
DISS. ETH NO. 14640

Communication Channel Synthesis
for

Heterogeneous Embedded Systems

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

Doctor of Technical Sciences

presented by

MICHAEL HERBERT EISENRING

Dipl. El. Ing. ETH/HTL, Switzerland

born July 31, 1967

citizen of
Jonschwil SG

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Wolfgang Fichtner, co-examiner

2002

Abstract

Embedded systems have become part of our daily live. They are the back-
bone for applications such as dishwashers, set top boxes, and patient mon-
itoring systems. During their development phase the heterogeneity and
connectivity of the system components is a big challenge as their interplay
provides the system behavior. The communication between interacting
parts is a performance critical issue and affects features such as execution
speed, power consumption, and costs. Usually, several potential imple-
mentation solutions have to be elaborated that distinguish in features such
as latency, cost, and especially by a different communication infrastruc-
ture. Nevertheless, only few methodologies have emerged that support
an efficient assessment and implementation of alternative implementations
considering the communication features of the system components. The
following issues are still open:

� There exists a lot of models to describe the implementation of an
embedded system. Nevertheless, the heterogeneity of the system
components prevented a consistent model (for processors, reconfig-
urable hardware devices, and memories) that considers their com-
munication features as well.

� During development a behavior description is refined and mapped
onto an implementation description. There exists no methodology
that provides the refinement by considering the communication as
well as the reconfiguration features of system components.

The subject of this research work is on models, methodologies, and
implementation techniques to efficiently establish a communication infra-
structure within an heterogeneous embedded system. The major contribu-
tions are:

� A set of dataflow oriented specification models to capture and de-
scribe synthesis problems for heterogeneous embedded systems. Ba-
sically, they comprise (i) an implementation independent behavior
specification, (ii) a target description, as well as (iii) a mapping be-
tween behavior and target. The models base on point-to-point com-
munication channels.

4 Abstract

� One of these models enables the specification of dynamic reconfig-
ured systems by the use of a hierarchical reconfiguration structure.

� Based on the specification models refinement methodologies have
been proposed that consider the communication features of the sys-
tem components.

� For the system components an object-oriented approach has been
proposed that enables an automatic generation of interface circuitry
and device drivers to establish a communication infrastructure. It is
the base for (i) simple component modeling, (ii) reuse of existing
generation methodologies, and (iii) simple retargeting.

� A taxonomy of communication types has been defined that summa-
rizes the arising types of communication within an embedded system
depending on the mapping.

Kurzfassung

Eingebettete Systeme sind Teil unseres täglichen Lebens geworden. Sie
bilden das Rückgrat für Anwendungen wie Waschmaschinen, Digitalemp-
fänger und Patientenüberwachungssysteme. Während ihrer Entwicklungs-
phase sind die Heterogenität und Verbindbarkeit der Systemkomponenten
eine grosse Herausforderung, da ihr Zusammenspiel das Systemverhalten
bestimmt. Die Kommunikation zwischen interagierenden Teilen hat einen
starken Einfluss auf die Leistungsfähigkeit und beeinflusst Eigenschaften
wie Ausführungsgeschwindigkeit, Leistungsverbrauch und Kosten.

Oft werden mehrere potenzielle Lösungen untersucht. Diese unter-
scheiden sich durch Eigenschaften wie Latenz, Kosten und im speziellen
durch die Kommunikationsinfrastruktur. Trotzdem haben sich nur wenige
Methoden durchgesetzt, welche eine effiziente Bewertung und Implemen-
tation von alternativen Lösungen erlauben und gleichzeitig die Kommu-
nikationseigenschaften der Systemkomponenten berücksichtigen.

Die folgenden Fragestellungen sind noch immer unbeantwortet:

� Es gibt viele Modelle, um die Implementation von eingebetteten
Systemen zu beschreiben. Jedoch verhinderte die Heterogenität der
Systemkomponenten ein einheitliches Model (für Prozessoren, re-
konfigurierbare Hardwarebausteine und Speicher), welches auch ihre
Kommunikationseigenschaften berücksichtigt.

� Während der Entwicklungsphase wird eine Verhaltensbeschreibung
verfeinert und auf eine Implementationsbeschreibung abgebildet. Es
gibt keine Methodik, welche die Kommunikations- und Rekonfigura-
tionseigenschaften der Systemkomponenten bei der Verfeinerung be-
rücksichtigt.

Die vorliegende Forschungsarbeit konzentriert sich auf Modelle, Me-
thodiken und Implementationstechniken, um effizient eine Kommunika-
tionsinfrastruktur für eingebettete Systeme erstellen zu können. Die we-
sentlichen Beiträge zu diesem Forschungsgebiet sind:

� Datenflussorientierte Spezifikationsmodelle zum Erfassen und Be-
schreiben von Syntheseproblemen für heterogene eingebettete Sy-
steme. Grundsätzlich umfassen sie (i) eine implementationsunab-

6 Kurzfassung

hängige Verhaltensbeschreibung, (ii) eine Beschreibung der Zielar-
chitektur, sowie (iii) eine Abbildung zwischen Verhaltensbeschrei-
bung und Zielarchitektur. Die Modelle basieren auf Punkt-zu-Punkt
Kommunikationskanälen.

� Eines dieser Modelle ermöglicht die Spezifikation von dynamisch
rekonfigurierbaren Systemen durch die Anwendung einer hierarchi-
schen Rekonfigurationsstruktur.

� Basierend auf den eingeführten Spezifikationsmodellen wurden Ver-
feinerungsmethodiken vorgeschlagen, welche die Kommunikations-
eigenschaften der Systemkomponenten berücksichtigen.

� Für die Systemkomponenten wurde ein objekt-orientierter Ansatz
vorgestellt, welcher eine automatische Generierung von Interface-
schaltungen und Komponententreibern für die Kommunikationsin-
frastruktur ermöglicht. Er ist die Basis für (i) einfache Modellierung
von Systemkomponenten, (ii) Wiederverwendung von existierenden
Generationsmethoden und (iii) einfache Änderung der Zielarchitek-
tur.

� Abhängig von der Abbildung zwischen Verhaltensbeschreibung und
Zielarchitektur entstehen verschiedene Kommunikationstypen. Die-
se wurden in einer ”Taxonomie der Kommunikationstypen” zusam-
mengestellt.

I would like to thank

� Prof. Dr. Lothar Thiele for advising my research work and providing
an interesting research environment,

� Prof. Dr. Wolfgang Fichtner for his support as a co-examiner of my
thesis,

� my colleague Dr. Marco Platzner for the fruitful discussions and val-
uable inputs to my work, his cooperation in several papers, and his
careful proof reading of this thesis,

� my family for their support during the long time I was writing on
this monograph.

To my wife

Manuela

and our children

Fabienne and Florian

Contents

Abstract 3

Kurzfassung 5

1 Introduction 15
1.1 Embedded Systems . 16
1.2 Overview . 19

2 Embedded Systems 21
2.1 Target Architectures . 21
2.2 Communication . 26

2.2.1 Modeling Communication 27
2.2.2 Communication and Interface Synthesis 29

2.3 Designflow . 32
2.3.1 Conventional Designflow 35
2.3.2 Model-based Designflow 35

3 Specification Models 39
3.1 General Problem Specification (GPS) 40

3.1.1 Problem Graph 41
3.1.2 Architecture Graph 42
3.1.3 Mapping . 46

3.2 Embedded System Model (EPS) 48
3.2.1 Problem Graph 48
3.2.2 Architecture Graph 51
3.2.3 Mapping . 53
3.2.4 Examples . 56

3.3 Reconfigurable System Model (RPS) 60
3.3.1 Problem Graph 60

11

12 CONTENTS

3.3.2 Architecture Graph 63
3.3.3 Mapping . 63
3.3.4 Application Scenario 1: Simple Model 67
3.3.5 Application Scenario 2: Sharing Tasks 69
3.3.6 Application Scenario 3: Suspendable Tasks 72
3.3.7 Application Scenario 4: Virtual Configurations . . 74
3.3.8 Examples . 77
3.3.9 Related Work 80

3.4 Summary . 84

4 Model Refinements 87
4.1 Communication Channel 88

4.1.1 Refinement . 88
4.1.2 Channel Access Semantics 93
4.1.3 Taxonomy of Communication Types 95

4.2 Architecture graph . 99
4.2.1 Object-oriented Component Model 99
4.2.2 Component Wiring 107
4.2.3 Automatic Communication Synthesis 110
4.2.4 Examples . 114

4.3 Problem graph . 118
4.3.1 Implementation Approaches 118
4.3.2 Task . 119
4.3.3 Buffer . 122
4.3.4 Dispatcher . 126

4.4 Reconfigurable Systems 128
4.4.1 Configurator . 128

4.5 Summary . 129

5 Optimization and Synthesis 131
5.1 Synthesis Flow . 131
5.2 Optimization by Object Sharing 134
5.3 CCS framework . 139

5.3.1 Overview . 139
5.3.2 Embedding the CCS framework 141

5.4 Extended example . 142
5.4.1 Problem Specification 142
5.4.2 Problem Refinement 146

CONTENTS 13

5.4.3 Optimization and Synthesis 146
5.5 Summary . 150

6 Conclusions 151
6.1 Results . 151
6.2 Future Perspectives . 152

A Paper Summary 155

Curriculum Vitae 157

Bibliography 159

Chapter 1

Introduction

Since 1971 when INTEL introduced the first general-purpose processor
4004 in the market, embedded systems have become part of our daily life.
They are the backbone for a wide range of application domains; from sim-
ple home appliances such as dishwashers, to PDAs (personal digital assis-
tants), portable phones, and up to sophisticated patient monitoring systems
in hospitals. Design, implementation as well as commercial exploitation
of these systems is influenced by various factors. Technical issues such
as correct functionality and power efficiency, as well as non-technical fac-
tors such as time-to-market and price have to be considered to differentiate
from competitors. A big challenge during their development phase is the
heterogeneity and connectivity of the system components as their interplay
provides the system behavior. Nevertheless, reuse in the sense of system
platforms is rather unusual as embedded systems are dedicated to a certain
application.

This submitted thesis is focused on models, methodologies, and im-
plementation techniques to efficiently establish the communication infra-
structure (connection between communicating parts) within an embedded
system.

The following Section 1.1 outlines embedded systems, their context,
and motivates research of this subject. It is explanatory shown that slightly
modified system specifications strongly influence the required communi-
cation infrastructure of the system implementation. Finally, Section 1.2
gives an overview of the remaining chapters of this thesis.

15

16 Chapter 1. Introduction

1.1 Embedded Systems

In contrast to general purpose systems such as personal computers, embed-
ded systems are tailored to a certain application (see Figure 1.1) [GVNG94,
Mic96, BCO96, Ern97b, Ern97a]. They keep tight coupling with their im-
mediate (technical) environment by using sensors and actors. In general,
an embedded system comprises an arbitrary number of cooperating com-
ponents from different manufactures that jointly implement the specified
behavior [Ern98]. The most important components include general and
special purpose processors, programmable and dedicated hardware units,
as well as memories. Furthermore, an appropriate implementation has to

CPU memory

behavior

FPGA

implementation

technical environment

interaction with

embedded system

sensor

actor

embedded
system

Figure 1.1: Context of an embedded system.

satisfy a number of constraints such as low power consumption [FGSS98]
and real-time requirements [HBKG98]. Generally, there exists a set of al-
ternative implementations for an aspired system behavior. They distinguish
in features like, e.g., system speed and cost [BTT98] and especially by a
different communication infrastructure. To control the design complexity,
embedded systems are developed by the help of tools such as COSYMA
[EHB�96] and PTOLEMY [BHLM91]. Nevertheless, the heterogeneity of
the system components as well as different communication requirements of

1.1. Embedded Systems 17

alternative implementations are rather challenging. For that reason, most
of these tools are restricted to a certain embedded system platform.

In the context of this thesis, the primary focus of interest are issues
concerning the point-to-point communication between interacting parts on
heterogeneous targets. To motivate the research the simplified specifica-
tion of the embedded system shown in Figure 1.2 is considered. Here, the
behavior is described in form of a problem graph �� . The problem graph
consists of tasks (e.g., node�) and buffers (e.g., node ��) that communicate
along directed edges. The prospective target is captured by an architecture
graph �� . The architecture graph is a structural representation of the im-
plementation and includes components (e.g., computing resource ��� ,
and memory ���) that are connected to buses (e.g., node �� �). Compo-
nents have interfaces that enable the communication among them. Finally,
a mapping� specifies which component of the architecture graph will im-
plement which node of the problem graph. Subsequently, an interesting

computing resource

memory

bus

interfaces

CPU
bu1

FPGA1 FPGA2

bu0

mem

PG:

AG:

w

u

b2

v
b1 b4

x

task

buffer

edge

connector

M:

b3

Figure 1.2: Simplified specification of an embedded system.

and challenging question during the design and synthesis process is to find
an appropriate mapping� that satisfies additional system constraints such
as fast execution speed and low communication overhead. To outline the
complexity of this task, the following three cases are considered:

18 Chapter 1. Introduction

Case 1: All problem graph nodes implemented by the same computing
resource

This is the simplest case. All problem graph nodes use the same imple-
mentation language. For example, for a processor computing resource the
language C is appropriate. From a programming point of view, the com-
munication between the nodes takes place on the same chip (i.e., on-chip
communication). Subsequently, communication channels have to be estab-
lished that are specified by the edges of the problem graph.

Case 2: Problem graph nodes distributed among the architecture compo-
nents

Generally, the node implementation languages differ. Assume that task
� has to be executed by the processor computing resource ��� and the
remaining nodes are located on the FPGA computing resource 	����.
Subsequently, the communication channels between the nodes �, ��, and
�� make use of the bus ��� (i.e, off-chip communication). Their implemen-
tation requires appropriate code fragments on both computing resources to
control the data transmission via the component’s interfaces. In a refined
problem graph, this can be captured by additional communication nodes as
shown in Figure 1.3a). However, if it is assumed that all buffers are located

rPG:

w

u

b2

v
b1 b4

x

communication node

b3

c1
c2

c3 c4

a) Possible refinement 1

rPG:

w

u

b2

v

b1 b4

xb3

c5

c6

c7

c8

b) Possible refinement 2

c11

c12
c9

c10

c13

c14

Figure 1.3: Possible refinements.

in the memory ��� an appropriate refinement is shown in Figure 1.3b).
Note, that depending on the location of the task nodes the implementation
of the communication nodes (i.e., the code fragments) is different.

Case 3: Dynamic reconfiguration of FPGA computing resources
Recently, run-time reconfiguration of FPGA computing resources has

arisen to optimize the system implementation [HW95, SSH�99]. This
methodology involves additional control structures in the problem graph

1.2. Overview 19

that require further communication channels. In Figure 1.4a) the consid-
ered problem graph has been extended by a control structure consisting
of nodes �, ��, and �� that enables run-time reconfiguration [EP02]. The
nodes � and � are located on the��� , the buffers are assigned to the mem-
ory ���. The configurations Æ� and Æ� denote a set of exclusive nodes that
are implemented alternately on the computing resource 	����. As the
refined problem graph in Figure 1.4b) shows, the communication infra-
structure for this kind of specification will be rather different from the last
cases. Note, that communication channels can be physically interrupted
during reconfiguration (i.e., interconfiguration communication).

a) Extended problem graph

rPG':

w

u

b2

v

b1 b4

xb3

c3

c4

c5

c11

b) Refinement

c7

c12
c6

c10

PG':

w

u

b2

v
b1 b4

xb3

�1

�2

�

�1

�2

�

�1

�2

�2

c9

c2c1

c8

�1

Figure 1.4: Specification of reconfigurable parts.

The above considerations outline the complexity and diversity of es-
tablishing a communication infrastructure for embedded systems. This re-
search work provides models and methodologies to (i) capture a problem
description, (ii) to apply refinements considering communication issues,
and (iii) to implement an appropriate communication infrastructure.

1.2 Overview

This thesis is organized into seven chapters:

Chapter 1 ...
... outlines the problem statement and motivates the research work.

Chapter 2 ...
... considers related work concerning design and implementation of

embedded systems.

20 Chapter 1. Introduction

Chapter 3 ...
... suggests specification models to capture and describe problem spec-

ifications that use point-to-point communication.

Chapter 4 ...
... presents appropriate model refinements as well as a taxonomy of

arising communication types.

Chapter 5 ...
... shows optimization and synthesis methodologies for the suggested

models. This includes a description of the design flow and a related frame-
work.

Chapter 6 ...
... summarizes the new research results and outlines perspectives con-

cerning further work on communication channel synthesis.

Furthermore, the Appendix gives a brief summary about the published
papers and the CV of the author.

Chapter 2

Embedded Systems

This chapter considers related work concerning design and implementation
of embedded systems. Essentially, embedded systems are dedicated to a
certain environment and provide a specific behavior. Their implementation
considers a number of constraints such as adapted computing performance,
low system cost, low power requirements, and short time-to-market. Quite
obviously, the diversity of application areas and constraints can not be cov-
ered by one universal platform. Instead, a lot of different target architec-
tures have emerged that are optimized for certain application scenarios.
Usually, an architecture comprises a bunch of communicating components
jointly implementing the system’s behavior. Each component needs inter-
faces and device drivers for communication. Subsequently, overhead arises
that influences system performance and system cost. Therefore, communi-
cation as part of the behavior description as well as between target com-
ponents is a major issue. Finally, the embedded system’s designflow incor-
porating the above considerations is of utmost importance for an efficient
implementation regarding human and technical resources.

The remaining parts of this chapter present related work concerning
up-to-date target architectures (Section 2.1), modeling and synthesis of
communication between system parts (Section 2.2), as well as embedded
system’s designflow (Section 2.3).

2.1 Target Architectures

Since their beginning, embedded systems consist of a set of communi-
cating components each providing a dedicated functionality. While this

21

22 Chapter 2. Embedded Systems

concept of connecting components has not much changed the individual
components have become considerably more powerful. The rapid techno-
logical progress concerning transistor density and optimized on-chip cir-
cuit architectures enabled components consisting of millions of transistors
providing a remarkable processing power. Nevertheless, this dramatic de-
velopment faces designers with new challenges of producing reasonable
designs taking advantage of this increased silicon capacity and still re-
ducing time-to-market. Subsequently, system integration on a single chip
(system-on-chip, SoC) is aspired [LRV�96].

Regarding this thesis, a focus of research is on the interaction of com-
ponents, either on-chip or off-chip. Figure 2.1 outlines a nomenclature of

general-purpose processor

special-purpose processor
microcontroller, DSP

configurable systems-on-chip (CSoC)

programmable hardware
FPGA (field programmable gate array)

application specific hardware
ASIC

p
e

rf
o

rm
a

n
c
e

fl
e

x
ib

ili
ty

/p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n

Figure 2.1: Computing components for embedded system architectures.

common computing components that are used for today’s system imple-
mentation. The general-purpose processor provides the largest flexibility
concerning its application domain but on the other hand has a high power
consumption. On the other end, application specific hardware provides the
best computing performance but is very inflexible concerning specification
changes. Between these two extremes components combine different fea-
tures to optimize an implementation.

General-purpose processor
A general-purpose processor provides high computing performance for a
broad range of application domains [Int, Idt]. However, it is not optimized
for special tasks such as digital signal processing. Therefore, it is usually
used in conjunction with further computing components and implements
system parts that are subject of frequent changes.

2.1. Target Architectures 23

Application specific integrated circuit (ASIC)
ASICs are application specific components used to implement and speed-
up performance critical parts of an embedded system [SYN]. They have
the best
����������
��� ratio and quite often represent a complete
SoC. However, their development is time and cost intensive. Nevertheless,
they often emerge as the cheapest alternative for high volume products.

Special-purpose processor
SoC approaches tend towards large initial cost. Therefore, processor ven-
dors such as Motorola [Mot], Philips [Phi], and Texas Instruments [Ins],
provide microcontroller and DSP (digital signal processor) families. Mi-
crocontrollers are optimized for control-flow applications and consist of a
processor core surrounded by a set of peripheral units such as dedicated
I/O facilities and on-chip memory. DSPs are optimized for dataflow prob-
lems, can have fast on-chip data/program memory and provide a high data
throughput.

Program/data buses

EMIF

32

D

A

control
emulation
JTAG test/

Data RAM
32-bit address

8-, 16-, 32-bit data

512K bits RAM512K bits RAM
256-bit data

32-bit address
Program RAM/cache

generator
PLL clock

Timer

Timer

serial port
(T1/E1) buffered

Multichannel

serial port
(T1/E1) buffered

Multichannel

Power management
port
Host

DMA
(four

channel)
or

'C6000 CPU core

Interrupts

Emulation

Test

logic
Control

registers
Control

Data path 2

.D2.S2 .M2

B register file

.L2.D1.M1.S1.L1

A register file

Data path 1

Instruction decode

Instruction dispatch

Program fetch

EDMA
(16

channel)

EXB
or

Figure 2.2: TMS320C62x/C67x Block diagram.

Figure 2.2 outlines the block diagram of an up-to-date high perform-
ance DSP family, the Texas Instruments TMS320C62x/C67x. It consists
of a CPU core, on-chip memory, and peripherals. Family members provide

24 Chapter 2. Embedded Systems

fixed or floating point arithmetic and differ in their memory configuration
and on-chip peripheral modules.

Programmable hardware
In 1985, XILINX introduced the first family of FPGAs (Field Program-
mable Gate Arrays) representing a trade-off between the large computing
power of a dedicated hardware implementation, reprogrammability, and
cost. Currently, FPGAs are available (XILINX Virtex-E series) comprising
million of system gates, supporting 20 different input/output standards at
a speed of up to 300 Mbits/pin, and as well include dedicated on-chip
RAM. Such components enable to build complex SoC systems such as
Adobe PhotoShop filters [LSS99], DES encryption [Pat00], and network
processors [LNTT01].

Figure 2.3 shows the architecture of the state-of-the-art XILINX Virtex-
E series consisting of an array of configurable logic blocks (CLB), routing
resources (e.g., VersaRing), large blocks of on-chip RAM (BRam), and I/O
blocks (IOB). CLBs implement combinatorial/sequential logic and pro-
vide additional carry logic for fast arithmetic function implementations.
Input/output blocks connect the programmable area with chip pins.

OBUF

IBUF

Vref

R

LK

CE

CE

I

Q

CE

D

EC

Q

L

SR

PS

D

EC

Q

L

SR

PS

D

EC

Q

L

SR

PS

PAD

Programmable

Delay

Weak
Keeper

Input/Output Block (IOB)

F1

F2

F3

F4

G1

G2

G3

G4

Carry &

Control

Carry &

Control

Carry &

Control

Carry &

Control

LUT

CINCIN

COUT COUT

YQ

XQXQ

YQ

X

XB

Y

YBYB

Y

BX

BY

BX

BY

G1

G2

G3

G4

F1

F2

F3

F4

Slice 1 Slice 0

XB

X

LUTLUT

LUT D

EC

Q

RC

SP

D

EC

Q

RC

SP

D

EC

Q

RC

SP

D

EC

Q

RC

SP

2-slice CLB

IOBs

IOBs

IO
B

s

IO
B

s

DLL

DLLDLL

DLL

VersaRing

V
e
rs

a
R

in
g

VersaRing

V
e

rs
a

R
in

g

CLBs

B
R

A
M

s

B
R

A
M

s

XILINX Virtex-E architecture

Figure 2.3: Architecture of the XILINX Virtex-E series.

2.1. Target Architectures 25

Configurable systems-on-chip (CSoC)

Recently, configurable systems-on-chips have emerged. These compo-
nents exploit the advantages of software flexibility and the speed of a
dedicated hardware implementation. Usually, they consist of a general-

Figure 2.4: Triscend A7: Configurable SoC (by courtesy of Triscend Inc.).

purpose processor core, a configurable logic core, and memory [Kea00].
Related research projects include the NAPA project [RLG�98], or DReAM
[BG00] a SoC platform intended for mobile communication. Commercial
solutions include the Excalibur processor solution from Altera [Exc] in-
tegrating RISC processor cores (ARM, MIPS (hard cores) or Nios (soft
core)) into their programmable components, the Triscend A7 [Tri] CSoC
combining an ARM7 core with configurable logic (see Fig 2.4), or the co-
operation between XILINX and IBM [XILb] integrating a PowerPC core
with configurable logic.

26 Chapter 2. Embedded Systems

2.2 Communication

Data communication is a performance critical issue for embedded systems.
It affects communication speed, system cost, and power consumption. Not
only the intricate relationship with the environment is important (i.e., by
measuring/observing physical parameters using sensors and appropriate
reaction using actors) but also the local communication between proces-
sors, custom hardware, and memories has a large influence on the overall
computational power. The complexity of embedded systems concerning
communication between components has two main issues:

Communication semantics
Different specification formalisms have different communication seman-
tics. For example:

� Nodes of an SDF [LM87b] graph fire instantaneously if enough to-
kens are available on all node input edges and wait for data other-
wise. Edges have an indefinite buffer capacity.

� In FunState [Str00] a function is activated by a state machine and
then reads/writes its inputs/outputs instantaneously. A buffer is ex-
plicitly modeled. Read access to a register buffer is non-blocking
which may potentially lead to invalid values whereas a read from a
queue buffer is blocking.

Implementation techniques and devices
The implementation of the infrastructure providing data communication
is influenced by factors such as performance requirements, architecture
component types, supported communication protocols and synchroniza-
tion techniques, and interconnection scheme. For example:

� Operating systems like, e.g., Virtuoso [Eon99] for DSPs, provide a
set of different communication mechanisms. By using asynchronous
events and semaphores, tasks can notify each other if there is a block
of data within a shared memory region to be transferred. More com-
fortable, mailboxes and FIFOs allow an easy message transfer pro-
viding asynchronous or synchronous communication. As a conse-
quence, they cause a degradation in communication performance.

2.2. Communication 27

� Future aspects like, compatibility, may influence the implementa-
tion. For example, the decision to use an off-the-shelf PCI controller
that is compliant with the whole PCI local bus specification or to im-
plement only the required subset of the PCI specification may lead
to compatibility problems during product maturation. Where in the
first case compatibility of the embedded system is ensured with all
PCI systems and the overall design time is reduced the second so-
lution may be much more cost efficient for large volumes and less
power consuming if only a small subset of the PCI specification is
required.

Due to the outlined reasons above, specification models that target sys-
tem implementation include a model for communication [COB92, LV94,
DMBIJ97, BTT98, HBKG98, PRSV98, EP00c].

2.2.1 Modeling Communication

Including communication in a specification model has several consequen-
ces. Besides the pure notation of elements of the communication model
the following issues have to be considered:

� Communication properties provided by a target depends on the par-
ticular implementation (architecture components, supported proto-
cols, bus structure, etc.). Subsequently, an accurate estimation con-
cerning communication overhead is very difficult in early design
stages [YW95, KM98].

� Major constraints on binding and allocation are implied as not all
combinations of communication methodologies are supported be-
tween the connected components.

� Storing interface implementations for all possible combinations of
computation components is not feasible [ETT98].

� Programmable hardware components like, FPGAs, originally do not
provide any kind of interface implementation [ET98a].

A specification that considers the above issues includes three parts: (i)
the specification of necessary communication channels between interact-
ing units, (ii) the specification of available communication resources, and

28 Chapter 2. Embedded Systems

(iii) a mapping between necessary communication channels and available
communication resources [JO95, VRBM96, RSV97, OB98, EP00c]. Usu-
ally, these parts are included in a behavior model, an architecture model,
and a mapping between behavior and architecture model respectively.

Behavior model
Modeling communication in a behavior model denotes the necessary data
channels between communicating objects. It is represented, e.g., by com-
munication nodes and directed edges in a problem graph [TBT97, YW95],
using dedicated language constructs [Gon97] within the functional descrip-
tion, by communication primitives providing dedicated semantics [JO95,
DIJ95, VRBM96, LRV�96, VT97, RSV97, EP00c], etc.

Architecture model
The available communication resources are specified in an architecture
model. Resources include bus connections between components [TBT97,
EP00c], routing capabilities of computing resources [OB98, EP00c], avail-
able I/O modules of computing resources and memories [EP00c], sup-
ported communication protocols, etc.

Relating necessary communication paths with available resources
For the later synthesis process the available communication resources have
to be assigned to necessary communication channels. For example, in
[TBT97] communication nodes are assigned to bus resources of the ar-
chitecture model. In [OB98, EP00c] a communication path is assigned to
each directed edge in a problem graph.

Specifications comprising these three parts often provide estimations
about the implementation of the communication such as the expected area
overhead [KM98, FSS99, EZT00]. In this monologue, the investigations
are restricted to the implementation of point-to-point channels although
there potentially exists broadcasting (i.e., one sender sends a message us-
ing one logical channel to several receivers). However, broadcasting can
be easily modeled. A sender emits its message to a ”distributor” that du-
plicates the message and forwards it to a set of connected receivers.

2.2. Communication 29

2.2.2 Communication and Interface Synthesis

The goal of communication and interface synthesis is to establish an ap-
propriate communication infrastructure based on the available resources of
the architecture. This infrastructure provides the necessary communication
channels between interacting objects. Therefore, the communication chan-
nels modeled in the behavior model are stepwise transformed into device
drivers for processors and interface circuitry for hardware programmable
resources [RSV97, LRV�96, OB98, EP00c]. Various methodologies have
emerged to establish a communication infrastructure. Quite often, several
methodologies are used concurrently.

By hand
Writing device drivers and interface circuitry by hand is still the most ap-
plied technique because of the many standards and proprietary connection
schemes. Besides that, the remaining approaches quite often require some
degree of manual work as well.

Library based
Library based approaches provide predefined and pre-tested device drivers
and interface circuits stored in a library that are instantiated and config-
ured during system’s compile time. This technique is usually employed if
the target platform remains fixed. Examples include the investigation of
HW/SW partitioning algorithms for a certain target platform [DMBIJ97,
CV99] and commercial user programmable embedded systems where the
manufacturer delivers a corresponding API (e.g., Sundance [Sun]). Library
based co-design frameworks include, e.g., COSYMA [EHB�96], Akka
[TOJH96], Vahid/Tauro [VT97], DICE [HBKG98], CCS [ET98b].

Template based
Templates are predefined interface codes (e.g., written in C and VHDL)
stored in a library where (i) tags have to be replaced during compile time
by real code fragments, or (ii) code fragments are stored in a library that
are used to compose a real driver/circuit at compile time. This technique
provides greater flexibility than pure library based approaches. However,
it has potentially more sources for error as codes of various libraries may
be combined. For example, using #define’s in C-header files provides a
simple technique to adapt a device driver to a target, e.g., to set the base

30 Chapter 2. Embedded Systems

address register for I/O module access. Template based co-design frame-
works include, e.g., CCS [ET98a].

Pattern based
Patterns [GHJV95] describe a common problem that occurs over and over
again and describe the core of the solution to that problem in such a way
that the description may be reused many times [Ris98]. Patterns for com-
munication and interface synthesis describe typical connection problems
for architecture components but obviously requires manual work to estab-
lish the actual communication infrastructure. Nevertheless, it is an efficient
way to reuse existing knowledge to create new device drivers and interface
circuits. An approach in this sense are general protocol descriptions, e.g.,
that describe how to access a shared memory region, without concrete sug-
gestions concerning the implementation.

Component based
A component (often called IP (Intellectual Property) core) is a predefined
implementation of a computational unit, e.g. a JavaBean [Mic] (software)
or an FIR filter (hardware). It provides a standardized interface that al-
lows simple intercomponent connection. Component based design is gain-
ing interest as it enables to rapidly create dedicated SoCs of large com-
plexity [ZG97, COH�99, EPT99, GDZ99]. For this reason, companies
like such as Mentor Graphics [Gra] and SYNOPSYS [SYN] provide IP
libraries from simple registers to complete processors to be used in hard-
ware designs. However, this approach rises problems concerning the inter-
connection between these IP components. Only few (quasi-)standards for
hardware components have emerged yet. Examples include the VCI (Vir-
tual Component Interface) standard of VSIA (Virtual Socket Interface Al-
liance) [VSI] and the OCP (Open Core Protocol) of Sonics Inc. [Web00].
Therefore, connecting IP cores still makes a considerable amount of man-
ual work necessary. Few commercial tools exist providing the integra-
tion of IP cores like, Cierto VCC (Cadence) [Cie] or COSSAP (Synopsys)
[COS]. Related research approaches include [VLM96b, VG98, COH�99].
Recently, programmable IP cores [RST�00, Röw00] have been suggested
providing a programmable embedded processor to enhance the flexibility
of the cores in terms of supported interfaces, new core function releases,
and built-in self test. However, this flexibility is paid with additional area
overhead.

2.2. Communication 31

high-performance
ARM processor

high-bandwidth
on-chip RAM

b
u
s

b
ri
d
g
e

DMA
bus master

high-bandwidth
external memory

interface

AHB, ASB

UART

KeyPad I/O

TIMER

APB

AHB

ASB

Advanced High-performance Bus

Advanced System Bus

APB Advanced Peripheral Bus

Figure 2.5: AMBA, Advanced microcontroller bus architecture [ARM].

Generator based
Due to the diversity of architecture components and IP cores only few
approaches arose that automatically establish the complete communica-
tion infrastructure. Known approaches base on the formalization of com-
ponent timing diagrams [Bor92, COB92, COB95a] or signal transition
graphs [LV94] followed by the synthesis of appropriate finite state ma-
chines and glue logic [Bor88]. With the appearance of IP cores for SoC
design, algorithms for transducer synthesis are gaining interest that al-
low to establish point-to-point channels between communicating IP cores
[RSV97, OLB98, PRSV98]. Commercial approaches like, e.g., Cierto
VCC [Cie], often provide a mix between library based and generator based
approaches to synthesize intermediate transducers. Predefined communi-
cation primitives (FSMs) are stored in a library that can be modified, sim-
ulated, and finally synthesized. The framework CCS [ET98a] supports
generator based approaches by the use of appropriate plug-in generators
that encapsulate such techniques.

Platform based
To reduce the SoC design complexity pre-designed SoC architectures have
arisen that are adaptable for specific application requirements [FSV99,
Rab00, ARM, GV00]. They are equipped with programmable general
and/or special purpose processor cores, communication buses, memory
controllers, on-chip memory, I/O controllers, etc., and provide a time effi-
cient way to implement an application by reducing system cost and devel-
opment time. Platform based design may include the use of wide spread

32 Chapter 2. Embedded Systems

bus standards such as the VME bus for backplanes [IEE87], the PCI bus
for PC based systems [PCI95], or the CAN (Controller Area Network) bus
for automobile industry [ELSS94]. As an example, AMBA (Advanced
Microcontroller Bus Architecture) is a high performance SoC communi-
cation standard developed by ARM [ARM] (see Figure 2.5). Heart of such
a system are two communication buses connected via an intermediate bus
bridge. A high-performance/system bus provides the connection of pro-
cessor cores, and high speed RAM. Peripherals are connected to the much
slower peripheral bus. The standard stipulates bus protocols and compo-
nent macros that enable an easy connection of components.

2.3 Designflow

The ideal designflow to develop an embedded system starts with a pure
behavior description of the problem and considers constraints such as cost,
real-time behavior, and power consumption. Conflicting design objectives
such as cost versus computing power [BTT98], hardware/software parti-
tioning respecting communication [CV99], or FPGA run-time reconfigu-
ration [HW95] respecting computation power are considered using design
space exploration on different levels of abstraction. The specified system
behavior is refined (either full or semi-automatically) towards an imple-
mentation considering alternative solutions and finally results in an imple-
mentation consisting of connected electronic components jointly executing
and implementing the specified behavior. The importance and usefulness
of full- or semi-automatic tools for mapping high-level specifications onto
heterogeneous target architectures has been recognized by many research
groups [PL91, KKR94, BR95, HBK96, EHB�96]. However, to develop a
framework in the sense of the ideal designflow the following two important
issues arise:

Dedicated specification formalisms for different application domains
The specification formalism covering all known application domains has
not been found yet. Instead, formalisms dedicated to specific problem do-
mains have been developed. For example, controlflow oriented systems
can be described by, e.g., Harel Statecharts [Har87] and finite state ma-
chines. Dataflow oriented systems are described and implemented by us-
ing models such as SDF (synchronous dataflow) [LM87a, LM87b, Zep95],

2.3. Designflow 33

BDF (boolean dataflow) [Buc93], and cyclostatic dataflow [BWE�93],
[EBLP94]. Recently, frameworks such as MOSES [Jan00] and Ptolemy
[BHLM91] have arisen, dealing with modeling and simulation of embed-
ded systems using different formalisms. They provide a generalized inner
computation model and even allow an implementation on heterogeneous
target architectures [EZT99].

Component heterogeneity of the target architecture
The diversity of available architecture components and their rich set of in-
terfacing methodologies makes it difficult to create a fully automatic tool.
Especially tools, that support communication and interface synthesis for
various target components are rare. However, such tools are a prerequi-
site for efficient design space exploration and rapid prototyping. A main
reason for this lack of tool support is the abstraction level of the architec-
ture components. For example, a sophisticated processor model as used in
[BEK�95, BCG�97] allows an efficient implementation for a single pro-
cessor or a dedicated hardware technology. But, retargeting and taking
account of other processors or programmable hardware components is not
possible. On the other hand, a simple model providing just a node in an
architecture graph without fine grain hardware information allows a so-
phisticated algorithmic study of complex design problems but prevents an
efficient implementation due to the high abstraction level. Therefore, an
appropriate target component model useful for system design and imple-
mentation is a trade-off between model granularity and retargeting flexi-
bility [ETT98].

Unfortunately, most frameworks for embedded systems lack a fast and
flexible back-end for the final code generation that incorporates communi-
cation and interface synthesis for heterogeneous platforms. Current frame-
works are focused on domain-specific approaches such as the Polis envi-
ronment for control-dominated systems aiming at a processor-coprocessor
architectures [BCG�97], or the CoWare approach [VLM96a, MBL�96,
VRBM96] for digital signal processing problems targeting at system-on-
a-chip solutions . Further related research approaches include:

VULCAN-II [GM93] ...
... a hardware oriented approach that starts with a behavior description
in HardwareC (C like syntax but hardware semantics). To reduce the im-
plementation cost non-time-critical parts are moved from a hardware im-

34 Chapter 2. Embedded Systems

plementation to a software implementation on a standard processor or a
processor core. A shared memory connected to a global system bus is used
to implement the communication between processor and custom hardware.

COSYMA [EHB�96] ...
... a software oriented approach for small embedded real-time systems. A
behavior specification is written in �� a superset of C. A simulated an-
nealing algorithm starts with the complete application in software and in-
teractively moves software parts to a co-processor until all constraints can
be met. Its target consists of a Sparc processor and an FPGA board used
as co-processor. Communication between processor and co-processor is
implemented using a shared memory.

Ptolemy [BHLM91, Pto] ...
... an interactive framework for simulation, prototyping and software syn-
thesis of DSP systems. It supports several models of computation, e.g.,
SDF, dynamic dataflow, discrete event, etc. The behavior is manually par-
titioned into software executed on DSPs and hardware implemented as cus-
tom datapaths or on FPGAs.

DICE [HBKG98] ...
... starts with an arbitrary number of concurrent C and VHDL processes
that are converted into a CDFG (control dataflow graph). The interac-
tive partitioning approach [HBKG98] tries to keep as much as possible in
software. Hardware processes are generated automatically if nodes of the
CDFG are moved to a hardware implementation. The target consists of
a set of connected modules, i.e., microprocessors, DSPs, ASICs, and FP-
GAs.

SIERA [SB95] ...
... maps a network of concurrent processes onto a printed circuit board
specified as an architecture template comprising FPGAs, ASICs and pro-
cessors. Reusable hardware and software modules are stored in a library
and are connected via a layered interconnect model and predefined hard-
ware/software primitives for low-level message passing between pairs of
processors.

2.3. Designflow 35

Chinook [COB95a, COB95b] ...
... maps a behavioral description of communicating processes onto a single
or multiprocessor system and generates software drivers and glue logic to
connect processors and external chips. FPGAs are not supported.

The approaches discussed above implement a certain designflow to
transform the initial behavior specification onto a target. Besides the dif-
ferent aimed targets and problem domains, hardware/software partitioning
has a central role as it strongly influences the implementation. The follow-
ing two sections outline the basic designflows used in research and industry
favoring early or late partitioning respectively.

2.3.1 Conventional Designflow

A conventional designflow is a rather rigid sequence of transformative
steps [BR95]. It starts with the analysis of requirements and constraints
(design capture) leading to a corresponding integrated system implemen-
tation (see Figure 2.6). Hardware/software partitioning is an early design
step that divides a problem specification into sub-specifications for soft-
ware and hardware. Subsequently, both parts are developed separately. In-
terface synthesis establishes the communication infrastructure consisting
of device drivers and interface circuitry by using the connected compo-
nents of the target architecture. During a final integration step the indi-
vidual elements are assembled, prototyped, and tested. Unfortunately, this
design style is strongly shaped by the early partitioning. This often pre-
vents rectifying redesign loops and design space exploration due to expen-
siveness and rigid time-to-market constraints. Nevertheless, it is broadly
applied in industry as its straight development process allows an easy man-
agement of human, technological, and time resources. Related research
approaches that support a conventional approach include, e.g., VULCAN-
II [GM93], COSYMA [EHB�96], DICE [HBKG98], SIERA [SB95], and
Chinook [OB98]. However, all of them include redesign loops to find op-
timal solutions.

2.3.2 Model-based Designflow

In contrary to a conventional approach a model-based designflow does not
propose a fixed sequence of refinement steps [BR95]. It rather bases on a

36 Chapter 2. Embedded Systems

design
capture

partitioning

HW synthesis SW synthesis
interface
synthesis

integrated
system

problem
specification

hardware
specification

software
specification

hardware
components

interface
components

software
modules

HW/SW

integration

design step

data structure

re
d

e
s
ig

n
lo

o
p
s

Figure 2.6: Conventional designflow.

set of tools that work on a shared repository of dynamic data objects (see
Figure 2.7). Tools can be executed in different orders to evaluate and
explore alternative target architectures considering important aspects such
as different computing resources, protocol selection, communication over-
head, implementation speed, and estimated target price. As the tools are
not a fixed part of an overall designflow new tools can easily be integrated
into such a framework, e.g., to support reconfigurable embedded systems
[EP00a]. Essentially, no distinction is made between hardware and soft-
ware function implementations in early design phases dropping the weak
point of conventional design approaches. Instead, the approach favors a

2.3. Designflow 37

data object
repository

synthesis

architecture

synthesis

reconfiguration

code

composer

estimation

synthesis

communication

PG

PG

AG

PG

AG
AG

1

n

e
s
ti
m

a
ti
o
n

capture

design

simulation

verification

integrated

system

tool

data structure

Figure 2.7: Model-based co-design methodology.

late partitioning and is able to find better implementation solutions. Dif-
ferent implementations are evaluated based on early estimates trading-off
program/data memory, execution time, etc., leading to a concurrent de-
sign style using the synergies of hardware and software implementations
[EZT99].

As visualized in Figure 2.7, the heart of such a framework is a data
object repository that captures the problem specification and prospective
solution objects on various abstraction levels. Design capture tools al-
low to formulate a design problem as a data object comprising a behav-
ioral description of the system’s functionality, its requirements and con-
straints, e.g., in form of a problem graph (�). Architecture synthesis
tools seek for optimal implementations and allocate target components
to define the target architecture in form of an architecture graph (
).
Simulation and verification tools allow to simulate, validate, and verify
a selected implementation. Communication synthesis tools establish the
infrastructure for communication links between connected target compo-

38 Chapter 2. Embedded Systems

nents. They automatically generate the required interface circuitry and
software drivers based on information about the connected architecture
components [EPT99]. Reconfiguration synthesis tools enable run-time re-
configuration of programmable hardware resources [EP00a]. Estimation
tools allow to assess a data object, e.g., the estimated overhead in terms
of hardware area required for the communication infrastructure. Finally,
code composer tools assemble the codes to establish the integrated system.
Related approaches include MOSES [Jan00], CCS [EZT99], and Ptolemy
[BHLM91].

Chapter 3

Specification Models

This chapter, as well as the following two chapters describe the proposed
design methodology for embedded systems (see Figure 3.1). Chapter 3
introduces specification models to capture a problem, Chapter 4 describes
appropriate model refinements, and Chapter 5 elaborates the general syn-
thesis process.

problem
specification

problem
refinement

& synthesis

chapter 3

chapter 4

chapter 5
optimization

Figure 3.1: Simplified design flow.

Essentially, specification models provide formalisms to capture and de-
scribe a synthesis problem. In that sense, the proposed methodology com-
prises a hierarchy of formalisms of various modeling capabilities targeting
at dataflow oriented heterogeneous systems (see Figure 3.2).

The GPS formalism (General Problem Specification) ...
... is parent of all proposed specification formalisms and provides defi-

nition of terms, basic elements, and composition rules to specify a dataflow
problem for synthesis. The principal focus of interest is on the specifica-

39

40 Chapter 3. Specification Models

GPS

EPS MPI

RPS

model

proposed model

extends

ri
s
in

g
m

o
d
e
lin

g
c
a
p
a
b
ili

ty

communication
channel

uses

Figure 3.2: Model hierarchy (UML notation [PJ99]).

tion of communication channels between communicating system parts that
base on the model of a point-to-point communication channel (see Sec-
tion 4.1).

The EPS formalism (Embedded system Problem Specification) ...
... is an extension of GPS. It aims at the specification of dataflow

problems for embedded systems composed of software and hardware pro-
grammable devices as well as memories.

The RPS formalism (Problem Specification for Reconfigurable systems) ...
... is an extension of EPS and additionally supports the specification of

systems containing dynamic reconfigurable hardware devices [EP00a].
The remaining parts of this chapter introduce the three proposed spec-

ification formalisms GPS (Section 3.1), EPS (Section 3.2), and RPS (Sec-
tion 3.3) accompanied with explanatory examples. A short summary in
Section 3.4 concludes this chapter.

3.1 General Problem Specification (GPS)

The GPS formalism is the foundation for the specification of synthesis
problems for dataflow oriented heterogeneous systems. It provides defi-
nition of terms, basic elements, and composition rules. Hence, GPS can
be viewed as parent of models that aim at the specification of synthesis
problems for models such as, marked graphs [CH71], Kahn process net-
works [Kah74], synchronous dataflow graphs [LM87a, LM87b], FunState
components [TSZ�99], and MPI [Pac97]. However, GPS is not restricted

3.1. General Problem Specification (GPS) 41

to embedded system specifications only. As an example, the definition of
an MPI formalism (Message Passing Interface) [Pac97] would enable to
specify synthesis problems for networks of distributed workstations. In
terms of UML (Unified Modeling Language) [PJ99], GPS is an abstract
model (cursive face in Figure 3.2).

GPS is quite similar to other approaches [SB95, Wol97, RSV97] in the
sense that it separates system behavior from target architecture. It com-
prises three specification parts that are discussed in this chapter:

� a platform independent behavior specification in form of a problem
graph,

� the structure and components of the prospective target platform de-
scribed by an architecture graph, and

� a mapping denoting which component of the architecture graph will
implement or execute which node and communication relation of the
problem graph.

3.1.1 Problem Graph

The behavior of a system is captured in form of a problem graph. Es-
sentially, such a graph is platform independent and consists of a set of
communicating nodes.

Definition 1 (Node v) A node � � ��� ��� has a set of input ports �� and
a set of output ports ��.

A node reads data from its input ports, processes these data, and writes
results onto its output ports. In literature, nodes are also called actors
[LM87a].

Definition 2 (Problem Graph �) A problem graph �	 � ����� �
�� consists of a set of nodes � , a set of node input ports � �

�
���� ��,

a set of node output ports � �
�

���� ��, and a set of directed edges
��� � �� � ��.

A directed edge � � �� �� is an ordered pair of ports and represents
flow of data between nodes. As an example, Figure 3.3 shows a simple
problem graph consisting of three nodes �, �, and � and two edges �� and

42 Chapter 3. Specification Models

o1

i
a,b,c � V

(o ,i), (o ,j)1 2 � EPG
a

b

c

o2

j

e1

e2

i,j � I

o ,o1 2 � O

Figure 3.3: Specification of a simple problem graph.

��. The function ����� � ��� � � denotes the source port of an edge.
The function ���� � ��� � � denotes the sink port of an edge. The
function ��� � �� � ��� � denotes the associated node of a port.

The communication of data via a port is specified by a set of rules. In
our terminology, such a set of rules is called protocol.

Definition 3 (Protocol �) � denotes the set of all protocols known to the
environment.

The function
������� � �� � �� � � associates a protocol with
each node port. As an example, a valid function for the simple problem
graph in Figure 3.3 is:

����������� �
����������� �
���������� �
� ,
and
���������� �
� , where �
�
�� � �.

3.1.2 Architecture Graph

The prospective system target is captured by an architecture graph. Basi-
cally, it is a structural representation consisting of components, buses, and
connectors. Components model units of the prospective target (like a pro-
cessor in the EPS model) that implement nodes and possibly edges of the
problem graph.

Definition 4 (Component �) A component � has a non-empty set of inter-
faces ��.

An interface represents an input/output module of a unit of the target.
Target units need device drivers and interface circuits to communicate via
their input/output modules.

3.1. General Problem Specification (GPS) 43

Definition 5 (Architecture graph
) An architecture graph
	 �
�� � �� ���� is a non-directed connected bipartite graph consisting
of a set of components �, a set of bus nodes �, a set of interfaces � ��

���� ��, and a set of undirected edges ��� � �� � ��. There exists at
most one edge between an interface and any bus.

A undirected edge � � �� �� is an unordered pair � � � � � � that
connects component interfaces and buses. The function ���� � ��� � �
denotes the interface of an edge. The function ��� � ��� � � denotes the
bus node of an edge. Usually, the set of interfaces connected to the same
bus is limited. For example, a connection based on the RS232 standard
has exactly two communication partners. The function
������� � �� �

denotes the maximal number of interfaces that may be connected via the
same bus. Figure 3.4 shows the specification of a simple architecture graph
comprising three components �� �, �� �, and �� �, two bus nodes �� and ��,
and edges �� � �� ���, �� � �� ���, ��� connecting them.

cr2

cr3

cr1

b1

b2

i m

k l

nj

{b , b }1 2 = B

{{i, b }, {k, b }, {m, b },

{l, b }, {n, b }, {o, b }}
1 1 1

2 2 2

= EAG

{cr ,cr , cr }1 2 3 = C

interface

o

{i, j} = �c

{m, n, o} = �c

{k, l} = �c

1

2

3

Figure 3.4: Specification of a simple architecture graph.

There exist two different types of component interfaces: Programmable
interfaces (P-interfaces) �� and reconfigurable interfaces (R-interfaces)
��, � � �� � ��. The function ���� � � � ���� associates a type
with each interface. The function ��
���� � �� � denotes the associ-
ated component of an interface. P-interfaces model input/output modules
with predefined implementations within the target unit that need a device
driver for communication. Typical components with P-interfaces are gen-
eral/special purpose processors (e.g., MC68340 microcontroller [Mot94]),
memories, PCs (personal computers) with an expansion bus (e.g., PCI
bus), etc. R-interfaces model input/output modules without predefined
implementations that need additional interface circuitry for communica-
tion. This interface type provides maximal flexibility concerning the con-
nectivity to other components. A configured R-interface behaves like a

44 Chapter 3. Specification Models

P-interface. Components with R-interfaces include FPGAs [XILa, ALT],
hardware reconfigurable systems-on-chip [Tri, Exc], etc.

The required device drivers and interface circuits for the component
interfaces are the main focus of the later synthesis process as they represent
the connecting link between nodes of the problem graph and target units.
For that purpose, each interface provides a set of interface generators able
to generate the necessary interfacing codes.

Definition 6 (Interface generators) 	 denotes the set of interface gen-
erators known to the environment.

The function ��������� � � � ��	� associates a set of interface gener-
ators with an interface. It is an non-empty set in case of P-type interfaces
as at least one generator is necessary to generate a device driver. The two
functions
����� and
����� capture the connectivity of the device
drivers and interface circuits produced by the generators. The function

����� � 	 � � associates a first protocol with a generator. The func-
tion
����� � 	� � associates a second protocol with a generator. The
properties of P- and R-interfaces are summarized in Tab. 3.1.

P-interface R-interface
implementation predefined requires circuit synthesis
reconfigurability - yes
protocols predefined potentially any
programming device driver device driver

(often not required)

Table 3.1: Properties of P- and R-interfaces.

A feasible connection between component interfaces and buses has to
satisfy the following constraints:

C1 It is assumed that � P-type interfaces ������	 and� R-type interfaces
�	������	�
 are connected to a single bus �. Subsequently, it must
hold that:
C1.1 �� � ����� �
����������� 	 ���.
C1.2 �������������
 ���
 �����������	� �� �.

3.1. General Problem Specification (GPS) 45

Comment: Constraint C1.1 assures that all P-type interfaces con-
nected to a single bus � support the number of connected interfaces.
Constraint C1.2 assures that all P-type interfaces have at least one
common generator which enables the communication between the
connected interfaces.

Between any two components there exists a non-empty set of potential
communication paths.

Definition 7 (Communication Path �) � denotes the set of all possible
paths in the architecture graph. A single path � � � denotes a path be-
tween components of the architecture graph where the elements of � are
edges of ���.

For a single path � � ��� �� ��� �	� holds that ������� � ���������
and ��
���������� � ��
���������� for all � � � 	 ��� ��
 where
�
. The function ����� � � � ��� denotes the first edge of a path.
The function ��� � � � ��� denotes the last edge of a path. For exam-
ple, for the architecture graph presented in Figure 3.4 the set of possible
communication paths � is:

� � � ��� ��� ��� �� �� ��� ��� �� �� ��� ��� ��� ��� �� �� ���
��� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �� �� ���
��� �� �� ��� ��� ��� ��� �� �� ��� ��� �� �� ��� ��� ���
��� ��� ��� ��� �

There exist two different component types, namely basic components
�� and hierarchical components � , � � �� � � .

Definition 8 (Basic component ��) A basic component has no hierar-
chical refinement. All its interfaces are either type P or type R.

A typical basic component is a microcontroller where the semiconduc-
tor manufacturer only provides information about the programming model
of the device and the timing behavior of the interfaces. The exact inter-
nal structure of the microcontroller is not commonly known. Figure 3.5a)
shows the graphical representation of the two basic architecture compo-
nents. P-interfaces are drawn with a small filled box and R-interfaces are
denoted with an empty box.

46 Chapter 3. Specification Models

basic P basic R

P-interface R-interface

non-valid basic component

a) Basic components

iFPGA

b) Example of a hierarchical component

RISC_IP

FPGAbus

FPGA

Figure 3.5: Component types.

If the internal structure of a component is sufficiently known, e.g., in
case of custom ASIC design, hierarchical architecture components can be
applied.

Definition 9 (Hierarchical component �) A hierarchical architecture
component abstracts from an internal architecture graph. This graph con-
sists of connected basic and hierarchical components, as well as buses.
Interfaces of hierarchical components are the unused interfaces of the in-
ternal components.

Hierarchical components are marked with a black dot in their compo-
nent symbol. Typical examples for hierarchical components include FP-
GAs with embedded processor cores for sequential task execution, par-
tially reconfigured FPGAs, the Triscend A7 processor [Tri] with an ARM7
core and an additional configurable logic core. As an example, Figure 3.5b)
shows a hierarchical component of an FPGA with an embedded RISC core.
Such a component provides the concurrent execution of tasks written in
VHDL (on internal component �	���) and the sequential execution of
tasks written in C (on the internal component ���� ��) and may be an
alternative to a discrete two device solution.

3.1.3 Mapping

A mapping specifies which component of the architecture graph will im-
plement or execute which node and communication relation of the problem
graph.

3.1. General Problem Specification (GPS) 47

Definition 10 (Potential Bindings !�) The relation !� � �� � ��� de-
notes the set of potential bindings between nodes of the problem graph and
basic components of the architecture graph.

A single tuple � � �� �� � !� denotes an actual node implementa-
tion for a single target unit, e.g., a C-function for a processor, or a VHDL
entity for an FPGA. Therefore, potential bindings !� denote the set of
all available node implementations. For example, in the context of hard-
ware/software co-design each node has a hardware and a software imple-
mentation. Figure 3.6a) shows a set of potential bindings ! � (indicated by

o1

p

a

b

c

o2

q

PG: AG:
cr1

b1

b2

j

n

l k

o

i

m
e1

e2

cr2

cr3

�*

a) Set of potential bindings �*

�* = { (a,cr), (a,cr), (b,cr), ... }1 2 2

o1

p

a

b

c

o2

q

PG: AG:
cr1

b1

b2

j

n

l k

o

i

m
e1

e2

cr2

cr3

�

b) Set of selected bindings �

� = { (a,cr), (b,cr), (c,cr) }1 2 2

Mapping: Mapping:

Figure 3.6: Mapping a problem graph to an architecture graph.

dotted lines) for the problem graph discussed in Figure 3.3 and the archi-
tecture graph discussed in Figure 3.4.

Based on the potential bindings !�, dedicated bindings have to be se-
lected for each node of the problem graph.

Definition 11 (Binding !) The set ! � !� selects bindings for each node
of the problem graph. For a valid binding ! holds �� � � � �� �� � !.

Figure 3.6b) shows a set of selected bindings for the specification in
Figure 3.6a).

48 Chapter 3. Specification Models

3.2 Embedded System Model (EPS)

The EPS formalism is an extension of GPS and targets at the specifica-
tion of synthesis problems for dataflow oriented embedded systems. These
systems consist of connected general and special purpose processors, pro-
grammable as well as dedicated hardware components, and memories. The
following list outlines the main differences between the formalisms EPS
and GPS:

� The problem graph has two node classes: executable nodes to model
a dedicated functionality, and buffer nodes for intermediate data.
Furthermore, a problem graph has at least one dedicated node that
models the node scheduling.

� An architecture graph has two component classes: computing re-
source that implements or executes nodes of the problem graph, and
storage for data storage.

In terms of UML, EPS is a concrete model (non-cursive face in Fig-
ure 3.2). The remaining parts of this section introduce the EPS formalism
and emphasize the differences between GPS and EPS.

3.2.1 Problem Graph

The EPS problem graph is a refined GPS problem graph and has two node
classes:

� executable to model coarse-grained executable units, and

� buffer to model intermediate data storage.

Each node class provides two dedicated nodes types: task and dis-
patcher are executable nodes, queue and register are buffer nodes (see
UML notation in Figure 3.7). An EPS node type is derived from the
GPS node, inherits its properties, and adds characteristic features.

Definition 12 (Nodes of a PG) The EPS model refines the nodes � � � �

� � � � � � � � � of a problem graph into a set of tasks � � , a set of
dispatchers � �, a set of queues � �, and a set of registers � �.

3.2. Embedded System Model (EPS) 49

node

EPS node

extends

buffer

queue register

EPS node class

GPS node

executable

task dispatcher

Figure 3.7: Node hierarchy of EPS problem graph nodes (UML).

In contrast to dataflow models like SDF, where a node is activated by
the presence of data on all of its input ports, an EPS node is activated by
sending a message to a dedicated control input port.

Definition 13 (Control input port ��) Each node � � � has a control in-
put port �� � ��.

A control input port �� is denoted by a black dot in the node’s symbol.
To interpret and react on data issued to the control input port �� a node’s
implementation on a target unit involves a node control finite state machine
(ncFSM). Nodes with unconnected control input ports are automatically
activated and will be restarted upon their completion.

A task node � � � � models a coarse-grained executable unit such as
an FIR-filter in form of a VHDL entity or C function [ET98a]. It starts
execution on receiving a start message on its control port ��, executes its
function which computes a set of outputs �� ��� �	 from a set of inputs
�� ��� �
, and emits a done message at is control input port �� on completion
(see Figure 3.8a).

A dispatcher node � � � � models the activation of problem graph
nodes. Its output ports �� are connected merely to control input ports.
The problem-specific node activation sequence (schedule) is described by
a dispatcher finite state machine (dFSM). By sending messages to con-
nected nodes (dFSM actions) and receiving their reply messages (dFSM
conditions) a dispatcher controls the execution of connected nodes.

A queue node " � � � models an intermediate buffer of limited size
(see Figure 3.9a). It has destructive read and a non-destructive write access
and provides one data input port and one data output port. The semantics
of a queue (e.g., FIFO, LIFO) as well as the queue size is determined by the

50 Chapter 3. Specification Models

o1i1

ic

v

a) Task node

idle run

i :startc

i :donec

im on

valid node control FSM:

o1

ic

�

b) Dispatcher node

on

dispatcher FSM:

depends on the
schedule of connected

nodes

Figure 3.8: Task and dispatcher node.

implementation. Figure 3.9a) shows an example of a node control FSM for
a queue. When the queue receives a start message on its control port �� it
enters the run1 state. In this state, data items can be written into the buffer
via port � and read via port �. When the buffer receives a stop command,
it enters the run2 state. In this state, data can still be written or read. The
transition to the idle state is performed when the number of data items
(tokens) equals a predefined value x (determined by the implementation).
This property enables emitting a done message if the buffer contains the
same number of tokens as in its initial state.

oi

a) Queue node

idle run

i :startc

i :donec

q

i :stopc

ic

o1i1

b) Register node

r

o2i2 ic

valid node control FSM:valid node control FSM:

i :stopc

idle run1

i :startc

run2

tokens==x
i :donec

Figure 3.9: Buffer nodes.

A register node # � � � is an intermediate buffer of limited size pro-
viding destructive write and non-destructive read access on an array of

3.2. Embedded System Model (EPS) 51

memory cells (see Figure 3.9b). The size as well as the addresses for read-
ing/writing the register are defined by the implementation.

As an example, Figure 3.10a) shows a dispatcher � whose outputs ��
and �� are connected to the control input ports of a task � and a buffer
�. In Figure 3.10b) a possible message sequence between the nodes is
outlined where the dispatcher � sends a start message to both nodes �
and �. Some time later, � replies with a done message. Subsequently, the
dispatcher stops the buffer operation. Figure 3.10c) shows the dFSM of
the dispatcher � causing the message sequence outlined in Figure 3.10b).
The dFSM is automatically activated as the control input of the dispatcher
is not connected.

v

�

v

o :start1

o :done1

ti
m

e

a) Problem graph b) Message sequence

o1 o2

c) Valid dFSM for dispatcher �

idle run1

i :startc

o ,o :start1 2

o :done1

ic

�
b

b

o :stop2

o :start2

o :done2 run2

o :stop2

o :done2

i :donec

Figure 3.10: Specification of a simple system.

3.2.2 Architecture Graph

The EPS architecture graph is a refined GPS architecture graph that cap-
tures the target consisting of electronic units. There exists two component
classes:

� computing resource that model units implementing or executing no-
des of the problem graph, and

� storage to model temporary data storage.

The class computing resource provides two component types: processor,
a component for sequential code execution, and FPGA, a reconfigurable
component providing parallel and sequential code execution (as shown in
Figure 3.11). The class storage has a single component type memory. Each

52 Chapter 3. Specification Models

EPS component type is derived from the GPS component, inherits its prop-
erties, and adds characteristic features.

extends

EPS component

EPS component class

GPS component

component

resource

FPGA processor memory

storage
computing

Figure 3.11: Hierarchy of EPS architecture graph components (UML).

Definition 14 (Components of an AG) The EPS model refines the basic
components �� � �� � �� � �� of an architecture graph into a set
of processor computing resources �� , a set of reconfigurable computing
resources ��, and a set of memories �� .

A processor computing resource � � �� models a microcontroller,
processor, or DSP (Digital Signal Processor), and provides sequential code
execution for problem graph nodes.

An FPGA computing resource � � �� models a hardware program-
mable device, that provides parallel implementation for problem graph
nodes. As an example, Figure 3.12 shows a model for the Triscend A7
[Tri] computing resource (block diagram shown in Figure 2.4). It is a hier-
archical component that consists of two connected basic components: (i)
ARM7, a model for the processor core, and (ii) CSL, a model for the con-
figurable system logic matrix. PIO is a parallel I/O port provided by the
CSL. CSI is the configurable system interconnect bus. MI is the interface
to an external memory.

CSLA7

MI

PIO ARM7
CSI

MI

A7

PIO

Figure 3.12: Hierarchical architecture model for the Triscend A7.

3.2. Embedded System Model (EPS) 53

A memory component � � �� models physical storage to hold data
items of queue and register nodes. Additionally, a memory component
enables to model memory-mapped data I/O, e.g., for sensor inputs. As
an example, Figure 3.13 shows a simple EPS model where a Motorola
��� !"# microcontroller is connected to a XILINX $�%�### FPGA
using a synchronous dual port SRAM ����&'(!� (Motorola). A valid
binding ! specifies that tasks � � $ as well as the dispatcher �� are exe-
cuted on ��� !"# , the intermediate queue " and the register # are im-
plemented on ����&'(!� and tasks � � as well as dispatcher �� are
implemented on $�%�### .

MCM
69D536

memory
b0

MC68340 XCV1000

i
b1

d e

PG:

AG:

yx

c

a
q

r

b

�1 �2

Bus
Unit

Figure 3.13: Problem specification using a memory component.

3.2.3 Mapping

An EPS mapping is quite similar to a GPS mapping. Additionally, regard-
ing the later synthesis process, a communication path � has to be specified
for each edge � of the problem graph. Obviously, such a path assignment
is only valid if source and sink nodes of an edge � are bound to the corre-
sponding start/end components of a selected path �.

Definition 15 (Edge binding %) The function % � ��� � � associates an
edge with a communication path. % assigns a valid path � to an edge � if
the following constraints are satisfied:

1. �������������� ��
��������� ������������ � !, and
2. ������������� ��
��������� ���������� � !.

54 Chapter 3. Specification Models

Furthermore, for the generation of interface circuits and device drivers
for component interfaces of the architecture graph an interface generator
has to be selected.

Definition 16 (Interface generator selection �) The function� � ��� �
	 selects an interface generator for an edge.

A feasible mapping of a problem graph to an architecture graph in the
context of EPS satisfies the following constraints:

C2 Each problem graph node is bound exactly once, i.e., �!� � �� �.

Comment: This constraint assures that a problem graph node is im-
plemented or executed by one architecture component only. EPS
does not support any kind of problem graph node migration between
architecture components.

C3 For each edge � of the problem graph either

C3.1 the function % is defined and the path � � %��� consists
of two edges, or

C3.2 source and sink node of edge � are bound to the same
component �, i.e.,

��������������� �� ������������� ��� � !�

Comment: The EPS formalism supports the specification of chan-
nels between adjacent components (constraint C3.1) and on single
components (constraint 3.2) only. However, by the introduction of
(routing) tasks that just copy their input data to their output a long
path can be broken down into a set of subsequent paths of length two
(see Ex. 1).

C4 Each computing resource � has at least one dispatcher node � bound
to it, i.e.,

�� � ��� � ��� � � � �� �� � ! � � � � ��

Comment: Each computing resource executes or implements a set of
problem graph nodes. These nodes have to be activated, which is the
task of at least one dispatcher.

3.2. Embedded System Model (EPS) 55

C5 Assume that a dispatcher � is bound to a computing resource �.

C5.1 All tasks whose control inputs are connected to � must
be bound to computing resource �.

C5.2 If a dispatcher has been specified for a processor comput-
ing resource � � �� , it must be connected to the control
inputs of all tasks of the computing resource �.

Comment: The implementation of a channel requires additional code
(device drivers and interface circuitry). This introduces overhead
concerning communication speed as well as program size. Subse-
quently, to minimize that overhead constraint 5.1 has been defined.
In case of processor computing resources, only one dispatcher is re-
quired (constraint 5.2).

C6 Assume that � � %��� is the path selected for an edge �. The selected
interface generator is ���� � &. The ports of the involved problem
graph nodes are � � �������� and � � �������. It must hold that:

C6.1
���������� �
����� �&�
C6.2
���������� �
����� �&�.

Comment: Interface generators produce the necessary device drivers
and interface circuitry to implement the required channels on the
target platform. Constraints C6.1 and 6.2 assure the compatibility
between the protocols of the problem graph nodes and the protocols
of the codes produced by the interface generators.

As an example, consider the problem specification given in Figure 3.14.
The problem graph consists of a set of tasks � ��� � whose control inputs
are connected to a set of dispatchers �� ��� ��. Note that a dispatcher’s
control input can be connected to another dispatcher. Here, �� is connected
to the control inputs of the dispatchers �� and ��. This property enables
hierarchical scheduling of tasks. For example, consider �� as a general
controller. In this case, the problem graph can be viewed as consisting
of two subgraphs �	� and �	� containing tasks � � � and tasks $ �
respectively. Each subgraph has its own dispatcher, i.e., �� and ��. As
an example for power optimization, each subgraph could be temporarily
stopped from execution which is controlled by ��. However, the tasks have
to support such an execution behavior. The architecture graph comprises
two connected FPGA computing resources �
��� and �
��� . Each problem
graph node can be bound to any of the two computing resources. The edge

56 Chapter 3. Specification Models

b0

fpga1 fpga2

PG:

AG:

a

Mapping:

b

c

�1
b

�2

d

e

�3

�1 �2

each PG node can
be bound to any computing resource

binding ��	

edge binding �	

interface generator selection �	

depends on the binding �

depends on the binding �

PG1

PG2

Figure 3.14: Dispatchers on FPGA computing resources.

binding % as well as the selection of the interface generators � depends on
the binding !.

3.2.4 Examples

The following examples present the specification of synthesis problems
using the proposed EPS formalism.

Example 1 (Transducer) A transducer is a hardware circuit providing
protocol translation from its input port to its output port [Bor88]. Fig-
ure 3.15 shows the connection of two incompatible computing resources
�#� and �#�, i.e., �������������
 ������������� � �. By using an in-

r

cri �3

b0

cr1 cr2�4

b1

a b

PG:

AG:
V

Mapping:

binding �	

a cr1

cr2

cr3

r

b

transducer

�2�1

C

Figure 3.15: EPS model of a transducer.

termediate computing resource �#� the two components can be connected,
if either (i) �������������
 ������������� �� � and �������������

������������� �� �, or (ii) �#� has R-type interfaces. To enable the com-
munication between task � and task � bound to �#� and �#� respectively, a

3.2. Embedded System Model (EPS) 57

(routing) task # has been introduced into the problem graph that just copies
its input to its output. The shaded area in Figure 3.15 consisting of the task
and the computing resource �#� forms a model for a transducer.

Example 2 (FunState: Basic Component) Figure 3.16a) presents a ba-
sic FunState component (taken from Strehl [Str00]). The basic untimed
FunState component consists of two parts, (i) a network ' of connected
storage units (e.g., "����"�) and functions (e.g., (����(�), and (ii) a finite state
machine� .

b0

a) FunState model taken from Strehl [Str00]

cr1

�M

f3

f2f1

q #1 1/f2

q #3 2/f3

q # 4 q #2 4 � 3/f1

f1

f3

f2

q1

q2

q3q4

2

2

2

3 3
4

b) EPS model (PG, AG)

q1

q2

q4 q3

PG:

AG:

b1

N

M
�3

�2

�1

�4

cr2

mem

Figure 3.16: FunState: Basic component.

Valid problem and architecture graphs of a corresponding EPS speci-
fication are given in Figure 3.16b) where functions are modeled by tasks.
A dispatcher �� whose output edges are connected to each control input
port of the remaining nodes provides the state machine M of the FunState
component. A mapping is not shown here.

Example 3 (Control System) Figure 3.17a) shows a typical loop of a con-
trol system where a plant with an input vector � and an output vector) has
to follow an input trajectory #. The shaded area denotes the control part
of the system which (i) observes the plant by measuring the actual values
of the system using sensors, (ii) compares them with the reference input #,
and (iii) adjusts differences using its actors (signal �).

58 Chapter 3. Specification Models

MC68332

PG: AG:

0
bTPU

r digital in

y … y0 3 plant

u … u0 2

shaded

plant

MC68332

y0

bTPU

p
la

n
t

21 3

54 6

y1

y2

y3

r

u0

u1

u2

digital
in

plantcontrol
er

-

a) Control system

u y

4

3

b) EPS model

b7

area

e7

e6

e5

e4

e2

e1

e0

e3

V

Mapping:
binding �	

C
p0 p1 p2 p3

p4 p5 p6

TPU0

edge binding and

selection of interfaces
omitted due to space
limitation

�

�

i

�

Figure 3.17: Control System.

The considered target architecture implementing the control part uses
a Motorola MC68332 microcontroller (see Figure 3.17b) which is well
suited to cope with several (in-)dependent real-time I/O ports (time pro-
cessing unit (TPU)). The environment (of the control system) is modeled by
an FPGA computing resource plant representing the connections to the ac-
tual plant. Tasks modeling the control system’s in- and outputs are bound
to this resource. The required microcontroller’s input and output ports
are connected to the plant using bus nodes �������������. The memory
mapped input # is modeled by the memory digital in.

In the problem graph the shaded area indicates the behavior of the con-
trol part. The inputs and outputs are modeled via dummy tasks)����)� and
������� respectively. This is necessary to enable the generation of device
drivers for the microcontroller’s ports during the later synthesis phase.
Note that only code for the microcontroller has to be generated which in-
cludes the shaded behavior part as well as appropriate input and output
device drivers.

3.2. Embedded System Model (EPS) 59

Example 4 (MICROWIRE/PLUS Bus) The COP8 microcontroller fam-
ily of National Semiconductor Inc. provides solutions for small embed-
ded system implementations. Currently, the family consists of about 30
microcontroller derivatives distinguishing in features like, e.g., on-chip
RAM/ROM, number of I/O lines, etc. The series is added by a considerable
range of peripheral devices such as EEPROMs, A/D-converters, and dis-
play drivers. All these devices support the proprietary serial 3(+1)-wire
MICROWIRE/PLUS bus [SV95] providing simple component interconnec-
tion based on a master/slave communication scheme.

COP
888EK

MICROWIRE/PLUS

COP
888EK

NM
93C06

ADC
0834

key-
board

COP
472-3

256 Bit
EEPROM

4 channel/8Bit
A/D converter

LCD driver

f

chan1

chan2

chan3

chan4

d

min/max

keyboard

display

calibration

PG:

AG:

r1

r2

r3

r4

r5 r6

r7

r8

CPU1

CPU2

b

r … r1 4 ADC0834

r , r5 6 NM93C06

r7

r8

f, c, �

keyboard

COP 472-3

CPU1

d CPU2

c

V

Mapping:
binding �	

Cdata

e0

�

edge binding and

selection of interfaces
omitted due to space
limitation

�

�

Figure 3.18: Simple measurement system.

Figure 3.18 shows the specification of a simple measurement system
of three tasks ((filter), $ (display), and � (control) using a typical bus ar-
chitecture (MICROWIRE/PLUS). (reads from four analog inputs (#����#�),
filters and normalizes the data based on calibration data, and sends them
to task $ and task � respectively. Task $ determines an overflow/underflow
of the data values based on min/max values and writes the data to the dis-
play #�. Using keyboard #	 calibration data as well as min/max values can
be defined.

60 Chapter 3. Specification Models

3.3 Reconfigurable System Model (RPS)

Reconfigurable systems provide dynamic reconfigurable hardware com-
puting resources to speed-up performance critical behavior parts [HW95].
Such resources may undergo a repeated reprogramming during applica-
tion execution to optimize their workload. In the context of this thesis,
these systems give rise to very interesting questions concerning the spec-
ification and implementation of the communication between dynamically
reconfigured computing resources. To deal with reconfigurable systems
the RPS formalism has been developed which is an extension of EPS. The
main differences between the models RPS and EPS can be summarized as
follows:

� The problem graph nodes are divided into groups. All nodes of a
group are implemented by the same basic computing resource during
a certain time period of application execution.

� The repeated reconfiguration of computing resources is modeled by
the interplay of dedicated problem graph nodes. For that reason, the
RPS formalism provides an additional node type.

In terms of UML, RPS is a concrete model (non-cursive face in Fig-
ure 3.2). The remaining parts of this section introduce the RPS formalism,
emphasize differences between RPS and EPS, elaborate application sce-
narios, and outline related work.

3.3.1 Problem Graph

The dynamic reconfiguration of an FPGA computing resource requires that
problem graph nodes bound to that resource have been divided into groups,
called configurations. A single configuration Æ denotes a set of problem
graph nodes that are implemented by the same basic computing resource
during a certain time period.

Definition 17 (Configuration �) � denotes a set of all configurations
Æ � � of a problem graph.

To specify embedded systems using dynamically reconfigured resour-
ces we use a hierarchical specification approach [EP00a] that consists of
two layers:

3.3. Reconfigurable System Model (RPS) 61

� On a static top layer one or several ”supervisory” nodes called con-
figurator(s) supervise a set of dynamically reconfigured FPGA com-
puting resources by downloading and starting their configurations.

� On a dynamic bottom layer a dispatcher node is assigned to each
configuration. A dispatcher’s outputs are connected to the control
inputs of the remaining nodes of the same configuration. Its own
control input is connected to one supervising configurator node. The
dispatcher activates the connected nodes and determines the end of
a configuration.

As an example, Figure 3.19 sketches the hierarchical specification of
the reconfiguration for a problem graph. The problem graph nodes (not
shown for simplification) have been divided into a set of configurations
Æ� ��� Æ� (indicated by dashed lines). Each configuration Æ� has its own dis-
patcher �� whose control input is connected to the supervisory configurator
�. The binding is indicated by rectangular boxes. Hence, the configurations
will be implemented on either �
��� or �
��� . The configurator � will be
implemented on the computing resource)�� .

host

�

�1

�1

�2 �3 �4 �5

fpga1 fpga2

top
layer

(static)

bottom
layer

(dynamic)�2 �3 �4 �5

Figure 3.19: Hierarchical specification of an FPGA reconfiguration.

In general, an RPS problem graph includes the same specification fea-
tures and node types as an EPS problem graph but additionally has a node
type configurator (see UML [PJ99] notation in Figure 3.20).

Definition 18 (Nodes of a PG) The RPS model refines the nodes � � � �

� � � � � � � � � � � � of a problem graph into a set of tasks � � , a set of
dispatchers � �, a set of configurators � � , a set of queues � �, and a set
of registers � �.

62 Chapter 3. Specification Models

node

extends

RPS node

RPS node class

task configurator dispatcher

GPS node

same as
EPS hierarchy

executable

Figure 3.20: Node hierarchy of RPS problem graph nodes (UML).

A configurator � � � � is a problem graph node that (i) models con-
figuration switches of dynamically reconfigured computing resources, and
(ii) is able to initiate downloading and starting of FPGA configurations. Its
output ports�� are connected to control input ports of dispatcher nodes. A
configurator implements a configurator finite state machine (cFSM) that
describes a run-time configuration sequence. By sending messages to
connected dispatchers (cFSM actions) and receiving their reply messages
(cFSM conditions), a configurator supervises a set of run-time reconfig-
ured FPGA resources. Each problem graph with run-time reconfigured
components requires at least one configurator node.

The two suggested layers top and bottom jointly implement an overall
schedule of problem graph nodes and configurations by executing the dis-
patcher (dFSM) and configurator (cFSM) state machines. The schedule is
either statically determined at design time or dynamically by the dispatch-
ers and configurators at run-time (not subject of the thesis). A schedule
is static if the sequence of node/configuration executions does not depend
on run-time conditions and has been fixed during compile-time. A sched-
ule is dynamic if the sequence of node/configuration executions depends
on run-time conditions, i.e., the schedule is influenced by reply messages
of nodes and configurations. In any case, three sources of constraints can
be identified for the overall scheduling of nodes and configurations: (i)
the schedule has to reflect the read/write order of ports of problem graph
nodes, (ii) the schedule must resolve non-determinism in the specification
either at compile-time or at run-time using dispatchers and configurators,
and (iii) the schedule must respect configuration borders given by the par-
titioning into configurations. Scheduling is a non-trivial task and it has

3.3. Reconfigurable System Model (RPS) 63

been shown [DJ98] that careless assignment of problem graph nodes to
configurations may lead to infeasible schedules.

3.3.2 Architecture Graph

The architecture graph of an RPS specification comprises the same compo-
nents as an EPS specification. However, if an architecture graph includes
dynamic reconfigured computing resources, configurator nodes appear in
the problem graph that are bound to host computing resources.

Definition 19 (Host computing resource *) The function * � ���� �
��� � ��� � � �� evaluates to �, i.e., *��� � ���� � �, if �� � �
��� ���� is a host computing resource of computing resource �� � � �

�.

The property of being a host computing resource �� � for a certain re-
configurable computing resource �� � expresses the fact that the host �� � is
able to (i) (re)configure the resource ���, and (ii) start and supervise the
dispatchers of the configurations on �� �.

3.3.3 Mapping

A feasible mapping in the context of an RPS specification includes the
mapping features of an EPS specification. Additionally, four steps are nec-
essary. Essentially, it includes the definition of configurations, the assign-
ment of nodes to configurations, the insertion of dispatcher and config-
urator nodes (for the specification of the reconfiguration) resulting in an
extended problem graph �� �, as well as the consideration of a set of con-
straints. This section presents a simple problem as well as the proposed
steps to describe an appropriate mapping.

Step 1: Define potential assignments to configurations and components
The problem graph nodes � have to be associated with configurations

� and configurations � have to be associated with architecture compo-
nents ��.

Definition 20 (Potential Node-Configuration Assignments ��) �� is a
relation�� � ����� denoting the set of potential assignments of problem
graph nodes to configurations.

64 Chapter 3. Specification Models

A single tuple + � �� Æ� � �� denotes the potential membership of a
node � to a configuration Æ.

Definition 21 (Potential Configuration-Component Assignments ��)
�� is a relation�� � ������ between configurations and reconfigurable
computing resources of the architecture graph.

A single tuple , � �Æ �� � �� denotes the potential membership of
a configuration Æ to a component �. Figure 3.21 shows a set of potential
assignments �� and �� for a given problem and architecture graph. For
simplification, the potential binding ! � is given in textual representation.

u

v

w

PG: AG:
cr1

l

i

k

cr2

cr3

�*

m

b1

b2 n
mem1

o
mem2

�3

�2

�1

� �*

�

={(u,cr),(u,cr),(v,cr),(v,cr),(w,cr),(w,cr),(w,cr),(b ,mem),

(b ,mem),(b ,cr),(b ,cr),(b ,mem),(b ,mem)}
1 2 1 2 1 2 3 1 1

1 2 2 1 2 2 2 1 2 2

Figure 3.21: Potential assignments �� and ��.

Step 2: Select appropriate assignments
Based on the potential assignments �� and �� dedicated assignments �
and � have to be selected for later synthesis.

Definition 22 (Node-Configuration Assignment �) The set � � �� se-
lects node-configuration assignments from the set of possible assignments.

Definition 23 (Configuration-Component Assignment �) The set � �
�� selects configuration-component assignments from the set of possible
assignments.

Step 3: Insert the hierarchical reconfiguration structure
Based on the assignments � and �, the necessary hierarchical reconfigu-
ration structure has to be added into the problem graph �� .

3.3. Reconfigurable System Model (RPS) 65

3.1 (Bottom Layer) For each used configuration, an additional dispatcher
node has to be inserted into the problem graph and bound to the
corresponding FPGA computing resource. Its output ports have to
be connected with control input ports of nodes assigned to the same
configuration.

3.2 (Top Layer) At least one configurator node has to be inserted into the
problem graph and bound to a host computing resource. Its output
ports have to be connected with control input ports of the dispatchers
of the configuration (see step 3.1).

The adding of dispatcher and configurator nodes to the problem graph
�� results in an extended problem graph �� �. Subsequently, these addi-
tional nodes have to be bound to appropriate computing resources leading
to a binding ! �. Additionally, the inserted dispatchers have to be assigned
to the corresponding configurations resulting in a node-configuration as-
signment ��. As an example, Figure 3.22 shows the refined specification
after applying step 2 and 3 to the problem provided by Figure 3.21. The
computing resource �� � has three configurations. For example, configura-
tion Æ� comprises the task node � and the dispatcher node ��. The con-
figurator � is bound to the computing resource �� � and is connected to the
control inputs of the three dispatchers (only indicated for simplification).

u

v

w

PG': AG:
cr1

l

i

k

cr2

cr3

�'

m

b1

b2 n
mem1

o
mem2

�3

�2

�1

� �

� � � � �'={(u,cr),(v,cr),(w,cr),(b ,mem),(b ,mem),(,cr),(,cr),(,cr),(,cr)}2 2 2 1 1 2 2 1 2 2 2 3 2 3

�1

�2

�3

�

Figure 3.22: Refined RPS specification after applying step 2 and 3.

66 Chapter 3. Specification Models

Step 4: Consider constraints
A feasible mapping in the context of RPS must satisfy a set of constraints.
Besides the constraints C3, C4, C5, and C6 of the feasible mapping of an
EPS model a feasible mapping of an RPS model includes the following
constraints:

C7 Assume that a configurator � is bound to a basic computing resource
�� �.

C7.1 Assume that the configurator � is connected to a dis-
patcher which is bound to a computing resource �� �. In
that case function*��� � �� �� must evaluate to �.

C7.2 All dispatchers whose control inputs are connected to �
must be bound to a basic computing resources other than
�� �.

C7.3 A configurator supervises either all or none configura-
tions of a certain computing resource.

Comment: Constraint C7.1 assures that the configurator is bound to
an appropriate host computing resource of each supervised FPGA.
Constraint C7.2 prevents that a configurator reconfigures the FPGA
that implements the configurator itself. Constraint C7.3 expresses
the fact that an FPGA may have only one supervising configura-
tor. Neglecting constraint C7.3, configurators supervising the same
computing resource had to communicate to determine the next valid
configuration.

C8 Assume that there exists a configuration Æ � � such that there is a
tuple �� Æ� � � and a tuple �Æ �� � �. In that case, there has to
exist a corresponding binding, i.e.,

Æ such that �� Æ� � + and �Æ �� � , �� �� �� � !.

Comment: This constraint assures that configurations of an FPGA
contain only node implementations that are actually bound to the
FPGA.

C9 Assume that an edge � connects two nodes � and �, respectively.
Both nodes are bound to the same reconfigurable basic computing
resource. In that case, both nodes have to be assigned to the same
configuration Æ � �, i.e.,

3.3. Reconfigurable System Model (RPS) 67

��� Æ� �� Æ�� � �.

Comment: This constraint considers the fact that nodes can not com-
municate between (exclusive) configurations of the same basic com-
puting resource.

3.3.4 Application Scenario 1: Simple Model

In a first scenario of an RPS specification each problem graph node is
bound exactly once, i.e., constraint C2 of the EPS formalism is consid-
ered. Furthermore, for each problem graph node � there exists at most
one tuple �� Æ� � �. For each configuration Æ there exists at most one
tuple �Æ �� � �. As an example, Figure 3.23 shows two assignments of
�, �, and corresponding bindings ! for the problem suggested in Fig-
ure 3.21. For simplification, problem graph nodes as well as architecture
components are merely indicated by black dots. In Figure 3.23a) comput-
ing resource �� � has one configuration implementing buffer ��; computing
resource �� � implements two configurations Æ� and Æ�. In Figure 3.23b)

a) Example 1

�

�3

�2

�1

� � �

�3

�2

�1

� �

b) Example 2

�={(u,cr),(v,cr),(w,cr),(b ,mem),(b ,cr)}2 2 2 1 1 2 1 �={(u,cr),(v,cr),(w,cr),(b ,mem),(b ,mem)}1 2 3 1 2 2 1

u

v

w

b2

b1

cr1

cr2

cr3

u

v

w

b2

b1

cr1

cr2

cr3

Figure 3.23: Scenario 1: Examples of �, �, and �.

node � is not assigned to a configuration but is just bound to computing
resource �� �.

As further example, an EPS model is considered that has been extended
to an RPS model. Figure 3.24a) presents the EPS model. The tasks are
bound to the computing resource �
�� and buffers "� and "� are bound to

68 Chapter 3. Specification Models

bu

host fpga

c

PG:

AG:

a q2

V

Mapping:

binding �	

C

a fpga

fpga

fpga

b

c

fpga�

memq1

mem

bq1

a) EPS model

c

PG:

a q2

Mapping:

bq1

b) RPS model (PG, Mapping)

��

�

��

�1

�2

� � ��={ }1 2

�

memq2 V

binding '� 	

C

a fpga

fpga

fpga

b

c

fpga�1

V C

�2 fpga

host

mem

�

q1

memq2

dFSM :

idle run

i :startc

o:start

o:done
i :donec

�1
dFSM :

idle run

i :startc

o :start; o : start1 2

(o :done) & :done)1 2��
i :donec

�2
cFSM :

idle

�2

i :startc

load(); o :start�1 1

�
�1

o : done1

load(); o :start�2 2

o : done2

i : donec

o2

o1

o1

o2

o

�'={(a),(b),

(),()}

, ,

, ,

� �

� � � �
1 2

1 1 2 2

�'={(),()}� � �1 2fpga fpga�

Figure 3.24: Simple example for application scenario 1.

the memory ���. The dispatcher’s outputs are connected to the control
inputs of the three tasks �, �, and � (not shown here for simplification).
Now, it is assumed that the �
�� has two configurations (see dashed areas
in Figure 3.24b). For each of these configurations a dispatcher has been
introduced that supervises the nodes of the configuration. For example,
the dispatcher �� is connected to the control inputs of the problem graph
nodes � and �. To supervise the two configurations a configurator node �
has been inserted. It is connected to the control inputs of the dispatchers
�� and ��. The configurator itself is bound to the host.

The schedule of the two configurations and nodes is determined by
the interplay between �	���, �	���� , and �	���� respectively. Fig-
ure 3.24b) shows examples of appropriate FSMs. To reconfigure the �
��

the configurator � executes a function ����� that (i) reads �
�� program-
ming data from a memory, and (ii) writes it to the �
�� programming in-
put (not shown here). Note that careful scheduling analysis is required to
ensure liveliness of the system. For example, starting the configuration se-
quence by downloading configuration Æ� causes a deadlock as nodes � and
� will wait forever to get their data from the queues "� and "�.

3.3. Reconfigurable System Model (RPS) 69

3.3.5 Application Scenario 2: Sharing Tasks

This scenario considers systems where a single task in the problem graph is
associated with several exclusive configurations either on the same or ad-
jacent computing resources. Such tasks are called shared tasks. They are
the base for systems that actually remove a task’s implementation from an
FPGA, and at a later point in time, download and (re)start it again as part
of the same or another configuration. As an example, Figure 3.25a) shows
the sharing of task � between the configurations Æ� and Æ�. Both configura-

a) Example 1

�

�3

�2

�1

� � �

�3

�2

�1

� �

b) Example 2

�={(u,cr),(v,cr),(w,cr),(b ,mem),(b ,mem)}2 2 2 1 1 2 1 �={(u,cr),(u,cr),(v,cr),(w,cr),(b ,cr),(b ,mem)}1 2 2 3 1 2 2 1

u

v

w

b2

b1

cr1

cr2

cr3

u

v

w

b2

b1

cr1

cr2

cr3

Figure 3.25: Scenario 2: Examples of �, �, and �.

tions are associated with the same computing resource �� �. Figure 3.25b)
outlines a specification where task � is shared between configurations Æ�
and Æ� that are associated with adjacent computing resources �� � and �� �.

Essentially, to share a node � between a set of configurations Æ����Æ

constraints C3 ... C9 as well as the following constraints have to be con-
sidered:

C10 The configurations Æ����Æ
 have to be exclusive.

Comment: Node � is specified once in the problem graph. Subse-
quently, an implementation of the problem graph may have at most
one implementation of node � at the same time.

C11 Assume that � is the set of problem graph nodes that are connected
to node � via a single edge. The nodes in � as well as node � are

70 Chapter 3. Specification Models

bound to the same computing resource (binding !). In that case, all
nodes in � have to be associated with configurations Æ����Æ
.

Comment: This constraint is quite similar to constraint C9. In each
configuration a shared task has to be connected to the same problem
graph nodes to assure the specified behavior.

As an example, consider the RPS specification outlined in Figure 3.26a)
where three tasks -,
, and) communicate via buffers �� and ��. Assume
that - and) have considerably large implementation whereas
 is rather
small. To avoid the usage of a large FPGA in terms of area, the con-
figurations Æ� and Æ� have been introduced. Furthermore, by sharing the
implementation of task
 between the configurations the overall execution
time can be reduced. Note that the control input of node
 is connected
to the dispatchers of both configurations. However, due to the exclusive
use of the configurations it actually never happens that both dispatchers
are connected concurrently.

host fpga

AG:

mem

PG:

x

Mapping:

configuration	

b2

�1

�1 �2

� � ���= { }1 2

V

binding '� 	

C

x fpga

fpga

fpga

A

y

V C

host

mem

�

b1

A y

�2

b1

�1,�2 fpga

memb2

A

ti
m

e

b) Task/buffer activity

x

a) Problem specification

yb1 b2

buffer size

task activity

�1

�2

4

�

Figure 3.26: Sharing tasks between configurations on the same FPGA.

Figure 3.26b) shows the task and buffer activity during a certain time
period. As soon as task - has finished and has written its first data value
into the buffer �� task
 can start its execution. Subsequently, - and

execute concurrently as long as - reaches an end of its repeated execu-
tion. After awaiting the end of
’s current execution the configuration is
switched to Æ�. As soon as Æ� is on the (.&� computing resource,
 and)
start their execution. Therefore,
 operates on the remaining data values in

3.3. Reconfigurable System Model (RPS) 71

�� and) at first uses the values produced by
 in the previous configuration
Æ�. After
’s end of execution) starts its last iteration.

As a further example, consider the specification in Figure 3.27a) which
is similar to Figure 3.26. Here, the target architecture consists of two ad-
jacent FPGAs, a host computing resource as well as a memory. Task
 is

bus

fpga1 fpga2

AG:

mem

PG:

x

Mapping:

configuration	

b2

�1

�1 �2

� � �= { }1 �2V

binding '� 	

C

x fpga1

fpga1, fpga2A

y

memb1

A y

�2

b1

�1 fpga1

memb2

A

ti
m

e

b) Task/buffer activity

x

a) Problem specification

b1 b2

4

fpga2

fpga2�2

fpga1 fpga2

A y

�2

mem

no
configuration

specified

A has migrated
from fpga1 to fpga2

configuration
switch

�

host

� host

�1

Figure 3.27: Sharing tasks between configurations of adjacent FPGAs.

now part of two exclusive configurations that are implemented on adjacent
FPGAs. Figure 3.27b) outlines task and buffer activity over a certain time
period for both FPGAs and the memory. Note that the configurations Æ�
and Æ� have to be exclusive to prevent malfunction. For this reason, �
���
may not be configured with configuration Æ� as long as configuration Æ� is

72 Chapter 3. Specification Models

being implemented on �
��� . As shown in Figure 3.27b) by switching the
exclusive configuration Æ� on �
��� to configuration Æ� on �
��� , task

has actually migrated.

3.3.6 Application Scenario 3: Suspendable Tasks

The last section showed that a task can be migrated between FPGAs if its
ncFSM is in the idle state. But, in the sense of system optimization, it can
be advantageous to just suspend a task’s execution, possibly migrate the
task, and resume it at a later point in time. This section introduces tasks
that provide suspending/resuming on FPGA resources.

The main issue of a corresponding task implementation is to provide a
possibility to save/restore the context. The context comprises the state of
the ncFSM and presumably states of the task’s core FSMs, registers and
memories to assure a proper task restart.

In the following, it is assumed that a context has been defined and the
focus is on the appropriate specification. Figure 3.28a) shows the problem
graph representation of a suspendable task � (one data input port �� and
one data output ��). It consists of the task � itself and a queue �� to save

ic

a) Task with context buffer b) Possible node control FSM

obib
idle run

i :startc

suspended

i :resumec

restore context
i :restoredc

internal done

i :donec

i :resumec

restore context
i :restoredc

i :suspendc

save context
i :suspendedc

vi1 o1

bc

stopped

i :stopc

stop execution
i :stoppedc

i :continuec

cont. execution
i :continuedc

Figure 3.28: Suspendable task.

the task’s context via output port �� and restore it via input port ��. Fig-
ure 3.28b) outlines a potential ncFSM consisting of four states that include
a temporarily stop of the task’s execution:

� idle is the initial state after downloading. On receiving a start or re-
sume message on its control input either (i) the ncFSM immediately

3.3. Reconfigurable System Model (RPS) 73

enters the state run, or (ii) the context stored in queue �� is restored
and then the state run is entered.

� In the run state the task executes its function. On completion the
ncFSM reenters the idle state. On receiving a stop message on its
control input the task stops its execution and enters the stopped state.
If it gets a suspend message the task saves its context in queue �� and
enters the state suspended.

� In the suspended state the task can be removed from the FPGA com-
puting resource by a configuration switch. If the task is not removed
it can be resumed by sending a resume message to the control input.
In this case, the context is restored and the run state is reentered.

� In the stopped state the task has stopped its execution and is not able
to communicate via its ports apart from the control input. Hence, the
clock on the task’s core can be disabled to reduce the dynamic power
consumption. If a continue message is sent to the control input the
task awakes again and continues its execution.

To assure that a stored context does not get lost the following constraint
has to be considered:

C12 Assume that a suspendable task is bound to an FPGA computing
resource. A buffer that stores the context of the task can be bound
to an architecture component � if at least one of the following cases
arise:
C12.1 � is an adjacent memory.
C12.2 � is an adjacent basic FPGA computing resource that

may not be reconfigured as long as the context is stored
in the buffer.

Comment: This constraints assures that the buffer content remains
fixed as long as the suspendable task is not resumed.

As an example, consider the problem specification in Figure 3.29a)
where a task
 is shared between two configurations Æ� and Æ�. Buffer ��
is able to store the context of
. The architecture graph consists of a)�� ,
an FPGA computing resource �
��, and a memory ���. Figure 3.29b)
shows a valid mapping where the (.&� implements a set of three config-
urations and the buffers are bound to ���. The diagram shows a valid

74 Chapter 3. Specification Models

configuration sequence for computing resource �
�� as well as task and
buffer activity. During the active time of configuration Æ� task
 is forced
by �� to save its context to �� and enter its suspended state. Afterwards, the
configuration is switched to Æ�. Finally, Æ� is downloaded and
 restores
its context as forced by �� and continues its execution.

bc

host fpga

AG:

mem

PG:

configuration	

b2

�1

�1 �2

� � ���= { }1 2���3

V

binding '� 	

C

A fpga

fpga

fpgaz

V C

mem

mem

b1

b2

A

�2

b1

bc mem��

�3

a) Problem specification

z

�1...�3

b) Mapping

bc

ti
m

e

A z

activity

�1save
context

�3

restore
context

()�1

()�2
�2

Task/buffer activity:

host�

�

Figure 3.29: Scenario 3: Suspendable task.

Brief summary about suspendable tasks
The main advantages of suspendable tasks on FPGAs are (i) area opti-
mization as several different ”ready” tasks can co-exist in different con-
figurations that are repeatedly downloaded, (re)started and suspended (OS
approach), (ii) power optimization as a suspended task does not consume
dynamic power, and (iii) task migration between configurations during ex-
ecution.

These advantages are paid with (i) an increased area overhead as an
appropriate ncFSM definitely has more states as an ncFSM not support-
ing this feature, (ii) an extended task execution time as saving/restoring a
context takes time, and finally (iii) memory area to store the context.

3.3.7 Application Scenario 4: Virtual Configurations

This scenario considers systems where single configurations can be re-
placed on an FPGA by ”pin-compatible” configurations. Such interchange-
able configurations are called virtual configurations. Basically, virtual con-

3.3. Reconfigurable System Model (RPS) 75

figurations use the same interface circuitry for communication but can have
different associated problem graph nodes. Potential applications include:
(i) configurations implementing the same behavior but differentiating in
features like power consumption and execution speed, and (ii) configura-
tions that are loaded over a network [LNTT01] to provide a system up-
grade.

Definition 24 (Virtual Configurations �) The function � � � � � ��
� �� evaluates to �, if the implementations of two configurations can re-
place each other in a ”pin-compatible” sense.

As an explanatory example, consider the problem specification in Fig-
ure 3.30 which is quite similar to Figure 3.22. Here, task - as well as

u

v

w

PG': AG:

cr1

l

i

k

cr2

cr3

�'

m
b1

b2

n
mem1

o
mem2

�3

�2

�1

� �

�

� � � �

'={(u,cr),(v,cr),(w,cr),(x,cr),(b ,mem),(b ,cr),(b ,mem),(b ,cr),

(,cr),(,cr),(,cr),(,cr)}
2 2 2 2 1 1 2 2 3 1 2 2

1 2 2 2 3 2 3

�2

�3

�

x

�1

b3

� � �

� � �

(,)=1

(,)=0
1 2

1 3

Virtual configuration :�

o

g

Figure 3.30: Scenario 4: Virtual configurations.

buffer �� have been added. Task - is connected to the same input port &
of buffer �� as task �. The control input of the dispatchers �� and �� are
connected to the same output port � of the configurator �. Buffer �� is
only connected to nodes of configuration Æ� and acts as temporal buffer. In
this situation, configurations Æ� and Æ� are virtual configurations and can
replace each other. Quite obviously, as Æ� and Æ� are interchangeable they

76 Chapter 3. Specification Models

have to be used exclusively in a schedule. Hence, a valid configuration
sequence is Æ� Æ� Æ� Æ� Æ� ���.

Basically, virtual configurations Æ����Æ	 that are replacable among them-
selves consider constraints C2 ... C10 as well as the following constraints:

C13 Each configuration Æ����Æ	 is merely assigned to the same basic ar-
chitecture component, i.e., �Æ � �Æ� ��� Æ	� � �Æ �� � �.

Comment: Configuration replacement is only possible on the base
of single basic architecture components.

C14 Assume that two edges �� and �� are connected to the same port.

C14.1 Their edge binding % must be the same, i.e., %���� �
%����.

C14.2 The port protocols of the nodes that are connected by the
edges �� and �� have to be the same, i.e.,
.�#/�#�/���0�1��#������� � .�#/�#�/���0�1��#�������
and
.�#/�#�/���0�1�������� � .�#/�#�/���0�1��������.

Comment: Corresponding edge implementations have to use the
same communication path (constraint C14.1). Furthermore, to use
copies of interface circuitry in each configuration the port protocols
of the nodes must be the same (constraint C14.2).

C15 A buffer can act as temporal memory for nodes of a configuration Æ
if the buffer

C15.1 is not assigned to configuration Æ, and
C15.2 is connected only to nodes of configuration Æ.

Comment: The content of such a buffer contains useful data for a
single configuration only. As soon as a configuration switch arises
the content becomes invalid.

As an example, buffer �� in Figure 3.30 is a such a temporal memory.

C16 Assume that�Æ� denotes the set of edges that connect nodes assigned
to configuration Æ� with nodes not assigned to Æ�. Edges connecting
buffers in the sense of constraint C15 are not included in � Æ� . As-
sume that � denotes the set of node ports that have been connected

3.3. Reconfigurable System Model (RPS) 77

by the edges in �Æ� and belong to nodes not assigned to configura-
tion Æ�.

C16.1 Each configuration Æ� ��� Æ	 may be connected to ports
in � only.

C16.2 It must hold that �� Æ� � � ��� � ��Æ� � � ���.

Comment: This constraint assures that each virtual configuration
Æ� ��� Æ	 merely uses copies of the same interface circuitry.

As an example, in Figure 3.30 the set of common port is � � �� &�.

3.3.8 Examples

This section outlines two examples specifying reconfigurable systems.

Example 5 (Continuous data stream) Consider a system with a recon-
figurable computing resource �# (see architecture graph AG in Figure 3.31).
Assume that �# has to route a continuous data stream from its interface ��
to its interface ��. Such a requirement is modeled by using a task # in the
problem graph that just copies its input data to its output.

bx

cr�n

PG: (part of the problem graph)

AG:

Mapping:

by

r

continuous
datastream

�m

�x

�y �

�n

�i

�1

� �

r cr

�={(r,cr)}

Figure 3.31: Continuous data stream on run-time reconfigured devices.

Now, assume that �# has to implement a set of configurations � �
�Æ� ��� Æ	�. To ensure the routing from interface �� to �� during each
configuration, task # has to be associated with every configuration, i.e., #
is shared among the configurations. Subsequently, each implementation of
a configuration has a copy of task #. Note that the continuous data stream
is being interrupted during a configuration switch.

78 Chapter 3. Specification Models

Example 6 (Field programmable port extender) IP (Internet Protocol)
packet processing systems are increasingly demanding more computing
performance to keep pace with rising bandwidth requirements. Usually,
hardware components (often ASICs) implement the performance critical
tasks. The use of reconfigurable computing resources ensures the flexibil-
ity to implement new features and still provide a high computing power. In
Lockwood [LNTT01] a field programmable port extender (FPX) has been
presented enabling reconfigurable packet processing functions between a
network switch and a corresponding line card to upgrade the system with
new functionality (see Figure 3.32). However, no formal model has been
given for modeling the run-time reconfiguration of the system which is now
subject of this example.

switch line cardFPX

packet
flow

packet
flow

Figure 3.32: Embedding of the FPX.

A model for the FPX (see Figure 3.33) is considered using the proposed
RPS formalism. The architecture graph consists of two connected FPGAs
NID (network interface device) and RAD (reprogrammable application
device). The NID is responsible for transmitting and receiving packets
from/to the switch/line card. Furthermore, it is the host computing resource
for the RAD and enables run-time reconfiguration of the RAD resource.
The RAD supports partial reconfiguration for the implementation of two
concurrent configurations. Therefore, it is modeled hierarchically consist-
ing of two basic FPGA architecture components �������� � �� .
Each of these resources has access to non-shared off-chip memory, e.g.,
��� has access to �'���� and �����. The memory �� models the
RAD’s programming port to load a new configuration.

The problem graph covers the functionality as mentioned in [LNTT01].
The most important part of the NID is the four port switch 1 that reads
data packets from four input queues "� ��� "� and forwards them to out-
put queues "� ��� "� according to the information provided by *�. *� is
a virtual circuit lookup table that relates data packets and switch ports.
The ��' is able to host two concurrent configurations, e.g., Æ� and Æ�.
Each of them receives/sends data from/to the task 1 via one intermediate

3.3. Reconfigurable System Model (RPS) 79

PG:

vc1

�1

�2

��

��

�4

��

ModA

RAD

ModB

SDRAMA

SRAMA

SRAMB

SDRAMB

NID

AG:

switch

line card

PP

RAD_prg

ccp

s

��

ccp control cell processor (configurator)

vc virtual circuit lookup table

s switch (4 ports)

RAD reprogrammable application device

NID network interface device

vc2

vc3

vc4

programming
port

configuration
data

PP programming port

Mod module

�3

NID ModB

RAD_prg PP

ModA

switch

line
card

binding

q3

q1

q2

q4

q5

q6

q7

q8

qA

qC qD

qE

qB

qF

Figure 3.33: Field programmable port extender (FPX) [LNTT01].

queue. Furthermore, each configuration may have buffers, e.g., "�, that
are bound to the connected memories �'���� , �'���� , ����� , or
����� respectively.

80 Chapter 3. Specification Models

Task �

 (control cell processor) is addressed via special control cells
sent by the switch. It is responsible for the content of the virtual circuit
lookup tables and supervises the reconfiguration of the ��' . ��' con-
figuration data sent to �

 are stored in the memory��'
�� . After trans-
mitting a whole configuration, �

 forwards the data to the programming
port of the RAD which reconfigures the FPGA.

As visible in the model, there exists no connection between �

 (config-
urator) and any of the configuration’s dispatchers. Therefore, the present
implementation described in [LNTT01] does not support reply messages
between the dispatcher and the configurator which prevents dynamic sche-
duling (see Section 3.3.1). However, a connection between configurator
and dispatcher is desirable. For this purpose, we suggest to insert two
additional buses; one between +�' and ��� and another between +�'

and ��� (not shown here). Using these two buses the considered com-
munication could be easily established.

3.3.9 Related Work

Reconfigurable systems comprise embedded and distributed systems con-
sisting of hardware programmable computing resources. This section elab-
orates related work concerning (i) the embedding of reconfigurable compo-
nents in their environment, (ii) the different hardware configuration modes,
and (iii) optimizations concerning the reduction of the reconfiguration time.

The embedding of reconfigurable system parts into a system environ-
ment can be classified by the strength of coupling between a host and the
reconfigurable part [GG95, WC96, CH00] (see Figure 3.34).

The most intricate form is a reconfigurable resource (see rr in Fig-
ure 3.34) built together with a general/special purpose processor core to
speed-up the most performance critical instructions of an application, e.g.,
[WC96, HFHK97]. It provides a high speed-up due to the tight coupling
via common processor registers.

The coprocessor approach attaches reconfigurable logic to a local pro-
cessor bus or dedicated I/O ports of a host processor by using FPGA de-
vices [RLG�98, HBS98, ETT98] or reconfigurable on-chip area [BG00,
XILb, Tri, Kea00, Inc]. The coprocessor is configured by the host, and

3.3. Reconfigurable System Model (RPS) 81

processor

local processor bus

coprocessor

bridge bridge

system bus

reconfigurable
processing

unit

external I/O external I/O

external link

reconfigurable
processing

unit

reconfigurable
processing

unit

reconfigurable
processing

unit

workstation workstation

processing unit

reconfigurable components

rr
processing unit

Figure 3.34: Coupling of reconfigurable system parts.

performs larger parts of the application, e.g., in form of function calls. Usu-
ally, the host and the coprocessor operate in parallel and exchange only in-
termediate results. Careful problem graph node partitioning between host
and coprocessor reduces bandwidth requirements [TBT97]. However, in-
terface circuitry dealing with I/O pin assignment and protocol translation
is required [HB97, ET98a].

An even weaker form of coupling provides reconfigurable logic as
reconfigurable processing unit in a multi-processor environment. Add-
on boards host one or several FPGAs and are linked via the system bus
to the reminder of the system. Corresponding approaches include SPY-
DER [IS95], Pamette [Sha], COSYMA [EHB�96], SUNDANCE [Sun],
etc. These systems are used, e.g., for rapid prototyping [HBKG98], ac-
celeration of processing intensive tasks [LSS99], and generally provide
an API (Application Programming Interface) on the host for ease-of-use
[BH98, MMF98]. The communication overhead is reduced by executing
large parts of the application at task granularity.

A stand-alone reconfigurable system (e.g., a workstation) is the weak-
est form of coupling where the reconfigurable part is a multi-FPGA sys-
tem and performs most of the (or even the complete) application without
any host communication. These systems can be viewed as hardware su-
percomputers and are successfully used, e.g., as ASIC emulation systems
[Apt, Qui].

82 Chapter 3. Specification Models

configuration

static (CTR) dynamic (RTR)

partial full

mode

instance specific (ISR)

partial full

synthesize A

configure
FPGA with A

execute A

t

synthesize A,B

configure
FPGA with A

execute A

configure
FPGA with B

execute B

synthesize x

configure
FPGA with x

execute x

configuration x is
subject to change

compile-time

run-time

A,B,x configuration

Figure 3.35: FPGA configuration modes.

For the configuration of a reconfigurable computing resource three dif-
ferent modes are known (see Figure 3.35):

Static (or Compile-Time) Reconfiguration (CTR)
CTR resources have exactly one configuration during the lifetime of the
application [HW95]. During compile time, a resource’s configuration is
synthesized and used to configure the FPGA. During run-time, the con-
figuration is executed. The goal is to combine ASIC performance with
processor flexibility [BP95]. Such resources are used for logic emulation
[PB98, Qui] and rapid prototyping systems [KG97]. Here, FPGAs quickly
implement hardware functions for validation and design space exploration.

3.3. Reconfigurable System Model (RPS) 83

Dynamic (or Run-Time) Reconfiguration (RTR)
Dynamic (or run-time) reconfigured resources have a set of time exclusive
configurations. These configurations are synthesized during compile-time.
During application execution the resource’s configuration is repeatedly
switched [HW95, SSH�99, KV98, PB99]. The goal of dynamic recon-
figuration is to optimize and reuse the available hardware resources con-
cerning unused circuitry and optimally adapted implementations [LM95,
SJV95, GL99]. Such resources provide the allocation of a fast hardware
implementation depending on run-time conditions [SB94, WH96, EP00a],
e.g., for packet processing of network processors [LNTT01]. Further ap-
plications include embedded systems where frequent hardware updates are
expected, e.g., network switches that can be reconfigured to support differ-
ent topologies [AH95].

Instance-Specific Reconfiguration (ISR)
The configuration data of instance-specific reconfigured resources are un-
known at compile-time. Problems just arise during run-time. Therefore,
synthesis, resource configuration, and execution are part of the overall
application. The goal of instance-specific reconfiguration is to accelerate
computation intensive parts that arise at run-time. This strategy has been
successfully used to accelerate decision problems [Pla00].

As the configuration switch of a reconfigurable resource usually in-
volves a considerable amount of configuration data (about 766kB of data
for a XILINX XCV1000) reconfiguration time is a performance limiting
factor for RTR/ISR resources. Therefore, various optimization techniques
have emerged to reduce the necessary configuration data. Subsequently,
RTR/ISR systems further divide into fully and partially reconfigurable sys-
tems [Mar99] (see Figure 3.35). Full reconfiguration involves reprogram-
ming of the complete resource, whereas partially reconfigurable resources
provide the alternation of selective parts only. Further research issues
for full reconfiguration include multi-context FPGAs [WH96, TCJW97,
SV98] that store several configurations on the same chip, configuration
data compression [HLS98] making use of hardware supported decompres-
sion (XILINX XC6200), and optimal partitioning of communicating nodes
into temporal/spatial exclusive configurations to reduce the number config-
urations [KV98, CV99, PB99, LCD�00]. The proposed approaches may
be applied to partially reconfigurable devices as well. However, it has not
been focus of research yet.

84 Chapter 3. Specification Models

3.4 Summary

This chapter provides a hierarchy of specification models to capture and
describe synthesis problems for dataflow oriented heterogeneous systems.
Essentially, the focus of the models is on the specification of communica-
tion channels between (i) problem graph nodes, and (ii) on communicating
target components.

The base model GPS (General Problem Specification) is parent of the
proposed formalisms and provides definition of terms, basic elements, and
composition rules to specify a dataflow problem for synthesis. It comprises
a problem graph describing the target independent system behavior, an
architecture graph capturing the target platform, and a mapping between
problem and architecture graph.

EPS (Embedded system Problem Specification) is an extension of GPS
and targets at the specification of synthesis problems of dataflow oriented
embedded systems consisting of general and special purpose processors,
programmable as well as dedicated hardware components, and memories.

The RPS (Problem Specification for Reconfigurable systems) model
includes the specification features of EPS and additionally supports run-
time reconfigurable hardware components.

The following features of the proposed models are new and not part of
known models:

� The formalisms base on each other and provide rising modeling
capability. Formalisms, nodes of the problem graph, and compo-
nents of the target architecture can be represented in UML notation.
This property assures an efficient object-oriented implementation of
a synthesis tool.

� The specification of the communication is an integral part of the sug-
gested formalisms. The behavior model denotes necessary commu-
nication relations between interacting nodes. The target architecture
provides available communication resources and the mapping spec-
ifies which resource will implement which communication relation.

� The components of the target architecture explicitly provide two dif-
ferent interface types considering the connection features of hard-
ware and software programmable components.

3.4. Summary 85

� The novel RPS model provides a set of application scenarios. Prob-
lem graph nodes can be migrated between configurations associated
with the same or adjacent computing resources. Virtual configura-
tions provide a way to replace complete configurations on a ”pin-
compatible base”.

Chapter 4

Model Refinements

Based on the models introduced in the last Chapter 3, appropriate refine-
ments and implementations of EPS and RPS models are presented (sum-
mary shown in Figure 4.1). At first, refinements of point-to-point commu-
nication channels are elaborated (Section 4.1). Thereby, additional nodes
are inserted into a problem graph �� modeling the access to communica-
tion channels. Subsequently, these nodes lead to a refined problem graph
��� as well as to a refined mapping. The arising communication types
are summarized in a taxonomy of communication types. Furthermore, an
object-oriented model is introduced to specify the architecture graph (Sec-
tion 4.2). Based on this model, it is shown how automatic synthesis of
interfaces and device drivers works. Next, node implementation issues for
problem graph nodes are elaborated (Section 4.3). Furthermore, imple-
mentation approaches concerning the dynamic FPGA reconfiguration are
outlined (Section 4.4). A short summary is given in Section 4.5.

PG

refinement of the
communication channel

mapping AG

rPG
refined

mapping
object-oriented

model

object-oriented
architecture components

problem specification
(Chap. 3)

refinement (Chap. 4)

Figure 4.1: Chapter outlook.

87

88 Chapter 4. Model Refinements

4.1 Communication Channel

The proposed formalisms base on directed point-to-point communication
channels between sender and receiver nodes. A channel is the implemen-
tation of a directed edge of the problem graph and consists of connected
architecture components, appropriate device drivers and interface circuitry
enabling the data transfer. It is assumed that a channel provides no mem-
ory. Instead, memory is modeled explicitly by buffer nodes in the prob-
lem graph. This section elaborates the refinement of a problem graph edge
which includes the channel access semantics as well as a taxonomy of com-
munication types.

4.1.1 Refinement

To establish a communication channel between a sender and a receiver
the corresponding edge in the problem graph has to be refined. Quite ob-
viously, the goal is to find an appropriate implementation for each edge
of the problem graph. Our proposed refinement consists of the insertion
of communication nodes into the problem graph. These additional nodes
represent parts of the target architecture that implement the final commu-
nication channel. During synthesis, these nodes are replaced by dedicated
send/receive primitives that are executed for data communication. Gener-
ally, one or two communication nodes are inserted:

Single communication node
Each problem graph edge is replaced by two edges and a single commu-
nication node. Communication nodes are bound to intermediate buses be-
tween communicating architecture components. Such refinements have
been used by Teich et al. [TBT97] in order to analyze the influence of
communication time on the system performance. Figure 4.2a) shows a re-
fined problem graph ��� for the problem discussed in Figure 3.6a). A
single communication node has been introduced between the communi-
cating tasks. The dotted lines denote the node’s binding to architecture
components. For example, the communication node �� is bound to the
bus ��. However, using just a single communication node is not very well
suited for the specification of an implementation as several architecture
component interfaces can be involved. Subsequently, a more fine-grain
refinement is aspired.

4.1. Communication Channel 89

a

b

c

c2

c1

o1

i

o2

i

PG*: AG:

fpga1

fpga2

cpu

b1

b2

i

m

kl

n

j

o

{

Mapping: binding

a

b

c

o1

i

o2

i

rPG: AG:

fpga1

fpga2

cpu

b1

b2

i

m

kl

n

j

o

{
Mapping: binding

c2

c1

c3

c4

a) Single communication node b) Two communication nodes

communication node channel access point

(channel access points)

binding

(e)1

(e)2

(e)1

(e)2

Figure 4.2: Refinements of the problem graph discussed in Figure 3.6a).

Two communication nodes

The proposed formalisms provide a more sophisticated refinement that is
better suited for implementation [ETT98]. For each edge of the problem
graph �� two communication nodes may be inserted. These additional
nodes are implicitly associated with the involved components’ interfaces
by the specification of the edge binding % . In the proposed terminol-
ogy, such nodes are called channel access points. As an example, Fig-
ure 4.2b) shows a refined problem graph ��� of the problem discussed
in Figure 3.6a). Here, two channel access points have been inserted per
edge. The nodes model the communication between the three computing
resources �
�, �
��� , and �
��� . During the synthesis process, channel
access points are replaced by device drivers and interface circuits. For ex-
ample, the binding of edge �� (edge between nodes � and � in the problem
graph) %���� � ��	��� ������ in the specification implies that the channel
access point �� is associated with interface �, and �� is associated with
interface 0. Bold unidirectional edges visually denote the communication

90 Chapter 4. Model Refinements

and interaction between channel access points. Thin directed edges visu-
ally denote the communication between executable/buffer nodes and chan-
nel access points. Figure 4.3 shows the embedding of channel access

node

extends

rPG node class

GPS node

communication buffer

channel

rPG node

same as
RPS hierarchy

same as
RPS hierarchy

access
point

executable

Figure 4.3: Node hierarchy of the refined problem graph (UML).

points into the node hierarchy. An rPG has the additional node class com-
munication. Channel access point is an rPG node modeling the access to a
channel.

The following elaborations outline the four relevant cases concerning
the refinement of a single edge (see Figure 4.4):

a) Two adjacent computing resources
This case arises if two computing resources are adjacent and each of them
has a bound node. Here, two channel access points are necessary (see
Figure 4.4a). The resulting implementation of the edge is called off-chip
communication as the data have to be transmitted via an external bus.

b) A single processor computing resource
Here, the two communicating nodes are bound to the same sequential pro-
cessor computing resource (see Figure 4.4b). For the intermediate edge
two channel access points are necessary, again providing send/receive of
data items. The implementation is called on-chip communication as the
data transfer takes place on the same computing resource.

c) A single FPGA computing resource with incompatible node port proto-
cols
This case arises, if two communicating nodes are bound to an FPGA com-
puting resource and their ports have incompatible protocols (as shown in

4.1. Communication Channel 91

a) Two connected computing resources

rPG: x y

cr2cr1

b
iAG:

b) Processor computing resource

rPG: x y

cr1

AG:

d) FPGA computing resourcec) FPGA computing resource

rPG: x y

cr2

AG:

i

rPG: x y

cr2

AG:j k j k

(off-chip communication) (on-chip communication)

(on-chip communication)(on-chip communication)

binding

c1 c2
c1 c2

c1

j k

Figure 4.4: Valid refinements of an edge.

Figure 4.4c). In this situation, one intermediate communication node is
necessary modeling the on-chip protocol translation (transducer circuit)
between these two nodes.

d) Single FPGA computing resource with compatible node port protocols
This is the simplest case. Both communicating nodes have compatible pro-
tocols. Here, no communication node is required to implement the on-chip
communication (see Figure 4.4d).

However, if (i) one of the communicating nodes is a buffer and (ii) one
of the connected architecture components is a memory, a special refine-
ment is applied. This issue arises due to different implementation tech-
niques of tasks and buffers and is elaborated in Section 4.3.3.

The above considerations about channel access points can be seen from
another point of view as well. In literature, the term wrapper denotes a
circuit or a piece of software converting the interface of a module, func-
tion, block, etc., into another interface [GHJV95]. In our context, channel
access points are wrappers for the problem graph nodes to access com-
munication channels [ETT98] (see Figure 4.5a). The implementation of

92 Chapter 4. Model Refinements

channel access points and the connected architecture components is de-
noted as communication infrastructure. The shaded area in Figure 4.5b)
denotes the communication infrastructure of Fig 4.2b). Bold lines outline
the implementation of the problem graph edges.

Definition 25 (Communication Infrastructure) The communication in-
frastructure of an embedded system abstracts from the underlying channel
implementation and comprises necessary hardware and software drivers to
establish the communication channels between the problem graph nodes.
Channel access points provide the sending/receiving of data items between
the connected nodes.

a) Node wrapper

a

b

c

c1

c2

c3

c4

o1

o2

b
a

c

cpu

fpga1

fpga2

communication
infrastructure

b2

b1

i

nm

b) Communication infrastructure

b

n-1
n-2

2
1

n-1
n-2

2
1

m-1
m-2

2
1

c

m-1
m-2

2
1

} protocol layers

a

}} }
cpu fpga2fpga1

} physical medium
(i.e., target architecture)

channel access
point

} problem graph
(behavior description)

problem graph edge

channel

}communication
infrastructure

node wrapper

channel access
point

o

k

l

c) Channel representation using a layer of protocols

i1
c1

c3
c2

c4

channel
implementation

c4c3c1c2

ji2

Figure 4.5: Channel refinement.

Our model of a channel access point assumes that the communication
infrastructure can be represented as a series of adjacent protocol layers
(protocol stack) [Tan89]. Each layer . offers services to the next higher

4.1. Communication Channel 93

level . � � based on the services of layer .� �. The topmost layer is rep-
resented by the already discussed channel access points (see Figure 4.5c).
The lowest layer is the target architecture of connected components. In-
termediate layers (if any) may incorporate a computing resource’s oper-
ating system that provides appropriate communication primitives. This
concept of protocol layers has been introduced by the OSI reference model
[DZ83] and is being used in a number of co-design environments, e.g.,
[OB98, EP00c].

4.1.2 Channel Access Semantics

The GPS formalism supports blocking and non-blocking channel access
points which is sufficient to support synthesis problems for marked graphs,
FunState components, etc. (see Section 3.1). For example, for marked
graphs blocking communication is appropriate. In general, an access point
provides one or more primitives that encapsulate an appropriate protocol
stack. The actual data transmission consists of three phases:

1. Initialization I
The data transmission is being initiated by executing a communication
primitive. A typical task comprises appropriate register settings of the in-
volved computing resource’s interface.

2. Data transmission T
The data item(s) are transmitted. This usually involves computing re-
sources, dedicated controllers, device drivers, etc.

3. Completion C
Phase 3 ends data transmission and comprises (i) test for completion CT,
and (ii) wait for completion CW.

�� �

�
/#�� � transmission completed
(�01� � else

Note that CW is equivalent to while (not CT). A blocking channel access
is an atomic operation, i.e., the sequence I � T � CW is indivisible
from a caller’s point of view. A non-blocking channel access is a non-
atomic operation. The communication is merely initiated by phase I which

94 Chapter 4. Model Refinements

subsequently issues phase T. To finalize the communication CT or CW
have to be issued separately.

Non-blocking communication provides a more general approach than
blocking communication as a blocking access can be established using
non-blocking primitives but not vice versa. An implementation using non-
blocking communication is usually faster than an implementation using
blocking communication due to the potential overlapping between node
execution and data communication [Pac97]. Furthermore, during a trans-
mission phase T, nodes may continue their processing but may undergo a
degradation in available CPU processing power. This may arise due to an
involvement of a node’s computing resource for the requested data trans-
mission [NTE99].

cr i

a) Problem specification

f

c) Blocking receive/blocking send

(pseudo code)
main loop

x = rcvB_e1();
f(x,y);
wait_e2();
z = y;
sndI_e2(z);

j

(pseudo code)
main loop

x = rcvB_e1();
f(x,y);
sndB_e2(y);

f

rcvB

sndB

t

f

rcvB
e2e1

f

sndB_e2()

wait_e2()
sndI_e2()

rcvB_e1()

f

rcvB

f

rcvB

wait

sndI

data transmission
wait

sndI

rcvB

t

d) Blocking receive/non-blocking sendb) Channel access primitives

run-time may rise due to concurrent execution

PG:

AG:

rPG: c1 c2

(i) (i+1)

(i+1)(i)

Figure 4.6: Comparing blocking/non-blocking channel access points.

As an example, consider the problem specification in Figure 4.6a) con-
sisting of a task (bound to a processor computing resource �� . During the
refinement, the synthesis process for the edges �� and �� provides channel
access primitives as shown in Figure 4.6b). Figure 4.6c) outlines an im-
plementation and execution of the specification if blocking access (sndB,
rcvB) is used for both channels. The blocking access points enforce a se-
quential execution: receive data on edge ��, execution of task (, and send
data on edge ��. In contrast, a non-blocking send (sndI (send immediate))
via channel �� enables concurrent execution: sending the output value of
(
�� can be concurrent to receiving a new data for (
���� and executing
(
���� (see Figure 4.6d). However, the computing resource �� has to sup-

4.1. Communication Channel 95

port such a parallelism, e.g., by a built-in DMA module. Furthermore, the
concurrent execution may extend the run-time of the individual parts as
indicated in Figure 4.6d).

Note that in literature often synchronous communication is a synonym
for blocking communication and non-blocking communication is a syn-
onym for asynchronous communication [BA90].

4.1.3 Taxonomy of Communication Types

O’Nils et al. [OJ97] suggested nine distinct architectural communication
routes between software processes, hardware processes, and library mod-
ules on the same or different chips (no buffers considered within their prob-
lem specification). In contrast, a taxonomy is proposed that bases solely on
the binding of problem graph nodes to basic architecture components and
the existence of one or several computing resource configurations [EPT99].
It emerged that the communication routes in [OJ97] represent just two
cases in the taxonomy because software and hardware implementations
are considered as equivalent for the synthesis of communication channels
(see Section 4.2).

Figure 4.7a) shows the problem specification considered to establish
the taxonomy. A problem graph consisting of two tasks - and) and a
buffer � has to be implemented on a target architecture comprising two
FPGA computing resources �� � and �� � and a memory ���. The first re-
finement step introducing two communication nodes on each edge (�� ���
��) is outlined in Figure 4.7b).

Depending on the binding ! our taxonomy differentiates between four
types of communication (enumeration in rising implementation complex-
ity):

a) On-chip communication
On-chip communication arises if both nodes of an edge are bound to the
same basic architecture component, e.g., ����������� �#�� ��������� �#�
�� � !. This is the simplest case, as this type of data exchange is supported
by most of the computing resource’s programming languages such as C
or VHDL. Therefore, channel access primitives use the communication
facilities provided by the programming languages or the operating system,
e.g., a shared variable.

96 Chapter 4. Model Refinements

b) Off-chip communication
Off-chip communication arises if both nodes are bound to different basic
architecture components, e.g., ��������������� ��������� �#��� � !.
Here, device drivers and/or interface circuits are necessary to access the
corresponding interfaces of the involved computing resources. In the spe-
cial case where one of the two architecture components is a memory, only
one device driver (or interface circuit) is necessary to implement the edge
(see Section 4.3.3 for more details). In the example above, access point ��
is not required as a memory does not need a device driver. Furthermore,
off-chip communication involves the assignment of device pins to a chan-
nel implementation.

c) Interconfiguration communication [HW95, EP00c]
Interconfiguration communication arises if exactly one node of an edge
is bound to a computing resource that undergoes several reconfigurations.
As an example, ��������������� ��������� �#��� � !, ����� � �,
where ���� denotes the set of configurations of �� �. In this case, the nodes
communicate over configuration borders. Subsequently, a channel is be-
ing physically disrupted during reconfiguration. This communication type
requires additional control logic in the implementation to assure correct
data transmission. As an example, Figure 4.8a) shows a problem graph
�	 and its refined problem graph ��� where �� � has two configuration
Æ� and Æ�. As a rule of thumb, if an edge is crossed by exactly one con-
figuration border in the problem graph �� (visual notation) the resulting
communication type is interconfiguration communication. Note that his
communication type may also arise if one of the computing resources is a
processor resource.

d) Interconfiguration communication with open channel [EP00c]
Interconfiguration communication with an open channel arises if both no-
des of an edge are bound to adjacent basic computing resources that un-
dergo several reconfigurations, e.g., ��1��#������ �#�� �1������� �#��� �
!, ������ �, ������ �. Here, an affected channel may be physically
disrupted by both, sender and receiver node. Figure 4.8b) outlines a corre-
sponding example. As a rule of thumb, if an edge is crossed by two con-
figuration borders in the problem graph �	 (visual notation) the resulting
communication type is interconfiguration communication with open chan-
nel.

4.1. Communication Channel 97

a) Problem specification b) Refined problem graph

PG:
c1

cr2cr1

x b yx b y

mem

AG:

c2 c3 c4

four different
communication types

possible

8on crx

buffer

configuration

configuration
off-chip

configuration
off-chip

on-chip

off-chip

configuration

6

5 7

1

2 4

3

inter-

1

2

3

4

5 7

8

channel
with open

configuration

inter-

inter-

inter-

same crx

one several

tasks on

different cr’s

in mem/cr

c) Taxonomy of communication types

Mapping: depending on different communication types arise�

e1 e2

rPG:

Figure 4.7: Taxonomy of communication types.

Figure 4.7c) shows the proposed taxonomy as cube representation out-
lining the eight conceivable binding cases. The three orthogonal axes de-
note (i) if the tasks - and) are bound to the same or different computing
resources, (ii) if the buffer is bound to one of the computing resources or
the memory, and (iii) if the involved computing resources undergo one or
several configurations. The cases 1 to 8 in the cube show the most dif-
ficult communication type for a certain implementation. As an example,
case two is considered. If ! � ��- �#�� �� �#�� �) �#���, ������ � �,
������ � �, then on-chip communication arises for the implementation of
edge �� and off-chip communication arises for the implementation of edge
��.

98 Chapter 4. Model Refinements

a) Example for interconfiguration communication (case 7)

PG:
c1

x b yx b y

c4

rPG:

�1 �2 �1
�2

b) Example for interconfiguration communication with open channel (case 4)

PG:
c1

x b yx b y

c2

rPG:

�1

�2
�1

�2

Mapping: ={(x,cr), (y,cr)}� 2 2(b,mem),

Mapping: �={(x,cr), (b,cr), (y,cr)}1 2 2

Figure 4.8: Interconfiguration communication.

In general, embedded systems without reconfigurable computing re-
sources have only on-chip and off-chip communication (cases one, two,
five, and six in Figure 4.7c). The same holds for embedded systems where
the reconfigurable computing resources have only one configuration (CTR
systems). By comparison, the communication routes proposed in [OJ97]
are just represented by the cases one and two. If computing resources
have several configurations (like in RTR systems) nodes can communicate
over configuration borders. Normally, intermediate buffers are assigned to
memories (cases seven and eight) to hold data between subsequent con-
figurations which requires interconfiguration communication. However,
if the problem graph does not include such buffers or the buffers are as-
signed to computing resources that undergo reconfiguration, either inter-
configuration communication with open channel (case four) appears or
a partially reconfigurable computing resource is required were dedicated
non-reconfigured area is necessary to implement the buffer (case three).

As an example, the refinement of virtual configurations is elaborated
that have been specified in Figure 3.30. As shown in Figure 4.9 channel
access points have been inserted to model the interconfiguration communi-
cation between subsequent configurations. Related pairs of channel access
points are denoted with �� and ���, respectively, e.g., �� and ���. Edges
that are connected to the same port have the same interface circuitry in
each configuration. Subsequently, the channel access points have the same

4.2. Architecture graph 99

name. For example, the two edges connected to the output port � of con-
figurator � have the same channel access points �� and ���, respectively.

u

v

w

rPG':

b1

b2
�2

�3

�

x

�1

b3

o

g

c3'c1

c2

c2

c4

c5

c6

c3

c3

c7

c3'c1

'

c3'c2

'

c3'c2

'

� � �

� � �

(,)=1

(,)=0
1 2

1 3

Virtual configuration :�

�2

�1

�3

Figure 4.9: Refined problem graph of Figure 3.30.

4.2 Architecture graph

Prospective interface circuitry and device drivers are modeled by commu-
nication nodes in a refined problem graph. As discussed in Section 2.2.2,
there exist a lot of methodologies to actually create these code fragments.
It is outlined that some approaches can require a considerable amount of
manual work and may be restricted to certain platforms. In this thesis an
object-oriented approach is proposed that is able to support and combine
several methodologies as well as 3rd party tools to generate an appropriate
communication infrastructure. This section introduces the object-oriented
modeling of architecture graph components. Based on these components
the process of automatic communication synthesis is elaborated.

4.2.1 Object-oriented Component Model

The principal focus of the proposed object-oriented approach is the archi-
tecture graph that models a set of connected devices. In a running system

100 Chapter 4. Model Refinements

implementation, these devices communicate among each other to imple-
ment the specified communication channels. Essentially, for each compo-
nent in the architecture graph there exists an object-oriented counterpart,
called chip model [EP00c]. A chip model captures important properties
of the actual device like the number and type of I/O modules. However,
the proposed approach of modeling is not limited to communication only
but may as well include the modeling of peripheral parts such as timers.
Furthermore, chip models include estimation data about the prospective
implementation such as the expected communication speed per channel
and implementation overhead.

The proposed object-oriented approach is outlined by elaborating the
modeling of the hierarchical computing resource Triscend A7 [Tri] (see
Figure 4.10). It is assumed that an integrated circuit has a block diagram
(taken from a corresponding device datasheet) that denotes the most impor-
tant internal blocks (see Figure 2.4 for an enlarged version of the block dia-
gram). For example, the most important blocks of the A7 device are: (i) the
ARM7 processor core providing a sequential computing resource (proces-
sor), and (ii) the configurable system logic CSL, a hardware programmable
computing resource (FPGA). These two blocks are summarized in a cor-
responding chip model of the A7 device (bold box). In fact, chip models
are classes that represent the actual device. They are composed of a set of
further classes by using object-oriented modeling techniques such as poly-
morphism, class inheritance and object composition. The static relations
between these classes are visualized in a class diagram. Cursive face de-
notes abstract classes describing common properties. For example, each
communication block class provides an estimation about its transfer rate.
Regular face denotes concrete classes that can be instantiated. The class
diagram is divided into three sections:

Component Models
Component models are abstractions of actual devices and describe com-
mon component properties such as the number of configurable logic blocks
of an FPGA computing resource.

Chip Models
Chip models exists for components that may appear in an architecture
graph. A chip model describes the main features of an actual device. For
example, the A7 chip model is a hierarchical component. It is composed

4.2. Architecture graph 101

integrated
circuit

(device)

blockdiagram
(details see Figure 2.4)

class diagram (UML notation)

ARM7

architecture component

Triscend A7

component

computing
resource

FPGA processor

A7CSL

component
models

chip
models

off-chip on-chip

communication
block

interface
models

extends

consists of

interface

chip model

class

A7

MI

PIO

CSL ARM7
CSI

MI

A7

PIO

CSLSelector

hierarchical

PIO MI CSLSelector

Figure 4.10: Modeling the Triscend A7 computing resource.

102 Chapter 4. Model Refinements

of CSL an FPGA computing resource as well as ARM7 a processor com-
puting resource. The structural representation is captured by an internal
architecture graph.

Interface Models
Interface models describe the interfaces of actual devices. The top classes
describe common properties, e.g., off-chip interfaces have to deal with de-
vice pins. Each interface class (hatched boxes) comprises a set of con-
figurable interface generators. These generators actually generate device
drivers and interface circuitry with different protocols for the component’s
interfaces. Generators include the discussed approaches such as library-,
template-, component-, generator-, and platform based. They can deal with
standard as well as proprietary protocols and interfaces. As an example,
the ARM7 has two interfaces: (i) MI enabling to communicate externally
via the memory interface, and (ii) CSLSelector providing the on-chip data
transfer between the CSL and the ARM7. The CSL has a parallel I/O inter-
face PIO.

Subsequently, a chip model of a device contains all necessary infor-
mation to generate interface circuitry for its R-type interfaces and device
drivers for its P-type interfaces, respectively. It provides a very flexible ap-
proach to cope with the targeted heterogeneous architectures. Comparing
with related approaches [VT97, BHLM91, COB95a] the following main
advantages can be seen:

Simple retargeting of the interface generation
The use of unified class interfaces provides the exchangeability of com-
ponents in the architecture graph (see next Section 4.2.1). It enables the
suggested approach to be used as a backend in an overall embedded sys-
tem designflow. For example, changing the type of a processor computing
resource to an FPGA computing resource requires only the change of the
component type in the architecture graph. Furthermore, changing the con-
nection structure of the components entails just the appropriate structural
modeling by the architecture graph.

Reuse
The interface classes represent a set of configurable interface generators
that can be applied for different chips. This property is especially useful to

4.2. Architecture graph 103

model derivatives of microcontroller and DSP families. Essentially, such
devices quite often use a set of common blocks but in different composi-
tions. However, the use of common blocks is the foundation of platform
based design that is supported through the suggested reuse property.

Simple device modeling
The unified class interfaces provide a simple composition of chip models.
Furthermore, they enable the modeling of components that do not exist as
actual devices yet but would provide the best choice for a problem under
consideration. This can be a starting point for a special purpose device
implementation. The class interfaces include access to a database of es-
timation data as well. In fact, there exists a component selection guide
outlining the most important chip properties such as the supported inter-
faces, performance characteristics, etc.

Object interaction
Chip models interact and exchange messages. This property considerably
simplifies the synthesis process of the communication infrastructure (see
Section 4.2.3). For example, remember that FPGA computing resources
have R-type interfaces and require appropriate interface circuitry to be con-
nected to other components. For each component that can be connected to
an FPGA component one could write a corresponding interface generator
and add it to an FPGA chip model. Subsequently, such an FPGA chip
model would grow bigger and bigger and had to be adapted to every new
component. Furthermore, there exist different FPGAs distinguishing in
speed, available programmable area, vendor, etc., for which chip models
had to be updated. Fortunately, by using the object interaction property
chip models are much simpler. Namely, an interface generator of a con-
nected processor or memory component has the ability to generate several
code fragments. One such code fragment can represent an interface circuit
that is transferred to a connected FPGA component. This circuit provides
the appropriate connection between the FPGA component and the proces-
sor/memory component (see Section 4.2.3).

The outlined advantages above are paid by the following main disad-
vantages:

104 Chapter 4. Model Refinements

Object-oriented modeling required
For each device, a corresponding chip model has to be established and
embedded into the compound of existing models and classes. Essentially,
each model has to be compliant with the provided class interfaces.

Writing interface generators
Interface generators provide a very general concept to generate the com-
munication infrastructure. However, depending on the type of interface
they may include a rather large amount of source code. For example, an
interface generator based on a library has to select and possibly configure
predefined device drivers and interface circuits only. On the other hand, a
template based generator may be composed of several sub-generators each
providing a part of the final solution.

Unified Class Interfaces

Unified class interfaces include (i) the use of inherited properties, and (ii)
predefined method signatures that describe object interaction. This sec-
tion briefly outlines part of the unified class interfaces by the use of JAVA
[AGH00] code examples. Again, part of the Triscend A7 computing re-
source is modeled (see Figure 4.10).

Prg. 1 shows the most important parts of the class computing resource.
As shown on line 1 a computing resource is an abstract class that inherits
the properties of a component. Line 2 denotes a dynamic array of ref-
erences to available interfaces of a computing resource. The methods cre-
ate() (lines 5 ... 7) and generate() (lines 10 ... 12) establish the component’s
internal data structures required for synthesis and enable the automatic in-
terface synthesis process for this resource.

Prg. 1: Computing resource class (language: JAVA)

1 public abstract class ComputingResource extends
Component �

2 protected Vector availableInterfaces = new Vector();
3
4 // create data structure for synthesis
5 final public boolean create(...) �
6 :
7 �
8 // start synthesis process of interfaces
9 final public void generate(...) �

4.2. Architecture graph 105

10 :
11 �
12 �

The next code example Prg. 2 outlines that a hierarchical component
has an internal architecture graph (line 2). The architecture graph is being
defined by a derived chip model.

Prg. 2: Hierarchical computing resource class (language: JAVA)

1 public abstract class Hierarchical
extends Component �

2 protected Graph internalArchitectureGraph = new
Graph();

3 :
4 �

Prg. 3 shows the ARM7 class which is derived from a Processor. Note
that ARM7 is a concrete class that can be instantiated. Lines 3 ... 12 denote
the initialization phase of the object (i.e., constructor in terms of JAVA).
Line 4 executes the constructors of the superclasses, i.e., constructors of
Processor, ComputingResource, and Component in descending order. In
line 5 processor properties such as available CPU processing power, avail-
able input/output device pins, or estimation about power consumption are
read from a database. Lines 7 and 10 denote the instantiation of interfaces,
i.e., a CSLSelector and an MI object. In lines 8 and 11 these objects are
added to the set of available interfaces.

Prg. 3: ARM7 class (language: JAVA)

1 public class ARM7 extends Processor �
2
3 public ARM7(String InstanceName) �
4 super(InstanceName);
5 getPropertiesFromDatabaseProcessor(this);
6
7 CSLSelector cslSelector = new CSLSelector(this);
8 availableInterfaces.addElement(cslSelector);
9
10 MI memoryInterface = new MI(this);
11 availableInterfaces.addElement(memoryInterface);
12 �
13 �

106 Chapter 4. Model Refinements

The code excerpt Prg. 4 outlines the concrete class of the hierarchical
component A7. Lines 3 ... 6 denote the initialization phase of the object.
The structure of the internal architecture graph is read from a file. On that
occasion, the necessary objects are instantiated and inserted into the archi-
tecture graph. This approach provides a very flexible object construction
as the architecture graph can be changed just by rewriting a text file.

Prg. 4: A7 chip model (language: JAVA)

1 public class A7 extends Hierarchical �
2
3 public A7(String InstanceName) �
4 super(InstanceName);
5 internalArchitectureGraph = getAGFromFile(this);
6 �
7 �

A corresponding specification file is shown by Prg. 5, written in the
script language CCSL [Eis99] (Communication Channel Synthesis Lan-
guage). Lines 2 and 3 create the two internal computing resources ARM7
and CSL. Line 6 creates the bus node CSI. In the lines 9 and 10 the two re-
sources are connected to the bus. The ARM7 is connected via its interface
CSLSelector.

Prg. 5: A7 internal architecture graph specification (language: CCSL)

1 % computing resources
2 cr cpu ARM7
3 cr fpga CSL
4
5 % bus
6 bus CSI
7
8 % connect resources to the bus
9 connect ARM7 CSI CSLSelector
10 connect CSL CSI

As a brief overview, Figure 4.11 shows the coherence between chip
models, CCSL scripts, and the proposed CCS framework (see Section 5.3).
The device database contains the components that may appear in an archi-
tecture graph. The IP database contains predefined code such as source
code for nodes of the problem graph. A CCSL script specifies the synthe-
sis problem which includes the problem graph, the architecture graph, as

4.2. Architecture graph 107

well as a mapping. Furthermore, it contains commands for the control of
the synthesis process of the CCS framework. The output of the framework
are device drivers as well as interface circuitry that establish the requested
communication infrastructure.

device
database

interface
circuitry

IP
database

device
drivers

CCS

CCSL
scripts

Figure 4.11: Brief overview: Framework CCS.

4.2.2 Component Wiring

To establish the communication between components, their interfaces are
connected to common buses. Essentially, buses represent wires providing
the physical data transmission. The wires themselves are connected to the
device’s pins. To enable the automatic synthesis of device drivers, interface
circuitry, and their proper interconnection the actual physical wiring has to
be considered. This is especially important for R-type interfaces as the
generated interface circuits have to be connected to device pins.

To elaborate these issues the architecture given in Figure 4.12a) is con-
sidered. It consists of a processor computing resource �� �, an FPGA com-
puting resource �� �, and a memory ��� connected to a common bus �.
Figure 4.12b) denotes the block diagram of the actual target wiring. Each
device has a set of pins, e.g., �� � has pins �" , �� , �, , �# , �! , �� , and
�& . Common wires connect the devices. For example, there is a common
wire �� connecting device pins ��� ��� , ��� ��, , and �����! . All avail-
able wires of a bus and their connections to component pins are described
in a wire table (see Figure 4.12c). Subsequently, each bus of an architec-
ture graph provides such a wire table in its refinement. The specification
of a bus wire table is defined by CCSL commands [Eis99].

To deal with the pins of a device each chip model uses a pin manager.
Figure 4.12d) denotes the corresponding object-oriented modeling. A pin

108 Chapter 4. Model Refinements

cr2cr1

b

mem

a) Architecture graph

cr1

b) Actual target wiring (blockdiagram)

P2

P5

P1

P8

cr2

P4

P2

P7

P0

mem

P1 P9 P3

c) Wire table of bus b

w0

wire cr1 cr2 mem

w1

w2

P2 P4 P9
P5
P1
P8w3

P2
P7
P0

/
P3
P1

w0

w1

w2

w3

d) Object-oriented modeling

extends

concrete
PinManagerclass

uses

EPS
component

FPGA processor memory

PinManager

FPGA processor memory

PinManagerPinManager PinManager

�1

�3

�1

�3

�2

�2

clk

reset

r

a

d res

clk

enlarged
internal view

of an interface

P9

P1

res2
P3

Figure 4.12: Wiring architecture components.

manager is required to connect the device’s internal circuits to pins (espe-
cially for FPGA computing resources). The available pins of a component
are read from a database at instantiation of the component (see Prg. 3). The
following issues have to be considered enabling automatic communication
synthesis considering component wiring:

Wiring between components
The available wires and their connection to components are specified by a
wire table. Subsequently, to establish a connection between components
wires have to be allocated to channels to avoid short circuits and malfunc-
tion. In fact, the pin managers of the components have to reserve wires and
assign them to channels.

4.2. Architecture graph 109

Wiring within FPGA components
The generated interface circuits that are implemented by an FPGA com-
puting resource have to be connected to device pins. For example, in Fig-
ure 4.12b) the port signal # of the generated interface circuit �� is connected
to device pin ��. The pin managers have to assure that internal and exter-
nal wiring enables a correct connection between interface circuits.

Wire constraints
Wire constraints are necessary if the assignment of pins is not arbitrary.
For example, a device’s reset is usually connected to a dedicated pin. Each
local entity (implementations of tasks, buffers and interface circuits) has
to be connected to it. In Figure 4.12b) the external connected ����� signal
has to be connected with the ��’s ��� port signal.

The following example Prg. 6 shows the specification of the wire table
for bus b (see Figure 4.12c) and demonstrates wire constraints concerning
��� and ����� signals of the target shown in Figure 4.12b). Lines 2 ... 5
of Prg. 6 denote the first four columns of the wire table of bus b. For each
wire there exists one such specification line. Lines 8 ... 10 specify the �� �’s
device pins assigned to clock and reset. For example, line 9 specifies that
the external signal ����� is connected to pin �� of �� �. Lines 13 and 14
specify wire constraints applicable for the target. For example, each inter-
nal circuit using a reset has to be connected to a reset pin. Line 14 denotes
the constraint where the internal port signal ��� of the interface �� is con-
nected to the reset and therefore to the external pin �� . Several clocks and
resets can be used for a device. For example, ��� has an additional reset
���� that is connected to �! (see Line 10).

Prg. 6: Specification of the wire table/constraints for Figure 4.12b)
(language: CCSL)

1 % wire table of bus b
2 wire w0 b (cr1,P2) (cr2,P4) (mem,P9)
3 wire w1 b (cr1,P5) (cr2.P2)
4 wire w2 b (cr1,P1) (cr2,P7) (mem,P3)
5 wire w3 b (cr1,P8) (cr2,P0) (mem,P1)
6
7 % define clock and reset
8 assignCLK clk (cr2,P9)
9 assignRESET reset (cr2,P1)
10 assignRESET res2 (cr2,P3)

110 Chapter 4. Model Refinements

11
12 % wire constraints
13 assignPin cr2 clk clk
14 assignPin cr2 res reset

During the synthesis process the pin managers of the chip models as-
semble the information about the local assignment of device pins. For
FPGA computing resources, the associated pin managers generate a con-
straint file denoting these assignments. These constraint files can be used
by further compilation tools.

4.2.3 Automatic Communication Synthesis

The framework CCS provides automatic communication and interface syn-
thesis by using a set of pluggable interface generators for the supported
computing resources and memories (see Section 4.2.1). This section elab-
orates the embedding of interface generators into the object-oriented com-
ponent model and outlines the process of device driver and interface cir-
cuitry generation.

Figure 4.13a) again visualizes the suggested chip model. It is mainly
composed of a set of interface classes. Each interface class hosts a set of
configurable interface generators. As an example, Figure 4.13b) shows
the CSL architecture component. As modeled in Figure 4.10, it is an
FPGA computing resource with an additional interface ��- (Parallel in-
put/output). This interface has the two generators ��- and ��- �� .
Essentially, these interface generators are able to generate appropriate in-
terface circuitry for the ��- interface of the A7 device. Figure 4.13c)
shows a refined class diagram of the PIO interface including these two in-
terface generators ��- and ��- �� . The generators itself are derived
from a class InterfaceGenerator providing the basic features of a genera-
tor. Figure 4.13d) visualizes the general template of an interface gener-
ator. During the synthesis process affected generators will be configured
depending on the architecture component’s embedding into the environ-
ment. Subsequently, they generates a set of code fragments. These code
fragments may be written in different languages such as VHDL for R-type
interfaces and C for P-type interfaces and have to be consistent with each
other. They are automatically included into the final device’s source code
and provide the (hardware/software) interface for a point-to-point channel
between communicating nodes. As a precondition, interface generators

4.2. Architecture graph 111

interface
generator

library

generator

(interface spec.)

outputinput

clk/reset

int rcvB_eX(struct tin *i,
struct tout *o) {

}

interface circuitry device driver

d q

a) Chip model

d) General template of an interface generator

configuration

chip model

interfaceinterface
generator

generators(PIO)={PIO_8, PIO_16}

{PIO} ��CSL

b) Example: CSL architecture component

CSLPIO

c) Refined class diagram of class PIO

off-chip

PIO

Interface
Generator

PIO_16PIO_8

interface interface
generator

class

Figure 4.13: Embedding of interface generators.

base on the assumption that a point-to-point channel can be established
using at most two communication nodes in a refined problem graph. This
issue is covered by constraint C3 in Section 3.2.3.

Cases of Interface Generation

The generation of the communication infrastructure is a rather challenging
task, especially in the context of FPGA computing resources. This section
focuses on the generation of interface circuitry and device drivers for the
connection between two architecture components considering our object-
oriented approach.

As an example, consider the following situation. An FPGA computing
resource �#� is connected to a processor computing resource �#� using the
interfaces �� and ��, respectively (see Figure 4.14). This target architecture

112 Chapter 4. Model Refinements

implements a refined problem graph rPG consisting of two communicating
tasks - and). The binding ! shows the relation between the two graphs
rPG and AG. The edge binding %���� and the interface generator selec-

cr2cr1

bus
�1 �2

c1

x
c2

y

interface
generator library

generator

(interface spec.)

outputinput

clk/reset

int rcvB_e1(struct tin *i, struct tout *o) {

}

interface circuitry device driver

d q

configuration

code fragment

for �1

code fragment

for �2

Specification

Device driver
and interface
circuitry generation
(details see

Actual target
(blockdiagram)

cr1 cr2wires

�2�1
built-in
interface

generated
interface

rPG:

AG:

binding	

Mapping:

edge binding	

�(e) = p1

(e)1

� = {(x,cr), (y,cr)}1 2

� e) = (e , e)1 -bus(-bus�1 �2

generator selection	

p

Figure 4.13)

Figure 4.14: Generation of the communication infrastructure.

tion ����� denote the specification of the communication properties. To
establish a channel between the two tasks, code fragments are necessary to
implement the channel’s access points �� and ��. Our suggested approach
resolves this situation as follows: Generally (as outlined in Section 4.2.1),
an FPGA has no interface generator for counterpart interfaces. The only
generator that is able to produce the necessary interface circuit for �� is the
interface generator . of interface ��. Subsequently, the interface generator
. generates an interface circuit for �� and as a counterpart, a corresponding
device driver for ��. The generated code fragments for �� are exchanged
via object interaction between the chip models.

Essentially, our suggested approach to interface synthesis distinguishes
between five relevant cases of two connected architecture components (see
Figure 4.15). The cases vary in the type of connected components as well
as their interfaces. The following enumeration elaborates these five cases:

4.2. Architecture graph 113

two P-type
interfaces cr2cr1

bus
�1

cr2cr1

bus

cr2cr1

memcr1

bus

memcr1

bus

�2

�1 �2

�2�1

�1

�1 �2

�2

two computing resources computing resource & memory

R- and P-type
interfaces

two R-type
interfaces

1)

2)

3)

4)

5)

c1

x b
c2

rPG:c1

x
c2

rPG:

y
(e)1 (e)1

bus

�(e) = p1

�(e) = q1

�(e) = MuxFF1

� = {(x,cr), (y,cr)}1 2

� e) = (e , e)1 -bus(-bus�1 �2

� = {(x,cr), (y,cr)}1 2

� e) = (e , e)1 -bus(-bus�1 �2

�(e) = m1

�(e) = n1

Figure 4.15: Cases for interface generation.

1) Two connected computing resources with P-type interfaces
This is the simplest case. Each of the interfaces �� and �� has a generator
. that generates a device driver for the interface of its own component.

2) Two connected computing resources with R- and P-type interfaces
This case is generally known as hardware/software interface and has been
elaborated in Figure 4.14. A further example is shown in Ex. 9.

3) Two connected computing resources with R-type interfaces
In general, a connection between such components (i.e., FPGAs) is not in-
nately supported, i.e, no predefined interface circuit is available. However,
it was shown that FPGA computing resources may have interface classes
in their chip model (see Figure 4.10). In the considered case, the gener-
ator selection � denotes a generator MuxFF to be used. Therefore, each
generator MuxFF produces an interface circuit for the interface of its own
component.

114 Chapter 4. Model Refinements

4) A computing resource with P-type interfaces connected to a memory
A memory does not need a device driver. Therefore, no code has to be gen-
erated for interface ��. However, the memory component��� is ”visible”
from the computing resource �#� and is connected via memory mapped in-
put/output or attached to a dedicated port. A memory component has a
MemoryManager allocating and reserving the required address space for
buffer � (not shown here). Considering constraint C1, the interfaces �� and
�� have an instance of the generator �. Subsequently, the generator � of
interface �� is able to generate an appropriate device driver for interface
�� providing the selected buffer behavior. Required information from the
memory component is exchanged via object interaction.

5) A computing resource with R-type interfaces connected to a memory
In general, the interface �� has no appropriate interface generator providing
a connection between �#� and��� (although it might have one depending
on the modeling). In this case, the interface generator � of interface ��
produces the corresponding interface circuit for interface ��.

The above considerations can be expanded to a target architecture with
several components connected to the same bus. In such a case, the involved
chip models have to interact and jointly generate the interface circuits and
device drivers. However, the affected interface generators have to support
such an architecture.

4.2.4 Examples

This section presents examples concerning modeling and generating inter-
faces and device drivers.

Example 7 (Further chip models) Figure 4.16 shows a set of additional
chip models that have been used to establish target platforms [Tob99,
HSS00, EPT99, EP00c, Kau00]. Again, these chip models emphasize the
main advantages of the object-oriented approach namely: simple retarget-
ing, reuse, and simple device modeling. For example, despite the fact that
an FPGA computing resource has no predefined interfaces the ALTERA
and XILINX FPGA chip models have been added an arbitrary number
of FPGABus8 interfaces that provide channels between connected FPGAs
of both FPGA families. In contrast, the interface ReconfigBus provides

4.2. Architecture graph 115

T
M

S
3
2
0
C

6
x

c
o

m
p

o
n

e
n

t

c
o

m
p

u
ti

n
g

re
s
o

u
rc

e

F
P

G
A

p
ro

c
e
s
s
o

r

In
te

lP
C

c
o

m
p

o
n

e
n

t
m

o
d

e
ls

c
h

ip
m

o
d

e
ls

o
ff

-c
h

ip

c
o

m
m

u
n

ic
a

ti
o

n
b

lo
c

k

in
te

rf
a
c
e

m
o

d
e
ls

e
x
te

n
d
s

c
o
n
s
is

ts
o
f

in
te

rf
a
c
e

c
h
ip

m
o
d
e
l

c
la

s
s

T
M

S
P

C
B

u
s

T
IC

o
m

m
P

o
rt

m
e
m

o
ry

F
P

G
A

B
u

s
8

X
IL

IN
X

F
P

G
A

T
M

S
3
2
0
C

4
0

B
u

s
U

n
it

T
M

S
3
2
0
C

4
0

T
M

S
3
2
0
C

4
4

1
3

6
4

M
C

M
6
2
0
6

s
to

ra
g

e

M
e
m

In
t

A
L
T

E
R

A
F

P
G

A

n
n

R
e

c
o

n
fi

g
B

u
s n

Figure 4.16: Class diagram of further chip models (UML notation [PJ99]).

116 Chapter 4. Model Refinements

a generator for interconfiguration communication between XILINX based
FPGAs only.

Example 8 (FPGA on-chip communication channel) This example out-
lines the implementation of a simple on-chip communication channel be-
tween tasks with compatible node ports (see Figure 4.17a). Figure 4.17b)
shows the block diagram of the corresponding implementation. The two
tasks are connected via a set of data and control wires. The output port
of task - as well as the input port of task) consists of concurrent proto-
col FSMs and a register bank. Figure 4.17c) shows the two FSMs that
are implemented in the input stage of task). FSM1 implements a re-
quest/acknowledge protocol. FSM2 enables the register bank. To transmit
a data item over the channel the signals se1 (send e1) and re1 (receive
e1) have to be activated. After that, the FSMs of both tasks manage the
proper data exchange. Subsequently, the done signals indicate the end of
the transmission.

re1req

ack

data

a) Refined problem specification

rPG: x y

FPGA

AG: i j

b) Actual target implementation (blockdiagram)

y

p
ro

to
c
o
l

F
S

M

input stage
of task y

}

e1

done

se1

x

p
ro

to
c
o
l

F
S

M

done

x.req

x.ack

output stage
of task x

}

enableenable

c) Input stage of task y: Protocol FSM

FSM1: protocol

idle sync1

re1=0

req=0,done=1

sync2

re1=1&ack=1

req=1,done=0

re1=1&ack=0

req=1,done=0

ack=0

req=1,done=0

\

req=0,done=1
ack=1

req=0,done=1

FSM2: register

reg

req=1&ack=1

enable=1

/

enable=0

e1 channel
implementation

}Mapping: ={(x,FPGA),(y,FPGA)}�

(control)

FPGA

Figure 4.17: FPGA on-chip communication channel.

4.2. Architecture graph 117

Example 9 (FPGA/microcontroller interface) This example considers
the structure and object-oriented modeling of a ”hardware/software” in-
terface between a XILINX XC4025 FPGA and a Motorola MC68340 mi-
crocontroller [ETT98]. The problem specification is given in Figure 4.18a).
It is assumed that three channels between the FPGA and the microcon-
troller have to be implemented using a generator called MotorolaStatus-
Port. In our terminology, a status port provides memory mapped data com-
munication between the two computing resources based on a data port and
a synchronization port (see Figure 4.18b). Figure 4.18c) shows the block

MC68340

extends

consists of

interface

chip model class

Motorola
BusUnit

Motorola
SimplePort

Motorola
StatusPort

SimplePort StatusPort
Processor

FPGA
Interface

Address
Generator

FSM
Generator

IO
Generator

VDHL
EntityBase

Architecture
Entity

Declaration

n

VDHL
Process

n

d) Object-oriented modeling

uses

a) Problem specification

m
ic

ro
c
o

n
tr

o
lle

r
b

u
s

b

data I/O

control
control
logic

address
decoder

data

address

channel e1

channel e2

channel e3MC68340XC4025

b
�1

b) Status port interface

rPG:

AG:
Motorola
BusUnit

interface
generator

n-1

data port
0

status port

c) Blockdiagram of the interface circuit for interface �1

c2(e)1
x y

c1

c4(e)2
m n

c3

c6(e)3
o p

c5

Interface
Generator

Figure 4.18: FPGA/microcontroller interface.

118 Chapter 4. Model Refinements

diagram of the interface circuit �� consisting of three parts (similar to
signal groups on the bus): (i) data I/O providing intermediate registers
between the channels ������� and the microcontroller’s data bus �, (ii) an
address decoder detecting a microcontroller access in the memory region
of the interface, and (iii) a control logic supervising the correct data trans-
fer. The interface circuit is being generated by the interface generator of
the microcontroller object. The generator MotorolaStatusPort is composed
of tree generators reflecting the implementation. Each of them is responsi-
ble for a part of the interface. For example, the FSM Generator produces
the control logic depending on the number of channels. Subsequently, the
output of these generators is used to establish the interface circuit (Proces-
sorFPGAInterface).

4.3 Problem graph

This section elaborates implementation issues of problem graph nodes on
computing resources and memories considering channel access primitives.

4.3.1 Implementation Approaches

As outlined in Section 4.1.1, nodes use channel access primitives to send
and receive data items. To discuss common implementation approaches
for nodes and their related communication primitives, the problem specifi-
cation of a task (in Figure 4.19a) is considered.

The assembling of access primitives and task implementation to a main
program of a computing resource is usually performed using one of the fol-
lowing implementation schemes:

Direct insertion (inlining)
The access primitives are called within the task’s source code (see Fig-
ure 4.19b) and are replaced by appropriate code fragments or function calls
during compilation/linking time. This approach is quite often used during
system development by hand if (i) an operating system for the computing
resource and (ii) the sources of the tasks are available.

4.3. Problem graph 119

a) Problem specification

f

b) Direct insertion

pseudo code for task f:e2

refinement

f

PG:

rPG: c1 c2

(e1) (e2)
main:

primitives replaced by
appropriate code
fragments/function calls
during compilation

f() {
:

x=rcvB_e1();
y=x+2;
:

sndI_e2(y);
:

}

c) Node wrapper

pseudo code for task f:

main:

f(x,y) {
:

y=x+2;
:

}

:
x=rcvB_e1();
f(x,y);
sndI_e2(y);
:

fixed signature

e1

x y

x y

Figure 4.19: Implementation approaches.

Node wrapper
Generally, a wrapper encapsulates a dedicated functionality with its spe-
cific ports and protocols and provides the same functionality but with new
ports and protocols [GHJV95]. Here, access primitives are wrapped around
a task’s core which is specified by a fixed signature (i.e., syntax descrip-
tion of the node ports in the implementation language) (see Figure 4.19c).
Tasks are stored in a database in form of source code, object code, hard/soft
macros, etc. This approach is used for embedded system implementation
if (i) no operating system is available, and/or (ii) the source of the task is
not available (which is often the case if IP cores are used).

For further investigations, the node wrapper approach is chosen for
tasks and buffers due to its better suitability for automatic interface syn-
thesis. Channel access primitives are being generated by the related object
models of the components and are assembled to a main program for each
computing resource during system synthesis.

4.3.2 Task

Figure 4.20 outlines a wrapper template of a task (on an FPGA com-
puting resource with one input �, one output �, and one control input �����
(for simplification only) [Eis96, ETT98]. The core functionality is sur-

120 Chapter 4. Model Refinements

protocol
FSM

core
functionality
(3rd party) protocol

FSM

control logic
(ncFSM)

{i {o

{

i

data type converter

oi

data

control

data

control

portProtocol(i)=portProtocol(o)=
portProtocol(i)=

reqack
taskCtrl

reqack
protocol

ctrl

ictrl

f

f

CLK xRESET

ctrl

Figure 4.20: Wrapper template for a dedicated hardware core functionality.

rounded by small protocol finite state machines providing the adaptation
from the core’s protocols to the external protocols. Data type converters
allow to adjust internal/external data type mismatches. The control logic
(node control finite state machine ncFSM) orchestrates the local modules.
This includes the core functionality and the protocol FSMs, and provides
the control input port of the node �����. Prg. 7 describes a corresponding
VHDL entity declaration (signature) outlining the control port �����, the in-
put port � and the output port �.

Prg. 7: Entity declaration of a task f for a FPGA computing resource
(language: VHDL)

1 entity f is
2 port (
3 CLK : in std_logic; -- clock signal
4 xRESET: in std_logic; -- low active reset
5
6 start : in std_logic; -- control port
7 done : out std_logic;
8
9 i_ack : in std_logic; -- input port
10 i_req : out std_logic;
11 i : in std_logic_vector(31 downto 0);

4.3. Problem graph 121

12
13 o_ack : in std_logic; -- output port
14 o_req : out std_logic;
15 o : out std_logic_vector(31 downto 0)
16);
17 end f;

Figure 4.21 shows an example of a valid node control FSM for task (.
It remains in the idle state until a 1/�#/ message is issued to the control
input port �����. This message is forwarded to all local connected FSMs. If
the core functionality has come to an end ($�����#� issued) the ncFSM
emits a $��� message on the control port �����. The protocol on port ����� is
called taskCtrl protocol.

idle run

start
startI, startO, startCore

doneCore
done

Figure 4.21: Example of a node control FSM.

The signature of a corresponding software task (with one input � and
one output � is given in Prg. 8, line 2. Each task has an input data structure
(e.g., f in) denoting its input ports (lines 4 ... 8) and an output data struc-
ture (e.g., f out) denoting its output ports (lines 10 ... 14). For each port, a
length parameter specifies the number of data items to be read/write during
one function call (see lines 7 and 13).

Prg. 8: Declaration of a software task f for a processor computing
resource (language: C)

1 /* function signature */
2 int f(struct f_in *in, struct f_out *out);
3
4 /* input data structure */
5 static struct f_in �
6 int *i;
7 int i_length;
8 �;
9

10 /* output data structure */

122 Chapter 4. Model Refinements

11 static struct f_out �
12 int *o;
13 int o_length;
14 �;

Note that software tasks have no control input in their signature. In-
stead, the control input is indirectly represented by the activation of the
task by the main program, or an associated dispatcher (e.g., see in Fig-
ure 4.19c).

4.3.3 Buffer

In [ETT98] a general template for a buffer (i.e., queue and register) has
been suggested to be implemented on memories and FPGA/processor com-
puting resources (see Figure 4.22). It consists of (i) an array of memory
cells to store data items, (ii) read/write access functionality, and (iii) a

write
access

memory
cells

control logic

i

oi

b

b

ictrl

read
access

o

ictrl

Figure 4.22: Implementation template of a buffer.

control logic. However, the actual implementation of a buffer can be quite
different compared to a task’s implementation and depends on the binding
of the buffer. Generally, different (semiconductor) technologies are used
to implement the memory cells and the rest of the template. For example,
the write access as well as the control logic can be software functions, the
memory cells can be located in a memory component, and the read access
may be part of a hardware interface circuit. The following explanations
focus mainly on the hardware implementation of a buffer. If applicable,
additional comments are given concerning the software implementation.

4.3. Problem graph 123

protocol
FSM

memory
cells

protocol
FSM

control logic
(ncFSM)

{i {o
data

control

data

control

address
generator

mem control

{
b

ictrl

CLK xRESET

portProtocol(i)=portProtocol(o)=
portProtocol(i)=

reqack
taskCtrl

ctrl

Figure 4.23: Template of a buffer in hardware.

In general, a buffer template for a hardware implementation is very
similar to the task template (see Figure 4.23). It consists of (i) an array of
memory cells, (ii) two protocol FSMs for protocol adaptation, (iii) an ad-
dress generator defining the access’s memory cell, (iv) a memory control
logic mem control, and (v) the node’s control logic.

Buffer implementation
To elaborate a buffer’s hardware implementation the same problem speci-
fication used to establish the taxonomy of communication types is consid-
ered (see Figure 4.7a). Depending on the binding of a buffer four signifi-
cant cases arise for buffer implementation:

a) ! � ��- �#�� �� �#�� �) �#���: no buffer splitting
This is the simplest case concerning automatic synthesis. The buffer is
implemented using the suggested template taken from a library (see Fig-
ure 4.24a1). No communication node is necessary in the refined problem
graph and no dedicated interface circuitry is required within the implemen-
tation. The node implementations are directly connected using an on-chip
communication channel. Simultaneous read/write accesses are resolved
by the buffer implementation. However, this case can be rather area ineffi-
cient. Namely, memory cells are implemented either using (i) configurable

124 Chapter 4. Model Refinements

a) ��{(x,cr), (b,cr), (y,cr)}1 1 1

rPG:

c1

x b y
x b y

Actual target (block diagram):

c2

e1 e2 rPG:

cr1

��{(x,cr), (b,mem), (y,cr)}1 1

x b

y

c1

x b y

c2 c3 c4

Actual target (block diagram):

b)

cr1

x

i

y

address

data

control

c1

x b y
c2

rPG:

��{(x,cr), (b,mem), (y,cr)}1 2

Actual target (block diagram):

c)

cr1

x i y

a
d
d
re

s
s

d
a
ta

c
o
n
tr

o
l

cr2

rPG:

��{(x,cr), (b,cr), (y,cr)}1 2 1

Actual target (block diagram):

d)

b

cr2cr1

x

y

mem

b

mem

b

synch

j ji

c1

x b y
c2

rPG:

Actual target (block diagram):

cr1

x

k

y

1) is an FPGA resourcecr1 2) is a processor resourcecr1

memory cells
of are
located in the
data memory
of which is

not part of
the model

b

cr1

Figure 4.24: Refined problem graphs.

logic cells (low memory density), (ii) configuration memory of config-
urable logic cells (medium memory density), or (iii) integrated memory
as provided by certain FPGA families (high memory density). If �#� is a
processor computing resource the memory cells are automatically located
in the associated data memory of �#� (high memory density). In this case,
communication nodes are necessary and represent the read/write access
primitives to the memory cells (see Figure 4.24a2).

b) ! � ��- �#�� ������ �) �#���: distributed buffer implementation

In this case, the memory cells are located in the memory component���
and exactly one computing resource (here �#�) accesses the buffer (see
Figure 4.24b). Therefore, the template is divided into two parts; one part
implements the memory cells and the other part implements the other parts
of the template within the computing resource. The communication nodes
�� and �� represent the interface to the buffer and provide the write and

4.3. Problem graph 125

read access to the memory cells. Simultaneous read/write accesses are re-
solved by the interface implementation. If �#� is a processor computing
resource the implementation is almost equal to case a). Only the location
of the memory cells is different.

c) ! � ��- �#�� ������ �) �#���: distributed buffer implementation
This kind of buffer implementation often appears in heterogeneous em-
bedded systems [OLB98]. Tasks of two connected computing resources
communicate using a shared memory region. Here, the implementation
of the buffer template comprises at least three parts implemented by the
involved architecture components. The memory cells are located in the
memory component ��� and each of the tasks - and) uses its own in-
terface circuit/device driver to access the memory cells (see Figure 4.24c).
However, due to the distributed buffer implementation simultaneous ac-
cesses to the memory cells have to be synchronized among the involved
interfaces and device drivers.

d) !�-� � �#�, !��� � �#�, !�)� � �#�: no buffer splitting
As outlined in Figure 4.24d) the buffer template is implemented without
any splitting and is very similar to case a). Here, two communication nodes
are required for each edge.

As an example, Figure 4.25 shows the block diagram of an SRAM in-
terface circuit providing a set of 	�� FIFO buffers. It enables the commu-
nication between a set of tasks bound to an FPGA computing resource and
a set of buffers bound to a connected MCM6206 SRAM [Tob99, EP00c].
As outlined in the buffer template (see Figure 4.23) each of the � compet-
ing channels consists of a small protocol FSM and an address generator
logic. These two stages together either represent a write or a read access
functionality of a single buffer. The block mem control/ncFSM provides
the necessary access control to the memory cells, e.g., by a fixed priority
scheme.

126 Chapter 4. Model Refinements

address
counter

protocol
FSM

address

protocol
FSM

1

n

1

mem ctrl / ncFSM

data

e ctrl.1

address
counter

e ctrl.n

n

control

e data1

e datan

Figure 4.25: Block diagram of an SRAM interface.

4.3.4 Dispatcher

Each computing resource requires a ”main function” describing the re-
source’s execution. For an FPGA resource, a structural representation
of connected VHDL entities is necessary. Here, entities describe tasks,
buffers, dispatchers, as well as interface circuitry. Processor computing
resources have a main() function that executes a set of C functions. These
functions include tasks and channel access primitives. Both computing
resource types require at least one dispatcher (see constraint C4 in Sec-
tion 3.2.3). It implements a static or dynamic schedule that is captured by
the dispatcher finite state machine. Depending on the type of computing
resource a dispatcher is bound to, three different kind of dispatcher imple-
mentations emerge (see Figure 4.26):

a) FPGA computing resource
A dispatcher bound to an FPGA computing resource is implemented as
VHDL entity whose outputs are connected to control inputs of other nodes.
The implementation has the same internal structure and entity declaration
like a hardware task implementation. As an FPGA resource enables paral-
lel node implementations several dispatchers can exist concurrently.

4.3. Problem graph 127

dispatcher
implementation

Operating
System

partial

implementation supported by CCSimplementation

FPGA

processor

dedicated VHDL
entity connected
to control inputs

of task/buffer
entities

(several possible)

main() function
executing

task functions
and

channel access
primitives

yes no

OS scheduler

(tasks may have
priorities)

Figure 4.26: Implementation approaches for dispatchers.

b) Processor computing resource with operating system
In this case, the dispatcher models part of the OS scheduler. Tasks and
buffers are activated/suspended depending on their access to blocking and
non-blocking channel access primitives. Furthermore, tasks may have pri-
orities to enable the correct activation sequence. However, this kind of
implementation was not focus of this thesis.

c) Processor computing resource without operating system
The dispatcher’s finite state machine is part of the main() function. It re-
peatedly executes sequences of task and channel access primitive function
calls and implements a static or dynamic task schedule [ET98a, EZT00].

Ideally, a dispatcher implementation is being generated based on (i)
scheduling information of tasks and (ii) the semantics of channel access
primitives. However, it was not a major focus of the thesis to generate
dispatchers. Therefore, although a ”main function” is generated for each
computing resource extra work is required to implement a dispatcher’s be-
havior.

128 Chapter 4. Model Refinements

4.4 Reconfigurable Systems

The refinements concerning the EPS model are valid for the RPS model
as well. Additionally, an RPS implementation has to provide the dynamic
reconfiguration of FPGA computing resources which involves the imple-
mentation of configurators. This section elaborates the implementation
issues of configurator nodes.

4.4.1 Configurator

A configurator ”supervises” the scheduling of configurations for one or
several FPGA computing resources (see Section 3.3.1). Depending on the
type of computing resource a configurator is bound to, two different kind
of configurator implementations arise (see Figure 4.27):

configurator
implementation

partial

implementation supported by CCSimplementation

FPGA processor

dedicated VHDL
entity connected
to control inputs

of dispatchers on
other FPGAs

(several possible)

a task
connected
to control
inputs of

dispatchers

Figure 4.27: Implementation approaches for configurators.

a) FPGA computing resource
Similar to a dispatcher’s implementation a configurator on an FPGA com-
puting resource is implemented as VHDL entity. Its outputs are connected
to control input ports of dispatchers on other FPGAs. Its implementation
has the same internal structure and entity declaration like a hardware task’s
implementation. Several configurators may exist concurrently.

4.5. Summary 129

b) Processor computing resource
A configurator on a processor computing resource is implemented like an-
other task that reads/writes channels via channel access primitives. It is
independent on the presence/absence of an operating system.

Ideally, a configurator’s implementation is being generated based on
scheduling information of the supervised configurations. However, as it
was not a major focus of the thesis to generate configurators, manual extra
work is required to implement the configuration schedule sequence for the
configurators.

4.5 Summary

This chapter elaborates refinements and implementation issues of the pro-
posed EPS and RPS models.

By introducing communication nodes into a problem graph, edges are
refined to model communication channels. These communication nodes
represent device drivers and interface circuits and provide blocking or non-
blocking semantic. Based on different use cases various edge refinement
strategies are discussed leading to our proposed taxonomy of communi-
cation types. Depending on the binding of nodes of the problem graph,
four implementation types arise for communication channels: on-chip,
off-chip, interconfiguration, and interconfiguration communication with an
open channel.

To establish an appropriate communication infrastructure an object-
oriented approach is proposed. For each component of the architecture
graph there exists a corresponding software object (chip model) modeling
the properties of the actual device. These objects are composed of config-
urable interface generators that are able to generate the specified commu-
nication infrastructure. Comparing to traditional approaches such as the
use of communication libraries our approach has the advantage of

� a simple retargeting of the interface generation,

� reuse of the generators,

� simple modeling of a device, and

� object interaction providing simple synthesis algorithms.

130 Chapter 4. Model Refinements

The proposed approach includes modeling of the actual component wiring
enabling the automatic assignment of device pins to communication chan-
nels.

Based on a wrapper approach the implementation issues are discussed
concerning the embedding of communication primitives and node imple-
mentations into a ”main program” for processor and FPGA computing
resources. This includes the joint interaction of dispatchers and configura-
tors to establish the overall schedule of the specified system.

Chapter 5

Optimization and Synthesis

This chapter gives a coherent view between the proposed models (see Sec-
tion 3), their refinement (Section 4), and a corresponding synthesis flow.
At the beginning, the synthesis flow is elaborated (Section 5.1). It covers
the path from a problem specification down to an implementation. The
next Section 5.2 outlines an optimization methodology to reduce the num-
ber of problem graph nodes and required device pins. In Section 5.3, a
framework is presented that supports the proposed synthesis flow [EP00b].
Section 5.4 outlines an extended example for the specification, refinement,
and synthesis of a simple SDF graph. Finally, Section 5.5 provides a short
summary of the chapter.

5.1 Synthesis Flow

This section outlines a synthesis flow based on our proposed models and
refinements. It starts by specifying a problem and ends with a correspond-
ing implementation. Figure 5.1 briefly outlines the proposed synthesis flow
that consists of three phases and comprise nine major steps:

Specification
During the specification phase a synthesis problem is captured and de-
scribed by using the proposed formalisms EPS and RPS, respectively.

1) Problem capturing
The first step captures the considered problem using the EPS formalism.
Therefore, a problem graph, an architecture graph, as well as an appropri-

131

132 Chapter 5. Optimization and Synthesis

problem

check

optimization

composition

1

ok

not ok

Specification

2

5Refinement

6

7

8

channel

yes

not ok

capturing

constraint

hierarchical

check
constraint

ok

no

code

3

4

reconfigurable

structure
reconfiguration

access points

9
external
compiler

interface
synthesis

Optimization
&

Synthesis

Figure 5.1: Simplified synthesis flow.

ate mapping has to be defined. Additionally, at least one dispatcher node
per computing resource is necessary to models the activation of problem
graph nodes.

2) Constraint check
For a feasible specification, it has to be assured that the constraints C1 ...
C6 are met (see Section 3.1.2 and Section 3.2.3). This may involve the
insertion of dispatcher as well as routing nodes into the problem graph.

5.1. Synthesis Flow 133

3) Hierarchical reconfiguration
In case of dynamic reconfigured FPGA components the RPS formalism en-
ables to describe the necessary hierarchical reconfiguration structure (see
Section 3.3). Here, the mapping covers four steps where the node-configu-
ration assignment and the configuration-component assignment determine
the dynamic problem graph parts. Furthermore, at least one configurator
node on a host, as well as one dispatcher node per configuration has to be
inserted (see Section 3.3.3).

4) Constraint check
Besides the constraints of step 2 a feasible mapping satisfies constraints
C7 ... C9 (see Section 3.3.3). Furthermore, depending on the application
scenario additional constraints C10 ... C16 have to be satisfied (see Sec-
tion 3.3.5 ... Section 3.3.7).

Refinement
At this point, the problem specification is finished and the communication
infrastructure has to be established.

5) Channel access points
Based on the edge binding (see Section 3.2.3) channel access points are in-
serted for the edges of the problem graph (see Section 4.1.1). These access
points are related with component interfaces and enable the generation of
the communication infrastructure.

Optimization and synthesis
The last phase optimizes the specification and generates the specified inter-
face and device driver codes, as well as code for each computing resource.

6) Optimization
Here, optimization methodologies are applied (see Section 5.2). The goal
is to reduce the number of problem graph nodes, as well as to reduce the
required device pins to implement the communications channels.

7) Interface synthesis
For each channel access point interface circuitry or device driver needs to
be generated (see Section 4.2.3). The generation methodology bases on
our proposed object-oriented component model.

134 Chapter 5. Optimization and Synthesis

8) Code composition
The generated code fragments for the channel access points as well as
codes for the node’s implementation are assembled for each configuration
and computing resource. This may include the generation of command
scripts for the following compilation step.

9) External compiler
The above steps produce source code for each computing resource and
configuration. Subsequently, these codes have to be compiled by the use
of appropriate compiler tools for each computing resource.

5.2 Optimization by Object Sharing

The following optimization methodology is applicable to RPS specifica-
tions in order to reduce (i) the number of problem graph nodes, (ii) the
number of necessary device pins, and (iii) the area of interface circuitry
[EP00b].

Problem description
Figure 5.2 shows an architecture graph �� with a host and two FPGAs
�
��� and �
��� . �
��� has two configurations Æ�� and Æ��. �
��� imple-
ments three configurations Æ�� Æ��, and Æ��. For simplification, only the
configurator node � as well as the dispatcher nodes (e.g., ���) of the prob-
lem graph �� are shown. At first sight, six routing nodes (#��� � � � #���)
are necessary. As a consequence, interface circuitry and device pins for 14
channels on �
��� and 6 channels on �
��� would be required.

Nevertheless, the additional routing nodes as well as the number of de-
vice pins can be reduced by applying optimization by object sharing.

Solution
The proposed optimization methodology makes use of the fact that some
of the configurations are exclusive. Objects that can be shared comprise
problem graph nodes and device pins. Although only routing nodes have
been considered, object sharing could be applied to the original nodes of
the problem graph as well. Nodes can be divided into three groups that
demand for different interface circuitry (see Figure 5.3). Nodes of type �
are connected only to nodes within the same configuration and are thus not

5.2. Optimization by Object Sharing 135

r111

r112

r113

r123

r122

r121

host fpga1
b1

fpga2
b2

�

�11

�12

�21

�22

�23

�11

�12

�22

�23

�21

PG:

AG:

Figure 5.2: Routing node distribution.

amenable to the proposed optimizations. Nodes of type � are connected
to nodes in the same configuration as well as to nodes bound to other ar-
chitecture components. Nodes of type � have only connections to nodes
bound to other architecture components. Connecting nodes of type � and �
requires device pins and is the main target of object sharing. The routing
nodes, which are of type �, benefit most from object sharing optimizations.
The proposed optimizations are split into two groups:

� Pin sharing: Several communication channels alternately use the
same set of device pins.

� Node sharing: The implementation of a node is shared between sev-
eral communication channels in one configuration.

Pin sharing
The wiring of architecture graph components requires a set of device pins.
Each of these pins is associated with a channel to enable data communi-
cation (see Section 4.2.2). But, each device has only limited pin resources
which can be overcome by sharing pins among several channels.

136 Chapter 5. Optimization and Synthesis

a

b
c

fpga

�

Figure 5.3: Node types: a, b, and c.

Subsequently, pin sharing applies to certain edges of the node types b
and c. In the Virtual Wire project pin sharing has been used for compile-
time reconfigurable resources only [BTD�97, BTA93]. Here, pin sharing
has been extended to time-exclusive configurations of run-time reconfig-
urable resources. Therefore, two types of pin sharing are differentiated:

� Intraconfiguration pin sharing allows communication channels in
the same configuration to share device pins by adding multiplexing
and demultiplexing interface circuitry [BTA93]. This technique can
be applied to both CTR and RTR systems.

� Interconfiguration pin sharing allows communication channels in
different configurations of the same FPGA to share device pins. The
channels would otherwise be mapped to different pins as configura-
tions of other FPGAs could require that both channels exist at the
same time. Interconfiguration pin sharing applies only to RTR sys-
tems.

As an example, Figure 5.4a) shows part of the problem graph of Fig-
ure 5.2. Applying intraconfiguration pin sharing to edges ��#��� ��#���,
and ��#��� implies multiplexing/demultiplexing interface circuitry for the
channel access points �� and �� (see Figure 5.4b).

As an example for interconfiguration pin sharing, Figure 5.5a) shows
again a part of the problem graph of Figure 5.2. The configurator controls
the dispatchers via the edges � � $�� and � � $��. As the two dispatchers
reside in exclusive configurations, the corresponding pins of the two edges
can be shared. In Figure 5.5b) this is expressed by the channel access
points �� and ��.

5.2. Optimization by Object Sharing 137

host

a) Problem specification

fpga1 host

b) Implementation

fpga1

c1 c2

c3 c4

�
r111

r112

r113

�11

�11

r111

r112

r113

�11

�11

�

Figure 5.4: Intraconfiguration pin sharing.

host

a) Problem specification

host

b) Implementation

c1 c2

fpga1 fpga1

� �

�11

�12

�11

�12

�11

�12

�11

�12

Figure 5.5: Interconfiguration pin sharing.

Node sharing
Node sharing is a methodology where several problem graph nodes as-
signed to the same configuration share a single physical implementation
on the target architecture. Generally, node sharing can be applied to all
three node types � � and �. Node sharing to original problem graph
nodes allows to trade-off between required FPGA area and execution time
and could require additional buffers. Node sharing for original problem
graph nodes actually means to modify the mapping determined by front-
end tools. Hence, node sharing is considered for routing nodes only (nodes
of type �), which is extremely valuable if combined with pin sharing.

As an example, Figure 5.6a) shows a problem specification including
�
��� with one configuration and �
��� with three configurations. The
communication channels between configurator � and dispatchers $�� � � � $��
are routed over �
��� and require routing nodes #��� � � � #���. Obviously,
these nodes can share one physical implementation as the three config-
urations of �
��� are exclusive. Furthermore, the sharing of nodes can

138 Chapter 5. Optimization and Synthesis

be combined with intraconfiguration pin sharing of the three channels be-
tween the host and �
��� and interconfiguration pin sharing between �
���
and �
��� (see Figure 5.6b).

host

a) Problem specification

r111

fpga1

b) Implementation

�21

�23

�22

fpga2

r112

r113

host fpga1

�21

�23

�22

fpga2

r

node sharing

c3 c4 c5 c6

intraconfiguration
pin sharing

interconfiguration
pin sharing

� �

�21

�23

�22

�21

�23

�22

Figure 5.6: Node and pin sharing.

Finally, Figure 5.7 shows the optimized implementation for Figure 5.2
after applying node and pin sharing. The hierarchical reconfiguration struc-
ture consists of a configurator node on the host, one dispatcher node per
FPGA configuration, and two routing nodes on �
��� . Overall, three pin
sets are required on �
��� and one set of pins on FPGA �
��� to implement
the reconfiguration structure.

host

�

fpga1 fpga2

r11

�11

r12

�12

�21

�22

�23

c3

c1

c4

c2

c5 c6

�11

�12

�21

�22

�23

Figure 5.7: Object sharing optimizations.

5.3. CCS framework 139

5.3 CCS framework

The initial goal of the CCS (Communication Channel Synthesis) frame-
work was to establish a ”thin thread” from a problem specification down
to an implementation to validate the proposed approaches. However, it
evolved to a test platform that allows to plug-in design and implementa-
tion tools to generate a communication infrastructure for problem specifi-
cations based on the GPS formalism [EP02]. During the thesis, it helped
(i) to get experience in interface and device driver synthesis, (ii) to de-
velop the object-oriented component model and corresponding synthesis
algorithms, and (iii) to establish a synthesis flow for embedded (reconfig-
urable) systems.

This section gives a brief overview about the framework as well as its
embedding into existing co-design frameworks.

5.3.1 Overview

The structure of the framework is outlined in Figure 5.8. Shaded boxes
denote areas of thesis contributions. The data object repository forms the
heart of the framework. It captures design data which is stepwise refined
from the initial problem specification down to the final implementation.
Tools that generate, modify, and refine repository objects are divided into
front-end, back-end, and off-line tools.

Front-end tools
Basically, front-end tools are used to establish the problem specification
in the sense of Section 3. Design capture tools allow to formulate a de-
sign problem as data object comprising a problem graph (e.g. [Jan00]).
Architecture synthesis tools extend this data object by adding (i) an appro-
priate architecture graph, (ii) a mapping between problem and architecture
graph, and (iii) information about the execution order of problem graph
nodes and configurations (e.g., [PB99]). These steps are based on primary
estimations about the data objects. Furthermore, simulation and verifica-
tion tools may be applied to such problem specifications.

Back-end tools
Back-end tools include problem refinement (see Section4), algorithms for
synthesis, as well as tools to implement a certain synthesis design flow

140 Chapter 5. Optimization and Synthesis

data object
repository

synthesis

architecture
synthesis

device
database

files
tools information

flow
database synthesized

reconfiguration

code

composer

sources for
each computing

resource
reports

estimation

IP
database

synthesis

communication

PG

PG

AG

PG

AG
AG

1

estimation

FRONT-END

BACK-END

capture
design

external
compiler

binaries/bit
streams for

each computing
resource

reports

assessment

simulation
verification

thesis
contributions

OFF-LINE

HASIS

[EPT99, EP00b, EP00c]

[ET98a]

[ETT98]

[ET98a, EZT99, EZT00]

[ETT98, ET98b, EPT99,
EP00b, EP00c]

[EZT99, EZT00]

[ET98b]

[Tsc99]

CORES

[EP00a, EP00b, EP02]

[Eis99]

[EZT99, EZT00]

[EZT00]

refined
estimation

n

Figure 5.8: Overview about the structure of the CCS framework.

(see Section 5.1). Two databases support these tools: the device database
provides chip models for components of the architecture graph, and the
IP database stores problem graph node implementations, i.e., IP (intellec-
tual property) cores. In both databases, each entry is accompanied with a
description of its most important features such as port descriptions, tim-
ing/area estimation, and required information for synthesis. A first tool
is reconfiguration synthesis which refines a specification by introducing a
hierarchical reconfiguration scheme. As a result, each configuration com-
prises the specified tasks and buffers as well as additional tasks responsi-
ble for reconfiguration control. Communication synthesis tools establish

5.3. CCS framework 141

communication channels between communicating problem graph nodes
by automatically generating interface circuitry and device drivers that are
modeled by channel access points. Estimation tools assess refined data ob-
jects and report on requested design parameters. These estimations drive
front-end tools in a next design iteration. One example is the overhead
in terms of FPGA area required for implementing the hierarchical recon-
figuration scheme. Code composer tools assemble IP cores, reconfigura-
tion scheme, as well as the generated interface circuitry and device drivers
for each configuration and computing resource. The two remaining tools
HASIS (Hardware/Software Interface Synthesis) and CORES (Configurator
for Reconfigurable Embedded Systems) provide the design flows for static
reconfigured architectures and dynamic reconfigured architectures by acti-
vating the required tools and algorithms.

Off-line tools
The code composer generates source files only. Subsequently, external
compiler tools, such as an FPGA compiler, are necessary to translate the
produced sources into binaries and bit streams for each computing re-
source. Furthermore, assessment tools (e.g., [Tsc99]) are able to provide a
rating of the generated sources. This enables a refinement of the primary
estimations, and a refinement of the elements stored within the databases.

5.3.2 Embedding the CCS framework

The CCS environment may serve as a backend synthesis framework for a
model based co-design flow. Figure 5.9 shows an appropriate layered view
of the embedded framework.

The lowest layer consists of the CCS tools discussed in the last sec-
tion (hatched area). On top of that, a JAVA API provides (i) capturing the
problem specification, (ii) controlling the synthesis process, and (iii) en-
abling access to estimation tools and the databases. Subsequently, this API
qualifies a seamless framework integration into an existing JAVA environ-
ment that covers problem analysis, designspace exploration, and design
of a target platform. As an example, in [Tch98, EZT99] a corresponding
case study has been implemented using (i) the MOSES environment as a
graphical user interface (GUI) for problem specification [Jan00], (ii) an
evolutionary algorithm for architecture synthesis [ZT99], and (iii) CCS
as back-end synthesis tool. Furthermore, a command line shell CCSL

142 Chapter 5. Optimization and Synthesis

device
database

CCSLGUI

JAVA API

reports

IP
database

sources for
each computing

resource

FRONT-END

BACK-END
CCS

OFF-LINE

analysis
exploration

design

Figure 5.9: Embedding the CCS framework.

(Communication Channel Synthesis Language) [Eis99] provides an inter-
active interpreter that translates between the JAVA API and a pure ASCII
interface.

5.4 Extended example

In this example, specification, refinement, and synthesis of a simple SDF
graph is considered (see Figure 5.10). Thereby, the synthesis flow as de-
scribed in Section 5.1 is applied. In the sense of this thesis, the focus
of interest is on the overhead caused by the communication infrastructure
which is necessary to enable the communication.

The following discussions show, that the proposed models and method-
ologies are useful for tools seeking for optimal system implementations
[EZT00]. Such tools considerably depend on appropriate system descrip-
tions that enable an efficient search of alternative implementations.

5.4.1 Problem Specification

The target is described by the architecture graph in Figure 5.11. It consists
of a)�� computing resource which is able to reconfigure the two con-
nected FGPA computing resources �
��� and �
��� . Furthermore, memo-
ries ���� � � ����! are connected to the FPGA resources. As an exam-

5.4. Extended example 143

rq s v

t u x

w y

z

schedule:
qrstuvwxyzq ...

Figure 5.10: Simple SDF (Synchronous Dataflow) graph.

ple, an RPS specification of the SDF graph is elaborated, where both FP-
GAs are dynamically reconfigured during the application’s run-time. An
initial problem graph �� as well as a potential binding ! � is specified in
Figure 5.12a). It may have been generated by automated front-end tools
or manually. Here, for each edge of the SDF graph a buffer node has been
inserted to store intermediate data.

AG:

bu1
host fpga1

bu3
fpga2

bu2

mem1 mem3

bu4mem2

Figure 5.11: Architecture graph.

As described in Section 3.3.3, the mapping of the problem graph to the
architecture graph takes four steps:

Step 1: Define potential assignments to configurations and components
Assume that there exist six configurations � � Æ� � � � Æ�. Now, the poten-
tial node-configuration assignments +� and potential configuration-compo-
nent assignments ,� have to be specified (see Figure 5.12b). They depend
on the potential binding !�. For example, the buffer �	 can be bound to
�
��� . Therefore, buffer �	 can be member of configurations Æ� and Æ�
only.

144 Chapter 5. Optimization and Synthesis

rq b1 sb3 vb7

t

b5

ub4

b2 b9

x

b6

w

b10

b11 y

z

Mapping:

PG:

b8

b12

�

={(q,host), (z,host), (r,fpga1), (s,fpga1), (t,fpga1), (u,fpga1), (u,fpga2), (v,fpga2), (w,fpga1),

(w,fpga2), (x,fpga2), (y,fpga2), (b ,mem1), (b ,mem2), (b ,mem3), ..., (b ,mem3), (b ,fpga1),

(b ,fpga2), (b ,fpga2), (b ,fpga2)}
1 1 1 12 1

7 8 12(b ,fpga1), (b ,fpga2), (b ,fpga1),4 4 5

a) Problem graph before insertion of the hierarchical reconfiguration structure

b) Step 1

q
b1

�

�3

�2

�1

� �

fpga1

fpga2

r

s
b3

v
b7

t
b5

u
b4

b2

b9

x

b6

w

b10

b11

y

z

b8

b12

host

�4

�5

�6

c) Step 2

q
b1

�

�3

�2

�1

� �

fpga1

fpga2

r

s
b3

v
b7

t
b5

u
b4

b2

b9

x

b6

w

b10

b11

y

z

b8

b12

host

�4

�5

�6

Figure 5.12: Problem specification.

Step 2: Select appropriate assignments
Based on step 1, a node-configuration assignment + as well as a configur-
ation-component assignment, has to be selected (see Figure 5.12c). Note,
that this selection actually depends on the fire schedule of the problem
graph nodes which has been considered here. The schedule is specified in
Figure 5.10.

5.4. Extended example 145

rq b1 sb3 vb7

t

b5

ub4

b2 b9

x

b6

w

b10

b11 y

z

�

�4�1 �2

�3

�5

�6

PG':

b8

b12

a) Step 3: Extended Problem Graph (simplified view)

b) Detailed view: configurations � �2 3, c) Step 4: Configurations � �2 3, with

s

t

�2

�2

s

t

�2

�2

r1

r2

r3

r4

b5

ub4

�3

�3

b5

ub4

�3

�3

o1

o2

routing tasks

Figure 5.13: Problem specification: Extended problem graph.

Step 3: Insert the hierarchical reconfiguration structure
Here, an additional dispatcher node has to be inserted for each used con-
figuration, as well as at least one configurator node bound to the host com-
puting resource. Subsequently, an extended problem graph �� � arises (see
Figure 5.13a). The configurator node � is connected to the control input
of each inserted dispatcher node which is only indicated in Figure 5.13a).
The dispatcher of a configuration is connected to the control inputs of all
remaining nodes of the configuration. As an example, Figure 5.13b) shows
a detailed view of configurations Æ� and Æ�.

Step 4: Consider constraints
The constraints assure a correct specification. In this example, constraint
C3 (see Section 3.2.3) is violated for the edges between the configurator

146 Chapter 5. Optimization and Synthesis

� and the dispatchers of configurations Æ� � � � Æ� as well as for the edge
��� � 2. Each path for these edges has a length of 4. Subsequently, routing
tasks #� � � � #� have to be inserted onto these edges which finally satisfies
constraint C3. As a consequence, these tasks on �
��� are shared between
the configurations (see Section 3.3.5 for sharing of tasks). Figure 5.13c)
shows again configurations Æ� and Æ� where the routing tasks have been
inserted. For the sake of clarity, the shaded area denotes the nodes of
configuration Æ�.

5.4.2 Problem Refinement

To establish a communication channel between a sender and a receiver the
corresponding edge has to be refined (see Section 4.1.1). Subsequently,
channel access points have to be inserted which results in a refined prob-
lem graph ��� . Figure 5.14 shows parts of this graph for configurations

s

t

�2

�2

r1

r2

r3

r4

w

�5

�5

b10

c1

c2

c3

c6

c4

c5

c7

c8

c9

c10

c11

c12

c13

c14

c12

x

y

b8

b12

�6

c14

c13

�6

*

c15
c16

c17

c18

*

c19

c20

c21

*

Figure 5.14: Parts of the refined problem graph ��� .

Æ�, Æ�, and Æ�, as well as for some intermediate edges. Bold lines denote
connections between channel access points. In the original SDF graph (see
Figure 5.10) one edge features an initial marking. Subsequently, the buffer
��� has to be initialized. This is modeled by a channel between the dis-
patcher �� and the control input of buffer ���.

5.4.3 Optimization and Synthesis

Optimization
Prior to the synthesis step, optimization methodologies are applied (see

Section 5.2). Subsequently, the number of shared nodes and required pins

5.4. Extended example 147

to implement the communications channels are minimized. The optimiza-
tion makes use of the fact that configurations Æ����Æ� and Æ����Æ� are time-
exclusive.

The first optimization considers the channels between the configurator
� and the dispatchers �� � � � �� of configurations Æ����Æ�. As these channels
are used exclusively, interconfiguration pin sharing can be applied. Hence,
actually only one channel has to be implemented.

The second optimization tackles the routing tasks required to connect
the configurator � and the dispatchers �� � � � �� of the configurations Æ� � � �
Æ�. Again, it never happens that data have to be transmitted via these three
nodes at the same time. Therefore, only one task is physically necessary
that implements all three logically required routing tasks. Therefore, intra-
configuration pin sharing can be applied for the channels and node sharing
for the routing tasks. Again, only one channel has to be implemented.

s

t

�2

�2

r1

r4

w

�5

�5

b10

c1

c2

c3

c4

c7

c8

c9

c10

c11

c14

c12

x

y

b8

b12

�6

c14

c13

�6

*

c15
c16

c17

c18

*

c19

c20

c21

*

o5

o6

o7
o8

ic

Figure 5.15: Optimized refined problem graph ��� �.

Figure 5.15 outlines the same part of the refined problem graph as
shown in Figure 5.14 where the optimizations have been applied. Note
that the channels access points ���� and ���� will have an instance of the
same interface circuit. Therefore, switching between the configurations
Æ� � � � Æ� connects one of the dispatchers with the routing task #� and en-
ables the supervision of the configuration by the configurator on the host.
Switching between the configurations Æ� � � � Æ� interrupts the channel be-
tween the configurator and a dispatcher on �
��� during reconfiguration
time. It is reestablished as soon as the reconfiguration of �
��� is finished
and the routing task is started.

The above optimizations reduce the number of necessary channels for
the hierarchical reconfiguration structure. Subsequently, the configurator

148 Chapter 5. Optimization and Synthesis

� requires only two outputs �� and �� to supervise the dispatchers. The
dispatchers �� � � � �� require two outputs for the routing tasks.

Synthesis
During synthesis interface circuits and device drivers are generated and
assembled according to the specification of the configurations. To imple-
ment the schedule of the original SDF, the configurator � as well as the dis-
patchers �� � � � �� have to be implemented. Figure 5.16a) shows a pseudo
code for the configurator FSM of the configurator �. It permanently recon-
figures both FPGA resources upon end of configuration using it’s output
ports �� and �� (see Figure 5.13). Figure 5.16b) shows a pseudo code for
the dispatcher FSM of configuration Æ� using its output ports �� � � � �� (see
Figure 5.15).

a) Configurator FSM ()�

cFSM() {

F1list={

download1(F1cfg

loop {
case o .done():

if F1cfg==F1list.last()
F1cfg=F1list.first()

� � � � � �1, 2, 3 4, 5, 6

1

2

1

2

2

}; F2list={ }

F1cfg=F1list.first(); F2cfg=F2list.first()
); o .start()

download2(F2cfg); o .start()

else
F1cfg.next()

download1(F1cfg); o .start()

case o .done():

if F2cfg==F2list.last()
F2cfg=F2list.first()

else
F2cfg.next()

download2(F2cfg); o .start()

}
}

1

b) Dispatcher FSM ()�2

dFSM() {
if i .start() {

o .start(); o .start()

o .start(); o .start()

loop {
case o .done() & o .done()

o .stop(); o .stop()

if (o .done() & o .done())

exit loop

}

i .done()

}
}

c

5 6

7 8

5 6

7 8

7 8

c

case o .done():

o .start()

case o .done():

o .start()

7

7

8

8

Figure 5.16: Pseudo codes for a) configurator �, and b) dispatcher ��.

Run-time overheads
The hierarchical reconfiguration structure as well as the channel access
points introduce overheads in terms of execution time and hardware area.
Both features strongly depend on the target technology as well as compiler
methodologies for the computing resources.

Generally, the execution time depends on (i) the execution order of con-
figurations, (ii) the run-time of each configuration, and (iii) the switching

5.4. Extended example 149

time between two configurations. The configuration’s execution order is
captured by the configurator FSM and depends on the schedule of prob-
lem graph nodes. The configuration’s run-time is determined by (i) the
run-time of nodes and (ii) by the execution order of problem graph nodes
assigned to this configuration. This execution order is captured by the dis-
patcher of the configuration. The switching time /�� from a configuration
Æ� to a configuration Æ� represents run-time overhead and extends the run-
time compared to CTR resources. It is the sum of /�, the time required
by the dispatcher to wait for the end of configuration after stopping the
connected nodes, /�, the transmission delay between the dispatcher and the
corresponding configurator, /�, the scheduling time of the cFSM, and /��	
 ,
the time for downloading and starting the new configuration.

/�� � /� � /� � /� � /��	
 �

For specification models with rather simple schedules, /� and /� will be
small. Assuming moderately sized multi-FPGA systems, /� will be small
as communication channels between dispatchers and configurators are not
routed over many FPGAs. For such a scenario, the configuration switching
time will be dominated by the technology-dependent device reconfigura-
tion time /��	
 . For example, an XILINX Virtex XCV-1000 FPGA requires
about 6.13 Mbits of configuration data. By reconfiguring the device at 50
MHz using the fastest programming port (8 bit) the reconfiguration time is
about /��	
 � ���	�1.

The area overhead required for the communication infrastructure con-
sists of (i) the generated interfaces and device drivers to implement the
communication channnels, (ii) the configurator and dispatcher tasks for
the hierarchical reconfiguration, (iii) the required routing tasks, and (iv)
the wire resources to connect the implementations. Besides the bit width
of a channel implementation, the area requirements of interfaces and de-
vice drivers depend on the computing resource type as well as the selected
protocol of an edge. The size of configurators and dispatcher tasks depends
on the number of states and transitions required to implement a schedule.
Routing tasks as well as wire resources depend mainly on the bit width of
a channel.

Measurements on XILINX Virtex XCV-1000 FPGAs (programmable
matrix provides 6144 CLBs) show that the area overhead due to dynamic
reconfiguration for the discussed example is quite small. Tab. 5.1 summa-
rizes some of the area overheads expressed in Virtex CLBs (configurable

150 Chapter 5. Optimization and Synthesis

logic blocks). Here, the channel’s implementation has a data width of 8
bit.

additional element Virtex CLBs
routing task (e.g., #�) 5
dispatcher (e.g., ��) 8
interface between �
��� -�
��� 2
interface between)��-�
��� 5

Table 5.1: Area overhead due to dynamic reconfiguration.

For example, for configuration Æ� in Figure 5.15 the area overhead due
to dynamic reconfiguration is
 � � � � �
 �
 � 	 � � � 	� CLBs which
is 0.6% of the available CLBs of a XILINX Virtex XCV-1000 FPGA.

5.5 Summary

This chapter summarizes the proposed models and refinements in a coher-
ent view.

It presents a synthesis flow that consists of three phases. At first, a
problem is specified using the EPS or the RPS formalism. Next, by the
insertion of channel access points the specification is refined and now cap-
tures the specification of the communication infrastructure as well. The
last phase optimizes and synthesizes the specification to source code for
each computing resource and configuration.

The next section presents an optimization technique to reduce the num-
ber of problem graph nodes and required device pins to implement the
communication channels. Essentially, it bases on the fact some of the con-
figurations are exclusive.

Furthermore, a framework is outlined that has been developed during
the research work. It implements the proposed synthesis flow and bases on
the object-oriented component model.

Finally, an extended example is elaborated that presents specification,
refinement, and synthesis of a simple SDF graph.

Chapter 6

Conclusions

6.1 Results

The goal of this thesis was the definition of models and methodologies to
establish a communication infrastructure within heterogeneous embedded
systems. Such systems are characterized by connected devices that distin-
guish in features such as supported interfaces and the ability of run-time
reconfiguration. The essential results can be summarized as follows:

� To capture and describe synthesis problems three dataflow oriented
specification models have been formalized. Their focus is on the
specification of point-to-point communication channels between in-
teracting parts. The GPS formalism is the parent model and provides
definition of terms, basic elements, and composition rules. The EPS
formalism is an extension of GPS and aims at static configured sys-
tems. The RPS formalism is an extension of EPS and supports the
specification of systems with run-time reconfigurable components.

� For synthesis problems specified by using the EPS or the RPS for-
malism refinement and implementations methodologies have been
proposed. They consider the communication features of architecture
components by the introduction of channel access points into the be-
havior specification.

� A taxonomy of communication types has been proposed that is based
solely on (i) the binding of problem graph nodes to basic architec-

151

152 Chapter 6. Conclusions

ture components, and (ii) on the existence of one or several configu-
rations.

� To establish a communication infrastructure for heterogeneous em-
bedded systems object-oriented models for the components of the
architecture graph have been proposed. Essentially, the communica-
tion features of a device are captured by a set of classes that enable
the generation of interface circuitry and device drivers. This object-
oriented approach is the base for (i) simple component modeling, (ii)
reuse of existing generation methodologies, (iii) simple retargeting,
and (iv) object interaction.

� The specification as well as the synthesis process of problem graph
nodes is independent of a hardware or software implementation of
the nodes.

� To reduce the overhead (FPGA area, and device pins) caused by the
dynamic reconfiguration an optimization methodology has been pro-
posed. It makes use of the fact that some configurations are exclu-
sive.

6.2 Future Perspectives

Based on the gained results, further research may include:

� Extension of the chip models

Currently, the chip models of the object-oriented approach model the
communication features of the corresponding component. It could
be useful to extend these models by further device features such as
on-chip timers, and CPU core. Such an extended model provides a
more realistic view of the devices and could be used for a refined
synthesis process.

� Communication scheduling

During the refinement of the problem graph channel access points
are inserted. These nodes should be included into an overall system
schedule. Furthermore, the additional configurator, dispatcher, and
routing nodes have to be included as well.

6.2. Future Perspectives 153

cr2cr1

bus
�1 �2

c1

x
c2

rPG:

y

cr2cr1

�1 �2

AG :1 AG :2

M :1 M :2

b) Specification

a) Wireless system (proprietary model)

system 1 system 2

Figure 6.1: Wireless system.

� Broken channels

The specification models base on a channel model where the channel
connects a sender and a receiver by using a blocking or non-blocking
access semantic. This model assumes that sent data actually arrive
at a receiver. However, this model is not sufficient for channels that
may break, i.e., where sender or receiver may not reachable. Con-
sider a simple wireless application (see Fig. 6.1a) where the two
systems communicate via a radio transmission. A first specification
approach is given in Fig. 6.1b) where a problem graph is fixed but
the architecture graph as well as the mapping changes dynamically.
Here, the formalism requires a communication semantics where an
issued sending/receiving of data items can be withdrawn to avoid
deadlock situations. A step in this direction could be an access se-
mantic where sending/receiving is on a trial basis.

Appendix A

Paper Summary

The research results of this thesis have been published at several work-
shops, conferences, and journals. In the following, a short overview is
given:

HICSS 98: [ETT98] tackles the problem of automatically mapping
large-grain dataflow programs onto heterogeneous hardware/software ar-
chitectures. The paper introduces simplified problem and architecture mod-
els, outlines the implementation of hardware/software channels using in-
terface circuitry and device drivers, and presents the wrapping of IP (Intel-
lectual Property) cores.

CODES 98: [ET98a] introduces the HASIS (Hardware Software In-
terface Synthesis) tool that bases on an object-oriented component model
for the devices of a target architecture. Using such components, a simple
methodology of communication channel synthesis is proposed.

FPL 98: [ET98b] treats the automatic generation of communication
channels for heterogeneous embedded systems. It describes an efficient
synchronization protocol that is used for generic interface/device driver
templates. Additionally, techniques for reducing the power consumption
for nodes on hardware computing resources are outlined.

FPL 99: [EPT99] presents a methodology for the communication syn-
thesis of reconfigurable systems based on problem and architecture graphs.
A taxonomy for compile- and run-time reconfigurable systems outlines

155

156 Appendix A. Paper Summary

possible communication types. Furthermore, issues of communication be-
tween exclusive FPGA configurations are discussed.

IEE Proceedings - Computers and Digital Techniques: [EP00c]
elaborates the results of [EPT99] in more detail. Furthermore, it presents
CORES (Configurator for Reconfigurable Embedded Systems), a set of
tools that enables the synthesis of interface circuitry for run-time reconfig-
urable systems. Additionally, the problem of reconfiguring non-adjacent
computing resources is discussed.

IEEE Design and Test of Computers: [EZT00] presents the design
and implementation of complex embedded systems using a hybrid evolu-
tionary algorithm. Here, the focus is on finding optimal target architectures
for a given problem graph considering several competing objectives such
as latency, communication overhead, etc.

ENREGLE 2000: [EP00a] extends the framework in [EP00c] and
elaborates the main issues of reconfiguration synthesis. This includes the
introduction of a formalism for the specification of reconfigurable systems
as well as reconfiguration control.

FPL 2000: [EP00b] presents optimization techniques for reconfig-
urable systems based on the results published in [EP00a]. The optimiza-
tions target the reconfiguration structure and its communication require-
ments and base on the sharing of objects such as device pins and problem
graph nodes.

Kluwer Journal of Supercomputing: [EP02] outlines the design and
implementation of run-time reconfigurable systems. Essentially, it de-
scribes the RPS problem specification, the object-oriented component mo-
del, as well as the hierarchical reconfiguration structure.

Curriculum Vitae 157

Curriculum Vitae

Name Michael Herbert Eisenring

Date of birth July 31, 1967 in Wettingen, Switzerland

Education

1974 - 1983 Elementary and secondary school, Dübendorf,
Switzerland

1983 - 1987 Serve an apprenticeship as FEAM (Fernmelde- und
Elektronikapparatemonteur) at Zellweger Uster AG,
Uster, Switzerland

1987 - 1990 Studies of electrical engineering at the University
of Applied Sciences Rapperswil (ITR), Switzerland,
Degree as Electrical Engineer HTL

1990 - 1991 Business management education at IFKS Zurich,
(Institut für Kaderschulung), Business management
certificate IFKS

1992 - 1996 Studies of electrical engineering at ETH Zurich, De-
gree as Electrical Engineer ETH

1996 - 2002 Research assistant and Ph.D. student at the computer
engineering and networks laboratory, department of
electrical engineering, ETH Zurich

Professional Experience

April-Nov., 1987 FEAM at Zellweger Uster AG
1990 - 1992 Employment as hardware/software engineer for

embedded systems at SYSTAG AG, Rüschlikon,
Switzerland

since June, 2000 CEO of B2B Consulting AG, Swiss representative of
Fairchild Semiconductor Inc.

since Nov., 2000 Lectureship for software (Algorithms and Data
Structures) at University of Applied Sciences Win-
terthur (ZHWIN), Computer Science Department

Bibliography

[AGH00] Ken Arnold, James Gosling, and David Holmes. The JAVA program-
ming language. Addison-Wesley, 2000.

[AH95] S. AlKasabi and S. Hariri. A dynamically reconfigurable switch for
high-speed networks. In IEEE 14th Annual International Phoenix
Conference on Computers and Communications, pages 508–514,
March 28–31 1995.

[ALT] ALTERA. http://www.altera.com.

[Apt] Aptix. Aptix: Reconfigurable System Prototyping.
http://www.aptix.com.

[ARM] ARM. AMBA: Advanced Microcontroller Bus Architecture.
http://www.arm.com/sitearchitek/armtech.ns4/html/amba.

[BA90] M. Ben-Ari. Principles of Concurrent and Distributed Program-
ming. Prentice Hall, 1990.

[BCG�97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The Polis Approach. Kluwer Academic Press, June 1997.

[BCO96] G. Borriello, P. Chou, and R. Ortega. Embedded System Co-Design:
Towards Portability and Rapid Integration. Hardware/Software Co-
Design, Kluwer Academic Publishers, pages 234–264, 1996.

[BEK�95] T. Benner, R. Ernst, I. Könenkamp, P. Schüler, and H. Schaub. A
Prototyping System for Verification and Evaluation in Hardware-
Software Cosynthesis. In 6th International Workshop on Rapid Sys-
tem Prototyping, pages 54–59, Chapel Hill, North Carolina, USA,
June 1995.

159

160 BIBLIOGRAPHY

[BG00] J. Becker and M. Glesner. Ip-based application mapping tech-
niques for dynamically reconfigurable hardware architectures. In
Second International Workshop on Engineering of Reconfigurable
Hardware/Software Objects (ENREGLE), pages 221–227, Las Ve-
gas, Nevada, USA, June 26–29 2000.

[BH98] P. Bellows and B. Hutchings. JHDL – An HDL for Reconfigurable
Systems. In IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 175–184, Los Alamitos, CA, April 1998. IEEE Com-
puter Society Press, http://www.jhdl.com.

[BHLM91] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. International
Journal on Computer Simulation, 4:155–182, 1991.

[Bor88] Gaetano Borriello. A New Interface Specification Methodology and
its Application to Transducer Synthesis. PhD thesis, Computer Sci-
ence Division (EECS), University of California Berkely, California
94720, 1988. Report No. UCB/CSD 88/430.

[Bor92] G. Borriello. Formalized Timing Diagrams. In European Conference
on Design Automation, pages 372–377, Brussels, Belgium, March
16–19 1992.

[BP95] D. Buell and K. Pocek. Custom Computing Machines: An Introduc-
tion. Journal of Supercomputing, 9(3):219–229, 1995.

[BR95] K. Buchenrieder and J. Rozenblit. Codesign: Computer-Aided Soft-
ware/Hardware Engineering. IEEE Press, 1995.

[BTA93] J. Babb, R. Tessier, and A. Agarwal. Virtual wires: Overcoming
pin limitations in fpga-based logic emulators. In IEEE Workshop on
FPGA-based Custom Computing Machines, pages 142–151, Napa,
CA, April 1993.

[BTD�97] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agar-
wal. Logic emulation with virtual wires. IEEE Transactions
on Computer-Aided Design of Integrated Circuit and Systems,
16(6):609–626, June 1997.

[BTT98] T. Blickle, J. Teich, and L. Thiele. System-level synthesis using
evolutionary algorithms. Design Automation for Embedded Systems,
Kluwer Academic Publishers, 3(8):23–58, January 1998.

BIBLIOGRAPHY 161

[Buc93] J. T. Buck. Scheduling dynamic dataflow graphs with bounded mem-
ory using the Token Flow Model. Technical Report UCB/ERL 93/69,
Ph.D dissertation, Department of EECS, UC Berkeley, Berkeley, CA
94720, U.S.A., 1993.

[BWE�93] G. Bilsen, P. Wauters, M. Engels, R. Lauwereins, and J. Peperstraete.
Development of a static load balancing tool. In Proceedings of the
fourth Workshop on Parallel and Distributed Processing, pages 179–
194, Sofia, Bulgaria, 1993.

[CH71] F. Commoner and A. Holt. Marked directed graphs. Journal of Com-
puter and System Sciences, 5:511–523, 1971.

[CH00] K. Compton and S. Hauck. Reconfigurable Computing: A Survey of
Systems and Software. Submitted to ACM Computing Surveys, 2000.

[Cie] Cierto. Cierto Virtual Component Co-Design. CADENCE,
http://www.cadence.com/technology/hwsw/ciertovcc/.

[COB92] Pai Chou, R. Ortega, and G. Borriello. Synthesis of the Hard-
ware/Software Interface in Microcontroller-Based Systems. In
IEEE/ACM International Conference on Computer-Aided Design,,
pages 488–495, November 1992.

[COB95a] P. Chou, R. Ortega, and G. Borriello. Interface Co-Synthesis Tech-
niques for Embedded Systems. In IEEE/ACM International Con-
ference on Computer-Aided Design, pages 280–287, San Jose, CA,
November 1995.

[COB95b] P. Chou, R. Ortega, and G. Borriello. The Chinook Hard-
ware/Software Co-Synthesis System. In 8th International Sympo-
sium on System Synthesis, pages 22–27, September 13–15 1995.

[COH�99] P. Chou, R. Ortega, K. Hines, K. Partridge, and G. Borriello. ipChi-
nook: An Integrated IP-based Design Framework for Distributed
Embedded Systems. In 36th Design Automation Conference, pages
44–49, New Orleans, LA, June 21–25 1999.

[COS] COSSAP. COSSAP System Level Design. SYNOPSYS,
http://www.synopsys.com/products/dsp/dsp.html.

[CV99] K. Chatha and R. Vemuri. Hardware-Software Codesign for Dynam-
ically Reconfigurable Architectures. In 9th International Workshop
on Field-Programmable Logic and Applications, FPL’99, Lecture

162 BIBLIOGRAPHY

Notes in Computer Science, 1673, pages 175–184, Glasgow, UK,
August/September 1999.

[DIJ95] J. Daveau, T. Ismail, and A. Jerraya. Synthesis of System-Level
Communication by an Allocation-Based Approach. In 8th Interna-
tional Symposium on System Synthesis, pages 150–155, September
13–15 1995.

[DJ98] R. Dick and N. Jha. CORDS: Hardware-Software Co-Synthesis
of Reconfigurable Real-Time Distributed Embedded Systems. In
IEEE/ACM International Conference on Computer-Aided Design,
pages 62–68, November 8–12 1998.

[DMBIJ97] J. Daveau, G. Marchioro, T. Ben-Ismail, and A. Jerraya. Protocol Se-
lection and Interface Generation for HW-SW Codesign. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 5(1):136–
144, March 1997.

[DZ83] J. Day and H. Zimmermann. The OSI Reference Model. Proceedings
of the IEEE, 71(12):1334–1340, 1983.

[EBLP94] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete. Cyclo-
Static Data Flow: Model and implementation. In Proceedings 28th
Asilomar Conference on Signals, Systems, and Computers, pages
503–507, Pacific Grove, CA, 1994.

[EHB�96] R. Ernst, J. Henkel, T. Benner, W. Ye, U. Holtmann, and D. Her-
rmann. The COSYMA environment for hardware/software cosyn-
thesis of small embedded systems. Microprocessors and Microsys-
tems, 20(3):159–166, May 1996.

[Eis96] M. Eisenring. Hardware/Software Codesign in a Microcontroller and
FPGA based System. Masters thesis 1996, ETH Zurich, Computer
Engineering Lab, 1996.

[Eis99] M. Eisenring. CCSL, Communication Channel Synthesis Language.
TIK Report No. 80, Computer Engineering and Networks Labora-
tory, ETH Zurich, Switzerland, 1999.

[ELSS94] K. Etschberger, A. Lorinser, C. Schlegel, and T. Suters. CAN, Con-
troller Ara Network. Carl Hanser Verlag, 1994.

[Eon99] Eonic. Virtuoso, Real-Time Software Development Tools for Em-
bedded Systems. http://www.eonic.com/, 1999.

BIBLIOGRAPHY 163

[EP00a] M. Eisenring and M. Platzner. An Implementation Framework for
Run-Time Reconfigurable Systems. In The Second International
Workshop on Engineering of Reconfigurable Hardware/Software
Objects, ENREGLE 2000, pages 151–157, Las Vegas, Nevada, USA,
June 26–29 2000.

[EP00b] M. Eisenring and M. Platzner. Optimization of Run-Time Reconfig-
urable Embedded Systems. In 10th International Workshop on Field
Programmable Logic and Applications, FPL 2000, pages 565–574,
Villach, Austria, August 28–30 2000.

[EP00c] M. Eisenring and M. Platzner. Synthesis of Interfaces and Commu-
nication in Reconfigurable Embedded Systems. IEE Proceedings –
Computers and Digital Techniques, 147(3):159–165, May 2000.

[EP02] M. Eisenring and M. Platzner. A Framework for Run-time Reconfig-
urable Systems. The Journal of Supercomputing, Kluwer Academic
Publishers, 21(2):145–159, February 2002.

[EPT99] M. Eisenring, M. Platzner, and L. Thiele. Communication Synthesis
for Reconfigurable Embedded Systems. In 9th International Work-
shop on Field-Programmable Logic and Applications, pages 205–
214, Glasgow, UK, August/September 1999.

[Ern97a] R. Ernst. Hardware/Software Co-Design of Embedded Systems. In
Asia Pacific Conference on Computer Hardware Description Lan-
guages (APCHDL), Hsin-Chu, Taiwan, Aug. 18–20 1997.

[Ern97b] R. Ernst. Hardware/software co-design of signal processing systems.
In IEEE workshop on Signal Processing Systems (SIPS), Leicester,
UK, Nov. 3–5 1997.

[Ern98] R. Ernst. Embedded System Architectures. In System-Level Synthe-
sis, volume 357 of Applied Sciences, pages 1–43. Il Ciocco, Nato
Advanced Study Institute on System Synthesis, August 1998.

[ET98a] M. Eisenring and J. Teich. Domain-Specific Interface Generation
from Dataflow Specifications. In Sixth International Workshop on
Hardware/Software Codesign, pages 43–47, Seattle, WA, March
1998.

[ET98b] M. Eisenring and J. Teich. Interfacing Hardware and Software. In
8th International Workshop on Field-Programmable Logic and Ap-
plications, FPL’98, Lecture Notes in Computer Science, 1482, pages
520–524, Tallinn, Estonia, August 31–September 3 1998.

164 BIBLIOGRAPHY

[ETT98] M. Eisenring, J. Teich, and L. Thiele. Rapid Prototyping of Dataflow
Programs on Hardware/Software Architectures. In Proceedings of
HICSS-31, Proceedings of the Hawaii International Conference on
Syst. Sci., volume VII, pages 187–196, Kona, Hawaii, January 1998.

[Exc] Excalibur Backgrounder, White Paper.
http://www.altera.com/html/products/excalibursplash.html.

[EZT99] M. Eisenring, E. Zitzler, and L. Thiele. CoFrame: A Modular Co-
Design Framework for Heterogeneous Distributed Systems. TIK Re-
port No. 81, Computer Engineering and Networks Laboratory, ETH
Zurich, Switzerland, 1999.

[EZT00] M. Eisenring, E. Zitzler, and L. Thiele. Conflicting Criteria in
Embedded System Design. IEEE Design and Test of Computers,
17(2):51–59, April–June 2000.

[FGSS98] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power Esti-
mation of Embedded Systems: A Hardware/Software Codesign Ap-
proach. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 6(2):266–275, June 1998.

[FSS99] W. Fornaciari, D. Sciuto, and C. Silvano. Power Estimation for
Architectural Exploration of HW/SW Communication on System-
Level Buses. In Seventh International Workshop on Hard-
ware/Software Codesign, pages 152–156, Rome, Italy, May 3–5
1999.

[FSV99] A. Ferrari and A. Sangiovanni-Vincentelli. System Design: Tradi-
tional Concepts and New Paradigms. In IEEE International Con-
ference on Computer Design, pages 2–12, Austin, Texas, October
10–13 1999.

[GDZ99] D. Gajski, R. Dömer, and J. Zhu. IP-Centric Methodology and Spec-
ification Language. Distributed and Parallel Embedded Systems,
Edited by Franz J. Rammig, Kluwer Academic Press, Boston, pages
3–21, 1999.

[GG95] S. Guccione and M. Gonzalez. Classification and Performance
of Reconfigurable Architectures. In Field-Programmable Logic
and Applications, pages 439–448. Springer-Verlag, Berlin, Au-
gust/September 1995. 5th International Workshop on Field-
Programmable Logic and Applications, FPL 1995. Lecture Notes in
Computer Science 975.

BIBLIOGRAPHY 165

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

[GL99] S. Guccione and D. Levi. Design Advantages of Run-Time Recon-
figuration. In Reconfigurable Technology: FPGAs for Computing
and Applications, Proceedings SPIE 3844, pages 87–92, Belling-
ham, WA, September 1999. SPIE – The International Society for
Optical Engineering.

[GM93] R. Gupta and G. De Micheli. Hardware-Software Co-Synthesis of
Digital Systems. IEEE Design and Test of Computers, 10(3):29–41,
September 1993.

[Gon97] J. Gong. Model Refinement for Hardware-Software Codesign. ACM
Transactions on Design Automation of Electronic Systems, 2(1):22–
41, January 1997.

[Gra] Mentor Graphics. http://www.mentor.com.

[GV00] T. Givargis and F. Vahid. Parameterized System Design. In Eighth
International Workshop on Hardware/Software Codesign, pages 98–
102, San Diego, California, May 3–5 2000.

[GVNG94] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and
Design of Embedded Systems. Prentice Hall, 1994.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8:231–274, 1987.

[HB97] S. Hauck and G. Borriello. Pin Assignment for Multi-FPGA Sys-
tems. IEEE Transactions on Computer-Aided Design of Integrated
Circuit and Systems, 16(9):956–964, September 1997.

[HBK96] R. Hartenstein, J. Becker, and R. Kress. Custom computing ma-
chines versus hardware/software co-design: from a globalized point
of view. In Proceedings 6th International Workshop on Field Pro-
grammable Logic and Applications, FPL’96. Lecture Notes in Com-
puter Science, Springer Press, Darmstadt, Germany, September
1996.

[HBKG98] T. Hollstein, J. Becker, A. Kirschbaum, and M. Glesner. HiPART: A
New Hierarchical Semi-Interactive HW/SW Partitioning Approach
with Fast Debugging for Real-Time Embedded Systems. In Sixth
International Workshop on Hardware/Software Codesign, pages 29–
33, Seattle, WA, March 1998.

166 BIBLIOGRAPHY

[HBS98] J. Haenni, J. Beuchat, and E. Sanchez. RENCO: A Reconfigurable
Network Computer. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 288–289, Napa Valley, California, April
15–17 1998.

[HFHK97] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimaera Reconfig-
urable Functional Unit. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 87–96, Napa Valley, California, April
1997.

[HLS98] S. Hauck, Z. Li, and E. Schwabe. Configuration Compression for the
XILINX XC6200 FPGA. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 138–146, Napa Valley, California, April
15–17 1998.

[HSS00] Marco Hauri, Rolf Sigg, and Thomas Singer. Communication and re-
configuration on heterogeneous computing platforms. Diploma the-
sis, ETH Zurich, Computer Engineering and Networks Laboratory,
February 2000. Supervisor: M. Eisenring.

[HW95] B. Hutchings and M. Wirthlin. Implementation Approaches for
Reconfigurable Logic Applications. In International Workshop on
Field-Programmable Logic and Applications, pages 419–428, 1995.

[Idt] Integrated Device Technology Idt. http://www.idt.com.

[IEE87] IEEE. IEEE Std 1014–1987, IEEE Standard for a Versatile Back-
plane Bus: VMEbus. IEEE, 1987.

[Inc] Chameleon Systems Inc. Reconfigurable Communications Platform.
http://www.chameleonsystems.com/.

[Ins] Texas Instruments. Texas Instruments. http://www.ti.com.

[Int] Intel. http://www.intel.com.

[IS95] C. Iseli and E. Sanchez. Spyder: A SURE (SUperscalar and RE-
configurable) processor. Journal of Supercomputing, 9(3):231–252,
1995.

[Jan00] J. Janneck. Syntax and Semantics of Graphs – An approach to the
specification of visual notations for discrete event systems. Phd the-
sis, ETH Zurich, Computer Engineering and Networks Laboratory,
July 2000.

BIBLIOGRAPHY 167

[JO95] A. Jerraya and K. O’Brien. Solar: An Intermediate Format for
System-Level Modeling and Synthesis, chapter 7, pages 145–175.
IEEE Press, Codesign: Computer-Aided Software/Hardware Engi-
neering edition, 1995. K. Buchenrieder and J. Rozenblit (eds).

[Kah74] G. Kahn. The semantics of a simple language for parallel program-
ming. In Proceedings of the IFIP Congress 74, pages 471–475,
North Holland, 1974.

[Kau00] T. Kaufmann. Application on a Multi-DSP/Multi-FPGA Platform.
Diploma thesis, Computer Engineering and Networks Laboratory,
2000. Supervisor: M. Eisenring.

[Kea00] T. Kean. It’s FPL, Jim–But not as We Know It! Opportunities for
the New Commercial Architectures. In 10th International Workshop
on Field Programmable Logic and Applications, FPL 2000, pages
575–584, Villach, Austria, August 28–30 2000.

[KG97] A. Kirschbaum and M. Glesner. Rapid Prototyping of Communica-
tion Architectures. In 8th IEEE International Workshop on Rapid
System Prototyping, pages 136–141, Chapel Hill, North Carolina,
USA, June 24–26 1997.

[KKR94] G. Koch, U. Kebschul, and W. Rosenstiel. A prototyping environ-
ment for hardware/software codesign in the COBRA project. In
Proceedings of Codes/CASHE’94 – the 3rd International Workshop
on Hardware/Software Codesign, pages 10–16, Grenoble, France,
September 1994.

[KM98] P. Knudsen and J. Madsen. Communication Estimation for Hard-
ware/Software Codesign. In Proceedings of the Sixth International
Workshop on Hardware/Software Codesign, CODES/CASHE’98,
Seattle, Washington, pages 55–59, March 15–18 1998.

[KV98] M. Kaul and R. Vemuri. Optimal temporal partitioning and synthesis
for reconfigurable architectures. In Proceedings of Design, Automa-
tion and Test in Europe, pages 389–396, February 23–26 1998.

[LCD�00] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stock-
wood. Hardware-Software Co-Design of Embedded Reconfigurable
Architectures. In 37th Design Automation Conference, pages 507–
512, LA, USA, June 5–9 2000.

168 BIBLIOGRAPHY

[LM87a] E. Lee and D. Messerschmitt. Static scheduling of synchronous
dataflow programs for digital signal processing. IEEE Transactions
on Computers, C-36(1):24–35, 1987.

[LM87b] E. Lee and D. Messerschmitt. Synchronous dataflow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[LM95] E. Lemoine and D. Merceron. Run Time Reconfiguration of FPGA
for Scanning Genomic DataBases. In IEEE Symposium on FPGAs
for Custom Computing Machines, pages 90–98, 1995.

[LNTT01] J. Lockwood, N. Naufel, J. Turner, and D. Taylor. Reprogrammable
Network Packet Processing on the Field Programmable Port Ex-
tender (FPX). In ACM International Symposium on Field Pro-
grammable Gate Arrays, pages 87–93, Monterey, CA USA, Febru-
ary 11–13 2001.

[LRV�96] B. Lin, K. Rompaey, S. Vercauteren, D. Verkest, I. Bolsens, and
H. De Man. Designing Single Chip Systems. In 2nd International
Conference on ASIC, pages 6–11, October 1996.

[LSS99] S. Ludwig, R. Slous, and S. Singh. Implementing PhotoShop
Filters in Vertex. In 9th International Workshop on Field-
Programmable Logic and Applications, pages 231–242, Glasgow,
UK, August/September 1999.

[LV94] B. Lin and S. Vercauteren. Synthesis of concurrent system inter-
face modules with automatic protocol conversion generation. In
IEEE/ACM international conference on Computer-aided design,
pages 101–108, November 6–10 1994.

[Mar99] P. Marchal. Field-programmable gate arrays. Communications of the
ACM, 42(4):57–59, 1999.

[MBL�96] H. De Man, I. Bolsens, B. Lin, K. Van Rompaey, S. Vercauteren,
and D. Verkest. Hardware/Software Co-design: Co-Design of DSP
Systems, pages 75–104, volume 310. Kluwer Academic Publishers,
NATO Advanced Study Institute (ASI) Series E, 1996.

[Mic] Sun MicroSystems. JavaBeans.
http://java.sun.com/products/javabeans/.

[Mic96] G. De Micheli. Hardware/Software Co-Design: Application Do-
mains and Design Technologies. Hardware/Software Co-Design,
Kluwer Academic Publishers, pages 1–28, 1996.

BIBLIOGRAPHY 169

[MMF98] O. Mencer, M. Morf, and M. Flynn. PAM-Blox: High performance
FPGA design for adaptive computing. In IEEE Symposium on FP-
GAs for Custom Computing Machines, pages 167–174, Los Alami-
tos, CA, April 1998. IEEE Computer Society Press.

[Mot] Motorola. Motorola Semiconductor Products.
http://www.mot-sps.com/products/index.html.

[Mot94] Motorola. MC68340, Integrated processor with DMA, user’s man-
ual, 1994.

[NTE99] Martin Naedele, L. Thiele, and M. Eisenring. Characterizing Vari-
able Task Releases and Processor Capacities. In Proceedings 14th
IFAC World Congress, Beijing, China, July 5–9 1999.

[OB98] R. Ortega and G. Borriello. Communication Synthesis for Dis-
tributed Embedded Systems. In IEEE/ACM International Confer-
ence on Computer-Aided Design, pages 437–444, San Jose, CA,
November 1998.

[OJ97] M. O’Nils and A. Jantsch. Communication in Hardware/Software
Embedded Systems – A Taxonomy and Problem Formulation. In
15th NORCHIP Seminar, Copenhagen, Denmark, pages 67–74,
November 1997.

[OLB98] R. Ortega, L. Lavagno, and G. Borriello. Models and Methods for
HW/SW Intellectual Property Interfacing. In NATO Advanced Study
Institute on System-level Synthesis, 1998.

[Pac97] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann
Publishers, 1997.

[Pat00] Cameron Patterson. High Performance DES Encryption in Virtex
FPGAs using JBits. In To appear in IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2000.

[PB98] K. Purna and D. Bhatia. Emulating large designs on Small Recon-
figurable Hardware. In 9th IEEE International Workshop on Rapid
System Prototyping, pages 58–63, Leuven, Belgium, June 3–5 1998.

[PB99] K. Purna and D. Bhatia. Temporal Partitioning and Scheduling
Dataflow Graphs for Reconfigurable Computers. IEEE Transactions
on Computers, 48(6):556–564, June 1999.

170 BIBLIOGRAPHY

[PCI95] PCI Special Interest Group, Portland, Orlando. PCI Local Bus Spec-
ification, Revision 2.1, June 1 1995.

[Phi] Philips. Philips Semiconductor.
http://www.semiconductors.com/catalog/.

[PJ99] M. Page-Jones. Fundamentals of Object-oriented Design in UML.
Addison-Wesley, 1999.

[PL91] I. Page and W. Luk. Compiling Occam into FPGAs. In W. Moore and
W. Luk, editors, FPGAs, pages 271–283. Abingdon EE&CS Books,
England, 1991.

[Pla00] M. Platzner. Reconfigurable Accelerators for Combinatorial Prob-
lems. IEEE Computer, 33(4):58–60, April 2000.

[PRSV98] R. Passerone, J. Rowson, and A. Sangiovanni-Vincentelli. Automatic
Synthesis of Interfaces between Incompatible Protocols. In Proceed-
ings of the 35th annual conference on Design automation conference,
pages 15–19. San Francisco, CA USA, June 1998.

[Pto] Ptolemy. Heterogeneous Modeling and Design.
http://ptolemy.eecs.berkeley.edu.

[Qui] Quickturn. Quickturn: In Circuit Emulation.
http://www.quickturn.com/tech/emulation.htm.

[Rab00] J. Rabaey. Silicon Platforms for the Next Generation Wireless Sys-
tems – What Role Does Reconfigurable Hardware Play? In 10th
International Workshop on Field Programmable Logic and Appli-
cations, FPL 2000, pages 277–285, Villach, Austria, August 28–30
2000.

[Ris98] Linda Rising. The Patterns Handbook: Techniques, Strategies, and
Applications. Cambridge University Press, 1998.

[RLG�98] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt,
J. Arnold, and M. Gokhale. The NAPA Adaptive Processing Ar-
chitecture. In IEEE Symposium on FPGAs for Custom Computing
Machines, pages 28–37, Napa Valley, California, April 15–17 1998.

[Röw00] T. Röwer. Programmable Intellectual Property Modules for System
Design by Reuse. PhD thesis, ETH Zurich, Switzerland, Series In
Microelectronics, Volume 105, Hartung-Gorre, 2000.

BIBLIOGRAPHY 171

[RST�00] T. Röwer, M. Stadler, M. Thalmann, H. Kaeslin, N. Felber, and
W. Fichtner. A New Paradigm for Very Flexible SONET/SDH
IP-Modules. In Proceedings of the IEEE Custom Integrated Cir-
cuits Conference 2000, pages 533–536, Orlando, Florida, USA, May
2000.

[RSV97] J. Rowson and A. Sangiovanni-Vincentelli. Interface-based Design.
In 34th Design Automation Conference, pages 178–183, June 9–13
1997.

[SB94] S. Singh and P. Bellec. Virtual hardware for graphics applications
using FPGAs. In IEEE Workshop on FPGAs for Custom Computing
Machines (FCCM), pages 49–58, April 10–13 1994.

[SB95] M. Srivastava and R. Brodersen. SIERA: A unified frame-
work for rapid-prototyping of system-level hardware and software.
IEEE Transactions on Computer-Aided Design, 14(6):676–693, June
1995.

[Sha] Mark Shand. PCI Pamette V1. COMPAQ/DEC,
http://www.research.digital.com/SRC/pamette/.

[SJV95] B. Schoner, C. Jones, and J. Villasenor. Issues in Wireless Video
Coding using Run-Time-reconfigurable FPGAs. In IEEE Symposium
on FPGAs for Custom Computing Machines, pages 85–89, 1995.

[SSH�99] E. Sanchez, M. Sipper, J. Haenni, J. Beuchat, A. Stauffer, and
A. Perez-Uribe. Static and Dynamic Configurable Systems. IEEE
Transactions on Computers, 48(6):556–564, June 1999.

[Str00] Karsten Strehl. Symbolic Methods Applied to Formal Verification
and Synthesizing Embedded Systems Design. PhD thesis, Swiss Fed-
eral Institute of Technology (ETH) Zurich, February 17 2000. Diss.
ETH No. 13572. Supervised by L. Thiele and R. Ernst. Published as:
TIK Publications Series No. 36, Shaker Verlag, 2000.

[Sun] Sundance. PCI based Products.
http://www.sundance.com/html/pci-pmc modules.htm.

[SV95] Ramesh Sivakolundu and Sunder Velamuri. MICROWIRE/PLUS Se-
rial Interface for COP800 Family, AN-579. National Semiconductor
Corp., Santa Clara, CA, USA, http://www.nsc.com, November 1995.

172 BIBLIOGRAPHY

[SV98] S. Scalera and J. Vazquez. The design and implementation of a con-
text switching FPGA. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 78–85, Napa Valley, California, April
15–17 1998.

[SYN] SYNOPSYS. http://www.synopsys.com.

[Tan89] A. Tannenbaum. Computer Networks. Prentice Hall, 1989.

[TBT97] J. Teich, T. Blickle, and L. Thiele. An Evolutionary Approach to
System-Level Synthesis. In Proceedings of Codes/CASHE’97 – the
5th International Workshop on Hardware/Software Codesign, pages
167–171, Braunschweig, Germany, March 1997.

[Tch98] Seang Tchang. Graphical User Interface in JAVA for Embedded Sys-
tems. Master’s thesis, ETH Zurich, 1998. Supervisor: M. Eisenring.

[TCJW97] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-
multiplexed fpga. In IEEE Symposium on FPGAs for Custom Com-
puting Machines, pages 22–28, Napa Valley, California, April 16–18
1997.

[Tob99] C. Tobescu. Entwurfsautomatisierung für Multi-FPGA Board.
Diploma thesis, Computer Engineering and Networks Laboratory,
1999. Supervisor: M. Eisenring.

[TOJH96] K. Tammemäe, M. O’Nils, A. Jantsch, and A. Hemani. Akka: A
tool-kit for cosynthesis and prototyping. In IEE Digest No.96/036 of
Colloquium on Hardware-software Cosynthesis for Reconfigurable
Systems, pages 8/1–8/8, February 22 1996.

[Tri] Triscend. Configurable System-on-Chip Technology.
http://www.triscend.com/products/Index.html.

[Tsc99] P. Tscharner. Report Generator für Sourcecode. Term thesis, Com-
puter Engineering and Networks Laboratory, 1999. Supervisor: M.
Eisenring.

[TSZ�99] L. Thiele, Karsten Strehl, Dirk Ziegenbein, Rolf Ernst, and Jürgen
Teich. FunState – an internal design representation forcodesign.
In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD-99), pages 558–565, San Jose,
California, November 7–11 1999.

BIBLIOGRAPHY 173

[VG98] F. Vahid and T. Givargis. Incorporating Cores into System-Level
Specification. In 11th International Symposium on System Synthesis
ISSS’98, Hsinchu, Taiwan, pages 43–48, December 1998.

[VLM96a] S. Vercauteren, B. Lin, and H. De Man. Constructing Application-
Specific Heterogeneous Embedded Architectures from Custom
HW/SW Applications. In 33rd Design Automation Conference,
pages 521–526, June 1996.

[VLM96b] S. Vercauteren, B. Lin, and H. De Man. Embedded Architecture Co-
Synthesis and System Integration. In Fourth International Workshop
on Hardware/Software Co-Design, pages 2–9, March 1996.

[VRBM96] D. Verkest, K. Van Rompaey, I. Bolsens, and H. De Man. CoWare –
A Design Environment for Heterogeneous Hardware/Software Sys-
tems. Design Automation for Embedded Systems, Kluwer Academic
Publishers, 1:357–386, October 1996.

[VSI] VSI (Virtual Socket Interface) Alliance. http://www.vsi.org/.

[VT97] F. Vahid and L. Tauro. An Object-Oriented Communication Library
for Hardware-Software CoDesign. In 5th International Workshop
on Hardware/Software Codesign, pages 81–86, Braunschweig, Ger-
many, March 1997.

[WC96] R. Wittig and P. Chow. OneChip: An FPGA Processor with Recon-
figurable Logic. In IEEE Symposium on FPGAs for Custom Comput-
ing Machines, pages 126–135, Napa Valley, California, April 1996.

[Web00] Wolf-Dietrich Weber. Enabling Reuse via an IP Core-centric Com-
munication Protocol: Open Core Protocol. In IP2000, Santa Clara,
CA, USA, March 2000.

[WH96] M. Wirthlin and B. Hutchings. Sequencing Run-Time Reconfigured
Hardware with Software. In Proceedings of the 1996 ACM fourth
international symposium on Field-programmable gate arrays, pages
122–128, Monterey, CA, USA, February 11–13 1996.

[Wol97] W. Wolf. An Architectural Co-Synthesis Algorithm for Distributed,
Embedded Computing Systems. IEEE Transactions on VLSI,
5(2):218–229, June 1997.

[XILa] XILINX. http://www.xilinx.com.

174 BIBLIOGRAPHY

[XILb] XILINX. Press Release: New Generation of Integrated Circuits.
http://www.xilinx.com/prs rls/ibmpartner.htm.

[YW95] T. Yen and W. Wolf. Communication Synthesis for Distributed Em-
bedded Systems. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD-95), pages 288–
294, November 5–9 1995.

[Zep95] P. Zepter. Programmgestützter Entwurf integrierter Schaltungen
für die digitale Nachrichtenübertragung aus Datenflussbeschreibun-
gen. PhD thesis, Lehrstuhl für Integrierte Systeme der Signalverar-
beitung, TH Aachen, Germany, 1995.

[ZG97] Y. Zorian and R. Gupta. Introduction to core-based design. IEEE
Design and Test of Computers, 14(4):15–25, October 1997.

[ZT99] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, Novem-
ber 1999.

