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Abstract

Contemporary embedded systems are making their way into many
application domains where strict requirements on their correct and
timely operation apply. Examples range from traditional safety-
critical systems, which must adhere to hard real-time constraints, to
distributed sensor networks needing to provide a reliable minimal
service level. Yet, the very trends popularizing embedded systems
are causing detrimental unpredictability in their operation.

A prime example is energy harvesting, which promises to power
embedded devices indefinitely. Relying on energy from the environ-
ment introduces substantial uncertainness to a system’s operation
due to the natural volatility and intermittence of the sources. To this
end, embedded systems are often designed with adaptive operation
in mind. Energy controllers can thus choose an appropriate mode
of operation, either reacting to the system’s state or proactively
estimating the environment’s future.

Another trend is the increase in complexity. Hardware advances
often optimize the average performance while sacrificing timing
predictability. Thus, in combination with modern software, task
execution times become more and more variable, and possible but
unlikely very long execution times occur. Oversizing computational
resources to ensure correct operation for every rare scenario is often
impossible, and adaptive operation again offers itself as a sensible
alternative. An example is mixed criticality scheduling, where the
performance of safety-critical tasks is always guaranteed, while it
is acceptable to occasionally enter an operating mode where less
important tasks are dropped or executed in a low resource mode.
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Unfortunately, with the introduction of adaptability, it becomes
a challenge to guarantee all requirements. Regardless of the con-
straints, a system’s operation is influenced not only by the environ-
ment’s non-determinism but also by the adaption strategy of the
system. This dissertation investigates the influence of the environ-
ment on an adaptive embedded system and what kind of guarantees
can be given. The two examples of an uncertain environment
given above are studied, first when the available energy depends
on the environment and then when the computational resources
depend on the execution times of current and past tasks. Our main
contributions are:

■ For energy harvesting embedded systems, we discuss how to
optimally use a backup battery, such that the system’s lifetime
and long-term utility are maximized while a minimal service
level is guaranteed. In the solar energy harvesting scenario,
we present novel estimators of future energy availability,
which are used to further reduce the variability in operation
by enabling a system to adapt to its environment proactively.

■ We formalize a novel Markov analysis of energy harvest-
ing systems, which also considers the uncertainty of en-
ergy consumption created by variability in execution times
of tasks. With this analysis, we provide useful probabilistic
performance metrics: the probability of failure due to a lack
of energy or the probability that the system operates in a
particular mode.

■ Trace-based and real-world experiments illustrate the afore-
mentioned performance guarantees in diverse solar energy
harvesting scenarios, both for indoor and outdoor locations.
Finally, the accuracy of our analysis is verified, as it can
consider many implementation artifacts.

■ In the mixed criticality domain, we use a Markov analysis of
pending executions to present guarantees on the probability
of deadline miss per hour, globally and in each mode of oper-
ation, and the probability that a task is executed in degraded
mode. Our proposed scheduling scheme is shown to clearly
outperform state-of-the-art solutions.
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Zusammenfassung

Gegenwärtig halten eingebettete Systeme Einzug in viele Anwen-
dungsbereiche, in denen strenge Anforderungen an ihren korrekten
und zeitgerechten Betrieb gelten. Die Beispiele reichen von traditio-
nellen sicherheitskritischen Systemen, die sich an harte Echtzeitbe-
dingungen halten müssen, bis hin zu verteilten Sensornetzen, die ein
zuverlässiges Mindestmaß an Diensten bieten müssen. Doch genau
die Trends, die eingebettete Systeme populär machen, führen zu
nachteiliger Unvorhersehbarkeit in deren Betrieb.

Ein Musterbeispiel ist das Energy Harvesting, das eine un-
begrenzte Energieversorgung für eingebettete Geräte verspricht.
Die Nutzung von Umweltenergie schafft aufgrund der natürlichen
Schwankungen und Unterbrechungen der Energiequellen erheb-
liche Unsicherheiten für den Betrieb eines Systems. Aus diesem
Grund werden eingebettete Systeme häufig für einen adaptiven Be-
trieb konzipiert. Energieregler können so einen passenden Betriebs-
modus wählen, indem sie entweder auf den Zustand des Systems
reagieren oder proaktiv die zukünftige Umgebung abschätzen.

Ein weiterer Trend ist die Zunahme der Komplexität. Weiter-
entwicklungen der Hardware optimieren oft die durchschnittliche
Rechenleistung auf Kosten der Vorhersehbarkeit bei den Zeitab-
läufen. In Kombination mit moderner Software ergeben sich daher
immer größere Schwankungen bei den Ausführungszeiten, und es
entstehen mögliche, aber seltene, sehr lange Ausführungszeiten.
Eine Überdimensionierung der Rechenressourcen, um einen kor-
rekten Betrieb für jedes ausgefallene Szenario zu gewährleisten,
ist oft nicht möglich, und auch hier bietet sich ein adaptiver Be-
trieb als sinnvolle Alternative an. Ein Beispiel ist Mixed-Criticality-
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Scheduling, wo die Ausführungsqualität sicherheitskritischer Auf-
gaben immer gewährleistet ist, während man in Kauf nimmt, gele-
gentlich in einen Betriebsmodus einzutreten, bei dem weniger wich-
tige Aufgaben fallengelassen oder in einem ressourcenreduzierten
Modus ausgeführt werden.

Leider steigt mit der Einbeziehung der Adaptivität die Heraus-
forderung, alle notwendigen Vorgaben einzuhalten. Davon abgese-
hen wird der Betrieb eines Systems nicht nur durch den Nichtdeter-
minismus der Umgebung, sondern auch durch seine Anpassungs-
strategie beeinflusst. Diese Dissertation beleuchtet den Einfluss der
Umwelt auf ein adaptives eingebettetes System und untersucht,
welche Art von Garantien gegeben werden können. Die beiden
oben genannten Beispiele einer unsicheren Umgebung werden be-
trachtet: Zunächst, wenn die verfügbare Energie von der Umgebung
abhängt, und anschließend, wenn die Rechenressourcen von den
Ausführungszeiten der aktuellen und vergangenen Aufgaben ab-
hängen. Dies sind unsere wichtigsten Beiträge:

■ Für eingebettete Systeme mit eigenständiger Energiegewin-
nung erörtern wir, wie eine Backup-Batterie optimal genutzt
werden kann, so dass die Lebensdauer des Systems und der
langfristige Nutzen maximiert werden, aber gleichzeitig ein
minimales Serviceniveau stets gewährleistet ist. Im Kontext
der Solarenergienutzung stellen wir neuartige Abschätzungs-
methoden für die zu erwartende Energieverfügbarkeit vor, die
dazu dienen, die Betriebsschwankungen weiter zu verringern,
indem ein System in die Lage versetzt wird, sich proaktiv an
seine Umgebung anzupassen.

■ Wir formalisieren eine neuartige Markov-Analyse von En-
ergy-Harvesting-Systemen, die auch jene Unsicherheit des
Energieverbrauchs berücksichtigt, die durch die Variabilität
der Ausführungszeiten entsteht. Mit dieser Analyse stellen
wir nützliche probabilistische Leistungsmetriken zur Verfü-
gung: Die Wahrscheinlichkeit eines Ausfalls aufgrund von
Energiemangel oder auch die Wahrscheinlichkeit, dass das
System in einem bestimmten Modus arbeitet.
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■ Aufzeichnungsbasierte und praktische Experimente veran-
schaulichen die oben genannten Leistungsgarantien in ver-
schiedenen Szenarien der Solarenergiegewinnung, sowohl für
Innen- als auch für Außenstandorte. Schließlich wird die Ge-
nauigkeit unserer Analyse anhand vieler Implementierungs-
artefakte verifiziert, welche zu berücksichtigen sie in der Lage
ist.

■ Im Mixed-Criticality-Bereich verwenden wir eine Markov-
Analyse der anstehenden Ausführungen, um Garantien für
die Wahrscheinlichkeit einer Terminüberschreitung pro Stun-
de, sowohl global als auch in jedem Betriebsmodus, vozu-
stellen, sowie die Wahrscheinlichkeit, dass eine Aufgabe im
reduzierten Modus ausgeführt wird. Das von uns vorgeschla-
gene Scheduling-Konzept, wird gezeigt, übertrifft bisherige
Lösungen deutlich.
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Résumé

Les systèmes modernes embarqués s’intègrent de mieux en mieux
dans de nombreux domaines d’application caractérisés par des exi-
gences strictes en matière de bon fonctionnement et de précision
temporelle. Les exemples vont des systèmes traditionnels de sécurité
soumis à des contraintes exigeantes en temps réel, aux réseaux de
capteurs distribués devant fournir un certain minimum de fiabilité.
Pourtant, ces mêmes tendances rendant les systèmes embarqués
populaires d’utilisation causent une imprévisibilité préjudiciable à
leur fonctionnement.

Une illustration type est la récupération d’énergie, qui promet
d’alimenter infiniment les systèmes embarqués. Toutefois, des in-
certitudes notables sont introduites dans l’opération d’un système
dépendant de l’énergie de l’environnement en raison de la volatilité
naturelle et de l’intermittence des sources. À cette fin, les systèmes
embarqués sont souvent conçus pour permettre un fonctionnement
adaptatif. En réagissant à l’état du système, ou en anticipant l’envi-
ronnement futur, les contrôleurs d’énergie peuvent ainsi choisir un
mode d’opération approprié.

L’augmentation de la complexité est aussi une autre tendance.
En effet, l’amélioration du hardware optimise souvent la perfor-
mance moyenne au détriment de la prévisibilité temporelle. Com-
biné à du software moderne, le temps d’exécution des tâches de-
vient de plus en plus variable et dans de rares cas, bien que pos-
sible, peut donner lieu à de longs temps d’exécutions. Garantir un
bon fonctionnement pour chaque cas rare en surdimensionnant
les ressources de calcul est souvent impossible et une opération
adaptative s’avère être une alternative judicieuse. Un exemple est le
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mixed-criticality-scheduling, où la performance des tâches critiques
pour la sécurité est toujours assurée, tout en acceptant d’entrer
occasionnellement dans un mode d’opération dans lequel des tâches
moins importantes peuvent être exécutées à faible ressources voire
abandonnées.

Malheureusement, avec l’introduction de l’adaptabilité, il de-
vient plus délicat de satisfaire toutes les exigences. Indépendam-
ment des contraintes, le fonctionnement de tels systèmes est non
seulement influencé par le non-déterminisme de l’environnement
mais aussi par la stratégie d’adaptation choisie par le système.
Cette thèse étudie l’influence de l’environnement sur un système
embarqué adaptatif et le type de garanties qui peuvent s’ensuivre.
Les deux exemples d’environnement incertain cités auparavant sont
examinés, tout d’abord lorsque l’énergie disponible dépend de l’en-
vironnement et ensuite lorsque les ressources de calculs dépendent
des temps d’exécution des tâches présentes et passées. Nos princi-
pales contributions sont les suivantes :

■ Concernant les systèmes embarqués de collecte d’énergie, il
est discuté de la manière optimale d’utiliser une batterie de
secours de sorte à maximiser la durée de vie et l’utilisation
à long terme du système, tout en garantissant un niveau de
service minimum. Dans le contexte de la récolte d’énergie
solaire, de nouveaux estimateurs de la disponibilité future
d’énergie sont présentés, réduisant d’avantage la variabilité
pendant le fonctionnement en autorisant le système à s’adap-
ter proactivement à son environnement.

■ Nous formalisons une nouvelle analyse de Markov des sys-
tèmes de récolte d’énergie, considérant aussi l’incertitude de
la consommation d’énergie crée par la variabilité des temps
d’exécution des tâches. Grâce à cette nouvelle analyse, des
indicateurs probabilistes de performance sont fournis : la
probabilité d’une panne due à un manque d’énergie ou la
probabilité qu’un système opère dans un mode particulier.
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■ Des expériences du monde réel et basées sur des enregistre-
ments illustrent les garanties de performances évoquées ci-
dessus dans divers scenarios de récolte d’énergie solaire, à
l’intérieur comme à l’extérieur. Enfin, la précision de notre
analyse est vérifiée puisqu’elle peut tenir compte de beaucoup
d’artéfact d’implémentation.

■ Dans le domaine du mixed-criticality, nous utilisons une ana-
lyse de Markov des exécutions en attente afin de présenter des
garanties sur la probabilité de dépassement d’échéance par
heure, globalement et dans chaque mode de fonctionnement,
et la probabilité qu’une tâche soit exécutée dans un mode
réduit. Notre schéma d’ordonnancement s’avère surpasser les
solutions dernier cri.
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Сажетак

Савремени ембедед системи проналазе примену у многим
областима где важе строги захтеви за исправан и благовремен
рад. Примери се могу наћи од традиционалних система где jе
сигурност кључна, и коjи се мораjу придржавати временских
ограничења, до дистрибуираних сензорских мрежа коjе поу-
здано пружаjу минимални ниво услуге. Ипак, исти трендови
коjи популаризуjу ембедед системе изазиваjу штетну непре-
двидивост у њиховом раду.

Наjбољи пример jе прикупљање енергиjе из околине, коjе
обећава вечно напаjање ембедед уређаjа. Ослањање на енер-
гиjу присутну у околини уноси значаjну нестабилност у рад
система, због природне несталности и испрекидане доступно-
сти енергетског извора. Због тога, ембедед системи су често
направљени са могућношћу прилагодљивог рада. Контролер
енергиjе тако може изабрати одговараjући режим рада, било
да реагуjе на стање система или да проактивно процењуjе
будућност околине.

Jош jедан тренд jе повећање комплексности. Напредак хар-
двера често доводи до побољшања просечних перформанси,
док се жртвуjе предвидивост временског одзива. Тако, у ком-
бинациjи са савременим софтвером, време извршавања за-
датака постаjе све променљивиjе, и могуће jе иако мало ве-
роватно да дође до веома дуготраjних времена извршавања.
Предимензионисање рачунарских ресурса како би се обезбе-
дио исправан рад у сваком ретком случаjу jе често немогу-
ће, па jе прилагодљив рад и овде разумна алтернатива. При-
мер jе распоређивање задатака мешовите критичности, где jе
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извршавање сигурносно-критичних задатака увек загаранто-
вано, док jе прихватљиво повремено ући у режим рада где
се мање важни задаци не извршаваjу или се извршаваjу у
режиму са смањеним ресурсима.

Нажалост, код прилагодљивих система, постаjе изазов га-
рантовати исправан рад. Без обзира на задата ограничења,
на рад система не утиче само променљиво окружење, већ и
стратегиjа прилагођавања. Ова дисертациjа истражуjе утицаj
окружења на прилагодљиве ембедед системе, и какве се гаран-
циjе на рад могу давати. Проучаваjу се два поменута примера
несталног окружења, прво када расположива енергиjа зависи
од околине, а затим када рачунарски ресурси зависе од време-
на извршавања тренутних и прошлих задатака. Наши главни
доприноси су следећи:

■ За ембедед системе коjи прикупљаjу енергиjу из око-
лине, дискутуjемо како оптимално користити резервну
батериjу, тако да су век траjања система и мера корист-
ности максимални, док се истовремено минималан ниво
услуге гарантуjе. У случаjу када се прикупља соларна
енергиjа, представљамо нове методе прогнозирања до-
ступности енергиjе коjе систем користи да се проактивно
прилагоди свом окружењу и тако смањи вариjабилност
у режиму рада.

■ Формализуjемо нову Марковљеву анализу система коjи
прикупљаjу енергиjу из околине, коjа такође узима у
обзир несигурност потрошње енергиjе због вариjабилно-
сти времена извршавања задатака. Овом анализом пру-
жамо корисне стохастичке мере о перформансама: веро-
ватноћу квара због недостатка енергиjе или вероватноћу
да ће систем радити у одређеном режиму.

■ Практични експерименти и експерименти засновани на
измереним записима илуструjу горе наведене гаранциjе
перформанси у разноврсним примерима прикупљања
соларне енергиjе, како на отвореном тако и у затворе-
ном простору. Коначно, верификована jе и тачност наше
анализе, па она може узети у обзир многе нуспродукте
имплементациjе.
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■ У домену мешовите критичности, користимо Марковље-
ву анализу предстоjећих извршења задатака да предста-
вимо гаранциjу коjа се односи на вероватноћу пропу-
штања задатог рока по сату, глобално за цео систем као
и за сваки режим рада посебно, и вероватноћу да ће за-
датак бити извршен у режиму са деградациjом. Показало
се да концепт распоређивања коjи смо предложили jасно
надмашуjе наjсавремениjа решења из праксе.
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1
Introduction

Embedded systems have become pervasive and are now commonly
found in many applications where their correct and timely op-
eration needs to be guaranteed. Traditionally, this is the case
for hard real-time systems, mainly in the automotive or avionics
domains, where strict industry standards regarding safety apply
[ISO18, RE12]. However, recent examples of such requirements
have emerged in the field of wireless sensor networks, where net-
works deployed in remote environments provide reliable and pre-
cise long-term measurements [WBDF+19] for applications such as
environmental monitoring [WFM+18] as well as natural hazard
warnings [MFCP+19]. Dependable operation can likewise be found
with cyber-physical systems, where a study demonstrates how
automatic control loops can be established over low-power wireless
links [MBJ+19].

Nonetheless, the same trends that are popularizing embedded
systems are making their operation harder to understand and pre-
dict. A prime example is energy harvesting. It has emerged as a
way to power embedded devices indefinitely, which is particularly
important in remote and hard-to-reach places. Coupled with the
associated scalability and low maintenance, the benefits for large-
scale distributed systems are evident.
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But one of the biggest challenges with energy harvesting em-
bedded systems is ensuring reliability and determinism in their op-
eration [BASM16]. Indeed, the smaller the internal energy storage
capacity of a node, the higher is the sensitivity of its operation to
short-term non-deterministic changes of the harvested power. At
the same time, energy harvested from the environment is usually
volatile and intermittent, especially solar energy.

To deal with this inherent uncertainty, an energy management
subsystem is designed to control the energy flow between the
energy source, the rechargeable energy storage, and the consumer.
It also adapts the consumer’s operation, such that the system’s life-
time is prolonged or an overall utility is maximized. This adaptive
operation can be realized in numerous ways, such as with the simple
adjustment of sensing, processing, or communication rates. Further
adaptation examples include changing the precision of a numeric
calculation, which is commonly implemented in machine learning
or iterative algorithms, or relaxing timing constraints. Otherwise,
applications can even have “energy scarcity” modes of operation,
specifically created for periods with unfavorable harvesting condi-
tions.

Though general approaches to quantify performance of em-
bedded systems adapting to uncertain environments are lacking,
many solutions for particular cases exist. A large rechargeable
storage can virtually isolate the consumer from its environment,
though this solution is commonly not suitable due to size, safety,
environmental, and cost reasons. On the other end of the spectrum,
the harvesting source can be directly coupled to the consumer
[BWM+14], and computing concepts that deal with frequently
interrupted processing have been developed [GSM+16, RSF11]. Yet
unless there is a reliable correlation between harvested energy
on the one hand and actions to be performed on the other, the
usefulness of such energy provisioning in critical applications is
limited.

At the same time, another trend sees the increase of embedded
systems’ complexity across the board. Typical hardware architec-
tures now include heterogeneous multi-core processors [SZDF+15],
intricate memory hierarchies, or programable low-power accelera-
tors [RCM+15]. These, in turn, support more advanced software.
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To take an example from avionics, real-time applications tradition-
ally isolated from one another can now be consolidated into one
hardware platform, even though they were designed with different
standards in mind [BD17]. Another, perhaps more prominent case,
is the deployment of complex algorithms on resource constrained
devices. Examples include a convolutional neural network for fast
natural hazard detection on a wireless sensor network [MFCP+19]
or highly parallelized ultrasound image processing for a mobile
medical device [KTH+16].

Hardware advances commonly optimize a system’s average per-
formance. However, in combination with complicated software,
possible but unlikely worst-case behaviors may become signifi-
cantly worse. Guarantees in this regard are obtained by finding
worst-case execution times of tasks, for which correct operation is
verified. Unfortunately, obtaining tight upper bounds on execution
times is becoming increasingly difficult. It has become intractable to
measure this value by exhaustively testing combinations of inputs
and internal states, while analytical methods struggle to identify
worst-case paths through a program. In any case, safe values can
only be provided with major pessimism.

Consequently, over-provisioning of resources to guarantee cor-
rect operation in every scenario is becoming infeasible due to size,
weight, or cost constraints. A promising alternative is the use
of richer system models in combination with adaptivity to cope
with worst-case behavior, as is done with mixed-criticality systems.
Mixed-criticality systems feature tasks with various criticality lev-
els, which quantify a task’s importance with regard to safety. In the
simplest case, each task has an ‘optimistic’ and ‘pessimistic’ worst-
case execution time estimate [Ves07]. During normal operation,
when the optimistic estimates hold, all tasks are guaranteed to finish
their execution in time. However, when tasks take longer to execute,
only tasks with higher criticality levels have such guarantees.

Going even further, one may assume a stochastic model of ex-
ecution times. Ideally, this means that, for each task, the execution
time is modeled with an independent random variable. Though in
practice a task’s execution depends on many factors, existing work
suggests that statistical independence from hardware states or other
tasks can be achieved with certain pessimistic approximations. Such
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pessimistic random variables are termed probabilistic worst-case
execution times [DBG17]. Their introduction allows for improved
schedulability due to the so-called multiplexer gain, meaning that
the likelihood of high execution times of many tasks coinciding is
very small. Despite industry’s proclivity for statistical guarantees, a
statistical analysis based on probabilistic worst-case execution times
quantifying the potential benefit of mixed-criticality scheduling is
largely lacking.

This doctoral dissertation investigates the impact of environ-
mental factors on adaptive embedded systems and the type of guar-
antees one can give. Two aforementioned examples of an uncertain
environment are investigated: the available energy, dependant on
the harvesting environment, and the execution time of processes,
dependant on the current and past inputs. We provide worst-case
and statistical guarantees for systems in such scenarios.

1.1 The Uncertain Environment
Let us now take a closer look at the two aforementioned uncertain
environments examples. Besides noting what makes them uncer-
tain, we especially examine use cases where guaranteeing operation
is key. These are systems that have real-time constraints timing-
wise or energy-neutral constraints in the energy domain.

Types of uncertainty. In general, randomness when modeling
any process comes either from the aleatoric variability or the epis-
temic uncertainty. Aleatoric variability means the inherent random-
ness, which is in our setting primarily present in the environment.
Additionally, certain hardware and software elements feature built-
in randomness, as is the case with random cache replacement or
with the Aloha communication protocol. Epistemic uncertainty
stems from our lack of knowledge. In practice, it may come from
our inability to fully observe, or our limited capacity to model, a
system’s state or its environment. Aleatoric variability and epis-
temic uncertainty are, in practice, often tightly intertwined, as we
will see in our two examples.
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1.1.1 Energy Harvesting
A plethora of existing works demonstrates diverse ways of extract-
ing energy from a system’s surroundings. For example, in geological
[BBF+11] or ecological [CB10] monitoring, energy can be harvested
from the ambient environment: light, temperature differences, or
wind or water flows. In an anthropogenic surrounding, energy can
also be extracted from movement or electromagnetic waves. For
instance, energy created by movement commonly powers wearable
devices in the health monitoring domain [NAE+17], either in the
form of vibration or acceleration. Still, regardless of the source,
energy harvested from the environment is typically unpredictable.
Consider that when estimating the future availability of harvestable
solar energy, we encounter both our inability to model the atmo-
sphere accurately and the inherent randomness of weather. To make
such a supply useful, one either takes a transient or an energy-
neutral approach. We explain both and highlight why guarantees
are only relevant for the latter.

Transient operation. In the case of transiently powered em-
bedded systems, a strong correlation is required to exist between
the availability of harvestable energy and the target computation.
Typical use-cases are an AC power meter powered by the current
it is measuring [DCD13], or a low-resolution camera powered by
ambient light [GSS+17]. Since they are designed to work only
when sufficient energy is available, they power off or enter a deep
low-power mode otherwise. As far as software is concerned, these
systems utilize intermittent programming models, and many exist
[RSF11, BDW+16]. On the hardware side, transient systems are
designed with little or no energy buffers, using special energy
management units [GSM+16] and non-volatile memory [BWM+14,
JRR14].

We do not consider transient systems in this thesis. They do not
allow much room for adaptability in their operation. Rather they
are directly controlled by their environment and largely follow its
non-deterministic behavior. Since they are required to work only
when harvestable energy is available, proper dimensioning of the
energy harvester is crucial for correct operation.
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Energy-neutral operation. For many applications powered by
harvested energy, a specified non-zero minimal service is required,
despite the power source being volatile and intermittent. Here the
energy-neutral paradigm is defined, which says that an embedded
system needs to realize this minimal service without additional en-
ergy. To decrease the variability of harvested energy, intermediate
energy buffers are used, such as super capacitors or rechargeable
batteries. Yet still, the system can adapt to the energy availability by
dynamically scaling its consumption. To take the common environ-
mental monitoring example, solar energy is available during the day,
especially during summer. Even though operation is expected year-
round, many processing or communication tasks may be postponed
to periods when more energy is available, see [BSBT14a, BSBT14b]
for a mountain, [CVS+07] for a field, or [TJC08] for a forest scenario.

When designing energy-neutral systems, ideally, the variability
in consumption is minimized, as this generally leads to a larger
long-term utilization. Depending on how the system’s consumption
is decided, energy-neutral energy management schemes may be
reactive or proactive. Reactive schemes dynamically adapt the
system’s consumption solely based on the system’s internal state,
primarily meaning the charge of the rechargeable storage. Notably,
Vigorito et al. [VGB07] propose a theoretical optimal reactive
scheme. While reactive schemes are a low-complexity solution, they
generally suffer from a high consumption variance.

Proactive energy-neutral schemes include estimations of fu-
ture availability of energy in their control loop. Specifically for
solar energy, many estimators exist. All of these leverage the
observed history of harvested energy [KHZS07, RPBASR09, CPS12],
while some additionally utilize external weather forecasts [SGIS10,
SSIS11]. Proactive schemes typically perform better than reactive
ones, though this highly depends on their future energy estimate
accuracy [ST20].

However, solely focusing on maximizing the long-term utility
easily makes a system prone to failure. Consider a proactive scheme,
where an optimistic prediction error can lead to excess energy
use, ultimately depleting the rechargeable storage and making the
minimal energy consumption unsustainable. An adequately de-
signed energy-neutral system thus uses adaptivity to also increase
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its flexibility to the uncertain environment. Providing guarantees
on behavior and functionality for such adaptive operation is a major
focus of the first two chapters.

1.1.2 Timing Behavior
An embedded system consists of multiple tasks which together
operate on a common hardware platform. Naturally, a system’s
inputs can not be completely predicted, and they determine the
task’s program flow and impact the timing behavior. But more
importantly, a high degree of epistemic uncertainty is present in
modern architectures. Most dynamic or virtualization features
aimed to improve the average timing performance are considered
sources of unpredictable and unbounded timing delays. The many
hardware and software examples include direct memory access,
caches, pipelining, dynamic storage allocation, probabilistic arbi-
tration or communication protocols, operating system overheads,
virtual storage, garbage collection, and so on [Hal04]. Though many
applications exist where only the average performance is relevant,
real-time systems need to fulfill both timing as well as functional
requirements.

Real-time operation. For hard real-time systems, any missed
deadline of a task is considered a system failure. In practice, even in
many safety critical applications, a missed deadline can be tolerated
if it happens infrequently. Such is the case for avionics systems,
where industry standards [RE12] tolerate a failure if its probability
of occurrence is less than a certain small value. These constraints
are referred to as soft real-time. Finally, non real-time systems allow
for a deadline miss to happen frequently, as their operation still
retains usefulness even when timing constraints are violated.

Mixed-criticality operation. Mixed-criticality systems are a spe-
cial class of real-time systems, where each task has a criticality level
associated with it. Depending on the criticality level, a failure of
a task due to a deadline miss or other reasons can have a more
or less severe impact on the overall operation and safety of the
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system. For an avionics application, the DO-178C [RE12] standard
defines five criticality levels, ‘A’ to ‘E’, with ‘A’ being the highest,
and assigns various failure tolerances to each level. Here, a failure
of a task of criticality ‘B’ can have a negative impact on the overall
safety of the aircraft, while a failure of a task of criticality ‘D’
may only slightly increase the aircraft crew’s workload. Intuitively,
an additional requirement exists when tasks of different criticality
levels are present on a common platform: One must ensure that
lower criticality tasks do not hinder the correct execution of higher
criticality tasks.

Time predictability. In order to verify a real-time system’s timing
requirements, a characterization of the timing behavior of each task
needs to be done. For this, a timing analysis aims to estimate or
upper bound the worst-case execution time of a task. Many analysis
techniques exist [DCG19b]. Some are based on measurements,
where a task is run either on a simulator or the actual hardware,
while static approaches use formal hardware and software models
to draw conclusions. When a worst-case execution time value is ob-
tained, time-predictability is defined as a measure of the associated
pessimism [TW04].

Specially designed time-predictable hardware and software is
necessary in cases when pessimism of worst-case execution time
estimates would otherwise be too high. A recent industry trend
of using multi-core architectures enhanced interest in such an ap-
proach. For instance, a design flow for mapping multiple appli-
cations on a heterogeneous embedded platform exists [SBR+12].
Furthermore, it is demonstrated that reasonable bounds on inter-
task interference can be made even for highly utilized systems,
using temporal partitioning [TGTT17] or careful memory allocation
[TGBT17].

In this thesis, we assume systems where appropriate design
choices reduce the execution time uncertainties to a reasonable
level. We propose novel scheduling techniques that balance per-
formance and guaranteed operation in this context.

Analogy with energy harvesting. Even though our two example
environments seem different, they have many parallels. In both



1.2. Adaptability Principles 9

cases, the system’s ability to operate is variable, and a failure
occurs either due to a lack of available energy, or due to tasks con-
suming excess resources. Following this analogy, minimal service
requirements present in energy-neutral operation correspond to
hard real-time requirements of important tasks in mixed-criticality
applications, as both need to be guaranteed despite the present non-
determinism. Furthermore, additional service is provided when
more energy is available, in the same way as additional lower-
criticality tasks are executed when more computational resources
are available. Similarities between these two domains have inspired
us to share insights and results from one use case to the other, which
shall be illustrated throughout this thesis.

1.2 Adaptability Principles
Now that we commented on two examples of uncertainties an
embedded system encounters, let us expand on the principle of
adaptive operation. Adaptive operation is an alternative to over-
provisioning resources, which we saw as not always feasible. In
essence, an adaptive system will change its functional behavior
online as a response to the current or perception of the future state
of its environment. The adaptation strategy is decided on precisely
and deterministically offline. If a system adapts its operation solely
as a response to the state it is in, we say that adaption is done
reactively. Otherwise, if adaption is done by also taking into account
an estimated future state of the system, this is termed proactive
adaption.

The set of all possible states an adaptive system can be in
is called the system’s modes of operation. It can be discrete or
continuous, implying a finite or infinite number of modes, respec-
tively. Depending on the mode of operation, individual tasks may
execute normally, with some form of degradation, or they could be
completely dropped. When a task is executed with degradation, it
could mean that multiple implementations of the task with different
functionalities are implemented, but also it could be that the task’s
activation times and deadlines, or even the used hardware and
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its properties, are adjusted. Additionally, a task can have certain
features intended to be executed only under favorable conditions,
which is referred to as surplus functionality.

Let us focus on mixed-criticality systems first. To realize timing
constraints for the most important tasks, a system may adapt by
dropping tasks of lower criticality when it is necessary to pro-
vide additional computational resources to the more important
ones. Depending on the system model and scheduling scheme,
many mechanisms for this adaption exist, notably [Ves07, BBD11b]
for fixed-priority preemptive scheduling, [BBD+11a] for dynamic
scheduling schemes, and see also Chapter 4 for a comprehensive
overview. Furthermore, degraded operation is sometimes suggested
as an alternative to completely dropping tasks in mixed-criticality
systems [GSHT13, HGST14]. Generally, the system can choose
between as many modes of operation as there are criticality levels,
so these are often called criticality modes. Finally, we note that
criticality modes are chosen reactively as a response to the observed
execution time of released tasks. A proactive approach is not
possible in this scenario, as the timing behavior of tasks can not
be forecasted.

Because of the domains they are currently found in, mixed-
criticality systems are seldomly coupled with energy harvesting.
Nevertheless, several works explore the principle that such a system
changes its criticality mode in response to energy scarcity situations
[AKTM16, SKT17, RMF19].

With energy-neutral operation, having many modes that enable
multiple levels of functionality is common, and the system can
switch between them both proactively and reactively. Two special
cases are noteworthy. On the one hand, a specially constructed min-
imal ‘emergency’ mode of operation provides only the most crucial
functionality. On the other hand, certain sporadic resource-heavy
tasks such as updating statistical models or configuring machine
learning parameters are designed to only execute in an energy-
surplus mode of operation.

Because of the many adaptivity options available, and the coarse
time-scale common in energy-neutral operation, it makes sense
to abstract away from individual tasks and combine them into
one value, the target energy consumption. This way, the system
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can adjust its operation to any target consumption value between
the minimum and maximum. Many works dealing with energy
harvesting embedded systems model the system’s adaptability this
way [KHZS07, BKT15, VGB07].

Finally, let us mention the use of backup batteries in energy har-
vesting systems. In energy harvesting scenarios that have unlimited
non-determinism, and may feature prolonged periods without any
harvestable energy, they are used to guarantee a minimal service
level. Examples of systems with a backup battery operating in es-
pecially unpredictable environments can be found in a busy seaport
[VFPV16] or a low illumination indoor environment [VPN+16]. In
principle, a system with a backup battery will strive to operate
under energy-neutral constraints, but it will adapt to use the backup
power source when such operation is not possible. Practically
speaking, this is a valuable addition that adds another layer of
security against system failure. It is thus unsurprising that many
hardware solutions for energy management with a backup battery
exist [Tex19a, JVT11].

1.3 Contributions and Outline
Throughout this thesis, we analyze an embedded system’s adap-
tion to its environment and strive to provide certain performance
guarantees. We deal with two types of guarantees, worst-case and
stochastic. Regardless of the scenario, we face two challenges that
complicate providing such guarantees:

■ There is non-determinism present in the environment.
■ In response, the system adapts its behavior online.

Worst-case guarantees are arguably more common in the state-
of-the-art. In the mixed-criticality domain, we review schedulability
analyses that precisely verify whether tasks keep with their hard
real-time requirements, even when each of them executes with
their worst-case execution time. Such a mathematically constructed
worst situation is rarely available for energy harvesting scenarios,
though. Thus, our worst-case analysis of a system in this regard
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includes first assessing the harvesting source based on available
historical data, either from the same or similar environments, and
then quantifying the observed worst-case performance. This quan-
tification is done both for abstract and non-ideal system models, and
relies on extensive simulations. Additional verification is done by
recreating exact harvesting conditions in a special test environment
[Sig20].

Stochastic guarantees are harder to obtain but provide more
insightful results. We have found that modeling adaptive embedded
systems as stochastic Markov processes provides an appropriate
mathematical apparatus for calculating probability-of-failure met-
rics. When doing a probabilistic timing analysis, the amount of
pending execution corresponds to states in the Markov chain. In
this setting, appropriate random variables exist that describe upper
bounds of execution times of tasks. They are known as probabilistic
worst-case execution times and can be obtained using an array of
existing techniques [DCG19b]. Most importantly, we demonstrate
that such a timing analysis provides safe upper-bounds on deadline
miss probabilities of tasks, as well as probabilities that tasks are
degraded or dropped due to run-time decisions of the scheduler.

For energy harvesting systems, we create appropriate models
of the harvesting source using historical data. In our solar energy
example, random variables model the amount of energy harvested
each week of the year. By assigning a Markov process state to each
charge level of the rechargeable storage, we are able to accurately
model complex energy management schemes. This enables us to
derive, among other metrics, the probability of system failure.

Outline. In Chapter 2, the focus is on energy harvesting sys-
tems, which proactively adapt their target energy consumption
in response to the locally stored energy level, and the predicted
availability of energy. The most interesting case we explore is
when relatively precise estimators of harvestable energy exist, but
we also cover cases when the environment is especially hard to
predict, as well as a theoretical case when the exact future is known
in advance. We especially use solar energy harvesting as our use
case. Variability of execution times is not considered in this chapter,
instead one can assume that tasks consume the most energy with
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their worst-case execution times.
For such a system the goal is to prolong the lifetime under

energy-neutral operation constraints, while maximizing the long-
term utility. When constraints on energy neutrality can not be met,
we consider how a backup battery should be used to maximize the
system’s lifetime. We first formally model this problem, and deal
with the unpractical but theoretically interesting case when the
future of harvestable energy is known. For this case, an optimal
control algorithm is presented. Next, we introduce a practical
proactive adaption scheme, which we additionally supplement with
our precise and low-complexity future energy estimators. We then
use trace-based simulations to find the worst-case performance of
this scheme, and a real-world system implementation finally verifies
the accuracy of our results.

Chapter 3 continues by providing a stochastic analysis of energy
harvesting systems. Apart from the randomness introduced from
energy harvesting, in this chapter we also take into account the
variability in energy consumption created by uncertain execution
times of tasks. This analysis provides such metrics as the probability
of failure, or the probability that the system consumes a certain
energy level. Additionally, we solve the dimensioning problem,
where feasible energy management subsystem design points are
found for a specified application and failure tolerance. The same
solar energy harvesting example as before was used for extensive
simulations.

Finally, Chapter 4 deals with providing real-time constraints for
mixed-criticality systems, where the uncertainty solely comes from
the run times. The adaptability, in this case, is reactive and happens
when it seems necessary to provide additional computational re-
sources to tasks of higher criticality. Using our probabilistic mixed-
criticality analysis, we analyze our proposed adaptive scheduling
scheme and provide the probability of deadline miss per hour, and
the probability that a task is executed in degraded mode.
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Table 1.1: Overview of sources of non-determinism, adaptability
principles, and analysis methods found in each chapter of this
thesis

Ch. 2 Ch. 3 Ch. 4

⋆ Source of Non-determinism
Execution times of tasks is

modeled in a worst-case manner ! ! !1

modeled with random variables ! !
Harvested energy’s availability is

especially hard to predict !

known in advance2 ! !1

modeled with random variables !

⋆ Adaptivity
Modes of operation are

discrete ! !

continuous ! !
Their operation is adjusted

reactively !1 !1 !

proactively ! !

The use of backup resources is considered !

⋆ Analysis methods and provided guarantees
Worst-case analysis and guarantees ! !1

Markov analysis with probabilistic guarantees ! !

1 For comparison only.
2 Theoretical scenario, unobtainable in practice.



2
Worst-case Analysis of

Energy Harvesting Systems

A prime example of embedded systems operating in a variable
environment is when an energy harvester powers them. Energy
harvesting has been extensively used to allow for long-term and
unattended operation of nodes in large-scale distributed systems.
Often in such scenarios, a system’s mode of operation is adapted
on-line to the temporary availability of energy, either proactively
or reactively, which enables a reduction of the rechargeable energy
storage of the harvesting system. However, the smaller the relative
rechargeable energy storage, the higher is the sensitivity of the
system’s operation to short-term non-deterministic changes of the
harvested power.

By doing a formal study, we first analyze the case when un-
certainties in energy harvesting are removed. This enables us to
design an optimal but practically unrealizable energy consumption
function. Optimal in this sense means that the long-term utility
of the system is maximized, energy-neutral operation is realized,
and the minimal energy consumed in a single time step is the
largest among all feasible consumption functions. Furthermore, this
minimal energy consumption is found to be always larger than zero,
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except in the corner case when absolutely no energy was harvested
before. A practical finite horizon control solution is presented
next. Utilizing a reasonable estimate of future energy availability,
it approximates the optimal consumption well.

Although the optimal minimal energy consumption is guaran-
teed to be non-zero, depending on the harvesting environment it
may become arbitrarily small. When this is not acceptable, because
a certain consumption level is required, reliable and predictable op-
eration under any circumstances can be achieved with an additional
backup battery. First commercial products that allow for an efficient
energy exchange between an energy harvester, backup battery, and
energy consumer are available. But, until now, there were no energy
management algorithms that optimize the long-term utility while
maximizing the lifetime of the system in terms of its backup battery.
We present both an optimal and finite horizon control solution with
this goal in mind.

Both with and without a backup battery, we implement our
energy management strategy on resource-constrained hardware.
Multiple simulations, as well as experiments on indoor and outdoor
solar data traces, show the accuracy of our model, the run-time
overhead, and the efficiency of our approach.

2.1 Introduction
Energy harvesting is a key technology to provide long-term, au-
tonomous and sustainable energy to embedded devices in large-
scale distributed systems. A large body of results shows the po-
tential of extracting energy from light, temperature differences,
acceleration, vibration, and electromagnetic waves, see for example
the review by Shaikh and Zeadally [SZ15]. Motivated by cost,
size, safety and environmental reasons, there is a recent trend
to substantially reduce the necessary local rechargeable energy
storage, often in the context of transient and intermittent comput-
ing [LBC+17]. This approach also allows to replace rechargeable
batteries with super-capacitors that are accompanied by advantages
such as increased safety, a high number of charge-discharge cycles
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and high retrieval efficiency.
The high variation inherent in energy harvesting sources, such

as solar energy, creates a challenge. The smaller the relative maxi-
mal energy storage capacity of the node, the higher is the sensitivity
of its operation to short-term non-deterministic changes of the har-
vested power or the power demand. Concepts to decrease the sensi-
tivity and to deal with frequently interrupted processing have been
developed [GSM+16, RSF11], including extreme approaches where
the harvesting source is directly coupled to the node [BWM+14].
In an ideal scenario, a system adapts its consumption and achieves
perpetual operation, commonly termed energy-neutral operation
(ENO) [KHZS07], if the consumed energy never exceeds the har-
vested one.

Nevertheless, there are many applications where correct opera-
tion requires the unconditional availability of some amount of en-
ergy within a given time interval. Examples are automatic control,
surveillance, early warning, or safety-critical sensing applications.
In addition, low-power multi-hop networks typically need periodic
refresh operations for synchronization. Unless there is a reliable
correlation between harvested energy on the one hand and events
to be sensed or actions to be performed on the other, the usefulness
of intermittent or transient approaches to energy provisioning in
critical applications is limited.

One approach to providing performance guarantees to such
systems is to reduce the unpredictability of the energy harvesting
source, and adapt the system’s operation accordingly. In solar
energy harvesting systems, some of the variations in input energy
are caused by the diurnal solar cycle and the yearly seasons, and
these phenomena are precisely known. Other variations are not-
deterministic, they are caused by cloud cover or other weather
conditions, and can therefore only be estimated. Several exist-
ing works utilize harvestable energy forecasts of various accuracy,
tightly coupled with power management schemes, in an attempt to
achieve continuous energy-neutral operation [KHZS07, BSBT14a,
MBTB07]. However, providing minimum performance guarantees
is largely unexplored and often difficult, so in this chapter we
investigate how to control the operation of a harvesting system’s
consumption, such that long-term utility is optimized, the minimum
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performance is increased, and continuous operation is guaranteed. In
this regard, we build upon the seminal work of Buchli et al. [BKT15].

Still, the best way to provide hard guarantees in reliability and
predictability of node operation can be obtained with an additional
backup battery, a primary cell for example. This solution not only
has been suggested by academia, e.g., [JAD19, VFPV16, JVT11], but
industry is also providing first commercial products that allow for
an efficient energy exchange between energy harvester, backup bat-
tery and energy consumer [Tex19a]. Such a design not only allows
an otherwise unreliable system to operate without interruption, but
also offers additional benefits such as guaranteeing minimal service,
increasing the efficiency and speed of cold-start from an empty
energy storage, retaining state across restarts, or operating without
interruption for years or decades.

One of the most important aspects in energy harvesting nodes
is the energy management system. It is responsible for deciding
on the energy flow between the energy source, the rechargeable
energy storage unit and the energy consumer. It also controls the
configuration and operation of the consumer such that an overall
system utility is maximized. Examples of varying operation of the
consumer are adapting the sensing rate, the communication rate,
the kind of data processing algorithms used or even going to a low
energy “energy scarcity” mode. Surprisingly, energy management
and control has been extensively covered in the general sense of
energy harvesting sensing systems, see [KHZS07, VGB07, SSIS11,
MTBB09], but no results are available in the context of an additional
backup battery.

The present paper fills this gap by providing models and meth-
ods to answers the following question: how to control the operation
of a harvesting system’s backup battery, such that a minimal amount
of energy consumption is guaranteed, its lifetime is maximized and its
long-term utility is optimized? As a result, the described concepts
and hardware for energy harvesting nodes with a backup battery
can now be combined with control algorithms to make optimal use
of the available resources such as the backup battery, the harvested
energy and the energy storage capacity. In summary, the paper
contains the following results:
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1. We formalize a model describing a complete harvesting sys-
tem with an optional backup battery, which adapts to energy
availability by choosing online one out of continuous modes
of operation. Additionally, there is a the possibility to incor-
porate all relevant inefficiencies of practical implementations.

2. We explain an impractical optimal control algorithm. For
a harvesting system without a backup battery, dubbed the
‘original’ case, it optimizes the minimum use energy and long-
term utility. When a backup battery is present, the ‘backup
battery’ case, our novel extension optimizes the long-term
node utility while guaranteeing a given minimal use energy
regardless of the harvesting conditions, and maximizing the
life-time of the system.

3. We present a practical finite horizon control (FHC) approx-
imation of the optimal control algorithm, based on model
predictive control, that copes with non-perfect estimations of
future energy. In addition, efficient implementations of FHC
are referenced, including one based on Look-up Tables (LUT)
witch is deployable to even the most resource-constrained
systems.

4. We improve upon state-of-the-art energy prediction schemes,
which are necessary for proactive energy management strate-
gies like FHC, by leveraging the extra-terrestrial solar model.
Our schemes improve upon state of the art prediction ac-
curacies, which leads to an overall improvement in FHC
performance.

5. We present an implementation of the overall hardware and
software, and a characterization of its essential properties.
Extensive emulation and experimental results on both indoor
and outdoor solar data that shows the applicability of our
approach, as well as the accuracy of our model.

This chapter is organized as follows: after commenting on
related work in the next section, we describe the abstract system
model in Section 2.3. Based on it, we provide an optimal control
algorithm in Section 2.4 and embed it into a model predictive
control scheme in 2.5, both for systems with and without a backup
battery. Then, in Section 2.6, we present state-of-the-art solar
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energy prediction schemes, as well as our own ones based on
the extra-terrestrial solar model. All estimators are compared in
terms of prediction accuracy and computational complexity as well.
Following this, in Section 2.7 we describe how to incorporate non-
ideal hardware properties into the formal concepts described before.
Finally, Section 2.8 presents our sample implementation of an en-
ergy harvesting system with a backup battery, which is accurately
modeled in Section 2.10, while Section 2.9 contains extensive exper-
imental results.

2.2 Related Work
Energy systems. Superficially, there is a close relation to en-
ergy systems incorporating renewable sources like solar and wind.
Whereas one can draw analogies in terms of energy generation,
energy storage (water tanks, car batteries), application control (de-
mand side management), there are essential differences in terms
of models and methods due to the incorporation of the energy
grid, sufficient energy for implementing complex control strategies,
energy conversion and transmission, consumer behavior and cost
functions, see [ZS14, AOS+12].

Energy-neutral operation. In order for a system to operate solely
on harvested energy, state-of-the-art work focuses primarily on
defining dynamic power management schemes, as well as on con-
structing and dimensioning the components of an energy man-
agement system. A first work on dynamic power management
was written by Kansal et al. [KHZS07], where an analytical model
featuring energy-neutral operation (ENO) constraints was devel-
oped with the goal of maximizing performance. The problem of
computing the dynamic power management profile efficiently was
explored by Moser et al. [MTBB09]. Examples of uninterrupted
environmental monitoring nodes operating over multiple years are
given by Buchli et al. for a high-mountain environment [BSBT14a,
BSBT14b], by Corke et al. for a remote field [CVS+07], and by
Taneja et al. [TJC08] for a deep forest scenario. Even though these
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works feature detailed design principles and power management
procedures, uninterrupted operation is not guaranteed under a non-
deterministic harvesting environment. In addition, none of these
results considers the availability of a backup battery.

ENO and solar energy estimation. Many systems designed for
ENO feature estimations of future harvested energy in their control
loop. A plethora of solar energy prediction schemes exist. Included
among them are EWMA by Kansal et al. [KHZS07], WCMA by
Recas Piorno et al. [RPBASR09], and ProEnergy by Cammarano et
al. [CPS12]. In general, all of these schemes leverage the history
of harvested energy to predict the energy which will be harvested
in the future, see also Section 2.6.1 for details. Additional schemes
sometimes use weather forecasts to improve prediction accuracy,
see for example Sharma et al. [SGIS10, SSIS11], although these
are not applicable in the general case due infrastructure require-
ments. In the common use-case when the prediction horizon is one
day, we improve upon state-of-the-art schemes by deterministically
predicting variation in solar energy caused by the diurnal solar
cycle and the yearly seasonal variation, which is done using the
extraterrestrial solar model. To the best of our knowledge, this
approach has been used by two research works. Buchli et al.
[BSBT14a] use an extraterrestrial model to create a long-term solar
energy predictor, with one week prediction intervals and a one year
horizon. Bao et al. [BWL+14] use the extraterrestrial model along
with externally acquired cloud cover information to predict energy.

Reactive ENO. Some schemes for ENO do not feature estimates
of future states, but are instead purely reactive. Notably, Vigorito
et al. [VGB07] propose an optimal reactive scheme under ENO
constraints (EnoMax), which dynamically adapts the system’s con-
sumption based on the state of charge of the rechargeable stor-
age. While this is a low-complexity solution, EnoMax and similar
schemes suffer from high consumption variance.

Transient systems. Transiently powered computing systems are
designed with little or no energy buffers, thus working only when
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sufficient energy is available, while retaining their state otherwise
[MAH17]. Generic energy management units for these systems
exist [GSM+16]. Examples of use-cases include a passive camera
powered by RFID by Naderiparizi et al. [NPK+15], or an AC power
meter powered by the current it is measuring by DeBruin et al.
[DCD13]. Due to its low overhead, state retention is often realized
in FRAM technology [BWM+14, JRR14]. Furthermore, transient
systems feature complex intermittent programming models, i.e.,
[RSF11, BDW+16]. However, these systems may remain offline for
extended periods of time, which is only acceptable for a reduced set
of application scenarios.

Existing hardware implementations with backup energy. A
plethora of nodes featuring photovoltaic energy harvesting as well
as backup batteries exist. For example, Visconti et al. [VFPV16]
present a wireless sensor network (WSN) solution for tracking of
goods in a commercial seaport. In Jackson et al. [JAD19], a general
purpose WSN has a large lithium ion rechargeable battery, while a
primary battery is used to ensure uninterrupted operation. A WSN
optimized for harvesting energy in low illumination environments,
by Vračar et al. [VPN+16], features a similar approach. Hardware
components for energy management systems with backup batteries
exist, from the bq25505 energy management chip by Texas Instru-
ments [Tex19a] featuring a simple multiplex, to the smart platform
by Jessen et al. [JVT11] that enables complex energy management
functions. Still, there are no results available that allow to control
the operation of the node and the energy management system such
that the backup battery is used as little as possible while maximizing
the long-term utility of the node.

2.3 System Model
We start by introducing an abstract model of energy harvesting
systems, which is the basis for energy control. Later in the chapter,
the model will be refined in order to take into account non-ideal
behavior of the energy management system. We use this model as a
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Figure 2.1: Overview of the energy management system model.
The thick and thin arrows show the energy and information flow,
respectively

generalization for both systems with and without a backup battery.
An abstract overview of the overall setup is shown in Figure 2.1.

The energy management system has two types of energy reservoirs:
a rechargeable energy storage and a backup battery. The rechargeable
energy storage is replenished by an energy harvester, while the
backup battery is a primary battery. For our initial abstract model,
we suppose the reservoirs are loss-free, but extensions are described
in Section 2.7. The energy management system provides the energy
consumer with information about the target energy consumption.
As a consequence, the consumer adapts its operation to match
this target value, for example by changing its sensing rate, the
processing speed, the communication rate, or the like.

Formal model. We use a discrete time system model, where each
time instance t is a positive integer t ∈ Z0+. For now, we assume
this model is given, while a comparison between continuous and
discrete time system models for energy harvesting systems is given
in the following chapter, in Section 3.2. When a value relates to time
instance t, we mean it applies for time interval [t, t+ 1).

The following definitions and relations, or their variations, are
commonly found in related work, e.g., [KHZS07]. The harvested
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energy during time instance t is denoted as p(t). This value depends
on the energy harvester and the environment. The consumed
energy during time instance t is denoted as u(t), with u being the
use function. The energy management system choses a mode of op-
eration for the next time instance, and a target energy consumption
is associated with it. When different from the actual use energy, this
target use function is denoted ũ. The consumed energy u(t) equals
the energy taken from the rechargeable energy storage and from the
backup battery,

u(t) = uR(t) + uB(t) (2.1)

The energy management system also decides which portion is taken
from which energy reservoir. The base consumption uBASE ≥ 0
defines a lower bound on the consumed energy with u(t) ≥ uBASE,
which applies for every time instance ∀t ∈ Z0+.

The rechargeable energy storage has bR(t) energy stored at
the beginning of time instance t, and a maximum capacity BR.
For our initial abstract model, we suppose it is loss-free. For the
rechargeable energy storage, the following holds:

bR(t+ 1) = min{bR(t) + p(t)− uR(t), BR} (2.2)

The harvested energy that is discarded because the rechargeable
energy storage is full is called “wasted energy" for short. The use
of the backup battery in time interval [t1, t2) is denoted as

E(t1, t2) =
∑

t1≤t<t2

uB(t) (2.3)

A utility function can be any strictly concave function µ :
R≥0 → R>0. This concavity means that it models the diminishing
return of investment if the energy consumption of a node grows.
One may also define a maximal consumption, over which no addi-
tional utility is realized. The total utility in a time interval [t1, t2) is
the sum of the utility during this time:

U(t1, t2) =
∑

t1≤τ<t2

µ(u(τ)) (2.4)

Note, a strictly concave function µ satisfies

µ(αx+ (1− α)y) > αµ(x) + (1− α)µ(y)
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for any 0 ≤ α ≤ 1 and x, y ∈ R≥0.

Harvested energy estimation. Let us define the harvested energy
estimate function p̂t(τ). It is a part of the energy management
system, and it is a function of two parameters: the time of prediction
t, and the time for which we predict τ . The time of prediction is
a parameter because, in a realistic setting, the estimate is updated
as time passes and new harvested energy values are observed. We
assume that the estimate is defined for all τ ∈ [t, t + TH), where
TH > 0 is the prediction horizon, which specifis for how far in the
future a harvested energy estimate exists.

Optimization problems. We deal with two optimization prob-
lems, and each is solved in two steps. The two optimization prob-
lems refer to systems with and without a backup battery, respec-
tively, and these will be known as the ‘original’ and ‘backup battery’
problems. The original problem is solved by Buchli et al. [BKT15],
and is given here for reference as our solution to the backup battery
problem extends upon it.

For both problems, at first we assume that we know the har-
vested energy in the future. This forms the basis for the second
step, model predictive energy control, which is the case when the
future harvested energy is only estimated with a function p̃t(τ).

Optimization Problem 2.1 Original Problem: ([BKT15], rephrased).
Given no backup battery and no minimal required energy con-
sumption uBASE = 0. Given the initial and the final rechargeable
energy storage states bR(0) and bR(T ), and the harvested energy
p(t) for all t ∈ [0, T ). Given the following constraints for the energy
management system for all t ∈ [0, T ):

uB(t) = 0
uR(t) ≥ 0

u(t) = uR(t) + uB(t) ≥ uBASE = 0
uR(t) ≤ bR(t) + p(t)

bR(t+ 1) = min{bR(t) + p(t)− uR(t), BR} ≥ 0

(2.5)

Under the above constraints, an optimal energy controller deter-
mines a rechargeable use function u∗

R(t) such that the total utility
U∗(0, T ) is maximized.
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Optimization Problem 2.2 Backup Battery Problem: Given the min-
imal required energy consumption uBASE, the initial and the final
rechargeable energy storage states bR(0) and bR(T ), and the har-
vested energy p(t) for all t ∈ [0, T ). Given the following constraints
for the energy management system for all t ∈ [0, T ):

uB(t) ≥ 0

uR(t) ≥ 0

u(t) = uR(t) + uB(t) ≥ uBASE

uR(t) ≤ bR(t) + p(t)

bR(t+ 1) = min{bR(t) + p(t)− uR(t), BR} ≥ 0

(2.6)

Under the above constraints, an optimal energy controller deter-
mines a rechargeable use function u∗

R(t) and backup use function
u∗
B(t) that satisfy the following criteria:

O1: The total use of the backup energy E∗(0, T ) is the smallest
among all possible use functions, and therefore, the lifetime
of the node is maximized.

O2: Among the use functions that satisfy the above criterion, the
use function u∗(t) = u∗

R(t) + u∗
B(t) has the maximal total

utility U∗(0, T ).

As a shorthand notation, we denote all use functions that satisfy
constraints as feasible. Furthermore, if u(t) < uBASE, we say
the system is in a failure state at time t due to insufficient energy
availability. Likewise, if bR(t) + p(t)− uR(t) < 0, the system is in
a failure state at time t due to depletion of the rechargeable energy
storage.

Solutions to these optimization problems are presented in Sec-
tion 2.4. Based on finite horizon control, solutions to the problem
with unknown future energy are given in Section 2.5.

Before we continue to solve our optimization problems, we
present the following lemma which reformulates the constraints, by
stating that no solution where wasted energy exists can be optimal.

Lemma 2.1: A use function uR(t) that satisfies bR(t
′) + p(t′) −

uR(t
′) > BR for some t′ ∈ [0, T ) can not be optimal.
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Proof: If we would replace uR(t
′) by u′

R(t
′) = bR(t

′)+ p(t′)−BR

then the resulting total utility would be larger, as u′
R(t

′) > uR(t
′)

and no system state changed, i.e., all stored energies are the same.□

The last equation of both constraints (2.5) and (2.6) can thus be
restated as follows:

0 ≤ bR(t+ 1) = bR(t) + p(t)− uR(t) ≤ BR (2.7)

2.4 Optimal Energy Use
For the theoretical case when the future harvested energy is per-
fectly estimated, we solve two optimization problems. This provides
a first step towards understanding practical use functions.

At every time interval, the energy controller decides which
mode of operation to go into. This consumes more or less energy,
but also increases or decreases the use function for that time in-
terval. Bad decisions may cause rechargeable storage depletion,
wasted energy, or a sub-optimal use function. Taking this com-
plexity into account, we first investigate certain properties of the
optimal solutions.

We then present algorithms to compute them, when the har-
vesting energy p(t) is known. Formally speaking, we restate a
unique optimal use function u∗

R(t) from [BKT15], which is the
solution to Optimization problem 2.1. Next we present a unique
optimal use function u∗(t) which is the solution to Optimization
problem 2.2, meaning it has the minimal total backup energy usage
(O1) and among all functions fulfilling this condition, it has the
largest possible utility (O2).

2.4.1 Properties
Let us start with showing the properties and the uniqueness of
the original optimization problem’s solution. Later, we prove how
solutions to the two problems are connected.
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The original problem. The main property of the optimal solution
is formulated by the following theorem.

Theorem 2.1: (Theorem 1 from [BKT15]). Given a use function u∗
R(t)

that satisfies constraints (2.5). If the following relations hold:

u∗
R(s− 1) < u∗

R(s) ⇒ b∗R(s) = 0

u∗
R(t− 1) > u∗

R(t) ⇒ b∗R(t) = BR

(2.8)

Then u∗
R(t) maximizes the total utility U∗(0, T ), it is unique, and it

maximizes the minimal used energy.

Proof: This is a direct consequence of Lemmas 2.2 and 2.3. □

This theorem provides a necessary and sufficient condition for
u∗
R. It is the consequence of two lemmas, the first of which says that

the optimal energy is constant as long as the rechargeable storage is
neither full nor empty. Otherwise, the optimal use function shrinks
and grows, respectively.

Lemma 2.2: (Lemma 1 from [BKT15]). Any optimal use function
u∗
R(t) satisfies:

∀s, τ, t | τ ∈ [s, t] : 0 < b∗R(τ) < BR ⇒
τ ∈ [s− 1, t] : u∗

R(τ) = u∗
R(t)

(2.9)

u∗
R(s− 1) < u∗

R(s) ⇒ b∗R(s) = 0 (2.10)

u∗
R(t− 1) > u∗

R(t) ⇒ b∗R(t) = BR (2.11)

The next lemma then states that the optimal use function u∗
R(t)

is unique.

Lemma 2.3: (Lemma 2 from [BKT15]). If there exists a use function
u∗
R(t) that satisfies the necessary optimality conditions (2.9) to (2.11)

of Lemma 2.2, and that does not lead to a failure, then it is unique.

The backup battery problem. Now we continue and demonstrate
how to take a solution u∗

R(t) to Optimization problem 2.1, and
obtain from it a solution u∗(t) to Optimization problem 2.2 for a
system with a backup battery and a specified minimal use function
uBASE. This transformation of one solution to the other is practical,
and can be expressed as the following theorem.
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Theorem 2.2: Given an optimal solution u∗
R(t) to Optimization prob-

lem 2.1. Then u∗(t):

u∗(t) = u∗
R(t) + u∗

B(t)

u∗
B(t) = max{0, uBASE − u∗

R(t)}
(2.12)

is a solution to Optimization problem 2.2, and is unique.

Proof: This is a direct consequence of Lemmas 2.4 and 2.5, and the
fact that u∗

R(t) is unique (Theorem 2.1). □

Note that the uniqueness clause applies to u∗(t), and not neces-
sarily to u∗

R(t) and u∗
B(t). The first lemma shows that the solution

in (2.12) minimizes the use of the backup battery and therefore,
maximizes the lifetime of the node.

Lemma 2.4: Given an optimal solution u∗
R(t) to Optimization prob-

lem 2.1. Then u∗(t), given by (2.12), has the minimal total backup
usage E∗(0, T ) among all use functions that satisfy (2.6).

Proof: u∗
B(t) and u∗

R(t) are solutions to Optimization problem 2.2,
with base consumption uBASE, as

u∗(t) = u∗
R(t) + u∗

B(t) =

u∗
R(t) + max{0, uBASE − u∗

R(t)} =

max{u∗
R(t), uBASE} ≥ uBASE

Therefore, we need to prove that u∗
B(t) has the minimal total backup

usage E∗(0, T ) (criteria O1).
Given some uBASE, we consider intervals where u∗

R(t) < uBASE

and therefore, the backup battery is used,

u∗
R(t) < uBASE ⇒ u∗

B(t) = uBASE − u∗
R(t) > 0

If no intervals like these exist, then the total backup usage is trivially
minimal, E∗(0, T ) = 0. Otherwise, we will show that for any of
these intervals, the total spent rechargeable energy is maximal, and
therefore the total used energy from the backup storage is minimal.

Let us take one of these intervals [t1, t2]. If t1 = 0, then the
energy in the rechargeable energy storage at time t1 is given bR(0).
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For any other value of t1 we have u∗
R(t1 − 1) ≥ uBASE, and since

u∗
R(t1) < uBASE, properties from Theorem 2.1 give us b∗R(t1) = BR.

In other words, whatever time t1 > 0 may be, the initial stored
energy of the rechargeable energy storage for interval [t1, t2] is
maximal among all use functions.

For the end of the interval, the situation is similar: whatever
time t2 < T may be, the final stored energy of the rechargeable en-
ergy storage for interval [t1, t2] is minimal among all use functions.
If t2 = T , then the final stored energy bR(T ) is given, and for other
values of t2 it is zero. As before, this is due to u∗

R(t2 + 1) ≥ uBASE,
u∗
R(t2) < uBASE and properties from Theorem 2.1.

From (2.7) we know that b∗R(t+ 1) = b∗R(t) + p(t)− u∗
R(t) and

therefore ∑
t1≤t≤t2

u∗
R(t) = bR(t1) +

∑
t1≤t≤t2

p(t)− bR(t2)

When t1 > 0 and t2 < T , we can substitute bR(t1) = BR and
bR(t2) = 0: ∑

t1≤t≤t2

u∗
R(t) = BR +

∑
t1≤t≤t2

p(t)

In other words, the used rechargeable energy equals bR(t1) −
bR(t2) (which is, except for corner cases, the capacity BR), plus
the harvested energy in [t1, t2]. As it is not possible to use more
energy in any time interval than what can be stored in the energy
buffer plus the harvested energy in this time interval, the term∑

t1≤t≤t2
u∗
R(t) is maximal. No other use function uR(t) can have

a larger sum in [t1, t2]. Therefore, the used backup energy in [t1, t2]
is minimal:

E∗(t1, t2 + 1) =
∑

t1≤t≤t2

u∗
B(t) =

∑
t1≤t≤t2

(u∗(t)− u∗
R(t)) =

(t2 − t1 + 1) · uBASE − (bR(t1)− bR(t2))−
∑

t1≤t≤t2

p(t) □

The next lemma deals with maximization of the total utility
U∗(0, T ).
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Lemma 2.5: Given an optimal solution u∗
R(t) to Optimization prob-

lem 2.1. Then u∗(t), given by (2.12), has the maximum total utility
U∗(0, T ) among all use functions that satisfy (2.6) and have the
minimal total backup usage E∗(0, T ).

Proof: We prove this lemma by contradiction. We assume that use
function u(t) with utility U(0, T ) is different from u∗(t) as defined
in the statement, but has the maximal total utility among all use
functions optimal according to O1. By the end of this proof, we
will show that this use function u(t) can in fact be replaced by a
use function u′(t) with a strictly higher utility U ′(0, T ) and same
backup battery usage (O1), thus making the contradiction.

Due to the fact that u(t) is different from u∗(t), and as a
consequence of properties of u∗(t) shown in Theorem 2.1, we can
claim the following: There exists at least one interval (t1, t2) during
which the rechargeable energy storage is neither empty nor full,
where the function u(t) is not constant. As u(t) is not constant
during interval (t1, t2), there exists a maximum and a minimumu(t)
inside the interval, say u(τ1) and u(τ2), respectively, with τ1 ̸= τ2.

We now define u′(t) to be the same as u(t), except at these two
times τ1 and τ2. For these two instances, we define

u′(τ1) = u(τ1)− δ , u′(τ2) = u(τ2) + δ

We can choose δ to be any small non-zero value, so that it
does not violate the constrains on stored energy usage. More
precisely, we focus just on changing the rechargeable component
of u(t) to create u′(t), and here the maximum allowed variation
is δ = mint1≤τ≤t2{|bR(τ)|, |BR − bR(τ)|} > 0. This way,∑t2

τ=t1−1 u(τ) =
∑t2

τ=t1−1 u
′(τ) and also, the stored energy func-

tions will satisfy b′R(τ) = bR(τ) for all 0 ≤ τ ≤ t1 − 1 and
t2 + 1 ≤ τ ≤ T .

We finally have to show that u′(t) has a strictly higher utility
U ′(0, T ) than u(t), and hence u(t) is not optimal. We have

U ′(0, T )− U(0, T ) =

µ(u(τ1)− δ) + µ(u(τ2) + δ)− µ(u(τ1))− µ(u(τ2))
(2.13)

Using the condition that µ is strictly concave, it can be shown
that there exists a constant α that leads to
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µ(u(τ1)− δ) = µ(αu(τ1) + (1− α)u(τ2))

> αµ(u(τ1)) + (1− α)µ(u(τ2))

µ(u(τ2) + δ) = µ((1− α)u(τ1) + αu(τ2))

> (1− α)µ(u(τ1)) + αµ(u(τ2))

(2.14)

Applying (2.14) into (2.13) provesU ′(0, T )−U(0, T ) > 0, which
means that u(t) could not have been optimal, thus u∗(t) has the
maximal total utility U∗(0, T ) (O2). □

This concludes our analysis of the two optimal solutions: their
properties, and how one can be transformed into the other.

2.4.2 Computation
The solutions to Optimization problems 2.1 and 2.2 still need to be
computed. We thus start by presenting an iterative algorithm which
approximates to a desired precision the optimal solution uR(t) to
the original problem, based on the harvested energy trace p(t).

As far as the backup battery extension is concerned, there
is only one main problem to be solved. How can we efficiently
implement (2.12) such that switching constraints as present in typical
hardware implementations are taken into account? Following (2.12),
the overall use function for the energy consumer is given by u∗(t) =
max (u∗

R(t), uBASE) and it is unique, see Theorem 2.2. Nevertheless,
there is some flexibility in partitioning u∗(t) into its backup battery
u∗
B(t) and rechargeable energy storage u∗

R(t) components, which
we demonstrate.

The original problem. An equivalence exists between the Op-
timization problem 2.1 and the shortest Euclidean path in simple
polygons problem in computational geometry. This was demon-
strated by Chen et al. [CSSJ11], and proven by defining a harvesting
polygon, through which each path corresponds to a feasible use
function uR(t) with no wasted energy. Most importantly, the
shortest path corresponds to the optimal solution u∗

R(t).
Guibas et al. [GHL+87] describe an algorithm of complexity

O(n) to compte the shortest feasible path, where n is the number



2.4. Optimal Energy Use 33

Algorithm 2.1: Computing the optimal use function for
the original problem, an iterative approach

1 procedure get optimal (p, bR(0), bR(T ), T , BR, ϵ)
2 for t in 0 < t ≤ T do
3 σl(t)←

∑t
τ=1 p(τ − 1)

4 σu(t)← σl(t) +BR

5 f(0)← BR − bR(0)
6 for t in 0 < t < T do
7 f(t)← (σu(t) + σl(t))/2
8 f(T )← σu(T )− bR(T )
9 repeat

10 f ′ ← f
11 for t in 0 < t < T do
12 f(t)← (f(t− 1) + f(t+ 1))/2
13 f(t)← max {min {f(t), σu(t)}, σl(t)}
14 until max |f ′ − f | < ϵ
15 for t in 0 ≤ t < T do
16 uR(t)← f(t+ 1)− f(t)
17 return uR

of polygon vertices. This implies that the solution u∗
R(t) can be

computed as efficiently. However, this complex algorithm is out
of scope of this thesis, and therefore we describe an efficient yet
simple way to calculate u∗

R(t), Algorithm 2.1, taken from [BKT15]
and based on Li and Klette [LK07, LK11].

The algorithm iteratively makes an initial path as straight as
possible within the harvesting polygon, until a stopping criteria
specified by ϵ is satisfied. The algorithm is shown to have guar-
anteed convergence with regards to precision.

With the optimal solution to the original problem calculated, we
move on the the backup battery problem.

The backup battery problem. In most practical implementations,
it is not possible to arbitrarily mix input energy from one or the
other source, and therefore one needs to do a binary decision at
every given moment about which energy source to use. Let us use
the term switching interval as a lower bound on the time between
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switching from using the backup battery to using the rechargeable
energy storage and vice versa. Now, there are two questions to be
answered: What is a suitable switching algorithm that determines
the energy source for the next time interval? And, what is a suitable
switching interval?

We first provide a sketch of the algorithm: We use the backup
battery only if there is the danger of the rechargeable energy storage
being depleted, and this is checked every switching interval. This
approach is not optimal, of course, but it can be shown that opti-
mality is regained if the capacity of the battery is increased by an
easily computable amount. For realistic scenarios, this increase is
practically negligible and on the order of a few percent.

Precisely speaking, we partition the length of a time interval
of length 1 into S switching intervals of length ∆t = 1/S. For
each switching time interval [t + i

S , t +
i+1
S ) for 0 ≤ i < S,

the algorithm decides whether to use the backup battery or the
rechargeable energy storage. We use the backup battery only if
there is the danger of energy scarcity so as to minimize the use of
the backup battery. In other words, if b∗R(t +

i
S ) <

u∗
R(t)
S , we use

the backup battery with the amount u∗
R(t)
S − b∗R(t+

i
S ) for the time

interval [t + i
S , t +

i+1
S ) in order to satisfy the requested energy

demand even if no energy is harvested. Otherwise if there is no
energy scarcity danger, we use the rechargeable energy storage.

The above algorithm is not optimal as the backup battery is
possibly used more than necessary, if in an interval of length 1/S
part of the energy could have come from the rechargeable energy
storage instead of the backup battery. But it can easily be shown
that optimality is regained if the capacity of the rechargeable energy
storage is increased by the maximal value of u∗

R(t)
S for all 0 ≤ t < T .

Example. We end this section with an example to illustrate the
aforementioned use functions for the backup battery problem, and
their optimization. In Figure 2.2, an energy harvesting function p(t)
is shown, while uBASE = 0.5 and BR = 24. The total simulation
horizon is 288 time steps. One can see how the optimal total
use function u∗(t) responds to the changes in the harvested input
energy, and how it is never less than the base consumption uBASE.
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Figure 2.2: The unique optimal total energy use u∗(t) (solution to
Optimization problem 2.2), the backup battery use u∗

B(t), and the
corresponding energy in the rechargeable energy storage

The diagram also visualizes the partitioning of the use function
as the amount of energy drawn from the backup battery u∗

B(t)
is shown as well. We use the discretized selection algorithm as
explained in the previous paragraph, with a small switching interval
1/S ≪ 1.

2.5 Model Predictive Control Energy Use
In a realistic setting, a perfect estimate of future harvested energy
is not available. Therefore, we employ the well known concept of
model predictive control, as presented by Kwon and Han [KH06]
for general models, and by Buchli et al. [BKT15] for the original
problem. In contrast to the optimal solutions shown before, this
heuristic approach can cope with deviations between the predicted
and actual harvested, or scheduled and actually used energy. We
name the approach FHC.
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Algorithm 2.2: Computing the FHC use function for the
original and backup battery problems

1 procedure get FHC (p̃t, bR(t), bR(t+ TH), TH , BR, ϵ)
2 ũt ← get optimal (p̃t, bR(t), bR(t+ TH), TH , BR, ϵ)

▷ Algorithm 2.1
3a uFHC

R (t)← ũt(0)

4a return uFHC
R (t)

▷ For the original problem
3b uFHC(t)← max{uBASE, ũt(0)}
4b return uFHC(t)

▷ For the backup battery problem

The concept of finite horizon control is rather intuitive: At
every time step t, the optimal use functions for the rechargeable
energy storage and the backup battery are computed based on the
current energy in the rechargeable storage and energy predictions.
We only apply the optimal use functions in the next time interval
[t, t + 1). At time t + 1 and all future time steps, we repeat the
same process. The optimal use functions are determined for a finite
horizon of length TH , namely for the time interval [t, t+TH). If TH

is sufficiently large, and the energy predictions are accurate, then
the FHC solutions matches the optimal ones.

Finite horizon control. Let us now explain finite horizon control
(FHC) more concretely. At some time t, we know the currently
stored energy bR(t), and we have a prediction of harvested energy
for the horizon TH , p̃t(τ). Then we use Algorithm 2.2 to determine
the use function for next time interval [t, t+1). This is uFHC

R (t) and
uFHC(t) for the original and backup battery problem, respectively. In
the second case, the partitioning of uFHC(t) among the rechargeable
energy storage and the backup battery can then be done using the
discrete switching algorithm as explained in the previous section.

Finally, note that Algorithm 2.2 also uses as input the required
energy at the end of the horizon bR(TH). Except when short
horizons are used, this value does not impact the use function
much. In the case that the horizon TH is a one day, one year or
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similar, it is reasonable to use bR(t+ TH) = bR(t), while we found
bR(t+ TH) = BR/2 to be fine in the general case.

The performance of FHC depends on the harvested energy
prediction accuracy. Still, the FHC algorithm automatically con-
siders estimation errors. For example, if the harvested energy was
overestimated, then the rechargeable energy storage would initially
be drained more aggressively. Later, the scheme would compensate
by reducing the consumption, or using the backup battery. On the
other hand, if the estimate was too conservative, the consumption
would first decrease, and then increase as the rechargeable energy
storage approaches its capacity.

Efficient implementation. The implementation of finite horizon
control demands substantial computational resources. As this is
not easily available on all embedded devices, we reference here an
implementation based on LookUp Tables by Moser et at. [MTBB09]
which greatly reduces the run-time computational requirements.

For a given estimate, the optimal use at time t for a set of energy
storage levels bR(t) is determined. Therefore, for a fixed or periodic
prediction of harvested energy, just a few parameters need to be
stored to cover all initial rechargeable energy storage levels. In case
of a reasonably small set of different predicted harvested energy
traces, the necessary amount of storage and computation is small.

For an example scenario, one time interval is 10 minutes T =
10min, and the prediction horizon is one hour TH = 1h. Assume
that 6 different predicted harvested energy traces are sufficiently
representative for this location, i.e., they cover an hour at night,
with sunny and cloudy weather, etc. If one assumes a quadratic
approximation is used for non-precomputed energy storage levels,
then for each of them just three 32 bit values need to be stored,
which results in 32 bit · 3 · 6 = 72B. If one assumes 25 discrete
values for the rechargeable energy storage level, instead of using an
approximation, one would have to store 32 bit · 25 · 6 = 600B.

Example. As was done before, we end this section with an exam-
ple. We illustrate the FHC use function uFHC(t), and compare it to
the optimal solution for the backup battery problem. Figure 2.3,
an energy harvesting function p(t) is shown, while uBASE = 0.5
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Figure 2.3: The finite horizon control total energy use uFHC(t), com-
pared to the optimal total energy use u∗(t) (solution to Optimization
problem 2.2)

and BR = 24. The total simulation horizon is 288 time steps. The
estimate of future harvested energy is the same for every time of
estimate t, p̃t(τ) = p̃s(τ) for every time t and s. The estimate of
harvested energy is accurate in this case, and one can see how the
finite horizon control solution matches the optimal one closely. Still,
uFHC(t) features nose, because the expected and actual harvested
energy differ.

2.6 Solar Energy Prediction
As seen before, in order to supply a non-optimal but practical
solution to the two optimization problems, finite horizon control
needs a harvested energy estimate. This estimate aims to facilitate
the system’s adaption to its environment, by enabling the energy
manager to switch modes of operation proactively.

A plethora of solar energy prediction algorithms exist in the
state of the art. However, we focus only on ones suitable for the
context of resource constrained energy harvesting systems, and
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which can be used to estimate future harvested energy. We notably
exclude schemes based on externally sourced information, such as
externally computed weather forecasts, as they require additional
infrastructure and are not applicable in the general case.

We first introduce existing estimators designed for short-term
predictions, i.e., for each time-slot of the following day. Then, we
present our own new schemes for the same time scale. We end
this section by talking about long-term predictions, where a weekly
prediction is made for the following year.

2.6.1 Commonly Used Estimators
Exponentially weighted moving average. The first energy pre-
diction scheme, exponentially weighted moving average (EWMA)
by Kansal et al. [KHZS07], is simple yet widely used. As its name
suggests, it predicts energy p̃t(τ) as an exponentially weighted
moving average of energy harvested in the same time-slot in the
previous days. The reader recalls, this means that the contribution
of old data to the average is exponentially decreasing. In the most
widely used case the prediction horizon TH is one day, and then
EWMA can be computed recursively using:

∀τ ∈ (t, t+ TH ] :

p̃t(τ) = α · p̃t−TH
(τ − TH) + (1− α) · p(τ − TH)

(2.15)

where α is a weighting factor between 0 and 1. The advantages of
EWMA are clear as the scheme is very easy to implement, and it
is effective when there are no major day-to-day weather changes.
The main disadvantage is a high error when there are changing
weather conditions, for example when sunny and cloudy days are
alternating.

Weather-conditioned moving average. Another scheme better
suited for alternating weather is weather-conditioned moving av-
erage (WCMA) by Recas Piorno et al. [RPBASR09]. This scheme
observes the average energy harvested at a given hour in the past
D days, and introduces a scaling factor GAPk that quantifies how
the current day’s weather is with respect to the average. The scaling
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factor is then used to make a prediction, where the horizon TH is
until the end of the day, using:

∀τ ∈ (t, t+ TH ] :

p̃t(τ) = α · p(t) +GAPk · (1− α) ·
D∑
i=1

p(τ − d · i)
D

(2.16)

where α is a weighting factor between 0 and 1, and d is the length of
one day. WCMA responds to a weather change after one time-slot,
while EWMA needs a full day to take such a change into account.
Therefore, it is expected that the former scheme is more suitable
for frequently changing weather conditions. This comes at a cost
though, which is the computation time needed to derive the GAPk

factor, where k is a parameter that denotes the number of time-slots
used for calculating the factor. We refer the reader to [RPBASR09]
for details.

Profile energy prediction model. A third approach, introduced
by Cammarano et al. [CPS12], is the profile energy prediction model
(ProEnergy). Instead of utilizing certain average values as in the
former schemes, ProEnergy takes a different approach by keeping
D full days of observed energy harvesting traces, called profiles.
Ideally, these D profiles are chosen as representatives of different
weather conditions encountered. Thus, to make a prediction, we
need to find the most similar day among the memorized D profiles.
If π is this similar profile, α is a weighting factor between 0 and 1,
and d is the length of one day, the predicted energy can be computed
using (2.17).

∀τ ∈ (t, t+ TH ] :

p̃t(τ) = α · p(t) + (1− α) · π(τ)
(2.17)

where the horizon TH is until the end of the day. Practically
speaking, ProEnergy involves building and possibly updating the
D representative profile list, then finding the most similar profile,
and finally calculating the predicted value. By taking advantage of
a representative list of profiles, ProEnergy promises to outperform
both WCMA and EWMA. The drawback is a larger computation and
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memory footprint needed to run the scheme. Note, for medium-
and long-term energy predictions, the weighting factor α can be a
function of the similarity of the current day and the most similar
profile π.

2.6.2 Estimators Based on
Atmospheric Transmittance

In this section we present our proposed solar energy prediction
schemes. We first overview the extraterrestrial solar model. Follow-
ing this, we propose solar energy prediction schemes that leverage
the extraterrestrial solar model to yield significantly better predic-
tion accuracy compared to state-of-the-art with low computation
and memory overhead.

2.6.2.1 Extraterrestrial Solar Energy

Determining the position of the Sun in the sky is a well studied
phenomenon. Using the Sun’s position, one can deterministically
calculate the energy harvested by any solar panel above the at-
mosphere, for any given time and geographical location, using the
extraterrestrial irradiation model. This we name the extraterres-
trial solar energy, and denote pet(t). Regarding this matter, our
calculations are taken from Iqbal’s book [Iqb83]. To calculate pet(t),
parameters specified in Table 2.1 need to be used.

For our analysis and evaluations, we assume a nominal solar
panel, which is 1m2 and oriented horizontally, tangent to the
Earth’s surface. However, extending all results to panels of arbitrary
size and orientation is possible using well established trigonometry.

2.6.2.2 Atmospheric Transmittance

Now we define atmospheric transmittance and explain how it can
be computed and used to design energy prediction schemes. The
average atmospheric transmittance during time interval t is the
ratio between the energy harvested during time interval t, and the
extraterrestrial energy harvested during the same interval (2.18).
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Table 2.1: Parameters used to calculate the extraterrestrial solar
energy pet(t), for a nominal solar panel

Latitude θlat

Longitude θlon

Eccentricity correction factor of Earth’s orbit on
day d

εd

Day angle on day d Γd

Rate of extraterrestrial energy I = 1353Wm−2

Solar declination angle on day d δd
Equation of time on day d EoTd

Time zone of a location without daylight saving time_zone
Apparent solar time at day d and time t ASTd,t

Solar angle at day d and time t ωd,t

Solar angle at sunrise on day d ωsr
d

Solar zenith angle at day d and time t θzd,t

s(t) = p(t)/pet(t) (2.18)

The estimated value of atmospheric transmittance is analo-
gously given below. Note that the extraterrestrial energy in the
equation is not a predicted value, as the extraterrestrial energy of
every interval is analytically obtainable.

s̃(t) = p̃(t)/pet(t) (2.19)

Predicting s̃(t) and using it to compute the value of p̃(t) is
expected to improve prediction accuracy over existing prediction
schemes. This is because pet(t) accurately models the diurnal
solar cycle and the yearly seasonal variations. Therefore, any error
caused by predicting these deterministic variations will be removed.

To illustrate this advantage, we compare the relative standard
deviation of atmospheric transmittance and solar energy within
a given day. Relative standard deviation is a measure of relative
variation in data. For five years of data (2005-2009) at a given
location SE, as introduced in Section 2.9.1, we measured the relative
standard deviation of the two aforementioned values for each day,
and we plotted the corresponding histograms. Data is taken from
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Figure 2.4: Histogram of the relative standard deviation of atmo-
spheric transmittance and solar energy within a given day

the NSRDB [SXL+18]. Note that values less than 10% of the given
day’s maximum value were omitted from computation.

As seen in Figure 2.4, the relative standard deviation of atmo-
spheric transmittance has a lower mean value compared to the
corresponding metric for solar energy. This is precisely because
considering atmospheric transmittance removes variations caused
by the diurnal solar cycle. Therefore, the prediction error in trans-
mittance based schemes is expected to be less compared to the
existing schemes, which work directly on higher-variance solar
energy.

2.6.2.3 The New Estimators

Finally, we propose four prediction schemes based on atmospheric
transmittance. Weather-conditioned moving average – transmit-
tance (WCMA-T) and profile energy prediction model – transmit-
tance (ProEnergy-T) are simple enhancements of state-of-the-art
schemes, while exponentially weighted moving average – transmit-
tance (EWMA-T) and delta – transmittance (Delta-T) are novel.

Enhancement of commonly used estimators. Let us demon-
strate how transmittance is used to predict energy by explaining
ProEnergy-T. First, remember that transmittance can not be directly
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measured, but has to be computed from the observed harvested
energy (2.18). Next, with the transmittance at time t in place, as
well as D transmittance profiles memorized, one may predict the
transmittance at time τ using:

∀τ ∈ (t, t+ TH ] :

s̃t(τ) = α · s(t) + (1− α) · πS(τ)
(2.20)

where πS is the most similar transmittance profile. Finally, by ap-
plying (2.19) we obtain a predicted harvested energy value. WCMA-
T is defined in a similar manner, where (2.20) is replaced by the
following equation:

∀τ ∈ (t, t+ TH ] :

s̃t(τ) = α · s(t) +GAPk · (1− α) ·
D∑
i=1

s(τ − d · i)
D

(2.21)

Computationally, both schemes are the same as their original coun-
terparts, with the added overhead of computing the transmittance.

Exponentially weighted moving average – transmittance.
The idea behind EWMA-T is that transmittance does not change
abruptly within a given day. Therefore it can be predicted as the
exponentially weighted moving average of previous hours. It is thus
defined as:

∀τ ∈ (t, t+ TH ] :

s̃t(τ) = α · s̃t−1(t) + (1− α) · s(t)
(2.22)

This scheme promises to combine the benefit of predicting trans-
mittance with the simplicity of EWMA.

Delta – transmittance. The intuition behind Delta-T is that the
change in transmittance from time-slot t − 1 to time-slot t follows
a similar pattern across the last D days. Therefore, for time horizon
TH of one day, the prediction can be formulated as follows.
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∀τ ∈ (t, t+ TH ] :

s̃t(τ) = s(t) ·
∑D

i=1 s(τ − i · TH)∑D
i=1 s(τ − i · TH − 1)

(2.23)

Because of the need to store D · t transmittance values, and to
compute the associated sums, Delta-T requires somewhat more
resources than EWMA-T.

2.6.3 Comparison of
Computation and Memory Costs

Before ending this section, let us revisit all of the aforementioned
schemes in order to compare their computation and memory costs.
We thus first present Table 2.2, where the number of computations
for all of the schemes are compared. In the table, oA denotes an
arithmetic operation (addition, subtraction, multiplication, or the
like), while oT denotes a division or a trigonometric function. For
transmittance based schemes, the cost for calculating the current
extraterrestrial energy pet(t), as well as the cost of calculating
transmittance from energy and vice versa, has not been included
in the computational cost, but given separately as ‘transmittance
overhead’. Note that for ProEnergy and ProEnergy-T, the number
of computations needed for a profile update is not given.

Table 2.3 displays the memory cost, i.e., the variables that need
to be stored between two consecutive time intervals. While pre-
senting the memory cost, the time horizon TH is assumed to be one
day.

2.6.4 Long-Term Estimation
In certain use cases when long-term operation is intended, it is
reasonable to define that a time interval [t, t+ 1) is one week long.
Here, we present a solar energy prediction scheme designed for this
scenario, where the prediction horizon is one year.

Astronomical prediction (Astro) by Buchli et al. [BSBT14b] uses
the extraterrestrial solar model to predict solar energy for every
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Table 2.2: Computational costs of various solar energy estimators

Scheme
Computations
per estimate

Additional
daily computations

EWMA (2.15) 3oA

WCMA
GAPk 2k·oA + oT
(2.16) 7oA

ProEnergy
choosing π 6D·oA
(2.17) 3oA

WCMA-T Same as WCMA
ProEnergy-T Same as ProEnergy

EWMA-T (2.22) 3oA
Delta-T (2.23) 3oA + oT

transmittance
overhead

pet(t) 11oA + 2oT 42oA + 7oT
(2.18) and (2.19) oA + oT

given week t in the following year TH as:

∀τ ∈ (t, t+ TH ] :

p̃(τ) = s · pet(τ)
(2.24)

Due to the large time-scale, it is assumed that the atmospheric
transmittance s is invariant over time. This value can be either
observed in the first few weeks of operation. Note that because
of this, the predicted energy value p̃(τ) is not a function of the
prediction time t.

The computational and memory cost of this scheme is miniscule,
as it is sufficient to statically store 52 predictions for each week of
the year.

2.7 Non-Ideal System Model
Starting from our simple system model in Section 2.3, we considered
already two implementation artifacts, namely that it is only possible
to draw energy from one of the two energy sources (Section 2.4),
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Table 2.3: Memory costs of various solar energy estimators

Scheme Variables to be stored between estimations Size

EWMA Predicted energy, last TH values TH

WCMA
Observed energy, last D days D · TH

Carryover values k + TH

ProEnergy
Observed energy, chosen D days D · TH

Observed energy, last TH values TH

Carryover values D

WCMA-T Same as WCMA
ProEnergy-T Same as ProEnergy

EWMA-T Predicted transmittance, last value 1

Delta-T
Observed transmittance, last D days D · TH

Carryover values TH

transmittance
overhead

Daily and hourly parameters 16

and that the harvested and consumed energy may differ from es-
timations or consumption goals (Section 2.5). Here, we describe
how to adapt the model in order to incorporate inefficiencies that
may exist in the power management hardware without affecting the
optimality of the solution.

Constraints. The following non-ideal behavior is modeled:

■ If the harvesting device generates energy p̂(t) in [t, t+1), then
the energy in the rechargeable energy storage only increases
by σp · p̂(t).

■ If the load uses rechargeable energy ûR(t) in [t, t+1), then the
energy stored in the rechargeable energy storage decreases
by σR · ûR(t). In addition, there is a leakage δR of the
rechargeable energy storage.

■ If the load uses backup energy ûB(t) in [t, t + 1), then the
energy stored in the backup battery reduces by σB · ûB(t). In
addition, there is a leakage δB of the backup battery.

The last item is mainly relevant for computing the lifetime L of
the node. It can be determined using the initial energy BB in the
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backup battery, and the accumulated use of the backup battery:

BB = L · δB + E(0, L) = L · δB + σB ·
∑

t∈[0,L)

ûB(t) (2.25)

Optimization problems. These extended relations consider the
mentioned implementation artifacts:

ûB(t) ≥ 0

ûR(t) ≥ 0

û(t) = ûR(t) + ûB(t) ≥ ûBASE

0 ≤ b̂R(t+ 1) = b̂R(t) + σp · p̂(t)− σR · ûR(t)− δR ≤ B̂R

(2.26)
If we perform the variable transformations given in (2.27), then

we directly obtain from (2.26) the abstract relations in (2.6) and (2.7)
and thus, all results which refer to the original and backup battery
optimization problems apply as well.

uR(t) = σB · ûR(t)

uB(t) = σB · ûB(t)

u(t) = σB · û(t)
uBASE = σB · ûBASE

BR =
σB

σR
B̂R

bR(t) =
σB

σR
b̂R(t)

p(t) =
σB

σR
(σp · p̂(t)− δR)

(2.27)

2.8 Implementation and
Characterization

Here we demonstrate the accuracy of the non-ideal model, as pre-
sented in Section 2.7, by describing and characterizing an imple-
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Figure 2.5: Components of our hardware implementation of the
energy management system with a backup battery. Backup battery
not shown

mentation of an energy harvesting embedded system with a backup
battery.

2.8.1 Hardware and Software Setup
The hardware is shown in Figure 2.5, and consists of a photovoltaic
energy harvester, a power management unit, a super-capacitor as
the rechargeable energy storage, a DC power supply as the backup
battery, and a microcontroller unit as the load. The photovoltaic
panel is an AM-5412 from SANYO Semiconductor [San08]. A
CSC = 5F super-capacitor [Eat17] is used, and during operation
its voltage ranges between 3.3V and 4.3V. The backup battery was
emulated with a DC power supply, providing a constant 3.3V when
needed. Primary batteries like the SAFT LS 14500 [Saf19] show
an almost constant voltage throughout their lifetime. Therefore,
there is no need to consider additional, time-dependent efficiencies.
In addition, a battery’s temperature-dependent capacity impacts
the system’s lifetime, but does not change the optimality of our
approach.

The power management unit consists of a bq25505 harvesting
management chip [Tex19a], and a TPS62740 step-down converter
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[Tex14]. The bq25505 harvesting management chip performs pas-
sive maximum power point tracking for maximum energy transfer
from the photovoltaic panel to the super-capacitor. The chip is also a
power multiplexer, switching between the rechargeable and backup
batteries in the following way. If the super-capacitor’s voltage is
lower than 3.3V, the chip switches to the backup battery. And when
the super-capacitor’s voltage is larger than 3.4V, the chip switches
to the rechargeable energy storage. In practice, this means that the
backup battery is used while the super-capacitor’s voltage increases
from 3.3 to 3.4V. This operation approximates the model described
in Section 2.4.2.

The microcontroller unit is a MSP432P401R board from Texas
Instruments [Tex19b], commonly found in embedded applications.
Two tasks are implemented on it, the ‘power manager’ and the
‘adaptive consumer’. The ‘power manager’ implements the schedul-
ing scheme and harvested energy estimator. This task includes
sampling of the super-capacitor’s voltage, which allows to deter-
mine the currently stored energy bR(t). The sampling is done by
connecting an ADC port to the super-capacitor through an ap-
propriate high-resistance voltage divider. The ‘adaptive consumer’
can consume different energy values, which emulates sensing or
communicating with different rates, different data processing algo-
rithms or actuating LEDs.

2.8.2 Characterization
To characterize the described system, we conducted four experi-
ments. Interpreting results of these experiments, we express the
harvested energy as a function of illumination, and quantify the
parameters of the non-ideal model as presented in Section 2.7.

Experiments involving illumination are done in a laboratory en-
vironment. There, a solar test-bed built by Sigrist [Sig20] recreates
the desired illumination levels. The test-bed completely encloses a
photovoltaic panel, such that it is exposed to a desired illumination
trace using a programmable light source. All measurements are
made using a RocketLogger [SGL+17], which monitors various
voltage and current channels in parallel. Most importantly, the
PV panel’s harvested power P PV

out and the microcontroller’s power
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consumption P MSP
in are obtained through voltage and current mea-

surements, while the rechargeable energy storage’s voltage V SC is
used to estimate the net power flow in the rechargeable energy
storage P SC

est :

P SC
est =

1

2
CSC · ∂

∂t
V SC2 (2.28)

PV panel characterization. We first characterize the AM-5412
photovoltaic energy harvesting panel together with the bq25505
which performs passive maximum power point tracking. This
enables us to model how much energy is harvested depending on
the illuminance level. A total of 13 illuminance levels are used,
from 0 to 110 klx in even steps. For each illuminance level Ev , we
charged the super-capacitor from 3.3 to 4.2V, and measured the
power produced by the PV panel P PV

out. The following linear fit can
be made:

P PV
out = 0.3791 · 10−3 Wlx−1 · Ev [W]

This fit is used in Section 2.9 to create a harvested energy trace
p(t) from a trace of measured illuminance.

Charging characterization. Here we characterize the σp param-
eter of the non-ideal model, introduced in Section 2.7, which en-
capsulates losses in power point tracking on the bq25505, as well as
charging losses of the super-capacitor. The characterization is per-
formed with the microcontroller and linear regulator disconnected.
First, we expose the PV panel to 13 illuminance levels (from 0 to
120 klx in even steps), in order to measure the power produced by
the PV panel P PV

out, as well as the power stored in the rechargeable
energy storage P SC

est . Then we construct a linear fit that minimizes
the root mean square error and links the harvested power P PV

out and
the stored power P SC

est :

P SC
est = 0.8529 · P PV

out [W]

Figure 2.6 depicts the measurements as well as the linear fit.
The fit is not perfect due to measurement noise as well as other
factors such as a non-linear behavior of the power point tracking.
Still, the fit is highly accurate with a root mean square error of only
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4.313 · 10−4. As a result, we can model the charging efficiency of
this particular implementation as σp = 0.8529.

Discharging characterization. Now we present the characteriza-
tion of the σR parameter of the non-ideal model, see Section 2.7,
which quantifies the loss in power of the linear regulator, the
power multiplexer, as well as the discharging losses of the super-
capacitor. In this measurement setup the energy harvesting PV
panel is disconnected after the super-capacitor is fully charged,
and the microcontroller is set to consume at one of 7 power levels
spaced regularly between 9.7 and 92.3mW. We measure the power
consumed by the microcontroller P MSP

in , and the power discharged
from the super-capacitor P SC

est . A linear fit that minimizes the root
mean square error yields:

P SC
est = 1.0789 · P MSP

in [W]

As Figure 2.6 shows, the fit appears to be sufficiently accurate
as the root mean square error is 1.020 · 10−3. As a result, the
discharging efficiency for our implementation is set to be σR =
0.9269 = 1/1.0789.

Rechargeable energy storage leakage characterization. The
final measurement quantifies the decrease in stored energy caused
by the super-capacitor’s internal leakage and the sampling of the
super-capacitor’s voltage. For this measurement, the rechargeable
energy storage was initially fully charged, and both the PV energy
harvester and the consumer were disconnected. Over 38 hours, an
average power dissipation ofP SC

est = 93.50 µW was observed. As the
value is low relative to the chosen experimental setup, this leakage
is not taken into account in the modeling of the system.

2.8.3 Overhead for Finite Horizon Control
We evaluated the direct implementation of the finite horizon control
use function, according to Algorithm 2.2. An implementation on the
chosen MSP432 microcontroller resulted in the following findings:
For a TH = 8h horizon with 1 h time steps, using single-precision
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Figure 2.6: Characterizing the charging efficiency σp (top) and
discharging efficiency σR (bottom)

floating point arithmetic, and permitting an ϵ = 0.01 error in the
use function uFHC which corresponds roughly to an error of 0.5%
relative to the maximum value, it takes 0.2 s to compute uFHC(t).

2.9 Trace-Based Experimental Results
In this section, we conduct two groups of simulated experiments
in order to evaluate our aforementioned work. First we look into
the precision of solar energy estimators in detail, and demonstrate
the benefit of our atmospheric transmittance based schemes. Then
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Table 2.4: An overview of used locations

Abbr. Location Latitude Longitude Alt. [m] ID

UT Utqiagvik 71.32◦ N 156.77◦ W 9 700260 [3]
AN Anchorage 61.17◦ N 150.02◦ W 35 26451 [1]
AD Adak 51.88◦ N 176.65◦ W 5 704540 [3]
SE Seattle 47.47◦ N 122.32◦ W 122 727930 [3]
FA Fargo 46.93◦ N 96.82◦ W 274 727530 [3]
PO Portland 45.58◦ N 122.58◦ W 12 24229 [1]
BH Benton Harbor 42.13◦ N 86.43◦ W 196 726355 [3]
NY New York 40.65◦ N 73.80◦ W 5 744860 [3]
BA Baltimore 39.17◦ N 76.67◦ W 47 93721 [1]
LA Los Angeles 34.05◦ N 118.23◦ W 82 722874 [3]
PH Phoenix 33.45◦ N 111.98◦ W 337 722780 [3]
EP El Paso 31.89◦ N 106.40◦ W 1194 23044 [1]
CC Corpus Christi 27.77◦ N 97.50◦ W 13 12924 [1]
HO Honolulu 21.32◦ N 157.93◦ W 2 911820 [3]

we simulate our whole system in several fundamentally different
scenarios. Here we compare the FHC use function with the optimal
solution as well as a simple reactive consumption function, we
demonstrate the performance of FHC when combined with future
energy estimators of various accuracy, and we illustrate the sys-
tem’s performance as well as the use of the backup battery.

Before going into experiments, let us introduce the used data
sets for solar energy harvesting.

2.9.1 Harvested Energy Data
Outdoor locations. Data from a total of 14 geographical locations
were used, all from the open National solar radiation database
(NSRDB) [SXL+18], which collects data from many measurement
stations throughout the USA. Table 2.4 introduces locations we
used, with their name, geographical information, and identification
number. Note that [1] means we used a measurement station from
the first version of the database, NSRDB v1, which collects data from
1961 to 1990, while [3] refers to the third version of the database
NSRDB v3, and especially data from 1998 to 2010.
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Table 2.5: A description of used locations

Abbr. SD [h] SD [%] Köppen climate description

UT 1858.7 30 Tundra (Et)
AN 2061.2 46 Subarctic (Dfc)
AD – – Cold-summer Mediterranean (Cfc)
SE 2169.7 49 Temperate oceanic (Cfb)
FA 2629.1 59 Hot-summer humid continental (Dfa)
PO 2340.9 52 Warm-summer Mediterranean (Csb)
BH – – Hot-summer humid continental (Dfa)
NY 2534.7 57 Humid subtropic (Cfa)
BA 2581.7 58 Humid subtropic (Cfa)
LA 3254.2 73 Warm-summer Mediterranean (Csb)
PH 3871.6 87 Hot desert (Bwh)
EP 3762.5 85 Cold desert (BWk)
CC 2636.3 59 Humid subtropic (Cfa)
HO 3035.9 68 Hot semi-arid (BSh)

To illustrate the diversity of chosen locations, Table 2.5 gives
a comment on the climate and sunshine duration. Specifically,
column SD [h] gives the mean number of hours with sunshine per
year, while SD [%] gives the former number relative to the total
number of daylight hours per year.

Indoor setup. Data describing harvestable photovoltaic energy
indoors is not commonly available. We rely on the Indoor solar
harvesting dataset [SGT19], which collects up to 3 years (2017-2020)
of data at six locations inside a university office building in Zürich,
Switzerland. In this chapter, we work with data observed at three
locations, named L14, L16 and L17. At location L14, from time to
time there is direct sun exposure, particularly in the morning hours
and during summer. This deployment is placed on a wall near a
north-east facing window.

Both measurement stations L16 and L17 are located in the same
office, however in different surroundings. L16 is placed on a table
facing up, and it has significant exposure to light throughout the
day. L17 is mounted on a wall high up, and near a window which
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is sometimes partially blocked by curtains. No direct exposure to
sunlight was observed on either location.

2.9.2 Precision of Energy Estimators
In this section, we evaluate all aforementioned short-term estima-
tors for future harvested solar energy: EWMA, WCMA, ProEnergy,
WCMA-T, ProEnergy-T, EWMA-T, and Delta-T. In this sense, short-
term means time-slots are less than a day.

Four simulated experiments are used for the evaluation. First,
we show how estimators compare at different locations. Then, with
a fixed location, we investigate the performance of each scheme at
different times of day, and for different time-slot lengths. Finally, we
end the section with an analysis of an estimator’s precision versus
computation complexity.

For all experiments, harvested energy is expressed per meter
square, and for an ideal solar panel.

Setup. Throughout this section, we focus seven locations. Ordered
from the pole to the equator, these are UT, AD, SE, FA, NY, PH, and
HO. For each location, five years of data (2005-2009) were used. One
year of data (2005) was used for training each individual scheme, or
picking the respective parameters. These parameters are as follows.
The weighting factor α for EWMA and EWMA-T. The weighting
factor α, number of past days D, and k parameter for WCMA and
WCMA-T. The weighting factor α, number of stored days D, and
the stored days for ProEnergy and ProEnergy-T. And finally, the
number of past days D for Delta-T. All of these parameters were
then fixed, and evaluation was conducted on the remaining four
years.

Metrics. When evaluating an estimator’s precision, we evaluate a
prediction made for the following time slot unless specified other-
wise, i.e., p̃t−1(t). Two metrics are used: the mean absolute error
(MAE) and the mean absolute percentage error (MAPE). They are
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defined as:

MAE =
1

T

T−1∑
t=0

|p̃t−1(t)− p(t)| (2.29)

MAPE =
1

T

T−1∑
t=0

|1− p̃t−1(t)/p(t)| (2.30)

MAPE is usually present in related work to show the relative
accuracy of a solar energy prediction scheme. However, we note
that a relative measure might not be sufficient to give a complete
overview of the estimators performance. Most notably, MAPE
gives little information when harvested energy is close to zero.
We therefore introduce MAE, which comments on the absolute
accuracy of the prediction scheme, to supplement our evaluation.

2.9.2.1 Precision at Various Locations

We start off by evaluating the estimators’ precision, in terms of MAE
and MAPE, at the seven locations.

Setup. While evaluating both metrics, night time and low light
time-slots are omitted. These are defined to be time-slots in which
the energy harvested is less than 10% of the daily maximum. This
practice is common in related work [RPBASR09, CPS12]. A separate
training and evaluation was conducted for the MAPE and MAE
comparison.

Evaluation. The performance of all of the schemes, on the seven
evaluation locations, is given in Figure 2.7 and Table 2.6. The
figure shows the MAE and MAPE for every estimator and location,
while the table presents the mean, standard deviation (σ), and 99-
percentile value (P99) for all locations together.

Regarding the existing schemes, what we can observe first is that
EWMA is, with regards to MAPE, the least precise scheme overall.
This holds as well as for individual locations, except PH and HO
where it outperforms WCMA. For all other locations, WCMA is
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Table 2.6: Precision of existing and proposed solar energy
estimators, aggregated for 7 diverse locations

MAE σMAE PMAE
99 MAPE σMAPE PMAPE

99

[Wh/m2] [%]

EWMA 104.41 99.83 443.48 37.58 44.78 224.86
WCMA 85.02 85.86 388.22 29.65 33.88 155.72
ProEnergy 71.60 77.50 360.01 24.24 29.61 147.33

EWMA-T 69.90 83.43 391.05 22.68 29.01 149.50
WCMA-T 71.11 79.31 373.22 23.39 27.62 140.63
ProEnergy-T 63.88 75.48 354.10 20.97 27.44 140.86
Delta-T 69.63 85.42 395.20 22.21 30.25 154.51

more precise than EWMA. Regardless of the metric and location,
ProEnergy preforms best of the non-transmittance based schemes.

Out of the transmittance based schemes, with regards to MAPE,
the best scheme overall is ProEnergy-T, having the best precision for
all evaluated locations except FA. WCMA-T has the least precision
and performs arguably as good as ProEnergy (e.g., performing
worse than it in PH, and better than it in SE). EWMA-T and Delta-
T both perform slightly better than WCMA-T, though the exact
amount depends on the actual location (e.g., for FA Delta-T is better,
followed by EWMA-T and WCMA-T, while for AD it is EWMA-T
followed by WCMA-T and Delta-T).

The results for MAE are similar to the MAPE case. However, we
see the effect of the amount of harvestable solar energy. On the one
side, HO has a lot of sunshine, so the absolute error is high for most
of the schemes even though the relative one is not. On the other
side, UT is located inside the Arctic Circle, thus the absolute error
for all of the schemes is low.

2.9.2.2 Precision at Various Times of Day

To supplement the evaluation at different locations, in this experi-
ment we evaluate the performance of all the estimators for different
times of day.
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Setup. Figure 2.8 shows the MAPE and MAE for every estimator,
at location SE, averaged for each hour of a day. Here, every data
point with positive harvested energy has been taken into account.
A separate training and evaluation was conducted for the MAPE
and MAE comparison.

Evaluation. With regards to MAPE, all schemes perform the worst
in the early morning hours, up to 8 o’clock. The exception is
EWMA, as its precision is roughly the same throughout the day.
Nevertheless, ProEnergy-T has the best performance in the morn-
ing, arguably followed by EWMA-T and WCMA-T. Considering the
midday hours, ProEnergy-T has the best performance here as well,
while other transmittance based estimators slightly outperform the
rest. During afternoon and evening hours, after 15 o’clock, trans-
mittance based schemes improve prediction accuracy considerably.
In this case, the four transmittance based schemes perform similarly,
with Delta-T preforming best.

The results for MAE complement the above observations, by
showing that the absolute errors in prediction are low in the morn-
ing and evening, and high during midday.

2.9.2.3 Precision for Various Interval Lengths

We complete our analysis of precision with the effect the prediction
interval length makes.

Setup. Figure 2.9 shows the MAPE and MAE precisions for every
estimator at location SE. As in the first experiment, night time and
low light time-slots are omitted, which are time-slots in which the
harvested energy is less than 10% of the daily maximum. Also
as before, separate training and evaluation was conducted for the
MAPE and MAE comparison.

So far, all precision metrics refer to the next hour’s estimate,
p̃t−1(t) for ∆t = 1h. In this experiment, we evaluate additionally
the precision for time intervals of lengths ∆t = 2h and ∆t = 4h.
Functionally, the latter two are the same as p̃t−1(t) + p̃t−1(t + 1)
and p̃t−1(t)+ p̃t−1(t+1)+ p̃t−1(t+2)+ p̃t−1(t+3) for ∆t = 1h.
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Figure 2.7: Precision of existing and proposed solar energy estima-
tors, for 7 diverse locations
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Figure 2.9: Precision of existing and proposed solar energy estima-
tors, for various prediction intervals

Evaluation. The MAPE varies little in each scheme, except for
WCMA which is less precise for longer prediction intervals. The
MAE, however, is roughly double when two or four hour prediction
intervals are used, as opposed to one hour intervals. This is primar-
ily because more energy is harvested in larger intervals, though due
to the diurnal cycle the increase is not linear.

2.9.2.4 Precision Versus Complexity

Finally, we end this section by finding Pareto-optimal solar energy
estimators, when prediction accuracy and estimator complexity
form the design space.
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ity of existing and proposed solar energy estimators

Setup. To give complexity measures, we assume that complex
floating point operations oT (trigonometric operations, division)
take 15 time units, while basic arithmetic operations oA (addition,
subtraction, multiplication) take 1 time unit. MAPE values are taken
from previous measurements, for locations AD, SE, FA and PH.

Figure 2.10 plots the MAPE and computation cost for predicting
twelve one-hour time-slots in a single day. In the figure, all schemes
that are Pareto dominated for a given location are dimmed. The
Pareto fronts for all locations are illustrated by dashed lines. Note
that some schemes do not have the same computation cost at
all locations, as location-dependent optimization parameters may
impact them.

Evaluation. First of all, Figure 2.10 shows that EWMA has the
minimum computation cost for all locations. However, it has signifi-
cantly higher MAPE compared to other schemes, with the exception
of location PH. Next, it should be noted that the new transmittance
based schemes (EWMA-T, Delta-T) have a smaller MAPE than the
most accurate existing scheme ProEnergy, at a reduced computation
cost. Finally, ProEnergy-T is the most accurate scheme (with the
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exception of FA where Delta-T outperforms it). However, the
accuracy of Delta-T and EWMA-T is comparable to ProEnergy-T,
with significantly lower computation cost.

As a final remark, we note that the computation cost for the
transmittance based schemes can be significantly lowered if the
pet(t) values of extraterrestrial solar energy are stored in advance
for the entire year. This would require a memory cost 24 · 365 =
8760 read-only floating point numbers, which is feasible for most
embedded platforms.

2.9.3 System’s Performance Experiments
Here we use simulations to illustrate the difference between the op-
timal solution to the backup battery problem u∗(t), the finite hori-
zon control (FHC) solution uFHC(t), and a baseline simple heuristic
approach that does not make use of energy predictions uEMX(t). We
investigate a hypothetical system deployed in a remote outdoor area
with the goal of operating for multiple years, a scenario similar to
Buchli et al. [BKT15], as well as a system deployed indoors. In the
first environment, a relatively large rechargeable energy storage is
used to reasonably cover a drop of energy in the winter months, the
consumption of the system is adjusted once a week, while precise
future energy estimators exist due to the limited non-determinism
in harvesting accompanying this time scale. In the second case, we
use the concrete system implementation introduced in Section 2.8
that operates in an indoor environment. In this more dynamic
surrounding, the consumption is updated every 10 minutes, and it
is generally harder to predict future energy as it depends on non-
deterministic human interference such as switching lights, closing
doors that block outside light, and using sun shading devices at
windows. These setups are chosen because they are very different
in requirements and characteristics.

These experiments illustrate how the choice of base consump-
tion impacts the backup battery usage at two locations, our energy
management with a backup battery, and its reactivity to sudden and
non-deterministic changes.
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Baseline scheme. The simple baseline control algorithm is the
purely reactive scheme EnoMax [VGB07], where the system tries
to maintain a predefined state of charge of the rechargeable energy
storage α ·BR. It can be described as follows:

∀t : uEMX(t) = max(bB(t)− α ·BR), uBASE) (2.31)

where we used the recommended target of stored energy α = 0.6.

Utility. Although any strictly concave function would suffice, the
utilization function U(0, T ) is chosen as the following normalized
function:

U(0, T ) =

∑T−1
i=0

√
u(t) + 1∑T−1

i=0

√
u∗(t) + 1

(2.32)

2.9.3.1 Performance at Various Outdoor Locations

For this simulation, we assume a system deployed outdoors, with a
one week time step. A total of 7 locations were used, for which we
evaluate the system’s performance in terms of backup battery usage
and utility. These are, ordered from the pole to the equator, AN, PO,
BH, BA, LA, EP, and CC.

Setup. A rechargeable energy storage with capacity BR = 1MJ
or about 1650mW ·week is used. The solar panel’s efficiency is
assumed to be 20%, while its size at locations CC and LA is 10 cm2,
at AN it is 20 cm2, and otherwise 15 cm2. These values have
been chosen such that the yearly average of the harvested power
is around 600mW. A base consumption of uBASE = 320 kJ ≈
530mW ·week is used. The base consumption is chosen to be
slightly lower then the yearly average harvested energy per week.

The first year of data for all locations was used to calculate the
EWMA harvested energy estimates for the FHC scheme, while the
simulated time frame is the following 11 years, T = 11 · 52. FHC’s
time horizon is one year, TH = 52.

Evaluation. Tables 2.7 and 2.8 summarize the results of this sim-
ulated experiment. First, let us interpret results for the total used
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Table 2.7: Evaluation of the backup battery use, for 11 years at 7
locations, and the average harvested energy per week

Abbr.
Total Backup

Battery Use [MJ]
Average Energy [mW ·week]

E∗ EFHC EEMX u∗
B(t) uFHC

B (t) uEMX
B (t) p(t)

AN 48.10 50.13 52.04 138.66 144.51 150.02 526.62
PO 26.23 28.45 30.24 75.61 82.01 87.17 591.93
BH 18.78 20.55 22.81 54.14 59.24 65.75 624.01
BA 6.06 6.89 10.15 17.47 19.86 29.26 669.48
LA 8.81 10.23 12.90 25.40 29.49 37.19 605.82
EP 0.87 1.64 4.21 2.51 4.73 12.14 531.58
CC 10.56 12.16 14.64 30.44 35.05 42.20 673.94

Table 2.8: Evaluation of the total utility, for 11 years at 7 locations

Abbr. Total Utility Abbr. Total Utility
U∗ U FHC UEMX U∗ U FHC UEMX

AN 1.0000 0.9962 0.9395 LA 1.0000 0.9994 0.9625
PO 1.0000 0.9989 0.9386 EP 1.0000 1.0003 0.9979
BH 1.0000 0.9978 0.9377 CC 1.0000 0.9989 0.9436
BA 1.0000 0.9973 0.9359

backup battery energyE. The optimal use function u∗(t)minimizes
the use of the backup battery (Lemma 2.4), and therefore the total
use of the backup energy E∗(0, T ) is the smallest in this case.
The total backup energy use values for FHC uFHC(t) are close
to the optimal values, and they are also better than the baseline
uEMX(t). Remember that the optimal values are not achievable as
the harvested energy differs from its estimation.

With finite horizon control, the reduction in used backup en-
ergy compared to the reactive scheme EnoMax is between 5 and
10mW, on average over 11 years. If the optimal solution were
implementable, one would save on average from 9 to 12mW of
backup power.

Now, let us comment on the total utility values. Overall, the
total utility values are similar, but is also due to the use of a
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square-root utility function which only mildly penalizes high power
consumption. The utility of FHC is close to that of the optimal
solution, while EnoMax’s utility is clearly worse.

Notably, the total utility of the optimal solution u∗(t) is not
necessarily the largest value. This is a consequence of the sub-
optimality of FHC and EnoMax. Namely, when the total backup
use is larger then necessary, then the extra energy may increase the
system’s total utility.

2.9.3.2 Sensitivity to Base Consumption, Outdoor Locations

For our second experiment, we evaluate the usage of the backup
battery in more detail. Namely, we evaluate the impact the base
consumption uBASE has on the total used backup energy E(0, T )
and the total utility U(0, T ) over 11 years of operation.

Setup. We evaluate the backup battery use at two locations, BH
and EP. At BH the base consumption uBASE varies from 170 to
570 kJ (280 to 940mW ·week), while at EP uBASE varies from 250
to 520 kJ (410 to 860mW ·week).

Two other locations, PO and LA, have been picked for evaluating
the impact on the total utilityU(0, T ). The base consumption uBASE

at PO is ranging from 100 to 600 kJ (170 to 990mW ·week), while
at LA it is from 200 to 500 kJ (330 to 830mW ·week).

As in the previous outdoor setup, the time step is one week.
A solar panel of size 15 cm2 harvests energy with 20% efficiency
(except for LA where size is 10 cm2), and a BR = 1MJ ≈
1650mW ·week rechargeable energy storage is used. The FHC
algorithm uses an EWMA estimator for predicting future energy,
for which the first year of data was used to calculate estimates. The
simulated time is the following 11 years, T = 11 · 52.

Evaluation. Figures 2.11a and 2.11b show the difference in total
backup energy between the optimal solution u∗(t), and the two
practically implementable schemes uFHC(t) (finite horizon control)
and uEMX(t) (optimal reactive scheme under ENO constraints).

Let us start by commenting on the two schemes. With FHC,
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Figure 2.11: Sensitivity of the backup battery use and utility to the
base consumption, for several outdoor locations over 11 years
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additional energy is consumed from the backup battery in two
situations. First, it happens when there is an optimistic miss-
prediction, which can not be corrected by lowering the use function
due to the uFHC(t) ≥ uBASE constraint. Second, a pessimistic miss-
prediction may lead to wasted energy, if it causes the energy in the
rechargeable storage to reach its capacity. In this case, this wasted
energy might need to be resupplied from the backup battery some
time later.

The baseline solution EnoMax has the goal of maintaining a
constant state of charge throughout the year. In the general case,
the energy in the rechargeable storage is thus usually higher then
optimal during summer weeks, and this may lead to wasted energy.
Also, the stored energy is often less than optimal in the beginning
of winter, which causes the system to use the backup battery more
then it would be necessary otherwise.

Now, we shall observe results shown in Figures 2.11a and 2.11b,
and validate our commentary. Starting with small values of the base
consumption uBASE, namely less than 350mW ·week for location
BH and less than 500mW ·week for location EP, we can see that all
solutions have similar performance as the backup battery is rarely
used.

When the base consumption is in the middle range, 350 to
750mW ·week for location BH and 500 to 850mW ·week for
location EP, there is a prominent advantage in favour of the finite
horizon control solution.

When the base consumption is large, more than 750mW ·week
for location BH and 850mW ·week for location EP, the backup
battery is used every time instance, u∗(t) = uBASE for all t ∈ [0, T ).
Thus, any solution which does not lead to wasted energy performs
as good as the optimistic one. FHC is sub-optimal in this case, as
the prediction algorithm and its pessimistic miss-predictions during
summer weeks lead to some wasted energy.

Finally, we examine how the total utilities of the three use
functions compare with varying base consumption. These results
are visualized in Figures 2.11c and 2.11d. Remember that the total
utilization is a secondary objective, and comes after minimizing
the backup battery usage. This means that the optimal solution
U∗(0, T ) = 1 does not have the maximal utilization among all
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use functions that comply with the constraints defined by the
backup battery optimization problem (2.6). This can be observed
in both figures for several base consumption values, when the total
utilization of the finite horizon U FHC(0, T ) is larger than 1. This
is because a miss-prediction of EWMA causes additional energy to
be drawn from the backup battery, which contributes to the total
utilization, ultimately making it larger.

We can see in the figures that the overall differences in total
utilization for the presented solutions are small, as the used uti-
lization slightly penalizes large energy consumptions. Nevertheless,
the total utilization for FHC is closer to the optimal solution’s value
than the baseline EnoMax. These differences are shown to decrease
as the base consumption increases, and as the backup battery ends
up being used more and more. Ultimately, for a large enough base
consumption uBASE, all solutions become simply u(t) = uBASE.

2.9.3.3 Sensitivity to Base Consumption, Indoor Locations

For our third experiment, we visit two indoor locations and repeat
the former sensitivity analysis. As in the outdoor scenario, we
evaluate the usage of the backup battery, as well as the impact on
the total utility.

Even though both indoor locations are in the same room, the
harvesting characteristics are fundamentally different. For the first
location, L16, the harvester is placed on a table facing up, without
many obstacles surrounding it. In this environment, the prediction
of the future energy made by EWMA is reasonably precise. For the
second location, L17, the harvester is mounted on a wall facing west,
and near a window. Close by, a curtain sometimes partly obstructs
the window. Here the EWMA predictor showed a large deviation
between predicted and harvested energies, mainly because it could
not predict the movement of the curtain.

Setup. We used the system implementation as introduced in Sec-
tion 2.8, however a smaller rechargeable energy storage with ca-
pacity BR = 1.35 J = 2.25mW · 10min was assumed, in order to
adapt to the smaller amount of harvested energy. One day is used
to calculate the harvested energy estimates, while the simulated
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Figure 2.12: The EWMA estimate of future energy, used for FHC,
and the harvested energy, over two days at locations L16 and L17

time frame is 12 days, each with 144 10-minute intervals, T =
12 · 144. The FHC’s horizon length is one hour TH = 6. The base
consumption is varied from 0 to 0.15mW · 10min at L16, and to
0.10mW · 10min at L17.

Evaluation. Figures 2.13a and 2.13b visualize the difference in total
backup energy between the optimal solution, and the two imple-
mented algorithms FHC and EnoMax, while Figures 2.13c and 2.13d
show how the total utilities of the three use functions compare.
Figures 2.12a and 2.12b illustrate the EWMA estimator of harvested
energy. At L16, the predictor achieves realistic predictions, while
at L17 it can not sufficiently deal with the very dynamic and non-
deterministic environment.

For location L16, where EWMA prediction is good, we see
there is a prominent benefit in using FHC compared to the baseline
solution, for low and medium values of the base consumption



72 Chapter 2. Worst-case Analysis of Energy Harvesting Systems

uBASE < 100 µW·10min. When the uBASE is larger than that value,
the backup battery is used every time instance as u(t) = uBASE for
all t ∈ [0, T ). Thus, any solution which does not lead to wasted
energy performs as good as the optimal one. FHC is sub-optimal
in this case, as the prediction algorithm and its pessimistic miss-
predictions lead to some wasted energy.

At location L17, finite horizon control under-performs the base-
line. This is due to the almost useless harvested energy estimates
from EWMA. During the simulated days, there are both significant
over- and under-estimations of future energy. Without a viable
future energy predictor, we can conclude that it does not make
sense to use any prediction-based scheduler, and a reactive power
management solution works better.

In summary, FHC for systems with a backup battery performs
well if the energy estimation is sufficiently precise, otherwise a
simple reactive approach should be used.

2.10 Real World Experimental Results
In this section, we further validate the realism of our non-ideal
model. To this end, we deployed the energy harvesting embed-
ded system, introduced in Section 2.8, in a controlled laboratory
environment. We compare the simulated and measured harvested
energy, consumed energy, and super-capacitor’s charge. For com-
parison, we use the L2 norm of the difference between respective
emulated and measured traces. We thus close the loop on the
abstract model, considering non-ideal behavior, component charac-
terization and measured system behavior under realistic conditions.

Setup. Environment. Using the solar testbed [Sig20], we closely
recreate three days of indoor illumination conditions, as recorded
at location L14 of the Indoor Solar Harvesting database [SGT19] on
29 - 31 May 2018. The recreated trace features significant natural
light, especially during morning hours. The solar test-bed enables
this recreation, because it encapsulates the a photovoltaic panel and
exposes it to desired illumination levels.
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Figure 2.13: Sensitivity of the backup battery use and utility to the
base consumption, for several indoor locations over 12 days
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The three-day trace was slightly adjusted for practical purposes.
First, the trace was sped up by a factor of 5 times, so the experiment
lasted 14.4 hours. Then, the recorded trace was divided into two-
minute intervals, over which the illumination level was averaged,
i.e., the illumination level was updated every two minutes. In order
for the experiment to be more dynamic, such that we record the
rechargeable energy storage getting fully charged and discharged,
we scaled the illumination levels by a factor of 8 times. Functionally,
this is equivalent to having an 8 times larger photovoltaic panel.

Practical system. The energy harvesting hardware and soft-
ware as introduced in Section 2.8.1 is used as the real world sys-
tem. The ‘power manager’ updates the ‘adaptive consumer’ task
every two minutes. The used consumption trace was determined
by the finite horizon control (FHC) scheme with a non-perfect
future energy estimate. The consumption varies from 2.01mW
(2.01mW · 120 s = uBASE) to 17.64mW. Current and voltage
measurements are done using a RocketLogger [SGL+17], which
measures in parallel: the harvested power, the rechargeable energy
storage’s voltage, and the system’s power dissipation.

Simulated system. To compare our implemented hardware-
software system with model-based simulation results, we made use
of the non-ideal model introduced in Section 2.7, and considered
the coefficients obtained by the component characterization as de-
scribed in Section 2.8.2: σp = 0.8529 and σR = 0.9269. We applied
the same trace of harvested energy and consumption, and emulated
the rechargeable energy storage’s charge.

Evaluation. Figure 2.14 shows the measured and simulated values
side by side: the harvested and consumed power, and the charge
of the super-capacitor. Energy values in Joules are obtained by
multiplying the corresponding power with the 120 s time-interval
length. The harvested energy’s average L2 difference between
measured and emulated results is 12.51mJ, which translates to a
difference of 104.24 µW in power. This difference is 1.16% of the
average measured power. The L2 norm of the difference between the
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measured and emulated consumed energy is 2.75mJ on average,
corresponding to a 22.88 µW difference in power. This constitutes
a 0.47% difference to the average measured consumption.

Finally, the measured rechargeable energy storage is found to
behave similarly to its emulated counterpart as well. The L2 dif-
ference between the two traces is 30.18mJ or 251.5 µW · 120 s,
which is 0.17% of the super-capacitor’s maximal charge. Note that
the backup battery was used once during this experiment, in the
night between the second and third days. In summary, based on this
comparison we can strongly corroborate the practical applicability
of the proposed models and energy management algorithms. The
differences between the abstract model and the considered non-
ideal system behavior, and the actual implementation and measure-
ments are negligible.

2.11 Summary
This chapter is concerned with a worst-case analysis of energy
harvesting systems. With the uncertainty of the harvesting environ-
ment artificially removed, we provide an analytic optimal solution
for energy management. Using a backup battery, uninterrupted
operation under energy-neutral operation constraints is ensured, a
minimal service level is guaranteed, and both the lifetime and the
long-term utilization are maximized. To date, no energy control al-
gorithm is known to consider such energy management subsystems
that make use of a backup battery.

In practice, the environment’s uncertainness can not be disre-
garded, and the optimal solution can only be approximated. Proac-
tive energy management strategies such as finite horizon control
aim to realize just that, by using estimators of future harvestable
energy. Regarding such estimators, we present new mechanisms for
predicting solar energy that exploit the extraterrestrial solar model.
This model yields significant improvements in prediction accuracy
(ProEnergy-T has a 14.5% improvement in relative accuracy com-
pared to existing schemes), at a small additional computation cost.
We also propose computationally light-weight estimators (EWMA-
T, Delta-T) with reasonable prediction accuracy.
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Extensive trace-based simulation results as well as experiments
with an implemented hardware solution are used to quantify and
model non-ideal behavior, and to validate the usefulness of our
approach in terms of guarantees, lifetime and run-time overhead.
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3
Stochastic Analysis of

Energy Harvesting Systems

Now that we have a formal model of energy harvesting embedded
systems, as well as a way to obtain their worst-case performance
metrics, we move on to the stochastic analysis. While designing
or evaluating energy management strategies targeting long-term
operation, one finds probabilistic performance metrics useful: the
probability of failure, the expected energy consumption and energy
storage level, and robustness to design parameters or changing en-
vironments. This chapter proposes a stochastic modeling technique
and corresponding analysis, which is able to provide precisely these
metrics.

Our developed analysis is based on Markov chains. By modeling
harvested energy with random variables, which is possible in many
harvesting scenarios due to the availability of extensive datasets, a
range of energy management policies is analyzed. We also consider
the variability in actual energy consumption when a given service
is required, which stems from the unpredictable timing behavior
of tasks. Based on the analysis results, we propose a new adap-
tive energy management strategy inspired by the class of mixed-
criticality systems. With this strategy, the system may degrade or
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drop several less important tasks in real time, in order to ensure a
level of operation even in adverse conditions. This new approach is
compared to a number of existing alternatives.

In the experimental section, we show the usefulness of our
analysis method and the novel energy management strategy by
solving several optimization problems regarding adjustment of the
management policy and choosing design parameters to fit the de-
sired use case and environment. Extensive simulation results are
conducted for both indoor and outdoor environments, where our
own management strategy is found to match or outperform the state
of the art.

3.1 Introduction
Previously, we have seen how recent technological advances have
made the internet of things, wireless sensor networks (WSNs) and
cyber-physical systems considerably more pervasive. Energy har-
vesting has emerged as a way to power these systems indefinitely,
particularly because of the low maintenance involved, the scalabil-
ity, the potential mobility, and ability to deploy systems in remote
and hard to reach areas. But a paramount challenge in deploying
these energy harvesting systems is ensuring a level of reliability
and determinism in their operation [BASM16], due to the volatility
and intermittence of harvested energy. Yet for many safety-critical
applications there are few alternatives to energy harvesting, as
WSN-based landslide [AAA+07] and natural hazard [MFCP+19]
early warning systems illustrate.

Even though recent studies discuss reliability in long-term de-
ployments [BSBT14b, GJKZ19], we notice that a formal analysis of
energy management schemes with a focus on probabilistic metrics
is missing. Metrics such as the probability of failure, the expected
energy consumption and energy storage level, and robustness or
sensitivity to design parameters or changing environments, all are
critical for characterizing the utility and reliability of energy har-
vesting embedded systems. This chapter aims to fill this gap by
defining a stochastic model and formalizing a Markov analysis. Our
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stochastic model is able to incorporate the natural uncertainness of
harvested energy with a random variable that changes periodically,
as well as the variability in consumed energy. Furthermore, the
developed analysis is able to evaluate many state of the art energy
management strategies, and can be used to construct novel ones.

As an example scenario, we focus on solar energy harvesting
embedded systems, both in outdoor and indoor long-term deploy-
ments. Concretely, we propose a heuristic energy management
strategy inspired by the class of mixed-criticality systems, which
enables the system to reduce performance over periods with low
energy availability, by dropping or reducing non-essential tasks in
real time. Additionally, we propose a mechanism for exploiting
high surpluses of harvested energy, which in this case occur over
summer, by having an enhanced service level then.

Strictly speaking, in this chapter we are interested in developing
a statistics-based analysis method, and in using it to aid the con-
struction of energy management policies, and to enable design space
exploration. We thus formulate the following problems: Given a
system which receives its energy from a harvesting source whose
statistical properties are known through historical data. Given a
known random variable describing the energy consumption of each
possible mode of operation. Given an energy management subsys-
tem which controls the power flow between the energy harvester,
consumer, and rechargeable energy storage.

(A) Define a stochastic system model that takes into account
relevant design variables: the harvester’s dimension and the
capacity of the rechargeable energy storage.

(B) Formalize an analysis method that provides metrics such as
the probability of failure due to lack of available energy, and
the probability that the system consumes a certain energy
value over a given interval.

(C) Design a good energy management policy, which aims to
minimize the probability of failure, while maximizing the
long-term utility.

(D) Compare different energy management policies.

As in the last chapter, non-ideal behavior of a real-world energy
management subsystem should also be considered, with phenom-
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ena such as energy storage leakage or charging efficiency.
Responding to these problems, our work presents the following

contributions.

1. We propose a stochastic model and corresponding Markov
analysis for energy management strategies targeting long-
term operation. The analysis can provide several key metrics
such as: the steady state probability of failure, i.e., recharge-
able storage depletion, the steady state stored energy levels,
the expected energy use and corresponding system utility,
and others.

2. The stochastic model allows for adaptive energy consump-
tion. We especially focus on analyzing an emergency mode
of operation, where the energy consumption is reduced if the
stored energy level is low. We show by simulation the advan-
tage of adaptive management policies in terms of depletion
probability and robustness.

3. Furthermore, the stochastic model allows modeling of several
artifacts of actual implementations such as energy storage
level-dependent leakage, and charging and discharging effi-
ciencies.

4. For the solar energy harvesting use case, we perform exten-
sive trace-based simulations, outdoors for several geographi-
cal locations, and indoors for diversely lighted rooms.

5. We demonstrate solving the system dimensioning problem,
i.e., given a required energy use, and an acceptable tolerance
on the probability of failure, we determine the set of feasible
pairs of solar panels and energy storage capacities.

Organization of this chapter. First, Section 3.2 defines the novel
stochastic system model, as an answer to problem (A). In Section 3.3
we define our Markov analysis for solving the long-term power
management problem, and also introduce an adaptive energy man-
agement scheme. This section provides answers to problems (B)
and (C). Then, in Section 3.4, we sketch how the system model and
analysis can be extended to include non-ideal behavior present in
practical energy management implementations. Finally, Section 3.5
provides trace-based simulations, illustrating major results of the
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paper. Particularly, it illustrates a design space exploration, and a
compares our own energy management scheme with the state of
the art, answering problem (D).

3.2 System Model
In this section, we start off by defining the used models: a determin-
istic model is presented first in Section 3.2.1, before we introduce our
stochastic model in Section 3.2.2. We also deal with discretization
of both values and time, and prove that the stochastic model is
pessimistic with regards to these operations. This allows us to base
the statistical analysis in the following section on this stochastic
model.

Here we present idealized models, while in Section 3.4 we com-
ment on extensions that include non-ideal behavior of a physical
implementation, namely lossy energy storage and charging as well
as discharging efficiencies.

Notation. We use the following notations: Bold characters rep-
resent vectors and matrices, while non-bold characters represent
scalars. Subscripts are used to reference individual elements of
matrices or vectors, e.g., Hk,l denotes the element in kth row and
lth column of matrix H , and Ti denotes the ith element of vector T .
We start numbering rows and columns from 1.

3.2.1 Deterministic System Model
We start with a system model in continuous time. Next, we in-
troduce a corresponding discretized model in time and values, and
prove that it is pessimistic in comparison to the continuous model.

3.2.1.1 Continuous System Model

Let us use ·̃ to denote variables defined in continuous time. The
rechargeable energy storage has stored energy b̃(t) at time t ∈ R≥0,
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and a maximum capacity of b̂. The stored energy is governed by the
following equation:

∂b̃(t)

∂t
=


p̃h(t)− p̃u(t) if

(
b̃(t) < b̂ ∧ p̃h(t) > p̃u(t)

)
∨(

b̃(t) > 0 ∧ p̃h(t) < p̃u(t)
)

0 otherwise
(3.1)

Note that the second case defining ∂b̃(t)/∂t to be 0 ensures that the
stored energy is always between the maximum capacity (b̂) and
none (0).

At time t, the harvested power is p̃h(t) and the consumed
power is p̃u(t), which is also denoted as the used power. Moreover,
the system enters a failure state for all t where the storage is
empty b̃(t) = 0 and there is a negative power balance p̃h(t) −
p̃u(t) < 0. In other words, the system fails if the intended power
consumption p̃u(t) can neither be provided by the storage nor the
energy harvester.

3.2.1.2 Time-discrete System Model

The stochastic Markov analysis technique, covered in Section 3.3,
uses a discrete time model that follows the update interval of the
considered energy management system. But, power is a continuous
variable in time in the physical domain. Thus the goal now is to
determine a discrete-time version of (3.1) that provides worst-case
results.

We define the unit time interval δ, which corresponds to the
update interval of the energy management. Discrete time n maps
to its continuous counterpart via t = n · δ. The main challenge
in the discretization in time is due to the fact that we only know
the relevant quantities like harvested energy and used energy at
t = n · δ, but the model in (3.1) needs a continuous knowledge of
the power values. In order to provide reasonable bounds, we make
the following assumption on the used power:

■ The used power within an interval of length δ is constant, and
therefore p̃u(t) is piece-wise constant.
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This assumption is justified as the used power is changed based
on the commands of the energy management only at discrete time
steps. In terms of harvested energy, we differentiate between two
cases:

■ Suppose that we harvest a certain energy within an update
interval.

– Then p̃h(t) can not change arbitrarily in this time inter-
val, but just within provided bounds.

– Then p̃h(t) can change arbitrarily in this time interval.

We find the first case more interesting and practical. For example,
if a certain energy is harvested by a solar cell within a week, it is
not realistic to assume that the whole energy is provided in the last
hour of that week. It is more appropriate to assume an upper and
a lower bound of the power that can be harvested at any time. As
well as this, the second case can be seen as a limit of the first one.
Therefore, we now proceed with the assumption that bounds on the
harvested energy apply, while later we return and comment on the
arbitrary harvesting case.

The assumptions on harvested and consumed power lead to
the following relations and definitions. The stored energy at time
instance n is denoted as eb(n), and the harvested and used energies
within the time intervals are defined as:

eh(n) =

∫ (n+1)·δ

n·δ
p̃h(t)dt , eu(n) =

∫ (n+1)·δ

n·δ
p̃u(t)dt (3.2)

for all discrete time instances n ∈ Z≥0, see Figure 3.1a. Following
the assumptions described above, we have also:

∀n · δ ≤ t < (n+ 1) · δ :

p̃u(t) =
eu(n)

δ
, σ̌ · eh(n)

δ
≤ p̃h(t) ≤ σ̂ · eh(n)

δ

(3.3)

In other words, the harvested power p̃h(t) can not arbitrarily devi-
ate from the average power eh(n)/δ in the interval of length δ, but
just by a factor within the interval [σ̌, σ̂] with 0 ≤ σ̌ < σ̂. Note
that determining estimations of the harvested energies eh(n) and



86 Chapter 3. Stochastic Analysis of Energy Harvesting Systems

Figure 3.1: Graphical representations of: (a) the discrete model with
stored energy eb(n) at time n · δ, and harvested and used energy
eh(n), eu(n) in (n · δ, (n+1) · δ]. (b) the upper and lower harvested
energy bounds within a single time interval n = 0

the upper and lower deviation factors [σ̌, σ̂] is done by analyzing
traces of harvested energy, as shall be illustrated in later sections.

The reader recollects, the purpose of this section is to determine
a worst-case discrete time abstraction of (3.1). To this end, we first
require that eb(n) ≤ b̃(n · δ) for all n ∈ Z≥0. Second, we require
that if the system described by (3.1) is in a failure state at any point
in the interval (n · δ, (n + 1) · δ], then the discrete model needs to
be in a failure state at n as well.

We first look at a single interval of length δ and then derive the
discrete time abstraction, see also Figure 3.1. The constraints in (3.2)
and (3.3) can be used to determine upper and lower envelopes of the
feasible harvested energy within a time interval. In particular, using
the slope constraints on the harvested power p̃h(t), one determines:

δ1 = δ · 1− σ̌

σ̂ − σ̌
, δ2 = δ · σ̂ − 1

σ̂ − σ̌
(3.4)

Looking at (3.1), one can observe that in general we find eb(1) =
eb(0) + eh(0) − eu(0) as the energy in the storage is increased by
harvesting and decreased by consumption. But there are several
exceptions to this simple relation, namely the charge is constraint
by the maximal capacity 0 ≤ eb(1) ≤ b̂. Additionally, there is an
energy overflow and energy will be lost if b̃(t) = b̂ and p̃h(t) >
p̃u(t), and likewise there is a failure state if b̃(t) = 0 and p̃h(t) <
p̃u(t). Therefore, we can distinguish between the following three
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cases.

■ Failure State: The system is in a failure state if the energy
in the storage attempts to drop below 0. The worst case
clearly happens for the lower envelope in Figure 3.1b, and
therefore if either condition eb(0)+δ2(σ̌

eh(0)
δ − eu(0)

δ ) < 0 or
condition eb(0)+eh(0)−eu(0) < 0 holds. The first condition
corresponds to a violation at time δ2, and the second at time
δ. As a pessimistic simplification, we define that in case of a
failure we have eb(1) = 0.

■ Intermediate Energy Overflow: Energy overflow may happen
at or before time δ1, and then not anymore until the end of the
interval. Therefore, if condition eb(0)+δ1(σ̂

eh(0)
δ − eu(0)

δ ) >

b̂ is satisfied, we find

eb(1) = b̂+min{0, (δ − δ1)(σ̌
eh(0)

δ
− eu(0)

δ
)}

The minimum-operator takes care of a possible energy over-
flow of the storage.

■ Normal Case: In all other cases, we find that

eb(1) = min{b̂, eb(0) + eh(0)− eu(0)}

holds, as again the minimum operator takes care of a possible
energy overflow of the rechargeable storage.

Note that for the above relations to hold, we suppose that we can not
have an overflow and a underflow of the storage happening within
the same interval, i.e., eh(0) ≤ b̂.

Combining all of these considerations and applying them to
every time interval, we can express the worst-case time-discrete
version of (3.1) as follows.

eb(n+1) =



0 if eb(n) + δ2(σ̌
eh(n)

δ − eu(n)
δ ) < 0 ∨

eb(n) + eh(n)− eu(n) < 0

b̂+min{0, (δ − δ1)(σ̌
eh(n)

δ − eu(n)
δ )}

if eb(n) + δ1(σ̂
eh(n)

δ − eu(n)
δ ) > b̂

min{b̂, eb(n) + eh(n)− eu(n)}
otherwise

(3.5)
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for all discrete time instances n ∈ Z≥0. The first case also indicates
a potential failure in the time interval. Most importantly, the above
considerations also prove the following lemma.

Lemma 3.1: (3.5) is a pessimistic time-discretization of (3.1) under the
assumptions of (3.2) and (3.3).

Without bounds on harvested power. We now return to the
limit case when no bounds on harvested power can be made. In
this case, (3.4) degenerates to:

δ1 = 0 , δ2 = δ (3.6)

Applying this into the failure and intermediate overflow cases,
and taking into account the limit values for σ̌ and σ̂ as well, we see
that (3.5) simplifies:

■ Failure State: A failure may happen within an update interval
if condition eb(0)− eu(0) < 0 holds.

■ Intermediate Energy Overflow: If eb(0)+eh(0) > b̂ is satisfied,
then harvested energy may be lost due to an overflow during
an update interval, and we find eb(1) = b̂− eu(0).

The normal case is the same as before.

3.2.1.3 Value-discrete System Model

To conclude the deterministic system model, let us focus on the dis-
cretization of values. Clearly, (3.5) is monotone increasing for eh(n),
and monotone decreasing for eu(n). Therefore, using ⌊eh(n)⌋
instead of eh(n), ⌊eb(n)⌋ instead of eb(n), and ⌈eu(n)⌉ instead
of eu(n) in (3.5) produces pessimistic results. As a consequence,
without losing pessimism we can from now on safely assume that
n, b̂, eb(n), eu(n), and eh(n) are discrete values from Z≥0.

3.2.2 Stochastic System Model
The analysis introduced in following sections is based on a discrete
Markov model. To this end, we model the harvested energy and
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used energy with random variables. As a consequence, the energy
in the rechargeable storage at some time n, or the occurrence of a
failure state, are modeled with random variables as well.

3.2.2.1 Assumptions

We assume that random variables describing harvested energies
at times n are known and statistically independent. The later
assumption needs to be validated for each harvesting scenario. For
example, it is known that this holds for outdoor solar radiation if
the length of the updated interval δ is a week, see for example
the comment on atmospheric circulation systems by Foken [Fok17],
page 5. Otherwise, if the time interval is short, i.e., shorter than 3
to 6 days, temporal weather patterns cause a potential correlation
between consecutive intervals, because consecutive days have sim-
ilar weather. Note that we model the time between updates using a
worst-case scenario according to (3.3) using upper and lower bounds
on the deviation from a constant harvesting power, Therefore, we
consider any possible statistical dependency between updates.

In case of periodic harvesting patterns, one can use different ran-
dom variables within such a period and then repeat the aggregated
model periodically. For example, in the case of solar energy we can
model each week of the year with a separate random variable, and
iterate the corresponding yearly Markov model.

The used energy is assumed to be modeled with independent
random variables as well. A single random variable models each
mode of operation, or equivalently, the used energy level. We also
assume that the mode of operation is a function of only the current
rechargeable energy storage level, and the current time.

3.2.2.2 Harvested Energy

We construct random variables for modeling harvested energy dur-
ing each time interval based on known data. Specifically in our use
case, we use historical information of solar energy, and construct
statistical models using maximum likelihood estimation. The anal-
ysis presented in this chapter works with any statistical model of
harvested energy that can be obtained by matching a distribution
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to the historical data of harvested energy. We have empirically
observed that the normal distribution provides a close match with
the historical data set in case of outdoor solar harvesting data,
while a different class of distributions is used to model indoor solar
harvesting data. This is all described further in Section 3.5.1.

If eh(n) is a sample from the corresponding random variable at
time instance n, then the probability that this sample is realized is:

Eh(v, n) = Pr(eh(n) = v) (3.7)

3.2.2.3 Used Energy

The energy management system uses the available information,
such as the current time period n and the energy in the storage
eb(n), in order to determine a target used energy for the forthcom-
ing period of time (n · δ, (n + 1) · δ]. A statistical model allows
us to describe uncertainties in the actual used energy following the
conditional probability

Eu(v, w, n) = Pr(eu(n) = v | eb(n) = w) (3.8)

This statistical model of the target energy Eu(v, w, n) deserves
some more explanation as it allows to model a large class of relevant
energy management policies. Usually, the energy management is
not statistical. However, when the system is in a certain mode of
operation as defined by the energy manager, its energy consumption
may still vary from one execution to the next due to run-time varia-
tions of tasks, or different requests from the environment. Examples
of the latter are events to react on or packet re-transmissions in case
of missing acknowledgments. The formulation in (3.8) allows us to
model most well known energy management policies, as explained
below.

■ Constant: If there is only one mode of operation, and the
target energy is r for every time n, then for all w and n we
have Eu(v, w, n) = 1 if v = r and Eu(v, w, t) = 0 otherwise.

■ Continuous Modes: Many known policies choose from a con-
tinuous number of modes of operation, and corresponding
target energy consumption values. Such is the FHC scheme,
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introduced in the previous chapter. With an update interval
of one week, estimates of future harvested energy are static
and repeat with a yearly period. This means that all target
consumption values are functions of time n and stored energy
w. Here we just have Eu(r(w, n), w, n) = 1 for all w, n and
Eu(v, w, n) = 0 for all v ̸= r(w, n).
Let us further illustrate having continuos modes of opera-
tion with the case where all energy above a certain value
is targeted for consumption. Suppose that the threshold
charge is s(n), and that the target energy consumption for
this storage level is r(n). Then, the actual used energy is
Eu(r(n) + max{(w − s(n), 0}, w, n) = 1 for every w and
n, and 0 otherwise.

■ Discrete Modes: We also deal with energy management strate-
gies where there is a finite number of modes of operation
available, which is inspired by mixed-criticality systems.
In the simplest case with two modes of operation, we com-
monly find the following strategy. If the energy in the storage
is less or equal than a certain threshold value c(n), then
the system is set to operate in an emergency mode. In this
mode, only important tasks are executed, while others may be
dropped or executed in a reduced manner. Suppose that the
normal target used energy is r(n), and the reduced target used
in emergency mode is rc(n), then we have Eu(r(n), w, n) =
1 if w > c(n), Eu(rc(n), w, n) = 1 if w ≤ c(n), and 0
otherwise.

3.2.2.4 Rechargeable Energy Storage Model

We start with the time-discrete system model (3.5) with discrete
values for the energy in the storage. The distribution of the energy
in the storage as well as the occurrence of a failure state is modeled
by a row vectorB(n) ∈ R(b̂+2) which is a probability mass function
of the random variable that describes the state of the system at time
n · δ.

In particular, B1(n) is the probability of the system to be in a
failure state and having an empty storage, eb(n) = 0. Furthermore,
Bj(n) for 2 ≤ j ≤ b̂ + 2 is the probability of having the stored
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energy eb(n) = j − 2 at discrete time n. Note that the sum of
all elements of B(n) is 1 as the states are mutually exclusive, i.e.,
being in a failure state with probability B1(n) and eb(n) = 0 or
being not in a failure state and having energies eb(n) = j − 2 with
probabilities Bj(n) for 2 ≤ j ≤ b̂+ 2.

Based on our inclusive model, the proposed analysis methodol-
ogy is able to statistically analyze and compare all of the aforemen-
tioned energy management policies in terms of utility, failure rate,
or sensitivity or robustness to changing harvesting conditions. In
the next section, we move on to the corresponding Markov analysis
governed by (3.5), (3.7) and (3.8).

3.3 Stochastic Analysis
To first recapitulate, in Section 3.2.2 we defined a statistical model of
the harvested energy and of the target energy use, and we defined
various energy management policies. We suppose that harvested
energy in consecutive time steps can be modeled with independent
random variables. Now we explain the analysis technique. It is
based on a Markov chain, where the states of the rechargeable
energy storage, modeled by B(n), represent Markov chain states
at time n.

The statistical analysis performed in this section is performed
in ‘two directions’. First, in Section 3.3.1, we determine the state
transitions of the Markov chain for a known system, which we
use ultimately to derive the system’s probability of failure. Then,
in Section 3.3.2, we present a method to optimize parameters of
the energy management policy, such that defined bounds on the
probability of failure are respected.

3.3.1 Markov Analysis
We start by defining the transition matrix, which describes how the
energy storage transitions from time n to time n + 1. We then
define the global transition matrix, a combination of periodically
repeating transition matrices which describe transitions made over
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the period. In our solar energy harvesting example, the repeating
period is one year, and the global transition matrix consists of 52
weekly transition matrices. With these values known, we obtain the
steady state energy storage at the beginning of any discrete time n.
Finally, we derive the probability that we have at least one failure
of the system over any interval.

3.3.1.1 Transition Matrix

The state transition matrix from time instance n to n + 1 can be
directly derived from (3.5), due to the independence assumption on
the harvesting and target use energy probabilities. The failure state
needs special attention as the resulting storage level at n + 1 is
supposed to be eb(n + 1) = 0. For a concise description of the
state transition in matrix form, we use the abbreviations:

c1(eb, eh, eu) = (eb + δ2(σ̌
eh
δ

− eu
δ
) < 0 ∨ eb + eh − eu < 0)

c2(eb, eh, eu) = (eb + δ1(σ̂
eh
δ

− eu
δ
) > b̂)

c3(eb, eh, eu) = (eb + δ2(σ̌
eh
δ

− eu
δ
) ≥ 0 ∧ eb + eh − eu ≥ 0

∧ eb + δ1(σ̂
eh
δ

− eu
δ
) ≤ b̂)

f1(eh, eu) = b̂+ ⌊min{0, (δ − δ1)(σ̌
eh
δ

− eu
δ
)}⌋

f2(eb, eh, eu) = min{b̂, eb + eh − eu}

eb(n+ 1) =



0
if c1(eb(n), eh(n), eu(n))

f1(eh(n), eu(n))
if c2(eb(n), eh(n), eu(n))

f2(eb(n), eh(n), eu(n))
if c3(eb(n), eh(n), eu(n))

(3.9)

This leads us to:

B(n+ 1) = B(n) · T (n) , T (n) = T a(n) + T b(n) + T c(n)
(3.10)

where the partial transition matrices T a(n),T b(n),T c(n) corre-
spond to the three cases in (3.9), respectively, written in matrix form:
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T a
i,j(n) =



∑
(eh,eu):c1(0,eh,eu)

j=1

Eh(eh, n) · Eu(eu, 0, n)

if i = 1∑
(eh,eu):c1(i−2,eh,eu)

j=1

Eh(eh, n) · Eu(eu, i− 2, n)

if i > 1

T b
i,j(n) =

∑
(eh,eu):c2(i−2,eh,eu)

j−2=f1(eh,eu)

Eh(eh, n) · Eu(eu, i− 2, n)

T c
i,j(n) =



∑
(eh,eu):c3(0,eh,eu)
j−2=f2(0,eh,eu)

Eh(eh, n) · Eu(eu, 0, n)

if i = 1∑
(eh,eu):c3(i−2,eh,eu)
j−2=f2(i−2,eh,eu)

Eh(eh, n) · Eu(eu, i− 2, n)

if i > 1

(3.11)

State update example. We now show an example, explaining how
the transition matrix is constructed and the rechargeable storage
state is updated from time n to time n+ 1. To this end we suppose
a storage capacity of b̂ = 4, an initial storage level of eb(n) = 3.
The energy target use is deterministic, with eu = 0 if 0 ≤ eb ≤ 2
and eu = 4 if 3 ≤ eb ≤ 4. In other words, if the storage level
is 2 or below, no energy is spent, and if it is 3 or above, energy
corresponding to the storage capacity is requested for use. The
harvested energy can be described by a normal distribution with
average 2 and variance 1. This can be all written as:

Eu(w, i, n) =

 1 if w = 0 ∧ 0 ≤ i ≤ 2
1 if w = 4 ∧ 3 ≤ i ≤ 4
0 otherwise
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BT (n) =


0
0
0
0
1
0

 , Eh(v, n) =


0.023 if v = 0
0.136 if v = 1
0.341 if v = 2
0.341 if v = 3
0.159 if v = 4

We also suppose that the average power can only deviate by a
factor within the interval [σ̌, σ̂] = [0.5, 2.0]. Applying (3.10), we
obtain the partial state transition matrices:

T a(n) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.023 0 0 0 0 0
0 0 0 0 0 0

 , T b(n) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.159
0 0 0 0.159 0 0
0 0 0 0.5 0 0



T c(n) =


0 0.023 0.136 0.341 0.341 0.159
0 0.023 0.136 0.341 0341 0.159
0 0 0.023 0.136 0.341 0.5
0 0 0 0.023 0.136 0.682
0 0.136 0.341 0.341 0 0
0 0.023 0.136 0.341 0 0


from which we get the complete transition matrix. Thus we can also
compute B(n+ 1), the state of the system after one transition:

T (n) =


0 0.023 0.136 0.341 0.341 0.159
0 0.023 0.136 0.341 0341 0.159
0 0 0.023 0.136 0.341 0.5
0 0 0 0.023 0.136 0.841

0.023 0.136 0.341 0.5 0 0
0 0.023 0.136 0.841 0 0



BT (n+ 1) = (B(n) · T (n))T =


0.023
0.136
0.341
0.5
0
0


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3.3.1.2 Global Transition Matrix
and Steady State Distribution

As previously stated, in our example we assume that the unit time
interval is one week. Due to the annual solar cycle, the energy
harvesting weekly statistical models are periodic, i.e., Eh(v, n) =
Eh(v, n + i · 52) where v, n, i ∈ Z≥0, and we use a simplifica-
tion where each year consists of exactly 52 weeks. The energy
consumption statistical distributions are under the control of the
energy manager, and can therefore be assumed to be periodic with
a period of 52 weeks as well: Eu(v, n) = Eu(v, n + i · 52) where
v, n, i ∈ Z≥0.

Now, since both of these models are periodic, the transition
matrices are also periodic, i.e., T (n) = T (n+i·52). Thus we define
the global transition matrix, which is invariant for each period, and
can be computed as:

T =
∏

0≤n≤51

T (n) (3.12)

In this case, this is also referred to as the yearly transition matrix.
Using this matrix, and that B(n) us a row vector representing
the state at time n, we can compute the steady state rechargeable
storage level, both at the start of the year and at the start of a given
week n. It is computed as the stationary distribution of the Markov
chain:

B∞(0) · T = B∞(0)

B∞(n) = B∞(0) ·
∏

0≤i<n

T (i) ∀n ∈ {0, 1, . . . 51} (3.13)

Several methods for solving (3.13) exist [PSW75].

3.3.1.3 Steady State Probability of Failure

The system encounters a failure if it attempts to use more energy
than available. Between the failure time and the end of the update
interval, additional energy may be harvested. Nevertheless, in
Section 3.2.2.4 we introduced a safe simplification that no energy
is available at the update time after a failure, eb(n) = 0.
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Using that B1(n) is the worst-case probability that the system
had a failure in the preceding time interval, we can denote the steady
state probability of failure at time n as B∞

1 (n). We now define an
upper bound on the yearly probability of failure:

λ = min
{∑

0≤n<52
B∞

1 (n), 1
}

(3.14)

The upper bounding is safe because, whenever finding the
probability that at least one out of two events happens, we have
Pr(a ∪ b) ≤ Pr(a) + Pr(b) and Pr(a ∪ b) ≤ 1.

Consecutive Failures The yearly probability of failure λ, as de-
fined above, does not imply any distribution of failures in the time
domain. If we want to avoid having the system consecutively en-
tering the failure state, the system would need to fulfil an additional
constraint: the system should not exit the failure state, until the energy
storage is sufficiently charged. In this sense, ‘sufficiently charged’ is
defined to mean that the probability of failure in the first week of
operation, with a condition that the initial energy level is not less
than the ‘sufficient’ level, is less than the steady state probability of
failure for the same week. Our system model can not consider such
a failure recovery mechanism, because it can not model hysteresis
behavior necessary for failure recovery. We discuss this limitation,
and a possible way to overcome it, in Section 3.6.

3.3.2 Energy Management Optimization
In this section, we explain computing the target energy use for
several energy management strategies. Assume that a constraint
on the yearly probability of failure λ̂ is given.

■ Constant: When there is one mode of operation, we aim to
maximize the target energy consumption of the mode r.

■ Constant with Safe Charges: Here, there are continuos options
for the system’s mode. The most important is the nominal
mode, with a target energy use of r. Otherwise, if the stored
energy level at the start of a time interval is higher than a
safe charge s(n), then the system aims to consume this excess
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energy in the next interval as well. In this scenario, we aim
to maximize the target use energy r+max{eb(n)− s(n), 0},
for every n.

■ Variable with Safe Charges and an Emergency Mode: Again, we
assume continuos modes of operation. The nominal target
energy consumption r(n) is now a function of the time n.
As before, if the stored energy level at the start of a time
interval is higher than the corresponding safe charge s(n),
then this excess energy is consumed in the next time interval.
Additionally, if the stored energy level at the start of a time
interval is less or equal to the nominal target use energy r(n),
then emergency mode is entered. In this mode, the target
energy use is reduced to a constant reduced nominal rc. In
this whole scenario, we aim to maximize the actual target use
energy r(n) + max{eb(n) − s(n), 0} for every n, assuming
rc is given.

Let us now focus on each policy in detail.

Constant. It is clear from (3.10) that λ is monotonically increasing
with the target use energy r. Intuitively, this is because the stored
energy levels for all weeks decrease if r is increased. Therefore,
given a constraint on the failure probability λ̂, the maximum target
use energy r can be determined efficiently by a simple binary search.

Constant with safe charges. Here we present a heuristic algo-
rithm for optimizing a energy management policy with safe charges.
Obviously, introducing safe charges can not reduce the yearly prob-
ability of failure λ. Consecutively, we start by calculating the
maximum nominal target use energy r, given a constraint on the
failure probability λ̂. Then, we introduce safe charges such that the
increased failure probability is again at most λ̂. The safe charges are
calculated starting from one week after the week with the highest
probability of failure, and proceeding to one week after the week
with the second highest probability of failure, and so on. Intuitively,
the energy storage should be the lower after these critical weeks, so
it makes sense to start introducing safe charges in this order. This
is all as described in Algorithm 3.1.
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Algorithm 3.1: Computing the nominal target use, as well
as safe charges

1 procedure get safe charges (Eh(v, n), λ̂)
2 ∀n : s(n) = b̂,
3 S = ∅
4 Using binary search, maximize r such that λ ≤ λ̂
5 repeat
6 î = argmax0≤i<52 ∧ i/∈S B

∞
1 (i)

7 Using binary search, minimize s((̂i+ 1) mod n) such
that λ ≤ λ̂

8 Add î to S
9 until |S| == n

10 return r, ∀n : s(n)

Variable with safe charges and an emergency mode. Here we
provide an algorithm which optimizes safe charges with variable
nominal target use energy. The algorithm is the same as Algo-
rithm 3.1, but we introduce additional steps between lines 4 and 5.
Precisely, we split time intervals into several groups based on their
average harvested energy. In the solar harvested energy example,
we have found 7 groups to be practical. Then, we disregard the
group with the least average energy, and maximize the requested
energy use r(n) for all the other groups. This process repeats
iteratively until all groups are disregarded. Note that in this case,
useful metrics are both the yearly probability of failure λ, and the
yearly probability of being in emergency mode η, where:

η =
∑

0≤n<52

∑
0<i≤rc

B∞
i+2(n)

3.3.3 Example
We now illustrate the yearly transition matrices and probability of
failure. Assume first that the harvesting models are given. We
used models as described in Section 3.5.1 for location MI, with an
appropriate solar panel such that the weekly average of harvested
energy is 37. The harvesting model for 2 weeks at this location
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is shown in Figure 3.3a. Next, assume that the target energy use
of the application is Eu(w, i, n) = 0.5 if w > 0 ∧ i = 30, and
Eu(w, i, n) = 0.25 if w > 0 ∧ (i = 29 ∨ i = 31), or zero
otherwise. In other words it is 30 ± 1, except it is zero when the
energy storage is empty because the system is assumed to be in a
failure state then. Finally, assume the rechargeable energy storage
capacity is b̂ = 100. This information allows us to determine the
week transition matricesT (n) using (3.10), and the yearly transition
matrix T .

Transition matrices T (0) and the yearly T are shown in Fig-
ure 3.2a. We see that for week 0, stored energy states lower than
21, excluding state 0, surely lead to a failure state. Otherwise, the
combination of harvested and stored energy could be enough to
power the system through the week. The yearly transition matrix is
very similar for all rows. This means that the initial state has little
impact on the state after one year. Figure 3.2a also shows the steady
state probability of failure values for each week. It is typical for the
failure probability to be the highest towards the end of winter. For
this case, we have a yearly failure probability λ = 0.615.

Now we proceed to illustrate emergency mode. Let us define
that emergency mode is entered when the energy storage is charged
less than 21, and the target use energy then is 10 ± 1. Mathemati-
cally, Eu(w, i, n) = 0.5 if w ≥ 21 ∧ i = 30, Eu(w, i, n) = 0.25 if
w ≥ 21 ∧ (i = 29 ∨ i = 31), Eu(w, i, n) = 0.5 if 0 < w < 21 ∧ i =
10, Eu(w, i, n) = 0.25 if 0 < w < 21 ∧ (i = 9 ∨ i = 11), or zero
otherwise. With this target use function, the transition matrix for
week 0 is shown in Figure 3.2b. Furthermore, we can see that the
yearly failure probability is λ = 0.048, while the yearly probability
of being in emergency mode is η = 0.440. This illustrates that we
can essentially trade-off the aggregate of failure probability, with
the probability of operating in emergency mode. Though the service
is reduced sometimes, the system is less likely to fail, and instead
enters emergency mode in periods of energy scarcity. This helps in
improving the robustness of the system.
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Figure 3.2: Select transition matrices and the probability of being in
failure or emergency mode, for various consumption strategies
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3.4 Non-Ideal System Model
Our system model so far was simplified so not to take into account
non-ideal behavior of the energy storage. Fortunately, the model
can be extended to incorporate inefficiencies that may exist in
the power management hardware, without affecting results of our
stochastic analysis technique.

Deterministic system model. If p̃h(t) is the harvested power and
p̃u(t) is the target use power at time t of the continuous system
model, then the following non-ideal behavior is modeled:

■ If the harvesting device generates power p̃h(t) at time t, the
power entering the energy storage is only σh(b(t)) · p̃h(t).

■ If the target use power is p̃u(t) at time t, then the power drawn
from the energy storage is σu(b(t))

−1 · p̃u(t). In addition,
there is a leakage δu(b(t)) of the energy storage.

The functions σh(b(t)) and σu(b(t)) are charging and discharg-
ing efficiencies, and they can be any function of the storage level
b(t). In practice, these functions can be easily estimated through
characterization of the hardware. To get both the non-ideal con-
tinuous and discretized system models, we just need to add these
efficiencies wherever the power values are, e.g., in (3.1).

Stochastic system model. In the case with the non-ideal stochas-
tic system model, we likewise need to add the efficiencies at ap-
propriate places. When the efficiencies are added, values eh(t) and
eu(t) from (3.7) and (3.8) become functions of the storage level b(n)
as well. Especially, (3.7) becomes:

Eh(v, w, t) = Pr(eh(t) = v | eb(t) = w)

while Eu(v, w, t) was a function of the storage level anyway. After
these two values are redefined, the whole stochastic analysis tech-
nique applies.

To demonstrate how an non-ideal system can be characterized,
we refer the reader to the real-world system developed in the
previous chapter.
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3.5 Trace-Based Experiments
This section illustrates our stochastic analysis through several sim-
ulations. We investigate two hypothetical scenarios, when a solar
energy harvesting embedded system is deployed outdoors or in-
doors, each with the goal of operating for multiple years. To this
end, we start by demonstrating how historical data is used to build
energy harvesting models in Section 3.5.1. For these experiments,
we use the simplified model of harvested energy with no constraints
present.

Then we move on to the sensitivity experiments and design
space exploration. In both cases, we deal with a system with two
design parameters: the solar panel size and the rechargeable energy
storage capacity b̂, and a constraint on the yearly probability of
failure λ̂. As well as this, in both cases, a constant target use energy
r is used. In the sensitivity experiments in Section 3.5.2, we fix two
of the aforementioned values and vary the third, and then for each
design point we maximize the constant target use energy r. The
most interesting result here is the sensitivity of the target use energy
r with regards to the probability of failure constraint λ̂. The design
space exploration in Section 3.5.3 illustrates a scenario where the
target use energy r and constraint λ̂ are given, and we search for
satisfactory design points, i.e., valid combinations of the solar panel
size and storage capacity b̂.

The experiments are presented for 3 outdoor and 3 indoor
locations. The outdoor locations feature a desert, a hot continental,
and a temperate oceanic climate. The indoor locations are close to
a window with direct sunlight sporadically, close to a window but
without direct sunlight, and inside an artificially lighted hallway.

Afterwards, we focus our attention on target use functions. Par-
ticularly in Section 3.5.4, we evaluate the performance of our most
complex energy management scheme, which features safe charges
and an emergency mode of operation. It is compared to three
schemes from the state of the art, a reactive one, a proactive one, and
an practically unfeasible optimal one. Finally, in Section 3.5.5 we
validate our stochastic model, by comparing an energy management
scheme characterized by our stochastic analysis, with the same
scheme simulated in continuous time.
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Abbr. Location Name Latitude Climate

ZH Zürich, Switzerland 47.22 N
temperate oceanic / con-
tinental (Cfb/Dfb)

MD Madison, USA 43.07 N
hot-summer humid con-
tinental (Dfa/Dfb)

KZ Karezat, Pakistan 30.45 N hot desert (BWh)

(a) Outdoor locations
Abbr. Location Name Environment

L14 NE Window
significant natural light with potential
direct sunlight

L17 W Window
significant natural light with no direct
sunlight

L18 Hallway no natural light, indirect artificial light

(b) Indoor locations

Table 3.1: An overview of used locations and their characteristics.

3.5.1 Harvested Energy Models
We now explain how harvested energy models are obtained, both
for the indoor and outdoor scenarios. For the purpose of this
experiments, we took no assumptions on the harvested energy, i.e.,
we did not assume that harvested energy has to stay withing bounds
defined by factors σ̌ and σ̂.

Outdoor data. The outdoor data has been taken from two public
databases, the national solar radiation database (NSRDB) [SXL+18]
and the HelioClim-1 database [Wal13]. The first database features
solar radiation data for 22 years (1998-2019) for North American
locations and 15 years (2000-2014) for South Asian locations. The
second database has 21 years (1985-2005) of solar radiation, and
together these two databases cover most of Earth. For simulated
experiments we tested many locations, diverse in both climate,
latitude, and altitude. Due to brevity, in the reminder of this section
we focus on three locations we found representative, ZH from
HelioClim-1, and MD and KZ from NSRDB, and they are described
in Table 3.1a.
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For each outdoor location, harvested energy models Eh(v, n)
have been constructed for each week using maximum likelihood
estimation on the first 11 years of historical data. A normal distri-
bution of samples was assumed, as you can see in Figure 3.3a. The
used solar panel size depends on the experiment in question (usually
100 cm2), while we assumed that 20% of the solar radiation energy
is harvested.

Indoor data. Indoor solar harvesting data is much more scarce. We
used the Indoor Solar Harvesting Dataset [SGT19] which features
up to 3 years (2017-2020) of data at six locations inside a university
office building in Zürich. Here we also focus on three locations
representative locations, listed in Table 3.1b.

To compensate for little training data, the harvested energy
model Eh(v, n) for week n has been constructed using maximum
likelihood estimation on the first 2 years of historical data, but for
weeks n − 3 to n + 3. Next, we searched for fitting distributions
to construct the model, and one of these was empirically found to
be suitable for each week and location: normal, laplace, gompertz,
hypergeometric, triangular, beta, double gamma, or double weibull.
In Figure 3.3b you can see two distributions, and historical data from
which they were constructed. The indoor dataset features energy
harvested on a sample solar panel. We assumed the same type of
panel and harvesting subsystem, but changed the panel’s size based
on the experiment.

3.5.2 Sensitivity Experiments
Here we do three experiments the following way. Observe three
system parameters: the storage capacity b̂, the solar panel size,
and the constraint on the yearly probability of failure λ̂. In each
experiment, we fix two of the values while we vary the third, and we
measure the impact on the maximal target energy use r. Remember,
here we assume a system which consumes a constant target energy
throughout the year, while the harvesting models are derived from
historical data as described in Section 3.5.1. The experiments are
presented for all six locations from Table 3.1. Let us now focus on
each sensitivity experiment individually.
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Figure 3.3: Historical data on harvested energy (bars), and the
corresponding fitted models (lines)

3.5.2.1 Probability of Failure

Setup. For the outdoor simulation setup, we assume a solar panel of
size 100 cm2, and a rechargeable energy storage with capacity b̂ =
360 kJ, which translates to about 600mW over a week. Indoors, we
took a solar panel of size 49.5 cm2 (198 cm2 for location L18), and
a rechargeable energy storage with capacity b̂ = 100 J, which is
about 165 µW over a week. Both indoors and outdoors we tried out
different target use energy values, and then recorded corresponding
probabilities of failure. The results are shown in Figure 3.4.
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Figure 3.4: The target use energy as a function of the yearly
probability of failure, for various locations

Evaluation. We observe immediately that the target use energy is
very sensitive with regards to the probability of failure. Or in other
words, the maximal target use with which the system never runs
out of energy, is very close to the minimal target use with which
the system always runs out of energy.

The slope of this change is similar for all three outdoor locations,
which is peculiar as the climates are so different. At location KZ, the
plotted target use energy values are from 220 to 268mW ·week,
the difference being about 22%. At the other two locations, the
values are from 125 to 150mW ·week (a 19% difference) and
from 77 to 95mW ·week (a 23% difference). Indoors, we observe
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more diverse behavior. Location L14, which sometimes has direct
sunlight, has target use energy values from 43 to 71 µW ·week (a
63% difference), while for the artificially-lighted location L18 these
values are from 21.5 to 25 µW ·week (a 15% difference).

3.5.2.2 Energy Storage Capacity

Setup. For this experiment, we take the constraint on the yearly
probability of failure λ̂ to be 10%, meaning one failure is expected
to happen no more than once every 10 years of operation. The solar
panel size is the same as before, which means 100 cm2 for outdoor
locations, 49.5 cm2 for locations L14 and L17, and 198 cm2 for
location L18. Outdoors, the rechargeable energy storage capacity
b̂ was varied from 36 to 2700 kJ, which translates to from about
60mW per week to about 4.5W per week. Indoor, the capacity was
varied from 10 to 750 J, or from about 16.5 µW per week to about
1.2mW per week. The corresponding target use energy values are
shown in Figure 3.5.

Evaluation. As the storage capacity increases, the target use en-
ergy increases monotonically towards a limit. This makes sense, as
a large enough rechargeable storage would yield the yearly average
of harvested energy to be the constant target use, which is the
theoretical upper bound. In other words, we find that increasing
the storage capacity has diminishing returns.

3.5.2.3 Solar Panel Size

Setup. In the final sensitivity experiment, illustrated by Figure 3.6,
we varied solar panel sizes. Outdoors they range from 10 to
500 cm2, while indoors they are from 8.25 to 99 cm2. The other
two parameters are as in the previous experiments: the constraint
on the probability of failure is λ̂ = 10%, outdoors the storage
capacity is b̂ = 360 kJ = 600mW ·week, while indoors this value
is b̂ = 100 J = 165 µW ·week.
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Figure 3.5: The target use energy as a function of the energy storage
capacity, for various locations

Evaluation. Overall these results are as expected, increasing the
solar panel size enables a higher target use energy. However,
an interesting corner case is revealed at location KZ, when the
solar panel is big with regards to the rechargeable storage capacity.
Specifically, when the target use energy r is greater than half of
the storage capacity, r > b̂/2, our analysis evaluates that the
failure state is surely entered. This is because we assumed a lack of
constraints on the harvested energy. This reasoning is as follows.
Because we defined our transition matrices in a worst case fashion,
among other things they model the case when all of the target use
energy from one week is spent right at the end of the week, and



110 Chapter 3. Stochastic Analysis of Energy Harvesting Systems

0 100 200 300 400 500
0

100

200

300

solar panel size [cm2]

ta
rg
et

us
e
en
er
gy

e u
(n

)
[m

W
·w

ee
k]

KZ MD ZH

(a) Outdoor locations

0 20 40 60 80 100
0

20

40

60

solar panel size [cm2]

ta
rg
et

us
e
en
er
gy

e u
(n

)
[µ
W
·w

ee
k]

L14 L17 L18

(b) Indoor locations

Figure 3.6: The target use energy as a function of the solar panel
size, for various locations

then all of the target use energy from the following week is spent at
the beginning of the next. Thus, without any harvesting constraints,
the stochastic analysis views having r > b̂/2 as a guarantee to drain
the whole storage.

3.5.3 Design Space Exploration
Setup. The overall point is to illustrate that design space explo-
ration is possible, so we searched for valid combinations of solar
panel size and energy storage capacity b̂, for all locations from
Table 3.1. The constraint on the yearly probability of failure λ̂
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Figure 3.7: Pareto optimal design solutions with regards to solar
panel size and storage capacity, for various locations and target use
energy values

was taken to be 10%. For target use energy values r, which we
assume in this case to be constant throughout the year, we tested
two values outdoors r = 120 and 300mW ·week, and one value
indoors r = 20 µW ·week.

Evaluation. Figure 3.7 shows that multiple design points are avail-
able for every target use energy and location. Outdoors, the knee
point seems to be around the same ratio for all locations and target
use energy values, 200 ∼ 300 [cm2/W ·week]. Furthermore,
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we confirm our previous results that increasing the battery has
diminishing benefits. It is clear from the figures that adding a larger
storage capacity saves only a bit on the solar panel size. On the other
end of the spectrum, despite our increase of the solar panel size, we
still need a certain energy storage to enable energy use over low
energy harvesting winter weeks.

3.5.4 Energy Management Performance
Setup. In this simulated experiment, we compare our proposed
energy management scheme with safe charges and an emergency
mode, with three state of the art solutions. Our scheme, which we
denote here eprop.u (n), is constructed as described in Section 3.3.2,
with a constraint on the yearly probability of failure λ̂ = 0.01
and an emergency target use of half of the minimal use energy
rc = min (eprop.u (n)) /2.

The state of the art schemes we make a comparison to are
already known from the previous chapter. First we have EnoMax
[VGB07], a reactive control algorithm, and its target use eENO

u (n) is
designed to keep the stored energy level constant. Next, finite hori-
zon control (FHC) is based on model predictive control. Its target
use energy eFHC

u (n) depends on the current stored energy eb(n) and
an estimate of stored energy in the following time intervals, and
its design goal is to maximize the lowest target use energy value.
Finally, we have the optimal target use energy eoptu (n). This scheme
can not be implemented in practice as it needs complete knowledge
of how much energy will be harvested in the future, and is used here
as a theoretical upper limit of performance.

The energy management schemes were simulated on a system
with a 100 cm2 solar panel and a rechargeable storage of capacity
b̂ = 1.2W ·week. Results are presented for location MD, where
performance for 11 years (2009-2019) was evaluated, and location
KZ, where the experiment simulated 4 years (2011-2014). These test
years were not used in the construction of the corresponding energy
harvesting models.

Three metrics were used to make comparisons, and the first
is total utility. In principle, the utility function can be any non-
decreasing concave function of target use energy. Using that [0, T )
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Table 3.2: Comparison of energy management
schemes for outdoor locations MD and KZ with
T = 11 and 4 years of simulated data, respec-
tively. Short notation min means min eu(n)
[mW ·week], while 99% means min99% eu(n)
[mW ·week]

eprop.u (n) eFHC
u (n)

Abbr.
∑

U min 99%
∑

U min 99%

MD 0.971 89 173 0.906 89 161
KZ 0.974 327 327 0.903 315 315

eENO
u (n) eoptu (n)

Abbr.
∑

U min 99%
∑

U min 99%

MD 0.914 0 65 1 186 186
KZ 0.887 0 250 1 382 382

is the length of our experiment, we define the utility to be:

∀n ∈ [0, T ) : U(eu(n)) =
√
eu(n) ·

 ∑
∀m∈[0,T )

√
eoptu (m)

−1

Then, the total utility
∑

U is defined to be the sum of U(eu(n))
for all n ∈ [0, T ), and by definition it is a number between 0
and 1. The second objective we use is the minimal target use
energy min eu(n), where n is in [0, T ). The third objective is the
1-percentile of the target use energy, denoted min99% eu(n). We
introduce this metric as the constraint on the probability of failure
is λ̂ = 0.01, so it makes sense evaluate the best 99% of cases.

Evaluation. As seen in Table 3.2, our proposed energy manage-
ment is always better in terms of total utility

∑
U , compared to

the practically implementable schemes. This is because FHC is
conservative with regards to spending excess energy in the summer
months, so some energy gets wasted due to energy storage filling
up. By its conception, EnoMax is designed to keep the stored
energy level constant. Therefore, harvested energy is rarely wasted,
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making EnoMax comparable to FHC in this regard. The second and
third metric are related to the minimal used energy, min eu(n) and
min99% eu(n). For both locations, our proposed target use energy
leads to results slightly better than the state of the art. EnoMax does
not perform well with regards to these metrics, per design.

3.5.5 Pessimism of the Stochastic Analysis
Setup. In the final experiment, we validate our model and quantify
the pessimism of the analysis, by viewing one energy management
scheme both in the stochastic and the continuous domain. We
assume a system with a solar panel of size 10 cm2, and a b̂ =
0.6W ·week rechargeable storage capacity. As in the last experi-
ment, we used our proposed energy management scheme with safe
charges and an emergency mode eprop.u (n), which is constructed
as described in Section 3.3.2. The emergency target energy use is
given to be a low value of rc = 60mW ·week. For such a system,
we simulated its operation over 11 years (2009-2019) at location MD.
Note that these years were not used in the construction of energy
harvesting models at this location.

Evaluation. Figure 3.8 shows the target use energy, averaged
over multiple years, E(eprop.u (n)), and the energy level in the
rechargeable storage, also averaged over multiple years, E(eb(n)).
The two values are presented both when they are derived via our
stochastic analysis, and when they are simulated. Most importantly,
results show a close match between both set of values, especially for
the stored energy.

3.6 Summary
In this chapter, we defined a first stochastic analysis of energy
harvesting embedded systems based on Markov chains that takes
into account both the uncertainness in the harvesting environment,
as well as in the consumed energy. The analysis enables us to
pessimistically analyze long-term energy management strategies,
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especially when complex adaptive energy management schemes are
used. Among others, results of this analysis include the probability
of system failure, the probability the system enters an emergency
mode of operation, as well as steady state charge of the rechargeable
storage. To demonstrate the applicability of our analysis to real-
world deployments, we sketched how to deal with implantation
artifacts in practical systems. Finally, extensive trace-based simula-
tions for two harvesting scenarios, harvesting solar energy indoors
and outdoors, illustrated a robustness or sensitivity analysis with
regards to design parameters, then design space exploration, and
finally evaluation of our developed energy management scheme.
Our own scheme is shown to outperform the state of the art in terms
of utility, while it never under performs with regards to the minimal
energy used.

In terms of limitations, at this stage we can not model nor
analyze any failure recovery mechanism, as it involves hysteresis
behavior. In a future work it is possible to model hysteresis as well,
by expanding the number of possible states the system is allowed
to be in. Furthermore, we require random variables modeling the
harvested and consumed energies to be independent from one time
interval to the next. Lifting this requirement, and modeling certain
forms of dependance, is a natural next step.
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Figure 3.8: The target use energy and the rechargeable energy
storage level, derived using our analysis analysis and simulated
continuously (denoted sim.)



4
Stochastic Analysis of

Mixed-Criticality Scheduling

Mixed-criticality systems need to fulfill strict real-time standards
that dictate different requirements for each criticality level, for
example, given in the ‘probability of failure per hour’ format. A
recent trend suggests designing these kinds of systems by jointly
scheduling tasks of different criticality levels on a shared platform.
When this is done, an adaptive task scheduler can degrade tasks of
lower criticality when a higher criticality task needs more resources,
for example, when it overruns a bound on its execution time.
However, a way to quantify the impact this degradation has on the
overall system is not well understood.

Meanwhile, to improve schedulability and avoid excessive pro-
visioning of resources due to overly pessimistic WCET estimates, a
new paradigm emerged where tasks’ execution times are modeled
with random variables. In this chapter, we analyze a system with
probabilistic execution times, and propose metrics that are inspired
by safety standards. Among these are the probability of deadline
miss per hour, the expected time before degradation happens, and
the duration of the degradation. We argue that these quantities
provide a holistic view of the system’s operation and schedulability.
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Table 4.1: Failure rate specifications for dif-
ferent criticality levels, in the case of avionics
systems’ standard DO-178B

Level Failure Condition Failure Rate per hour

A Catastrophic 10−9

B Hazardous 10−7

C Major 10−5

D Minor 10−3

E No effect not defined

4.1 Introduction
Mixed-criticality (MC) systems are real-time systems that feature
tasks of different criticality levels. Typical application domains
include avionics and automotive [BD17]. In MC systems, each task
has an associated criticality level. Depending on the criticality level,
a failure of a task, for example due to deadline miss, can have
a more or less severe impact on the overall safety of the system.
Due to possible catastrophic consequences of a system failure, MC
systems for some application domains are subject to certification
standards. For example, DO-178C [RE12] is a standard for avionics
systems. It defines five criticality levels, ‘A’ to ‘E’, with ‘A’ being the
highest criticality level. Here, a failure of a task of criticality ‘B’ can
have a negative impact on the overall safety of the aircraft, while
a failure of a task of criticality ‘D’ may only slightly increase the
aircraft crew’s workload. Quantitatively, an application’s criticality
correlates to a tolerable failure rate under a given certification
standard. The failure rates of all tasks, under their respective
criticality levels, have to be guaranteed for certification of the
overall system. As an example, Table 4.1 states the tolerable failure
rates for DO-178B, the predecessor of DO-178C.

Traditionally, industry has favoured physical segregation of
tasks based on their criticality level [TSP15]. This implies, for
example, that tasks of each criticality level execute on their own
hardware, and tasks of different criticality levels do not interfere.
However, such a physical separation based on criticality levels can
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lead to system under-utilization and complex distributed multi-
processor architectures. Recently, there has been a push towards
integrating tasks of different criticality levels on a single hardware
platform [BD17]. The advantages for such consolidation include
reduction in cost, power dissipation, weight, as well as maintenance.

Unfortunately, the described consolidation of criticality levels
makes isolating tasks of different criticality levels problematic. Es-
sentially, a low criticality level ‘D’ task may hinder the execution
of a higher criticality level ‘B’ task, possibly resulting in a deadline
miss – which can be considered as a type of failure. To counter
this, researchers have proposed several schemes which are covered
in detail in Section 4.2. Broadly speaking, the approaches are
based on an execution time abstraction proposed by Vestal [Ves07].
Vestal’s model builds on the worst-case execution time (WCET)
abstraction. He assumes that tasks have a set of WCET estimates
with different levels of confidence. The system is required to meet
the deadline of a criticality level ‘A’ task for the highest confidence
and most pessimistic WCET estimates. For lower criticality tasks,
correct execution needs to be guaranteed for less pessimistic WCET
estimates. Prominent proposed approaches that build on Vestal’s
model feature mode-based scheduling schemes that ensure that the
system executes tasks of all criticality levels correctly when less
pessimistic WCET estimates are not overrun, while reduced service
to lower criticality tasks is in place when this is not the case.

In this chapter, instead of taking a single WCET estimate as in
the traditional real-time model, or taking a criticality dependent set
of WCET estimates as per Vestal’s model, we assume a stochastic
model of execution times. For each task, the execution time is
modeled with a random variable. This additional information on
the execution time allows us to have improved schedulability due to
the so called multiplexer gain, i.e., the likelihood of high execution
times of many tasks occurring simultaneously is very small. Under
the proposed scheme there is a non-zero probability of a high
criticality task missing its deadline. If the probability is less than
the failure rate specification of the criticality level, see for example
Table 4.1, then the MC system can still be schedulable according to
the probabilistic bounds on deadline misses.

Individual tasks are assumed to be periodic with constrained
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deadlines. The platform is assumed to have a single core. We assume
a dual-critical model, where the criticality of tasks can be either lo
or hi. The system is also assumed to have two modes of operation:
lo- and hi-criticality mode. In the lo-criticality mode, all tasks are
executed normally. In thehi-criticality mode, newly released jobs of
lo tasks are started in a degraded mode so that preference is given
to hi tasks.

The application of stochastic execution to MC systems is not
new and several recent works exist [MDCGE17, Mas16, GSY15].
However, existing results do not provide a holistic analysis and
scheduling scheme covering all execution modes and transitions.
A detailed accounting of existing schemes and their limitations is
given in Section 4.2. From now on, we suppose that a MC scheduling
scheme fulfills the following requirements:

■ A schedulability analysis of tasks is provided for each criti-
cality level in each system mode.

■ Conditions that should trigger a mode switch are defined.
■ An analysis of the time spent in each system mode is provided.
■ A method to consolidate these individual components and

compute a metric comparable to the Probability of Failure per
Hour for tasks of each criticality level is given.

In this chapter, we address all of these individual components.
Specifically, we make the following contributions:

1. We propose conditions that trigger a mode switch, both from
lo- to hi-criticality mode (lo→hi), and from hi- to lo-criti-
cality mode (hi→lo).

2. We formulate a detailed stochastic analysis of lo-criticality
mode. Using the analysis, the Probability of Deadline Miss per
Hour in this mode is computed for tasks of both criticality
levels.

3. We provide a first stochastic analysis of hi-criticality mode.
Using the analysis, the maximal time spent in hi-criticality
mode is obtained, along with the Probability of Deadline Miss
per Hour for tasks of both criticality levels. Also taken into
account is the probability the system enters hi-criticality
mode.
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4. Using contributions 1.-3., we compute the overall Probability
of Deadline Miss per Hour values for all tasks by consolidating
the respective values for lo- and hi-criticality mode. This
allows us to compare these probabilities with the permitted
ones found in typical certification standards.

5. We determine the probability that a lo task is started in its
degraded mode.

Due to these contributions, we claim that this is the first work
which provides a system-wide approach to MC scheduling, while
considering a stochastic model of task execution times.

Organization of this chapter. Section 4.2 highlights the related
research in MC scheduling and in stochastic analysis. It also high-
lights the limitations of existing research which are addressed by
this work. Section 4.3 states our system model. The model includes
the task model and the model of the MC system. This is followed
by Section 4.4, which states and explains important definitions and
operations for stochastic analysis of systems with non-deterministic
execution times. Section 4.5 covers the proposed analysis for getting
Probability of Deadline Miss per Hour values, both for all lo and for
all hi tasks. This section also has important intermediate results
such as the duration of lo- andhi-criticality mode, and the probabil-
ity of each event that causes a system mode switch. The complexity
of the analysis is explored in Section 4.6. Results are covered in
Section 4.7. In this section, we evaluate various schedulability
metrics and design trade-offs for MC systems. Limitations of and
extensions to our work are discussed in Section 4.8. Finally, a
summary is given in Section 4.9.

4.2 Related Work
Vestal’s paper [Ves07] is the first paper that presents the MC model,
where safety-critical tasks have multiple WCET estimates with
different levels of assurance. Based on the model, a preemptive fixed
priority scheduling scheme for sporadic task sets is presented: static
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mixed-criticality (SMC). In the widely examined dual-criticality
case, hard guarantees are given to hi tasks, but lo jobs might miss
their deadline if a hi job overruns its optimistic WCET. As well as
this, a lo job is de-scheduled if it overruns its WCET.

Baruah et al. [BBD11b] introduced an important fixed priority
scheduling scheme, adaptive mixed-criticality (AMC), which defines
a system that can operate in different modes. The system starts
in lo-criticality mode where all tasks are scheduled to execute
according to their optimistic WCET estimates. If any job overruns
its optimistic WCET, a switch to hi-criticality mode happens, where
all lo tasks are de-scheduled. This way, hi tasks are guaranteed
to meet their deadlines all the time, whereas lo tasks have this
guarantee only in lo-criticality mode.

EDF scheduling has been adapted to Vestal’s model as well.
Baruah et al. [BBD+11a] propose a scheduling scheme for sporadic
task sets based on EDF, called EDF-VD. In this scheme, the deadlines
of all hi tasks are scaled down by a single scaling factor so that an
overrun is detected early. Once an overrun is detected, the system
enters hi-criticality mode where all lo tasks are de-scheduled. In
this scheme, all tasks meet their deadlines if no optimistic WCET is
overrun, while onlyhi tasks meet their deadlines if some of them are
overrun. Ekberg and Yi [EY12, EY14] use demand-bound functions
to scale the deadlines of hi tasks individually, by a heuristic search
strategy. Deadlines are chosen so that the schedulability of the
system is maximized. The lo- and hi-criticality mode model in
this scheme is similar to the one used in [BBD+11a]. Huang
et al. [HGST14] amend EDF-VD to include degraded service for
low criticality tasks while the system is in hi-criticality mode. The
paper also presents an upper bound on the duration of this mode.
Park and Kim [PK11] present another EDF-based scheme, CBEDF.
Here, high criticality tasks are always guaranteed to execute, while
some guarantees are given to tasks of low criticality using offline
empty slack location discovery. Vestal’s model with two modes
of operation was also investigated for time-triggered scheduling,
most notably in Baruah and Fohler [BF11]. For a comprehensive
overview of research into mixed-criticality, we refer the reader to
the review by Burns and Davis [BD17], while for a discussion on the
applicability of mixed-criticality systems to industry and its safety-
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critical practices see Ernst and Di Natale [EDN16].
As for probabilistic MC systems, related work often models

them with probabilistic worst-case execution time (pWCET) dis-
tributions, which are seen as extending Vestal’s model such that
each task has a large number of WCETs with various levels of
confidence [BD17, DCG19b]. A pWCET distribution comes from
either the randomness inherent in a system and its environment,
or the lack of knowledge we have about a system, or possibly
both [DBG17]. To derive these distributions, well established meth-
ods like static probabilistic timing analysis (Devgan and Kashyap
[DK03]) or measurement based probabilistic timing analysis tech-
niques (Cucu-Grosjean et al. [CGSH+12]) already exist. Ideally,
modeling tasks with pWCET distributions removes every depen-
dency between them, so any task-set can be analyzed as though
all tasks have independent execution times. In practice, by using
pWCET distributions, these dependencies are reduced but not re-
moved completely. This still poses a significant problem in apply-
ing pWCET methodologies for real-time computing: every inter-
dependency between execution times needs to be described and
carefully taken into account. As it is a challenge to precisely bound
dependencies, this often again introduces major pessimism. An ap-
proach based on Fréchet bounds, which can deal with every type of
(including worst-case) task inter-dependency, is given by Ivers and
Ernst [IE09]. For an extensive survey of timing analysis techniques,
we refer the reader to Davis and Cucu-Grosjean [DCG19b]. In
our work, we assume that tasks’ execution times are modeled with
independent random variables which are given, and these random
variables can be seen as an abstraction of ideal pWCETs.

For the analysis of probabilistic MC systems, obtaining proba-
bilistic response times is key. The survey on probabilistic schedula-
bility analyses by Davis and Cucu-Grosjean [DCG19a] lists various
approaches to response time analysis. This chapter builds mainly
upon the work of Díaz et al. [DGK+02, DLG+04], as their analysis
of real-time systems is pessimistic, even though execution times are
strictly required to be independent of one another. Using proba-
bilistic analysis, existing work often presents scheduling schemes
where individual tasks have certain permissible deadline miss prob-
abilities. Examples are Maxim et al. [MDCGE17] and Abdeddaïm
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and Maxim [AM17], were SMC and AMC scheduling are adapted
to a probabilistic MC model, demonstrating the improvement in
schedulability. Masrur [Mas16] proposes a scheme with no mode
switches, where lo tasks have a soft guarantee on meeting their
deadline as well. Alahmad and Gopalakrishnan [AG16, AG18] use
a Markov decision process to provide probabilistic guarantees to
jobs, and also formulate an optimization problem that provides the
scheduling policy. Santinelli et al. [SG15, SG18, SGG16] examine
probabilistic MC systems by doing a sensitivity analysis, which
focuses on the impact made by varying execution times. How-
ever, we observe that a holistic characterization of probabilistic
mixed-criticality systems remains largely unexplored in the state-
of-the-art. Deadline miss probabilities of individual jobs are often
not aggregated into system-wide metrics, for example in [Mas16,
MDCGE17]. We note that giving soft guarantees to individual tasks
is not equivalent to guaranteeing a probability of deadline miss
per hour. Another related work, Guo et al. [GSY15], analyzes a
simple probabilistic model, where a hi task has just two WCETs
and their corresponding probabilities of occurrence. Using the
model, they propose a EDF-based scheduling algorithm which has
an allowed probability of a timing fault happening system-wide.
Finally, Küttler et al. [KRHV17] consider a model where some
guarantees are available to tasks of lower criticality. They propose
lowering the priorities of lower criticality tasks in certain modes
of operation. Still, without characterizing the duration of modes,
we believe that the impact of degradation of lo tasks can not
be properly quantified. In this chapter, all the aforementioned
limitations of the state-of-the-art are addressed.

4.3 System Model
We start this section with an informal overview of our system
model, before precise definitions are presented. The model is an
extension of Vestal’s original model [Ves07], and as is with adaptive
mixed-criticality [BBD11b], there are two modes of operation, lo-
and hi-criticality mode.
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lo-criticality mode can be considered a normal mode of oper-
ation, and the system is expected to operate in this mode most
of the time. hi-criticality mode can be considered an emergency
mode, where newly instantiated lo jobs are started and running in
degraded mode so preference is given to the execution of hi jobs.
More specifically, hi criticality tasks are not affected by the mode
of operation, these task are always released and executed until their
completion. lo criticality tasks have two variants: each lo job can
be released in degraded or regular mode. They always finish in the
mode they started with. Though lo tasks are never dropped, they
are released with degradation when the system is in hi-criticality
mode. In practice, this means that there are two implementations of
each task, and the degraded variant offers a reduced functionality.
For example, the numerical result is computed with less precision.
Vestal’s original model specifies dropping lo jobs when hi jobs
need more resources, and our model can be seen as a generalization
where not executing a job is the extreme case.

The system starts in lo-criticality mode, and remains there until
a mode switching event occurs. The first mode switching event
is the only one discussed for non-probabilistic MC systems, and is
thus found in previous work, for example [BBD11b, EY14, HGST14,
MDCGE17]: a hi job’s execution lasts longer than a provided
threshold. The second mode switching event is when a hi job
misses its deadline. It is introduced to reduce the probability of
consecutive deadline misses of hi jobs. Note that a hi job might
miss its deadline without overrunning its threshold execution time,
for example because it was blocked by jobs of higher priority.
Finally, the third mode switch event is when a long backlog of lo
jobs accumulates, which could in turn produce an arbitrarily high
backlog when entering hi mode. Once in hi-criticality mode, the
system switches back to lo-mode the first time it is idle.

Using this model, we say a task-set to be schedulable using
fixed priority preemptive scheduling, if the probability that any job
misses its deadline during an hour of operation is sufficiently small,
and if the ratio of lo jobs released in degraded mode is acceptable.

General notation on random variables. This work deals with
discrete random variables, and they are denoted using calligraphic
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symbols, for example A. The probability function of A, noted
pA(·), tells us the probability that A takes a specific value u:
pA(u) = Pr(A = u). Without loss of generality, we assume that
the possible values of all random variables span the full range of
natural numbers. If the maximal and minimal values with non-
zero probability of A exist, and are noted umax and umin, then the
probability function can be represented in vector notation:

pA = [pA(umin), . . . pA(umax)]
⊺

Let us define a relation to compare two random variables A and
B, as was done by Díaz et al [DGK+02].

Definition 4.1 First-Order Stochastic Dominance: A is greater or
equal than B, written as A ⪰ B, if and only if

∀l ≥ 0 :

∞∑
u=l

pA(u) ≥
∞∑
u=l

pB(u) (4.1)

Note that probability densities can be incomparable.
We introduce a shorthand notation for the probability that a

variable modeled with random variable A has a value greater than
scalar s. Instead of the cumbersome expression

∑
s<i Pr (i = A),

we use Pr (s < A).
Finally, we introduce a simple notation [s]1 to indicate that a

scalar or expression s is limited to a maximum value of 1, [s]1 =
min (s, 1).

Task model. We take that a task-set Π consists of N independent
tasks. Each task is periodic, constrained deadline, with an initial
phase and a criticality level. A single task τi is characterized by
tuple (Ti, Di, ϕi, χi, Ci), where Ti is the period, Di is the relative
deadline, ϕi is the phase, χi ∈ {lo,hi} is the task’s criticality level,
and Ci models the probabilistic execution time. Ci has a maximal
value with non-zero probability, which is the WCET, noted Cmax

i .
Tasks with criticality level lo and hi are referred to as ‘lo tasks’ and
‘hi tasks’, respectively. An instance j of task τi is called a job, and
denoted as τi,j . Each job τi,j has a release time ri,j = ϕi+(j−1)·Ti,
and an absolute deadline di,j = ri,j + Di. The hyperperiod hp of
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a set of tasks is defined to be the least common multiple of all task
periods.

We model the execution times of each task τi with known
independent and identically distributed random variables Ci. This
means that there is no dependency between the execution times of
any two jobs, regardless of whether they are of the same task or
not, and execution times of all jobs of one task are modeled with the
same random variable. Independence is an important requirement
for our provided analysis, otherwise results would not be worst-
case. However, the provided analysis is safe, i.e., if the computed
bounds hold for a given set of probabilistic execution times, they
also hold if the execution times are smaller or equal according to
Definition 4.1. Therefore, the probabilistic execution times Ci can
also be regarded as ideal probabilistic worst-case execution times,
which would remove the requirement that execution times of jobs
are independent.

In the standard MC model [Ves07], hi tasks have an optimistic
and a pessimistic WCET estimate, and lo tasks are executed by the
processor only if hi tasks meet their optimistic WCET estimates
during operation. The reasoning behind this is the assumption
that most of the time hi tasks will not execute for longer than
their optimistic WCET estimate, so less computational resources are
needed for the correct operation of the system. In this work, we
assume that the distribution of the execution time of each task Ci
is known. Therefore, instead of the optimistic WCET estimate, for
each hi task we define a threshold execution time value Cthr

i . We
assume this value is a given design choice. Note that the probability
that a hi task executes for longer than this threshold is Pr(Ci >
Cthr

i ). The precise way this threshold is used in scheduling of jobs is
described later in this section. Additionally, instead of not executing
lo jobs in order to free up resources, we introduce that each lo job
can be released in degraded or regular mode. If it executes with
degradation, its WCET is Cdeg

i . The Cdeg
i value is assumed to given

as a design choice. It could be zero if the task is not to be run in
hi-criticality mode, or it can be any value less than its WCET: in
this case it is assumed that a lower functionality is provided.

For the execution time of hi tasks, it is useful to introduce the
following random variable that describes a worst-case behavior as
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long as the analyzed system is still in lo-critical mode.

Definition 4.2 Trimmed Execution Time: Random variable Clo
i mod-

els the execution time of hi tasks τi, but modified such that they do
not execute for longer than Cthr

i :

pClo
i
(u) =


pCi(u) u < Cthr

i∑Cmax
i

v=Cthr
i

pCi
(v) u = Cthr

i

0 u > Cthr
i

(4.2)

Figure 4.1a illustrates the Ci of a lo task, as well as the WCET
denoted as Cdeg

i in degraded mode. Figure 4.1b illustrates the Ci
of a hi task as well as the trimmed execution time Clo

i with the
corresponding Cthr

i and Cmax
i values.

This definition differs from the one found in many related works,
i.e., [MDCGE17], where the execution time of hi tasks in lo-critical
mode is defined as the conditional probability Pr(pCi(u) = u|u ≤
Cthr

i ), often called ‘truncated’ execution time. The ‘trimmed’ execu-
tion times, as defined here, are by definition greater or equal to the
equivalent ‘truncated’ execution times. We use ‘trimmed’ execution
times because they simplify the analysis of hi-criticality mode,
namely by simplifying initial conditions noted by Definition 4.12.
The cost of this simplification is that it introduces pessimism in
the lo-criticality mode analysis, however this has been found to be
numerically negligible through simulations. Nevertheless, using the
‘truncated’ execution times option with a more complex analysis is
also possible. For more information, see the Section 4.8.1.

The response time of job τi,j is modeled with random variable
Ri,j . The way this variable can be obtained and upper-bounded is
presented in Section 4.4. The deadline miss probability of job τi,j
is the probability that this job finishes after its deadline DMPi,j =
Pr(Ri,j > di,j).

Schedulability. In this chapter, we consider a single-core platform.
A simple execution model is used, where task preemption overhead
is zero.

As in the standard MC model, the system is defined to operate
in two modes of operation, lo- and hi-criticality mode. When the
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Figure 4.1: Task execution times, with named values and trimmed
execution time Clo

i

system is operating in lo-criticality mode, both lo and hi jobs are
released. When the system is operating in hi-criticality mode, hi
jobs are released normally, while lo jobs are released in degraded
mode.

The definition of schedulability is inspired by the probability-of-
failure-per-hour notion. Therefore, we first define the probability
of deadline miss per hour, before defining schedulability. We also
define the probability of degraded job, a proportion of how many
lo jobs execute in degraded mode in the long run.

Definition 4.3 Failure Probabilities: The probability of deadline miss
per time interval T for hi or lo jobs is denoted as DMPhi(T ) or
DMPlo(T ), respectively. It is the probability that at least one hi
or lo job misses its deadline during a time interval of length T .
Formally, we define DMPhi(T ) and DMPlo(T ) as:

DMPχ(T ) = max
∀t

Pr (∃τi,j ∈ Sχ(t) : τi,j misses its deadline)

(4.3)
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where χ = {lo,hi}, and Sχ(t) = {τi,j |χi = χ∧ t ≤ ri,j < t+T}.

Definition 4.4 Probability of Degraded Job: The probability of de-
graded lo jobs PDJdeg is the probability that any individual lo job
is released in degraded mode:

PDJdeg = max
∀t

|Slo-deg(t)|
|Slo(t)|

(4.4)

where Slo(t) = {τi,j |χi = lo ∧ t ≤ ri,j < t+T} and Slo-deg(t) =
{τi,j | χi = lo ∧ t ≤ ri,j < t+ T ∧ τi,j is in degraded mode}.

Definition 4.5 Schedulability: A mixed-criticality (MC) system is
(σhi, σlo, σdeg)-schedulable if DMPhi(1 h) ≤ σhi, DMPlo(1 h) ≤
σlo, and PDJdeg ≤ σdeg, where 1h denotes the duration of one hour.

The probabilistic MC scheduling scheme used in our work can
now be defined:

Definition 4.6 Probabilistic MC Scheduling: In lo-criticality mode,
all tasks are scheduled using a provided fixed-priority preemptive
schedule. The system starts in lo-criticality mode, and remains in it
until one of the following events causes a transition to hi-criticality
mode:

1. A hi job overruns its threshold execution time Cthr
i .

2. A hi job misses its deadline.
3. The system-level backlog, meaning the amount of pending

execution, becomes higher than a predefined threshold Bmax.

In hi-criticality mode, the same fixed-priority preemptive schedule
is used, but lo jobs are released with degradation in order to free
up the processor. lo jobs starting in lo-criticality mode are still
continuing in their normal mode with execution time Ci. The
system remains in hi-criticality mode until it becomes idle for the
first time.

4.4 Preliminaries
With tasks having probabilistic execution times, a set of computa-
tional primitives are required to perform the schedulability analysis.
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A probabilistic analysis of real-time systems, on which our analysis
is based, was described by Díaz et al. [DGK+02, DLG+04]. We
summarize the analysis technique in this section. The analysis
and its primitives are used extensively in the following sections
to perform the schedulability analysis of mixed-criticality systems.
Note that this analysis requires execution times to be independent
from one another. More general approaches that take stochastic
dependencies between tasks exist but are beyond the scope of this
paper, see Ivers and Ernst [IE09].

The analysis requires computation of the backlog, i.e., the sum
of pending execution times of all ready jobs. For each priority level i
there is a backlog containing the execution times of all pending jobs
with priority i or higher. When a new job with priority i arrives, all
backlogs with level i or lower are increased by adding its execution
time. Adding the execution time random variable to a backlog is
done using convolution. Executing a job decreases the backlogs of
all levels i that are equal or smaller than the priority of the job.
Decreasing the backlog is done using shrinking.

Definition 4.7 Backlog: The ith priority backlog at time t, Bi(t), is a
random variable that describes the sum of all remaining execution
times of pending jobs of priority not less than i, at time t. The
backlog Bi(t−) is the same as Bi(t), except it does not take into
account jobs released at time t.

Using convolution to compute backlog after arrival of a job.
Suppose that a job τi,j is released at time ri,j , and Bk(ri,j−) is the
kth priority backlog at time ri,j , but excludes the newly released
job. Assuming that i ≥ k, and that no other job is released at the
same time, backlog Bk(ri,j) can be computed using the convolution
operator ⊗:

pBk(ri,j) = pBk(ri,j−) ⊗ pCi
(4.5)

Backlog reduction due to execution of highest priority job.
Let us assume that in the interval t0 < t < t1 there are no
job arrivals. During this interval, the backlog is decreased as the
processor executes pending jobs. If Bi(t0) is the ith priority backlog
at time t0, the corresponding backlog at time t can be computed
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using the so-called shrinking operation. Specifically, for computing
backlog at time t0 < t < t1, the following equation can be used:

pBi(t)(u) =


t−t0∑
j=0

pBi(t0)(j) u = 0

pBi(t0)(u+ t− t0) u > 0

(4.6)

In other words, the backlog after an execution of t − t0 time units
is computed by left-shifting the initial backlog by t − t0, while
truncating at zero since the processor is idle when no pending
execution is present. For brevity, we define the corresponding
shrinking function of a random variable B:

shrink(B,m)(u) =


m∑
j=0

pB(j) u = 0

pB(u+m) u > 0

(4.7)

Backlog state space exploration. First, we define the function
bsse for computing the backlog at some time t+u given the backlog
at time t.

Definition 4.8 Backlog Computation: bsse (Bi(t), Π, i, t, u) is a
function for computing the ith priority backlog at time t + u, i.e.,
Bi(t+u). We assume that the ith priority backlog at time t is Bi(t),
and that the task arrivals and execution times in the interval [t, t+u)
are in accordance with task set Π.

The computation of bsse can be done by applying the definition
of a task set as well as the previously described operations, namely
convolution and shrinking. We demonstrate this using the follow-
ing example.

Example. Task-set Π is given, and consists of task τ1 = (T1 =
5, ϕ1 = 0, D1 = 5, C1)}, and of task τ2 = (10, 0, 10, C2). Task
τ2 has a higher priority. The backlogs at time 0− at priority levels 1
and 2 are given as B1(0−) and B2(0−), respectively. For this set-up,
find the backlog at time 10− at priority level 1, as well as the backlog
at time 7 at priority level 2.
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Solution. The following combination of convolution and shrinking
computes B1(10−) = bsse (B1(0−), Π, 1, 0−, 10−), by taking
into account the execution times of all jobs:

pB1(0) = pB1(0−) ⊗ pC1
⊗ pC2

pB1(5−) = shrink(B1(0), 5)

pB1(5) = pB1(5−) ⊗ pC1

pB1(10−) = shrink(B1(5), 5)

For computing the highest priority backlog, task τ1 is ignored. Using
the same procedure, we obtain B2(7):

pB2(0) = pB2(0−) ⊗ pC2

pB2(7) = shrink(B2(0), 7)

Which is equivalent to bsse (B2(0−), Π, 2, 0−, 7).

4.4.1 Upper Bound of Backlog
In order to provide a holistic schedulability analysis, we need to
determine upper bounds of the backlogs for all time instances within
any future hyperperiod, i.e., we are interested in a set of random
variables Bi(t) such that Bi(n · hp + t) ⪯ Bi(t) for all priority
levels i, future hyperperiods n ≥ 0 and time instances within a
hyperperiod 0 ≤ t < hp. We start by computing the steady-state
backlog and proceed by showing that it provides the desired upper
bound.

Computation of the steady state backlog. The ith priority back-
log at the start of the nth hyperperiod is Bi(n ·hp), but this backlog
may be different for each n. However, the sequence of random
variables {Bi(n ·hp)} can be viewed as a Markov process as shown
by Díaz et al. [DGK+02]. Specifically, they present the following
theorem about the existence of a limit to the above mentioned
sequence, including the corresponding proof:

Theorem 4.1 (section 4.2 of [DGK+02]): The sequence of backlogs
{Bi(n · hp)} for n ≥ 0, where i is a priority level, has a limit if the
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average system utilization is less than one, and if the sequence of jobs
remains the same each hyperperiod. If it exists, this limit is called the
ith priority steady state backlog at the beginning of the hyperperiod,
and noted Bi(0).

Proof Sketch: We provide a sketch of the proof here, while the
reader can find all the details in the original work. The backlog at
the start of kth hyperperiod can be computed using backlog at the
start of (k − 1)th hyperperiod using

bsse (Bi((k − 1) · hp−), Π, i, (k − 1) · hp−, hp)

As stated, all hyperperiods have the same sequence of jobs. Con-
sequently, the following equation in vector form can be used for
computing the backlog at the start of kth hyperperiod:

pBi(k·hp)
⊺ = P · pBi((k−1)·hp)

⊺ (4.8)

where P is a transition matrix. Note that our model does not
place any upper bounds on the backlog’s length, so P can have an
infinite dimension. Since P is invariant in every hyperperiod, we
can use known results from Markov theory: Bi(0) exists and is a
non-degenerate distribution (i.e., not infinite) if the average system
utilization is less than one. □

For computing the steady state backlog at the start of a hyper-
period Bi(0), Díaz et al. propose three methods. The first method
is an exact one stated in section 4.3.2 of [DGK+02] and exploits the
structure of the infinite dimension transition matrix P . A second
method (section 4.3.3 of [DGK+02]) finds an approximate value of
Bi(0) by truncating P to make its dimension finite. Finally, a third
method is to iterate over hyperperiods until the following relaxed
steady state condition is satisfied:

max
i,x

{∣∣pBi(k·hp)(x)− pBi((k−1)·hp)(x)
∣∣} < ϵ (4.9)

This condition states that the maximum difference between all ith

priority backlogs must not exceed a configurable small value ϵ.
This method does not require computation nor truncation of the
transition matrix P . For further details on choosing appropriate
initial backlogs, please refer to Díaz et al. in [DLG+04].
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Pessimism of the steady state backlog. Assuming that the initial
backlog is zero at every priority level, and that the sequence of jobs
remains the same each hyperperiod, it has been shown by Díaz and
López [DL04] that the ith priority steady state backlog is an upper
bound to all ith priority backlogs at the start of the hyperperiod.
The following two lemmas can be used to show that the backlogs
at the beginning of a hyperperiod are increasing from hyperperiod
to hyperperiod. They state that the operations of convolution and
shrinking preserve the partial ordering of random variables.

Lemma 4.1 (Property 3 in [DL04]): Given three positive random
variables A, B, and C. If A ⪯ B, then A+ C ⪯ B + C.

Lemma 4.2 (Property 6 in [DL04]): Given two positive random vari-
ables A, B, and C. If A ⪯ B, then shrink(A,m) ⪯ shrink(B,m).

Now, the following theorem can be shown by means of the above
considerations: we have, by definition,

Bi(t) = lim
n→∞

Bi(t+ n · hp)

for all n ≥ 0 and 0 ≤ t < hp, and we know from Theorem 4.1 that
Bi(n · hp) ⪯ Bi(0) for all n ≥ 0.

Theorem 4.2 (Theorem 1 in [DL04]): Assuming that the initial back-
log is zero, and that the sequence of jobs remains the same each
hyperperiod, the ith priority backlog at time t inside every hyperperiod
is upper bounded by the ith priority steady state backlog at time t inside
the hyperperiod:

∀i : pBi(0)(0) = 1 ⇒
∀t ∈ [0,hp), ∀n ∈ N : Bi(n · hp+ t) ⪯ Bi(t)

(4.10)

Proof Sketch: Bi(t) can be computed using Bi(0) and a finite num-
ber of convolution and shrinking operations. The theorem thus
follows from Lemma 4.1, Lemma 4.2, and the fact that the initial
backlog is zero. □

In summary, if the initial backlog is zero, the steady-state back-
logBi(t) provides an upper bound for all backlogs within any future
hyperperiod. This result is used extensively in the the response time
analysis described next.
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Algorithm 4.1: Computing the response time of a job

1 procedure rta (Bi(ri,j), Π, τi,j)
2 Ri,j ← Bi(ri,j)⊗ Ci

3 t← 0
4 while t ≤ Di,j do
5 for each preempting job τk,l that arrives at ri,j + t do
6 {Rl, Ru} ← split(Ri,j , t)
7 pRi,j (0, . . . , t− 1)← Rl

8 pRi,j (t, . . .)←Ru ⊗ Ck
9 t← t+ 1

10 returnRi,j

11 function split(X , m)
12 Xl ← [pX (0), pX (1), . . . pX (m− 1)]

13 Xu ← [pX (m), pX (m+ 1), . . . pX (X̂ )]
14 return Xl, Xu

4.4.2 Response Time Analysis
The response time of a job Ri,j tells us when this job will finish its
execution, relative to its release time. We summarize the procedure
as proposed by Díaz et al. [DGK+02]. The response time of a given
job τi,j is influenced by the backlog at its release time Bi(ri,j), and
the computation times of all jobs that preempt the job. Therefore
we can define a function:

Ri,j = rta (Bi(ri,j), Π, τi,j) (4.11)

The pseudo-code for computing response times is given in Al-
gorithm 4.1. For a given job τi,j , first Ci is convolved with the
the current ith priority backlog (line 2). This would provide us
with the response time of τi,j , if there were no preempting jobs.
When a preempting job is released at a given point in time, then
the probability function vector of τi,j ’s response time is split in
two portions (line 6): the part before preemption (Rl), and the part
after preemption (Ru). The part after preemption is convolved with
the probability function vector of the preempting job’s computation
time, and the result is added to Rl in order to get τi,j ’s response
time after this preemption (lines 7 and 8). The probability function
of Ri,j is only computed until the job’s deadline di,j .
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Next, we present a theorem that we use to obtain the worst-case
hourly deadline miss probability. Beforehand, the lemma shows that
the response time function rta is monotone in the backlog at the
release time of the job.

Lemma 4.3: (Theorem 1, property 3 of [LDEG08]) Given two ran-
dom variables A and B. If A ⪯ B, then rta (A, Π, τi,j) ⪯
rta (B, Π, τi,j).

As the steady-state backlog at any time within a hyperperiod is
always greater than or equal to the backlog at the corresponding
time within any hyperperiod, the following lemma can be obtained.

Lemma 4.4: Assuming the initial backlog is zero, substituting any
backlog Bi(ri,j) with the appropriate steady state backlog Bi(ri,j)
in the response time analysis, produces a value greater or equal to the
response time.

∀i : pBi(0)(0) = 1 ⇒
rta (Bi(ri,j), Π, τi,j) ⪯ rta

(
Bi(ri,j mod hp), Π, τi,j

) (4.12)

Proof: This lemma is a direct consequence of Lemma 4.3 and The-
orem 4.2. □

We name the value rta
(
Bi(ri,j mod hp), Π, τi,j

)
the steady

state response time, and denote it Ri,j . Note that the steady-state
backlog Bi was used to do this calculation of the upper bound of
the response time. Based on these results, we can now determine
an upper bound on the response time of each job. By focusing on
one hyperperiod and obtaining steady-state (worst case) results for
it, we can finally determine the worst-case deadline miss probability
of a job τi,j within any hyperperiod. Instead of using the modulo
operation as in Lemma 4.4 we can also just look at jobs τi,j within
the single worst case hyperperiod with 0 ≤ j < hp/Ti.

Theorem 4.3: The deadline miss probability of a job τi,j denoted as
DMPi,j can be bounded as follows:

∀i, 0 ≤ j < hp/Ti :

DMPi,j ≤ DMPi,j = Pr
(
di,j < rta

(
Bi(ri,j), Π, τi,j

)) (4.13)

Proof: The proof follows directly from the previous Lemma 4.4. □
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4.5 Stochastic Analysis
In this section, we determine the (σhi, σlo, σdeg)-schedulability of
a mixed-critical task set Π as defined in Definition 4.5. We refer
to this as the probabilistic mixed-criticality (pMC) analysis. To this
end, we compute upper bounds on probabilities that there is at least
one deadline miss of a lo or hi job within one hour, i.e., DMPhi(T )
or DMPlo(T ), respectively, for a time interval of length T = 1h. In
addition, we will compute an upper bound on the probability that a
lo job operates in degraded mode PDJdeg. The underlying concept
of the forthcoming analysis is described next.

Let us start with the computation of the probability PDJdeg that
a lo job operates in degraded mode. This probability can be upper
bounded by noting that lo jobs are executed only in their degraded
mode if their release time ri,j happens during hi-criticality mode.
Therefore, we will first determine the maximal length ∆hi

max of any
hi-criticality mode execution. In addition, we determine an upper
bound on the probability, that there is at least one mode switch
within a single hyperperiod, denoted as Phplo→hi. Using these two
values, we can bound the relative time the system is in hi mode and
therefore, the probability that a lo job operates in degraded mode.

To determine upper bounds on probabilities DMPhi(1h) and
DMPlo(1h), that there is at least one deadline miss of a lo or
hi job within one hour, we first look at upper bounds on the
probabilities that at least one lo or hi job misses its deadline
during any hi-criticality mode execution that is started within a
hyperperiod, denoted as DMPhihi or DMPhilo, respectively. Note that
the upper index denotes the mode, whereas the lower one denotes
the criticality of the jobs we are considering. In addition, we
determine an upper bound on the probability that at least one lo or
hi job misses its deadline during a hyperperiod under the conditions
that first, no mode switches take place and second, hi jobs do not
overrun their threshold Cthr. We denote these values as DMPlohi
or DMPlolo, respectively. Again, the upper index concerns the mode
and the lower one the criticality of the considered jobs. Now we
can determine the desired probabilities DMPhi(T ) and DMPlo(T )
by combining (a) the worst case probabilities DMPlohi and DMPlolo
that a deadline miss happens during a hyperperiod if the system is
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in lo-criticality mode, (b) the worst case probabilities DMPhihi and
DMPhilo that at least one lo or hi job misses its deadline during any
hi-criticality mode started within a hyperperiod.

We now first determine bounds PDJdeg and DMPχ(1h) using
the above defined quantities: ∆hi

max, Phplo→hi, DMPhiχ and DMPloχ for
hi and lo jobs, i.e., for χ ∈ {lo,hi}. Afterwards, we explain how
these quantities can be determined.

4.5.1 Probability of Job Degradation
In this section, we compute an upper bound on the probability that a
lo job operates in degraded mode, i.e., PDJdeg. As described above,
we will make use of the maximal duration of a hi-criticality mode
execution and the probability that there is no mode switch within a
hyperperiod.

Definition 4.9 Maximal Duration of hi-Criticality Mode: The maxi-
mal duration the system is continuously executing in hi-criticality
mode is denoted ∆hi

max.

Definition 4.10 Mode Switch Probability: Phplo→hi denotes an upper
bound on the probability that there is at least one mode switch
lo→hi within a single hyperperiod.

Using these definitions, we can determine an upper bound on
the desired quantity.

Theorem 4.4: The probability of degradation of a lo job can be
bounded as follows:

PDJdeg ≤
⌈
∆hi

max

hp
+ 1

⌉
Phplo→hi (4.14)

Proof: We obtain this value by multiplying the probability that hi-
criticality mode is entered during one hyperperiod, with the number
of lo jobs that are released in degraded mode when it does.

First, note that there is some constant number K of lo jobs that
are released every hyperperiod. From the moment one hi-criticality
mode is entered, it executes at least partly in at most ⌈1+∆hi

max/hp⌉
hyperperiods. Therefore, what ever the number of mode switches is
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inside one hyperperiod, in the worst case, all lo jobs from this and
the next ⌈∆hi

max/hp⌉ hyperperiods are executed in degraded mode.

In other words, K ·
⌈
∆hi

max

hp + 1
⌉
lo jobs are degraded.

Second, let us note that there is at least one mode switch within
a hyperperiod with probability Phplo→hi. Combining this probability
with the number of lo jobs that are degraded if a mode switch
happens, we get:

PDJdeg ≤
(
K ·

⌈
∆hi

max

hp
+ 1

⌉
Phplo→hi + 0 · (1− Phplo→hi)

)
K−1

=

⌈
∆hi

max

hp
+ 1

⌉
Phplo→hi

□

This upper bound on the probability of degradation of a lo
job may be overly pessimistic in the case when the hyperperiod
is much larger than the maximal duration of hi-criticality mode,
hp ≫ ∆hi

max. Still, in practical scenarios, it is not considered usual
practice to design a system with a very long hyperperiod. We
therefore accept the upper bound as satisfactory.

The necessary quantities ∆hi
max and Phplo→hi will be determined

later as part of our analysis of the hi- and lo-criticality modes.

4.5.2 Probabilities of Deadline Misses
Let us now determine the deadline miss probabilities of DMPhi(T )
and DMPlo(T ), i.e., the probabilities that at least one hi criticality
job or one lo criticality job misses its deadline within the time
interval T . With T = 1h we get the quantities as required by the
schedulability test according to Definition 4.5. For the following
theorem, let us suppose that χ ∈ {lo,hi} denotes the criticality of
jobs in the deadline miss probabilities.

In principle, the analysis investigates two coupled systems. The
first one, which is denoted as the lo-system, never does a mode
switch, i.e., all mode switch events are ignored. In addition, it uses
modified execution time probabilities of hi criticality jobs such that
the lo-system pessimistically describes the behavior of the original
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system if operating in lo-criticality mode. In particular, all execu-
tion times of hi jobs that are higher than the threshold are trimmed
to it, see Definition 4.2. The worst-case steady-state probability that
at least one χ job misses its deadline during a hyperperiod in the lo-
system is denoted as DMPloχ . This probability is determined using
the worst-case steady-state backlog and response-time analysis as
provided in Lemma 4.4, but using the trimmed execution times of hi
jobs. The other system is denoted as the hi-system and considers
the case that at least one lo→hi mode switch happened within a
hyperperiod, i.e., at least one hi-criticality mode is executed.

Definition 4.11 Deadline Miss Probabilities in Different Modes: The
worst case probability that at least one χ critical job misses its dead-
line during any hi-criticality mode started in a single hyperperiod
is denoted as DMPhiχ . The worst-case steady-state probability that
at least one χ critical job misses its deadline during a hyperperiod
in a system where (a) all mode switch events are ignored and (b) ex-
ecution times of hi jobs are trimmed to their threshold according to
Definition 4.2 is denoted as DMPloχ .

To reiterate, DMPloχ can be computed according to Lemma 4.4.
Using these definitions, we can determine bounds on the requested
deadline miss probabilities using the following result. The desired
probabilities per hour can be obtained by setting T = 1h.

Theorem 4.5 Deadline Miss Probabilities: The deadline miss proba-
bilities DMPχ(T ) for χ ∈ {lo,hi} can be bounded as follows:

DMPχ(T ) ≤ 2− (1− DMPloχ )⌈
T/hp⌉ − (1− DMPhiχ )

⌈T/hp⌉ (4.15)

Proof: It needs to be proven that the probability that there is no
deadline miss of any χ job within time interval T is bounded by

1− DMPχ(T ) ≥ (1− DMPloχ )⌈
T/hp⌉ + (1− DMPhiχ )

⌈T/hp⌉ − 1

There is no deadline miss within T if there is no deadline miss
when the system executes in lo-criticality mode and there is no
deadline miss if it operates in hi-criticality mode. Suppose the
first event is named a and the second one b, then we know that
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Pr(a∩ b) = Pr(a)+Pr(b)−Pr(a∪ b) ≥ Pr(a)+Pr(b)− 1 even if
both events are not independent. Therefore, the theorem is true if

(1− DMPloχ )⌈
T/hp⌉

lower bounds the probability that there is no deadline miss when
the system is in lo-criticality mode and

(1− DMPhiχ )
⌈T/hp⌉

lower bounds the probability that there is no deadline miss when
the system is in hi-criticality mode.

Let us first look at the lo-criticality mode. At first, note that
⌈T/hp⌉ is the number of hyperperiods that completely cover an
interval of length T . Therefore, we can safely assume that our
interval has the length of ⌈T/hp⌉ full hyperperiods. Remember that
the backlogs during a steady-state computation are monotonically
increasing, see Theorem 4.2. In a similar way, response times of jobs
are monotonically increasing from hyperperiod to hyperperiod, see
Lemma 4.4. As a result, the deadline miss probabilities of jobs are
increasing from hyperperiod to hyperperiod as well and DMPloχ is a
safe upper bound for every hyperperiod in our modified lo-system.
We model the system as a worst-case Bernoulli process, acting from
hyperperiod to hyperperiod. As a result,

(
1− DMPloχ

)⌈T/hp⌉
is a

lower bound on the probability that there is no deadline miss in the
lo-system, i.e., all switching events are disabled and the execution
times of hi jobs are trimmed.

It remains to be shown that the response times in our lo-system
are always larger or equal than those in the original system when it
is in lo-criticality mode. This is certainly true as after a hi→lo
mode switch, the backlogs are 0 for sure and therefore they are
lower than those in the modified lo-system. Due to Lemma 4.4,
the response times are larger in the modified lo-system. Moreover,
trimming of execution times of hi criticality jobs has no influence
on the backlogs as long as there is no hi→lo mode switch, i.e., the
original system operates in lo-mode.

Now let us look at the hi-mode. Again note, that ⌈T/hp⌉ is
the number of hyperperiods that completely cover an interval of
length T . The worst-case probability that at least one χ critical job
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misses its deadline during any hi-criticality mode started in a single
hyperperiod is denoted as DMPhiχ , see Definition 4.11. Therefore,(
1− DMPhiχ

)⌈T/hp⌉
is a lower bound on the probability that there is

no deadline miss caused by a lo→hi switch within a hyperperiod.
This concludes the proof as we considered the case that the

systems operates in lo-criticality mode somewhere within a hyper-
period (bounded by the case that it is always in this mode during
the hyperperiod) and the case that one or more hi-criticality modes
are started within a hyperperiod (all corresponding deadline misses
are accounted for in the hyperperiod where the hi-criticality mode
was started). □

Next we determine the quantities ∆hi
max, Phplo→hi, DMPloχ and

DMPhiχ required to compute PDJdeg, DMPhi(T ) and DMPlo(T ). We
start by analyzing the behavior of the MC system in lo-criticality
mode.

4.5.3 LO-criticality Mode
The analysis of the lo-criticality mode allows us to determine some
of the required quantities, namely the worst case probability Phplo→hi
of at least one lo→hi mode switch within a hyperperiod and the
worst-case probability DMPloχ that at least one χ critical job misses
its deadline within a hyperperiod if operating in the modified lo-
system, see Section 4.5.2. Moreover, we determine the worst-case
probability of a lo→hi mode switch at any time instance t ∈
{0, ...,hp − 1} within any hyperperiod, as this quantity allows us
to analyse the hi-criticality mode later on.

Lemma 4.5: Given a modified task system where no lo→hi mode
switch is executed and allhi critical jobs are trimmed to their execution
time threshold Cthr

i , see Definition 4.2. Then,

DMPloχ =

 ∑
τi,j∈S

DMPi,j

1

S = {τi,j | χi = χ ∧ 0 ≤ j < hp/Ti}

(4.16)
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is an upper bound on the probability of at least one deadline miss
of any χ job during lo-criticality mode execution within any hyper-
period, where DMPi,j denotes an upper bound on the deadline miss
probability of job τi,j according to Theorem 4.5. Note, [...]1 indicates
the expression is limited to a maximum value of 1.

Proof: We will show that the response times in the modified sys-
tem are always larger or equal than those in the original system
when it is in lo-criticality mode. According to Theorem 4.3, the
upper bound on the deadline miss probability DMPi,j holds for
any hyperperiod. On the other hand, we can not assume that the
deadline miss probabilities for jobs that are within one hyperperiod
are independent. Therefore, we upper bound the probability of the
union of events by their sum. It remains to be shown that the
modified lo-system with all lo→hi mode switches disabled and
the trimmed execution times of hi jobs provides upper bounds on
the original system when operating in lo-criticality mode. This is
certainly true as after a hi→lo mode switch in the original system,
the backlogs are 0 for sure and therefore, they are lower than
those in the modified lo-system. Due to Lemma 4.4, the response
times are larger in the modified lo-system. Moreover, trimming of
execution times of hi jobs has no influence on the backlogs as long
as there is no hi→lo mode switch, i.e., the original system operates
in lo-mode. The bounding of the value DMPloχ to 1 is safe, as for
any summation of events we have Pr(a ∪ b) ≤ Pr(a) + Pr(b) and
Pr(a ∪ b) ≤ 1 leading to Pr(a ∪ b) ≤ min (1,Pr(a) + Pr(b)). □

Now, we determine an upper bound on the worst-case prob-
ability Plo→hi(t) of a lo→hi mode switch at time instance t ∈
{0, ...,hp − 1} within any hyperperiod. Remember that there
are three triggering events for a lo→hi mode switch, namely (a)
a hi critical job misses its deadline (b) the system-level backlog,
meaning the amount of pending executions, becomes higher than
a predefined threshold Bmax and (c) a hi critical job overruns its
threshold execution time Cthr. We analyze the three different
mechanisms one after the other and finally combine the results.

Let us start with the deadline miss probability at time instance
0 ≤ t < hp, which we denote as Pdm(t).
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Lemma 4.6: Given a modified task system where no lo→hi mode
switch is executed and allhi critical jobs are trimmed to their execution
time threshold Cthr

i , see Definition 4.2. Then,

∀0 ≤ t < hp : Pdm(t) =

 ∑
τi,j∈S(t)

DMPi,j

1

S(t) = {τi,j | χi = hi ∧ di,j = t}

(4.17)

is an upper bound on the probability of at least one deadline miss
of any hi critical job during lo-criticality mode execution at time t,
0 ≤ t < hp, where DMPi,j denotes an upper bound on the deadline
miss probability of job τi,j in the modified task system according
to Theorem 4.3. Note, [...]1 indicates the expression is limited to a
maximum value of 1.

Proof: We can not assume that the deadline miss probabilities at
time t are independent. Therefore we use as an upper bound of
the union of events the sum of the individual probabilities. The
bounding of the value Pdm(t) to 1 is safe, as for any summation
of events we have Pr(a ∪ b) ≤ Pr(a) + Pr(b) and Pr(a ∪ b) ≤ 1
leading to Pr(a∪ b) ≤ min (1,Pr(a) + Pr(b)). S(t) denotes the set
of all hi critical jobs with deadline at time t. □

We continue with the probability that at time instance 0 ≤
t < hp the total backlog exceeds the upper bound Bmax which we
denote as Pbe(t).

Lemma 4.7: Given a modified task system where no lo→hi mode
switch is executed and allhi critical jobs are trimmed to their execution
time threshold Cthr

i , see Definition 4.2. Then,

∀0 ≤ t < hp : Pbe(t) = Pr(BN (t) > Bmax) (4.18)

is an upper bound on the probability that the total backlog at time t
exceeds Bmax during lo-criticality mode execution within any hyper-
period, where BN (t) denotes an upper bound on the lowest priority
backlog in the modified task system according to Theorem 4.2.

Proof: The total backlog equals BN (t) according to Definition 4.7.
Then, the lemma directly follows from Theorem 4.2. □
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Unfortunately, the computation of the probability Pov(t) that
at time instance 0 ≤ t < hp at least one hi critical job overruns
its threshold execution time Cthr

i is more involved. Whereas the
overrun probability Pr(Ci > Cthr

i ) can be simply calculated, it is
more complex to understand at what time instance such an event
happens, due to interference from other jobs. We first compute the
upper bound on the backlog for our modified lo-system as usual.
Based on this, we now consider each hi critical job individually and
compute its response time if the job would have the execution time
Cthr

i . If this response time plus the release time ri,j of the job equals
t, then the job overruns at t under the condition that it overruns at
all. The following lemma summarizes the corresponding result.

Lemma 4.8: Given a modified task system where no lo→hi mode
switch is executed and allhi critical jobs are trimmed to their execution
time threshold Cthr

i , see Definition 4.2. Then, ∀0 ≤ t < hp

Pov(t) =

 ∑
τi,j∈S

Pr(Ci > Cthr
i ) ·

Pr
(
(rta

(
Bi(ri,j), Π, τ ovi,j

)
+ ri,j) mod hp = t

)1

S = {τi,j | χi = hi}
(4.19)

is an upper bound on the probability that at time instance 0 ≤ t <
hp at least one hi critical job overruns its threshold execution time
Cthr

i . Here, Bi(t) denotes an upper bound on the level i backlog in
the modified task system according to Theorem 4.2 and τ ovi,j denotes a
modified job τi,j with a deterministic computation time of Cthr

i . Note,
[...]1 indicates the expression is limited to a maximum value of 1.

Proof: At first note that we do not assume that the probabilities
of overrunning the threshold execution time Cthr

i are independent.
Therefore, the union of at least one overrun at time t is bounded by
the sum of individual probabilities for each hi job, see the definition
of S. Moreover, Pr(a) = Pr(a|b) · Pr(b) for events a and b. In our
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case, Pr(b) = Pr(Ci > Cthr
i ), i.e., the event that task τi,j has a

overrun of its threshold execution time. We now need to show that
the term Pr(rta

(
Bi(ri,j), Π, τ ovi,j

)
+ ri,j) mod hp = t) denotes

the probability that an overrun due to task τi,j happens at time t
under condition that the overrun happens at all, i.e., it represents
Pr(a|b). Note that the term (rta

(
Bi(ri,j), Π, τ ovi,j

)
+ ri,j) denotes

the finishing time of task τi,j if using the worst-case steady-state
backlogs B and the execution time Cthr

i . Therefore, under the
assumption that the task overruns, it determines the distribution of
the time when the overrun actually happens. As this time may be in
the next hyperperiod, we use the modulo operation. The bounding
of the value Pov to 1 is safe, as for any summation of events we
have Pr(a ∪ b) ≤ Pr(a) + Pr(b) and Pr(a ∪ b) ≤ 1 leading to
Pr(a ∪ b) ≤ min (1,Pr(a) + Pr(b)). □

Based on the previous three lemmas, we conclude this section
with the desired worst-case probability Plo→hi(t) of a lo→hi mode
switch at time instance 0 ≤ t < hp within any hyperperiod.

Theorem 4.6: Plo→hi(t) is an upper bound on the worst-case proba-
bility of a lo→hi mode switch at time instance 0 ≤ t < hp within
any hyperperiod with

∀0 ≤ t < hp : Plo→hi(t) = [Pdm(t) + Pbe(t) + Pov(t)]
1 (4.20)

where Pdm(t), Pbe(t) and Pov(t) are computed according to Lem-
mas 4.6 to 4.8, respectively. An upper bound on the probability of at
least one lo→hi mode switch within a hyperperiod can be determined
as

Phplo→hi =

 ∑
0≤t<hp

Plo→hi(t)

1

(4.21)

Note, [...]1 indicates the expression is limited to a maximum value
of 1.

Proof: The theorem is a simple consequence of the previous lem-
mas, as we can not assume independence of events within a hyper-
period. □
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As a simple corollary to the above theorem, one can compute a
lower bound on the expected length of a single lo-criticality mode
execution as

∆lo
exp = (⌈ 1

Phplo→hi
⌉ − 1) · hp (4.22)

This results concludes the analysis of the lo-criticality mode,
and we can move on to analyze the hi-criticality mode in order
to determine the remaining quantities necessary for Theorems 4.4
and 4.5.

4.5.4 HI-criticality Mode
We are still missing the computation of the maximal duration of a
hi-criticality mode execution quantity ∆hi

max, as well as the worst-
case probability DMPhiχ of at least one deadline miss of any χ job
during any hi-criticality mode started within a hyperperiod, where
χ ∈ {lo,hi}.

To this end, we will determine hp different worst-case hi-
criticality mode scenarios, one for each starting time 0 ≤ t < hp
relative to the beginning of a hyperperiod. In other words, we will
investigate hp different hi-criticality mode executions and then use
the maximum of their durations as ∆hi

max, and the maximum of
their deadline miss probabilities to determine upper bounds that
at least one hi or lo task misses its deadline during a single hi-
criticality mode execution. These quantities will then be combined
with the probability Plo→hi(t) that a lo→hi switch happens at
relative starting time t in order to determine DMPhiχ , i.e., the worst-
case probability of at least one deadline miss of any χ critical job
during any hi-criticality mode started within a hyperperiod.

Broadly speaking, hi-criticality mode has three differences with
lo-criticality mode. First, jobs released in hi-mode have different
execution times: lo jobs are released in degraded mode, and hi
jobs do not have the condition that they do not overrun their
Cthr

i execution time threshold. Second, ‘carry-over’ jobs, which
are released in lo-criticality mode but whose deadlines are after
the mode switch, are present in hi-criticality mode and they need
to be accounted for. Third, the initial system-level backlog is not
zero, but depends on the mode switch time trigger. To account for
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these differences, we present the following worst-case hi-critical
execution task-set. It is created such that it is pessimistic what ever
the mode switch trigger may be, and it accounts for both carry-over
jobs and jobs released during hi-mode.

The worst-case hi-mode scenario for starting at time t is defined
as follows:

Definition 4.12 Worst-Case HI-Criticality Execution: We define hp
task sets Π̂(t), one for each starting time 0 ≤ t < hp. Each differs
from the original task set Π as follows:

1. The phase offsets ϕi are implicitly changed such that all jobs
are already available in 0 ≤ t < hp, i.e., we allow for negative
job indices j.

2. We consider all jobs with starting times after t, i.e., j ≥ (t −
ϕi)/Ti+1. They have a known execution time Ĉi which is not
larger than the degraded mode WCET Cdeg

i for lo criticality
jobs, and a known execution time Ĉi = Ci for hi criticality
jobs.

3. We consider jobs whose release time is smaller than t and
deadline is larger than t. These included jobs τi,j ∈ T̂ with
(t− ϕi)/Ti + 1 < j < (t+Di − ϕi)/Ti + 1 have execution
times Ĉi = Ci for both lo and hi criticality jobs; i.e., for lo
jobs the execution times are not degraded, and forhi jobs they
may or may not overrun their Cthr

i threshold.
4. For each hi-criticality mode starting time t, 0 ≤ t < hp,

we introduce the initial backlog at time t and priority levels
1 ≤ i ≤ N , B̂i(t). If a overrun can not happen at time t,
due to the fact there is no hi job released whose deadline has
passed by time t, the initial backlog is as follows:

Pr(B̂i(t) = u) =


Pr(Bi(t) = u) u < Bmax∑∞

v=Bmax
Pr(Bi(t) = v) u = Bmax

0 u > Bmax

(4.23)

where Bi(t) denotes an upper bound on the ith priority back-
log in the modified lo-criticality system according to Theo-
rem 4.2. If an overrun can happen at time t, due to at least one
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hi job having its release time before t and its deadline after,
then the initial backlog at time t is the following:

Pr(B̂i(t) = u) =


Pr(Bov

i (t) = u) u < Bmax∑∞
v=Bmax

Pr(Bov
i (t) = v) u = Bmax

0 u > Bmax

(4.24)

where Bov
i (t) denotes an upper bound on the ith priority

backlog in the modified lo-criticality system according to
Theorem 4.2, but with the added condition that at least one of
the released hi jobs whose deadline is after time t has overrun
its threshold execution time Cthr

i .
Let us now describe how Bov

i (t) can be computed. To this end,
we solve

Pr(Bno+ov
i (t) = u) =

Pr(no) · Pr(Bi(t) = u) + Pr(ov) · Pr(Bov
i (t) = u)

Here, Bi(t) denotes an upper bound on the ith priority back-
log in the modified lo-criticality system according to Theo-
rem 4.2. Bno+ov

i (t) is also an upper bound on the ith priority
backlog according to Theorem 4.2, but the system used for its
computation is slightly modified. It is the lo-criticality system
with the difference that hi jobs released before time t whose
deadlines are after that time have no condition on whether
they overrun their Cthr

i execution time or not – we use their
normal execution times Ci in calculating the backlog. The
probability that none of these hi jobs overrun their respective
Cthr

i execution times is noted Pr(no), while the Pr(ov) =
1−Pr(no) is the probability that at least one of these hi jobs
overruns. Pr(no) is obtained directly from execution times
of these hi jobs, Pr(no) =

∑
τi,j∈S Pr

(
Ci > Cthr

i

)
, where

S = {τi,j | χi = hi ∧ ri,j ≤ t ∧ di,j > t}.

Condition 2 includes all tasks which are released during hi-
criticality mode, noting that lo jobs are degraded and hi jobs have
Ci execution times. The third condition deals with carry-over jobs
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from lo- to hi-criticality mode, whose deadline misses have not yet
been accounted for in the lo-criticality mode analysis. Note that
here the worst case comes from the assumption that all hi jobs may
overrun. Finally, condition 4 includes the worst-case backlog at the
starting time t, as it is the backlog with the condition that an overrun
of at least one hi job occurred, but also it is limited by the maximal
backlog Bmax. Simpler constructions of the worst-case task-set lead
to high overestimations to the length and deadline miss probabilities
of hi-criticality mode.

Starting from the worst-case scenarios for the hi-mode for each
time instant t, 0 ≤ t < hp, we now evaluate each scenario
and determine the corresponding worst-case durations as well as
the deadline miss probabilities. To do this, we apply the results

from Section 4.4 and use the function bsse
(
B̂i(t), Π̂, i, t, u

)
to

compute all relevant backlogs for the task sets from Definition 4.12.
The successive computation of the backlogs stops whenever the
system gets idle for the first time: B̂i(ts) = 0 for all priority levels
i. This time is an upper bound on the hi→lo switching time. Using
the response time analysis, see (4.11), we can finally determine all
jobs that miss their deadline during the hi-mode. Additionally,
for the response time analysis for calculating the deadline miss
probabilities of hi carry-over jobs, we substitute the execution
time of the carry-over job under analysis Ĉi with the conditional
execution time Pr(Ci > Cthr

i ), in order to get the deadline miss
probability with the condition that the hi carry-over job overran its
Cthr

i execution time threshold.

Lemma 4.9: The first time tidle, the execution of the task set Π̂(t) from
Definition 4.12 yields a system-level backlog which is zero, determines
an upper bound ∆hi

max(t) on the duration of a hi-criticality mode
starting at time t relative to the beginning of any hyperperiod of the
original task system Π:

∀0 ≤ t < hp : ∆hi
max(t) = tidle − t (4.25)

Let us define the probability pi,j(t) that some job τi,j of task set
Π̂(t) from Definition 4.12 misses its deadline in the time interval
[t, t+∆hi

max(t)]. Then DMPhiχ (t) is an upper bound on the probability
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that there is at least one deadline miss of any χ critical job with
χ ∈ {lo,hi} within a hi-criticality mode execution starting at time t
relative to the beginning of any hyperperiod in the original task set Π:

∀0 ≤ t < hp : DMPhiχ (t) =

 ∑
τi,j∈S(t)

pi,j(t)

1

S(t) = {τi,j ∈ Π̂i(t) | χi = χ}

(4.26)

Note, [...]1 indicates the expression is limited to a maximum value of 1.

Proof: The main part of the proof is to show that the task set
Π̂(t) indeed defines a worst-case scenario in terms of duration and
deadline miss probabilities, when the hi-criticality mode starts at
time t relative to the beginning of any hyperperiod. Note that the
second condition in Definition 4.12 ensures that all tasks which are
released during a hi-criticality mode in the worst case, are included
in the hi-criticality task set as well. Moreover, we consider the exact
execution times for all of these jobs, namely the degraded execution
times Ĉi which are not longer than Cdeg

i for lo criticality jobs, and
Ĉi = Ci for hi criticality jobs. The third condition adds the worst-
case carry-over jobs from lo- to hi-criticality mode whose deadline
misses have not yet been accounted for in the lo-mode analysis. All
jobs who missed their deadline before the lo→hi mode switch have
been considered already in the lo-mode analysis, but their possible
backlog at t will be considered. Therefore, we just need to explicitly
include jobs whose release time is before and whose deadline is
after the lo→hi mode switch. The corresponding execution times
are taken as worst-case as well, namely for each carry-over hi
job individually, for calculating its deadline miss probability we
assume it overruns its execution time threshold. Finally, we look
at the worst-case backlog at the starting time t. It encompasses the
remaining execution times of jobs who were released before t but
not yet finished. Due to the triggering condition of a mode switch,
we assume the worst-case that at least one hi job has overrun its
Cthr

i execution time. Also according to triggering conditions, the
backlog is never larger then Bmax for all priority levels. Note that
the backlog also contains jobs whose deadline is within the hi-
mode, i.e., the carry-over jobs who have been explicitly included
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as tasks. In order to determine the upper bound on the deadline
miss probability DMPhiχ (t) of any χ-critical job we again do not
assume independence of individual miss events and use the sum of
the corresponding probabilities as an upper bound. □

As a result of this lemma we can determine the desired quanti-
ties, namely maximal duration and upper bound on deadline misses,
for each time point t relative to the starting of a hyperperiod. The
computations are based on simple simulations of hp executions of
worst-case hi-criticality mode scenarios. The simulation times are
finite as long as there exists a finite time in Π̂(t) when the system
gets the first time idle. The following lemma leads to a necessary
and sufficient condition.

Lemma 4.10: A set of finite bounds ∆hi
max(t) on the duration of hi-

criticality modes exists if and only if the maximal system utilization
in hi-criticality mode in the original system is less than one.

Proof: Let us look at the modified task set Π̂(t) starting at time t.
If the maximal system utilization in hi-criticality mode is less than
one, then the maximal system level backlog at time t+ (n+1) · hp
is strictly smaller than the maximal system level backlog at time
t + n · hp for n > 1, because the arriving jobs in time interval
[t+ n · hp, t+ (n+ 1) · hp) are identical for all n > 1 and there is
less additional accumulated computation time from all arriving jobs
than its length hp. Therefore, a time instance will exist when the
maximal system level backlog is zero and the system is idle. If the
maximal system utilization in hi-criticality mode is larger or equal
than one, then the maximal system level backlog at time t+(n+1) ·
hp could be equal or greater than the maximal system level backlog
at time t + n · hp. Therefore, in the worst case, the system level
backlog never gets to zero and the hi-criticality mode could last for
ever. □

Based on these results, we can now aggregate the computed
quantities in order to determine the maximal duration of a hi-
criticality mode execution quantities ∆hi

max as well as the worst-
case probability DMPhiχ of at least one deadline miss of any χ job
during any hi-criticality mode started within a hyperperiod, where
χ ∈ {lo,hi}.
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Theorem 4.7: ∆hi
max is an upper bound on the maximal duration of

any hi-criticality mode in the original task system Π, where

∆hi
max = max

0≤t<hp
∆hi

max(t) (4.27)

DMPhiχ is a bound on the worst-case probability of at least one deadline
miss of any χ critical job with χ ∈ {lo,hi} during any hi-criticality
mode started within a hyperperiod in the original task system, where

DMPhiχ =

 ∑
0≤t<hp

Plo→hi(t) · DMPhiχ (t)

1

(4.28)

with Plo→hi(t) as determined in Theorem 4.6. Note, [...]1 indicates the
expression is limited to a maximum value of 1.

Proof: According to Lemma 4.9, ∆hi
max(t) is an upper bound on

the duration of a hi-criticality mode starting at relative time t
within a hyperperiod. Clearly, the maximum for all relative time
instances provides the maximal duration for any time instance. The
probability of a deadline miss within a hi-mode execution is the
probability of the union of deadline misses at any time instance
within the hyperperiod. As we cannot assume independence, we
upper bound this probability by the sum of individual probabilities.
The probability of a deadline miss within a hi-mode starting at
relative time t is clearly the probability that a a mode switch
happens, i.e., Plo→hi(t), times the probability that a deadline miss
happens within the hi-mode, i.e., DMPhiχ (t). □

This concludes the schedulability analysis of probabilistic MC
systems according to Definition 4.5, as all the required quantities
for Theorems 4.4 and 4.5 have been determined in Sections 4.5.3
and 4.5.4.

Of course, the tightness of the pMC analysis can be improved
through various approaches. Some of them, as well as limitations of
the described analysis, are noted at the end of this chapter.
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4.6 Complexity of the Analysis
Here we comment on the computational complexity of our proposed
pMC schedulability analysis. Algorithm 4.2 presents a high-level
recapitulation of the analysis, where all pseudo-commands are as
explained in Section 4.5. The computational complexity of the
analysis is

O(n2 · hp · c log c)

where n is the number of jobs in one hyperperiod, hp is the length
of one hyperperiod, and c is the length or number of values in the
execution time distributions.

In the analysis, the most complex atomic command is the con-
volution. When using the fast Fourier transform algorithm, one
convolution has a cost of O(c log c).

Let us now comment on the complexity of the analysis in detail.
According to Section 4.4.1, the steady state backlog is approximated
by Bi(k · hp), where k is the smallest natural number satisfying
inequality (4.9). To calculate Bi(k · hp), a convolution is needed for
every one of the n · k jobs, thus the cost of line 2 is O(n · k · c log c).
Similarly, according to point 4 of Definition 4.12, backlog B̂i(t) is
defined as a combination of two steady state backlogs, so the cost
of line 14 is also O(n · k · c log c). The number k depends on the
required numerical precision (4.9), but we have found it to be in the
same order of magnitude as n, k ∼ n.

To compute deadline miss probabilities, i.e., lines 4 and 17, the
response time analysis is used as defined by Algorithm 4.1. Line 6
is based on response time analysis as well (Lemma 4.8). To find the
response time of a job, we need to do as many convolutions as there
are jobs preempting the said job. Thus, the cost of these lines is
O(n · c log c).

Finally, when analyzing hi-mode, the maximal duration of the
mode ∆hi

max plays a role. When calculating ∆hi
max in line 15, and

when computing deadlines miss probabilities of jobs in lines 16
and 17, we need to take into account all jobs that are released in
hi-mode. Regardless on when hi-mode is entered or exited, the
number of these jobs is at most n · ∆hi

max/hp. For schedulable
systems, we found that ∆hi

max is in the same order of magnitude
as hp, ∆hi

max ∼ hp and ∆hi
max/hp ∼ 1.
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Table 4.2: Probabilistic mixed-criticality (pMC) analysis
run times, for a different number of jobs per hyperpe-
riod n

# Tasks # Jobs in hp (n) Utilization Average run time

13 50–125 0.5 5 s
25 150–200 1.0 19 s
60 350–475 1.2 1min 59 s
75 450–650 1.5 4min 21 s
100 650–825 2.0 23min 42 s

Even though the computational complexity of this scheme is
high, we find it to be acceptable. The analysis only needs to be
done offline, while designing the system. Furthermore, parts of
Algorithm 4.2 can be made to run in parallel. Each iteration of
the for-loop in line 13 can be run independently, meaning that
the analysis of hi-mode can be done in parallel on hp processes,
each of complexity O(n2 · c log c). Consequently, this would be
the computational complexity of the whole algorithm, if we were
to have unlimited resources.

Run time. We tested the analysis for various task-sets on a single
core of a Dual Deca-Core Intel Xeon E5-2690 v2 processor, run-
ning at 3.00GHz. The task-sets are generated as described in the
experimental Section 4.7.2, and all have the following parameters:
hp = 1000 and c ∼ 1000. In Table 4.2, we noted the average
analysis run times for task-sets of different number of jobs per
hyperperiod n, and utilizations.

4.7 Experimental Results
In order to illustrate our pMC schedulability analysis, this section
first shows one sample task-set. The sample task-set is inspired
by applications from the avionics industry. Then, experiments on
randomly generated task-sets are used to compare pMC scheduling
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Algorithm 4.2: A high-level overview of the probabilistic
mixed-criticality (pMC) schedulability analysis, with rele-
vant references and computational complexities noted in
the comments
1 procedure lo-criticality mode analysis ▷ O(n2 · c log c)
2 Compute steady state backlog Bi(0)

▷ Theorem 4.1 and (4.9), O(n · k · c log c)
3 for each job τi,j in hp do ▷ O(n2 · c log c)
4 Compute deadline miss prob. DMPi,j

▷ Theorem 4.3 and Algorithm 4.1, O(n · c log c)
5 if τi,j is hi job then
6 Compute time of Cthr

i overrun detection
▷ Lemma 4.8 and Algorithm 4.1, O(n · c log c)

7 Get DMPlo
χ ▷ Lemma 4.5, O(n)

8 Get Pdm(t) for each t in hp ▷ Lemma 4.6, O(hp · n)
9 Get Pbe(t) for each t in hp ▷ Lemma 4.7, O(hp · c)

10 Get Pov(t) for each t in hp ▷ Lemma 4.8, O(hp · n)
11 Get Phplo→hi ▷ Theorem 4.6, O(1)
12 procedure hi-criticality mode analysis ▷ O(hp · n2 · c log c)
13 for each time t in hp do ▷ O(hp · n2 · c log c)
14 Compute initial backlog B̂i(t)

▷ Definition 4.12 and (4.23) and (4.24), O(n · k · c log c)
15 Get ∆hi

max(t) ▷ Lemma 4.9, O(n ·∆hi
max/hp · c log c)

16 for each job τi,j in [t, t+∆hi
max(t)) do
▷ O(n2 ·∆hi

max/hp · c log c)
17 Compute deadline miss prob.

▷ Lemma 4.9 and Algorithm 4.1, O(n · c log c)
18 Get DMPhi

χ (t) ▷ Lemma 4.9, O(n)
19 Get DMPhi

χ , ∆hi
max ▷ Theorem 4.7, O(hp)

20 Get DMPhi(1 h), DMPlo(1 h) ▷ Theorem 4.5, O(1)
21 Get PDJdeg ▷ Theorem 4.4, O(1)
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Table 4.3: Scheduling schemes used for experimental evaluation

Deterministic schemes

DMPO Deadline monotonic priority
ordering

Audsley et al. [ABRW91]

AMC Adaptive mixed-criticality Baruah et al. [BBD11b]
UB-HL Upper bound on fixed priority

preemptive MC schemes
Baruah et al. [BBD11b]

Probabilistic schemes

pDMPO Probabilistic deadline monotonic
priority ordering

Díaz et al. [DGK+02]

pMC Probabilistic mixed-criticality This work

with other schemes: a probabilistic but non-mixed-critical scheme
pDMPO, a deterministic adaptive mixed-criticality scheme, and
a deterministic non-MC DMPO scheme. These are all listed in
Table 4.3, and described in detail below. For the experiments, we
generated randomized task-sets with all but one parameter the
same, in order to see the effect this one parameter has.

Three experiments are conducted. The first experiment serves
to show the impact of the system utilization, the second experiment
varies the probability each hi task overruns its Cthr

i execution time
threshold Pr(Ci > Cthr

i ), and finally the impact of the maxi-
mal system-level backlog is visualized in the third experiment. In
general, we show that pMC dominates all other schemes, except
in situations when hi-criticality mode is entered too often. In
these cases, we find that there is too much degradation of lo jobs,
therefore scheduling using the probabilistic but non-mixed-critical
pDMPO yields better results.

Baseline schemes. To evaluate pMC scheduling, we have used
three deterministic and one probabilistic baseline scheme, as listed
in Table 4.3. All schemes are based on fixed priority preemp-
tive scheduling. The first deterministic scheme is a non-mixed-
criticality one, deadline monotonic priority ordering (DMPO). As
the name suggests, tasks are prioritized only by their deadlines, and
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scheduled according to their Cmax
i WCETs.

The next scheme is adaptive mixed-criticality (AMC), as de-
scribed by Baruah et al. [BBD11b]. The scheme features two modes
of operation. The system starts in lo-criticality mode wherehi tasks
are scheduled according to their Cthr

i threshold execution times.
If any hi job overruns this value, a switch to hi-criticality mode
happens, where all lo tasks are released in degraded mode. The
scheme does not quantify the duration of these two modes, only the
schedulability of them.

As a deterministic ‘baseline’, we introduce the upper bound on
fixed priority preemptive MC schemes (UB-HL) [BBD11b]. This
bound is a necessary test for all fixed priority preemptive MC
schemes, and such it provides an upper bound on performance.

Finally, the probabilistic deadline monotonic priority ordering
(pDMPO) scheme represents the analysis as introduced by Díaz et
al. [DGK+02]. In pDMPO, tasks are given priorities based on their
deadlines, they are scheduled using their complete Ci execution
times, and there is only one mode of operation. The scheme can be
viewed as a border case of pMC, where hi-criticality mode is never
entered.

Task execution times. To model task execution times Ci, Weibull
distributions were used, with a condition that they do not take
values greater than the task’s WCET Cmax

i . These distributions
have been used in related work for modeling the distribution of long
but unlikely execution times [CGSH+12].

Weibull distributions are functions of two parameters, k and λ.
To generate an execution time, we first choose k uniformly from
[1.5, 3]. Then, the parameter λ is computed the following way. For
lo tasks, λ was computed such that the cumulative density function
at the task’s WCET Cmax

i is 1 − 10−8. Similarly, for hi tasks, we
choose λ so the cumulative density function at the task’s execution
time threshold Cthr

i is 1−10−8, unless stated otherwise. This is the
way we set the probability ahi task overruns its threshold execution
time. Finally, all values of the probability density function above
Cmax

i are set to be 0, and the rest of the distribution is normalized.
This way, we have a valid execution time modeled by a Weibull
distribution, with the condition it never exceeds the task’s WCET
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Cmax
i , and for which the probability a hi task overruns its execution

time threshold is Cthr
i .

4.7.1 Sample System
Here we introduce a task-set modelling a sample system, to which
we applied our proposed schedulability analysis. We explored the
task-set, first by varying execution times of all tasks, and then
by varying deadlines. This was done to illustrate probabilistic
mixed-criticality scheduling. We present the three schedulability
values: DMPhi(1 h), DMPlo(1 h), and PDJdeg, and we also show
the expected duration of lo-criticality mode ∆lo

exp, and the maximal
duration of hi-criticality mode ∆hi

max.
The system’s lo and hi tasks are inspired by the ROSACE

[PSG+14] and FMS [DFG+14] applications, respectively. The hi
tasks are inspired by an industrial implementation of the flight
management system (FMS). This application consists of one task
which reads sensor data, and four tasks that compute the location
of the aircraft. For lo tasks, the open source avionic benchmark
ROSACE was modeled. It is made up of three tasks which simulate
pilot’s instructions, and eight tasks implementing a controller.

Setup. Table 4.4 lists the tasks’ periods and execution time values:
WCETs Cmax

i , thresholds for hi tasks Cthr
i , and degraded WCETs

Cdeg
i for lo tasks. Execution time values are functions of the param-

eter fc, which we vary from 0.05 to 7.5 in 0.05 steps. Note that for
hi tasks, Cmax

i values are 2.5 times larger than the corresponding
Cthr

i , while for lo tasks the worst-case execution time in degraded
mode is Cdeg

i = 0.33 · Cmax
i , rounded up to the nearest integer.

The deadline of each task has been constrained by a factor of fd,
Di = Ti · fd, where fd is varied from 0.005 to 1 in steps of 0.005.
Next, initial phases for tasks are 0, while tasks’ priority assignments
are given in the table. Note that we use deadline monotonic priority
assignment.

We model probabilistic execution times of tasks with Weibull
distributions, as described in the beginning of this section. The
probability that a hi task executes for longer than its threshold
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Table 4.4: The sample system’s task-set

hi task τi Pri. Ti [ms] Cmax
i /fc [µs] Cthr

i /fc [µs]

sens_c1 5 7.5 648 259
loc_c1 4 7.5 365 146
loc_c2 3 60 13 5
loc_c3 2 60 73 24
loc_c4 1 60 13 5

lo task τi Pri. Ti [ms] Cmax
i /fc [µs] Cdeg

i /fc [µs]

engine 16 0.75 23 8
elevator 15 0.75 22 8
aircraft_dynamics 14 0.75 161 54
h_filter 13 1.5 11 4
az_filter 12 1.5 12 4
Vz_filter 11 1.5 12 4
q_filter 10 1.5 11 4
Va_filter 9 1.5 12 4
altitude_hold 8 3 6 2
Vz_control 7 3 6 2
Va_control 6 3 6 2

Note that values relating to execution times are a function of
parameter fc

execution time Cthr
i is Pr(Ci > Cthr

i ) = 10−8, for every hi task.
For the maximal system-level backlog, we used Bmax = 5ms. The
hyperperiod lasts for 60ms, and inside one there are 500 lo jobs
and 19 hi jobs. Regardless of the parameter fc, the utilization of lo
tasks is 5.73 times higher than the utilization of hi tasks.

In Figure 4.2a, the plots have results when deadlines are fixed
(fd = 1), but execution times values from Table 4.4 are varied with
fc ∈ (0, 7.5]. In the two plots of Figure 4.2b, shown are results
when deadlines are varied fd ∈ (0, 1], but all execution time values
are fixed (fc = 2).

Results. As expected, the deadline miss probability per hour for
both hi and lo jobs, DMPhi(1 h) and DMPlo(1 h), increases as the
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Figure 4.2: Metrics characterizing the sample task-set
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utilization increases, or as the deadlines become more constrained.
In this example, DMPlo(1 h) is larger thanDMPhi(1 h), even though
hi criticality tasks have the lowest priority. This is mainly be-
cause there are more lo than hi jobs, i.e., 500 versus 19 jobs per
hyperperiod. As for the probability that a lo job is released in
degraded mode, PDJdeg, we notice it follows a similar trend. In this
experiment, the value never goes to zero, because there is always a
non-zero probability a lo→hi criticality mode switch occurs.

In Figure 4.2b, the expected duration of lo mode is shown to
resemble the inverse of PDJdeg. Except when the deadlines are very
constrained (fd < 0.12), lo-criticality mode lasts for an expected
∆lo

exp = 88h before a trigger event occurs. The maximal duration
of hi-criticality mode ∆hi

max depends only on the system utilization.
This is shown in Figure 4.2a, as a function of fc. The value is 1.1ms
for fc = 2, and 21.7ms for fc = 7.5. Both values are smaller than
∆lo

exp by orders of magnitude.

4.7.2 Randomized Systems
Now we continue, and present three further experiments. They
demonstrate the impact of three design parameters on schedulabil-
ity: the system utilization, the probability that a hi tasks overruns
its execution time threshold Cthr

i , and the choice of the maximal
system-level backlog.

More specifically, the first experiment shows whether task-
sets of different system utilizations are (σhi, σlo, σdeg)-schedulable
using probabilistic mixed-criticality (pMC) scheduling, as well as
other scheduling schemes.

The second and third experiments compare pMC with the prob-
abilistic but non-MC scheme pDMPO. They demonstrate that pMC
leads to improved schedulability, except when hi-criticality mode
is entered too often, either because of the first or the third mode
switch trigger, respectively.

For all three experiments, tasks were randomly generated as
described below.

Task-set generation. For each of the three experiments presented,
the UUnifast-Discard algorithm [DB11] was used to randomly gen-



164 Chapter 4. Stochastic Analysis of Mixed-Criticality Scheduling

erate task-sets, with the following parameters we found reasonable.

■ First, periods and maximal execution times in lo-criticality
mode (Cthr

i values for hi tasks and Cmax
i for lo tasks) were

generated by the UUnifast algorithm. Periods were chosen
between 50 µs, 100 µs, 200 µs, 250 µs, 500 µs, and 1000 µs.

■ All initial phases were set to 0, and tasks’ deadlines are equal
to their period.

■ Then, every task’s criticality is assigned to be hi with a
probability of 0.5 (i.e., parameter CP = 0.5).

■ For every hi task, the WCET Cmax
i is a fixed multiplier of

the corresponding threshold Cthr
i , Cmax

i = 1.5 · Cthr
i (i.e.,

parameter CF = 1.5). For lo tasks, their degraded WCET is
set to be a third of their actual WCET, Cdeg

i = 0.33 · Cmax
i .

■ To model task execution times Ci, we have used Weibull
distributions as explained at the beginning of this section.
The probability each hi job τi,j overruns its execution time
threshold is Pr(Ci > Cthr

i ) = 10−8, unless stated otherwise.
■ The number of tasks per task-set is 60.
■ Finally, the maximum backlog Bmax is 500 µs, unless stated

otherwise.

For the system utilization and other details, we refer the reader to
the setup section of each experiment.

Priority assignment. For the probabilistic scheduling schemes
pMC and pDMPO, we have used deadline monotonic priority as-
signment. Note that [MBS+11] shows that this assignment is
in general not optimal for probabilistic systems, they suggest in-
stead Audsley’s priority assignment algorithm. For the determin-
istic scheduling schemes, AMC uses Audsley’s priority assignment
which is optimal for this scheme, while DMPO by definition uses
deadline monotonic priorities.

4.7.2.1 ‘Utilization’ Experiment

In this first experiment, we examine the schedulability of sys-
tems with various system utilizations. More precisely, we check
whether randomly generated systems of utilization 0.1 through
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2.0 are (σhi, σlo, σdeg) = (10−8, 10−6, 10−5)-schedulable under
probabilistic mixed-criticality (pMC) scheduling, under a probabilis-
tic but non-MC scheme pDMPO, as well as under deterministic
baseline schemes: DMPO, AMC, and UB-HL. We also examine the
values relevant to pMC scheduling as functions of maximum system
utilization: the probability of deadline miss per hour for hi or lo
jobs DMPhi(1 h) and DMPlo(1 h), and the probability of degraded
lo jobs PDJdeg.

Setup. We ranged the system utilization from 0.1 to 2.0 with 0.1
steps, and for each step we created 1000 task-sets according to the
previously given description. To reiterate, the following parameters
were used: the ratio between the WCET Cmax

i and execution time
threshold Cthr

i for every hi task is CF = Cmax
i /Cthr

i = 1.5, the
probability each task is assigned hi criticality is CP = 0.5, the
probability a hi job overruns its execution time threshold Pr(Ci >
Cthr

i ) = 10−8, the degradation of lo tasks is Cdeg
i = 0.33 · Cmax

i ,
there are 60 tasks in each task-set, and the maximal system-level
backlog is Bmax = 500 µs.

Tasks’ execution times Ci depend on the utilization and task-
set in question. We found the mean of the execution times to be
between 2.84 µs and 16.38 µs, with the maximal execution time
Cmax

i among all tasks in a task-set being between 21 µs and 387 µs.

Results. Figure 4.3 presents the most important result of our exper-
iments. For different system utilizations, the (10−8, 10−6, 10−5)-
schedulability under various scheduling schemes is given in Fig-
ure 4.3 Top. To understand better how utilization impacts pMC
schedulability, Figure 4.3 Middle and Bottom shows statistics on
the DMPhi(1 h), DMPlo(1 h) and PDJdeg metrics. The box-plots
visualize the 10th, 25th, 50th, 75th, and 90th percentile of each metric.

Regarding the three deterministic schemes, we see that they per-
form similarly as in related work, for example [BBD11b]. Remember
that for deterministic schemes, a task-set is either ‘completely’
schedulable or it is not, as there is no notion of probabilities.

In Figure 4.3 Top, we can see that deadline monotonic priority
ordering (DMPO) has the lowest schedulability among all tested
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schemes. This is because DMPO attempts to schedule a task-set
using only WCET (Cmax

i ) values. The adaptive mixed-criticality
(AMC) scheme performs better, as it performs a lo→hi mode
switch every time hi jobs need more execution time. Still, the
schedulability of deterministic fixed priority preemptive schemes is
upper-bounded by the UB-HL bound.

For the probabilistic schemes pDMPO and pMC, we can confirm
that they outperform deterministic schemes. Probabilistic schemes
allow a system with a utilization greater than one to be schedulable,
because they take into account the low probability that a long
execution time is observed. Let us first focus on probabilistic
deadline monotonic priority ordering (pDMPO). We understand
from Díaz et al. [DGK+02] that deadline misses under pDMPO
happen when the backlog is large, i.e., when one or more jobs take
a long time to execute. The bigger the utilization is, the likelier it is
that the backlog is large.

As for probabilistic mixed-criticality (pMC), it features three
lo→hi mode switch triggers. All three triggers are indicators
that the backlog is large: the first trigger activates when a hi job
executes for a long time, the second trigger indicates that a hi job
missed its deadline due to a large backlog blocking its execution,
and finally the third trigger explicitly notes that the system-level
backlog is too large. After detecting these high-backlog situations,
the system under pMC transitions to hi-criticality mode where
lo jobs are degraded, and thus the backlog is decreased. This
ensures that deadline miss probabilities of both lo and hi tasks are
reduced, at the cost of having some lo jobs released in degraded
mode. Most importantly, this is demonstrated in Figure 4.3 Top,
where pMC outperforms pDMPO as well as all other schemes.
Furthermore, in Figure 4.3 Middle, we see how bothDMPhi(1 h) and
DMPlo(1 h) increase gradually with the increase of utilization. The
small difference between DMPhi(1 h) and DMPlo(1 h) comes from
the fact that the system switches to hi-criticality mode whenever a
hi jobs overruns its Cthr

i threshold, which helps hi jobs keep their
deadline. Finally, Figure 4.3 Bottom shows the probability a lo job
is released with degradation. This slight increase is a sign of being
in hi-criticality mode more often, and this quantifies the cost of
probabilistic mixed-criticality scheduling.
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4.7.2.2 ‘Execution Threshold’ Experiment

In this experiment, we varied a design parameter relating to tasks’
execution times Ci: the probability that a hi job overruns its ex-
ecution time threshold Cthr

i . We then inspected how this im-
pacts schedulability under pMC and the probabilistic non-mixed-
criticality pDMPO scheme. Because we used a utilization of 1.4,
deterministic schemes could not schedule any task-sets. The proba-
bility each hi job τi,j overruns its execution time threshold Pr(Ci >
Cthr

i ) is ranged from 5 · 10−12 to 10−4. Ultimately, this experi-
ment demonstrates that it makes sense to use probabilistic mixed-
criticality scheduling if hi-criticality mode is not entered too often,
and the importance of the PDJdeg metric is justified.

Setup. A total of 16 configurations, each with 1000 task-sets, were
generated for this experiment. The configurations have the same
parameters, except for the probability each hi job τi,j overruns its
execution time threshold Pr(Ci > Cthr

i ). The following values for
Pr(Ci > Cthr

i ) were used: {5 · 10−12, 10−11, 5 · 10−11, . . . , 10−4}.
Besides this, the system utilization for all configurations is 1.4, while
all other parameters are according to the description mentioned at
the beginning of Section 4.7.2.

Regardless of the fact that Pr(Ci > Cthr
i ) is varied by 8 orders

of magnitude, we found that the mean execution time per config-
uration changes little. It is between 8.69 µs and 8.70 µs. Among
all tasks in every task-set, the worst case execution time Cmax

i is
287 µs.

Results. The results are shown in Figure 4.4. In the top figure, we
present (10−8, 10−6, 10−5)- and (10−8, 10−6, 1)-schedulability un-
der pMC, as well as (10−8, 10−6,−)-schedulability under pDMPO.
Since by definition PDJdeg ≤ 1, we can interpret (σhi, σlo, σdeg =
1)-schedulability under pMC as a schedulability test which ignores
the PDJdeg metric. In the middle and bottom figures, the box-plots
visualize the 10th, 25th, 50th, 75th, and 90th percentile of each metric.

In Figure 4.4 Top, let us first focus on comparing pDMPO and
pMC when σdeg = 1. In this case, when the PDJdeg metric is
ignored, we see that more task-sets are always schedulable under
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Figure 4.4: (10−8, 10−6, 10−5)-schedulability of task-sets under
pMC and pDMPO, and (10−8, 10−6, 1)-schedulability under pMC,
for various probabilities that a hi job overruns its execution time
threshold Pr(Ci > Cthr

i ) (Top), and the impact this value has on
DMPlo(1 h), DMPhi(1 h) (Middle) and PDJdeg (Bottom)
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pMC than under pDMPO. The reasons pMC scheduling is better
in this case are the same reasons as in the ‘utilization’ experiment:
by switching to hi-criticality mode after certain triggering events,
the system under pMC scheduling reduces the backlog in these
situations, which ultimately makes deadline misses less likely.

Now, let us examine pMC with a realistic PDJdeg bound, i.e.
σdeg = 10−5. As shown in the top figure, it is clear that there
exists a limit after which pMC scheduling is not useful at all, as it
leads to too much degradation. This can be understood by viewing
Figure 4.4 Bottom, where we see the cost of switching to hi-mode.
On one extreme case, when Pr(Ci > Cthr

i ) = 10−4, the system
switches to hi-mode often, on average once every 48.93 µs (not
shown in figure). Then, an average ratio of 0.046 of lo jobs are
released in degraded mode. In a moderate case, forPr(Ci > Cthr

i ) =
10−8, hi jobs overrun their execution time thresholdCthr

i less often,
and lo-mode lasts on average 8.34min. Here, an average ratio of
4.19 · 10−6 of lo jobs are degraded. Finally, on the other extreme
case, when Pr(Ci > Cthr

i ) = 5 · 10−12, lo-mode lasts for 278 h on
average, and only a tiny fraction of 2.09 · 10−9 lo jobs are released
in degraded mode. For many realistic applications, there exists a
limit on the degradation which can be tolerated, before a complete
loss of function happens. Thus we argue that this experiment
demonstrates why the PDJdeg metric is crucial for probabilistic
mixed-criticality scheduling.

Finally, let us comment on DMPlo(1 h) and DMPhi(1 h), found
in Figure 4.4 Middle. These are similar, except the values become
larger for higher Pr(Ci > Cthr

i ) values. We have found that this
increase in DMPχ(1 h) appears as a result of pessimistic assump-
tions introduced in Definition 4.12. We comment more about this
pessimism the next experiment.

4.7.2.3 ‘Maximal Backlog’ Experiment

In the final experiment on randomized systems, the maximum
system-level backlog Bmax was varied. This affects how often hi-
criticality mode is entered, while it has no effect on the lo-criticality
mode. When the occurrence of hi-criticality mode is artificially
increased, we can see the pessimism in the analysis of that mode
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– which we found mostly to be introduced by pessimistic assump-
tions on the initial conditions in hi-mode, as per Definition 4.12.
As in the previous experiment, we tested the (10−8, 10−6, 10−5)-
schedulability of task-sets under pMC and pDMPO, as well as
(10−8, 10−6, 1)-schedulability under pMC scheduling.

Setup. For this experiment, we first generated 1000 task-sets with
a system utilization of 1.2. This high utilization guarantees that no
deterministic scheme can be used to schedule task-sets. All parame-
ters except for the maximum system-level backlog are according to
the description at the beginning of this section. Then, the maximum
system-level backlog Bmax was varied from 40 µs to 600 µs, and
all of the 1000 task-sets are analyzed for every Bmax value. Each
generated task-set has 60 tasks, the mean execution time among all
tasks in every task-set is 10.61 µs, while the maximum execution
time overall is 255 µs.

Results. Figure 4.5 visualizes the results of this experiment. As
done previously , we conducted a (10−8, 10−6, 10−5)-schedulability
test under pMC and pDMPO, as well as a schedulability test under
pMC when the PDJdeg metric is ignored (i.e. σdeg = 1). The
box-plots visualize the 10th, 25th, 50th, 75th, and 90th percentile of
each evaluated metric. By definition, the maximum system-level
backlog Bmax does not impact scheduling under pDMPO at all, so
the schedulability under this scheme is constant.

Regarding the impact on pMC scheduling, specifically on the
two DMPχ(1 h) values, we see two cases. On the one hand, when
the maximum system-level backlog Bmax is sufficiently large, i.e.,
≥ 200 µs, we see that it has a negligible impact on DMPhi(1 h)
and DMPlo(1 h) values. On the other hand, when a small Bmax

causes hi-mode to be entered often, DMPhi(1 h) and DMPlo(1 h)
both increase. Ideally, how often hi-mode is entered should not
impact nighter DMPhi(1 h) nor DMPlo(1 h). The increase is a result
of pessimism introduced in point 4 of Definition 4.12. As the reader
recalls, there we make a pessimistic assumption that all hi jobs are
overrunning their execution time thresholds Cthr

i at the time of
the mode switch. This pessimistic assumption is mainly introduced
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Figure 4.5: (10−8, 10−6, 10−5)-schedulability of task-sets under
pMC and pDMPO, and (10−8, 10−6, 1)-schedulability under pMC,
for various Bmax values (Top), and the impact this value has on
DMPlo(1 h), DMPhi(1 h), and PDJdeg (Bottom)
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to reduce the number of cases under which hi-criticality mode is
analyzed.

The impact the backlog Bmax has on PDJdeg is straightforward.
As hi-mode is entered more often, PDJdeg increases. Because of
this increase, we find that few task-sets are (10−8, 10−6, 10−5)-
schedulable under pMC for Bmax values less than 200 µs. We
can therefore conclude thus the pessimism of hi-criticality mode
analysis does not play a major role in the schedulability analysis
of task-sets under realistic requirements for the maximal permitted
degradation of lo jobs σdeg. Finally, we observe again the main re-
sult from the ‘execution threshold’ experiment: probabilistic mixed-
criticality (pMC) scheduling is better than the non-MC scheme
pDMPO, except when hi-criticality mode is entered too often.

4.8 Extensions and Future Work
In this section, we present an extension to the system model and
analysis which enables less pessimistic results for lo-criticality
mode, and we discuss limitations and possible future research di-
rections.

4.8.1 LO-criticality Mode Model Extension
Throughout this chapter, we modeled the execution time of hi tasks
in lo-criticality mode with the random variable Clo

i , as introduced in
Definition 4.2 and illustrated by Figure 4.1b. We used this model as it
simplified finding initial conditions for the analysis of hi-criticality
mode. Now, we would like to detail another way to model execution
times of hi tasks in lo-criticality mode, which is often found in
related work, i.e., [MDCGE17].

Let us model the execution time of hi tasks in lo-criticality
mode with the conditional probability Clo⋆

i , the condition being the
execution time threshold Cthr

i is not overrun. This value is often
called ‘truncated’ execution time, and it is defined below.

Definition 4.13 Truncated Execution Time: Random variable Clo⋆
i

models the execution time of hi tasks τi, under the condition that
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Figure 4.6: Task execution times, with named values and truncated
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i

they do not execute for longer than Cthr
i :

pClo⋆
i
(u) = Pr(pCi

(u) = u|u ≤ Cthr
i ) ={

pCi
(u)/Pr(Ci≤Cthr

i ) u ≤ Cthr
i

0 u > Cthr
i

(4.29)

By limiting the probability distribution this way, execution times
above the threshold Cthr

i are not allowed. This can be seen in
Figure 4.6, where the conditional distribution retains the same shape
as the original before the threshold, and is equal to zero afterwards.

Note that the ‘trimmed’ execution times Clo
i are by definition

greater or equal to the equivalent ‘truncated’ values Clo⋆
i , with

regards to the ⪯ comparison (Definition 4.1).

Modification to the stochastic analysis. Using Clo⋆
i enables a

less pessimistic analysis. Unfortunately, these variables can not
be used to easily construct a safe initial backlog for hi-criticality
mode, as per Definition 4.12. We are thus required to perform
two lo-mode analyses: one using ‘trimmed’ execution time models
Clo
i for calculating initial conditions in hi-mode, and another using

‘truncated’ execution time models Clo⋆
i for calculating deadline miss

probabilities in lo-criticality mode DMPχ(T ).
Precisely speaking, and using Algorithm 4.2 to represent our

stochastic analysis, with ‘trimmed’ execution times Clo
i one needs

to do the lo-criticality analysis, but calculating deadline miss prob-
abilities of jobs can be skipped (lines 4 and 7). On the other hand,
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with ‘truncated’ execution times Clo⋆
i , one only needs to calculate

the deadline miss probabilities, which is done in lines 2, 4 and 7.
For simulated experiments in Section 4.7.2, the numerical im-

pact of this extension was found to be negligible. We have thus
excluded it from the main analysis in this chapter, but kept here for
completion.

4.8.2 Limitations and Future Work
Our pMC analysis applies for fixed priority preemptive schedul-
ing, but it could be extended to dynamic scheduling schemes as
well. Probabilistic response-time calculus already exists for dy-
namic schemes [DGK+02]. In addition, dynamic-priority mixed-
criticality schemes are found to be relevant [BBD+11a, GSY15].

Regarding our proposed scheme, its main limitation is the pes-
simism of the analysis of hi-criticality mode. This pessimism is due
to the fact that we have a single analysis whatever the reason for
making the lo→hi transition was.

In a future work, it would be possible to do a less pessimistic
analysis of hi-mode by deconstructing the analysis into three sub-
classes, one for each lo→hi mode switch reason. For example,
if a mode switch was caused by a maximal system-level backlog
exceedance, the initial backlog would surely be exactly Bmax. If the
mode switch was not caused by an overrunning job, there would
be no need to assume that carry-over jobs of hi criticality surely
overrun. If the mode switch was caused by an overrunning hi job,
one could introduce cases depending on which job cause the mode
switch.

The pessimism of the analysis for the lo-criticality mode could
be reduced as well, but arguably this would bear less fruit. One idea
here is to estimate the percentage of time a system spends in lo-
criticality mode. In calculating DMPχ(T ) in our work, we assumed
the system is in lo-mode all the time. Replacing this assumption
with a better estimate would bring improvement, however only
for systems which spend a non-negligible amount of time in hi-
criticality mode, which is usually not assumed to be the case.
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4.9 Summary
Modeling tasks’ execution times with random variables in Vestal’s
mixed-criticality model allows for a schedulability analysis based
on the ‘probability of deadline miss per hour’. We presented a
dual-criticality system which operates in either lo- or hi-criticality
mode. In lo-criticality mode, both lo and hi jobs run normally,
but certain optimism towards hi jobs exists: they are required not
to overrun their Cthr

i execution time threshold, a value analogue
to the optimistic WCET in Vestal’s model. hi-criticality mode is
entered when a violation of this optimistic condition is detected, or
when one of the following two events happen: a hi job misses its
deadline, or the system-level backlog exceeds its maximal value. In
this mode, lo jobs are degraded by having a shorter time budget for
execution, so hi jobs have more resources available. This mode lasts
until the system becomes idle.

To characterize such a system, we first defined (σhi, σlo, σdeg)-
schedulability, which quantifies the soft schedulability of a prob-
abilistic mixed-criticality system. The schedulability conditions
determine whether the probability of deadline miss per hour for hi
jobs, the probability of deadline miss per hour for lo jobs and the
probability a lo job is started in its degraded mode are less that the
given (σhi, σlo, σdeg) limits.

Then, we presented an analysis approach. This was done by
splitting the system into two – the lo- and the hi-criticality mode
system – and combining the results. On one hand, a steady state
analysis was carried out for lo-criticality mode, in which the system
is expected to stay for a long time. This enabled us to pessimistically
bound the deadline miss probability of each job, which we then used
to find the probability that any job misses its deadline while in lo-
mode in a certain time period. On the other hand, a simulation of
the transient hi-criticality mode was used to bound its duration,
and to obtain the probability of deadline miss of jobs inside it.
This, together with the probability a lo→hi mode switch happens,
enabled us to find the probability any job misses its deadline while
in hi-mode in a certain time period.

Finally, simulation results illustrate all of the metrics on a sample
task-set, and experiments involving schedulability analysis show
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how various design choices impact schedulability. Here, we show
how probabilistic mixed-criticality scheduling compares to other
schemes, and make a clear case that using pMC makes sense for
most cases, except when the amount of lo job degradation is too
high.
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4.A Notations

Table 4.5: Notations

random variable A
probability function pA(u) = Pr(A = u)
vector representation [pA(umin ) . . . pA(umax)]

⊺

comparison of random variables A ⪰ B
upper bound on random variable A ⪰ A
task set, number of tasks, task i, job j Π, N , τi, τi,j
task period Ti

length of a hyperperiod hp
relative deadline of task i Di

absolute deadline of τi,j di,j
release time of τi,j ri,j
initial phase ϕi

criticality level χi ∈ {lo,hi}
probabilistic execution time Ci ≤ Cmax

i

threshold of execution time for hi jobs Cthr
i

maximal execution time for degraded lo jobs Cdeg
i

trimmed execution time of hi jobs Cloi
threshold of backlog Bmax

response time of τi,j Ri,j

deadline miss probability of τi,j DMPi,j

upper bound on deadline miss probability of τi,j DMPi,j

deadline miss prob. within T for hi and lo jobs DMPhi(T ), DMPlo(T )
degradation probability of lo jobs PDJdeg
backlog at priority level i and time t Bi(t)
convolution operator ⊕
shrinking function of B at value m shrink(B,m)(u)
backlog function bsse (Bi(t), Π, i, t, u)
response time function rta (Bi(ri,j), Π, τi,j)
maximum duration of any hi-mode execution ∆hi

max

expected length of a lo-mode execution ∆lo
exp

w.c. prob. of a lo→hi mode switch at time
t ∈ {0, . . .hp− 1} within a hyperperiod

Plo→hi(t)

w.c. prob. of a lo→hi mode switch at time
t ∈ {0, . . .hp− 1} due to deadline miss

Pdm(t)

continues on next page
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Notations, continued

w.c. prob. of a lo→hi mode switch at time
t ∈ {0, . . .hp− 1} due to backlog exceedance

Pbe(t)

w.c. prob. of a lo→hi mode switch at time
t ∈ {0, . . .hp − 1} due to execution time
overrun

Pov(t)

w.c. prob. of at least one lo→hi mode switch
within a hyperperiod

Phplo→hi

w.c. prob. of at least one deadline miss of
any χ job during any hi mode started within a
hyperperiod

DMPhi
χ

w.c. prob. of at least one deadline miss of
any χ job during a hyperperiod during lo mode
execution

DMPlo
χ

w.c. task set of hi-mode if starting at t Π̂(t)
w.c. duration of hi-mode if starting at t ∆hi

max(t)
w.c. prob. of at least one deadline miss of any χ
job during any hi mode started at t

DMPhi
χ (t)
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5
Conclusion and Outlook

Embedded systems are often designed with adaptive operation in
mind. Plenty of adaption strategies exist, developed for diverse
applications, and targeting different uncertainty sources. Generally
speaking, a system adapts to its variable environment by changing
its mode of operation online, either reactively or proactively. Doing
so causes a temporary change of functionality, for example, some
tasks might be degraded when resources are scarce. In this way,
adaptive systems promise to avoid relevant limitations in the long
term, even if a reduction in performance may occur locally.

Unfortunately, it is a challenge to guarantee such constraints.
In order to understand and predict the operation of an adaptive sys-
tem, one needs to take into account not only the non-determinism
present in the environment but also the system’s adaptive behavior.

To this end, this thesis explores two sources of uncertainties: the
volatile and intermittent harvested energy, and the unpredictable
execution times of tasks. Both a worst-case and a stochastic Markov
analysis are formalized to tackle them, ultimately providing worst-
case and probabilistic performance metrics regarding energy-neu-
trality and real-time constraints. We now recapitulate the main
contributions of each chapter before commenting on limitations and
possible future research directions.
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5.1 Contributions
Worst-case analysis of energy harvesting systems (Chapter 2).
We start with embedded systems harvesting energy from their envi-
ronment, which are subject to energy-neutral operation constraints.
We are the first to discuss the optimal use of an additional backup
battery for such systems. Here, the system’s goal is to realize a
minimal service level with the least amount of backup energy used,
while also maximizing the long-term utility. To this end, we derived
an optimal though practically unfeasible solution to the problem.
We next introduced a proactive adaption strategy, finite horizon
control, based on model predictive control. For the solar energy
harvesting case, we derived novel energy estimation schemes based
on atmospheric transmittance. These methods surpass the state-of-
the-art in terms of accuracy, and they have low computational and
memory overhead, which allows them to be used on small energy
harvesting nodes. We finally use trace-based simulations to illus-
trate worst-case performance metrics for an array of solar energy
harvesting systems, deployed at indoor and outdoor locations, as
well as a real-world system implementation to verify the accuracy
of our analysis.

Stochastic analysis of energy harvesting systems (Chapter 3).
We continue with a new Markov analysis of energy harvesting
systems. This approach also takes into account the uncertainty of
energy consumption created by variability in the execution times of
tasks. Using this analysis, we prove that it is possible to safely obtain
probabilistic performance metrics for a wide range of adaptivity
strategies. Namely, we derive such values as the probability of
failure due to energy unavailability, and the probability that the
system operates in a certain mode. Experiments illustrate these
performance guarantees in diverse solar energy harvesting scenar-
ios targeting multi-year deployment, both for commonly considered
outdoor locations, and for highly variable indoor ones. Finally, an
example design space exploration is conducted, and the accuracy
and pessimism of the analysis are assessed.
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Stochastic analysis of MC scheduling (Chapter 4). Last but
not least, we focus on mixed-criticality systems with real-time
constraints in the probability-of-failure-per-hour format. Using the
pWCET abstraction, we formulate a probabilistic mixed-criticality
scheduling scheme with appropriate reactive mode switch triggers.
This scheme is analyzed using Markov theory and allows us to
present important guarantees: the probability of deadline miss
per hour, both globally and in each mode of operation, and the
probability that a task is executed in degraded mode. Our pMC
scheme clearly outperforms state-of-the-art solutions.

5.2 Limitations and Open Problems
Regarding the worst-case analysis of energy harvesting systems, an
interesting case is when proactive adaptivity schemes are paired
with imprecise energy estimators. Such cases exist in volatile
harvesting environments, where proactive schemes under-perform
reactive ones. In a future work, one might investigate schemes
suited for such scenarios, possibly incorporating information on the
estimator’s precision online in order to switch from a proactive to a
reactive adaptation strategy accordingly.

In its current state, the stochastic analysis of energy harvesting
systems can not consider failure recovery mechanisms nor any
other kind of hysteresis behavior. Future works tackling this lim-
itation would undoubtedly be beneficial. Furthermore, there is a
requirement that random variables modeling harvested energy need
to be independent of one time interval to the next. This was justified
in our solar energy harvesting scenario for a one week time interval,
but for many other scenarios such an assumption is not feasible,
i.e., for solar energy harvesting with a daily time interval, weather
patterns cause dependencies in harvested energy from one day to
the next. Lifting this requirement and incorporating certain forms
of dependence between random variables is a natural next step.

In the real-time domain, our own probabilistic mixed-criticality
scheduling analysis applies to fixed priority preemptive scheduling,
and it could also be extended to dynamic scheduling schemes. We
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additionally note that a high level of pessimism in the hi-criticality
mode analysis exists, which could be reduced with a richer model
of initial conditions in that mode of operation.

Finally, as this thesis has a strong theoretical aspect, a natural
extension would be to illustrate many aspects with practical ap-
plications. Discussed service adaption strategies for energy har-
vesting systems, especially when a backup battery is present, are
particularly great candidates for long-term deployments with strict
requirements on reliability and minimal service levels.
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