
Diss. ETH No. 21528

Enabling Dependable Communication
in Cyber-Physical Systems

with a Wireless Bus

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
FEDERICO FERRARI

M.Sc. ALaRI, USI
born January 6, 1981

citizen of Italy

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Prabal Dutta, co-examiner
Prof. Dr. Luca Mottola, co-examiner

2013

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 141

Federico Ferrari

Enabling Dependable Communication
in Cyber-Physical Systems

with a Wireless Bus

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 21528

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Prabal Dutta, co-examiner
Prof. Dr. Luca Mottola, co-examiner

Examination date: October 18, 2013

ISBN 978-1492251033
DOI 10.3929/ethz-a-010000257

http://dx.doi.org/10.3929/ethz-a-010000257

To grandma and grandpa.
I know you’d be proud!

Abstract

Cyber-physical systems (CPSs) are physical and engineered systems
believed to radically transform how we interact with the physical world.
By tightly integrating computation, low-power wireless communication,
and physical processes, these systems realize safety-critical control
loops—with physical processes affecting computation and vice versa—in
scenarios where traditional systems are hardly applicable. Potential CPS
applications include healthcare, factory automation, and smart structures.

The safety-critical nature of most CPS applications demands highly
dependable system operation. However, it is currently not possible
to apply to cyber-physical systems established concepts for the design
and validation of dependable distributed systems. These concepts
require guarantees (e.g., on message delivery orderings) that existing
CPS communication protocols do not provide.

It is indeed extremely challenging to guarantee message delivery in
low-power wireless networks, due to, for example, severe computation
and memory constraints of typical CPS embedded devices, multi-hop
wireless communication, and the need of satisfying also requirements
on energy efficiency. State-of-the-art solutions try to overcome these
challenges by involving in the exchange of messages as few nodes as
possible, but they typically operate only in a best-effort manner.

By contrast, we conjecture in this thesis that it is possible to enable
dependable yet efficient communication in cyber-physical systems by
employing a wireless bus—a time-triggered communication infrastructure
where, similar to protocols for (wired) safety-critical embedded systems,
nodes are time-synchronized and communicate as if they were connected
by a shared bus. In particular, we implement three main building blocks
contributing towards a dependable wireless bus:

• We design Glossy, a flooding architecture that provides fast and
highly reliable one-to-all communication in multi-hop low-power
wireless networks, while also accurately time-synchronizing all
devices. Glossy exploits synchronous transmissions of the same
packet, and does not require nodes to maintain any knowledge of the
network topology. Experimental results from three testbeds show
that Glossy delivers messages within a few milliseconds and with
probabilities above 99.99 % in most scenarios, while also providing
global time synchronization with sub-microsecond accuracy.

ii Abstract

• We present the Low-Power Wireless Bus (LWB), a wireless bus that
maps all traffic demands on Glossy floods and globally schedules
every flood, thus effectively turning a multi-hop wireless network
into an infrastructure similar to a shared bus where all nodes are
potential receivers of all data. Therefore, LWB inherently supports
one-to-many, many-to-one, and many-to-many traffic without
keeping any topology-dependent state at the nodes. Results from
four testbeds show that LWB performs comparably or significantly
better than seven state-of-the-art many-to-one and many-to-many
protocols, adapts efficiently to traffic loads and network topologies
varying over time, ensures fair bandwidth allocation, and supports
mobile nodes without performance loss.

• We finally verify the validity of our conjecture by developing Virtus,
a wireless bus that extends LWB’s best-effort operation and provides
virtual synchrony guarantees. By implementing atomic multicast
and view management, Virtus ensures that non-faulty nodes see
the same events in the same order despite possible communication
failures or node crashes. Virtually-synchronous executions allow
to apply to cyber-physical systems established methods for fault
tolerance based on replication techniques. Testbed results show that
Virtus implements virtual synchrony at a marginal cost compared
with LWB, and is significantly more energy-efficient than existing
best-effort multicast protocols for low-power wireless networks.

Sommario

Si ritiene che i sistemi ciber-fisici (CPSs) possano cambiare radicalmente
il modo in cui interagiamo con il mondo fisico intorno a noi. Integrando
in modo stretto computazione, comunicazione senza fili a bassa potenza
e processi fisici, questi sistemi realizzano circuiti di controllo critici per la
sicurezza, dove processi fisici e computazione si influenzano a vicenda, e
in situazioni in cui sistemi più tradizionali sono difficilmente applicabili.
Possibili applicazioni CPSs includono assistenza sanitaria, automazione
industriale e strutture intelligenti.

Poiché la maggior parte delle applicazioni CPSs sono critiche per
la sicurezza, è fondamentale che questi sistemi funzionino in modo
affidabile. Tuttavia, non è al momento possibile applicare ai sistemi ciber-
fisici concetti consolidati per la progettazione e la validazione di sistemi
distribuiti affidabili. Questi concetti richiedono garanzie (per esempio
sulla consegna ordinata dei messaggi) che i protocolli di comunicazione
esistenti non forniscono.

È infatti estremamente arduo garantire la consegna di messaggi in reti
senza fili a bassa potenza, per esempio a causa della limitata capacità di
computazione e di memoria dei sistemi embedded (incorporati) tipici dei
CPSs, dell’uso di comunicazione senza fili di tipo multi hop (multi salto)
e della necessità di soddisfare anche requisiti di efficienza energetica. Le
soluzioni attuali cercano di superare questi ostacoli coinvolgendo nello
scambio di messaggi il minor numero possibile di nodi, ma solitamente
operano solo in modalità best effort (senza garanzie).

In questa tesi ipotizziamo che è invece possibile ottenere una
comunicazione affidabile oltre che efficiente nei sistemi ciber-fisici
utilizzando un wireless bus (bus senza fili)—un’infrastruttura time triggered
(attivata dall’avanzare del tempo) dove, similmente a protocolli per
sistemi embedded cablati critici per la sicurezza, i nodi sono sincronizzati
e comunicano come se fossero collegati da un unico bus condiviso.
In particolare, implementiamo tre mattoni principali che concorrono a
realizzare un wireless bus affidabile:

• Ideiamo Glossy, un’architettura flooding (per l’inondazione di
pacchetti) che consente ad un nodo di distribuire pacchetti in modo
veloce ed altamente affidabile a tutti gli altri nodi di una rete senza
fili a bassa potenza e multi hop, oltre a sincronizzare accuratamente
tutti i dispositivi. Glossy sfrutta trasmissioni contemporanee dello

iv Sommario

stesso pacchetto e non richiede che i nodi abbiano alcuna conoscenza
della topologia della rete. Esperimenti su tre testbeds (banchi di
prova per reti senza fili) mostrano che nella maggior parte dei casi
Glossy consegna messaggi entro pochi millisecondi e con probabilità
maggiori del 99.99 %, fornendo anche una sincronizzazione globale
con una precisione al di sotto del microsecondo.

• Presentiamo il Low-Power Wireless Bus (LWB), un wireless bus
che usa Glossy per tutte le comunicazioni e che pianifica in modo
globale ogni scambio di messaggi, trasformando di fatto una
rete di comunicazione senza fili e multi hop in un’infrastruttura
simile ad un bus condiviso. LWB perciò supporta intrinsecamente
traffico di tipo uno-verso-tutti, tutti-verso-uno e tutti-verso-tutti
senza dover mantenere nessun tipo di stato che dipenda dalla
topologia della rete. Esperimenti su quattro testbeds mostrano
che LWB ha prestazioni simili o molto migliori di sette protocolli
esistenti di tipo tutti-verso-uno e tutti-verso-tutti, si adatta in modo
efficiente a carichi di traffico e topologie di rete variabili, assicura
un’allocazione equa della banda e supporta nodi mobili senza
perdita di prestazioni.

• Verifichiamo la validità della nostra ipotesi sviluppando Virtus, un
wireless bus che estende la modalità best effort di LWB e fornisce
garanzie di virtual synchrony (sincronia virtuale). Implementando
atomic multicast e view management, Virtus assicura che i nodi
non guasti vedano gli stessi eventi nello stesso ordine, nonostante
possibili mancate ricezioni o crash di nodi. Esecuzioni di tipo
virtual synchrony permettono di applicare ai sistemi ciber-fisici
metodi consolidati per la tolleranza ai guasti basati su tecniche
di replicazione. Esperimenti su testbeds mostrano che Virtus
implementa virtual synchrony con un costo marginale rispetto a
LWB ed è sensibilmente più efficiente di protocolli multicast e
best effort per reti senza fili a bassa potenza.

Acknowledgments

First of all, I would like to thank my advisor Prof. Dr. Lothar Thiele
for giving me the opportunity to work on this thesis. Thank you for
your valuable support, your patience throughout these years, and your
inspiring advices. I would also like to thank Prof. Dr. Prabal Dutta and
Prof. Dr. Luca Mottola for co-examining this thesis.

This work would have not been possible without the continuous,
fruitful discussions with my colleague Marco Zimmerling, and his
significant contributions to the work presented in this thesis. I would also
like to express my gratitude to Dr. Jan Beutel, Prof. Dr. Olaf Landsiedel,
Prof. Dr. Luca Mottola, and Dr. Olga Saukh for the successful
collaborations during these years.

I am grateful to have been part of a motivating and friendly team at
the Computer Engineering Laboratory. I have met many new friends
here, and I would like to thank them for making the time during my PhD
special and for standing my sometimes weird jokes.

Finally, I would like to thank my parents, my uncle, my sister, and my
“bro” for their constant support. Most importantly, thank you Monica
for supporting and standing by me throughout these years, and for
encouraging me especially during the difficult times!

The work presented in this thesis was funded in part by Nano-Tera
and the National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

vi Acknowledgments

Contents

Abstract i

Sommario iii

Acknowledgments v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Challenges in Low-Power Wireless 2
1.2 Existing Communication Support 4
1.3 Taking a Different Stand with a Wireless Bus 6

2 Glossy: Efficient Network Flooding and Time Synchronization 11
2.1 Synchronous Transmissions . 13
2.2 Glossy Overview . 18
2.3 Glossy in Detail . 21
2.4 Implementation . 25
2.5 Theoretical Analysis . 31
2.6 Experimental Evaluation . 36
2.7 Related Work . 49
2.8 Summary . 52

3 Low-Power Wireless Bus (LWB): A Versatile Wireless Bus 55
3.1 Overview . 58
3.2 Protocol Operation . 61
3.3 Scheduler . 69
3.4 Evaluation Methodology . 74
3.5 Bootstrapping . 77
3.6 Many-to-One Communication . 79
3.7 Many-to-Many Communication 84
3.8 Topology Changes . 86
3.9 Mobility . 90
3.10 Discussion . 98
3.11 Related Work . 103
3.12 Summary . 105

viii Contents

4 Virtus: A Wireless Bus with Virtual Synchrony Guarantees 107
4.1 System Model . 109
4.2 LWB as the Communication Support 110
4.3 Building Up to Virtual Synchrony 111
4.4 FIFO Delivery . 127
4.5 Implementation . 128
4.6 Evaluation . 129
4.7 Related Work . 140
4.8 Summary . 140
4.A Delivery between Successive Stable Rounds 141

5 Conclusions and Outlook 143
5.1 Contributions . 143
5.2 Possible Future Directions . 144

Bibliography 147

List of Publications 159

Curriculum Vitæ 163

List of Figures

1.1 A TelosB (aka Tmote Sky) embedded device 3
1.2 Example of a multi-hop low-power wireless network 4
1.3 Building blocks contributing towards a dependable wireless bus 7

2.1 IEEE 802.15.4 modulation . 15
2.2 Setting of Matlab simulations 16
2.3 Condition for constructive interference of baseband signals

among synchronous IEEE 802.15.4 transmitters 17
2.4 Example of packet propagation during a Glossy flood 18
2.5 Glossy decouples flooding from other application tasks 19
2.6 Example of Glossy as an application service 21
2.7 States of Glossy during execution 22
2.8 Example of a Glossy flood with Ntx = 2 23
2.9 Timeline of main Glossy states 24
2.10 Data transfer between radio buffers and MCU 26
2.11 Distribution of the software delay Tsw 29
2.12 Scenario for the theoretical analysis 31
2.13 Results of the theoretical analysis 35
2.14 Glossy in a scenario without capture effects, for Ntx = 1 38
2.15 Reliability depending on number of synchronous transmitters,

including capture effects, for Ntx = 1 39
2.16 Accuracy of time synchronization in Glossy 40
2.17 Glossy performance on MoteLab for various packet lengths . . 44
2.18 Glossy performance on Twistwith various transmit powers . . 46
2.19 Glossy performance on DSN with various transmit powers . . . 47
2.20 Glossy performance on Twist for various values of Ntx 50
2.21 Glossy performance on DSN for various values of Ntx 51

3.1 Time-triggered operation in LWB 59
3.2 Communication slots within a generic LWB round 60
3.3 Conceptual architecture of a LWB node 60
3.4 A trace of LWB’s operation since startup 62
3.5 Goodput when hosts fail and resume 68
3.6 Scheduler pseudocode . 70
3.7 Goodput when 9 senders generate varying amount of traffic . . 72

x List of Figures

3.8 Layout of the FlockDSN testbed 76
3.9 Average performance during bootstrapping 78
3.10 Per-node performance at light traffic 81
3.11 Performance at heavy traffic from 259 senders 83
3.12 Performance as the traffic demands change 85
3.13 Performance with 8 receivers and varying fractions of senders . 87
3.14 Performance with and without Wi-Fi interference 89
3.15 Average performance while 8 nodes concurrently fail 91
3.16 Performance when the receiver is either static or mobile 93
3.17 Performance with a mobile receiver and 4 mobile senders 95
3.18 Goodput at a static node in a real-world trial 96
3.19 Performance of 5 mobile nodes in a real-world trial 97
3.20 Estimated radio duty cycle, for several number of streams and IPIs 100

4.1 Communication slots within a Virtus round 112
4.2 Operation and exchange of messages during a Virtus round . . 112
4.3 Example execution of atomic multicast: round r = 1 115
4.4 Example execution of atomic multicast: round r = 2 116
4.5 Example execution of atomic multicast: round r = 3 117
4.6 Example execution of atomic multicast: beginning of round r = 4 118
4.7 Example execution with view changes: round r = 3 119
4.8 Example execution with view changes: round r = 4 120
4.9 Example execution with view changes: round r = 5 121
4.10 Example execution with view changes: round r = 6 122
4.11 Example execution with view changes: beginning of round r = 7 123
4.12 Visual representation for the proof of Lemma 2 125
4.13 Atomic multicast on Twist . 131
4.14 Cost of virtual synchrony on Twist 132
4.15 Atomic multicast with injected communication failures on Twist 134
4.16 Performance with injected communication failures on Twist . . 135
4.17 Virtus operation across view changes 138

List of Tables

2.1 Testbed results when Glossy floods 8-byte packets 42

3.1 Default configuration of our LWB prototype 74
3.2 Code footprints of all protocol configurations 75
3.3 Testbeds used in the evaluation 77
3.4 Average LWB performance with two slot length settings 102
3.5 Average performance of three LWB scheduling policies 103

4.1 Sets of data message identifiers used to describe Virtus operation 114
4.2 Impact of threshold X on Virtus performance 139

xii List of Tables

1
Introduction

Cyber-physical systems (CPSs) are physical and engineered systems
whose operation is controlled by a computing and communication core.
In these systems, embedded computers and networks monitor and
control physical processes, usually with feedback loops where physical
phenomena affect computation and vice versa. This tight integration
of computation, communication, and physical processes allows cyber-
physical systems to realize safety-critical control loops in scenarios where
traditional systems are hardly applicable.

Examples of CPS applications include high-confidence medical
devices and systems, assisted living, traffic control and safety, ad-
vanced automotive systems, factory automation, energy conservation,
environmental control, critical infrastructure control (e.g., electric power,
water resources, and communications systems), distributed robotics (e.g.,
telepresence and telemedicine), defense systems, manufacturing, and
smart structures [Lee08, RLSS10]. It is commonly believed that these
systems are going to radically transform how we interact with the physical
world around us, similar to how the internet transformed the way humans
interact with one another [Lee08, RLSS10, Sch12, SLMR05].

The safety-critical nature of most cyber-physical systems, however,
raises several concerns [SLMR05]. Deployed systems must guarantee
highly dependable operation against unpredictable real-world dynamics.
The most important CPS requirements are concisely summarized by
Rajkumar et al. as follows [RLSS10]:

Cyber-physical systems must operate dependably, safely, securely,
efficiently, and in real-time.

2 Chapter 1. Introduction

Careful designs providing guarantees on the system behavior are thus
required. However, applying established concepts for the design and
validation of dependable distributed systems to cyber-physical systems
is currently not possible, as these concepts require guarantees that existing
CPS communication protocols do not provide. Such guarantees notably
include, for example, well-defined message delivery orderings that
facilitate the implementation of replicated functionality, as well as failure
handling mechanisms [Sch90, KDK+89]. The fact that communication
among embedded devices is one of the major challenges in the design of
cyber-physical systems was also pointed out by Lee [Lee08]:

Most safety-critical embedded systems are closed “boxes” that do
not expose the computing capability to the outside. The radical
transformation that we envision comes from networking these
devices. Such networking poses considerable technical challenges.

Nevertheless, we conjecture in this thesis that it is possible to enable
dependable communication in cyber-physical systems by employing
approaches similar to those currently used in the design safety-critical
embedded systems (e.g., in automotive and avionics). We first illustrate
in Section 1.1 the main challenges we must confront in order to enable
dependable communication. After summarizing in Section 1.2 current
state of the art of CPS protocols designed for dependability, we then
formalize our conjecture in Section 1.3, along with an overview of how
we verify its validity throughout the remaining chapters.

1.1 Challenges in Low-Power Wireless
At the core of typical cyber-physical systems are embedded devices
with minimal computation and wireless communication capabilities. By
gathering data from the environment through (integrated or external)
sensors and taking actions on it through (integrated or external) actuators,
these resource-constrained devices effectively realize the interactions
with the physical processes required by most CPS applications [Sta08].
Nevertheless, the limited amount of resources available on these
devices poses several important challenges to the design of wireless
communication protocols, ultimately hampering the possibility to
provide guarantees on their operation. We now highlight the three most
important sources of challenges.

Resource-constrained embedded devices. Typical platforms for wireless
embedded devices feature a low-power microcontroller (MCU) and a
short-range, low-rate wireless radio within an area of a few square

1.1. Challenges in Low-Power Wireless 3

Figure 1.1: A TelosB (aka Tmote Sky) embedded device features a
microcontroller and a low-power wireless radio within a few square centimeters.

centimeters. For example, a TelosB device [PSC05] (also known as
Tmote Sky) like the one shown in Figure 1.1 employs a 16-bit MSP430
microcontroller operating at frequencies up to 8 MHz [Texe] and a CC2420
wireless radio compliant with the IEEE 802.15.4 standard [IEE03] and
transmitting on the 2.4 GHz band at a fixed rate of 250 kbps [Texb].

The storage capabilities of these devices are also extremely limited.
For instance, the MCU of a TelosB device features only 10 kB of
RAM and 48 kB of program memory; an external flash chip provides
1 MB of non-volatile memory. Recent advances in the field of sensing
platforms have shown that it is even feasible to integrate computation,
communication, storage, and sensing within a single chip of only
one cubic-millimeter [LBL+13]. While this means that the smart dust
vision [KKP99] may soon become reality and thus open opportunities
for a plethora of new CPS applications, it entails that these embedded
devices are likely to remain extremely resource-constrained also in the
near future. Such scarcity of resources, especially in terms of storage,
severely limits the possibility for communication protocols to perform
basic operations on the device, such as buffering multiple messages.

Multi-hop wireless communication. The low-power wireless radios
available on these platforms have ranges limited to up to a few tens
of meters indoors (up to a few hundreds of meters outdoors), yet several
CPS applications require to cover significantly larger areas (e.g., factory
automation and smart structures). For this reason, designers usually
employ multi-hop wireless networks, where each device—a node of such
networks—can directly exchange data only with a subset of other nodes:
those that lie within its communication range.

Figure 1.2 shows an example of a typical CPS multi-hop low-power
wireless network consisting of several sensor and actuator nodes. In such

4 Chapter 1. Introduction

Sensor node

Actuator node

Figure 1.2: Example of a multi-hop low-power wireless network with twelve
sensor nodes and four actuator nodes. Lines represent physical communication
links between pairs of nodes; circles represent nodes’ communication ranges.

networks, nodes relay messages on each other’s behalf, thus enabling
communication between nodes outside of each other’s communication
range. However, the quality of physical communication links between
pairs of nodes fluctuates during operation, for example, due to multipath
effects, obstacles, and external interference [SDTL10]. As a result,
the network topology changes continuously—even in the absence of
mobility—making it challenging for communication protocols to reliably,
efficiently, and timely deliver messages across multiple hops [AY05].

Energy efficiency is paramount. Many CPSs are designed to operate
continuously—possibly unattended—for periods that may range from a
few weeks to several years [BGH+09, CMP+09, CCD+11], yet the amount
of energy storage available for these embedded devices is often extremely
limited due to size, portability, cost, and physical reasons. A fully-active
TelosB device, for example, would drain two common AA batteries within
a few days. Because the wireless radio is the component that typically
draws most of the current, communication protocols must ensure that the
radio operates in a low-power sleep mode for a large fraction of time, in
order to meet given requirements on system lifetime. This significantly
complicates protocol design, as any pair of nodes can communicate only
when both devices have their wireless radios turned on.

1.2 Existing Communication Support
A large body of work on low-power wireless communication protocols is
available in the literature [AY05, Lan08], as plenty of different strategies
can be employed to tackle the challenges above. Some of these
protocols have been successfully used in past or ongoing wireless sensor

1.2. Existing Communication Support 5

network deployments, usually meeting given lifetime and reliability
requirements [BGH+09, CMP+09, CCD+11]. Nevertheless, their best-
effort operation prevents providing guarantees on system dependability.
We exemplify this issue based on an existing CPS deployment.

A concrete CPS example. The TRITon project uses closed-loop control
for adaptive lighting in road tunnels to improve their safety. Battery-
powered TelosB-like sensor nodes report periodic light readings to a
central controller running on embedded hardware, which closes closes the
loop by setting the lamp intensity to match a legislated curve [CCD+11].
Using current communication protocols, however, TRITon designers
cannot provide dependability assurances. Moreover, the centralized
controller represents a single-point of failure. Designers wish to address
these concerns, for example, by replicating the control logic across devices,
as done in typical fault-tolerant distributed systems [Sch90].

By employing replication, the TRITon network would look similar to
the one in Figure 1.2, where the replicated controllers would correspond
to the actuator nodes. Well-established approaches for fault tolerance
would require these controllers to process the same messages from the
sensor nodes in the same order [Sch90]. However, no existing low-power
wireless protocol for many-to-many communication guarantees ordered
delivery. It is indeed extremely difficult to achieve such type of global
coordination in these networks, because nodes: i) can only buffer a very
limited number of messages due to the memory shortage, ii) need to
rely on links with fluctuating quality and thus on a time-varying set of
intermediate devices, and iii) must reduce communication to a minimum
in order to save energy and meet the requirements on system lifetime.

Guarantees only in specific scenarios. Most existing communication pro-
tocols indeed operate in a best-effort manner—their design is optimized
towards non-functional properties, such as energy consumption [AY05].
In order to involve a minimal number of nodes and thus save energy, state-
of-the-art solutions typically split end-to-end interactions into multiple
independent single-hop transmissions among subsets of nodes [AY05,
BvRW07, GFJ+09]. The result is that these protocols are designed to
support only specific scenarios, such as a many-to-one traffic pattern
in static networks. Most importantly, the time-varying nature of low-
power wireless network topologies makes it extremely difficult for these
protocols to ensure that messages are delivered reliably, timely, or in order.

Some solutions exist to provide guarantees in specific scenarios.
Structural health monitoring applications [CMP+09], for example, often
require guaranteed message delivery from multiple sensor nodes to
a single data sink. Protocols like RCRT [PG07] and several ad-hoc
solutions [CMP+09] provide such functionality. Real-time scheduling

6 Chapter 1. Introduction

algorithms [SXLC10] allow to meet end-to-end deadlines when using
WirelessHART [SHM+08], an open standard for industrial process
monitoring and control [SHM+08]. Nevertheless, these protocols support
only many-to-one traffic patterns. Common replication techniques
for fault tolerance and the sense-process-actuate cycles of typical CPS
applications, however, require many-to-many interactions [PSLN+12,
Sch90]. Unfortunately, existing low-power multicast protocols typically
provide only best-effort operation [AY05, MP11].

1.3 Taking a Different Stand with a Wireless Bus
In this thesis, we take a radically different approach to achieve global
coordination and ultimately enable dependable communication in cyber-
physical systems. Inspired by existing bus-based solutions for the design
of (wired) safety-critical embedded systems [Rus01, Kop11, KG93, MT06],
we formulate the following conjecture:

Conjecture. We can enable dependable yet efficient communication in cyber-
physical systems by employing a wireless bus—a time-triggered communication
infrastructure for multi-hop low-power wireless networks where nodes are time-
synchronized and communicate as if they were connected by a shared bus.

A wireless bus is in stark contrast to state-of-the-art solutions for
low-power wireless networks, as the latter typically aim to involve in
the communication as few nodes as possible in order to achieve high
energy efficiency. We instead believe that, by employing time-triggered
executions where the entire operation is driven by a common notion of
time shared across all nodes, a wireless bus would enable dependable
communication while satisfying also typical requirements for energy
efficiency. Nevertheless, we note that our conjecture is in line with similar
thoughts expressed by Lee in [Lee08, Lee09]:

What aspect of networking technologies such as CAN busses in
manufacturing systems and FlexRay in automotive applications
should or could be important in larger-scale networks? To be
specific, recent advances in time synchronization across networks
promise networked platforms that share a common notion of time
to a known precision. How would that change how distributed
cyber-physical applications are developed?

In this thesis, we implement three main building blocks contributing
towards a dependable wireless bus. Figure 1.3 illustrates how these
building blocks turn a typical CPS low-power wireless network like the
one in Figure 1.2 into a wireless bus with delivery guarantees.

1.3. Taking a Different Stand with a Wireless Bus 7

Initiator

Receivers

Actuator node
Sensor node

Delivered message

(a) Glossy (Chapter 2) dis-
tributes a message from
a sensor nodes to mul-
tiple actuator nodes fast
and with high probability,
while also providing accu-
rate time synchronization.

à

1 , 2 , 3

1 , 2 , 3

Low-Power Wireless Bus (LWB)

1 , 2 , 3 1 , 3
Delivered message
Actuator node
Sensor node

(b) By using only Glossy
floods, LWB (Chapter 3)
implements a wireless bus
that provides efficient best-
effort message delivery
from multiple sensor nodes
to multiple actuator nodes.

à

1 , 2 , 3

1 , 2 , 3 1 , 2 , 3

Virtus

1 , 2 , 3

Delivered message
Actuator node
Sensor node

(c) Virtus (Chapter 4)
extends LWB to provide
virtual synchrony guaran-
tees, thus ensuring that all
non-faulty actuator nodes
receive the same set of
messages in the same order.

Figure 1.3: The building blocks presented in this thesis turn the low-power
wireless network of Figure 1.2 into a wireless bus with delivery guarantees.

8 Chapter 1. Introduction

Network flooding and time synchronization (Chapter 2). In order to
make the wireless bus feasible in practical low-power wireless networks,
two basic services are required:

• A one-to-all communication architecture that, resembling data
transfers on a shared bus, allows to distribute a message from one
node to all other nodes fast and with high probability.

• A time synchronization protocol that makes all nodes share a
common notion of time with high accuracy, necessary to enable time-
triggered executions where the entire operation is driven by the
progression of a global time.

State-of-the-art solutions provide these services separately. A wire-
less bus would thus require to run two protocols in parallel, such as
Trickle [LPCS04] and FTSP [MKSL04], which complicates system design
and may lead to undesired protocol interactions [CKJL09]. Moreover, the
poor performance of existing protocols for one-to-all communication—
typically referred to as network flooding—would prevent the wireless bus
from being a feasible solution for most CPS applications.

For these reasons, we introduce Glossy, a novel network flooding
architecture that distributes messages in multi-hop low-power wireless
networks at unprecedented speed and reliability, and accurately time-
synchronizes all devices. Glossy achieves this by making nodes transmit
the same IEEE 802.15.4 packet synchronously, and without requiring them
to maintain any knowledge of the network topology. We detail the Glossy
mechanisms in Chapter 2, where:

• We study the timing requirements to make baseband signals of
synchronous IEEE 802.15.4 transmissions interfere constructively.

• We design the Glossy flooding architecture by employing a radio-
driven execution model in order to satisfy such requirements, and
demonstrate its feasibility with an implementation for TelosB nodes.

• We present a mixture of stochastic and worst-case models to analyze
robustness and scalability properties of Glossy in challenging
network scenarios.

We evaluate Glossy using experiments under controlled settings and
on three wireless sensor testbeds. Results show that in most scenarios
nodes receive a flooding message within a few milliseconds and with a
probability higher than 99.99 %. Moreover, Glossy time-synchronizes an
entire network with sub-microsecond accuracy.

1.3. Taking a Different Stand with a Wireless Bus 9

A concrete wireless bus (Chapter 3). We leverage Glossy to design a
concrete wireless bus protocol, the Low-Power Wireless Bus (LWB). By
employing only Glossy floods for communication, LWB effectively turns a
multi-hop wireless network into an infrastructure similar to a shared bus
where all nodes are potential receivers of all messages. As a result, LWB
natively supports multiple traffic patterns, such as one-to-many, many-
to-one, and many-to-many. Moreover, nodes exchange messages under
the illusion of being in each other’s communication range, as Glossy hides
from them the complexity of the actual multi-hop network topology.

LWB’s time-triggered operation dictates that nodes access the bus (i.e.,
transmit a message with Glossy) according to a global communication
schedule. A dedicated host node computes this schedule online based
on current traffic demands and periodically distributes it to all nodes. As
described in Chapter 3, we complement LWB with mechanisms that:

• Ensure a fair allocation of bandwidth across all nodes and support
traffic demands that change at runtime.

• Support nodes dynamically joining and leaving the system (e.g.,
due to node failures or disconnections).

• Resume communication after a host failure, thus overcoming single
point of failure problems.

We implement a LWB prototype and demonstrate the effectiveness of
these mechanisms on real networks. Moreover, we use four testbeds to
compare the same LWB prototype with seven state-of-the-art protocols.
Results from 838 hours of tests show that:

• LWB efficiently supports multiple traffic patterns. For example,
it outperforms existing multicast solutions for many-to-many
communication, at times by orders of magnitude. Moreover, LWB
performs comparably or significantly better than state-of-the-art
many-to-one protocols.

• LWB is resilient to topology changes and supports mobility with
no performance loss. Because Glossy maintains no topology-
dependent state at the nodes, no state reconfigurations are
required when the topology changes, for example, due to external
interference, node failures, or mobility. For instance, LWB delivers
more than 99 % of messages at very low energy costs also when one
or multiple nodes are roaming.

• Thanks to its centralized and time-triggered operation, LWB is
energy-efficient also in networks with hundreds of nodes, despite it
forces all nodes to participate in every message exchange.

10 Chapter 1. Introduction

A wireless bus with virtual synchrony guarantees (Chapter 4). Nodes in
LWB receive messages with probabilities close to 100 % in most scenarios.
Nevertheless, LWB is a best-effort protocol that cannot ensure successful
message delivery. According to our conjecture in page 6, however, its
bus-like operation should enable global coordination among nodes, thus
rendering it possible to design protocols with delivery guarantees.

To verify the validity of our conjecture, we design Virtus, a com-
munication protocol that builds on LWB and provides virtual synchrony
guarantees. Virtually-synchronous executions are typically exploited by
fault tolerance methods based on replication techniques [Sch90], as it is
essentially ensured that every non-faulty replica sees the same events in
the same order [BJ87].

As we detail in Chapter 4, Virtus provides virtual synchrony
guarantees by extending LWB with two main services:

• A view management service, which keeps nodes informed of the
current group of non-faulty nodes, while also managing changes in
the group, for example, in response to failures.

• An atomic multicast service, which delivers messages to non-faulty
nodes reliably and with total order.

We formally prove that our design does enable virtually-synchronous
executions—in Virtus, any non-faulty node sees the same events (i.e.,
nodes joining and leaving the group and message deliveries) in the same
order regardless of possible communication failures or node crashes. We
also complement virtual synchrony with further policies that ensure FIFO
ordered delivery.

We evaluate a prototype of Virtus on two testbeds, and show that it
provides virtual synchrony at a marginal cost compared with LWB’s best-
effort operation. As a matter of fact, Virtus guarantees ordered delivery
while being significantly more energy-efficient than existing multicast
protocols for low-power wireless networks. To the best of our knowledge,
Virtus is the first protocol to provide formally-proven virtual synchrony
atop similarly resource-constrained hardware.

2
Glossy:

Efficient Network Flooding
and Time Synchronization

Network flooding and time synchronization are two fundamental services
in multi-hop low-power wireless networks, as they form the basis for a
wide range of applications and network operations. More specifically,
in this thesis we require both services to render it possible to design a
wireless bus that enables dependable communication in cyber-physical
systems. Nevertheless, many existing data collection applications based
on wireless sensor networks (WSNs) also rely on a seamless coexistence of
these services. For instance, high-rate data collection systems synchronize
nodes to correlate measurements, and use flooding to adjust sampling
rates and trigger data downloads [WALJ+06, CMP+09]. Most of these
applications run two protocols in parallel (e.g., Trickle [LPCS04] and
FTSP [MKSL04]), which complicates their design and may cause protocol
interactions that impair system performance [CKJL09]. A flooding service
that implicitly synchronizes all nodes in the network could effectively
avoid these problems.

Such an integrated service should flood packets as fast as possible to
reduce inaccuracies introduced by clock drift [LSW09]. Moreover, rapid
flooding can enhance the performance of several applications [LW09].
In surveillance systems, for example, a node detecting an event needs
to quickly wake up all other nodes to initiate group formation and
collaborative signal processing [LWHS02].

12 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

Challenges. Rapid flooding is difficult in multi-hop low-power
wireless networks where packet loss is a common phenomenon [ZG03].
Retransmissions to recover lost packets help overcome this problem.
However, simple broadcasting results in serious medium contention,
known as the broadcast storm problem [NTCS99]. To reduce
the transmission overhead, nodes need to acknowledge broadcasts
using sophisticated modulation schemes [DSGS09], encode redundant
information into packets prior to transmission [RZS+08], or collect
substantial information from neighboring nodes to decide whether a
retransmission is necessary [WC02]. Therefore, loss recovery generally
sacrifices latency and energy for an increased reliability.

Alternatively, reliability can be improved by reducing the risk of
packet loss in the first place. One possible approach is to schedule
broadcasts so that they do not interfere with each other. However,
determining an interference-free broadcast schedule is an NP-complete
problem [ET90] and subject to sudden topology changes.

In fact, due to the capture effect, a node can receive a packet
despite interference from other wireless transmitters [LF76]. While
the capture effect helps improve flooding efficiency, it suffers from
scalability problems in areas of high node density: the probability of
receiving a packet decreases considerably as the number of synchronous
transmissions increases [LW09].

Contribution and road-map. To tackle the issues above, this chapter
proposes Glossy, a new flooding architecture for low-power wireless
networks. Glossy considers interference an advantage rather than
a problem. Unlike previous work, it makes the baseband signals of
synchronous transmissions of the same packet interfere constructively, allowing
receivers to decode the packet even in the absence of capture effects.
In this way, Glossy achieves a flooding reliability above 99.99 % and
approaches the theoretical lower latency bound across diverse node
densities and network diameters. Moreover, Glossy provides network-
wide time synchronization for free, since it implicitly synchronizes nodes
as the flooding packet propagates through the network.

This chapter makes the following contributions:

• We study in Section 2.1 why and under which conditions the
baseband signals of synchronous transmissions of the same packet
interfere constructively. Our analysis reveals a strong dependence
on the modulation scheme. Based on this insight, we show that
the temporal offset among synchronous IEEE 802.15.4 transmitters
must not exceed 0.5µs to make the baseband signals interfere
constructively with high probability.

2.1. Synchronous Transmissions 13

• We introduce Glossy, a new flooding architecture for low-power
wireless networks. Glossy exploits synchronous transmissions,
time-synchronizes nodes, and decouples flooding from other
network activities. We give an overview of Glossy’s design
in Section 2.2, and detail its radio-driven execution model
in Section 2.3.

• We demonstrate in Section 2.4 the feasibility of Glossy with an
implementation in Contiki [Conb, DGV04] based on TelosB sensor
nodes [PSC05]. We describe how our implementation reduces
time uncertainties on the nodes during packet relaying, and give
guidelines for porting Glossy to other popular hardware platforms.

• We present in Section 2.5 a mixture of stochastic and worst-case
models to analyze the robustness of our techniques in generating
constructive interference. Applying these models to our implemen-
tation, we find that Glossy satisfies the 0.5µs requirement with a
probability higher than 99.9 % for 30 synchronous transmitters.

In Section 2.6, we evaluate Glossy using experiments under controlled
settings and on three wireless sensor testbeds: MoteLab [WASW05],
Twist [HKWW06], and DSN [DBK+07]. For example, we find that Glossy
achieves an average time synchronization error below 0.4µs, even at
nodes that are eight hops away from the initiator of a flood. On Twist,
at the lowest transmit power that keeps the network fully connected, we
observe that nodes receive an 8-byte flooding packet within 3 ms; nodes
receive the packet with a probability above 99.99 %, and have their radios
turned on for less than 10 ms during a flood.

In light of our contributions, Section 2.7 surveys related work, and
Section 2.8 provides brief concluding remarks.

2.1 Synchronous Transmissions

Glossy exploits synchronous transmissions for efficient flooding in sensor
networks. In this section, we investigate the conditions for making
the baseband signals of synchronous transmissions of the same packet
interfere in a constructive way, so that a receiver detects the packet with
high probability. We give some background on wireless interference and
the IEEE 802.15.4 modulation scheme, based on which we determine a
timing requirement for generating constructive interference.

14 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

2.1.1 Background

The broadcast nature of wireless communications causes interference
whenever spatially close stations transmit concurrently; that is, when
they generate signals that overlap in time and space, and share the same
frequency. Interference generally reduces the probability that a receiver
correctly detects the information embedded into the signals, even when
the signals carry the same information. In the following discussion we
focus on baseband signals, that is, sequences of IEEE 802.15.4 symbols.
As we show in Section 2.6, the superposition of several, possibly out-of-
phase carrier signals allows for correct detection with high probability,
especially when more than three nodes transmit synchronously.

Constructive and destructive interference. We say that interference
is constructive if a receiver correctly detects the superposition of the
baseband signals generated by multiple transmitters. By contrast,
interference is destructive if it prevents a receiver from correctly detecting
the superimposed baseband signals. Constructive interference has not
been extensively exploited in low-power wireless networks, due to the
difficulty of achieving sufficiently accurate synchronization and highly
predictable software delays [SZHT07]. Several protocols [LW09] exploit
instead the capture effect, which occurs when a wireless radio detects a
frequency-modulated signal from one transmitter despite the interference
from other transmitters. A radio may capture one signal when it is
stronger than the others (power capture [LF76]), or when it starts being
received earlier than the others (delay capture [DG80]). However, capture
effects suffer from scalability problems when many transmissions overlap,
leading to significant packet loss in dense networks [LW09].

Requirements for generating constructive interference strongly de-
pend on the communication scheme, and especially on the modulation
and the bit rate. We first review the specifications of the IEEE 802.15.4
standard. Then, we derive an upper bound on the temporal displacement ∆

among multiple synchronous transmissions of the same packet that
allows to correctly receive the packet with high probability due to
constructive interference of the baseband signals.

IEEE 802.15.4 modulation. The IEEE 802.15.4 standard [IEE03] for
wireless devices operating in the 2,450 MHz band employs an offset
quadrature phase-shift keying (O-QPSK) modulation scheme with half-
sine pulse shaping, which is equivalent to minimum-shift keying (MSK).
Binary data are converted into a modulated analog signal using a three-
step conversion process, as shown in Figure 2.1.

First, data are grouped into 4-bit symbols. Each symbol is then mapped
into a pseudo-random noise (PN) sequence of 32 bits, where each bit of such a

2.1. Synchronous Transmissions 15

chips

2 × TcTc

Symbol-to-Chip
symbolsbinary data

I-Phase

Q-Phase

Bit-to-Symbol

Half-Sine
O-QPSK

Modulator

Figure 2.1: IEEE 802.15.4 modulation. Using a three-step process, binary data
are converted into a modulated signal.

sequence is called chip. PN sequences add redundancy, and relate to each
other through cyclic shifts and conjugation of chips. In a last step, each
PN sequence is modulated onto the carrier signal using O-QPSK with
half-sine pulse shaping. That is, even-indexed chips are modulated onto
the in-phase (I) carrier, odd-indexed chips onto the quadrature-phase (Q)
carrier. Q-phase chips are delayed by Tc = 0.5µs with respect to I-phase
chips to get a π/2 phase change. Overall, a new chip is transmitted every
Tc, leading to a transmission rate of 250 kbps.

Demodulation at a receiver follows the opposite flow: each half-sine
pulse is converted into a chip, and the resulting PN sequence into a
symbol. Radios make only soft decisions for each chip [Texb]: the received
PN sequence may contain non-binary values between 0 and 1. Hard
decisions are made by selecting out of the 16 PN sequences the one that
has the highest correlation with respect to the received PN sequence, and
thus the corresponding symbol. In this step, the redundancy contained in
a PN sequence increases the chances of a correct symbol detection, even
in situations where some chips are not correctly received.

Next, we show how the IEEE 802.15.4 standard translates into a
maximum temporal displacement ∆max among multiple transmissions
to generate constructive interference with high probability.

2.1.2 Generating Baseband Constructive Interference

Several studies [Chu87, YI85] estimate the bit error rate (BER) when
receiving delayed replica of the same MSK signal (e.g., due to multipath
effects). They show that the BER increases exponentially with the
temporal displacement ∆ among overlapping signals. However, as
explained above, sensor network radios make hard decisions at the
symbol level (i.e., on PN sequences of 32 consecutive chips). The
redundancy included in each PN sequence helps tolerate decoding errors

16 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

R

Delay ∆
[0, 8]µs

MSK Demodulator
Chip-to-Symbol

Symbol-to-Chip

Symbol-to-Chip MSK Modulator

MSK Modulator

chips

valid IEEE 802.15.4 PN sequences

chips

chips

received symbol

SFD symbol

SFD symbol

Correlator and

channel white Gaussian noise

T1

T2

Figure 2.2: Setting of Matlab simulations. A receiver decodes the superposition
of two IEEE 802.15.4-compliant SFD symbols, whose temporal displacement ∆

varies between 0µs and 8µs with a granularity of 250 ns.

of single chips. Therefore, computing the error on a sequence of symbols
provides a better estimation of the reception behavior of a sensor node.

We perform Matlab simulations to evaluate the maximum temporal
displacement between two IEEE 802.15.4-compliant signals such that
they interfere constructively with high probability. The setting of these
simulations is shown in Figure 2.2. A receiver R decodes the superposition
of two signals from transmitters T1 and T2. Each signal is generated by
converting the start of frame delimiter (SFD) symbols specified by the
IEEE 802.15.4 standard, first into a PN sequence and then into an MSK-
modulated baseband signal. Both signals have the same amplitude, but
the one from transmitter T2 is delayed by a variable displacement with
250 ns granularity in the interval [0, 8]µs. White Gaussian noise is added
to the superimposed signal, resulting in a signal-to-noise ratio of -10 dB.

The receiver demodulates the superimposed signal. It then correlates
each PN sequence with all 16 possible PN sequences specified by the
IEEE 802.15.4 standard and chooses the one with the highest correlation.
This procedure resembles the operations of a IEEE 802.15.4-compliant
radio during a packet reception. Only if both SFD symbols are correctly
decoded, the superimposed signal is considered correctly detected.

Figure 2.3 shows the fraction of correctly detected signals depending
on the temporal displacement ∆, averaged over 1,000 experiments with
different seeds for the random noise. The signal is always correctly
detected when ∆ = 0, which indicates that the noise is sufficiently
low to allow for a correct detection. Even for ∆ = 0.25µs the signal is
correctly detected in more than 98 % of the cases. However, the fraction of
correct detections starts to decrease significantly for a displacement larger

2.1. Synchronous Transmissions 17

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Temporal displacement ∆ between two synchronous IEEE 802.15.4 transmitters [µs]

C
o

rr
ec

t
S

F
D

 d
et

ec
ti

o
n

 [
%

]
∆

max
 = 0.5 µs

Figure 2.3: Synchronous IEEE 802.15.4 transmitters interfere constructively if
the temporal displacement is smaller than ∆max = 0.5µs.

than 0.5µs, which corresponds to the chip period Tc. Interestingly, for
increasing ∆, the fraction experiences local minima when ∆ is a multiple
of 2 × Tc, that is, when different chips perfectly overlap. Between two
local minima, the redundancy added by the PN sequences increases the
chances for a correct signal detection, despite errors on single chips. We
verify using various symbol sequences and noise seeds that these results
are independent of the specific symbol sequence of the SFD.

These simulations show that the probability of a correct detection is
very high when identical IEEE 802.15.4 signals are generated with a time
displacement below ∆max = 0.5µs. A correct detection is entirely due to
the modulation scheme and the redundancy encoded in PN sequences.
On real nodes, capture effects can further increase the chances to correctly
detect a packet, especially with high temporal or strength differences
between the signals.

We show in the following how the design and the implementation of
Glossy strive to satisfy the requirement of ∆max = 0.5µs, allowing nodes
to receive packets even in the absence of beneficial capture effects (e.g.,
when many nodes transmit synchronously). Experimental results from
three wireless sensor testbeds, described in Section 2.6, demonstrate that
Glossy indeed achieves this goal, providing efficient network flooding
across diverse node densities and network diameters.

18 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

Initiator

Receivers

Figure 2.4: Example of packet propagation during a Glossy network flood.
Nodes within the same color area relay the same packet at the same time.

2.2 Glossy Overview

This chapter introduces Glossy, a new flooding architecture for low-
power wireless networks. Glossy incorporates three main techniques.

Synchronous transmissions. Wireless is a broadcast medium, creating
the opportunity for nodes to overhear packets from neighboring nodes.
Using Glossy, nodes turn on their radios, listen for communications over
the wireless medium, and relay overheard packets immediately after
receiving them. Since the neighbors of a sender receive a packet at the
same time, they also start to relay the packet at the same time. This again
triggers other nodes to receive and relay the packet. In this way, Glossy
benefits from synchronous transmissions by quickly propagating a packet
from a sender node (initiator) to all other nodes (receivers) in the network,
as Figure 2.4 intuitively shows.

An important property of Glossy is that, besides the first transmission
of the initiator, the flooding process is entirely driven by radio events. For
instance, a node triggers a transmission only when the radio signals
the completion of a packet reception. As explained in Section 2.1,
synchronous transmissions must be properly aligned to enable a receiver
to successfully decode the packet. Glossy’s radio-driven execution is a
key factor to meet this requirement.

Time synchronization. Glossy exploits the above flooding mechanism
to implicitly time-synchronize the nodes. It embeds into each packet
a 1-byte field, the relay counter c. The initiator sets c = 0 before the
first transmission. Nodes increment c by 1 before relaying a packet.

2.2. Glossy Overview 19

Glossy
Application Application

Glossy

Trelay

t

Glossy

t
t
t
tInitiator

Receivers
{ Tx

tre f

Tx

Tx

Tx

c = 0 c = 2 c = 3c = 1

Figure 2.5: Glossy decouples flooding from other application tasks executing
on the nodes. The reference time tre f is the time at which the initiator starts
a flood by transmitting a packet with relay counter c = 0. Nodes increment c
by 1 before relaying a packet, thus they transmit packets with the same relay
counter synchronously. The relay length Trelay is the time between transmissions
of packets with relay counter c and c + 1.

Consequently, a node can infer from the relay counter how many times
a received packet has been relayed. Besides the first transmission by
the initiator, in Glossy nodes transmit a packet only as a consequence of a
successful reception (see Figure 2.7). Therefore, nodes that receive packets
with relay counter c synchronously transmit packets with the same relay
counter c + 1.

As indicated in the lower part of Figure 2.5, we define the time between
the start of a packet transmission with relay counter c and the start of
the following packet transmission with relay counter c + 1 as the relay
length Trelay. Nodes locally estimate Trelay using timestamps taken at the
occurrence of radio interrupts. Most importantly, Trelay is a network-wide
constant, since during a flood nodes never alter the packet length. Based
on the relay counter c of a received packet and the estimate of Trelay, a
node computes the time at which the initiator started the flood, called
the reference time tre f . In this way, all receivers synchronize relatively to
the clock of the initiator. To achieve absolute time synchronization, the
initiator embeds its own clock value into the flooding packet.

Current wireless systems often run two protocols in parallel: one for
flooding and one for synchronization. Glossy provides both, reducing
the system complexity and the risk of unintended interactions among
multiple protocols.

Temporal decoupling. A time-synchronized network is useful for many
purposes. Glossy benefits from it by temporally decoupling network

20 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

flooding from all other application tasks executing on the nodes, as
depicted in the upper part of Figure 2.5. In particular, nodes know the
interval between two Glossy phases (e.g., by embedding the interval into
packets injected by the initiator), which allows them to synchronously
stall other tasks right before a flood and to resume these tasks immediately
afterwards. As a result, Glossy never interferes with other activities,
leading to a highly deterministic behavior during a flood. Temporal
decoupling is thus another key factor to make synchronous transmissions
precisely overlap.

Moreover, temporal decoupling allows the network to run other
protocols or execute other tasks between two network floods. For
example, an application may use a data collection protocol on top of
a low-power MAC to gather sensory data, while at regular intervals
Glossy takes over to disseminate commands to the nodes (e.g., to adjust
the sampling rate) and to keep the nodes synchronized. Here, also the
application benefits from temporal decoupling, since flooding packets
never interfere with data collection packets. Such protocol interference
could substantially degrade system performance, especially in terms of
data yield [CKJL09].

Glossy integrates smoothly with a software system that provides
primitives to decouple tasks over time, such as the slotted programming
approach [FW10]. Duty-cycled networks, where all nodes wake up at
the same time [BIS+08], can allocate Glossy at the beginning of the active
phase, or during the sleep phase when no other communication takes
place. Nevertheless, as demonstrated by our experiments in Section 2.6,
Glossy needs only a few milliseconds to complete. In Chapter 3 we show
that it is indeed feasible to confine multiple Glossy floods within short
communication slots that are executed sequentially at all nodes.

Figure 2.6 shows a possible way of integrating Glossy with the rest
of the software system on a node. An application that wishes to use
it instructs the scheduler using scheduleGlossy() to run Glossy with a
certain period. This period can be changed by the application at runtime
(e.g., upon receiving a new interval from the initiator) by calling the
same function again. Depending on the period, the scheduler starts and
stops Glossy, using functions startGlossy() and stopGlossy() provided
by the Glossy interface. Moreover, the scheduler notifies the application
in advance via callback function glossyStarts() before it starts Glossy,
giving the application the opportunity to prepare for Glossy taking over.
Similarly, the scheduler notifies the application via callback function
glossyFinished() after Glossy has terminated.

This control flow is the same for both initiator and receiver, but the data
flow is not, as shown in the lower part of Figure 2.6. At the initiator, the

2.3. Glossy in Detail 21

glossyFinished()

C
on

tr
ol

Fl
ow

D
at

a
Fl

ow

(initiator)

scheduleGlossy()

glossyStarts()
startGlossy()

stopGlossy()
Glossy

(receiver)

Scheduler

Glossy Data

Sync Data

Application

Figure 2.6: Example of Glossy as an application service. An application instructs
a scheduler to run Glossy periodically. The scheduler notifies the application
about an upcoming Glossy phase.

application provides Glossy with the data to be flooded. At the receiver,
Glossy passes the received data to the application. Glossy provides the
synchronization data (i.e., the reference time) to the applications of both,
initiator and receiver.

At system startup, when a receiver is not yet synchronized, the
application may instruct the scheduler to run Glossy with a shorter period
in order to quickly overhear a Glossy packet from other nodes and get
synchronized. By adapting the period, sophisticated mechanisms [DC08]
can be implemented to achieve the desired trade-off between fast initial
synchronization and energy efficiency.

Glossy manages interrupts and timers transparently. It masks
software and hardware interrupts that are not essential to its functioning
and disables all hardware timers. Nevertheless, Glossy records which
interrupts have been active and which timers have been scheduled before
its execution. Using this information, Glossy restores interrupts and
timers after it terminates, allowing the application and the rest of the
system to smoothly continue its execution. The application, however, is
responsible for deferring actions that would be executed within the next
Glossy phase.

2.3 Glossy in Detail

This section describes the Glossy architecture in detail. We first illustrate
the sequence of operations executed during a flood, followed by an
analysis of the timing behavior of these operations.

22 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

Rx begins

Rx succeeds

radioOn()

radioOff()
Off

Wait

startGlossy()
(receiver)

(initiator)
startGlossy()

c := 0

Receive

Transmit

startRx()

startTx()

ntx := 0

stopGlossy()

+ + ntx = Ntx

Tx ends ∧

+ + c

+ + ntx < Ntx

Tx ends ∧

Rx fails

Figure 2.7: States of Glossy during execution. Transitions in the main state
sequence (bold arrows) are triggered by radio events.

2.3.1 Radio-driven Execution Model

Figure 2.7 depicts the core of Glossy, represented by the repetitive
sequence of states Wait→Receive→Transmit. The scheduler starts
Glossy using startGlossy(). Afterwards, a receiver begins the execution
in the Wait state. The initiator, instead, starts from state Transmit, and
transmits a packet with relay counter c = 0. After this startup phase, the
execution is the same for both initiator and receivers, as described next.

In the Wait state, a node has its radio turned on and waits for a
packet being flooded through the network. When the radio indicates
the beginning of a reception, the microcontroller unit (MCU) starts to
read the incoming packet. This action corresponds to a transition to
the Receive state. If the reception fails (e.g., due to packet corruption),
the node returns to the Wait state and awaits a subsequent transmission
from its neighbors. Otherwise, if the reception succeeds, the node makes
a transition to the Transmit state. In this case, the MCU immediately
issues a transmission request to the radio, increments the relay counter c
by 1, and copies the modified packet from the receive (Rx) buffer to the
transmit (Tx) buffer. To introduce only a small and predictable delay, the
MCU performs this packet copying after issuing the transmission request,
that is, while the radio switches from Rx to Tx mode. In Section 2.4, we
demonstrate the feasibility of this approach on common sensor node
platforms. Some recent radios feature a single packet buffer [Atm],
making the packet copying step obsolete.

Nodes can transmit a packet multiple times to increase flooding
reliability. We denote with Ntx the maximum number of times a node transmits
during a flood. When a packet transmission ends, a transmission counter ntx

is incremented and compared to the maximum number of transmissions

2.3. Glossy in Detail 23

Idle listening

Radio off

SW delay

Packet Rx

Packet Tx

Initiator

Receivers
{

c = 2c = 1 c = 3 c = 4c = 0

t

t

t

Trelay

tre f

Figure 2.8: Example of a Glossy flood with Ntx = 2. Nodes always transmit
packets with the same relay counter c synchronously.

Ntx. If a node has already transmitted Ntx times, it makes a transition to
state Off, turns off the radio, and Glossy completes. Otherwise, the node
returns to the Wait state, and the sequence starts again at the next packet
reception. Ultimately, the scheduler stops Glossy by calling stopGlossy().

Figure 2.8 shows an example of a network flood with Ntx = 2. When
Glossy starts, the initiator sets the relay counter c to 0 and transmits the
first time to start the flooding process. Receivers within communication
range of the initiator overhear the packet, set c to 1, and transmit
synchronously. Their neighboring nodes, including the initiator, overhear
this second packet, set c to 2, and again transmit synchronously. In
this way, nodes always transmit packets with the same relay counter c
synchronously. The process repeats until ntx reaches Ntx at all nodes in
the network. In Section 2.6, we further investigate the impact of Ntx on
the performance of Glossy.

All transitions among states in Glossy’s main loop in Figure 2.7 are
triggered by radio events. On standard sensor network platforms, the
MCU is typically notified of these events through interrupts. Therefore,
the few software operations required by Glossy are executed within
interrupt service routines (ISRs). In Section 2.4, we describe an
implementation of Glossy that limits uncertainties in the execution time
to inaccuracies of the underlying hardware.

An important consequence of its operation is that Glossy does not
require nodes to maintain information about the network topology. For
a node it is sufficient to know when a flood starts and whether it is the
initiator or a receiver of such flood. In Chapter 3 we show that this
property makes it possible to design efficient communication protocols
that keep no topology-dependent state at the nodes, increasing their
resilience to link changes due to interference, node failures, and mobility
compared to prior approaches.

24 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

t
t

t

t

Radio

Wait

Active
Rx/Tx

TmTcal Tpr T f Tl

Tsw

Relay counter

State Receive Transmit

Ttx

c + 1c

Rx Tx

(S
W

de
la

y)

Pr
ea

m
bl

e

M
PD

U

Pr
ea

m
bl

e

SF
D

SF
D

Le
ng

th

Le
ng

th

C
al

ib
ra

ti
on

M
PD

U

Figure 2.9: Timeline of main Glossy states. The radio determines the dwell time
of each state, except for the time required to trigger a packet transmission, Tsw,
which is determined by the MCU.

2.3.2 Execution Timing
We now show that the dwell time of the main Glossy states depends
primarily on the radio hardware. The MCU influences the timing only
after the completion of a packet reception, and only for the time necessary
to trigger a packet transmission.

Figure 2.9 shows the timeline of the main Glossy state sequence. We
see that the timing depends only on the radio, besides a short interval
at the beginning of the Transmit state. We call this interval the software
delay Tsw, required by the MCU to trigger a packet transmission. This delay
depends primarily on the software routine. In addition, it is affected by
the frequency of the serial peripheral interface (SPI) bus that is used on
most platforms for the communication between the MCU and the radio.

In Section 2.2, we discussed that a receiver computes the synchro-
nization reference time based on the estimate of the relay length Trelay,
defined as the time between the start of two packet transmissions with
relay counter c and c + 1. We now show that Trelay mostly depends on
the radio hardware, which is an important property to achieve high
synchronization accuracy. We analyze in Section 2.5 how hardware
inaccuracies influence the relay length. Trelay accounts for the software
delay Tsw, the time required to transmit a packet Ttx, and the processing
delay Td introduced by the radio at the beginning of a packet reception.
Trelay can thus be expressed as:

Trelay = Tsw + Ttx + Td (2.1)

We now provide an analytical expression for the time required to
transmit a packet Ttx. Figure 2.9 shows the operations performed by

2.4. Implementation 25

the radio during a packet transmission. Once the radio receives a
transmission request, it starts to calibrate the internal voltage controlled
oscillator (VCO). We denote the hardware-dependent time required for
this calibration with Tcal. A valid IEEE 802.15.4 packet consists of
the following fields: (i) a preamble of eight 0x0 symbols, (ii) the SFD
corresponding to the two symbols 0x7A, (iii) the two-symbol frame length
field that specifies the number of bytes Lm contained in the MAC protocol
data unit (MPDU), and (iv) the MPDU itself that carries the application
data. We denote with Tpr, T f , Tl, and Tm the times required to transmit
each of these fields. The time needed for a packet transmission is thus:

Ttx = Tcal + Tpr + T f + Tl + Tm (2.2)

Note that in (2.2) only Tm depends (linearly) on the packet length. The
other terms are determined by the radio hardware and the standard.

2.4 Implementation
We implement Glossy using the Contiki operating system [Conb, DGV04].
We target the TelosB platform [PSC05], which features a 16-bit MSP430
MCU [Texe] and a IEEE 802.15.4-compliant CC2420 radio [Texb]
supporting a transmission rate of 250 kbps. A TelosB node features 10 kB
of RAM and 48 kB of program memory.

In this section we first show how our implementation leads to a highly
deterministic software delay, which is a necessary condition to generate
constructive interference (see Section 2.1). We then outline the approach
we use to achieve high synchronization accuracy. Finally, we provide
guidelines for porting Glossy to different radios.

Software instructions are executed by the MCU, whose clock is sourced
by a digitally controlled oscillator (DCO). The DCO frequency varies with
temperature, voltage, and from device to device. Although digital control
allows to stabilize the frequency on a long-term basis (e.g., using the more
stable external 32,768 Hz crystal as a reference), short-term stability is not
guaranteed. The frequency of the DCO can deviate up to ±20 % from
the nominal value, with temperature and voltage drifts of -0.38 %/◦C and
5 %/V [Texe]. To counteract these variations, our Glossy implementation
(i) strives to minimize the number of software instructions, mitigating the
impact of DCO instability on the software delay, and (ii) ensures a constant
number of software instructions. Moreover, the DCO runs independently
of the radio clock, leading to varying delays in the transfer of digital
signals between the radio circuit and the MCU. Our implementation thus
(iii) compensates for varying offsets between the DCO and the radio clock.
In the following, we describe these aspects of our implementation.

26 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

0 0.5 1 1.5 2

Data

SFD

Data

SFD

〈1〉 〈2〉 〈3〉 〈4〉 〈5〉 〈6〉

Time [ms]

 R

e
ce

iv
e
r

T

ra
n

sm
it

te
r

Figure 2.10: Data transfer between the radio buffers and the MCU. Snapshot
taken with a logic analyzer during the transmission of a 46-byte packet. Data
transfers (Data) from the radio’s Rx buffer are in white, to the Tx buffer in gray.

2.4.1 Minimizing Software Delay
We exploit buffered packet receptions and transmissions to minimize the
number of software instructions. The CC2420 radio provides two buffers
for receiving (Rx) and transmitting (Tx), implemented as first-in-first-out
(FIFO) queues. During a packet reception, the radio stores incoming data
into the Rx buffer. The FIFO pin signals the MCU when the Rx buffer
contains at least 1 byte. The MCU never enters a low-power mode while
Glossy is running, so that all of its components are always enabled.

Glossy can flood packets of any IEEE 802.15.4-compliant length.
During a reception, a receiver checks the length of the packet being
flooded by reading the first byte of the packet, corresponding to the
packet length field. This action corresponds to step 〈1〉 in Figure 2.10,
which shows the sequence of data transfers between the radio buffers
and the MCU measured with a logic analyzer. If the packet length is
greater than 8 bytes, Glossy lets the MCU poll the FIFO pin: the content
of the packet is read byte after byte over the SPI bus and stored into a
temporary buffer while the packet is still being received by the radio 〈2〉.
When only 8 bytes are left to receive, Glossy stops polling the FIFO pin 〈3〉,
and waits until the SFD pin makes a transition to 0 and an interrupt
occurs. At this point, Glossy executes a minimum, constant number of
software instructions just to serve the interrupt and to issue a transmission
request to the radio 〈4〉. Then, while the radio calibrates the VCO, Glossy
reads the last 8 bytes 〈5〉 from the Rx buffer, and checks whether the
packet has been received successfully. If so, Glossy increments the relay
counter c and copies the data from the temporary buffer into the Tx buffer
of the radio 〈6〉, which then transmits the packet; otherwise, Glossy
aborts the transmission process before the radio actually starts sending
the preamble. When the packet length is at most 8 bytes, Glossy skips

2.4. Implementation 27

polling the FIFO pin (i.e., steps 〈2〉 and 〈3〉), and reads the remaining
content of the Rx buffer after the packet reception completes.

This approach is feasible as it takes only a few software instructions to
check whether a packet has been successfully received; the MCU executes
these instructions and starts writing to the Tx buffer before the radio
completes the VCO calibration. For long packets, the Tx buffer might
not be completely filled before the radio starts transmitting the first bytes
from the Tx buffer, as is the case in Figure 2.10. This does not cause a
buffer underflow, since the Tx buffer is a FIFO queue and copying data
over the SPI bus is faster than transmitting it over the wireless medium.
In our implementation, we measure that the latency required for writing
to the Tx buffer is 5.75µs per byte, plus an initial latency of 18µs; the time
required to transmit a byte with an IEEE 802.15.4-compliant radio is 32µs.

2.4.2 Approaching a Deterministic Software Delay
A small and constant number of software instructions does not guarantee
that the MCU issues a transmission request to the radio a constant number
of cycles after being notified of the end of a packet reception. When the
MCU receives an interrupt request, it first completes the execution of
the current instruction before starting to serve the interrupt. Instructions
on the MSP430 require between 1 and 6 clock cycles to complete [Texe].
Interrupts are thus served with a variable delay, depending on which
instruction is being executed when the MCU receives the interrupt.

Glossy compensates for this variable delay by measuring the number
of clock ticks elapsed between the instant at which the interrupt is
received, recorded using the capture functionality of the MCU at the
falling edge of the SFD pin, and the instant at which it is served.
Depending on the measured delay, Glossy inserts a certain number of
no operations (NOPs) at the beginning of the interrupt handler. Glossy
thus ensures that a transmission request to the radio is issued a constant
number of clock cycles after the interrupt reception, which makes the
software delay highly deterministic.

2.4.3 Compensating for Hardware Variations
The software delay Tsw is the sum of (i) the time required by the
MCU to sample the transition of the radio’s SFD pin at the end of a
packet reception, (ii) the number of MCU clock ticks I needed to issue
a transmission request to the radio, and (iii) the time required by the
radio to sample the transmission request coming from the MCU. Using
the mechanisms described above, we know that I is constant in our
implementation. However, due to the asynchronous clocks of radio and

28 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

MCU, the software delay Tsw is still not constant: there is a variable delay
in the transfer of digital signals between these two components.

The radio updates its digital output signals with frequency fr,
determined by its crystal oscillator. The internal DCO determines the
frequency fp of the MCU. Neglecting clock drifts, we can write:

Tsw =
1
fr
×

⌈(
I + kp

)
×

fr

fp

⌉
(2.3)

where kp (0 < kp ≤ 1) is the fraction of the DCO period 1/ fp required at
the MCU to sample the SFD transition at the end of the packet reception.
Given that the radio clock and the DCO run completely unsynchronized,
the initial offset kp is a continuous random variable uniformly distributed
in the interval 0 < kp ≤ 1. This implies that Tsw is a discrete random
variable with granularity 1/ fr. The number of possible discrete values for
Tsw and their distribution depend on the number of DCO ticks I.

By inserting a constant number of NOPs, we choose I in our
implementation so that we obtain from (2.3) a distribution that achieves
the theoretical lower bound of only two possible values for Tsw. These two
values are 1/ fr apart—as long as radio and MCU use two independent
clocks, any implementation of Glossy exhibits a minimum jitter of 1/ fr in
the software delay. For example, on the TelosB, the CC2420 radio updates
its digital output signals with frequency fr = 8 MHz, and the DCO of the
MSP430 runs in our implementation at a frequency fp = 4, 194, 304 Hz.
The resulting difference between the two possible values of Tsw is 125 ns.

We measured the software delay of our implementation by connecting
the radio SFD pin of four TelosB nodes to a logic analyzer. These four
nodes act as receivers, while an additional node periodically initiates a
flood. Upon overhearing a packet from the initiator, the receivers trigger a
transmission, and we measure the distance between the end of a reception
and the beginning of a transmission. This corresponds to Tsw+Tcal+Tpr+T f .

Figure 2.11 shows the distribution of the software delay, computed
by removing the constant Tcal + Tpr + T f = 352µs. We see that in 91 % of
the cases the delay matches the theoretical binary distribution according
to (2.3). Moreover, the values are equally distributed between the two
possible values, 23.25µs and 23.375µs, for I = 97 in our implementation.
In the remaining 9 % of the cases, an additional uncertainty of one radio
clock tick affects the delay. However, this is mainly due to the drift of the
DCO that may generate a frequency different from the nominal value fp.
In fact, it appears very difficult to avoid such negative drift effects, given
that our implementation synchronizes the DCO with respect to the stable
32,768 Hz crystal every time Glossy starts, and the number of instructions
is (at least very close to) the minimum.

2.4. Implementation 29

23.125 23.25 23.375 23.5
0

10

20

30

40

50

Software delay T
sw

 [µs]

F
re

q
u

en
cy

 [
%

]

Figure 2.11: Distribution of the software delay Tsw. Results from a logic analyzer
show that in 91 % of the cases Tsw matches the theoretical binary distribution of
two values with a distance of one radio clock tick, corresponding to 125 ns.

2.4.4 Time Synchronization
Glossy provides implicit time synchronization. During a flood, receivers
compute a common reference time tre f based on the relay counter c
received during the flood and the estimated relay length Trelay. On a TelosB
sensor node, the MSP430 can use two separate time sources: the internal
high-frequency DCO and an external low-frequency crystal. This 32 kHz
external crystal is significantly more stable than the internal DCO but
provides time with low resolution. By contrast, the DCO provides sub-
microsecond resolution, but does not guarantee short-term stability, and
is usually disabled when the MCU enters low-power execution modes.

We achieve high-resolution and low-power time synchronization by
employing Virtual High-resolution Time (VHT) by Schmid et al. [SDS10].
The DCO is enabled at the beginning of a Glossy phase, and the MCU does
not enter a low-power mode until a Glossy phase terminates. The MCU
timestamps with the high-frequency clock all the interrupts generated by
transitions of the SFD pin. As a result, receivers compute high-resolution
estimates of Trelay. The timer capture functionality of the MSP430 is then
exploited to translate the high-resolution estimate of the reference time tre f

to a low-resolution value and a relative high-resolution offset. At the end
of a Glossy phase, these two time values are provided to the application.

When the application schedules synchronized actions, it only needs to
turn on the internal DCO and do a reverse translation to a high-resolution

30 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

time value. As a result, events can be scheduled with high resolution
and with an energy cost proportional to the number of timer accesses.
Receivers can also exploit estimates of Trelay to compute the drift of the low-
frequency clock. As discussed in Section 2.3.2, Trelay depends to a great
extent on the radio clock, sourced by a high-frequency and stable crystal.
Accurate synchronization between two Glossy phases can be maintained
by compensating for the measured drift. We show in Section 2.6 that
our synchronization implementation accurately estimates the reference
time tre f with an average error smaller than one microsecond.

2.4.5 Porting Glossy to Other Radios
Glossy can be ported to other IEEE 802.15.4-compliant radios. Destructive
interference due to path delay differences is not a major problem in current
low-power wireless networks, where links are rarely longer than a few
tens of meters [DDHC+10]. With long-range radios, the requirement
for constructive interference ∆max = 0.5µs corresponds to a maximum
difference in path delay of 150 meters. However, if transmission power
control is not used, such big differences in path delay would also result
in big differences in received signal strength, making a correct reception
of the first (stronger) packet very likely due to capture effects.

Radios like the CC2520 [Texc] feature a RAM for packet buffering. It is
thus possible to change the value of certain bytes (e.g., the relay counter)
in-situ, that is, without the need to transfer the entire packet twice over the
SPI bus between a reception and a transmission. Compared to our TelosB
implementation, this feature eases the effort for minimizing the software
delay. Moreover, such delay is completely eliminated in radios providing
automatic switch to transmission mode at the end of a reception [Texa].

Kuo et al. have recently released µSDR, a low-cost, low-power,
portable software-defined radio (SDR) platform that allows to develop
timing-critical communication protocols for low-power wireless net-
works [KPSD12]. µSDR natively supports Glossy in hardware, sparing
the need to disable unnecessary interrupts during a flood and to execute
software routines at each packet relay. Moreover, by using µSDR it is
possible to tune some low-level radio parameters (e.g., automatic gain
control and carrier frequency) and further improve the performance of
Glossy compared to commercial radios [KPSD12].

More recently, Carlson et al. [CCT+13] have successfully ported Glossy
to the CC430 platform [Texd], which combines on a single chip an MSP430
MCU with a radio operating on bands below 1 GHz. It is important to
notice that the latter is not compliant to the IEEE 802.15.4 standard, which
demonstrates that the Glossy architecture can support diverse wireless
bands, modulation schemes, and data rates. In their implementation, for

2.5. Theoretical Analysis 31

m synchronous

Path 1

Initiator

Path 2 Path m

h

1

2

h − 2

h − 1

Common receiver

transmitters

Figure 2.12: Scenario for the theoretical analysis: a receiver is at the end of m
independent paths of length h.

example, the CC430 operates on the 900 MHz band, using a 2-Frequency-
Shift Keying (2-FSK) modulation scheme and a 125 kbps data rate.

2.5 Theoretical Analysis
This section studies Glossy analytically. In particular, we look at
the probability that Glossy makes synchronous transmissions of the
same packet interfere constructively, which depends on the temporal
displacement ∆ among the transmissions (see Section 2.1). We analyze
how ∆ is affected by the number of synchronous transmitters (i.e., node
density) and the maximum hop distance of a receiver from the initiator
(i.e., network diameter). In addition, we study the limits of Glossy in
worst-case settings that are difficult to reproduce in real networks.

To this end, we consider the network structure in Figure 2.12. There
are m ≥ 2 independent flooding paths originating at the initiator. These
paths traverse h ≥ 2 hops each, and join again at a common receiver. In
this way, we construct a worst-case scenario in the sense that the initiator
provides the only common synchronization point to the paths: nodes
on one path relay the flooding packet independently of nodes on the
other paths, which challenges Glossy in making the final m synchronous
transmissions interfere constructively at the common receiver.

We first present a theoretical model of the temporal displacement ∆

experienced by the common receiver, independent of a specific
implementation. Then, we apply this model to our implementation on
TelosB devices. Results show that constructive interference occurs with a
probability above 99.9 % even when 30 nodes transmit synchronously.

32 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

2.5.1 Implementation-Independent Analysis
We first analyze the sources of temporal uncertainty affecting the relay
length Trelay given by (2.1). Our analysis makes use of a mixture
of statistical and worst-case assumptions. We consider statistical
distributions for processes that are clearly stochastic in nature, such as
the offset between two unsynchronized clocks. We instead consider
worst-case scenarios for more deterministic variables, including clock
drift, network topology, and the maximum temporal displacement among
transmitters. Hence, our model provides the statistical worst-case
displacement ∆ experienced by the common receiver as a function of m
and h. This model can then be used to compute the theoretical reliability
and synchronization accuracy for a specific network scenario.

2.5.1.1 Statistical Uncertainty on Relay Length

We discussed in Section 2.4 that the delay Tsw introduced by the software
routine to trigger a transmission is in general not constant, even if the
number of instructions I executed by the MCU is fixed. The software
delay Tsw is a multiple of the period 1/ fr of the crystal sourcing the radio
clock. We can thus express the software delay as Tsw = T̃sw + τsw, where T̃sw

is a constant value corresponding to the minimum possible delay, and τsw

is a discrete random variable with granularity 1/ fr representing the
additional variation due to the unsynchronized clocks of the MCU and
the radio. We denote with psw the probability mass function (pmf) of τsw.

The processing delay of the radio, Td, is also not constant. The digital
circuits of the radio are sourced by a crystal oscillator that has frequency fr.
The radio starts to process an incoming packet when the digital circuits
sampled the beginning of a reception, at most after 1/ fr. We express
the processing delay of the radio as Td = T̃d + τd. The time needed to
process an incoming packet, T̃d, is a constant usually in the order of a few
microseconds and determined by the radio. The time required to sample
a reception, τd, depends on the offset between the radio clocks of the
transmitter and the receiver. Since these clocks run unsynchronized, τd

is a random variable with uniform distribution in the interval [0, 1/ fr].
For simplicity, we discretize the set of values of τd by introducing a time
granularity δ such that δ = 1/(k × fr), with k � 1. Consequently, τd has
uniform discrete distribution τd = {0, δ, 2 × δ, . . . , 1/ fr} and pmf pd with
constant values 1/(k + 1).

The statistical uncertainty on the length of a relay is the sum of the
uncertainties on the software delay and the radio processing:

τrelay = τsw + τd (2.4)

2.5. Theoretical Analysis 33

Since δ � 1/ fr, τrelay has granularity δ. The two uncertainties, τsw and τd,
are independent, because they are due to independent effects. Recalling
that the distribution of the sum of two independent random variables can
be expressed by their convolution, the uncertainty on the length of a relay
has pmf prelay = psw ∗ pd.

2.5.1.2 Worst-Case Drift of Radio Clock

The time required for a packet transmission, Ttx, is given by (2.2) and
depends on the frequency of the radio clock fr. In general, this frequency
deviates from the nominal value f̃r due to temperature and aging effects.
Crystals used to source the clocks of sensor network radios typically have
a frequency drift ρ that depends on the temperature t according to a
third-order polynomial [Sch09]:

ρ = (fr − f̃r)/ f̃r = A(t − t0)3 + B(t − t0) + C (2.5)

Here, A, B, C, and t0 are constants that depend on the specific crystal
device. Using (2.5), it is possible to determine bounds on the frequency
drift for a given temperature range.

In the following, we assume −ρ ≤ ρ ≤ ρ. In the worst case, among
the m independent paths in Figure 2.12, there is at least one path where
all radio clocks run at the highest frequency f̃r × (1 + ρ), and at least one
other path where all radio clocks run at the lowest frequency f̃r × (1 − ρ).
We denote with T̃tx the nominal transmission time in the absence of radio
clock drift. With this, we can express the worst-case variation on the
transmission time that accumulates after h hops at the end of these two
independent paths as follows:

τtx = (h − 1) ×
T̃tx

1 + ρ
+ (h − 1) ×

T̃tx

1 − ρ

= (h − 1) × T̃tx ×
2 × ρ

1 − ρ2 (2.6)

2.5.1.3 Statistical Worst-Case Temporal Displacement

Each node introduces a statistical uncertainty τrelay on the length of a relay.
This uncertainty is independent of other nodes, since the pair of radio and
MCU clocks on one node runs independently from the pair of clocks on
other nodes. Therefore, the temporal uncertainty τ associated with a path
that consists of h hops is the sum of h − 1 independent random variables:

τ = (h − 1) × τrelay

= (h − 1) × (τsw + τd) (2.7)

34 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

The pmf of τ is given by the convolution of h − 1 instances of prelay.
We now extend the problem to m independent paths, each consisting

of h hops and originating at the initiator. We are interested in the statistical
worst-case temporal displacement ∆. This displacement corresponds to
the difference between the maximum and the minimum timing variation
associated with each path.

We consider a worst-case scenario where the path with the minimum
time variation has clocks running at the highest frequency, and the path
with the maximum variation has clocks running at the lowest frequency:

∆ = max
m

[τ] −min
m

[τ] + τtx (2.8)

Based on (2.8), we want to determine the cumulative distribution
function (CDF) of ∆. This corresponds to the problem of finding the
CDF of the sample range of m independent identically distributed (i.i.d.)
experiments. This is a well-known order statistics problem, and analytical
solutions exist in the literature [ABN08].

2.5.2 Implementation-Dependent Analysis
We now apply the above model to our Glossy implementation on TelosB
devices. We analyze the statistical worst-case temporal displacement
∆ for different node densities and network diameters. We use the
measurements shown in Figure 2.11 to obtain the pmf of the software
delay Tsw. In addition, we consider ρ = 20 parts per million (ppm) as
the maximum drift affecting the radio crystal, which corresponds to a
temperature range between -30◦C and 50◦C [Sch09].

To analyze the dependence on network diameter, we fix the number
of paths at m = 2 and vary the path length h between 2 and 8 hops. The
maximum number of transmissions is set to Ntx = 3. Figure 2.13(a) plots
the CDF of ∆ for four different settings. We see that ∆ is smaller than the
requirement of 0.5µs with very high probability. This shows that when a
flooding packet is relayed along two independent paths over 8 hops, the
two final synchronous transmissions generate constructive interference
in more than 96 % of the cases. Recall that this assumes that the time
variation due to radio clock drift is maximum between the two paths. In
most cases, however, the drift is much smaller than its bounds, which
increases the probability of constructive interference significantly.

To analyze the dependence on node density, we set the path length to
h = 2 and vary the number of paths m between 2 and 30. Figure 2.13(b)
shows that our Glossy implementation is robust also in dense networks.
In fact, when 30 nodes transmit synchronously to a common receiver, ∆ is
below 0.5µs with a probability above 99.9 %. We show in Section 2.6 that
experiments on high-density networks confirm these analytical results.

2.5. Theoretical Analysis 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0

0.2

0.4

0.6

0.8

1.0

∆
max

 = 0.5 µs

Worst−case temporal displacement ∆ [µs]

C
D

F

h = 2
h = 4
h = 6
h = 8

(a) Distribution of ∆ as a function of network diameter h, with m = 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0

0.2

0.4

0.6

0.8

1.0

∆
max

 = 0.5 µs

Worst−case temporal displacement ∆ [µs]

C
D

F

m = 2
m = 5
m = 15
m = 30

(b) Distribution of ∆ as a function of node density m, with h = 2.

Figure 2.13: Results of the theoretical analysis. In our Glossy implementation,
the statistical worst-case temporal displacement ∆ among all transmitters is
smaller than 0.5µs with different network settings. Results are for Ntx = 3.

36 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

2.5.3 Theoretical Lower Latency Bound
We provide an expression for the theoretical lower bound on flooding
latency. Intuitively, this bound is given by adding up the hardware-
dependent times for transmitting Ttx and radio processing Td. Given that
nodes transmit synchronously, the theoretical lower latency bound in a
network with diameter h hops is h × (Ttx + Td).

At each hop, Glossy adds a delay Tsw to the theoretical lower bound.
This delay is introduced by the MCU when issuing a transmission request
to the radio. In our implementation, Tsw is at most 23.5µs (see Figure 2.11).
We are not aware of any flooding protocol that comes so close to the
theoretical lower latency bound.

2.6 Experimental Evaluation
This section evaluates Glossy on real sensor nodes. We first present
results from experiments with a few nodes in several controlled settings.
Afterwards, we report on the performance of Glossy during extensive
experiments on three wireless sensor testbeds.

2.6.1 Glossy in Controlled Experiments
Before evaluating Glossy on several testbeds, we use controlled
experiments to study some of its basic characteristics. We start by looking
at the reliability of synchronous transmissions, defined as the fraction of
packets correctly received by a node. We analyze how reliability is affected
by the temporal displacement ∆ between two transmitters and by the
total number of synchronous transmitters. Afterwards, we look at the
time synchronization error, which we define as the absolute error on the
reference time tre f computed by a receiver with respect to the initiator.

We find that (i) Glossy provides a reliability above 95 % in a scenario
where the capture effect does not occur; (ii) while varying the number
of synchronous transmitters between 2 and 10, reliability stays fairly
constant and always above 98 %; (iii) Glossy achieves an average time
synchronization error of less than 0.4µs even at receivers that are eight
hops away from the initiator.

2.6.1.1 Impact of Temporal Displacement

The first experiment evaluates the reliability of Glossy in a scenario where
the capture effect does not occur. In this case, a successful reception is only
possible if synchronous transmissions interfere constructively. While this

2.6. Experimental Evaluation 37

is clearly a worst-case scenario that is difficult to reproduce even under
controlled settings, it provides an indication of the robustness of Glossy.

Setup. We use three nodes, one initiator and two receivers, and set
Ntx = 1. Upon receiving a packet from the initiator, the two receivers
transmit synchronously. The initiator overhears these transmissions and
records whether it can successfully decode the packet. Based on sequence
numbers embedded in the packets, we measure the reliability experienced
by the initiator. Moreover, we delay the transmission of one receiver by
a variable amount of time in the interval [0, 8]µs by letting the receiver
execute a certain number of NOPs before issuing a transmission request
to the radio. We set the clock frequency of the MCU to 4 MHz to obtain
a temporal displacement ∆ with 250 ns granularity between the two
receivers, corresponding to half-chip period Tc/2 of the modulated signal.

To ensure that the capture effect does not help the initiator in receiving
the packet, we adjust the transmit powers of the receivers. In particular,
we let the non-delayed receiver transmit at -20 dBm, and the delayed
receiver at -13 dBm. In this way, since both signals are weak and the
second one is stronger than the first one, we prevent the initiator from
capturing the first of the two signals.

Results. Figure 2.14(a) shows reliability for different temporal
displacements ∆ and packet lengths, averaged over 2,000 packets for each
setting. We see that the leftmost bar, corresponding to Glossy without
artificial delay, indicates a reliability above 95 % for short packets. This
demonstrates that Glossy makes synchronous transmissions interfere
constructively, allowing a receiver to decode a packet with very high
probability even in the absence of the capture effect. For increasing ∆ we
see a pattern similar to the one in Figure 2.3 obtained through simulation.
In particular, reliability starts to drop significantly at ∆max = 0.5µs,
showing local minima when different chips perfectly overlap. Finally,
similar to non-synchronous transmissions [SAM03], reliability decreases
as packets become longer.

Figure 2.14(b) shows average correlation of the first 8 symbols received
after the SFD. This 7-bit value represents a measurement of the chip error
rate, and is automatically appended by the radio to each successfully
received packet. A value close to 110 indicates that a packet was received
with maximum quality, while a value of 50 is typically the minimum
required to successfully receive a packet [Texb]. We see that average
correlation is maximum when no artificial delay is added to one of the two
synchronous transmitters, while it drops significantly when the temporal
displacement ∆ equals or exceeds ∆max = 0.5µs.

38 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

R
el

ia
b

il
it

y
 [

%
]

Glossy

∆
max

 = 0.5 µs

Temporal displacement ∆ between two synchronous transmitters [µs]

8 bytes
64 bytes
128 bytes

(a) Reliability is maximum when ∆ = 0, but drops significantly when ∆ equals or exceeds
∆max = 0.5µs, following a pattern similar to that in Figure 2.3.

0 1 2 3 4 5 6 7 8
60

70

80

90

100

[A
v

er
ag

e
co

rr
el

at
io

n]

Glossy

∆
max

 = 0.5 µs

Temporal displacement ∆ between two synchronous transmitters [µs]

8 bytes
64 bytes
128 bytes

(b) Average correlation is maximum when ∆ = 0, but drops significantly when ∆ equals
or exceeds ∆max = 0.5µs.

Figure 2.14: Glossy in a scenario without capture effects, for Ntx = 1. Due to
constructive interference, reliability and average correlation are maximum when
the temporal displacement ∆ is zero.

2.6. Experimental Evaluation 39

2 3 4 5 6 7 8 9 10
95

96

97

98

99

100

Number of synchronous transmitters

R
el

ia
b

il
it

y
 [

%
]

Figure 2.15: Reliability depending on number of synchronous transmitters,
including capture effects, for Ntx = 1. Reliability is always above 98 % and
shows no significant dependence on the number of synchronous transmitters.

2.6.1.2 Impact of Number of synchronous Transmitters

In a typical deployment, nodes are not evenly distributed and experience
different channel characteristics. As a result, some nodes have more
neighbors than others. We therefore study in this experiment the impact
of the number of synchronous transmitters on reliability.

Setup. We use a setup similar to the one above. However, we vary
the number of receivers between 2 and 10, and do not delay their
transmissions artificially; all packets are 8 bytes long. In this way, we
measure the reliability experienced by the initiator for different numbers
of synchronous transmitters, including capture effects.

Results. Figure 2.15 shows reliability, averaged over 10,000 packets for
each setting. We see that reliability stays fairly constant and always
above 98 % as the number of transmitters increases, thus showing no
significant dependence between the two. Interestingly, reliability is
slightly lower when only two or three nodes transmit synchronously.
In these settings it is more likely that the initiator receives a weak signal,
due to the generation of carriers with slightly different frequencies or
phases. Our results resemble those in [DMEST08], where nodes transmit
fixed-length acknowledgment packets automatically generated by the
radio hardware. By contrast, Glossy transmits variable-length packets
generated in software, achieving even higher reliability in some cases.

40 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

1 2 3 4 5 6 7 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

Distance from the initiator [hops]

T
im

e
sy

n
ch

ro
n

iz
at

io
n

 e
rr

o
r

[µ
s]

Figure 2.16: Accuracy of time synchronization in Glossy. The absolute error on
the reference time tre f computed by a receiver is below 0.4µs, even at receivers
that are 8 hops apart from the initiator.

2.6.1.3 Accuracy of Time Synchronization

Glossy provides network-wide time synchronization at no additional cost.
To this end, a receiver estimates the reference time tre f when receiving the
first flooding packet, as detailed in Section 2.4.4. We assess the accuracy
of this computation by looking at the absolute error with respect to the
reference time tre f computed by the initiator.

Setup. We use five nodes, one initiator and four receivers. At the
beginning of a Glossy phase, the initiator sends a packet, computes the
reference time tre f , and schedules the next phase based on this reference
time. The receivers do exactly the same. After receiving the packet from
the initiator, they compute reference times tre f , and use these to schedule
the beginning of the next phase.

All nodes activate an external GPIO pin when a phase starts. We
connect the respective GPIO pin of the five nodes to an oscilloscope,
monitoring the start of a phase at a granularity of 2 ns. Then we
measure the time difference between pin activation at the initiator and
pin activation at the receivers. In this way, we obtain four estimates of
the time synchronization error. To analyze this error for receivers that
are more than one hop away from the initiator, we choose a sufficiently
large Ntx and let the receivers compute the reference time based on packets
received after been relayed multiple times.

2.6. Experimental Evaluation 41

Results. Figure 2.16 shows average and standard deviation of the time
synchronization error depending on hop distance from the initiator,
averaged over 4,000 measurements for each setting. We see that the
average error remains as low as 0.4µs up to hop 8. The standard deviation
increases almost linearly with hop distance, reaching 4.8µs at hop 8.

These results show that Glossy achieves accurate time synchronization
also at receivers that are several hops away from the initiator. Moreover,
they confirm a major result of our theoretical analysis in Section 2.5,
namely that Glossy accumulates only a very small timing error at each
relay. Most of the error is indeed of a stochastic nature, independent
across nodes and different floods.

2.6.2 Glossy in Testbed Experiments
Using experiments on three wireless sensor testbeds, we evaluate Glossy’s
performance across several node densities, network diameters, packet
lengths, and transmit powers. Results demonstrate that Glossy provides
robust and efficient network flooding under diverse conditions. We first
describe the testbeds and metrics we use. Then we summarize our key
findings, followed by a detailed discussion of the experimental results.

2.6.2.1 Scenario and Metrics

We use three different testbeds to evaluate Glossy: MoteLab [WASW05],
Twist [HKWW06], and DSN [DBK+07]. These differ along several aspects,
including number of nodes, node density, and network diameter.

• On MoteLab, we collect data from 94 nodes unevenly spread over
three floors. A node at the corner of the second floor acts as
initiator. It reaches all other nodes within at most 5 hops when nodes
transmit at the highest power setting of 0 dBm. When transmitting
at -7 dBm, the lowest power that keeps the network fully connected,
the farthest nodes are 8 hops away from the initiator.

• On Twist, we use 92 nodes and randomly choose one of them as
initiator. Due to its high node density, the network stays connected
even at a transmit power of -25 dBm, yielding a maximum hop
distance of 5 from the initiator.

• The DSN testbed consists of 39 nodes distributed in several offices,
passages, and storerooms; two nodes are located outside on the
rooftop. The initiator reaches all nodes within 7 hops at the lowest
possible transmit power of -15 dBm.

42 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

Testbed
MoteLab Twist DSN
(94 nodes) (92 nodes) (39 nodes)

Tx power [dBm] 0 -7 0 -15 -25 0 -15
Diameter [hops] 5 8 3 3 5 3 7

Ntx = 1
R [%] 99.37 94.80 99.90 99.83 99.64 99.71 98.25
L [ms] 1.77 2.28 0.81 1.18 1.74 1.06 1.81
Ton [ms] 3.13 4.85 1.99 2.39 3.04 2.31 3.45

Ntx = 2
R [%] 99.88 99.09 >99.99 99.99 99.97 99.97 99.91
L [ms] 1.79 2.35 0.81 1.18 1.75 1.07 1.83
Ton [ms] 4.75 5.14 3.37 3.81 4.56 3.76 4.75

Ntx = 3
R [%] 99.96 99.78 >99.99 >99.99 >99.99 >99.99 99.99
L [ms] 1.79 2.37 0.81 1.18 1.75 1.07 1.83
Ton [ms] 6.30 6.31 4.76 5.25 6.14 5.20 6.26

Ntx = 6
R [%] >99.99 99.98 >99.99 >99.99 >99.99 >99.99 >99.99
L [ms] 1.79 2.39 0.81 1.18 1.75 1.07 1.83
Ton [ms] 10.87 10.18 9.07 9.60 10.84 9.52 10.79

Table 2.1: Testbed configurations and results when Glossy floods 8-byte packets.
Tx power is the transmit power of all nodes in a testbed, and diameter is the
corresponding maximum hop distance between initiator and receivers. The table
shows network-wide averages of flooding latency L, flooding reliability R, and
radio on-time Ton across four different choices of Ntx, which is the maximum
number of transmissions per node during a network flood.

On all three testbeds, we use channel 26 to limit the interference with
co-located Wi-Fi networks. The upper part of Table 2.1 lists number of
nodes, transmit powers, and network diameters of each testbed we use.

Our evaluation is based on the following three metrics:

• Flooding latency L of a receiver is the time between the first
transmission at the initiator and the first successful reception of
the flooding packet at that receiver.

• Flooding reliability R is the fraction of network floods in which a
receiver successfully receives the flooding packet.

• Radio on-time Ton is the time a receiver has its radio turned on during
a network flood.

We compute these metrics for each particular setting based on 50,000
network floods. We report L, R, and Ton for each receiver individually as
well as averaged over all receivers in a testbed.

2.6. Experimental Evaluation 43

2.6.2.2 Summary of Testbed Results

Table 2.1 summarizes the results collected on the three testbeds when
Glossy floods 8-byte packets. It lists network-wide averages of L, R, and
Ton across four choices of Ntx. Based on our experiments, we find that:

• The empirical performance of Glossy exhibits no noticeable
dependence on node density. Theoretically, performance and node
density are not independent. The analysis in Section 2.5 shows that
the probability of constructive interference is 99.9 % when adding
30 synchronous transmitters. However, we do not discern this
marginal difference in our results from controlled experiments with
up to 10 transmitters (see Section 2.6.1.2) and experiments on three
testbeds, including Twistwhere nodes are densely deployed.

• The performance of Glossy depends on network diameter, that is,
on the maximum hop distance between initiator and receivers. As
the network diameter increases, flooding latency L and radio on-
time Ton increase linearly, while flooding reliability R decreases.
Nevertheless, for MoteLab’s largest diameter of 8 hops and Ntx = 6,
L averages 2.4 ms, R is above 99.9 %, and Ton is as low as 10.2 ms.

• Increasing the maximum number of transmissions Ntx significantly
enhances flooding reliability. For Ntx = 3, we observe that R is
at least 99.9 % across all testbeds and transmit powers except one.
Since R is already very high for Ntx = 1, further increasing Ntx has
no noticeable effect on the average flooding latency. Radio on-time
increases linearly with Ntx, averaging about 16 ms for the highest
value of Ntx = 10 in our experiments.

2.6.2.3 Impact of Packet Length

We start by evaluating how the packet length affects the performance of
Glossy. To this end, we run experiments on MoteLabwith three different
packet lengths: 8, 64, and 128 bytes. The latter setting corresponds to the
maximum packet length supported by IEEE 802.15.4-compliant radios.
All nodes transmit at the maximum power of 0 dBm.

Figure 2.17 shows the resulting average Glossy performance. We see in
Figure 2.17(a) that the average flooding reliability decreases as the packet
length increases. For Ntx = 4, for example, R is 99.98 % when Glossy floods
8-byte packets, but it decreases to 99.90 % and 99.47 % when it floods
packets with a length of 64 and 128 bytes, respectively. This is expected
as current radios make decisions about the correctness of each individual
symbol—a packet is accepted only if all symbols are correctly received.
Figure 2.17(b) and Figure 2.17(c) confirm that flooding latency and radio

44 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

2 4 6 8 10
95

96

97

98

99

100

Maximum number of transmissions N
tx

A
v

er
ag

e
fl

o
o

d
in

g
 r

el
ia

b
il

it
y

 R
 [

%
]

8 bytes
64 bytes
128 bytes

(a) Flooding reliability.

2 4 6 8 10
0

5

10

15

20

Maximum number of transmissions N
tx

A
v

er
ag

e
fl

o
o

d
in

g
 l

at
en

cy
 L

 [
m

s]

8 bytes
64 bytes
128 bytes

(b) Flooding latency.

2 4 6 8 10
0

20

40

60

80

100

120

140

Maximum number of transmissions N
tx

A
v

er
ag

e
ra

d
io

 o
n

−
ti

m
e

T
o
n
 [

m
s]

8 bytes
64 bytes
128 bytes

(c) Radio on-time.

Figure 2.17: Average Glossy performance on MoteLab for various packet
lengths, with a transmit power of 0 dBm.

2.6. Experimental Evaluation 45

on-time increase linearly with packet length, as discussed in Section 2.3.2.
This is because each single packet transmission and reception takes longer.
Nevertheless, for Ntx = 4, Glossy requires an average flooding latency of
only 18.77 ms and an average radio on-time of 69.59 ms to flood 128-byte
packets. These results indicate that Glossy is suitable also for applications
that need to flood long packets.

In the remaining of the chapter, we report results from Twist and DSN
based on network floods of 8-byte packets. This packet length is sufficient
to send short commands to the nodes (e.g., to set system parameters).

2.6.2.4 Impact of Network Characteristics

We now look at the performance of Glossy under different network
characteristics. To this end, we run experiments with three different
transmit powers on Twist and DSN. In doing so, we vary the average
node density in the network and the network diameter. The maximum
number of transmissions during a flood is fixed to Ntx = 3 across all runs.

Figure 2.18 plots the CDFs of R, L, and Ton on Twist, for transmit
powers 0 dBm, -15 dBm, and -25 dBm. Looking at Figure 2.18(a), we find
that all receivers have a flooding reliability above 99.99 % at the highest
power setting (i.e., at the highest node density). At the lowest power, 80 %
of the receivers experience such high reliability. The drop in R is due to an
increased network diameter. In fact, it takes 5 hops instead of 3 to reach
the farthest receivers at the lowest power. This is also reflected in the step-
wise shape of the CDF: each step corresponds to the flooding reliability
experienced by receivers at a certain hop distance from the initiator. The
results confirm also that R exhibits no noticeable dependence on node
density, as hinted by controlled experiments in Section 2.6.1.2.

We see from Figure 2.18(b) that Glossy needs less than 3 ms to flood a
packet to all 91 receivers, even at the lowest power that merely keeps
the network connected. We are not aware of any current protocol
that provides such fast flooding. We comment on related flooding and
dissemination protocols in Section 2.7.

Finally, Figure 2.18(c) plots the radio on-time. We see that
receivers listen longer as their hop distance from the initiator increases.
Nevertheless, Glossy achieves ultra-low duty cycles also for larger
network diameters. For example, consider an application that wants
to use Glossy to (potentially) flood a command every minute. Then, on
Twist, Glossy would utilize not more than 0.01 % of a node’s average
radio duty cycle. We measure comparably low duty cycles on MoteLab
with a maximum distance of 8 hops from the initiator.

Figure 2.19 shows that Glossy achieves similar performance also on
DSN, for transmit powers 0 dBm, -10 dBm, and -15 dBm. We see in

46 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

99.9 99.91 99.92 99.93 99.94 99.95 99.96 99.97 99.98 99.99 100
0.0

0.2

0.4

0.6

0.8

1.0

Flooding reliability [%]

F
ra

ct
io

n
 o

f
re

ce
iv

er
s

0 dBm
−15 dBm
−25 dBm

(a) Flooding reliability.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Flooding latency [ms]

F
ra

ct
io

n
 o

f
re

ce
iv

er
s

0 dBm
−15 dBm
−25 dBm

(b) Flooding latency.

4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

Radio−on time [ms]

F
ra

ct
io

n
 o

f
re

ce
iv

e
rs

0 dBm

−15 dBm

−25 dBm

(c) Radio on-time.

Figure 2.18: CDF of Glossy performance on Twist with three different transmit
powers, for Ntx = 3.

2.6. Experimental Evaluation 47

99.9 99.91 99.92 99.93 99.94 99.95 99.96 99.97 99.98 99.99 100
0.0

0.2

0.4

0.6

0.8

1.0

Flooding reliability [%]

F
ra

ct
io

n
 o

f
re

ce
iv

er
s

0 dBm
−10 dBm
−15 dBm

(a) Flooding reliability.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Flooding latency [ms]

F
ra

ct
io

n
 o

f
re

ce
iv

er
s

0 dBm
−10 dBm
−15 dBm

(b) Flooding latency.

4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

Radio−on time [ms]

F
ra

ct
io

n
 o

f
re

ce
iv

e
rs

0 dBm

−10 dBm

−15 dBm

(c) Radio on-time.

Figure 2.19: CDF of Glossy performance on DSN with three different transmit
powers, for Ntx = 3.

48 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

Figure 2.19(a) that also on DSN flooding reliability is bigger than 99.99 %
for at least 80 % of the receivers. Due to the lower node density and bigger
diameter of DSN, we see in Figure 2.19(b) that more receivers experience
a higher flooding latency than on Twist already at the highest transmit
power of 0 dBm. This corresponds also to a slight increase in radio on-
time, as shown in Figure 2.19(c). Nevertheless, flooding latency and radio
on-time are smaller than 5 ms and 12 ms at all receivers, respectively, even
at the lowest transmit power of -15 dBm that keeps DSN connected.

2.6.2.5 Impact of Maximum Number of Transmissions

Next, we analyze how the performance is affected by Ntx, the maximum
number of transmissions per node during a network flood. We run
experiments on Twist and DSN, and vary Ntx between 1 and 10. To
stress Glossy as much as possible, on both testbeds we use the lowest
possible transmit power that keeps the networks connected. On Twist,
nodes transmit at -25 dBm, resulting in a network diameter of 5 hops;
on DSN, with a transmit power of -15 dBm, receivers have a maximum
distance of 7 hops from the initiator (see Table 2.1).

Figure 2.20 plots R, L, and Ton for different values of Ntx on Twist. Bars
show network-wide averages; error bars indicate 5th and 95th percentiles.
Figure 2.20(a) shows that flooding reliability R increases with Ntx. This is
expected, because higher values of Ntx lead to more packet transmissions
during a flood and thus to a higher chance for a receiver to successfully
receive the packet. Starting from Ntx = 3, average reliability consistently
exceeds 99.99 %. In fact, we performed 50,000 floods with Ntx = 10, and
only in three cases one of the 91 receivers missed the packet.

Flooding latency, shown in Figure 2.20(b), averages around 1.75 ms
for all values of Ntx. It is largely independent of Ntx due to the high
probability of correctly receiving a packet already at the first attempt. In
fact, assuming that each transmission during a flood succeeds, we can
approximate the flooding latency L of a receiver as follows:

L ≈ (c∗ + 1) × Trelay (2.9)

Trelay corresponds to the relay length and c∗ is the relay counter of the first
packet received during a flood by such receiver.

Finally, by looking at Figure 2.20(c), we see that the radio on-time
increases linearly with Ntx. This is also reflected in the corresponding
analytical expression, which again assumes successful transmissions
during a flood:

Ton ≈ (c∗ + 2 ×Ntx) × Trelay (2.10)

2.7. Related Work 49

The term c∗ × Trelay accounts for the time a receiver listens before the
first transmission it overhears, and is independent of Ntx. The term 2 ×
Ntx × Trelay corresponds instead to the time a receiver spends in receiving
and transmitting packets, and it increases linearly with Ntx. Even when
setting the maximum number of transmissions to Ntx = 10, we measure
an average radio on-time smaller than 17 ms.

Figure 2.21 shows that on DSN the performance of Glossy experiences
similar dependence on the maximum number of transmissions Ntx. We
see in Figure 2.21(a) that flooding reliability R increases with Ntx and
is bigger than 99.99 % when Ntx is at least 4. Figure 2.21(b) shows that
flooding latency is again mostly independent of Ntx, as suggested by the
approximation in (2.9). Finally, from Figure 2.21(c) we see that the average
radio on-time increases linearly with Ntx, in accordance with (2.10).

While the average flooding latency and radio on-time are very similar
on Twist and DSN, we see a more significant difference in their 95th
percentiles. This is because some nodes on DSN are 7 hops away from
the initiator, whereas on Twist the network diameter is at most 5 hops.
This leads to higher values of c∗ for these nodes, and thus to higher values
of L and Ton in (2.9) and (2.10).

2.7 Related Work
Using Glossy, nodes transmit the same packet synchronously. This idea
stems from work on cooperative communication schemes [SMSM06].
However, requirements such as precise time synchronization among
multiple transmitters have long been considered too demanding for an
implementation on real sensor nodes [SZHT07].

Flury and Wattenhofer demonstrate the feasibility of signaling a binary
value to all nodes with an unmodulated wave [FW10]. Constructive
interference provides the opportunity to extend this to real data
packets. Dutta et al. propose Backcast as an acknowledged anycast
service [DMEST08]. Backcast exploits constructive interference of short
acknowledgment packets automatically generated by the radio hardware.
It does not require synchronization among the nodes, but the application
has very limited control over the content of the interfering packets.
Backcast serves as the basis for A-MAC, a receiver-initiated link layer
protocol [DDHC+10]. Moreover, interference has been exploited to
increase the throughput of wireless networks (e.g., through analog
network coding [KGK07]).

Flash [LW09] uses concurrent transmissions for rapid flooding in
sensor networks. Flash relies exclusively on capture effects, which

50 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

1 2 3 4 5 6 7 8 9 10

99.9999

 99.999

 99.99

 99.9

 99

 90

Maximum number of transmissions N
tx

F
lo

o
d

in
g

 r
el

ia
b

il
it

y
 R

 [
%

]

(a) Flooding reliability.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

Maximum number of transmissions N
tx

F
lo

o
d

in
g

 l
at

en
cy

 L
 [

m
s]

(b) Flooding latency.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Maximum number of transmissions N
tx

R
a

d
io

 o
n

−
ti

m
e
 T

o
n

[m

s]

(c) Radio on-time.

Figure 2.20: Glossy performance on Twist for various values of Ntx, with a
transmit power of -25 dBm. Bars denote averages; error bars indicate 5th and
95th percentiles.

2.7. Related Work 51

1 2 3 4 5 6 7 8 9 10

99.9999

 99.999

 99.99

 99.9

 99

 90

Maximum number of transmissions N
tx

F
lo

o
d

in
g

 r
el

ia
b

il
it

y
 R

 [
%

]

(a) Flooding reliability.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

Maximum number of transmissions N
tx

F
lo

o
d

in
g

 l
at

en
cy

 L
 [

m
s]

(b) Flooding latency.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Maximum number of transmissions N
tx

R
a

d
io

 o
n

−
ti

m
e
 T

o
n

[m

s]

(c) Radio on-time.

Figure 2.21: Glossy performance on DSN for various values of Ntx, with a
transmit power of -15 dBm. Bars denote averages; error bars indicate 5th and
95th percentiles.

52 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

considerably reduces the chances of correct packet reception when many
nodes transmit concurrently and forces Flash to control the number
of transmitters [LW09]. Glossy also benefits from capture effects but
primarily exploits constructive interference. This enables Glossy to flood
packets with high reliability at any node density, as demonstrated by our
testbed experiments in Section 2.6.2.

Glossy and Flash do not require nodes to maintain information
about the network topology. By contrast, in the Robust Broadcast
Protocol (RBP) [SHSM06] and the Collective Flooding (CF) [ZZHZ10]
nodes need to continuously collect information about their local
neighborhood to identify links important for the broadcast propagation.

Trickle [LPCS04] and its variants like Deluge [HC04], Drip [TC05],
and DIP [LL08] provide data dissemination: nodes continuously send
advertisements to detect new data and ensure complete network
coverage. Typically, dissemination protocols are optimized for reliability
and data consistency, not for latency or energy. Glossy floods packets
fast without additional control traffic, while sacrificing less than 0.01 % in
flooding reliability.

Flooding is a basic communication primitive for time synchronization
in sensor networks. For example, the Flooding Time Synchronization Pro-
tocol (FTSP) [MKSL04] uses periodic flooding of time-stamped messages
and achieves a per-hop synchronization error in the microsecond range.
Lenzen et al. show that optimal synchronization necessitates fast network
flooding [LSW09]. Their PulseSync protocol achieves a higher accuracy
than FTSP and a flooding latency below one second. Glossy provides
even higher accuracy by flooding packets within a few milliseconds
and employing the Virtual High-resolution Time (VHT) approach by
Schmid et al. [SDS10]. The high accuracy and low energy of VHT are
also due to the use of a custom external high-speed crystal [SDS10].
Glossy could enable further improvements in synchronization accuracy
by combining it with such crystals.

2.8 Summary
This chapter has proposed Glossy, a novel flooding architecture for low-
power wireless networks that uses interference to its advantage. By
making the baseband signal of synchronous transmissions of the same
packet interfere constructively, Glossy enables receivers to decode a
packet even in the absence of capture effects. We have analyzed the
robustness of our techniques in achieving constructive interference based
on a mixture of stochastic and worst-case models. We have evaluated our

2.8. Summary 53

implementation of Glossy using experiments under controlled settings
and on three wireless sensor testbeds. The results demonstrate that Glossy
provides accurate time synchronization along with fast and highly reliable
flooding at ultra-low duty cycles, showing no noticeable dependence on
node density in the scenarios considered.

We have made the source code of Glossy publicly available
at http://www.tik.ee.ethz.ch/~ferrarif/sw/glossy and, as part
of the Contiki Projects Community, at http://sourceforge.net/p/
contikiprojects/code/HEAD/tree/ethz.ch/glossy. Since its release,
several independent researchers have exploited, extended, improved, or
ported Glossy to other platforms, demonstrating its high impact on the
sensor network community.

The unprecedented performance and timing accuracy of Glossy has
fostered the design of innovative communication protocols for low-power
wireless networks. TriggerCast, for example, is a flooding architecture
that improve on Glossy by compensating for variable propagation and
radio processing delays [WHC+13]. After porting Glossy to the CC430
platform (see Section 2.4.5), Carlson et al. incorporate a forwarder
selection mechanism to let only a subset of nodes participate in a
flood, thus improving energy efficiency and throughput in point-to-
point communication [CCT+13]. In the Splash dissemination protocol,
Doddavenkatappa et al. add channel diversity to Glossy and combine it
with pipelining to disseminate large amount of data while being 20 times
faster than state-of-the-art dissemination protocols [DCL13]. Using the
hardware implementation of Glossy for the µSDR platform mentioned
in Section 2.4.5, Kuo et al. are currently developing Floodcasting, a
protocol envisioned to improve the range and coverage of visual light
communication (VLC) networks and to achieve buffer-free, real-time
audio streaming in multi-hop wireless networks [KPD13]. Finally,
Landsiedel et al. use the Glossy source code as the basis for developing
CAOS, a primitive that exploits capture effects and constructive
interference to provide ultra-fast all-to-all communication and in-network
processing in low-power wireless networks [LFZ13a].

The original Glossy architecture has also been used as a service or
as the underlying primitive for more general communication protocols.
In pTunes, for example, Zimmerling et al. exploit the extremely low
latency and high energy efficiency of Glossy to periodically collect
information about the current network state and disseminate optimized
MAC parameters [ZFM+12]. In the next chapters of this thesis we show
that Glossy is the one-to-all communication primitive we leverage to
achieve a wireless bus that enables dependable communication in cyber-
physical systems.

http://www.tik.ee.ethz.ch/~ferrarif/sw/glossy
http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy
http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy

54 Chapter 2. Glossy: Efficient Network Flooding and Time Synchronization

3
Low-Power Wireless Bus (LWB):

A Versatile Wireless Bus

Nodes in a cyber-physical system need to continuously interact and
coordinate across multi-hop wireless networks in order to provide the
desired level of dependability. These interactions are required, for
example, to detect node and communication failures and agree on
appropriate countermeasures. A wireless bus able to efficiently support
multiple traffic patterns such as one-to-many, many-to-one, and many-
to-many is thus paramount.

Emerging applications for low-power wireless may also benefit from a
protocol that supports multiple communication patterns. These networks
are indeed gaining momentum beyond early data collection applications.
For instance, recent deployments demonstrate the feasibility of closed-
loop control [CCD+11] and increasingly employ mixed installations of
static and mobile devices [CLBR10, DEM+10]. These applications are
characterized by a blend of traffic patterns, such as many-to-many
communication for collecting sensor data at multiple receivers and one-
to-many communication for disseminating control commands [CCD+11].
They also often feature end-to-end interactions across static and mobile
nodes [CLBR10, DEM+10]. Looking at [CLBR10], for example, we observe
the need to couple two communication protocols: one that delivers patient
data from mobile sender nodes to static infrastructure nodes, and another
one that forwards the data over the static infrastructure nodes towards a
common receiver (i.e., the application receiver).

In contrast to the diverse needs of emerging applications, current
communication protocols support specific traffic patterns (e.g., one-

56 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

to-many [LPCS04], many-to-one [GFJ+09] or many-to-many [MP11])
in distinct scenarios (e.g., static networks [GFJ+09] or with receiver
mobility [MSKG10]). This forces designers to form ad-hoc protocol
ensembles to satisfy the application demands, which may entail adapting
existing implementations [CCD+11] or developing custom protocols in
absence of suitable off-the-shelf solutions [CLBR10]. As a result, multiple
protocols that were designed in isolation need to operate concurrently.
This is often detrimental to system performance [CKJL09], and causes
protocol interactions that are difficult to cope with [WCL+07].

To address this problem, this chapter presents the Low-Power Wireless
Bus (LWB), a simple yet efficient communication protocol that provides a
unified solution for several traffic patterns, while supporting also mobile
nodes immersed in static infrastructures. LWB’s design revolves around
three cornerstones:

1. We exclusively use fast network floods for communication. This
effectively turns a multi-hop low-power wireless network into a
network infrastructure similar to a shared bus.

2. Similar to fieldbus-based communication protocols [KG93], we
adopt a time-triggered operation to arbitrate access to the shared
bus. Nodes are time-synchronized and access the bus according
to a global communication schedule computed online based on current
traffic demands.

3. We compute the communication schedule centrally at a dedicated
host node. The host periodically distributes the schedule to all nodes
to coordinate the bus operation.

To support our design, we use Glossy as the underlying flooding
mechanism. As discussed in Chapter 2, Glossy provides high flooding
reliability with minimal latencies, offering a foundation for 1. and 3., and
accurate global time synchronization, which we leverage as a stepping
stone for 2. Glossy also maintains no topology-dependent network state,
which spares state reconfigurations when the network topology changes.

As a result, LWB simplifies the networking architecture by replacing
the standard network stack with a single-layer solution that:

• Supports multiple traffic patterns. The exclusive use of Glossy network
floods makes all nodes in the network potential receivers of all data.
LWB leverages this opportunity to support both many-to-one and
many-to-many traffic, besides the one-to-many pattern provided by
Glossy itself. This occurs without changes to the protocol logic, and
straightforwardly enables scenarios where, for example, multiple
receivers are opportunistically deployed [VVV07].

57

• Adapts to varying traffic demands. The centralized, Glossy-based
operation makes LWB efficiently support applications that adjust
data rates at runtime, for example, in response to external
stimuli [ADB+04]. Nodes indeed inform the host of changes in their
traffic demands, and the host adapts at runtime the main protocol
parameters and how bandwidth is distributed among nodes.

• Is resilient to topology changes. Different from most existing solutions,
the network state kept at a LWB node is independent of the
network topology and thus resilient to any such change. No state
reconfigurations are indeed required to keep up with changing
topologies, which reduces LWB’s control overhead to a minimum.
This provides efficient support to deal with link fluctuations, most
notably due to node failures [BGH+09] and interference [LPLT10].

• Supports node mobility. As an extreme form of topology change,
LWB encompasses also mobile nodes, acting as senders, receivers,
or both, without any changes to the protocol logic. This applies to
scenarios where, for example, mobile nodes interact with a fixed
infrastructure [CLBR10].

The LWB protocol, described throughout Sections 3.1 to 3.3, renders
our design concrete and complements it with mechanisms to: (i) ensure a
fair allocation of bandwidth across all traffic demands; (ii) support nodes
dynamically joining and leaving the system (e.g., due to node failures or
disconnections); and (iii) resume communication after a host failure, thus
overcoming single point of failure problems.

Using the same prototype, we evaluate in Sections 3.4 to 3.9 LWB’s
performance on four testbeds that range from 26 to 260 nodes, including a
testbed with nodes attached to robots for repeatable mobility experiments.
For comparison, we consider seven combinations of state-of-the-art
routing and link-layer protocols: the Backpressure Collection Protocol
(BCP) [MSKG10] over a non duty-cycled Carrier Sense Multiple Access
(CSMA) layer; the Collection Tree Protocol (CTP) [GFJ+09] over CSMA,
the Low-Power Listening (LPL) layer [PHC04], and A-MAC [DDHC+10];
Muster [MP11] over CSMA and LPL; and Dozer [BvRW07]. Based on 256
independent runs over a total duration of 838 hours, we find that:

• In many-to-one scenarios, LWB performs comparably to Dozer
under light traffic and outperforms CTP in data yield and radio
duty cycle; for example, LWB sustains traffic demands one message
every 5 seconds from 259 senders with almost 100 % data yield, a
situation where CTP + LPL collapses.

58 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

• In the same scenarios, LWB adapts promptly and efficiently to
varying traffic demands; for example, when the aggregate traffic
load suddenly increases from 54 to 460 messages per minute, LWB
keeps data yield close to 100 %, whereas CTP + LPL and Dozer are
significantly affected.

• In many-to-many scenarios, LWB outperforms Muster regardless of
the number of senders or receivers, providing higher data yield than
Muster + CSMA at a fraction of the radio duty cycle of Muster + LPL
at all wake-up intervals.

• Under external interference and multiple concurrent node failures,
LWB’s performance is only marginally affected, whereas CTP and
Dozer require routing state reconfigurations that cause significant
performance loss.

• In the presence of mobile nodes, LWB outperforms BCP and CTP
at no additional energy costs, delivering more than 99 % of the
messages at very low radio duty cycles regardless of whether
senders, receivers, or both are roaming.

Our results demonstrate that LWB is more versatile than existing
communication protocols, and performs comparably or significantly
better than the state of the art in all scenarios we tested. As such,
LWB is directly applicable to a broad spectrum of low-power wireless
applications, from data collection [CMP+09, LLL+09] to control [CCD+11]
and mobile scenarios [CLBR10, DEM+10]. Most importantly, it serves as
a foundation for the design of a dependable wireless bus that provides
delivery guarantees, as we demonstrate in Chapter 4.

Under specific operating conditions such as linear topologies that span
several tens of hops [KPC+07] and applications with mostly aperiodic
traffic [ADB+04] LWB’s efficiency decreases and dedicated solutions may
perform better. We discuss the limitations of LWB in Section 3.10 by
illustrating its scaling properties and the dependence of a few protocol
parameters on the network diameter. We also present alternative
scheduling policies to satisfy different application requirements. We
review related work in Section 3.11 and summarize the contribution of
this chapter in Section 3.12.

3.1 Overview
The LWB protocol completely replaces the standard network stack, sitting
between radio driver and application.

3.1. Overview 59

T

ninini

n1n1
n3

n2

n3

n2

n3

n2

n1

(C)

(B)
t

(A)
t

ni

Communication rounds

n1 n2 n3

Figure 3.1: Time-triggered operation in LWB. Protocol operation is confined
within communication rounds that repeat with a possibly varying round
period T (A); each round consists of multiple non-overlapping slots (B); each
slot corresponds to a distinct Glossy flood (C).

LWB in a nutshell. LWB maps all communication on Glossy floods. A
single flood serves to send a message from one node to all other nodes.
To avoid collisions among different floods, LWB adopts a time-triggered
operation: nodes communicate according to a global communication
schedule that determines when a node is allowed to initiate a flood.

LWB exploits Glossy’s accurate global time synchronization. The
protocol operation is confined within communication rounds. As shown
in Figure 3.1 (A), rounds repeat with a possibly varying round period T,
computed at the host based on the current traffic demands. Nodes keep
their radios off between two rounds to save energy. Every round consists
of a possibly varying number of non-overlapping communication slots, as
shown in Figure 3.1 (B). In each slot, at most one node puts a message on
the bus (initiates a flood), whereas all other nodes read the message from
the bus (receive and relay the flood), as shown in Figure 3.1 (C). In LWB
every node participates in every flood.

Figure 3.2 shows the communication slots within a generic round. A
round r starts with a sched slot allocated to the host for distributing the
communication schedule for that round. The schedule includes the round
period and the mapping of individual nodes to the following data slots,
if any. A req slot without a preassigned node follows; all sender nodes
can contend in this slot, for example, to inform the host of their traffic
demands. Based on the received traffic demands, the host computes
the schedule for the next round r + 1—with a possibly updated round

60 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

sched r sched r + 1data req

Tl

TreqTdata

data

Tdata Tsched tTsched

Figure 3.2: Communication slots within a generic LWB round r. Sender nodes
use the req slot to inform the host of changes in traffic demands. After the req
slot, the host computes the schedule for the next round r + 1, which it distributes
already at the end of round r.

application data
local traffic demands received traffic demands

schedule

Bus interface

Application Scheduler

Figure 3.3: Conceptual architecture of a LWB node. The scheduler is present at
all nodes but active only at the host.

period and mapping of sender nodes to data slots—and transmits the
new schedule at the end of the round. The sched message for each round
is thus transmitted twice, as we further illustrate in Section 3.2.4.

Application interface. The application interacts with LWB in two ways,
as shown in Figure 3.3. First, LWB offers operations to place application
messages in the outgoing queue for eventual transmission, and to receive
incoming messages. Because of flooding-based communication, all nodes
potentially receive all messages. At a sender node, the application
specifies the intended recipients as a parameter to the send operation;
at a receiver, LWB delivers a received message to the application only if
the node is an intended recipient.

Second, LWB provides functions the application uses to notify LWB
of changes in the traffic demands of a node. Targeting applications that
feature mostly periodic traffic, LWB accepts traffic demands in the form
of periodic streams of messages, defined by an inter-message interval (IPI)
and a starting time. The application can dynamically change the traffic
demands, creating new streams or stopping existing ones.

When a new traffic demand arises, the application issues a stream add
request, specifying IPI and starting time. The latter may lie in the past
if the application needs more data slots at the beginning, for example, to
transmit a local backlog of messages. When a traffic demand ceases to
exist, the application issues a stream remove request to cancel the stream.
The application may issue multiple stream add requests from the same

3.2. Protocol Operation 61

node (e.g., if different sensors produce readings at different rates) and
may individually remove streams. LWB takes care of transmitting stream
requests of either type to the host, where the scheduler component uses
them as input for computing the communication schedule.

Next, Section 3.2 describes the LWB protocol operation, while
Section 3.3 focuses on the scheduler, which is a stand-alone component
present at all LWB nodes but active only at the host and responsible for
determining the round period and computing the global communication
schedule based on current application traffic demands.

3.2 Protocol Operation
To illustrate the protocol operation, we use sample executions of our LWB
prototype whose implementation details are described in Section 3.4.
We split the illustration according to the different phases an execution
evolves into. These phases are purely for illustration purposes and
do not correspond to distinct modes of protocol operation. Rather, the
mechanisms we illustrate next blend together in a single protocol logic.

We start by illustrating in Section 3.2.1 the LWB operation in steady-
state conditions, that is, when the host is informed of all traffic demands
and these do not change over time. Next, we describe in Section 3.2.2 the
bootstrapping phase that leads to such steady state. Finally, we describe
in Section 3.2.3 how LWB adapts to reduce overhead should steady-state
conditions endure for a given time. We discuss protocol optimizations
in Section 3.2.4, mechanisms to handle communication and node failures
in Section 3.2.5, and a strategy to overcome host failures in Section 3.2.6.

The scenario we consider for the non-failure case is a multi-hop
network of 6 sender nodes and 1 receiver. All sender nodes have a stream
with IPI = 6 s and starting time t = 0 s. The receiver acts also as the host.

3.2.1 Steady-State Conditions

Intuition. In steady state, nodes are time-synchronized and the host is
aware of all traffic demands. We defer for the moment illustrating how the
system reaches such state. The aggregated traffic demand in the scenario
we consider amounts to 6 messages every 6 seconds. Say the round
period T is 1 second and nodes are already informed of that. One way to
schedule such traffic demands is to allocate 6 data slots, one per sender
node, in one round every six. Other schedules are feasible, possibly with
different round periods; here we simply illustrate a specific instance of
our general scheduling strategy (see Section 3.3).

62 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

S

S

6

S

S

6

6

1

S

S

1

1

5

S

S

5

1

5

5

6

4

S

S

4

4

4

3

S

S

3

3

3

S

S

S

S

2

S

S

2

2

2

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

S

S

1

2

3

4

5

6

S

S

S

S

S

S

S

S

S

S

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

S

S

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

S

S

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

S

S

S sched: schedule for current round

req: no stream requests

n req: stream request from n

n data: stream acknowledgment to n

n data: application data from n

S sched: schedule for next round

0 3 6 9 12 15 18 21 57 60 63 66 69 100 130 160
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Time [s]

S
lo

ts
 w

it
h

in
 a

 r
o

u
n

d

Bootstrapping Steady−State
Conditions

Long−Run
Conditions

Figure 3.4: A trace of LWB’s operation since startup when 6 sender nodes
generate one data message every 6 seconds each. Nodes start with their radios
turned on. Upon receiving a sched message for the first time at t = 2 s, nodes
time-synchronize with the host and start duty cycling their radios. At t = 11 s, the
host received all stream requests in the preceding req slots and starts allocating
6 data slots, one per sender, in one round every six. At t = 70 s, since no more
stream request were recently received, the scheduler extends the round period T
from 1 second to 30 seconds to reduce energy costs, and allocates 5 data slots to
every sender in the following rounds; for the same reason, it allocates a req slot
only every minute (i.e., every other round).

3.2. Protocol Operation 63

Steady traffic demands. The middle part of Figure 3.4 shows how the
above materializes in a real LWB execution. Once steady-state conditions
are reached at t = 12 s, the host distributes a schedule including 6 data
slots, one per sender. Nodes periodically turn their radios on during
communication rounds according to the round period T = 1 s. Based on
the schedule, each sender accesses the bus during its allocated data slot
and initiates a Glossy flood. All other nodes turn their radios on during
every communication slot to relay the data messages. In addition, the
receiver also delivers the messages to the application. These operations
repeat every 6 seconds, as shown in the middle part of Figure 3.4.

The five rounds in between include no data slots. As described next,
these seemingly redundant rounds are used to possibly receive further
stream requests at the host. Should the host not receive new stream
requests, rounds without data slots eventually disappear, as we illustrate
in Section 3.2.3.

3.2.2 Bootstrapping

Intuition. To reach steady-state conditions, we need to: (i) time-
synchronize all nodes with the host and inform them of the current
round period T, and (ii) communicate the current traffic demands to
the host. Nodes boot with their radios turned on and use the very first
schedule transmission to synchronize initially. Afterward, sender nodes
may use the req slot to communicate their traffic demands. Nodes can
simultaneously access the bus during this slot, so communication may
be unreliable when different Glossy floods overlap. We use a simple
acknowledgement scheme to confirm that the host successfully received
the traffic demands. As these are progressively received at the host, the
scheduling of data slots intertwines with newly received stream requests.

Initial synchronization. At t = 0 s in Figure 3.4, only the host is part
of the bus operation; all other nodes have their radios turned on. At
t = 2 s, the first round starts with a sched slot where the host transmits
a schedule for the first time. This sched message includes no mapping
to data slots, but it only notifies about the presence of a req slot. Upon
receiving the first schedule, Glossy time-synchronizes the nodes with the
host, and nodes learn about the round period T = 1 s. This allows them
to start duty cycling their radios and to effectively join the bus operation.
Nodes that miss the first sched message keep their radios on until they
finally receive the schedule in a subsequent round.

A pure relay node would stop the join operation at this point and from
now on only help propagating the Glossy floods initiated by other nodes.
Instead, a sender node continues the join operation, as described next.

64 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Communicating traffic demands. During the early rounds in Figure 3.4,
multiple sender nodes use the req slot concurrently to transmit their
stream requests. In most cases, the host receives one stream request
due to capture effects, which allow a node to receive a message despite
concurrent transmissions [LF76]. This happens, for example, at t = 3 s
in Figure 3.4, when the host receives a stream add request from node 6
during the req slot.

Based on this request, the host allocates two additional data slots in the
next round at t = 4 s: one slot to itself to transmit a stream acknowledgment
to node 6, and one slot to node 6 to transmit the application data it
generated at t = 0 s. If no stream acknowledgments were received, node
6 would exponentially back off for some rounds before retransmitting the
request. This reduces the number of contending requests in subsequent
rounds, eventually increasing the chances of a successful reception by the
host during a req slot.

Building up to steady state. At startup, the scheduler sets the round
period T to the shortest possible to offer more req slots, speeding up the
initial joining of sender nodes. Operations similar to the ones above repeat
for node 1 at t = 4 s (add request during a req slot) and t = 5 s (stream
acknowledgment and application data during data slots). At t = 6 s, the
host allocates one data slot each to nodes 6 and 1 for transmitting their
second application messages. It also allocates two data slots to node 5 in
response to a stream add request received in the previous round: node 5
has two messages already generated (at t = 0 s, 6 s) to transmit. A similar
processing occurs in the following rounds for nodes 4, 3, and 2.

Meanwhile, nodes are kept synchronized by the periodic transmission
of sched messages. At t = 11 s, the host received all stream add

requests and is thus aware of all traffic demands: the steady-state phase
commences. Nevertheless, the host still schedules one req slot in each
round for possible further requests. Indeed, the host does not know
whether all senders have yet transmitted their stream requests. If new
stream requests arrive later, the processing is the same described above.

3.2.3 Long-Run Conditions

Intuition. If steady-state conditions endure for a given time, the
application has likely converged to a stable traffic pattern and load.
This is the case in many scenarios we target [ADB+04, CCD+11, MCP+02,
TPS+05], where periodic streams of data are initiated at startup and live
on for the entire execution. This means that new stream requests are
unlikely to arrive. In such situations, LWB minimizes control overhead
by changing the schedule. Specifically, the host sets the round period T

3.2. Protocol Operation 65

such that: (i) LWB still provides enough bandwidth, and (ii) transmissions
of sched messages occur sufficiently often to keep nodes synchronized.

Reducing overhead. At t = 70 s in Figure 3.4, the host detects that no
new stream requests were recently received. The last stream request was
indeed received at t = 10 s from node 2. It thus infers that the traffic
demands are stable and increases the round period T from 1 second to
30 seconds. This value is based on the current traffic demands and the
scheduling policy described in Section 3.3.

As a result, the following rounds occur every 30 seconds starting
from t = 100 s. Increasing the round period reduces overhead, because it
spares rounds with no data slots. At each round, the host indeed allocates
T/IPI = 5 data slots to every sender node, corresponding to the number of
data messages generated between consecutive rounds. LWB takes care of
buffering these messages at the sender nodes until a data slot is available.

3.2.4 Optimizations

We complement the LWB operation just described with optimizations
that further reduce the overhead and improve system responsiveness to
changes in the traffic demands.

Transmissions of sched messages. Figure 3.4 already shows that sched
messages are transmitted twice in a round. In principle, this is not
necessary: the schedule transmitted at the beginning of a round would
suffice to keep nodes synchronized and instruct them on when to access
the bus. However, if the host changes the round period T as a result of
computing the schedule for the next round, it would like to promptly
communicate the new T to the nodes, so they can immediately switch to
the new period (e.g., to save energy if the new round period is larger,
as is the case at t = 70 s in Figure 3.4). We make this possible by
letting the host transmit the sched message for the next round already
at the end of the current round. Besides adding some redundancy in
schedule transmissions, this improves responsiveness, because it makes
nodes adapt earlier to updated round periods.

Scheduling req slots. Under stable traffic conditions similar to those
in Section 3.2.3, new stream requests arrive rarely. Besides increasing
the round period T, the host schedules req slots according to a different
period Tr, whose value is an implementation constant independent of
the current T. The right part of Figure 3.4 indeed already shows that
req slots appear only once every Tr = 1 minute, at t = 70 s, 130 s,
This optimization further reduces the overhead, especially when rounds
unfold quickly to satisfy high, but stable, traffic demands.

66 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Piggybacking stream requests. With long round periods, as in the right
part of Figure 3.4, req slots occur rarely, and the optimization above
makes them occur even more sparingly. Nevertheless, many nodes may
compete in the req slot, and at most one at a time succeeds. These factors
increase the latency in communicating changed traffic demands to the
host. To ameliorate the problem, we let nodes piggyback stream requests
on data messages if they are already assigned a data slot. This improves
responsiveness, as it gives nodes more chances to send stream requests,
and also reduces the pressure on req slots.

3.2.5 Node and Communication Failures
LWB needs to deal with node and communication failures, and nodes that
spontaneously disconnect (e.g., due to mobility). Host failures, instead,
require special countermeasures, which we discuss in Section 3.2.6.

Node failures and disconnections. If a node fails or disconnects from the
network, its active streams are eventually reclaimed. LWB uses a simple
counter-based scheme to detect such situations at the host. If the host does
not receive any message within a certain number of consecutive rounds
from a stream s, it removes s from the set of active streams. The threshold
for removal is set as a protocol parameter. As a result, the scheduler stops
allocating data slots to stream s, which saves bandwidth and energy.

This policy allows LWB to effectively detect situations where, for
example, multiple nodes fail concurrently, as we show in Section 3.8.2.
Due to Glossy’s high reliability, our simple scheme is quite resilient to
false positives: it is very unlikely that Glossy does not deliver data for a
number of consecutive rounds while a node is still running and connected.

Communication failures. Our acknowledgment scheme ensures that all
stream requests eventually reach the host. Problems may however arise
if sched messages are lost. These are critical to keep nodes synchronized
and to instruct them on when to access the bus.

To address this problem, LWB applies two policies. First, a node is
allowed to participate in a communication round only if it received the
schedule for the current round. Otherwise, it turns the radio off and keeps
quiet for the remaining part of the round. Second, to compensate for a
possibly higher synchronization error after a missed sched message, a
node increases its guard times and wakes up slightly before the beginning
of the next round. If a node misses the sched message for a given number
of consecutive rounds, it continuously listens until it receives again a
new schedule. In this situation chances are, for example, that the round
period changed precisely in the missed schedule. The specific threshold
for turning the radio on is a protocol parameter, and is set to 4 missed

3.2. Protocol Operation 67

sched messages in our implementation. A detailed description of the
synchronization state machine used in LWB is available in [ZFMT13].

Because of Glossy’s high reliability, situations like those above happen
very rarely, and usually indicate that a node is disconnected from the
network or that the host has failed.

3.2.6 Host Failures
We address host failures by deploying the scheduler on all nodes, and by
complementing LWB with mechanisms to dynamically enable or disable
the scheduler at specific nodes according to a given policy. We describe
next a simple failover policy that avoids multiple hosts being active on
the same channel (e.g., when networks merge after partition).

Failover policy. Nodes detect a failure of the current host based on the
complete absence of communication within a time interval Th f , which is a
protocol parameter that can be set by the user. If neither sched nor data
messages are received within Th f , it is very likely that also other nodes
are not receiving schedules and thus that the host has failed.

We hardcode into all LWB nodes a circular ordered list of pairs
(channel, host_id) that maps a set of communication channels to an
appointed host for each channel. Upon detecting a host failure, a node
switches to the channel next in the list. If the node is the appointed host
for the channel, it activates the scheduler and starts distributing (empty)
sched messages. Otherwise, the node turns the radio on and listens; if it
receives sched messages, it joins the LWB operation on the new channel.
In either case, if no communication is detected within another interval
Th f , the node switches to the next channel and the procedure repeats.

Our simple failover policy makes LWB remain functional despite
repeated host failures. We note, however, that after a network partition
several buses may operate on different channels and never merge again.
More sophisticated failover policies, possibly based on self-stabilizing
leader election [DIM97], can be developed to overcome this limitation.

Sample execution. We exemplify the functioning of our policy by
inducing host failures in a real-world experiment. We use a multi-hop
network of one receiver and 50 senders that generate messages with
IPI = 1 minute. We set Th f = 2 minutes, and use IEEE 802.15.4 channels 26,
15, and 25 with corresponding hosts H1, H2, and H3. The circular ordered
list stored at all nodes is thus: {(26,H1), (15,H2), (25,H3)}. Initially, nodes
use channel 26 and H1 is the host.

Figure 3.5 shows the goodput at the receiver over time. Depending
on failures and recoveries of the appointed hosts, the number of data
messages received every round by the receiver varies as follows.

68 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

0 0.25 0.5 0.75 1 1.25
0

10

20

30

40

50

60

Ch. 26 (Host H
1
) Ch. 15 (Host H

2
) Ch. 25 (Host H

3
)

H
1
 fails H

2
 fails H

2
 recovers H

3
 fails

Time [hours]

G
o

o
d

p
u

t
at

 t
h

e
re

ce
iv

er
 [

d
a

ta
/

ro
u

n
d

]

Figure 3.5: Goodput at the receiver as the number of data messages received per
round when hosts fail and resume. A few minutes after detecting a host failure,
communication resumes on a different channel with a new host.

• H1 fails at t = 0.25 hours. Communication successfully resumes after
Th f = 2 minutes on the next channel in the list and with H2 as
the new host. All nodes join again, and senders issue stream add
requests, considering also messages that were generated while they
were disconnected from the bus. The new host eventually activates
all streams and communication resumes as before the failure of H1.

• H2 fails at t = 0.5 hours. Similar events occur as after the previous
host failure: after Th f = 2 minutes with no communication, nodes
switch to channel 25 and H3 is the new host.

• H2 recovers at t = 0.75 hours. This recovery has no visible impact
on the bus operation. This is because nodes are operating on a
different channel: after Th f without receiving any stream request on
channel 15, H2 switches to channel 25 where it joins the ongoing
LWB operation with H3 as the host.

• H3 fails at t = 1 hours. Communication resumes after 2 × Th f =

4 minutes. Host H1 for channel 26 has indeed not recovered yet,
and a second timeout expires before nodes switch to channel 15
where H2 is the new host.

3.3. Scheduler 69

3.3 Scheduler
The scheduler running at the host orchestrates communication over
the bus by computing the communication schedule. This involves
determining the round period T and allocating data slots to streams,
as summarized also by the scheduler pseudocode shown in Figure 3.6.
We describe next a scheduling policy that minimizes energy costs for
low-power applications that can tolerate end-to-end latencies of a few
seconds. We use this policy in Sections 3.4–3.9 to evaluate LWB.
Section 3.10 presents alternative scheduling policies that trade smaller
end-to-end latencies for slightly higher energy costs.

3.3.1 Determining the Round Period
Several trade-offs are involved in determining the round period T. It
must be set sufficiently small to provide enough bandwidth for all traffic
demands. However, the faster the rounds unfold, the higher is the energy
overhead for distributing sched messages. We choose one specific design
point: minimize the energy overhead under steady traffic conditions
while satisfying all traffic demands whenever possible.

In addition, a LWB implementation on real devices imposes three
constraints: (i) a lower bound Tmin ensures that T is longer than the total
duration of a round Tl (see Figure 3.2), the latter being an implementation-
dependent constant; (ii) the round period T must also not exceed Tmax, to
ensure that nodes update their Glossy synchronization state sufficiently
often; (iii) the number of data slots that the scheduler can map in a single
sched message, and thus on the number of data slots it can allocate
per round, is bounded by D, for example, due to platform-dependent
restrictions on packet sizes.

Based on the above considerations, the scheduler computes the round
period T as follows. To satisfy all traffic demands, it should allocate
Rtot =

∑S
s=1(1/IPI s) data slots per time unit, corresponding to the rate of

data slots required by all S existing streams. To minimize the energy
overhead for distributing sched messages, the scheduler should use the
minimum number of rounds; that is, it should allocate all possible D data
slots every round. The round period Topt that minimizes energy while
satisfying all traffic demands is thus:

Topt =
D

Rtot
=

D∑S
s=1 (1/IPI s)

(3.1)

Shorter round periods can also satisfy all traffic demands, but entail more
rounds and thus higher energy overhead. Longer round periods, instead,
cannot satisfy all traffic demands.

70 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

variables
% current round
r: positive integer, initially 0;
% current number of active streams
S: positive integer, initially 0;
% current round period
T: positive integer, initially Tmin;
% data slots allocated during round r
Kr: set of data message identifiers;
% stream index
s: positive integer;
% number of data slots to allocate to the s-th stream
toAlloc: positive integer;

actions
% increment the round number
r← r + 1;
% add/remove streams if add/remove stream requests were received;
% remove streams if sender failures were detected (see Section 3.2.5)
S← updateSetOfStreams();

Determining the round period (Section 3.3.1)
% compute the round period that minimizes energy as per (3.1)
Topt ← computeTopt(S);
% check if the system is saturated
if Topt < Tmin: sat← true; else: sat← false;
% update the current round period as per (3.2)
T← updateT(Tmin,Tmax);

Allocating data slots to streams (Section 3.3.2)
% the schedule is initially empty
Kr ← ∅;
% draw a random stream index s between 1 and S
s← random(S);
% allocation of data slots, starting from the s-th active stream
for all S active streams:

% compute the number of data slots not yet allocated to the s-th stream,
% which corresponds to (3.5) in case of saturation
toAlloc← getSlotsToAllocate(s, sat);
% only D − |Kr| data slots are still available
toAlloc←min(toAlloc,D − |Kr|);
% add to the schedule the toAlloc data slots allocated to the s-th stream
Kr ← Kr ∪ allocateDataSlots(s, toAlloc);

% possibly allocate a req slot, according to the policy in Section 3.2.4
allocateReqSlot()

Figure 3.6: Scheduler pseudocode. At each round, the scheduler running at the
host computes the communication schedule for the next round by determining
the round period T and allocating data slots to streams

3.3. Scheduler 71

Due to constraints (i) and (ii) above, the scheduler bounds Topt in (3.1)
within Tmin and Tmax. Finally, to limit the set of valid round period values,
the scheduler sets T to the largest previous multiple of 1 second:

T =
⌊
min

(
Tmax, max

(
Topt, Tmin

))⌋
(3.2)

If Topt < Tmin, the number of available data slots is insufficient for the
current traffic demands: the network is saturated. When the scheduler
detects saturation, besides setting the round period to T = Tmin, it embeds
this information into the sched message. This allows sender nodes to
take appropriate actions if needed, such as temporarily storing data
messages generated by the application in external memory to prevent
queue overflows.

We complement the solution above with a simple policy to promptly
react to varying traffic demands. If stream requests were recently received
(e.g., in the last minute), the scheduler sets T to Tmin regardless of
the current traffic demands, and allocates a req slot in every round
in anticipation of further stream requests. Such conditions occur, for
example, when bootstrapping a network, as shown in Section 3.2.2, or
when a subset of nodes wishes to send data messages at higher rates, as
we show in Section 3.6.3.

3.3.2 Allocating data Slots to Streams
The scheduler allocates data slots to maximize fairness across all streams
according to Jain’s fairness index [JCH84], a metric widely used in the
literature [RWAM05, WCB01]. Other metrics or algorithms can be applied
by modifying the scheduler.

To compute Jain’s fairness index, we denote with as the number of
data slots the scheduler allocates to stream s during a round, and with
ds = T/IPI s the number of data slots stream s demands every round.
The allocation to stream s is thus xs = min(as/ds, 1) [JCH84]. Using the
allocations of all S streams, Jain’s fairness index is defined as:

f (x) =

(∑S
s=1 xs

)2

S ×
∑S

s=1 x2
s

(3.3)

A fairness index of 1 indicates that the scheduler is equally fair to all
streams; smaller values indicate less fairness.

As we illustrate next, our slot allocation scheme achieves a fairness
index of 1 in the long run, as it is in general not possible to achieve fairness
in individual rounds. For instance, a fair allocation in individual rounds
may require allocating a non-integer number of data slots to streams.

72 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

0 0.5 1 1.5 2
0

6

12

18

24

30

36

42

48

54

60

Time [hours]

G
o

o
d

p
u

t
at

 t
h

e
re

ce
iv

er
 [

d
a

ta
/

s]

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

H

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Generation rates:

L = 4 data/s

H = 16 data/s

Unsaturated Saturated

Saturation (60 data/s)

〈1〉 : 9 L, 0 H 〈2〉 : 8 L, 1 H 〈3〉 : 4 L, 5 H 〈4〉 : 0 L, 9 H

Figure 3.7: Goodput at the receiver as the number of data messages received per
second when 9 sender nodes generate varying amount of traffic. LWB always
allocates data slots fairly, based on traffic demands and available bandwidth.

In the following, we use an experiment on a multi-hop network of
10 nodes to exemplify how the scheduler allocates data slots in both the
unsaturated and saturated case. One node acts as host and receiver. Each
of the other 9 nodes generates one stream of 15-byte data messages, either
at low rate L of 4 messages per second or at high rate H of 16 messages
per second. These generation rates follow patterns of four phases 〈1〉–〈4〉
in Figure 3.7, where different nodes generate data at different rates. In
our LWB prototype, we set Tmin = 1 s, Tmax = 30 s, and D = 60 data slots.

Unsaturated network. When the network is not saturated, the scheduler
can allocate sufficient data slots to satisfy all traffic demands, that is,
as = ds for all streams s. This also implies that the allocation of data slots
is eventually fair across all streams: f (x) = 1, as xs = 1 for all streams s.

In the example experiment, the network is not saturated in phases 〈1〉
and 〈2〉. In phase 〈1〉, all 9 streams generate messages at low rate L:
using (3.1), the scheduler computes Topt〈1〉 = 1.67 s > Tmin. In phase 〈2〉,
one node generates data at higher rate H, and Topt〈2〉 = 1.25 s is still

3.3. Scheduler 73

greater than Tmin. The scheduler sets T = Tmin = 1 s in both phases, and
allocates data slots as follows.

• Phase 〈1〉. All streams demand 4 data slots every round and the
scheduler satisfies this demand by allocating in total 36 data slots, 4
to each stream. Sender nodes indeed contribute equally to the total
goodput at the receiver, as shown in Figure 3.7.

• Phase 〈2〉. One sender node increases its data rate to H. The scheduler
allocates every round 16 data slots to it and 4 to the other nodes. In
total, 48 data slots are allocated, and all traffic demands are satisfied.

Saturated network. If the network is saturated, the scheduler sets the
round period T to the lower bound Tmin but cannot satisfy all traffic
demands. This means as < ds for at least one stream s. The scheduler
allocates as data slots to each stream s such that the provided bandwidth
is maximized and the allocation is eventually fair across all streams:

allocate as data slots such that
S∑

s=1

as = D and f (x) = 1 (3.4)

It can be shown that allocating the following number of data slots to each
stream s is a solution to (3.4):

as = Topt/IPI s (3.5)

Intuitively, this entails allocating data slots to streams proportionally to
their data rates. This allocation is fair because xs = as/ds = Topt/Tmin is
constant across all streams s, and hence f (x) = 1 according to (3.3).

The network in our example experiment is saturated during phases 〈3〉
and 〈4〉 in Figure 3.7, because the corresponding Topt are smaller than Tmin.
The scheduler sets T = Tmin and allocates data slots to streams as follows.

• Phase 〈3〉. Four streams generate messages with rate H and
four with rate L, leading to Topt〈3〉 = 0.625 s. Streams demand
96 slots per second altogether, but the scheduler can allocate at most
D = 60 slots. To be fair, it allocates slots proportionally to their rates;
that is, on average, 0.625 × 16 = 10 data slots to each of the 5 streams
with rate H and 0.625 × 4 = 2.5 data slots to each of the 4 streams
with rate L, against a demand of 16 slots and 4 slots, respectively.

• Phase 〈4〉. All streams generate data at rate H, and the network
is saturated: Topt〈4〉 = 0.417 s. The scheduler allocates on average
as = 6.67 data slots to every stream, against a demand of ds = 16 slots.
The sender nodes equally contribute to the goodput at the receiver,
as shown in Figure 3.7.

74 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Parameter Description Value

Tmin Minimum round period 1 s
Tmax Maximum round period 30 s
Tr Period of req slots under stable traffic conditions 60 s
Tsched Length of a sched slot 15 ms
Tdata Length of a data slot 10 ms
Treq Length of a req slot 10 ms
Ntx Maximum number of transmissions during a slot 3
D Maximum number of data slots per round 60

Table 3.1: Default configuration of our LWB prototype.

Worth noticing is that the data slot allocation in the saturated case is fair
because it applies the same allocation xs to all streams s: xs = 10/16 = 2.5/4
in phase 〈3〉 and xs = 6.67/16 in phase 〈4〉. Figure 3.7 indeed shows
that during both these phases nodes with the same rate have the same
goodput, and the four nodes with rate L in phase 〈3〉 have together the
same goodput as one node with rate H, for L = H/4.

3.4 Evaluation Methodology
Before presenting experimental results, we describe the metrics, protocols,
and testbeds we use to evaluate LWB.

Metrics. We consider two key performance metrics commonly used
for evaluating low-power wireless communication protocols [BvRW07,
GFJ+09, MSKG10, MP11]:

• Data yield, defined as the fraction of application messages
successfully received at the receiver(s) over those sent.

• Radio duty cycle, computed as the fraction of time a node keeps the
radio on.

The former is an indication of the level of service provided to applications
in delivering sensed data, whereas the latter provides a measure of a
protocol’s energy efficiency [AY05].

To determine data yield and radio duty cycle, we embed message
sequence numbers and radio timings into data messages. We measure
the radio duty cycle in software, using Contiki’s power profiler and a
similar approach in TinyOS. For each experimental setting and protocol,
we compute these metrics based on three independent runs and report
per-node or network-wide averages and 5th and 95th percentiles.

3.4. Evaluation Methodology 75

Protocol Code footprint

LWB 22 kB
CTP + {CSMA, LPL, A-MAC} {26, 28, 27} kB
Dozer 38 kB
Muster + {CSMA, LPL} {35, 37} kB
BCP + CSMA 23 kB

Table 3.2: Code footprints of all protocol configurations used in the evaluation.

Protocols. We implement our LWB prototype on top of the Contiki
operating system [Conb, DGV04], targeting the TelosB platform [PSC05].
We set the LWB configuration parameters as in Table 3.1. We discuss our
choice for Tsched, Tdata, and Treq in Section 3.10.2.

We compare our LWB prototype with seven combinations of routing
and link-layer protocols, which represent the current state of the art.

• The Collection Tree Protocol (CTP) [GFJ+09] is a staple reference
for many-to-one scenarios. We run CTP over a non duty-cycled
Carrier Sense Multiple Access (CSMA) layer, the Low-Power
Listening (LPL) [PHC04] layer, and A-MAC [DDHC+10]. CSMA
serves as a baseline for CTP’s data yield performance, since it
provides the highest network capacity. The LPL setting matches the
configuration used in [GFJ+09]. A-MAC is a receiver-initiated link
layer shown to outperform LPL when running CTP [DDHC+10].

• Dozer is a TDMA-based collection protocol for periodic, low-rate
many-to-one scenarios [BvRW07]. It achieves ultra-low radio duty
cycles of 0.07–0.34 % in real deployments [KWL+11]. To compare
Dozer with LWB, we port the original TinyNode implementation
to the TelosB platform. Our results confirm that our port performs
comparably to the original implementation under similar settings.

• Muster is one of the few protocols for many-to-many communica-
tion in low-power wireless networks tested on real nodes [MP11].
We run Muster atop LPL and CSMA. The LPL setting matches the
configuration in [MP11], and the CSMA case serves as a baseline for
Muster’s data yield performance.

• The Backpressure Collection Protocol (BCP) represents the state of
the art in data collection at a single mobile receiver [MSKG10].
Results indeed suggest that BCP outperforms recent mobile receiver
routing protocols in terms of data yield [LKA+10, MSKG10, SGE06].
We run BCP atop CSMA, matching the configuration in [MSKG10].

Table 3.2 lists code footprints of all protocols, including test applications.

76 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

(roof, 1 floor up)

(roof, 4 floors up)

host/receiver

cluster B: node failures

cluster A: fluctuating traffic(roof, same floor)

Figure 3.8: Layout of the FlockDSN testbed.

We use an application payload of 15 bytes in all experiments. The
size of the control header is instead a function of the individual protocol.
Unless otherwise stated, we neglect the bootstrapping phase, and start
measuring after 10 minutes with LWB, after 0.5 hours with CTP and
Muster, after 2 hours with Dozer, and after 15 minutes with BCP, giving
each protocol enough time to discover the network and stabilize. We
evaluate the bootstrapping performance separately in Section 3.5.

Testbeds. We use four sensor network testbeds: Twist [HKWW06],
Kansei [EAR+06], the CONET integrated testbed (ConetIT) [CONa],
and FlockDSN, a short-lived mixed installation of DSN [DBK+07] and
FlockLab [LFZ+13b]. As shown in Figure 3.8, FlockDSN consists of
52 indoor and 3 outdoor nodes. The figure also highlights the position
of the node that serves as host and receiver, and of two clusters of nodes
used in the experiments described in Section 3.6.3 and Section 3.8.2.

All testbeds feature TelosB nodes but differ along several dimensions
as shown in Table 3.3, including number of nodes, node density, network
diameter, and node mobility. Kansei is the largest testbed we were able
to gain access to. The 5 mobile nodes in ConetIT are attached to robots,
allowing for repeatable mobility patterns.

The network diameter in Table 3.3 is based on the physical
topology, matching LWB’s perception; the maximum route stretch with
other protocols is typically larger. Using a received signal strength
indicator (RSSI) scanner, we find that on FlockDSN channel 20 is most
exposed to Wi-Fi traffic. We use this channel in Section 3.8.1 to assess a
protocol’s vulnerability to external interference, whereas we use channel
26 in all other experiments to minimize Wi-Fi interference.

3.5. Bootstrapping 77

Nodes

Testbed Location Static Mobile Tx power Diameter

Twist TU Berlin 90 0 -7 dBm 3 hops
Kansei Ohio State University 260 0 -20 dBm 4 hops
ConetIT University of Seville 21 5 -25 dBm 3 hops
FlockDSN ETH Zurich 55 0 0 dBm 5 hops

Table 3.3: Testbeds used in the evaluation.

3.5 Bootstrapping
Bootstrapping is a critical phase in real deployments, because nodes may
already spend a considerable amount of energy merely on commencing
communication. By examining this facet of LWB, we find that:

Finding 1. LWB bootstraps quickly and efficiently, while distributing energy
costs equally among nodes.

The following study also serves as a complement to the rest of the
evaluation: starting from Section 3.6, we exclude the bootstrapping phase
from the analysis not to bias the results.

Scenario. We consider a many-to-one scenario on Twist, where 89 senders
start generating messages with IPI = 1 minute. Nodes log every second
their current radio duty cycle into the local flash memory, and dump these
logs over the serial port after 30 minutes. We run tests with LWB, Dozer,
and CTP over A-MAC and LPL. We use the default 30 s beacon interval
in Dozer [BvRW07], and set the wake-up intervals of A-MAC and LPL
to 250 ms and 200 ms, which provide a good trade-off between data yield
and energy consumption in this setting. As in all our experiments, we
perform three trials with each protocol.

Results. We consider the systems fully bootstrapped when all 89 sender
nodes delivered at least one message to the receiver. Figure 3.9(a) shows
that LWB and CTP (independently of the link layer) bootstrap in roughly
2 minutes, whereas Dozer requires more than 18 minutes. Our results
also indicate that LWB bootstraps most energy-efficiently: during the
first 40 minutes of operation, nodes accumulate an average radio on-time
of 34 s with LWB against 129 s with Dozer, 169 s with CTP + A-MAC, and
173 s with CTP + LPL.

Figure 3.9(b) shows a fine-grained analysis of energy costs by plotting
the instantaneous radio duty cycle averaged across all nodes over the
first 5 minutes of operation, which correspond to the grey region in
Figure 3.9(a). The high energy efficiency of LWB is due to the scheduler
i) setting the round period to Tmin = 1 s on startup, which allows nodes to

78 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Time [minutes]

A
v

g
. c

u
m

u
l.

 r
ad

io
 o

n
−

ti
m

e
[s

]

0 5 10 15 20 25 30 35 40
0

30

60

90

120

150

180

LWB

Dozer−30s

CTP+A−MAC−250ms

CTP+LPL−200ms

(a) Cumulative radio on-time, averaged across all nodes. Markers denote when the
system has fully bootstrapped, that is, when all senders have delivered at least one
application message to the receiver.

Time [minutes]

A
v

g
. i

n
st

an
t.

 r
ad

io
 d

u
ty

 c
y

cl
e

[%
]

0 1 2 3 4 5
0

20

40

60

80

100

LWB

Dozer−30s

CTP+A−MAC−250ms

CTP+LPL−200ms

(b) Instantaneous radio duty cycle, averaged across all nodes. Peaks in LWB correspond
to rounds where data slots are allocated to sender nodes.

Figure 3.9: Average performance during bootstrapping. LWB lets nodes join
fast initially, and saves energy by quickly adapting the round period.

3.6. Many-to-One Communication 79

quickly time-synchronize and start duty cycling their radios after a few
seconds; and ii) increasing the round period to T = 30 s and allocating
fewer req slots when all stream add requests have been served, which
further reduces energy costs. The initial synchronization is instead very
expensive in Dozer, because of its fixed beaconing period of 30 s.

CTP’s adaptive beaconing [GFJ+09] ameliorates the problem, but still
requires nodes to transmit broadcasts frequently during the first seconds.
Broadcasts are costly over link layers like LPL and A-MAC, as visible
from the peaks with increasing period in Figure 3.9(b). In Dozer, the
synchronization between parent and children in the tree compounds the
problem, because nodes need to keep the radio on for a full beacon period
to discover their neighbors. This scanning phase is visible in the step-wise
pattern in Figure 3.9(b), particularly between 30 s and 1 minute where the
average radio duty cycle is 100 %.

Finally, we find that Dozer and CTP distribute the energy load
unevenly among nodes, because they need to acquire information about
the network topology and build a routing hierarchy. After 40 minutes,
the difference between the maximum and minimum cumulative radio
on-time of a node is 235 s with Dozer, 240 s with CTP + A-MAC, and
201 s with CTP + LPL. This may later cause a network partition due to
faster battery depletion at nodes nearby the receiver [PGZM12]. Thanks
to absence of a routing hierarchy, this difference with LWB is less than
27 s, which makes LWB largely immune to this problem.

3.6 Many-to-One Communication

In this section, we investigate the performance of LWB in many-to-
one scenarios under varying traffic loads, which represent a significant
fraction of existing low-power wireless applications [ADB+04, LLL+09,
MCP+02, TPS+05]. Our results indicate that:

Finding 2. In many-to-one scenarios, LWB operates reliably and efficiently
under a wide range of traffic loads, and promptly adapts when the traffic demands
change over time.

A key aspect to understand the following performance results is that
radio activity in LWB is exclusively driven by the global communication
schedule. This spares nodes from periodically waking up merely for
probing the channel, as in contention-based protocols like LPL or A-MAC.
Placing this observation in perspective: with the energy budget A-MAC
requires solely for probing the channel every 500 ms, LWB supports more
than 50 streams with IPI = 1 minute (see Section 3.10.1.3).

80 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

3.6.1 Light Traffic

We first look at a common scenario for low-power wireless sensor
networks: periodic, low-rate data collection at a single receiver (sink).
This is typical of environmental monitoring, where high data yield and
energy efficiency are paramount [MCP+02, TPS+05].

Scenario. We use FlockDSN and let 54 senders generate messages with
IPI = 2 minutes for 4 hours. We compare LWB with Dozer and CTP
over A-MAC and LPL. Given the light traffic load and stable network
conditions in this scenario, we use Dozer’s default 30 s beacon interval,
and set the wake-up interval in A-MAC and LPL to 500 ms.

Results. Figure 3.10 plots the cumulative distribution functions (CDFs)
of per-node data yield and per-node radio duty cycle for LWB, Dozer,
and CTP over A-MAC and LPL. Figure 3.10(a) shows that all protocols
but CTP + LPL deliver more than 99 % of the messages from all senders.
In particular, LWB and Dozer exhibit a very high and almost identical
average data yield of 99.98 %. Because of their synchronized operation,
these protocols perform at their best under stable network conditions,
and better than contention-based protocols like A-MAC and LPL.

Figure 3.10(b) indeed shows that LWB and Dozer achieve low average
radio duty cycles of 0.43 % and 0.23 %, respectively. LWB’s efficiency
is due to the little control overhead to distribute schedules and allocate
req slots, which accounts for only 0.05 % of a node’s radio duty cycle.
The average radio duty cycle we observe for Dozer also confirms
that our port to the TelosB platform performs similar to the original
implementation [BvRW07]. Moreover, we again observe that tree-based
protocols like Dozer and CTP bias the routing load towards the receiver.
For example, radio duty cycles with Dozer range between 0.04 % and
1.91 %, whereas LWB distributes the energy load more evenly, achieving
per-node radio duty cycles of 0.41–0.48 %.

3.6.2 Heavy Traffic

We next consider hundreds of nodes generating relatively heavy network
traffic. Applications such as data center monitoring exhibit similar
aggregate traffic loads [LLL+09].

Scenario. We use the 260 nodes available on Kansei. All nodes but the
receiver act as senders and generate messages with the same fixed IPI for
4 hours. We test four different IPIs: 30 s, 20 s, 10 s, and 5 s, and compare
LWB with CTP over CSMA and LPL, using wake-up intervals of 100 ms,

3.6. Many-to-One Communication 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
95

96

97

98

99

100

CDF

D
at

a
y

ie
ld

 [
%

]

LWB
Dozer−30s

CTP+A−MAC−500ms

CTP+LPL−500ms

(a) Data yield.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

CDF

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

LWB
Dozer−30s

CTP+A−MAC−500ms

CTP+LPL−500ms

(b) Radio duty cycle.

Figure 3.10: Per-node performance at light traffic. Synchronized protocols
outperform contention-based protocols at stable network conditions.

82 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

50 ms, and 20 ms for the latter. 1 We exclude Dozer, as it is not designed
for such heavy traffic: constraints on the maximum message queue size
and an increased risk of collisions [BvRW07] cause significant message
loss at higher traffic loads (see also Section 3.6.3).

Results. Figure 3.11 plots data yield and radio duty cycle for different
IPIs. We see from Figure 3.11(a) that LWB and CTP + CSMA achieve
a data yield close to 100 % across all IPIs. With LWB, the goodput at
the receiver amounts to 6.1 kbps at IPI = 5 s: its synchronized operation
provides sufficient bandwidth to cope with such high traffic demands.
By contrast, CTP + LPL collapses at IPI = 5 s even with the shortest wake-
up interval: the bandwidth provided by LPL is insufficient, leading to
congestion and more than 80 % message loss. At this IPI, CTP + CSMA
provides a slightly higher data yield than LWB: 99.86 % against 98.44 %.
However, with LWB the average radio duty cycle at this setting is 48.25 %,
thus nodes consume less than half energy for communication than with
the non duty-cycled CTP + CSMA.

Figure 3.11(b) exposes the trade-off between energy costs and network
capacity in CTP + LPL. A longer LPL wake-up interval may save energy,
but reduces the available bandwidth. LWB constantly provides a higher
network capacity and is more energy-efficient than CTP + LPL. This holds
particularly for nodes in the vicinity of the receiver, which have the highest
radio duty cycles with CTP + LPL as they carry the highest loads. Overall,
LWB requires only 2.50 ms of radio-on time to deliver a single application
message, whereas CTP + LPL needs four times as much.

3.6.3 Fluctuating Traffic
In this experiment, we evaluate the performance of LWB when the traffic
demands change over time, which is characteristic of applications that
adjust the data rates in response to external stimuli [ADB+04].

Scenario. We use 54 sender nodes on FlockDSN that generate messages
with IPI = 60 s for 1.5 hours. During two periods of 15 minutes each, 14
spatially close nodes, grouped within “cluster A” in Figure 3.8, switch to
IPI = 5 s (traffic peak 1) and IPI = 2 s (traffic peak 2), respectively. We
compare LWB with Dozer and CTP over LPL. 1 In Dozer, we halve the
beacon interval to 15 s and triple the queue size to 60 messages to help
its performance during traffic peaks. We test 100 ms and 200 ms as LPL
wake-up intervals.

1We omit inconsistent results with CTP + A-MAC. Because the current A-MAC
implementation does not support multiple channels when using broadcasts, many
probes collide with application packets at heavy and fluctuating traffic, which affects
A-MAC’s performance significantly in these scenarios.

3.6. Many-to-One Communication 83

30 20 10 5
0

20

40

60

80

100

IPI [s]

D
at

a
y

ie
ld

 [
%

]

LWB
CTP+CSMA
CTP+LPL−20ms

CTP+LPL−50ms

CTP+LPL−100ms

(a) Data yield.

30 20 10 5
0

20

40

60

80

100

IPI [s]

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

LWB
CTP+CSMA
CTP+LPL−20ms

CTP+LPL−50ms

CTP+LPL−100ms

(b) Radio duty cycle.

Figure 3.11: Performance at heavy traffic from 259 senders. Bars denote
averages; error bars indicate 5th and 95th percentiles. LWB consistently provides
a higher network capacity and is more energy-efficient than CTP + LPL.

84 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Results. Figure 3.12 plots data yield and radio duty cycle over time,
averaged over all sender nodes. Figure 3.12(a) shows that data yield
with LWB is always close to 100 %, even during the two traffic peaks:
LWB promptly reacts to the changed traffic demands and adapts the
round period T. For example, the scheduler sets T = 30 s when nodes
generate messages with IPI = 60 s, but reduces it to T = 7 s during peak 2.
Figure 3.12(b) shows that the average radio duty cycle rises from 0.8 % to
7.8 % during traffic peak 2, but returns to 0.8 % once the peak is over.

Dozer and CTP + LPL lack such adaptability. Dozer’s data yield is
almost 100 % before peak 1, but drops severely when the traffic load
increases, below 30 % during peak 2. Because Dozer sets no limit on
retransmissions, messages are lost due to queue overflows at the senders.
Numerous queue overflows occur during peak 2 also with the largest
queue size we could fit in RAM (220 messages). With CTP + LPL the drop
in data yield is less severe, and depends on the LPL wake-up interval.

More generally, Dozer’s beacon interval and LPL’s wake-up interval
are fixed and set before operation, based on the desired trade-off between
energy efficiency and network capacity. For instance, Dozer achieves
the lowest average radio duty cycle of 0.35 % in this scenario. This
value, however, experiences low variations when the amount of traffic
changes, highlighting that Dozer’s fixed functional parameters can not
provide sufficient bandwidth during the traffic peaks. For LPL, the better
data yield with 100 ms wake-up interval comes at the price of higher
energy costs, which need to be paid also during low-traffic periods when
a longer wake-up interval would suffice. Finding suitable parameters for
these protocols is indeed challenging, and additional complexity is often
required to adapt them at runtime [ZFM+12].

3.7 Many-to-Many Communication

We assess LWB’s performance in many-to-many scenarios. These arise,
for example, in control applications, where multiple senders feed different
control loops running at multiple actuators [CCD+11]. Most importantly,
the basic mechanisms that we use to achieve dependable communication
in cyber-physical systems and exploit in Chapter 4, extensively require
efficient many-to-many interactions among nodes. In the following, we
observe that:

Finding 3. LWB efficiently supports many-to-many communication without
any changes to the protocol logic.

3.7. Many-to-Many Communication 85

Time [hours]

A
v

er
ag

e
d

at
a

y
ie

ld
 [

%
]

Traffic
peak 1

Traffic
peak 2

T = 30 s T = 17 s T = 30 s T = 7 s T = 30 s

0 0.25 0.5 1 1.25 1.5
20

30

40

50

60

70

80

90

100

LWB

Dozer−15s

CTP+LPL−100ms

CTP+LPL−200ms

(a) Average data yield.

Time [hours]

A
v

er
ag

e
ra

d
io

 d
u

ty
 c

y
cl

e
[%

]

Traffic
peak 1

Traffic
peak 2

T = 30 s T = 17 s T = 30 s T = 7 s T = 30 s

0 0.25 0.5 1 1.25 1.5
0

5

10

15

20

25
LWB

Dozer−15s

CTP+LPL−100ms

CTP+LPL−200ms

(b) Average radio duty cycle.

Figure 3.12: Performance as the traffic demands change. LWB balances energy
costs and network capacity by adapting round period and data slot allocation.

86 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Scenario. Out of the 90 nodes available on Twist, we randomly pick
8 as receivers and a fraction of 0.2, 0.5, or 0.8 of the total as senders.
These generate messages with IPI = 1 minute for 4 hours. We use the
same LWB implementation and parameter settings as in Section 3.6. We
compare LWB with Muster [MP11], a state-of-the-art routing protocol for
many-to-many communication. We run Muster atop CSMA and LPL,
using 500 ms, 200 ms, and 50 ms as wake-up intervals for the latter.

Results. Figure 3.13 plots data yield and radio duty cycle for different
fractions of sender nodes. We see that LWB consistently outperforms
Muster in data yield and radio duty cycle. The average data yield across
all receivers and senders with LWB, shown in Figure 3.13(a), is always
above 99.94 %. In contrast, with Muster over CSMA, data yield starts at
99.01 % and drops to 97.98 % as the fraction of sender nodes increases.
Muster performs route maintenance on a sender-receiver basis; more
senders (or receivers) translate into higher control overhead and hence
higher message loss due to collisions. This behavior is even more evident
with LPL, as this link layer provides less bandwidth.

The trends in radio duty cycle, shown in Figure 3.13(b), confirm the
trade-off between reliability and energy already observed in Section 3.6.
With LWB, the average radio duty cycle remains between 0.31 % and
1.06 %. The highest data yield with Muster + LPL corresponds to an
average radio duty cycle between 10.14 and 12.57 %. Compared with
Dozer and CTP, however, Muster distributes the load more evenly, as
indicated by 5th and 95th percentiles. This is due to a load-balancing
mechanism added on top of Muster’s normal protocol operation [MP11].
By contrast, LWB achieves network-wide load balancing by design,
because all nodes participate in every flood.

3.8 Topology Changes
Low-power wireless communication protocols must be robust against
topology changes caused by external interference [LPLT10] and node
failures [BGH+09]. This sections investigates the resilience of LWB to
these changes and reveals that:

Finding 4. Thanks to the absence of topology-dependent state, LWB operates
efficiently also in the presence of topology changes due to external interference
and node failures.

Dozer and CTP, like most existing protocols, rely on periodic
broadcasts to keep routing and synchronization state up-to-date, which is
extremely costly atop contention-based link layers [PGZM12]. The high

3.8. Topology Changes 87

0.2 0.5 0.8
80

85

90

95

100

Fraction of sender nodes

D
at

a
y

ie
ld

 [
%

]

LWB
Muster+CSMA
Muster+LPL−50ms

Muster+LPL−200ms

Muster+LPL−500ms

(a) Data yield.

0.2 0.5 0.8
0

2

4

6

8

10

12

14

Fraction of sender nodes

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

LWB
Muster+CSMA
Muster+LPL−50ms

Muster+LPL−200ms

Muster+LPL−500ms

(b) Radio duty cycle.

Figure 3.13: Performance with 8 receivers and varying fractions of sender nodes.
Bars denote averages; error bars indicate 5th and 95th percentiles. LWB performs
as in single-receiver scenarios, since all nodes receive all data.

88 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

efficiency of Glossy keeps to a minimum the energy cost of LWB’s little
control traffic, required, for example, to distribute sched messages and
time-synchronize the nodes.

Section 3.9 investigates how LWB deals with extreme forms of
topology change caused by node mobility.

3.8.1 External Interference
Wi-Fi interference can significantly degrade the performance of low-
power wireless protocols [DDHC+10, LPLT10, SDTL10]. The use of
RSSI in many protocols to detect incoming traffic and select links
can lead to significantly higher radio duty cycles and lower reliability
when the 802.15.4 channel used overlaps with the channels occupied by
802.11 (Wi-Fi). We assess next the robustness of LWB to Wi-Fi interference.

Scenario. We run 3-hour experiments on FlockDSN during working
hours, letting 54 senders generate messages with IPI = 1 minute. We
first use channel 26, which is most immune to Wi-Fi [SDTL10], and then
channel 20, which we measure to be most affected by Wi-Fi on FlockDSN.
We compare LWB with Dozer and CTP over A-MAC and LPL. We set
the beacon interval in Dozer to 15 s to improve reactiveness to topology
changes. The wake-up intervals of A-MAC and LPL are set to 500 ms
and 200 ms, providing a good trade-off between data yield and energy
consumption at this traffic load.

Results. Figure 3.14 plots data yield and radio duty cycle, with and
without Wi-Fi interference. Bars show averages; error bars indicate
5th and 95th percentiles. Figure 3.14(a) shows that all protocols
but CTP + LPL maintain high data yield also with Wi-Fi interference,
averaging above 99 %. Although its average data yield slightly decreases
from 99.98 % to 99.03 %, LWB shows no noticeable impact on radio duty
cycle, shown in Figure 3.14(b). In contrast, the radio duty cycles increase
considerably with Dozer and CTP; for example, the 95th percentile with
Dozer rises from 0.60 % to 1.61 %. These protocols must adapt the
routing tree to varying channel conditions, leading to higher radio activity,
whereas LWB is immune to the problem.

3.8.2 Node Failures
Real deployments must deal with temporary node disconnections and
persistent outages [BGH+09]. In the following, we evaluate how
effectively LWB adapts to these situations.

Scenario. We run experiments on FlockDSN for 1.5 hours, letting 54
sender nodes generate messages with IPI = 1 minute. We adopt a similar

3.8. Topology Changes 89

Channel 26 Channel 20
80

85

90

95

100

[Radio channel]

D
at

a
y

ie
ld

 [
%

]

(no Wi−Fi interference) (Wi−Fi interference)

LWB

Dozer−15s

CTP+A−MAC−500ms

CTP+LPL−200ms

(a) Data yield.

Channel 26 Channel 20
0

5

10

15

[Radio channel]

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

(no Wi−Fi interference) (Wi−Fi interference)

LWB

Dozer−15s

CTP+A−MAC−500ms

CTP+LPL−200ms

(b) Radio duty cycle.

Figure 3.14: Performance with and without Wi-Fi interference. Bars denote
averages; error bars indicate 5th and 95th percentiles. LWB delivers on average
more than 99 % of messages also in the presence of Wi-Fi interference, while not
affecting radio duty cycle.

90 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

scenario as Gnawali et al. [GFJ+09]: after 15 minutes, we turn off 8 nodes
in the vicinity of the receiver (cluster B in Figure 3.8). We turn them on
again after 15 minutes, and repeat the off-on pattern after 30 minutes. We
compare LWB with Dozer and CTP over CSMA and A-MAC. Because
the traffic load is the same as in the previous experiment, we set again
Dozer’s beacon interval to 15 s and A-MAC’s wake-up interval to 500 ms.

Results. Figure 3.15 plots data yield and radio duty cycle over time,
averaged over all functional nodes. In the first 15 minutes, all protocols
deliver more than 99 % of messages and have a stable radio duty cycle.
When 8 nodes are turned off, we observe no noticeable change in LWB’s
data yield, shown in Figure 3.15(a), since its route-free operation renders
state reconfigurations unnecessary. The only effect is that the host realizes
that it receives no more data messages from streams generated by the 8
failed nodes and eventually removes these streams.

The removal of inactive streams reduces the number of allocated data
slots, which makes the average radio duty cycle slightly decrease from
0.83 % to 0.72 %. When the failed nodes recover, they turn the radio
on to synchronize again, causing the short increases in radio duty cycle
in Figure 3.15(b). As soon as the scheduler receives the first stream request,
it reduces the round period to Tmin = 1 s to make nodes join faster. In less
than 20 s all 8 nodes are again part of the bus, and after 1 minute the
scheduler sets the round period back to 30 s.

Although it achieves the lowest average radio duty cycle of 0.35 %
when the topology is stable, Dozer’s average data yield drops below 96 %
when nodes are removed. A slight dip is also visible with CTP, even when
using CSMA as the link layer. After a failure, both protocols update the
routing tree, which generates more control traffic and thus higher radio
activity, as visible from the increase in radio duty cycle. This process is also
prone to temporary inconsistencies such as routing loops. These factors
all concur to message losses. With no routing state to update, LWB keeps
delivering messages reliably without an increases in energy costs, as long
as the network is connected. Moreover, the scheduler effectively detects
and removes streams of failed nodes, saving bandwidth and energy if
failures persist, and adapts the round period to accelerate rejoining of
nodes after temporary outages.

3.9 Mobility
We evaluate LWB’s performance in the presence of mobile nodes, a
scenario that proved to be extremely challenging in multi-hop low-power
wireless networks [DC09, KLW+09, LKA+10]. At the same time, emerging

3.9. Mobility 91

Time [h]

A
v

er
ag

e
d

at
a

y
ie

ld
 [

%
]

Node�

failures

Node

failures

0 0.25 0.5 1 1.25 1.5
95

96

97

98

99

100

LWB

Dozer−15s

CTP+CSMA

CTP+A−MAC−500ms

(a) Average data yield.

Time [h]

A
v

er
ag

e
ra

d
io

 d
u

ty
 c

y
cl

e
[%

]

Node�

failures

Node

failures

0 0.25 0.5 1 1.25 1.5
0

2

4

6

8

10

12
LWB

Dozer−15s

CTP+CSMA

CTP+A−MAC−500ms

(b) Average radio duty cycle.

Figure 3.15: Average performance while 8 nodes concurrently fail. When nodes
recover, LWB reduces the round period to make them quickly join the bus.

92 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

real-world applications increasingly rely on the ability to attach sensor
nodes to mobile entities [BEP+06, CLBR10, DEM+10]. Our experimental
results indicate that:

Finding 5. LWB supports mobile nodes acting as receivers, senders, or both
without any changes to the protocol logic and performance loss compared with
the static network case.

We study next specific settings modeling different mobile applications,
and conclude with a real-world assessment of LWB’s operation in a week-
long test at our institution.

3.9.1 Mobile receiver
We first consider data delivery to a mobile receiver, a setting frequently
found in participatory sensing applications [BEP+06].

Scenario. We program one robot in ConetIT to move at a constant speed
of 1 m/s (approximately human walking speed) along a predefined zigzag
trajectory that starts at one corner of the testbed area and ends at the
opposite corner. Every run lasts 30 minutes. During the movement, the
node attached to the robot is within the neighborhood of any other static
node at least once. The other 4 robots remain at their default locations
and act together with the 21 static nodes as senders, using an IPI of 4 s,
2 s, or 1 s in different runs.

We compare LWB with BCP + CSMA and CTP + CSMA, using default
parameter settings. CTP is not designed for mobile scenarios, but we
consider it nevertheless to understand how the state of the art for static
networks performs when the receiver is mobile. We start the robot and
our measurements after 15 minutes, giving CTP enough time to form a
stable routing tree and BCP to build up backpressure gradients. We use no
duty-cycled link layer: most existing protocols supporting mobile nodes
do not target energy efficiency [MSKG10, LKA+10], and would possibly
require modifications to existing link layers to do so [MSKG10]. We also
perform several runs with a static receiver to obtain a baseline.

Results. Figure 3.16 plots the results for different IPIs. Figure 3.16(a)
shows that the same LWB prototype used so far achieves an average
data yield above 99.94 % also when the receiver moves. This is because
LWB keeps no topology-dependent state: as long as the network is
connected, LWB is oblivious to topology changes. In contrast, BCP and
CTP deliver fewer messages when the receiver moves: they need to
constantly reconfigure state that depends on a node’s current neighbors
and connectivity. Although the degree of mobility is fairly limited, this
already suffices to affect the performance of both protocols.

3.9. Mobility 93

4 2 1
80

85

90

95

100

IPI [s]

D
at

a
yi

el
d

[%
]

Static receiver:x
LWB
BCP+CSMA
CTP+CSMA

Mobile receiver:
LWB
BCP+CSMA
CTP+CSMA

(a) Data yield.

4 2 1
0

20

40

60

80

100

IPI [s]

Ra
di

o
du

ty
 c

yc
le

 [%
]

Static receiver:x
LWB
BCP+CSMA
CTP+CSMA

Mobile receiver:
LWB
BCP+CSMA
CTP+CSMA

(b) Radio duty cycle.

Figure 3.16: Performance when the receiver is either static or mobile. Bars denote
averages; error bars indicate 5th and 95th percentiles. Unlike other protocols,
LWB has the same data yield and radio duty cycle regardless of whether the
receiver moves or not.

94 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

A deeper look reveals that with receiver mobility CTP delivers
consistently around 90 % of the messages almost regardless of data rates.
Instead, BCP’s data yield peaks at 98 % with IPI = 2 s. We conjecture
that the optimal parameter setting in BCP is sensitive to traffic load. In
contrast, LWB is equally efficient in both static and mobile networks with
the same configuration, also in terms of radio duty cycle: Figure 3.16(b)
shows that LWB’s performance in a mobile setting is similar to that in static
networks regardless of the traffic load. By contrast, running BCP and CTP
atop a duty-cycled link layer likely results in poorer delivery performance,
as the reduced network capacity would make these protocols adapt more
slowly to the ever-changing network conditions.

3.9.2 Mobile Senders and Mobile Receiver
We look at a typical setting where mobile senders deliver data to a mobile
receiver via a stationary infrastructure [KLS+10].

Scenario. Four robots on ConetIT act as mobile senders, generating
messages with IPI = 1 s; one robot acts as the mobile receiver. The
robot trajectories and experiment duration are as in Section 3.9.1.
The remaining 21 static nodes generate no messages and form a
stationary relay backbone. We compare LWB with BCP + CSMA and
CTP + CSMA. Although similar solutions are employed in settings
akin to ours [DMT+11], these protocols are not expressly designed for
mobile senders. Unfortunately, we could not gain access to a reliable
implementation of an alternative baseline conceived for such scenarios.

Results. Figure 3.17 depicts the results. Overall, the performance is
consistent with the mobile receiver case discussed above. To leverage
mobile senders through a static infrastructure, LWB requires no changes
to the protocol logic. Specifically, LWB achieves an average performance
of 99.98 % in data yield and 0.84 % in radio duty cycle. The latter figure is
lower than in Section 3.9.1, because now only four nodes generate data.

3.9.3 Real-World Trial
Finally, we run a week-long experiment at ETH to study LWB in a longer-
term setting involving many-to-many and one-to-many traffic, changes
in traffic demands and active nodes, and mobile nodes acting as senders
and receivers. Such setting would currently require two network-layer
protocols (e.g., Muster and Trickle [LPCS04]) atop a link-layer protocol.
LWB provides all required features in a single protocol logic.

Scenario. We use 5 battery-powered nodes carried by people around
FlockDSN on 7 consecutive days during working hours. Nodes in

3.9. Mobility 95

LWB BCP+CSMA CTP+CSMA
70

75

80

85

90

95

100

Protocol

D
at

a
y

ie
ld

 [
%

]

(a) Data yield.

LWB BCP+CSMA CTP+CSMA
0

20

40

60

80

100

Protocol

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

(b) Radio duty cycle.

Figure 3.17: Performance with a mobile receiver and 4 mobile sender nodes.
Bars denote averages; error bars indicate 5th and 95th percentiles.

FlockDSN form a static infrastructure. People carrying the nodes entail
less structured movement than in the previous experiments, mimicking
mobility of real-world applications [CLBR10]. All mobile nodes act as
both senders and receivers, generating messages with IPI = 5 minutes.
All (static) nodes in FlockDSN also generate messages at the same rate.

To induce changes in the traffic demands and set of active nodes,
people switch their node off when they leave (e.g., after work). They
switch their node on again when they come back, eventually reconnecting
the node to the bus. One mobile node, named B, plays a special role: the
person can press its user button to trigger a second high-rate stream at
IPI = 1 s. When the other 4 mobile nodes M1–M4 recognize this, they
generate such high-rate stream as well. When the person presses the
button again, B cancels the high-rate stream and so do M1–M4.

We note that pressing the button triggers the application on B to issue a
streamadd request with IPI = 1 s starting at the current time. To inform the
host, B piggybacks on application data messages or transmits the stream
request in a req slot. After receiving a stream acknowledgment from the
host, B eventually starts sending more messages in the data slots allocated
to the second high-rate stream. These messages have an application field
set that signals M1–M4 to issue a similar stream add request. The host
then allocates further data slots to these high-rate streams and adapts the
round period, for example, reducing it from 30 s to 11 s when all 5 mobile
nodes are active. Pressing the button on B again triggers a remove request
to cancel the high-rate stream. This initiates a reverse chain of actions

96 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus
G

o
o

d
p

u
t

[d
a
ta

/
s]

Thu Fri Sat Sun Mon Tue Wed
0

1

2

3

4

5

Goodput from mobile senders

Goodput from static senders

Figure 3.18: Goodput at a static node in a real-world trial, in data messages
received per second. Arrows indicate when the button is pressed on B.

at the host and the other mobile nodes—eventually all active nodes emit
again only one low-rate stream.

Results. Figure 3.18 shows the goodput at a static node throughout the
entire week. The arrows on top indicate when a button is pressed on
node B. We see from the dashed line that the node receives a constant
amount of data messages from the static senders, because these nodes
always generate data at low rate. The solid line shows instead that
the number of data messages received from the mobile nodes varies
significantly over time. This is because the mobile nodes start and stop
generating an additional stream with IPI = 1 s when a button is pressed
on B. Moreover, the number of received data messages depends on the
number of currently active mobile nodes, and decreases, for example,
when people turn off their nodes at the end of a day.

Figure 3.19 shows goodput and radio duty cycle of the 5 mobile nodes
during a 14 hours excerpt of our measurements corresponding to the grey
area in Figure 3.18. At about 10 AM, node B triggers the high-rate stream.
All mobile nodes are running at this time besides M2, which is off the
very moment the traffic peak begins. It also starts generating high-rate
messages as soon as it becomes active. This corresponds to the reception

3.9. Mobility 97

8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM
0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

Time of the day [hour]

G
o

o
d

p
u

t
[d

a
ta

/
s]

B

M
1

M
2

M
3

M
4

(a) Goodput at the mobile nodes, in data messages received per second.

8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM
0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

Time of the day [hour]

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

B

M
1

M
2

M
3

M
4

(b) Radio duty cycle of the mobile nodes.

Figure 3.19: Goodput and radio duty cycle of 5 mobile nodes in a real-world
trial. Arrows indicate when the button is pressed on B; areas are lighter when
more mobile nodes are active.

98 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

of slightly more than 4 data messages per second, one from each of the
other 4 mobile nodes plus the low-rate traffic, as shown in Figure 3.19(a).
As a consequence of the traffic increase, the scheduler reduces the round
period T from Tmax = 30 s to 11 s. The radio duty cycle accordingly rises
from 0.18 % to about 3.78 %, as shown in Figure 3.19(b).

At around 12 PM, node M1 is turned off. As a result, the goodput at
the other mobile nodes is about 3 data messages per second, and their
radio duty cycle decreases correspondingly: the host detects that M1

disconnected and then reclaims its active streams. Close to 1 PM, node
M1 restarts, but right after that node B removes all high-rate streams. This
manifests in the short-lived peak shown in Figure 3.19(a) before 1 PM.
Nodes only generate messages at low rate afterwards, and the radio duty
cycle of all mobile nodes drops again to 0.18 %, as shown in Figure 3.19(b).

At around 3 PM, node B triggers again the high-rate streams. Both
goodput and radio duty cycle increase similarly as before at all mobile
nodes. After 5 PM, people start leaving: node M3 is the first to be switched
off, followed by M4, B, M2, and finally M1 right before 9 PM. As a result,
LWB progressively adapts its operation, and both goodput and radio duty
cycle decrease in a step-wise fashion.

3.10 Discussion
This section illustrates LWB’s scalability as the number of streams
increases, the impact of the network diameter on LWB’s efficiency and
a few protocol parameters, and alternative scheduling policies to reduce
end-to-end latency.

3.10.1 Scalability Properties
We discuss LWB’s scalability in terms of memory and computation time
at the host, bandwidth provisioning, and energy consumption.

3.10.1.1 Memory and Computation Time at the Host

The number of active streams S determines the computation and
memory overhead at the host. The worst-case computation time in our
experiments is 49 ms with 259 streams (see Section 3.6.2). Memory scales
linearly with the number of active streams S; our LWB prototype uses
13 bytes per stream. Nevertheless, memory and computation costs are
paid only at the current host, and proved to be affordable with several
hundreds of streams on TelosB nodes.

3.10. Discussion 99

3.10.1.2 Bandwidth Provisioning

Bandwidth provisioning also scales linearly with the number of active
streams S, as LWB’s bus-like operation prevents spatial bandwidth reuse.
Depending on the number of streams and their IPIs, different solutions
may perform better. In a sense, we hit this point in the Kansei experiments
in Section 3.6.2, where CTP + CSMA slightly outperforms LWB in data
yield at IPI = 5 s. This, however, comes at 100 % radio duty cycle—a
possible, yet rarely affordable design choice in real-world applications.

Our evaluation demonstrates that LWB always outperforms all
asynchronous duty-cycled protocols we consider, and closely matches the
performance of Dozer in a scenario particularly suited to the latter. We
achieve this result with a single design that encompasses multiple traffic
patterns and seamlessly supports node mobility in connected networks.
We maintain these features are worth the non-optimal bandwidth scaling
LWB may show in specific settings. Nevertheless, hierarchies of buses
may improve LWB’s scalability on networks with several hundreds or
thousands of nodes. By assigning different wireless channels to disjoint
sets of nodes, nodes can grouped into clusters (i.e., low-level buses), while
several nodes from each cluster connect also to a shared high-level bus to
exchange data among clusters.

3.10.1.3 Energy Consumption

Energy consumption also scales linearly with the number of active
streams S. We now show this by introducing a model that provides a
pessimistic estimation of a node’s radio duty cycle in connected networks.

Estimation of radio duty cycle. Our model is pessimistic because
it assumes that nodes keep the radio on for the entire duration of a
communication slot. Glossy instead turns the radio off as soon as the
node has transmitted Ntx times during a flood (see Chapter 2), which
typically happens before the end of a slot. By connected we mean that
a node does not miss sched messages for more than three consecutive
times, which would make it turn its radio on until a new sched reception
(see Section 3.2.5). Due to the high reliability of Glossy, this happens with
an extremely high probability unless nodes fail or the network partitions.

For simplicity, our model considers sender nodes generating data
messages with the same, constant rate. We thus assume that S periodic
streams generate data with common interval IPI 1 = · · · = IPI S = IPI. For
this scenario, we can rewrite (3.1) as Topt = D × IPI/S, and according to
(3.2) the host computes the round period T as

T =
⌊
min

(
Tmax, max

(
D ×

IPI
S
, Tmin

))⌋
(3.6)

100 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

0 50 100 150 200 250 300
0.1

0.2

0.5

1

2

5

10

20

50

100

Number of streams S

d
c

 (S
,

IP
I)

 [
%

]

IPI:

1 s

5 s

10 s

30 s

60 s

120 s

300 s

∞

A−MAC−500 channel check

LPL−500 channel check

Figure 3.20: Estimated radio duty cycle dc, for several combinations of number
of streams S and IPI. Note the logarithmic scale on the y-axis.

LWB provides three types of communication slots (see Figure 3.2):
sched, data, and req slots. The overall radio duty cycle dc of a node is
thus the sum of their individual contributions: dc = dcsched + dcdata + dcreq:

• dcsched. Every round period T the host allocates two sched slots of
length Tsched: dcsched = 2 × Tsched/T.

• dcdata. Every round period T the host allocates on average
min(T × S/IPI, D) data slots of length Tdata, resulting in a radio duty
cycle dcdata = min(T × S/IPI, D) × Tdata/T.

• dcreq. Under stable traffic conditions, the host allocates one req slot
of length Treq every Tr: dcreq = Treq/Tr.

The overall radio duty cycle dc is thus a function of S and IPI:

dc (S, IPI) = 2 ×
Tsched

T
+ min

(T × S
IPI

, D
)
×

Tdata

T
+

Treq

Tr
(3.7)

Figure 3.20 plots the estimated radio duty cycle dc with up to 300 active
streams that have IPI between 1 s and ∞, the latter representing the
extreme case where they generate no data messages.

Control overhead. We first use (3.7) to estimate the minimum control
overhead required by LWB to operate. This corresponds to streams
generating no data messages (i.e., IPI → ∞), and thus to zero duty cycle

3.10. Discussion 101

due to data slots (i.e., dcdata → 0). The resulting duty cycle when using
the default LWB configuration of Table 3.1 is

dc (S, ∞) = 0.1167 % (3.8)

This value corresponds to the lowest line in Figure 3.20.
To put this value into perspective, we also plot the minimum control

overhead of A-MAC and LPL, required to periodically check the channel.
We set the wake-up interval to 500 ms in their TinyOS implementations
and measure the radio duty cycle when no (application or routing) traffic
is generated. We measure radio duty cycles of 1.16 % for A-MAC and
2.19 % for LPL, values one order of magnitude higher than for LWB.
Figure 3.20 shows that at the same radio duty cycles, for example, LWB
supports more than 50 and 100 streams with IPI = 60 s, respectively.

Scalability. Figure 3.20 shows also that radio duty cycle increases linearly
with the number of active streams S, when they generate data messages
(i.e., IPI < ∞). Radio duty cycle reaches its upper bound dcmax when the
system saturates, because the host allocates the maximum number of data
slots D = 60 at the minimum round period Tmin = 1 s:

dcmax = 2 ×
Tsched

Tmin
+ D ×

Tdata

Tmin
+

Treq

Tr
≈ 63 % (3.9)

Nevertheless, our model confirms that the same LWB configuration
achieves radio duty cycles below 1 % in medium-scale networks with
light traffic but is also highly energy efficient in networks with several
hundreds of nodes generating heavy traffic. For instance, it estimates
a radio duty cycle of 13.72 % when 259 streams generate data messages
with IPI = 20 s, confirming the maximum radio duty cycle of 13.63 %
measured on Kansei during the testbed experiments in Section 3.6.2.

3.10.2 Impact of Network Diameter
The time taken for a Glossy flood to cover the entire network depends on
the network diameter (see Chapter 2). Because LWB uses only Glossy
floods for communication, its efficiency decreases in deep networks
that span several tens of hops, and other approaches may perform
better [KPC+07]. In such scenarios, LWB’s performance could be
improved by integrating channel diversity and parallel pipelining into
Glossy, as done in Splash [DCL13].

In particular, the length of sched slots Tsched, data slots Tdata, and
req slots Treq must be sufficient for a Glossy flood to cover the entire
network. Our setting in the evaluation is sufficient for networks whose
physical topology spans at most 7 hops. However, networks may be

102 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Protocol Data yield Radio duty cycle

LWB 99.97 % 0.81 %
LWB-long-slots 99.98 % 0.83 %

Table 3.4: Average LWB performance with two different settings for the length
of communication slots.

longer and it may be difficult to determine in advance the network
diameter. In these situations, LWB users need to conservatively increase
Tsched, Tdata, and Treq.

We study how this affects LWB’s performance through 3-hour
experiments on FlockDSN with 54 senders that generate messages with
IPI = 1 minute. Besides the default parameter setting, we test a
configuration called LWB-long-slots that doubles the values for Tsched,
Tdata, and Treq to support network diameters of up to 14 hops. All other
parameters retain their original values. As shown in Table 3.4, we find
that the average radio duty cycle increases only by 0.02 %: using Glossy,
nodes turn their radios off after transmitting Ntx times during a flood
(see Chapter 2), which typically happens before the end of a slot already
with the default parameter setting. Data yield is marginally affected:
LWB-long-slots delivers 99.98 % of data against 99.97 %.

Longer slots, however, translate into fewer available slots per round,
and thus into a decrease in bandwidth. For example, based on (3.1),
we conclude that the default parameter setting would support S = 300
streams with IPI = 5 s or higher without saturating the network, whereas
LWB-long-slots would sustain at most IPI = 10 s from 300 streams. In the
applications we target, however, this bandwidth still largely suffices.

3.10.3 Alternative Scheduling Policies
The scheduling policy in Section 3.3 aims at energy savings while still
being responsive to changes in the network. To do so, it trades message
latency for energy efficiency. Although this choice fits the applications
we target, others may afford to spend some energy for smaller latencies.

To cater for different performance requirements, it is sufficient to
change the scheduling policy. We provide two simple alternative
scheduling policies that aim primarily at minimizing message latency.
The first policy, LWB-low-latency, adapts the round period T such that the
next round occurs immediately after the generation of new messages. The
second policy, LWB-fixed-period, fixes T = Tmin. Both policies use the same
stream handler and slot allocation functionality as the original policy (see
Section 3.3). We assess their performance based on 3 hours experiments

3.11. Related Work 103

Protocol Data yield Radio duty cycle End-to-end latency

LWB 99.98 % 1.40 % 11.13 s
LWB-low-latency 99.83 % 1.44 % 1.19 s
LWB-fixed-period 99.99 % 1.94 % 1.23 s

Dozer-30 s 98.42 % 0.19 % 31.82 s
CTP + A-MAC-500 ms 99.80 % 4.16 % 1.73 s
CTP + LPL-200 ms 98.97 % 6.99 % 0.42 s

Table 3.5: Average performance of three LWB scheduling policies versus Dozer
and CTP over A-MAC and LPL.

on Twist, where all nodes but a receiver generate data at IPI = 1 minute;
nodes use transmit power -15 dBm. In addition to the usual performance
metrics, we measure end-to-end latency by timestamping messages at the
sender. We compare LWB with Dozer and CTP over A-MAC and LPL.

Table 3.5 shows the results. We see that the two alternative
policies achieve average message latencies in the order of 1 s, similar
to CTP + A-MAC and CTP + LPL. This comes at a marginal increase
in energy costs for LWB-low-latency, whereas LWB-fixed-period shows
a higher radio duty cycle due to the overhead for distributing sched
messages every Tmin = 1 s.

Worth noticing is that in LWB the logic to trade performance
requirements resides at a single place, the scheduler, whereas most other
protocols may require non-trivial modifications in various places. Users
can thus easily implement custom LWB schedulers using well-defined
interfaces. The investigation of scheduling policies for LWB constitutes
an interesting area for further research, possibly by applying established
concepts from the real-time and embedding computing literature.

3.11 Related Work
Flooding has long been considered too expensive for regular communi-
cation in low-power wireless networks. Nevertheless, a few protocols
exploit the robustness of flooding for routing while reducing collisions
and energy costs, mostly by using random delays or by completely
suppressing retransmissions [Mar04, YZLZ05, ZF06]. Different from
LWB, these protocols keep substantial topology-dependent state, which
increases their control overhead and sensitivity to link changes.

Completely contrary to LWB’s flooding-based approach, the
Broadcast-Free Collection Protocol (BFC) [PGZM12] avoids costly
broadcasts in the presence of duty-cycled link layers altogether.

104 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

Targeting low-rate data collection at a single receiver, BFC achieves
significant energy savings in comparison with CTP even under poor
connectivity conditions, which comes at the price of higher delays when
forming the collection tree initially. By contrast, LWB is applicable to a
wider range of scenarios and bootstraps as fast as CTP.

Low-power wireless stacks typically feature a link, network, and
possibly a transport layer. The latter may, for instance, adapt the sender
rates to counteract congestion [PG07]. At the network layer, routing
protocols construct multi-hop paths based on some cost metric [AY05].
Efficient solutions exist that tackle the single-receiver [GFJ+09], multi-
receiver [MP11], mobile receiver [LKA+10, MSKG10], and mobile
senders [GLJ11] case. In addition, Trickle-based protocols provide
reliable network-wide data dissemination [LPCS04]. At the link layer,
the many protocols available can be divided into contention-based
and TDMA-based [Lan08]. The former, sender-initiated [PHC04] or
receiver-initiated [DDHC+10], better tolerate topology changes. TDMA-
based protocols like Dozer [BvRW07] enable higher energy savings.
WirelessHART, an open standard for industrial process monitoring and
control, uses TDMA to approach deterministic communication [SHM+08].
DRAND is a distributed, randomized TDMA slot assignment algorithm
operating on a node’s two-hop neighborhood [RWMX06].

The virtual single-hop connectivity provided by the LWB strongly
differentiates it from existing TDMA protocols. While existing approaches
allocate time slots to (possibly multiple non-interfering) sender-receiver
pairs, LWB requires no information about the network topology and
computes a global schedule solely based on the application requirements,
such as desired bandwidth and end-to-end communication delay.
Moreover, LWB replaces the standard network stack with a single-layer
solution. Our experimental results demonstrate that LWB supports
efficient and reliable many-to-one, one-to-many, and many-to-many
traffic in both static and mobile scenarios. On top of this, it exploits
and integrates Glossy’s accurate global time synchronization, which is
key in many real-world applications [ADB+04, WALJ+06].

LWB’s design is inspired by prior work on fieldbus-based com-
munication protocols [KG93]. Intended for distributed real-time
control applications, these protocols primarily focus on providing
predictable transmissions and guaranteed timeliness. Different from
these protocols, LWB must cope with the unreliability of low-power
wireless communications and the resource limitations of the employed
devices, particularly in terms of bandwidth, energy, and memory.

3.12. Summary 105

3.12 Summary
Many emerging low-power wireless applications feature multiple traffic
patterns and mobile nodes in addition to static ones, but existing
communication protocols support only individual traffic patterns in
dedicated network settings. LWB overcomes this limitation by using
exclusively Glossy floods for communication, thereby making all nodes
in the network potential receivers of all data. As a result, LWB inherently
supports one-to-many, many-to-one, and many-to-many traffic. Since
LWB also keeps no topology-dependent state, it is more resilient to
external interference and node failures than prior approaches, and
seamlessly caters for node mobility without any performance loss. Our
experimental results confirm LWB’s versatility and superior performance
across a variety of scenarios.

LWB thus provides a unified solution for a broad spectrum of
applications, ranging from traditional data collection to emerging control
and mobile scenarios. This is also demonstrated by several initial
works based on LWB. For example, LWB is used as the communication
support during a two-week deployment of a reliable nurse call system
for patients with Duchenne muscular dystrophy [ZFL+13]. Hewage et al.
provide preliminary results showing that LWB may efficiently support
the Transmission Control Protocol (TCP), one of the core protocols of the
Internet protocol suite (IP), potentially enabling LWB-based Internet of
Things systems [HV13]. In the next chapter, we present Virtus, a protocol
that builds on LWB and provides virtual synchrony guarantees.

106 Chapter 3. Low-Power Wireless Bus (LWB): A Versatile Wireless Bus

4
Virtus: A Wireless Bus with

Virtual Synchrony Guarantees

As discussed in the Introduction of this thesis, applying established de-
signs of dependable distributed systems to cyber-physical systems is often
not possible, as these require guarantees that existing communication
protocols for multi-hop low-power wireless networks do not provide.
Such guarantees include, for example, well-defined message delivery
orderings that facilitate the implementation of replicated functionality, as
well as failure handling mechanisms operating with respect to both node
crashes and message omissions [Sch90, KDK+89].

In fact, existing low-power wireless protocols typically operate in a
best-effort manner, their design being optimized towards non-functional
properties, such as energy consumption [AY05]. LWB, for example,
achieves data yields above 99 % in all scenarios evaluated in Chapter 3
but cannot provide any guarantee on message delivery. Nevertheless, the
characteristics of typical low-power wireless networks make providing
even simple communication guarantees extremely difficult. According
to our conjecture in page 6, however, LWB’s bus-like operation should
enable the design of dependable cyber-physical systems.

Virtual synchrony. The virtual synchrony [Bir05] model for distributed
computation may be one of the designated technologies to underpin
dependable cyber-physical systems. Two key concepts concur to create
virtually-synchronous executions.

First, virtual synchrony entails a notion of group: a set of processes
exchanging messages originated at one node in the group and addressed

108 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

to all other group members. The group membership is reflected in a
data structure called view—maintained at every group member—which
reports information on the nodes in a group at a given point in time. As
group members fail and new nodes possibly join, a virtually-synchronous
system must ensure that the corresponding changes in the view occur in
the same order at all group members.

Second, message exchanges must occur according to a notion of
atomic multicast. This grants applications the guarantee that messages
are delivered to either all or no group members. Moreover, message
deliveries must happen in the same order at all group members—a feature
called total order.

As a result of these two mechanisms, applications run under the
illusion that the distributed executions are synchronous and fault-free,
although the underlying interactions are way more complex. This greatly
eases the design of dependable distributed systems, for example, based
on replication techniques [Sch90], as every replica sees the same events—
changes in the group membership and reception of messages—in the
same order. Birman et al. summarize virtual synchrony as follows [BJ87]:

It will appear to any observer—any process using the system—that
all processes observed the same events in the same order. This applies
not just to message delivery events, but also to failures, recoveries,
and group membership changes.

Contribution and road-map. This chapter presents Virtus, a virtually-
synchronous inter-process messaging layer we conceive for typical
resource-constrained CPS platforms. To provide virtual synchrony,
Virtus combines a dedicated atomic multicast service—delivering mes-
sages reliably and with total order—with a custom view management
service—managing group changes as nodes fail or join. This renders
applicable a vast portion of the existing literature on dependable
distributed systems [Sch90], enabling formally-proven dependable
operation of cyber-physical systems.

After illustrating in Section 4.1 the system model we base this work
upon, in Section 4.2 we briefly highlight the features required for virtual
synchrony (e.g., reliable and totally-ordered multicast) that are missing
in LWB, which we use as a foundation for Virtus. Section 4.3 describes
the functionality Virtus adds to provide atomic multicast and view
management, along with formal proofs that our design does provide
virtually-synchronous executions. We then describe in Section 4.4 how we
complement virtual synchrony in Virtus with further delivery policies,
and report implementation details for our target platform in Section 4.5.

Virtual synchrony comes at a cost. Based on extensive real-world

4.1. System Model 109

experiments on two wireless sensor testbeds, we show in Section 4.6
that our Virtus implementation provides virtual synchrony at a marginal
cost compared with LWB’s best-effort operation. For example, message
latency and energy consumption increase only by 1 % and 11 %,
respectively. We also report on the impact of different settings of the
Virtus parameters, demonstrating the ease to fine-tune the system.

To the best of our knowledge, we are the first to offer formally-
proven virtual synchrony atop similar resource-constrained hardware.
Nevertheless, our work “stands on the shoulders of giants”, leveraging
decades of work on dependable distributed systems that we revisit
in a new context. We provide due account of such literature
in Section 4.7, together with a brief description of CPS protocols that
provide communication guarantees in specific scenarios.

4.1 System Model
We target typical CPS applications where processing occurs in distinct and
periodic sense-process-actuate cycles [SLMR05]. Sensing occurs at nodes
equipped with application-specific sensing devices, which periodically
report sensed data to nodes with attached actuators. These nodes process
the data and drive the actuators accordingly. Unlike mainstream systems,
a distinction therefore exists between sensor nodes—which generate data
and act as senders—and actuator nodes—which consume data and act as
receivers. Our Virtus description is based on such a distinction, although
a node may simultaneously act as both.

We accept that both nodes and links between nodes may fail,
although such failures do not occur infinitely often or liveness may be
compromised. Nodes fail according to a crash-stop model [CT96], that is,
nodes execute correctly until they silently halt and execute no further
action. In principle, nothing prevents us from considering a crash-
recovery failure model [CT96], where a process silently halts but then
recovers from where it left. CPS devices, however, often lack the stable
storage required to log information for recovery [LBL+13]. Nevertheless,
a crash-stop model fits the reality of deployed systems, where nodes
may fail because of battery depletion and lose the previous state upon
rebooting when power is again available.

We consider a synchronous and unreliable communication model.
This entails that: i) there is a known upper bound on message
transmission delays, and ii) the communication channel may silently
lose individual messages. The latter, in particular, matches experimental
evidence about the time-varying nature of network topologies in low-

110 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

power wireless, for example, due to interference and obstacles [SDTL10].
We do not consider Byzantine failures, which may affect communica-

tion or a node’s state in ways different than those stipulated by a protocol’s
actions. For example, messages are either correctly delivered or not
delivered at all—a node never processes corrupted messages. Similarly, a
node’s state always evolves in ways that map to a feasible execution of a
protocol’s actions. In general, such Byzantine failures require dedicated
solutions that we do not consider in this thesis.

4.2 LWB as the Communication Support
We choose to use LWB as the foundation for Virtus, mainly because
its bus-like operation eases the design of the interactions required to
implement virtual synchrony. LWB already provides some of the
mechanisms required for virtual synchrony, such as:

• Implicit total ordering if data messages are received, due to the
exclusive access to the bus during data slots.

• Explicit join operation for senders, in the form of stream requests
(see Section 3.1), along with mechanisms to detect possible failures
afterwards (see Section 3.2.5).

Moreover, we showed in Section 3.7 that LWB is significantly more
efficient than alternative multicast protocols for low-power wireless
networks, which makes it practical for resource-constrained devices to
bear the overhead required to provide virtual synchrony guarantees.

Nevertheless, using LWB, the gap to provide virtual synchrony
includes functionality such as:

• Guaranteed delivery. Although LWB delivers messages with high
probability, it does not ensure by itself that data messages eventually
reach the intended receivers.

• Total ordering in the presence of communication failures. The ordering
feature in LWB, which is a side-effect of the time-triggered operation,
breaks if data messages are not delivered.

• Explicit join operations for receivers. These operations, together with
mechanisms required to detect receivers’ failures, are necessary to
create the group.

• View management. A notion of view, along with its management as
senders and receivers join or fail, is absent in LWB.

We describe next the Virtus functionality that fills this gap.

4.3. Building Up to Virtual Synchrony 111

4.3 Building Up to Virtual Synchrony
Many variants of virtual synchrony exist [CKV01]. We consider the most
traditional incarnation, corresponding to the intuitive definition provided
in the beginning of this chapter. More formally [Bir05]:

Given any two nodes P and Q, any two messages 1 and 2
generated in any arbitrary relative order, and any two consecutive
different views V and V′ that include P and Q, we wish to ensure
that if P delivers message 1 before message 2 in view V, then Q
also delivers 1 before 2 in V.

Virtus achieves the above by implementing two core functionality:

• An atomic multicast service, providing reliable and totally-ordered
multicast delivery at member nodes, illustrated in Section 4.3.2.

• A view management service, used at any non-faulty member to
maintain the list of view members, described in Section 4.3.3.

We conclude in Section 4.3.4 by proving that our design provides virtual
synchrony guarantees.

4.3.1 Overview
Virtus provides applications with traditional virtual synchrony opera-
tions such as sending and receiving messages, and notification of view
changes. Moreover, the application may use a join operation to notify
Virtus that it intends to join a view as a sender or a receiver. Once being
a view member, a node may request at any time to be removed from
the view. This provides programmers with a simple API that exposes
traditional virtual synchrony operations.

During operation, we distinguish between three disjoints sets of nodes:

• View members: non-faulty nodes that are members of the current
view V.

• Participating nodes: nodes not yet in view V that use (or used) join
to notify their intent to join the view (either as senders or receivers).

• Non-participating nodes: nodes that only help propagate packets
across multiple hops, and thus operate transparently with respect
to virtual synchrony.

Virtus round. Figure 4.1 shows the communication slots within a Virtus
round r. It highlights the two types of slots that Virtus adds to LWB:

112 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

sched r + 1dataview data ackack reqsched r

Figure 4.1: Communication slots within a Virtus round r. Highlighted in red
are the slots added to LWB (cf. Figure 3.2).

Participa-
ting node

Host

Receiver

Sender

members

members

SchedulerSchedule; View
round r

Data Acks Requests

compute
schedule

ackack

update

data

messages
deliver

install
new view

install
new view

view

data

sched view

req

Figure 4.2: Operation and exchange of messages during a Virtus round r.
Highlighted in red is the functionality added to LWB.

view and ack. The former are used by the host to distribute the current
view to all other nodes, the latter are used by receivers to inform the host
about the content of their buffers. 1

Figure 4.2 depicts the Virtus operation during round r, and in
particular how messages are exchanged among nodes. The Virtus-
specific processing occurs mainly at five distinct stages:

• Schedule; View. After a sched message, the host distributes a
view message with the current view:

V = {V.id,V.S,V.R} (4.1)

This consists of an identifier V.id and a list of member nodes, split
between senders V.S and receivers V.R. Based on the received
sched and view messages, receivers possibly deliver previously
buffered data messages to the application right after processing the
view message. Should the received view V differ from the currently
installed one, members of the new view perform a view installation
and deliver a view_change notification to the application.

• Data. As in the original LWB, senders in V.S transmit data messages
during data slots according to the content of the sched message.

1To simplify the description of Virtus and the analysis of the virtual synchrony
guarantees it provides, in the remainder of this chapter we ignore sched messages
transmitted by the host at the end of a round (e.g., sched r + 1 at the end of round r in
Figure 4.1). As described in Section 3.2.4, such schedule transmission is a performance
optimization that is not essential for the functioning of LWB and thus of Virtus.

4.3. Building Up to Virtual Synchrony 113

Unlike LWB, receivers in V.R locally buffer received data messages
and wait until the next view message before possibly delivering
them to the application.

• Acks. After the exchange of data messages, each receiver in V.R
sends an ack message to inform the host of the set of data messages
currently in its buffer. This information is mainly used for reliable
delivery in atomic multicast, but also to ensure correct view changes,
as we describe next.

• Requests. As in LWB, the round ends with a non-allocated req slot,
where participating nodes compete to inform the host about their
intention to join the view. Different from LWB, participating nodes
may be either senders or receivers.

• Scheduler. If the host detected the crash of a node or received a
request during the req slot, it updates the current view, which
it distributes in the next view message. The host then computes
the next round schedule, based also on received ack messages and
possible view updates. 1

Concepts and notations. We say that a view member executes during a
round only if it receives both sched and view messages. Should instead
a member fail to receive either of them, it refrains from any processing
during the round. The sched message is needed for the original LWB
operation, the view message is required to check the current group
membership. We also call a round r stable if the host receives ack messages
in round r from all non-faulty members in V.R.

For simplicity, the following description considers the host as a non-
participating node, although nothing prevents it from being a view
member. The discussion does not consider host failures, as they are dealt
with by the original LWB failover mechanisms described in Section 3.2.6.
We show in Section 4.3.4 that these mechanisms do not break the virtual
synchrony guarantees Virtus provides.

We express the Virtus processing as operations on sets of
message identifiers. A data message identifier Ii is a triple
Ii = {sender_id, stream_id, generation_time} that uniquely specifies a
data message i generated by a sender. Table 4.1 summarizes the sets
we introduce throughout the chapter.

4.3.2 Atomic Multicast
The atomic multicast service in Virtus provides reliable and totally-
ordered multicast to view members.

114 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

Symbol Meaning

Kr Messages scheduled in round r
Fr Messages scheduled in round r for the first time
Cr Messages generated by senders expelled from a view in round r
Sr Messages generated by senders in the view installed at round r
Ar Messages acknowledged by all non-faulty receivers in round r
BR

r Messages in the buffer of receiver R after the data slots of round r
DR

r Messages delivered by receiver R during round r
ER

r Messages discarded by receiver R during round r

Table 4.1: Sets of data message identifiers used to describe Virtus operation.

4.3.2.1 VirtusMechanisms for Atomic Multicast

As discussed in Section 4.2, LWB provides neither guaranteed delivery
nor total ordering in the presence of communication failures. Virtus
employs the following mechanisms to fill the gap:

• Receivers buffer received data messages and use ack messages to
inform the host of the data messages in their buffers.

• Based on the received ack messages, the host reallocates slots for
data messages missing from at least one receiver buffer.

• After receiving a new sched message, receivers deliver buffered
data messages for which no slot is reallocated.

The distributed operation of LWB, where all nodes are potential receiver of
all messages, allows to achieve this functionality in a way that is practical
for resource-constrained CPS devices. We first explain these mechanisms
based on an example where nodes do not fail. We discuss in Section 4.3.3
how to account for the output of the view management service.

4.3.2.2 Example

Figures 4.3–4.6 show several rounds of an example execution in a network
with four nodes: one sender S, two receivers P and Q, and a host H. Nodes
S, P, and Q are view members and have view V = {1, {S} , {P,Q}} installed.
At every round r, sender S has a new data message ready to transmit, r ,
which is unambiguously specified by data message identifier Ir. For each
slot, the figures show messages exchanged, the content of the receiver
buffers, and the data messages that P and Q deliver to the application.
As no other node intends to join, no req messages are transmitted during
these rounds. Because there are also no node failures, view V never
changes. At the beginning of round r = 1, the receiver buffers are empty.

4.3. Building Up to Virtual Synchrony 115

round r = 1
Schedule;

View
Data Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 1
Receiver P 3 3 {I1}

Receiver Q 3 3 {I1}

{I1};Host H
{1, {S} , {P,Q}}

3 3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1 1 1

BQ
r 1 1 1 1 1 1 1 1 1 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r

Figure 4.3: Example execution of atomic multicast: round r = 1. Symbol 3

denotes a successful reception.

Round r = 1 (Figure 4.3). The round starts with the host transmitting
schedule K1 = {I1}, which instructs sender S that it can transmit data
message 1 in the assigned data slot. In general, the schedule Kr for
round r is an ordered set of message identifiers

{
Ii, I j, . . .

}
that senders can

transmit during round r; we omit the additional information in sched
messages related to the LWB operation (e.g., the round period T).

All nodes receive the schedule and communicate during the data slot:
S transmits message 1 ; both P and Q receive 1 and insert it into their
buffers. To ensure total order, receivers buffer multiple messages in the
relative order they appear in the sched message. In the two subsequent
ack slots, receivers P and Q inform the host about the content of their
buffers. Because BP

1 = BQ
1 = {I1}, both ack messages include the identifier I1

of data message 1 .
Round r = 1 is a stable round, as the host receives ack messages from

all receivers in V.R. The host computes the set of data messages it can
stop scheduling as A1 = {I1}. In general, for a stable round r, the set
of data message identifiers Ar not to reschedule in subsequent rounds
is the intersection of the data messages in the receiver buffers BR

r of any
receiver R in V.R:

Ar =
⋂

R

BR
r , ∀R ∈ V.R, r stable (4.2)

The data messages in Ar are indeed already in the receivers’ buffers and
do not need to be retransmitted.

116 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

round r = 2
Schedule;

View
Data Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 2
Receiver P 7

Receiver Q 3 3 {I2}

{I2};Host H
{1, {S} , {P,Q}}

3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1 1 1

BQ
r 1 1 2 1 2 1 2 1 2 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r 1

Figure 4.4: Example execution of atomic multicast: round r = 2. Symbol 3

denotes a successful reception; symbol 7 denotes a communication failure.

Round r = 2 (Figure 4.4). The new schedule transmitted by the host
specifies that there is only one data slot, for message 2 : because all
receivers in V.R received data message 1 , the host allocates no more
slots for it. The schedule Kr of a generic round r is indeed obtained from
the schedule of the previous round Kr−1 by: i) removing the identifiers
of data messages acknowledged by all receivers in the previous round,
included in Ar−1; and ii) possibly adding identifiers of newly-generated
data messages never scheduled before, included in Fr:

Kr = (Kr−1 \ Ar−1) ∪ Fr (4.3)

Figure 4.4 shows that P fails to receive the sched message, thus it does
not execute in round r = 2 and the content of its buffer does not change:
BP

2 = {I1}. Differently, Q receives the schedule and from K2 = {I2} it infers
that data message 1 reached all receivers in V.R and can be delivered
to the application. We indicate the delivery with DQ

2 = {I1}. In general,
during a round r, a receiver R delivers data messages that are in its buffer
from the previous round BR

r−1 and whose identifiers are not included in
the current schedule Kr, meaning they reached all receivers:

DR
r = BR

r−1 \ Kr (4.4)

To provide totally-ordered delivery, this operation occurs in the order the
data messages are found in the buffer.

During the subsequent data slot, S transmits message 2 , which is
buffered at Q only, as P is not participating in round r = 2 because of

4.3. Building Up to Virtual Synchrony 117

round r = 3
Schedule;

View
Data Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 2 3
Receiver P 3 7 3 {I3}

Receiver Q 3 3 3 {I2, I3}

{I2, I3};Host H
{1, {S} , {P,Q}}

3 3 3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 3 1 3 1 3 1 3 1

BQ
r 2 1 2 1 2 3 2 3 2 3 2 3

D
el

iv
er

ed
m

es
sa

ge
s

DP
r 1

DQ
r

Figure 4.5: Example execution of atomic multicast: round r = 3. Symbol 3

denotes a successful reception; symbol 7 denotes a communication failure.

the missed schedule. The host receives an ack message from Q but not
from P, thus round r = 2 is non-stable. The host computes the set of data
messages not to reschedule as A2 = ∅. This applies for any non-stable
round r, as at least one receiver may be missing at least one data message:

Ar = ∅, r non-stable (4.5)

Round r = 3 (Figure 4.5). For A2 = ∅, the schedule reassigns a slot for
data message 2 in addition to a slot for the new data message 3 . From
(4.3) indeed follows K3 = ({I2} \ ∅) ∪ {I3} = {I2, I3}.

This time, both receivers P and Q obtain the schedule. Finally,
P realizes that 1 reached all receivers because no slots are allocated
to it in K3, and accordingly delivers such data message: with BP

2 = {I1},
from (4.4) follows DP

3 = {I1} \ {I2, I3} = {I1}. Differently, Q delivers no data
messages at this round, because although it already received message 2 ,
a slot is still scheduled for it; with BQ

2 = {I2}, from (4.4) indeed follows
DQ

3 = {I2} \ {I2, I3} = ∅.
Based on schedule K3, sender S retransmits data message 2 . P does

not receive it, while Q does but immediately drops it as the same
message 2 is already buffered from the previous round. Message 3
is instead received and buffered by both receivers. The host receives both
ack messages BP

3 = {I3} and BQ
3 = {I2, I3}, thus the round is stable. From

(4.2) it computes A3 = {I3} ∩ {I2, I3} = {I3}: only message 3 is indeed in
both buffers.

118 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

round r = 4
Schedule;

View

C
om

m
u-

ni
ca

tio
n

Sender S 3

Receiver P 3

Receiver Q 3 . . .
{I2, I4};Host H

{1, {S} , {P,Q}}

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1

BQ
r 2 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r 3

DQ
r 3

Figure 4.6: Example execution of atomic multicast: beginning of round r = 4.
Symbol 3 denotes a successful reception.

Beginning of round r = 4 (Figure 4.6). Schedule K4 specifies that a data
slot is again rescheduled for message 2 , which P has not received yet,
plus another data slot is scheduled for the new message 4 : according
to (4.3), K4 = ({I2, I3} \ {I3}) ∪ {I4} = {I2, I4}. The reception of this sched
message makes both receivers deliver data message 3 : from (4.4),
DP

4 = {I3} \ {I2, I4} = {I3} and DQ
4 = {I2, I3} \ {I2, I4} = {I3}.

Summary. Throughout the rounds in the example, and in the presence of
arbitrary communication failures, receivers P and Q deliver the same data
messages 1 and 3 in the same order. The key to this functionality is in
(4.2)–(4.5). These equations, however, require modifications to account
for node crashes and corresponding view changes, as we illustrate next.

4.3.3 View Changes
The view management service informs the application about the current
view V, which it updates in response to node crashes or recoveries.

4.3.3.1 VirtusMechanisms for View Management

As discussed in Section 4.2, LWB has no notion of view and provides no
explicit support for receivers. The following mechanisms fill this gap:

• Both senders and receivers compete during req slots in order to join
the view. At each round, the host distributes the current view V,
possibly updated based on node crashes and received requests.

4.3. Building Up to Virtual Synchrony 119

round r = 3
Schedule;

View
Data Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 t

Receiver P 3 ∅

Receiver Q 3 {I2}

{I2, I3};Host H
{1, {S} , {P,Q}}

3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1 1 1 1 1

BQ
r 2 1 2 1 2 1 2 1 2 1 2 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r 1

DQ
r

Figure 4.7: Example execution with view changes: round r = 3. Symbol 3

denotes a successful reception; symbol t denotes a node crash.

• The host overhears messages exchanged among view members to
monitor their continuing operation. Similar to LWB, the host uses a
counter-based scheme that marks a view member as crashed when
not heard for more than X consecutive rounds, X being a protocol
parameter whose tuning we investigate in Section 4.6. Different
from LWB, the host monitors not only data messages from senders
in V.S but also ack messages from receivers in V.R.

• To provide atomic multicast also in the presence of sender and
receiver crashes, delivery occurs only at receivers that are listed
in V.R and only for data messages from senders that belong to V.S.

We also observe that the failure detector we use may be inaccurate [CT96]
and mistake message loss for node crashes. However, we show that
even in case of false positives Virtus keeps providing virtual synchrony
guarantees. We again use a concrete example to explain how these
mechanisms blend together within a realistic Virtus execution.

4.3.3.2 Example

We now consider the example execution in Figures 4.7–4.10. The overall
setting and the first two rounds are as in Figures 4.3–4.4. For simplicity,
we set the number of rounds for detecting node crashes to X = 1. This
time, the execution unfolds as follows.

Round r = 3 (Figure 4.7). As seen before, the schedule for this round
is K3 = {I2, I3}: both receivers obtain it, and P delivers data message 1 .

120 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

round r = 4
Schedule;

View
Data Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S s 3

Receiver P 3 ∅

Receiver Q 3 {I2}

{I2, I3, I4};Host H
{1, {S} , {P,Q}}

3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BQ
r 2 1 2 1 2 1 2 1 2 1 2 1 2 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r

Figure 4.8: Example execution with view changes: round r = 4. Symbol 3

denotes a successful reception; symbol s denotes a node recovery.

This time, however, sender S crashes immediately after the view slot.
As a result, S cannot (re)transmit data messages as instructed by the
schedule. This potentially creates a situation violating atomic multicast:
data message 2 , already in the buffer of receiver Q, needs to be delivered
by both P and Q or neither. As we show next, for simplicity we make the
latter happen, based on the crash-stop model we consider for nodes.

In the remainder of the round, the data slots remain unused, thus the
buffers at both receivers remain unchanged. Receivers send ack messages
BP

3 = ∅ and BQ
3 = {I2}. The host receives both ack messages, thus the round

is stable, and according to (4.2) it computes A3 = ∅.

Round r = 4 (Figure 4.8). With K3 = {I2, I3}, A3 = ∅, and F4 = {I4},
from (4.3) follows schedule K4 = {I2, I3, I4}. Sender S recovers before the
beginning of this round and executes join. As we consider a crash-stop
model, S cannot replay the execution before the crash and transmit data
messages 2 , 3 , 4 according to the schedule. Therefore, we must treat
these situations as if the recovered node were a new device, and force the
view change corresponding to the crash of the now-recovered node. To
accomplish this, the recovered node keeps silent while it sees itself listed
in the current view, meaning that the crash was not yet detected and no
corresponding view change occurred.

As a result, although sender S receives both sched and view messages,
it transmits no data message in round r = 4, as it finds itself already listed
in the view. Being X = 1 in this example, at the end of this round the host
detects the crash of S and expels it from the updated view V = {2,∅, {P,Q}}.

4.3. Building Up to Virtual Synchrony 121

round r = 5
Schedule;

View
Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 req
Receiver P 3 ∅

Receiver Q 7

∅;Host H
{2,∅, {P,Q}}

3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1

BQ
r 2 1 2 1 2 1 2 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r

Figure 4.9: Example execution with view changes: round r = 5. Symbol 3

denotes a successful reception; symbol 7 denotes a communication failure.

Round r = 5 (Figure 4.9). As V.S = ∅, there is no sender in the view and
F5 = ∅. However, with K4 = {I2, I3, I4} and A4 = ∅, computing the schedule
based on (4.3) would incorrectly lead to K5 = {I2, I3, I4}. These messages
indeed belong to an execution of S that will never be replayed, and S will
never retransmit them. Therefore, the host must stop scheduling data
slots for messages generated by the crashed S. In general, we achieve this
by modifying (4.3) as:

Kr = [Kr−1 \ (Ar−1 ∪ Cr−1)] ∪ Fr (4.6)

Set Cr−1(⊆ Kr−1) includes the identifiers of data messages from crashed
senders that have been removed from the view at the end of round r−1. In
our example, this set corresponds to C4 = {I2, I3, I4}. According to (4.6), the
schedule for round r = 5 is empty: K5 = [{I2, I3, I4}\(∅∪{I2, I3, I4})]∪∅ = ∅.

During the remainder of this round, receiver P executes and installs
the new view. Receiver Q, which still has data message 2 in its buffer,
misses either the sched or view message, so it does not execute, and is
stuck at the previous view that still includes sender S. The now-recovered
S finally sees itself not listed in the new view, so it sends a request to join
during the req slot, and the host receives this req message.

Round r = 6 (Figure 4.10). Two issues may arise. First, if sender S
is immediately readmitted and the view updated again, the new view
{3, {S} , {P,Q}}would trick receiver Q to think that S never crashed. Besides
the identifier, this view is indeed identical to {1, {S} , {P,Q}}, which Q still
has installed as it did not execute in round r = 5. Second, we need

122 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

round r = 6
Schedule;

View
Acks Requests

C
om

m
u-

ni
ca

tio
n

Sender S 3 req
Receiver P 3 ∅

Receiver Q 3 ∅

∅;Host H
{2,∅, {P,Q}}

3 3 3

R
ec

ei
ve

r
bu

ff
er

s BP
r 1 1 1 1 1 1 1 1

BQ
r 1 1 1 1 1 1 1 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r

Figure 4.10: Example execution with view changes: round r = 6. Symbol 3

denotes a successful reception.

receiver Q to discard data message 2 when it installs view {2,∅, {P,Q}}
and realizes that S crashed. As K6 = ∅, based on (4.4) receiver Q would
deliver DQ

6 = {I2} \ ∅ = {I2}. This would violate virtual synchrony, as the
other non-faulty receiver P will never deliver 2 .

To address these issues, we both postpone adding new senders until
after a stable round—ensuring that all non-faulty receivers have the latest
view installed—and modify (4.4) as:

DR
r =

[
BR

r−1 \ Kr

]
∩ Sr (4.7)

Set Sr identifies any data message generated by senders that are members
of the current view. Note that Sr is merely a formal artifact: receivers
do not need to know the list of messages ever generated by senders. It
suffices to check whether a data message that a receiver is about to deliver
is generated by a sender that is member of the current view. If so, the data
message is delivered. If not, this data message is surely not in Sr, and is
discarded as it is not guaranteed that all non-faulty receivers have it in
their buffer and are thus able to deliver it.

The set ER
r of data messages discarded by a receiver R is:

ER
r =

[
BR

r−1 \ Kr

]
\ Sr (4.8)

In our example, EQ
6 = I2 and data message 2 is discarded at Q because

sender S is not member of the current view. Sender S, on the other hand,
not seeing itself admitted to the view, transmits the req message also
during the req slot at the end of this round.

4.3. Building Up to Virtual Synchrony 123

round r = 7
Schedule;

View

C
om

m
u-

ni
ca

tio
n

Sender S 3

Receiver P 3

Receiver Q 3 . . .
{I7};Host H

{3, {S} , {P,Q}}
R

ec
ei

ve
r

bu
ff

er
s BP

r 1 1

BQ
r 1 1

D
el

iv
er

ed
m

es
sa

ge
s

DP
r

DQ
r

Figure 4.11: Example execution with view changes: beginning of round r = 7.
Symbol 3 denotes a successful reception.

Beginning of round r = 7 (Figure 4.11). Round r = 6 was stable, so the
host finally admits sender S to the view, a view change occurs, and the
new view is disseminated to the nodes. The processing resumes normally.

Summary. The example shows how Virtus retains atomic multicast also
against sender crashes. The processing for receiver crashes is simpler:
they can be removed from a view as soon as the crash is detected, and
admitted to a view as soon as they send a req. If the host expels a non-
faulty receiver from a view due to the repeated loss of ack messages, such
receiver empties its buffer before sending a req, as no virtual synchrony
guarantees can be provided for data messages already in its buffer.

As described above, we integrate view management with atomic
multicast by taking additional care in scheduling and delivering data
messages, as reflected in (4.6) and (4.7), and by possibly discarding them,
as specified by (4.8). From these equations, and (4.2) and (4.5) from
Section 4.3.2, we can also observe that Virtus satisfies basic properties of
group communication systems [CKV01]:

• Self inclusion: a node is a member of a view it installs.

• Local monotonicity: identifiers of views installed by a node are
monotonically increasing.

• Initial view event: delivery of data messages occurs within a view.

• Primary component membership: views installed by nodes are totally
ordered.

124 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

4.3.4 Virtual Synchrony
We now prove that Virtus does guarantee virtual synchrony.

Bounded buffer. First, we show that Virtus determines an upper bound
on the number of data messages buffered at a receiver.

Lemma 1. At the end of a round r, the set BR
r of message identifiers buffered at

a receiver R is a subset of the schedule Kq received by R in the last round q ≤ r
where R executes.

Proof. After receiving schedule Kq and view Vq during round q, every non-
faulty receiver R in Vq.R delivers and discards buffered data messages
according to (4.7) and (4.8). From that moment and until the next round
where R executes, R buffers only messages with identifiers in Kq and that
are not already buffered. Indeed, R can add data messages to the buffer
only in round q, as it does not execute in any following round. �

In general, the number of message identifiers that can fit a sched
message is bounded by D, for example, due to platform-dependent
restrictions on packet sizes (see Section 3.3.1). The cardinality of any
schedule Kr is thus bound by D: |Kr| ≤ D. From Lemma 1, it immediately
follows that a receiver has at most D messages buffered at any point in
time, and thus:

Theorem 1. A buffer size of at least D ensures that no buffer overflows occur at
a receiver.

Virtual synchrony. We first prove the following lemma, which we use
later to study the virtual synchrony properties provided by Virtus.

Lemma 2. Every receiver that executes in a stable round r′ and is a view member
until the next stable round r′′ delivers the same set of data messages from the
end of r′ to the end of r′′.

Proof. According to (4.6), the schedule transmitted by the host at the
beginning of round r′ + 1 is Kr′+1 = [Kr′ \ (Ar′ ∪ Cr′)] ∪ Fr′+1. The schedule
for the remaining rounds r = {r′ + 2, . . . , r′′} is Kr = Kr−1 ∪ Fr, as the host
removes message identifiers from the schedule only after a stable round,
and only the last round r′′ in this sequence is stable; thus, Ar−1 = Cr−1 = ∅
for all rounds r = {r′ + 2, . . . , r′′}. As a result, the schedule transmitted
during rounds r = {r′ + 1, . . . , r′′} is:

Kr = [Kr′ \ (Ar′ ∪ Cr′)] ∪ (Fr′+1 ∪ · · · ∪ Fr) (4.9)

Consider the generic receiver R in Figure 4.12, which is a member of
every view Vr in rounds r = {r′, . . . , r′′}. Receiver R thus executes in r′ and

4.3. Building Up to Virtual Synchrony 125

〈1〉 〈2〉 〈3〉

r = r′ r′ < r < ρ r = ρ ρ < r < r′′ r = r′′

Schedule; Schedule; Schedule; Schedule; Schedule;
View

Acks
View

Acks
View

Acks
View

Acks
View

Acks

R 3 7 3 – 3

Kr′ ; Kr; Kρ; Kr; Kr′′ ;H
Vr′

3
Vr Vρ

– Vr
– Vr′′

3

DR
r ∅ ∅ Ar′ ∅ ∅

Figure 4.12: Visual representation for the proof of Lemma 2: any receiver R that
is a view member between two stable rounds r′ and r′′ delivers the same set of
data messages Ar′ between the end of r′ and the end of r′′. Symbol 3 denotes
a successful reception; symbol 7 denotes a communication failure; symbol –
denotes that the outcome of a reception attempt is irrelevant for the proof.

does not crash between the end of r′ and the end of r′′. Being round r′

stable, the host receives an ack message also from receiver R during this
round, which in turn ensures that R receives schedule Kr′ and has view
Vr′ installed during r′.

Let us name ρ ∈ {r′ + 1, . . . , r′′} the first round after r′where R executes.
Round ρ is stable if and only if ρ = r′′. The data messages that receiver R
delivers before, during, and after ρ are as follows. Figure 4.12 provides a
visual representation of these deliveries.

〈1〉 Rounds r =
{
r′ + 1, . . . , ρ − 1

}
. Receiver R misses either the sched or

the view message, or both, thus it does not execute and delivers no
data messages:

DR
r = ∅, r =

{
r′ + 1, . . . , ρ − 1

}
(4.10)

The set of data messages in its buffer remains the one of the last
stable round: BR

r = BR
r′ .

〈2〉 Round ρ. Receiver R receives schedule Kρ and view Vρ. It delivers
data messages as per (4.7), in the same relative order their identifiers
appear in the sched message of the last round where R executed,
which is r′. From (4.7) and (4.9) descends:

DR
ρ = Ar′ (4.11)

See Appendix 4.A for the derivation of (4.11). Similarly, as per (4.8)
receiver R discards data messages ER

ρ = BR
r′∩Cr′ generated by crashed

senders. If view Vρ differs from the currently installed view Vr′ ,
R installs Vρ after the message delivery.

126 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

〈3〉 Rounds r =
{
ρ + 1, . . . , r′′

}
. If receiver R misses the sched or

the view message, it does not execute and delivers no data
messages; otherwise, it executes and delivers data messages as
per (4.7). However, this set is also empty, because all data messages
acknowledged by all receivers were in Ar′ and were delivered in ρ,
and no stable round occurs after r′ and until r′′. Assuming that q is
the last round before r where R executed (ρ ≤ q < r), we indeed have
BR

r−1 ⊆ Kq from Lemma 1 and Kq ⊆ Kr from (4.9). The latter is because
the host removes no message identifiers from the schedule between
the end of two consecutive stable rounds r′ and r′′. By combining
these two properties, BR

r−1 ⊆ Kr, and from (4.7) follows DR
r = ∅. We

can finally write:

DR
r = ∅, r =

{
ρ + 1, . . . , r′′

}
(4.12)

Because Ar′ in (4.11) depends neither on the specific receiver R nor on
the round ρ, every non-faulty receiver delivers the same set of messages
between the end of r′ and the end of r′′. �

The example in Figures 4.3–4.5 showed a concrete case between rounds
r′ = 1 and r′′ = 3. Despite message loss, both receivers P and Q deliver the
same data message 1 . Receiver Q delivers it in round ρQ = 2, whereas
receiver P delivers it in ρP = 3. The virtual synchrony property is a direct
consequence of Lemma 2, and is expressed by the following theorem:

Theorem 2. If two receivers both install the same new view V following the
same previous view V′, then they deliver the same set of data messages in V′.

Proof. Lemma 2 ensures that, while members of the same view
Vr′ = · · · = Vr′′ , all receivers deliver the same set of messages within that
view. Moreover, any receiver that installs a new view Vρ following
view Vr′ delivers the same set of messages Ar′ right before installing
the new view. �

Same view delivery. From Lemma 2 it also follows that:

Theorem 3. If two receivers deliver the same data message, then they deliver it
in the same view.

Proof. Based on the proof of Lemma 2, a receiver R delivers data
messages Ar′ during round ρ and within view Vr′ , the latter being the
view it has installed at the beginning of ρ. As Vr′ depends neither on the
specific receiver R nor on the round ρ, any receiver that delivers these
messages delivers them within the same view Vr′ . �

4.4. FIFO Delivery 127

Total ordering. The following theorem ensures that receiver members
deliver data messages in the same order.

Theorem 4. When receivers deliver data messages, they deliver them in the
same order.

Proof. Based on the proof of Lemma 2, a receiver R delivers data
messages Ar′ during round ρ, and with the same relative order their
identifiers had in schedule Kr′ . As this order depends neither on the
specific receiver R nor on the round ρ, any receiver member that delivers
these messages delivers them in the same order. �

Host failures. We observe that the theorems above hold also in the face of
host failures. After a crash of the current host, nodes stop receiving sched
or view messages and the entire Virtus processing stops. If the host does
not recover within a specified amount of time, the LWB failover policy
elects a different node as the new host (see Section 3.2.6). In this case,
the system restarts from scratch, with the new host distributing empty
sched and view messages. Senders and receivers thus realize they are not
listed in the view and, after discarding all buffered messages, transmit
req messages to join the view.

This simple operation entails a performance overhead due to a new
bootstrapping process, but it ensures that none of the virtual synchrony
guarantees discussed above are violated. Nevertheless, we note that it
is possible to employ more complex mechanisms that keep the overhead
to a minimum, for example, by making the new host reuse information
included in the last view it received from the crashed host.

4.4 FIFO Delivery
Fault-tolerant distributed systems often require messages to be delivered
in the same order they are generated [Sch90, CKV01]. In addition to total
ordering, Virtus provides per-node and system-wide FIFO delivery by
means of very limited modifications.

Per-node FIFO ordering. The default scheduling policy of LWB, which
we inherit also in Virtus, ensures that the host schedules in FIFO order
slots for data messages from each sender (see Section 3.3.2). In Virtus,
however, non-faulty receivers may violate the per-node FIFO ordering
when delivering data messages, due to retransmissions. This happens,
for example, in Figures 4.3–4.5: receivers P and Q deliver message 3
before message 2 . This is because, during a round r, the per-node FIFO
ordering holds only within the set of messages scheduled for the first

128 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

time Fr. The ordering of delivery, however, depends also on when data
messages are acknowledged by all receivers.

We can provide per-node FIFO delivery with a simple modification to
the scheduling algorithm at the host. The key idea is to keep scheduling
slots for data messages even though these are already acknowledged by
all non-faulty receivers, should these messages be generated later than
non-acknowledged data messages from the same sender. In the example
of Figures 4.3–4.5, this entails rescheduling data slots for message 3
in round r = 4, even if it was already acknowledged by both P and Q.
Because the identifier of message 3 keeps appearing in the schedule,
both receivers do not deliver it as per (4.7).

Specifically, when the host computes schedule Kr+1 at the end of a
stable round r, in (4.6) it uses AnF

r ⊆ Ar instead of Ar. The set AnF
r includes

data messages in Ar whose generation time at the sender is not greater
than the generation time of any other message in Kr from the same sender.

System-wide FIFO ordering. Similarly, system-wide FIFO delivery
entails that receivers deliver no data messages generated before already
delivered messages, regardless of the sender.

This requires two modifications. First, we change the LWB scheduler
such that the system-wide FIFO ordering holds within data messages
scheduled for the first time, included in Fr. This is possible because
the host knows when each sender generates new data messages, due to
their periodic traffic patterns. Second, similarly to the per-node FIFO
delivery above, we modify how the host decides which data messages to
reschedule. Specifically, when the host computes schedule Kr+1 at the end
of a stable round r, in (4.6) it uses AsF

r ⊆ Ar instead of Ar. The set AsF
r ⊆ Ar

includes data messages in Ar whose generation time is not greater than
the generation time of any other message in Kr, regardless of the sender.

With either of these modifications, Virtus maintains totally-ordered
delivery, because the mechanisms at the receivers remain the same.
FIFO delivery, however, entails allocating slots not strictly needed, as
the corresponding data messages are already buffered at all non-faulty
receivers, introducing additional overhead. We evaluate the impact of
this overhead in Section 4.6.

4.5 Implementation
We implement Virtus on top of the Contiki operating system [Conb,
DGV04], targeting the TelosB platform [PSC05]. The mechanisms added
to LWB occupy only 6 kB of program memory: considering that our LWB
implementation requires 22 kB (see Table 3.2), Virtus occupies in total

4.6. Evaluation 129

28 kB of program memory, leaving 20 kB available for the application.
Compared to the original LWB implementation, we reduce from 60 to

40 the maximum number of data slots D allocated per round. This makes
our prototype support up to 15 ack slots and thus up to 15 receivers, but
it decreases the bandwidth available for data messages. This setting is
representative of existing CPS deployments where virtual synchrony may
be necessary [SLMR05, CCD+11, KLS+10, BvKH+11, Sch12]. Nevertheless,
designers can tune this value based on application requirements. All other
functional parameters retain the original LWB values shown in Table 3.1.

To reduce energy consumption, the host allocates ack slots only when
needed, that is, in rounds with at least one data slot or between a view
update and the next stable round. The latter is to ensure that all receivers
install an updated view, as discussed in Section 4.3.3. Finally, we apply an
optimization to overcome the loss of view messages. If a node detects that
the current view V—whose identifier V.id is embedded also in the sched
message—is the same as the one it has already installed, it executes even
if it misses the view message, as it already knows V from view messages
it received in previous rounds.

4.6 Evaluation
Virtus incurs a runtime overhead compared with LWB’s best-effort
operation. We use results from testbed experiments to quantitatively
assess this aspect, and to study the impact of different parameter settings.

4.6.1 Testbeds and Metrics

Testbeds. We evaluate Virtus using two sensor network testbeds. Twist
is an indoor installation of 90 TelosB nodes spanning three floors of
a university building [HKWW06]. On Twist we use an intermediate
transmit power of -15 dBm, yielding a network diameter of 4 hops.
FlockLab includes 30 TelosB nodes at a university building, and has
a network diameter of 4 hops at the maximum transmit power of
0 dBm [LFZ+13b]; four of these nodes are located outdoors.

To factor out sources of network unreliability we cannot control, we
use channel 26 to minimize interference with co-located Wi-Fi networks.
We artificially emulate message loss during ad-hoc experiments. In all
experiments, data messages carry a payload of 15 bytes. Unless otherwise
stated, we set X = 10 as the threshold to detect node crashes; we further
discuss this choice in Section 4.6.4. The specific traffic profile varies
depending on the type of experiment.

130 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

Metrics. To assess the performance overhead in exchange for virtual
synchrony, we consider an unmodified LWB as the baseline. For both
LWB and Virtus, we measure:

• Data latency, defined as the interval from when the application at
a sender sends a data message to when a receiver delivers that
message to the application.

• Radio duty cycle, defined as the fraction of time a node has the radio
turned on, commonly regarded as an indication of energy efficiency
in low-power wireless protocols [AY05].

We expect virtual synchrony to impact both: latency should increase
because messages are delivered only after all receivers buffered them and
notified the host about it; radio duty cycle should increase because of
additional control traffic and retransmissions absent in LWB.

Complementary to these figures, we assess how effective are the
virtual synchrony guarantees Virtus provides by measuring:

• Per-receiver data yield, defined as the fraction of generated data
messages successfully delivered at each receivers.

• System-wide data yield, defined as the fraction of generated data
messages successfully delivered at all receivers.

• View latency, defined as the interval from when a view member
crashes to when all non-faulty nodes install an updated view.

In the absence of crashes, per-receiver and system-wide data yield should
measure 100 % due to atomic multicast. Nevertheless, it is interesting
to check the LWB performance in the same settings, to relate the gap to
virtual synchrony with the performance overhead. View latency is instead
useful to understand the trade-offs for different parameter settings.

4.6.2 Cost of Virtual Synchrony

Scenario. On Twist, we randomly pick 45 senders and let them generate
one data message per minute, addressed to a variable number of 2, 5, 10,
and 15 receivers across different experiments. The remaining nodes only
help propagate packets in the network. These settings depict scenarios
akin to typical CPS deployments [SLMR05, CCD+11, KLS+10, BvKH+11,
Sch12]. For each scenario, we run 1-hour long experiments with LWB
and Virtus, the latter with different delivery policies: no FIFO, per-node
FIFO, and system-wide FIFO. We fix the round period to T = 10 s. No
failures are artificially injected in the network.

4.6. Evaluation 131

2 5 10 15
90

92

94

96

98

100

Number of receivers

P
er

−
re

ce
iv

er
 d

at
a

y
ie

ld
 [

%
]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(a) Per-receiver data yield.

2 5 10 15
90

92

94

96

98

100

Number of receivers

S
y

st
em

−
w

id
e

d
at

a
y

ie
ld

 [
%

]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(b) System-wide data yield.

Figure 4.13: Atomic multicast on Twist, for different numbers of receivers and
types of ordered delivery. Bars denote averages; error bars indicate 5th and 95th
percentiles.

132 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

2 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

Number of receivers

E
n

d
−

to
−

en
d

 l
at

en
cy

 [
s]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(a) End-to-end latency.

2 5 10 15
0

0.5

1

1.5

2

2.5

Number of receivers

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(b) Radio duty cycle.

Figure 4.14: Cost of virtual synchrony on Twist, for different numbers of
receivers and types of ordered delivery. Bars denote averages; error bars indicate
5th and 95th percentiles.

4.6. Evaluation 133

Results. We first verify that atomic multicast in Virtus delivers all data
messages, regardless of the type of ordered delivery. Figure 4.13 indeed
shows that Virtus achieves 100 % per-receiver and system-wide data yield
across the board. We also see in Figure 4.13(a) that LWB’s per-receiver
data yield is largely independent of the number of receivers: each receiver
delivers on average about 99.89 % of data messages. With LWB, however,
the fraction of data messages that are delivered by all receivers decreases
with the number of receivers, as shown in Figure 4.13(b). With two
receivers, for example, 99.87 % of data messages are delivered by both
receivers; with 15 receivers, system-wide data yield averages only 98.04 %.
This is because with more receivers it is more likely that at least one of them
misses a certain data message.

Figure 4.14 plots the performance overhead in data latency and radio
duty cycle. Figure 4.14(a) shows that with two receivers LWB and
Virtus deliver messages with similar average latency of 2.11 s and 2.13 s,
respectively. As LWB’s reliability already approaches 100 %, most data
messages indeed require no retransmissions and the processing in Virtus
resembles that in LWB. With more receivers, it is more likely that at least
one data or ack message is lost. In Virtus, this triggers retransmissions
from the senders and buffering at the receivers to provide atomic multicast
according to Section 4.3.2. This, however, results only in a slight increase
in latency, which averages 2.39 s with 15 receivers. The type of ordered
delivery has little impact on latency: because of few retransmissions,
only in rare cases the host reallocates data slots for already acknowledged
messages to enforce FIFO delivery as described in Section 4.4.

Figure 4.14(b) shows the energy overhead of Virtus compared with
LWB. Two aspects contribute to this: the additional control traffic due to
view and ack messages, and the retransmissions of data messages in case
of losses. With two receivers, the average radio duty cycle in Virtus is
only 0.18 % higher than in LWB: 1.73 % against 1.55 %. More receivers
entail more ack slots and a higher probability that data or ack messages
are lost. For these reasons, different from LWB, the radio duty cycle with
Virtus increases with the number of receivers. Nevertheless, its average
is less than 2.25 % even with 15 receivers. The energy overhead is again
largely independent of the type of ordered delivery. Notably, this figure is
way smaller than in most existing best-effort multicast protocols for low-
power wireless. For instance, on the same Twist testbed and in a similar
scenario with 8 receivers and 45 senders generating one data message per
minute, Muster + LPL requires an average radio duty cycle of 11.54 % to
deliver only 98.67 % of data messages (see Figure 3.13).

Next, we show how these trade-offs evolve when the system operates
with highly unreliable wireless communication.

134 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

0 1 2 3 4 5
50

60

70

80

90

100

Fraction of data and ack messages discarded by all nodes [%]

P
er

−
re

ce
iv

er
 d

at
a

y
ie

ld
 [

%
]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(a) Per-receiver data yield.

0 1 2 3 4 5
50

60

70

80

90

100

Fraction of data and ack messages discarded by all nodes [%]

S
y

st
em

−
w

id
e

d
at

a
y

ie
ld

 [
%

]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(b) System-wide data yield.

Figure 4.15: Atomic multicast on Twist when communication failures are
artificially injected, for different types of ordered delivery. Lines denote averages;
error bars indicate 5th and 95th percentiles.

4.6. Evaluation 135

0 1 2 3 4 5
0

10

20

30

40

50

Fraction of data and ack messages discarded by all nodes [%]

E
n

d
−

to
−

en
d

 l
at

en
cy

 [
s]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(a) End-to-end latency.

0 1 2 3 4 5
0

1

2

3

4

5

Fraction of data and ack messages discarded by all nodes [%]

R
ad

io
 d

u
ty

 c
y

cl
e

[%
]

VIRTUS, no FIFO

VIRTUS, per−node FIFO

VIRTUS, system−wide FIFO

LWB

(b) Radio duty cycle.

Figure 4.16: Performance on Twistwhen communication failures are artificially
injected, for different types of ordered delivery. Lines denote averages; error
bars indicate 5th and 95th percentiles.

136 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

4.6.3 Resilience to Network Unreliability

Cyber-physical systems are often employed in scenarios with significant
network unreliability, for example, due to external wireless interfer-
ence [LPLT10]. We evaluate the resilience of Virtus to these scenarios
by injecting artificial message loss.

Scenario. On Twist, we use 45 nodes as senders and 10 as receivers. We
make all 90 nodes randomly discard between 1 % and 5 % of messages in
data and ack slots, in 1 % steps. Similar scenarios are very challenging; say
every node in a 4-hop route drops 5 % of messages: a simple best-effort
protocol would yield only about 81 % of the messages at a single receiver.
Similar settings are extremely unlikely to occur in real deployments.
Nevertheless, they are useful to understand the behavior of Virtus with
respect to network reliability. All other settings are as in Section 4.6.2.

Results. Figure 4.15 shows that LWB’s per-receiver and system-wide
data yield increasingly suffer as the network becomes less reliable, due
to its best-effort operation and lack of retransmissions. When every
node discards 5 % of data messages, for example, each receiver delivers
on average 94.54 % of data messages, but only 58 % of data messages
are delivered by all 10 receivers. Atomic multicast in Virtus instead
provides 100 % per-receiver and system-wide data yield across the board.
In addition, it guarantees total ordering even in this challenging setting.

The cost for this performance is illustrated in Figure 4.16(a) and
Figure 4.16(b), showing data latency and radio duty cycle as the network
becomes less reliable. With LWB, both metrics are largely independent
of network reliability: only one slot is allocated for each data message
regardless of how many receivers successfully receive it. In Virtus, these
figures increase as the network is less reliable, because more slots for data
and ack messages are allocated—possibly across multiple rounds—before
the receivers finally deliver.

Particularly, Figure 4.16(a) shows that data latency grows significantly.
However, these values are within tolerance of most CPS applications,
whose dynamics often follow slowly-changing environmental phenom-
ena (e.g., temperature), and control loops run with periods of several
minutes [SLMR05, CCD+11, KLS+10, BvKH+11, Sch12]. Nevertheless, we
note that this high data latency in Virtus is also due to the fact that the
round period is set to T = 10 s in these experiments. By using smaller
values for the round period T, and possibly adapting it at runtime as in
Section 3.3.1, we can further reduce data latency at the cost of increased
radio duty cycle. As for radio duty cycle in Figure 4.16(b), the performance
in absolute terms is again better than many multicast protocols for low-
power wireless that only provide best-effort operation [AY05].

4.6. Evaluation 137

By comparing different ordering policies in Figure 4.16, one notes
that the performance loss is higher when enforcing FIFO delivery, and in
particular system-wide FIFO. Indeed, the latter entails the allocation of
data slots for a message until all previously-generated messages have been
acknowledged by all receivers, which in turn delays message delivery.

4.6.4 Influence of Parameter Setting
A key parameter in Virtus is X: the number of rounds the host must not
hear from a view member to detect a crash. We now show that this value
significantly impacts the resulting view latency.

An illustrative example. We analyze a 1-hour run on FlockLabwith four
senders S1, S2, S3, and S4 generating one data message every 10 s, and
four receivers R1, R2, R3, and R4. We emulate node crashes and recoveries
by making them not communicate (i.e., crash) at a random instant and
then reboot (i.e., recover) with a random delay between 0 s and 600 s after
the crash. The round period T is 2 s; X is set to 10.

Figure 4.17(a) shows a 11-minute excerpt of the Virtus operation.
Nodes start with view 8 installed, and receivers deliver four data messages
every 10 s. At t = 57.4 s receiver R1 crashes; the non-faulty nodes install
view 9, whose set of receivers does not include R1, at t = 82 s, yielding
a view latency of 24.6 s. Figure 4.17(b) zooms into this time interval and
shows the contribution of X to this view latency.

〈1〉 From t = 57.4 s to t = 60 s: the host allocates no data or ack slots
at t = 58 s because the senders have no new messages to transmit.
Because of this, it can not detect the crash of R1. The length of
this stage thus depends on the interleaving of the node crash and
existing traffic. Indeed, the host can not detect the crash of a sender
or a receiver when no data or ack traffic is supposed to occur.

〈2〉 From t = 60 s to t = 80 s: the host allocates data and ack slots for
newly generated messages at t = 60 s, 62 s, . . . , but it receives no ack
messages from R1. Active receivers R2, R3, and R4 buffer received
data messages. The length of this stage is X×T: 20 s in this example.

〈3〉 From t = 80 s to t = 82 s: the host detects at the end of the round
starting at t = 80 s that it received no ack messages from R1 for more
than X = 10 rounds (6 in the figure). As a result, it updates the
view by removing R1 and starts distributing it in the next round.
Non-faulty members receive and install the new view already at
t = 82 s. Active receivers can finally deliver buffered data messages.
The length of this stage thus depends on the round period T and on
when nodes successfully receive the new view.

138 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

0 100 200 300 400 500 600

R4

R3

R2

R1

S4

S3

S2

S1

 V.id: 8 9 10 11 12 13 14 15 16 17 1819

Time [s]

Node crash

Node recovery

(a) Views installed (colored backgrounds, and corresponding identifiers on top) and
goodput at the receivers in data messages delivered per round (black bars) when four
senders and four receivers randomly crash and recover.

40 50 60 70 80 90

R2

R1

S4

Time [s]

1. 2. 3.

(b) Breakdown of view latency after the crash of a receiver.

Figure 4.17: Virtus operation across view changes. Symbol t denotes a node
crash; symbol s denotes a node recovery.

4.6. Evaluation 139

0 % communication failures, 10 % communication failures,
25 node crashes 0 node crashes

X View latency Radio duty cycle False positives Radio duty cycle

1 20.64 s 2.18 % 59 3.42 %
2 21.58 s 2.22 % 8 3.22 %
3 21.80 s 2.27 % 1 3.06 %
4 22.49 s 2.27 % 0 3.07 %
10 39.34 s 2.51 % 0 3.04 %
20 56.35 s 2.95 % 0 3.10 %

Table 4.2: Impact of threshold X on Virtus performance.

After nodes install view 9, senders S2, S3, and S4 crash one after the
other. As shown in Figure 4.17(a), these events cause active receivers to
deliver less data messages after each crash. The following view changes
occur with latencies between 30 s and 32 s, due to executions similar to
the one above. As expected, within each view all active receivers deliver
the same amount of messages. This confirms that our Virtus prototype
satisfies the virtual synchrony properties discussed in Section 4.3.4, as we
also empirically verify after every experiment.

Setting parameter X. The example shows that the most critical stage is 〈2〉,
the one directly affected by parameter X. Finding a suitable value for X
entails exploring a critical trade-off. A small X allows the host to rapidly
detect node crashes and update the view; if X is too small, however, it may
mistake message loss for crashes and trigger unnecessary view changes.

To understand this trade-off, we run 1-hour experiments on FlockLab
with 24 senders, generating one data message every 30 s, and 5 receivers.
The round period is fixed to T = 2 s. In one series of experiments, we
emulate the crash of 25 view members and inject no artificial message
loss. In another series of experiments, nodes do not crash but discard
10 % of data and ack messages. In both cases, we vary X between 1 and
20 across different experiments.

Table 4.2 reports the results. The left columns in the table confirm
that a larger value of X causes a higher view latency, because the host
awaits more rounds before removing a crashed node from the view. The
additional data slots unnecessarily allocated to a crashed node also cause
the radio duty cycle to increase with X. However, the right columns show
that with severe network unreliability a low value of X may lead to false
positives, causing unnecessary view changes. The radio duty cycle also
increases when X is too small, as nodes that are wrongly removed from a
view need to re-send requests to join during req slots.

The default value X = 10 in our prototype is sufficiently high

140 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

to minimize the probability of false positives, while also providing
reasonable view latencies. Nevertheless, a user can fine-tune the value
of X according to the application requirements and the foreseeable
amount of message loss.

4.7 Related Work
Virtus bridges research efforts in two previously unrelated areas: virtual
synchrony and low-power wireless.

Virtual synchrony lies in a vein of research originated from seminal
work [PSL80] on distributed agreement. In similar cases, however, the
authors often consider a Byzantine environment, a failure model we do
not study. Different flavors and implementations of virtual synchrony
emerged over the years [BJ87], often to explore the trade-off between
provided guarantees and runtime overhead. Admittedly, our incarnation
almost corresponds to the “textbook” definition [Bir05], as we hope it
serves as a stepping stone for others. The work by Chockler et al. [CKV01],
who systematically survey group communication systems, helped us
relate our solutions to the existing literature.

In low-power wireless, solutions exist to provide communication
guarantees in specific application scenarios. For example, structural
health monitoring applications [CMP+09] often require guaranteed
message delivery from multiple sensors to a single data sink. Protocols
such as RCRT [PG07] and several ad-hoc solutions [CMP+09], for
instance, provide such functionality. Different from Virtus, however,
these protocols only support a many-to-one traffic pattern. This is a
mismatch against the sense-process-actuate cycles of CPS applications,
which generally require many-to-many coordination. In addition, these
protocols seldom provide any guarantee against node crashes. Low-
power multicast protocols [AY05, MP11], on the other hand, typically
provide only best-effort operation.

4.8 Summary
This chapter presented Virtus, a virtually-synchronous messaging layer
conceived for extremely resource-constrained devices. Virtus provides
atomic multicast and view management in CPS applications with a
combination of dedicated techniques that build on an existing best-
effort communication layer. We formally proved the correctness of such
techniques and used extensive real-world experiments to assess their

4.A. Delivery between Successive Stable Rounds 141

limited performance overhead compared with best-effort operation.
The value of Virtus lies in opening to cyber-physical systems a vast

and established literature on dependable distributed systems that builds
upon virtual synchrony or variations thereof. We maintain that this will
increase the dependability of CPS applications to an extent that is not
achievable without relying on such sound conceptual basis.

4.A Delivery between Successive Stable Rounds
We compute here the set of messages delivered by receiver R during
round ρ, after it receives schedule Kρ and view Vρ. To this end, we first
combine (4.7) and (4.9):

DR
ρ =

[
BR
ρ−1 \

[
(Kr′ \ (Ar′ ∪ Cr′)) ∪

(
Fr′+1 ∪ · · · ∪ Fρ

)]]
∩ Sρ

Because R does not execute in rounds r =
{
r′ + 1, . . . , ρ − 1

}
(see also

Figure 4.12), the set of data messages in its buffer between the end of
round r′ and the end of round ρ − 1 does not change: BR

ρ−1 = BR
r′ . For

the same reason, before round ρ receiver R buffers no data messages
scheduled for the first time during rounds r =

{
r′ + 1, . . . , ρ

}
, thus

BR
r′ \ (Fr′+1 ∪ · · · ∪ Fρ) = ∅. Because the set of active senders does not

change between the end of two consecutive stable rounds r′ and r′′, we
also have that Sρ = Sr′+1. We can thus rewrite DR

ρ as:

DR
ρ =

[
BR

r′ \ [Kr′ \ (Ar′ ∪ Cr′)]
]
∩ Sr′+1

=
[(

(Ar′ ∪ Cr′) ∩ BR
r′

)
∪

(
BR

r′ \ Kr′
)]
∩ Sr′+1

Based on Lemma 1 and knowing that receiver R executes during stable
round r′, BR

r′ ⊆ Kr′ . As a result, BR
r′ \ Kr′ = ∅, and DR

ρ reduces to:

DR
ρ =

[
(Ar′ ∪ Cr′) ∩ BR

r′

]
∩ Sr′+1

= [(Ar′ ∩ Sr′+1) ∪ (Cr′ ∩ Sr′+1)] ∩ BR
r′

However, Ar′ ∩ Sr′+1 = Ar′ , because all messages in Ar′ are from senders
that are members during round r′+ 1. By contrast, Cr′ ∩Sr′+1 = ∅, because
all messages in Cr′ are from senders that crashed by round r′ and that are
not members during r′ + 1. As a result, we can further simplify DR

ρ to:

DR
ρ = Ar′ ∩ BR

r′

According to (4.2), for stable round r′ we have that Ar′ ⊆ BR
r′ , thus we can

finally write the result in (4.11):

DR
ρ = Ar′

142 Chapter 4. Virtus: A Wireless Bus with Virtual Synchrony Guarantees

5
Conclusions and Outlook

Cyber-physical systems (CPSs) employ embedded computers and
networks that monitor and control physical processes, usually with
feedback loops where physical phenomena affect computation and
vice versa. Examples of potential cyber-physical systems are systems
for assisted living to assist and improve the quality of life of seniors living
alone, networked building control systems (such as HVAC and lighting)
to improve energy efficiency and demand variability, and systems to
protect and improve critical infrastructures.

In order to realize such systems, CPS designers need to face
several challenges related to the safety-critical nature of most envisioned
applications. In particular, designers need to ensure that deployed
systems operate dependably yet efficiently. However, existing low-power
wireless communication protocols typically operate in a best-effort
manner and do not provide guarantees (e.g., on message delivery
orderings) necessary to apply to cyber-physical systems established
concepts for the design and validation of dependable distributed systems.

5.1 Contributions
In this thesis, we argued that it is possible to enable dependable
communication in cyber-physical systems without sacrificing efficiency
by employing a wireless bus—a time-triggered communication infras-
tructure for multi-hop low-power wireless networks similar to a shared
bus. To support our argument, we implemented three main building
blocks contributing towards a dependable wireless bus.

144 Chapter 5. Conclusions and Outlook

Glossy. We first designed Glossy, a novel architecture that provides fast
and highly reliable one-to-all communication combined with accurate
global time synchronization in multi-hop low-power wireless networks.
Glossy achieves this by leveraging synchronous transmissions of the same
packet and exploiting constructive interference of multiple baseband
signals, while not requiring nodes to know the multi-hop network
topology. Its innovative design has also served to foster the development
of several new communication protocols by independent authors in the
sensor network community.

Low-Power Wireless Bus (LWB). We then developed LWB, an
efficient and versatile wireless bus. By using only Glossy floods for
communication and employing a time-triggered, centralized operation,
LWB turns a multi-hop wireless network into an infrastructure similar
to a shared bus where all nodes are potential receivers of all data. LWB
enables one-to-many, many-to-one, and many-to-many communication
with a performance similar or significantly better than state-of-the-art
solutions, ensures fair bandwidth allocation, supports traffic loads and
network topologies varying over time, retains its efficiency when mobile
nodes roam around a static infrastructure.

Virtus. Finally, we extended LWB’s best-effort operation to implement
Virtus, a wireless bus that provides virtual synchrony guarantees. By
employing an atomic multicast service and view management service,
Virtus guarantees that the same set of messages are delivered in the
same order at all non-faulty nodes of a low-power wireless network. This
allows to apply to cyber-physical systems well-established fault tolerance
methods based on replication techniques. To the best of our knowledge,
Virtus is the first protocol that provides formally-proven ordered message
delivery atop similarly resource-constrained hardware.

5.2 Possible Future Directions

We maintain that the building blocks implemented in this thesis may
provide the stepping stones necessary to bridging the current gap between
cyber-physical systems and concepts from the dependable distributed
systems literature. Nevertheless, our work can be extended along several
directions to broaden the spectrum of CPS applications that can benefit
from communication protocols with delivery guarantees. We identify
four major scenarios that in our opinion deserve further investigation:
real-time systems, heterogenous wireless networks, large-scale networks,
and highly-mobile networks.

5.2. Possible Future Directions 145

Real-time systems. Several cyber-physical systems require timely
message delivery [SLMR05]. In these real-time systems, data streams
are associated with deadlines (i.e., strict time constraints), and a
communication protocol must guarantee that all data are delivered within
given deadlines. We believe that the time-triggered operation employed
by a wireless bus, which mimics existing architectures for distributed
real-time control applications [Kop11], provides the support required to
enable real-time communication in cyber-physical systems. Apposite
scheduling strategies can also be developed, possibly leveraging existing
algorithms for hard real-time computing systems [But11].

Heterogeneous wireless networks. For all protocols presented in this
thesis, we implemented prototypes targeting TelosB devices compliant
with the IEEE 802.15.4 standard. However, other types of platforms and
wireless communication standards, such as cellphones and Wi-Fi, may
be more suitable, for example, for CPS applications where humans are
directly involved in the loop. We believe that our building blocks have
the potential to enable dependable communication also in heterogeneous
wireless networks, provided that the underlying mechanisms leveraged
by our protocols are ported to different wireless embedded platforms.

Large-scale networks. Our solutions can also be extended to support
large-scale networks involving hundreds or thousands of nodes. For
example, hierarchies of buses could effectively be employed in smart
cities where physical phenomena are monitored and controlled in order
to optimize public costs or improve the quality of living [NBH+11]. In
such scenarios, clusters of closely-located devices can form multiple low-
level wireless buses, while several nodes from each cluster can connect
also to a high-level wireless bus to exchange data among clusters.

Highly-mobile networks. Certain CPS applications, such as systems
for traffic control and safety, are highly mobile in nature. Although
all the protocols presented in this thesis inherently support mobile
nodes, their operation is not optimized for networks that continuously
partition and merge as a result of mobility. To achieve the desired trade-
off between energy efficiency and responsiveness to rapidly-changing
network topologies, these types of scenarios require dedicated solutions
that we believe can be integrated into our existing protocols.

146 Chapter 5. Conclusions and Outlook

Bibliography

[ABN08] B. C. Arnold, N. Balakrishnan, and H. Nagaraja. A First Course in
Order Statistics. SIAM, 2008.

[ADB+04] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman,
S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita. A line in the sand: A wireless sensor network
for target detection, classification, and tracking. Elsevier Computer
Networks, 46(5), 2004.

[Atm] Atmel. AT86RF230 datasheet. http://www.atmel.com/Images/
doc5131.pdf.

[AY05] K. Akkaya and M. Younis. A survey on routing protocols for
wireless sensor networks. Elsevier Ad Hoc Networks, 3(3), 2005.

[BEP+06] J. Burke, D. Estrin, A. Parker, N. Ramanathan, S. Reddy, and M. B.
Srivastava. Participatory sensing. In Proceedings of the 1st Workshop
on World-Sensor-Web (WSW), 2006.

[BGH+09] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi,
L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel. PermaDAQ: A
scientific instrument for precision sensing and data recovery under
extreme conditions. In Proceedings of the 8th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2009.

[Bir05] K. P. Birman. Reliable Distributed Systems: Technologies, Web Services,
and Applications. Springer, 2005.

[BIS+08] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach,
and M. Parlange. SensorScope: Out-of-the-box environmental
monitoring. In Proceedings of the 7th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2008.

[BJ87] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in
distributed systems. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles (SOSP), 1987.

[But11] G. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer, 2011.

http://www.atmel.com/Images/doc5131.pdf
http://www.atmel.com/Images/doc5131.pdf

148 Bibliography

[BvKH+11] D. J. A. Bijwaard, W. A. P. van Kleunen, P. J. M. Havinga, L. Kleiboer,
and M. J. J. Bijl. Industry: Using dynamic WSNs in smart logistics
for fruits and pharmacy. In Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2011.

[BvRW07] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-
low power data gathering in sensor networks. In Proceedings of the
6th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2007.

[CCD+11] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin,
Ş. Gună, G. P. Jesi, R. Lo Cigno, L. Mottola, A. L. Murphy,
M. Pescalli, G. P. Picco, D. Pregnolato, and C. Torghele. Is there light
at the ends of the tunnel? Wireless sensor networks for adaptive
lighting in road tunnels. In Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), 2011.

[CCT+13] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali.
Forwarder selection in multi-transmitter networks. In Proceedings
of the 9th IEEE International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2013.

[Chu87] J. C.-I. Chuang. The effects of time delay spread on portable radio
communications channels with digital modulation. IEEE Journal on
Selected Areas in Communications, 5(5), 1987.

[CKJL09] J. I. Choi, M. A. Kazandjieva, M. Jain, and P. Levis. The case for
a network protocol isolation layer. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2009.

[CKV01] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication
specifications: A comprehensive study. ACM Computing Surveys
(CSUR), 33(4), 2001.

[CLBR10] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman. Reliable clinical
monitoring using wireless sensor networks: Experiences in a step-
down hospital unit. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2010.

[CMP+09] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, Ş. Gună, M. Corrà,
M. Pozzi, D. Zonta, and P. Zanon. Monitoring heritage buildings
with wireless sensor networks: The Torre Aquila deployment.
In Proceedings of the 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2009.

[CONa] CONET integrated testbed. https://conet.us.es/cms/.

[Conb] Contiki operating system. http://www.contiki-os.org/.

https://conet.us.es/cms/
http://www.contiki-os.org/

Bibliography 149

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2), 1996.

[DBK+07] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin,
and P. Blum. Deployment support network: A toolkit for the
development of WSNs. In Proceedings of the 4th European Conference
on Wireless Sensor Networks (EWSN), 2007.

[DC08] P. Dutta and D. Culler. Practical asynchronous neighbor discovery
and rendezvous for mobile sensing applications. In Proceedings
of the 6th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2008.

[DC09] P. Dutta and D. Culler. Mobility changes everything in low-power
wireless sensornets. In Proceedings of the 12th USENIX Workshop on
Hot Topics in Operating Systems (HotOS XII), 2009.

[DCL13] M. Doddavenkatappa, M. C. Chan, and B. Leong. Splash: Fast
data dissemination with constructive interference in wireless sensor
networks. In Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2013.

[DDHC+10] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated
link layer for low-power wireless. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2010.

[DEM+10] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo,
B. Pásztor, S. Scellato, N. Trigoni, R. Wohlers, and K. Yousef.
Evolution and sustainability of a wildlife monitoring sensor
network. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2010.

[DG80] D. H. Davis and S. A. Gronemeyer. Performance of slotted ALOHA
random access with delay capture and randomized time of arrival.
IEEE Transactions on Communications, 28(5), 1980.

[DGV04] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - A lightweight and
flexible operating system for tiny networked sensors. In Proceedings
of the 1st IEEE Workshop on Embedded Networked Sensors (EmNetS-I),
2004.

[DIM97] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing
leader election. IEEE Transactions on Parallel and Distributed Systems,
8(4), 1997.

[DMEST08] P. Dutta, R. Musăloiu-E., I. Stoica, and A. Terzis. Wireless ACK
collisions not considered harmful. In Proceedings of the 7th ACM
Workshop on Hot Topics in Networks (HotNets-VII), 2008.

150 Bibliography

[DMT+11] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, and
N. Finne. The announcement layer: Beacon coordination for the
sensornet stack. In Proceedings of the 8th European Conference on
Wireless Sensor Networks (EWSN), 2011.

[DSGS09] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. SMACK - A SMart
ACKnowledgment scheme for broadcast messages in wireless
networks. In Proceedings of the ACM SIGCOMM Conference, 2009.

[EAR+06] E. Ertin, A. Arora, R. Ramnath, V. Naik, S. Bapat, V. Kulathumani,
M. Sridharan, H. Zhang, H. Cao, and M. Nesterenko. Kansei: A
testbed for sensing at scale. In Proceedings of the 5th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN), 2006.

[ET90] A. Ephremides and T. V. Truong. Scheduling broadcasts in multihop
radio networks. IEEE Transactions on Communications, 38(4), 1990.

[FW10] R. Flury and R. Wattenhofer. Slotted programming for sensor
networks. In Proceedings of the 9th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), 2010.

[GFJ+09] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2009.

[GLJ11] A. Gonga, O. Landsiedel, and M. Johansson. MobiSense: Power-
efficient micro-mobility in wireless sensor networks. In Proceedings
of the 7th IEEE International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2011.

[HC04] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the 2nd ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[HKWW06] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST: A
scalable and reconfigurable testbed for wireless indoor experiments
with sensor networks. In Proceedings of the 2nd ACM International
Workshop on Multi-hop Ad Hoc Networks (REALMAN), 2006.

[HV13] K. Hewage and T. Voigt. Poster abstract: Towards TCP
communication with the Low-Power Wireless Bus. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2013. To appear.

[IEE03] IEEE Standards Association. Std. 802.15.4-2003. http:

//standards.ieee.org/getieee802/download/802.15.4-2003.

pdf, 2003.

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

Bibliography 151

[JCH84] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative measure
of fairness and discrimination for resource allocation in shared
computer systems. Technical Report 301, DEC, 1984.

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: The
Mars approach. IEEE Micro, 9(1), 1989.

[KG93] H. Kopetz and G. Grünsteidl. TTP - A time-triggered protocol
for fault-tolerant real-time systems. In Proceedings of the 23rd
International Symposium on Fault-Tolerant Computing (FTCS-23),
1993.

[KGK07] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless
interference: Analog network coding. In Proceedings of the ACM
SIGCOMM Conference, 2007.

[KKP99] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking for “smart dust”. In Proceedings
of the 5th ACM/IEEE International Conference on Mobile Computing
and Networking (MobiCom), 1999.

[KLS+10] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and
M. Welsh. Wireless sensor networks for healthcare. Proceedings
of the IEEE, 98(11), 2010.

[KLW+09] B. Kusy, H. Lee, M. Wicke, N. Milosavljevic, and L. Guibas.
Predictive QoS routing to mobile sinks in wireless sensor networks.
In Proceedings of the 8th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2009.

[Kop11] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Springer, 2011.

[KPC+07] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless
sensor networks. In Proceedings of the 6th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2007.

[KPD13] Y.-S. Kuo, P. Pannuto, and P. Dutta. Demo abstract: Floodcasting,
a data dissemination service supporting real-time actuation and
control. In Proceeding of the 11th ACM International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2013.

[KPSD12] Y.-S. Kuo, P. Pannuto, T. Schmid, and P. Dutta. Reconfiguring
the software radio to improve power, price, and portability. In
Proceedings of the 10th ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2012.

152 Bibliography

[KWL+11] M. Keller, M. Woehrle, R. Lim, J. Beutel, and L. Thiele. Comparative
performance analysis of the PermaDozer protocol in diverse
deployments. In Proceedings of the 6th International Workshop on
Practical Issues in Building Sensor Network Applications (SenseApp),
2011.

[Lan08] K. Langendoen. Medium access control in wireless sensor
networks. In Medium Access Control in Wireless Networks. Nova
Science Publishers, 2008.

[LBL+13] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto,
P. Dutta, D. Sylvester, and D. Blaauw. A modular 1 mm3 die-stacked
sensing platform with low power I2C inter-die communication and
multi-modal energy harvesting. IEEE Journal of Solid-State Circuits,
48(1), 2013.

[Lee08] E. A. Lee. Cyber physical systems: Design challenges. In Proceedings
of the 11th IEEE Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008.

[Lee09] E. A. Lee. Computing needs time. Communications of the ACM
(CACM), 52(5), 2009.

[LF76] K. Leentvaar and J. H. Flint. The capture effect in FM receivers.
IEEE Transactions on Communications, 24(5), 1976.

[LFZ13a] O. Landsiedel, F. Ferrari, and M. Zimmerling. Capture at scale:
Ultra-fast wireless all-to-all communication. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems (SenSys),
2013. To appear.

[LFZ+13b] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. FlockLab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems. In Proceedings of the
12th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2013.

[LKA+10] J. W. Lee, B. Kusy, T. Azim, B. Shihada, and P. Levis. Whirlpool
routing for mobility. In Proceedings of the 11th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
2010.

[LL08] K. Lin and P. Levis. Data discovery and dissemination with
DIP. In Proceedings of the 7th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), 2008.

[LLL+09] C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. RACNet:
A high-fidelity data center sensing network. In Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems (SenSys),
2009.

Bibliography 153

[LPCS04] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks. In Proceedings of the 1st USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2004.

[LPLT10] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis. Surviving Wi-
Fi interference in low power ZigBee networks. In Proceedings of the
8th ACM Conference on Embedded Networked Sensor Systems (SenSys),
2010.

[LSW09] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal clock
synchronization in networks. In Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2009.

[LW09] J. Lu and K. Whitehouse. Flash flooding: Exploiting the capture
effect for rapid flooding in wireless sensor networks. In Proceedings
of the 28th IEEE International Conference on Computer Communications
(INFOCOM), 2009.

[LWHS02] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed. Detection,
classification, and tracking of targets. IEEE Signal Processing
Magazine, 19(2), 2002.

[Mar04] M. Maróti. Directed flood-routing framework for wireless sensor
networks. In Proceedings of the 5th ACM/IFIP/USENIX International
Conference on Middleware (Middleware), 2004.

[MCP+02] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson.
Wireless sensor networks for habitat monitoring. In Proceedings of
the 1st ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2002.

[MKSL04] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding time
synchronization protocol. In Proceedings of the 2nd ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2004.

[MP11] L. Mottola and G. P. Picco. MUSTER: Adaptive energy-aware multi-
sink routing in wireless sensor networks. IEEE Transactions on
Mobile Computing, 10(12), 2011.

[MSKG10] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali.
Routing without routes: The backpressure collection protocol.
In Proceedings of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2010.

[MT06] R. Makowitz and C. Temple. Flexray - A communication network
for automotive control systems. In Proceedings of the 7th IEEE
International Workshop on Factory Communication Systems (WFCS),
2006.

154 Bibliography

[NBH+11] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris.
Smarter cities and their innovation challenges. IEEE Computer,
44(6), 2011.

[NTCS99] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast
storm problem in a mobile ad hoc network. In Proceedings of
the 5th ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), 1999.

[PG07] J. Paek and R. Govindan. RCRT: Rate-controlled reliable transport
for wireless sensor networks. In Proceedings of the 5th ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2007.

[PGZM12] D. Puccinelli, S. Giordano, M. Zuniga, and P. J. Marrón. Broadcast-
free collection protocol. In Proceedings of the 10th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2012.

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proceedings of the 2nd ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2004.

[PSC05] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proceedings of the 4th ACM/IEEE
International Symposium on Information Processing in Sensor Networks
(IPSN), 2005.

[PSL80] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in
the presence of faults. Journal of the ACM (JACM), 27(2), 1980.

[PSLN+12] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam.
Closing the loop: A simple distributed method for control over
wireless networks. In Proceedings of the 11th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2012.

[RLSS10] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical
systems: The next computing revolution. In Proceedings of the 47th
ACM/IEEE Design Automation Conference (DAC), 2010.

[Rus01] J. M. Rushby. Bus architectures for safety-critical embedded
systems. In Proceedings of the 1st International Workshop on Embedded
Software (EMSOFT), 2001.

[RWAM05] I. Rhee, A. Warrier, M. Aia, and J. Min. Z-MAC: A hybrid MAC for
wireless sensor networks. In Proceedings of the 3rd ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2005.

[RWMX06] I. Rhee, A. Warrier, J. Min, and L. Xu. DRAND: Distributed
randomized TDMA scheduling for wireless ad-hoc networks. In
Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2006.

Bibliography 155

[RZS+08] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. Harris, III,
and M. Zorzi. SYNAPSE: A network reprogramming protocol for
wireless sensor networks using fountain codes. In Proceedings of the
5th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), 2008.

[SAM03] Y. Sankarasubramaniam, I. F. Akyildiz, and S. W. McLaughlin.
Energy efficiency based packet size optimization in wireless sensor
networks. In Proceedings of the 1st IEEE International Workshop on
Sensor Network Protocols and Applications (SNPA), 2003.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4), 1990.

[Sch09] T. Schmid. Time in Wireless Embedded Systems. PhD thesis, University
of California, Los Angeles (UCLA), 2009.

[Sch12] J. Schlick. Cyber-physical systems in factory automation - Towards
the 4th industrial revolution. In Proceedings of the 9th IEEE
International Workshop on Factory Communication Systems (WFCS),
2012.

[SDS10] T. Schmid, P. Dutta, and M. B. Srivastava. High-resolution, low-
power time synchronization an oxymoron no more. In Proceedings
of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), 2010.

[SDTL10] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An empirical
study of low-power wireless. ACM Transactions on Sensor Networks
(TOSN), 6(2), 2010.

[SGE06] T. Schoellhammer, B. Greenstein, and D. Estrin. Hyper: A routing
protocol to support mobile users of sensor networks. Technical
Report 2013, CENS, 2006.

[SHM+08] J. Song, S. Han, A. K. Mok, D. Chen, M. Lucas, M. Nixon, and
W. Pratt. WirelessHART: Applying wireless technology in real-time
industrial process control. In Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2008.

[SHSM06] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza. RBP: Robust
broadcast propagation in wireless networks. In Proceedings of the
4th ACM Conference on Embedded Networked Sensor Systems (SenSys),
2006.

[SLMR05] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar. Opportunities and
obligations for physical computing systems. Computer, 38, 2005.

156 Bibliography

[SMSM06] B. Sirkeci-Mergen, A. Scaglione, and G. Mergen. Asymptotic
analysis of multistage cooperative broadcast in wireless networks.
IEEE Transactions on Information Theory, 52(6), 2006.

[Sta08] J. A. Stankovic. When sensor and actuator networks cover the
world. ETRI Journal, 30(5), 2008.

[SXLC10] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-time scheduling for
WirelessHART networks. In Proceedings of the 31st IEEE Real-Time
Systems Symposium (RTSS), 2010.

[SZHT07] A. Swami, Q. Zhao, Y.-W. Hong, and L. Tong. Wireless Sensor
Networks: Signal Processing and Communications. Wiley, 2007.

[TC05] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In Proceedings
of the 2nd European Workshop on Wireless Sensor Networks (EWSN),
2005.

[Texa] Texas Instruments. CC1101 datasheet. http://www.ti.com/lit/
ds/symlink/cc1101.pdf.

[Texb] Texas Instruments. CC2420 datasheet. http://www.ti.com/lit/
ds/symlink/cc2420.pdf.

[Texc] Texas Instruments. CC2520 datasheet. http://www.ti.com/lit/
ds/symlink/cc2520.pdf.

[Texd] Texas Instruments. CC430 datasheet. http://www.ti.com/lit/
ds/symlink/cc430f5137.pdf.

[Texe] Texas Instruments. MSP430F1611 datasheet. http://www.ti.com/
lit/ds/symlink/msp430f1611.pdf.

[TPS+05] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong.
A macroscope in the redwoods. In Proceedings of the 3rd ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[VVV07] Z. Vincze, R. Vida, and A. Vidács. Deploying multiple sinks in
multi-hop wireless sensor networks. In Proceedings of the IEEE
International Conference on Pervasive Services (ICPS), 2007.

[WALJ+06] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In
Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2006.

[WASW05] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A
wireless sensor network testbed. In Proceedings of the 4th ACM/IEEE

http://www.ti.com/lit/ds/symlink/cc1101.pdf
http://www.ti.com/lit/ds/symlink/cc1101.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2520.pdf
http://www.ti.com/lit/ds/symlink/cc2520.pdf
http://www.ti.com/lit/ds/symlink/cc430f5137.pdf
http://www.ti.com/lit/ds/symlink/cc430f5137.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

Bibliography 157

International Symposium on Information Processing in Sensor Networks
(IPSN), 2005.

[WC02] B. Williams and T. Camp. Comparison of broadcasting techniques
for mobile ad hoc networks. In Proceedings of the 3rd ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2002.

[WCB01] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for
well-conditioned, scalable internet services. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP), 2001.

[WCL+07] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and
P. Levis. Visibility: A new metric for protocol design. In Proceedings
of the 5th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2007.

[WHC+13] Y. Wang, Y. He, D. Cheng, Y. Liu, and X.-y. Li. Triggercast: Enabling
wireless constructive collisions. In Proceedings of the 32nd IEEE
International Conference on Computer Communications (INFOCOM),
2013.

[YI85] S. Yoshida and F. Ikegami. A comparison of multipath distortion
characteristics among digital modulation techniques. IEEE
Transactions on Vehicular Technology, 34(3), 1985.

[YZLZ05] F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient broadcast: A
robust data delivery protocol for large scale sensor networks. ACM
Wireless Networks (WINET), 11(3), 2005.

[ZF06] Y. Zhang and M. Fromherz. Constrained flooding: A robust
and efficient routing framework for wireless sensor networks. In
Proceedings of the 20th IEEE International Conference on Advanced
Information Networking and Applications (AINA), 2006.

[ZFL+13] M. Zimmerling, F. Ferrari, R. Lim, O. Saukh, F. Sutton, R. Da Forno,
R. S. Schmidt, and M. A. Wyss. Poster abstract: A reliable wireless
nurse call system: Overview and pilot results from a summer camp
for teenagers with Duchenne muscular dystrophy. In Proceedings
of the 11th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2013. To appear.

[ZFM+12] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele.
pTunes: Runtime parameter adaptation for low-power MAC
protocols. In Proceedings of the 11th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), 2012.

[ZFMT13] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. On
modeling low-power wireless protocols based on synchronous

158 Bibliography

packet transmissions. In Proceedings of the 21st IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2013.

[ZG03] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In Proceedings of the
1st ACM Conference on Embedded Networked Sensor Systems (SenSys),
2003.

[ZZHZ10] T. Zhu, Z. Zhong, T. He, and Z.-L. Zhang. Exploring link correlation
for efficient flooding in wireless sensor networks. In Proceedings
of the 7th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2010.

List of Publications

The following list includes publications that form the basis of this thesis.
The corresponding chapters are indicated in parentheses.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In Proceedings of the
10th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). Chicago, IL, USA, April 2011. Best paper award.
(Chapter 2)

F. Ferrari, M. Zimmerling, L. Thiele, and L. Mottola. The bus
goes wireless: Routing-free data collection with QoS guarantees in
sensor networks. In Proceedings of the 4th International Workshop on
Information Quality and Quality of Service for Pervasive Computing (IQ2S,
in conjunction with IEEE PerCom). Lugano, Switzerland, March 2012.
(Chapter 3)

F. Ferrari, M. Zimmerling, L. Thiele, and L. Mottola. Poster abstract:
The low-power wireless bus: Simplicity is (again) the soul of efficiency.
In Proceedings of the 11th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN). Beijing, China, April 2012.
(Chapter 3)

F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power
wireless bus. In Proceedings of the 10th ACM Conference on Embedded
Networked Sensor Systems (SenSys). Toronto, Canada, November 2012.
(Chapter 3)

F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Virtual synchrony
guarantees for cyber-physical systems. In Proceedings of the 32nd IEEE
International Symposium on Reliable Distributed Systems (SRDS). Braga,
Portugal, October 2013. (Chapter 4)

160 List of Publications

The following list includes publications that are not part of this thesis.

F. Ferrari, A. Meier, and L. Thiele. Accurate clock models for simulating
wireless sensor networks. In Proceedings of the 3rd International Workshop
on OMNeT++ (OMNeT++ Workshop, in conjunction with SIMUTools).
Malaga, Spain, March 2010.

F. Ferrari, A. Meier, and L. Thiele. Secondis: An adaptive dissemination
protocol for synchronizing wireless sensor networks. In Proceedings of
the 7th IEEE Conference on Sensor Mesh and Ad Hoc Communications and
Networks (SECON). Boston, MA, USA, June 2010.

M. Zimmerling, F. Ferrari, M. Woehrle, and L. Thiele. Poster abstract:
Exploiting protocol models for generating feasible communication
stack configurations. In Proceedings of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). Stockholm,
Sweden, April 2010.

J. Beutel, B. Buchli, F. Ferrari, M. Keller, L. Thiele, and M. Zimmerling.
X-Sense: Sensing in extreme environments. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE). Grenoble,
France, March 2011. Invited paper.

M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. pTunes:
Runtime parameter adaptation for low-power MAC protocols. In
Proceedings of the 11th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN). Beijing, China, April 2012.
Best paper runner-up.

O. Landsiedel, F. Ferrari, and M. Zimmerling. Poster abstract:
Capture effect-based communication primitives. In Proceedings of the
10th ACM Conference on Embedded Networked Sensor Systems (SenSys).
Toronto, Canada, November 2012. Best poster award.

R. Lim, C. Walser, F. Ferrari, M. Zimmerling, and J. Beutel. Demo
abstract: Distributed and synchronized measurements with FlockLab.
In Proceedings of the 10th ACM Conference on Embedded Networked Sensor
Systems (SenSys). Toronto, Canada, November 2012.

161

R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel.
FlockLab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems. In Proceedings of the 12th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN).
Philadelphia, PA, USA, April 2013.

M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. On modeling low-
power wireless protocols based on synchronous packet transmissions.
In Proceedings of the 21st IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS).
San Francisco, CA, USA, August 2013.

O. Landsiedel, F. Ferrari, and M. Zimmerling. Chaos: Versatile
and efficient all-to-all data sharing and in-network processing at scale.
In Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems (SenSys). Rome, Italy, November 2013. Best paper award.

M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. Poster abstract:
Synchronous packet transmissions enable simple yet accurate protocol
modeling. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems (SenSys). Rome, Italy, November 2013.

M. Zimmerling, F. Ferrari, R. Lim, O. Saukh, F. Sutton, R. Da Forno,
R. S. Schmidt, and M. A. Wyss. Poster abstract: A reliable wireless
nurse call system: Overview and pilot results from a summer camp for
teenagers with Duchenne muscular dystrophy. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems (SenSys). Rome,
Italy, November 2013.

162 List of Publications

Curriculum Vitæ

Personal Data
Name Federico Ferrari

Date of Birth January 6, 1981

Citizenship Italian

Education
2008–2013 ETH Zurich

Computer Engineering and Networks Laboratory
Ph.D. under the supervision of Prof. Dr. Lothar Thiele

2006–2008 Università della Svizzera Italiana
Advanced Learning and Research Institute (ALaRI)
M.Sc. in Embedded Systems Design

1999–2003 Università di Bologna
B.Sc. in Electrical Engineering

1994–1999 Liceo Scientifico Leonardo da Vinci, Cerea
Secondary School with focus on Mathematics and Sciences

Professional Experience

2008–2013 ETH Zurich
Computer Engineering and Networks Laboratory
Research and teaching assistant

2005–2006 Università di Bologna
Microelectronics Research Group
Student intern

Honors and Awards
Nov. 2013 Best Paper Award at ACM SenSys 2013

Nov. 2012 Best Poster Award at ACM SenSys 2012

Apr. 2012 Best Paper Runner-up at ACM/IEEE IPSN 2012

Apr. 2011 Best Paper Award at ACM/IEEE IPSN 2011

	Abstract
	Sommario
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges in Low-Power Wireless
	Existing Communication Support
	Taking a Different Stand with a Wireless Bus

	Glossy: Efficient Network Flooding and Time Synchronization
	Synchronous Transmissions
	Glossy Overview
	Glossy in Detail
	Implementation
	Theoretical Analysis
	Experimental Evaluation
	Related Work
	Summary

	Low-Power Wireless Bus (LWB): A Versatile Wireless Bus
	Overview
	Protocol Operation
	Scheduler
	Evaluation Methodology
	Bootstrapping
	Many-to-One Communication
	Many-to-Many Communication
	Topology Changes
	Mobility
	Discussion
	Related Work
	Summary

	Virtus: A Wireless Bus with Virtual Synchrony Guarantees
	System Model
	LWB as the Communication Support
	Building Up to Virtual Synchrony
	FIFO Delivery
	Implementation
	Evaluation
	Related Work
	Summary
	Delivery between Successive Stable Rounds

	Conclusions and Outlook
	Contributions
	Possible Future Directions

	Bibliography
	List of Publications
	Curriculum Vitæ

