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Abstract

In concatenative speech synthesis, corpus generation so far has required
tedious manual or semi-automatic work in the post-processing step and,
most notably, in the selection of units from speech recordings. The rea-
son for that is the lack of a quality measure to decide which phone
segments are appropriate to be selected. This study presents such a
measure that considers the following aspects of phone quality: spec-
trum, phase, fundamental frequency, duration, voicing, intensity and
plosive quality. This quality measure is designed to favour phone in-
stances with properties that are in any of these aspects desirable for
concatenation-based speech synthesis.

To describe these aspects quantitatively with features, several novel
signal analysis methods were developed, in particular to describe fun-
damental frequency, pitch marking and voicing. To weight and com-
bine these features, two approaches are discussed. First, as a heuris-
tic method a linear sum of penalty functions is proposed. This simple
method is effective and practicable as it does not require training data
and gives reproducible and transparent results. As a second method,
a machine learning approach is presented. This approach was trained
with few and unbalanced training data, that partly exhibited undefined
feature values. To allow such a training, we devised a neural network
variant based on back-propagation and tuned it to the training data
with an extensive number of experiments on synthetic data. This ma-
chine learning approach is free from any heuristic penalty functions
and we believe that the non-linear combination of features reflects the
perceptual impression better than a linear sum.
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The phone quality measure based on the machine learning approach
was applied to create four diphone corpora from four different voices in
a fully automatic way. The intelligibility of these corpora was evaluated
with rhyme tests, one of the corpora was additionally evaluated for
segmental quality. The results of these tests confirm that the phone
quality measure can be applied to select a high-quality diphone set from
a speech database. As a consequence of this study, tedious manual work
in the creation of such diphone sets can now largely be eliminated.




Kurzfassung

Um einen Korpus fiir Konkatenationssynthese zu erstellen, mussten die
Grundelemente bisher mithsam manuell oder halbautomatisch aus dem
aufgenommenen Sprachmaterial ausgewéhlt sowie die Signale nachbe-
arbeitet werden. Der Grund dafiir ist, dass bisher kein Giitemass exi-
stiert, das entscheidet, ob ein Laut fiir einen Korpus geeignet ist oder
nicht. Die vorliegende Arbeit stellt ein neues, geeignetes Giitemass vor,
das die folgenden Aspekte von Lautqualitiat beriicksichtigt: Spektrum,
Phase, Grundfrequenz, Dauer, Leistung, Stimmbhaftigkeit und Plosi-
vqualitdt. Das Giitemass bevorzugt jene Laute, die in all diesen Aspek-
ten die fiir Konkatenationssynthese erwiinschten Eigenschaften aufwei-
sen.

Um diese Aspekte quantitativ zu beschreiben, werden mehrere neue
Methoden zur Signalanalyse vorgestellt, mit dem Fokus auf der Bestim-
mung von Grundfrequenz, Zeitpunkt der Glottisschlage und Art der
Stimmhaftigkeit. Zur Gewichtung und Kombination der in der Signal-
analyse gewonnen Merkmale werden zwei Ansétze erortert: Als erstes
wird ein heuristisches Verfahren gezeigt, das den Ausgang von Gewich-
tungsfunktionen aufsummiert. Dieses Verfahren ist effektiv und prak-
tikabel, da es keine Trainingsdaten benotigt und reproduzierbare und
transparente Ergebnisse liefert. Als zweites Verfahren wird ein statisti-
sches Lernverfahren vorgestellt. Dieses Verfahren wurde mit wenigen
und noch dazu ungleich verteilten Trainingsdaten, die teilweise unde-
finierte Werte aufwiesen, trainiert. Um diese Training zu ermoglichen,
wurde ein neuronales Netz auf der Basis von Backpropagation abge-
wandelt. Die optimale Konfiguration und Parametrisierung dieses neu-
ronalen Netzes wurden mit umfangreichen Versuchen anhand von syn-

Contents 13

thetischen Daten bestimmt. Dieses statistische Lernverfahren benutzt
keinerlei heuristisch motivierte Gewichtungsfunktionen und gibt, nach
unserer Meinung, durch die nicht-lineare Kombination von Merkmalen
den kombinierten Wahrnehmungseindruck besser wieder als eine einfa-
che Summe.

Das auf dem statistischen Verfahren basierende Giitemass wur-
de benutzt, um vier verschiedene Diphonkorpora aus dem Sprach-
material vier verschiedener Stimmen automatisch zu erstellen. Die
Verstandlichkeit dieser Korpora wurde mit Hilfe von Reimtests ge-
messen, fiir einen der Korpora wurde zusétzlich die segmentale Qua-
litdt bewertet. Die Auswertungen bestéitigen, dass das vorgeschlagene
Giitemass verwendet werden kann, um einen qualitativ hochwertigen
Diphonkorpus aus aufgenommenem Sprachmaterial automatisch zu er-
zeugen. Dank dieser Arbeit ist es nun moglich, bei der Erstellung eines
solchen Korpus auf miihevolle Handarbeit weitgehend zu verzichten.




Chapter 1

Introduction

1.1 Concatenative Speech Synthesis

Voice user interfaces have increasingly become part of new products,
most noticeable in mobile and automotive industry, where we are on
a cusp of a paradigm change in human-machine interaction. In many
situations, voice output is making communication with the machine
easier and less demanding for humans, especially in situations where
either hands-free and eyes-free communication is necessary, or devices
are too small for convenient direct manipulation. The former is the case
in the cockpit of a car while driving, when traffic directions, messages
or news articles are read to the driver while he can stay focused on
the surrounding traffic. The latter is the case for pocket-size devices,
such as PDAs or mobile phones, where direct manipulation interfaces
like touchscreens or keyboards are demanding to use. A novel field,
where speech synthesis applications are increasingly employed, is the
speech synthesis of ebooks. In a similar way, eyes-free listening is often
convenient if not necessary, and, in addition, speech synthesis is opening
the way for illiterates and visually impaired persons to enjoy texts they
so far did not have access to.

As a result of this considerable increase in speech synthesis applica-
tions, there is a growing demand for higher quality and a larger choice
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of synthetic voices. However, voice production for any kind of text-to-
speech (TTS) system is still very time-consuming and dependent on
individual know-how. Today, most TTS technology in industry that
creates high quality speech is based on concatenative synthesis.

Concatenative synthesis is based on the concept of generating arbi-
trary speech signals with the concatenation of appropriate signal seg-
ments, that are taken from natural human speech. This approach has
the advantage that on the segmental level, which is on the level of signal
segments, only natural signals are employed. These segments, which are
used in the concatenation step, are assembled in a collection of speech
signals, a so-called corpus. The basic elements of such a corpus are se-
lected from a generally large number of speech recordings, spoken by
a single voice talent. This compilation of speech recordings is called a
speech database. In order to generate highly natural sounding speech,
the segments that constitute a corpus have to be chosen in an appro-
priate way from such a speech database. Phone segments, for example,
cannot be used, as their concatenation would produce abrupt changes
in the speech signal, which would be perceived as highly unnatural.
To avoid any abrupt changes, segments have to be concatenated where
they are most stationary: in the centre of the phone. Accordingly, the
segments must contain all possible phone transitions. Typically, poly-
phones are used, which are segments which start in the middle of a
phone, may stretch over several phones and end in the middle of a
phone. A special polyphone case is the diphone, which ranges from the
middle of one phone to the middle of the next.

Two strategies are commonly used to generate speech corpora:

e For compact corpora, the basic elements are contained only once
and are designed to be as short as possible. This approach is called
diphone synthesis. In a speech signal that is supposed to sound
natural, phones must adopt different fundamental frequency (Fp),
duration and intensity, depending on their word and sentence
position. As every diphone is only present exactly once in the
corpus, the diphones must be prosodically modified before they
are concatenated. This modification, however, may impair speech
quality. The most common approach for duration and frequency
modification is TD-PSOLA, which stands for time domain pitch
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synchronous overlap add method (see [CM89]).

e To avoid modification of the segments before concatenation, a cor-
pus with more varied prosodic and spectral characteristics can be
aimed for. To this end, a large single-speaker corpus is compiled.
From this corpus polyphone segments, called units, are selected.
This approach is known as unit selection. The units to be selected
should be as long as possible, should contain the phone sequence
that is required, and fit prosodically to the sentence to be syn-
thesised. With this approach, more natural-sounding speech can
be produced than with diphone synthesis as, on the one hand,
the units do not have to be prosodically modified and, on the
other hand, the signal contains fewer concatenation points. Nev-
ertheless, the number of concatenation points depends on the cor-
pus, so the quality and intelligibility of the synthesised sentences
can vary considerably. In practise, unit selection does not go en-
tirely without any prosodic modification of units as the Fj has
to be adapted around concatenation points to prevent sudden Fj
jumps, that generally sound disturbing.

The production of corpora, notwithstanding for diphone synthesis
or unit selection, encompasses an elaborate process, which consists of
various complex steps. First, a speaker has to be selected that is suitable
in terms of voice pleasantness, accent and signal processability. Then,
the speech database is recorded, which takes up to several weeks. These
ongoing recordings are constantly monitored by experts from different
fields. After that, the database is segmented and the signals are post-
processed by a sound engineer to identify low quality segments, labelling
errors or pronunciation variants. Finally, language experts generate a
corpus from the speech database, by evaluating and selecting segments
in a manual or semi-automatic way.

1.2 Problem Statement

This demand for tedious manual work in the selection of segments and
partly also in the post-processing step is due to the lack of a quality
measure that could help to decide which phone segments are appro-
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priate to be selected. Such a quality measure should, first of all, be
able to decide if phones are of good phonetic quality, in other words if
they are clearly articulated and unambiguously identifiable instances of
these phones. Furthermore, the measure must determine whether the
phone signal can be prosodically modified without impairing the per-
ceived speech quality and if it can be concatenated without producing
audible artifacts at the concatenation points. Such a quality measure
could then be used to determine the most suitable speech segments
from a speech database. From these speech segments speech corpora
could then be automatically generated.

Automatic phone quality judgement for corpus creation was only
considered to a small extent so far. In [TH99], the best diphone variant
is selected using the cepstral distance between the two semi-diphones
and the corresponding phone centroids as the only automatic measure.
Unit selection does not directly consider the quality of the selected units
in their target costs during synthesis, because no acoustic properties for
the target units are known. Phone quality is considered only indirectly
through the concatenation costs, which only take into account spectral
discontinuities (see [CB96]). However, phone quality, what concatena-
tive speech synthesis is concerned, not only depends on spectral quality,
but has several, partly orthogonal aspects.

In this thesis, for the first time a comprehensive phone quality mea-
sure is proposed, which can be applied for the automatic selection of
speech segments for concatenative speech synthesis. This measure takes
all necessary aspects into account, based on detailed signal analysis.
These aspects include various characteristics like spectral characteris-
tics, fundamental frequency, duration, pitch marks and voicing charac-
teristics. In this context of signal analysis, novel methods for the analy-
sis of fundamental frequency, voicing characteristics and pitch marking
were developed and applied to determine the phone characteristics.
These phone characteristics are described with features and combined
to obtain a single measure for the overall quality of a phone. For this
combination, we used a machine learning approach that weights and
combines the features in a non-linear way. To evaluate the quality of
the proposed approach, we created four diphone corpora from differ-
ent voices and evaluated intelligibility and segmental quality with a
listening test.
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1.3 Scientific Contributions

The following contributions result from the present thesis:

1. We propose a novel approach to extract the fundamental fre-
quency from a speech signal. This approach is based on a clear
mathematical model and produces virtually error-free Fy con-
tours. In addition, it generates smooth interpolations of the Fj
contour in unvoiced speech segments that are located between
voiced segments.

2. We suggest a frame classification approach that not only distin-
guishes voiced and unvoiced speech segments but also mixed ex-
citation, irregularly glottalized and silence segments.

3. We propose a new approach on pitch marking that takes into
account the signal properties and applies different features ac-
cording to some heuristic. The proposed pitch marking algorithm
clearly improves the quality of synthesised speech generated by
a concatenative text-to-speech system that uses TD-PSOLA for
prosodic modifications.

4. We used the information that can be gathered from the signal
with the methods described above to augment the TD-PSOLA
algorithm. Contributions are related to diverse problems, like
treatment of mixed excitation and irregularly glottalized speech,
treatment of plosives and compensation of energy variations.

5. We investigated phone quality aspects that play a role in the
selection of phone segments for concatenative speech synthesis
and quantified these aspects with various features. A modified
neural network was trained with an educational learning method.
This neural network allows the features to be combined in a single
measure that assesses phone quality. This measure was finally
used to select elements for the creation of diphone corpora.
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1.4 Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 presents a new method for the estimation of a continuous
Fy contour.

Chapter 3 is dedicated to a frame classification method that not only
distinguishes voiced and unvoiced frames but also mixed, irregu-
larly glottalized and silence frames.

Chapter 4 describes a new approach to pitch marking. Unlike other
approaches that use the same combination of features for the
whole signal, we take into account the signal properties and apply
different features according to some heuristic.

Chapter 5 is concerned with an extended version of TD-PSOLA,
which is based on the information that can be extracted from
the signal with the methods presented in the previous chapters.
This information allows for a more appropriate Fy and duration
modification, which is dependent on the local voicing character-
istics of the signal.

Chapter 6 introduces the various aspects of phone quality and de-
scribes how these aspects can be quantified with features.

Chapter 7 describes a simple method to combine these phone quality
features. We used penalty functions on these features and summed
up these function values to create a single score for each phone.

Chapter 8 elaborates on an alternative approach to the one presented
in Chapter 7. This approach replaced the penalty functions with
a machine learning approach to weight the features and combine
them in a non-linear way.

Chapter 9 presents the evaluation of diphone corpora by means of
subjective listening tests. These corpora were created based on
the machine learning approach described in Chapter 8.

Chapter 10 concludes the thesis with a final discussion.




Chapter 2

Fp Extraction

This chapter describes a new method for the estimation of a continuous
fundamental frequency (Fp) contour. First, the purpose of continuous
Fy contours will be motivated as a basis for the continuous funda-
mental wave, which is a main constituent for the frame classification
method presented in Chapter 3 and for the pitch marking approach pre-
sented in Chapter 4. Subsequently, we will present the new method in
detail by introducing high-resolution cepstrograms and describing the
optimisation algorithm to determine the optimal T contour in these
cepstrograms. From the T contour, the Fy contour can then be easily
derived.

2.1 Introduction

In voiced speech, airflow from the lungs via the trachea causes the
vocal folds to vibrate in a quasi-periodic way. In literature, the rate of
vocal fold vibration is referred to as pitch or fundamental frequency.
The exact terminology depends on the point of view on the problem
(see [Tal95, Hes08]): The term pitch is associated with the perception
point of view and describes the auditory perception of a tone by the
listener. The term fundamental frequency is associated with the signal
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processing point of view and characterises an inherent property of a
quasi-periodic signal. The fundamental frequency correlates well with
the perceived pitch, and in literature the term pitch is often used in a
wider sense as some kind of common denominator for both terms. In
the following, we will use the term fundamental frequency (Fp) as we
focus on the signal processing point of view.

Fundamental frequency extraction has a long and extensive history
with the most important developments being made in the 1960s and
1970s. A bibliography dating from 1983 already includes some 2000
entries [Hes83], at least another 1000 entries would have to be added to
consider more recent developments [Hes08]. Therefore only a selection
of approaches can be presented here.

A commonly used method for Fy extraction is RAPT [Tal95], which
is part of the well-known ESPS software package' for speech analy-
sis. This approach first applies a normalised cross-correlation function,
which corresponds to a modified autocorrelation function with some
energy normalisation applied. Subsequently, dynamic programming is
used to search for an optimal path through Fjy candidates from consec-
utive frames. YIN [dCK02b] is another well-known algorithm based on
the autocorrelation method. The algorithm consists of an number of
processing steps, one building upon the other to prevent errors which
are typical for the autocorrelation method.

Numerous applications in speech processing depend on Fy extrac-
tion, including speech synthesis, coding, recognition and segmentation.
The quality of concatenative speech synthesis systems can benefit sig-
nificantly from a good estimation of the Fjy contour of speech signals.
It allows on the one hand an optimal prediction of the target prosody
of the speech to be synthesised and on the other hand the selection and
prosodic modification of the segments to be concatenated.

In terms of prediction of target prosody in general and Fj contours
in particular, a most successful approach is based on a recurrent multi-
layer perceptron as described in [Tra95] and [Rom09]. These studies
show that much better models can be achieved with continuous Fj
contours rather than with only piecewise defined ones. Hence, we need
a possibility to estimate for a given speech signal an Fjy contour that is

Thttp://www.speech.kth.se/software/#esps
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accurate in voiced parts and reasonably smooth in unvoiced parts.

When segments are concatenated they usually have to undergo some
prosodic modifications, in particular if the size of the speech corpus is
minimal as in diphone synthesis. Such modifications can for example be
performed with time or frequency domain PSOLA (see [CM89]). A pre-
requisite is again an accurate estimate of the Fy contour. But prosodic
modification also depends on an accurate frame classification method
as the one presented in Chapter 3. From the continuous Fjy contour
(see Section 3.2.1) a continuous fundamental wave can be computed,
which is a basis for the features used in this frame classification method
(see Chapter 3). In the same way, accurate pitch marking is crucial to
achieve high quality results. The pitch marking approach presented in
Chapter 4 also relies on the continuous fundamental wave as one of the
two main features to determine pitch mark positions.

2.2 Estimation of the 7, Contour

Our approach to estimate a continuous Fy contour is motivated by
the fact that humans can easily and reliably “see” the T contour of
a speech signal from a suitably drawn cepstrogram such as the one
shown in Fig. 2.3: the contour has to follow the strong cepstral peaks
(i.e. the bright tracks), has to be somewhat smooth and should not
make unreasonable detours in completely unvoiced regions.

This task can be considered as an optimisation problem, namely
to find the optimal curve along the cepstral peaks while the curve has
to meet some constraints at the same time. As constraints we use the
probability distribution of the local declination and curvature that was
estimated from natural Fj contours, as shown in Section 2.2.2. The
optimisation is detailed in Section 2.2.3.
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2.2.1 The High-Resolution Cepstrogram

In order to get the high-resolution cepstrogram, we first compute the
logarithmic power density for every frame:
1
S(k) = log(——|X (k)| 0<k<N-1 2.1
(k) = log(57 1 X (K)I%) <k< (2.1)
where X (k) is the discrete Fourier transform of the frame, N the win-
dow length and U a constant to compensate for the window func-
tion. We used a Hamming window and hence U = 0.3974. The
power density is defined for the discrete frequencies fi = fsk/N, with
k=0,1,...,N—1.

Subsequently, we eliminate the frequency components of the power
density spectrum that are higher than f, = f;b/N. In order to get
a cepstrum with sufficiently high resolution, we apply padding to the
power density spectrum

S'(k) = S(k), 0<k<b
S'(k) = S(b), b<k<M-b-1 (2.2)
S'(k) = S(M—k—1), M—-b-1<k<M

where M is the number of points. Finally, we use the inverse Fourier
transform to calculate the cepstrum with a quefrency resolution of
N/(M fs):

N-1
1 .
k=0

For the cepstrogram shown in Fig. 2.3, we used a 50 ms Hamming
window at a sampling frequency of 22.05kHz, f, and M were set to
5kHz and 8192, respectively.

2.2.2 Local Declination and Curvature

We define the local declination d(t) and the curvature ¢(t) of the discrete
time sequence ¢(t) with sampling points at every time interval Ty as
follows:




24 2 Fy Extraction

(q(t) — q(t—2T5))/2 + q(t) — q(t—T5)
2T,

C(t) _ q(t) - 2Q(t_Ts) + q(t_ZTs)

T

d(t) = (2.4)

(2.5)

In our case ¢(t) stands for a sequence of quefrencies that are com-
puted from consecutive frames of a speech signal with a frame shift
of Ty. In fact, we apply the logarithm on these quefrency values, there-
fore d and c are relative changes and will be expressed in the following
as %/s (percent per second).

The 2-dimensional probability distribution of the declination and
curvature was estimated from the voiced parts of some 17 hours of
speech from various speakers and languages. In a first step, we detected
the Fy of all signals with an algorithm similar to YIN (see [dCK02al)
and converted the Fy values to logarithmic Ty values. Then for triples of
consecutive log Ty values the declination and curvature was computed.
An overview of the resulting pairs of declination d and curvature ¢ is
shown as a normalised histogram in Fig. 2.1.

Since an empirical probability distribution as shown in Fig. 2.1 is not
practically usable, we approximated it with a 2-dimensional Gaussian
mixture model with two mixture components. The probability density
function p(d, ¢) of the resulting model is shown in Fig. 2.2.

2.2.3 Finding the Most Probable 7; Contour

To determine the optimal Ty contour in the log cepstrogram C(t,1),
where t and [ are the discrete time and log quefrency, respectively, we
devised a Viterbi-like procedure (inspired by [KdCO05] and [JBB07]).
This procedure evaluates the globally optimal sequence of log que-
frency values over all discrete times ¢. The optimisation is based on
a local score a(t,[) that considers C'(¢,1) and the likelihood of the local
declination and curvature. More formally, the local score is defined as

a(t,) =p(d,c) - e, (2.6)
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Figure 2.1: Empirical probability distribution of the local declination
and curvature of natural Ty contours

whereby w is a weighting factor that equals the signal power of the
corresponding frame. Note that p(d,c¢) depends on the two preceding
points of the Ty contour (cf. equations 2.4 and 2.5). The overall score of
the optimal Ty contour can then be found with the following iteration
over all discrete quefrency and time values:

8(t,1) = max{3(t=Ts, k) - a(t, 1)} (2.7)

where §(t,1) = 1 for t < 0. To find the most probable sequence of (¢,1)
pairs at the end of the recursion, it is necessary to store the optimal
predecessor [ for every time ¢t and quefrency [ in ¥(¢,[) during the recur-
sion. Like in the Viterbi algorithm, the optimal sequence of (¢,1) pairs
can then be found by starting at the end point and going iteratively
backwards. A resulting Tj contour is shown as a continuous line in the
cepstrogram in Fig. 2.3. The computation of this search algorithm is
done in log domain for numerical reasons.
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Figure 2.2: Probability density function p(d,c) of the GMM approxi-
mating the 2-dimensional distribution of local declination d and curva-
ture ¢ of natural Ty contours

2.3 Evaluation

We refrained from comparing our Fj results with laryngograph-based
estimates, as it is commonly done, because unclear frames are usu-
ally excluded from such tests for objectivity reasons. However, unclear
frames are most interesting with respect to our application (prosodic
modification of speech). Furthermore, it is questionable whether for
such frames objectively more reliable values can be estimated from a
laryngograph signal at all. Instead of a not very helpful comparison
we demonstrated the quality of our results by means of examples en-
closed with [EHP09]2. As an example, the very robust behaviour of our
method is illustrated in Fig. 2.3, a speech signal of a female Mandarin
speaker, where even the extreme F, drop (shown as a T increase) at
the creaky speech segment at around 2.2 s is captured with our method.

?http://wuw.isca-speech.org/archive/interspeech_2009/i09_0100.html

2.3 Evaluation

Figure 2.3: Speech signal and the corresponding high-resolution cepstrogram with Ty contour, drawn on a logarithmic que-

1/Ty, the Fy contour can easily be achieved by vertically flipping the Ty contour.

frency axis. Because Fy
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Note that the large detour of the T contour in Fig. 2.3 is in the pause
after the creaky speech segment and is thus irrelevant as this part refers
to silence and will not be used.

2.4 Discussion

The presented F{y detection is based on a clear mathematical model and
on statistical properties acquired from a large speech corpus. The global
optimisation (in contrast to piecewise as in [KdC05] and [JBB07]) gives
more robust results and also does not need any post-processing of the Fj
or Ty contours. The estimated Fyy contours are virtually perfect: we have
not seen any errors in all manually inspected Fyy contours. Furthermore,
the Fj detection also works well for expressive speech with very high
Fy dynamic which several authors reported to be a problem for their
algorithms. The processing time for a signal is about real-time, but
can be severely reduced by reducing the maximum F change from 40
octaves per second, which is appropriate to catch the most extreme Fj
contours, which may appear in creaky voice segments.

Our Fy contours are very well suited for the type of Fjy modelling
described in [Rom09] and for the generation of a continuous fundamen-
tal wave as it is used in the frame classification method presented in
Chapter 3 and in the pitch marking approach presented in Chapter 4.

Chapter 3

Frame Classification

This chapter is concerned with a frame classification method that clas-
sifies the frames of a speech signal into five classes: voiced, unvoiced,
mixed, irregularly glottalized and silence. We present and motivate the
features to describe the signal. These features are then fed into an
Artificial Neural Network (ANN) that assigns one of the five classes
to each signal frame. As an alternative classifier, Support Vector Ma-
chines (SVM) are investigated. Finally, the results of both classifiers
are presented and discussed.

3.1 Introduction

Besides a precise estimate of the Fy contour (see Chapter 2) and accu-
rate pitch marking (see Chapter 4), prosodic modification depends on
an accurate frame classification method.

First publications on frame classification date back to the 1970s
[AR76, Sie79]. Until today, most frame classification approaches are re-
stricted to binary classification, which means they only distinguish the
two classes voiced and unvoiced [Sie79, AS99, LL03, SISY04, MJ0S,
MHMHO07, MIH*11]. The algorithms presented in these approaches
comprise classification based on a combination of thresholds on var-
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ious features [AS99], a matching pursuit algorithm used with Ga-
bor decomposition [LLO03], a Gaussian mixture classifier [SISY04], and
a linear classification of features based on wavelet transforms. Fur-
thermore, [MJO08] suggests an empirical mode decomposition model
[MHMHO7], which was augmented with an adaptive thresholding ap-
proach [MIH11].

One approach included silence as a third class (see [QH93]), and
there are a few approaches that distinguish the four classes voiced, un-
voiced, silence and mixed excitation. One of the first approaches that
introduced mixed excitation as an additional class was suggested in
[SB82]. The motivation to introduce a mixed excitation class in this
work was twofold: on the synthesis side, that is for formant synthesis,
the mixed excitation class would allow to better model voiced frica-
tives and devoiced vowels. On the recognition side, this class would al-
low to recognise voiced fricatives more accurately. This work explored
two kinds of classifiers, a Gaussian classifier and a linear discrimination
function. This linear discrimination function was introduced to avoid
making simplified assumptions about the unknown statistical distribu-
tion of features but did not lead to better results than the Gaussian
classifier in the speaker-independent case. Another approach that used
four classes was presented in [CHL89]. This approach, however, used
both the electroglottogram (EGG) and the speech signal and derived
the classification from the differences in the characteristics of the two
signals. However, this approach is limited to cases where the EGG sig-
nal is available, which is not the case for most recordings.

3.2 Frame Classification

It was outlined in Section 2.1 that in order to perform high quality
prosodic modification we need information about the frame proper-
ties such as voicing, pitch regularity, etc. Motivated from this applica-
tion, we defined five classes of frames that must be treated differently
in prosodic modifications. Details on how the frame class affects the
prosodic modification procedure of a signal period are presented in
Chapter 5. The five classes are:
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voiced: Speech with clearly perceptible voicing; harmonic signal;
not noisy; low frequencies dominant (typical phonemes: vowels,
nasals)

unvoiced: Speech without perceptible voicing; noisy; high frequencies
above 2 kHz are dominant (typical phonemes: fricatives, unvoiced
plosives)

mixed: Speech with voicing and noise; only lower harmonics visible in
spectrum; higher spectral components noisy (typical phonemes:
voiced fricatives; frequently in voiced-to-unvoiced transitions)

irregular: Speech with irregularly spaced glottal pulses; no significant
fricative components; low frequencies dominant; also known as
creaky or stiff voice or vocal fry; very frequent in some voices or
languages (occurs often in voiced plosives and towards the end of
utterances, when Fj drops to very low frequencies or in Mandarin
low tones)

silence: Signal segments with low energy; virtually not audible

These classification criteria are primarily motivated by the application
(that is to perform prosodic modifications) rather than by linguistic
arguments.

Such a classification can be realised with a classifier like a feed-
forward ANN or an SVM. Important input information for the classifier
can be derived from the local properties of the fundamental wave, as
shown in Section 3.2.2. First, we will explain how we generate a virtually
continuous fundamental wave for a whole speech signal.

3.2.1 Generating the Fundamental Wave

The fundamental wave can be achieved from the convolution of the
speech signal with a Hamming window of the size of the period length
Tp [Ohm94]. Formally, the fundamental wave for a sample ¢ of a signal
x(+) is computed as follows:

X, al) - w( )
)

i) = S (3.)
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where w(+) is a Hamming window of length T, = 1/Fj. This convolution
of the speech signal with a Hamming window of length Ty corresponds
to a low-pass filter with a cut-off frequency of Fj and zeros at the
harmonics at k - Fy, k > 1. Thus, all harmonics are removed and only
the fundamental wave remains (see Fig. 3.1). Since Ty varies along
the speech signal, the size of the Hamming window has to be adapted
continuously, which means not only for each frame, but for each sample.
Because a Ty contour, as it results from the optimisation described in
Section 2.2.3, is specified with one value per frame, this Ty contour has
to be interpolated to get a T value for each sample of the speech signal.

time domain frequency domain
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Figure 3.1: Generating the fundamental wave with an artificial signal
(Fo = 100 Hz). The frequency domain signals are shown in decibel.

The resulting fundamental wave is completely smooth and particu-
larly shows no discontinuities at frame boundaries. A segment of such a
fundamental wave computed from a speech signal is shown in Fig. 3.2.

3.2 Frame Classification 33

3.2.2 Properties of the Fundamental Wave

It can easily be seen that the convolution that was sketched above pro-
duces a signal that is indeed equal to the fundamental wave of a quasi-
stationary harmonic signal like voiced speech. This fundamental wave
is close to sinusoidal and its period changes only slowly. Conversely,
in clearly unvoiced sections of the speech signal the fundamental wave
gets very irregular, in terms of amplitude as well as with respect to
the period. Also sections of vocal fry are clearly visible, because their
fundamental wave typically is neither close to sinusoidal nor regular
periodic.

The local properties of the fundamental waveform can be described
by a number of simple features that will be used by the frame classifiers.
These and further features will be sketched in Section 3.2.3.

3.2.3 Classification Features

Related work

Most approaches to build a frame classifier consist of two steps. First,
a set of speech features is selected that are adequate to the decision
task, then some rule is established to classify the patterns based on the
values of the features.

An extensive overview on the features that have been used in liter-
ature is given in [BS90]. Among the most frequent are the root mean
square energy (RMSE), the zero crossing rate (ZCR), LPC predictor
coefficients, the normalised autocorrelation coefficient and the ratio of
high frequency signal energy (above 4kHz) to low frequency signal en-
ergy (below 2kHz). Some of the features are computed from the un-
filtered signal and additionally from the preemphasized signal. More
recent work also additionally applied cepstral peaks ([AS99]), MFCC
([SISY04]) and wavelet transforms ([MJ08]).
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Figure 3.2: Speech segment of the phones [|iz] from a female Norwegian
speaker; the derived fundamental wave is shown as a continuous line,
the rectified fundamental wave as a dotted line; the current frame is
marked in grey; its centre is at time tg

Feature list

In addition to the features listed below, we investigated various feature
combinations that included wavelet transforms, energy in different fre-
quency bands, and various MFCC. We computed cross-validation error
rates on the training data that is presented in Section 3.2.5 and finally
selected the set of features that is outlined below. Features number 1
to 5 include classic features for the voiced/unvoiced decision and to
describe periodicity, number 6 to 10 describe the degree of regularity
of the fundamental wave. The times and points indicated refer to the
segment shown in Fig. 3.2. The features are illustrated for the frame
interval 0.755 to 0.76 s where ty designates the middle of this frame.
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1. Zero crossing rate of the speech signal
Speech signal power (in logarithmic scale)

Spectral tilt (first Mel frequency cepstral coefficient)

Ll

Dominance of central frequencies (second Mel frequency cepstral
coefficient)

ot

Periodicity: value of the cepstrogram at quefrency 7Ty

6. Amplitude of the fundamental wave in terms of distance between
the two line segments defined by the points s and sy and by the
points s; and sz at time tg

7. Dynamics of the fundamental waveform: |1—f;|, where f; =
(ta—t1)/(ts—ta) - To(ts)/To(t1) and Ty(t) is the period of the
speech signal at time t, estimated as described in Section 2.2.3

8. Similar to feature 7, but uses time points to, t3 and t4: |[1—f3],
where f2 = (t3*t2)/(t47t3) . T()(t4)/T0(t2)

9. Regularity of the fundamental waveform: |1—f3|, where f3 =
4(ts—t2)/(To(ts) + To(ta))

10. Trregularity of increase or decrease of fundamental wave ampli-
tude: mean square error of the quadratic regression of the points

!/ !/ !/

s, s2, S5, sS4 and sy

3.2.4 Training Data Generation

For the development of the classifiers we used 6 minutes of studio
quality speech signal from 20 different voices covering a range of 12
European and Asian languages. These speech signals contain a great
diversity of voice qualities including plenty of creaky and stiff voice
segments. We manually classified these speech signals into segments of
the five classes given at the beginning of Section 3.2 by looking at the
waveform, spectrogram, the fundamental wave, the pitch contour and
by listening to the speech segments. The manually classified speech sig-
nals were split into a training and a test set, whereby no speaker was
in both sets. This allows to estimate the speaker-independent classifi-
cation rate.
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3.2.5 Training of an ANN-based Classifier

First, we trained a fully connected 2-layer ANN with 10 inputs, 6 nodes
in the hidden layer and 5 nodes in the output layer. For the training
the back-propagation algorithm was used with randomly selected sub-
epochs. We balanced the training data by removing patterns belonging
to over-represented classes. We used no evaluation set, as it is generally
used for stopping the training at the optimal point, because previous
experiments had shown that the training of our rather small ANN is
not critical in terms of over-fitting.

3.2.6 Training of an SVM-based Classifier

As an alternative classification approach to ANN we investigated sup-
port vector machines (SVM) [Vap99]. As a significant advantage of
SVM we considered the reduced training time compared to ANN. In
the field of speech classification, SVM are used for voiced/unvoiced
classification (see [QBLO04]), for speech/non-speech discrimination
(see [RYG™T06]) and voice activity detection (see [YRGT06]).

Multi-class Classification

In general, SVM are binary classifiers. Various approaches exist to apply
SVM on multi-class classification problems. The most commonly known
are one-against-all, directed acyclic graph SVM (DAGSVM) and one-
against-one, where it is still an open research question, which of these
approaches is suited best [HL02]. In the one-against-all approach, k
different SVM models are trained, where k is the number of classes.
For the training of SVM 4, training patterns from class ¢ are assigned
positive labels, all other training patterns are assigned negative labels.

class ‘ unvoiced ‘ silence ‘ voiced ‘ mixed ‘ irregular ‘ total
#data [ 7921 | 12611 | 29080 | 2760 | 2274 | 54646

Table 3.1: Number of frames for the classes
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In the testing phase, a pattern « is classified with all of the K SVM and
predicted to be in the class of the SVM with the largest decision value.

For the DAGSVM, k(k—1)/2 binary SVM models are trained, each
one on data from two classes. In the testing phase, the DAGSVM uses
a binary directed acyclic graph with k(k—1)/2 internal nodes and k
leaves. Each node is a binary SVM of the classes ¢ and j. For a test
pattern x, we start at the root node and evaluate the binary decision
function. Then we move either left or right depending on the output
value until we reach a leaf node, which indicates the predicted class.

In this work, however, we concentrated on the one-against-one
method, as exploratory experiments had shown no improvement us-
ing one of the alternative methods and the one-against-one method
requires considerably less training time compared to one-against-all
([HLO02]). Just as the DAGSVM method, the one-against-one method
constructs k(k—1)/2 binary SVM models, each one trained on data
from two classes. For the classification of a pattern x, however, a dif-
ferent voting strategy is applied: If the model trained with patterns
from classes 7 and j predicts @ to be in class i, the number of votes for
class i is increased by one. Otherwise, the number of votes for class j is
increased by one. Finally we predict @ to be in the class with the high-
est number of votes. This voting approach is also called the “MaxWins”
strategy. In case that two classes have an equal number of votes, the one
with the smaller index (i or j) is selected, as it is proposed in [HLO02].

We have also investigated alternative voting strategies that not only
consider the class decision of a particular model for a pattern x but
also the distance of the pattern @ from the hyper plane that separates
the classes in the feature space. The best results were obtained for a
strategy which considers the distance of the pattern @ from the hyper
plane but caps the maximum distance to the value 1. The results of this
voting strategy were in the same range as for the “MaxWins” strategy
described above, but no fundamental improvement was achieved.

Coping with Unbalanced Data

The voicing data described in Section 3.2.5 is highly unbalanced with
a strong bias towards voiced data (see Table 3.1). In addition to the
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approach that we used for the ANN training, namely to balance the
training data by removing patterns that belong to over-represented
classes, SVM offer an additional possibility. Weight parameters that are
reciprocally proportional to the class sizes can be used to compensate
over-represented classes (see [CL11]).

Kernel and Parameter Selection

The basic SVM is only able to separate patterns linearly in the orig-
inal feature space. To allow also for non-linear decision functions, the
feature data are mapped to a higher dimensional space with a so-called
kernel function. There are four commonly used kernel functions from
which we chose the radial basis function (RBF) kernel, which commonly
considered the first choice for several reasons (see [HCLT]): the RBF
kernel can handle the case when the relation between class labels and
features is non-linear, it has fewer numerical difficulties compared to
other kernels and adds only one additional parameter to the model. An
additional reason is that other kernels behave like the RBF kernel for
certain parameters.

There are two parameters to be optimised for a SVM that uses an
RBF kernel: C'and . C' > 0 is the penalty parameter for the error term
in the objective function, v > 0 is a parameter in the kernel function.
The optimal parameter values for C' and « are not known beforehand,
thus the best parameter combination must be determined. This can be
achieved with a grid-search approach using cross-validation as described
in [HCL™]. Various parameter pairs of (C,) are tried and finally the
pair (C,~) with the highest cross-validation accuracy is selected. This
parameter selection step is the final step in the configuration of a SVM
and has to be taken after all other decisions on data scaling, data
balancing and the kernel have been made.

3.2.7 Results

We evaluated the accuracy of the classifiers in a strictly frame-wise
comparison of the output with the manual frame classification. The
mean relative classification rate for ANN was 90.49%. The results per
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class can be seen in Table 3.2. By allowing a shift tolerance of 5ms (one
frame) for phone transitions, the total classification rate increased by
1.95%.

unvoiced | silence | voiced | mixed | irregular
unvoiced | 85.28 2.60 0.00 9.68 2.44

silence 1.81 93.15 0.04 1.07 3.93
voiced 0.01 0.03 | 90.69 3.38 5.89
mixed 8.56 1.14 4.12 | 76.60 9.58

irregular 1.88 2.60 3.86 7.62 84.04

Table 3.2: Confusion matrix for the ANN-based frame classifier

The best mean relative classification rate for SVM was slightly worse
with 90.01 %. For this result we used a weighted SVM with an RBF
kernel and the parameter values C' = 256 and v = 0.0078. As voting
strategy for multi-class decisions we used the “MaxWins” strategy pre-
sented in Section 3.2.6. The results per class can be seen in Table 3.3.
Again, by allowing a shift tolerance of 5ms for phone transitions, the
total accuracy increased 2.35 %.

unvoiced | silence | voiced | mixed | irregular
unvoiced 83.89 2.16 0.00 9.86 4.08

silence 1.39 95.25 0.01 0.32 3.02
voiced 0.01 0.08 | 91.30 3.71 4.89
mixed 8.59 0.93 3.20 | 79.35 7.92

irregular 1.66 2.28 2.58 5.32 88.16

Table 3.3: Confusion matrix for the SVM-based frame classifier

3.3 Discussion

A direct comparison of classification results on the same data is dif-
ficult as for many authors the test data is either not available or not
sufficiently described to reproduce the results. Many authors recorded
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their own training and test data [SB82, CHL&9, BS90, QH93]. One
author used data from the HINT database [LL03] with manually clas-
sified labels. Other authors used data from the TIMIT database and
either used corrected labels [AS99], original labels [SISY04] or do not
specify [MIHT11]. Some authors do not elaborate at all on the origin
of their training data [MHMHO07]. Most importantly, including addi-
tional classes into the classification which are scarcely represented in
the training data leads to a higher error rate. Therefore, error rates
from classifiers that only take a binary decision are hard to compare to
those from classifiers that distinguish more classes.

Nevertheless, we give a short overview on the classification accuracy
that is achieved in the literature for different numbers of classes. All
the error rates below relate to the speaker-independent case.

For binary classification three approaches achieved very low error
rates. [AS99] reports a V-UV error rate of 1.06 %, that is 1.06, % of
the voiced frames were classified as unvoiced, and a UV-V error rate of
0.62 %, that is 0.62 % of the unvoiced frames were erroneously classified
as voiced. Even lower error rates were reported in [MIH'11] with a V-
UV error rate of 0.03% and a UV-V error rate of 0.4%. In the first
approach, training and test data was labelled by applying some kind of
correction factors on the complete data, with the effect that there was
some kind of system in the labelling. In the second approach, the frames
were also labelled by the authors, however, they do not give any details
on the labelling. We believe that error rates in this order of magnitude
can only be achieved if the data is labelled with some system that can be
reproduced algorithmically. For many frames arguments for both classes
are present and thus it is difficult to draw a precise line based on visual
and acoustic inspection. Therefore, inherent contradictions in manually
labelled data should prohibit such low error rates. [BS90] also reports a
very low error rate of 0.4 %. In this work, although manually classified
frames were used for testing, it is not clear how the test set, which
consists of a very small subset of the available data, was assembled.
Other approaches report much higher error rates, [SISY04] mentions
an error rate of 6 % on the original TIMIT data,[MHMHOT7] reports an
error rate of 7.6 % on manually labelled speech, and [LL03] achieved an
error rate of 16 % on manually classified data from the HINT database.

For the three classes voiced, unvoiced and silence, [QH93] obtained
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an error rate of 6% on data that the authors recorded and classified
manually.

For the four classes voiced, unvoiced, silence and mixed excitation,
[SB82] reported an error rate of 6%. The scenario described in that
work is most comparable to our scenario as several classes are used and
the data was manually labelled. However, there are still large differences
between the scenario in [SB82] and our scenario. First, in contrast to
the training and test data that we used, both training and test data in
[SB82] was heavily unbalanced. In training and testing, only some 5%
of the frames were mixed. As a consequence, the linear discrimination
function was heavily biased but yielded a relatively low overall error
rate due to the few mixed frames in the test data. But also the Gaus-
sian classifier benefits from the unbalanced test data for it is easier to
discriminate voiced from unvoiced frames than mixed from unvoiced
and mixed from voiced, which clearly shows in the error rates. Further-
more, only four classes were discriminated. Irregularly voiced frames,
which are hard to distinguish from regularly voiced ones, were not con-
sidered separately. Finally, only English speech data was used, which
is also the case for all other publications. Our approach, in contrast,
is not only speaker-independent but also a language-independent as it
was trained and tested on multiple languages. Considering these ad-
ditional difficulties in our scenario, we believe that the results of our
approach are comparable to the best results achieved in related work.

As can be seen from Tables 3.2 and 3.3, the voiced/unvoiced deci-
sion is nearly done perfectly and if we consider only this aspect, the
classifier ranks among the best of those presented in literature. If confu-
sions occur, they do between those classes that share signal qualities, as
unvoiced and mixed and voiced and irregular. Inspection showed that
these confusions mostly concern border cases where arguments for both
classes are present.

Although the SVM performs comparably to the ANN, we found
that the SVM encountered problems with signal segments that had
been manually set to zero, for example to remove breathing noise. We
therefore decided to use the ANN classifier for our further work as it
requires no special treatment of zero-segments.




Chapter 4

Pitch Marking

This chapter presents a new approach to pitch marking. We will first
give an outline of the new method. Then we will introduce the short-
term energy and the fundamental wave as the two main features that
we use as a basis for our procedure and enlarge upon their respective
restrictions and advantages. Next, we present the complete procedure
based on the combination of these two features and conclude with an
experiment to evaluate the approach.

4.1 Introduction

TD-PSOLA is known to allow for high-quality pitch and time scale
modification of speech segments for concatenative speech synthesis.
The quality of TD-PSOLA-modified speech largely depends on how
the speech signal is split into windowed double period segments. It is
generally accepted and can easily be verified experimentally that the
best results are achieved if double period segments start at a glottal
closure instant (GCI) and end at the next but one GCI.

The GCI is commonly referred to as the maximum of the derivative
of the airflow through the glottis. In terms of timing, the GCI is located
towards the end of the closure of the glottis. It would be very easy to
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detect the GCI from the glottal flow signal. However, this signal is
generally not available. Therefore, the GCIs have to be estimated from
the speech signal. These estimates are denoted here as pitch marks.

There are several known approaches to set pitch marks. One stan-
dard approach consists of two steps: First, pitch mark candidates are
generated from local maxima either of the speech signal [CL02, 1LJ04,
KHKO09], some wavelet components [SS00] or the inverse filtered speech
signal using frame-wise extracted LP coefficients [TR91]'. In the second
step, a subset of these candidates is selected according to optimisation
criteria that mainly account for the smoothness of the fundamental
frequency contour [CL02, LJ04, SS00, Vel00] and the waveform consis-
tency of the signal around the pitch mark candidates [CL02, Vel00].

Another approach to pitch marking uses a pseudo-state space rep-
resentation of speech frames and sets the pitch marks at the crossings
of the trajectories with the Poincaré plane [HK06]. At the start of a
voiced speech segment, this plane has to be placed according to some
criterion, for example a local maximum of the signal or the point where
the trajectories are most parallel. Both possibilities may result in pitch
marks that are very bad estimates of the GCIs. A further problem of
this approach is phase drift, which means in some signals the distances
between the pitch marks may systematically be slightly too large or
too small.

These methods are not robust enough for voiced segments with
significant noise components as in voiced-to-unvoiced transitions or vice
versa and in voiced fricatives. Furthermore, they are not designed to
cope with irregular-pitched segments of vocal fry. Our new approach to
pitch marking uses the maxima of the short-term energy contour as the
main pitch marking criterion because the maximum of the derivative of
the airflow through the glottis corresponds to the energy maximum in
the speech signal. Our approach copes very well even with the difficult
cases mentioned above and will be outlined in the next section.

1The method presented in that paper is available as the function epochs of the
ESPS software package for speech analysis (http://www.speech.kth.se/software/)




44 4 Pitch Marking

4.2 OQOutline of New Pitch Marking

Estimating pitch marks from amplitude peaks often results in pitch
periods with significant jitter, which needs to be reduced by smooth-
ing. We argue that since the concept of TD-PSOLA is based on the
idea that the energy should concentrate in the centre of the windowed
double period segments, pitch marks should be placed at peaks of the
energy contour rather than at peaks of the signal. However, the short-
term energy is not always a reliable criterion to set pitch marks (see
Section 4.4). But it is possible to detect the locations where the short-
term energy criterion should not be used. In these cases, the funda-
mental wave of the speech signal is used as a robust fallback feature
to determine the pitch mark positions. It has to be emphasised that
neither of the two features can be used alone for pitch marking. Some
problematic cases for the short-term energy feature are illustrated in
Section 4.4. Also the fundamental wave alone is not usable for setting
pitch marks, because there is no fixed relation between the GClIs as
estimated from the short-term energy and the phase of the fundamen-
tal wave (see Fig. 4.1). Hence a solution that is based solely on the
fundamental wave would fail in some cases. Only with a combination
of both features, as described below, good results may be attained for
arbitrary voices.

4.3 The Two Main Features for Pitch
Marking

Our pitch marking algorithm is based on two features: the short-term
energy contour and the fundamental wave. These features are extracted
for each sampling point of the speech signal with an analysis window,
which has the size of the local signal period. Thus, the resulting features
are continuous and smooth. The signal period is derived from a contin-
uous Fj contour as resulting from the method described in Chapter 2.
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Figure 4.1: Speech signal (top), fundamental wave and short-term en-
ergy (bottom) of the phones [mi1]. GClIs as estimated from the short-term
energy are denoted as dotted lines. The phase of the fundamental wave
at the estimated GCls varies from 248 to 107°.

4.3.1 Continuous Short-Term Energy Contour

The short-term energy for a sample i of a signal z(-) is computed as
follows:

>, [20) - w(i =)
S w@)?E

where w(+) is a Hamming window of length T}, centred at 0. The window
of size Tpy is motivated by the fact that it is long enough to provide a
good estimate for signals with noise components and short enough to
provide the energy distribution within the length of one period. Since
Ty varies with time, the size of the Hamming window has to be adapted
continuously, which means not only for each frame, but for each sample.
Because a T contour as it results from the optimisation described in
Chapter 2 is specified with one value per frame, it has to be interpolated
to get a T value for each sample of the speech signal, in the same way

Bi) = (4.1)
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as in the computation of the fundamental wave (see Section 3.2.1).

The resulting short-term energy contour is completely smooth and
particularly shows no discontinuities at frame boundaries. A segment
of such a short-term energy contour is shown at the bottom of Fig. 4.1.

4.3.2 Continuous Fundamental Wave

The fundamental wave can be computed by convolving the speech signal
with a Hamming window of length T as described in Section 3.2.1. A
segment of such a fundamental wave is shown in the middle plot of
Fig. 4.1.

4.4 Problems with Short-Term Energy

In most cases the short-term energy works fine for the pitch marks
(see voiced frames of Fig. 4.4). However, there are cases where short-
term energy peaks turn out to be not suitable for pitch marking. We
illustrate such problematic cases below.

4.4.1 Pitch Doubling

For nearly sinusoidal speech signals, basing pitch marks on short-term
energy peaks would be problematic because the energy contour shows
two almost equally high peaks per period (see Fig. 4.3 from 0.45s). If
the energy peaks are chosen without any further consideration it will
lead here to the well known effect of pitch doubling. This effect tends
to appear more often with female voices where the fundamental fre-
quency can be in the area of the first formant, leading to a dominating
fundamental wave in the signal.

4.4.2 Jitter

The reason for jitter is that the energy contour does either not have
clear peaks or again two relative maxima per period. Fig. 4.2 shows
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such a speech signal. After 0.7s the short-term energy contour first
shows dual peaks and later broad peaks with the maximum changing
from right to left and to right again. If these short-term energy peaks
are used, the resulting pitch marks alternate between the left and right
peaks, which results in jitter.

0.5

-0.5

0.66 0.68 0.7 0.72 0.74 [sec] 0.76

0.2F 4

0 1 1 1 1 1
0.66 0.68 0.7 0.72 0.74 I[sec] 0.76

Figure 4.2: Speech signal (top) and short-term energy (bottom) of the
phones [ta]. The dotted lines show the pitch marks if based solely on
short-term energy peaks (marked with the plus signs), jitter occurs after
0.71s.

4.4.3 Spurious Energy Peaks

High frequency noise can cause spurious energy peaks or can shift the
energy peaks in the otherwise periodic signal. As can be seen in Fig. 4.3
from 0.30 to 0.365s, the short-term energy contour exhibits irregular
peaks, whereas the fundamental wave remains periodic and is not per-
turbed by the high frequency components. This is often observed with
voiced fricatives next to vowels as it is the case in Fig. 4.3.
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4.5 Combining Short-Term Energy and
Fundamental Wave

4.5.1 Reliability of the Short-Term Energy

As is apparent from the previous section, a careful estimation of the
short-term energy peaks’ reliability as pitch mark indicators is most
important. We used a test set of nine speakers that were known to
be problematic for pitch marking to establish criteria for determin-
ing unreliable short-term energy peaks. The speakers were female and
male speakers of German, Mandarin, Norwegian, French, Dutch, Turk-
ish, and American and British English. For the test set we selected
two sentences from each speaker that we considered to be particularly
interesting for pitch marking. Finally, 18 sentences were used, as for
German we included both a female and a male voice.

For the development of the criteria we manually inspected the pitch
period contour that was computed from the pitch mark positions to
identify outliers that may hint towards erroneous pitch mark positions.
We used another tool to visualise all the information that the pitch
mark decisions were based on in order to assess the effect of individual
criteria and their associated thresholds. Finally, the following criteria
for determining unreliable short-term energy peaks emerged (for details
on the thresholds see Table 4.1):

e Prominence: the peak is not prominent enough compared to ad-
jacent valleys (Fig. 4.3, from 0.45s).

e Amplitude: the peak’s amplitude is below a mnoise threshold
(Fig. 4.3, until 0.345s).

e Position of adjacent valleys: adjacent valleys are too close or too
far away (Fig. 4.4, from 3.09 to 3.16s).

e Position of adjacent peaks: adjacent peaks are too close or too far
away (Fig. 4.4, from 3.09 to 3.165).

e Form: the peak is too broad. We measure the extension of the
peak at 85% of its maximum height. If this extension covers more
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Minimum distance to adjacent valley | 20%
Maximum distance to adjacent valley | 80%
Minimum distance to adjacent peak | 70%
Maximum distance to adjacent peak | 130%

Table 4.1: Thresholds for the reliability criteria for short-term energy
peaks. The distances are given in percent of the fundamental period and
denote the distance from the current short term energy peak.

than a certain fraction of the current fundamental period (44%),
the peak is considered as too broad (Fig. 4.2, from 0.69s).

e Quality of neighbours: one of the adjacent peaks is considered
an insufficient indicator by meeting one of the above mentioned
criteria.

If at least one of these negative criteria is fulfilled, the energy peak
is considered an insufficient indicator and the algorithm resorts to the
fallback methods.

4.5.2 Reliability of the Fundamental Wave

In many cases where the energy contour shows no usable peaks because
high-frequency noise components are present in the signal (see for ex-
ample the voiced fricative at the beginning of the signal in Fig. 4.3),
the fundamental wave is almost perfectly periodic and does not exhibit
any perturbation. In these cases the fundamental wave can be used as
a fallback. However, there are cases where also the fundamental wave
fails as a reliable pitch mark indicator, which is frequently the case with
creaky voice segments (see Fig. 4.4 at 3.10-3.17s). Therefore, again a
set of criteria for the detection of bad fundamental wave segments was
established, with thresholds given in Table 4.2:

e Amplitude: the amplitude is below a noise threshold (Fig. 4.4,
from 3.1 to 3.15s).
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e Valley positions: valleys are too close or too far away from their
adjacent peak (Fig. 4.4, from 3.1 to 3.165s).

e Peak positions: peaks are too close or too far away from their
neighbours (Fig. 4.4, from 3.09 to 3.155s).

e Regularity of adjacent valleys: the ratio r of the distances between
the peak and its two adjacent valleys is too different from the local
increase of Fj.

The fundamental wave is locally considered as not reliable if at least
one of the above criteria is fulfilled. The noise thresholds mentioned
above are dynamically estimated for each signal using the energy-based
loudness measure presented in Section 6.10. The rest of the parameters
was manually determined using the set described in Section 4.5.1. The
parameters should generalise well, as the test set that was used for their
development included a wide range of languages, including Mandarin
which is known to be problematic for voice quality, and a fair amount
of nine different speakers. However, we did not test the parameters
for noise robustness as the application scenario of our proposed pitch
marking method included high quality studio speech only.

Minimum distance to adjacent valley | 37.5%
Maximum distance to adjacent valley | 65%
Minimum distance to adjacent peak | 75%
Maximum distance to adjacent peak | 130%
Distance ratio r 1.3

Table 4.2: Thresholds for the reliability criteria for the fundamental
wave. The distances are given in percent of the fundamental period and
denote the distance from the current fundamental wave peak.

4.5.3 Procedure to Set the Pitch Marks

As input to the pitch marking procedure the short-term energy and the
fundamental wave (as described in Section 4.3) are extracted from the
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signal, as well as frame-wise defined voicing information which distin-
guishes voiced, unvoiced, mixed-excitation, irregularly-glottalized and
silence segments (see Chapter 3.2).

We first select glottalized (voiced, mixed or irregular) segments that
are delimited by unvoiced or silent regions. Every glottalized segment
is processed as follows:

1. We use the time points of the reliable short-term energy peaks in
the glottalized segment as initial pitch marks.

2. If there is a region in the segment where short-term energy peaks
are unreliable, we check if the fundamental wave can be used
to set additional pitch marks. If this is the case, we detect at
which phase of the fundamental wave the last valid pitch mark
has been set (marked with x-signs in Fig. 4.3) and interpolate or
extrapolate along the reliable part of the fundamental wave?.

3. For regions where still no pitch marks are set, we regard the voic-
ing information: For regions classified as irregular we use promi-
nent short-term energy peaks (which may be irregularly spaced)
to set the pitch marks. For regions classified otherwise we set the
pitch marks by interpolation (if there are pitch marks to the left
and right of the region) or by extrapolation (at the start or the
end of the glottalized segment) with a period length derived from
the continuous Fy contour.

4.5.4 Pitch Marks in Unvoiced and Silent Segments

We implemented two strategies for placing the pitch marks in unvoiced
and silent segments: one with focus on optimal pitch mark placing and
the other with focus on efficient storage.

The strategy for the optimal placing takes into account the peri-
ods of the voiced segments neighbouring the unvoiced segments. The
first approach is inspired by the method presented in [MVV06]. For

2In the rare case when no reliable short-term energy peak was found in step 1
for the whole glottalized segment, we select one of the short-term energy peaks that
fulfil most of the reliability criteria.
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segments that are neighboured by voiced segments we attempt a lin-
ear sweep using the period lengths of the neighbouring left and right
voiced segment. If the remaining gap to be filled is too large (in the
implementation we used 10 % of a period as threshold) we use equally
spaced pitch marks with a period chosen to be closest to the mean of
the left and right period instead of a linear sweep. At the beginning and
at the end of the signal the adjacent right or left period is repeated.

The strategy for the storage optimised placing of pitch marks in
unvoiced regions aims at using as many constant periods as possible
to allow a more efficient encoding and thus save storage space. This
strategy works as follows. The preceding voiced period is repeated a few
periods (in our implementation we use 3 repetitions) towards the right,
and the succeeding voiced period a few periods towards the left. The
remaining unvoiced periods are set to a constant length. The constant
length is chosen to be be a bit longer than the average period length of
the voice.

4.6 Evaluation

Statistical evaluation can only be considered if evaluated pitch marks
and reference pitch marks follow the same criteria. So we decided to
evaluate our method through the performance of a diphone-based TTS
system that applies TD-PSOLA. We built two systems each for four
different voices, one male and one female Dutch voice, one female Ger-
man and one male American English voice. The voices were recorded in
studio quality with professional equipment. For the baseline system we
used pitch marks generated with the cross-correlation algorithm from
the Praat toolkit [Boe02], for the other system we used our proposed
method. With the exception of the difference in pitch marking the sys-
tems were otherwise equal.

To illustrate some differences in the pitch marks produced with the
two methods, two short speech segments are shown in Figs. 4.5 and 4.6.
Generally, pitch mark positions coincide roughly in many cases with
the Praat pitch marks often showing a systematic offset from the pitch
marks of our proposed method and thus from the energy maxima. This
offset can be as high as shown in Fig. 4.5. Larger differences can be
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observed in irregularly voiced segments, where Praat tends to produce
equidistant pitch marks due to unvoiced voicing decision or pitch marks
that are not set accurately as shown in Fig. 4.6.

The speech signals synthesised with our proposed method showed
clear improvement for the two male voices, they contain less reverber-
ation and sound less raspy. Most improvement was achieved for the
bassy male American English voice, which sounds more sonorous and
less frizzled. The female voices showed isolated improvements in mixed
or irregular speech. We did not encounter any cases where our proposed
method performed worse than the baseline system. We demonstrated
the quality of our results by means of examples enclosed in [EP10]3.
We refrained from a formal evaluation because the improvements can
be clearly followed by visual and acoustic inspection of the given ex-
amples. For the two male voices the baseline system contains, for ex-
ample, clearly visible waveform irregularities, pitch irregularities and
phase jumps that can be acoustically perceived even by non-experts.
The examples include two sentences for each male voice which four to
nine segments per sentence, which are highlighted, where differences
can be clearly perceived. The sentence durations range between 6 and
14 seconds.

4.7 Discussion

In this chapter we introduced a new pitch marking method. The algo-
rithm places pitch marks basically at the peaks of the short-term energy
contour, which is a good estimate of GCIs. For speech segments where
the energy peaks are not suitable, we use fallback methods based on the
fundamental wave or on the Fy contour. Whereas the method obtains
robust results in voiced, unvoiced and mixed segments, we sometimes
observed additional erroneous pitch marks in irregularly voiced seg-
ments. This problem can be attributed to the energy threshold, which
is not estimated accurately enough for that particular segment. The
loudness that the energy threshold is based on is computed over the
entire sentence but sometimes drops strongly in irregularly voiced seg-
ments. Therefore, a further improvement of the algorithm could be to

Shttp://www.tik.ee.ethz.ch/spr/pitch_marking_examples/
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investigate a more locally limited loudness measure to be used for the
energy threshold. However, for our application, which is prosodic mod-
ification of speech segments, these occasional misplacements of pitch
marks in irregularly voiced segments do not have any effect, as prosodic
modifications of these segments are generally avoided.

Chapter 5

Speech Synthesis with an
Extension of TD-PSOLA

This chapter explains how the signal information gathered with the
methods presented in Chapters 2 to 4 is applied for prosodic modifica-
tion. First, we give an overview on the standard TD-PSOLA approach.
Then we explain how this comprehensive signal information is applied
in the prosodic modification of mixed segments and irregularly glottal-
ized segments and particular phones like plosives and affricates. Finally,
we discuss the quality and the scope of the proposed method.

5.1 Introduction

TD-PSOLA is known to allow for high-quality pitch and time scale
modification of speech segments for concatenative speech synthesis.
However, the distinction of the signal into only two classes, voiced and
unvoiced, does not give enough consideration to distinctive properties
of a speech signal, like mixed excitation or irregular glottalisation or
properties of plosives and affricates. Therefore, such signal parts are
treated in a way that is not optimal, which means audible artifacts
may result or even the intelligibility of phonemes such as plosives may
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be reduced. We therefore suggest an extended TD-PSOLA approach
that not only distinguishes voiced and unvoiced segments, but is based
on the detailed frame classification introduced in Chapter 3, which dis-
tinguishes voiced, unvoiced, mixed, irregular and silence frames. This
detailed classification allows for a more appropriate modification of Fj
and duration to avoid artifacts that may otherwise arise. This treat-
ment of mixed and irregularly glottalized frames is described in Sec-
tion 5.4 and 5.5. Furthermore, minor enhancements in the treatment of
diphone transitions and particular phones are added to the TD-PSOLA
algorithm, which are described in Sections 5.6 to 5.9.

5.2 Re-Synthesis Experiment

In order to identify shortcomings of the signal handling in TD-PSOLA,
we carried out a speech synthesis experiment that allowed us to identify
artifacts introduced in the signal handling step and to exclude artifacts
that may be introduced by either higher levels of synthesis or by the se-
lection of possibly mismatching corpus elements. We used 10 sentences
of natural speech from four voices (one female German voice: fg, one
male Dutch voice: md, one male American English voice: me and one
male Turkish voice: mt) and created a sentence diphone corpus from
each sentence. Each sentence corpus contained exactly the diphones
that made up the source sentence. We then re-synthesised these sen-
tences using synthetic prosody and the sentence corpora.

These re-synthesised sentences were subsequently used to analyse
artifacts that could have been introduced by either:

e noise, clicks or glitches in the source sentence
e errors in the Fy extraction

e errors in the pitch marking

e errors in the frame classification

e errors in the diphone segmentation

e inappropriate synthetic prosody or strong prosodic modifications
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e inappropriate signal handling in the synthesis procedure

Due to a mismatch between the voices that we used for the experi-
ment and the prosody control of the SVOX system (see [Tra95]), that
we used for prosody prediction, the application of the synthetic prosody
caused rather strong prosodic modifications. As a consequence, the du-
ration was increased sometimes by a factor of 3, often in combination
with a strong increase of the Fyy. The Fy was also often increased or
decreased by a factor of 2. In addition, the Fy is very dynamic in the
original recordings, but was predicted to be comparatively flat in the
artificial prosody. Modifications to such an extent cannot be made un-
heard even by very good signal processing, so the synthesised signals
sounded partly unnatural. However, these strong modifications were in
fact an advantage in terms of analysis, as many problems get audible
only with considerable prosodic modifications.

We analysed the signals and targeted errors stemming from inap-
propriate signal handling by iteratively extending the TD-PSOLA al-
gorithm. For that purpose, we introduced the information retrieved
from the signal analysis steps, especially the pitch marking and voicing
classification, in the signal processing.

5.3 Outline of the Method

The proposed extension of the TD-PSOLA algorithm uses the standard
TD-PSOLA approach on periods classified as voiced, unvoiced and si-
lence whereas mixed and irregular periods are treated differently as
explained in Sections 5.4 and Section 5.5.

In the standard TD-PSOLA approach, for voiced, unvoiced and si-
lence segments, every two neighbouring period segments are multiplied
with a Hanning window function. The F{, of the resulting signal can be
increased or decreased by moving the double period segments together
or apart. The duration of the signal can be increased or decreased by
either repeating or omitting double period segments. The algorithm
distinguishes between voiced and unvoiced double period segments, be-
cause for unvoiced segments the time axis of every repeated double
period segment has to be reversed. This prevents the algorithm from
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introducing artificial short-term correlations in the signal, which are
perceived as audible buzziness.

Unlike the standard approach, we generally limit the number of
period repetitions to 4. Experiments have shown that if a period is re-
peated more than 4 times, the negative segmental effect is more severe
than the fact that the predicted duration is not entirely achieved. Al-
though on the other hand, a limitation to 3 or less repetitions in many
cases still leaves an almost perfect segmental impression, this limita-
tion has a strong influence on prosody. Therefore, 4 repetitions seemed
a reasonable compromise between prosody and segmental quality. This
limitation on the number of period repetitions may not seem very el-
egant. However, in practise this limitation did not pose a problem for
the kind of corpora we created as the diphones were created from phone
instances with a duration well above the average. Therefore, excessive
lengthening of these elements is not necessary at all, and even length-
ening of more than a factor of two is required very rarely. Moreover, the
duration of pauses and preplosive pauses, where the effect of this limi-
tation would be most perceivable, is not affected by this limitation, as
these pauses can be lengthened to an arbitrary duration by introducing
zero samples.

5.4 Modification of Mixed Frames

5.4.1 Modification of Duration

Signal segments classified as mixed excitation often appear in voiced
fricatives or transitions from unvoiced fricatives to voiced phones. These
signal segments can only be shortened. A lengthening of the signal by
repeating double period segments without time reversal of the repeated
segment would lead to artificially introduced periodicity in the unvoiced
frequency regions. Time reversal, however is not feasible as it would
modify the periodicity of the voiced components in an unpredictable
way (see [MC90]). Therefore, we refrain from lengthening signal frames
that are classified as mixed. This is generally not a problem in synthesis,
as most voiced fricatives consist of both mixed and unvoiced frames,
where the latter can be repeated. Transitions from unvoiced fricatives
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to voiced stationary phones consist only of a few mixed frames, so this
constraint does not cause any audible effect on prosody, above all, since
the unvoiced fricatives and voiced stationary phones can normally be
lengthened.

5.4.2 Modification of Fj
Need for Fy Modification of Mixed Periods

One could argue that fundamental frequency modifications of frames
classified as mixed may not be necessary, as the voiced components in
the signal may be rather weak and the beneficial effect of modifying the
fundamental frequency in this case may be marginal. However, mixed
and voiced frames can alternate, for example if the voice quality is
breathy. An example is shown in Fig. 5.1. In this case, the Fy of the
mixed frame has to be adapted to the same target Fy as the voiced
frames. Otherwise sudden jumps in Fy with a strong disturbing effect
occur as shown in the top plot of Fig. 5.1.

Compensation of Energy Variations

One problem with the Fj modification of mixed frames is that en-
ergy variations are introduced, which are not extremely disturbing, but
clearly audible (see Fig. 5.4). Therefore, the impact of the Fy modifi-
cation on the energy contour of the signal must be compensated for.
More precisely, if the Fy is decreased, the double periods are moved
apart, which leads to a decrease of energy between the centres of these
double periods. On the other hand, if the F{ is increased, the double
periods are moved closer, which leads to an increase in energy between
the two double periods. A compensation of this effect can be achieved
with a slight modification of the standard PSOLA algorithm.

With voiced frames and even more so with irregular frames, energy
variation in time is high. The energy is concentrated at the glottal
closure instants (GCIs, see Section 4.1). This is not very much the case
with mixed frames, especially the high frequency energy components
do not vary in time. If the signal is assumed to have constant energy
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Figure 5.1: Fricative components in the vowel [1] (from about 1.97s
to 2.05s) cause mized and voiced frames to alternate. If the length of
mized periods is not modified, as shown in the top plot, sudden jumps
in the the period lengths occur, causing the signal to sound disturbingly
rough. The bottom signal shows the correct manipulation of the signal,
where the lengths of the mized periods are also modified.

and the F{y of the signal is modified, the resulting energy contour is not
constant any more (see Fig. 5.2). With voiced signals a change of the
energy contour is not a problem, because there is little energy around
the middle between the pitch marks and therefore these manipulations
do not have an audible effect. Although in case of increasing the Fp,
the energy between the pitch marks is increased, the energy is still low
in this area, thus normally no effect can be perceived for manipulations
within a reasonable range.

With voiced fricatives, however, this variation of the energy contour
becomes audible and causes a choppy impression. Therefore, mixed pe-
riods have to be treated in a special way, as shown in Fig. 5.3. First, the
double period halves are taken from the original signal. These double
period halves consist of a Hanning window half, which has the length
of the original period (from time #; to t in the top plot of Fig. 5.3)
plus a part of the original signal of length s/2, where s is the difference
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Figure 5.2: Effect on the energy contour if the Fy of the constant
energy signal is decreased with the standard PSOLA method. On top as
a solid line, the constant energy contour of the original signal is plotted.
In the bottom plot, the Fy of the signal is decreased by a factor of 0.5.
The resulting energy contour shows “dents “ between the new pitch mark
locations, denoted as py, py and ph in the modified signal.

between the original period length and the modified period length. In
this part no windowing is applied (from time t5 to ps in the top plot of
Fig. 5.3). Because the length of these double periods is more than two
periods of the original signal, overlapping parts of the signal are used.
To create the Fy-modified signal, these double periods are concatenated
with an overlap of the original period length. As shown in the bottom
plot of Fig. 5.3, the energy contour of the sum of the double periods
corresponds to the original constant energy contour.

As an example, a speech signal where the correct F{y modification
of mixed frames is crucial is shown in Fig. 5.4. The signal contains the
transition from the unvoiced fricative [f] to a vowel. In the top plot,
the Fy of the mixed frames was modified without compensating for
the energy variability caused by this modification. In the bottom plot,
the energy variability was compensated using the technique described
above. The segmental quality of the pitch modified fricative in the
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Figure 5.3: Effect on the energy contour if the Fy of the constant
energy signal is decreased with the energy compensation taken into ac-
count. The resulting energy contour in the bottom plot is constant.

bottom plot is as good as if fixed period lengths were used.

5.5 Modification of Irregular Frames

5.5.1 Modification of Duration

In a different context than the original one, irregularly glottalized seg-
ments often sound disturbing. Therefore, phone instances with irregu-
larly glottalized frames should be avoided as much as possible in the
creation of speech corpora. However, for some phones this is almost
impossible, for example for glottal closures and often also for phones
in the neighbourhood of glottal closures. Apart from avoiding irregu-
larly glottalized segments in the first place, the best strategy to cope
with these segments is to clearly identify them and modify them as
little as possible. Glottal closures for example often contain strong en-
ergy spikes. If these energy spikes are repeated or if timing or context
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Figure 5.4: Mized frames in the transition from an unvoiced fricative
[f] to a vowel. The dotted lines show the pitch marks, the letters u, and
m in the middle plot denominate unvoiced and mized frames, respec-
tively. In top signal the Fy of the mized frames was modified without
compensating for the energy variability caused by this modification, in
the bottom signal the energy variability was compensated for.

of these energy spikes is changed, for example by omission of periods,
these energy spikes may suddenly be perceived as disturbing. However,
if they are kept unchanged, they are mostly perceived as appropriate.
Therefore, irregularly glottalized periods and their adjacent periods are
neither repeated nor omitted but put exactly once.

5.5.2 Modification of Fj

For irregularly glottalized segments, the fundamental frequency is not
defined, in the sense that the signals are not shift-invariant. Further-
more, there is no clear impression of a particular fundamental frequency
when listening to irregularly glottalized segments!. Therefore, a pitch

Hrregularly voiced segments frequently appear before pauses towards sentence
or phrase boundaries. In these positions, the Fp normally decreases, and if it de-
creases strongly, the signal often becomes irregularly glottalized. So in this case,
these irregularly glottalized segments leave an impression of a very low, unspecific
Fo.
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scale modification of these segments is not necessary. On the other
hand, a pitch scale modification like in the standard TD-PSOLA algo-
rithm is also not advisable, as periods vary strongly in these segments
and thus double period segments can be very asymmetric. In this case,
the glottal pulse may be attenuated irregularly by the multiplication of
the Hanning window with the asymmetric double period segment.

5.6 Modification of Plosives and Affricates

5.6.1 Modification of Duration

The repetition or omission of periods in the burst phase of plosives or
affricates can have very strong effects on the quality of this phone and
can even entirely change its nature, such that for example a [p] may
be converted to a [t]. Consequently, the duration of the burst phase
of plosives and affricates should not be modified at. This restriction
applies to both voiced and unvoiced plosives. As it is hard to exactly
determine the burst phase of a plosive or affricate, we estimated the
burst phase as the first 30 ms after the release point. We also found
that plosives should not be excessively shortened (by more than 40 %
of their total duration), as this may impair their quality as well.

5.6.2 Modification of Fj

In terms of Fjy, we found that it is beneficial to allow the modification
of the period lengths to avoid sudden jumps in Fy at the transition to
neighbouring voiced phones. This applies mainly to voiced plosives, as
for most unvoiced plosives and affricates, the frames are classified as
unvoiced, and therefore period lengths are not modified. Nevertheless,
we encountered quite a few examples, where unvoiced plosives were
actually realised as voiced. This was especially the case for American
English, where the intervocalic [t] is transcribed as an unvoiced [t],
but is actually pronounced as a voiced flap (see [LM96], an example is
shown in Fig. 5.5).
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Figure 5.5: Synthesised speech signals of the phone sequence [nt'1]
where the [t"] (shaded in grey) is realised as a voiced flap with all periods
voiced. In the top plot, the period lengths of the plosive are not modified,
which causes a sudden, clearly audible drop in Fy around the [t"]. In the
bottom plot, the period lengths of the plosive are modified, thus avoiding
Fy jumps.

5.7 Distinction of [f]/[h] Variants

The characteristics of the glottal fricative [h] are highly influenced by
its context. It may be articulated either as a voiced [fi] if preceded
by a voiced phone, or as an unvoiced [h] if preceded by an unvoiced
phone or by a pause. Furthermore, the differences in energy of its voiced
and unvoiced articulations are quite high. This property was observed
in particular for the speaker mg, which was not included in the re-
synthesis experiment (see Section 5.2), but in the later chapters on
phone quality (see Section 6.4.3). As a consequence, combining the the
first half of an unvoiced [h] with the second half of a voiced [fi] often
creates a plosive impression due to a strong energy increase on the
one hand and a sudden voicing onset on the other hand. Therefore, we
distinguish voiced and unvoiced variants of the phone [fi]/[h] and use
the appropriate variant in synthesis.
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5.8 Prosodic Modification After Pauses

We noticed that for certain phones, apart from plosives and affricates,
the repetition and omission of periods is very delicate in sentence-initial
or phrase-initial position, in other words if those phones follow a pause.
If, on the one hand, the beginning of a sentence-initial [1] is lengthened,
often the impression of a schwa phone [o] is introduced. On the other
hand, if periods of a sentence-initial [l] are omitted, a plosive effect
may be caused. Similar effects have been observed for the phones [h],
[f], [s] and [f], if they directly follow a pause. Therefore, we refrain from
modifying the duration at the start of those phones if they follow a
pause, which means we do neither repeat nor omit periods in the first
25ms. Periods lengths may be manipulated, however.

One other technical detail that has to be considered with phones fol-
lowing a pause or a preplosive pause is that an unintentional click may
be produced from period repetition. If the double period segment that
combines the last period of the pause and the first period of the follow-
ing phone is repeated and reversed because it is classified as unvoiced,
then a click may be generated from the windowing and the signal in
the beginning of the phone. This click becomes audible if the energy
at the beginning of the following phone is high enough. This would,
for example, be the case for most plosives, if the period repetition in
the burst phase was allowed. But also for other phones this effect can
occur (see Fig 5.6). To solve this problem, the first pitch mark of a
phone following a pause must not be repeated for any phone.

5.9 Power Smoothing at Concatenation
Points

A sudden increase in energy at the concatenation point of stationary
phones often causes disturbances and even plosives to be perceived.
Most problematic are transitions within fricatives, e.g. [h], [f] or [s],
where plosives may be perceived due to sudden energy increases (see
Fig. 5.7). To avoid these effects, a linear energy smoothing is applied
for the concatenation of stationary phones. The smoothing is applied
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Figure 5.6: Synthesised segment of the phones o] from a male Dutch
speaker (md). Between 2.47 and 2.48 s an unintentionally produced click
1s visible that was produced through period repetition and time reversal.

within a very short period from 15 ms before to 15 ms after the concate-
nation point with some limitation on the gain factor that is applied on
the signal. Furthermore, it has to be ensured that a smoothing period
cannot overlap with a previous or subsequent smoothing period.

5.10 Discussion

In this chapter, the extended TD-PSOLA approach was presented. It
considers not only voiced and unvoiced but also mixed, irregular and
silence periods and, furthermore, uses phonological information. The
most important findings were the careful treatment of irregularly glot-
talized segments and the abdication of duration modifications of the
burst phase. These enhancements of the TD-PSOLA algorithm had
clearly the largest effect on speech quality, which may be due to the
prominence of plosives and irregularly glottalized segments, which in
general have high intensity.

In related work we did not encounter any specific treatment of
mixed or irregularly voiced segments in TD-PSOLA. Some authors
mention specific pitch marking approaches for mixed excitation seg-
ments (see [MVVO06]) but do not propose any special treatment in the
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Figure 5.7: Synthesised speech signals of an [s] followed by an [>:], spo-
ken by a female English speaker (fe). In the top plot, no power smooth-
ing is applied at the concatenation point. An energy bump can be seen
at 0.08s. Although this energy bump may not seem very pronounced,
listening to this signal gives the clear impression of a [ts]. The mid-
dle plot contains the signal with power smoothing applied, which gives
the unambiguous impression of a [s]. The bottom plot shows the energy
contours of both signals, which differ only where smoothing is applied.

synthesis step. There are variants of TD-PSOLA which use modified
approaches of the overlap-add principle. MBR-PSOLA (see [DL93]),
for example, circumvents the pitch marking problem by coding the
speech database using a Multiband Excitation (MBE) model and then
re-synthesising a speech diphone database. In the synthesis step, a sim-
ple overlap-add algorithm is then used on this database which does
not have to distinguish any voicing classes. Speech quality, however, is
considerably degraded through this pre-processing step, resulting in a
metallic sound or buzziness in voiced segments [EHM™99).

In principle, the enhancements presented in this chapter enabled us
to perform prosodic modifications within a certain range without any
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artifacts to be perceived. In an exploratory experiment we abstracted
the prosodic information (one duration value and five F values per
phone) from natural sentences and re-synthesised these sentences using
this information on the diphone elements taken from these sentences.
The resulting synthetic sentences were indistinguishable from the orig-
inal ones. In addition to this informal exploratory experiment, a more
extended evaluation to compare results achieved with the standard TD-
PSOLA method with those achieved with our extended TD-PSOLA
approach in a formal listening test would be interesting.

The findings of this study are partly restricted to diphone synthe-
sis as many problematic issues do not come about if larger units are
concatenated. In unit selection, for example, problematic segments in
principle remain within their original context where they are perceived
as natural. However, if prosodic modifications are applied, which is the
case for many high-quality unit selection systems, then accurate signal
analysis and proper signal treatment is indispensable.




Chapter 6

Phone Quality Aspects

This chapter outlines different characteristics that contribute to the
quality of a phone. First, we report on an exploratory listening experi-
ment, which we conducted to obtain data on phone quality. After that,
we detail on the measurement of various phone characteristics, includ-
ing characteristics related to spectrum, phase, fundamental frequency,
duration, voicing. Furthermore, signal intensity as a quality aspect at
selection time will be investigated. A digression will follow about a
method to monitor loudness already at recording time. Finally, we in-
vestigate characteristics of particular phones like plosives and fricatives
and will lay out a few methods on the treatment of some peculiarities,
which can arise with these phones.

6.1 Introduction

In concatenative speech synthesis, corpus generation still involves te-
dious manual or semi-automatic selection of units. In diphone synthe-
sis, the segments for a diphone set are selected manually from a speech
database with typically up to 100,000 phones or even more to choose
from, if they are not extracted from designated diphone carrier words
with one or two diphones embedded in one carrier word (see [LB0O]).
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In the same way, creating a unit selection voice involves manual work
in the post-processing of speech recordings to identify low quality seg-
ments, labelling errors or pronunciation variants.

This high demand of manual effort is required because there exists
no quality measure that could help to decide which phone segments are
appropriate to be selected. Automatic phone quality judgement for cor-
pus creation was only considered to a small extent so far. In [TH99], the
best diphone variant is selected using the cepstral distance between the
two semi-diphones and the corresponding phone centroids as the only
automatic measure. Unit selection does not directly consider the qual-
ity of the selected units in their target costs during synthesis, because
no acoustic properties for the target units are known. Phone quality is
considered only indirectly through the concatenation costs, which only
take into account spectral discontinuities (see [CB96]). Various mea-
sures to detect these spectral discontinuities were proposed in [SSO01]
and [Don01]. A detailed review of these spectral distance measures is
presented in Section 6.4.1.

However, phone quality, what concatenative speech synthesis is con-
cerned, not only depends on spectral quality, but has several, partly or-
thogonal aspects. In the following, we present these aspects and present
features that we determined to describe and quantify these aspects.
These features can finally be combined to constitute a phone qual-
ity measure that can be used to automatically select diphones from a
speech database. For each diphone the following criteria are important:

1. The two involved phones must be heard as clearly articulated and
unambiguously identifiable instances of these phones.

2. The signal of the phones has to be suitable for prosodic mod-
ification (for example with TD-PSOLA) without impairing the
perceived speech quality.

3. No audible artifacts may occur at the concatenation points if the
chosen diphones are concatenated.

In Chapters 7 and 8 we will apply this phone quality measure to au-
tomatically select diphones from a given speech database. Our phone
quality measure can not only be used for diphone selection but for
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concatenation synthesis in general. We applied it here in the context
of diphone synthesis because the high number of concatenation points
immediately points to possible weaknesses of the method.

6.2 Exploratory Listening Experiment

6.2.1 Method

In the beginning of our phone quality research, a first, rather naive
experiment was conducted to find a measure for phone quality. The ex-
periment was arranged as follows: subjects were prompted with signals
of isolated vowels, which were cut out of German diphone carrier words.
These diphone carrier words were originally recorded from a female Ger-
man speaker to create a multi-lingual diphone corpus (see [TH99]). For
each prompt, the subjects had to choose one of three levels of quality,
which were defined as:

1. Low: not correct phone or not identifiable

2. Medium: phone is intelligible but not well articulated or contains
artifacts

3. High: phone clearly articulated; no artifacts

No further instructions about our notion of phone quality was given in
the experiment.

The subjects were able to listen to the prompts repeatedly and to
navigate through all phones. Four subjects (German speakers, expe-
rienced listeners) evaluated between 73 and 89 phone instances, de-
pending on the phone. We used prompts from only one voice, a female
German speaker, and each subject evaluated up to 4 different phones.

6.2.2 Results

Originally, the objective of this experiment was to create a standard to
evaluate different measures for phone quality. However, the correlations
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between the different subjects were very low. For example, for the phone
[e], the inter-subject correlations were: 0.48, 0.32, 0.04 and 0.37. For
the rest of the phones, the inter-subject correlations were even lower.

We traced the apparently large differences in the subjects’ notions
of phone quality to the very open definition of phone quality that was
given for the test. As a consequence of this very open definition, there
was no common understanding of the subjects on how to weight the dif-
ferent aspects of phone quality. Some of the listeners considered irregu-
larly glottalized voice segments as unsuitable, some considered clicks as
unsuitable, some considered pressed voice as unsuitable and some con-
sidered phones with abnormal Fjy contours as unsuitable. Furthermore,
the voice that was used for the test was perceived as rather unpleasant
by the listeners, as phones were often articulated in a rather pressed
and strained way. It seemed to us that this aspect also influenced each
of the subjects’ classifications to a different extent.

As a result, the material that resulted from this listening test com-
bined many aspects of phone quality in the subjects’ classifications,
so it was very hard to derive consistent information about single one
aspect from that material. Consequently, we implemented an analysis
tool to better investigate and isolate the influence of various aspects.
This tool is described in the following section.

6.3 Identification of Phone Quality As-
pects

As mentioned above, several, partly orthogonal aspects contribute to
the overall subjective impression of the quality of a phone. To identify
these aspects, we implemented an interactive graphical tool, which al-
lows diphone instances to be selected from a ranked list and to be used
in synthesis. Each diphone can be played in different contexts to sub-
jectively judge its quality, not absolutely but only with regard to the
rank order. In this way, we were able to identify aspects that strongly
influence synthesis quality and therefore had to be integrated into our
phone quality measure. These aspects are now described in detail in
the following sections.
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6.4 Spectral Characteristics

6.4.1 Introduction

In the following, we denote a concrete realisation of a phoneme as a
phone instance. A phone instance is a concrete realisation of a par-
ticular phoneme. This phone instance normally differs from another
phone instance of the same phone, as it may be influenced not only by
the phonetic context, but also lexical stress, speech rate, mood of the
speaker, etc.

Spectral properties play a crucial role in assessing the quality of
phones, in particular of stationary ones. In the context of diphone syn-
thesis we are not only interested in excluding phone instances that are
not unambiguously identifiable as a particular phone but also instances
that are not typical for this phone as pronounced by a certain speaker.
We score the spectral appropriateness of a particular phone instance us-
ing the distance between the spectral description of this phone instance
and its corresponding centroid.

Centroids were first used in [Kae85] to characterise typical spectral
properties of phones. The spectral description of a phone is generally
given as a sequence of spectral feature vectors which move over time in
its corresponding feature space. This movement describes a trajectory,
whose course is determined by the given phone sequence but also by
the speaker and by random variability, because humans cannot repro-
duce speech perfectly. For different phone instances, these trajectories
concentrate in an area of the feature space which is characteristic for
that phone. These trajectories, with their origins and destinations de-
pending on the neighbouring phones, typically do not intersect. But
still, this area of trajectory concentration describes the typical spectral
properties of the phone, the centroid, which is defined as follows:

The centroid vector is the vector with the smallest mean
distance to the minimum distance vectors of every trajec-
tory.

As minimum distance frames, a weighted sequence of frames with
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the smallest distance to the centroid was used. For details on the iter-
ative computation of the centroid, see Section 6.4.4.

In [Kae85], the log area ratio distance measure was used to com-
pute the centroid distances. This measure was used because first, results
from speech coding suggested the log area ratio as a good measure to
predict distortion (see [QB82]) and second, it was efficiently computed.
However, since then, a lot of research has been conducted on distance
measures. Early works by [GMT76] investigated spectral and cepstral
distances and showed that the cepstral distance is a computationally
efficient estimate of the log spectral distance of cepstrally smoothed
spectra. One of the first studies to investigate the application of dis-
tance measures or, more precisely, distortion measures on speech cod-
ing was [GBGMS80]. Whereas the first studies focused predominantly
on the area of speech coding, later studies investigated the application
of distance measures on speech recognition. In 1985, [NSRKS85]| investi-
gated the effects of various distortion measures on the performance of
a standard dynamic time warping based isolated word recogniser.

Finally, and most interesting for us, distance measures were studied
in the area of speech synthesis to objectively measure spectral disconti-
nuity in concatenative speech synthesis, for example to determine join
costs in unit selection systems. Although we do not directly measure
the spectral discontinuity at concatenation points, these studies are
most closely related to our problem, as these measures describe the
human perception of allophonic differences. Coding distortions, in con-
trast, may have a different effect on speech than allophonic variations
and measures used for speech recognitions may not capture some of
these allophonic variations as they are not relevant for recognition.

According to [KV98], a symmetrical Kullback-Leibler distance mea-
sure on LPC power-normalised spectra is suited best to detect concate-
nation discontinuities in vowels. A study on join costs for unit selection
investigates Fuclidean, SKL, Mahalanobis, and absolute distance on
three different features (MFCC, line spectral frequencies and MCA co-
efficients) to identify discontinuities in diphthongs ([VKT02]). None of
the combinations really outperformed the other. A comprehensive study
was conducted in [SS01], where 13 combinations of spectral descriptions
and distance measures were investigated, also to identify discontinuities
in vowels. They found that the Kullback-Leibler distance on power spec-
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tra has the highest detection rate followed by the Fuclidean distance
on MFCC. Studies in [WM98] confirmed that the Euclidean distance
on MFCC is a good predictor for perceptual discontinuities in vowels.

The limitation of all these studies for our purposes is that they re-
strict their measures to vowels and diphthongs in one case, and, the
studies are based largely on English speech data. Although the re-
sults of these studies are not entirely consistent, some trend can be
deduced. This trend allowed us a preselection of the measures that we
investigated further in a listening experiment and a classification task
to identify the measure that is most suitable to characterise spectral
phone quality in terms of a centroid distance.

6.4.2 The Classification Task

We formulated a classification task to determine the most appropriate
method to discriminate suitable from unsuitable phone instances in
terms of spectral properties. Isolated phones were manually classified
into two classes, suitable and unsuitable. These data were then used to
identify the measure that discriminates the two classes best.

6.4.3 The Data

The data for that classification task were generated in a similar way
as for the exploratory experiment described in Section 6.2. However
this time, all the shortcomings of that previous experiment were taken
into consideration. Various voices were used to mitigate effects caused
by peculiarities of a particular voice, the concept of phone quality was
strictly defined, the author, who knew the characteristics of the voices
very well, manually classified the data.

The four voices we used were a German male and German female,
and an English male and English female voice (fg, fe, mg and me).
For each voice, 100 instances of all stationary phones (including some
context) were cut out of natural speech. These phone instances were
not prosodically manipulated. Unlike in the first experiment, problem-
atic phone instances, where different aspects than spectral properties
strongly influenced phone quality, were excluded from the classifica-
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tion. Examples for that were irregularly glottalized phone instances,
instances with very low Fj (which tend to be irregularly glottalized
and often sound strange if perceived out of context), instances with
extremely high Fy (which also often sound annoying if perceived out of
context). Phone instances that were too short for a reasonable classi-
fication were also excluded. Furthermore, the author had a very good
knowledge of the voices to decide which phone instances were typical
for the particular speaker and which not. For the manual classifica-
tion a graphic selection tool was implemented as a Wavesurfer Plug-in
(see [SBO0]). In total, a number of 11547 phone instances were manually
classified and double checked with the classification results.

The phone instances were classified into one of the categories suit-
able or unsuitable phone instances. The category unsuitable contained
phone instances that may still be the same indicated phone, but which
differ from the optimal phone in terms of articulation, which means
they may be articulated too open or too closed, a strong influence of
phonetic context may be present, inappropriate nasalisation, etc.

A number of phones was manually classified but not used in the
subsequent classification task:

o The fricatives ([f], [[], [s], [z], [3]; [¢]) were excluded, because the
way they were classified could not be reproduced by considering
only spectral properties. In manual classification, fricatives that
contained disturbing noise (like sibling noise, clicks etc) were clas-
sified as unsuitable. However, those phones can still have a small
distance from the centroid as long as a part of the phone that is
not affected by the noise is long enough.

e Syllabic phones [n], [1] were excluded as we found them not to be
so stationary that an unambiguous centroid could be determined.

Difficulties with British and American English Transcriptions

For the American English me voice only a British English transcrip-
tion was available to us. In this transcription, words like “job” were
noted as [dzab], although they were pronounced as [dza:b]. However, in
American English the phone [a:] replaces the phone [a] in many words
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(see [Jon03]). Furthermore, spoken variants were present in American
English recordings: for example the word long can be either pronounced
as [lom] or [lam]. Both variants are possible according to [Jon03], but
it was not feasible to manually correct the transcriptions as to which
variant was actually used!. Therefore, the phone instances transcribed
as [0:] contained instances which were pronounced very open and were
actually instances of the phone [a:]. Thus, careful listening was required
in judging those phones.

On the other hand, the British English voice was partly transcribed
with American English variants. E.g. the word forget was transcribed
with the American English form [fr'get] instead of [fo'get], as it would be
correct in British English. Again, it was not possible to manually correct
all these transcription inconsistencies, however we tried to determine
and exclude phone instances that were not labelled correctly.

6.4.4 Features and Distance Measures
Computation of the Centroid

The centroid as it is presented in Section 6.4.1 is computed iteratively:
First, an initial centroid is computed by averaging the vectors of all
frames of all phones that represent a particular phoneme. Then, for
each phone those five consecutive frames are determined whose added
distances to the centroid are minimal. These five frames, which cover
a total length of 60 ms, are denoted minimum distance frames. The
new centroid is then computed by taking the average of the minimum-
distance frames of all phones. This step is repeated until convergence
occurs, i.e. the minimum-distance frames remain constant, or a maxi-
mum number of iterations is reached. These steps are applied for every
stationary phoneme.

In earlier experiments we iteratively removed outliers, recomputed
the centroid and investigate the effect on the centroid. However, no
significant change in the centroid position was observed, which may
be due to either the large percentage of suitable phones compared to

1The databases cover 1000 and 2800 sentences, each sentence with a duration of
some 5s.
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outliers or possibly also to some symmetric distribution of the outliers
around the centroid such that their deviations cancel out.

Features and Distance Metrics

We compared combinations of distance measures and spectral features
that proved to be most suitable according to literature on concatenation
discontinuities (see Section 6.4.1). As features we used MFCC, Straight
cepstral coefficients, LPC cepstral coefficients, line spectral frequencies
(Isf) and the log area ratios (lar). The distances we used on these fea-
tures were the Euclidean distance, SKL distance, Mahalanobis distance
and absolute distance. For three of the four voices, the signal were re-
sampled from 22kHz to 16 kHz sampling frequency, such that for all
voices the same spectral information was available.

Mel Frequency Cepstral Coefficients

We used 12-dimensional cepstral vectors, whereby the zeroth cepstral
coefficient was neglected. For the number of filters at 16 kHz sampling
frequency we chose 32, which in the lower frequencies corresponds to
the 24 filters which are normally used at 8 kHz.

Cepstral Coefficients Based on Straight Spectrum

We used 12-dimensional cepstral vectors derived from Mel-sampled
interference-free Straight spectra presented in [KMT108], whereby the
zeroth cepstral coefficient was neglected.

LPC Cepstral Coefficients

We used 12-dimensional LPC cepstral coefficients, whereby the zeroth
cepstral coefficient was neglected. To compute the LPC coefficients,
order 20 was used.




84 6 Phone Quality Aspects

Line Spectral Frequencies

According to [VKT02], line spectral frequencies give results compara-
ble to MFCC in terms of correlation between perceptual scores and
objective scores so they were also included as features. Line spectral
frequencies are computed from the LPC filter coefficients and represent
LPC spectral information the same way the reflection coeflicients or log
area ratios do. For further details see [SJ84].

Log Area Ratio

The log area ratio distance was used in the first study on diphone
selection based on centroid distances ([Kae85]). Apart from its good
perceptual properties, in those days, computational efficiency had been
an argument to use this measure. We included it in our evaluations
for comparison reasons. The log area ratios can be computed from the

reflection coefficients:
14+

;=1 6.1
gi =logy— =, (6.1)
where g; is the log area ratio and k; the reflection coefficient 1.
Euclidean Distance
The Euclidean distance between two feature vectors is defined as:
(6.2)

Symmetrical Kullback-Leibler Distance

According to [VKO03], a symmetrical version of the Kullback-Leibler
distance gives good results on the identification of concatenation dis-
continuities. However, this distance measure is not applied directly on
the cepstral features but on the power-normalised spectral envelopes
that are computed from the cepstral features. Let X and Y denote
power-normalised spectral envelopes, i.e.
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N N
Y Xa=1) Vo=1 (6.3)
n=1 n=1

The Kullback-Leibler distance between these two spectra is defined as

N
X'!L
der(X,Y) =Y X,log T (6.4)
n=1 n

The symmetrical Kullback-Leibler distance between these two spectra
is defined as

N
X,
dswcL(X,Y) =) (X = Vo) log 3. (6.5)

n=1

The spectral envelopes that X and Y are based on, are computed
from the according cepstral features. In other words, for this distance
measure we reconstruct spectra that have some kind of smoothing ap-
plied. This smoothing depends on the cepstral feature that we use as
an input for the reconstruction.

Mahalanobis Distance

The Mahalanobis distance weights features with the inverse of their
standard deviation. Thus, features with low variance are boosted and
have more influence on the total distance. We computed the standard
deviations for the Mahalanobis distance for each phone context. The
Mahalanobis distance between two feature vectors is defined as:

N
X; - Yy)?
dma(X,Y) :2(072),

i=1 g

(6.6)

where o; is the standard deviation of the i*" feature vector element.
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Absolute Distance

The absolute distance between two points, also more colourfully known
as Manhattan distance, is the sum of the lengths of the projections
of the line segment between the points onto the coordinate axes. This
distance measure results in higher distances for points differing more
equally in all dimensions compared to the Euclidean distance. We in-
cluded the absolute distance as [VKTO02] reported that the absolute
distance on MFCC is comparably and partly even stronger correlated
to perceptual scores than the Euclidean distance on MFCC. Formally,
the absolute distance is defined as:

daps(X,Y) =D | X; = Y] (6.7)

i=1

6.4.5 Feature and Distance Measure Evaluation

We used the measures described above to classify the phones into the
classes suitable and unsuitable according to their distance from the cen-
troid. A typical distribution of suitable and unsuitable phone instances
is illustrated in Fig. 6.1. The best classification results are achieved by
minimising the total number of misclassification based on the a pos-
teriori probabilities p(Ck|x). In this case, error rates of about 9-12 %
for the best measure can be achieved. Detailed results for all voices
can be found in Appendix A in Tables A.1 to A.4. However, these low
error rates are partly due to the fact that the two classes of suitable
and unsuitable phones are very unequally distributed with a lot more
suitable phone instances than unsuitable ones. This leads to a high a
priori probability for the suitable phones. Consequently, to minimise
the number of misclassification, the best results are obtained by set-
ting the decision boundary to a very high value and, thus, classifying
all or nearly all phone instances as suitable.

However, for a phone quality measure applied in the selection of
diphone elements from speech databases, it is not beneficial to find the
globally best classification but the best classification for a single phone,
independently from the a priori probabilities of the classes. Two types
of mistakes can be made, with very different consequences. False pos-
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itives, that means unsuitable phones that were classified as suitable
have more serious consequences than false negatives, which are suit-
able phones that were classified as unsuitable. False negatives can have
the effect that possibly suitable phones are ignored, whereas false posi-
tives can have the effect that unsuitable phones are taken into account
as corpus candidates. In general, it is thus better to ignore a poten-
tially suitable phone than to favour an unsuitable phone. Therefore,
we introduced a cost ratio r to set the decision boundary at a value
such that the number of false negatives is r times the number of false
positives. In other words, the decision boundary is moved such that
more suitable phones are classified as unsuitable and less unsuitable
phones are classified as suitable. This is achieved by considering the
two probability distributions: P(d,, < d), which is the probability that
the centroid distance of a unsuitable phone instance is smaller than
the value d, and P(ds > d), which is the probability that the centroid
distance of a suitable phone instance is larger than the value d. An ex-
ample of the two probability distributions for the phone [o] of a female
German speaker is shown in Fig. 6.2.

Equal error probability, that means an equal number of false posi-
tives and false negatives, is achieved if the decision boundary is set to
the distance value of the point where the two curves intersect, depicted
as a vertical line in Fig. 6.2. To achieve a number of false negatives that
is r times the number of false positives, the decision boundary has to
be moved to the left. Obviously, with increased r, on the one hand, the
overall error rate increases, as can be seen in Fig. 6.3, but, on the other
hand, the number of false positives decreases. In detail, this effect can
be observed in the classification results in Tables 6.1 to 6.7, where a
cost ratio of » = 10 is applied.

deu dSKL dma dabs
mfcc 20.38% 31.01% 21.05% 19.30%
straight 26.22% 39.10% 25.12% 26.40%

Isf 26.18% 26.55% 25.71% 26.63%
Ipc 24.07% 2815% 27.23% 2517%
lar 28.68% 28.64% 30.42% 29.23%

Table 6.1: Mean error rates for all phone instances for the female
German voice (fg), r = 10
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Figure 6.1: Empirical distribution of the centroid distances of suitable
and unsuitable phone instances of phone [o] for the female German
fg voice. Euclidean distance was used on MEFCC' to compute the centroid
distances.

The overall results for the four voices can be seen in Tables 6.9
and 6.10 with MFCC in combination with the Euclidean distance yield-
ing the lowest error rate and the lowest false acceptance rate. A different
number of phones was evaluated for the 4 voices, so the overall result is
not just the average of the 4 individual results. In fact, the overall result
is computed by taking the average of the error rate or false acceptance
rate of all phones from all voices.

6.4.6 False Positive Errors

Because the error rates for the best measure is still high, an error anal-
ysis was performed for the combination of MFCC and the Euclidean
distance. For every voice, we considered the false positives that still
remain and analysed the reason for their manual classification as un-
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Distributions of distances for phone [0]
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Figure 6.2: Probability distributions P(ds > d) and P(d, < d) for
phone [o] of the female German fg voice. The Euclidean distance mea-
sure was used on MFECC, where distances for suitable and unsuitable
phones are denominated as dgs and d,,, resp. The horizontal dashed line
shows the equal error probability, the vertical dashed line the equal error
distance.

suitable to conclude on the effects if these phones were used in a corpus.
We found that these false positives were often phones that were artic-
ulated too open or too closed or had some inappropriate colouring; a
few times they were really completely different phones. The detailed
results of this analysis are listed in Appendix A in Tables A.5 to A.8.

6.4.7 False Positives in Corpus Generation

In the previous section, false positives that are actually problematic in
terms of spectral quality (those contained in the last four rows of Ta-
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Figure 6.3: Two probability distributions P(ds > d) and P(d, < d)
for phone [o] of the female German fg voice. The cost ratio r was set
to 10. MFCC and FEuclidean distance measure was used.

bles A.5 to A.8 in Appendix A) have been identified. Next, we checked
how many of these false positives are finally selected in a diphone cor-
pus. To that aim, we have created three corpora from the voices fe,
mg and me using the method described in Chapter 7. For every corpus
we determined for every problematic phone if it was part of a selected
diphone and analysed the available alternative candidates to establish
why such a phone was chosen. Below, the detailed analyses for the thee
corpora are described. From these analyses it can be concluded that
if one of the false positives was finally selected in a diphone corpus, it
was selected due to a lack of more suitable candidates.

1 1.5 2 2.5 3 3.5 4 4.5 5
Distance between centroid and phone instance

deu dSKL dma dabs
mfcc 230% 317% 230% 2.19%
straight 2.88% 3.95% 2.62% 2.78%

Isf 279% 2.84% 284% 2.79%
Ipc 246% 290% 2.84% 2.68%
lar 3.01% 3.01% 290% 3.06%

Table 6.2: False acceptance rates for all phone instances for the female
German voice (fg), r = 10

deu dSKL dma dabs
mfcc 19.58% 3836% 21.27% 19.55%
straight 29.57% 41.88% 27.44% 26.15%

Isf 32.78% 32.09% 30.62% 30.40%
Ipc 3045% 24.12% 29.86% 31.48%
lar 33.23% 32.78% 33.55% 32.40%

Table 6.3: Mean error rates for all phone instances for the female
English voice (fe), r =10

fe Voice

Out of the 2021 diphones that were selected for the fe voice corpus, two
diphones contained phone instances that had been manually classified
as unsuitable:

The first one, an instance of the phone [o:], is part of the diphone
[go:]. We analysed the alternative candidates for this phone pair to
investigate the reason why this unsuitable phone instance was chosen:
In total there were 7 phone pairs [goz] to choose from. In 5 of these
pairs, the burst of the [g] was determined to be not distinctive enough
as it was below a certain energy threshold (see Section 7.1.6). Non-
existence of the burst leads to a high penalty for the diphone candidate,
therefore none of these phone pairs was selected. From the remaining
two candidates, one was very irregularly glottalized (9 of 30 frames
classified as irregular for the phone [5:] and had a higher distance from
the centroid than the one that was finally selected. It can be concluded
that the candidate that was manually classified as unsuitable was still
the best choice for that particular diphone.
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deu dSKL dma dabs
mfcc 209% 4.09% 2.25% 2.25%
straight 3.13% 4.20% 2.90% 2.82%

Isf 337% 329% 329% 3.13%
Ipc 3.06% 249% 321% 3.29%
lar 337% 337% 353% 3.29%

Table 6.4: False acceptance rates for all phone instances for the female
English voice (fe), r =10

dew dskr, Ama daps
mfcc 15.34% 27.06% 16.91% 17.04%
straight 18.08% 42.77% 19.14% 18.09%

Isf 2044% 21.86% 18.77% 20.714%
Ipc 18.06% 14.15% 19.711% 17.89%
lar 2431% 2745% 26.89% 24.87%

Table 6.5: Mean error rates for all phone instances for the male Ger-
man voice (mg), r = 10

The second phone instance that was manually classified as unsuit-
able and nevertheless selected was an instance of the phone [v] and
was part of the diphone [zv]. In total there were 10 phone pairs [zv] to
choose from. Looking at the [z] part we found that 3 of the candidates
that were not selected had a maximum phase offset of 0.5, which results
in a high penalty, and had only half or less of the frames classified as
mixed, which leads to a high penalty for voiced fricatives. Considering
the [v] part, 4 candidates had the maximum phase offset of 0.5, and
for 8 out of 10 phones less than half of the frames were classified as
mixed leading to a high penalty just like for the phone [z]. This leaves
only one other candidate, which had a smaller centroid distance but
a higher phase offset, and contained an irregularly glottalized frame,
which is also penalised in voiced fricatives, as irregular frames often
indicate noise. In addition, the duration of the [z] part of this candi-
date is only half that of the one that was selected. Consequently, also
for this case it can be concluded that this candidate that was manu-
ally classified as unsuitable, was still a good choice for that particular
diphone.
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deu dSKL dma dabs
mfcc 1.89% 2.86% 2.04% 2.09%
straight 2.12% 4.48% 2.17% 2.12%

Isf 238% 243% 2.04% 247%
Ipc 209% 1.70% 223% 2.04%
lar 262% 286% 2.86% 2.67%

Table 6.6: Fulse acceptance rates for all phone instances for the male
German voice (mg), r =10

deu dSKL dma dabs
mfcc 22.22% 30.82% 22.16% 23.09%
straight 27.22% 49.59% 28.49% 27.74%

Isf 31.36% 32.61% 29.85% 30.04%
Ipc 29.47% 26.10% 30.71% 27.63%
lar 3236% 3351% 35.74% 32.22%

Table 6.7: Mean error rates for all phone instances for the male Amer-
ican English voice (me), r = 10

mg Voice

Out of the 1187 diphones that were selected for the mg voice corpus, 5
contained phone instances that were manually classified as unsuitable,
where for 1 phone pair ([aie]) there was no alternative.

The selected phone pair [ir] contained the phone [r], which was man-
ually classified as unsuitable. This classification can be attributed to
inaccurate transcription as for all 4 candidates, the actual pronunci-
ation is [ie] with the [r] actually sounding like an [e]. All of the 4
candidates are pronounced within several recordings of the same word
(?Schamir“), and the phone pair that was chosen was actually the best
version in terms of both [i] and [r]/[e]. The other candidates tended to
sound more pressed, one of them showed slight nasalisation. The same
transcription inaccuracy that led to a manual classification of the phone
[r] as unsuitable applies for the pair [rs]. The phone pair was actually
pronounced as [es] for all 7 candidates, (one candidate was taken from
the phone sequence [tegs], the rest was taken from the phone sequence
[bees)).
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deu dSKL dma dabs
mfcc 241% 290% 241% 2.55%
straight 2.89% 4.82% 3.03% 2.89%

Isf 333% 3.26% 3.19% 3.19%
Ipc 29T% 276% 312% 297%
lar 319% 340% 347% 3.19%

Table 6.8: Fulse acceptance rates for all phone instances for the male
American English voice (me), r = 10

deu dSKL dma dabs
mfcc 19.09% 29.56% 20.14% 19.54%
straight 24.62 % 42.99% 24.47% 24.10%

Isf 26.84%  27.50% 25.44% 26.30%
Ipc 2471 %  22717%  26.52%  24.91%
lar 29.03%  30.13% 31.09% 29.16 %

Table 6.9: Mean error rates for all phone instances for all voices,
r = 10. We can see that MFCC as features in combination with the
Euclidean distance yields the lowest error rate.

Another phone, which was manually classified as unsuitable and
nevertheless selected, was an instance of the phone [r] as part of the
diphone [ru]. This selection can be attributed to the fact that 6 out of
a total of 7 phone pairs stem from the same word (”Februar®), where
the [u] has a very strong tendency towards [»]. This can be also seen in
the centroid distances, which are considerably high with values around
10. The remaining candidate next to the selected one has very low
intensity and a considerable amount of irregularly glottalized frames,
which makes it also unsuitable for selection. In this case, the selected
candidate was clearly the best choice.

The last phone that was manually classified as unsuitable and nev-
ertheless selected was an instance of the phone [u] as part of the diphone
[mu]. There is only one word in the recordings with that phone pair,
which is the word ”kommunistische®. In all 4 recordings of this word,
the [u] has a tendency towards [o]. Two of the candidates which were not
selected are spoken very low with irregularly glottalized frames. From
the two remaining candidates which are spoken with normal intensity,

6.4 Spectral Characteristics 95

deu dSKL dma dabs
mfcc 217% 3.07% 217T% 2.17%
straight 2.70%  4.35% 2.62% 2.61%

Isf 289% 289% 2.75% 2.84%
Ipc 257T%  246% 2.82% 2.61%
lar 299%  3.11% 3.13%  3.01%

Table 6.10: False acceptance rates for all phone instances for all
voices, r = 10.

no difference can be perceived in quality.

me Voice

It resulted that none of the unsuitable phone instances that was clas-
sified as suitable was part of any of the selected diphones. This is due
to the other criteria that influenced the final scores of these unsuitable
phone instances so that they were finally excluded.

6.4.8 Centroids from Manually Selected Phones

One natural assumption is that precisely estimated centroids should
improve the classification of the spectral quality of phones and there-
fore the quality of a corpus. To investigate that open question we used
centroids based on manually selected phones to compute the centroid
distances. As manually selected phones we used the phones that were
manually classified as suitable as described in Section 6.4.3. We then
used the centroids in the selection of diphone elements from the speech
databases of these two voices and created test sentences from these
corpora. We compared these test sentences with test sentences that
were created from corpora that were based on automatically computed
centroids based on all phones. We used the me voice because in previ-
ous experiments it had shown to be most problematic with respect to
spectral mismatches. Thus, we assumed that a speech corpus from this
voice would profit most from improved centroid quality. We also used
the fe voice to include a female voice in this investigation.
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Spectral Properties of Manually Selected Phones (me Voice)

In order to gain some insight into the spectral properties of the man-
ually selected phone instances compared to all instances of a phone,
we compared the mean distance p/; of the manually selected phone in-
stances from the centroid to the mean distance pq4 of all instances of a
phone from the centroid. The centroid is computed from all instances
of a phone. The mean distances p), and pg for each phoneme of the
me voice are listed in Table 6.11. As expected, the mean centroid dis-
tance for each phone is lower for the manually selected phones than for
all phones with a few exceptions of the phones [f], [[], and [s]. The reason
for that could be that only fricatives were classified as suitable phones
that contained no disturbing noise (like sibling noise, clicks etc). How-
ever, phones that contain such noise can still have a low distance from
the centroid as long as the correctly pronounced part of the phone is
long enough. By excluding phones with disturbing noise, is seems that
also phones with a low distance to the centroid were excluded. So it may
be concluded that for the unvoiced fricatives the automatic selection
method is more beneficial than the manual selection. Other exceptions
where no or no large improvement was reached by using the manu-
ally selected phones were [n] and [l]. We conjecture that these phones
were actually not so stationary that an unambiguous centroid could
be determined. Sometimes these syllabic phones consisted in fact of a
combination of two phones, a short [o] and an [n] or [1].
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Phone | 4/, L

B 1.77 | 2.33 Phone | i, | fa
] | 1.67 | 1.75 o] 1.68 | 2.22
] 151 | 1.92 3] 1.42 | 1.61
€] 1.68 | 1.83 [a] 1.93 | 2.55
[ 1.86 | 1.01 [a] 144 | 1.84
i 1.25 | 1.76 ] 141 | 1.89
] 1.66 | 2.10 ] 151 | 1.58
i 1.78 | 2.06 ] 1.63 | 1.93
i 1.71 | 1.64 0 1.67 | 2.45
[m] 1.64 [ 1.73 0] 2.00 | 2.75
0] 145 | 1.73 [m)] 1.37 | 1.52
0] 1.45 | 1.43 0] 1.27 | 1.70
o] 1.55 | 1.60 o] 131 | 1.63
[o] 1.43 | 1.66 o] 1.58 | 1.86
B 1.39 | 1.73 B 158 | 2.27
1] 1.78 | 2.07 1] 1.93 | 2.26
lor] | 1.82 | 2.03 B 1.67 | 1.81
5] 1.63 | 1.67 ] 148 | 1.46
] 1.74 | 1.64 m 159 | 2.18
w] | 1.75 | 2.0 o] 1.93 | 2.45
[0] 173 | 2.34 V] 158 | 2.17
v] 1.73 | 2.09 ] 1.62 | 2.11
] 1.60 | 1.93 W] 1.66 | 2.41
W] 148 | 1.78 2] 1.73 | 2.29
B 173 | 2.25 3] 1.68 | 2.03
B 1.48 | 1.83

Table 6.11: Comparison of the mean centroid distances p; of the man-
ually selected phones and the mean centroid distances pq of all instances
of a phone, on the left for the me voice and on the right for the fe voice.
Euclidean distance on MFCC was used.
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Evaluation of Corpora Based on Manually Selected Phone In-
stances (me voice)

We created a diphone corpus where the phone centroids that are nor-
mally computed from all phone instances were replaced by centroids
computed from manually selected phone instances. For the corpus cre-
ation we used the approach described in Chapter 7. We synthesised
two sets of test sentences using the two corpora based on the respective
types of centroids.

We found for the two corpora that about 20-25% (depending on
the threshold values of the centroid penalty functions) of the diphones
were selected differently when using centroids based on manually se-
lected phone instances. However, the differences in the selected phone
instances were almost not noticeable by listening to the two sets of test
sentences.

Spectral Properties of Manually Selected Phones (fe Voice)

As for the me voice, for the fe voice we also compared the mean distance
pl, of the manually selected phone instances from the centroid to the
mean distance pg of all instances of a phone from the centroid. As can be
seen in Table 6.11, the manually selected phone instances have a lower
mean distance from the centroid than all instances of the phone. One
exception occurs for the phone [f], which may also be due to disturbing
noise as in the case of the me voice.

Evaluation of Corpora Based on Manually Selected Phone In-
stances (fe Voice)

We also created a diphone corpus based on centroids computed from
manually selected phone instances and synthesised two sets of test sen-
tences. We found for the two corpora that about 15-20 % of the diphones
are selected differently when using centroids based on manually selected
phone instances. However, as for the me voice, the differences in the
selected phone instances were almost not noticeable when listening to
the two sets of test sentences.
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Comparison of the Two Centroid Types

To estimate the effect the manual selection of phone instances on the
centroid position, we investigated the difference between the respective
centroids. More precisely, we measured the Euclidean distances between
the centroids that were computed from the manually selected phones
and those computed from all phones.

Centroid Distances for the me Voice The results for the me voice
can be seen in Table 6.12. Higher distances between the two kinds of
centroids can be seen for example for the phones [3] and [z]. This is
because for these phones, only really voiced phones were chosen in the
manual selection and only 38 % for [3] and 44 % for [z] of all phone
instances were really voiced. That means that a lot of these voiced
fricatives are clearly unvoiced, so that in this case the centroid of the
manually selected phone instances represents a phone which is quite
different to the centroid which represents all phones. A higher distance
can also be observed for the phone [u:]. This may be due to the fact
that only 46 % of the phone instances were labelled as suitable during
manual classification. This means, a large share of the phones was con-
sidered as unsuitable, mainly because they sounded like the German [y]
and not like a [u:]. Maybe this rigorous classification is due to the Ger-
man native speaker background of the author and does not correctly
represent the impression of a well-pronounced English [u:]. In any case,
this large distance for the phone [uz] is most likely due to a mismatch
between how the phones are actually pronounced by the speaker and
the conception of that phone of the author who did the classification.
For the me voice it can be concluded that the centroids computed from
all phone instances correspond to a large extent to those computed only
from manually selected phone instances.
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[m] 0.44 [n] 0.49
[n] 0.58 [ae] 1.35
[o] 0.78 [r] 0.71
[r] 0.51 [s] 0.63
[s] 0.32 [u:] 0.59
] 1.19 [v] 0.63
v] 0.48 [w] 1.21
[w] 0.29 2] 1.75
(2] 1.18

Table 6.12: Fuclidean distances on MFCC' between centroids based
on manually selected phone instances z' and centroids of all phone in-
stances z. On the left side, results for the me voice are shown, on the
right for the fe voice.
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Centroid Distances for the fe Voice The results for the fe voice
can be seen in Table 6.12. Differences in the centroids are larger than
for the me voice. The large difference of the [a] centroids is due to
the fact that the phone [a] deviates considerably from the phone [az].
In the manual classification, however, phone instances that sounded
like [a:] were chosen as good representatives of the phone [a] because
the [a] phones varied to such an extent that no common other repre-
sentative sound could be identified. In total, only about 10% of the
phone instances of the phone [a] were classified as suitable, which led
to the mismatch between the centroid based on all phone instances
and the centroid based on these 10 % of the phone instances. Although
distances for the fe voice are larger than for the me voice, they are
still in the range of the variation that is typical for studio recordings
of professional speakers. Especially the first two MFCC tend to vary
more than the rest of the coefficients (see [PKO08], Fig. 10.5). To that
effect, we observed that if the first two MFCC are excluded from the
distance measure, the distances drop considerably. Therefore, also for
the fe voice the centroids computed from all phone instances are still
close to those computed only from manually selected phone instances.

6.4.9 Discussion

MFCC in combination with the Euclidean distance measure proves to
be most appropriate to represent spectral quality as it best classifies
the manually created training data (see Table 6.9). This result is in line
with the work in [WM98], where the Euclidean distance on MFCC per-
formed very good and also with [SS01], a study which is related to our
work as distance measures to detect concatenation discontinuity were
investigated. According to that work, the Kullback-Leibler distance on
power spectra had the highest detection rate of discontinuities followed
by the Euclidean distance on MFCC. It is remarkable that features
originally designed for speech recognition are also suited best for mea-
suring spectral phone quality, where one would assume that a more
detailed spectral description would be more appropriate.

The cepstra computed from the Mel-warped Straight spectrum seem
not to be well suited for our task. Looking at the Straight spectra, we
conjecture that these spectra give a too detailed representation of the
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spectral properties.

What alternatives to the Euclidean distance are concerned, we could
confirm the result from [WM98] that Mahalanobis distance improves
results for cepstral distances on a linear spectrum (like the LPC cepstral
coefficients) but not for cepstral distances on a mel-warped spectrum
like MFCC or the cepstra based on the Mel-warped Straight spectrum.
However, in contrast to that work, we could not find any improvement
using the Mahalanobis distance on line spectral frequencies.

Although it is not possible to completely separate suitable and un-
suitable instances with any measure (see Fig. 6.1 for an illustration),
experiments in Section 6.4.7 show that in practise false positives ap-
pear actually only very rarely in the final corpora. Generally, for corpus
creation, we aim to select phone instances with centroid distances as
low as possible. If a phone instance at the classification boundary is se-
lected, it is very often because the alternatives show grave deficiencies
in some other phone quality aspect. Section 6.4.8 showed that there is
no need to manually select phone instances to improve the centroids,
because centroids based on all phone instances are situated closely to
those based on the manually selected ones.

However, to evaluate phone quality, we have to be aware that a
spectral measure like the Euclidean distance on MFCC can only be
used for stationary phones and neither for voiced nor unvoiced plosives?.
Furthermore, such a measure can only cover spectral aspects. As we saw
in the exploratory experiment described in Section 6.2, other aspects

are as important and will be described in the following sections.

6.5 Phase Characteristics

For some speakers it can be observed that instances of the same phone
have very diverse waveforms although they sound similar and the cep-
stral distance between them is quite small. This diversity can be at-
tributed to considerable differences in the phase characteristics of these
phones. If such phones happen to be concatenated, an artifact may be

2For affricates, as partly stationary phones, the centroid measure can be applied
to the fricative phase, which is actually stationary.
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clearly audible from the resulting signal. An example of such a case is
shown in Fig. 6.4. A similar effect may be caused by erroneous pitch
marks. E.g. for a nearly sinusoidal speech signal it is not always clear
whether the pitch marks have to be set at the energy maxima that coin-
cide with the positive or with the negative maxima of the fundamental
wave (see Chapter 4).

Both these problems can be detected from the position of the pitch
marks relative to the phase of the fundamental wave. If this phase value
 for a phone instance differs considerably from the average phase value
ft, over all instances of that phone, one of the above mentioned cases
applies and this phone instance should be avoided.

0.057

-0.05

80 90 100 110 [ms] 120

Figure 6.4: Artifact at around 95ms in a speech signal resulting from
the concatenation of the diphones [ty] and [ye]. The speech signal is
shown on top, the corresponding fundamental waves are shown at the
bottom. The pitch marks in [v] of the left diphone are set near the
positive maximum of the fundamental wave, whereas they are near the
minimum in [v] of the second diphone.
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6.6 Fundamental Frequency Characteris-
tics

If TD-PSOLA-based Fy and duration modification is applied to speech
segments that are to be concatenated, the Fj characteristics of these
segments may cause several issues. If the Fjy at the end of one speech
segment deviates considerably from the F{y at the beginning of the next
segment that is going to be concatenated, the degree or even the direc-
tion of Fy modification required to realise a smooth contour changes
abruptly at the concatenation point. Furthermore, speech segments
with rapidly rising or falling Fy are not suited to be transformed into
segments with constant F or even with an opposite direction of Fj
movement. Thus, extreme Fjy values as well as rapidly rising or falling
Fy contours have a negative effect on phone quality.

6.7 Duration Characteristics

In concatenation synthesis, longer phones are preferred over shorter
ones since, generally, shortening impairs the quality much less than
lengthening. However, in automatically segmented speech signals,
phone instance durations that are much higher than the mean phone
duration may originate from segmentation errors. Mean phone dura-
tions and variances are computed for each phoneme, except for plo-
sives where preplosive pauses and the burst part are treated separately.
These two parts of a plosive can be easily split and are later assigned
to separate diphones, so separate treatment is appropriate.

6.8 Voicing Characteristics

In the context of speech synthesis, voicing has two aspects. First,
breathy or pressed vowels are not desirable because they do not sound
clear, and second, irregularly glottalized speech is problematic for
prosodic modification with TD-PSOLA (see Fig. 6.5, see also Sec-
tion 5.5). Therefore, we want to penalise voiced stationary phones with
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these properties. We used the output of the frame classifier presented in
Chapter 3, that decides if speech frames are voiced, unvoiced or mixed
and distinguishes between regularly and irregularly glottalized frames
and included the number of mixed frames and the number of irregularly
glottalized frames as an aspect of phone quality.

Whereas mixed frames in a voiced stationary phones give a strong
hint at breathy voice quality, mixed frames naturally occur in unvoiced
phones and plosives. Therefore, the number of mixed frames is only
considered for voiced stationary phones. Irregular frames, however, have
to be considered with voiced and unvoiced stationary phones. Irregular
frames in voiced and unvoiced fricatives hint at noise often caused by
strong low frequency signal components.
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\ L
3.34 3.35 3.36 3.37 3.38 3.39 3.4 [sec]

Figure 6.5: Synthesised speech signal of the phone sequence [te]. The
periods are marked with v for voiced, m for mized, and i for irreqular
according their frame classification. The creaky segment around 3.37s
1s clearly perceived as disturbing.

6.9 Signal Intensity

In natural speech, the signal intensity varies considerably even between
instances of the same phone. In concatenative speech synthesis, strong
variation in signal intensity at concatenation points often causes a dis-
turbing effect and has to be avoided. We learnt from listening experi-
ments that an intensity difference of 6 dB is the limit of what is per-
ceived to be still tolerable. In fact, the degree of irritation caused by
the intensity change depends on its position within the word. In the
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example speech signal shown in Fig. 6.6, a 6 dB increase of the signal
belonging to diphone [iin] sounds strongly disturbing, a 6 dB increase
of the signal belonging to diphone [on] is perceived only moderately
disturbing. Generally, a sudden intensity jump is perceived as more
irritating than a sudden intensity drop. One method to mitigate the
effect of an intensity mismatch at the concatenation point was pre-
sented in Section 5.9, where a power smoothing approach during a very
short period around the concatenation point was presented. However,
the possibilities to mitigate such a mismatch are limited, especially as a
change in intensity is often an indicator for a change in speaking style.
As a consequence, phone instances that strongly deviate from the mean
intensity of the phone should be avoided.

05F T i :I T T 3J

-0.5
(8] . . . .

_0.5' Il : :| Il Il B
0 0.2 0.4 0.6 0.8 [sec] 1

Figure 6.6: Speech signal of the word 7ihnen “, pronounced as [liznon]
where the intensity of the diphone [no] has been increased by 6 dB, which
corresponds to some doubling of the signal amplitude. On top the orig-
inal signal is shown, in the middle the applied gain, at the bottom the
modified signal.
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6.10 Loudness

6.10.1 Online Loudness Monitoring

In contrast to the aspects of phone quality mentioned up to now, loud-
ness is an aspect that has to be measured and monitored at recording
time, because loudness inconsistencies in the recordings can hardly be
corrected later. This is because speakers tend to increase their vocal
effort when speaking louder, which not only changes the loudness it-
self, but also the spectral characteristics of the voice. Since a speech
database is recorded typically for a couple of days, if not weeks, the
speaking style and with it loudness may change over that period and
must hence be monitored to ensure consistency of the recorded corpus.

6.10.2 Related Work

Loudness perception has been extensively researched in psychoacoustics
with synthetic signals, which mostly consisted of pulsed or continuous
sine waves or noise of various bandwidths [ZF99]. Nevertheless, the
application of this knowledge on audio material such as speech proves
to be difficult.

There have also been comprehensive studies on loudness perception
of typical radio broadcast signals containing a heterogeneous mixture of
music and speech including even extreme speaking styles like shouting
[SQN04, SN04]. In contrast to that, we aimed at devising a measure
for a narrowly drawn scenario, which is monitoring of speech record-
ings. The signals used in this study were confined to high quality pro-
fessional speech recordings without any noticeable background noise.
Furthermore, the loudness measure is intended to be used only in a
speaker-dependent way. This means that only relative loudness values
along the recordings of a single speaker are relevant. In particular it is
not required to compare loudness values from different speakers. One
constraint provided by the application was a very efficient computation
of the measure, as the loudness has to be monitored on-line together
with other properties of the speech during the recordings.
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6.10.3 Measuring Loudness

Our aim was to design a loudness measure that corresponds as well as
possible to the subjectively perceived loudness and can be applied to
speech signals with a length of at least a few seconds. Preliminary inves-
tigation had shown that the power of the speech signal is not sufficient
as a measure of perceived loudness. The long-term power or similar
measures like different variants of the equivalent continuous sound level
L., [ANS94] depend on the amount of pauses, or if those are excluded,
on the pause/speech discrimination threshold. The signal’s short-term
power again is strongly dependent on the phoneme. Some investigation
had been conducted on the effects of vocal loudness on signal proper-
ties like spectral tilt [SNO6], yet measuring only vocal loudness would
neglect the effect of the speaker’s distance to the microphone, which
the measure should also account for.

The Corpus

The corpus that we used for our investigations was recorded with a
French professional female speaker. The recording session took place
in an anechoic room and professional equipment was used. The level
of background noise is therefore reduced to a minimum. The sentences
were recorded with a sampling frequency of 44,100 Hz. The material
contains approximately 9 minutes of speech, split into 72 sentences.
These sentences were recorded on five different days with two different
sound engineers. On the first day, the distance between the microphone
and the speaker was too big, so that the intensity of the recorded speech
was insufficient. This was partly corrected on the second day, but it is
only from the third day on that the distance between the microphone
and the speaker was chosen in an appropriate manner. This material
allowed us to make first plausibility checks of our measures.

Distribution of Power

In a first step, we decided to study the distribution of the short-term
power within the different types of sentences. We took the 72 sentences
of the data set and computed the short-term power of the segments
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Figure 6.7: Histogram of the power for utterances recorded on the first
day (‘far’), on the second day (‘middle’), and on the following days
(‘near’).

containing speech (with silence removed). We used a window length of
5ms and a window shift of 5ms. The results are shown in Fig. 6.7.

The x-axis is in logarithmic scale, since this better matches human
perception. The x-axis does not actually correspond to any physical
unit, since the microphone was not calibrated in any way. However, the
absolute value of power (in Watts) is of no practical relevance to us,
since we are only interested in how the measurements relate to each
other. In that respect, we can clearly observe a shift of the histograms
towards the left when going from the ‘near’ sentences to the ‘far’ sen-
tences.
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Different Measure Proposals

In a second step, we proposed six different loudness measures, that
were to be correlated with subjective evaluations. These measures were
based on the following considerations:

1. Human perception of loudness is roughly proportional to the log-
arithm of the power of the acoustic signal.

2. The subjective impression of loudness seems to depend more on
the segments with high intensity than on the ones with low in-
tensity.

3. Spectral tilt is influenced by vocal loudness.

The six measures are presented below. The short-term power p; for
frame i is defined as follows:

pi= 3 G (63)

Measure 3 uses the segmental alpha ratio defined as

.
_ ik

Ij

Qg (6.9)

where I};)F and IJ(—JZ} are the signal power of frame i above and below
1kHz, respectively. For each of these measures, a window length of
50ms and a shift of 5ms were chosen. P denotes the set of p; of all

frames. The coefficient a; together with the set A is defined accordingly.

Measure 1: A first attempt was based on the histograms presented in
Fig. 6.7. The mode of the histograms seemed a good indication for
the category the utterance belongs to (‘far’, ‘middle’ or ‘near’) and
furthermore was considered a stable quantity regarding outliers:

mq(P) = m%de log(p;)- (6.10)
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Measure 2: Measure 2 is based on the assumption that only the high
power segments are relevant. We therefore take the logarithm of
the 90 % percentile of P:

Measure 3: Instead of completely ignoring low-power segments, an
intensity-dependent weighting was applied with the factor pJ,
where n was set to 0.9:

_ 2P log(pi)
X

Measure 4: Measure 4 investigates the correlation between spectral
tilt and loudness of speech. It uses the alpha ratio as defined in
Equation (6.9) as follows:

ma(A) = log(Ao.s), (6.13)

ms(P) (6.12)

where Ag 5 denotes the median of the alpha ratios a; in set A.

Measure 5: Measure 5 combines the ideas presented so far. First it
discards the lower intensities using a threshold which is defined
as a fraction of the maximal power. We define a set:

P.={p; | pi> cmgxpi}. (6.14)

We set ¢ to 0.08. The power of the remaining segments in the set
P, is then averaged and logarithmised:

ZS{EPC Si )

B (6.15)

ms(P.) = log (

Measure 6: Measure 6 is very similar to measure 5 with the difference
that logarithm is taken from the geometric mean instead of the
arithmetic mean. This confers lesser importance to the p; having
a higher value:

me(P,) = log [ 17! H si |- (6.16)
s;€P.
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6.10.4 Evaluation Method

In order to assess the measures, we correlated them with the results
from subjective evaluations. For those evaluations, a loudness match-
ing experiment was conducted using the method of adjustment [ZF99].
This method requires the subjects to adjust the loudness of a compari-
son stimulus until it matches a reference stimulus, since it is impossible
for humans to give an absolute value for the loudness of an utterance.
The power of the comparison stimulus could be changed with a slider,
applying a gain from -5 dB to +5 dB (with discrete intervals of 1
dB) until the loudness of the two stimuli was deemed equivalent. The
two stimuli were randomly drawn from the data set presented in Sec-
tion 6.10.3, which consists of 72 sentences. Each stimulus was used
exactly once, therefore the complete test consisted of 36 comparisons
where the stimuli for each comparison were randomly drawn from the
data set. By employing this pair-matching method, no fixed reference
stimulus is used, making the method less prone to bias.

The listening test was completed by 10 different subjects, leading
to a total of 360 comparisons. Fig. 6.8 shows a summarisation of the
evaluations. As can be seen from the plot, the agreement between the
subjects was quite high with an inter-subject cross-correlation 7 of 0.94.
Inter-subject cross-correlation stands for the average correlation be-
tween the evaluation of one subject and the average evaluation made
by the other subjects.

Linear regression was used with an examination of the the residual
error and the correlation coefficient to estimate the measures’ goodness-
of-fit and thus to assess their aptitude to model relative human loudness
perception. Linear regression was also used to re-scale the measures
in such a way that the difference of loudness measured between two
utterances reflects the actual difference of intensity evaluated in dB.
Linear regression was preferred to a more complex model due to our
limited amount of data.
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Figure 6.8: Bozxplot summarising the perceived difference of loudness
in dB by 10 subjects for the 36 comparisons. The bozes show the in-
terquartile interval while the whiskers show the minimal and maximal
values.

6.10.5 Results

The results of the regression analysis for the six measures proposed in
Section 6.10.3 are displayed in Fig. 6.9. To facilitate comparison of the
measures, the linearly re-scaled measures are plotted versus the average
evaluations of the test subjects. This implies that a perfect measure
(one with all error terms equal to 0) would only produce points on the
line y = .
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Figure 6.9: Results of the sixz intensity measures plotted against the
average of the evaluations made by the test subjects. The measures x;
were linearly re-scaled as By + P1x; to facilitate their comparison.
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The numerical results yielded by the regression analysis are pre-
sented in Table 6.13. Since this study is concerned with measuring
relative loudness, the results for the intercept [y are not displayed,
as [Bp only provides information about the absolute value of the mea-
sure. The second column of Table 6.13 presents the slope estimate ﬁl,
which was computed with the least-squares method. The 95 % confi-
dence intervals are also shown. These confidence intervals are given as
a percentage of Bl, so that they can be compared between the different
measures. The estimate s of the standard deviation of the error terms
in decibels is given in the third column. The value of s can be used to
derive a 95 % confidence interval for the value returned by the measure.
In the last column the correlation r is given between the measure and
the evaluations done by the human beings.

The six measures are reviewed below:

Measure 1: The results produced by measure 1, which takes the
mode of the discrete power distribution, are particularly surpris-
ing, as the correlation coefficient is almost 0. The resolution of
the power distribution is extremely low when computed for one
sentence only, such that the mode has a high random component.
This measure may yield different results when considering several
minutes of speech, but it is ineffective for short sentences.

Measure 2: Measure 2 delivers reasonably good results. However,
choosing the right percentile (90 % in this case) is critical: lower-
ing the threshold to 75 % impairs the results significantly.

Measure 3: This measure, which weights the segments according to
their power, is among the measures that perform best, along with
measure 5 and 6.

Measures 4: Measure 4 shows a positive correlation between the a-
ratio and the loudness of speech. This corresponds to the re-
sults presented in [SNOG]. However, this correlation is not strong
enough for the a-ratio to be used as a loudness measure.

Measures 5 and 6: These are the two measures that performed best
together with measure 3. The two measures are identical except
for the order in which the mean and the logarithm are taken.
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The results obtained by these two measures are also similar, with
correlation coefficients of respectively 0.94 and 0.95. The value of
the threshold ¢, which was set to 0.08 is not critical, as long as
it remains between 0.01 and 0.1. Below values of 0.01, measure 6
is susceptible to be impaired by large negative values that result
from the log of low energy segments.

Measure 5 s (in dB) r

Measure 1 | -0.07 (£401.42%) | 1.96 -0.09
Measure 2 | 3.66 (£22.08%) | 1.06 0.84
Measure 3 | 3.82 (+£12.56%) | 0.67 0.94
Measure 4 | 1.20 (£43.36 %) | 1.54 0.63
Measure 5 | 4.01 (+£12.34%) | 0.66 0.94
Measure 6 | 4.08 (£11.98%) | 0.64 0.95

Table 6.13: Regression analysis for the different loudness measures
showing the slope 31 with the 95 % confidence intervals, the standard
deviation estimate of the error s and the correlation coefficient r.

6.10.6 Loudness Correction of Recorded Corpora

For two voices, that were recorded in different recording sessions, which
lead to rather different speaking style and loudness, we made an at-
tempt to apply the loudness measure 6 to correct at least the loudness
aspect. We decided to use measure 6 since the test showed that it is
the best performing measure.

Loudness Correction of Female German Corpus

The first voice, a female German voice (fg2), was recorded in at least
six sessions with different equipment and different recording settings
(see [TH99]). Especially the sentences recorded for prosody training
are much lower than the recordings of the diphone carrier words (see
Table 6.14). We adapted the loudness of all sentence/word recordings
towards a target loudness, which was the loudness of the diphone carrier
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words. After compensation of the loudness differences, it was possible
to combine the recordings to generate a diphone corpus.

Recording session l,, [dB] | I, [dB]
German prosody sentences 1.24 0.61
French prosody sentences 0.99 0.52
German diphone carrier words | 2.69 0.90

English diphone carrier words | 2.47 0.75
French diphone carrier words 1.41 0.65
Italian diphone carrier words 2.21 0.83

Table 6.14: Mean loudness and standard deviations measured for the
different recording sessions of the speaker fg2.

Loudness Correction of Male German Corpus

The male German voice (mg) had been recorded in at least three ses-
sions with analogue equipment (see [Kae85]). Later these recordings
were digitised. The speech signals from these recordings show some
differences in intensity, as shown in Table 6.15. We applied the same
loudness compensation described above and created diphone corpora
from all possible subsets of these three recording sessions. However, we
found that neither subset from the three recording sessions could be
combined because the remaining differences in speaking style were still
too big. An additional reason for that incompatibility most probably
was the use of different recording equipment for the three sessions.

Recording session l,, [dB] | I, [dB]
Diphone carrier words | 1.65 0.83
Prosody sentences 1 2.21 0.74
Prosody sentences 2 1.52 0.56

Table 6.15: Mean loudness and standard deviations measured for the
different recording sessions of the speaker mg.
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6.10.7 Discussion

The results of our study on loudness showed that measure 6 proved
useful to efficiently measure relative loudness during speech recordings.
In combination with a surveillance of the speaker’s distance from the
microphone, this method can be used to ensure constant loudness along
with constant vocal effort. We have implemented the proposed measure
in a monitoring tool for studio speech recordings. This tool is now
actually used for speech recordings and was found to work much better
than the previous one.

Other studies in this area differ in the fact that they measured ab-
solute loudness on the one hand and on the other hand used either
synthetic signals [ZF99] or broadcast material [SQN04, SN04]. The lat-
ter contained a heterogeneous mixture of music and speech whereas
our study only used high-quality speech recordings. As a result of that
specific application scenario, our measure has not been tested for noise
robustness and sensitivity.

6.11 Characteristics of Plosives

6.11.1 Burst intensity

The most important characteristic of plosives is the burst, which is
the sudden air flow after the release of the closure. The burst has to
be strong enough to be clearly identified by the listener. In order to
determine the burst intensity, we apply a heuristic, which requires two
conditions to be met by the burst phase. First, intensity boundaries are
determined by looking at large increases of the intensity, according to
the method described in [GO07, HP10]). If no such boundary is found,
the burst is considered as too weak. Second, we look at the intensity
of the plosive in the band between 2 and 8 kHz and compare it to a
noise threshold, which is determined from the whole signal with the
loudness measure described in Section 6.10.3. If the plosive frame with
the highest intensity is below this threshold, the burst is also considered
as too weak.
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6.11.2 Plosive Aspiration

In some languages, for example in German, correct pronunciation re-
quires to articulate unvoiced plosives either with or without aspiration,
depending on the context. Therefore, we created a method to decide
from the speech signal which plosives are aspirated and which ones are
not.

From phonetics it is known (see e.g. [Lis63]) that unvoiced plosives
with a voice onset time (VOT) greater than some 50ms are clearly
heard as aspirated, whereas no aspiration is heard if the VOT is less
than 20ms. To assess the aspiration of unvoiced plosives, we have to
detect the release point and the start of voicing. This is illustrated in
Fig. 6.10. The release point, which is the boundary between the closure
and the burst, is determined by looking for the point of maximum
increase of the power in the band from 2 to 8 kHz (see [GO07, HP10]).

The start of voicing is detected from the intensity of the fundamen-
tal wave. The fundamental wave can be achieved from the convolution
of the speech signal with a Hamming window of the size of the period
length Ty as described in Section 3.2.1. The intensity of fundamental
wave is then computed as follows:

(i) = \/ Zj[f(j).- u(j —1i)] 617)

22 ul(d) ’

where f(7) is the fundamental wave at sample j and u(+) is a Hamming
window of length 27} centred at 0. From this intensity curve the start
of voicing is detected by means of a threshold that depends on an
estimate of the speech loudness. Finally, the difference between the
start of voicing and the release point yields the required VOT.

The information about the plosive aspiration, which is retrieved
with this method, is used to improve the segmentation of the speech
databases by correcting the labels of aspirated and non aspirated plo-
sives if necessary.
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Figure 6.10: Estimation of the VOT in a speech signal (top plot) with
the phones [tail. The fundamental wave is shown in the middle plot.
The mazimum power change curve (dashed, bottom plot) defines the
release point at 10ms. The intensity of the fundamental wave (bottom
plot) crosses the threshold at 68 ms. Therefore, the VOT is greater than
d0ms and the unvoiced plosive is considered to be aspirated.
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6.11.3 Determining Spectral Quality of Plosives

An experiment to use the centroid measure to characterise the quality
of unvoiced plosives has been conducted with fg voice. Although for
the plosives [t] and [t"] the centroid method seemed to give some rea-
sonable results, for all other plosives the results depended strongly on
the subsequent phone. We refrained from further experiments, because
of strong hints that the centroid method for plosives would be very
susceptible to coarticulation effects.

6.11.4 Preplosive Pauses

The first diphone corpora did not distinguish between transitions of
phones to different plosives (see [Kae85]), primarily to keep the num-
ber of different diphones low to reduce corpus size. However, it can be
observed that in most cases only from the articulation of the phone that
precedes the preplosive pause the character of the subsequent plosive
can be determined®. Therefore, in the context of diphone synthesis, it
is important to distinguish the transitions from a phone to different
preplosive pauses, otherwise misleading hints of a different plosive than
the one following may disturb the listener. To distinguish these tran-
sitions, we introduced individual transcriptions for different preplosive
pauses in our system. We extended the TPA symbols by denoting a
preplosive pause that pertains to a plosive by placing a dot under the
corresponding plosive, as dots denote pauses in IPA. So the preplosive
pause of the plosive [b] is written as [b].

6.11.5 Plosive Elisions

Elisions are most common in the simplification of consonant clusters
(see [Jon03]). If we consider the case of two subsequent plosives where
the first plosive is elided, we observe that the character of the elided
phone is determined from the articulation of the phone that precedes
the preplosive pause. Only the second plosive is articulated with a

3This is because already during the articulation of the preceding phone, the
articulators move according to the plosive’s place of articulation.
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proper burst. This means, in plosive elisions the phone that precedes
the preplosive pause gives the impression of a different burst to follow
than actually follows because of the elision. E.g. the plosives [p] and [t]
of the at the word “uptake” are realised first with a transition from [a]
to a [p], where the [p] is not realised and second, with the plosive [t"].

Preplosive Pauses of Elisions

As a first idea, the usage of explicit preplosive pauses as presented in
Section 6.11.4 seems sufficient. However, the mean durations of preplo-
sive pauses differ considerably depending on whether an elision follows
or not. Depending on the speaker and the language, preplosive pauses
that are followed by an elision are lengthened by up to 124 % compared
to preplosive pauses followed directly by their plosive (see Tables B.3
to B.2 in Appendix A). Thus, for the selection of diphone elements it is
preferable to distinguish preplosive pauses that are followed by elisions
from preplosive pauses that are followed directly by their plosives.

If no such distinction was made, preplosive pauses would have to
be strongly lengthened. This would lead to audible artifacts, as preplo-
sive pauses in many cases are no real pauses that contain exclusively
silence. Especially with voiced plosives, the preplosive pauses often con-
tain clearly audible speech. However, if preplosive pauses from the con-
text of elisions are used, no extensive lengthening is required.

Introduction of Additional Preplosive Pause Transcriptions

As a solution to the problem described in the previous section, partic-
ular transcriptions for preplosive pauses that appear in the context of
elisions were added to the notation that is used in our system. Bursts
that are elided are denoted with two dots under the corresponding plo-
sive. For example, an elided [d] is noted as [d]. Using again the example
mentioned above, in which the phone [p] is elided in the context of [q]
and [e1], the plosive [p], that is not audible, is written as [p]. So the
phone sequence for the word “uptake” is written as [aptPerkk!]. For

the selection of diphone elements from speech databases, the bursts
that are inaudible due to an elision had also to be introduced in the
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segmentations of the different recordings.

6.11.6 Voiced Plosives after Pauses
Humming Sound Effect

For some speakers, voiced plosives after pauses, mostly at the beginning
of sentences, show a short phase of “humming” (see Fig. 6.11). This
humming sounds like an [m] before [b] and like an [n] before [d] and like
an [g] before [g]. The segmentation erroneously considers this humming
to be part of the burst and sets the phone boundaries accordingly.
If these plosives are later used as diphones, this humming sound has
a disturbing effect on the listener. Even worse, if the diphone that
contains the plosive is shortened, the shortening takes place at the end
of the plosive. This is because the beginning of the plosive is assumed
to contain the beginning of the burst, which should not be modified.
In this special case, however, this assumption causes the the burst to
be cut off as the burst is actually located at the end of the plosive. As
a consequence, only the humming sound and no burst is audible in the
synthesised signal.
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Figure 6.11: Voiced plosive [d] following silence at the beginning of a
sentence, recording from the fg voice. The humming sound before the
burst occurs from 0.3 to 0.35 s. Voicing information per period is shown
on top: unvoiced (u), voiced (v), mized (m) and irregular (i) periods.
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Detection of Humming Sound Cases

To detect these cases of humming sound in the context of voiced plosives
after a pause we rely on the frame classification introduced in Chapter 3.
We found that most of the affected plosives show a particular voicing
pattern, that is irregular frames, followed by voiced frames, again fol-
lowed by unvoiced or mixed frames. More precisely, formulated as a
regular expression, the pattern is (irregular*voiced™) ™ (.)* where
the dot stands for any classification.

We found that for the fg voice, which was most problematic in this
respect, there was a clear improvement through this heuristic humming
sound detection. Bursts, that were occasionally cut off before, were
clearly audible when penalties were applied to plosives that had the
typical humming frame pattern. One typical example from the fg voice
is shown below. Before the correction, the problematic diphone shown
in Fig. 6.11 was used with the burst part of the [de:].a diphone cut off.
After the correction, a more suitable plosive diphone was selected with
a proper burst (see Fig. 6.12).

6.12 Characteristics of Fricatives

6.12.1 Glottalisation in Fricatives

Glottal stops often introduce noise towards the end of preceding frica-
tives. This noise is caused by creaky voice phonation, which can often
be observed in phones that precede a glottal stop (see [LM96]). A typ-
ical example can be seen in Fig. 6.13. The frame classification method
presented in Chapter 3 enables us to characterise fricatives in terms of
glottalisation quite reliably.

6.12.2 High Frequency Noise in Fricatives

For a particular voice, a French female speaker, we observed that an
exceptional high number of fricatives contained high frequency noise
like whistling or hizzing. We developed a noise detection method for
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Figure 6.12: Synthesised words “in der“ ([indere]) with the burst phase
of the semi-diphone [de:].a cut off in the top plot (shaded grey). In the
bottom plot, the same words synthesised with a more suitable diphone
(shaded grey). Voicing information per period is shown on top: unvoiced
(u), voiced (v), mized (m) and irregular (i) periods.

that particular voice (see [Sim08]), where we distinguished sibling, fiz-
zling, buzzing, and gliding noises. This detection method was based
on spectral features and autocorrelation in high frequency components
and reached a classification rate of 73.48 % on a training and test set
of 265 and 132 fricatives, resp. However, this classification method was
speaker-dependent, as it relied on the estimation of some parameters
from the noisy fricatives of this voice. In an attempt to extend this
method to speaker-independence, we faced the fact that all the other
voices that were available to us almost did not contain any high fre-
quency noise in fricatives, thus making it impossible to find a sufficient
amount of training material for a speaker-independent classifier. On
the other hand, this lack of noise in fricatives was also good news, as
for the four voices that we used for corpus generation high frequency
noise in fricatives did not pose any problem.
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Figure 6.13: Speech segment [ufla] of female German fg voice. Voicing
information per frame is shown on top: unvoiced (u), silence (s), voiced
(v), mized (m) and irregular (i) periods. The noise after 12.25s in
the fricative [f] followed by glottal stop around 12,33 s is classified as
irregular speech.

6.12.3 Mixed Excitation in Voiced Fricatives

Voiced fricatives contain both voiced and unvoiced signal components.
Some speakers, however, tend to substitute voiced fricatives by their
unvoiced counterparts*. These fricatives do not contain voiced signal
components and can be identified by a low rate of mixed frames. Voiced
fricatives that are properly realised, on the other hand, contain a high
rate of mixed frames, although typically not all frames will be classified
as mixed. Therefore, the rate of mixed frames can be used as a feature
to measure quality of voiced fricatives (see also Section 6.8).

6.13 Discussion

We extended the concept of phone quality from a purely spectral as-
pect to a set of several, partly orthogonal aspects. Furthermore, features
were determined to quantify these aspects so they can be combined to
a single phone quality score. Actually, two possibilities for this combi-
nation will be proposed in Chapters 7 and 8.

Apart from a precise characterisation of phone properties in the
post-processing step of speech recordings, the flip side of this approach

4This is a frequent phenomenon for speakers of German from Switzerland, Aus-
tria and the southern regions of Germany.
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was also touched, namely to improve recording quality in the first place.
Loudness emerged as an important point, as it may not be possible to
correct loudness variations belatedly as we reported in Section 6.10.6.
Loudness is one feature to be monitored during speech recordings, an-
other property could be speaking style, including speech rate and pitch.
Vocal fatigue could also be monitored to determine the point of time
for the recordings to be interrupted, as vocal fatigue influences the
speaking style as well. Actually, a tool to determine vocal fatigue was
intended to be implemented in the framework of this work, however, the
lack of sufficient data refrained us from completing this task®. Finally,
recording quality could be improved with an automated detection of
click and smack sounds that speaker often tend to produce if they did
not drink enough during the recordings. However, this task is a very
challenging one, as these clicks and smacks are very subtle and hard to
distinguish from intentional plosives and glottal closures.

5Speech recordings normally are interrupted as soon as vocal fatigue is noticed
by any of the recording staff and continued once the voice talent has refreshed.




Chapter 7

Combining Phone
Quality Aspects With a
Linear Approach

In this chapter, we present a simple method to combine the phone
quality features described in Chapter 6. We used penalty functions
on these features and designed these functions in a way they can be
added to create a single measure for each phone. We then used this
measure to select diphone sets from four different speech databases. The
quality of these diphone sets was demonstrated by means of synthesis
examples enclosed in [EP11] and showed that the proposed measure can
be applied to automatically select from a speech database all necessary
diphones for high-quality speech synthesis. The use of penalty functions
described in this approach is a simple heuristic method, that does not
require training data and gives reproducible and transparent results.
A more complex approach to combine phone quality features based on
machine learning will be presented in Chapter 8.
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7.1 Penalty Functions

The penalty functions presented in this chapter transform the values
of the features described in Chapter 6 into a penalty value. For phone
quality assessment in the context of diphone selection, we want to as-
sign a very small penalty value (less than 1) to a phone if the aspect
under consideration is within limits of acceptability from a perceptual
point of view, and a high penalty otherwise. This concept is reflected in
the various exponentiations that are used in the computation of these
penalty values. To obtain one value for the overall quality of a phone,
the sum of these penalty values is taken.

7.1.1 Spectral Penalty

According to the results on spectral characteristics presented in Sec-
tion 6.4, we used the Euclidean distance on 12-dimensional MFCC,
whereby the zeroth cepstral coefficient was neglected. From experi-
ments we found that phone instances with a distance h < 2 from their
corresponding centroid still are perceived as very clear. Therefore, we
designed a function that strongly penalises phones with higher distance
values:

P(h) = exp(0.4(h — 2)) (7.1)

The exponentiation factor of 0.4 accounts for the steepness of the
penalty function increase, with a higher factor leading to a more rapid
increase. As we subtract 2 from the centroid distance value h the
penalty function takes the value 1 for a centroid distance of h = 2.

7.1.2 Phase Penalty

Considerable differences between the phases of phones should be
avoided (see Section 6.5). An example of such a case is illustrated in
Fig. 6.4. Therefore, considerable deviations of the phase value ¢ for a
phone instance from the average phase value p, over all instances of
that phone should be penalised. With the phase values expressed in
radians, we apply the following penalty function, which is illustrated in
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Fig. 7.1:
P(p) = (3- (¢ — p))"* (7.2)

The exponentiation factor of 4 accounts for the steepness of the penalty
function increase. The function should be relatively flat for phase values
that are still tolerable (from —0.3 to 0.3) and then rise sharply to
penalise higher phase values. This function behaviour should model the
acoustic effect of the phase differences: small differences in the phases
of phones are inaudible, whereas a phase difference of 0.5 has a strong
disturbing effect. Of course, the factor of 4, which is used here, is only
a rough estimate to obtain the desired function behaviour and not a
precise value. Finally, the multiplicative factor of 3 is chosen to scale
the function in a way that the value 1 is reached when the values for
the phase difference start to become unsuitable.

7.1.3 Fundamental Frequency Penalty

To account for the effects of unsuitable Fjy contours as described Sec-
tion 6.6, we have defined two penalty functions. The first one penalises
phones with a fundamental frequency that considerably deviates from
ttr, which is the mean value over all instances of that phone:

Pi(Fy) = (10 |f — pg)® (7.3)

Note that the logarithm of Fj is used, which makes the formula equally
valid for male and female voices. Therefore, the mean Fy value over all
N frames of a phone instance is f = + Y, (log Fy(n)). The exponential
and multiplicative factors are used in the same way as in Formula 7.2.
Again, a penalty value of 1 should be reached for deviations from p
that may cause a disturbing acoustic effect.

The variation of Fy within a phone instance is expressed with the
temporal derivative and results in the second penalty:

Py(Fp) = exp(200(f' — s + o)) +exp(100(f' = pj +0,)), (7.4)

where f' = % 3" |log Fy(n)—log Fy(n—1)| is the mean absolute deriva-
tive of the F{y of this phone instance and - and oy are the mean and
standard deviation of f’ over all instances of that phone. Similarly, f’
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Figure 7.1: Penalty function for the phase characteristics. The x-axis

represents the difference of pitch mark phase ¢ from the average phase
value py, in radians.

is the mean over the highest 25 % of the components that contribute
to f/, and p 7 and o, are the mean and standard deviation of J' over
all instances of that phone.

7.1.4 Duration Penalty

To prefer longer phones over shorter ones and at the same time to reject
phone instance durations that are much higher than the average phone
duration the following function was designed:

P(d) =10 [logd — (ua + oa)|’ (7.5)
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This function prefers phones that are one standard deviation o, longer
than the mean duration value pg (see Fig. 7.2). Note that durations
are in seconds and are used in the log domain, thus the mean duration
of J phone instances is pq = %Z] logd; with j =1...J.

45

25}

1.5

0.15 [sec] 0.2

Figure 7.2: Penalty function for the duration characteristics, plotted
on a linear time scale. The vertical dotted lines represent the standard
deviations from the mean duration py at 0.08s, shown by the dashed
line. If a log scale instead of a linear scale is used for the duration, the
penalty function is symmetric around py + o.

7.1.5 Voicing Penalty

We used the number of mixed frames and the number of irregularly
glottalized frames of a phone as described in Section 6.8 to design two
penalty functions. The number of mixed frames V,, and the number of
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irregularly glottalized frames N; of a phone with N frames is considered

as follows:
N, m + N, i

N

In this penalty function the number of mixed and irregularly glottalized
frames is weighted linearly. A penalty value of 1 is reached if one out of
20 frames is mixed or irregularly glottalized. This penalty function is
applied on voiced stationary phones except voiced fricatives. As irreg-
ularly pitched frames of neighbouring phones are often a sign of non-
standard voice quality of a phone, like creaky or stiff voice, the same
penalty function is applied to neighbouring phone instances. As the
influence of the irregularly glottalized frames of neighbouring phones
however is not as strong as from the irregularly glottalized frames of
the current phone, this penalty is weighted with a factor of 0.2. For
unvoiced stationary phones, only the number of irregularly glottalized
frames N;, is considered in the penalty function as mixed frames nat-
urally occur in those phones.

P(v) =20 (7.6)

7.1.6 Penalty for Plosives

In Section 6.11.1 we presented a heuristic to determine whether the
burst of a plosive is distinctive enough. If this is not the case, a high
penalty constant is added.

7.1.7 Penalty for Fricatives

As described in Section 7.1.5, for voiced fricatives the penalty function
only included the number of irregular and not the number of mixed
frames. Otherwise fricatives are treated as regular stationary phones,
thus no additional features are applied.

7.1.8 Signal Intensity Penalty

From the experiment in Section 6.9 we have seen that a difference in
short-term signal intensity of more than 6 dB is perceived as disturb-
ing. Therefore, we penalise stationary phones with a short-term signal
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intensity g that differs more than 3dB from the average intensity s,
over all instances of this phone:

P(g) = (0.2 (9 — py))* (7.7)

7.2 Combination of Penalty Functions

From the above described penalty functions that penalise various phone
aspects individually, an overall score has to be derived. As already men-
tioned, the set of aspects to be applied depends on the type of phone.
This is not a problem, because in the context of diphone selection we
only have to compare instances of the same phone and not arbitrary
phones. Furthermore, the overall score does not have to represent an
absolute or even interpretable value. The overall score is only needed
to rank instances of the same phone.

As overall score we used the sum of the penalty values resulting from
the functions given in Chapter 7.1. No normalisation of these penalty
functions was applied as the penalty functions are designed in such a
way that the limits of acceptability for each aspect that the penalty
functions describe range around the same value.

For the development of the penalty functions we used an interac-
tive tool, which allows diphone instances to be selected from a ranked
list and to be used in synthesis. Each diphone can be played in differ-
ent contexts to subjectively judge its quality, not absolutely but only
with regard to the rank order. In this way, we were able to identify
aspects that strongly influence synthesis quality and therefore had to
be integrated into the phone quality measure.

7.3 Automatic Diphone Set Extraction

Given a speech database, which means a sufficiently large collection of
recorded sentences and the corresponding text, the automatic process
for diphone extraction comprises the following steps:

1. Phonetic transcription: The phonetic transcription of the text
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is generated with the SVOX speech synthesiser. This synthesiser
allows for various types of outputs, amongst others a phonological
transcript that includes the phonetic transcription of the words
augmented with abstract prosodic information such as syllable
stress level and phrase boundaries.

2. Segmentation into phones: Based on the phonetic transcription,
a fully automatic HMM-based segmentation of the speech signals
is performed as described in [HP10].

3. Definition of diphone set: The list of all phone transitions in the
recordings is extracted from the segmentation. Note that this list
cannot be compiled from the phonetic transcription, because only
after the segmentation we know which words are separated by
pauses. In these cases there is no direct transition from the last
phone of a word to the first phone of the next word.

4. Computation of phone scores: The scores of all phone segments
are computed as described above!.

5. Computation of diphone scores: The score of a diphone is based
on the scores of the respective phone instances that are combined
with a sum of squares. The sum of squares results in higher val-
ues for extreme scores. As we take the phone instances with the
smallest combined score, extreme values for phone instances are
disfavoured.

6. Setting diphone boundaries: A diphone boundary, which should
be somewhere in the middle of a phone, is defined as the point
with minimal cepstral distance from the corresponding phone cen-
troid. We have found that for robustness reasons the distance
measure has to consider several weighted frames. This method is
applicable only for stationary phones. For plosives the diphone
boundary is set right before the release point.

1The computation of these scores requires random access to the data of all phone
instances of one complete recording. Randomly accessing this data, which consist of
more than 250 MByte per recording, in memory proved to be prohibitive. Therefore,
that data was stored in a MySQL database enabling us to use nested SQL queries
to speed up the the computation of the scores.
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Finally the best-scored instance of each diphone is extracted from the
speech signals.

7.4 The Speech Databases

We applied our diphone extraction method to four speech databases:
one from a female German speaker (fg), one from a male German
speaker (mg), one from a female British English speaker (fe) and one
from a male American English speaker (me). These databases contained
sentences of various length. The overall length of the speech signals were
150 minutes for the female German and the male English database, 85
minutes for the female English and 45 minutes for the male German
one. The two English databases and the female German database were
recorded recently with professional studio equipment. The male Ger-
man database was recorded in the early 1980s in the framework of the
work described in [Kae85] with analogue equipment and later digitised.

7.5 Evaluation

From the four databases listed in the previous section, we created di-
phone sets in a fully automatic way as described in Section 7.3. In
order to assess the quality of the resulting diphone sets, we used them
to synthesise example sentences. In order to exclude possible artifacts
in the synthesised speech signal that may originate from weaknesses of
other components of the synthesis system, for example from prosody
control, we synthesised the example sentences as follows: First, we se-
lected a small set of sentences from each of the four databases. Note
that these sentences were excluded from the above described diphone
extraction. From these sentences we then extracted the prosody, which
comprises the durations and the Iy values of the phones. This allowed
us to use diphone concatenation to generate synthetic speech with nat-
ural prosody.

The results from this experiment were as follows: The example sen-
tences produced with the female German and with the female English
diphone sets showed very little distortion and sounded quite natural.
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More distortions were audible in some of the examples from the male
English diphone set, others were virtually free of defects. The example
sentences from the male German diphone set showed more defects than
those from the other three diphone sets, possibly because the size of
the male German database, which contains only 45 minutes of speech,
is rather limited. We demonstrated our results by means of examples
enclosed with [EP11]2.

This evaluation clearly lacks formality. But the linear approach to
combine phone quality aspects, which was presented in this chapter, is
only an intermediate solution, which is included for its simplicity and
effectiveness. In a next step, it is replaced by a machine learning ap-
proach, which is presented in the following chapter. From a comparison
of example sentences it is clear that this machine learning approach
results in much higher quality. Therefore, we performed a formal eval-
uation only for the machine learning approach.

7.6 Discussion

The quality of the synthesis examples shows that our proposed phone
quality measure can be applied to select a high-quality diphone set
from a speech database. This simple heuristic method is effective and
practicable as it does not require training data and gives reproducible
and transparent results. Moreover, weights and parameters can be eas-
ily included for example to shift penalty to one aspect that should be
especially avoided with a particular voice. Nevertheless, this simple way
of feature combination may not entirely represent the perceptual im-
pression as some features may exhibit interdependencies that are not
accounted for in this approach.

Thus, a machine learning approach would be desirable to weight and
combine the features. However, the approach to create an appropriate
data set for the training of such an approach is not obvious: many
problems like few training data, unbalanced data and undefined feature
values will be tackled in the following chapter.

2http://www.tik.ee.ethz.ch/spr/test_sentences/




Chapter 8

Combining Phone
Quality Aspects With a
Machine Learning
Approach

The approach presented in Chapter 7 has two serious limitations. First,
the penalty functions for the phone characteristics are motivated by
acoustic inspection, and second, merely taking the sum of the penal-
ties may not entirely represent the perceptual impression. Therefore,
we aimed at replacing these penalty functions by a machine learning
approach to weight the features and combine them in a non-linear way.

The first section of this chapter describes the generation of the train-
ing data and the difficulties associated with this data. Next, we eluci-
date the problem of how to classify variable-sized feature vectors and
introduce a modification to ANN that can handle this kind of feature
vectors. The features that were finally used as inputs to the ANN are
motivated and characterised afterwards. Eventually, it will be outlined
how the optimal network configuration and parametrisation was deter-
mined. A detailed account on this elaborate process can be found in
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Appendix C.

8.1 Training Data

The approach to create an appropriate data set for the training of such
a machine learning approach is not obvious. As training data semi-
diphone or phone instances that are manually classified as suitable or
unsuitable for diphone corpora are required. First, the phone instances
should be evaluated in a prosodically modified context, because one im-
portant aspect of phone quality is suitability for prosodic modification.
Then, the scenario should be realistic, in other words, the phone in-
stances should be classified in a similar context as the one they are later
used in. Furthermore, all aspects of phone quality (not just spectral
quality, for example) should simultaneously play a role in the manual
classification. This is a crucial point, because if we judge the particular
aspects in an isolated way, we do not gain any information about how
to combine these aspects for an overall score, leaving us in the same
situation as with the linear approach. Eventually, the manual classifica-
tion process should be relatively simple and fast to allow the generation
of a sufficiently large number of training data. The classification should
be reproducible and should allow phone instances to be excluded for
one or the other reason.

8.1.1 Generation of Training Data

We extracted the phone sequence and natural prosody from recorded
sentences and used randomly selected diphones to resynthesise these
sentences. We used the complete recordings from each speaker to cre-
ate corpora that contained all diphones that can be possibly extracted
from these recordings. Natural prosody was deemed advantageous as
negative effects that could arise from errors in the predication of arti-
ficial prosody were avoided.

We used the four voices listed in Section 7.4 with a set of 10 to 14
sentences per voice and synthesised various versions of these sentences
with different randomly selected elements. The author then manually
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classified individual phone elements (semi-diphones) into the categories
suitable and unsuitable. To allow fast and convenient classification,
a Wavesurfer plug-in was written that allows listening to the semi-
diphones in varying context and shows some information about the
semi-diphones. For a detailed description on the number of sentences
and number of phones that has been classified for each voice, see Ta-
ble 8.1. In total, 15,761 phones were manually evaluated, 4,269 were
classified as unsuitable instances, 10,879 were classified as suitable in-
stances and the rest (613 instances) was excluded, mostly because the
phones were too short for their quality to be properly judged. The au-
thor, who evaluated the phones, was very familiar with the four voices
and their particular characteristics and weaknesses.

voice | total number of sentences | total number of phones
fa 52 4533
me 30 2868
fe 40 3707
mg 42 4653

Table 8.1: The number of sentences and number of phones that have
been manually classified for each voice.

The voices that were used to generate the training data cover in
fact different aspects of phone quality. The mg voice contains many
mixed segments, which nevertheless sound acceptable. Also the inten-
sity of the mg recordings varies considerably more than for the fg and
fe voices. The fg and fe recordings contain many irregularly glottalized
segments that sound unacceptable if they are used out of their original
context. The me voice has a high variability what the pronunciation of
stationary phones is concerned.

8.1.2 Data Difficulties

Although using prosodically modified diphones as basis for the training
data is clearly better than using unmodified diphones, the problem
remains that some undesired properties of phones can only be detected
through a specific kind of prosodic modification. A semi-diphone may
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seem suitable within one specific context, however, in a different context
it may turn out problematic. E.g. a very short phone may seem suitable
in a context where it is used as a short phone, however when it is used as
a long phone it turns out to be absolutely unsuitable. The same aspect
applies for fundamental frequency, where a diphone with very low Fj
may sound acceptable in a context with low Fj yet sound disturbing
in a context with high Fy. Also diphones with irregularly glottalized
periods may sound acceptable within a certain context and turn out to
be disturbing in a different context.

The manual classification task required a high level of attention
and proved to be rather tedious, as it was necessary to listen very care-
fully to correctly identify the semi-diphones that were responsible for
the artifacts. This was impeded by psychoacoustic effects that made
the localisation of unpleasant effects difficult, often it was necessary
to listen several times very carefully. We manually double-checked the
whole data after training a classifier as described in the remainder of
the chapter and investigating contradictions between manual and auto-
matic classification. But still, as a consequence of the difficulties listed
above, there were inherent contradictions in the data.

Another downside of this approach, which arose during the classifi-
cation, was that due to the random selection of the diphone elements,
the training data are unbalanced in terms of suitable and unsuitable
phones, as for an average voice suitable phone instances outnumber
unsuitable phone instances.

8.2 Classification of Variable-Sized Fea-
ture Vectors

We distinguish different types of phones (voiced stationary, unvoiced
stationary phones, voiced plosives and unvoiced plosives), which have
common features like their duration, mean energy or maximum energy
but also features that only apply to one particular type, like the phase
offset for voiced stationary phones or the centroid distance for station-
ary phones. For the linear combination approach this did not pose any
problem, because for every phone type the scores were computed with
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different combinations of penalty functions. However, if one single neu-
ral network should be used for the suitable/unsuitable classification,
we had to cope with variable-sized feature vectors due to actually un-
defined feature values depending on the type of phone.

A related issue to variable-sized feature vectors is the problem that
some of the input values may be missing for some of the input patterns.
The simplest solution is to discard those patterns [RM99], if first, the
data quantity is large enough, and second, the mechanism which is
responsible for the omission of data values is independent of the data
itself. However, neither is the case for our data. Actually, every input
pattern has at least one missing input value, thus there are no patterns
which have valid input for all values and we would have to drop all
patterns.

The second requirement, that the mechanism which is responsible
for the omission of data values is independent of the data, also applies
for the common heuristics, to 'fill in’ the missing values with, for ex-
ample, the mean of the corresponding variable over those patterns for
which its value is available. In addition, creating artificial data from
some more or less elaborate model would on the one hand blur infor-
mation and on the other hand would content-wise not be intuitive, as
we would for example generate artificial burst duration values for all
kinds of phones or Fy-derived values for unvoiced phones.

8.3 Gate Neural Networks

To solve the problem of undefined feature values we devised a neural
network variant based on back-propagation. The requirement was that
non-existent input values should not have any influence in the compu-
tation of the output and that any weights that originate from the input
node with the undefined input value should not be updated. Concep-
tually, gates that are connected with every input are either open with
no effect if the input feature exists or inhibit the input if the feature
does not exist. The inhibition of a particular input ¢ in the forward-
propagation phase has the effect that for the weighted sum of inputs
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ap = ijka:j, (8.1)
j=1

that is fed into the activation function g(ax) of every node k in
the second layer, the term w;,x; is excluded. In the back-propagation
phase, the weight w;j of the inhibited unit is not updated.

This gate function can be easily implemented by setting the input
x; = 0 if the feature is not defined. Note that this step has to hap-
pen after normalisation, if any normalisation is applied to the input
values. As a consequence, the influence of the inhibited input 4 in the
weighted sum of inputs in Formula 8.1 becomes zero. Also in the back-
propagation phase, the weight update Aw;; = —nd;z; is zero because
x; = 0. Therefore, the weight that originates from the prohibited unit x;
is not modified. This implementation leads to a different interpretation
of the gate aspect in combination with normalisation. If we normalise
the input values to mean value 0 and set the value of a undefined in-
put to 0, we do not indicate a bias in any direction for that particular
undefined input.

Actually, we chose neural networks because they proved to be the
only classifier that could be modified to cope with undefined inputs in a
suitable way without using one of the approaches listed in Section 8.2.
As a proof of concept for this kind of implementation using gate func-
tions, we created several simple classification problems, where for a
certain percentage of the input patterns one of the input dimensions
was not defined. The Bayes error rate can be computed for the different
input dimensions, thus the overall Bayes error rate can be computed
from these individual error rates. One of these experiments is given in
Section C.1 in Appendix C.

So-called input gates had been used for neural networks before, for
example in [MNH98]. However, the objective of input gates in that work
is completely dissimilar to our work. In that work, functions, that were
called input gates, were used to produce weights for the neural network
input values. The input values were multiplied with these weights that
take values between 0 and 1, depending on the relevance of the input.
The objective of that work was to identify relevant input (in terms of
interpretation) to the network and to avoid superfluous inputs, in order
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to make the network more robust.

Another type of ANN that involves gates is also completely unre-
lated to the way we used input gates ([JJ94]). In that work, gates were
used to treat problems in a divide-and-conquer manner. The input is
processed independently by several expert subnetworks and the gates
provide weights to blend the results of these expert networks.

8.4 The Neural Network Inputs

8.4.1 Phone Context

The probability distributions of phone properties are strongly influ-
enced not only by the phone type itself, but also by the context of the
particular phone. For example, the phone duration is on average higher
if a phone is followed by a pause. Therefore, we not only considered
different phone types, but also their context for the classification. This
context information, which is highly relevant for the classification, is
described with predicates, which are used as additional features to the
neural network.

We analysed the data described in Section 8.1 for systematic differ-
ences between suitable and unsuitable phone instances depending on
their context and designed predicates to describe that context. The con-
text information is based on the phonetic information that we obtained
from the phone segmentation of the speech data (see Chapter 7.3). In
the end, we used the following 14 predicates to characterise phones and
their context:

isGlottalClosure Glottal closures tend to be irregularly glottalized,
much more than any other phones.

isVoicedFricative Voiced fricatives contain a high share of mixed
frames.

isPause Pauses differ from all other phones in that intensity should
be as low as possible. High intensity in pauses may be due to
noise caused by breathing. In contrast, for all other phones, the
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intensity of a suitable phone instance should be not too far from
the mean intensity to avoid intensity discontinuities.

For pauses, it can be seen from histograms of the data described
in Section 8.1 that intensity is an important criterion for quality.
Suitable pause instances have significantly lower mean and max-
imum intensity. On the other hand, for non-pause phones, this is
not the case.

isPreplosivePause As for pauses, also for preplosive pauses, the
intensity should be as low as possible. High intensity in preplosive
pauses may be due to noise like clicks and smacks. Furthermore,
often the fundamental wave of the preceding phone (if voiced) is
still present at low intensity in the preplosive pause. If duration
has to be manipulated for PSOLA, unpleasant effects can occur
is these fundamental wave periods are repeated too often.

isPhoneTrill We observed from the data described in Section 8.1
that for trills like the phone [r] more deviation from the means is
tolerated in terms of irregularly glottalized frames, mixed frames,
centroid distance, and energy.

isPlosive For plosives some stationary features are not defined, like
the centroid distance.

isNasal For the phones [n] and [m] and [y] more deviation from the
means seems to be tolerated in terms of centroid distance and
fundamental frequency.

isFollowedByPause Diphones that have a pause as a second part
are used after strong phrase boundaries and therefore tend to be
synthesised with longer durations. Therefore, this context has to
be known to select phones with a longer duration, which are more
suitable in that particular context.

isVoiced This predicate groups the phone instances into voiced and
unvoiced phones.

isAffricate Affricates are plosives with a prolonged and stronger pe-
riod of frication after the release than ordinary plosives. For this
stationary fricative part, a centroid distance can be computed,
which can be used to characterise the affricate.
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isPhoneV As for trills, we noticed from the data described in Sec-
tion 8.1 that for the phone [v] a higher deviation from the means
is tolerated for certain features.

isFollowedByPreplosivePause Phones before a plosive are often
influenced by that plosive. We observed that these phones show
different spectral properties and a tendency to contain more ir-
regular and mixed frames.

isPhoneSchwa We had the impression that for schwas larger devi-
ations from the centroid are tolerated.

diphonePart This predicate contains the information whether the
first or the second part of the phone instance is used in the di-
phone. This predicate allows a more accurate description of the
context. For instance, the information that a phone is followed by
a pause has a stronger influence on the duration if the second part
of the phone instance in combination with the following pause is
used.

8.4.2 Phone Properties

Basically we wanted to use all the information that was used in Chap-
ter 7 while keeping the total number of features and with it the number
of weights in the network minimal. We finally chose the following 14
features:

centroidDistance The same cepstral distance is used as described
in Section 7.1.1.

nCreaky, nCreakyLeft, nCreakyRight We use the number of ir-
regular frames of the current, preceding and subsequent phone
over the corresponding total number of frames (in analogy to
Section 7.1.5). Note that for glottal closures irregular frames are
not a sign for unsuitable phones as we can see from the data
described in Section 8.1. Therefore, the information whether the
phone is a glottal closure or not is included as a predicate (see
Section8.4.1).
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nMixed This feature is defined as the number of mixed frames (see
Section 6.8 over the total number of frames. In contrast to other
phones, for voiced fricatives, a high number of mixed periods is
desirable. Therefore, the information whether the phone instance
is a voiced fricative is included as a predicate (see Section 8.4.1).

duration, durationStd To describe duration, we used two features:
First, we used the deviation of the log duration from the mean
log duration ug of all instances of the phone: logd — ugq. Second,
we used the log of the standard deviation of the mean duration

Hd-

meanlIntensity To characterise the mean signal intensity, we used
the energy deviation of the phone instance from the mean inten-
sity 114 over all phones:

€mean = 9 — Hg, (82)

where ¢ is the mean intensity of the phone instance in dB.

maxIntensity This feature is defined in the same way as the previous
one, except that we used the maximum intensity instead of the

mean:
Cmax = Ymax — Hgmazx> (83)

where g4, 18 the maximum intensity frame of the phone instance
in dB.

plosiveExists We used the same feature as described in Sec-
tion 6.11.1 to determine plosives with their intensity below some
threshold.

fOpenaltyl We used the same preprocessed Fy properties that the
penalty functions described in Section 7.1.3 are based on. How-
ever, for the neural network we did not apply the exponentiations:

Py(Fo) = |f = pyl (84)

Note that the logarithm of Fj is used, which makes the for-
mula equally valid for male and female voices. Therefore, the
mean Fj value over all N frames of a phone instance is f =

¥ 2 (log Fo(n)).
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fOpenalty2 The variation of F within a phone instance is expressed
with the temporal derivative and results in the feature

Py(Fo) = f' = g + oy (8.5)

where f/ = & 3", |log Fy(n) — log Fy(n—1)| is the mean absolute
derivative of the Fy of this phone instance and s and oy are
the mean and standard deviation of f’ over all instances of that
phone.

fOpenalty3 A second feature to describe the F{y variation is defined
in a similar way:

P3(F0) = f' — i+ 0, (8.6)

where f’ is the mean over the highest 25% of the components
that contribute to f’, and u 7 and o o are the mean and standard

deviation of f’ over all instances of that phone.

phaseOffset The phase offset feature is defined in Section 7.1.2 as
the position of the pitch marks relative to the phase of the fun-
damental wave.

In total, the 14 features for the phone context, which are described
with predicates, and the 14 features for the phone properties are used
as inputs for the neural network.

8.5 Parameter optimisation and network
choice

Before training any neural network to classify phone instances into
suitable and unsuitable as in the proposed scenario, a number of open
questions had to be examined. First, it had to be determined whether
our fairly limited data set would suffice to train such a network. After
that, we had to determine the best network configuration and optimi-
sation method, and subsequently select the parameters associated with
that method.
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To resolve the questions mentioned above, we estimated some re-
alistic distribution of the training data to generate synthetic data of
arbitrary size for training and a sufficiently large test set that is not
biased (for details see Appendix C.2). Based on this data, we were able
to estimate an adequate training data size and came to the conclusion
that some 15,000 training patterns would suffice to train the network
in a way that its error rate would approximate the Bayes error rate (for
details see Appendix C.3). What the training configuration was con-
cerned, we needed to decide on how to cope with of heavily unbalanced
data (see Appendix C.4.1 to C.4.3), the network layer structure (see Ap-
pendix C.4.4 to C.4.5), the target coding scheme (see Appendix C.4.6),
and the optimisation approach itself (see Appendix C.4.7 ). Each op-
timisation approach by itself has a certain number of parameters to
be tuned, where the number of iterations, the learning rate, and the
momentum term are the most common.

After this meta-optimisation process, as it is called in [RM99], we
decided to use a network with two hidden layers and a layer structure
of 28/12/5/2. We used an educational learning method with learning
rate adaptation, as described in Appendix C.4.3. For the educational
learning method a learning rate factor of A = 2 was used, and the
training was stopped after 60,000 iterations. The learning rate 7. for
the correctly classified patterns was set to the value of 0.005, and no
momentum term was used. For further details on the network selection
see Appendix C.4.8.




Chapter 9

Evaluation

This chapter presents the evaluation of diphone corpora that we cre-
ated based on the machine learning approach described in Chapter 8.
To measure the quality of that approach, we evaluated two different
aspects of quality with two types of listening test. The first aspect was
intelligibility, the second aspect was segmental quality.

Intelligibility was determined with rhyme tests. We describe the
design and implementation of the rhyme tests and analyse the results
on various levels: after showing the total intelligibility rates for each
corpus, we drill down to phone positions and their influence on the
error rate and finally to the most frequent phone confusions.

Segmental quality was evaluated with a listening test, where the
subjects were required to determine the number of artifacts that they
perceived in the signal. By this means, we compared the number of
artifacts for two corpora, where the diphones of the corpora were se-
lected from the same speech database, but once manually and once
automatically.
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9.1 Evaluation Criteria

Until now, no objective methods exist to derive the quality of a speech
signal from the signal itself. So far, the only possibility to evaluate
speech quality and thus to evaluate our selection method are subjec-
tive listening tests. In those tests, the quality of a speech signal can be
measured using different criteria. The most commonly used are intelli-
gibility, naturalness, pleasantness, pronunciation, articulation, listening
effort, audio flow and acceptance. However, many of these criteria de-
pend on factors that are beyond the selection of synthesis elements.

Naturalness, listening effort and audio flow strongly depend on
prosody. Prosody control was not part of this study and furthermore,
the large number of non-native subjects in this evaluation would have
made it difficult to receive reliable results (see [JC10]). Pronunciation
depends on the text analyser whereas pleasantness is strongly related
to voice itself. In order to measure acceptance, a clear application sce-
nario and target group would have to be defined, which was not the
case for our study. The remaining criteria intelligibility and articula-
tion are influenced most by the selection of synthesis elements, which
amounts to segmental quality. Thus, we restrained to test for the crite-
ria intelligibility and segmental quality. In Section 9.3, rhyme tests as
intelligibility tests are discussed and presented and in Section 9.4 the
segmental quality test is presented.

9.2 Creation of the Corpora

For the evaluation we created four diphone corpora from the four speech
databases listed in Section 7.4. We used the network that was deemed
to perform best (see Section C.4.8) to score the phones and created the
diphone corpora as described in Section 7.3.
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9.3 Intelligibility Tests

There are various ways to test intelligibility': closed response set
tests encompass articulation tests with nonsense monosyllabic words
(logatoms) and rhyme tests with monosyllabic words. Tests with an
open response set, where listeners have to write down what they think
they heard may employ isolated words like in the Bellcore corpus
(see [SAMWS9]), meaningful sentences (semantically predictable sen-
tences, SPS) or anomalous sentences (semantically unpredictable sen-
tences, SUS).

Also opinion tests like the MOS test [VVO05] are used to evaluate
intelligibility, normally on a sentence level with SPS [Gol95]). However,
opinion tests do not test intelligibility directly but rather ask the sub-
jects to rate intelligibility on a scale. Therefore, they do not provide any
diagnostic value and suffer the usual problems with interval metrics like
the influence of the number of categories (5 or 11) and the choice of
circuit conditions, that means, the quality range of the systems that are
evaluated influences the evaluation results. Moreover, extensive train-
ing for the subjects would be necessary to convey the categories, and
finally the demands placed on the listeners are much higher compared
to direct testing.

9.3.1 Rhyme Tests

Originally, rhyme tests had been designed to measure the quality of
signal transmission (see [Sot82, Hou63]). In the meantime, rhyme tests
are widely applied to evaluate intelligibility of synthetic speech (see
[LGP89, BT05]). Rhyme tests encompass word lists of well-known,
normally monosyllabic words, which are organised in sets of 6 re-
lated words, so-called ensembles. As a rule, the words are of the form
consonant-vowel /diphthong-consonant (CVC); some few words take the
form CV or VC. The words in each set differ from each other only in
one phoneme, either in the initial or the final consonant or in the vowel
that is the nucleus of each word. When the test is given, one word from

1The term intelligibility test refers to the correct recognition of words, whereas
the term articulation test refers to the recognition of phonemes or logatoms

(see [Gol95)).
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each ensemble is played to the subject as acoustic stimulus. The subject
then marks which word he thinks he heard on a multiple-choice answer
sheet offering all 6 words in each set.

One example of an ensemble in which each word contains the
vowel [i] and ends with a consonant [t] is

meat, feat, heat, seat, beat, neat

We decided to evaluate intelligibility with a rhyme test with a closed
response set because:

e Results by [Sot82, Hou63, Kae85] showed that groups of 10 to 20
persons already deliver reliable results.

e Spelling of logatoms may vary from subject to subject, there is no
authoritative spelling, especially for English, therefore an error-
prone interpretation step would be required.

e A closed set test takes less effort and time as the subjects do not
need to write down what they perceived.

e Rhyme tests have a diagnostic value, since they can reveal pho-
netic features that cannot be discriminated enough in a confusion
matrix.

e Unlike for SPS and SUS, prosody plays a very minor role in in-
telligibility.

e Rhyme tests place low metric demands on the listener (they do
not have to sort words or assign scores).

e A low mental effort is required, there is only a small load on
short-term memory, compared to SUS or SPS.

9.3.2 Rhyme Test for German

The German rhyme test created by [Sot82] helps to identify confusion
of consonants as well as confusion of vowels. The test words are phonet-
ically balanced, which means that the phone frequencies correspond to
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the mean frequencies in German. As a consequence, the intelligibility
results are representative for those that are achieved from synthesis-
ing common German text. One exception, however applies. The phone
schwa is not represented in the test words as it does not exist in mono-
syllabic words. The test encompasses 100 ensembles with 6 words each,
where 34 of them differ in the initial consonant, 33 in the final conso-
nant and the remaining 33 in the mid-word vowel. We generated the
test words for the two German voices, the female German fg voice and
the male German mg voice. The diphone corpora for these two voices
were created as described in Section 9.2. The prosody of the test words
was created with the German prosody control of the SVOX speech
synthesiser, version 5.

9.3.3 Rhyme Test for English

For the English voices we used the Modified Rhyme Test (MRT)
(see [Hou63]). The MRT uses 50 ensembles of 6 words, where 25 ensem-
bles differ in the initial consonant and 25 ensembles in the final con-
sonant. Mid-word vowels and consonant clusters are not tested, so the
MRT allows only consonant combinations to be identified that are hard
to discriminate. We generated the test words for the two English voices,
the female British English fe voice and the male American English
me voice. We observed that the English test partly checks for very sub-
tle differences, for example as in the pairs “piece®/“peas®, “save/safe*
or “vest®/“west“, that may be hard to identify for non-natives. The
diphone corpora for these two voices were created as described in Sec-
tion 9.2, the prosody of the test words was created with the English
prosody control of the SVOX speech synthesiser, version 5.

9.3.4 Implementation of the Tests

A tool with a graphical user interface was implemented to present the
test. The tool offered written instructions for the rhyme test, so all
the subjects were presented the same information. Furthermore, the
subjects could take a trial test, repeatedly if desired, to familiarise
with the procedure.
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After the subject has chosen one of the voices for the rhyme test,
each of the ensembles is presented in the same way:

e First, an acoustic stimulus is presented, which is randomly chosen
from the ensemble of 6 words.

e Not till after the stimulus is finished playing, the response set of
the six words is presented, also in random order.

e The subject marks his choice by selecting a radio button (with a
mouse click or keyboard shortcut).

e By pressing a Next button, the test proceeds to the next ensemble.

The audio signals were presented over headphones in a quiet but
not specially sound insulated room. The test setting ensured that the
subject could hear each stimulus only once and could not go back to
modify his choice. During the rhyme test, the subject could pause any
time by marking his choice but postponing to press the Next button.

For the test, 5 female and 11 male subjects volunteered kindly
enough without receiving any remuneration. The age of the test sub-
jects was 32 years on average, ranging from 20 to 61. Of the test subjects
13 were native speakers of German (3 Swiss and 10 standard German),
one subject was native Persian, one native Italian and one native Span-
ish speaker. For the Spanish speaker, the test results for all rhyme tests
were excluded, and for the Persian speaker the test results for the Ger-
man rhyme tests were excluded due to insufficient language proficiency.

9.3.5 Results

If a closed response set of m choices is used for a test, a minimum
accuracy of 1/m can already be achieved by guessing. The conventional
scoring formula to correct for chance success is:

mu, — 1
Ve = ———, (9.1)
m—1
where v, is the corrected accuracy, and the raw accuracy v, is:

number of correct answers

(9.2)

vy =
number of all answers
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In the following, the corrected version of the intelligibility rate will
be used. The overall intelligibility rates for the four voices are shown in
Fig. 9.1. In Fig. 9.2, the intelligibility rates are displayed with respect
to the phone positions. For the German voices, intelligibility rates for
initial consonants, middle vowels and final consonants are shown, for
the English voices, initial consonants and final consonants are distin-
guished. This more detailed illustration reveals that for the German
voices the middle vowels and for the English voices final consonants are
most problematic. A detailed analysis of the phone confusions for all
voices is listed in Appendix D.
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Figure 9.1: Intelligibility rates of the four voices, corrected for chance.

As can be seen from Fig. 9.1 (and in more detail in Table 9.1), results
for English voices are considerably worse than for German. This may
be partly due to the test subjects’ insufficient knowledge of the sub-
tleties of English. There was no native English speaker among the test
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Figure 9.2: Position-wise intelligibility rates of the four voices, cor-
rected for chance. For each of the German voices, intelligibility rates
for initial consonants, middle vowels and final consonants are shown.
For the English voices only initial consonants and final consonants are
shown.

subjects and several users reported problems about either not knowing
many of the English words used in the test at all and about not know-
ing the pronunciation differences of word pairs that were presented as
alternatives, like safe/save or vest/west.

For the female German fg speaker, many confusions occur between
the vowels [g], [e] and [ez], and also [iz] and [1] to a minor extent (see
confusion matrix in Table D.2 in Appendix D). The relatively high
number of confusions is probably due to the high inconsistency of the
speaker’s pronunciation of the open and closed [€]/[e]. Many, but not
all words with an open [€] or [e1] are actually pronounced as a closed
[e1], as it is common in the Northern variants of German. As a con-
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voice | accuracy

fa 94.26 % (2.95
myg 96.14 % (2.71
fe 90.56 % (5.40
me 94.08 % (4.04

|| — | —

Table 9.1: Mean intelligibility rates for all voices in percent (standard
deviations in parenthesis).

sequence, the centroids for the phones [g]/[e:] become more vague as
they are influenced by the many [e:] that are labelled as [g]/[e:]. There-
fore, in the selection process, both open and closed versions of [g]/[e]
are selected. This causes two effects. First, words that are transcribed
with an [e:] are actually pronounced with an [ei], like for example in
the word "rét”, which is transcribed with an [ez], but was confused
several times with the word "Reet”, which is pronounced with an [e].
Interestingly enough, confusion also occurs the other way round. For
example the word ”Scheel”, pronounced with an [e:], was taken for the
word ”schal”; pronounced with an [e1], several times. One explanation
could be that the listeners became more tolerant to the notion of that
speaker’s [e1] and therefore chose the word “schdl”, which is, in ad-
dition, more common than the very rare word “Scheel”. The second
effect occurs if a closed and an open version of the phone [g]/[e] are
concatenated. In this case, often the impression of the diphthong [ai] is
created. We observed this effect in the test words and it also shows in
the confusion matrix in Table D.2 where some [¢] and [e:] are taken for
an [ai

The mg voice performed best concerning the total intelligibility rate,
which may be due to the very consistent speaking style of the voice tal-
ent. Nevertheless, some minor confusions occurred. As in the fg voice,
the phone [e1] is sometimes taken for an [e], [ez], [iz] or [1], but to a much
lesser extent (see Table D.5). Furthermore, the final [g] is sometimes
confused with an [n] (see Table D.6). This problem can be traced to
one badly selected diphone [/], which exhibits only a very slight nasal-
isation. Furthermore, the affricate [ts] is confused a few times with [t"].
There is no obvious explanation for this confusion as the fricative part

9.3 Intelligibility Tests 159

of the affricate is clearly audible in the affected test words.

The fe voice was the voice that performed worst. Most problems
occurred with the final consonants (see Table D.7), but there were
also confusions of initial consonants (see Table D.8). The initial [h]
was sometimes taken for a [p], which may be explained with spectral
mismatches at the concatenation point that can introduce a plosive ef-
fect. Furthermore, the voiced fricative [v] is sometimes taken for a [w].
However, this confusion occurs with only one word pair ”vest” /” west”,
where the the voiced fricative in the word “vest® is clearly audible.
This confusion can be explained with the test subjects’ native German
background, as in German the word “West* is pronounced with a [v]
exactly as the English word “vest“ and many of the subjects stated not
to have been aware of this fact. More problematic than the intelligibil-
ity of the initial consonants is the intelligibility of the final consonants,
where often voiced and unvoiced phone variants were mixed up, like
in the words pairs "peas” /" peace” or "bad” /”bat”. We found that the
fe speaker tended to pronounce final voiced plosives very strongly and
tended to devoice voiced plosives. The speaker compensated this devoic-
ing with a lengthening of the preceding vowels. However, this strong
pronunciation of the voiced plosives made them almost impossible to
distinguish from their unvoiced counterparts if perceived in isolation.
In contrast, the American English speaker articulates voiced plosives
much more softly. However, for synthesising the words for the rhyme
tests, for both voices a prosody control was used that does not dif-
ferentiate the durations of the preceding vowels very much depending
on the voicing of the following consonant as it was trained on an En-
glish prosody corpus recorded by a German speaker. Thus, duration
differences were only as little as 15 % for the vowels of word pairs like
"bad” /”bat”. Consequently, the words had to be distinguished mainly
by the voicing of the final consonant. This made it particularly hard
for the test subjects with non-native background which are not trained
to the subtleties of the English pronunciation.

The intelligibility results of the me voice are comparable to those of
the fg voice. Concerning initial consonants, similarly to the fe voice, the
[h] was confused with the plosives [p] and [b], presumably for the same
reasons (see Table D.9). In analogy to the fe voice, the voiced /unvoiced
discrimination of final consonants was problematic also for the me voice.
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The confusions were not as pronounced as for the fe voice. One reason
for that could be, in contrast to the fe speaker, that the me voice talent
pronounced voiced plosives very softly, which made the voiced variants
easier to identify.

9.4 Segmental Quality Test

A diphone corpus with manually selected elements and one with auto-
matically selected elements that were extracted from the same record-
ings were available to us. This enabled us to compare the two corpora
and to therefore compare the quality of a manually created corpus to
the quality of an automatically created one. The automatically created
corpus was the one created from the mg voice, that was created as de-
scribed in Section 9.2. The reference corpus had been created in 1985
by manual selection of diphones (see [Kae85]) from the same record-
ings (see Section 7.4). For this corpus, the diphones were extracted
interactively considering visual and auditive criteria and, in addition,
frequency domain information that had been extracted from the sig-
nals to identify the optimal cut points. This manual extraction process
comprised several months of tedious work.

For the test, a list of 100 isolated words and short groups of words
was synthesised with each corpus. During the test, the subject were pre-
sented with 100 acoustic stimuli, where every stimulus was randomly
chosen from one of the two corpora. The subjects then marked the num-
ber of artifacts they perceived, distinguishing between weak, medium
and strong artifacts. These categories were defined as follows:

e Weak: The artifact(s) can be perceived in the signal as unnat-
ural. However, they do not sound disturbing and do not affect
intelligibility.

e Medium: The artifact(s) are perceived in the signal as disturb-
ing. They do sound disturbing but do not affect intelligibility.

e Strong: The artifact(s) are perceived very strongly in the signal.
They sound disturbing and do affect intelligibility.
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9.4.1 Implementation of the Test

The same GUI tool described in Section 9.3.4 was used to present the
segmental quality test. Again written instructions and a trial test were
offered to familiarise the subjects with the test. During the test, each
of the test words was presented in the same way.

e First, the test word from the list was randomly chosen from one
of the two corpora and played to the subject

e The subject could mark how many artifacts of the categories weak,
medium and strong he perceives. During that time, the subject
could listen to the stimulus repeatedly.

e By pressing a Next button, the test proceeded to the next ensem-
ble

The test conditions were the same as described in Section 9.3.4, except
that the subjects were able to listen to the stimuli as often as they
liked.

9.4.2 Results

The distribution of weak, medium and strong artifacts for the corpora
with manually and automatically selected elements is shown in Fig. 9.3.
The corpus with automatically selected elements performs better in all
three categories. The difference is most pronounced for strong artifacts,
where the number of artifacts for the corpus with automatically selected
elements is only about half of those for the one with manually selected
elements. The detailed results are shown in Table 9.2. The relatively
high number of weak artifacts for the corpus with automatically selected
elements may be caused by the clearly audible background noise that is
present in the recordings that we used. The diphones from the corpus
with manually selected elements do not exhibit this noise, probably
some kind of noise reduction had been applied. At least one subject
marked this noise, which is clearly audible especially in the silence
segments, consistently as a minor artifact.
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weak medium strong
manually sel. elements 0.44 (0.31) | 0.24 (0.31) | 0.07 (0.12)
automatically sel. elements | 0.35 (0.24) | 0.16 (0.29) | 0.04 (0.05)

Table 9.2: Mean number of weak, medium and strong artifacts per
sample for the corpora with manually and the automatically selected
elements (standard deviations in parentheses).

9.5 Discussion

For the mg corpus, the intelligibility rates achieved with the corpus
with automatically selected elements are comparable to those achieved
with a corpus from the same voice where the elements had been se-
lected manually, as is is presented in [Kae85]. In that work, each of
15 subjects took the rhyme test 20 times. Over the course of these 20
listening sessions a significant learning effect was observed, the intelligi-
bility increased from 90.1 % at the first session to almost 97.5 % at the
last session. The existence of such a learning effect was also observed
by [Sot82]. Our subjects took the test only once and achieved a mean
intelligibility rate of 96.14 % for the mg corpus, which is already some
6 % higher than the intelligibility rate reached in the first session of the
evaluation in [Kae85].

Also the intelligibility rates of the other voices were constantly
higher than the intelligibility rate achieved for the corpus with man-
ually selected elements in the first session, despite the fact that the
English corpora were more difficult to evaluate for the non-native test
subjects than the German corpora. We refrained from multiple test
sessions out of consideration for the test subjects, but based on the
results of [Kae85] and [Sot82], we could also assume a learning effect if
multiple sessions were undertaken.

The intelligibility tests revealed some weaknesses of the corpora.
The voiced /unvoiced distinction of final consonants especially for the
female English fe speaker is not always easily perceivable. Besides the
fact that subtle differences in word-final voicing are difficult to identify
for untrained non-native speakers, the higher intelligibility of the male
American English voice indicates that this probably was not the only
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Figure 9.3: For every subject the distribution of weak, medium and
strong artifacts per sample is shown. The left boxplots describe the cor-
pus with manually selected elements and the right boxplot the one with
automatically selected elements.

reason. We found that the fe speaker tends to devoice final voiced
plosives and compensates for this de-voicing with a lengthening of the
preceding vowels. However, the durations of the preceding vowels were
not differentiated accordingly by the duration control we used, thus
making the voiced/unvoiced distinction quite difficult. An important
point to conclude is that the prosody control must match the voice to
avoid such inconsistencies.

Unfortunately, we could not compare our results directly to those
from the Blizzard Challenge evaluations. Although for these evaluations
a MRT is used to compute a word error rate (WER), this MRT uses
an open response set instead of a closed response set. In this case, the
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subjects have to type in what they have heard (see [BB06]), what makes
the test considerably more difficult. Furthermore, the WER listed in the
Blizzard Challenge are based on two tests, the MRT and a semantically
unpredictable sentences (SUS) test. As a consequence, the WER in
these tests range from around 10 % for the best systems to more than
50 %.

Chapter 10

Conclusion

10.1 Discussion

The primary aim of this thesis was to devise a phone quality measure
that should not only consider spectral phone quality but should also
include further characteristics to ensure that a high quality phone is
clearly articulated, unambiguously identifiable, and that the signal of
the phones is suitable for prosodic modification.

We proposed a phone quality measure that is based on various con-
stituents. Besides spectral characteristics, the quality measure includes
numerous properties that are based on fundamental frequency, dura-
tion, pitch marks and voicing characteristics. This phone quality mea-
sure was applied to create four diphone corpora from different voices in
a fully automatic way. These four corpora were evaluated for intelligibil-
ity with rhyme tests, one of the corpora was additionally evaluated for
segmental quality. For the speech database where a corpus with man-
ually selected elements was available for comparison, the corpus with
automatically selected elements reached higher intelligibility rates. In-
deed, also the segmental quality of the automatically created corpus
was perceived as higher compared to the the manually created one. For
the other voices, intelligibility rates were also comparable. These results
show that our proposed phone quality measure can be applied to select
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a high-quality diphone set from a speech database. As a consequence,
tedious manual work in the creation of such diphone sets can largely
be eliminated.

This study mainly addresses the question of how to qualify phones
from existing recordings. One exception is the proposed loudness mea-
sure, which can be used for online monitoring of recordings. However
still, the quality of the recordings heavily influences the corpus quality,
which is also reflected in the evaluation results. The recordings for the
male German voice, which performed best in the intelligibility test, are
very consistent, the speaking style is very homogeneous, and almost no
variants are used. It is still an open research question how to effectively
monitor speech recordings to avoid pronunciation variants.

The effects of pronunciation variants can be observed in the eval-
uation of the female German fg voice, where the pronunciation of the
closed/open [g]/[e] varies considerably. As a consequence, the vowel
intelligibility for these vowels is considerably reduced. Similarly, the
American English me voice varies strongly in the pronunciation of vow-
els, as for many words there is no authoritative pronunciation and thus
several transcriptions are possible. In this case, a complete avoidance of
pronunciation variants during the recordings may be difficult and may
constrain the recordings too much. An alternative solution could be to
identify pronunciation variants in the segmentation step. How this can
be implemented effectively and which restriction have to be applied to
successfully detect these variants is still an open question.

A problem with pronunciation variants, which is even harder to
solve is the detection of short diphthong hints in vowels caused also by
pronunciation variants. In some variants of English, for example in the
word “book” the vowel [o] is followed by a short hint of an [A], so the
word is pronounced like [boAk], with a very short [A]. If the segment
that contains the pure [o] is long enough, the phone instance is con-
sidered suitable in terms of spectral quality. In diphone concatenation,
however, this short hint of a different phone can cause considerable
disturbance if taken out of context. It is still an open question of how
to reliably determine these very short variations and how to tell them
apart from ordinary coarticulation effects.

In the post-processing and signal analysis step, minor improvements
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can still be added. One could be to measure softness and voicing of
voiced plosives. This is especially important for speakers that tend to
devoice voiced plosives and compensate for this devoicing with a length-
ening of the preceding vowels. The effect of ambiguous voicing of plo-
sives, however, can be alleviated if the prosody control is fully compat-
ible with the voice and also marks the voicing differences prosodically
in the way the speaker does.

Certain difficulties caused by pronunciation variants or by restricted
context, however, are limited to diphone synthesis. E.g. if a diphone
element consisting of a phone to silence transition is selected from con-
tinuous speech, this element must almost certainly be selected from
the end of a sentence. Typically this diphone element has low energy,
including the first part. If this diphone element is concatenated with
another element that is spoken with average intensity, intensity jumps
are unavoidable. This problem, however, cannot be solved due to the
limited context of diphones.

10.2 Outlook

Although this work concentrated on the selection of diphone elements,
our phone quality measure is not limited to diphone synthesis. We be-
lieve that other synthesis methods can also benefit from our phone qual-
ity measure, as well as from the proposed methods for signal analysis
and modification. In unit selection, the phone quality measure may be
used as a criterion in database pruning to reduce the size of the system,
and in the selection step as an additional feature for the target costs of
candidate units. Also in the post-processing of speech recordings, the
quality measure can be used to identify low quality segments, labelling
errors or pronunciation variants. This may be even useful for synthesis
methods other than concatenative speech synthesis. This preselection
of training material could perhaps be used to improve statistical para-
metric speech synthesis.

The precise pitch marking method could be used in combination
with the proposed extension to TD-PSOLA to synthesise expressive
speech, even to synthesise emphatic accents, without any perceivable
artifacts. Many application would benefit greatly from improved ex-




168 10 Conclusion

pressive speech, most notable reading applications for long texts, like
books.

Another application scenario for this quality measure would be a
semi-automatic tool, that could be used in corpus development. The
users could re-rank the list of segments that are proposed by the algo-
rithm if some negative phone property is not sufficiently weighted. This
re-ranking information could be used to extend the training data and
to re-train the gate neural network in order to self-improve the method
while it is used.

Appendix A

Evaluation of Spectral
Distance Measures

This appendix gives the detailed results of the spectral distance evalu-
ations presented in Section 6.4 and a detailed investigation of the false
positives that are still produced if the best measure is applied.

A.0.1 Evaluation without Cost Ratio

If we consider the number of misclassifications based on the a poste-
riori probabilities p(Cj|x), where p(Ck,x) = p(Ck|x)p(x) and p(x) is
common to all terms, we receive the classification results given in Ta-
bles A.1 to A.4. These tables clearly show that if we consider only the
number of misclassifications without applying a cost ratio to reduce the
number of false positives, the error rates are quite low.
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mfcc
straight
Isf

Ipc

Table A.1: Mean error rates for all phone instances for the female

German voice (fg)

mfcc
straight
Isf

Ipc

Table A.2: Mean error rates for all phone instances for the female

English voice (fe)

mfcc
straight

Isf

Ipc order 28
Ipc order 20

Table A.3: Mean error rates for all phone instances for the male Ger-

man voice (mg)

mfcc
straight
Isf

Ipc

Table A.4: Mean error rates for all phone instances for the male Amer-

deu

10.29%
13.31%
17.85%
16.09 %

deu

10.60 %
15.31%
18.12%
16.95 %

deu
8.92%
10.58 %
12.99%
13.38%
13.61%

deu

11.58%
14.31%
17.56 %
19.60 %

ican English voice (me)

dskr

18.14%
26.14 %
25.87%
14.04 %

dskr

23.28%
24.57 %
32.64 %
14.50 %

dskr
14.48 %
19.77 %
18.61 %
8.11%
15.48 %

dskr

16.35%
2711 %
22.54 %
19.22%

dma

10.27 %
13.38 %
16.97 %
15.30 %

dma

12.12%
15.68 %
17.67 %
16.77 %

dma

10.63 %
11.89 %
13.10%
11.69 %
11.87%

dma

11.97%
14.56 %
16.66 %
16.89 %

dabs

10.51 %
12.60 %
16.59 %
15.24%

dabs

11.41%
15.46 %
17.53 %
15.66 %

dabs
9.10%
11.79%
12.96 %
11.81%
12.14%

dabs

11.16 %
14.30 %
17.21%
17.22%
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A.0.2 Error Analysis

We analysed the false positives produced by the Euclidean distance on
MFCC, which proved to be the most suitable measure, and give the
results in Tables A.5 to A.8. The false positives in the first 6 columns
do not affect synthesis quality (they are either articulated correctly (ex-
cept the mislabelled phone instances in column 6) or exhibit unsuitable
characteristics besides spectral characteristics which would lead to high
penalty scores) whereas the false positives in the last three columns may
affect synthesis quality.
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Table A.8: Error analysis for the spectral classification with the Eu-
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Appendix B

Preplosive Pauses and
Elisions

In order to decide if separate diphone elements are required for preplo-
sive pauses of elisions, we examined the durations of preplosive pauses
depending on whether an elision follows or not. Detailed statistics on
these durations are presented in this Appendix.

Tables B.3 to B.2 present the results that clearly show a strong
lengthening of the preplosive pause if an elision follows. We introduced
additional symbols to denote preplosive pauses and preplosive pauses
before an elision (see Appendix E).

177

preplosive | elision mean lengthening | # of phone
pause (ves/no) | duration [ms] instances
p no 48.63 - 1918

P yes 69.84 +43.61 % 4

t no 41.69 - 27223

t yes 42.18 +1.16 % 22

k no 50.25 - 3290

k yes 63.66 +26.67 % 20

b no 44.31 - 3373

b yes - - 0

d no 78.73 - 7839

d yes - - 0

g no 41.28 - 3341

g yes - - 0

Table B.1: Mean duration of preplosive pauses for the female German
voice (fg). The lengthening in case of a subsequent elision compared to
no elision is given in percent. The mean duration of the [t] is actually
reduced if the elision is followed by a [d]: the mean duration for [t] if
followed by [d] is 85.71 ms. This is the case for 19 out of 22 phones,
thus there is almost no difference in duration between [t] and [t]. No
elisions exist for wvoiced plosives as elisions only take place at word
junctions and plosives are devoiced in terminal position according to
German pronunciation rules.
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preplosive | elision mean lengthening | # of phone
pause (yes/no) | duration [ms] instances preplosive | elision mean lengthening | # of phone
p no 85.47 - 1494 pause (yes/no) | duration [ms] instances
p yes 194.67 +127.75% 3 p no 59.84 - 1644
t no 64.53 _ 32055 P yes 108.21 +80.84 % 18
t ves S1.13 125.73% 112 ¢ 1o 37.13 - 6119
k no 69.18 - 3510 t yes 83.07 +123.70 % 43
k yes 108.43 +56.73 % 7 k no 50.76 - 2243
b no 67.40 - 3266 k yes 75.00 +47.75 % 41
b yes - - 0 b no 62.79 - 1726
d no 71.53 - 9286 b yes 111.90 +78.22% 1
d yes - - 0 d no 36.60 - 3631
g 1o 51.67 - 3497 d ves 74.08 1102.38% 19
9 ves N N 0 g no 47.32 - 635
] g yes 81.56 +72.37% 4

Table B.2: Mean durations of preplosive pauses for the male German
voice (mg). The lengthening in case of a subsequent elision compared
to no elision is given in percent. No elisions exist for voiced plosives as
elisions only take place at word junctions and plosives are devoiced in
terminal position according to German pronunciation rules.

Table B.3: Mean durations of preplosive pauses for the female British
English voice (fe). The lengthening in case of a subsequent elision com-
pared to mo elision is given in percent.
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preplosive | elision mean lengthening | # of phone
pause (ves/no) | duration [ms] instances
p no 51.87 - 4063

p yes - - 0

t no 40.16 - 14649

t yes - - 0

k no 46.33 - 5911

k yes 60.55 +30.71% 1

b no 61.10 - 3799

b yes - - 0

d no 38.38 - 8572

d yes - - 0

g no 50.39 - 1086

g yes - - 0

Table B.4: Mean durations of preplosive pauses in milliseconds for
the male American English voice (me). The lengthening in case of a
subsequent elision compared to no elision is given in percent. Elisions
were only transcribed in one case.

Appendix C

Gate Neural Network
Experiments

This appendix presents experiments with synthetic data that were used
first, to determine the network configuration and parameters for classi-
fication with variable-sized feature vectors and second, to investigate if
our fairly limited data set is sufficient to train a corresponding network.

C.1 Experiments with Simple Two-Class
Problem

This first section presents a small introductory classification problem
to investigate the classification of variable-sized feature vectors. In this
simple classification problem, for a certain percentage of the input pat-
terns one of the input dimensions was not defined. Different Bayes
error rates can be computed for the different number of defined input
dimensions and the overall Bayes error rate can be computed from these
individual Bayes error rates.
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C.1.1 The Problem

The classification problem consists of two classes in a three-dimensional
space. The distribution of each of the two classes is described by two
components of Gaussian distributions with diagonal covariance matri-
ces. The third dimension, however, is defined only for 50 % of the data.
The class distributions for all three dimensions is shown in Fig. C.1.

The Bayes error rate considering all three dimensions is 5.27 %. If
the third dimension is ignored, the Bayes error rate rises to 9.92 %.
Thus, for the case that the third dimension only exists for 50 % of the
data, the overall Bayes error rate is:

5.27% + 9.92%

= 7.59%.
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Figure C.1: Distributions of the two classes, plotted in grey circles and
black crosses, in all three dimensions
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C.1.2 The Neural Network Configuration

For the gate neural network we used the layer structure 3/12/7/2 with
two hidden layers. To describe the layer structure of a network with
N layers we use the notation N;/Na/.../Nyz. This is merely a list of
the number of nodes in each layer. A 3/12/7/2 network, for example,
has 3 inputs, 12 nodes in the first hidden layer, 7 nodes in the second
hidden layer, and 2 outputs. Each of these layers if presumed to be
fully connected to its preceding and following layer with no short-cut or
feedback connections. For the training of the network, a learning rate of
0.005 was applied while the momentum term was omitted. We stopped
the training after 90,000 iterations. Some experiments on early stopping
were conducted, however they lead to worse results than completing the
full number of iterations’

C.1.3 Results

Fig. C.2 shows the results for various training data size. For every
size, 10 sets of n patterns were used for the training. A large test set
of 350,000 patterns was used to avoid bias that may be caused by
a small test set that possibly represents the underlying distributions
badly. The results show that the Bayes error rate of 7.59% can be
approximated given a sufficiently large number of training patterns.
For 20,480 patterns a mean error rate of 7.99 % was reached, which is
close to the overall Bayes error rate of 7.59 %. This shows clearly that
the information contained in the third dimension, which is only defined
for part of the data, can be used to decrease the classification error.

1Validation sets were used to implement the GLs early stopping criterion de-
scribed in [Pre98], that estimates the relative increase of the validation error in
percent over the minimum-so-far. The G Ly criterion was chosen as a good trade-off
between solution quality and training time. On the one hand, this criterion offers a
high probability of finding a good solution and, on the other hand, does not need
excessive training time.




184 C Gate Neural Network Experiments

03 T T T T T T T T T T

0.25¢

Classification error

Bayes error rates
0.05r b

O 1 i i i i i i i i i
20 40 80 160 320 640 1280 2560 5120 10240 20480

Number of training patterns

Figure C.2: Classification error of a two-class problem in a three-
dimensional space where the third dimension is only defined for 50 %
of the input patterns. The number of training patterns is shown on a
logarithmic scale on the x-axis. For each data size 10 different data sets
were used for training, with the results represented as boxplot. Three
Bayes error rates are shown as dotted horizontal lines: the Bayes er-
ror rate for 2 dimensions (top line), the Bayes error rate for all three
dimensions (bottom line) and the Bayes error rate for data where the
third dimension is only defined for 50 % of the input patterns (middle
line).
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C.2 Training Data Simulation

The training of a neural network to classify phone instances into suit-
able and unsuitable, as in the proposed scenario, is a complex task due
to the unlimited possibilities of network and training configurations.
To find the optimal configuration for the neural network training and
to find out if the available data are sufficient to realise an ANN-based
classifier, we estimated some realistic distribution of the data to gen-
erate synthetic training data. The Bayes error rate of this synthetic
training data is known as its distribution is known and thus we were
able to an arbitrary number of data for training and a sufficiently large
test set that is not biased.

C.2.1 Feature Probability Distributions

For almost all features, we estimated their distributions based on sub-
sets of the data described in Section 8.1. As these subsets we determined
all the predicate combinations that showed relevant differences in the
feature distributions. A total of 67 subsets was found and from these
subsets 67 distributions were estimated. In the following we describe
how these distributions were estimated in detail.

Distribution of Centroid Distance

For the distribution of the centroid distances for suitable and unsuitable
phones we were able to use more accurate data than the data from
the test sentences described in Section 8.1. Instead, we used the data
described in Section 6.4.3 to infer distributions and thresholds.

We computed the centroid from all phone instances (suitable and
unsuitable) and then estimated the distributions of centroid distances
for suitable and unsuitable phone instances. The centroid distance dis-
tributions for suitable and unsuitable phone instances of the fg voice
are illustrated in Fig. C.3 for particular phones. To model the centroid
distance distributions, however we did not differentiate between partic-
ular phones but for robustness reasons took the average of the means
and variances over all phones, which were the following:
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Figure C.3: Estimated mean centroid distances and variances for suit-
able (on the left) and unsuitable (on the right) phone instances of
phones of the fg voice. It can be seen that not only the mean distances
for unsuitable phones are higher but also the variances.

mean centroid distance | variance
Suitable phone instances 1.56 0.15
Unsuitable phone instances 2.72 0.63

The centroid distances are only modelled for stationary phones,
not for plosives, neither voiced nor unvoiced. One exception is made
for affricates (voiced and unvoiced), where a separate centroid for the
frication phase is modelled.
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Distributions of Remaining Features

All the other feature distributions apart from the centroid distance were
estimated from the data described in Section 8.1.1. We fitted different
distributions on the data because Gaussian mixture models (GMM)
do not apply well to all features. The distributions used to model the
features are shown in Table C.1.

Probability distribution | Feature
Normal distribution duration
centroid distance
fOpenalty2
pmOffset
maxEnergy
meanEnergy
Exponential distribution | nCreaky
nMixed
nCreakyLeft
nCreakyRight
Lognormal distribution | fOpenalty3
Beta distribution fOpenaltyl
Bernoulli distribution plosiveExists

Table C.1: List of distributions used for the different features

Covariance Matrices of Features Modelled by Gaussian Dis-
tributions

For those features that are modelled with Gaussian distributions, the-
oretically a full covariance matrix could be computed. However, we
refrained from computing a full covariance matrix and compute only
a diagonal covariance matrix instead, for two reasons: first and most
important, the data are not sufficient to properly estimate a full covari-
ance matrix. Second, some features of the data are mutually exclusive,
that means, every sample contains some undefined features, making it
impossible to estimate a common covariance matrix based on all data.
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There are methods to compute the element (i,j) of the covariance ma-
trix using all pairs of data points for which values of both z; and xz;
are available. However, such an approach may lead to poor results (see
[GJ94]) and moreove, can be applied only to models based on a single
Gaussian distribution (see [RM99]), not GMM.

Estimating Distributions for Data Partitions

We estimated the feature distributions for suitable and unsuitable
phone instances considering particular partitions of the data. These
partitions consisted of phones or phone types which can be described
by combinations of the predicates described in Section 8.4.1. The fea-
ture distributions were estimated from partitions because the distinc-
tive character of particular features would have been lost if these dis-
tributions were estimated from the whole data. If we consider for ex-
ample the feature duration for the phone instances where the predi-
cates isVoicedPhone and isFollowedByPause is true and the pred-
icate isPlosive is false, we can see that the feature duration has a
very strong distinctive character to distinguish suitable from unsuit-
able phone instances. If we instead consider the duration of all phone
instances, its distinctive character is far less. However, it does not make
any sense to consider different partitions of phones for features which
are not influenced by these subset properties. E.g. the feature phase-
Offset is not affected by the predicate isFollowedByPause, its distri-
bution is the same for all data, no matter which value the predicate
isFollowedByPause takes.

To decide which features are influenced by which combination of
predicates, we investigated the data with the help of histograms and
estimated separate distributions for the corresponding features if the
predicate combinations appeared relevant.

C.2.2 Generating Complex Synthetic Data

The data, consisting of n patterns, were created in two steps. In a first
step, we generated data containing the predicate values. More precisely,
a number of n patterns was generated with the predicate values set ac-
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cording to their ratio in the manually annotated training data. For
example, let the ratio of voiced plosives in the training data be r,, and
the number of patterns to be generated n. Then m = r,, * n patterns
were generated with values true for the the predicates isVoiced and
isPlosive and false for the rest of the predicates. This way we en-
sured that the synthetic data had the same ratio of phones and phone
classes, for example the same ratio of glottal closures or voiced plosives
as the training data.

In a second step, we went through the partitions, defined by the
combinations of predicate values py., where k is the number of predi-
cates, and determined the appropriate distribution for each feature f;.
That could be either a distribution of f; that was estimated exactly
from the subset described with the predicate sequence p;._j or a distri-
bution that was estimated from a superset that included that subset
described with pq. . A superset described with ¢q. 5 includes a predi-
cate p1.k if some or all of the ¢;,1 < [ < k are either equal to p; or
undefined. Subsequently, this distribution was used to generate sample
values for the feature f; of that subset.

We generated two sets of synthetic data. One set contained equal
members of each class (suitable and unsuitable phone instances), the
other set took into consideration the unbalance of the two classes for
each data partition.

C.2.3 Determining the Bayes Error
Data Partitions

To compute the Bayes error, we again used the predicate partitions
that we used to generate the synthetic data (see C.2.2). Because these
partitions are described by different distributions, the Bayes error has
to be computed for each of these partitions separately using their indi-
vidual distributions of feature values. Then a weighted mean of these
errors (according to the ratio of the partitions with respect to all data)
is taken to compute the overall Bayes error.

For the unbalanced data set, the a priori probabilities of the two
classes have to be considered for each partition, therefore different
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Bayes error rates result for the balanced and for the unbalanced data
set.

Classic Approach to Determine the Bayes Error

The computation of the Bayes error rate in a high dimensional space
proved to be not trivial. As a first classic approach, we computed the
probabilities for the two classes for every sampling point on a grid.
This grid was confined to a certain range (depending on the variances)
around the means in each dimension, making sure that a certain per-
centage of the probability space of the distribution was covered?. If
known, the possible range of the features was considered. E.g. the fea-
ture nCreaky only takes values between 0 and 1, therefore only patterns
were generated with values in that range. However, this first approach
was only used for a reduced number of features during development.
Covering a range of 5 standard deviations would require to compute
the probabilities of some 2,000,000 sampling points in up to 14 dimen-
sions. A rough estimation showed that computing the probabilities for
all these points would take some 3.5 - 10%® years.

Monte-Carlo Sampling to Determine the Bayes Error

As described above, the computation of the class probabilities for every
point in a 14-dimensional grid within a certain range is prohibitive. As
a consequence, we applied Monte-Carlo sampling to compute the class
probabilities for randomly chosen points in the n-dimensional feature
space and used the ratio between correctly classified points and incor-
rectly classified points to determine the Bayes error. However, also for
this approach the curse of dimensionality applied and the number of
patterns has to grow exponentially with the number of dimensions to
yield a reliably stable Bayes error estimate. We found that with more
than 4 dimensions the computation time also grew beyond feasibility.

2The inverse cumulative distribution function can be used to compute the nec-
essary range to include at least k% of the sampling points.
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Using Test Pattern Probabilities to Determine the Bayes Er-
ror

As final approach we computed the class probabilities for the patterns
that we finally used as a test set to determine the Bayes error. The
advantage is that on the one hand we receive a very accurate estimate
of the error rate that can be reached on that particular test set with an
optimal classifier and on the other hand, the Bayes error computation
is still computationally feasible for higher dimensions. The test set size
should be large enough to be a good representative of the underlying
distribution. However, the test set size is also confined by the evaluation
time of the classifier.

C.3 Estimating the Number of Training
Data

The crucial question for training a classifier, before one starts thinking
about the details of parameter optimisation, is whether the number
of training data that can be generated manually is sufficient for any
classification at all. To answer that question, we used the distributions
we gained in Section C.2 to generate data sets of different sizes using
the same number of patterns for each class. For each training set size we
generated 10 training sets and trained corresponding networks. Each
network was tested on the same test set of 1,000,000 patterns. We
present the 10 results for each training data size as boxplots in Fig. C.4.
Note that we use a logarithmic scale on the x-axis which represents the
training data sizes.

We actually trained several network configurations with different
layer structures and number of nodes. The results for these several
network configurations were similar, therefore we only show the error
rates from one representative experiment in Fig. C.4.

We observed that the Bayes error rate is approached asymptotically
with increased training data size. Between 5,000 and 10,000 patterns
should suffice to achieve a reasonable classification result. This number
of training pattern also lay in the order of magnitude of what we were
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able to classify manually.
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Figure C.4: The error rates for each training data size are shown as
boxplots, where the black circles denote the median error rate over 10
runs, the edges of the box denote the 25th and 75th percentiles, and
the whiskers the most extreme data points. We used a network with
28 inputs, 9 nodes in the first, and 5 nodes in the second hidden layer,
and 2 outputs (one for each class) and stopped the training after 50,000
iterations.
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C.4 Parameter Optimisation for Synthetic
Data

Once the training data and the features for a neural network are known,
many choices are to be made about the optimisation method and the
parameters associated with each method. These choices include the way
to cope with of heavily unbalanced data, the network layer structure,
the target coding scheme, and the optimisation approach itself (back-
propagation or some other approach). Each optimisation approach by
itself has a certain number of parameters to be tuned, where the number
of iterations, the learning rate, and the momentum term are the most
common. Furthermore, if training sessions take too long, some form of
early stopping or annealing technique may be considered. In fact, this
meta-optimisation processis an iterative process: because of the large
search space, it is prohibitive to optimise the parameters all at the
same time. Furthermore, there exists no logical order in which to treat
different aspects in this meta-optimisation process. In the following
description, we treat these aspects in the order of relevance and start
with the treatment of heavily unbalanced data in Section C.4.1.

C.4.1 Treatment of Unbalanced Data
The Situation

The percentage of suitable and unsuitable phone instances of the man-
ually classified training data is very uneven, especially for some phones.
One of the most unevenly distributed phones are affricates, unvoiced
stationary phones that are followed by a preplosive pause (unv. st.
phones, followed by ppp in Fig. C.5) and unvoiced preplosive pauses
(unv. ppp), which are preplosive pauses preceding an unvoiced plosive.
In the latter case, the uneven distribution can be attributed to the fact
that, first, a preplosive pause is not a critical phone (after all, it is
a pause) and second, a backward masking effect® may mask artifacts
that occur in the preplosive pause. The backward masking effect occurs

3Obscuration of a sound immediately preceding the masker is denoted backward
masking.
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in this context because the preplosive pause is normally followed by a
high intensity burst. From this example we can conclude that some
phone instances are more problematic than others and that the uneven
distribution is probably due to the phone class characteristics. Be that
as it may, the classifier has to cope with this partly extreme uneven
distribution of training data.

schwas

N

phone [+
Hazals [7

affricates l§7
v fricatives V

uny . st. phones, followed by ppp V

v, 5t phones, followed by ppp [7

v. 5t phones, followed by pause [///

trills |7
Uy Ppps %
w. ppps %
pauses %

glottal closures [,//

W, plosives

uny . plosives

SN

uhy . 5t phones, hot followed by pop

. 5t phones, followed neither by pause nor ppp L//

Figure C.5: Distribution of the training data, on the left the suitable,
on the right the unsuitable phone instances. Abbreviations are: v. for
voiced, st. for stationary and ppp for preplosive pause.

Approaches to Cope with Unbalanced Data

Conventional classification approaches express a posteriori probabilities
through Bayes’ theorem in the form:
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p(Cy)P(Cy)
P(Cylx ) = C.1

The neural network approach provides direct estimates of the a pos-
teriori probabilities P(Cy|x ). That means that it learns a combination
of the class-conditional densities p(C}) and the a priori probabilities
P(C%). To cope with unbalanced data, two approaches are presented.
In the Section C.4.2, a data balancing approach and in Section C.4.3
an educational learning approach is demonstrated.

C.4.2 Balancing Training data

We can use different degrees of balancing, from not balancing data at
all to full balancing of the training data.

No Training Data Balancing If we do not balance the training
data, the network learns the a priori probabilities p(C) of the training
data. Thus, the network will be biased, and, for our training data,
will produce much more false positives than false negatives. For our
application, however, we rather want to have a suitable phone instance
classified as unsuitable than vice versa. That means, we prefer a larger
number of false negatives. Therefore, having the network learn the a
priori probabilities is not an option for our application.

Full Training Data Balancing One approach to balance two classes
is to replicate the patterns of the smaller class until both classes have
the same size. As a consequence, the a priori probabilities P(Cy) will
be equal for both classes.

Partly Training Data Balancing As with full training data bal-
ancing, we replicate the patterns of the smaller class, yet impose some
restriction on how often a pattern may be replicated. Thus, an over-
representation of certain training patterns can be avoiced. As a conse-
quence, the different data subsets will be balanced to a different extent,
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and therefore also a priori probabilities will be learnt to a different ex-
tent for different subsets of data.

Experiments with Different Degrees of Balancing

For experiments, we created unbalanced synthetic data from the same
parameters as described in Section C.2 with the same distribution of
suitable vs unsuitable phone instances as in the original training data.
Because of the changed a priori probabilities, the Bayes error rate
changed to 7.71% as the a priori probabilities have to be considered
when computing the Bayes error rate.

We used different layer structures and different numbers of itera-
tions to achieve optimal results for different degrees of balancing. Only
the parameter choice for the best results are shown in Table C.2.

data replication factor | layer structure | iterations | error rate on
test data [%]

1 28/15/7/2 60,000 12.31

3 28/12/5/2 60,000 14.51

5 28/12/5/2 60,000 14.77

8 28/12/5/2 60,000 14.06

00 28/9/5/2 40,000 13.54

Table C.2: Best network parameters for different degree of balancing.
Data replication factor describes how often a pattern may be used for
balancing the data. A factor of 1 means each pattern is exactly used
once, which means no balancing at all whereas oo means there is no
restriction on how often a pattern may be used, so the data is completely
balanced. The Bayes error rate for this data is 7.71 %.

We clearly see that best results are achieved if the data is not bal-
anced at all. However, the number of false positives is highest in this
case. In total, the error rate is still far from the Bayes error rate of
7.71 %, no matter which degree of balancing is used.
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C.4.3 Educational Learning

What our application is concerned, does focusing on a priori probabil-
ities lead to the desired results? On the one hand, we want to order
the phone instances to find the most suitable one. To achieve such an
ordering, however, we do not need a (a priori-wise) balanced classifier,
so we could ignore the number of false positives and leave the data un-
balanced. But on the other hand, our classifier should learn rare events,
so it would be advantageous to balance the data in some way, to have
a large number of, in our case, unsuitable phone instances.

One approach to focus on rare events is educational learning. Edu-
cational learning is a type of pattern weighting heuristic (see [RM99])
that can be used to tackle the data balancing problem. We focus on
the patterns which are misclassified, thus modifying the error function
by giving more emphasis on those patterns.

In the following sections, we present two different heuristic ap-
proaches of educational learning: one is learning rate adaptation and
the other is the repeated application of wrongly classified patterns.

Learning Rate Adaptation

In this approach two different learning rates are applied. A higher learn-
ing rate is applied if the pattern has been wrongly classified and a lower
learning rate (the one that proved to be optimal in the preceding ex-
periments) is applied if the pattern has been correctly classified:

Nw = A+ Te, (C.2)

where 7, is the learning rate for wrongly classified pattern, 7. is the
learning rate for correctly classified pattern and A the learning rate
factor. This learning rate factor describes the ratio between the learning
rate for correctly classified patterns and wrongly classified patterns.

We used different values for A\ to train networks and evaluated them
on test data, see Table C.3.
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A Layer structure | Iterations | Error rate on
test data [%]

2 28/12/5/2 40,000 8.55

3 28/12/5/2 40,000 8.71

5 28/12/5/2 40,000 8.90

7 28/12/5/2 40,000 9.31

10 | 28/12/5/2 40,000 9.71

1.5 | 28/12/5/2 60,000 8.67

2 28/12/5/2 60,000 8.55

3 28/12/5/2 60,000 8.63

5 28/12/5/2 60,000 8.90

2 28/12/5/2 80,000 8.81

2 28/15/7/2 40,000 8.75

2 28/15/7/2 60,000 8.80

2 28/9/5/2 40,000 8.74

2 28/9/5/2 60,000 8.71

1.5 | 28/12/5/2 40,000 8.70

Table C.3: Best network parameters for educational learning with
online-learning and the adaption of the learning rate. The Bayes er-
ror rate for this data is 7.71 %. The error rates are the mean error
rates over 5 runs.
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Repeated Application of Wrongly Classified Patterns

In this method, we applied subset training where a part of the subset
consists of patterns that have not been learnt correctly in the previ-
ous iteration and the rest of the subset consists of randomly selected
patterns. After a pattern has been applied for the second time, it is
removed from the training to avoid that contradictory data remains in
the subset for too long.

Experiments were conducted for different subset sizes and different
numbers of iterations, see Table C.4.

Subset size | Layer structure | Iterations | Error rate on
test data [%]

200 28/12/5/2 3,000,000 | 8.58

200 28/12/5/2 4,500,000 | 8.54

300 28/12/5/2 3,000,000 | 8.56

200 28/12/5/2 2,000,000 | 8.68

Table C.4: Best network parameters for educational learning with sub-
set learning and repeated application of wrongly classified patterns. The
Bayes error rate for this data is 7.71 %. The error rates are the mean
error rates over 5 runs.

Choice of Educational Learning Method

For both educational learning methods, the lowest error rates achieved
on the synthetic data were about equal (see Tables C.3 and C.4). How-
ever, the training time for the second method, the re-usage of wrongly
classified patterns, is considerably higher. The final decision on the ed-
ucational learning method was made after a set of informal listening
tests (see Section C.4.8).
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C.4.4 Network Size and Number of Iterations
Theoretical Considerations about Network Size

One substantial question in designing a network is how many nodes
to place in each layer. On the one hand, the representational capacity
of the network should cover the problem. In other words, the network
should be sufficiently large so it can fit the function we want to approx-
imate. On the other hand, generalisation criteria become the limiting
factor on performance if networks grow over a certain size. A large
network can often fit the training data exactly but will most probably
not fit the data in a way that represents the underlying function that
generated the data (see [RM99]).

In this section we focus on the number of nodes, the question
whether to use one or two hidden layers is treated in Section C.4.5.
There are various rules on the connection between network size and
capacity but these rules either require certain preconditions (like only
one hidden layer or linear threshold functions) or are only of theoreti-
cal significance, for example how many nodes are needed for the exact
representation of a certain function. Generalisation, however, depends
on many factors so statements based only on network size and number
of patterns cannot predict generalisation performance (see [RM99]).

To approximate a reasonable number of nodes so the network would
be capable to represent our data on the one hand, and on the other hand
not be prone to over-fitting, we trained several network configurations
and observed possible over-fitting effects after a large number of iter-
ations. As a side product of these experiments we were also able to
estimate a reasonable number of iterations, large enough to learn the
training data but small enough to avoid over-training.

We observed from previous experiments that an increase in the num-
ber of nodes lead to a decrease in error rates on the test set, even with
very high numbers of nodes. But we also saw that once a certain net-
work size has been reached, the error rate could only be improved very
slightly by increasing the number of nodes. The downside of increasing
the number of nodes, however, is a drastic increase in training time.
This saturation effect of the error rate concerning the number of nodes
is even stronger if more iterations are used.

C.4 Parameter Optimisation for Synthetic Data 201

Network Size for Balanced Training Data

Before tackling the network design for unbalanced training data, we
investigated the influence of network size using the classic learning
method on balanced data. The data sizes were 4,000 and 8,000 pat-
terns, which is in the order of magnitude of the around 15,000 training
patterns of real, but heavily unbalanced data that were available. We
used 4 different network structures starting from a small network with
28/7/5/2 to a large network with 28/15/7/2 and evaluated the net-
works on an evaluation set every 200 iterations until we observed clear
over-fitting effects after some 200,000 iterations.

We found that an increase in the number of nodes lead to a slight
decrease in the minimal error rate that is reached on the evaluation
set during the training as can be seen comparing Table C.5 and C.6.
However, especially for the larger networks and the smaller training
data size of 4,000 patterns, we observed that the error rate on the
evaluation set increased considerably having passed a certain number
of iterations. E.g. considering the largest network trained with 4,000
patterns we can see in Table C.5 that the mean error rate goes up
from 14.78% to 17.09% after 200,000 iterations. This over-fitting effect
is smaller for more training patterns where the error rate only goes
up from 14.12% to 14.64% (see Table C.6). These experiments with
balanced data show that with a small sacrifice in error rate, considerable
safety in terms of over-fitting can be achieved.

Layer structure | Mean min error rate | Mean error rate after
200,000 iterations
28/7/5/2 14.89 % 15.53 %
28/9/5/2 14.76 % 16.06 %
28/12/5/2 14.74 % 16.46 %
28/15/7/2 14.78 % 17.09 %

Table C.5: Comparison of minimal error rates and error rates after
200,000 iterations for different network structures. Mean errors taken
over 5 runs for each network structure. 4,000 training patterns were
used. The Bayes error rate is 12.73 %.
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Layer structure | Mean min error rate | Mean error rate after
200,000 iterations
28/7/5/2 14.15% 14.21%
28/9/5/2 14.09 % 14.21%
28/12/5/2 14.06 % 14.46 %
28/15/7/2 14.12% 14.64 %

Table C.6: Comparison of minimal error rates and error rates after
200,000 iterations for different network structures. Mean errors taken
over & runs for each network structure. 8,000 training patterns were
used. The Bayes error rate is 12.73 %.
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Figure C.6: Evaluation set errors for different layer structures dur-
ing the course of a training with 200,000 iterations and 4,000 balanced
training patterns. The layer structures from top to bottom: 28/7/5/2,
28/9/5/2, 28/12/7/2 and 28/15/7/2. The Bayes error rate is shown
as a dotted line at 12.73 %. First, the error rates drop sharply during

the first few iterations, then start to increase slightly again.
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Figure C.7: Evaluation set errors for different layer structures dur-
ing the course of a training with 200,000 iterations and 8.000 balanced
training patterns. The layer structures from top to bottom: 28/7/5/2,
28/9/5/2, 28/12/7/2 and 28/15/7/2. The Bayes error rate is shown
as a dotted line at 12.73 %.
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Network Size for Unbalanced Data

We used 15,000 patterns of unbalanced data (see Section C.4.2) to inves-
tigate the possible effect of over-fitting on different network structures
if educational learning was used.

We used the same network structures as in Section C.4.4 and again
evaluated the networks on an evaluation set every 200 iterations. We
used educational training with learning rate adaption to account for
the unbalanced data. Just as for balanced data, we observed a slight
error rate increase for the largest network after having reached a certain
number of iterations (see Fig. C.8). As for the balanced data, we can
see that the larger networks are slightly more prone to over-fitting.
However, this effect is relatively small for the unbalanced data sets due
to the larger number of data.

Layer structure | Mean min error rate | Mean error rate after
200,000 iterations
28/7/5/2 8.47 % 8.53 %
28/9/5/2 8.43% 8.49%
28/12/5/2 8.44 % 8.50 %
28/15/7/2 8.47% 8.63 %

Table C.7: Comparison of minimal error rates and error rates after
200,000 iterations for different network structures. Mean errors taken
over & runs for each network structure. 15,000 unbalanced training pat-
terns were used. The Bayes error rate is 7.71 %.
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Figure C.8: Fvaluation set errors for different layer structures during
the course of a training with 200,000 iterations and 15,000 training
patterns. The layer structures from top to bottom: 28/7/5/2, 28/9/5/2,
28/12/7/2 and 28/15/7/2. The Bayes error rate is shown as the dotted
line at 7.71 %. First, the error rates drop sharply, then they start to
increase slightly again.
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C.4.5 Number of Hidden Layers

Theoretical results show that a network with three layers of weights?
can generate arbitrary decision regions, which may be non-convex
and disjoint (see [Lip87], [Bis95]). All the same, a two-layer network
with sigmoidal activation functions can approximate any given deci-
sion boundary arbitrarily closely (see [Bis95]). However, one has to
bear in mind that these theoretical results are to be considered state-
ments about the power of a class of networks and do not guarantee
that a particular network will be able to learn a particular set of data
and generalise properly. Moreover, these theoretical results are based
on asymptotic analyses that are valid only for large sets of data or
large input dimensions (see [RM99]). Therefore, we conducted two ex-
periments, one with balanced data and one with unbalanced data to
study whether a two or a three-layer network proves more suitable for
our problem.

Experiments for Balanced Data

We trained different networks with an approximately equal number of
weights, distributed over two and three layers, respectively.

layer structure | number of weights | error rate [%)]
28/20/3/2 736 13.26
28/24/2 720 13.48
53,/25/2 750 13.48

Table C.8: Mean error rates for different layer configurations with
approximately equal number of weights. For each layer configuration
we trained 10 different networks with different training data and tested
them on the same test set of 1,000,000 patterns. We used 20,480 pat-
terns of balanced training data and stopped the training after 50,000
iterations.

4As an L-layer network we consider a network with L active layers, which com-
prise L — 1 hidden layers and one output layer. Inputs are excluded as they do no
computation.
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Experiments for Unbalanced Data

For the experiment with unbalanced training data less nodes were used
in the networks, as the training data was unbalanced and consisted of
less training patterns. We used educational training with learning rate
adaption (see Section C.4.3) for all layer configurations.

layer structure | number of weights | error rate [%)]
28/12/5/2 106 8.53
28/13/2 390 8.63
28/14/2 120 8.61

Table C.9: Mean error rates for different layer configurations with
approximately equal number of weights. For each layer configuration
we trained 10 different networks with different training data and tested
them on the same test set of 1,000,000 patterns. We used 15,000 pat-
terns of unbalanced training data and stopped the training after 60,000
iterations.

The results clearly show that layer configurations with two hidden
layers achieve best results for balanced as well as for unbalanced data.
Networks with one hidden layer perform still worse even if they contain
a larger number of weights. A network with only one hidden layer could
probably reach similar results with a substantially larger number of
nodes. However this network would be very prone to over-training.

C.4.6 Choosing a Target Coding Scheme
Theory

The target values can be chosen according to various schemes. We in-
vestigated the two most common schemes for a two-class problem, the
1-of-c scheme and a single-output target coding scheme.

The coding with two outputs is called 1-of-c target coding scheme.
In this scheme, we have ¢} = d); for an input vector x™ from class C;
where dy; is the Kronecker delta symbol. The Kronecker delta symbol
is defined as d,; = 1 if kK = [ and &; = 0 otherwise. If a sum-of-squares
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error function is used (as we did), it can be shown that the outputs of
the network correspond to Bayesian a posteriori probabilities of class
membership (see [Bis95], p.225):

yr(x) = P(Cg|x). (C.3)

As second approach we used a single output y with a target coding
which sets t" = 0 if x™ is from class C; and t" = 1 if x™ is from class
Co. In this case it can be shown (see [Bis95], p.226) that the network
output y(x) represents the a posteriori probably of the input vector x
belonging to class Ca:

yr(x) = P(Ca|x). (C.4)

The corresponding probability for class C; is then given by P(Cy|x) =
1 —y(x).

In the literature, both approaches were described as equally valid
alternatives, so we conducted a number of experiments to investigate
which approach gives better results when applied to our problem.

We conducted experiments to compare layer structures that only
differed in the number of outputs and differed as little as possible in
the total number of weights. The difference in number of weights was
5 (406 weights for 2 outputs, 401 weights for 1 output), which is a
difference of 1.2 %.

Experiments with Balanced Data

From Table C.10 we notice that for balanced data of 10,240 training
patterns, the error rates with 2 outputs are slightly lower but with an
increased number of iterations, the error rates converge.
Experiments with Unbalanced Data

For networks trained on unbalanced data with error rate adaptation as

learning method, we observed that with the number of iterations, the
error rates approximate (see Table C.11).
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layer structure

total number

error rate after

error rate after

of weights 40,000 iterations | 60,000 iterations
28/12/5/1 401 13.72% 13.58 %
28/12/5/2 406 13.60 % 13.58 %

Table C.10: Comparison two network structures that only differ in
the number of nodes in the output layer. After 40,000 iterations, the
network with two output nodes shows lower error rates, after 60,000
iterations, equal error rates are reached. We used 10,240 patterns for
all runs and took the mean error taken over 5 runs for each network
structure. The Bayes error rate is 12.73 %.

layer structure | total number | error rate after error rate after
of weights 40,000 iterations | 60,000 iterations

28/12/5/1 401 8.73% 8.57%

28/12/5/2 406 8.59 % 8.55%

Table C.11: Comparison two network structures that only differ in
the number of nodes in the output layer. The network with two output
nodes shows lower error rates, however the error rates approximate with
a higher number of iterations. We used 15,000 unbalanced patterns for
all runs, the mean error taken over 5 runs for each network structure.
The Bayes error rate is 7.71 %.
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Results

Although we know from theoretical results that the number of outputs
does not make any difference in the network performance, we discov-
ered that networks with two outputs tend to learn a little bit faster.
In addition to the experiments shown above, we conducted further ex-
periments with a smaller number of iterations and larger training data
sets, and we did not observe any result where one output performed
better than two outputs. Therefore, we chose to use a target coding
scheme with two outputs.

C.4.7 Optimisation Algorithms
Balanced Data

We use the batch version of gradient descent (see [Bis95]). The sequen-
tial approach (also pattern-based approach, where the error function
gradient is evaluated for only one pattern at a time and the weights
updated accordingly) is recommended when there is large redundancy
in the data (i.e. lots of similar pattern with basically the same infor-
mation). However, that is not the case with our data so we applied the
batch version of gradient descent for reasons of computational efficiency.
For more details on the batch and sequential approaches see [RM99].

We examined alternative optimisation methods to back-
propagation, which is often criticised for its slow rate of convergence.
Specifically, we examined implementations of RPPROP [RB93],
scaled conjugate gradient [Mgl93], Levenberg Marquardt training
([Mar63, Lev44] and quickprop [Fah88] from an open source Java
framework [HealO]. However, with none of these methods we could
accomplish the error rates we were able to achieve with basic back-
propagation. This may be due to the well tuned parameters that
we used for back-propagation, which in this case is comparable to
alternative methods even in terms of speed (see [RM99]).
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Unbalanced data

For the educational learning method based on learning rate adaption
we used a sequential approach of gradient descent. This is necessary, as
the learning rate is modified according to whether the current training
pattern was classified correctly or not. Therefore, the learning rate is set
immediately after the evaluation of the pattern and before the weight
update.

For the educational learning method that used repeated applica-
tion of wrongly classified patterns, we used a batch version of gradient
descent where the subsets are composed partly from previously mis-
classified patterns (see Section C.4.3).

C.4.8 Final Network Choice

To decide on the final network, 20 networks were trained with differ-
ent network configurations using both educational learning methods.
These networks were then used to select corpora and to synthesise be-
tween 10 and 14 test sentences per voice. Finally, these test sentences
were evaluated with an informal listening test. We found that, although
the error rates were approximately equal for both educational learning
methods, the networks that had been trained with learning rate adap-
tation provided slightly better results when used for the selection of
diphone elements.

In the end, we used a network with layer structure 28/12/5/2,
trained it with a learning rate factor A = 2 and stopped the training
after 60,000 iterations. The learning rate 7. for the correctly classified
patterns was set to a value of 0.005, no momentum term was used
(7" configuration in Table C.3).

Appendix D

Intelligibility Test
Results

This appendix presents in detail the evaluation results of the intelligi-
bility tests described in Section 9. A general discussion of the results
can be found in Section 9.3.5. In the following, the confusion matrices
of the evaluations are listed. For German, the rhyme test checks the
distinction of initial consonants, mid-word vowels and final consonants.
Thus, three confusion matrices are listed for each German voice. The
English rhyme test encompasses only initial and final consonants. Thus,
two confusion matrices are shown for each English voice.

D.1 fg Voice




214 D Intelligibility Test Results D.1 fg Voice 215

IS = ===l ==l en s e s Jl e lien Jen e liles Jlen il 2 = =]

24

[
42

0
0
1
0
4
1
50
0
0
0
0
0
0
0
0
0
0
0

[

i

If
Confusion matriz for the initial consonants of the fg voice
1] 1]
0 0
0 0
0 0
0 0
2 0
37 0
2 0
0 1
0 0
0 22
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 2
Confusion matriz for the middle vowels of the fg voice

31
0
0
3
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0

21
51
Table D.2

0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
2
4
0
1
0
0
0
0
0
0
0
0
0
0
0

[t"]

Table D.1

1
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

[a]
36
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0

= s e — — —_— —
R SN N = ) e e S = N = = W=V

TEowEE=0E 5588 38R




D Intelligibility Test Results

D.2 mg Voice

217

(k]
0

' [t]
0

[p]
30

)

45

32

11

10

11

34

32
83

10

= S T e —_— —
AT Mk BT m s e K e

ENES

Confusion matrix for the final consonants of the fg voice.

Table D.3

D.2 mg Voice

[n]
0
0
0
0

(m]

(k"]
0
0

22
0

36

30

41

21

17

22
Confusion matriz for the initial consonants of the mg voice.

Table D.4




218

D Intelligibility Test Results

D.2 mg Voice

219

0

1

20

47

28

49

14

15

23

18

16

45

11

0

19

Confusion matriz for the middle vowel of the mg voice.

Table D.5

(k]
0
0
0
0

0
0
0
90

] [t"]
31

ph]
0

14
0
0

[p]
35
1
0
1

12

40

11

22

= o T e —_— —
ey e R MR W = W=

25

_

28

£

48

ENES

Confusion matriz for the final consonants of the mg voice.

Table D.6




220 D Intelligibility Test Results D.3 fe Voice 221

D.3 feVOice B I=R=R=ReN=leleloleleeNoellelo el

= O
OO0 0000000000000 FOOO BN
= 3
EOOOo00o00000O "Moo o0 S
OO0 0000000000000 ONOOOD - &
=) N .
N . Q
N 0000000000000 WOODOO s
OO OO0 0000000000 00000 S = = -
— S
O
. = O 00000000000 NOODOODOO 2
R R R R e R R e e e R R R R = = ™ §
= <
<
) HO OO0 0000000 OLOOOODODOOD S
HEC OO 00000000 HCcCooOO0 - = z
= z S
3 v Q
EO 0000000000 RO C00COO0 S O O 0000000 OoONODOOOOOOOO =
- @ I
S =3
O OO0 00000000 VOOOOOODDO O S OO0 HNOOOOOO0O0O OO N
=, [N} — — ﬁ
= .
O OO0 0000000000000 OO s ORI L
= B
N =
< —
OO OO0 0 o000 R0O00CCCO000O0 = O OO0 0000000000000 OO s
2 o =y
S £
g ==X 2
E 3
OO0 O000ONO0000000000O00 g FOONOOEO000000000O0000 =
N — S
5] QO
OO0 0000 FTOOOOOOODOOOODO O = . .
= 3 ToONCcCoOMmMOoOoOOoOOoOOooCocoO00000oo &
S a
OO OO0 NWNOO0OO0OO0O0OOOOOOOODDOO )
= N e e R R o)
.o [— o
~ el
TOooCoo00000000000000O0 A é:s
o ioogoomoooooooooooooo
ECOOoOROCC000000C 0000000 ) -
<
. = LOoOgooNCooOCooooco0o00S0
R R e e - e e e R g
— MO O TN OO0 OODOO
LoROCNCCcCcooooooecoooo0
— P P W 1~ SNy~ NP SRR
RGO OO000 000000 MmMOO0 00000 AR M AT ST IeNdE=E R ER> 0.2

= —_——— e — Xe) — = — —_— e —
RN N NN R = W= == N = A RN I

i




222

D Intelligibility Test Results

D.4 me Voice

223

D.4 me Voice

Il

g [
0
0
0
0
0
0
0
0
0

]

k]
0
1
23
0 32
0
0
0
0
0

0
5
0
0
0
0
0
0
0

p"]
8
0
0
1
0
0
0
0
0

36

31

22

0

19

17

Confusion matriz for the initial consonants of the me voice.

Table D.9

32

[p"]

20
0
0
0

20

23

0

0
0
0
0

51

o

12

[v]

15

[v]

[e1]

Confusion matriz for the final consonants of the me voice.

Table D.10




Appendix E

Phone Inventories

In this appendix, the phone inventories for German and English are de-
fined as they are used in the SVOX speech synthesiser. The phones are
represented with TPA symbols and illustrated with some examples in
graphemic and phonetic form. For technical reasons we introduced pre-
plosive pauses which are denoted according to the plosive they belong
to. Therefore, we added symbols for preplosive pauses and preplosive
before elisions, that are denoted with one or two dots below the corre-
sponding plosive.
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German phone inventory

diphthongs)

IPA Example

Bahn
hat
Ober
Uhr
weit
Haut
Liebe
Ball

ich
dann
Band
Gin
Beet
Methan
wahle
hatte
Frey
halte
Fass
Magen
Gast
Riiegger
hat

viel
vital
bist
Studie
Dietikon
ja
Skandal
kalt
Macke
Viktor
Last
Nabel
Mast

ornlctem
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[
[
[
[
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[
[
[
[
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['fas]
[
[I
[
[
[
[
[
[
[
[ja
[
[
[
[
[
[
[
[

gastt]
ryagggor] ®
hatt]

fi:l]

vi'ttazl]

1

fttu ddie]
diotti kkom)] 2

]
skkan' dda 1]

VIkthO'B]

nazbbl]

mastt]

’f‘ﬂ"ﬁ Qm]

IPA Example
Ol
Okonom
gottlich
Spatz
Pfahl
Pakt
Mappe
Abgabe
Rast
Karren
Hast
Schal
Stier

Tal

Patt

Zahl
Matsch
Hut
kulant
Pult
aktuell
Ruedi
was
Bach
Riibe
Mykene
fillt
Etui

Hase
Genie
beamtet

—CNN(é%(v<l<<5x<(%)gcgg(£(ar:w~ﬁrg‘ﬁ%w(: ﬂ;@.@@ragggg

Mitbewohner

Bliiemlisalp

(incl. Swiss German

o]
|okkonorm]
goettlig]

ppatts]
pfal]
ph akktt]
mappa}
apga:bo]
'rastt]
karron]
hastt]
o]
[ttire]
thaz]
phatth] 4
mitbovome]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[tsazl]
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
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matt|]
huztt]
ku'lantt]
phultt]
akk' ttusl]
'rueddl]
'vas]

bax]

ry:bbo]

my kkemo]
lett]

le'ttyiz]
blyomlis'alpp]
ha:zo]

3enii]
bo'|amttott]

1 aspirated plosive
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English phone inventory

IPA Example

another
nose

hat

got, frog
stars

cut, much
rise
about
bin

baby
webpage
this, other
din

made
Adkinson
Gin

bird, furs
bird, furs
get

raise
stairs

fit

give, bag
beggar
hit

witch
ease
fears
youth, yes
skat

kin

make
acta

life, field
mean
thing
fine, net
abroad

QES R TERAAATE R Fe @ he@ 00 QERA R oiT T TEE R R EEC

[0 ‘nA69]
[novz] !
[heett]
[‘gatt] [fragg] 2
[sttawz] 1, [sttamrz]
[katt], [matt[]
[Taiz]
[o'bbautt]
[bn]
[berbbi]
['webperds]
[31s], [ador]
[din]
[merdd]
["edkinsen)]
[d3m)]
[ba:dd], [f3:z] *
[bardd], [fsrz] 2
[gett]
[
[
[
[
[
[
[
[0z
[
[
[
[
[
[
[
[
[
[
[

NnQy7
et

2

3

re1z]
stteoz] b, [stteorz]
fitt]

gwv], [baegg]
beggor]
hitt)

witt/]

iz

fioz] 1, [fiorz]
just], [jes
skka:tt]
khm]
‘melkk}
‘ekto] 3

laif], ['fildd]

2

2

mim]

O]

fam], [nett]
o'bbro:dd]

IPA Example

D got, frog ['gptt], [fngg]
oy nose [nouz] 2

p speed [‘5p1 dd

p"  pin [ph In]

p  tip [tpp]

p wept ['wept] *

T ring, stress [rim], ['sttres]
| shine, brush [[fam], [bra/]
s sin, mouse  ['sm], [mays]
0 thin, method [0m], ['mefodd
t street ['sttriztt)

th time [tharm]

t mat [mett)

t Eastbourne [‘i:stborm] 3

tf  chin [tfm]

U book [Dukk]

u lose [Tu:z]

yo  durable ['djuarebbl]
v very, heavy ['veri], [hevi|
w  well ['wel]

X loch [Tox] !

3 vision ['vizon]

z zoo, fees [zuz], [firz]

! British English

2 American English

3 preplosive pause before ar
elision in rapid speech
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