, in contrast, construct their libraries on the firatively filling the library with new
patterns. For such dynamic libraries the preprocessingeoéntire pattern set would have
to be repeated for each new pattern. This problem rendem@deithms very inefficient
in our context.

More recently, symbolic algebra [PSM02] and combinatioeqlivalence checking
[CPHCO04] have been employed for this mapping. Symbolic talgehowever, is con-
strained to patterns that represent linear functions. IN@mar functions can only be ap-
proximated. Both symbolic algebra and combinational egjaivce checking are very com-
plex and thus only feasible for small problems. They may lmeheial for canonicalization
of patterns in combination with fast matching methods sedhase presented in this chap-
ter.

2.1.3 Identity Operands and Datapath Sharing

Identity operations, which we use to reduce patterns to leimpnes, have been ex-
ploited for basic algebraic transformations in compilévkig97] and in high-level syn-
thesis [LM97]. The idea to use identity operands for patgmplification is mentioned
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in [CKG™96] but the authors provide no algorithms. In [PD94] and [FE&dentity op-
erations arénsertedinto sequences of operation nodes in order to increase tnéerof
identical patterns. In contrast, we propose to use ideekignents teliminatenodes from
patterns. The library we construct in this way reveals theesapportunities to substi-
tute one pattern by another—and more, because our approachdsnstrained to small
sequential patterns.

Another approach to merge patterns for datapath sharingesepted in [MAHMO2].
The authors present heuristics to map edges in a patterigés ¢ldat connect similar nodes
in other patterns. The resulting combined pattern can tleerohfigured to implement any
of the original patterns by disconnecting different seteddes.

The heuristic presented in [BKS04] decomposes the DFGsroptax instructions into a
set of leaf-to-root paths. In this set the algorithm findsdbeamon operation subsequence
with the maximum area and merges instructions at this suteseg. The process is iterated
until no more merging or no further area improvement can béeaed.

The latter two approaches rely on reconfigurable intercctiore networks and multi-
plexers to configure the merged datapath. This approaclisntare complexity than
disabling operators by identity operands.

2.2 Hierarchical Library Organization

2.2.1 The Pattern Search Graph

Arranging patterns in a linked list results in a completetipitary order. There is no
relation in the order of the patterns that could be explditedlirected and therefore faster
searches. But patterns do have a structure that lends tibselidering. In particular, a
pattern can be a subgraph of another pattern, or two pattambave common subgraphs.
In the following, we present a method to order patterns atiogrto their structure and
the operation type of their nodes. First, we introduce théhodefor tree-shaped patterns
and then generalize it to patterns that are directed acgrdiphs (DAGS) in Section 2.2.4.
The resulting new structure supports significantly fastarshes than conventional library
structures.

We arrange the patterns in a tree. Each node in this treesesisea pattern. The root of
the tree has edges to all patterns that consist of a singledyaaration, forming a first level
of patterns. The basic operations can be extended to forambde patterns by connecting
the output of another operation to one of the basic operataperand inputs. Each of the
first-level patterns has edges to all two-node patterns thilrespective first-level pattern
as their root node. The two-node patterns are the secontdétiee library tree. This
process continues for more complex patterns, adding meetsléo the library graph. We
call this tree graph pattern search graph (PS@ it facilitates directed and fast searches
as we will show in Section 2.2.2. Figure 2.1 shows an exam$Ié Bf a pattern from an
application that parses headers of network packets [Dit00]

Compared with the linked list, the structure of a PSG is twaoehsional rather than
one-dimensional. This entails the following redundan@kela pattern consisting of three
operation nodes, two of which feed their result as operamtltgtroot node. In this case, we
could have two PSG paths to the pattern: first adding the peftand to the root operation
and then right, or adding the right operand first and thenefielh order to have only one
path from the library root to each pattern, we posit that appate operations be connected
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Figure 2.1: Example of a pattern search graph.

first to right operands and then to left operands, assumisig loperation nodes with two
operands. The search algorithm presented in the next seetimires only the remaining
PSG paths with precedence for the right operand.

The PSG organization has the side-effect that all pattemrt@ path to a complex pat-
tern must be present in the library. Hence, when insertingteem into the library, we
sometimes must also insert additional patterns that are@R$G path to the new pattern
but that are not present in the library, yet. Our performameasurements in Chapter 5
show, however, that the overhead presented by this effetaiginal.

2.2.2 Searching a Pattern in a PSG

The access to the pattern library can be accelerated sigmtfjcby exploiting the order

of the patterns in a PSG. When searching for a particular npaittethe library, we start

with one of the primitive operation nodes it comprises, nignikee root node. We then add
operation nodes in the pattern by following the edges in &a&ch graph. In this way, we
arrive at the complete pattern, provided it exists in thealijp.

The recursive algorithm in Figure 2.2 implements the preposearch strategy. It tra-
verses the pattern sought depth-first and right-branct-fisresponding to the rule for
avoiding redundant paths we posited earlier. The proceduuens either the position of
the pattern in the library or NULL.

Consider the example PSG in Figure 2.3. In order to searshgthiph for, e.g., the pat-
tern in the upper right corner, the algorithm starts with plagtern root—in this case the
subtraction. In the first line of tei nd function,l i bNode is set to the library entry corre-
sponding to the pattern root by following thext -pointer indexed by the only operand of
the library root and by &UBoperator. Then the right operand of the pattern root—labeled
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activeQond = 0; /+ gl obal variable */
patternlnLibrary = find( patRoot, |ibRoot );

Li bNode find( patNode, |ibNode ) {
Li bNode nextLi bNode = |ibNode. next[activeOpnd] [ pat Node. operator];

activeQond = 0; /+ right operand is always 0 */
if (patNode has rightOpnd AND next Li bNode exi sts)
next Li bNode = find( pat Node.right Qond, nextLi bNode );

acti veQpnd++;
if (patNode has |eftOpnd AND nextLi bNode exi sts)
next Li bNode = find( pat Node. | eftQpnd, nextLibNode );

return nextLi bNode;

}

Figure2.2: Pseudo code: Pattern search in a PSG.

x2—is examined, which is NULL because it is an external pattepui. Therefore, it is
skipped and the left operand is checked, which is not NULLalbse it is connected to the
output of the shift operator. Consequently, thend function is called recursively with the
shift operation as the nepiat Node and the subtraction as thé bNode.

This time, the first line of thé i nd function follows thenext -pointer indexed by the
second operand of the subtraction and b$HR operator and hereby sets bNode to
the library entry we have been seeking. Both, the left anbtrigperand ofpat Node
are NULL and therefore the library entry sought is returradter unwinding the recursive
calls, to be assigned fmat t er nl nLi brary.
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Figure 2.3: Tree-pattern search in a PSG.
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Operand Numbering

The two-dimensional arraii bNode. next holds references to all library entries that
are derived from the current entry by attaching one moreatjzer node to the associated
pattern. The array is indexed by the operator of the attaclelé and by the operand of
the current pattern to which the new node is attached.

To identify the operands they must be numbered. But not atanpds are candidates
for attaching another operation node. Figure 2.4 illuesathy. The search algorithm first
traverses the right-most branch of the searched patteihitums reached the end of the
branch in step 3. Only then it considers the left operandsyrsévely backtracking the
right-most branch. When the next operator node is attachsten4, then all operands that
have been visited before will not be used anymore in the éub@cause if there would be
an operation node to attach to any of them then this would happened at the first visit
to the operand. Hence, these operands are “dead” and neattyneghenext -array, nor
do they need a number. The remaining numbered operands Wirealperands

The left-most right operand always is number 0. Left of opdraumber 0, the left
operands are numbered along the fringe of the pattern. Shahy the pattern in step 4
of Figure 2.4 has one operand column less imiéxt -array than the pattern in step 3
although it has one external operand more.

Step 1 Step 2 Step 3 Step 4

Figure 2.4: Operand numbering.

In the algorithm in Figure 2.23ct i veQpnd is set to 0 when a right branch is explored
because a right operand always has number 0. If there is matop@ode attached at the
right branch then the algorithm continues with the left eyperof the same node which then
has operand numbér= 0+ 1. If there is an operator attached and the recursion evéyntual
returns from a right branch then the algorithm will have teidisome left operands in the
right branch and it will have seict i veQOpnd accordingly. The left operand of the current
node is the next in line and its operand number is the valugcofi veOpnd plus one.
Thereforeact i veQpnd is increased by one before exploring the left branch of theect
node.

This approach guarantees correct numbering of the operaadsrding to the numbers
in Figure 2.4, and results in the minimum possible size ofdet -array with each library
node.

Computational Complexity

Thef i nd function is called at most once for each node in the patteuglsio The pointers

to the next library nodes are stored in the adraoNode. next with linear access time.
Therefore, this search @(p), with p the number of operation nodes in the pattern sought.
If the pattern sought is larger than the largest pattern énlitirary then the search stops
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activeQond = 0; /+ gl obal variable */
patternlnLibrary = insert( patRoot, |ibRoot );

Li bNode insert( patNode, |ibNode ) {

Li bNode nextLi bNode = |ibNode. next[activeOpnd] [ pat Node. operator];
if (nextLibNode does not exist) {
liveOpnds = |ibNode.liveQonds - activeCpnd + 1;

next Li bNode = new Li bNode( |iveQpnds );
| i bNode. next [ acti veQpnd] [ pat Node. operat or] = nextLi bNode;

}

activeQpnd = 0; /+ right operand is always 0 */
if (patNode has right Opnd)
next Li bNode = insert( patNode.rightQond, nextLi bNode );

acti veQpnd++;
i f (patNode has | eftOpnd)
next Li bNode = insert( patNode.|eftQond, nextLi bNode );

return nextLi bNode;

}

Figure 2.5: Pseudo code: Inserting a tree pattern into a PSG.

even earlier. Hence, the worst-case computational coritpleka search isD(d), with d
the size of the pattern sought, up to the maximum number oftipa nodes in any pattern
in the library—which is equal to the maximum depth of the ligraearch-graph. Note that
d < p. Our experimental results presented in Chapter 5 showrlaed a search in a PSG
is orders of magnitude faster than a search in a linked list.

2.2.3 Inserting Patterns into a PSG

We insert a pattern into a PSG by searching it and complengetite path if it ends before
finding the pattern. The algorithm is given in Figure 2.5.

The difference to the search algorithm in Figure 2.2 is irating a newLi bNode if
next Li bNode does not yet exist. The parameter passed to thelriemNode is the
number of live operands that the associated pattern has nééded to dimension the
next -array correctly. Compared withi bNode, the number of live operands for the new
Li bNode is reduced by the number of the current active operand whereext pattern
node is attached. This is because the number of an operaresponds to the number
of live operands to the right of it, and all operands that é&gatrof the operand where
a new node is attached are dead, as explained in Section ZTA@ resulting number
is then increased by one because the new node occupies tieatcactive operand but
contributes two new operands—Ileft and right. Hence, the rmurablive operands for the
newLi bNode computes to

libN ode.liveOpnds — activeOpnd + 1. (2.1)

The modification of the insert algorithm compared with tharsh algorithm does not
affect the computational complexity. It is aléf(d), with d the size of the pattern sought,
up to the maximum number of operation nodes in any patternddilbrary, andi < p.
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activeQpnd = 0; /+ gl obal variable */
patternlnLibrary = find( patRoot, |ibRoot );

Li bNode find( patNode, |ibNode ) {
Li bNode next Li bNode;

if ( patNode.nodeNurmber == |ibNode. next NodeNunber )
next Li bNode = |i bNode. next[activeQond] [ pat Node. operator];
el se
next Li bNode = |i bNode.revisit[activeOpnd][ pat Node. nodeNunber];

activeQpnd = 0;
i f (patNode has rightOpnd AND next Li bNode exi sts)
next Li bNode = find( pat Node.right Qond, nextLi bNode );

acti veQpnd++;
if (patNode has | eftOpnd AND nextLi bNode exists)
next Li bNode = find( patNode.|eftQpnd, nextLibNode );

return nextLi bNode;

}

Figure 2.6: Pseudo code: DAG pattern search in a PSG.

2.2.4 Extension for DAG Patterns

In order to extend the PSG concept from trees to directediagyaphs, we need to cater
for operator nodes whose result feeds more than one opefarier operator nodes. We
support this by introducing eevi si t -array with each PSG entry, similar to thext -
array, through which operator nodes are revisited that baea encountered before via a
different operand. Theevi si t -array is indexed by the operand number to which the
next node is attached, and by the unique number of the operade that is being revisited
via this operand. Therefore, the operator nodes must be ergdbvhich we do in the same
order in which the search and insert algorithms traversentha this way we can detect
that we revisit a pattern node because it will have a lowerlremthan the current node
while otherwise, the number of the next node is one higher.

The searchalgorithm in Figure 2.6 has been extended by the comparitrecmumber
of the searched pattern node and the number of the next nesmode added to the library
entry. If they are not equal the pattern node has been vibiéate. In this case, the PSG
is traversed through a pointer inraevi si t -array. For newly discovered nodes of the
searched pattern, thext -array is employed for traversal as before.

Analogously, thansertalgorithm for DAG patterns in Figure 2.7 first tests whethner t
next pattern node is being revisited or not. If it is beingsigd the algorithm tries to find
the according library entry inevi si t -array, otherwise in thaext -array. If the library
entry does not exist it is created and entered in the apatepairay.

The Li bNode constructor now has the next node number as an additionaiengt.
This is the number of the next new node to be added to the paitsociated with the
library entry. If the current pattern node has been visitefbte the next node number is
the same as with the current library entry because there iewmode being attached—it
is merely being revisited. In contrast, if the pattern naglaew the next node number is
one higher than of the current library entry because theeatimumber will be taken by the
new node.

We formulate the computational complexity of the DAG algfams dependent on the
number of edges in the pattern rather than the number of mperades because it is the
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activeQond = 0; /+ gl obal variable */
patternlnLibrary = insert( patRoot, |ibRoot );

Li bNode insert( patNode, |ibNode ) {
bool revisit = ( patNode. nodeNunmber == |ibNode. next NodeNunber );
Li bNode next Li bNode;
if (lrevisit)

next Li bNode = |i bNode. next[activeQpnd] [ pat Node. operator];
el se
next Li bNode = | i bNode.revisit[activeOpnd][ pat Node. nodeNunber];

if (nextLibNode does not exist) {

liveOpnds = |ibNode.liveQpnds - activeQpnd + 1;

if (lrevisit) {
next Li bNode = new Li bNode( |iveOpnds, |ibNode.next NodeNunmber + 1 );
| i bNode. next [ acti veQpnd] [ pat Node. operat or] = nextLi bNode;

} else {
next Li bNode = new Li bNode( |iveQOpnds, |ibNode.next NodeNunber );
I'i bNode. revi sit[activeOpnd] [ pat Node. nodeNunber] = next Li bNode;

}
}

activeQond = 0;
if (patNode has right Cpnd)
next Li bNode = insert( patNode.rightQond, nextLibNode );

acti veQpnd++;
if (patNode has | eftOpnd)
next Li bNode = insert( patNode.|eftQpnd, nextLi bNode );

return nextLi bNode;

}

Figure 2.7: Pseudo code: Inserting a DAG pattern into a PSG.

edges that the algorithms traverse and in a DAG there can betiman one edge per node.
This, however, still results in a linear complexi(e), with e the number of edges in the
pattern sought, up to the maximum number of edges in anyrpatt¢he library—which is
again equal to the maximum depth of the library search-grgghs one because the first
step from the library root to the first library entry does notrespond to an edge in the
pattern. This complexity is equal to the tree-pattern chae ialso formulate it dependent
on the number of edges in the searched pattern.

2.3 Exploiting Similarities between Patterns

The pattern search graph exploits relations between patfer speeding up searches in
a library. There are similar relations based on which a pattan be used to substitute a
class of simpler patterns by disabling different parts efgghttern. This can be exploited in
ASIP design to speed up different application patterns witly one special instruction, in
this way resulting in a leaner instruction set. The methed aupports finding more oppor-
tunities to employ complex instructions during code geti@na Furthermore, it provides
a systematic approach to finding opportunities for dataglasining in high-level synthesis.
In our method we use identity operands to disable operatioiles in a pattern in order to
mimic any of a group of simpler patterns.
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2.3.1 Identity Operands

Most primitive operations that are found in the instructsats of general-purpose proces-
sors can be used to map one input operatalitself by applying an identity operarng; 4,
i.e. the algebraic identity element for that operator, ®dther input such that

a o 0pyg = a, or

opid © a = a,

turning the primitive operation into an identity operation. Examples of identity operands
are given in Table 2.1.

primitive left right
operation || operand| operand
+ 0 0
— n/a 0
X 1 1
/ n/a 1
<<, >> n/a 0
AND all1's all1's
OR, XOR 0 0

Table 2.1: Identity operands.

An operand for an operation node in a DFG pattern is eitheeigged by another node
in the same pattern or is an external input to the patternebBdipg on their operands, we
distinguish three types of nodes:

¢ A leaf nodehas two operands that are external inputs to the pattern.

e An internal nodehas two operands that are both generated by other nodes in the
same pattern.

e A cyclops noddnas only one operand that is an external input to the pattedrire
other operand is generated within the pattern. Dependingtather the external
input is the right or left operand, we call the nodeight cyclopsor aleft cyclops
respectively.

A complex pattern can be transformed into a simpler pattgragplying the identity
operands of its operation nodes to the appropriate inpugseby effectively eliminating
nodes from the pattern. Particular operands can be appiiectlgt to leaf nodes and to
cyclops nodes. The non-commutative operations in Table&v& no left identity operand.
Nodes of these operation types must be leafs or right-cgahmples to be removable, i.e.,
their right input must be accessible from outside the pafter

2.3.2 The Identity Operand Graph

By applying identity operands to one node at a time, a patiernnodes, of whichm are
removable can be transformed into patterns ofn — 1 nodes. By recursively repeating

1l oad and store operations have no identity operand at alhdmause of their long latency they are less relevant
for instruction-set generation than arithmetic operations
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this on each of the simpler patterns, the complex patternevantually be reduced to
primitive operations. If all leaf nodes and all cyclops nede any stage of the recursion
are removable then the set of primitive operations incladlesperation types that occur in
the pattern. The primitive operations finally all converge@moveoperation.
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Figure 2.8: I0G of a pattern.

The sequence of applying the identity operands can be usedrtdhe patterns. We
represent this sorting as a graph with the graph nodes ble@patterns and the directed
graph edges representing the application of an identityamukto one particular operation
node in the pattern. The edges are directed from the morelemmapttern to the derived
smaller one. We call this type of graph aentity-operand graph (I0Gand say that
a complex pattermlominatesthe simpler patterns in its I0G. Figure 2.8 shows the 10G
for the level-3 pattern in the PSG in Figure 2.1. Evidentlythbgraphs contain the same
patterns and only differ in the number and the orientatiothefedges. This suggests that
both graphs can be efficiently constructed simultaneousty lze held in a unified data
structure.

The library IOG shows which simpler patterns can be coveged tomplex instruction
during code generation, again by applying the appropriddatity operands to its input.
Therefore, these simpler patterns need not be implemestedlizidual instructions if the
complex pattern is chosen for implementation—providediti@possibly slower execution
and the cost of applying the identity operands can be aftbrdehis cost may be, for
instance, additionaioveinstructions. If the cost is lower than the benefit then th&I10
reveals opportunities to substitute patterns by more cexnphes during instruction-set
synthesis and code generation, leading to a reduced nurilspreoial instructions that
provide the same benefit.

The power of a complex pattern to cover all derived simplétepas seems to suggest
that only the most complex patterns should be chosen foreémehtation. But in ASIP
design methodologies there is an implementation costium€t(patiern) associated with
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the patterns that usually increases with pattern complecdtpturing for instance operand
encoding effort, die area, or latency. This cost functiotabhees the derived tendency
towards more complex patterns for implementation.

In practice, nodes could also simply be deleted from theepafor construction of the
library graph, whether there is an appropriate ID operandabr This approach would,
however, eliminate the IOG property that a pattern can gubestall other patterns in its
IOG by applying ID operands accordingly, a property that éedaed for more efficient
instruction selection.

2.3.3 Inserting Patterns into an 10G

In an early article on IOGs [Dit03] we outlined an algorithor inserting the 10G of a
pattern into a PSG library. First, we constructed the I0Ghefrtew pattern and derived
the corresponding search graph. Then, for each path inehigls graph, we tried to find
the corresponding path in the library. If a path did not ekisits entirety in the library
then the part existing was connected to the remainder ofdtteip the search graph of the
new pattern. Those parts of the new search graph that aleaskgd in the library were
deleted.

\ ,/ — PSG edge
- - —» 10G edge

Level 3 Level 2 Level 1 Level 0

Figure2.9: Combined PSG/IOG.

In the following we give a detailed description of a new altfon that combines the
construction of the I0OG of a pattern with its insertion int®&G library. The resulting
combined pattern-search/identity-operand graph en#sésearches and shows synergies
between patterns at the same time. Figure 2.9 shows the gethfgraph for the patterns
in Figures 2.1 and 2.8. The search algorithm requires oelyPtBG edges and therefore the
code in Figure 2.2 does not need to be modified. In contrasingertion algorithm has to
create also the IOG edges.
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The algorithm traverses the pattern to be inserted in theesaay as the algorithms in
Section 2.2.1, discovering right branches first. While dasogthe algorithm maintains
a list of patterns it has inserted, callBtdgments that are consecutively combined with
discovered pattern nodes to form all possible combinatidnmattern nodes that occur in
the 10G of the pattern. Each of these combinations is indénte the PSG library and the
IOG edges are created, provided that the according hodmvable.

Discovered pattern nodes must be combined with fragmengsich a way that only
patterns are generated that can be modeled by disablingtapenodes from the original
pattern to be inserted. In particular, a first node can onlgperand to a second node on
the same side—left or right—on which the pattern branch thatains the first node is
attached to the second node.

di scover A \/\/
> A

new fragment

\/ \/

di scover B \(A{ \(AD/

possi bl e i mpossi bl e
conbi nati on conbi nati on
original pattern \ /
discover C ' discover D \ —
>
new fragment i nposm bl e

conbi nati on

Figure 2.10: Fragment combination.

Consider, for instance, the pattern in Figure 2.10. The s@de labeled in the order in
which they are discovered. Node A is discovered first andiedeénto the library as well as
into the list of fragments. Node B is discovered next. Now, dinly possible combination
with node A in the fragments list is to make B the right operafd. There is no set of
nodes in the original pattern to be disabled such that node®dibe the left operand of
A.

In order to ensure that discovered nodes are combined vdtimients only in possi-
ble ways, each fragment has one operand markeattage operand When combining, a
discovered pattern node is always attached to the currémeaperand of the fragment.
Once the pattern branch attached to the active operand afmént has been completely
discovered, thactivemark is moved to the next possible operand of the fragmemtréef
nodes in the branch attached to this new active operand arg thscovered. If there is no
possible operand left to become active then all combinatith the fragment have been
generated and the fragment is deleted from the list of framjse

Attaching a discovered node to the active operand of a fragrhewever, can still result
in impossible combinations. This is the case if the patteamth that is currently discov-
ered is a left branch of a pattern node that is not containétkifragment but the fragment
does contain a node from the right branch. The node from tite branch then blocks
the only operand where a node from the left branch could laefsd to create a possible
combination.
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To illustrate this, consider again the pattern in Figuré©2When node C is discovered
it is combined with node A from the fragment list as its rigipeoand. As in the original
pattern none of C’s operands is fed by an operation node,ekiepossible operand of the
new fragment is A's left operand which is therefore markethasactive operand, indicated
by the dotted oval. If we now discover pattern node D and htiato the active operand
of the fragment we just created, as shown in the figure, theamiee at an impossible
combination again.

In order to prevent this type of impossible combination weperarily disable fragments
if the equivalent to their active operand in the originalteat is not on the path to the
pattern node to be discovered next. In the example, As lefrand is not on the path to
node D. Therefore, a fragment that has A's left operand ntbakéive has to be disabled at
this point. A disabled fragment is enabled as soon as therpatbde attached to its active
operand is being discovered. The example fragment is esthalfien node E is discovered.

In the following we present a pseudo-code implementatiothefalgorithm with sub-
routines for the fragment combination and the computatfadhenext active operand.

The Top-level Routine

Figure 2.11 shows the pseudo code of the top level routineihsertion algorithm, start-
ing with the root node of the pattern to be inserted. The disczd pattern node is combined
with the fragments iri r agLi st by callingconbi neFr ags() . For each operand that
exists, i.e., that is fed by another pattern nadeser t () is called recursively, in this way
traversing the pattern.

After the right branch has been traversed, the active maubdsated for all fragments
that have the right operand of the current node as theireacjperand. This set of frag-
ments coincides with the set that has been generated by lthte canbi neFr ags() .
All fragments generated later in the subsequent recursiltéaci nsert () either do not
include the current node, or in combining the fragments idiet operand in question has
been occupied.

For the fragment set, the active mark is moved from the righthe left operand—
provided that the left operand exists. At the same time, thibiofragments are enabled
whose active operand is attached to the current node. Thibethe case for any pattern
generated while traversing the right branch of the curredien Then the nodes in the left
branch are discovered.

After both branches have been traversed, the active mathddragments whose active
operand is attached to the current node is advanced to theacte operand. Each of
these fragments is disabled until the recursion unwind& b@at¢he node to which their
active operand is attached. If there was no valid next ogettaen all combinations with
the fragment have been generated and it is deleted fronsth€lbnsequently, the fragment
list will be empty at the end of the insertion procedure.

Combining Fragments with a New Node

The algorithmconbi neFrags() in Figure 2.12 combines each enabled fragment in
fragLi st with the operation node that is passed to it as an argumenhe Ifesulting
combination is not present in the library a new library engrgreated and connected to a
PSG edge. The number of live operands for the new entry felBgquation (2.1). The IOG
edges from the new entry are held in #lei mi nat e-array, indexed by the number of the
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Fragnment sLi st fragList = enpty; // globally accessed
insert( patRoot );

insert( patNode ) {
| astd dFrag = fragList.end();
conbi neFrags( pat Node );
firstNewFrag = | ast A dFrag. next;

if (patNode.rightQond exists) {
| ast NewFrag = fragList.| astEl enent
insert( patNode.rightOpnd );

if (patNode.leftOpnd exists) {
for each frag in fragList fromfirstNewFrag to | ast NewFrag {
frag. acti veOpnd = FI RST_LEFT_OPND;
frag. next Acti veOpnd = newNext ActiveQpnd( frag );

for each frag from | ast NewFrag. next to fragList.| astEl enent
if (frag.activeOpnd is opnd to pat Node)
enabl e fragnent;

insert( patNode.leftOpnd );
}

} else if (patNode.leftOpnd exists) {
insert( patNode.leftOpnd );
} /1 el se pat Node has no opnds

if (any of patNode's opnds exists) {
for each frag in fragList fromfirstNewFrag to fragList.end() {
if (frag.activeOpnd is opnd to patNode) {
frag.activeOpnd = frag. next Acti veOpnd;
frag. next Acti veOpnd = newNext ActiveQpnd( frag );
di sabl e frag;

}

if (frag.activeOpnd is invalid)
fragList.delete( frag );
}
}
}

Figure2.11: Pseudo code: Insert a pattern into an 10G.

pattern node that is eliminated along the edge. For eachthatiean be eliminated from
the combination using ID operands, the resulting pattese@&ched in the library and an
IOG edge to the according library entry is created.

In order to create a new entry for the fragments list, thevaciperand of the new frag-
ment is determined. Depending on which operandsadfNode exist, i.e. which of them
are fed by other pattern nodes, the active operand is set tigtht operand, the left operand,
or to the result of Equation (2.1). The next active operarmbimputed accordingly. With
these values, a new fragment is created and appended tatirednt list. According to
the operand-numbering scheme described in Section 2.2.adfive operand of the new
fragment is not attached foat Node if acti veOpnd is greater than 1. In this case,
the creator routine disables the new fragment until theatjmer node to which the active
operand is attached.

If none of pat Node’s operands exist and the fragment with which it is combinas h
no validnext Act i veCpnd no new fragment is created as it would have no valid active
operand to which an operation node could be attached for ic@tidn.
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conbi neFrags( pat Node ) {
for each enabled frag in current fragList {
l'i bNode = frag.libraryLocation;
next Li bNode = |i bNode. next[frag. acti veQpnd] [ pat Node. operator];

i f (nextLibNode does not exist) {
liveOpnds = |ibNode.liveQpnds - frag.activeQpnd + 1;
next Li bNode = new Li bNode( |iveQpnds );
I i bNode. next [frag. acti veOpnd] [ pat Node. operator] = next Li bNode;

for each elimnatable node in the nextLi bNode pattern {
iogChild = pattern w o node;
activeOpnd = 0; // global variable for find()
edgeTarget = find( iogChild );
next Li bNode. el i m nat e[ pat Node. nodeNunber] = edgeTar get;
}
}

/'l create new fragment
if (patNode's right or left opnd exists OR
frag has valid nextActiveCpnd) {

if (neither patNode's right nor |eft operand exists) {
newActi veOpnd = frag. next ActiveOpnd - frag.activeQpnd + 1;
newNext Acti veOpnd = newNext ActiveQpnd( frag );
if ( newNextActiveOpnd is valid )
newNext Acti veOpnd = newNext ActiveQpnd - frag.activeCpnd + 1;

} else if (patNode's right and left opnd exist) {
newAct i veOpnd = RI GHT_OPND;
newNext Acti veQpnd = FI RST_LEFT_OPND;

} else { // either left or right opnd exists
if (patNodes’s right opnd exists)
newAct i veOpnd = RI GHT_OPND;
el se
newAct i veOpnd = FI RST_LEFT_COPND;

if (frag.nextActiveQpnd == | NVALI D)
newNext Acti veOpnd = | NVALI D
el se

newNext ActiveQpnd = frag. next Acti veQpnd - frag.activeCpnd + 1;
}

newFrag = new Frag( newActiveQpnd, newNext ActiveOpnd,

frag, newLi bNode );
/1 note that new Frag is disabled if active node is not the |ast added
fragLi st. append( newFrag );

Figure 2.12: Pseudo code: Combine fragments with next pattern node.

Computing the Next Active Operand

Figure 2.13 shows the pseudo code for computing the nexteasfierand of a fragment,
assuming that the active operand has been advanaeeiktoAct i veQpnd which there-
fore must be set to a new value. Héxt Act i veQpnd is invalid then all combinations
with live operands of the fragment have been generateddyli@ad the next active operand
remains invalid. If the curremtext Acti veCpnd is the left operand of the last added
node then th@ext Act i veCpnd of the parent fragment can be used to compute the next
active operand fof r ag. Otherwise, thenext Act i veOpnd of f r ag and its parent re-

fer to the same operand. Then we have to find the active opefterdhat by recursively
callingnewNext Act i veOpnd. In both cases, the founghr ent NAOis transformed for

the current fragment by Equation (2.1).

The recursion unwinds if either a fragment with an invalieixt Act i veOpnd is en-
countered, or if a fragment has been found where the nexteacpierand is attached to
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int newNext ActiveQpnd( frag ) {
returnCpnd = | NVALI D;

if (frag.nextActiveOpnd is valid) {
if (frag.nextActiveOpnd == FI RST_LEFT_OPND)
/1 found NAO => unwi nd recursion
par ent NAO = frag. parent. next Acti veQpnd;
el se

par ent NAO = newNext Acti veOpnd( frag. parent );

if (parentNAO is valid)
returnOpnd = parent NAO - (frag.opndToParent) + 1;
}

return returnOpnd;

}

Figure 2.13: Pseudo code: Compute next active operand.

the last added node because then,nbet Act i veOpnd of its parent fragment directly
represents its own futumext Act i veQpnd.

To understand why this is so, consider the family tree oftfragts in Figure 2.14. Frag-
ment 2 has been generated by combining fragment 1 with nodad@fragment 3 is the
combination of fragment 2 with node C. From the way the aatiperands are marked we
can conclude that the insertion algorithm is currently vireglon the left branch of node C.

If we now setact i veOpnd of fragment 3 to its next active operand and then try to find a
newnext Act i veQpnd we see that its parentisext Act i veCOpnd is indeed identical
with our oldnext Act i veOpnd: They both mark the left operand of node B. We there-
fore have to call th@ewNext Acti veQpnd() procedure recursively with fragment 2.

Fragnent 1 Fragnent 2 Fragment 3
parent of . //—; parent of RN

.
(A7
.

"4 = next Acti veOpnd
B
) = activeOpnd
~J

Figure 2.14: Family tree of fragments.

The active operand of fragment 2 is directly attached to #s¢ hode that has been
added—compared with its parent. And indeed the parerdst Acti veOpnd is the

futurenext Act i veQpnd we have been searching for. Therefore, the recursion uswind
at this point.

2.3.4 10Gs of DAG Patterns

Some steps in a DAG search in a PSG do not add another openatilento a pattern on

the search path. Instead they attach another operand impioé toutput of a node that is
already there. These steps cannot be reversed by applyiogdiands. Therefore, the IOG
for a DAG pattern does not necessarily contain the pattenrte@ search path in the PSG
for the same pattern.
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Figure 2.15: I0G of a DAG pattern.

The 10G of a DAG, however, is still useful to find substitutigpportunities as in the tree
case. For this purpose it can be constructed separatelythesearch graph. Figure 2.15
shows an example of the 10G of a DAG pattern. Unlike the traepn 10G in Figure 2.8,
the DAG-pattern IOG does not comprise the generic basicatipas on level 1. The op-
erations are more constrained, e.g., in two inputs beinglegin this case resulting in a
squaring operation—or one input being a constant—in this E@dting in an increment
operation. Furthermore, the I0G does not converge to a mpsration at level 0.

The fragment technique used to construct the 10G for treteqetis not easily adapted
to DAGs. It appears more promising to construct it top-dowmliminating each node for
which this is possible on each level of the IOG. In this workwi# only build IOGs for
tree patterns.

2.4 Library Size

2.4.1 Patternsin a PSG

As for the space per library entry, a linked-list library lb@store a complete representation
of the pattern with each entry. This amounts to a spage 8pace,,,x,q. With n the total
number of operation nodes of all patterns in the library 8pdce,,;noq. the space per
operation node. Moreover, there is some overhead for thsttiscture.

In contrast, the pattern represented by an entry in a PSGés iy the position of the
entry in the library, i.e., by the path from the library rootthe entry. Hence, the patterns
do not have to be stored explicitly with each entry. What hasetgtored with each entry
are the arrays afiext -pointers and, for DAG patterns, thevi si t -arrays.

The number of possibilities to grow a pattern, i.e., the nendf next -pointers stored
with a pattern corresponds to the number of possible coatios of a search for larger
patterns (see Section 2.2.2): the number of external leftayyls on the top left fringe of
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the pattern, plus one right operand, times the number ofifwaroperators in the library.
#NextPointers = (Operandsy,joq, + 1)Primitives

Of the external right operands of a pattern, only the lefstias to be considered because
the other right operands have been handled at lower leveéledfearch graph. The same
is true for left operands outside of the top left fringe. le thorst case, all left operands in
a pattern are on the top left fringe. Then the number of nektitprs for this pattern with

p nodes is(p + 1) - Primitives. Note that pointers that are NULL still have to be stored
because they are a termination condition of the recursidindrsearch algorithm.

For each pattern in a PSG all patterns on the search path fsodbe present. In the
worst case this could result in an overhead of as many adédltiitorary entries as operation
nodes in a tree pattern. In practice, however, patterns @msearch path will usually be
present anyway as the pattern generator will find them ageayiihs in the application
graph, resulting in virtually no overhead entries at allisTieasoning is confirmed by our
experimental findings in Chapter 5.

2.4.2 Analytical Bounds for IOGs

The patterns with the largest IOGs are those for which eaehatipn node can be elim-
inated by its ID operand. This is the case for patterns thasisb only of right-cyclops
nodes with right identity operands, such as the patternganrei2.8. These patterns form a
sequence of nodes, each of which obtains its left operanddrprevious node—except for
the top leaf node—and that provides its result as the leftakto the following node—
except for the root node. All right operands are patteresmmel inputs through which the
ID operands can be applied to eliminate any node at any Ié#e¢dOG. For the worst-case
number of I0G entries, we consider patterns of this kind enftllowing.

The derivation of patterns from a parent pattern can be flated as a combinatorial
problem at each 10G level: On levél how many different ways are there to chodse
nodes out of thes nodes in the parent pattern? Hence, a patterndifferentright-cyclops

nodes generates a graph of
i n
Z k

k=0
patterns through identity-operand transformations. Tigtides the parent pattern itself,

the primitive operations, and the fimalovenode. For the first pattern to be inserted into an
empty library, this is also the number of new patterns forithrary.

When a parent pattern that is being inserted has offspringnpatthat are already present
in the library then the number of new patterns that the pargridduces into the library is
accordingly lower. Each sub-pattern that the library ardidG of the new parent pattern
have in common comprises the merge pattern where both graplt and its complete
cone of ID transformations down to the fin@loveoperation. For a merge pattern that
comprisesn right-cyclops nodes out of thenodes of the parent, the number of additional
patterns that are introduced to the library by the parenepats only

> (-2 (7)

k=0 =0

If the library and the parent have more than one merge patiem the 10Gs of the
merge patterns may overlap. In this case, the overlappgigmenust be subtracted only
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once from the contribution of the parent to the library. Fgragent that has two merge
patterns with the library, comprising; andms nodes, respectively, and the 10Gs of the
two merge patterns merging at a pattermef nodes, the contribution of the parent to the
library is computed by

(- (% ()27 -5(7)

k=0 i=0 g=0

The patterns with the smallest I0Gs are those for which onyrmode can be removed
at each transformation level. This is true for patterns tbasist only of left-cyclops nodes
of non-commutative operators. In these patterns, the @mhowable node is the leaf node
because it is the only node with a pattern-external rightame The |IOG of such a parent
has only one pattern at each level, namely, the pattern aeeakhigher without the leaf
node. If the parent comprisesoperation nodes its IOG will consists ofpatterns and the
movenode. This minimum set of patterns resembles the searchopéttle parent pattern
and is therefore equal to the parent’s contribution to a RIB@rly.

Patterns that comprise multiple instances of the same tenaill result in relatively
small I0Gs as redundant child patterns will occur only oncéhe IOG. Each duplicated
operation node results in one primitive node fewer on levef the 10G. Furthermore,
duplicated operations will probably also result in redurtdzatterns on higher I0G levels.
Each of these redundancies reduces the number of pattairs iDG.

How many patterns a library will ultimately incorporatecstgly depends on the com-
position of the parent patterns that have been inserted teréfore cannot be derived
analytically.

2.4.3 Comparing IOGs with Unordered Libraries

An unordered pattern library only comprises parent pasteiiany offspring patterns in
IOGs are also sub-graphs of the parent pattern. They wouwiel i@en added to the library
by a conventional library-construction algorithm as wdlut there are other patterns in
an 110G that are not sub-graphs of the parent and that therefamstitute an overhead
compared with conventional libraries.

For each transformation step from a parent pattern to pieiatterns, a simpler pattern
is a sub-graph of its parent if the operation node eliminated a leaf or a root node,
i.e., the eliminated node had only pattern-external inputiés only output was a pattern-
external output. Eliminating other nodes, i.e. cyclopsemdilways leads to connecting
previously unconnected nodes. This new connection cancmirdn sub-graphs of the
parent pattern. Hence, compared with an unordered paitbeany, patterns that incorporate
such a connection represent the overhead of an 10G.

The number of patterns in the I0G that are sub-graphs of ttenpé equal to the sum
of leaf nodes and removable root nodes of the parent pattetthase of all its generated
sub-graphs. If a leaf that is being eliminated from a patteedls into a cyclops node then
the child pattern generated has the same number of leavbs. |Haf feeds into an internal
node then the child has one leaf less than its parent.

The patterns with the highest number of children that aresnbtgraphs of the parent,
i.e. the patterns with the largest I0G overhead comparedd wvibrdered pattern libraries,
are again patterns of only right-cyclops nodes and a simgiEriode which all represent
different operations, such as the pattern in Figure 2.8.hH&E level from the parent
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pattern to level 1 has one real sub-graph more than the peléwel—starting with one

in the highest level. The other patterns are not sub-graptiegarent and constitute the
overhead. Subtracting the total number of sub-graphs fremdtal number of patterns in
the IOG of a pattern results in the following formula for therat-case I0G overhead for a
parent pattern of nodes:

n

Z(Z>—§i=1+§(z>—k

k=0

In practice, inserted patterns will have a significant nundfénternal nodes that cannot
be eliminated. Moreover, they will comprise redundant gtdphs that are inserted into the
library only once. Consequently, the overhead of such pattis significantly lower than
in the worst case given here. This is confirmed by our experiaieesults in Chapter 5.

2.5 Summary of Pattern-Library Organization

In this chapter we have presented a novel method to orgaibizgiés of tree and DAG
patterns by means of our pattern search graphs. Comparkdcantentional unordered
libraries, PSGs enable more efficient searches with a catipoal complexity ofO(d)
instead ofO(n - p), with d < p. Our experiments presented in Chapter 5 confirm that our
PSG libraries can be searched orders of magnitude fastesthg-of-the-art libraries, with
virtually no overhead in library size.

PSGs eliminate the dependency between computational eaitypand library size and
therefore can handle large pattern libraries. Current oustffor library organization rely
on heuristics that exclude less promising patterns in aa&eep the library access time
low. Given the memory size of today’s workstations, our apph eliminates the need
for such heuristics. Therefore, exact methods are now Iplestiat do not risk to miss
beneficial patterns that heuristics might eliminate. TBi®fi particular importance for
control-dominated applications where patterns that oooly rarely may be indispensable
to meet fine-grained timing constraints.

Furthermore, we have introduced the concept of identitgrapd graphs which reveal
opportunities to substitute patterns by others. This caexpoited for instruction-set
generation, resulting in a leaner instruction set with tame speed-up. Moreover, I0Gs
can be used during code generation to increase the numbepoftanities for the use of
specialized instructions, resulting in faster code. We at® an application of IOGs to find
opportunities for datapath sharing in synthesis systemshis area, I0Gs significantly
increase the application space for datapaths that resatft fiattern-merging methods such
as [MAHMO02, BKS04]. While the merging methods construct sypeterns our 10G
shows all sub-patterns that can be implemented by the sgitarn employing identity
operands. Moreover, configuring a merged datapath withiigleperands does not require
additional chip real-estate as opposed to reconfiguratdeconnection networks or sets of
multiplexers which are commonly used in the literature.






3 Compiler Methods for
Fine-Grained Timing Constraints

This chapter discusses how to specify, represent, anddramthe benchmark applications
that represent the domain for which the ASIP is to be desighésithese applications that
will later be analyzed in order to derive the instructionfeethe ASIP.
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w/ Timing Constraints
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Patterns
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The control-dominated domain is characterized by finerg@ikiming constraints. If an
input register is not read in the right cycle it may be ovett®n with a new value, and if
an output is not generated on time, it may not have the intéeéfect. Moreover, control-
dominated systems often have timing constraints that depeimput data at run-time, e.g.,
to process a stream of network-packet data depending ordehkemgth field.

For the automated design of an ASIP that meets these cartstraidesigner must an-
notate the constraints in the benchmark applications. Camapproaches to timing spec-
ification in behavioral HLLs provide only coarse-grainedakitions and data-dependent
constraints cannot be expressed with current languageéraotss The control-dominated
domain, however, requires timing annotations with a prenisf a single register access.
This calls for a novel system of annotations. In order tolitate the reuse of existing HLL
code in the design process it is desirable that the constaairotations do not require a re-
design of the code. For the application analysis, the cotlethve annotations must then be
transformed to a graph representation knowinésrmediate representation (IR) com-
pilers. The IR must represent all constructs of the HLL andlist support optimizations
that help meet the timing constraints.

37
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In this chapter we propose solutions to these problems.r Afurvey of related work
in Section 3.1, we introduce a new method to express finewggaiiming constraints in
ANSI C in a standard-compliant way in Section 3.2. The metimetlides a novel con-
struct for data-dependent waiting. Section 3.3 presentsnoilti-layer IR which combines
representations for data and control flow with a new layemoiitg constructs, including a
data-dependent wait. Section 3.4 describes the transfiomfaom the timing annotations
in C to the timing graph in the multi-layer IR. Section 3.5 derstrates the expressiveness
of our multi-layer IR by the example of an optimization tethre that employs informa-
tion from each layer in the IR to resolve scheduling confli@sction 3.6 summarizes this
chapter.

3.1 Related Work

3.1.1 Specifying Timing Constraints

The fundamentals of the classification, specification anidization of timing constraints
have been studied in [Das85]. Most methods found in thealitee express minimum and
maximum timing constraints as proposed there.

Interestingly, the classical hardware description laggga(HDLs), such as VHDL
[VHDLO02] or SystemC [OSCI02], only have a basic notion of ¢ifto specify strict sim-
ulation timing. They do not provide constructs to specifynimum, maximum, or range
constraints that allow optimizations for synthesis [EKPP9

Various HLLs include constructs to specify timing congitaj e.g., an annotated ver-
sion of Esterel [CPP01] and Real-Time for Java [RTJ]. While ANSI C [KR88] does
not provide any means to express timing information, thereehheen attempts to use C
derivatives as HDLs, e.gj* [EB94] and HardwareC [KM90]. The programming style of
these derivatives, however, significantly differs from ANS[KR88], e.g., in constructs
to model parallel processes. Therefore, these languageseea fundamental rewrite of
existing applications. Moreover, the derivatives introgl@xtensions that are not standard-
compliant. Hence, the code can no longer be processed by comANSI C tools. The
extensions are introduced to make C a suitable HLL for ASI@sssis, but they make the
derivatives much more powerful and complex than necessa3IP design.

We take a different approach that is closer to ANSI C and alsoensuitable for an
algorithmic coding style as opposed to the hardware focubeHDL derivatives of C.
Our approach is presented in Section 3.2.

3.1.2 Intermediate Representations

A crucial point for the design methodology is the interméelieepresentation (IR) of ap-
plications, which is analyzed to find optimizations andrinstion patterns. Restrictions of
the IR inadvertently result in deficiencies for the entireqass because the effectiveness
of optimizations depends on the set of available infornmatio

In the data-dominated domain, the main optimization objeds to reduce the overall
running time of an algorithm. In the pursuit of this goal it kea no difference in which
section of the algorithm time is saved. Hence, loops are mising optimization target
because each cycle saved in a loop is rewarded multiple fiitfessloop is executed more
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than once. In estimating the leverage factor of a loop, Wrugcprobabilities play an
important role.

In [ACO01] it was found that in the data-dominated domain, ¢benpiler perspective is
not a good application representation to work on becaugeviges no information about
the probability with which individual branches are takenheTconsequence was to use
execution traces instead.

In our control-dominated domain, we must meet hard timingst@ints under all cir-
cumstances. In this environment, branch probabilitiesatdelp because we must always
assume the worst case. We propose to capture more informatidhe applications by
going to a higher abstraction level and introducing a prograpresentation that enables
programmers to express more of their application experfse the loop-intensive data-
dominated domain, however, the annotation method intrediirc Section 3.2 could easily
be extended to express branching probabilities or valugasfor variables.

The most commonly used models for hardware/software cigrilesamely FSMs, dis-
crete-event systems, Petri nets, communicating processdsynchronous/reactive mod-
els [CEP99], as well as several derivatives [CG4, TTSV00a, TTSV00b], have been in-
herited from the hardware domain. Consequently, they assummdependent type of con-
currency with reactive processes starting and runningieddently of each other. Schedul-
ing such concurrent specifications for single-thread @saes is non-trivial [SLWSV99,
WBC*00, CPF02].
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Figure 3.1: A simple CDFG.

On the instruction level of an ASIP, in contrast, we do notéhthvs independent type
of concurrency. Assuming a VLIW architecture, instructaarestatically scheduled in
parallel. Therefore, a standard compiler IR, such as a cléd#éta flow graph (CDFG), is
better suited for an ASIP design system, providing well knarnsformations from C to
the IR and a plethora of available optimizations. A CDFG i®mbination of a control-
flow graph (CFG, a.k.a. flow graph) and data-flow graphs (DFG3yure 3.1 shows a
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simple example of a CDFG with DFGs inside the dotted CFG noBes an overview of
other compiler IRs the reader is referred to [Muc97, Mor9@a@5].

A CDFG can be transformed into the static single assignn&8Aj form [CFR 91] in
which each variable use has exactly one definition. Furtbeznthe SSA form makes data
dependencies across control flow boundaries explicit apdreds the scope of transforma-
tions.

An example of a graph representation of timing constrasitié output transition graph
(OTG) as introduced for controller FSMs in ASICs [NT92]. Tdaenstraints are represented
by edges between output events and the edges are annot#iteatievninimum and max-
imum time between the operations. Scheduled nodes areadedatith their associated
control step.

A CDFG must be extended to capture fine-grained timing caimgr to be suitable for
the control-dominated domain. The extensions we propasprasented in Section 3.3.

3.2 Integrating Timing Constraints into ANSI C

Most existing software for embedded systems is availab@amly, tested and well under-
stood. But C does not provide means to express any kind ofigiimformation [KR88].
Re-implementation of all applications in another languBgehe ASIP design process is
not a viable option. Therefore, we need an extension to Cetiattles the ASIP designer to
supplement existing software with timing constraints withrequiring a major rewrite of
the code. In this section we describe a method to integmatagiinformation into C code
in an ANSI-C-compliant way.

In data-dominated systems, such as DSPs, processing ta#teswvgith receiving a sample
of data, called drame and ends with sending out a resulting frame [ME16]. Between
start and end there is no other I/O to be handled. Hence, themy one deadline to be
met per algorithm run: The resulting frame has to be outptihie.

In control-dominated real-time systems, such as NPs, tffiene is not only one deadline
at the end of a run but there are many I/O interactions withetdronment and many
of them have a deadline associated with them. Each of th@s@iéractions handles a
different type of information that, hence, needs to be psed by a different part of the
software, resulting in many different fine-grained deas#liat many different points in the
application.

In particular with a data-push architecture, every relévatue in an input register has
a deadline associated with it because it has to be processeateast saved to stable
register—before being overwritten by the next value. Furtitee, different input data
may have completely different semantics and trigger dffietypes of processing, e.g., a
header-length field vs. a protocol number. Hence, we neepecaify fine-grained timing
constraints in many places in the application.

A timing constraint is defined by the following set of infortitan [Das85]:

e The two points in the code, namely two instructions, betwehith the constraint
applies.

e The minimum time that must elapse between the executioredafth instructions.
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e The maximum time that must not be exceeded between the exeaftthe two
instructions.

We found that the time to pass between two operations cardefsend on input data, i.e.,
the value in an input register may encode a time that mustlpieseen two events.

The unit in which the time is given can be seconds or clockasdf the ASIP to be
designed. Time values in seconds will have to be rounded toldpte of the cycle time of
the ASIP once this has been determined. Time values in cipdkgrequire that the cycle
time of the ASIP be determined already when specifying thmstaints.

In the following we assume time values in clock cycles beeans data-push architec-
ture the cycle time corresponds to the communication ratie thie environment, i.e., the
rate by which the input registers are written and the outpgisters are read by the envi-
ronment. Therefore, the cycle time will be part of the syseaguirements and is known
at the beginning of the ASIP design process.

All timing constraints are positive numbers. They are alsvagecified in the same di-
rection as the control/data flow. A timing constraint thaarspa loop is treated as if the
loop is not taken because the execution time of a loop is umibediand therefore cannot
be covered by timing analysis. The only exception is a tintogstraint that spans exactly
one iteration of a loop, i.e., a constraint that starts ardb ext the same operation. Such a
constraint represents a rate constraint on the loop.

3.2.1 Fixed Timing Constraints between Operations

To mark the points in the code that are hooks for constraivdg)se standard C labels. As
their only purpose in C is to mark jump targets, they do naratie behavior of the code.
A completelabeled statemerih C comprises an identifier with a colon followed by the
statement it marks. We define reserv&@I'ART” and “END’ labels as hooks for timing
constraints relative to the start or the end of a program.

To convey minimum and maximum time between labels we nee@dss palues to the
compiler. ANSI C provideg¢pr agna statements to pass more information to a compiler
than has been defined in the standard. The compiler designdirezly define the syntax of
what follows the#pr agna token. If a compiler can parse this syntax it can use the extra
information for the compilation process. If a compiler dowd understand &pr agna
it encounters, the standard requires it to ignore the setemAccordingly,#pr agna-
annotated code can still be processed by any ANSI C compiler.

We define apr agma syntax to express timing constraints. The first statemeasify
a minimum or maximum time:

<tinme>
<tine>

#pragma mntinme <src_| abel > <dest | abel >
#pragma maxtime <src_| abel > <dest _| abel >

In our #pr agna syntax,sr c_| abel anddest _| abel are the names of the C labels
between which the constraints apply. The amount of timeviergbyt i me. To conve-
niently specify both minimum and maximum time at the samefime define:

<m ntime> <maxti me>
<time>

#pragma time <src_| abel > <dst _| abel >
#pragma time <src_| abel > <dst _| abel >
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The second statement sets the minimum and maximum time tsatine value. Both
statements are shorthand for combinations of thettpioagma statements defined before.

The combination of C labels artpr agna statements enables a programmer to specify
timing constraints between two C statements. A stateme@ inowever, can comprise
multiple basic operations. Therefore, we need to improeadisolution of the labeling.

The actual time-critical part of an application is the conmication with the environ-
ment. In a data-push architecture, this communication hasdrm of read and write
accesses to I/O registers. In order to attach timing cangsréo these accesses, we intro-
duce anothetffpr agna statement to declare that a particular variable name reptean
I/O registert

#pragma i o <procedure>::<vari abl e>

The name of the variable is given wari abl e, andpr ocedur e gives the name
of the procedure in which the variable is declared. Within at&@ement identified by a
label, a timing constraint will now be attached to that bagieration which accesses an
I/O variable, as identified by #ipr agnma i 0. We have thus devised a method to provide
a coarse-grained HLL with fine-grained timing constraints.

The programmers must ensure that only one I/O variable isssed in such a C state-
ment. They can achieve this by splitting statements withentban one 1/O variable and
introducing new variables for intermediate results. Fatance, ifi n andout are 1/O
variables, the statement

out = in + 5;
with two 1/O variables can be split into

tenp = in + 5;
out = tenp;

resulting in two statements with only one 1/O variable eashrequired.

With a resolution of a single IR operation we can now specifiere exactly the tim-
ing constraints apply. Fomintime = maxtime = 0, the identified operations must
be scheduled in the same cycle. Fointime = maxtime = 1, the second operation
has to be scheduled in the cycle following the first operati@fith mintime = 0 and
maxtime = 1, the operations are scheduled either in the same cycle ocyabe apart.
Timing constraints with larger values are interpreted mshme fashion.

Note that the timing-critical action is only the access @ Variables, i.e., I/O registers.
In contrast, algorithmic operations are not directly olable from the outside of the ASIP
system and their timing is therefore only relevant wherg feed 1/O operations that have
a timing constraint. An algorithmic operation derives @$fpossible execution time from
such an I/O operation if

¢ the I/O operation has a data dependency on the algorithneiatpn, or

Lt might be more elegant to use thegi st er keyword in C to declare I/O variables. However, we use
the SUIF2/Machine-SUIF compiler framework [SUIF, MS] for amplementation and the only available C
front-end for SUIF2 does not transfomnegi st er statements correctly.
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¢ the result of the algorithmic operation is needed to compatexecution condition
of the 1/O operation.

Hence, timing constraints do not necessarily include aggréghmic operations on the
values of these registers. To meet the timing constraintrefd access to an 1/O register
it is sufficient to save the register value to an internal seyi before the I/O register is
overwritten by the environment. This fact can be exploitedperation scheduling.

3.2.2 Data-Dependent Wait

In control-dominated applications timing constraints aften data-dependent, i.e., a sys-
tem input determines the time required between two eventta-Bependent delay op-
erations have been proposed for high-level synthesis toehmm@mmunication with the
environment or conditional blocks whose total executiometidepends on a runtime con-
dition because one branch takes longer than the other [KM&8]extend this concept by
an explicit wait operation. This operation has one operhaatis computed at runtime and
specifies a time to wait in clock cycles.

An example scenario requiring a data-dependent wait issssledf finding the beginning
of a TCP packet header after a variable-length IP header etvaonk processor [Dit00].
The length is encoded in a header field and its value correspanthe number of input
words to bide before the TCP header appears at the netwerfaoe.

To express such a dependency between input data and timegntmduce another
#pr agna statement:

#pragma wait <src_| abel > <dest | abel > <vari abl e> <mi n_val >

Here,vari abl e is the variable that determines the number of cycles to Wait. labels
src_l abel anddest _| abel mark the points in the code between which the wait time
must elapse. The minimum value thedr i abl e can possibly have, by the programmers
expertise, is provided bgi n_val . This value provides the freedom to schedule the be-
ginning of the wait anytime betweemmediatelyandm n_val . We will use this freedom
in Chapter 4.

Note that thevar i abl e must be valid in the scope of tieest _| abel so that its value
is accessible to the wait operation. There must be only osigrament to therar i abl e
to avoid ambiguities. Moreover, the operatiordast | abel is not executed in the same
cycle when the wait triggers, but will be scheduled in tigxtcycle. Thereforepi n_val
must not be less than 1 to allow for this one cycle delay.

3.2.3 Code Example

For an example of C code with timing annotations, consideptiogram in Figure 3.2. The
variablesdat a_i n anddat a_out are marked as I/O variables by the first tipr agna
statements. The next two statements specify a timing ainstoetweerl abel 1 and

| abel 2, and introduce a data-dependent wait betweabel 1 andl abel 3, respec-
tively, with a minimum wait input of 5.

The timing constraint betwednabel 1 andl abel 2 is zero cycles. This means that
the I/O variables in each statement must be accessed inre gacle. The accesses in
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#pragma io main::data_in
#pragma i 0 mai n:: data_out

#pragma tine |abell label2 =0
#pragma wait | abel 1 | abel 3 counter 6

int main(int argc, char argv[]) {

int counter; [+ wait register */

int data_in; [+ input register =*/

int data_out; /* output register =/

int tenp;

| abel 1:

counter = ( (data_in & 0Ox0f000000) >> 24) + 5;
| abel 2:

temp = (data_in & Ox00ff0000) >> 16;
/* wait on counter =/

| abel 3:
data_out = tenp;
}

Figure 3.2: Example of C code with timing constraints.

both cases are reading frodat a_i n. The timing critical operation is to read the 1/0O
variable before it is changed by the environment. The coatfmrts that havelat a_i n as
an operand are not affected by this timing constraint andbeascheduled in a different
cycle.

The value that is assignedd¢ount er determines the number of cycles to pass between
readingdat a_i n atl abel 1 and writing the resulting value dfenp to dat a_out at
| abel 3. The minimum value focount er is given as 5 because evendifit a_i n is
0 the addition of 5 in the computation obunt er makes 5 the minimum value and the
programmer here thinks that the parantheses will alwayd gideast 1.

3.3 Multi-Layer Intermediate Representation

In this section we propose a novel intermediate representdR) that carries more infor-
mation than the IRs do that are commonly used in ASIP desiba.afiditional information
includes the timing constraints, expressed in C as destib8ection 3.2.

IRs have a graph structure with nodes and directed edgesefhiesent dependencies
between nodes. Nodes and edges are annotated with necie$sanation. For control-
dominated applications we need to express the followingrimétion:

e data dependencies for computations using results of otimepatations in the same
basic block;
e control dependencies that determine the control-flow thincan application;

e data dependencies across control-flow boundaries to sugpimization, and
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¢ time dependencies to express timing constraints and synidation with the envi-
ronment, including our data-dependent wait construct.

The IR commonly used in the literature on ASIP design is a CDF@& employed
pattern-finding algorithms are constrained to the data-fieaphs (DFGs) within a basic
block of the CDFG. In control-dominated applications, ttesib blocks are very small
which significantly constrains the effectiveness of sucttgpa finding. Furthermore, tim-
ing information is not part of a CDFG at all. To overcome thesdrictions, we combine
graph notations that have the required properties, formingw IR with several layers, and
new concepts, such as data-dependent wait operations. IViletlea multi-layer Interme-
diate Representation (mlIR)

3.3.1 Data-Flow Layer

Data dependencies between operations in a basic block aressed using data-flow
graphs (DFGs), where nodes represent the operations, ingadges the operands, and
outgoing edges the results.

3.3.2 Control Layer

FSM-based IRs require an FSM-based language for applicapecification [CGF 94,
TTSVOOb]. In contrast, the benchmark applications thatwused in ASIP design will
mostly be specified in procedural languages, such as C. Cornaropiler front-ends trans-
form the control flow of these languages into a CFG repretientaHence, the control layer
of our IR is also based on this graph type. Moreover, a CFGesgmitation gives access to
standard compiler transformations and optimization runs.

The nodes in a CFG represent basic blocks of operations. &uaestial program a
new basic block begins after each branch instruction andréefach branch target. The
computations within a basic block are represented by DF@saiata-flow layer that are
associated with the according node in the control layer.réctice, there will be dummy
nodes representing the start and end of a control node tiiatomnect to all leaves and
roots of the enclosed DFGs. In the interest of clarity, havewe will omit these dummy
nodes in our figures.

The edges of the control layer show where the control flowdeadd can be uncondi-
tional or conditional. Conditional edges originate in asdabde of a DFG internal to a
control node. The false-edge is taken if the result of tha datle is zero. The true-edge
is taken if the result is not equal zero. Moreover, the modebmly allows the expression
of if-else constructs but also of case statements. For thisgse, the edges are annotated
with the value for which they are taken. A default edge mustgk be provided to prevent
deadlocks. The control graph is delimited by two empty nptlesstart node and the end
node.

3.3.3 Meta-DFG Layer

As the DFGs in control nodes rely on computation results beptontrol nodes, data
dependencies also exist between control nodes, formingamddevel of DFG. Thisneta-
DFG overcomes the imperative to stom# results of computations @&verycontrol-flow
boundary in either registers or memory, and allows optitioraruns to move computation
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nodes across control-flow boundaries. This is particulasiful for control-dominated ap-
plications in which the size of DFGs in control nodes is oftery small and their extension
across control-flow boundaries will allow a more effectiygimization.

A control node, however, may be reached by more than oneal@dge and each of
these control edges may require a different set of meta-Of¢@sto be used for the com-
putation in the control node. Hence, sources must be sbledig the control edges. This
is represented by a multiplexer consisting of one box peaviag control edge. Each box
joins a control edge with the meta-DFG edges it requires.

The meta-DFG is essentially a graphical representatiohesftatic single assignment
(SSA) form [CFR91]. The multiplexers correspond to the S&4unctions and the meta-
DFG edges represent the connection between the definitthanuse of variables—the
def-use chain.

3.3.4 Timing Layer

In Section 3.2 we described a method to specify fine-graiingidg constraints in ANSI C.
In order to capture these constraints in the multi-layemiB introduce a timing layer that
can be compared to output transition graphs for FSMs [NT@2aph edges in the timing
layer are annotated with the minimum and maximum time betvweeles. Scheduled nodes
are annotated with the determined time step.

The nodes in the timing layer between which timing constsa@éxist are start and end
nodes, /O nodes, and wait nodes. 1/O nodes represent coitation with the environ-
ment of the ASIP, i.e., read or write accesses to variablashhve been declared as I/0
registers in the C code by#pr agma i 0. 1/0 nodes act as operands to operation nodes
in the data-flow layer.

In order to provide a representation of the wait statemerteduced in Section 3.2.2,
our multi-layer IR features a new type of operation node tloainects the DFG layer with
the timing layer. We call this nodewwsait node It has one DFG edge as an input whose
value determines the delay the node represents, givendk clales. Furthermore, to be
meaningful, a wait node must have at least one incoming aedoatgoing timing edge
because it provides a delay between two other nodes. Fiaalit node also represents
a control construct in that it blocks the control flow untdl tmer triggers. Therefore, just
like a branch instruction, a wait node ends a basic block,aanohtrol edge connects it to
the next basic block.

3.3.5 Putting it all Together

We combine DFG, CFG, meta-DFG, and our timing layer intouti-layer IRwith a single
start node and a single end node. Existing optimization thiashave been proposed for
one of the original graphs can still be used on the correspgrdyer. Modifying adjacent
edges of a node in one layer does not affect the edges of aragtee. Figure 3.3 shows
the different layers in a simple example graph.

As graph operations need more information, nodes and edgekecfurther annotated,
e.g., scheduled data nodes will have an associated timecstegitional control edges are
annotated with the minimum and maximum number of times theytaken in one run,
or DFG edges have constrained value ranges imposed on iaglearthey represent. The
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Figure 3.3: Example of multi-layer IR graph.

information is given either explicitly by a programmer,ngfurther#pr agma statements,
or is derived from program analysis, e.g., by back-annatatif profiling results.

The proposed multi-layer IR fulfills all requirements pdatad at the beginning of Sec-

tion 3.3 and it captures all information that thpr agna-annotated C code provides.

The transformation of C source code to CFGs and DFGs, i.e.GDPRG, is standard

technique performed by many C compilers [ASU86]. Algorithtrave been proposed to

derive the SSA form for the meta-DFG layer from a CDFG [BCH[S98e following sec-

tion describes the transformation of timing annotationhanC source code to the timing

layer in the multi-layer IR. This completes the constructid the multi-layer IR from the

C source code.

3.4 Timing Layer Transformations

In this section we show how to parse tpr agnma timing-annotations to construct the

timing layer, and how to generate code from wait nodes.
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loPragma— #pragmaioid:procedure :: id: variable
{ symbolTable. findVariable ( procedure, variable ).isTimingHodkue; }

Label — id :

while true {

proceed to next statement;

for each operand in statement
variable = symbolTable. findVariable ( currentProcedure , operemde )
if ( variable .isTimingHook)
break;

symbolTable.findLabel ( id ).timingHook = operand;
}

TimePragma— #pragmatimeid:srcLabel id:dstLabel number:timel number:time2

{ new TimingEdge( srcLable.timingHook, destLable .timingHook, timel, time2});
| #pragmatimeid:srcLabel id:dstLabel number:timel

{ new TimingEdge( srcLable.timingHook, destLable .timingHook, timel, timel});
| #pragmamintimeid:srcLabel id: dstLabel number:timel

{ new TimingEdge( srcLable.timingHook, destLable .timingHook, timel, null});
| #pragma maxtimeid:srcLabel id: dstLabel number:timel

{ new TimingEdge( srcLable.timingHook, destLable .timingHook, null, timel});

Figure 3.4: Parser productions for the basic timing constructs.

3.4.1 Parsing Timing Annotations in C

The#pr agma statements defined in Section 3.2 have to be transformedaesilts of the
multi-layer IR by the parser of a compiler front-end. Figuf24 and Figure 3.5 give the
productions that have to be included in the context-freengnar of a C-language parser
[ASUS86] in order to create the timing layer of the multi-layR.

Figure 3.4 shows the productions for the basic timing coiessc The first two produc-
tions generate the hooks to which timing edges can be attachigese hooks are points
where an I/O variable is accessed, i.e., where it is used apemrand. An I/O variable is
declared by &pragma i o and we mark each of these variables in the symbol table as
a potential timing hook. Subsequently, for each label ingregram we search the first
access to an I/O variable in the code following the label. dperand that constitutes this
access is then stored in the symbol table as the timing hotbktat label.

After the timing hooks have been generated we create a tiedgg for eackpr agna
time, #pragma minti ne, and#pr agma maxt i me between the timing hooks asso-
ciated with the given labels. We annotate the edge with tlmmim and maximum timing
values given by thépr agma.

In the production for #pr agma wai t in Figure 3.5 we first locate the only assignment
to the input variable that determines the time to wait. We gt@ search from the beginning
of the current scope. Once found, we create a DFG edge frasnaisignment to the
operand input of a new wait node. Furthermore, we creatagjratdges between the wait
node and the timing hooks associated with e _| abel and thedest _| abel . The
instruction following the wait node cannot be fetched befibre next cycle. Therefore, the
timing edgefrom the wait node talest _| abel hasmintimey, = maxtimey,, = 1.
The other time values must be adjusted as follows.
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WaitPragma— #pragma wait id:srcLabel id:dstLabel
id: variable number:minTime
{

go to scope. start ;
while true {
proceed to next statement;
if ( statement contains assignment to variablq )
waitlnput = statement . targetOperand ;
break;

}

}

newWait =new Wait( waitlnput );

new SubtractionNode( waitlnput, minVal, newWait.input );
offset = minVal— 1;

new TimingEdge( srcLabel, newWait, offset, offset );
new TimingEdge( newWait, destLabel, 1, 1 );

Figure 3.5: Parser production for the wait pragma.

The constraint on the timing edge frosr c | abel to the wait node as well as the
wait-time input are dependent on the minimum value of thet waie as provided by
m n_val inthe#pragma wait. Subtracting the one cycle for the outgoing edge, we
getmintime;, = maxtime;, = min_val — 1. This timing edge, however, requires the
wait to be started only after the minimum wait time has eldpdeeady. We therefore need
to adjust the wait-time computation accordingly and insestibtraction node between the
wait input variable and the wait node. We subtract the mimmvalue from the wait input
twait, Yieldingt,, ... With the subtraction ofnvin_val the minimum input value of the wait

nodet!, .. is zero. The time betweesr c_| abel anddest _| abel thenis
t = mintimei, + (twair — min_val) + mintimeg; = (minwval — 1) + ¢, .., + 1.

The scheduler can trade off time before and after the waitufyracting time from one

edge and adding it to the other. Furthermore, it can tradéro# at the incoming timing

edge against the wait-input offset: the lower the time ofittteming edge the larger the
wait input.

As an example of the timing-layer transformation, Figui@ shows the mlIR result of
the example code in Figure 3.2. Note how then_val specified in the code has been
distributed across the two timing edges connected with thié mode. The offset at the
wait input has been adjusted accordingly.

Following the above scheme, we have extended the existingr@-énd of the SUIF2/
Machine-SUIF compiler framework [SUIF, MS] to translate thpr agma statements to
the corresponding graph structures in our multi-layer IR4Q3].

3.4.2 Implementing a Data-Dependent Wait

The wait node does not translate directly into a primitivegassor instruction. Instead, it
is transformed into one of two possible implementation $yae the example in Figure 3.7
demonstrates. The wait node, depicted on the left-hand ciaebe implemented

1. entirely in software, as shown on the right-hand side glufé 3.7, by moving a
start valuedat a_i n into a registemai t , decrementing this register in appropriate
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Figure 3.6: Example code transformed to mlIR.

intervals with an explicit subtraction, and branching wiles register reaches zero,
or

2. partially in hardware, as shown in the middle column ofufég3.7, by providing
a counter register that is decremented implicitly by a camtsvalue—typically by
one—and compared with zero in each clock cycle. The countsetidy writing
a value into the counter register. Then the processor iedthy a special control
instruction, which we calivait-for-counter (WFC)until the counter reaches zero.
The WFC instruction stops the execution of all instructiotnha end of the cycle in
which it has been issued. When the counter triggers, the gsoceesumes execution
in the following cycle.

/ dataj_n\
| , -l-\ ! with hardware counter software count-down
| "N ;| control
PR step
| =0,/ | miR
N graph counter := data_in wait := data_in
| v mov | WFC 1 if wait = 0 goto CONT
\
\
| N | tenp := data_in LOOP:
RN 2 wait := wait - 1
| Cwarr ! — if wait > 0 goto LOOP
e ( data_in
— <= l | CONT:
*\l TN 3 tenp := data_in

Figure 3.7: Wait-node implementation.
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The software implementation requires more instructionhéapplication code for the
repeated subtractions and tests for zero. Each additiostliction complicates the in-
struction-scheduling process. Note also that updatingmde variable and testing it for
zero have to be scheduled in the same cycle.

The hardware solution, on the other hand, relies on additiofrastructure. Moreover,
a counter can be used for only one wait node at a time. Thisehemvis not a severe
constraint as a wait stalls the entire processor for an umded time, and hence there
cannot be two waits in parallel.

Using the hardware counter in the application code reqtivesnstructions: anoveto
set the start value of the counter, and the WFC instructiontiMgrihe start value to the
counter, however, needs to be scheduled exactly in the oggléred by the timing edges
that lead to the wait node. Otherwise, the counter would paiffjat the intended point in
time.

For both implementations there is the freedom to schedd@etiunter start earlier or
later by introducing anothexdd or subtractnode, respectively, to adjust the start value
accordingly. This additional node may be arithmeticallyrgeel with other nodes in the
delay computation by appropriate optimization methods.

The adjustment value depends on the final scheduling of Steuittion that starts the
counter. Hence, the value can only be determined after thkifistruction scheduling and
might then even be zero. The scheduler needs to be aware @tiops that implement
wait nodes in the application so that it can decide whettsratld introduce an adjustment
node.

Moreover, the scheduling freedom of the counter start deggpen the minimum possible
start value of the counter. This value determines the tirtex afhich the counter must be
tested for zero for the first time. It is the latest possibdetdtme of the counter—even with
adjustments. The designer must specify the minimum valubeifvait input, using the
m n_val of our wait-pragma. The larger this value, the larger theedokting freedom. In
Section 4.4.2 we will employ this method to schedule waits.

data_in

control

no adjustment step adjustment by 1 adjustment by 2
tenp := data_in >> 8
counter := tenp + 3 1 tenp :=data_in >> 8 1 tenp := data_in >> 8
» counter :=tenp + 2 2 nhop
3 counter :=tenp + 1

Figure 3.8: Wait-node adjustment for scheduling.

Figure 3.8 shows an example of a wait node with three possitbledules. Thei n_val ,
after subtraction of 1 for the transition to the operatidiofeing the wait, allows an adjust-
ment of up to 3. The adjustment value is subtracted from tleeaoml of the addition node.
In the first implementation with no adjustments, both instians must be executed in the
same cycle to start the counter correctly. Using adjusteéig situation can be relaxed.
With an adjustment value of 2, there is even an idle slot, edtky thenop, that can be
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filled with a productive instruction. The WFC instruction istrshown here because it does
not have to occupy an instruction slot as explained in Seetid.3.

For a software implementation of a wait node, an enumeratidine possible delay val-
ues by the programmer offers another optimization oppdstuGaps between the values
correspond to scheduling slots in which the register usethiocountdown does not have
to be decremented or tested for zero. To compensate thetgegsunter merely has to be
decremented by a higher value later.

In conclusion, the wait node offers the programmer an aatuii abstract expression,
and enables the instruction scheduler to select an optimptementation strategy for the
expression.

3.5 Branch Postponing

Once an application suite of the target domain has beenreahituthe multi-layer IR it can
be optimized and scheduled to meet timing requirements. &nmof a novel optimization
algorithm we now demonstrate how the combined informatiothé multi-layer IR can be
used to resolve scheduling conflicts that would otherwik#ihthe timely execution of an
algorithm.

In Section 3.2 we motivated the introduction of a timing layéth the fine-grained
timing constraints that are characteristic of control-dwated applications. With several
deadlines in short sections of code, the need for fine-gilaineéing optimization arises.
An example of a problem that can occur is given in Figure 3.9.

On the left-hand side, condition computation, branch, &ed{clause are all scheduled
in the same time ste. Assume that the then-clause alone needs a full time step to
computed. As it has the annotated requirement to be schbnfutiene stepX’, e.g. because
of input data that only occurs in this particular cycle, thigew control nodes must be moved
to another time step.

The technique we use to achieve this is similar to specelaecution in that it changes
the execution order of a conditional branch and subsequete. cSpeculative execution
does this to fill processing slots before the branch in ordeninimize the execution time
of the average case and the critical path through the pragfanthoosing the right code to
speculate, branch prediction is employed. Reverse sg@nu&SK™01] does the opposite
by moving unconditional operations into conditional basimcks. The objective is, again,
to minimize the over-all critical path.

In contrast, branch postponing improves the schedulgbiéither than the average or
maximum execution time. It might even grow the critical pétfough the else-clause. But
it allows code to be scheduled that otherwise could not msedtming constraints. We
do this independently of what the average case is and hemcmake no assumptions on
branch probabilities.

3.5.1 The Algorithm

The first step to solve the problem in Figure 3.9 is to move thadition computation to
the preceding time step, as shown on the right-hand sideundsshat time steX — 1
is now fully occupied. This means that the branch cannot besthto the preceding time
step as well. Then the only remaining solution is to move ttaath to timeX + 1. But
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Figure 3.9: Branch postponing.

that would mean to move the branch after a code section thatdbnly be executed if the
branch has actually been taken, as also shown on the rigltdide.

This transformation does not change the result of the pmgfahe then-clause is not
“harmful”, i.e., if it does not change any data used in the-ddeanch. This condition is met
if

e no output to the ASIP environment occurs in the DFG nodesftikn-clause be-
cause this communication is part of the program result thagtmot be altered by
the transformation;

e no memory writes occur in the DFG nodes of the then-clausausecany data writ-
ten might be read in the else-branch. This criterion can bihdurelaxed by examin-
ing memory accesses more closely and comparing write askelés the then-clause
with read addresses in the else-branch. This can, howewex,domplex task be-
cause of the memory alias problem of two different expressibat denote the same
memory location.
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while ( (latency of BBs) > (time between deadlines) ) {
while ( tine slots available before first deadline )
push nobile BBs beyond first deadline;
push nobil e BBs beyond second deadl i ne;
for each remaining BB (in bottomup order)
with a conditional branch {
if ( then-clause nust stay before second deadline
AND t hen-clause is harm ess to el se-cl ause )
nove then-cl ause before branch
if ( else-clause nust stay before second deadline
AND el se-clause is harm ess to then-cl ause )
nmove el se-cl ause before branch
if BBis now nobile
push BB beyond second deadl i ne;

Figure 3.10: Pseudo code: Branch postponing.

In control-dominated applications this situation occuegifiently, for instance, when the
branch tests a termination condition and the else-braretssin alternative algorithm that
does not use any result from the first algorithm because tlbara special case for which
the first algorithm is not suitable.

A basic block ismobileif it can be pushed beyond a deadline without violating given
timing, data, or control dependencies. A generic pseudi@ cepresentation of the branch-
postponing algorithm for a set of basic blocks (BBs) betweem deadlines is shown in
Figure 3.10.

Note that branch postponing adds only little to the critjgath in the else-branch, be-
cause the else-clause in Figure 3.9 would in any case havaitdorvtime X + 1 to arrive
owing to the given minimum time distance to the then-claus&.oThe time added by
moving the branch to the same time step in many cases is tioatrsuch as in the above-
mentioned case when it terminates the algorithm. The gaith@other hand, is significant
as it allows the then-clause to be scheduled, which othergosld not be accommodated.

3.5.2 Applicability and Relevance

To illustrate the relevance of branch postponing in a realdvexample, we compiled
the header-compression code in [Jac90] with the gcc comifuitd A-32 processors and
isolated the compress and uncompress routines in the alyseode. Header compression
is a typical control-dominated application. We found th&t 6f all assembly instructions
are conditional branches, each of which represents a jitescheduling problem that
branch postponing can solve.

For closer examination, we implemented the compress mutirthe multi-layer IR.
The routine handles only common-case packets and delegat@shandling to another
processing entity. The target ASIP is a protocol engine wititata-push architecture as
introduced in Section 1.3.3 as part of a network procesdmréfore, the deadlines between
two reads of header fields are very tight; for instance, wiBRéit input register and a
network data-rate of 10 Gb/s the time between two headersnsronly 3 ns. Under such
tight constraints, any gain of scheduling freedom is higlaipable.
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We found that 33% of the conditional branches in the progreencéthe above-men-
tioned termination-condition type that branch out of thgpaithm between tight deadlines.
This is a typical situation where branch postponing ensszkedulability within the timing
constraints. It can, however, also be applied to the remgicdonditional branches.

We examined each conditional branch in the compress rothimteis locked between
deadlines of one or two input cycles. According to the examjplove, this equals deadlines
of 3to 6 ns. Table 3.1 shows the number of operation nodesthath postponing will
move out of the critical path at these branches. In this wag,dperation count in the
examined sections is reduced by 36 to 93%. The remainingsnaifleat least move header
words from the input register to another register beforeitipait register is overwritten
with the next header word. With the scheduling freedom ghin@oved operation nodes
can then be scheduled in less timing-critical sections.

Branchno. || 1 | 23] 4 | 5 | 67| 8

Movable 13 8 3 7 10 3

nodes

Remaining 1 3 2 2 2 2

nodes

Deadline 1 2 1 1 1 1

in cycles

Improvement|| 93% | 36% | 60% | 78% | 83% | 60%
per cycle

Table 3.1: Scheduling freedom through branch postponing.

In consequence, the required deadlines can be met. Thathes better balancing of the
number of operation nodes per cycle, the circuit may evenduoked faster than projected.

Branch postponing makes use of all four layers of the maitet IR:

The control layer represents the branch.

The timing layer expresses the deadline problem.

The DFG layer is used to analyze whether the then-clausé dwarmful.

e The meta-DFG layer makes data dependencies between cood®s$ obvious.
Therefore, possible conflicts when moving the branch aredan this layer.

The branch-postponing algorithm demonstrates the palesftcombining information in
the multi-layer IR.

3.6 Summary of Compiler Methods

In this chapter we have introduced a new method to annotéséirex C code with fine-
grained timing constraints and data-dependent waits, dfotthich are typical for control-
dominated applications. Unlike other known methods, oyragch does not require a
significant rewrite of the code. Hence, existing appliaatode for which an ASIP is to be
designed can be used as-is and only needs to be annotatetheviiining requirements.
Moreover, our method increases the resolution of the tinsimgstraints to a single basic
IR operation on the level of a coarse-grained HLL, compaoealresolution of an entire C
statement in other approaches.
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Our multi-layer IR captures the timing constraints proddsy the C annotations and we
provided parser productions to transform the annotatiorise timing layer. In the timing
layer we introduce the new concept of a wait operation thitydethe program execution
for a number of cycles computed at run time. The wait opemnagionplifies the timing
specification of I/O operations for the communication witle £nvironment and enables
automated scheduling support for the implementation o fieified timing.

Based on the multi-layer IR we introduced branch postparamgvel variation on spec-
ulative execution. The method resolves a type of schedalimdlict that occurs frequently
in control-dominated applications due to tight timing doamts. Branch postponing com-
bines information from all layers of our IR and demonstratesgpotential of the multi-layer
IR.
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In this chapter we introduce our algorithms to choose padtéor implementation as
special instructions. The resulting instruction set hasrtable an implementation of the
benchmark applications such that two kinds of constrairgsreet:

e the timing constraints given by the timing layer of the miatyer IR and

e a maximum number of parallel instruction issues, specifiethb ASIP designer.

An instruction set that meets these constraints is to beniged in two respects:

e The primary goal is to minimize the maximum latency of anytrnetion in the in-

struction set. This goal improves the implementabilityha instruction set with the
required cycle time.

e The secondary goal is to minimize the number of instructiartbe instruction set.
This goal minimizes the number of bits needed for the insimaencoding.

We formulate these optimizations as two consecutive sdimegdproblems. The first prob-
lem is to segment each path that is covered by a timing canstraio patterns such that
the constraint is met while balancing the latency of thegua#t to work towards the pri-
mary optimization goal. The second problem is to bundle lfgatterns such that the
constraint on parallel issues is met while keeping the nurab@curred instructions low
in order to work towards the secondary optimization goal.

57
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This chapter is organized as follows: Related work on opmratcheduling is presented
in Section 4.1. In Section 4.2 we introduce a method to finditheg-forced patterns that
must be implemented as instructions in order to meet thefs@gmbtiming constraints. A
path between the start and end point of a timing edge in thiécagipn graph is segmented
such that the timing constraint will be met if each of the segta is implemented as a one-
cycle instruction. In Section 4.3 the number of paralletringtion issues is constrained
to the number specified by the designer. Our method geneagpestial schedule with
unbounded parallelism and then bundles patterns that egedntly used in parallel to
compound instructions. The process takes into accountftbet ¢hat the bundling has
on scheduling freedom. How wait operations and other cbntmstructs are handled in
the methodology is the subject of Section 4.4. Section 4rBnsarizes the chapter. To
our knowledge, this is the first complete instruction-sedigie flow for control-dominated
applications.

4.1 Related Work

4.1.1 Operation Scheduling

The simplest scheduling algorithms used in high-level lsgsis areas-soon-as-possible
(ASAP)andas-late-as-possible (ALAPASAP positions each operation in the first step in
which all its inputs are available. Similarly, the ALAP sclude positions each operation
just before all operations that read its output and in thestatontrol step possible without
adding another step to the total schedule. In both casesptidleschedule length is equal
to the length of the critical paths. The temmbility for the difference between ASAP and
ALAP schedules was coined in [PG87]. ASAP and ALAP scheddtesot take resource
constraints into consideration.

An early algorithm for resource-constrained schedulingischeduling (LS)Hu61]. In
LS, operations are ordered according to their dependeaniether operations. A priority
function assigns precedence values to the operationsdRasthese values the operations
are then iteratively assigned to control steps. LS and itsymariations are widely used in
synthesis systems because they are simple and efficiendg;3E€D74].

Another popular algorithm igorce-directed scheduling (FD$PK89]. FDS is time-
constrained, i.e., it tries to minimize the resources neglto achieve a given maximum
schedule length. The priority function in FDS is based omtlobility of operations and the
resource requirements in each control step. Operatioitstiaét lowest mobility, the least
effect on the mobility of other operations, and the lowesbtece increase are scheduled
first.

More complex scheduling algorithms include iterative stthimg [PK91] and the formu-
lation of scheduling as an integer linear program (ILP) [l89], which has been extended
to include parallel scheduling of instructions for VLIW pessors [KWO01]. Solving an
ILP provides optimum schedules. However, it is generally##-complete problem and
therefore it is practical only for small problems.

A comprehensive introduction to the scheduling problenofeeéd by a survey of the
most popular scheduling algorithms for high-level synihiean be found in [WC95].



4.2. Timing-Forced Patterns 59

4.1.2 Scheduling with Timing Constraints

For scheduling applications with timing constraints it ssamed that the specification of
the timing constraints is feasible, consistent, and cotapies., minimum values are not
larger than maximum values, there are no contradictorytcainss, and all timing-critical
paths in an application graph have associated timing cingdt Methods to ensure these
properties have been presented in [KM92, GM97].

Most HLS systems do only allow for the specification of stéititing constraints. They
do not consider minimum, maximum, or range constraints idintization and scheduling.
A notable exception of a constructive scheduling algorithiat considers these types of
timing constraints for the synthesis process has beenideddn [KM92].

4.2 Timing-Forced Patterns

4.2.1 Problem Statement

The main concern in developing an ASIP for control-domidapplications is to meet the
timing constraints specified by the benchmarks. The ges@iastruction set must be able
to implement the applications with the required timing. figfere, our first step is to find
the operation patterns that doecedto be part of the pattern set by the timing constraints.
In this selection process, it is important to balance the sizpatterns in the pattern set
because all patterns will have to be implemented in a singlegssor cycle and therefore
the most complex pattern will determine the critical pattthia processor design. In order
to maintain control-flow dependencies, a pattern does mstdoranches.

The scheduling algorithms mentioned in Section 4.1 detezrhow to distribute oper-
ations over a given or minimum number of time steps with ami@e minimum number
of resources. None of them, however, addresses the quedtimw to bundle operations
in an instruction to obtain a lean instruction set that meditgonstraints and in which
instruction latencies are balanced. Therefore, our obgeds different from the general
scheduling problem.

To analyze applications we have to traverse the control atd-ftbw layers of their
mlIR. To facilitate the traversal, we combine these layara single CDFGG = (V, E),
with V' a set of nodes anf a set of directed edges= (u,v) € E with u,v € V. There
are two types of nodes in the sét= V,, U Vamy: the set of operation nodes in the data-
flow layer of the mlIR,Vgp, and dummy noded/ymy, that connect the control layer with
the data-flow layer.

The dummy nodes serve as unified entry or exit points for tiérebnodes, i.e., for the
basic blocks. An entry node connects all leaves of all DFGsdéontrol node, and an exit
node connects all roots of the DFGs. The edges from the ddatrer connect the exit
node of their source with the entry node of their destinatiothe CDFG. Basic blocks
with a conditional branch get one exit node for each outgomngrol edge.

The set of edges i@ therefore consists of edgé%m, between dummy nodes and leaves
or roots of DFGs, and regular control and data-flow edgesand E4, respectively, in the
mIR: E = Egmy U E. U E4. An edge in the CDFG is denoted — v, wherev; is an
immediate predecessor of.
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The edges in the timing layer of the mIIR impose maximum orimirm constraints on
the time between the operands at their ends. This repregerdptimization problem on
the CDFG, namely, how to schedule the operantion nodes a&aclg timing edge. In the
following sections we will first develop a formal definitioffi the problem and then give a
heuristic to solve it with limited computational complexit

4.2.2 ILP Formulation

We formalize the optimization problem in the form of an irgedinear program (ILP)
[NW99]. The result of the optimization will be a set of patternsS; = {I1,...,Iu},
with each pattern being a DFG. The latency of pattesn {1, ...,m} is the length of its
critical path, denotedll;|. Our global objective is to balance the latency of the select
patterns, i.e., to minimize the maximum latency in the patset:

min{ max(|/s|: 1 < s <m) }. (4.1)

Let X' = [z j]|v,),.jmax P€ @ SCheduling matrix of 0-1 integer variables withe Vo,
j€{l,..., jmax}, andz; ; = 1iff v; is scheduled in time step(see Figure 4.1)|V;,| is
the number of operation nodes@andjmax is @ maximum length of the schedule in time
steps. Note that the matrix considers only operation notles dummy nodes, in contrast,
are not to be scheduled as they do not represent any opetation

Z1,1 x1,2 . L1, jmax T
X 2,1 2,2 e T2 ma operation
- : : : nodes
L\Vopl, 1 L[ Vopl,2 =+ + L[ Vop|, jimax !

«—— time steps—

Figure4.1: Scheduling matrix.

LetG, = (V4, E:) be the subgraph a¥ between the endpoints of a timing edgéet P,
be the set of all acyclic pathsthroughG, from one timing-edge endpoint to the other. A
path is defined by a vectpre B!Verl such thap; = 1 iff v; is on the path. Component-wise
multiplication of the vecto(z, j, ..., zy,) ;) for one time step in X with a path vector
p yields acharacteristic vectoof those operation nodes on the path that are scheduled in
that time step. As these nodes must be implemented by the paiteen, the number of
1's in the characteristic vector is equivalent to the nundfesperation nodes of the path
in that time step, which corresponds to the latency of the pagment. We can write this
latency as the scalar product of the path vector with themanluectorz; of the time step
j in the scheduling matrix:

Ip(5)] =P1T1G e T P T Veplg = P Ty (4.2)

The path segment with the largest latency corresponds teriti@al path in the slowest
pattern. Therefore, the objective in Eq. (4.1) can be remsstfunction of all path vectors
of all timing edges, which are combined in the et

[Vopl
min{ max(} _p; zi;, Vp € P, j€{1,... jma}) }

i=1
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=min{max(p-z;, Vpe P, j €{1,..., jma) } (4.3)

This is the objective function for the ILP. Now the consttaia valid schedule must meet
can be developed. The first requires that each operationbdeheduled in exactly one
time step:

Jmax

S wiy=1, Vi:v; € Vop (4.4)
Jj=1

The precedence of nodes in the CDFG must be preserved. Warachis by requiring
that the time step of a node be equal to or higher than the tiepeds its predecessors. If
g 1s the time step for;, we obtain

9i < gk, Y (i,k) v — v, (4.5)
The time stepy; of a nodel is expressed by the sum

Jmax

=Y ju;. (4.6)
j=1

Transforming the inequality tg; — g, < 0 and substituting with Eq. (4.6), we get the
precedence constraint:

Jmax Jmax

Zj T — Zj Tp; <0, V(i,k): v — v, v, v, € Vop. 4.7)
j=1 j=1

This constraint only applies to operation nodes becauserjunodes are not assigned to
any time step. Therefore, another constraint to presemeeplence across dummy nodes
is needed:

jmax jmax

> Jmij— > Jak; <=1, V(i,k) v — Vexit — Venry — U, (4.8)
— —

J J Vi, U € Vop7 Vexit, Ventry € Vdmy-

The left-hand side of the inequality must be negative bezaperation nodes connected
across dummy nodes belong to different basic blocks andrttust not be scheduled in

the same time step. As a consequence of this constraintLEhbds no solution if there

exists a path having more control nodes than the timing edty@s cycles. In this case,

transformations such as if-conversion [AKPW83, AHM97] mhstused to decrease the
number of control nodes and resolve the situation.

tmax

Finally, the timing constraints must be considered. Foheaaximum timev; — vy,
between two operation nodes and v, with 1/O nodes as operandg; — g; < tmax IS
required for their assigned time stepsand g,. Similarly, from each minimum time

tmin

v; — vy, follows g, — g; > tmin- Substituting with Eq. (4.6) results in:

jma)( ]ma)(

. . . tmax
S i@ =Y dwk; <tmaw VY (6,k): v = vp, vi, vk € Vop (4.9)
=1 =1
Jmax Jmax

- - - tmin
Z] Tij— Z] T > tmin, V(4,k) v = vk, v, vk € Vop (4.10)
i=1 =1

This completes our formulation with the objective functi@h3) and the constraints
(4.4) for assignment, (4.7) and (4.8) for precedence betwperation nodes, and (4.9) and
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(4.10) for timing. In a solution to the optimization probleeach set of nodes scheduled in
the same time step and connected by data dependencies iDE#®@ f@presents a pattern
in the pattern se$;. However, solving an ILP quickly becomes intractable witbreasing
problem size. The search space for the ILP solver can be sbateaduced by techniques
such as constraint propagation. This, however, does nateetthe exponential worst-case
complexity of the problem. To enable the handling of largpliaption graphs we present
a heuristic for the optimization problem in the followingctien. A heuristic represents a
trade-off between optimality and time complexity.

4.2.3 Heuristic
Interactions between Timing Constraints

For scheduling an operation node in the CDFG, multiple tqianstraints may have to be
considered at once. Figure 4.2 gives an example why comsigdenly one constraint at a
time can lead to an incorrect schedule. The left-hand sidbeofigure shows a data-flow
graph with two timing constraints. Considering only the stoaint between nodes A and
E and attempting to balance the size of the resulting pateva would cut the path from
A to E in half as shown on the right-hand side of the figure. Taditioning, however,
makes it impossible to meet the constraint between node Baifithie constraint requires
nodes B, C, and D to be executed in the same cycle but the dutpusde D to a different
cycle than the others.

Figure 4.2: Considering one constraint at a time is not sufficient.

We solve this problem by annotating each operation nodethvitiset of cycles in which
it can be scheduled without violating any constraint. Tleis B, is called adomain We
start by annotating nodes that are hooks to timing edgestivtitonstraints or domains
that follow from these edges. This is shown on the left-hadd ef Figure 4.3. We then
propagate the constraints to neighboring nodes until eade has its consistent domain,
as shown on the right-hand side of the figure. Note that dgterdiencies in the graph
represent precedence constraints as expressed by Eq. (4.5)

9i < gk, YV (i,k) 1 vi — vk, v, vk € Vop (4.11)
Control dependencies represent a precedence constragrtlag to Eq. (4.8):
9i < gk, V¥ (i7 k) DU — Vexit — Ventry — Uk, Vi, Vg € Vopa Vexit, Ventry € Vz:imy (4.12)

As for the ILP in Section 4.2.2, a path that consists of mongtrod nodes than the tim-
ing edge allows cycles represents an inconsistency in thsti@nt specification. Again,
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transformations such as if-conversion [AKPW83, AHM97] mhstused to decrease the
number of control nodes and resolve the situation.

Figure 4.3: Constraint propagation.

Constraint propagation has been investigated for a long tmthe field of constraint
programming [Tsa93]. A fundamental and widely used claspropagation algorithms
can be found in [Mac77], each with polynomial time complgfiF85]. These algorithms
provide an efficient means to automate the transformatidfigore 4.3. In the following
we will use the AC-3 algorithm. It has a time complexity®fa®n?) for a number of nodes
n and a maximum domain size

Figure 4.4: Combined timing edges overruling;,.

The common propagation algorithms require that the domiaénfinite. The natural
lower bound for the domains in a scheduling problem is cycld=6r the upper bound,
t~, we must find a value that does not constrain the schedulimgai value that does not
inhibit the longest conceivable optimal schedule. In a agenas shown in Figure 4.4,
minimum timing constraints can force two adjacent nodese®theduled further apart
than the largest,,;,,. Therefore, to be on the safe side and not prevent an optthatsile,
we choosé ., such that it allows each pair of nodes in the graph to be agfant as the
sum of all minimum timing constraints,

too =nNn- Z tmin-
The domains of all operation nodes before constraint praj@gare then initialized to
D;, = {0,17...,t00} Vi:v; € %p-

Scheduling Heuristic

After constraint propagation the schedule may still be vtelermined, i.e., there are still
node domains with more than one cycle in which the node cacledsiled. In Figure 4.3
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gener at eForcedPat terns( graph ) {
propagat eConstrai nts( graph. startNode );
df sVisit( graph.startNode, {} );

}

df sVisist( node, path ) {
pat h. append( node );
node.visited = true;
lastlnPath = true;
for each sucessor of node
if successor.visited == fal se {
lastlnPath = fal se;
df sVi si st( sucessor, path )
path = {node};

if lastlnPath == true
bal ance( path );
}

bal ance( path ) {
earliest = path.startNode.earliest();
tMax = path. endNode. |l atest() - earliest;
m dTine = earliest + ceiling( tMax / 2 );
fixNode = path.nmiddle(); // if niddle is between two nodes pick second one
assi gnedCycl e = fixNode. donai n. cl osest Menber ( mi dTi me );
if fixNode.donmin.size > 1 {
fi xNode. domai n = {assi gnedCycl e};
propagat eConstrai nts( fixNode );

if path.successor( startNode ) != fixNode

bal ance( path. subPat h( startNode, fixNode ) );

if path.successor( fixNode ) != endNode

bal ance( path. subPat h( fi xNode, path.endNode ) );
}

Figure 4.5: Pseudo code: Generate timing-forced patterns.

this is true for nodes B, C, and D which can be scheduled ireeyicbr ¢ 4 +1. We therefore
introduce a heuristic to choose a cycle from each node domain

The basic idea of the heuristic is this:

e Traverse the graph in depth-first search (DFS) order;
e on the way, cut each taken path in half,

e schedule the middle node such that the maximum time allowetthé path is evenly
distributed between both halves, and

e recurse over the halves until all nodes are scheduled.

Distributing the available time evenly across the graphksdowards the optimization goal
of having evenly sized patterns.

Figure 4.5 shows the algorithm, beginning with the topdduaction gener at e-
For cedPat t er ns. After the initial constraint propagation, we start thegrdraversal
with a call todf sVi si t. This procedure implements the DFS [CLR90] with additional
functionality to record the paths and to call th&l ance procedure on each complete path
for scheduling. First, we append the discovered node toufremt path and mark it as vis-
ited. The following loop examines if the successor node limaen visited before. If an
unvisited node is discovered we visit it by a recursive aadift sVi si t . Upon return from
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the call all nodes in the path have been scheduled. To cahgtreinext path of successors
we need only the current node as a start node. Therefore,sgethee path to contain only

the current node before continuing with the next successam the other hand, all of the

successor nodes had been visited before then the curremtsiatthe end of a path. In this
case, we call theal ance procedure to schedule all nodes on the complete path.

The bal ance procedure first computes the available time for the givein pat the
difference between the earliest possible time for the stade and the latest possible time
for the end node, according to their domains. As we will sciethe middle node of the
path we then computei dTi ne, the absolute time in the middle of the available time
range, rounded up to the next integer number. This roundingouresponds to picking
the node just after the middle of the path et h. mi ddl e() does forfi xNode if
the middle is between two nodes. In this manner, the availaivie is evenly distributed
between two halves of the path.

The cycle then assigned to xNode is the member of its domain closestrtodTi ne.
Fixing a node to a cycle effectively means eliminating all boe element from the node
domain. If the domain contained more than one element béfierethis may further con-
strain the legal cycles of other nodes. Hence, we have toagaip constraints again to
restore consistency with the surrounding node domainsefficiency, we pasti xNode
to the propagation algorithm which enables it to start atrtteelified domain rather than
traversing once again the entire graph. With consistenestablished thbal ance pro-
cedure recurses on both halves of the path. The recursionnigies when there are no
more nodes between the start and end node of the passed path.

Just as with the ILP, after scheduling, each set of nodesthat been scheduled in the
same time step and are connected by data-dependenciesGD@® represents a pattern
in the pattern se$;. The patterns generated in this way are inserted into therpdibrary,
employing the PSG structure from Chapter 2. As a result,ikinarly contains all patterns
necessary to implement the application graph.

Computational Complexity

The computational complexity of the heuristic is dominadbgdhe constraint propagation.
The AC-3 algorithm has been shown to have a complexity @f*n?) with n the number
of nodes and the maximum size of their domains [MF85]. We call constraimpagation
once at the beginning and then at most once intthbance procedure, which in turn
is called at most once for each node in the graph except fostre node. This yields a
worst-case complexity @ (n - (a®*n?)) = O(a®*n?).

The remainingif sVi si st procedure implements the DFS. For a bipolar graph with all
vi si t ed-flags initialized tofalse DFS is known to b&(e), with e the number of edges
in the graph, because it traverses each edge in the grapthyexace [CLR90]. Expressing
e as a function of. we getO(e) = O(n?) which is dominated by the? in the complexity
we already have. The running time of the entire algorithnnéaforeO(an?). We have
achieved a polynomial time complexity as opposed to the eapiial complexity of an ILP
solver.
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4.3 Constraining Parallel Instruction Issues

4.3.1 Problem Statement

The methods to find timing-forced patterns described iniSedt2 consider constraints on
the number of instructions in a sequence, defined in the fétimang constraints. Another

type of constraint provided by the designer in our methoglple the maximum number of
instructions issued in parallel by the ASIP to be desigigg,. Our approach to meet this
constraint is to bundle patterns that frequently occur rrabal.

Building upon the results of the preceding section, we i@pthe operation nodes in the
CDFG with their associated patternsdp resulting in a set of pattern nodégs.:. We get a
graphG’ = (V’, E’) with a set of node¥”’ = VU Vymy and edged’. It is not necessary
to migrate the timing edges as they are attached to I/O ogdsravhich have not changed
in the process.

The optimization problem to be solved on this graph is howcteedule the nodes in
time steps with the minimum number of incurred bundles ofbarpatterns. Again, we
first develop a formal definition of the problem and then idtroe a heuristic to limit the
computational complexity of the process.

4.3.2 ILP Formulation

We also state the second optimization problem in the forrmdL®. The result will be a
set of instructionsS,,. Our objective is to keep the number of instructionsSjnas low as
possible:

min{ |.S,| }. (4.13)

LetY = [Yi ;&) Vol jma kmax O€ @ three-dimensional scheduling array of 0-1 integer vari
ables withv; € Vpa 7 € {1,...,Jmax}, K € {1,... kmax}, andy; j, = 1iff v; is
scheduled in time stepand parallel-issue sldt (see Figure 4.6)|Vpa is the number of
pattern nodes id’. The dummy nodes are not represented in the array.

Ve
issue slots

¥

|

Y = pattern
nodes

|

Figure 4.6: Three-dimensional scheduling array.

<«——time steps——

Each issue slok in each time step is represented by eharacteristic vectoty; ;, =
(Y1465 - - Y| veud,5,&) IN the array with a 1 at each node that is scheduled in thaitpéat
slot. The pattern associated with each node is determinedinyctionr : Vo — S;. The
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combination of patterns in one issue slot forms a pattermaleun S,. Hence, the number
of different pattern bundles in all issue slots yie|ds| for the objective function.

The first constraint for a valid schedule is an assignmenstcaimt, requiring that each
pattern be scheduled in exactly one time step and exactlyssoe slot:

Jmax Kmax

SN wigk=1 Vi:v€ Vo (4.14)

j=1k=1

The precedence constraint requires that each node be $etidatier than its predeces-
sors. Unlike the problem in Section 4.2.2, it is not possiblschedule dependent nodes in
the same cycle. I§; is the time step for; we get

9i < gn, Y (i,h):vi— vp. (4.15)
To express the time step of a nodel, all time steps and issue slots are scanned:
jmax kmax
g = Z Zj Yi,j k- (4.16)
j=1k=1

Tranforming Eq. (4.15) tg; — g, < —1 and substituting with Eq. (4.16) yields the prece-
dence constraint:

jmax kmax jmax kmax
ZZJ Yigk — ZZ] Ynjk < —1, V(i,h):v; = vp, vy, v € Vop.  (4.17)
j=1k=1 j=1k=1

In order to cover also the dummy nodes a second precedensgaiahis needed:

max Jmax Kmax

Jmax ki
ZZ J Yigk _ZZ] Yh,j,k < -1, v(ia h) 1V — Vexit — Ventry — Uh, (4.18)

J=1 k=1 J=1 k=1 Vexit, Ventry € szmy~

Finally, the timing constraints are taken into account. \&ve the constraint similarly
to Egs. (4.9) and (4.10), with Eq. (4.16) for the schedulet:tsteps:

jma)( k:ma)( jmax kmax
E E JYigk — E E JYnjk < tmax YV (i,h):v; 10 on, Vi, Uk € Vop (4.19)
J=1 k=1 =
jmax kmax jmax kmaX

ZZj Yijk — ZZ] Yhgk = tmin, V(4 h) v L Wy Vi Uk € Vop-  (4.20)

j=1k=1 j=1k=1

This completes the formulation with objective function1(@), and constraints (4.14)
for assignment, (4.17) and (4.18) for precedence betweeratipn nodes, and (4.19) and
(4.20) for timing. The result of the optimization is the sépattern bundless,. To over-
come the intractability of ILP optimization for large prelohs we introduce a heuristic in
the next section.
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4.3.3 Heuristic

The basic idea of our heuristic is as follows:

e Compute partial schedule to analyze which pairs of patteootd be scheduled in
parallel.

e For each pair, compute a value that captures the frequeragcafrences of the pair
as well as the constraining effect it has on scheduling freed

e Sum up these values per control step as a metric for the elisall demand in a
control step.

e From the control steps with the largest parallelism demahdose the pair with the
largest value as a new compound instruction.

e Iterate until the constraint on parallelism is met< kmax, Wherek is the maximum
number of patterns scheduled in parallel.

We again start by propagating the constraints across thph doadetermine the domains
of possible control steps for each pattern. The differemteéen the earliest and the latest
possible control step in which a pattern can be scheduked the difference between the
smallest and the largest value in its domain is calledhiobility [PG87] of a pattern. The
mobility is a metric for scheduling freedom. We represelig th a partial schedulein
which patterns that have no mobility are assigned to a paaticontrol step while mobile
patterns are assigned to their range of possible contnod stégure 4.7 shows an example
of a partial schedule. The table shows which patterns magthedsiled in parallel in the
same cycle. Patterns that cannot be scheduled in parabeioddependencies are placed
in the same column. The tables of partial schedules can lstraoted separately for each
control node because only patterns in the same control remtlbe scheduled in parallel.

Step|| Patterns || parsiep

1 A |D 2
2 | B 1/3
3 || clE|1/3+1
4 | v | |F|1/3+1
5 viG| 1/3+1
6 H |1 2

Figure 4.7: Partial schedule with parallelism values.

In order to measure the benefit we would gain from bundlinggeterns in a compound
instruction we define garallel valug inspired by a method for regularity extraction that
was sketched in [BKKS02]. The parallel valugy, of apatternwe define as the inverse of
the number of control stepa in which it can be scheduled, according to its mobility. This
is similar to the probabilities used in FDS [PK89]. We define parallel value of gattern
pair to be the product of the values of its patterns:

. 1
Upar(Palr ) = vpalpattern) - vpa(pattern) :  vpalpattern = -

This definition of the parallel value corresponds to the pholity of the patterns in a pair
being scheduled in the same control step, assuming equadgiiig probability for each
step in the mobility range of a pattern. The value is 1 if batktgrns in the pair have no



4.3. Constraining Parallel Instruction Issues 69

mobility. Otherwise, the value is a fraction of 1. This megisan assigns a lower value
to pairs that constrain the scheduling freedom more: Rabiinds one pattern to another,
hence constraining the mobility of the pair to the intersgcof the patterns’ mobility.

For each control step in the partial schedule we generaggoaliible pairs of patterns.
For each pair we insert pairing edgebetween the according pattern entries in the PSG
library, annotated with th@arallel valueof the pair. Each time a pair is generated for
which the according pairing edge already exists we add thadlpbvalue of the occurrence
to the value counter in the library. If a pair occurs more tbaoe in the same control step
then we count only the highest parallel value.

1+1 I C — > EIF
2*13 7
D/l v
~ 1/3 i
\\ e
\\ //
SN r’e -
G <—> pairing edge
- — —> PSG edge

Figure 4.8: Pairing edges with parallel values in a PSG.

Figure 4.8 shows a fragment of a PSG with pairing edges andtated parallel values
for the schedule in Figure 4.7, assuming that patterns AfH,dbd E/F are pairwise iden-
tical. Pattern C, for instance, can be scheduled in three simps. Hence, it has a parallel
value ofvpsr = 1/3. As it shares time steps 3 and 4 with the identical pattersdFathe
parallel value for the pair i8ya(C <~ E/F) =2-1/3.

The parallel values provide a ranking by the benefit thatrif@eémentation of the pairs
as an instruction would provide. We use this ranking to tteety choose from the pairs
in control steps with the highest parallelism. We define thalelismparsiep per control
step as the sum over the maximum parallel value of afierations in each column

Parstep = Z max { vpar(pattern ;) }.

This again takes into account the probability for a patterbd scheduled in the particular
control step, given its mobility. Patterns B and C in Figuré dach have a parallel value
of vpar = 1/3. All other patterns have no mobility and have a parallel gaitione. Adding
up the parallel values, for instance, in step 4/8 for either B or C, as they are in the same
column, plus one for node F and yielts3 + 1 = 4/3.

From the control steps with the highest parallelism we chdbs pattern pair with the
highest parallel value. In this way we give precedence tosghat occur often which also
tend to be simpler pairs, composed of fewer operation ndllegeplace all occurrences of
the pair in the applications with the new bundle. If the patan the pair do not not occur
anywhere else in the applications their entries in the sattplgattern library are removed.
Then we start another iteration of the process by computiaghew partial schedule. We
iterate until the given constraint on parallel instructissues is not violated anymore.

Figure 4.9 shows the pseudo code for the entire procedure.fif@f or -loop builds
the schedule table, and the second loop computes the pasdile for each pattern pair
and the parallelism for each cycle. The third loop finds thiéepa pair to be chosen for
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while k > k_max {
propagat eConstrai nts();
for each cycle in each pattern.domain {
schedul eTabl e. i nsert (pattern, cycle, cntrl Node);
/'l considers pattern dependencies by col um assi gnnment

}

for each cycle in schedul eTabl e {
cycle.parallelism= sumof all colum. maxPatternValue() in cycle;
for each pair of patterns in different colums in cycle
psg. pai ri ngedge( pair ).val ue += pair.val ue;
}
for each pair in each cycle with cycle.parallelism= maxParallism
i f psg.pairingEdge( pair ).value > nmaxVal ue {
candi date = pair;
maxVal ue = psg. pai ri ngedge( pair ).val ue;
}
psg.insert( candidate );
for each occurrence of candidate in graph {
repl ace occurrence by candi date;

}

for each pattern in candiate
if no nore occurrence of pattern in graph
psg.renove( pattern );

}

Figure 4.9: Pseudo code: Constrain parallel instruction issues.

implementation which is then inserted into the PSG and tipdiGgiion graph. If a pattern
in the pair does not occur in the graph individually any larigis removed from the library.

The worst-case computational complexity of the constaiapagation i) (a®n?). For
table construction, each domain member of each node iedigkxactly once and each
dependency in the graph is analyzed. Witdependencies, this yields a complexity of
O(an+ e€) = O(an + n?) for table construction. The next tWor -loops analyze all pairs
of patterns which cannot have higher complexity than vigitill possible pairs of patterns
in each cycle which i©(an?). The entire procedure iterates at magtmes. This results
in a total worst-case complexity of( n - (a®>n? + an + n? + an?) ) = O(a®n?). Again
we have achieved a polynomial time complexity as opposede@xponential complexity
of an ILP solver.

4.3.4 Using IOGs to Eliminate Instructions

In Chapter 2.2 we described the IOG method based on ID opetanslibstitute patterns
by others in order to simplify an instruction set. This metlean also be applied to patterns
in a pair. Therefore, a pair can implement combinationsropgér patterns that are part of
the 10Gs of the pair patterns. We use the 10Gs of the patterfind all pairs of simpler
patterns that are dominated by a pair. Any paifjnthat is dominated by another chosen
pair in S, is removed from the instruction set and its occurrencesergtiaph are covered
by the dominating pair.

We also construct the IOG library of the sequential patteeeded to cover the remain-
ing operations that are not covered by any chosen paraliel pem this I0G, we select
all those patterns that are not dominated by any other pa#terinstructions. The final
instruction set for the ASIP consists of those sequentitbpss and the chosen parallel
pattern pairs.
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4.4 Handling Control Constructs

Some control constructs in the mlIR need to be converted ireprpcessing step before
they can be handled by the methods described earlier in kiaipter. In the following
sections we show how we cope with loops and wait nodes, asasdiranch, nop, and
WFC operations.

4.4.1 Loop Ripping

The constraints we formulated in the previous sections,kqg(4.8), require that a control
node be scheduled later than its predecessors. In a lodp timpossible to achieve because
here each node is its own predecessor and successor at theisemTherefore, we must
cut open each loop, transforming the application graphaulicected acyclic graph (DAG)
while maintaining the timing and data dependencies betwedegs, inside and outside the
loop.

Figure 4.10: Loop ripping: concatenating two iterations.

We solve this problem by concatenating two iterations oflttog with all their depen-
dencies between each other. Instead of closing the loom,agaiassign the end node as
the successor of the last node in the loop. In this mannetptiehas beemnipped open
while any dependencies between loop iterations are repegséy dependencies between
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the two concatenated iterations. To maintain the same gifb@iween nodes across itera-
tions we pose the additional constraint that all nodes mag the same time distance to
their clones in the next iteration.

Figure 4.10 gives an example. On the left-hand side, thergiaph with a loop in which
an 1/0 node has a timing constraint on itself. This constrepresents a rate constraint
on the loop. On the right-hand side, the loop has been ripped,otwo iterations are
concatenated, and the rate constraint now spans from asagdteto the next. Furthermore,
there is a constraint between each node and its clone wittheanti¢al loop constrainttto
ensure equal spacing between nodes across iterations.

This approach also enables us to maintain dependenciesdretvodes in the first loop
iteration and predecessors outside the loop. Moreovelstocater for constraints between
nodes in the last iteration and successors outside theWgopan copy an iteratiobefore
the original branch. The first node of this copy would havestiagt node as its predecessor.
The constraints and the spacing between iterations aretarad in the same manner as
before.

The result of thisoop rippingconversion is a DAG for which the precedence constraints
between control nodes can be met. We have arrived at a sewariiwhich our methods for
instruction-set generation can work. Note that in our métthegy the cloned iterations are
only necessary for constraint propagation. The other dlguos in the pattern construction
process ignore the clones.

4.4.2 Wait-Node Scheduling

In Section 3.3.4 we have suggested hardware and softwaterireptations of wait nodes.
Following the considerations presented there we implemeit nodes by a dedicated
counter register in order to control the complexity of salied). Consequently, a wait

node is composed of two instructions: one to write the stlttesto the counter register—a
simple move operation that we calbunter start—and one to block the control flow until

the counter reaches zero—the WFC instruction. The WFC in&rustops the fetching

of instructions and the incrementation of the program ceu(RC) until the wait counter

triggers. Therefore, the next instruction to be executtat Hie wait is the one d&Clygit+1.

The counter start can be scheduled in the same cycle as the W&#tlier. When shift-
ing the counter start to earlier cycles the waiting time nbgshcreased in order to maintain
the original trigger time. Hence, we adjust the input valuéhe wait node accordingly by
adding the number of cycles by which the counter start has bbifted. In the mlIR, we
represent this shifting to an earlier slot by subtractingley from each incoming timing
edge and adding them to each outgoing timing edge. In thisth@yait node represents
setting the start value of the counter register.

The WFC either remains in the cycle before the wait target @ #@lso shifted to an
earlier slot, filling the resulting gap with other instruis. If the WFC is shifted the start
value must be adjusted accordingly. Moving the WFC closeh¢ocbunter start we have
to subtract the number of cycles by which the WFC has beereshiftiote that the total
offset incurred by this scheduling and titen_val provided by the waitfpr agnma must
not be negative in order to prevent negative wait times:

offset= min_val + offsetchedule> 0

All these adjustments must be performed consistently omatiming or outgoing edges
of a wait node.
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For pattern construction we require each wait node to beegext by an adder to allow
for scheduling adjustments. If there is no addition or satiton before a wait node in an
application then an addition node is inserted before pattenstruction commences. The
adjustment adder assumes the task to move the start vatudétounter register, making
a dedicated move operation obsolete.

The incoming and outgoing timing edges of each wait agna are joined for pattern
construction to form a single timing edge between the soofde incoming and the
destination of the outgoing edge. The timing values of the @édges are summed up. The
dynamic run-time delay that the wait node represents isidered to be zero for pattern
generation because the timing constraints must also befmetun time the input to the
wait node turns out to be zero. After the construction of iheng-forced patterns, the
values of the original timing edges are adjusted accordintyé resulting distribution of
cycles before and after the wait.

4.4.3 Branches, Nop, WFC

Conditional branches can form a pattern with the arithmegierations that compute the
branching condition. Their scheduling, however, is caistrd by the fact that they transfer
the control to another basic block and therefore must allsayscheduled in the last cycle
of their basic block. We integrate this requirement into camstraint framework by means
of timing edges from the other DFGs in the same basic blodk@@bnditional branch with
t > 0.

In contrast, unconditional branches have no dynamic data iand can therefore not be
part of a DFG pattern. We implement these branches by a dtsetthat is available in
every cycle in parallel to other instructions. The offsejuiees only few bits as control-
dominated applications are characterized by small basickbland skipping these basic
blocks requires only short jumps. On the other hand, smaltch#ocks result in frequent
branches which means that the goto-offsets are used frdgu€hese considerations jus-
tify having dedicated bits in the ASIP’s instruction format

Similarly, the WFC operation can be activated by a single i instruction word
rather than occupying an entire instruction slot. Furtteamwe assumeopto be part of
any instruction set. This approach coincides with the faat hop, goto, and WFC oper-
ations are not represented by operation nodes in a data-flaph decause they are only
introduced by the scheduler. The approach enables theudtistn generator to concen-
trate on the operations that are connected to the data-flgey, [thereby simplifying the
employed scheduling methods.

4.5 Summary of Instruction-Set Generation

In this chapter we have completed our methodology to gemeaatinstruction set for
control-dominated applications. In a first step, we devisedlgorithm to derive timing-
forced patterns from fine-grained timing constraints, gpetby the ASIP designer in an
HLL as suggested in Section 3.2. The resulting patternsaguiee that the timing constrains
of the applications can be met with the final instruction set.

In a second step, we suggested a method to constrain parathelction issues to a num-
ber requested by the ASIP designer. The algorithm bundligsrpa that occur in parallel,
taking into account their mobility and the overall conttiba of a pair to reducing the



74 Chapter 4. Instruction-Set Generation for Precise Timing

number of parallel issues. We furthermore elaborated ontbdvandle control constructs
such as wait nodes and loops in our pattern construction flow.

The final instruction set consists of timing-forced instioigs, pattern pairs, and the in-
dividual operations needed for a complete covering of th@iegtion graphs. The timing-
forced patterns guarantee that the given applications eamplemented with this instruc-
tion set in a way that meets the timing constraints which #&gher specified. Thanks to
our bundling technique the instruction set complies withrégquired maximum number of
instructions issued in parallel. The use of IOGs in the pse@xploits synergies between
patterns, leading to a leaner instruction set.



5 Experimental Results

In this chapter, we first examine the performance of PSG a@fIP%s libraries compared
with traditional linked-list implementations in Sectiorl5 In Section 5.2 we demonstrate
the feasibility of our methodology by generating an indiutset in a network-processing
application domain with our algorithms. We assess the tyuaflithe result by comparing it
with a manually designed instruction set for the same domai8ection 5.3 we summarize
our findings.

5.1 Pattern-Library Performance: Speed and Size

In this section we present the performance measurementsiwveedonducted on our C++
implementation of the PSG and IOG data structures and &hgosi

5.1.1 Workload

We have implemented a pattern generator within the MacBldd~ compiler framework
[MS]. To grow the scope for the pattern generator beyondchalsick boundaries, the gen-
erator works on a static single assignment (SSA) repres@mtahich extends the DFGs to
operand definitions in other basic blocks. We include op@matin other DFGs in a pattern
if these operations are reached directly, not througkfanction, because these operations
can easily be moved across control-flow boundaries.

We feed the patterns to one of four types of pattern libraries

e A PSG for DAG patterns, constructing only the search pattatheattern.
e A combined PSG/IOG for tree patterns, constructing theehBG for each pattern.
e Unordered linked-list libraries for trees and DAGS, regijpety, for comparison with

the state of the art.

We tested the libraries on a subset of the MediaBench ben&suade [LPMS97]. We
measured the search times while the library was being amistt, i.e., from the first in-
serted pattern to the last. Furthermore, we measured thberunfientries in each library
after the last pattern had been inserted. The pattern genpessed between 60 and 41233
patterns per run to the library.

5.1.2 Performance in PSGs

Figure 5.1 compares the search times for DAG patterns, gjithe speed-up of PSG li-
braries over linked lists. The size of both library types &sibally identical because we

75
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Figure5.1: Search speed-up for DAG patterns in a PSG.

only supplement patterns on the search path to each padtéer than constructing the en-
tire IOG for each inserted pattern. The benchmarks are eddsy the number of different
patterns that the pattern generator passed to the library.

The more patterns in the library the longer the linked ligirgg and the longer the worst-
case search time in the list. In contrast, the search time B8@ is independent of the
library size. Hence, the larger the library the more sigaificbecomes the advantage in
search speed of the PSG. In the JPEG library with 41233 DA et we measured a
PSG speed-up factor compared with the linked list of 1743.

5.1.3 Performance in Combined PSG/IOGs

In a second set of experiments, we constructed the entirdd®&ach inserted pattern. As
we showed in Section 2.3.4, a PSG/IOG library can only betcocted for tree-shaped
patterns. Because of the increase in size due to consiguatinOG for each pattern a
PSG/IOG organization is viable only for medium-sized litga. The largest library in

our experiments was the rasta benchmark with 11371 patirethe PSG/IOG. The upper
graph in Figure 5.2 shows the resulting speed-up for searfthdree patterns, comparing
a PSG/I0G with a linked list. The lower graph shows the inseda size of the PSG/IOG
over the linked list for the same workload.

Our results show that the overhead due to constructing tlef&®each entered pattern
grows the library to up to nine-fold size compared with a édKist which holds only the
entered patterns—which is the minimal set. However, theahtbical organization of the
PSG/IOG still reduces the search times as dramaticallyagtine PSG—in spite of the
larger size. Moreover, the size overhead of constructingOeh for real workload is far
below the theoretical worst case indicated in Chapter 2.eNlwat only the 10G enables
the use of complex patterns to substitute simpler ones. ifiked list does not provide this
advantage.
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5.2 Example of a Control-Dominated ASIP Design

In order to prove the concept of our design methodology inedlife case, we apply our
methodology to a representative control-dominated ASIpamser for packet headers as
a building block for a network processor (NP). We comparertsalt with a manually
designed header parser to assess the quality of our autathatjienerated instruction set.

In the following, we first describe the manually designeddeegparser. Then we il-
lustrate each step taken in our methodology to arrive at smuiction set for the same
application domain. Finally, we compare the two results.

5.2.1 A Parser for Protocol Headers in Network Packets

Clock ==—b- Header

RESE! mu— Parser

Protocol Extracted
Data Data

Delimiter —l
> D

Configuration
Data

Address

Configuration
Interface

Write >
Enable —

Figure 5.3: Header-parser interfaces.

The manual design and optimization of a header parser faranktprocessing has been
described in [Dit00]. Figure 5.3 shows the interfaces offtheser. Protocol data is applied
to the 32-bit input port, and a packet start is indicated bglardter flag. The flag starts the
analysis of the packet header. Communication with the enuiient of the parser follows
the data-push paradigm defined in Section 1.3.3, i.e., tkeewlards are expected to be
available in an input register for only one cycle. The paeséracts the protocol fields that
other building blocks in the NP need and writes the extradtgd to the 32-bit output port
together with a 4-bit ID that identifies the type of outputadat

The network protocols considered are versions 4 and 6 ofrttegriet protocol (IPv4,
IPv6). The relevant header fields to be extracted are giv@alites 5.1 and 5.2, indicating
the clock cycle in which a field occurs, its position in thet@2input word, and whether it
is needed for processing within the parser or by an extewrllibg block.

The resulting instruction set is given in Table 5.3, roughigered into four data-only
and five control-related instructions. The patterns thatdbmpound data-only instruc-
tions implement are shown in Figure 5.4. Programmable oysravhich are encoded in
the op-code of the instruction are labeled in bold italicke Tnhternal architecture of the
parser is depicted in Figure 1.4 in Chapter 1. The parserssaritwo instructions in par-
allel in a VLIW fashion. Moreover, an offset can be added ® phogram counter for an
unconditional branch and the wait counter can be testedyircyrie.
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Fields relevant
Cycle # internally \ externally
1 IP Header Length (IHL) [4-7] Type of Service (ToS) [8-15
2 — —
3 - Protocol [8-15]
4 - Source Address [0-31]
5 - Destination Address [0-31]
wait (IHL-5) max. 10 TCP / UDP:
for layer-4 header - Source Port [0-15],
Destination Port [16—31]
Table 5.1: Relevant header fields in IPvA4.
Fields relevant
Cycle # internally \ externally
1 - Traffic Class [4-11],
Flow Label [12-31]
2 Next Header [16-23] -
3-6 - Source Address [0-31]
7-10 - Destination Address [0-31]
wait until Next Header [0-7], | stored layer-4 NextHeadef
NextHeader= layer-4 header| HdrExtLen [8—15]
wait for end of IP header TCP / UDP:
= layer-4 header - Source Port [0-15]
Destination Port [16-31]

Table 5.2: Relevant header fields in IPv6.

Instruction | Effect

Send Extract field from input, write it to output together with ID.

Send_Reg Write register to output together with ID.

Wite_Reg Extract field from input, write it to register.

| P6_Count er | Extract field from input, compute IPv6 header length, witt®i
wait counter.

Nop No operation, i.e., wait one cycle.

Got o Unconditional branch.

I f _Count er Conditional branch depending on wait-counter valueMFC)

Init_Case Multi-way branch.

Ld_Const Move conditions intd ni t _Case configuration registers.

Table 5.3: Manually designed header-parser instruction-set.
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Figure 5.4: Patterns of manually designed data instructions.

The parser has been synthesized for a Quk8technology, supporting data rates close
to 10 Gb/s. The size of the parser, including a small instvaahemory, is on the order of
0.45 mn?, which demonstrates the area efficiency of the ASIP approach

In the following we demonstrate how to employ our methodglmgderive an instruction
set for the header parser. We will then compare the resuittivét design described above.

5.2.2 Specification of Benchmark Applications

The first step in our methodology is to specify a set of benckrapplications that are
representative for the target domain. Integrated in thdicgifon code are the timing an-
notations as introduced in Section 3.2.

Deriving from Table 5.1 an algorithm to parse an IPv4 headerarrive at the C code
with timing annotations given in Figure 5.5. For readagilihe number in the label names
corresponds to the number of cycles from the start. The groomstraints are defined such
that the input registeirn is read in the cycle in which the expected header word appears
The extracted data are written to the output registér in the same cycle in order to have
the output register available in the following cycle for thext header field. After parsing
the relevant fields in the standard IP header the wait statefimels the beginning of the
transport header and extracts the port numbers.

Figure 5.6 shows the timed code for IPv6 header parsingyetin the same manner
from Table 5.2. After parsing the IP header the switch statdgrhandles the subsequent
extension header or layer-4 header. If an extension headeaHtdrExtLenfield its header
length is computed and written to theunt er variable. This variable is used as the input
to a wait node in order to find the beginning of the next headeretkeer extension header
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#pragma io nain::in | _3a:

#pragnma i 0 nain::out Proto = (in & Ox00ff0000) >> 24;

#pragma io nain::id | _3b:

#pragma time START | _1 =0 out = Proto;

#pragma tine | _1 1 _1a =0 | _3c:

#pragnma tinme | _la | _1b = 0 id = 2

#pragnma tinme | _1b 1 _1c = 0 | _4a:

#pragma tine START | _3a = 3 SrcAddr = in;

#pragma time | _3a |1_3b =0 | _4b:

#pragma tinme | _3b 1_3c =0 out = SrcAddr;

#pragma tine START | _4a = 4 | _4c:

#pragnma tine | _4a | _4b =0 id = 3;

#pragna tine | _4b 1 _4c = 0 | _ba:

#pragma time START | _5a =5 Dest Addr = in;

#pragma tinme | _5a | _5b =0 | _5b:

#pragnma tinme | _5b 1 _5¢c =0 out = Dest Addr;

#pragma wait | _5a | _6a counter 5 | _5c:

#pragma tinme | _6a | _6b = 0 id = 4

#pragna time | _6b | _6c = 0 /* wait on counter */
| _6a:

int main(int argc, char argv[]) { L4Ports = in;

int in, out, id, counter; | _6b:

int ToS, Proto, SrcAddr, DestAddr; out = L4Ports;

int L4Ports; | _6c:

1 _1: id = 5;

counter = ( (in & 0x0f000000) >> 24 ); }

I _la:

ToS = (in & 0x00ff0000) >> 16;

I _1b:

out = ToS;

I _1lc:

id=1;

Figure 5.5: Timed C code for IPv4 parsing.

or a layer-4 header. The parsing terminates if either a TOPD#® header or an unknown
header is encountered.

A compiler front-end transforms the annotated C code intmHR graph as defined in
Section 3.3. The timing annotations are parsed employiagthductions in Section 3.4.
Figure 5.7 shows the multi-layer IR representation for el code. Figure 5.8 shows the
graph for IPv6. The I/O variables and wait nodes are markeddsjed circles. For each
wait node, the minimum input value given by the wijir agna has been used to derive
the timing edge to the wait node and to adjust the offset atvidie node input according
to Section 4.4.2. Time is one less than the available mininaalme because the outgoing
timing edge consumes one cycle. To unclutter the represemtsome timing edges have
already been replaced by the appropriate fixed cycle nunéeéita the corresponding 1/0
variable.

5.2.3 Timing-Forced Instructions

Before pattern construction the loop in the IPv6 graph mesubrolled with the loop
ripping method in Section 4.4.1. Figure 5.9 shows the CDF&taning layer with two
concatenated iterations and the additional timing edggsdoantee equal schedules in each
iteration. The cloned iteration is shaded to mark that ieisded for constraint propagation
only but not for pattern construction. The wait node has breplaced by a direct timing
edge as required by Section 4.4.2. Timing edges that startéanded at the same node
now span across iterations.

The case operation in Figure 5.8 has a timing problem: Theggiiag control node has
operations scheduled in clock cycle 10 and the followingtidmodes have operations
scheduled in cycle 11. As control nodes must not overlap incéwck cycle there is no
schedule slot left for the case operation. This problem onted to the designer. The
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#pragnme io main::in /+ ...continue for 2nd SrcAddr =
#pragme i 0 main::out * to 3rd Dest Addr word */
#pragma io nain::id | _10a:
#pragnma tine START | _la =1 Dest Addr = in;
#pragma tine | _la | _1b = 0 | _10b:
#pragma time | _1b | _1c = 0 out = Dest Addr;
#pragme tinme START | _2 = 2 | _10c:
#pragma tine START | _3a = 3 id=09;
#pragnma tine | _3a 1_3b =0 next _header:
#pragma tine | _3b 1_3c =0 switch ( NextHdr ) {
I+ ...continue for |_4x to | _9* x/ case 6: case 17: /* TCP or UDP x/
#pragme tinme START | _10a = 10 | _11al:
#pragma tinme | _10a | _10b = 0 L4Ports = in;
#pragma tinme | _10b | _10c = 0 | _11b1:
#pragma tinme START |_11al = 11 out = L4Ports;
#pragnme tinme | _1lal | _11bl = 0 | _11cl:
#pragma tinme | _11b1l | _11cl = 0 id = 10;
#pragma tinme START | _12al = 12 | _12al:
#pragma tinme | _12al | _12bl1 = 0 out = Next Hdr;
#pragnmae tinme START |_1la2 = 11 | _12b1:
#pragnmae tine | _11a2 | _11a2 = 2 id=11;
#pragmae tinme START | _11a3 = 11 br eak;
#pragnma tinme | _11a3 | _11b3 = 0 case 44: [/ Fragnment Header =/
#pragma tinme START | _11a4 = 11 | _1la2:
#pragma tinme | _11ad4 | _11b4 = 0 Next Hdr = (in & Oxff000000) >> 24;
#pragme wait |_11a3 | _11a3 counter 2 got o next _header;
case 0: case 43: case 51: case 60:
int main(int argc, char argv[]) { I+ all other extension headers =*/
int in, out, id, counter; | _11a3:
int Flow, NextHdr; Next Hdr = (in & Oxff000000) >> 24;
int SrcAddr, DestAddr, L4Ports; | _11b3:
| _la: counter =
Flow = in & OxOf ffffff; ( (in & 0x00ff0000) >> 15 ) + 2;
I _1b: /+ wait for counter =*/
out = Flow, got o next _header;
I _1c: defaul t: /* unknown header =/
id=1; | _1la4:
1_2: out = NextHdr;
Next Hdr = (in & 0x0000ff00) >> 8; | _11b4:
| _3a: id=11;
SrcAddr = in; } I+ switch */
I _3b: }
out = SrcAddr;
I _3c:
id=2;

Figure5.6: Timed C code for IPv6 parsing.
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Figure5.7: Multi-layer IR graph for IPv4 header parsing.

solution shown in Figure 5.9 is to merge the first instancd&efdase control-node with the
first control node. In Section 4.4.3 we found that a condéldranch must always be the
last operation in a basic block. Therefore, the case operaths implicit timing edges to
the other DFGs in its basic block with> 0.

According to our heuristic in Section 4.2.3, constrainfgargation determines the sched-
uling freedom for each node. The resulting domains with aligible clock cycles are
annotated in curly brackets with the nodes in Figures 5.75%28dThedf sVi si t proce-
dure traverses the graphs to schedule any nodes with undeést clock cycle, i.e., nodes
with more than one value in their domain. In Figure 5.7 thishis case for the nodes
marked with a bold B and C. In the process, tta@ ance procedure is called for the path
A — B — C — L with am dTi ne of 4. The middle of this path is node C which
has a 4 in its domain and is therefore scheduled in cycle 4nBhaé ance recurses for
A — B — C with anmi dTi me of 3 which is therefore assigned to node B. Similarly, in
Figure 5.9, node D is scheduled in cycle 6.

In the final schedule, each set of nodes that have been seldeduhe same time step
and are connected by data dependencies in the CDFG remespattern. The timing-
forced sequential patterns in the IPv4 case are the DFGsas@land F, and in the IPv6
case, P, Q, and R. The result for IPv4 is intuitive as D and foate=d in a timing constraint
with ¢ = 0. A, B, and C, on the other hand, are three nodes with a timimgtcaint of
t = 4, granting each node a private clock cycle. For IPv6, theepadtare forced in the
loop which has a timing constraint of= 2 between iterations. As the loop comprises
two control nodes, each has only one cycle available, fgreith DFGs in the loop as
sequential patterns. Nodes C, D, and |, on the other handthtegwith an operation from
the following control node, are four nodes with a timing doaisit of t = 9, granting each
an individual cycle.
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5.2.4 Constraining Parallelism

The manually designed header parser can issue two instngdti parallel. In order to get
comparable results we also constrain the number of paiaB&iuction issues to two as
an input parameter for our second heuristic, described aic8e4.3.3. The first step in

the heuristic is to derive the partial schedule for both @pgibn graphs, using the forced
patterns from the first heuristic as instructions. Tabledhdws both schedules, includ-
ing the parallelismpar,., for each control step. The letters refer to the pattern falvel

Figures 5.7 and 5.9, respectively. Horizontal lines magklibrders of basic blocks. The
arrows indicate the mobility of an instruction.

(a) IPv4 Parsing. (b) IPv6 Parsing.
Step || Patterns || parstep Step || Patterns || parsicp
1 A D|E 3 1 A B 2
2 || B 1/3 2 | C 1
3| clF|G| 7/3 3 | D|E |F 15/7
4 |v | |H|1]| 73 4 | |E | P | 157
5 viglk 7/3
6 C | M 2 8 | |EY | FY || 157
9 || v |EV| R || 15/7
10 | G H 3
11 J K 2
12 L M 2
11 N | O 2
11 P 1
1 || 0 [R 2
12 S 1

Table 5.4: Partial schedules.

Combining the patterns in each control step and insertiegaticording pairing edges
into the the pattern library results in the library PSG showirigure 5.10. The pairing
edges are annotated with their parallel values. Based opdtalel values we choose a
pair from the control steps with the highest parallelisnepst in Table 5.3(a) and step 10
in Table 5.3(b). The pairs that occur in these stepgad || and — shr), (and || mov),
(and — shr || mov), (mov || mov), and(case || mov) with the parallel values 1, 2,
2, 14, and 1, respectively. Hence, the first choicérnigv || mov) and all occurrences of
two parallel moves are replaced by a single pair instrucfidre process iterates two more
times before the parallelism constraint is satisfied, cimgotsvo more pairs{and || mov)
and(and — shr || mov). This set of pairs covers all occurrences of a move operation
Therefore, the individual move is dropped from the pattetn s

In afinal step, the IOG of the instruction set is construatentder to remove instructions
that are covered by others. The operatiand andmovboth appear in the 10G afnd —
shr. Therefore, the paifand — shr || mov) dominates the other two chosen pairs
which are consequently removed from the instruction set. opérations that have not
been covered by pattern pairs are covered by single pattarike IPv4 graph these are
the patterns B, C, and D, and in the IPv6 graph C, D, I, P, Q, B,%rOf these patterns
the ones that are not dominated by any other pattern in theimi@®@ure 5.10 are thease
operation andnd — shr — add. The final instruction set therefore consists of the derived
patternsand — shr — add, (and — shr || mov) andcase and the mandatory control
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<—> pairing edge
———> PSG edge

Figure 5.10: Forced patterns and pairing edges.

instructionsnop, gotoandWFC. Figure 5.12 shows the compound patterns that have been
chosen.

5.2.5 Comparison with Manual Design

The mandatory control instructiom®p, goto, andWFC as well as theaseinstruction are
present in the manually designed instruction set as well@sne derived by our methodol-
ogy. The difference between the two sets are in the compoatadahly instructions shown
in Figure 5.11 for the manual desfgand in Figure 5.12 for our methodology.

The Send instruction in Figure 5.11 matchdsstructi on2 in Figure 5.12 and
| P6_Count er matched nstructi onl. In both cases, our methodology suggests in-
structions with the same structure as the manually designed. The reason why the re-
maining instructionSend_Reg andW i t e _Reg are not part of our derived instruction set
is that the |OG showed that they are dominated by the two atltuctions, respectively—
they can be implemented with the present instructions bynsie&lD operands. Applying
a zero as operand 4 tnst ruct i onl results in theN i t e_Reg instruction; applying
zeros as operands 2 and 3 transfotmst r uct i on2 to Send_Reg. Therefore, the dom-
inated patterns have been eliminated from the instrucgbimghe last steps of the previous
section.

The result is an instruction set that is functionally eqlémato the manual design since
all manually derived instructions are covered. Howevaerjtistruction set is leaner because
it exploits the synergies between patterns provided bytiyeoperand transformations.

The manual design of the header-parser instruction-setasmgplex and therefore time-
consuming and error-prone task. In the case study we hawvenstiat our methodology

1Since our methodology does not constrain the operand typesi fiperands have been replaced by generic
operands in the figure for comparison.
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comes to a result that is superior to the manual design. Ersdstrates the viability of
our approach. Moreover, our methodology speeds up therpsigess through automa-
tion and it can handle more complex designs than would balgesaanually.

5.3 Summary of Experimental Results

In this chapter we presented performance measurementsifgraph-based organization
of pattern libraries and compared them with the commonlyd usged-list implemen-
tations. The results demonstrate that our PSG improvests&ares on large libraries by
orders of magnitude and that the performance gains growthathbrary size. For a library
of 41233 DAG patterns we measured a maximum speed-up bya fafc1743. Further-
more, we demonstrated that the size penalty for constgietioombined PSG/IOG stays
significantly below the theoretical maximum while the séatime advantage is equal to
the PSG case. We conclude that using an IOG is viable alsarged problems, providing
synergies between patterns.

In the second part of the chapter we presented a case study ASHe for network
header parsing. We showed step by step how our methods enhiyzspecified appli-
cations and derive an instruction set that meets the timimgtcaints. We compared the
generated instruction set with a manually designed ASIPsinmved that our methods
arrive at an instruction set that provides the same perfocmas the manual design but
with fewer instructions. The study demonstrates that ouho@ology is suitable to auto-
mate instruction-set generation for control-dominatepliaptions. Automation not only
speeds up the design process significantly; automationlesétte design of ASIPs for
larger benchmark suites that are too complex to be handlediatiz with reasonable ef-
fort.






6 Conclusions

In this thesis, we investigated problems in designing ASiPisoth data-dominated and
control-dominated application domains. We observed thateat methods focus exclu-
sively on the data-dominated domain and that many of thedbade suffer from slow
searches in unstructured pattern libraries. Furthermmoee of the known ASIP design
methods takes into consideration the synergies betwedtasipatterns that can be com-
bined for leaner implementation.

For instruction-set generation in the control-dominatechdin we argued that the main
concern is to meet fine-grained timing constraints. Nonéefkinown approaches caters
for timing. The control-dominated ASIPs described in therfiture have been designed by
intuition rather than with the help of formal methods.

In the research presented here, we addressed these prdlylenesans of a new library
organization on the one hand, and by introducing the firsgdesethodology for control-
dominated ASIPs on the other hand. Our proposed soluti@sanmarized in Section 6.1.
We conclude the thesis in Section 6.2 with an outlook on &nuwrk for which this research
laid the foundation.

6.1 Contributions of this Thesis

The research presented in this thesis has contributed tvyjor mancepts to the field of
instruction-set generation for ASIPs: a set of new orgditinanethods for pattern libraries
and the first ASIP design methodology in the control-dongdatomain.

6.1.1 Efficient Pattern Libraries

e We have proposed a novel structure for pattern librarieshwivie call pattern search
graph (PSG). In a PSG, the patterns are arranged as a trexhaits the structure
of patterns to order them hierarchically. We have given ilgms for inserting and
searching patterns that have a linear computational cotitphe.r.t. the number of
edges in the pattern. This is a significant improvement dvemultiplicative com-
plexity in linked-list libraries, in particular as PSGs reve the dependency between
search time and library size. Hence, PSGs enable the hgnaflifarge libraries,
eliminating the need for pruning heuristics and permittimg use of exact methods.
In our experiments, searches in a PSG were up to 1700 timestad in a linked
list. The speed-up grows with the library size.

e We have introduced a new method that employs identity oplsrémdisable opera-
tion nodes in a tree pattern, in this way reducing it to simpkgterns. The original
pattern together with the simpler patterns generated ftaneiarranged in an identity
operand graph (IOG). Each pattern in the IOG can be impleadentth the parent
pattern by disabling operations using identity operandser&fore, the 10G repre-
sents synergies between patterns that can be exploiteeioet instruction sets and

91
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Figure 6.1: The complete methodology.

data-path sharing. We have given algorithms to efficierdlystruct an 10G together
with the according PSG, providing the 10G with the PSG acspsgd. In our exper-
iments, the overhead in library size due to the additiontipas in the IOGs was up
to nine-fold compared to a linked list which is far below thedretical worst-case
overhead.

6.1.2 Design Methodology for Control-Dominated ASIPs

e For the specification of the fine-grained timing constrathts are characteristic of

control-dominated applications we have integrated nevgttoats into a C compiler
front-end. By declaring variables to be timing-critical wan specify the timing

constraints with a granularity of an individual registecags. Our method is ANSIC
compliant for compatibility with existing tools. Furtheare, C compatibility allows

the reuse of an existing code base which for embedded systemgst cases has
been written in C.

We have integrated the application information requiredtii@ control-dominated
domain in our multi-layer IR (mlIR). It combines the follomg IRs: DFGs for the
data flow within a basic block; the SSA form for the data flowdsgn basic blocks;
a CFG for the control flow; a timing layer for the timing corsiits between inter-
actions with the environment. We have demonstrated theesgmeness of the mlIR
by the example of an optimization technique we call brandtgming that requires
information from each layer in the IR. Branch postponing iee variation of spec-
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ulative execution that moves operations out of the crifiedh of fine-grained timing
constraints.

e Control-dominated applications often wait for events irithenvironment whose
timing is only determined by system input at runtime. To nidflese cases we
have introduced a novel data-dependent wait operationiiiming constructs in
C as well as the timing layer of the mlIR. The wait operation ba implemented in
several ways, with or without hardware support and with shszheduling possibil-
ities. Our abstract notation makes wait constructs amenaaptimization. We have
devised methods to include wait operations in pattern coctson and scheduling.

e We have formally defined the optimization problem of instimt-set generation un-
der fine-grained timing constraints. We have presented ddtieihat analyzes given
timing constraints and derives the patterns that are negessmeet the constraints.
We achieve this with a novel scheduling algorithm that distes the available time
evenly along paths through the IR. Dependent operatiorisatieascheduled in the
same cycle form a timing-forced pattern. The algorithm ainlalance the size of
the resulting patterns.

¢ We have proposed a new method to constrain the number ofedamatruction issues
needed by the ASIP down to a number specified by the desigrpplications are
partially scheduled to determine the mobility of patterfPatterns that are scheduled
in parallel are bundled into pairs. The pattern pair thatthasighest potential to re-
duce the required parallelism is chosen to be implementadambined instruction.
The process is iterated until the constraint on paralleldsss met.

We have integrated our methods into a design methodologycdotrol-dominated
ASIPs, depicted in Figure 6.1. To our knowledge this is th&t finethodology that has
been proposed in that domain. By comparison with a manuabjgthed ASIP we have
demonstrated the viability of our approach: The resultimgjriictions are similar in both
cases, but the IOG optimization results in a leaner indbnctet at the end of our for-
mal approach. Moreover, our methodology automates theepsowhich not only provides
faster turnaround times but also handles more complex nedlan would be possible
manually.

6.2 Future Work

6.2.1 Pattern Libraries

The advantageous properties of the PSG opens new possihiitit any method that relies
on large pattern libraries. Besides the immediate gaindescspeed it will be interesting
to see what impact the possibility to handle very large liesawill have. There remains
a problem, however, that the PSG shares with many othertstasc How to recognize

patterns that expose the same behavior but have differtembal structures due to commu-
tativity and associativity?

For the 10G we see a applications in HLS for data-path shaijin code generation
for processors with complex instructions.
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6.2.2 ASIP Design Methodology
In our design methodology we see two major areas for imprevem

1. In Section 1.3.4 we stated the underlying assumptiondianitztions of this work.
The most severe of these assumptions is the exclusion ofndexaories that led
to the assumption of unlimited registers. These can beiatky by the memory-
disambiguation techniques devised for VLIW compilers §5]l Furthermore, the
inclusion of multi-cycle instructions could take presstn@n the register file as it
would provide a path to pass data from one cycle to anothdrowittouching the
register file.

2. Our heuristics leave a lot of room for optimization. Mampkisticated algorithms
can be found in other fields, in particular the schedulingp@lgms and optimiza-
tion runs proposed for HLS and compilers. We have mentionednaber of them
throughout this work. Transferring these methods to ASKigiewill likely improve
the results of our methodology significantly.
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