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Abstract

Validation plays an important role in the design process of embedded

systems. It is the only way to relate the requirements and specification of

a design to the real, final system. It is further a mean to obtain objective
quality metrics about a system in its target environment, and to gain
confidence in the systems quality. The validation of embedded systems
is challenging. For complex industrial products, about 50 percent of the

complete design time is spent on validation. The validation of distributed

embedded systems is even more complex since these systems introduce

new challenges such as (i) unreliable wireless communication, (ii) the

distributed nature of the system, (ill) limited resources, and (iv) limited

infrastructure for inspecting the system.
In this thesis we contribute towards an increased quality of the design

of distributed embedded systems. Our research on validation strate¬

gies addresses the challenging problems that arise from the peculiari¬
ties of distributed embedded systems such as wireless sensor networks,

reconfigurable-, and wearable computers. The specific contributions are

presented and discussed for different phases and levels of abstraction in

the design and development process:

• An estimation-based validation strategy is presented for wearable

systems consisting of distributed modules with computing- and

communication devices.

• We propose the virtualized execution in distributed embedded sys¬

tems when applications are executed on reconfigurable hardware.

We introduce hardware tasks and an interpreted coordination lan¬

guage which allows a developer to validate and to deploy tasks

separately.

• We discuss the practicability of distributed algorithms and problem¬
atic simulation assumptions on the example of the topology control

problem for wireless sensor networks.

• The Deployment Support Network (DSN) is proposed as a novel

validation strategy for distributed wireless embedded systems. The

DSN is a platform-independent toolkit that allows a developer to test

applications on the real hardware and in a real-world deployment.



Zusammenfassung

Die Validierung spielt eine wichtige Rolle beim Entwurf von Eingebet¬
teten Systemen. Es ist der einzige Weg um die Anforderungen und Spe¬
zifikationen eines Entwurfes mit dem entgültigen System in Beziehung
zu bringen. Es ist weiter ein Mittel um ein sachliches Qualitätsmass eines

Systèmes zu erhalten. Die Validierung von Eingebetteten Systemen ist

anspruchsvoll. Für komplexe industrielle Produkte wird ca. 50 Prozent

der gesammten Entwicklungszeit mit Validierung verbracht. Die Vali¬

dierung von Verteilten Eingebetteten Systemen ist sogar noch schwieriger,
weil diese Systeme neue Schwierigkeiten mit sich bringen, wie z.B. (i) die

unzuverlässige Funkkommunikation, (ii) die verteilte Eigenschaft des

Systems, (iii) beschränkten Betriebsmittel und (iv) beschränkte Infrastruk¬

tur für die Beobachtung des Systems.
In dieser Arbeit tragen wir zu einer verbesserten Qualität im Ent¬

wurf von Verteilten Eingebetteten Systemen bei. Unsere Forschung über

Validierungs Strategien behandelt anspruchsvolle Probleme welche von

den Eigenheiten von Verteilten Eingebetteten Systemen wie drahtlose

Sensornetze, Reconfigurable- und Wearable Computer herrühren. Wir

stellen die einzelnen Beiträge für verschiedene Abschnitte und Abstrak¬

tionsstufen im Entwurf- und Entwicklungsprozess vor:

• Es wird ein Schätzungsverfahren als Validierungs Strategie für

Wearable Systems präsentiert, die aus verteilten Modulen mit

Rechner- und Kommunikationseinheiten bestehen.

• Wir schlagen eine virtualisierte Ausführung in Verteilten Einge¬
betteten Systemen vor, falls Anwendungen auf rekonfiguierbarer
Hardware ausgeführt wird. Wir stellen Hardware Tasks und eine

interpretierte Koordinierungssprache vor, was eine separate Vali¬

dierung und Verteilung von Tasks ermöglicht.
• Wir disskutieren die Anwendbarkeit von verteilten Algorithmen
und problematischen Simulationsannahmen am Beispiel des Topol¬

ogy Control Problems für Drahtlose Sensornetze.

• Das Deployment Support Network (DSN) wird vorgestellt als eine

neuartige Validierungsstrategie für Verteilte Eingebettete Funksys¬
teme. Das DSN ist ein plattformunabhängigesWerkzeugset welches
dem Entwickler das Testen von Anwendungen auf der richtigen
Hardware und im echten Betrieb ermöglicht.
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1
Introduction

Todays, the world is full of embedded systems. In an average car for ex¬

ample dozens of small microprocessors control the stearing, the breakes,

the airbags and many other parts. These microprocessors are embedded,
i.e. they have sensors as input (e.g. the stearing wheel) and they control

actuators (e.g. the breakes). There are many different kinds of embedded

systems. Some are simple like a washing machine, others more com¬

plex such as airplanes or an industrial plant. We speak of a distributed

embedded systems, when it consists of individual components that are

distributed in space and time. In other words, they are not connected to

a central controller and they typically do not share a common time base.

A wireless sensor network (WSN) is an example of a distributed em¬

bedded system. It is a computer network consisting of spatially distrib¬

uted autonomous devices using sensors to cooperatively monitor physical
or environmental conditions, such as temperature, sound, vibration, pres¬

sure, motion or pollutants, at different locations [RM041. The devices in

a WSN, the sensor nodes, are typically small and battery operated, and

consist of a radio, sensors, and a minimal amount of on-board computing

power.

Sensor nodes are deeply embedded into the environment. They are

physically distributed and communicate over an unreliable wireless chan¬

nel. Algorithms must be executed efficiently in terms of energy on tightly
limited resources. This all makes the hard- and software design of WSNs

a very difficult task.

An essential aspect of embedded system design is validation. Valida¬

tion is the process of checking whether or not a certain (possibly partial)
design is appropriate for its purpose, meets all constraints and will per-
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form as expected [Mar03]. Validation is important especially for WSNs,

because the involved uncertainties make it hard in practice to design
correct implementation from the specification.

To verify only at the very end of the design process normally does not

work, since there are large differences between the level of abstraction

used for the specification and that used for the implementation. As a

consequence, validation is required at different steps in the design flow.

For the different phases in the design process and the different levels

of abstractions different validation strategies are required. There is no

single strategy available that solves all problems.

1.1 Validation Techniques for Embedded Sys¬
tems

In this section we will provide a brief overview over the key techniques
for embedded system validation.

1.1.1 Simulation

In simulations, design models are executed typically on general purpose

computers. The design model abstracts from the real design. Choosing
the right abstraction is always a compromise between simulation speed
and accuracy. Faster simulations provide less accuracy.

During the last decade, a number of simulators with different level

of abstraction have been developed that are tailored to the domain of

e.g. wireless sensor networks. Prominent examples are NS-2 [ns2], Glo-

mosim [ZBG98], and TOSSIM [LLWC03].
Simulations are a very common technique for validating designs and

algorithms, since the execution can be easily controlled and observed by a

developer. Furthermore it is possible to simulate a large number of nodes

without the sensor node hardware.

1.1.2 Estimation

Estimation is the calculated approximation of a result which is usable

even if input data may be incomplete, uncertain, or noisy The models

used in estimation are usually simpler than the ones used in simulation.

The power consumption of a sensor node can for example be estimated

considering only the duty-cycle of the nodes. The result of this approx¬

imation is of course less accurate as a simulation with a fine-grained
power-model such as PowerTOSSIM [SHC+04]. However, the advantage
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of estimation is that the calculation is much faster and it does not require
detailed input data. This is important for design space exploration in an

early phase, where a number of design alternatives have to be quickly
evaluated.

1.1.3 Rapid Prototyping and Emulation

Emulation and simulation are similar in the sense that the design is not

evaluated on real hardware. The difference is that emulators are more

accurate because they execute actual application code on a platform which
behaves "almost" like the final system.

Emulation is often applied in prototyping. E.g. a prototype for an

ASIC device can be built using FPGAs. These prototypes should essen¬

tially behave like the final systems, but they may be larger, consume more

power, and have other properties which are acceptable for evaluation.

Emulators are more transparent than the final system, since developers
can better access internal state information. In the case of FPGA-based

emulators, they are also more flexible in the sense that the circuit is re¬

programmable which allows the developer to rapidly evaluate different

solutions. This type of emulation is called hardware emulation.

The definition of software emulation is not as clear as of hardware

emulation. There exist a large number of systems that are referred to as

emulators such as CPU-, terminal-, printer-, or game console emulators.

They have in common that they have the ability to imitate another program

or device. However there is no clear distinction between simulation and

emulation. The two terms are mostly interchangeable in many cases.

The imitation of a processor is referred to as CPU emulation or also

as CPU simulation. There exist a number of CPU emulators for mi¬

crocontrollers that are typically found on sensor nodes. Such emula¬

tors have been enhanced with the functionality of emulating simultane¬

ously multiple networked devices. Examples are ATEMU [PBM+04] and

Avrora[TLP05].

1.1.4 System Test

During the design of embedded systems, testing is usually done for every

layer of abstraction. By applying so-called test-patterns as input, we can

observe the behavior of individual components, or the complete system
and compare it with the expected response.

Testing is essential for wireless sensor networks. Simulation and soft¬

ware emulation are not sufficient as they cannot capture the complex

physical phenomena that appear in real deployments. The influence of

effects such as interference and multi-path fading must be tested with a



4 Chapter 1. Introduction

deployment in a realistic environment.

The deployment of a sensor network can be a major effort, especially in
the case of an outdoor application that comprises a large number of nodes.

Furthermore, testing is usually done not only once, but several times

and the nodes eventually must be updated with new software. Without

special infrastructure, testing sensor networks in a real deployment is

very time consuming. Therefore, researchers have built dedicated sensor

network testbeds that consist of a fixed number of nodes. The nodes

are placed at fix locations in a lab, typically arranged in a grid. The

nodes are additionally wired to a central PC in order to reprogram the

nodes and to collect the test output data. Examples of such testbeds are

MoteLab [WASW05] and the Ceiling-Array of Emstar [EGE04]. These

testbeds are often also referred to as emu/ation-testbeds, as the application
is tested on a platform that behaves "almost" like the actual system.

1.1.5 Formal Methods

Validation with formal methods is concerned with formally proving a

system correct, using the language of mathematics. In order to make

formal methods applicable, a formal model is required. For WSNs, not only
models ofcomputation (e.g. process networks, petri-nets, state-charts) are

used, but also visibility models (e.g. unit disk graph), deployment models

(e.g. uniform or random), and mobility models (e.g. random waypoint).
Formal models are also applied in simulations. However, one differ¬

ence between simulations and the validation using formal methods is that

the results obtained through simulation depend on the input patterns of a

simulation run. Furthermore, simulation can only prove the existence of

a certain property in simulation runs. With formal methods, one attempts
to prove these properties mathematically.

1.2 Visibility, Realism, Scalability and Effort

The validation strategies presented above can be applied to the domain of

distributed embedded systems. We can compare the different strategies
and discuss the advantages and limitations using four criteria:

Visibility: With visibilitywe denote the amount of information of the val¬

idated system that the developer can access. Visibility is important,
when one is not only interested in detecting, but also in localizing
errors. Applied to WSNs, visibility is for example the access to the

state of the distributed nodes or to the state of the network.
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Realism: Not only the amount of state information is important, but

also the quality. Methods which use very high abstractions provide
less realism than methods which can be applied to real deployed

systems.

Scalability: This measure indicates how well a strategy scales to a large
number of nodes.

Effort: With effort we denote the time and the additional infrastructure

that is needed to validate a system.

Simulation and estimation generally provide excellent visibility since

validation is done in a controlled environment such as a single PC. How¬

ever there is a clear trade-off between realism, scale and effort. As an

example, there exist a large number of simulation models for wireless

communication with different levels of abstraction. Some fine-grained
models can simulate the communication with high realism incorporating
interference and fading effects. However, only for a very limited num¬

ber of nodes. For scenarios with more nodes, less complex models are

required in order to keep the resource usage and simulation time practical.
Indoor emulation-testbeds for WSNs provide higher realism than sim¬

ulators because the application is executed on the real sensor node plat¬
form. But there is still a large gap in realism when compared to a real

world deployment. The reason for this is that in testbeds the system is

validated in an artificial environment. Sensor nodes are per definition

tightly integrated into their environment. Small changes in the environ¬

ment can change the behavior of the system significantly. One example
is the wireless communication that is very sensitive to the presence of

interference.

A field-test would provide the required realism. However, field-tests

are very difficult to conduct. In order to achieve the minimal visibility
that is required for validation, an enormous effort is needed.

1.3 Aim of the Thesis

Validation is an integral and indispensable part of the design flow for

both hard- and software based systems. It is the only way to relate

requirements and specification to the real system. Validation is further

a mean to obtain objective quality metrics about systems in their target
environment and, not less important, to gain confidence in the systems

quality. Validation is also important from an economic viewpoint, as

the error correction costs dramatically increase the later the errors are

detected.
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Validation is difficult. This can be seen when looking at the time spent
on validation: For software based systems, it is estimated that about 50

percent of the complete design time is spent on testing. The validation

of distributed embedded systems is even more complex. Some of the

reasons are (a) unreliable communication infrastructure, (b) distributed

nature of the system, (c) limited resources, and (d) limited infrastructure

for inspecting the system.
The validation of distributed embedded systems is an interesting prob¬

lem which requires new research, i.e. new strategies are needed that

improve visibility, realism, scalability and effort.

In this thesis we address this challenge by investigating different levels

of abstraction and applying validation strategies that are adapted to the

peculiarities of distributed embedded systems.

1.4 Contribution

In this thesis we make a number of contributions to the state of the art

in validation and design of distributed embedded systems. In order to

achieve our goal, we present a vertical slice of the design space concerned

and discuss relevant questions encountered in different phases and levels

of abstraction in the design and development process.

The main contribution are the following:

1. We present a new methodology for evaluating promising candidate

architectures in an early design phase in the case of multi-module

wearable systems. The evaluation is based on the estimation of com¬

puting performance, communication delay and the overall system

power consumption. As a further objective our method estimates

the flexibility of the system which depends on the weight and size of

its components and the type of communication that is used between

individual modules. We have embedded the architecture evalua¬

tion into an automatic design space exploration environment that

uses multi-objective optimization and evolutionary algorithms.

2. We have built an FPGA-based emulation framework that emulates a

coprocessor that is reconfigurable at runtime. The coprocessor can

be considered as a hardware task. We present a run-time system
for resource-constrained embedded nodes that is able to execute

applications consisting both of hardware and software tasks. The

coordination of the tasks is described in a formal language which

is interpreted on a CPU. This abstraction allows for the validation

of individual tasks and the performance evaluation of the run-time
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system using simulation and emulation for different configurations.
We have further built two prototype implementations that proof the

functionality of the concept.

3. Many proposed wireless sensor network algorithms have never

been implemented and validated on real sensor node platforms.
In most cases, only simulation results are available that are often

based on impractical or unrealistic assumptions. We present a com¬

plete implementation of a distributed topology control algorithm
for wireless sensor networks. We extended an existing algorithm
with additional heuristics in order to make it practical. We validated

our algorithm with formal analysis, simulation and measurements.

We have further developed a modular framework that allows for

testing topology control algorithms on a large number of real sen¬

sor nodes. We have implemented two different topology control

algorithms on the BTnode platform and tested them with over 50

nodes. By comparing measured with simulated results we provide
valuable feed-back to algorithm designers.

4. We present the deployment support network (DSN), a new method¬

ology for testing wireless sensor networks in a realistic environment.

We suggest to deploy the WSN under development along with a sec¬

ond wireless network, the DSN, with DSN nodes that are attached

to the original sensor nodes. The DSN nodes use topology con¬

trol in order to form a reliable wireless backbone network, which

is used to transport the test- and control data to and from a central

server. We describe the different available services for testing WSN

applications. We compare this methodology with other approaches
such as testing on WSN testbeds and suggest that our method is

more flexible, platform independent and returns high quality infor¬

mation because it allows for testing the applications in a realistic

environment. We present a case study in which our methodology
was applied by an industrial partner for the automated validation

of their wireless product.

The major contributions presented in this thesis have been published
in the following refereed publications IDPP02, ABD+04, DPT04, BDH+04,

BDMT05, DBM05, NBD06, DBT07a, DBT+07b].
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1.5 Thesis Overview

In the following we give an overview over the contents of this thesis (see
also Figure 1.

Design Flow Phase /

Abstraction:

Adapted Validation

Strategy: Discussion:

System
Exploration

Task

Implementation

Algorithms

Implementation /

Deployment

^> Estimation

Emulation /

Visualization

Simulation /

Testbeds

System Testing

Chapter 2:

Performance

Estimation

Chapter 3:

HW Tasks

Chapter 4:

Distributed Algorithms

Chapter 5:

Deployment Support
Network

Fig. 1: Thesis overview.

• In Chapter 2 we describe the performance estimation ofa distributed

embedded system. We present a design space exploration method

for exploring different architecture configurations. We discuss the

overall exploration framework and describe the specification of the

application scenario, the representation of a single design point
and its evaluation where the fitness of the candidate architecture is

estimated for multiple objectives.

• Chapter 3 describes reconfigurable hardware components and their

virtualized execution on an FPGA based emulation environment.

Applications are described as a collection of hardware tasks and a

formal description of the task coordination which is based on the

process network model. This virtualized execution allows for the

deployment of new applications on distributed nodes.

• In Chapter 4 we discuss topology control algorithms. We analyze

typical assumptions that are made in algorithm descriptions and

simulation models and validate the practicability on real resource-

constrained sensor nodes.
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• Chapter 5 introduces the Deployment Support Network as a new val¬

idation strategy for sensor networks. We describe the concept and

its functionality and discuss the gain of quality and realism in the

design process. We further present a case-study that has been con¬

ducted at an industrial partner, who used our prototype implemen¬
tation of the DSN for testing his products.

• Chapter 6 concludes the thesis with an outlook for future research

and a summary of the contributions.
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2
Performance Estimation for

Design Space Exploration

In this chapter, we present efficient performance estimation applied to

the design space exploration of wearable systems. A wearable system
is a distributed embedded system where energy consumption, size and

weight are important factors that need to be minimized.

As described by Weiser [Wei91j and Mann [Man98] a wearable com¬

puting system can be seen as an active extension of the user, enhancing
his intelligence, augmenting his ability to communicate and interact with

the environment, and assisting him in a variety of everyday situations.

Wearable systems need to have many properties that make them sig¬
nificantly different from a conventional mobile machine (e.g. a laptop or a

PDA). In terms of functionality this includes situation and context aware¬

ness, the ability to act proactively rather than just react to explicit user

commands, the ability to overlay complex information over the user's

view of the reality, a high degree of connectivity and a sophisticated user

interface that allows the system to be used while mobile. From the hard¬

ware point of view, three issues are of particular importance. First, the

system has to execute widely varying computational loads with adequate
speed while coping with much stricter power consumption constraints

than most standard mobile systems. Second, it has to combine sensors

and input/output (10) devices placed at different locations on the user's

body into a distributed heterogeneous system, e.g. a display in the glasses
and a motion sensor on the wrist. Finally, a wearable system needs to be

unobtrusive to the degree that it does not interfere with the user's activity
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and does not change his appearance in any unacceptable way.

Implementing and combining those properties into a working system

poses many challenges. In this chapter, we focus on the architecture

evaluation by adapting performance estimation to distributed wearable

architectures. Estimating system performance and properties of such

systems is difficult, because of the varying workloads that are executed on

distributed, heterogeneous computation and communication modules.

In the proposed methodology, we address this challenge by modeling
the complete wearable system including the workload, the application
scenario, and the computation and communication resources. We then

evaluate architectures and scenarios using the models and a analytic es¬

timation of the system performance.
We apply estimation and not simulation for the validation. This has

the advantage that we can evaluate various solutions in short time, which

is important if we want to explore the large design space.

In Section 2.1 we introduce design goals and constraints that appear

in wearable systems and discuss related work. Section 2.2 outlines the

exploration environment. In Section 2.3 we discuss the performance
estimation for different objectives. Section 2.4 explains the multi-objective
optimization process that produces a set of Pareto-optimal solutions. In

Section 2.5 we discuss the results of a case-study and summarize the

chapter in Section 2.6. This chapter is based on [ABD+04].

2.1 Wearable System Design
The design space of a wearable system can be described by the following,
mostly conflicting global goals:

• functionality, providing as much of the wearable features as possible
together with task-specific functionality in an efficient and user-

friendly manner;

• battery lifetime, making the system constantly operational without

the need to change or recharge batteries for as long as possible by

minimizing power consumption; and

• wearability, comprising a variety ofergonomie criteria including size,

weight, correspondence between shape and placement on the body,
radiation concerns, heat and aesthetic issues that are necessary for

an unobtrusive system implementation,

While aiming to achieve these goals the design needs to take four types
of constraints into account:
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1. Usage profiles that specify the required functionality and the rela¬

tive importance of different features. The vision of an intelligent
personal assistant implies a variable, dynamic usage profile with

changing context-dependent applications.

2. Information flowgiven by the necessity of placing 10 devices and sen¬

sors at different locations of the body, which implies a distributed,

heterogeneous system architecture.

3. Physical constraints that provide ergonomie constraints on the weight
and placement of the components on different body locations as

well as the relative importance of the wearability criteria at different

locations.

4. Hardware resources available for implementation that are determined

by the state-of-the-art technology as well as cost, compatibility and
other strategic concerns.

In summary, the design of a wearable architecture can be viewed as a

multi-objective optimization problem. For a known—but highly dynamic-
context-dependent usage profile, it aims to find the optimal assignment
of computation and communication resources to a number of computing
modules distributed over the user's body.

For each module of such an architecture, a choice must be made be¬

tween providing it with enough intelligence to perform computations

locally or sending away raw data for processing on other resources. Fur¬

thermore, each module must combine energy-efficient execution of some

permanently running low-intensity sensor monitoring and evaluation

tasks with the high computing power required by occasional performance
bursts. As a consequence, it can be necessary—even inside individual

modules—to implement heterogeneous, dynamically configurable sys¬

tems, as for example proposed by Plessl et al. fPEWf03].
The dynamic nature of the usage profile implies modeling by means

of an abstract workload characterization rather than by means of par¬

ticular applications. Such a workload characterization must focus on

the temporal variations of the required computing performance and the

communication pattern.

By incorporating these aspects, the design of a wearable system ar¬

chitecture involves the selection of modules, their components and ap¬

propriate communication channels. That way, the system performance
as prescribed by the usage profile is optimized with respect to power,
execution speed, a set of specialized wearability criteria, and cost. The

problem is not unlike design automation tasks from the embedded sys¬

tems domain, for which various automatic design methodologies have
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been developed. However, to the best of our knowledge, no attempt
has been made to apply such methodologies to the specific problem of

wearable computing architectures.

2.1.1 Related Work

Most wearable systems are based on conventional notebook architectures

integrated into some sort of belt or backpack harness. For some purposes,

in particular in well defined industrial applications, such designs arejusti¬
fied and have proved to be successful tools [SS99]. Smailagic et al. [SRSOO]
have proposed a systematic design process for such systems.

When it comes to realizing the vision of a wearable computer as a

context-aware, proactive and intelligent personal assistant, such tradi¬

tional architectures are only of limited value. As Baber et al. [BHW99]
have suggested, distributed and heterogeneous systems consisting of a

mixture of low-power general-purpose processors, signal processors and

special-purpose circuits seem a more promising approach. While this

view is shared by many in the community, few attempts have been made

so far to model, evaluate and implement such systems. In particular,

except for the evaluation of the power consumption of individual de¬

vices [SK97], there are no quantitative results documenting under what

circumstances the distributed, heterogeneous approach actually outper¬
forms classical centralized architectures.

There are various methods available to explore the design space of

computer architectures. However, only a few references will be given
here as it is not the purpose of the work to advance the state of the art

in this area in general. Many known approaches to the design of archi¬

tectures deal with heterogeneous systems consisting of different sorts of

components, e.g. [Wol02. BTT98, Gup95, KC98, LCBK01], or with com¬

munication aspects, e.g. [LRD01]. Some of them particularly deal with

conflicting criteria in the optimization process [Mic94, ETZOO], However,

such methods have not been applied to the design and evaluation of

distributed wearable systems so far. Thus, it is not clear how the pecu¬

liarities of distributed wearable systems can be taken into account. What

especially needs to be investigated is, how existing methods can be ex¬

tended and applied in order to deal with dynamically varying, context

dependent usage scenarios.

2.2 Overview of the Exploration Methodology
The goal of the exploration methodology is to assist the designer of a wear¬

able system in determining which configurations of heterogeneous com-
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Architecture Model

generic model

problem specific model

set of Pareto-optimal

architectu res

Fig. 2: Modular exploration mothodology consisting of three main components: prob¬
lem specification, architecture model and exploration environment.

puting and communication resources distributed over the user's body
are most suitable for a given problem. The major parts of the exploration
methodology are the analytic models, the performance estimation, and

the architecture evaluation. Fig. 2 shows an overview with three compo¬

nents: the problem specification of a particular design under investigation,
the architecture model, which spans the space of possible solutions and

the exploration environment, which conducts the search and derives the

architectures best suited to fulfill the spécifications.

2.2.1 Problem Specification

The problem specification defines the analytic models that are applied in

the performance estimation and architecture evaluation. The description
of a specific design problem involves four steps, which correspond to
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the four types of design constraints outlined in the introduction: usage

profile spécification, information flow specification, physical constraints

spécification, and hardware resource specification.
The usage profile specification characterizes the desired functionality

through a statistical description of the expected variations of the com¬

putational load and the communication pattern over time. In essence,

it contains a hierarchical set of task graphs together with hard and soft

timing constraints. This provides a temporal distribution of the amount

and type of computation that the system needs to perform. The specifica¬
tion also includes data flow patterns, which determine the inter-module

communication load arising when different parts of the computation and

the input/output operations are performed on different modules.

The information flow specification assigns a set of body locations to each

input and output related task of the usage profile specification where the

task can be executed.

The physical constraints specification defines the wearability criteria and

their relative importance. The wearability of a system depends on many
factors ranging from such obvious and easily quantifiable aspects as size

and weight to more subtle issues such as health concerns (e. g. related to

EM radiation or heat dissipation) or aesthetic considerations. In general,
the choice of the relevant factors also depends on the particular applica¬
tion and on the locations at which the modules are placed. To be able to

flexibly accommodate a wide range of different criteria, we use a problem
specific wearability factor.

The hardware resource specification provides a set of computation and

communication channel devices available for the design. The specifica¬
tion includes formulas to calculate the power consumption for different

types of computation and communication load, as well as values for the

measures that are used to calculate the wearability factor.

2.2.2 Architecture Model

The architecture model comprises the main interface between the problem
specification and the exploration environment. It consists of the generic
model, which describes the overall types of architectures considered by
our methodology, and the problem specific model, which incorporates the

design constraints of the problem in question.

Fig. 3 shows the generic model consisting of a set of computing mod¬

ules distributed over the user's body. Each module contains devices

and communication channel interfaces. The devices can be processors,

application-specific integrated circuits (ASICs), sensors or IO interfaces.

For inter-module communication there exists a set of connections. Each con¬

nection consists of one or more physical channels matching the channel
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Module m

(Device d, J <jnterface i, J>

* (Device d2J <jnterface i/>

(Device d3J <jnterface i^>

(Device d4j

Module m:

(Device d, J <>iterface hJ>

(Device d2J interface i2J>

(Device d3j <interface iO>

(Device d4J

__
„ __

_ y Connection e.

<Xhannel q ~^>

«^Channel c2 ^>

<Xhannel c3 J>

Connection e2

<Lhannelc, J>

<Xhannelc2 J>

<Oiannelc3 J>

Connection a

<Xhannel q ^>

Channel c2 J>

<CTiannelc3 J]>

Fig. 3: The generic system model consists of distributed, partly connected modules

containing all possible resources, devices and communication channel interfaces.

The connections comprise a set of available physical channels.

interfaces of the corresponding modules.

The problem specific model is derived by combining the generic model

with the problem specification. It first defines the system topology by
specifying a particular subset of modules and connections that are to be

used. It also specifies the devices that the modules can contain, as well as

the channels that can be used for the connections.

2.2.3 Exploration Environment

As Fig. 2 shows, the performance estimation is embedded into an iterative

search process that is conducted in five steps. First, the design points to be

visited in the search space are determined by deriving a number of can¬

didate architectures from the problem specific model. The tasks specified
by the usage profile are then bound to specific devices. In the third step,
the performance (in terms of execution time and communication delay)
and the execution cost (in terms of power consumption) are estimated.

In the next step, the three optimization criteria, i. e. functionality, battery
lifetime and wearability, are evaluated. Finally a decision is made on

how to proceed with the search. The search is either terminated or the

results are passed on to the first step as a starting point for the selection

of the design points to be visited next in the search space.

The modular concept of the exploration environment allows to use

different search and evaluation algorithms as well as wearability mea¬

sures. In particular, it is possible to employ other scheduling and load

estimation algorithms developed in the parallel and distributed comput-
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ing community in the 'task-device binding' and 'performance estimation'

modules, e. g. based on statistical analytical models, simulation or trace-

based approaches, e. g. [LRD01].
To employ an automatic design space exploration, the optimization

criteria must be formulated in quantitative terms:

• The functionality is defined by the usage profile specification. We

assume that all valid architectures are able to provide the function¬

ality. However, the architecture has an impact on the execution

and communication delay We thus use the delay as functionality
criterion.

• For the battery lifetime to be independent of the particular battery
type, we use the average system power consumption as a quantita¬
tive measure.

• As a measure of a system's wearability, a weighted sum of the wear-

ability factors of all components is used. This allows a flexible

inclusion of different criteria while providing a single quantitative
value, which can be easily handled in the optimization process.

2.3 Performance Estimation

2.3.1 Usage Profile Specification
The usage profile specification intends to capture the workload char¬

acteristics of the wearable system. This includes the variation of the

computation intensity as well as the spatial distribution of computation
and communication. The specification model is hierarchically structured

into tasks t, applications a and scenarios s. Fig. 4 illustrates an example

comprising three scenarios. The tasks constitute the atomic units of com¬

putation and communication. A set of tasks is assembled into an appli¬
cation. A scenario contains a set of applications that run concurrently on
the wearable system within predefined hard and soft timing constraints.

We assume that at any given time, exactly one scenario is active. This

implies that a change in the state of the wearable, e. g. when responding
to a user request, causes a new scenario to become active. With regard to

a given usage profile, the percentage devoted to a particular scenario is

specified by the scenario weight Wscen,

2.3.1.1 Tasks

A task t is defined as a self-contained unit of computation that is charac¬

terized by three parameters: the amount of input data, the computational
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Fig. 4: Example of a usage profile with three scenarios S\, Sz and S3. Each scenario

comprises a set of concurrently running applications: si = {ai,a2,a'i},sz = {a3,a4},

and S3 = {a5,ar,}. Each application contains a set of tasks, e.g. a$ - \t\, tz, £3} and

a% = {U, t$, t$, tj}, represented by a DAG. At any given time, exactly one scenario

is active.

load and the amount of output data. There are no restrictions on the size

or complexity of a task. Thus, a task can be a small signal processing
kernel, a simple utility or a complex computation.

To characterize the computational load of a task, we use its instruction

mix. The technique and the characterization of applications presented
here are the results of the work conducted by Enzler [Enz04].

The instruction mix quantifies the amount and types of instructions

required by a task to process the input data. The instruction mix depends
on the algorithm, the input data, the compiler, and the processor's in¬

struction set, but is independent of any architectural parameters of the

processor such as the number of execution units, cache sizes, or the like.

To simplify the estimation, we have grouped the instructions into seven

representative classes:

• int-cheap integer instructions (logic, shift, addition, subtraction,

comparison),
• int-costly integer instructions (multiplication, division),
• fp-cheap floating-point instructions (addition, subtraction, compari¬

son, miscellaneous),
• fp-costly floating-point instructions (multiplication, division, square

root),
• load and store instructions,
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Fig. 5: Instruction class mix of some selected tasks, depicting the relative instruction

class frequencies during execution.

• branch instructions, and

• miscellaneous instructions.

Every task t is assigned an instruction class mix vector IT, which contains

the number of instructions of each instruction class.

We gather the instruction class mix by means of the processor simu¬

lation tool set SimpleScalar [ALE02]. SimpleScalar's processor model is

based on a RISC architecture with a MlPS-like instruction set. Using the

sim-profile statistical profiling mode, we determine the total number of

executed instructions as well as a detailed breakdown of the instruction

frequencies during execution. We have chosen a set of tasks from typical

application domains in order to represent a characteristic workload of a

wearable system. We have simulated all tasks using out-of-the-box code,

i. e. code without manual optimization. Since the original data sets of

the programs are often small and serve only for test purposes, we have

chosen our own input data sets. Fig. 5 depicts the instruction class mix

for some of the investigated tasks. Table 1 lists the used input and output
data as well as the measured instruction counts.

2.3.1.2 Applications

We define an application a to be a set of tasks t in the form of a directed

acyclic graph (DAG). We denominate the source nodes of the DAG as

input tasks and the sink nodes as output tasks. An application consists

of at least three tasks: one input task, one or more computational tasks
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and one output task. This representation allows to model the computa¬

tion/communication trade-offs involved in distributing the execution of

an application onto different devices. For this purpose, the input and

output tasks are treated in a special way: their computational loads are

defined to be zero. In this manner, input and output tasks may be assigned
to the wearable's 10 devices while the computational tasks are assigned
to the computing devices. This reflects the fact that many 10 devices,

e.g. sensors, do not have any computation capabilities. However, if

an 10 device, e. g. a smart sensor, provides computation capabilities,

computational tasks can be assigned to it as well.

2.3.1.3 Scenarios

The task specification determines the amount of computation and com¬

munication that needs to be performed on the wearable system. In a

particular scenario s, these figures are translated into computation and

communication requirements by assigning two timing parameters to each

application: The repetition frequency jR and the maximal latency Dmax ac¬

ceptable for execution.

Typically, wearable systems do not feature such stringent real-time

constraints as e. g. embedded control systems. The real-time constraints

of a wearable system rather come from applications that require a contin¬

uous, periodic processing pattern. Examples for this are the evaluation

of context sensor data or the processing of audio and video frames. Our

specification model incorporates such real-time constraints via the rep¬

etition frequency R. However, many applications are not real-time but

latency constrained. A user request satisfied within about 100 ms is usu¬

ally perceived as instantaneous [SN97]. The latency constraints are thus

an issue of user preferences. The system's user friendliness can be treated

as a soft optimization criterion.

Fig. 6 outlines the computing power requirements of some of the

investigated applications. These performance figures have been gathered
by combining the measured numbers of executed instructions of the tasks

with assumed values for R or D,mx as listed in Table 1. The results show

the diverse requirements of the different application types. Note that

the ranges have been intentionally set large to cover a wide variety of

scenarios.

2.3.2 Information Flow

The information flow specification is based on the fact that every possible
input/output signal is associated with a particular input/output task of

the usage profile, e. g. whenever output is required on a display the
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Fig. 6: Computing power requirements of some selected applications.

corresponding application contains an appropriate output task.

The information flow specification starts with a set of possible loca¬

tions P = {p\,pz,...}, which are relevant for a particular application. Each

task t is then assigned a subset of locations P( QP where the task could

potentially be executed.

2.3.3 Physical Constraints

Physical constraints reflect wearability considerations that determine how

obtrusive the system appears to the user. Obvious factors to be consid¬

ered are the size, weight, EM radiation emission and heat dissipation of

the system. However, depending on the application, the user's personal

preferences and the location of the system components on the body, dif¬

ferent factors might be relevant and/or they might be given a different

level of importance.

Deciding which factors are important for the wearability of a system
is up to the ergonomie research and social acceptability studies and is

not discussed any further in this work. Instead, we focus on providing
a flexible mechanism for the inclusion of different constraints and their

respective importance in the architecture evaluation. This is done through
a wearability factor and a power weight vector.
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Wearability factor

The wearability factor is calculated by a wearability vector w and a weara¬

bility weight matrix W. There is one wearability vector for each resource.

Each element of the vector wis devoted to a different factor influencing the

wearability. The elements of the matrixW specify the relative importance
of the factors, addressed by the wearability vector for different body lo¬

cations. It has one column for each location. The pth column W? contains

all weights for location p. The abstract wearability factor of a resource

placed at a particular location is then given by the dot product Wp w.

These abstract values are then used to compute the system wearability

Power weight vector

Batteries and power generation devices or power transmission wires can

be more or less burdensome depending on the location of the module. In

addition, some body locations provide much better conditions for power

generation than others. Large area solar cells for example can easily be

placed on the outer, upper back surface of clothing. By contrast, energy

generation in the glasses is rather difficult. To reflect these considerations,

the power weight vector Wp specifies a set of location dependent, problem-
specific weights for the power consumption of modules. If a module is

placed at a location p then its power consumption is scaled by multiplying
it with the pth element of the vector wp.

2.3.4 Resource Specification: Computing Devices

The resource specification describes the computing devices and commu¬

nication channels, which are potentially incorporated into the system
under investigation. The specification consists of three parts: (a) a set

of parameters used to describe each device or channel, (b) formulas that

in consideration of a particular workload translate these parameters into

power consumption and delay values, and (c) a set of accordingly parame¬
terized devices and channels. This section concentrates on the computing
devices; the next section discusses the communication channels.

2.3.4.1 Specification Parameters

Each computing device d is characterized by the execution speed, some

electrical parameters, and the wearability factor. Currently, the memory

architecture and the memory energy consumption are not modeled. As an

approximation we assume that the memory configuration is independent
from the computing device configuration.
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Execution speed

The execution speed specification consists of the clock frequency of a

device and the number of execution cycles for the instruction classes.

To accommodate the fact that many devices can operate in a frequency
range, a minimum clock frequency fmin and a maximum frequency fimx
are specified.

For each device d, the number of execution cycles of each instruction

class is given by the instruction class execution time vector 1q. The instruc¬

tions classes correspond to the classification defined in the usage profile.
The average execution time for each class is calculated from data sheet

values. Non-implemented instructions are emulated by existing instruc¬

tions. For superscalar devices, we follow the approach by Cvetanovic

and Bhandarkar [CB96] in estimating an average number of cycles per

instruction (CPI), which describes the speedup resulting from instruction

parallelism. We assume a CPI of 0.83 for a 2-issue processor and a CPI of

0.58 for a 4-issue processor.

Often, field-programmable gate arrays (FPGAs) or ASICs are em¬

ployed in applications with critical constraints on performance or power

consumption. Since these devices may not rely on an instruction set, the

instruction-based specification approach is not applicable. Instead, these

cases can be considered at task level: a task implemented on an FPGA or

ASIC can be incorporated directly as a task-device pair with simulated

or measured execution time, energy consumption and wearability factor.

Electrical parameters

The electrical parameters characterize the power consumption of a de¬

vice. We consider three operation modes: sleep, idle and execution. The

specification consists of the sleep power P, (sleep mode), the idle power

Pi (idle mode), and the energy consumption per cycle E (execution mode).
The idle and sleep power figures are currently derived from data sheet

values. For the execution mode, we rely on an approach proposed by
Sinha and Chandrakasan [SC01J, which employs instruction energy pro¬

filing. Based on their observations, we assume that the energy consump¬

tion depends only on the execution frequency of the instructions, but not

on their type. The results reported in [SC01] show that for Hitachi SH-4

and SA-1100 devices the accuracy lies within 8%.

In order to take dynamic voltage scaling (DVS) into account, minimal

and maximal energy consumption per cycle Emin and EmHX are specified.
Emin represents the energy consumption per cycle when running at the

minimum cycle rate fmiII and at the lowest possible voltage. Accordingly,
Emax refers to the maximum frequency fnmx and the required higher volt¬

age. The energy consumption per cycle at frequency / is approximated
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with

E = Edyn + Estai = p\ •

7— ) + p2 -7^ / (2.1)

where the parameters pi and pi are derived from the Emin and Emax values

[PLS01]. At a frequency increase, the dynamic part increases proportion¬

ally to the square of / while the static part decreases linearly due to the

shorter computation time.

2.3.4.2 Performance Calculation

The performance evaluation of a set of tasks is based on the following
equations for delay and for power consumption. First, the plain execution

time TP of a task, which runs on a device d at a cycle rate f, is calculated

with

Tt = ?r-fD-j, (2.2)

by using the dot product between the instruction class mix vector It and

the instruction class execution time vector Iq. Taking all the tasks into

account that run on device d, we define the total load LD of device d as

LD = £Te(t).K(t) , (2.3)
ten

where Tc(r) denotes the plain execution time of task t and R(t) denotes its

repetition frequency, which is identical to the application repetition fre¬

quency. By considering the device load, we define the effective execution

time Te{ of some task as

[«f
l~(Ln-Te-R)

(2.4)

We assume that on average a task is completed within TCf ITCGK02J. The

effective execution time is used by the exploration environment to verify
the application's timing constraints. Finally, the power consumption Pp
of a device d is calculated with

~d

Ps ifLD = 0/

(1 - LD) -Pj + Lo-E- f if 0 < Lu < 1
, (2.5)

not valid if Lq > 1
.

We assume (a) that a device with zero workload switches to sleep mode,

and (b) that a device that is not operating at full capacity switches to idle

mode whenever possible. The term E • f represents the power consump¬

tion in execution mode.
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Device 'min

[MHz]

hmx

[MHz] [nj]
Type

MSP430F13x 4.15 8 2 low-performance CPU
MSP430C33xa 1.65

1 __

3.8 4 low-performance CPU
PIC16LF87x-04 10 0.7 low-performance CPU

UPD78083, 8bit - 5 0.55 low-performance CPU

StrongARMSA-1110 59 251 2.8 medium-performance CPU

XScale 150 1000 1.8 medium-performance CPU

SH-4 - 200 7.5 medium-performance CPU
AT91M40807 16 40 3.86 medium-performance CPU

TMS320C55xx (16bit) - 200 1.7 integer DSP

TMS320VC-150 - 75 2.7 floating-point DSP
ADSP-2116X - 100 1.9 floating-point DSP
PowerPC 440GP - 400 7.5 desktop CPU
Ultra Sparc III - 950 88.9 desktop CPU

TM5800 367 800 7.5 desktop CPU

a internai multiplier

Tab. 2: Some example computing devices

2.3.4.3 Device Set

The specification of the device set is based on a classification of the devices

into five classes: low-power and low-performance CPUs (including PICs

and micro controllers), low-power and medium-performance CPUs (sys¬
tem clock higher than 25 MHz), integer DSPs, floating-point DSPs, and

desktop CPUs. For each class, representative devices have been selected

and investigated as summarized in Table 2.

2.3.5 Resource Specification: Communication Channels

In the case of wearable systems, communication between the different

modules plays an important role. In contrast to conventional distrib¬

uted computer systems, there is a large variety of dynamically varying
communication demands on one hand and a diverse set of possible com¬
munication media and protocols on the other. Therefore, we develop a

corresponding unifying model that leads to the estimation of the relevant

transmission parameters such as bandwidth, packet delay and power

consumption for a shared communication channel with bursty transmis¬

sion.

A communication channel c serves as interface between two mod¬

ules that consume and generate data. The tasks running on the modules

define the communication requirements for these channels. One objec¬
tive in the design of the communication channel is to reduce the power

consumption and hardware overhead for the transmission of data while

still dealing with the dynamics of a wearable system. This goal can be
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achieved by means of two well known strategies: sharing of channels

between different tasks that exchange data, and collecting data to enable

a transmission in the form of bursts. First, we describe the parameters
which characterize the tasks and communication channels.

2.3.5.1 Communication Channel Model and Specification Parameters

For the estimation of the communication properties we assume that each

task periodically generates data. Each of the n periodic inputs k is char¬

acterized by sending 1^ data units with a period t*. A maximal deadline

Öjc is associated with every data sample of size 4 in order to specify when
the transmission of the data sample needs to be completed (see also Fig. 7

left side).

All channels are assumed to be bidirectional and to support acknowl¬

edged error free data transfers. A channel type has a maximum data rate

Bmax and an end-to-end delay Td of data packets. We distinguish between
four operation states for each channel type: transmitting, where data is

transmitted with the maximal data rate Bmax; receiving, where data is re¬

ceived; idle, where the modules are still connected to each other but no

data is transmitted; and standby, where the power consumption is low

while the device can still be controlled.

A connection requires a transmitting and a receiving unit, introduced

in the generic system model as communication channel interfaces. For

the standby state, we thus have a power consumption of 2 • Ps. When data

is transmitted/received, the power consumption is Pa - Ptx + P[X. The

transition from state standby to state transmitting/receiving takes time Tj
with power consumption Pa. As long as the channel stays connected and

is not transmitting/receiving data, the devices are in an idle state with a

power consumption of 2 • P,.

We consider two modes (Fig. 7): in continuous mode, the channel per¬
forms the sequence idle-transmitting/receiving-idle, and in burst mode

we find standby-transmitting/receiving-standby We suppose that the

communication channel chooses the most power efficient mode that still

satisfies the delay and bandwidth constraints.

2.3.5.2 Performance Calculation

The performance evaluation ofthe continuous and burst mode is based on

the following equations for the power consumption and communication

delay
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Fig. 7: Model of the communication demand of tasks (left) and continuous and burst

modes (right).

Continuous mode

The worst case delay Tm: occurs if all channels submit their data at the

same time, resulting in

Twr =
SiA

+ Ta . (2.6)

The channel power consumption is given by

Pc= u-Pa +2(1 - u) P, , (2.7)

where u = B~^axY!U\ h/tk represents the channel utilization.

Burst mode

For modeling purposes, we assume periodic activity of a channel. We

calculate the maximal period t* such that all delay constraints for the

transmission are satisfied. In addition, we determine the maximal size f

of a burst, i. e. the maximal amount of data to be transmitted. Based on

this information, we calculate the power consumption. It can be seen that

all deadlines are satisfied if the period of the channel is t* = mini<t<„(6jt/2).
We get the worst case delay for transmitted data packets

Twc=mln(ôi) + Td . (2.8)
l<k<n

Considering the case that all tasks start sending their data at the same

time, we get the maximal burst size

(2.9)

As we switch between two bursts from transmitting/receiving to standby
and back to transmitting/receiving, we require that P/Bmax + T-, < t* for
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Channel Type Ptx

ImWj [mWl

P,

[mWj

P

[mW] [ms]

2Td

[msj
&
max

IMbit/sJ

REM TR1000_PIC 39 16 12.8 7.8 100 50 0.115

Bluetooth P2P 151 150 71 17 950 155 0.768

Bluetooth P2M 204 188 134 17 890 128 0.768

Bluetooth PC-Card 425i 160 160 1200 77 0.768

802.11a PC-Card 1416 1429 1406 129 1000 1 54

802.11a PC-Card PSa 1558 1525 119 93 1000 2 54

802.11b PC-Card 1115 1175 1035 225 1000 1 11

802.11b PC-Card PSa 390 450 235 225 1000 63 11

lOObase PC-Card 505 518 389 106 1000 1 100

UART Transceiver 125 125 0.99 0.0033 10 1 0.235

USB Bridge 149 149 3.3 3.3 100 1 12

Firewire Bridge 716 716 254 1.5 100 1 400

CAN Bus Controller 33 33 1.2 0.3 100 1 1

I2C Bus Controller 7.5 7.5 7.5 0.012 10 1 0.100

a

power save mode

Tab. 3: Some example communication channel types

using burst mode. Finally, the power consumption is calculated by av¬

eraging the time intervals in which the communication channel is in its

different states. We obtain

Pc=u-Pa + ^-Pa + 2(l-u-^)-Ps • (2.10)

2.3.5.3 Device Set

We consider wired and wireless channel types of the four classes: low-

end wireless, high-end wireless, low-end wired, and high-end wired. For

each class representative variants have been selected and investigated as

summarized in Table 3.

Measurements of the power consumption in each operation mode

have been performed for fully loaded channels. Furthermore, the startup
time for initializing the device and setting up a channel T,- and the round

trip time of a packet 2 • T^ has been measured. For those channel types
that were only available as a chip set, the data is derived from data sheets.

2.4 Exploration Environment

The generation of a candidate architecture involves two steps: (1) the

combination of the generic architecture model with information from the

problem specification, leading to the problem specific model, and (2)

picking a particular configuration out of this search space.
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Fig. 8: The module resource set specifies the types and channels that a module can

contain. The task resource set defines for each task on which modules and on

which devices the task can run.

2.4.1 Problem Specific Model

The problem specific model provides a set of constraints on the system

topology, the resources available within each computing module, and the

assignment of tasks to modules.

• System Topology: The system topology determines which modules

the system contains and how they can be interconnected. It specifies
a set of modules M and an interconnection matrix I For each pair
of modules uij, my the corresponding matrix element iy is set to 1 if

a connection exists between them, otherwise it is set to 0.

• Module Resource Set: The module resource set specifies the types of

devices and channels that a module can contain. For every mod¬

ule m, a subset of devices Dm ç D is defined that m can contain.

Similarly, the selection of each connection is restricted to a subset of

channels C'-> Q C from the set of available channels.

• Task Resource Set: The task resource set describes on which modules

and on which devices a certain task can run. For each task t it

specifies a subset of modules Mf ç M and a subset of devices

Df ç D on which t is allowed to be executed (see Fig, 8).

2.4.2 Architecture Representation

Picking a particular architecture out of the search space, which is defined

by the problem specific model, is done through allocation functions and

h-»bindings. For every module m, the device allocation function ct^ : D

{0,1} assigns to each device d e Dm the value 1 (allocated) or 0 (not



32 Chapter 2. Performance Estimation for Design Space Exploration

allocated). In a similar way the channel allocation function ctf-, : Cij i-> {0,1}
is defined for each connection between modules.

The assignment of a task to a particular device on a particular module
is done by the task-device binding. Because of the correspondence between

tasks and body locations given by the information flow, the task binding
implicitly restricts each module to a subset of certain body locations: if

task t is to be executed on module m, then module m can only be placed
at a location p Pr. Obviously, only such tasks can be bound to a module

for which a valid location can be found. This means that the set of valid

locations for a module is defined as the intersection of the locations of the

corresponding tasks that are allocated to this module. The assignment of

a module to one of the valid locations is performed by the location binding.

2A3 Architecture Evaluation

The basic approach is outlined in Fig. 2. The exploration environment per¬

forms an iterative search process. It maintains a set of wearable system
architectures described by the allocation and binding functions. It iter-

atively adds new architectures by changing promising architectures and

removes less promising architectures. The search process is conducted

in five steps, where the architecture evaluation and architecture selection

are described in some more detail.

Due to the modular nature of our methodology, the investigation of

alternative algorithms and methods is possible in all of the five steps.

However, the exploration of a huge search space demands for an effi¬

cient estimation of the quality of candidate architectures. In the current

implementation, we apply first order models, which however, could be

replaced by more sophisticated methods based on statistical modeling,
simulation or traced-based approaches.

Based on the estimated execution cost and the performance of each

architecture, the evaluation unit computes the values for the three opti¬
mization criteria.

2.4.3.1 Functionality

The functionality criterion is evaluated by means of the two application

timing constraints R and Dmax. While the repetition frequency is treated

as a hard constraint, we regard the maximal latency as a soft constraint

and allow it to slightly be exceeded. We use the accumulated differences

of the estimated latencies D and the specified maximum latencies Dmax to

measure the functionality.
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2.4.3.2 Battery Lifetime

As a quantitative measure of the battery lifetime, we use the average

system power consumption. The following equations show how the

power consumption is determined. The module power consumption
Pmod is the accumulated power consumption of all allocated devices and

channels for a specific module m in a scenario s. This sum is weighted
with the element corresponding to location p of the power weight vector

W/>:

^=E^^P?4E«c-Wp-P?, (2-11)
dç.!DJ" C6.C"

where the device power consumption PD and the channel power con¬

sumption Pc are calculated with (2.5), (2.7) and (2.10). The scenario power

consumption Pscen of a specific scenario s is defined as the accumulated

module power consumption Pmo(j of all modules m:

Ps
A

seen
= E P% • (2-12)

me.M

Finally, the system power consumption is defined as the accumulated

scenario power consumption Pscm of all usage scenarios s e S, weighted
with the scenario weights Wsccn:

V Ps Ws
P — s!^ scm sccn (7 1 X\

yscenUses W<

2.4.3.3 Wearability

The module wearability factor Fmo(i is the sum of the abstract wearability
factors of all allocated resources for a specific module m at a given location

p. The wearability vectors of computing devices wD and communication

channels wc are weighted with the weight vectors corresponding to the

location of the module:

Cd^ £a^#p-#D+2Vc-VK#c • (2.H)
<feDra ceO»

The system wearability factor Fsys is defined by the sum of the module

wearability factors Fmml of all modules m.

*V=2>£f (2-15)
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2.4.4 Architecture Selection

The main challenge with the exploration of the design space lies in its size,

because of the combinatorial explosion of possibilities with an increasing
number of devices, tasks and locations. There are several possibilities for

exploring the design space, one of which is a branch-and-bound search

algorithm where the problem is specified in the form of integer linear

equations [Mic94]. However, in case of non-linear fitness functions and

multi-objective criteria it is advantageous to use evolutionary search tech¬

niques IBTT98, ETZOO].
In addition, we are faced with a number of conflicting objectives trad¬

ing the system wearability factor against power consumption. There

are also conflicts that arise from the different usage scenarios, which are

defined by sets of applications with associated maximum latencies and

repetition frequencies. As a consequence, the binding of tasks to resource

instances and the delay requirements may vary between scenarios. The

goal of the selection unit is to determine implementations with Pareto-

optimal fitness vectors. The architectures associated with Pareto-optimal
fitness vectors represent the trade-offs in the wearable system design. In

the current implementation we rely on an evolutionary optimization al¬

gorithm that has been successfully used for similar problems [TCGK02],
For the selection, we use the well known evolutionary multi-objective
optimizer SPEA2 [ETZOO, ZLT01].

2.5 Exploration Results

In this section, we focus on the detailed discussion of a proof-of-concept
case study Although the considered system is not very complex, it rep¬
resents an important class of wearable systems. We emphasize on the

most important features of the simulation environment and provide first

insights into the trade-offs involved in the design of wearable comput¬

ing systems. We have also applied the concepts of the proposed de¬

sign methodology to characterize the WearARM [LAT+01] and WearNET

[LJS+02] demonstrator platforms. We explain the performance gain of

the Pareto front compared to the WearARM/WearNET platform. To il¬

lustrate some further interesting points of investigation, we conclude the

section with a brief discussion of an additional experiment: a system that

includes a wireless connection to an external computing device.

2.5.1 Case Study Description
We consider a system in a mobile environment aimed at interactively dis¬

playing and recording JPEG images and having simple network access.
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Module microphone

Audio input:

Speech recognition

Module main

Control and data processing
Storage

Module visual-head

Video output: Head up display
Video input: Camera

Module motion-wrist

Motion input: Mouse

Fig. 9: Outline of the system investigated in the case study. Shown are the five locations

with the assigned input/output tasks and the interconnection of the modules.

Fig. 9 outlines the example system. Information is displayed on a head

up display unit, which also comprises an integrated camera for image ac¬

quisition. Speech commands via a microphone are accepted and a simple
wrist-mounted motion sensor is used as mouse replacement. In addition,
the motion sensor and the microphone are used for context monitoring.
As has been shown in [LJS+02], the combination of these two sensors with

appropriate background information on the user's whereabouts allow to

derive complex information on his activity.

2.5.1.1 Usage Profile

We specify the workload of the system by five scenarios. Most of the

time (70 percent) context monitoring and recognition tasks are running
and evaluating the motion and sound signals. The remaining 30 percent
of the time is equally partitioned into scenarios that combine the context

monitoring applications with (a) an image display application, (b) an

image recording application, (c) a speech recognition application, and (d)
a set of network access related applications.

2.5.1.2 Information Flow and Physical Constraints

Each input/output task is assigned to one or several locations. In particu¬
lar, the display output and the image recording input tasks are assigned
to a location on the head (visual-head) to target a combined display/camera
module worn in the glasses. The motion sensor input tasks are assigned
to a location on the wrist (motion-wrist) and the audio input tasks to a

location near the neck (microphone). A fourth location (main) is defined

on the lower back for a central computing module, which connects all the

peripherals.
The wearability weight matrix and the power weight vector are die-
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Designs: A B | C WearARM/WearNET
Devices*

main XScale XScale XScale SA-1110

visual-head TMS320C55xx TMS320C55xx TMS3Z0C55XX TMS320VC-150

motion-wrist - MSP430F13x MSlM30F13x MSP430C33x

microphone -
-

Connections to module mainb

visual-head Bluetooth PZP Bluetooth PZP CAN USB

motion-wiist RFM KFM I2C UART

microphone RFM RFM 12C UART

a
see table 2 for full name and description.

b
see Table 3 for full name and description

Tab. 4: Example implementations of design points in Fig. 10

tated by the placement, with the location visual-head being highly sensitive

to wearability and power factors and the location main being fairly insen¬

sitive to both. All connections can be either wired or wireless, but we

punish wired connections with increased wearability weights. In par¬
ticular for the connections visual-head^main and motion-wrist^main, we

consider wired connections expensive, because wires running between

different body parts are rather disturbing. For the two locations visual-

head and motion-wrist, wired channel interfaces are punished by a factor

of 5 and the location microphone by a factor of 3 compared to the location

main.

2.5.1.3 Resource Specification

For the exploration of the case study system we use the hardware devices

described in Sections 2.3.4 and 2.3.5 and listed in Tables 2 and 3.

2.5.2 Results

Fig. 10 shows the final population of a design space exploration run

after 500 generations with a population size of 100 architectures. The

optimization run took less than 20 minutes on a SunBlade 1000. Each

dot in Fig. 10 represents a Pareto-optimal system architecture including
the set of allocated devices in the modules, the choice of channels for

the module connections, and the binding of tasks to devices for each

scenario. Table 4 lists the device and channel allocation of three selected

design points and our WearARM/WearNET system to give an example of

the trade-offe involved in the wearable system design. Fig. 11 illustrates

the example architecture B.

The allocation of the channels is a dominating factor. The architectures

B and C have the same CPU resources, but a different communication

channel selection. Power and wearability differ by a factor of 3. In

general, we can say that in the lower right region there are exclusively
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Fig. 10: Final population ofa design space exploration run. The dotted line represents the

Pareto front with the Pareto-optimal design points. All points on the upper right
side of the Pareto front are dominated by at least one Pareto point. The figure
also shows three selected architectures (A, B, C) and the WearARM/WearNET

system for comparison.
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Fig. 11: Example design point B. A connection to an external module extension is illus¬

trated (see Section 2.5.3).
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solutions with wireless connections. Moving to the upper left region we
find solutions that increasingly use wired connections, which are more

power efficient but less wearable.

We have applied our design methodology to characterize our Wear-

ARM/WearNET system. The fitness values are about a factor of 2 away
from the Pareto front. However, we can explain the improvements re¬

quired to reach the Pareto front. The StrongARM SA-1110 needs to be

exchanged with the latest Intel ARM CPU (XScale), which was not yet
available during system design. The same applies to the newer DSP in

the visual module. To reach the Pareto point C, we need to switch from

the standard computer connections (e. g. RS232) to more power-efficient
ones (e.g. I2C bus).

We observe that the smallest implementation—architecture A—is not

completely centralized. The reason for this is the frame buffer, which at

least requires a simple processor to be assigned to the visual-head module.

Given the necessity of such a device, it may be advantageous to allocate

a more powerful device, which is capable of executing additional tasks

such as JPEG encoding and decoding. Indeed, the exploration has shown

to evolve to exactly this solution.

2.5.3 External Module Extension

For computationally intensive tasks, wearable computers often use exter¬

nal compute servers to which data is sent for processing via a wireless

connection [TPB98, KKS01]. In our methodology, such an external server

can be modeled as a module that requires a wireless connection. Since

wearability and power consumption of an external server have no impact
on the wearable, we set the wearability and power weights to zero. This

means that any resources on the server are 'free', except for the commu¬

nication costs.

As an additional experiment, we have chosen an image recognition
application that optionally compresses and decompresses the image to

reduce the costs of outsourcing. This setup has allowed us to perform a

series of simulations varying the computational intensity, i. e. the image
size, of the recognition task. Surprisingly, the external module was only
used in those cases where no mobile processing device was able to per¬

form the computation. In all other cases architectures without a link to

the external module were chosen. The costs of maintaining a high-speed
wireless link outweighed any computational savings.

The results of the exploration are different, if we force an external

wireless channel such as WLAN to be part of the system (which is true

for most networked systems). In this case, outsourcing some tasks to

the external device is indeed more power efficient. The question as to
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which tasks are to be outsourced depends strongly on the computation to

communication ratio and the type of the wireless connection.

2.5.4 System Robustness

The resulting architectures of a design space exploration run depend on a

large number of parameters for the usage profile, the hardware resources

and the architecture evaluation. In order to check the robustness of our

implementation against small changes in the parameter set, we have

applied a sensitivity analysis.
We have assigned an uncertainty range to each parameter class. We

also performed several simulations with a parameter set that has been

randomly modified within the specified uncertainty range. Fig. 12 shows

the result. The solid line represents the simulation result with the unmod¬

ified parameter set, whereas the dotted lines denote the simulations with

an uncertainty of up to 30 percent. The encircled design points represent
one sample architecture. All simulations within this uncertainty range
have come up with this characteristic architecture. However, if we fur¬

ther increase the uncertainty ofsome parameters such as the device power

consumption, we see substantial differences in the resulting architectures

of the simulations. This analysis provides a sense of the robustness of the

system and of the implications of changes in the parameter set.

2.6 Summary
Wearable computing systems are intelligent, environment aware systems

unobtrusively embedded into the mobile environment ofthe human body.
The design of such heterogeneous and distributed systems needs to ad¬

dress a variety of conflicting criteria. These include the ability to effi¬

ciently execute dynamic workloads, the necessity of placing sensors and

IO modules at different locations on the user's body, and stringent limits

on size, weight and battery capacity.
The performance estimation of such systems considering the given

constraints is difficult. We developed an estimation method that is based

on the analytical models of (a) the envisioned usage profile, (b) the

physical constraints, (c) the information flow requirements and (d) the

deployed computing and communication hardware resources. Estima¬

tion algorithms are developed yielding performance, power consump¬

tion, cost and system wearability measures. Embedded in an automatic

and multi-objective design space exploration environment that evolves a

set of Pareto-optimal wearable architectures, these algorithms provide a

methodology for reliable, quantitative analysis and systematic design of

wearable systems.
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• 20-30% uncertainty

sample architecture

0 with equal device and
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Fig. 12: Solution set of a sensitivity analysis. Each line is the Pareto-front ofan individual

simulation run where we randomly modified the ressource specification (Table 2

and 3). For every parameter, a random relative uncertainty between 20 and

30 percent has been added. The encircled design points represent one sample
architecture. All simulations within this uncertainty range have come up with

this characteristic architecture.



3
FPGA Emulation and

Virtualization of Hardware Tasks

Field-programmable gate array (FPGA) emulation is traditionally con¬

ducted to validate application-specific integrated circuits (ASICs). Since

finding and correcting errors in hard-wired ASICs is an enormous effort

and very expensive, the circuits are prototyped on FPGAs and validated

there. FPGAs are reconfigurable. Therefore changes in the circuit can be

made with minimal effort.

In recent years, FPGAs have become larger and more efficient. As a

consequence they are also employed as custom computing machines. The

flexibility of such systems can be improved by dynamically changing the

circuit during operation. The validation of such run-time reconfigurable
systems is a difficult task. We propose the following method to address

this problem: The application running on the reconfigurable system is

split into so-called hardware tasks. We investigate a formal coordination

language that defines the interaction and interface between the tasks.

With this abstraction, it is possible to validate individual tasks separately
and to check the interaction between tasks, since this information is given
explicitly by the coordination language.

In this chapter we present the emulation and virtualized execution

of hardware tasks on a FPGA. Section 3.1 describes the architecture and

related work of a reconfigurable embedded node. Section 3.2 describes

a hybrid emulation environment, that efficiently executes applications
consisting of multiple hard- or software tasks. The application is virtu¬

alized in the sense that the description of the task interaction is given
in a formal language, which is interpreted. Since the information of the
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task coordination is explicit, validation techniques such as simulation

and formal methods can directly be applied. In Section 3.3 we propose a

design-flow for partial reconfiguration. Finally, we present two different

prototype implementations of our concepts in Section 3.4 and summarize

the chapter in Section 3.5.

3.1 REnode - A Reconfigurable Embedded

Node

An important requirement of distributed wireless embedded systems
such as sensor networks or wearable systems is flexibility. This can be

shown on the basis of three properties:

Multi-mode performance: Sensor networks and wearable systems are

multi-mode systems. They require a fixed, baseline amount of

performance for running control tasks that do not show high
computational demands. Occasionally, e.g. upon detection of

an event, bursts of computation-intensive tasks have to be exe¬

cuted [PEW+03].

Low energy: Energy awareness is essential for battery-operated nodes.

It comprises several measures. First, we have to run the high
performance bursts on computing elements with high energy ef¬

ficiency. Second, to provide the baseline performance, computing
elements optimized for low-power must be used. Third, a dynamic
power manager should force the components into their power-down
modes or even shut them off completely.

Dynamic adaptation: An embedded node has to handle dynamic situa¬

tions. First, as it is not feasible to design a new dedicated hardware

platform for every application, the platform should provide the flex¬

ibility to adapt to different application requirements. Second, even

for a given application, the system has to adapt to changes in the en¬

vironment, e.g. operating a sensor network in a dense deployment
could be very different to a sparse deployment.

Flexibility demands can be addressed by using programmable
general-purpose computing units, such as microcontrollers or CPUs.

However, high-performance and low-energy demands ask for special¬
ized hardware. We address this challenge by proposing an architecture

that comprises reconfigurable hardware: the reconßgurable embedded node.
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3.1.1 Architecture Overview

Figure 13 shows the hardware architecture of the reconfigurable embed¬

ded node (REnode). It consists of a CPU, a reconfigurable hardware

unit, memory, a set of I/O interfaces to sensors and actors, and a wireless

interface for communication with other nodes.

The CPU handles control and other tasks that need low to medium

processing power. The reconfigurable hardware unit executes tasks with

high computation demands, but can also run communication protocol
functions to relieve the CPU. The reconfigurable hardware is further used

for interfacing to external sensors and actors. Both the CPU and the

reconfigurable hardware unit have power save modes.

3.1.2 Embedded Reconfigurable Hardware

The predominant reconfigurable hardware device today is the field-

programmable gate array (FPGA). FPGAs consist of an array of complex

logic blocks (CLBs), or an array of slices containing two or more CLBs,

routing channels to interconnect the logic blocks and surrounding in¬

put/output (I/O) blocks. SRAM-based FPGAs use SRAM cells to control

the functionality of the circuit and can be reprogrammed arbitrarily often

by downloading a stream of configuration data to the device.

While early FPGA generations were quite limited in their capacities,

today's devices feature millions of gates of programmable logic and, ad¬

ditionally dedicated hardware blocks such as fast embedded memories

and fixed-point multipliers. To interface to external components, FPGAs

are compliant to a number of high speed I/O standards. Current FPGAs

have sufficient resources to implement rather complex circuits such as

cryptography algorithms, audio, image, and video processing functions,

networking interfaces, and complete CPU cores.

A currently popular trend is to combine FPGAs with CPUs to form

hybrid computing systems, or so-called configurable systems on a chip
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(CSoC). Examples of such hybrid systems are Triscend's 8051-based

E5 [TriOl], Xilinx's PowerPC-based Virtex-II Pro [Xil02], and Atmels AVR-

basedFPSlic[Atm03J.
With respect to performance, power consumption and flexibility, re-

configurable hardware is positioned between processors and dedicated

hardware (ASICs). Several case studies have shown that FPGAs achieve

higher throughput and are more energy-efficient than processors, pro¬
vided that the application matches well the spatial structures of FPGAs

and includes a sufficient amount of parallelism.
Menceretal. [MMF98] and Abnous et al. [ASI+98] compared different

implementations of signal processing algorithms on embedded RISC and

DSP processors and on an FPGA. Their result is that the FPGAs achieve

the highest performance. The energy efficiency relates the performance to

the power consumption. For all applications, the FPGAs achieved a better

energy efficiency than the embedded RISC processor. The DSPs outper¬
formed the FPGAs in energy efficiency for FIR and IIR filters, because

these filters perfectly match the DSP architectures. Stitt et al. [SGVV02]

implemented a set ofbenchmarks on the Triscent E5 hybrid CPU and mea¬

sured an average energy saving of 71% by moving application kernels to

the FPGA instead of running the applications solely on the CPU.

3.1.3 Dynamic and Partial FPGA Reconfiguration
FPGAs are configured either statically or dynamically. In the case of sta¬

tic configuration, the FPGA loads the configuration data typically from

an external non-volatile memory at system startup. The configuration
does not change during the system's runtime. In the case of dynamic
configuration, an external host processor writes the configuration data to

the FPGA. This allows for changing the FPGA configuration on demand.

Some FPGAs offer an advanced configuration mode, partial reconfigura¬
tion, which allows for the configuration of parts of the device at runtime.

A partial reconfigurable FPGA is comparable to a multi-processor ar¬

chitecture: it can execute different processes truly in parallel and it is

run-time programmable.
FPGA manufactures have realized partial reconfiguration differently

In this thesis, we restrict ourself to the most prominent partial reconfig¬
urable devices, the Virtex Family from Xilinx.

The Virtex FPGA reconfiguration is organized in frames. Frames are

the basic units of reconfiguration and determine the settings of all FPGA

resources in the vertical dimension (see Figure 14).
An FPGA is reconfigured by sending a configuration bitstream to the

device. The configuration bitstream contains a collection of frames. While

the bitstream of a full reconfiguration contains all frames, the bitstream
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Fig. 14: Configuration Architecture of the Virtex Family FPGAs

of a partial reconfiguration only contains selected frames. This bitstream

is referred to as a partial bitstream.

3.1.4 Hardware Tasks

A central concept in the REnode architecture is the hardware task. A

hardware task is a part of an application that runs temporally on the

reconfigurable hardware. It is usually stored as a partial bitstream. An

important property of a hardware task is its footprint, which is defined

by the area and the shape of the occupied logic. Since the FPGA has a

fixed amount of logic cells, the number of hardware tasks, which can run

in parallel, is limited.

A hardware task can be of different complexity and size. For instance,

an Adder-Task that simply adds two values only uses a few CLBs, while

a reconfigurable processor-task is much larger and could easily occupy
half of all logic blocks in the FPGA.

Figure 15 shows a possible floorplan of the reconfigurable hardware

in a REnode. Besides the dynamic reconfigurable hardware tasks and

the static parts of the application, an interconnect logic is required that

transports data to and from the tasks.

Similar to a personal computer, a REnode needs an operating system
that manages the available system resources, i. e. the CPU, the reconfig¬
urable hardware unit, the memory and the I/O. Defining an operating
system for dynamic reconfigurable hardware is a challenging task and is

a new research field. The elementary questions here are the following:
• How is an application defined and how is it executed?

• How is a task defined and how is it scheduled, loaded and executed

on the reconfigurable device?
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figurable tasks.

• What are the interfaces between two tasks and between a task and

the I/O?

Defining a partially reconfigurable multi-tasking system is a difficult

task. Furthermore, the implementation of a working prototype is very

challenging. One reason is that in industry, reconfigurable devices are still

used mainly statically. As a consequence, the design- and tool support
for the new partial reconfiguration technique are very limited.

For the REnode architecture we further need to address the flexibility
demands of a networked embedded device. Our approach is the virtual-

ized execution of process networks, which is described in the following
section.

3.2 Virtualized Execution of Process Networks

In this section, we investigate the virtualized execution of dynamic tasks

on reconfigurable embedded nodes. A virtual machine run-time system
is introduced, which efficiently executes streaming applications. We first

highlight the advantages of an interpreted coordination language for de¬

sign and validation. We propose the use of the popular process network

model and describe its implementation in hardware. It is then shown

how a run-time system can execute arbitrary large process networks by
using dynamic reconfiguration, a memory manager and a scheduler.

An application for an FPGA can be virtualized on different levels. Ta¬

ble 3.2 shows two hierarchical levels of abstraction. Following a model-

based design approach, an application is explicitly specified by a di¬

rected graph where the nodes are tasks, which represent computations
and the arcs represent communication. The tasks are arbitrary subpro¬
grams and are specified in a conventional programming language such

as C or VHDL, but the interaction between tasks is defined by a precise
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semantics. We call the language defining this interaction the coordina¬

tion language. Examples of coordination languages are process networks,

synchronous dataflow (SDF) graphs or petri-nets. In model-based design,
those or related models of computation are frequently used to specify
applications.

Abstraction Level Languages Elements

Coordination &

Communication

Process Networks,

SDF, Petri-Nets

Network Graphs,
Tasks

Task Functionality VHDL, C Instructions, Gates

Tab. 5: Two Levels of Abstraction for an Application

A language can be either interpreted or compiled. Our approach is

to virtualize and interpret only the coordination language while the task

functionality is compiled. Therefore, an application is specified in two

parts. The first one describes the coordination, i.e. the communication

and the synchronization between tasks. The second part is the set of pre¬

compiled tasks, e.g. in the form of partial configuration bitstreams. Our

target architecture is a reconfigurable embedded node, including a CPU

and reconfigurable logic. We present a novel use of an FPGA as a com¬

puting element for streaming-based applications, with the investigation
of dynamic reconfigurable tasks on a virtualized run-time system and an

interpreted coordination language.

3.2.1 Virtualized Execution - Related Work

Today, it is commonly accepted to specify signal processing and stream¬

ing applications in a coordination language. In [KDR01], a compiler is

presented, which transforms algorithms written in Matlab into a process
network. A static FPGA implementation (without reconfiguration) of

such a process network specification is given in [ZSKD03]. This approach
uses two compilation steps to generate VHDL code which is then synthe¬
sized. Thus, both the task coordination and the functionality are compiled
into one piece of program.

A virtualization of an entire FPGA application has been presented in

[HSE+00] and [LK03]. Both of these approaches define an interprétable
hardware byte code with limited functionality. In [HSE+00], the virtual

byte code also includes the routing information of the FPGA intercon¬

nect. The disadvantage of these approaches is the overhead and the

performance loss, arisen from the virtualization on the level of gates and

interconnects. In contrast, we compile the task functionality, using only a

virtualized coordination language.
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The use of precompiled tasks and an interpreted coordination lan¬

guage has been presented in [HK02] for control-flow applications on a

CPU based embedded system. For reconfigurable hardware systems, this

is a new research field. Related to this is the work which has been done

on operating system services for reconfigurable hardware. This includes

hardware multitasking [Bre96]; device partitioning, placement and rout¬

ing [WK02]; task preemption and scheduling [SLMOO] [BD01] [WP03b]
[WP03a]; and hardware/software relocatable tasks [MNC+03].

The SCORE [CCH+00] compute and execution model is closely related
to the work presented in this section. However, in contrast to SCORE, we

present a run-time system that is compliant with today's available FPGA

devices. In addition we present a prototype implementation and perfor¬
mance results that can be compared to other similar system architectures.

The mentioned related work has contributed to our goal of devel¬

oping and implementing a dynamic reconfigurable run-time system for

the reconfigurable embedded node. While one group uses a specific
coordination language as a model of computation, but only in a static

scenario without reconfiguration, another group is working toward a

general operating system, which does not investigate a specific model for

the optimized execution of streaming-based applications. In contrast, we

present a system which investigates both the dynamic reconfigurability
and a specific coordination language for streaming-based applications.

3.2.2 Task-Level Virtualization

We propose the virtualization of an application on the level of tasks. To

interpret and execute an application, given as an abstract description in a

coordination language and a set of precompiled tasks, a run-time system
is needed. The run-time system is a virtual machine, since it abstracts the

underlying hardware and it provides the execution of tasks as a service

to the application programmer. It hides the exact implementation of the

service but guarantees an execution with the semantics of the coordina¬

tion language. With this paradigm, system designers and application
programmers can benefit from a number of advantages.

Device dependency:

The aspect of the application that is specified by the coordination language
is device independent. Only the individual tasks have to be ported to a

new architecture. The tasks are dependent on the device family, but

not directly on the device size. To execute a task on a larger FPGA, only
minor modifications are needed, which can be integrated in an automated

design-flow.
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Component-based design:

Using a coordination language allows the application programmer to eas¬

ily build new algorithms by a new composition of existing tasks. Since the

interface between the coordination language and the task functionality is

precisely defined by the model, the programmers can work concurrently
on the implementation of tasks and the definition of applications. Fur¬

thermore, tasks can be validated separately, which is less difficult than

validating a complex application consisting of multiple tasks. To cope

with the increasing complexity and size of applications, developers can

build a library of validated tasks which they can use for several applica¬
tions.

Performance:

FPGAs achieve high performance by parallel operation. Our approach

supports parallelism in two ways. First, a task can use the parallelism to

speed up a local computation. Secondly, the run-time system can load

several tasks onto the FPGA, which operate concurrently. However, there

is a restriction on the parallelism. If there is not enough area on the FPGA

for all the tasks, the virtual machine uses time-multiplexing with run¬

time reconfiguration. As a consequence the performance of the system
will be dependent on the size of the device and the configuration time of

the tasks. However, with time-multiplexing, even a small system with a

virtual machine can execute —with less performance— an arbitrarily large

process network. Another important factor influencing the performance
is the tools being used for compilation. With architecture-dependent
tasks, we can use the efficient synthesis-, place- and route tools from the

manufactures.

Validation:

The coordination definition of an application carries information about

the tasks and their interconnection. Since we do not compile the coor¬

dination language, this information is retained. With this information

we can analyze the performance of the system with simulation or formal

methods.

3.2.3 Task Coordination Language

There are many candidate coordination languages and models which

could be used for an embedded reconfigurable node. Some coordina¬

tion languages are better suited to model control-flow oriented applica¬
tions, and others are intended for data-flow applications. As an example,
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Fig. 16: Example of a Process Network

we have chosen the Process Networks model to use as a coordination

language. Process networks are a popular coordination language for

streaming-based multimedia and signal-processing applications. An ap¬

plication is modeled as a collection of concurrent processes, which com¬

municate through unidirectional FIFO channels (see Figure 16). Each of

the processes performs computation on its private state space. The com¬

putation is interleaved with communication actions that read data from

input channels and write data to output channels.

The process network model fits our requirement for a task coordina¬

tion language, since it has simple semantics and makes task-level par¬
allelism and communication explicit. It is further a very flexible model.

Compared to more restrictive models such as synchronous dataflow (SDF)

graphs, it is also harder to analyze analytically. However, we can regard
the process network domain as a superset, which includes some dataflow

domains (dynamic dataflow, boolean dataflow and SDF) as subdomains

[Par95]. We can therefore increase the expressive power of our coordina¬

tion language for better analyzability, by including additional information

and restrictions. One example ofsuch an addition is given in Section 3.2.5.

In [Kah74], Kahn has defined a precise semantics of a process network,
which is today known as the Kahn Process Network (KPN) model. The

communication actions in a Kahn process are sequential, i.e. the process
can access only one channel at a time. In the KPN model, the processes

can not test an input channel on the availability of data. If a process tries

to read from an empty channel it is suspended until there is enough data

in the channel to complete the read action. As a consequence, KPNs are

deterministic, i.e. the history of data produced on the communication

channels is determined by the given input data and does not depend on

the execution order of the processes. Our run-time system supports the

execution of KPNs, but the processes can also optionally use a mechanism

to allow undeterministic applications as proposed in [dKSvdW+00]. The

undeterministic case is further discussed in section 3.2.5.2.

The properties and limitations of the KPN model and the requirements
of its execution have been studied by Parks [Par95] and Geilen et al.

[GB03J.
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Fig. 17: The virtual machine run-time system of the reconfigurable embedded node.

3.2.4 REnode Run-Time System

An overview of the run-time system is depicted in Figure 17. The main

unit is a partial reconfigurable FPGA from the Xilinx Virtex Family. The

computation is done in the task slots, which are continuously reconfigured
with tasks from the task repository by the loader. The tasks communicate

over the task interface with the memory- and I/O-manager. The memory-
and I/O-manager acts as a crossbar for the data memory and sends events

to the scheduler. Based on this events, the scheduler and the interpreter
decide which task to load next.

3.2.4.1 Implementation of Tasks

The tasks correspond to the processes in the process network model. They
have a number of communication ports which are virtually connected to

the according FIFO channel. The ports are enumerated and are declared

either as an input- or output port. In order to load a task as a partial
reconfigurable core, we need a precisely defined, static task interface

and protocol. We have joined the different ports of a task to a single
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interface with a data-, control-, and a port select bus. This implementation
implies that the task can only use one port simultaneously, which reflects

the property of the KPN model. In our current implementation, the

application programmer is responsible for the sequentialization of the

communication. Conceptually, this could also be done by an automatic

wrapper function.

A problem that has to be addressed is the context of the tasks. A task

usually has an internal state and variables. In streaming-based multime¬

dia applications a task usually runs for a long time —e.g. when playing
a movie— until it terminates. When the scheduler preempts a task, its

context therefore needs to be saved and restored after its next instantia¬

tion. One possible solution is to let the task write its own context to an

additional FIFO channel, from which it can also read back after configu¬
ration. However, the burden of context restoring should rather be on the

run-time system than on the application programmer. Alternatively, the

loader could read back the complete task over the configuration port as

proposed in [WP03b]. The configuration port is a possible bottleneck and

the time for the readback is as high as for the configuration. Therefore we

use an internal context save mechanism. We apply an automated post-
synthesis step which connects all used registers of the task into multiple
shift registers, only by inserting multiplexers and signals. In the task

interface of the run-time system, there is a controller which connects to

this shift-registers. In this way, the context can be shifted out of the task

word-wise and be stored in memory. The same structure is used to load

the context back.

3.2.4.2 Memory Manager

The tasks have a simple interface to the memory manager. A task selects

one of its ports and performs a read- or a write action. The FIFO channels

are implemented as circular buffers and the data is stored in the data

memory of the run-time system (see Figure 17). The memory manager

computes the addresses for the data memory and handles the commu¬

nication. For a flexible management of the FIFO channels, the memory

manager uses internally a virtual address space. Allocated regions of the

virtual address space are mapped to the physical address space.
When a new application has to be executed on the run-time system,

the interpreter allocates for each FIFO channel a region in the virtual

address space. In the FIFO state structure all information of the FIFOs

are stored, including the virtual base address, the size and the read- and

write positions. The memory manager computes the physical address by
computing the virtual address first and then by translating it to a physical
address. The first step is done locally for every task slot, whereas the
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second step is done system wide. The virtual address is computed by
a FIFO control logic. If a new task is loaded into a task slot, the FIFO

control logic of that task slot is configured with the FIFO state of those

FIFOs, which are used by the task. With this information and the network

information the FIFO control logic can efficiently compute the virtual

addresses and update internally the read- and write positions. Before

a new task is loaded, the read- and write positions of the old task are

written back to the FIFO state structure.

The function, that converts the virtual addresses to the physical ad¬

dresses can be configured such that fragments of a region in the virtual

address space can be stored at different locations (see Figure 18). This al¬

lows for example to increase the capacity of a channel at run-time, which

is important for the scheduler, as it is explained later in section 3.2.4.5.

To increase the memory bandwidth, the data memory can consist of

multiple physical devices. We also allow to use the on-chip dual-ported
block-memory Each of the physical memory devices is attached to a

memory crossbar and has an arbiter. E.g. if two tasks try to access one

physical memory the arbiter selects one of them to be deferred. We

discuss the exploration of different memory configurations further in the

performance results (section 3.2.6.2).

With this memory manager architecture, most of the communication

actions are possible to complete within one or two clock cycles. But this

efficient implementation makes it hard to scale to an increased number of

slots. One reason of this is the inherently bad scaling of components such

as the memory crossbar or the memory arbiter. However, we believe that

with today's available devices, implementations with up to 16 slots are

feasible.
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3.2.4.3 Driver Tasks

Driver tasks are the connection from the process network to the environ¬

ment. Driver tasks are typically connected to I/O pins of the FPGA to

handle external devices, such as streaming input- or output devices. This

handling usually requires the driver tasks to be present continuously in

order to meet the timing requirements e.g. of a communication protocol.
As a consequence a driver task can not be reconfigured and scheduled

by the run-time system. We have addressed this problem by creating a

static slot, which includes all the driver tasks. The driver interface to the

memory manager is different from the task interface. It can be adapted
to the needs of the drivers. A driver tasks can for example be statically
connected to one port of a on-chip blockram, whereas the second port is

available for the tasks.

3.2.4.4 Partial Reconfiguration

The loader receives commands from the scheduler. A load command

basically consists of the number of the task to load and the number of the

target slot. Tasks are stored in the task repository as partial bitstreams.

The loader modifies the header information inside the bitstreams to set

the target of the reconfiguration to the appropriate slot. The modified

bitstreams can then be sent to the configuration port ofthe FPGA. The time

for partial reconfiguration linearly depends on the size of the bitstream.

The configuration port can be a possible bottleneck in the system, since

only one slot can be reconfigured at a time.

In a system on a chip (SoC) realization of the reconfigurable embedded
node, the loader is a separated control logic connected to the CPU, the

reconfigurable hardware and the task repository. However, the loader

could also run on the CPU, or even on the FPGA itself. The Xilinx VirtexII

FPGAs allow self configuration, where the logic inside can use an internal

configuration access port (ICAP).

3.2.4.5 Scheduler

Conceptually, all tasks in the process network run in parallel. In our

run-time system, this task-level parallelism is reduced to the number of

task slots in the FPGA. The scheduling strategy defines the execution

order of the tasks and how long the tasks occupy a slot. The choice of

a scheduling strategy depends on the task- and the resource model. In

[WP03bl, different scheduling strategies have been studied for a similar

resource model, but a different task model. To execute process networks,
a dynamic scheduling strategy is needed.

Compared to a CPU architecture, the context switch process (saving



3.2. Virtualized Execution of Process Networks 55

states, reconfiguring and restoring states) takes rather long and can not

be neglected. In order to reduce the number of context switches, a task

should run as long as possible before being preempted. We apply a

data driven scheduling [Par95] strategy, where tasks are activated on the

availability of data. We restrict our description of the scheduler here to the

execution of deterministic KPNs. The undeterministic case is explained
later as an extension of the model in Section 3.2.5.2.

A task is running until it reads from an empty channel or writes to

a full channel (blocking reads/writes). Since the read- and write actions

are sequential, a task can only block on one of its ports. The memory

manager has to provide the scheduler with two events (see Table 6).

Event Type Arguments

fifo-full/empty slot num, fifo num

fifo-ready fifo num

Tab. 6: Events for the basic scheduler

The ûîo-fuli/empty event is generated, when a read to an empty FIFO or

a write to a full FIFO is detected. The slot num argument defines the slot

number of the FIFO control logic, which has handled the communication

and the fifo num argument is the identifier of the FIFO channel. The

fifo-ready event only needs the fifo num argument. It is generated when
a particular channel has been full or empty and now becomes ready,
because a task has performed a read- or write action on that channel.

Ready Queue

WQ# Task«

0

1

t

3

Load Comm. \>

Fig. 19: Principle of the basic scheduler
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The scheduler consists of a task activation thread and a number of slot

scheduler threads (one per slot). In the KPN model, tasks are either active

or blocked. An active task is either currently running in one of the task

slots, or it waits in the ready queue to be loaded. If a task blocks, the

scheduler thread of the corresponding slot adds the task to the blocked task

list (see Algorithm 1). When the task activation thread receives a fifo-ready
event, it clears the entry of that FIFO in the blocked task list and adds the

corresponding task to the ready queue (Algorithm 2).

Algorithm 1 Slot Scheduler

loop
GetTaskFromReadyQueue(&TaskNr) // wait if queue is empty

SendLoadCommand(TaskNr( ThisSlotNr)

repeat

WaitFor_FifoFu11EmptyEvent(&Slot.Nr, &FifoNr)
until SlotNr = ThisSlotNr

AddTaskToBlockedTaskList(FifoNr, TaskNr)
end loop

Algorithm 2 Task Activation

loop

WaitFor_FifoReadyEvent(&FifoNr)
TaskNr = GetTaskFromBlockedTaskList(FifoNr)

ClearBlockedTaskListEntry(FifoNr)
AddTaskToReadyQueue(TaskNr)

end loop

Since the process network model does not specify a ratio of the amount

of data consumed and produced on the ports of a task, such as in the SDF

model, the execution of certain process networks might end in an artificial

deadlock. An artificial deadlock occurs, if all tasks are blocked because

of the limited FIFO channel capacity. This problem can be addressed by

integrating a deadlock-resolution algorithm into the scheduler. In his thesis,

Parks [Par95] proposes a simple algorithm to resolve artificial deadlocks

in KPNs. It increases the capacity of the smallest full FIFO channel in the

system when a deadlock occurs.

The scheduler can detect an artificial deadlock, by inspecting the

blocked task list. If all tasks of an application are in the blocked task

list, the scheduler starts resolving the deadlock with Parks algorithm. To

allow the capacity of the channels to grow over time, they are allocated

in the virtual address space, such that they are not adjacent. The capac¬

ity of a channel can thus be increased by allocating a new fragment (see

Figure 18), by updating the FIFO state structure and by reestablishing the

order of the data in the circular address space.
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3.2.5 Restrictions and Extensions to the Coordination Lan¬

guage

In order to further increase the flexibility and the performance of our

system, we propose a restriction and an extension of the classic KPN

model.

3.2.5.1 SDF Tasks

A KPN task is not restricted to have a constant input or output rate.

In the DSP domain though, there are many tasks with have exactly this

property. Examples of such tasks are filters, constant bitrate decoders and

fast Fourier transformation, just to mention a few. We call these tasks SDF

tasks, since they can be specified with the restricted semantics of the SDF

model. However, the run-time system, as it has been described so far, can
not yet use this property to efficiently allocate the FIFO channels with an

initial capacity. Consider the task B in Figure 20, which has to read two

samples from the input in order to produce on sample on the output.

Fig. 20: Example of an SDF Task

Without the knowledge of the input and output rates of task B, both

FIFO channels will be allocated with the same capacity. However, unless

task A and task B run in parallel, the second channel will only be used to

the half of its capacity. To allocate the second channel half as large as the

first channel would be more efficient. We have addressed this problem
by allowing optionally the specification of the input- and output rates

of tasks. The capacity of a channel, which is adjacent to a SDF task, is

calculated with the additional information of the input- and output rates,

whereas the other channels are allocated with the same size.

3.2.5.2 Undeterministic Communication

To model undeterministic communication, the task interface is extended

with an additional communication action. Besides a read- and a write

action, a task can issue a select action. The formalisms of this action is

given in [dKSvdW+00]. In the select action, the task selects a number

of ports, that should be guarded. If there is data available on at least

one of the selected input ports, or free space available on at least one of

the selected output ports, the select action immediately completes and

returns the task one of the ports, which has fulfilled the above condition.
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Otherwise, the task is suspended and the select action is forwarded to the

scheduler as an event.

The algorithms of the scheduler are modified such that on a select

event, the task is added in the blocking list in the entry of all the channels

that are connected to a selected port. If one of the channels becomes ready,
the task activation thread reactivates the task and clears all other entries

of that task in the blocking task list.

3.2.6 Emulation based Validation

In order to explore the design space of different slot- and memory con¬

figurations, we have implemented a parameterizable run-time system

emulator. While the simulations in previous work are usually based on a

randomly generated task set, the emulator is able to execute and profile
real applications.

The emulator is implemented in VHDL. We use the ModelSim VHDL

simulator to execute and profile our application. The task slots and the

partial reconfiguration are emulated by a crossbar switch, which can

connect every task of the application with a specific task interface in the

memory manager. Thus, as input for the emulator, we can use exactly the

same tasks as later in the the synthesis for the prototype implementation
(see Section 3.4.2).

The emulator is parameterizable. The following parameters can be set

to explore different solutions in the design space:

• the number of slots,

• the number of physical memory devices,

• for each memory device, the number of simultaneous access (1 for

normal external memories, 2 for dual-ported memories),
• the capacity of the memory devices, and

• the time from an event to a load command in the scheduler.

The input of the emulator is an application with the following compo¬
nents:

• The compiled tasks (stored as entities in a library),
• The coordination definition of the application (in the task coordina¬

tion language) including
- the interconnection of the tasks,

- the identification of driver tasks,

- the properties of the tasks, including (a) the size of the partial
bitstream, (b) the number of context words (flip-flops that store

the state of a task) and optionally (c) the input and output rate

of a task.
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Fig. 21: Process network of the sample application.

3.2.6.1 Sample Application

We have modeled a sample application with our coordination language
and implemented the tasks in synthesizable VHDL code. We have cho¬

sen a streaming-multimedia application. The process network graph is

depicted in Figure 21.

The application is a transcoder with a stereo-to-mono mixer in the

ADPCM compressed format. It consists of seven tasks, including two

driver tasks. The driver task Dl receives a joined stereo ADPCM stream

and puts the received data periodically on the first FIFO channel. The

task Tl separates the left and the right channel. The tasks T2 and T3

are both ADPCM decoders, which decode the ADPCM streams to a raw

16-bit PCM format. Both decoders use the same partial bitstream for

configuration, but they have an own instance with an own state. Task

T4 is the actual mixer. It computes the average of the left and the right
channel. Task T5encodes the raw PCM stream back to the ADPCM format

and the driver task D2 sends the stream over its connected interface.

Table 7 shows two properties of the tasks used in the sample applica¬
tion. The context bits store the state of a task.

Task Size in CLBs context bits

Tl 44 32

T2/T3 266 96

T4 44 48

T5 340 96

Tab. 7: Sample Application Task Properties

3.2.6.2 Performance Results

In order to conduct a number of experiments and to obtain quantitative

data, we have executed the sample application with our run-time system

emulator, described in the previous section. The first experiment shows

the effect of the total memory capacity and the number of slots on the

performance and latency of the system (Figure 22).
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Fig. 22: Performance and latency of the sample application in the run-time system.
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Fig. 23: Performance with restricted access to the data meinory.

We have measured the performance for systems with one slot, where

the tasks are sequentially configured, up to five slots, where every task

runs in its own slot. Note that the sample application has two driver

tasks, which are stationary and therefore not loaded into a slot. In this

experiment we did not restrict the number of simultaneous memory ac¬

cesses.

The performance of the five-slot system is not dependent on the total

amount of memory as the other systems, since after the first instantiation,

no further reconfiguration is required. This system actually corresponds
to a static solution. Its performance of about 1.8 megasamples/s is defined

by the performance of the ADPCM encoder task, which is the slowest task

of the application. The overhead in terms of execution time of the other

systems is due to the reconfiguration and not to the virtualization. With

little memory the tasks fill or empty the FIFO channels with little capacity
so fast, that the task slots stay most of the time in the reconfiguration state

or the state which waits for the access to the configuration port. The

performance, but also the latency increases if more data memory is used.

So far, we did not restrict the access to the data memory. The maximal

number of possible simultaneous memory accesses is equal to the number

of slots plus the number of driver tasks. However, the access is restricted

by the memory configuration. In Figure 23 we show the effect ofrestricting
the access to the data memory to one simultaneous access such as in our

prototype. The experiment is done with a total memory capacity of 64^

samples.

1 1

1 1 unrestricted memory access

- ^M one simultaneous memory access

1

i

1 1
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In the Figure, we can see that the static five-slot solution is faster by a

factor of two, compared to the two-slot system, with unrestricted memory

access. If there is only one single-ported memory device such as in our

prototype, this factor decreases to 1.37.

3.3 Partial Reconfiguration Design Flow

While the last section described the execution of the tasks, we present in

this section a design flow for the generation of optimized tasks as partial
bitstreams.

When the first partially reconfigurable Virtex FPGAs were released,

developers only had the possibility to directly manipulate configuration
bits inside a bitstream. The basic concept is described in the next section.

3.3.1 Direct Bitstream Manipulation
Standard design implementation tools for FPGAs generate full configu¬
ration bitstreams. The structure of Virtex bitstreams is partly open to the

public, which allows to directly manipulate such bitstreams.

A rather simple manipulation is to change the contents of storage ele¬

ments such as lookup tables (LUTs) and BlockRAMs in a bitstream. Such

a technique has been used, for example, to customize logic functions at

download time for instance-specific SAT solvers [LSW+01]. By extract¬

ing the relevant frames from a full configuration, partial bitstreams are

generated. In combination with LUT modifications, runtime customiza¬

tion of FPGA cores becomes feasible. This technique could be used, for

example, to dynamically change coefficients of a digital filter. In prin¬

ciple, this technique can also be used to generate partial configurations
for reconfigurable tasks. Figure 24 shows two full configurations, each

containing a static core and a dynamic task. The set of frames containing
the dynamic task can be extracted directly from the full bitstream to form

a partial configuration. At runtime, the partial configuration is loaded on

demand.

The main advantage of direct bitstream manipulation is that it bases

on full configuration bitstreams that can come from arbitrary standard

FPGA synthesis and design implementation tools. These tools are laid

out to optimize circuit qualities, such as speed and area. Further, when

the partial configurations modify only the contents of LUTs and Block¬

RAMs, the direct bitstream manipulation is quite simple and efficiently
implemented.

Direct bitstream manipulation shows two limitations. First, for more

complex designs the low-level manipulation of bits in a monolithic bit-
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Fig. 24: Extracting a partial bitstream from a full bitstream.

stream becomes extremely tedious. Second, as the routing cannot be

changed, different reconfigurable tasks must occupy exactly the same

subarea of the FPGA, and the interface between the static logic and the

tasks must be bound to a fixed location. Moreover, it must be ensured

that the routes for the static logic do not run through the partially re¬

configured area and vice versa. The design and implementation tools

that were available at the time when this work was done, did not allow to

pose location constraints on routing resources. Therefore constraining the

routing became more or less a trial-and-error process, involving manual
intervention.

3.3.2 Bitstream Generation and Manipulation Tools

In the meantime, a number of tools have been developed that help re¬

searchers to access resources inside a bitstream. The Xilinx JBits SDK

[GLSOO] and the Partial Bitfile Transformer PARBIT [HL01] are two ex¬

amples.

JBits for example provides access to most of the Virtex resources

through a Java class library. All Virtex resources can be instantiated

and configured. At any time, JBits can save changes to the design as par¬

tial bitstreams. Up to now, JBits supports structural circuit design only,
but it enables hierarchical designs by grouping subcircuits into modules

or cores. JBits also includes an automatic router, which can dynamically
route and unroute connections. In the design flow described in [SJR01],
JBits manipulates designs, given as EDIF netlists, that have been fully
mapped and placed by synthesis tools. JBits adds the routing and gener-
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ates configuration bitstreams.

These tools offer two advantages over direct bitstream manipulation.
First, they introduce a higher level of abstraction as they operate on

CLBs, routes, etc., rather than on raw bits in a bitstream. This feature also

opens up future dynamic applications, where tasks can be relocated and

connections can be re-routed online. Second, these tools include versatile

functions for full and partial bitstream manipulation.

3.3.3 Combining High-Quality Synthesis with Bitstream

Manipulation
To get the best features from both worlds, standard design flows and

the bitstream manipulation tools can be combined. We present a design
flow that synthesizes the static and dynamic tasks with standard design
implementation tools, and generates the partial configuration bitstreams

with JBits. Our approach uses the bitstream manipulation tool to merge
the cores. The locations for the reconfigurable tasks and the interface

between static and reconfigurable tasks are bound to fixed locations.

Our design flow allows to generate an initial full configuration and a

number of subsequent partial configurations. We discuss the details of

the design flow on the example of a static core and one reconfigurable
task. The design flow relies on two techniques: the virtual socket, a fixed-

location interface between the static logic and the dynamic task, and

feed-through components to constrain routing.
The virtual socket is a component that provides fixed locations for a

set of pre-defined signals. All signals from the static core or the I/O pins
to the task and vice versa are routed through this interface. The only
exceptions are the global nets for clock and set/reset signals. Because the

interface is static, new tasks can be developed without having access to

the static core design.
The overall FPGA area is divided into two non-overlapping parts, one

part for the static core and the other one for the reconfigurable tasks.

The generation of the initial full configuration involves following steps
(shown in Figure 25a):

1. Create an initial design which consists of the static core and a recon¬

figurable task component. Any synthesis tool or core generator can

be used to derive high-quality designs.
2. Insert the virtual socket, a predefined interface component. Connect

the static core and reconfigurable task via the virtual socket.

3. Run FPGA back-end tools with constraints on the locations of the

static core, the reconfigurable task, and the virtual socket. This

generates the initial full bitstream.

The tool flow respects the characteristics of the Virtex frame-based
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Fig. 25: Generation of initial full and partial bitstreams.

configuration mechanism. The part of the static logic that is located in

the same (vertical) frames as the dynamic task area, denoted as interfacing
area in Figure 25, contains only stateless resources. A partial bitstream for

a reconfigurable task is generated as follows:

1. Create the task design with any front-end tool.

2. Connect the task to the predefined virtual socket. The static logic
bound signals of the virtual socket are connected to unused I/O pins
to prevent the optimizer from removing the socket component.

3. Run FPGA back-end tools with constraints on the locations of the

task and the virtual socket. This generates a full bitstream (shown
in Figure 25b).

4. Use a bitstream manipulation tool (e.g. JBits) to i) extract the task

from the full bitstream (shown in Figure 25c), and ii) merge the task

with the initial full bitstream (shown in Figure 25d). By this, the

initial reconfigurable area is overwritten with the new task. The

new task fits seamless into the initial design, provided the location

constraints for the task and the virtual socket have been respected.
The bitstream manipulation tool is then used to generate a partial

configuration bitstream that reflects the reconfigurable area.
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Fig. 26: Block diagram of the audio streaming prototype.

3.4 Case Studies and Prototypes

3.4.1 Reconfigurable Coprocessor
As case study and proof of concept for the reconfigurable design flow

presented in Section 3.3, we have implemented a complete and fully op-

erational audio decoding application. The prototype consists of a minimal

embedded computer based on a general-purpose CPU core, memories,

network interface, and several coprocessors for hardware-accelerated

playback of audio streams.

The CPU receives UDP packets containing encoded audio data from a

network via an Ethernet interface. The CPU unpacks the audio data and

sends it to the audio coprocessor's input FIFO via the virtual socket. The

coprocessor decodes the audio stream and sends the raw audio data to the

on-board digital-to-analog converter. Different formats for the encoding
of audio data require different coprocessors. Depending on the audio

format currently used, the audio decoders are dynamically configured
into the prototype. The technical details of the prototype are:

• Prototyping Platform
The prototype has been implemented on a XESS XCV800 board

which consists of a Xilinx Virtex XCV800-4 FPGA and a multitude

of I/O interfaces. A block diagram of the prototyping board is given
in Figure 26.

The cores were designed in VHDL, synthesized and implemented
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using Synopsys FPGA Express 3.6.0 and Xilinx Foundation 4.1i tools,

respectively.

• CPU core

The soft CPU core is the SPARC V8 compatible 32bit LEON CPU. The

CPU was configured with 2kB separated data- and instruction-cache

(implemented in internal BlockRAM), a 256 byte internal boot-ROM

(implemented in internal distributed RAM) and an external 32bit

memory interface. The CPU core requires 3865 Virtex slices (7730

CLBs) which amounts to 41% of the XCV800's logic resources, and

14 BlockRAMs which equals 50% of the memory resources. Without

any optimization, the CPU runs at 25 MHz. Applications for the

LEON core run on top of the RTEMS real-time operating system and

are compiled using the GNU C based LECCS cross-compiler kit.

• Coprocessor cores

We have implemented two audio decoding coprocessors, a PCM and

an Intel/DVI compliant ADPCM decoder. The ADPCM core uses

430 Virtex slices (860 CLBs), or 4.5% of the XCV800 resources; the

PCM decoder fits into 35 slices (70 CLBs), or 0.4% of the resources.

We envision the prototype application as a typical scenario for future

embedded networked systems that load hardware functions on demand.

The current limitations of this prototype are that the reconfiguration has

to be initiated by the user and that the partial configurations are loaded

onto the FPGA from a host computer via a configuration port.
This prototype shows the feasibility of dynamic reconfigurable hard¬

ware tasks. In the next section we present a more advanced prototype of

the reconfigurable embedded node that includes a run-time system.

3.4.2 PDA-FPGA: Reconfigurable Embedded Machine

We have build a prototype of the reconfigurable embedded node as a

proof of concept. The prototype is capable to efficiently execute process

networks as described in Section 3.2. The experimental system is a small

mobile assembly of an IPAQ PDA and a custom FPGA module (see Fig¬
ure 27). The FPGA module is connected via the expansion sleeve interface

to the PDA as memory-mapped I/O. The FPGA module consists of a 200k

Gate Xilinx Spartanll FPGA, 256 kByte SRAM, 8 MBit Flash memory and a

384 Macrocell Xilinx Coolrunner CPLD. Although the FPGA has only one
task slot, we have implemented all the key components presented in this

paper, including the task interface, the FIFO control logic and the memory

manager. The loader is mapped to the CPLD, which reads configuration
bitstreams stored in the flash memory and configures the FPGA over the
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Fig. 27: Prototype of the reconfigurable embedded node with an IPAQ and a custom

FPGA module.

SelectMap configuration port. The scheduler and the interpreter resides

in the CPU of the PDA. The memory manager in the FPGA is connected

to an external interrupt in order to send events to the CPU.

The size ofthe unoptimized memory manager is 800 slices (1600 CLBs),
which is about one third of the SpartanII200 FPGA. This value depends
on the FIFO control logic, which currently uses distributed RAM cells to

locally store and update the state of the FIFOs. The above given slice count

is based on a FIFO control logic, which can handle the communication of

tasks with up to eight ports.

In our current implementations, the slots have a fixed size. Although
the tasks have a different slice count, the size of the partial configuration
bitstream of the tasks is rather defined by the width of a task slot. We use

therefore for all tasks the same bitstream size of 16.7X bytes, which cor¬

respond to 235 slices or ten percent of a full bitstream of the SpartanII200
FPGA. With a configuration clock of 50 MHz, the partial reconfiguration
time is about 330/js.

The power consumption of the entire FPGA module is 500 mW on

average. This reflects the fact that the current Virtex family FPGAs are

optimized for performance and not for low power operation.

3.5 Discussion and Summary

In this chapter, we presented the virtualized execution of hardware tasks

on a reconfigurable embedded node. We investigated partial reconfigu¬
ration where hardware tasks can be loaded on run-time. Using FPGAs as

dynamic reconfigurable computing machines is a relative new field and
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the validation of such systems is challenging. We have addressed this

problem the following way: We defined hardware tasks with a specified
interface. We presented a design flow for the generation and reconfigu¬
ration of the tasks. We introduced a formal coordination language based

on the process network model that specifies the interaction between the

tasks. Our proposed run-time environment interprets the coordination

language and executes the hardware tasks efficiently.
The virtualized execution has a number of advantages for design and

validation: The interface and the interaction between the tasks are pre¬

cisely defined by the model of the coordination language. This allows for

component-based design and validation. Tasks can be implemented and

tested separately with less effort. Furthermore, since the task interaction

is interpreted and not compiled, this information is retained and can be

used for validation.

We have built and evaluated two prototypes implementations of a

reconfigurable embedded node. The first prototype features a dynamic
reconfigurable coprocessor that is loaded as a hardware task on demand.

With the second prototype we demonstrate the run-time environment that

interprets the coordination language and virtually executes applications
that are composed of hardware tasks. We have further built an emulator

for the second prototype with which we can evaluate the performance
with different configurations.

With the prototype implementations we have shown the feasibility of
the REnode architecture. It is capable to execute arbitrarily large appli¬
cations. With an interpreted coordination language we can easily define

and deploy new applications which addresses the flexibility demand of a

networked embedded system.
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4
Distributed Algorithms

The previous chapters addressed validation strategies for some spécifie
distributed embedded applications such as wearable or reconfigurable
systems. In the remaining chapters, we discuss the validation of wireless

sensor networks. We believe that the validation of WSNs is more chal¬

lenging than most other systems. This can be illustrated by comparing
different applications and systems by the measures of data- and system

uncertainty (see Figure 28).

The data uncertainty-axis denotes the complexity of the stimuli of the

systems. Validation effort, scalability and especially realism directly de¬

pend on how well we can understand and model the stimuli. For in¬

stance, it is much easier to validate systems that only have text as input
than systems that are tightly embedded into a complex environment such

as robotics systems. The system uncertainty-axis denotes the complexity
of the application. The more to the right a system is, the less deterministic

is its operation. Thus, the insight into a system, the visibility which helps
for the validation, is worse on the right side. An application that runs

on distributed multiple processors is much harder to debug than single
processor- or single threaded applications.

Wireless sensor networks are in the worst position with respect to

these two measures. It is very hard to model the stimuli such as the

topology of a deployment, the wireless channel, the node mobility, the

sensor inputs, etc. Furthermore, the algorithms are distributed across a

large number of nodes that do not have a common time basis. Thus, the

system uncertainty is high.

Validating distributed algorithms for wireless sensor networks is very
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Fig. 28: Comparison of applications and systems by the measures of data- and system

uncertainty.

challenging. Because of the data- and system uncertainty, it is important
that algorithms are validated not only by simulation, but also with meth¬

ods that provide higher realism such as test-bed measurements. Recent

research in WSNs has produced a myriad of distributed algorithms, cov¬

ering different topics such as MAC layers, topology control, clustering,
routing, etc. However, if we look at the literature, we see that only few

algorithms have been implemented and tested with realistic conditions.

Most algorithm have only been validated using simulation with relative

simplistic models.

The feedback from validation is required for designing practical algo¬
rithms. The feedback provided by simulation alone is not enough as the

results depend on models that tend to be overly simplistic. We show that

through implementation, we achieve a high quality feedback that gives
us the required information for adapting the algorithms to the peculiari¬
ties of the physical environment. This supports the thesis that distributed

algorithms for wireless sensor networks must be validated in a realistic

environment.

In this chapter, we discuss distributed algorithms for the topology
control problem. We start with a simple tree-building algorithm which

we validated on real sensor nodes. With the experience gained from this

algorithm we have choosen a more advanced, existing algorithm which

has interesting properties, but has been validated only by simulation.

We analyzed the assumptions made by the algorithm and the simulation

real-world

sensor
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timing-
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and check whether these assumptions are realistic. In order to make

it practical, we enhanced the algorithm with new heuristics, which we

validated using formal analysis and simulation. Finally, we implemented
the enhanced algorithm and validated it on real sensor nodes in an indoor

test scenario.

4.1 Practical Topology Control

4.1.1 The Topology Control Problem

Many applications for wireless sensor/actuator networks (WSNs) require
that all nodes are connected in a common network. Consider for ex¬

ample a sensor network for environmental monitoring, where the nodes

regularly report measurement data to a central base station. In other

applications, possibly with distributed real-time control such as tracking

applications or wireless alarm systems, the continuous connectivity of the

network is even more important and often mission critical.

Furthermore, applications usually run on small devices with very

limited resources in terms of computation, communication and energy. In

order to maximize the lifetime ofthe nodes, energy efficient algorithms are

required on all layers of an application. One possibility for saving energy
is to choose the right network topology. Especially in dense networks,

where a node is within the transmission range of many other nodes,

selecting an optimized subset of neighbors with which to communicate

has a large potential to increase overall network performance and most

important to reduce the power consumption.
A topology control algorithm that runs on wireless sensor nodes, se¬

lects a set of neighbors for communication, such that the resulting topol¬

ogy has advantageous properties. It can have several objectives. In

this work the goal is to reduce the number of communication links and

to avoid bad quality connections, while guaranteeing a robust network

with redundant connections whenever possible. When G is the visibility
graph, containing an edge for every possible link between two nodes, and

Gre the reduced graph obtained through topology control, with only the

selected links, the connectivity is guaranteed if Gjc is connected, when¬

ever G is connected (see Figure 29). Solving the topology control problem
is challenging, because the algorithm needs to be fully distributed and

only local information can be used for the decision-making in order to re¬

duce traffic overhead. Furthermore a topology control algorithm should

be simple and practical, a dominant prerequisite for successful imple¬
mentation on commonly available sensor node platforms, i.e. additional

hardware for localization should not be required.
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Fig. 29: Example with the graph G\c with links selected by a topology control algorithm
(bold edges) and the graph G with all possible links (light edges)

4.1.2 Bluetooth Networking
In our implementations, we use Bluetooth as the underlying communi¬

cation infrastructure. Therefore, we give here a short introduction into

Bluetooth networks A more detailed discussion of Bluetooth networks

and its usage for WSNs can be found in [Beu05].

Networking in Bluetooth is organized in master-slave configurations
of up to seven active slaves that can be connected to one master at a time.

This structure is called a piconet. Multiple piconets can be interconnected

by nodes taking on dual roles of slave-slave or master-slave forming a

scatternet (see Figure 30). While the interconnection of nodes in these

different configurations is part of the Bluetooth standard, the formation

and control of multi-hop topologies is not governed by the standard.

Also, the data transport is only defined on each single hop (from master

to slave or vice versa) and not over multiple hops, even within a piconet.
Bluetooth is a connection-oriented communication medium, i.e. in

order to communicate with a neighbor, a node must explicitly establish a

connection to it For this procedure the node must first know its neigh¬
bors. Bluetooth devices use the asymmetric inquiry procedure to discover

nearby devices by sending an inquiry request on the inquiry scan channel.

Devices that are available to be found are known as discoverable devices

and listen and respond to these inquiry requests (inquiry scan). Also

the procedure for forming connections is asymmetrical and requires that

one Bluetooth device carries out the connection procedure (paging) while

the other Bluetooth device is connectable (page scanning). Neither the
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Fig. 30: Bluetooth scatternet with nodes in master-, slave-, master-slave-, and slave-slave

roles.

inquiry nor the page operation give a guarantee for success. The user can

specify a duration for these operation and during this time the Bluetooth

device executes the procedures with best effort. However for the inquiry
and page operation, durations in the order of a few seconds yield good
results.

Once connected, data can be sent over a link using either asynchronous
connectionless (ACL) or synchronous connection oriented (SCO) trans¬

fer. We use the ACL mode, which has an increased reliability because it

includes forward error correction and retransmission of packets.

4.1.3 BTnut Connection Manager
In order to validate different topology control algorithms on the BTnodes,

we designed a modular and abstract connection manager module that

is integrated into the BTnut multi-hop system software [BBD+07]. The

connection manager module acts on top of the 12cap-connectionless-layer,
which is a simplified version of the i2cap-protocol that basically offers

service multiplexing.

Application
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~
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Commands

RFCOMM

L2CAP

TCS SDP

i !

Application
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ftäüffÜ

Multi-Hop RPC
Code-
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L2CAP | 12CAP connectionless

Link Manager Protocol 11 Audio Link Manager Protocol ^[AudjcT
Baseband Baseband

Bluetooth Radio Bluetooth Radio

Fig. 31: Standard (left) and BTnut (right) Bluetooth Protocol Stack. The connection man¬

ager is an independent service on top of the 12cap-connectionless layer.
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Figure 31 depicts for comparison the standard Bluetooth protocol
stack on the left and the BTnut stack on the right. In the new 12cap-
connectionless layer, services can be registered only once and are handled

for incoming packets on all connections. In contrast, in 12cap (conneciton
oriented), services are registered per connection, but only on a single link

and not over multiple hops.
The connection manager module is responsible for setting up and

maintaining a connected topology by discovering and connecting to other

devices. When a new connection is established or an existing one is

removed, the connection manager informs the higher layers and updates
a shared neighborhood-table. Other modules, such as the multi-hop-
routing module can then use this information for their service.

This simple abstraction allows us to write and test efficiently multiple
topology control algorithms.

4.1.4 Topology Control — Related Work

Early work in topology control focused on the special case of randomly
distributed nodes. Hou and Li [HL86] can be considered originators of

topology control.

We do not consider centralized algorithms here, as they can not be

implemented on distributed nodes, the typical scenario found in wireless

sensor networks. In [RM99], distributed topology control algorithms are

presented that assume that every node knows its location (e.g. from a

GPS device). The CBTC algorithm [WLBW01] is based on directional

information, which could also be achieved by directional antennas and

beam-forming.

Topology control for Bluetooth ad-hoc networks is also referred to as

scatternet formation. Previous research in this area has led to a num¬

ber of algorithms, that can be distinguished according to the following
three properties: (i) guarantee for a connected topology, (ii) guarantee for

degree constraints, and (iii) the requirement that all devices are within

each others range. In [BBMP04], the authors compared four scatternet

formation algorithms and evaluated their performance. A more recent

comparison with four additional algorithms can be found in [VGSR05].

According to the classification introduced earlier, only two of eight eval¬

uated algorithms guarantee properties (i) and (ii) while not requiring all

devices to be within each others range. One of them, the BlueMesh al¬

gorithm [PBC04], forms a mesh topology. However, it only considers

connectivity information for neighbor selection. In contrast to BlueMesh,

the second algorithm, described in [VGSR05] additionally uses RSSI as

link-metric and constructs a sparse mesh scatternet, also known as the

relative neighborhood graph (RNG).
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The XTC algorithm [WZ04] uses an abstract link-metric, e.g. RSSI,

to construct a graph corresponding to the RNG with the abstract link-

metric as distance. Compared with previous solutions, XTC is probably
the simplest, and therefore most practical topology control algorithm,
that guarantees connectivity while not requiring all nodes to be within

each others range. Additionally, XTC is a local algorithm, i.e. it does not

require communication over multiple hops.

Algorithms such as the ones discussed above still have considerable

drawbacks, that render them impractical for implementation. First, most

algorithms assume that all nodes start execution of their protocols si¬

multaneously. Second, especially the RSSI-based algorithms assume

that the estimation of the distance using RSSI has a fidelity of 1, i.e.

RSSIi > RSSI2 => d\ < d2. In practice, this is not the case as will be shown

later on.

In [BL03] the authors present an algorithm where a node connects

to the k neighbors with the highest RSSI (k is a predefined constant).

Although the connectivity cannot be guaranteed using this algorithm, it

addresses the two issues mentioned above. The authors used a stochastic

RSSI model in their simulations. Further, the execution of the algorithm
is delayed in order to allow the nodes to start within a given time interval.

However, this approach is still not flexible enough for practice, as nodes

cannot join the network after the first links have been established.

4.2 Tree Algorithm
The first topology control algorithm constructs and maintains a tree struc¬

ture. It is a robust and completely local algorithm that automatically takes
care of nodes that join or leave the network. The basic principle is sim¬

ple: Every node periodically searches for other nodes, and subsequently
randomly connects to one of the discovered nodes. In parallel, detected

cycles are removed.

The tree structure is constructed and maintained by a thread and two

message handlers (see Alg. 3). The inquiry thread periodically performs
an inquiry and randomly connects to one of the discovered devices. The

message handlers process negotiation or tree-ID packets arriving from

the lower layers. These packets are used to maintain the tree structure

by preventing and detecting cycles in the network topology. All nodes

connected in a tree share the same tree ID. When two nodes connect, they

exchange negotiation messages and compare their tree IDs. If the two

nodes were not in the same tree before the connection, their IDs differ

and they have to establish a unique ID for the newly formed tree. This

is done by agreeing on the larger of the two IDs and broadcasting it in
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Algorithm 3 Tree algorithm

begin thread Inquiry
loop

found__nodes :- inquiry(Tinq)
node := randomly__select(found_nodes)
connect(node)

send(node,negotiation(local_tree_ID))
sleep(Tskep)

end loop
end thread

1

2

3:

4:

5

6:

7

8:

9

10

msg__handler negotiation(remote_tree_ID)
if local_lree_ID = remote_tree_ID then

drop connection

else

if local_tree_ID < remote_tree_ID then

local_tree_ID := remote_tree_ID

broadcast negotiation {loc.al_tree_ID) to my subtree

end if

end if

end msg_handler

on disconnect

broadcast tree_ID(loca/_ü'ee_7D) to my subtree

msg_handler tree_ID(remote_tree_ID)
if local_tree_ID = remote__tree_ID then

drop connection

else

local_tree_ID :- remote_Lree_ID

broadcast tree_lD(locaI_tree_ID) to my subtree

end if

end msg_handler

a tree-ID packet to all nodes in the subtree with the smaller ID. If two

nodes that are already in the same tree connect, they will notice that they
share the same ID and therefore drop the connection. If a node receives

a tree-ID broadcast with an ID different from its own, it adopts this new

ID. If the received ID is its own ID, there is a cycle in the network and

the link over which the broadcast arrived is dropped. This mechanism

eliminates cycles that can arise when two subtrees are connected almost

simultaneously via two different links (see Fig. 32); in this case, the cycle
prevention by negotiation does not work.

If a link is lost, the tree is partitioned, and the two subtrees must not

share the same tree ID anymore. Therefore, if a node loses the link over

which the current tree ID was received, the node broadcasts its unique
device ID as its subtree's new tree ID.

This local algorithm provides self-healing topologies in a robust and

completely distributed fashion. It does not need exhaustive computation



4.2. Tree Algorithm 79

A2

Fig. 32; Cycles can form when disconnected trees are connected almost simultaneously
at two different points. The tree-ID broadcast eliminates the cycle shortly after¬

wards.

or communication. Therefore, it is expected to scale well to a large number
of nodes.

4.2.1 Tree Algorithm Validation

We have tested and measured the properties of our implementation in

two different setups. The first one was a lab setup involving 2-40 nodes

on which we observed the network-topology construction. In the second

setup, we distributed 71 BTnodes on a large office floor, thus obtaining a

larger, realistic deployment scenario.

In both setups, all nodes are running the same software. A host PC is

connected over a 115 kbps serial link to one of the BTnodes. This node

receives topology information from the other BTnodes: Each node sends

information about events such as new connections and link losses to the

host, and additionally stores them in a local log. The logs are remotely
collected by a monitoring and control application running on the host PC.

4.2.1.1 Network-Topology Construction

The topology construction depends on the ability to discover other nodes

and to successfully connect to them. Since a-priori assumptions about the

state of remote nodes cannot be made before an actual connection, these

are highly non-deterministic operations. While a node is inquiring or

connecting, it might not be discovered by others. Previous measurements

have shown that inquiring is a time-consuming process requiring in the

order of tens of seconds [KL01, WMF02] for a reliable discovery of all

nodes. Experiments have shown that for the tree algorithm, short but

frequent inquiries accelerate the formation of large network clusters. Our

experiments were conducted with the following values: inquiries last

3.8 s and pauses between inquiries are chosen randomly (to avoid that all
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nodes inquire simultaneously) between 3 and 20 s.

The tree-construction algorithm is truly distributed. Since connections

are established in parallel, the algorithm can be expected to scale well with

an increasing number of nodes. We have verified this assumption with

the following experiment.

Initially, n nodes are switched on one after the other. After all nodes are

connected in a single tree, we simultaneously reset them with a broadcast

command from the monitoring tool. This then provides a common time

base for all nodes. All nodes log their connection and disconnection

events, annotated with the time since the last reset. After all nodes are

again connected, the monitoring tool retrieves these logs from all the

nodes.

Figure 33 illustrates the evaluation of the tree-topology construction

in a multi-hop network. Each plot represents the average of ten different

experiments with the same number of nodes. After a boot-up phase
of approximately 13 s, the first connections are established. At 20 s,

close to 50 percent of all the connections are established, and at 70 s the

construction is finished. These values are independent of the number of

nodes involved.
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Fig. 33: Initial network-topology construction. Each curve represents the average of ten

different experiments. The nodes were deployed with constant density.

All n nodes are connected in one tree if and only if there are n -

1 connections. In some of the 40 experiments, not all n nodes were

connected in the end. A software error in the low-level event-handling
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routines occasionally caused a deadlock in the inquiry thread (Alg. 3).
As a consequence, some nodes were not able to discover and connect to

other nodes anymore and remained isolated.

This was the reason why the above experiments were not conducted

with more than 40 nodes. If many nodes are reset simultaneously not all

of them can connect in the first iterations of the inquiry thread, probably
due to radio interference. Thus, the probability that a node's inquiry
thread enters the deadlock before the node is connected increases with

increasing node density. This problem is not inherent to the tree-algorithm
and has disappeared with the low-level software errors resolved.

4.2.1.2 A Realistic Deployment Scenario

To test the tree-algorithm in a realistic scenario, we deployed 71 BTnodes

on a large office floor. We also wanted to test our hypothesis that the

problem described above should disappear ifwe reduce the node density.
We therefore distributed the nodes as depicted in Fig. 35, switching

them on as we went along. Being switched on one after the other, all 71

nodes joined a single tree scatternet (see Fig. 34) without any problem.
We then issued the reset command to all nodes. Within 70 s, 46 nodes had

again connected to a tree. As more time passed, the tree did however not

grow beyond this size. Essentially, the problem remained as severe as in

the lab setup.
The explanation for this is that there is no sufficient difference in

connectivity between the lab setup and the floor deployment. This can

be seen in Fig. 35: the various connections over relatively long distances

show that the average number of neighbors is still very high.
The quality of the long-distance links in Fig. 35 is smaller than that

of the short-distance links. An improved algorithm would hence prefer
high-quality links.

4.3 S-XTC: A Signal-Strength Based Topology
Control Algorithm

The above discussed tree-based algorithm is extremly simple and effi¬

cient. It builds and maintains a connected sparse topology. However, its

simplicity is also its limitation. With the random search and connect pro¬

cedure, the algorithm does not distinguish between good and bad quality
links. Furthermore, considering the connectivity constraints of Bluetooth

devices, the algorithm can not always guarantee a connected topology.
In this section, we investigate a more advanced algorithm, that addresses

these issues.
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Fig. 34: A monitoring tool shows a scatternet tree topology with 71 nodes.

Fig. 35: The example shown in Fig 34 was set up on a large office floor The actual

connections from Fig 34 are shown
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4.3.1 Application Scenario

The applications scenario discussed assumes a distributed wireless sensor

network application with a single node acting as a central data sink and

multiple distributed data sources. The application requires a connected

network topology and should exhibit some robustness against failures

and changes in the connectivity of the nodes. This is quite a typical
scenario commonly found in many wireless sensor network applications.
Such a typical networking scenario for topology control is discussed in

the following.
A large number of sensor nodes are deployed in a field. The nodes

need to be deployed with sufficient density such that no disconnected

clusters exist1. Besides that, no additional constraints on the deployment
are made, which allows for both sparse and very dense regions.

In the scenario considered, the nodes remain stationary. However,

it is possible that additional nodes join or occasionally leave accounting
for cases of variable power supplies (e.g. batteries, solar-powered cell),
failures or additional deployments at a later time. It is further possible
that the quality of a connection between two nodes is temporally impaired

by obstacles or other interference.

The nodes all have the capability to assess the strength of received

signals at their radio. This is a reasonable assumption, as this feature has

become a standard in almost all modern radio devices used on sensor

nodes today.
When the nodes are turned on they start executing the topology al¬

gorithm which then runs forever or until a certain state is reached. Such

a state can be characterized by a condition being met at a node, e.g.

availability of a route to a base-station, or by more spécifie performance
metrics. Upon detection of the loss of such a state, the topology algorithm
can be re-enabled to further refine the network topology

Topology control algorithms are typically implemented as a separate
network layer in the embedded software of the nodes. The topology con¬

trol layer notifies the higher layer about the links to the selected neighbors.
The advantages for the application of the new topology control algorithm

presented here are as follows:

• Connectivity: The application can reach all other nodes through the

selected neighbors.

• Low Degree: Even in very dense networks the number of selected

neighbors is low, whicli allows for more efficient execution of com¬

munication operations such as routing or flooding. Furthermore a

1 As studied in percolation theory [DTH02], for randomly and uniformly distributed

nodes, the network will be connected with very high probability if the network density
is above 5 nodes per unit disk.
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low degree is essential if protocols are used that limit the maximal

number of connected neighbors.

• Energy Efficiency; A node can save energy in two ways through
topology control: For link oriented communication systems, such as

Bluetooth, the power consumption generally grows linearly with the

number of connections [NBD06]. A lower degree then consequently
leads to lower power consumption. For communication systems
that can individually adjust the transmit power, energy is saved

by reducing the transmit power to the level that is just needed to

reach the worst selected neighbor and not the whole neighborhood
anymore.

4.3.2 XTC Algorithm
Our algorithm is based on the recently published XTC algorithm [WZ04J,
which is an extremely simple and strictly local algorithm. The authors

of XTC claim that it is faster than any previous proposal and that it is

currently the most realistic topology control algorithm available. Let us

briefly describe here the basic functionality of XTC.

The algorithm consists of three main steps: Neighbor ordering, neigh¬
bor order exchange, and edge selection (see Alg. 4).

Algorithm 4 XTC

Establish order <u over u's neighbors in G1

2

3

4

5

6

7

8

9

10

11

12

Broadcast <u to each neighbor in G; receive orders from all neighbors
Select topology control neighbors:

Nu := {}; ÎVu := {}
while (<„ contains unprocessed neighbors) do

v := least unprocessed neighbor in <u

if (3w e Nu U Nu : w <v u) then

JV„ := Nu U {v}
else

Nu:=NaU{v\

end if

end while

The algorithm operates on a initial graph G - (V,E), which we refer

here to as the visibility graph. For simulation and comparison, it is com¬

monly accepted to assume that Graph G is a Unit Disk Graph (UDG), i.e.

an Euclidean graph containing an edge (u, v) if and only if the normalized

distance |uv| is smaller or equal than 1. In other words: two nodes only
"see" each other if they are within each others range.

In the first step, each network node computes a total order over all

its neighbors with respect to decreasing link quality. This link ordered
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is then exchanged with all 1-hop neighbors. A node u selects the link to

node v, if there exists no node w that has already been processed, that

appears before u in the received order <v (w <v u). After completion of

the algorithm, the set Nu contains u's neighbors in the topology control

graph GXTC.

The main properties of the resulting topology of Gxrc are the following
(see [WZ04] for additional properties and proofs):

1. Symmetry: A node u includes a neighbor v in Nu if and only if v

includes u in Nv.

2. Connectivity: Two nodes u and v are connected in Gxlc if and only
if they are connected in the visibility graph G. Consequently, the

graph Gxtc is connected if and only if G is connected.

3. Bounded Degree: Given an Euclidean Graph G, GXtc has degree at

most 6.

4. Sparseness: In an average-case simulation where nodes are placed
randomly and uniformly on a Euclidean plane, the average degree
of the nodes in Gxrc is constant at approximately 2.5.

4.3.3 Signal-Strength Measurements

XTC has been evaluated in [WZ04] mainly on Euclidean graphs. When

initially using RSSI values instead of the Euclidean distances as the link

quality metric for the ordering of neighbors in the first step of the algo¬
rithm, we obtained differing results. In order to understand this behavior

we first measured the behavior of the RSSIu(v) on our target platform.
The results are shown in Fig. 36 and Fig. 37. We see that the RSSI

values, even in average, are not a monotonously decreasing function of

the distance, which can most likely be attributed to multipath reflections

and other sources of interference. A second effect is that in a stationary
scenario with constant distance between a transceiver pair, the values

measured over time have a large variance. Other radio transceivers are

known to exhibit similar behavior [PSC05].

To investigate the consequence of these effects on the properties and

the resulting topology we simulated the XTC algorithm. In contrast to

the simulations presented in IWZ04] we use the following RSSI model for

the ordering the neighboring nodes instead of the Euclidean distance:
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Fig. 36: RSSI over distance. The measurements are performed with two BTnodes at

distance \uv\ and 1 m above the ground and alternated transmitting and receiving.
The bold line is the average of 20 values. We read the RSSI of an unconnected

neighbor with the hci_inquiry command (see HCl functional description of the

Bluetooth Core 1.2. Specification). The boxes in the plot have lines at the lower

quartile, median, and upper quartile values. The whiskers are lines extending from

each end of the box to show the extent of the rest of the data. Outliers (+) are data with

values beyond the ends of the whiskers.
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Fig. 37: RSSI fluctuations over time of two stationary nodes. The stars denote unsuc¬

cessful RSSI estimates (nodes were not found by hci_inquiry) that are commonly
found in measurements. Most algorithms poorly account for such sporadic

outages and thus are hard to transfer to realistic scenarios.
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RSSIu{w) > RSSIu(v)

RSSh - a log(|uv|) - orssi • x

RSSh - RSSId_

log(dmax)

JV(o,i)

The reflections and the fluctuations of the RSSI are expressed in the

model with the standard deviation oRSsi multiplied with a standard nor¬

mal distributed random variable x. The model fits to our measurements

with the values RSSIi - -57 dBm, RSSI(lm!ili - -83 dBm, dmax - 40 m, and

orssi - 6 dBm. In the simulation 1000 nodes are placed randomly and

uniformly in a square field. We altered oRssi and the network density Ö.

The network density is defined as the average number of nodes within

range {dnmx), which is equivalent to the number of nodes per unit disk. We

simulated with densities from 1 to 30 nodes per unit disk and with a oRssi

from 0 to 13. The plots presented are averaged results of 1000 graphs.
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Fig. 38: Average and maximal degree vs. network density with varying RSSI standard

deviation aussi-

Fig. 38 shows the average and maximal degree of the nodes in Gxtc-
For orssi = 0 the neighbor ordering is the same as obtained with the

Euclidean distance in [WZ04]2. However for orssi > 0, the degrees are not

bounded. They grow with network density and with orssi- The number of

edges also increases, as it is proportional to the average degree. For larger
Orssi, the link metric becomes uncorrelated to the distance. It was shown

in [WZ04] that for the case of arbitrary link weights (general weighted
graphs) the degree of the nodes in Gxtc with n nodes can be &(n) and the

number of edges 0(nz).

w <u v o

RSSIu(v) =

a
-

x ~

z-a logfluvj) > -a • logfluw]) « \uv\ < \uw\
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4.3.4 S-XTC Algorithm
The XTC algorithm, as well as the majority of the other algorithms pro¬

posed, cannot be applied directly to our application scenario, because

they contain rather impractical assumptions. In the case of XTC, we have

identified the following problems.

1. Device Discovery is an unreliable operation. Especially in dense

networks, it cannot be guaranteed that all neighbors are found, as

required in the first step of XTC.

2. The nodes are not a priori synchronized and do not all start at

the same time. However, an assumption in XTC is, that the three

construction phases are synchronized on all nodes.

3. It is assumed that the topology does not change.

4. For the XTC algorithm, the link weights are required to be sym¬

metric. However, without additional communication we have

RSSI„(v) £ RSSIv(u), and no guarantee for the connectivity can be

given anymore.

5. A realistic RSSI is not a monotonous decreasing function of the

distance (RSSIu(v) > RSSIu(w) <=> |uv| < \uw\). The maximal degree
of a node is not bounded in that case.

6. As in XTC, every node needs to exchange its ordered list with all

reachable neighbors, the time needed for this operation scales badly
with the network density.

Our proposed S-XTC algorithm addresses the above problems by pro¬

viding 3 extensions.

• Dynamic Adaptation: With a general protocol change we solve prob¬
lems 1-4.

• Bounded Degree: This extension can be used if a bounded degree is

required (Problem 5).

• Scalability: With an additional heuristic, we reduce the number of

required ordered list exchanges, while still guaranteeing the con¬

nectivity (Problem 6).
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4.3.5 Wireless Communication

4.3.5.1 Communication Primitives

In order to foster an implementation of our algorithm not only for simu¬

lation but also on real sensor nodes, we give a more detailed description
of the algorithm than such presented in related work. In particular, we
describe what messages are exchanged and how they are handled. We

use the following communication primitives:
discover: Upon request, beacon messages with the device ID are sent

at the remote node. When such a message is received, the remote ID

is stored and the RSSI value is measured. For Bluetooth, an integrated
function (hci„inquiry) exists to perform this function.

connect/disconnect: This is only needed in a connection oriented

medium such as Bluetooth, where a dedicated channel between two nodes

must be established before messages can be sent.

send: We only consider point-to-point communication. The reason

is that in dense networks the high interference would make a reliable

broadcast transmission hard to achieve. In the case of Bluetooth, the

communication is connection oriented.

4.3.5.2 Asymmetric RSSI link model

The algorithm uses a link-metric to decide whether a link is selected or

not. However, if only local RSSI values are incorporated into this decision

the resulting network topology might not be fully connected. The reason

for these asymmetries is that the RSSI values measured by an adjacent
node pair are usually not identical on both sides of the link. Therefore,

we need to define a common link-metric. We use the following notation

for a link in the visibility graph G

\uv\u \uv\v
uoJ—lu —

! '1-Qv

|uv|u = -RSSIuM

|uv|v ~ -RSSIv(u)

IMI = f(|uv|0,|uv|v)

where RSSIu(v) is the RSSI value that node v measures to node u. In¬

creasing RSSI values denote increasing link quality. ||uv|| is the combined

link-metric derived from the exchange of the RSSI values at each node

pair. It can be calculated using the function / on each side of a link as

soon as the other value has been received. An evaluation using different

functions for f will follow in section 4.3.8.
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4.3.6 Dynamic Adaptation
The pseudo-code for this extension is given in Algorithm 5.

The main idea is that the decision, whether node u selects neighbor
v or not, is taken directly when an ordered list -<v is received at u. This

results in the same selection as in the original XTC algorithm, because the

decision only depends on <u and <v and not on other neighbors' ordered

lists. Furthermore, this allows for asynchronous operation at the nodes.

Decisions can be taken independently from other neighbors' state and

directly on arrival of a neighbor's ordered list. A further advantage is

that the algorithm increases memory efficiency. In this way, there is no

need to store ordered lists from all neighbors. In fact received lists can be

discarded right after a single selection decision has been taken.

The algorithm has three processes that run in parallel. The discovery
process is responsible for detecting network changes such as newly dis¬

covered nodes or changes in the link quality. The RSSI from all visible

neighbors are repeatedly measured and stored with the corresponding
node ID in a ordered list <u. Based on the old and the new list, it can

be determined which neighbors are affected by the change. Those neigh¬
bors are added to an ordered queue Q. It can not be guaranteed that

every time all neighbors are correctly detected. The algorithm therefore

continuously repeats these operations which ensures statistically, that all

neighbors are found if the algorithm runs long enough.
The connect process continuously processes the entries in Q by sending

-<u to the neighbors. In contrast to the original XTC algorithm, the list <u

not only contains the order of the nodes, but also the absolute link weight,
which are needed later to calculate a combined symmetric link-metric.

The message dispatch process calls the appropriate handler for every

incoming message. If an ordered list is received the function makeSym-
metric is called. The combined link-metric ||uv|| can be calculated from the

local link-metric in <u and <v. The nodes v and u are then reinserted ac¬

cording to ||uvj| into <u and <v respectively. This reordering however, can

influence the selection decision of the nodes w (line 5 in makeSymmetric)
that are between v's old and new position in <u. Finally, these nodes are

then reinserted into the queue Q for processing.

4.3.6.1 RSSI Fluctuations

The algorithm reacts on network changes such as node addition and

deletion and link losses. However, unnecessary changes due to RSSI

fluctuations should be avoided as much as possible, since they cost en¬

ergy and impair network stability. In a field experiment with stationary
nodes, deployed with 12 nodes per unit disc, we counted the number

of connection establishments. Filtering the RSSI with a low-pass filter
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Algorithm 5 Adaptive XTC (for an individual node u)

1: process discovery
2: repeat
3: discover network changes
4: determine order <u

5: add changed neighbors to ordered queue Q
6: sleep(tsieep)
7: until termination event

8: end process

1

2

3

4

5

6

9

10

process connect

loop
if (Q not empty) then

v - next node in Q
connect (v) // if needed

send(v, orderlist(u, -<u))
remove v from Q

end if

end loop
end process

1: msg_handler orderlist(node v, list <v)
2; remove v from Q
3: makeSymmetric(-<u, <v)
4: if (3w; w<u vand w<v u) then

5: send(v, nack(u, <u))
6: else

7: send(v, ack(u, <ll))
8: inform higher layer that v is selected

9: end if

10: end msg_handler

msg_handler ack(node v, list -<v)

makeSymmetric(<:u, <v)
inform higher layer that v is selected

end msg__handler

1: msg_handler nack(node v, list <v)
2: makeSymmetricHt,, -<„)
3: inform higher layer that vis deselected

4: disconnect(v)
5: end msg_handler

1: function makeSymmetric(list <„, list <;v)
2: determine ||uvj|

4: update <u and <v using ||uv||
5: add all (w : w <u,0i<i vand v <u w) to Q
6: end function
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reduced the number of connection establishments by 20%. Additionally,
we introduced a threshold value ARSSIth. The local neighbor order is only
changed if the difference between the old and the new RSSI value is bigger
than ARSSIth. Fig. 4.3.6.1 shows that an increased ARSSI^ stabilizes the

network.

150

<Ü
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XI 50

0
0 200 400 600 800 1000 1200

time [s]

Fig. 39: Network establishment with 3 different ARSSI^ values in [dBm].

4.3.6.2 Evaluation on Testbed

We have implemented and evaluated S-XTC on a BTnode testbed with

up to 40 nodes. Each node in the testbed locally stores the progress of

the algorithm in a logfile, which is then retrieved by the base-station for

evaluation. In order to measure the connectivity, we have added a process

that periodically broadcasts a ping packet that is flooded on the network.

Fig. 40 shows an example logging history of the S-XTC start-up on a

node that has 14 neighbors. We have measured the time needed until

the whole network is connected (dashed line), the time until all nodes

are discovered (bold line), and the time needed to exchange the neighbor
orders with all visible neighbors (solid line). In different test runs, we

have deployed the nodes with different node densities. Average values,
that have been found are listed in Table 8.

Considering that with Bluetooth, operations such as inquiry and con¬

nect itself require typically a few seconds to complete, and that the nodes

are not synchronized, the S-XTC algorithm achieves quickly a connected

topology. However, the device discovery and interferences are slowing
down the exchange of neighbor orders, especially in dense networks.

y
ARSSL =4

th
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Fig. 41:
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Fig. 40: S-XTC start-up measured on a single node running in a testbed with 15 nodes

within transmission range.

When node u receives the ordered list <v it remembers node was an alternative. If

the degree of u is higher than the bound, the worst connection with an alternative

is deleted. In this case u sends a message swap(u, w) to vto achieve the goal of

global connectivity.

4.3.7 Bounded Degree
The problem of the unbounded degree is not solved by the first exten¬

sion proposed. The discovery process measures the signal strength to

neighboring nodes periodically and averages the result. This has the ef¬

fect that fluctuations are smoothed and the correlation between RSSI and

distance is improved. Experiments have shown that we could reduce the

standard deviation oR$si by filtering from 6 to 3 dBm. However, it can

be seen from Fig. 38, that for orssi = 3 the maximal degree being found

using simulation is still above 8 for high densities. If nodes have limited

number of possible connections such as the case on Bluetooth [KAH+04],

a guarantee for the connectivity of the network topology derived cannot

be given. We therefore propose a further extension using Alg. 6.

This algorithm replaces the message handler orderlist and ack of Algo¬
rithm 5 and adds a further handler swap.

We will now explain this algorithm using the example shown in Fig. 41.

An ordered list <v is sent to node u, which starts to iterate through this list.

Node u searches for common neighbors w, that appear before v in <u. If
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Algorithm 6 Bounded XTC (for an individual node u)

1 : process connect

2: loop
3: if (Q not empty) then

4: v = next node in Q
5: connect(v) // if needed

6; scnd(v, ordcrlist(u, <u \ dclctcd(v))
7: remove vfiom Q
8: end if

9: end loop
10: end process

1

2

3

4

5
6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

msg_handler orderlist(node v, list -<v)
remove v from Q
makpSymmetric(-<u, -<v)

repeat
w =- next node in list <v

until ((w <u v) orcndOfl.ist)
if (endOfL,ist) then // no common neighbor in <v

degiee = degree + 1

send(v, ack(u, <„))
inform higher layer that v is selected

else if (w <v u) then // better common neighbor
send(v, nack(u, <u))

else

degree = degree + 1

send(v, ack(u, <u))
inform higher layer that v is selected

altNode(v) = w

if (worstCandidate <u v) then

worstCandidate = v

end if

end if

if ((degree > bound) and (worstCandidate not null)) then

send(worstCandidate, swap(u, altNode(worstCandidate)))
deleted(altNode(worstCandidate)) = worstCandidate

degree = degree -1

end if

end msg_.handler

1 ! msg_handler ackfnode v. list <v)
2: makpSymmctric(-<u, <v)
3: degree — degree + 1

4: inform higher layer that vis selected

5: repeat
6: w = next node in list <Y

7: until ((w <„ v) or endOfList)
8: if (w <u v) then
9:

...
same as oiderlist line 17-25

10; end msg_handler

1 : insg_handler swap(node v, node w)
2: deleted(w) = v

3; add w to Q
4: infuiin higher layer tliat v is deselected

5: degree = degree-1;
6: disconnect (v)
7l end msg_handler
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node initialization time:

-9s

time until all nodes are connected:

~ 33 s (indépendant of density)
time until all neighbor orders are exchanged:
-60s (density 10)
~ 122 s (density 15)
~ 256 s (density 20)
-414 s (density 25)

time to add a new node to a existing network:

-lis

time for a newly added node to exchange all neighbor orders:

-36 s (density 10)
~ 62 s (density 15)
~ 90 s (density 20)
- 198 s (density 25)

Tab. 8: Typical delay measurements of S-XTC.

no such node is found u selects v. Otherwise it is checked whether node w

appears before u in <v. If true, wis a better neighbor to both u and v, and

the link uv is not selected. These two cases also appeared in the previous
two algorithms. However the third case is new: if w appears after u in

<v, we have the situation shown on the left of Fig. 41. Node u can also

reach vover w. This information is stored in an additional array altNode.

Additionally, node u remembers the connected neighbor ranked least

that has an alternative route worstCandidate. At the end of the message

handler the current node degree is checked. If it is greater than the bound

specified, it sends a swap message to worstCandidate. Node v handles the

swap message, by adding node w to the queue Q and disconnecting the

link to u.

The nodes of the disconnected link are not deleted from from the

ordered list, because if found again during the discovery process, it would

interpret them as new nodes. Instead, the nodes are only removed when

sending an ordered list to an alternative node. Considering the example
shown in Fig. 41 on the right side. When node u sends an ordered list to

w (connect process, line 6), it sends <u \ v, for all other nodes it sends <u.

So the edge uv is only deleted in the view of w. This information is stored

in the array deleted.

Note that in the swap handler, the neighboring node w is not directly
connected. Instead, it is added to the queue Q, in order to force node w

to check if the new edge is really necessary.

The following theorem proves that this algorithm guarantees a maxi¬

mal degree of 6, if G is a Unit Disk Graph.

Thm. 1: (Bounded Degree) Given a Unit Disk Graph, the topology control graph,
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<y = 0 ct=1.4 - -

ct = 3 ct = 6 a=12

Fig. 42: Average (lower set of curves) and maximal (upper set of curves) degree of the

Alg. 6 with a specified bound of 5.

obtained by Alg. 6 and a specißed bound of 6, has at most degree 6.

Proof. Assume for contradiction that one node has degree bigger than 6.

When the seventh neighbor was selected worstCandidate must have been

null at the end of the orderlist or the ack message handler. This can only
be the case if during the connection of all 7 neighbors no alternative node

was found. Then this is only possible if there is no pair in the 7 neighbors
that are also neighbors of each other. In a Unit Disk Graph, this would

mean that no two adjacent edges enclose an angle less than 7i/3, which is

only possible with at most 6 neighbors.

D

We have evaluated this extension with a specified bound of 5 in the

same simulation setup as given for Fig. 38. The result is shown in Fig. 42,

where we can see that none of the nodes violate the given bound. Com¬

pared to Fig. 38 the average degree is also improved, which is a result of

the edges deleted.

In the simulation, where the Unit Disk Graph model is used, the degree
bound can be set to 5. Note that in a real environment with interference,

reflections, and obstacles, the UDG model is not realistic. In a worst case

scenario, where a node has N neighbors, which do not see each other

because of obstacles, the degree can be as large as N. However, this worst

case too is an unrealistic assumption that could not be observed in test

scenarios.
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- !. 'ipV
|uw|u X x*f*Jyw(v

Fig. 43: Reduction of possible links for saving expensive exchanges: node u does not

connect to node wif node wis in the shaded area.

4.3.8 Improved Scalability in Dense Networks

The third extension addresses the scalability in dense networks. Suppose
for example that a node has 100 neighbors. The XTC algorithm would

require to exchange the ordered list with all of them, even if at the end

maximally 5 nodes are selected. There will be a high interference, because

all the 100 neighbors also want to exchange their order with each other.

Here, broadcast communication is clearly inferior. However for link-

oriented communication, such as in Bluetooth, the situation is even worse.

For every neighbor a connection has to be opened prior to the exchange
and closed thereafter if it is not needed to support the network topology.
The time for a connection setup in Bluetooth is in the order of a few

seconds, if both nodes are ready. But if one node is already trying to

connect to another node or performing a device discovery (inquiry), the

delay can grow to tens of seconds, which is quite impractical. We have

measured the time for the initial setup and found it to grow quadratically
with the network density. This problem was also identified by the authors

of [VGSR05].

4.3.8.1 Reduction Heuristic

With an additional heuristic, we can considerably reduce the number of

exchanges required as shown in Fig. 43. Here, we use the notation of

Sec. 4.3.5.2.

Suppose every node has a candidate list with all neighbor nodes, with

which order lists have to be exchanged. This candidate list contains ini¬

tially all neighbors. However, as soon as the first order lists have been

exchanged, the candidate list can be reduced based on the received in¬

formation. E.g. after node u has received the order list <v from v and

calculated the common link weight ||uv||, it can use additional informa¬

tion about a common neighbor w for the decision whether w is removed

from the candidate list. In particular, node u removes node w from the
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candidate list, if

\uw\u > \vw\v ,and (4.1)

\uw\u > IM|. (4.2)

For Euclidean graphs, this is the case if node wis in the gray area in Fig. 43.

An exchange of order lists between two nodes u and w is only prevented,
if both u removes w and w removes u from their candidate lists.

We now show in the following theorem that with the proposed reduc¬

tion applied to the XTC algorithm the connectivity is still guaranteed, if

the common link weight is defined as ||uv|| = min(|uv|u, |uv|v).

Thm. 2: (Valid Reduction) The reduction of the ordered list exchanges applied to the

XTC algorithm does not lead to a disconnected topology if the common link

weight is defined as \\uv\\ - min(|uv|U/ |uvjv).

Proof. Since we know that Gxtc is connected, we prove that GXtc £

^reduction- ^ an ec*ge uw e ^xtc is not in Greduction, it has not been selected

due to a missing ordered list exchange. The only two possibilities for this

are: (a) the edge uw is removed from the candidate lists of both u and w,

and (b) the edge is not selected because another ordered list is missing.
Consider for contradiction an edge uw e Gxtc with

\uw\u < \uw\w =* ll"w|| = \uw\u. (4.3)

In order to remove w from u's candidate list, there must have been an

ordered list exchange between u and a third node v. Because uw e Gxtc.

the following equation must hold:

(||uw|| < Huvll) U (\\uw\\ < \\vw\\) (4.4)

The conditions for the removal of w from u's candidate list are given
in Eq. 4.1 and Eq. 4.2. Combining Eq. 4.1-4.3 we get:

Ijuwjl > |vwtv (4.5)

||uwj| > ||uv|| (4.6)

With Eq. 4.4 and Eq. 4.6, we obtain:

lluwll < IMI (4.7)

Eq. 4.5 and 4.7 however, contradict the minimum definition:

||uw|| < ||vw|| < |vw|v < ||uw|| (4.8)

This proves that (a) is not possible. For (b), consider the ordered list <u

of a node u. A neighbor vcan only be deselected due to a missing ordered

list of a third node w, if w appears before v in <u, but after v if ||uw|| was

known. This would mean that |uw|u < ||uw|| which is in contradiction to

the definition.

D
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4.3.8.2 Evaluation on Testbed

We have measured the startup times of S-XTC with the reduction heuristic

and compared them to the previous results (see Fig. 44). We compare the

time needed to exchange the neighbor order with all visible neighbors
when all nodes have started synchronously (first two bars) and when

only one node is added to an already existing network (last two bars).

15 20

node density

Fig. 44: Comparison of S-XTC startup time with and without the reduction heuristic.

For low densities, the startup time is dominated by the success of the

device discovery and therefore the reduction heuristic has not much effect.

With increasing node density the amount of necessary list exchanges
among neighbors is reduced. We have observed that the number of

effective exchanges with a node density of 25 is between 3 and 11, i.e. the

reduction is on the order of 50%.

4.4 Case Study
The deployment-support network (DSN), which is descibed in the next

chapter requires topology control. We use this applicatione here as a

case-study for validating the S-XTC algorithm. The DSN is a wireless

cable replacement for the development, testing and debugging of sensor

network applications. As a general service, the DSN provides access to

the sensor nodes with a wireless backbone network. One or more host

computers are used to connect to the network and to communicate with

the target sensor nodes using an underlying connected network topology
In the first version of the DSN, the topology was constructed and

maintained using the tree algorithm. The main problem with this solu¬

tion was, that a link failure in the tree results in a disconnected network.
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Fig. 45: Deployment of the DSN on an office floor using a previous tree based algorithm

(left figure) and the new S-XTC algorithm using an RSSI link-metric (right figure).

Furthermore, because the tree algorithm is based on random search and

connect, a number of low quality links are used in the backbone network

resulting in sub-optimal topologies and significantly degraded reliability.
With link failures happening at random, and in the worst case discon¬

necting the whole DSN from the host, the lack of redundancy can cause

substantial disruption of service to the application.
We have successfully integrated S-XTC topology control in an imple¬

mentation of a Deployment-Support Network using the BTnode platform.
The application has been deployed on a testbed in an office floor com¬

prising up to 50 nodes (see Fig. 45) and in various test scenarios (see
Section 4.3.4 for details). Scenarios with differing numbers and densities

of nodes have been successfully tested. The network density in the setup
shown in Fig. 45 varies between 2 and 12. The algorithm successfully
connected the nodes into a connected network with an average degree of

2.9 and a maximal degree of 5.

The capabilities of the S-XTC network to adapt to gradual changes in

the network and the environment as well as its improved resilience to

link failures has improved the overall stability of the DSN application.

4.5 Summary and Discussion

In this chapter we have analyzed existing approaches for network topol¬

ogy control and identified the key properties and eminent problems.
Based on this analysis we have presented a practical topology control

algorithm that combines:

• the guarantee for connectivity,
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• energy efficiency through low degree topology control based on a

single link metric,

• the ability to dynamically adapt to network and environmental

changes, and

The S-XTC algorithm is based on three extensions to the original XTC

algoritm, that render it into a reliable and practical topology control algo¬
rithm. The first extension dynamic adaptation addresses most shortcomings
of the previous algorithm, i.e. operation in an unreliable environment,

asynchronous startup and asymmetric link weights. The second exten¬

sion bounded degree can guarantee an analytically proven bound on the

node degree. The third extension scalability finally, significantly reduces
the message overhead and computational complexity in dense networks.

The different extensions have been validated by means of analytic
proofs and simulation. The simulation scenarios used have on the one

hand been chosen similarly to the ones in the original XTC paper as to

allow direct comparison and on the other hand to determine parameteri-
zations and characteristics of the algorithm to facilitate implementation.

With the preparatory work from analysis, algorithm development and
simulation at hand, and a preliminary test implementation of XTC, the

S-XTC algorithm has been successfully implemented, on tiny, resource

constrained wireless sensor network nodes.

The DSN application running on top S-XTC has proven the practicality
of the algorithm in the case study presented in section 4.4. Benchmarks

and field tests have demonstrated its performance: an increase in effi¬

ciency, lower message overhead, an improved selection of links as well

as improved scalability over previous solutions. Even in high density
scenarios (over 25 nodes within visibility) the time a first completion of

S-XTC is reduced by approximately 1/3 over the algorithm without the

proposed extensions. Likewise the amount of necessary neighbor list

exchanges is reduced by about 50%.

Practical applications benefit from S-XTC due to advantages in the

connectivity low node degree and overall energy efficiency of the topol¬
ogy control algorithm.

Starting with a simple tree algorithms has been a very encouraging
experience due to its traceable and comprehensible nature. The increase

in complexity when actually implementing an algorithm is not to be

underestimated. In conjunction with the complex behavior of the devices,
the exact interpretation of an effect can be very hard.

In current research, there is an apparent gap between the results of

theoretical and practical work [KMW04]. Seemingly simple algorithms
often rely on the availability of complex functions which are not readily
supported by the actual hardware. For instance, a function such as send

to all neighbors, which frequently appears in algorithm descriptions, typ-
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ically involves multiple operations such as search for all neighbors, open a

connection, send the data, and close the connection. In practice, there is no

guarantee for the success of these operations. Thus, a practical algorithm
accounts also for imperfections and failures.

We have shown in this chapter that we require the high quality feed¬

back from an implementation based validation in order to learn about

and account for the complex physical phenomena that appear in a real-

world scenario. This supports the thesis that for distributed embedded

systems, adapted validation strategies are required that allow for testing
in a realistic environment.



5
Deployment Support Network

In the previous chapters, we applied adapted methods for the validation

of distributed embedded systems. We have shown that, especially for

wireless sensor networks, the validation is very challenging, because of

the limited resources of the nodes and the uncertain stimuli. Considering
further the distributed nature of the algorithms, the large number of

nodes, and the interaction of the nodes with the environment, we see that

the nodes are also hard to access.

Access to the state of the nodes, referred to as visibility, is fundamental

for validation. More visibility means faster development. But not only the

amount of state information, but also the quality is important. Simulators

for sensor networks for example, provide almost unlimited visibility. But

on the other hand they use simplistic models for the abstraction of the

environment. They fail to capture the complex physical phenomena that

appear in real deployments. Therefore, the visibility of simulations is of

lower quality

For this reason, researchers have built emulation testbeds with real

devices. Existing testbeds consist of a collection of sensor nodes that

are connected to a fixed infrastructure, such as serial cables or ethernet

boxes. Testbeds are more realistic than simulators because they use the

real devices and communication channels. The problem that remains is

that the conditions in the field where the WSN should be deployed in

the end can be significantly different from the testbed in a laboratory. In

particular, with a cable-based infrastructure it is almost impossible to test

the application with a large number of nodes out in the field.

In evaluations of real deployment experiments like the ones presented
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in [SPMC04, TPS+05, DHJ+06], a gap between simulation-/emulatlon-
results and the measured results of the real deployment has been reported.
Measured packet yields of 50%, reduced transmission ranges, dirty sen¬

sors and short life-times of nodes did not match the expectations and the

results obtained through simulation and emulation. The unforeseen nu¬

ances of a deployment in a physical environment forced the developers
to redesign and test their hardware- and software components in sev¬

eral iterations. It has also been shown that sacrificing visibility such as

switching off debugging LEDs on the nodes in favor of energy-efficiency
is problematic during the first deployment experiments [LBV06].

We introduce the Deployment Support Network, a toolkit for developing,
testing and monitoring sensor-network applications in a realistic environ¬

ment. The presented methodology is a new approach, since it is wireless

and separates the debugging and testing services from the WSN appli¬
cation. Thus it is not dependent on a single architecture or operating
system. In contrast to existing approaches, our method combines the visi¬

bility of emulation testbeds with the high quality of information that can

only be achieved in real deployments. The DSN has been implemented
and applied in an industrial case-study.

The chapter is organized as follows: section 5.1 presents related work,

sections 5.2 and 5.3 describe our approach and its realization. In section 5.4

an industrial case-study is presented and finally, in section 5.5, we discuss

the advantages and limitations of our method.

5.1 Development Support and Testing ofWSNs

- Related Work

To support the development and test of sensor-network applications var¬

ious approaches have been proposed. On the one hand, simulation and

emulation testbeds allow for observation of behaviour and performance.
On the other hand, services for reprogramming and remote control facil¬

itate the work with real-world deployments.

Simulation

Network simulators such as ns-2 [ns2] and Glomosim [ZBG98] are tools

for simulation of TCP, routing, and multicast protocols over wired and

wireless networks. They provide a set of protocols and models for dif¬

ferent layers including mobility, radio propagation and routing. TOSSIM

[LLWC03J is a discrete event simulator that simulates a TinyOS mote on

bit-level. TOSSIM compiles directly from TinyOS code allowing exper¬

imentation with low-level protocols in addition to top-level application
systems.
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Emulation Testbeds and Hybrid Techniques

Indoor testbeds use the real sensor node hardware which provides much

greater sensing-, computation-, and communication realism than simula¬

tions. In some testbeds the nodes are arranged in a fixed grid, e.g. on a

large table or in the ceiling. They are connected via a serial cable to a cen¬

tral control PC. In the MoteLab testbed [WASW05], each node is attached

to a small embedded PC-box that acts as a serial-forwarder. The control

PC can then access the nodes via the serial-forwarders via ethernet or

802.11.

The EmStar framework [EGE04] with its Ceiling-Array is also an in¬

door testbed. It additionally provides the ability to shift the border be¬

tween simulation and emulation. For instance, the application can run on
the simulator whereas for the communication the radio hardware of the

testbed is used. This hybrid solution combines the good visibility of sim¬

ulators and the communication realism of real radio hardware. Another

feature of Emstar is its hardware abstraction layer. It allows the devel¬

opers to use the same application-code for simulation and for emulation

without modification, which enables a fast transition between different

simulation- and emulation modes. The operation mode that provides the

best, sensing-, computation-, and communication realism within Emstar

is called Portable-Array. It is still a wired testbed but with its long serial

cables it can be used also for outdoor experiments.
SeNeTs [BRGT05] is in many aspects similar to Emstar. Both run the

same code on simulation and on the real node hardware and both incor¬

porate an environment model. The main difference is that in SeNeTs the

simulation part runs on distributed PCs, which improves scalability.

Services for real world deployments

Deluge [HC04] is a data-dissemination protocol used for sending new

code images over the air to deployed TinyOS sensor nodes. It uses the

local memory on the nodes for caching the received images. A dissemi¬

nated buggy code image could render a network unusable. This problem
can be addressed with a golden image in combination with a watchdog-
timer [DHJ+06]. The golden image is a known-working program that

resides on every node, preferably on a write-protected memory section.

Once an unrecoverable state is reached the watchdog-timer fires and the

bootloader loads the golden image, which reestablishes the operability of

the network.

Marionette [WTT+06] is an embedded RPC service for TinyOS pro¬

grams. With some simple annotations, the compiler adds hooks into the

code which allow a developer at run-time to remotely call functions and

read or write variables. The main cost of using Marionette is that each
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interaction with a node requires network communication. Sharing the

wireless channel with the application could adversely affect the behavior

of the network algorithm that is being developed or debugged.

5.2 Deployment Support Networks

The Deployment Support Network (DSN) is a tool for the development,
debugging and monitoring of distributed wireless embedded systems in

a realistic environment. The basic idea is to use a second wireless network

consisting of so-called DSN-nodes that are directly attached to the target
nodes.

The DSN provides a separate reliable wireless backbone network for

the transport of debug and control information from and to the target-
nodes. However, it is not only a replacement for the cables in wired

testbeds but it also implements interactive debugging services such as

remote reprogramming, RPC and data/event-logging.

5.2.1 DSN-Architecture

5.2.1.1 Overview

Fig. 46: Conceptual view of a DSN-system with five DSN-node/target-node pairs.

Figure 46 shows an overview of the different parts in a DSN-system.
On the right hand side is the DSN-node/target-node pair that is connected

via a short cable, referred to as the wired target interface. DSN-nodes

are battery-operated wireless nodes with a microcontroller and a radio-

module, similar to the target-nodes.
In the center of the figure, there is a conceptual view of the DSN with

the two separate wireless networks: the one of the DSN-nodes and the one

of the target-nodes. The network of the DSN-nodes is an automatically
formed and maintained multi-hop backbone network, that is optimized
for connectivity, reliability and robustness.



5.2. Deployment Support Networks 107

The DSN-server is connected with the DSN-backbone-network and

provides the client interface, over which the client can communicate and

use the implemented DSN-services. The client is a target-specific ap¬

plication or script. The information flow goes from the client over the

DSN-server to the DSN-nodes and finally to the target nodes and vice

versa. The DSN-server decouples the client from the target WSN both

in time and space. In particular, data from the target nodes are stored in

a database and can be requested anytime, and commands can be sched¬

uled on the DSN-nodes. Separation in space is given through the client

interface that allows for IP-based remote access.

5.2.1.2 Target-Architecture-Independent Services

A key feature of the DSN-system is the clear separation of the target-

system and the DSN-services. As a result, the DSN can be used for the de¬

velopment and testing of different target-architectures. The DSN-services

are target-architecture-independent. Only the wired target interface and a

small part of the software on the DSN-nodes to control it must be adapted.
However, this adaptation is typically a matter of I/O configuration which
is completed fast.

5.2.1.3 Client Interface

The DSN-server provides a flexible RPC user interface for the DSN-

services. A developer can write his own client scripts and test appli¬
cations. The client virtually communicates over the DSN with the WSN

application on the target-nodes.

Fig. 47: DSN multi-user arid multi-network

The DSN supports multiple users. Figure 47 shows two examples.
Multiple users can connect to one DSN-server. Different access privileges
can be assigned to users. For example this allows for read-only access or

for privileged users that are permitted to reprogram the target nodes or

to reconfigure the DSN. The second example shows two separate DSN-
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networks, each with its own server. By this means, two developers can

work independently in the same location without interfering each other.

Additionally this setup balances the load onto two networks, i.e. yielding
a better performance. The separation is achieved by a unique DSN-

network-ID that is checked on the DSN connection setup.

5.2.2 DSN-Services

In this section we describe the debugging services that are provided by
the DSN. Each service has a part which is implemented on the DSN-server

and a part that is implemented on the DSN-nodes.

5.2.2.1 Data- and Event-Logging

Probably the most important service of the DSN is the data- and event-

logging. It gives the developers insight into the state of the target nodes.

The basic concept is as follows: The target-nodes write logging-strings to

the wired target-interface (by using e.g. printf-like statements for writing
to a debug-UART). The DSN-node receives the log-string, annotates it

with a time-stamp and stores it in a local logfile. On the other side, the

DSN-server has a logging database, where it collects the log-messages
from all the DSN-nodes. For that purpose there are two mechanisms:

In pull-mode, the DSN-server requests the log-messages, where in push-
mode, the DSN-nodes sends the log-messages proactively to the server

(see Figures 48 and 49). Finally, the user can query the database to access

the log-messages from all target-nodes.

String-based messages are very convenient for debugging and moni¬

toring sensor network applications. They can be transmitted via a serial

two-wire cable to the DSN-node with only little overhead on the target-
nodes. The majority of the work is done on the DSN-nodes: They run

a time-synchronization protocol for accurate time-stamping and they are

responsible for transmitting the messages to the server. However, for cer¬

tain experiments, even the overhead of writing short log-messages to a

serial interface is not acceptable. Therefore, there is a second mechanism

which uses I/O and external interrupt-lines to trigger an event. Events

are, similar to the log-strings, time-stamped and cached in the logfile.
The caching of messages on the DSN-nodes is an important feature.

It allows for a delayed transmission to the server, which is necessary for

reducing the interference. The transmission can for example be scheduled

by the server (pull-mode) or it is delayed until an experiment has finished.

It even allows the DSN-nodes to disconnect entirely from the DSN for a

certain time and then after reconnection to send all cached log-messages.
For the sake of platform-independence, the content of the log-
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messages is generally neither parsed by the DSN-nodes nor the DSN-

server. This is the responsibility of the user application written by the

developer who knows how to interpret the format. However, the DSN-

nodes can optionally classify the messages into classes such as Errors,

Warnings and Debug. This can be useful if one wishes to directly receive

critical error-messages using the push-mode, while the bulky rest of the

debugging messages can be pulled after the experiment.

5.2.2.2 Commands

The counterparts of the log-messages are the commands. With this ser¬

vice, string-based messages can be sent from the client to the target-nodes.
There are two types of commands: instant commands that are executed

immediately and timed commands that are schedulable. A destination-

identifier that is given as a parameter, lets the client select either a single
node or all nodes. Once the command is delivered to the DSN-server, it

is transmitted immediately to the selected DSN-nodes. Then, in the case

of an instant command, the message-string is sent over the wired target
interface to the target-nodes. For the timed commands, a timer on the

DSN-node is started which delays the delivery of the message. Again,
the content of the message-string is not specified. It can be binary data or

command-strings that are interpreted on the target-nodes.

Together with the data-logging, this service can be applied for the

emulation of interactive terminal sessions with the target-nodes. This

service sends commands to the nodes while the replies are sent back as

log-messages to the user. In other words, this is a remote procedure call

(RFC) that goes over the backbone network of the DSN. The wireless

multi-hop network introduces a considerably larger delay than direct

wired connections. However, even with a few seconds it is still acceptable
for human interaction.

Timed commands are necessary if messages should be delivered at the

same time to multiple target-nodes. The accuracy of time-synchronization
of the DSN-nodes is orders of magnitude higher than the time-of-arrival

of broadcasted messages. In addition this service can be used to upload
a script with a set commands that will get executed on the specified time.

In addition to the described commands, there is an additional com¬

mand for the wired target interface which lets the developer control the

target-architecture specific functions such as switching on/off the target

power, reading the target voltage, and controlling custom I/O lines.
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Fig. 48: Data- and event-logging in pull-mode.
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Fig. 49: Data- and event-logging in push-mode.
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Fig. 50: Remote reprograrnming with code distribution.
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5.2.2.3 Remote Reprogramming

The DSN has a convenient remote-reprogramming service. The developer
uploads a code image for the target-nodes to the server, which forwards

it to the first DSN-node. The DSN-nodes have an extra memory section

that is large enough to store a complete code image. They run a data-

dissemination protocol to distribute the code image to all nodes over the

backbone network. The nodes periodically send status-information to the

direct neighbors including a version number and the type of the image.
By doing so, also newly joined nodes with an old version get updated.

At any time, the developer can monitor the progress of the data dis¬

semination. Once all DSN-nodes have received the code image, he can,

with an additional command, select a set ofDSN-nodes for the reprogram¬

ming of the target-nodes (see Figure 50). The DSN-node is connected to

the programming-port of the target-node through the wired target in¬

terface. This programming connection and its software driver on the

DSN-nodes is one of the few parts of the DSN-system that is architecture-

dependent. It must be adapted if target-nodes with a new processor type
are used.

5.2.2.4 DSN configuration and DSN status

The DSN is configurable. The user can set different operation-modes and

parameters both at setup-time and at run-time. One such mode is the

low-power/low-interference mode. When this mode is set, the DSN-nodes

switch off their radio for a given time-interval. This might be important if

the radio of the DSN and the one of the target-system interfere with each

other. If this is the case, the DSN radio should be switched off during
the experiment. As this mode is also very energy-efficient, it could be set

whenever the DSN remains unused for a known time, e.g. during the

night. This will significantly increase the life-time because only a timer

on the microcontroller of the DSN-nodes needs to be powered.
The DSN further provides the developer with the possibility to gain

information about the state of the DSN. In particular, the following infor¬

mation is provided:
• a list of connected DSN-nodes with a last-seen timestamp,
• a location-identifier,
• the connectivity information of the DSN-nodes,
• the versions and types of the stored code images, and

• the battery voltages of the DSN-nodes

The location-identifier is a string that is stored on every DSN-node

containing e.g. the coordinates for positioning. It can be set via the

user-interface when the DSN is deployed.
The gathering of the DSN-status requires bandwith on the DSN back-
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bone network. To minimize this overhead, the DSN-server only fetches

the information from the DSN-nodes when it is explicitly requested by
the client. Otherwise it provides a cached version of the DSN-status.

5.2.3 Test Automation

It is often not enough to have an interactive terminal session to the nodes.

There is a need for automation and scripting support for the following
reasons: (a) Experiments have to be repeated many times, either for

statistical validity or to explore different parameter settings, (b) The

execution of an experiment has to be delayed, e.g. since interference

caused by human activity is minimized during nighttime, (c) Experiments
last longer than an operator can assist.

One possibility to automate tests is to send once a set of timed com¬

mands to the DSN-nodes (see section 5.2.2.2). However, a more sophis¬
ticated method for test automation is to use scripts that interact with the

DSN-server. This has the advantage that a script can evaluate the state of

the targets during test execution and adapt its further actions. For exam¬

ple, only when a particular message from node A is received, a command

to node B is sent.

The above described DSN-services are accessible as RPC functions and

can therefore be called easily from scripts. Table 9 shows some functions

for the different parts.

test-setup:

loadlmageCtype, version, code image)

targetFlash(selected-nodes)

dsnConfigC[selected-nodes], property, value)

setLogMode(selected-nodes, class, push|pull)
test-execution:

instantCommand(selected-nodes, command)

timedCommandCselected-nodes command, time)
result gathering:

getDSNStatusO

getLog(filter)

Tab. 9: Pseudo-syntax of the RPC functions

5.3 Realization

In the previous section, we described the general concept and methodol¬

ogy of the DSN. In this section we present our implementation. Figure 51
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shows an overview of the technologies used in our implementation. See

also [BTn] for details.

For the DSN-nodes we use the BTnodes rev3 [BDH+04]. This platform
has proven to be a good choice since it has a relatively large memory and

a robust radio.

Fig. 51: Technology overview of the DSN implementation on the BTnodes rev3.

5.3.1 Bluetooth Scatternets

Bluetooth is not often seen on sensor-networks, due to its high energy-

consumption (BTnode: 100 mW). However, it has a number of properties
that the traditional sensor-network radios do not have and which are

very important for the DSN backbone network. Bluetooth was initially
designed as a cable-replacement. It provides very robust connections. Us¬

ing a spread-spectrum frequency-hopping scheme, it is resilient against
interference and has a high spatial capacity. Robustness and spatial ca¬

pacity are mission-critical for the DSN.

Using Bluetooth for the DSN has further the benefit that it is potentially
accessible from PDAs and mobile phones. Although this not utilized in

our current implementation, it opens interesting new usage scenarios for

the future.

We use the BTnut system software on the BTnodes which comes with

an embedded Bluetooth stack. For the automatic formation and mainte¬

nance of a connected Bluetooth scatternet, we use the topology control

algorithms presented in Chapter 4. They are adaptive algorithms, i.e.

taking network changes due to link-losses and leaving or joining nodes

into account.
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5.3.2 Wired Target Interface

The only part of the DSN-node software that must be adapted for new

target architectures is the target interface, Common to most platforms is

that data transport is possible through a serial RS232-like connection. The

BTnode provides a hardware UART for this purpose. Porting this inter¬

face to similar platforms consist of adapting the bitrate and configuring
flow control.

Fig. 52: Two example of realized target interfaces: DSN-node-target-node pairs are

shown with the BTnode rev. 3 and the Tmote Sky (left) and the Shockfish

TinyNode 584 (right).

More problematic is the programming connection, since different plat¬
forms have quite different solutions. Some target-architectures provide
direct access to the programming port (ISP). For this case the target-
interface must execute the ISP protocol of the appropriate microcontroller

type. We have this currently implemented for the AVR and the MSP430

microcontroller family. Some other target-architectures use the same se¬

rial port both for data transport and programming. The appropriate
control signals for the multiplexing must then be issued by a custom

function of the target interface on the DSN-node.

A third programming method is applied on the Tmote Sky target:
We had to program the targets with a custom bootloader that is able

to receive the code image over the external pins (instead of the USB-

connector). Figure 52 shows two different DSN-node - target-node pairs
for which our implementation supports the general DSN-services. We

further implemented an interface for the BTnode- and the A80 target.
The A80 is a radio and processing module developed by Siemens that

is used in wireless fire detectors. For the BTnode- and the A80 target,
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we added additional target-monitoring functions such as target-power
sensing and control to the wired target interface.

5.3.3 Client Interface

All DSN-services are accessible as RFC functions. We use XML-RPC,
since it is platform independent and there exist API-libraries for a large
number of programming- and scripting languages. The application or

script which uses the DSN-services is target-architecture dependent and

must therefore be written by the user. The script in Figure 53 demonstrates
how simple automation and experimental setups can be written. In this

example, a code image is uploaded to the server, the data dissemination
is started, and then the targets are programmed. The DSN does not

perform a version check of the targets since this is dependent on the

target-application. This must therefore be a part of the client script. In the

example it is assumed that the targets write out a boot-message, such as

"Version :X375". The script uses both a time-string and a text-filter-string
to query the server for the corresponding log-messages.

5.3.4 Performance Evaluation

The performance of the implemented S-XTC algorithm on the BTnodes
is mostly limited by the packet processing soft- and hardware. In fact,
the microcontroller is too slow for the packet processing at full Bluetooth-

speed. Incoming packets are stored in a receive buffer. If the arrival rate

of packets is higher than the processing rate for a certain time, packets
are dropped due to the limited capacity of the receive buffer. This af¬
fects the performance of the DSN in several ways: (a) log-messages in

push-mode might get lost, (b) log-messages in pull-mode might get lost,
(c) commands might get lost, and (d) data-dissemination packets might
get lost. The probability of these cases increases with the amount of

traffic on the DSN backbone network. For many scenarios the user can

control what and when data is sent on the DSN. He can e.g. wait for

the completion of the data-dissemination before he starts pulling mes¬

sages. In general, cases (b)-(d) are not critical, as they can be resolved
with retransmission. However, in a scenario, where all nodes periodi¬
cally generate log-messages that are pushed simultaneously to the server,

the log-messages can not be retransmitted. So for case (a), the user wants

to know the transport-capacity of the DSN, such that he can adjust the

parameters of the setup.
In Figure 54, we show the measured yield of correctly received log-

messages at the server. We varied the message-generation rate from 0.5

to 4 packets per node per second and the DSN size from 10 to 25 nodes.
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— ——_—— user script example (Perl)

require

RPC::XML;: Client;

# creates an xml-rpc connection to the dsn-server

SserverURL='http ://tec-pc-btnode.ethz.ch:8888';
Sclient ~ RPC::XML::Client->new(SserverURL);

# sends the code image to the dsn-server with xml-rpc
Sfilename = 'experiment2.hex'; Shandle = fopenCSfilename, 'r');
$req - RPC::XML::request->new('dsnService.uploadFile', Sfilename,

RPC::XML::base64->new($handle));
Sresp = Sclient->sencLrequest(Sreq);

# initiates the data-dissemination on the dsn-nodes

Stype = 1; # code image is for target nodes

Sresp = Sclient->send_request('dsnService.loadFile', Sfilename, Stype);

# wrapped function that uses 'dsnService.getDSNstatus' to wait until

# all targets have received the code image

waitDataDisseminationComplete(Sfilename);

# Programm the targets

Sflashtime = $client->send_requestCdsnService.getServerTinie');
Sresp = $client->send_request('dsnService.targetFlash', 'all');
sleepCS);

# collects the target-versions sent as boot-message by targets

Sresp = $client~>send_request('dsnLog.getLog', 'all', 31, 18, 'Version: X',

Sflashtime, ");
©versions = O;

for Sentry (@{Sresp}){

SentryCLogText'} =~ m/AVersion: X(\d+)/;

push(@versions, {'node' => SentryC'DSNID'), 'version' => SI});
}

Fig. 53: User script example in Perl

Each message carries 86 bytes payload. We left this value constant, be¬

cause sending the double amount of data would result in sending two

packets, which is the same as doubling the message rate. The measure¬

ments are performed on random topologies that were generated by the

integrated tree topology algorithm. We observed slightly different results

for different topologies, but all with the same characteristic: Starting with
slow message rates, all packets are received correctly. However, there is a

certain rate, from which on the yield decreases very quickly. This cut-off

point is between 0.5 and 1 messages per second for 25 and 20 nodes, be¬

tween 1.5 and 2 for 15 nodes, and between 2.5 and 3 for 10 nodes. Thus,
if for this streaming scenario a developer needs all pushed log-messages,
he must set the message-rate or the DSN size below this cut-off point.
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Fig. 54: Yield of correctly received log-messages that are pushed periodically to the server

for different message-rates and different sizes of the DSN. For the measurement

each node sent 100 log-messages with 86 bytes payload.

5.4 Case-Study: Link Characterization in Build¬

ings

Some wireless applications in buildings require highly reliable commu¬
nication. A thorough understanding of radio propagation characteristics
in buildings is necessary for a system design that can provide this relia¬

bility. Engineers of Siemens Building Technologies use a BTnode-based
DSN system to measure and evaluate link characteristics of wireless fire-

detectors. To this purpose, the DSN system remotely controls the target
nodes and collects measurement data. In the following, the measurement

setup is described and the type of results that can be obtained is presented.
The purpose of the case study is to proof the concept of the DSN system,
therefore the obtained data is not discussed in detail.

5.4.1 Experiments

The measurement setup consists of up to 30 target nodes, each connected

to a DSN node. Nodes are placed at exactly the locations in the building,
where the future fire-detectors will be deployed, (see Figure 55). We

measure signal strength (RSSI) and frame error rates for every link be¬

tween any two target nodes. Additionally noise levels and bit error rates

are evaluated. One target node is sending a fixed number of test frames
while all the others are listening and recording errors by comparing the
received frame to a reference-frame. Two messages are generated per sec¬

ond. During and after the reception of every frame, the RSSI is recorded
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Fig. 55: Siemens "Blue Box" with BTnode, A80 target node and batteries. The Adapter
Board acts as a connecting cable. The Box is placed close to existing fire-detectors

for a realistic setup.

in order to provide information about the signal and noise levels.
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Fig. 56: Detailed mode (left) and summary mode (right) of the RSSI measurements.

In the detailed mode, receiving target nodes create a message after every
frame reception. Figure 56 shows on the left the data collected by one tar¬

get node in detailed mode. In summary mode, receiving target nodes only
create a message after a complete sequence of frames has been received.

Figure 56 shows on the right the data collected by 14 nodes in summary
mode. In summary mode, the amount of data is significantly reduced

compared to detailed mode. This allowed us to concurrently evaluate all

30 target nodes in the test setup. On the other hand, only detailed mode

(with maximally 10 nodes, see also Figure 54) allowed us to analyze the

temporal properties of collected data. E.g. Figure 56 shows that frames

with low signal strength do not occur at random times, but are concen¬

trated towards the end of the experiment. Thus channel properties seem
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to vary over time.

DSNAnalyzer DSN-Server DSN-Nodes Target A Target B

Fig. 57: The automated execution of a simple test from the DSNAnalyzer which is a client

of the DSN.

The procedure described above provides data for the links between

one sending target and all other targets. Test automation is used to repeat
this procedure with different senders such that finally the links between

any two nodes in the target system are evaluated. Test automation is

also used to repeat tests with different WSN-system parameters like e.g.

transmit power. Finally tests are executed during day- and nighttime to

observe the influence ofhuman interference. In this case a Java application
acts as the user of the DSN-system (see Figure 46). The interaction of this

application with the DSN system is illustrated in Figure 57.

5.5 Summary
We have presented the Deployment Support Network. It is a new method¬

ology to design and test sensor-network applications in a realistic environ¬

ment. Existing solutions fail at providing at the same time both visibility
and the high quality information from real deployments.

The DSN is wireless, which is the key difference to existing emulation

testbeds. The deployment of DSN-node/target-node pairs is much easier

than handling hundreds of meters of cables. This means that the positions
of the nodes and thus the density of the network can be chosen and
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adjusted quickly according to the application requirements and is no

longer dictated by the testbed setup.

However, using wireless ad-hoc communication instead of cabled in¬

frastructure introduces also new limitations. One is the limited range of

the DSN radio. If the range of the targets radio is larger than the one of the

DSN-nodes and if a sparse deployment with maximal distances between

the nodes is to be tested, additional DSN-nodes have to be inserted that

act as repeaters. Another limitation is obviously the lower throughput for

debugging and control information. A researcher must be aware of this

and choose the rate of generated pushed messages accordingly or change
to pull mode if possible. In our implementation Bluetooth provides the

necessary robustness and reliability needed for the DSN. With its high

spatial capacity it allows not only for large deployments, but also for very

dense ones.

Compared to existing services for real-world deployments such as

Deluge and Marionette, the DSN is different in the sense that the services

run on separate hardware and not on the target-nodes itself. This solution

causes less interference since debugging services and the sensor-network

application are clearly separated and do not share the same computing

and radio resources. The resource demand of the DSN-services is dif¬

ferent from the resource demand of the target-application which asks

for different architectures. If in an application scenario the nodes only

have to transmit a few bits once every 10 minutes with best effort, the

developer would choose an appropriate low-power/low-bandwidth tech¬

nology. Running the DSN-services over such a network is not feasible.

Another approach is over-engineering. One could use more powerful
nodes for the sake of better visibility and flexibility during development.

Running a data-dissemination service on the target-nodes would require
additional memory that is large enough for a whole code image. Expen¬

sive extra memory that is only used for development is no feasible option

for industrial products.

During development and test, the DSN-nodes execute the services on

dedicated optimized hardware. After that, they can be detached from

the target-nodes. Since the services are implemented on the DSN they

can be used for different target architectures and independently of their

operating system.

The BTnode based DSN system has proved to be very useful for SBT's

development teams. The following advantages were most relevant to

them;

• The simple interface between DSN and target nodes makes it pos¬

sible to work with existing target platforms. Alternative systems

require specific hard or software on the target side.

• The DSN-node/target-node pairs are completely wireless and thus
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can be deployed quickly and even in inaccessible locations. This

is important in their use-case since they are collecting data from a

wide range of buildings, some of them in use by their customers,

which excludes wired installations.
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6
Conclusions

In this chapter, we summarise our contributions and discuss potential
extensions of the work for future research.

6.1 Summary of Contributions

With the work presented in this thesis, we contribute towards an increased

quality of the design of distributed embedded systems. Our research on

validation strategies addresses the challenging problems that arise from

the peculiarities of distributed embedded systems such as the unreliable

wireless communication, the limited resources and the problem of access¬

ing state information on nodes:

• Estimation of a wearable system
As an instance of a distributed embedded system, a wearable system

consists of multiple modules with sensing-, actor-, and computing

devices, that are distributed over the human body. In Chapter 2

we presented the modeling and performance estimation of such

systems for multiple objectives. The main contributions of this

chapter to the thesis are the analytic models for the estimation-based

validation. In particular, we combined models of the usage scenario

with models of computing- and wired- and wireless communication

devices.

• Virtualized execution of HW-Tasks

We propose in Chapter 3 the virtualized execution in distributed em¬

bedded systems when applications are executed on reconfigurable
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hardware. Applications are partitioned into a number of hardware

task that are executed following the semantics of the process net¬

work model. This has a number of advantages for design and

validation: Tasks can be validated and deployed separately and can

be reused multiple times.

• Simulation and testing of distributed algorithms
We discuss in Chapter 4 distributed algorithms on the example ofthe

topology control problem. Starting from an existing algorithm de¬

scription, we validated the practicability on real sensor nodes. The

combination of simulation, measurements and a implementation-
driven approach allowed us to identify assumptions that are imprac¬
tical but that appear nevertheless often in descriptions of distributed

algorithms. We further propose additional heuristics that account

for the imperfection that appear in a real-world scenario. We tested

the improved topology control algorithm on the BTnode platform
in a realistic testbed with up to 50 nodes.

• Deployment Support Networks
A Wireless Sensor Network is a distributed embedded system that

is very difficult to validate. The key challenge is to capture the com¬

plex physical phenomena that appear in a real-world scenario in the

system testing. In Chapter 5 we contribute to the thesis by proposing
the Deployment Support Network, a new validation methodology
for the development and test ofWSNs. It is a platform-independent
toolkit that allows a developer to test applications on the real execu¬

tion platform and on the real deployment with minimal modifica¬

tion and interference. The Deployment Support Network provides a

number of services for monitoring, data-logging and control which

can be used in automated test cases. To this end, the proposed

methodology is used by several academic projects as well as by
an industrial partner for the testing of new distributed embedded

systems.

6.2 Future Directions

In the following, we will briefly outline possible directions for further

research:

The proposed Deployment Support Network provides services for

the observation and control of deployed nodes under test. We further

described how this services can be used in an automated test scenario.

However, these are only the first steps towards a generic automated
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supervision system. We envision a precisely defined methodology for

executing system tests for wireless sensor networks which includes the

definition of test interfaces and the generation of test data. With this

thesis as a basis, we believe that further confirmed test methods from

the software engineering domain can be adapted to wireless sensor net¬

works. One example is test driven design and regression testing. Using
a component-based design, small individual parts of the system software

can be specified, implemented and validated independently. By conse¬

quently writing test-cases for every newly implemented component, a

developer can perform regression testing in order to validate that no new

errors are introduced in other components. With such an approach we

would foster researchers to start earlier with testing on the actual plat¬
form and not just at the very end of the design flow. Consequently, this

would bridge the gap between the abstract system design world and the

real world and increase the quality of the design.
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Acronyms

(AD)PCM (Adaptive Differential) Pulse Code Modulation

ASIC Application-Specific Integrated Circuit

CLB Complex Logic Block

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

(C)SoC (Configurable) System on a Chip

DAG Directed Acyclic Graph

DSP Digital Signal Processor

DVS Dynamic Voltage Scaling

FPGA Field-Programmable Gate-Array

KPN Kahn Process Network

LUT Look-up Table

PDA Personal Digital Assistant

RISC Reduced Instruction Set Computer

RSSI Received Signal Strength Indicator

SDF Synchronous Dataflow

UART Universal Asynchronous Receiver and Transmitter

(V)HDL Hardware Description Language

WSN Wireless Sensor Network
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