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Abstract

There are several thousand languages in the world and each language
has a multitude of dialects. State-of-the-art speech recognition tech-
nologies are however only available for a few of them because of the
lack of acoustic and textual resources which are necessary to build
these recognizers.

In this thesis we aim at the development of speech recognition tech-
nologies for languages with limited or no resources. For many applica-
tions such as the control of machines or home appliances by voice it
is not necessary to have a continuous speech recognizer with a large
vocabulary. It is then possible to resort to techniques which need only
very little language-specific resources.

In order to build isolated word recognizers for any language we
relied on speech recognition techniques with an utterance-based vocab-
ulary. In these techniques each word of the vocabulary is defined by
one or several sample utterances. This way of defining the vocabulary
is language-independent and has the further advantage that it can be
done by everybody since no expert knowledge is required.

To improve the recognition rate of speech recognition with an
utterance-based vocabulary we worked with two techniques: the first
one based on dynamic time warping in combination with specially
trained artificial neural networks and the second one based on hidden
Markov models with data-driven sub-word units.

With the availability of moderate resources from the target language
we were able to develop a recognizer technique which yielded compa-
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rable results to a state-of-the-art recognizer which requires in contrast
to our technique a pronunciation dictionary to build the word models.
When no resources of the target language were available and resources
from other languages than the target language had to be used instead,
the performance of state-of-the art recognition was not achievable with
the utterance-based recognizer techniques developed in this thesis. Yet,
in this case the developed approaches allowed to halve the error rate
of isolated word recognition with an utterance-based vocabulary com-
pared to a standard approach based on dynamic time warping using
the Euclidean distance measure.

We also applied the developed techniques to other applications such
as acoustic data mining. In this way it was possible to tackle these prob-
lems for speech signals of any lanuage since the developed techniques
do not require resources of the target lanuage.



Kurzfassung

Weltweit existieren einige Tausend Sprachen, und in jeder Sprache
werden viele verschiedene Dialekte gesprochen. Spracherkenner, wel-
che dem Stand der Technik entsprechen, stehen allerdings nur in den
wenigsten Sprachen zur Verfiigung, da zu ihrer Implementierung um-
fangreiche akustische und linguistische Ressourcen notwendig sind.

In dieser Arbeit haben wir Techniken entwickelt und getestet, welche
die Spracherkennung in Sprachen mit wenigen oder keinen Ressourcen
verbessern. Fiir viele Anwendungen, wie zum Beispiel die Steuerung von
Maschinen oder Haushaltsgeriten, ist es nicht nétig, einen kontinuier-
lichen Spracherkenner mit einem grossen Vokabular zur Verfiigung zu
stellen. Mit diesen gednderten Anforderungen werden Techniken, wel-
che keine sprachspezifischen Ressourcen bendtigen, méglich.

Um die Erkennung von isolierten Wortern in beliebigen Sprachen zu
ermoglichen, haben wir Techniken, die ein Vokabular verwenden, das
auf Musterdusserungen basiert, verbessert. Bei diesen Techniken wird
jedes zu erkennende Wort durch eine oder mehrere Musteréusserungen
definiert. Neben der Sprachunabhéngigkeit haben diese Techniken auch
den Vorteil, dass ein Vokabular von jedermann definiert werden kann,
da kein Expertenwissen notig ist.

Zur Verbesserung musterbasierter Spracherkennung haben wir grob
mit zwei Techniken gearbeitet: die erste basiert auf dynamischer Zeitan-
passung in Kombination mit speziell trainierten kiinstlichen neuronalen
Netzen, und die zweite basiert auf Hidden Markov Modellen mit spezi-
ellen Daten-motivierten Modellen.
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Wenn einige wenige Ressourcen der Zielsprache zur Verfiigung stan-
den, konnten wir mit den entwickelten Techniken Erkennungsraten
erreichen, welche jenen eines dem Stand der Technik entsprechen-
den, Ausspracheworterbuch-basierten Erkenners in nichts nachstehen,
auch wenn dieser mehr Ressourcen wie zum Beispiel ein Ausspra-
cheworterbuch benotigt. Falls gar keine Ressourcen in der Zielspra-
che zur Verfiigung standen und auf Ressourcen einer anderen Sprache
fiir das Training der Modelle zuriickgegriffen werden musste, konnten
die Erkennungsraten von Ausspracheworterbuch-basierten Erkennern
nicht erreicht werden. Die Fehlerraten welche wir mit unseren Erken-
nern erreichten, waren allerdings trotzdem nur halb so gross wie jene
von konventionellen Mustervergleich-Erkennern.

Wir haben die entwickelten Techniken auch fiir andere Anwendun-
gen, wie zum Beispiel die Suche von lautlich &hnlichen Abschnitten,
wie Wortern, in zwei Sprachsignalen angewendet. Diese Anwendungen
werden dank den neuen Techniken in beliebigen Sprachen moglich.



Chapter 1

Introduction

1.1 Problem Statement

Recognition of isolated words is a fundamental application of speech
recognition. It is for example necessary to control machines or home
appliances by voice.

Most research in automatic speech recognition is nowadays focused
on large vocabulary continuous speech recognition (LVCSR) and iso-
lated word recognition (IWR) is considered as a special case of LVCSR
and tackled with the same methods. LVCSR have high resource require-
ments to the language which they are used in. They need for example
a pronunciation dictionary and large annotated speech corpora.

Around 4000 languages exist worldwide ([SWO01]), but only in some
tens of them a pronunciation dictionary is available ([SWO01]). Besides
that most people do usually not speak the canonical form of a language
but use a multitude of dialects, which usually lack dialectal dictionar-
ies. This makes the standard LVCSR techniques unusable for most
languages and dialects.

Another problem is the number of languages which a recognizer
needs to cover. If an internationally operating company wants to in-
corporate speech recognition into its products, it needs to offer a huge
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portfolio of languages and it is difficult to use language-dedicated rec-
ognizers for all languages even if they might be available.

In this thesis we aim at building IWR with a satisfactory perfor-
mance in any language and dialect.

1.2 Isolated Word Recognition

Isolated word recognition can be categorized by the way the words
which need to be recognized are represented in the vocabulary. In the
word-based approach the representations of the words are independent
- i.e. they do not share components or parameters. In the sub-word-
based approach every word is represented by a sequence of sub-word
units. The set of sub-word units which the sequences are composed of
is shared among the words.

1.2.1 Word-based Recognition

The words in word-based recognizers are often represented by templates
(i.e. by feature sequences of example utterances of the words). This
approach is referred to as template-based recognition. A major chal-
lenge in template-based recognition is the variability among signals of
the same word, even if they are recorded from the same speaker over
the same channel. Some of these variations can be reduced by consid-
ering the frame-wise representation of appropriately chosen features.
Temporal variations can be compensated by the flexibility inherent to
dynamic time warping, which is normally used to compare signals.

An alternative approach to word-based recognition is to represent
each word with an individual model, i.e. a hidden Markov model
(HMM) or an artificial neural network. A disadvantage of this ap-
proach is that many utterances of each word are necessary to train the
word models.



1.2 Isolated Word Recognition 21

1.2.2 Sub-Word-based Recognition

A way to alleviate the need for a lot of training material for each word to
be recognized is to represent each word as a sequence of sub-word units.
Constructing the vocabulary for the recognizer is then divided into two
tasks: The training of an appropriate set of sub-word unit models on
the one hand and the appropriate concatenation of the sub-word units
for each word to be recognized on the other hand.

Sub-word-based recognizers can be further characterized by the way
the sub-word units are concatenated. In the first category, which is here
termed dictionary-based recognition, the sub-word units are concate-
nated according to a dictionary. In the second category, the sub-word
units are concatenated according to sample utterances of the words to
be recognized.

Dictionary-based Recognition

In this recognizer category the items to be recognized are usually mod-
eled with hidden Markov models (HMMSs), which are concatenated from
phone models according to a pronunciation dictionary. This allows the
construction of HMMs for various recognizer topologies such as IWR or
LVCSR. There are several prerequisites of phoneme-based recognizers:

1. Annotated data to train appropriate statistical models of the
phonemes has to be available.

2. A translation of each occurring word into one or several sequences
of phonemes has to be available. This is usually achieved with a
pronunciation dictionary.

3. An appropriate language model which defines the sequences of
words which the recognizer is able to understand and the proba-
bilities of word sequences is necessary.

These prerequisites make the phoneme-based approach language de-
pendent since the resources mentioned above need to be available for
every language in which a recognizer should be deployed.
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For isolated word recognition only the first two prerequisites are nec-
essary since the language model is trivial. The first prerequisite can be
partly circumvented by using cross-lingual resources and therefore only
the second prerequisite remains. The available cross-lingual techniques
are summarized in Section 1.3. There were attempts to circumvent
the need for a pronunciation dictionary by taking context-dependent
graphemes as sub-word units in the speech recognizer ([KN02]). These
approaches were successful for some languages, including languages
with non-Latin script such as Thai ([CHS06]) but yielded poorer results
for languages which have a more complex mapping from graphemes to
pronunciation such as English ([KSS03]).

Utterance-based Concatenation of Sub-Word Units

An alternative method to determine the sequences of sub-word units
which is also applicable if no pronunciation dictionary is available is to
determine the sub-word unit sequence according to utterances of the
words. In this case there is also more freedom in terms of the selection
of an appropriate set of sub-word units, since the sub-word units do
not need to be linguistic units such as phonemes or graphemes.

1.3 Available Cross- and Multi-Lingual
Techniques

In this section we give an overview of problems in cross- and multi-
lingual speech recognition and the available methods to solve them.

1.3.1 Multilingual Vocabulary

There are several applications for which a speech recognizer for a single
language is not enough. Tourist information systems should for exam-
ple be controllable in several languages. In this case it can be expected
that a user uses only one language and therefore the cross-lingual as-
pect is only that the system has to be operable in several languages.
The situation gets somewhat more complicated if the user can switch
the language. In bilingual communities it is for example quite common
that the speakers switch the language even within one sentence. A sys-
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tem which is able to recognize two languages at the same time was for
example presented in [Wen97].

A number of systems have been presented which combine the
phoneme inventories of several languages into one fused phoneme in-
ventory in order to avoid the need for language-dependent phoneme
models for every language which has to be understood by a system.
Usually these systems are based on standardized international phoneme
inventories such as Sampa ([Wel89]), IPA or Worldbet ([Hie93]). A
straightforward approach is to merge the phonemes with the same IPA
symbol. In [Kun04] even more phonemes could be merged in this way
because the distinction between long and short vowels was abolished.
A data-driven fusion of acoustically similar phonemes was presented in
[BGM97]. In [DABIS] the fusion of phonemes was guided by a similar
log likelihood in recognition experiments. Sharing of Gaussian mix-
tures of the models in the different languages was allowed in [Wen97].
These approaches usually resulted in a moderate performance loss com-
pared to the use of dedicated phoneme models for each language to be
recognized.

An interesting cross-lingual application is the recognition of proper
names such as city names since a speaker of one language may pro-
nounce a proper name of another language in different ways: either
he can pronounce the name in his own language or in the foreign lan-
guage. When he uses the foreign language he may have a stronger
or a weaker accent. A possibility to handle this case which was for
example chosen in [Bea03] is to add additional pronunciation variants
such that both the native and the foreign pronunciation is recognized.
In [SMO07a] phonemes of a proper name which might be pronounced
in a non-native way were represented with a phonologically inspired
back-off model. In [SNNO1] a German speech recognizer which is also
able to recognize English movie titles was presented. To that end, the
phonemes of English and German were merged.

1.3.2 Languages with Limited Acoustic Training
Data

For some languages a pronunciation dictionary is available but there is
not enough acoustic training data which is appropriately annotated for
the training of phone models. In this case it may be possible to take
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phone models from one or several other languages, here called source
languages, to derive models of the target language.

Also these approaches are often based on international phoneme in-
ventories. If phone models which are necessary for a target language
have an equivalent phone model in one or several source languages,
the models of the target language can be substituted by the models of
source languages. The crucial part is usually how phone models of the
target language which are not available in any of the source languages
are handled. In [Ueb01] these phone models are substituted with acous-
tically close phone models. For the selection of the appropriate model
a small amount of data has to be available for the phonemes of the
target language. A way which is a bit more sophisticated was taken in
[Byr00]. Here the phone models of the target language are combined
from one or several models of the source languages with dynamic model
combination introduced in [Bey98].

If some training data is available for the target language the models
derived from other languages as explained in the previous paragraph
can be taken as seed models which are adapted with the limited train-
ing data of the target language. Such an approach was for example
implemented in [SWO01].

There are alternative approaches which suggest a reduction of the
phoneme model mismatch between languages by an appropriate selec-
tion of features. To use articulatory features was for example done in
[Sin08]. Alternatively, phonological features can be used as presented
in [SMOT7Db].

1.3.3 Non-Native Speakers of a Language

Speech recognizers often perform much worse for non-native speakers
than for native speakers. In [LHGO03] it was for example found that
speech recognition for non-native English speakers of different mother
tongues was almost twice as accurate if training data was used from
speakers of the same mother tongue than if training data from speakers
of another mother tongue was used. In [Hua01] it was observed that the
native accent of speakers introduced the second most important source
of inter-speaker variability right after the gender difference. That non-
native accents are even more difficult for speech recognizers than native
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accents has been argued in [VCO01]. In [FSMO03] it was investigated how
the first language of bilinguals influences the pronunciation of English
phonemes. A way to alleviate this problem was presented in [BJ04]:
The phonemes of a French speech recognizer were enhanced for non-
native speakers by adapting the French models with data of phoneme-
equivalents of the speakers native language.

1.4 Investigated Approaches to Isolated
Word Recognition

State-of-the-art recognition of isolated words is usually performed with
a dictionary-based approach. The resource requirements for dictionary-
based recognizers are however unsatisfiable for most languages — even
if using cross-lingual techniques as described in Section 1.3.

Therefore we have investigated approaches which can be used for
any language. Uttering the words of the vocabulary is an easy and user-
friendly way of defining a small vocabulary. The basic concept of an
utterance-based vocabulary does not make any assumption about the
language which the recognizer is used in. Also no assumption is made
about the user or user population of the recognizer. This is a further
advantage since the acoustic models of dictionary-based recognizers
are often shaped for a special speaker population. Most recognizers
are for example optimized for the use by adults and have a very poor
performance for child speakers (see for example [EB04]).

The usual approach to recognizers with utterance-based vocabular-
ies is template-matching with dynamic time warping and an Euclidean
distance measure as described in 1.2.1. These recognizers usually yield
a considerably lower accuracy than state-of-the-art recognizers do, es-
pecially if the template utterances were spoken by a different speaker
than the user of the recognizer. In this thesis we investigated two ap-
proaches to enhance recognition with utterance-based vocabularies:

e Use a more appropriate distance measure in template-based rec-
ognizers based on dynamic time warping.

e Use utterance-based concatenation of sub-word HMMs as out-
lined in Section 1.2.2
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1.5 [Evaluation of the Recognizers

The experiments shown in this thesis are designed to evaluate how
different recognizers with utterance-based vocabularies compare among
each other and how they compare with a dictionary-based recognizer.

A key question is the type of resources which are necessary from
the target language. The basic principle of utterance-based recognition
needs only utterances of the words to be recognized as resources. For
particular techniques other resources may however be necessary. In our
case this is for example training data for the distance measure in the
dynamic time warping approach or for the sub-word unit models in the
HMM approach.

In the intra-language case, i.e. if the training data is taken from the
target language, it is interesting to evaluate what quality the training
material needs to have (e.g. if orthographic annotations are necessary).
In the cross-language case, i.e. if the training data is not taken from the
target language, no data except for sample utterances of the words to
be recognized is required from the target language. Then it is however
important to evaluate what impact the language-mismatch has on the
recognition performance.

In order to evaluate isolated word recognition we performed ten-
word recognition tasks. In all tasks many ten-word vocabularies were
tested with several test utterances. The tasks are described in detail
in Appendix E.2. We performed tests with German and with French
tasks. The tasks were performed with speakers of the speaker sets
Sa poly,3 and Sk poly,3 as described in Appendix E.1.

To train sub-word units and multilayer perceptrons we used data
from speakers of the speaker sets Sg poiy,1 and Sgypoiy,1, Which are
disjoint from the test speaker sets.

To test the performance in the intra-language case, the tests were
performed with models (multilayer perceptrons or sub-word unit mod-
els) trained on data of the target language. To test the performance in
the cross-language case, the German tests were performed with models
trained on French data and vice versa.

A big challenge for recognizers with an utterance-based vocabu-
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lary is a speaker-mismatch between the speakers of the vocabulary-
utterances and the test speaker. In order to evaluate the approaches
with different degrees of speaker-mismatch we tested three scenarios:

e Speaker-dependent: The reference and test utterances are from
the same speaker. This is the case for applications in which each
user of a system will define his own vocabulary by uttering each
word one or several times. This is the easiest case since there is
only intra-speaker variability.

o (ross-speaker: The reference utterances are spoken from one
speaker and the test utterances are spoken by another speaker.
This is the case for applications in which we have only reference
utterances from one speaker but need to build a recognizer which
is used for any speaker (i.e. in a speaker-independent fashion). In
this case the inter-speaker variability is likely to be a big source
of error.

o Speaker-independent: The references utterances are from a bigger
population of speakers and the test utterances are from speakers
of another population. This is the case for applications wherein
we have utterances from many speakers available. In this case a
speaker-independent word model can be built from several utter-
ances spoken by different speakers.

1.6 Scientific Contributions

1. We developed a new approach to use appropriately trained mul-
tilayer perceptrons instead of other distance measures such as
the Euclidean distance in speech-recognition methods which are
based on dynamic time warping.

2. To obtain appropriate sub-word unit models for recognition with
an utterance-based vocabulary we developed a scheme to train
abstract acoustic elements.

3. We extended the Viterbi algorithm in a way that makes is possible
to find a sequence of sub-word units which optimally describes
several utterances. Additionally we devised an approximation of
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the exact algorithm which performs well but is computationally
much less complex.

4. We achieved a big improvement of the recognition rate of recog-
nizers with an utterance-based vocabulary compared to a baseline
approach. With appropriate training data we were able to build a
recognizer with an utterance-based vocabulary which had a per-
formance similar to a dictionary-based recognizer.

5. We developed algorithms to use the developed techniques in other
applications of speech processing — for example for acoustic data
mining. These algorithms were successfully used for a pattern-
matching approach to speaker verification.

1.7 Structure of the Thesis
The thesis is structured in six chapters:

Chapter 2 describes isolated word recognition with DTW and shows
that appropriately trained verification multilayer perceptrons are
a good alternative to other distance measures.

Chapter 3 describes HMM-based isolated word recognition with sub-
word units which are concatenated according to sample utter-
ances. This includes the description of abstract acoustic elements
used as sub-word units and an extension of the Viterbi algorithm
for several observation sequences.

Chapter 4 compares different recognizer techniques with utterance-
based vocabulary among each other. These techniques are also
compared with a dictionary-based recognizer.

Chapter 5 describes further applications of speech processing such as
data mining, utterance verification and speaker verification which
may profit from the techniques developed in this thesis.

Chapter 6 gives some concluding remarks of this thesis including an
outlook.



Chapter 2

Improving DTW-based
Word Recognition

The first isolated word recognizers were template-based. In [VZ70] or
[Ita75] the words which are represented in the vocabulary as feature se-
quences are compared to the test utterances with dynamic time warping
(DTW) to compensate for temporal variations. The recognized word
is the one with the smallest distance to the test utterance.

Improvements of DTW-based approaches were mainly achieved by
the use of feature transformations and alternative distance measures
which are reviewed in Section 2.1. A speedup for the DTW approach
by first using a coarse temporal resolution was suggested in [SCO04].
DTW has recently regained some interest even for large vocabulary
continuous speech recognition (LVCSR). Different schemes to use DTW
for LVCSR are reviewed in [GL98] and a complete LVCSR based on
DTW was presented in [DWO07].

This chapter introduces the verification multilayer perceptron
(VMLP), a specially structured MLP and shows how it can be used
as an alternative distance measure in Section 2.2. Section 2.3 contains
experiments which show the performance of the VMLP in comparison
to other distance measures and feature transformations.
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2.1 Overview of Discriminative Ap-
proaches for DTW

A speech signal does not only contain information about the spoken
text but also about the speakers voice, the speakers mood, the charac-
teristics of the recording channel, the background noise and so forth. A
good overview of factors which lead to the variability of speech signals
is for example [Ben07]. In order to improve speech recognition, various
discriminative methods have been proposed which (pre-)process speech
in a way that the information of the spoken text has a bigger effect
than other information which is disturbing for speech recognition. Us-
ing VMLPs, which are presented in Section 2.2, is such a method. In
this section we give a short overview of work which is done to improve
speech recognition by using discriminative methods. In Section 2.1.1 we
will have a look at alternative distance measures applicable for DTW.
Discriminative feature transformations will be summarized in Section
2.1.2.

2.1.1 Alternative Distance Measures for DTW-
based Recognizers

DTW-based recognizers need either a distance measure which deter-
mines the difference between two frames or — seen from a different
point of view — a similarity measure which gives the probability that
two frames are from the same phoneme. Very often the Euclidean or
the Mahalanobis distance are used for this purpose. We have suggested
to use verification multilayer perceptrons (VMLPs) as a similarity mea-
sure. A VMLP computes the posterior probability that two frames are
from the same class. The VMLPs are described in Section 2.2. Follow-
ing the introduction of VMLPs another research group has suggested
in [Pic09] that the scalar product of phoneme posterior vectors can be
used as an alternative to VMLP. This approach is discussed in Section
2.2.2.

There are also other approaches which are for example based on
local distance measures. In [DWO04] the two frames for which the dis-
tance has to be computed are first classified with a phoneme recognizer
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and for each state in each phoneme a local distance measure is defined
which makes use of the variance within each state. In [Mat04] a similar
approach is pursued but the local distance measure is optimized with
a gradient descent learning procedure presented in [PV00] to perform
well in a k nearest neighbors classifier.

2.1.2 Feature Transformations

Another approach to using a better distance measure is to use feature
transformations which transform an input feature space into a new one
in which classes are easier separable. Some of these transformations
are linear and can therefore be expressed with a transformation matrix.
Other approaches perform a nonlinear transformation and are mostly
based on MLPs.

Linear Transformation

The linear feature transformations differ among each other in the way
the transformation matrices are trained. In the standard form of linear
discriminant analysis as described for example in [DHS01] the objective
is to maximize the ratio of between-class data scatter to within-class
data scatter. The training has a closed solution which is based on
finding Eigenvectors, is however based only on the scatter matrices.

With the heteroscedastic discriminant analysis an alternative was
therefore presented in [KA98]. Here the transformation is based on
iterative maximum likelihood training. A further refinement presented
in [Sao00] performs an additional maximum-likelihood linear transform
on top of the heteroscedastic linear discriminant analysis to ensure the
linear independence of the resulting features.

In [Dem99] an approach which is based on the maximization of
mutual information is presented. This approach is thought as a re-
placement of the discrete cosine transform which is used in the last
step of the calculation of the Mel frequency cepstral coefficients.
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MLP-based Feature Transformations

Several methods to train MLPs which perform a feature transformation
have been suggested. Nonlinear discriminant analysis which was intro-
duced in [Fon97] is based on a bottleneck layer. An MLP is trained
which has at the input the untransformed features and at the out-
put a phoneme vector which is 0 for all phonemes except for the cor-
rect phoneme for which it is 1. This MLP has a smaller last hidden
layer which is termed bottleneck layer since all information has to be
squeezed through this bottleneck layer. Later, when the MLP is used,
only the part from the input layer to this bottleneck layer is used and
the activations of the bottleneck layer are the transformed features.

A very popular feature transformation was presented with the Tan-
dem features introduced in [HES00]. Here an MLP is trained in a
similar way as in the bottleneck approach described above. However,
the outputs of the trained MLP are taken directly as the transformed
features. These transformed features are also termed phoneme poste-
riors since every feature corresponds to the posterior probability of a
given phoneme. These transformed features were originally intended to
be used with HMMs but in [AVBO06] it was shown that they also yielded
good results in DTW-based recognizers. It was shown in [ZCMS04] that
phoneme posteriors are less speaker-dependent than the untransformed
features. In [ZCMS04] it was also shown how phoneme posteriors can
be merged. If different phoneme-posterior transformations are trained
for the same target (i.e. the same phonemes) but for different input
features the phoneme posteriors of the different transformations can be
combined as a weighted sum. More elaborate merging techniques, e.g.
with an additional MLP for merging were presented in [HMO05].

2.2 Multilayer Perceptron for Class Verifi-
cation

Multilayer perceptrons (MLPs) are successfully used in speech process-
ing such as for example to calculate phoneme posteriors as described
in Section 2.1.2. In this case they are used to identify a phoneme from
a given feature vector. Expressed in more general terms, the MLPs are
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used for the identification of input vectors with a class from within a
closed set of classes.

There are applications however, where the identification of input
vectors is not necessary but it has to be verified whether two feature
vectors x; and x, are from the same class or not. Therefore we devel-
oped the concept of VMLPs which we expect to calculate the posterior
probability

P(class(xy) = class(xy)|xq,X5) (2.1)

Such an application in speech processing is for example the verifi-
cation whether two given speech frames are from the same phoneme
or not. The objective is therefore to verify phonemes. Another appli-
cation is in a pattern matching-based approach to speaker verification
presented in Section 5.2. Here the objective is to verify speakers.

In experiments which are described in Appendix A we experi-
mentally showed that the verification results of appropriately trained
VMLPs are close to optimal. Furthermore we showed that VMLPs can
even be used to discriminate between classes which were not present in
the training set, but have the same verification objective (e.g. verifying
phonemes or speakers). This is an especially useful property since it
allows that for example training data for speaker VMLPs does not need
to be collected from the target speaker population but can be collected
from another population of virtually unlimited size.

2.2.1 Verification MLP Structure

Since the VMLP has to decide whether two given input vectors x;
and x, are from the same class, the VMLP has to process vector pairs
rather than single vectors. The target output of the VMLP is o, if the
two vectors of the pair are from the same class and o4 if they are from
different classes. The vectors are decided to belong to the same class if
the output is closer to oz and to different classes otherwise.

Thus the structure of the VMLP is as shown in Figure 2.1. Al-
ternatively the VMLP could be implemented with two outputs — one
for the probability that the input vectors are from the same class and
the other for the probability that the input vectors are from different
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classes. This topology would allow the use of a softmax output layer
which is often used for classification problems (e.g. for phoneme clas-
sification in [BM94]) since it guarantees that the outputs sum to one.
We have experimentally seen however that a topology with one out-
put yielded similar results than the simpler network topology which we
used.

vector X,

output value

output targets:
os same class
ogq different classes

vector X,

Figure 2.1: Structure of the VMLPs.

The VMLP shown in Figure 2.1 has two hidden layers. It is known
that this topology is able to describe any input to output mapping pro-
vided that enough units are available (see for example [Lip87]). It has
to be evaluated whether one hidden layer suffices for a given problem
and how many neurons are necessary. The evaluation of these param-
eters for our task in speech recognition is done in Section 2.3.4.

2.2.2 Posterior Scalar Product

Following the introduction of VMLPs an alternative was presented in
[Pic09] and [APB10]. The method is based on the observation that a
VMLP which is trained with a standard error criterion such as mean
squared error will optimize the same criterion as the scalar product of
the vectors of N phoneme posteriors P(phoneme,|x),n =1... N (cf.
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Section 2.1.2) of two feature vectors x; and xs:

N
Z P(phonemey|x1) * P(phoneme,|x2) (2.2)

n=1

This assumption was both theoretically and experimentally confirmed
for a closed set of classes.

In contrast to the tests performed in [APB10], we aim at verifying
whether two feature vectors are from the same class for an open set of
classes. For this open set of classes only the classification objective (e.g.
classifying speakers or classifying phonemes) is expected to be known.

A further difference is the requirements for the training data.
Whereas the posterior scalar product approach needs a phoneme seg-
mentation to train the phoneme posterior MLPs, only orthographic
annotations are necessary for the training material of VMLPs.

The posterior scalar product would be a very interesting alterna-
tive from the point of view of computational complexity. The compu-
tation of the phoneme posteriors is confined to the individual feature
sequences and between the signals only the scalar product has to be
computed.

Comparative results of the posterior scalar product and VMLPs will
be given in Section 2.3.5.

2.3 Experiments

2.3.1 Description of the used DTW Recognizer

We used an asymmetric DTW implementation which used Itakura con-
straints ([Ita75]) to warp the test utterance on the reference utterances.
This is a reversed approach to mapping the reference utterances on the
test signal which is often used. Our approach required the accumulated
distance to be normalized with the number of frames in the reference
utterance (i.e. using the average distance). We achieved better results
with this approach, probably because the features in the frames of the
reference template are more reliable especially if several utterances are
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used to generate a template. At the start and at the end of both refer-
ence and test signal we allowed the DTW algorithm to skip up to 50 ms
(5 frames) in order to compensate for slightly incorrect endpoints. The
final distance between a reference signal and a test signal was not di-
rectly the accumulated distance on the last frame of the warping curve.
Instead we used the weighted average Euclidean distance of all frame
pairs along the warping curve as the final distance. As weighting fac-
tor we used the mean RMS value of both frames in a pair. We have
empirically optimized the parameters of this DTW recognizer.

2.3.2 DTW Recognizer with Perceptron-based Dis-
tance Measure

For the DTW recognizer it is possible to use a feature transformation
as described in Appendix 2.1.2, an alternative distance measure such
as a distance measure based on a verification multilayer perceptron
(VMLP) presented in Section 2.2 or both. When a VMLP was used
as a distance measure, its output was linearly mapped in a way that
the positive MLP output which indicated the same class of both input
vectors was mapped to 0 and the negative MLP output which indicated
different classes for both input vectors was mapped to 1.

2.3.3 Verification MLP Training

The VMLPs were trained by means of the backpropagation algorithm
with the mean squared error as error criterion. The weights were ran-
domly initialized and a momentum term was used during the training.
For a hyperbolic tangent output neuron a good choice for the output
targets is o3 = 0.75 and o4 = —0.75 such that the weights are not
driven towards infinity (see for example [Hay99]). With these settings
we experienced that at the beginning of the training the difference be-
tween desired and effective output decreased quite slowly but that the
training never got stuck in a local minimum.
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Training Data for Phoneme Verification MLPs

In order to train a VMLP which will verify whether two input feature
vectors are from the same phoneme we needed on the one hand positive
feature vector pairs for which we know that the feature vectors are
from the same phoneme. On the other hand we needed negative feature
vector pairs with feature vectors from different phonemes. A method to
obtain such training vector pairs was to apply DTW on vector sequences
extracted from utterances of the same word. The feature vector pairs
located on the warping curve obtained from the DTW algorithm could
then be taken as the positive feature vector pairs. The negative feature
vector pairs were randomly taken from points outside the warping curve
which had an Euclidean distance above a certain threshold.

We used data from speakers of the sets Sg,pory,1 Or SFpoty,1 to train
the phoneme VMLPs and data from speakers of the sets Sg poiy,2 or
SF poly,2 as validation data. The speaker sets are described in Appendix
E.1.

2.3.4 Determination of Appropriate Structure and
Size of the VMLP

As pointed out in Section 2.2.1, it is necessary to optimize the structure
and the size of the VMLP. The network should be as small as possible
since training problems such as overfitting may arise (see for example
[Hay99]) if the training data is limited. The network size has also a
substantial impact on the speed of the recognizer.

We have investigated both, networks with one hidden layer and
networks with two hidden layers. Both network types were tested with
different sizes. For the networks with two hidden layers we chose the
size of the first hidden layer to be three times as big as the size of
the second hidden layer since the first hidden layer should not be too
small compared to the number of input neurons ([Lip87]). The tested
network sizes are shown in Table 2.1.

We evaluated the VMLPs by measuring the performance of DTW-
based recognizers which use a VMLP as a distance measure in a
speaker-dependent scenario for German (task 1) and for French (task 4)
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2 hidden layers 1 hidden layer
approx. number - - -
of parameters ~size of _size of  size of
hidden layer 1 | hidden layer 2 hidden layer
1900 30 10 35
4400 60 20 82
7500 90 30 140
11300 120 40 209
15600 150 50 290
20500 180 60 381

Table 2.1: Tested network structures and sizes.

and in a cross-speaker scenario (tasks 2 and 5 for German and French,
respectively) as described in Appendix E.2. At the input are two fea-
ture vectors Feat,,cms as described in Appendix C.1.

The results showed that the two topologies with one and two hid-
den layers yielded similar results. The single-layer was slightly better,
especially with the bigger networks. Only for very small networks the
two-layer topology was a bit better.

The networks could also be quite small without the performance
degrading too much. This allows to implement faster recognizers by
minimizing the network size. A network with around 8000 tunable
weights was enough for this application.

2.3.5 Evaluation of Discriminative Methods

We then evaluated the performance of the VMLP and compared it to
alternative distance measures such as the posterior scalar product de-
scribed in Section 2.2.2 and to feature transformations such as phoneme
posteriors or linear discriminant analysis (LDA) as described in Section
2.1.2.

The results of the German and French tasks of the speaker-
dependent scenario (tasks 1 and 4) and of the cross-speaker scenario
(tasks 2 and 5) as described in Appendix E.2 are listed in Table 2.2.
We used features Feat,,cms as described in Appendix C.1 and a VMLP
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Figure 2.2: The influence of network structure and network size on
the recognition rate of speaker-dependent and cross-speaker template-
based IWR. The recognition rates of the architectures with two hidden
layers are in grey, the ones for architectures with one hidden layer in
black.

with one hidden layer of 209 neurons.

In the speaker-dependent scenario the recognitions rates achieved
with feature transformations alone were higher than the recognition
rates achieved with the alternative distance measures. The VMLP was
however always better than the Euclidean distance with untransformed
features. This ranking was different for the cross-speaker scenario: here
the alternative distance measures were better than the feature trans-
formations. In all scenarios the best results were achieved if the VMLP
was used in combination with the phoneme posteriors. This suggests
that the VMLP is able to compensate a different sort of variability in
the data than the phoneme posteriors.
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feature distance speaker-dependent cross-speaker
transf. measure German \ French | German \ French
none Eucl. dist. 86.6 67.5 62.1 49.7
none VMLP 90.1 73.6 75.5 61.0
none | post. scal. prod. 84.3 74.3 70.8 65.0
LDA Eucl. dist. 92.9 77.6 69.7 55.3
LDA VMLP 92.2 77.3 78.0 63.4
poster. Eucl. dist. 92.5 7.2 73.7 60.3
poster. VMLP 93.1 79.1 80.6 67.5

Table 2.2: Fvaluation of different discriminative feature transforma-
tions and distances measures in a DTW recognizer. The recognition
rates in % are given for the speaker-dependent and cross-speaker IWR
scenarios both for German and French.

Cross-Language Performance

It is also important to evaluate how the feature transformations and
alternative distance measures behave in a different language since they
might not generalize for languages other than the language on which
the VMLPs, phoneme posteriors or the linear discriminant analyses
were trained. In Table 2.3 we give the results of the best performing
methods in the intra-language case for cross-language experiments. A
small drop of the recognition rate could be observed but the results
were still much better than the ones of a DTW recognizer which used
untransformed features and an Euclidean distance measure.

2.4 Concluding Remarks

We have seen that using VMLPs as a distance measure in DTW-based
word recognition yields much better results than the Euclidean dis-
tance, especially in combination with phoneme posteriors as features.
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feature | distance speaker-dependent cross-speaker
transf. measure German \ French | German \ French
none | Eucl. dist. 86.6 67.5 62.1 49.7
none VMLP 90.5 72.5 75.6 59.7
poster. | Eucl. dist. 92.5 75.9 72.1 58.0
poster. VMLP 92.9 76.9 79.2 63.9

Table 2.3: FEvaluation of different discriminative feature transfor-
mations and distances measures in a DTW recognizer for the cross-
language case. The test languages are noted in the table and the trans-
formations and distance measures were always trained on the other lan-
guage. The recognition rates in % are given for the speaker-dependent
and cross-speaker IWR scenarios both for German and French.

To train a VMLP for the target language it is necessary to have
orthographic annotations of the training data. A good property of
the VMLP is that the recognition performance does not suffer very
much in the cross-language case. Therefore a VMLP trained on another
language can be used for languages with scarce resources.
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Chapter 3

Utterance-based Word
Recognition with Hidden
Markov Models

A suitable HMM structure for isolated word recognition (IWR) was
first suggested by [Vin71]. Each word in the vocabulary is modeled
with a word HMM A,,, which is for example a linear HMM. These
word HMMs are connected in parallel to form the HMM A which is
used for recognition. The word HMM \,, through which the optimal
path as determined by a Viterbi decoder leads indicates the recognized
word.

The word models \,, can be constructed in several ways:

e The parameters of the word HMMs can be estimated individually
as suggested by [Bak76] from a number of utterances of each
word. This approach would in principle be applicable for our
task of recognition with an utterance-based vocabulary. We have
not used it since every word has to be uttered quite often in order
to get reliable estimates of the parameters.

e The word HMMs A\, can be built by concatenating sub-word
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unit HMMs. The recognition network then looks as shown in
Figure 3.1. The training task is divided into the estimation of
the parameters of a set ® of N sub-word HMMs ¢,,n=1,..., N
and the determination of the sub-word unit sequences Z(*) =

z%w)zéw) e z[(}f,l) with 2{) € ®, which compose each word w.

In dictionary-based recognizers the sub-word unit HMMs corre-
spond to linguistic units such as phonemes which can be concate-
nated according to a pronunciation dictionary as first suggested
in [Jel76]. In our case of recognition with an utterance-based dic-
tionary the sequences of sub-word units Z(*) are determined from
sample utterance of the words. This method was first suggested
in [BBASP88] and [BB93].

(1) (1) ONE

A l | z") ] [ z{y, A
)

(2) (2) (2) )

72 ] [ 2 ] [ 22,

—®

1
XZ
[ AR ][ AR ] [ . :KW/

Figure 3.1: A HMM X\ which is used for word recognition. Fach word

HMM ), is concatenated from a sequence of sub-word units Z(¥) =

zgw)zéw) . zgfi) with zq(tw) c d.

In this chapter we investigate the factors which are crucial for a
well-performing isolated word recognizer with an utterance-based vo-
cabulary. The first factor — the way the word models are formed from
sub-word unit models — is described in Section 3.1. The second factor
— the sub-word units from which the word models are formed — is de-
scribed in Sections 3.3 to 3.5. Experiments to evaluate the developed
techniques are presented in Section 3.6.
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In this thesis we use an HMM-definition which is defined to have L
states. It starts in the non-emitting state S; and then repeatedly tran-
sits with probability a;; from a state .5; to a state S; while emitting with
probability b;(x) the observation x and finally transits with probability
a;r, from a state S; to the final non-emitting state S;. Therefore, the
HMM generates a sequence of T observations while visiting 7" times an
emitting state.

3.1 Determination of the Word Models

The determination of Z(*) from utterances of a word boils down to
the problem of finding the sequence of sub-word units which optimally
describes one or several utterances of that word. In order to determine
such a sequence we use a sub-word unit loop, which is a composite
HMM built by connecting all elementary HMMs ¢,,,n = 1,..., N in
parallel with a feed-back loop. An equivalent to this fully connected
HMM is shown in Figure 3.2. This equivalent HMM uses two additional
non-emitting states to prevent a quadratic increase of the number of
transitions with the number of sub-word units.

Especially if the elementary HMMs can be traversed while produc-
ing only one observation (e.g. if the elementary HMMs contain only
one emitting state) it is quite likely that the optimal path through the
HMM would entail a very long sequence of sub-word units Zw) 1t
could then happen that the word HMMs obtained from this Z(®) can-
not describe shorter utterances of the same word. Therefore we favor
shorter sequences Z(*) by penalizing transitions to a different sub-word
unit with a penalty H.

3.1.1 Building a Word Model from a Single Utter-
ance

If we have only one utterance per vocabulary word the optimal sequence
of sub-word units Z(*) given the composite HMM as described above
can be determined with the normal Viterbi algorithm.
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Figure 3.2: A sub-word loop with penalties H.

3.1.2 Building a Word Model from Several Utter-
ances

If we have several utterances available per word in the vocabulary we
are confronted with the problem of finding the sequence of sub-word
units which optimally describes several utterances. In this thesis we
have developed an algorithm to solve this problem which guarantees to
find the optimal sequence in a maximum-likelihood sense. The algo-
rithm solves this K-dimensional decoding problem by finding an optimal
path through a (K+1)-dimensional trellis (one dimension for the states
and K dimensions for the frames of the K example utterances of the
word under investigation) with an extended Viterbi algorithm. This
algorithm is presented in Section 3.2.2.

Since the computational complexity of the exact extended Viterbi
algorithm is exponential with the number of utterances K we also devel-
oped an approximation of the extended Viterbi algorithm which starts
by finding the optimal sequence of sub-word units of two utterances and
then iteratively changes the resulting sequence by adding one utterance
after the other. For every utterance which is added an additional two-
dimensional Viterbi algorithm has to be performed. This algorithm
is presented in Section 3.2.4. The complexity of this approximative
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algorithm is only linear with respect to K.

3.2 Extended Viterbi Algorithm for Sev-
eral Observation Sequences

For the training of the abstract acoustic elements (cf. Section 3.5.3) and
to compose a word model given several utterances of a word for a word
recognizer (cf. Section 3.1) we were confronted with the problem of
finding a sequence of sub-word units which optimally describes several
observation sequences.

For a single utterance, the problem of finding the optimal (in terms
of maximum likelihood) sequence of sub-word models can easily be
solved by means of the Viterbi algorithm: The sub-word HMMs are
connected in parallel to form a sub-word loop and the optimal state
sequence Q through the resulting HMM A\ is evaluated. Then we can
derive the optimal sequence of sub-word units Z from Q, which we
denote as: Z = SWU(Q).

In contrast to this simple case, determining the sequence of sub-
word models, which maximizes the joint likelihood of several utter-
ances, leads to a non-trivial optimization problem. This problem can
be stated more formally as follows: Given a set of M sub-word HMMs
©1,...,on and K utterances of a word, designated as X LX)
find the optimal sequence of sub-word units Z, i.e. the sequence of
sub-word units with the highest probability to produce the utterances
XM, XK,

Since the utterances X ... X)) generally are not of equal
length, it is not possible to find a common state sequence for HMMs
as defined earlier in this chapter (page 45).

However, our aim is not to find the optimal common state sequence
for X ..., X&) but the optimal common sequence of sub-word units
Z. We can formulate this optimization task more specifically as follows:
we look for the K state sequences QW) ..., Q) that maximize the
product of the joint probabilities P(X®*) Q®*)|)\) under the condition
that all state sequences correspond to the same sequence of sub-word
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units. Note that A still designates the sub-word loop mentioned above.

_ Thus, the problem of finding the optimal sequence of sub-word units
Z can be written as:

K
7 = argmax max P(X®) Q|\) (3.1)
Z 2 QeQy)

where Q%) = {Q|SWU(Q)=Z and |Q|=Ty+2}.

Q(Zk) is the set of all state sequences that are consistent with Z and
include T}, emitting states (together with the start and end states the
sequences are of length Tj+2).

The remainder of this section is structured as follows: First an
overview of related solutions from the literature is given in Section
3.2.1. In Section 3.2.2 we describe an exact solution to the problem
which is basically an extension of the Viterbi algorithm. An illustrative
example of the case for two observation sequences is given in Section
3.2.3. In Section 3.2.4 we present an approximation of the Viterbi algo-
rithm which has a much lower computational complexity. Qualitative
examples of the extended Viterbi are given in Appendix B.

3.2.1 Related Work

There are several approaches to solve the optimization problem for
several utterances. Most of these approaches are based on heuristics
and can be roughly divided into two categories. A first category of
approaches is based on generating sequences of sub-word units for each
utterance and choosing the one which best matches the complete set
of utterances. The simplest variant of this category is to find the best
sequence of sub-word units for every utterance in isolation and choose
the one which best describes the whole set of utterances. The problem
with this approach is that the globally optimal sequence of sub-word
units is often not among the candidates. A solution to this problem
was suggested in [MJ99]. This solution employs the method described
in [SH90] to generate the n best sequences of sub-word units for every
utterance and chooses the best candidate from this extended set of
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utterances. This increases the probability to find the optimal sequence
of sub-word units but cannot guarantee to find it.

The other category of approaches is based on A* tree search. In
[BB93] a method was described which chooses the best node to be
evaluated next in the tree search using a heuristically determined esti-
mate of the likelihood for the remainder of the optimal path through
that node. This approach finds the optimal solution only if this like-
lihood is overestimated. Then, however, the tree-search algorithm is
likely to be intractable. An improvement to this algorithm was pre-
sented in [SSP95]. Here the normal forward pass of Viterbi search is
executed individually for each signal and the likelihoods are stored for
all utterance-state-frame triples. The tree search is then performed in
a backward pass, while a better estimate of the continuation likelihood
of the backward path can be computed based on the stored likelihoods
from the forward pass. Since this estimate is based on the forward
scores of the individual paths it is still an over-estimate as it is argued
in [WG99]. Finding the optimal path is therefore still based on heuris-
tics. An approach which uses breadth-first tree-search was presented
in [BNO1]. This approach does not guarantee optimality either since it
requires strong pruning.

3.2.2 Extension of the Viterbi Algorithm

The standard Viterbi algorithm is used to solve the decoding problem,
i.e. to determine for an observation sequence X = x;X,...X, and a
given HMM X\ with states S;,5,,...,Sy (S; and Sy being the non-
emitting start and end states) the optimal sequence of states Q =
514145 - - - GpSy. With the principle of dynamic programming, the joint
probability of the partial observation sequence X, = x;x,...x, and
the optimal partial state sequence Qt = 514145 - - - G, that ends in state
S; at time ¢

%G = 0, W s, P(X,, Q4| (3:2)

can be computed recursively with

0 (j) = ax 61-1(7) aij bj(xy). (3.3)
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0r(N) is the probability P(X,Q\)\). In order to find @ the optimal
precursor state has to be stored for each time and state tuple:

Uy (j) = argmax ;1 (2) ;5. (3.4)
1<i<N

The optimal state sequence Q can then be determined recursively, start-
ing at the end. @) can be visualized as a path through a two-dimensional
trellis spanned by the observations and the states.

Now we extend the Viterbi algorithm such that it finds the optimal
sequence of sub-word units Z for K observation sequences, as defined
by equation (3.1). The corresponding trellis has K+1 dimensions and
the path through this trellis has to meet the two following conditions:

1. The path has to proceed in every step by zero or one in every
observation sequence (i.e. in all of the K temporal dimensions in
the trellis) but has to proceed in at least one observation sequence.

2. A path @Q through the trellis is valid if this path and its projections
Q™) meet the condition: SWU(Q) = SWU(Q®) = Z. This
condition is obviously met if each transition between states that
do not belong to the same sub-word model, advances a time step
in all observation sequences.

The mathematical formulation of our extension to the Viterbi algo-
rithm is as follows: The joint probability of the partial observation

sequences Xgi), ng), . ,ng) and the optimal partial state sequences

A1) A2 Ak) . 1 2 K . .
Q(tl),Q(tQ),...,QgK) with qt(l) = q§2) = ... = q,gK) = Sj is defined in
equation (3.5). Of course, the optimal partial state sequences have to
meet the condition that the corresponding sequences of sub-word units

are identical.

Probability 04, ¢, (j) can be computed recursively for all points
in the trellis with equation (3.6). Note that all partial paths that vi-
olate the above conditions are excluded. For backtracking the best
path we have to save the optimal precursor state i like in the one-
dimensional Viterbi algorithm. Additionally we need the time vector
(c1,¢2,...,ck) which points from the current time point to the precur-
sor time point. All these values are represented as a (K+1)-dimensional
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vector Wy, 1, 4 (7) = (c1,¢2,...,¢K,i). This vector is determined
with equation (3.7).

Let’s give some additional explanations to equations (3.6) and (3.7):
With 3" ¢; > 0 the first condition is met. In order to satisfy the second
condition, transitions from one sub-word unit to a another one are al-
lowed only if Y ¢ = K. Otherwise the sub-word unit must not change,
i.e. SWU(S;) has to be equal to SWU(S;). By using ¢ as an exponent

in bj(ng))ck, the probability of an observation x,(ff) is multiplied to the

total path probability if and only if the path proceeds by one observa-
tion in dimension k. With a? “F also the transition probability ai; is
multiplied to the total path probability for each observation sequence

in which the path proceeds by one.

The recursion of the algorithm is initialized with

K
du.a() = afS T by (") (3.8)
k=1
and terminated with
§T1,-~~’TK(N) = 1252)5\,[6T1,-~-,Tx(i)a5\/] (39)
Uy 1 (N) = argmax[5T17___7TK(i)a5\,} (3.10)
1<i<N

Note that the ¢1,...,cx in ¥p, 7 (N) are not defined by equation
(3.10). They are implicitly defined as zero, since the end of all obser-
vation sequences has been reached. The optimal path Q through the
trellis and thus the optimal sequence of sub-word units Z can now be
found by backtracking.

The resulting sequence of sub-word HMMs is guaranteed to be the
optimal one, because all allowed paths through the corresponding mul-
tidimensional trellis are considered.

3.2.3 Illustrative Example

This is a simple example which illustrates the extended Viterbi algo-
rithm for a case with two observation sequences. Given are two ob-
servation sequences X1 =01011 and X® =0001. The HMM has
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four states: the non-emitting start and end states S} and S; and two
emitting states S, and S5, which have discrete observation probabilities
b2(0) = 0.9, ba(1) = 0.1, b3(0) = 0.2 and b3(1) = 0.8. The non-zero
transition probabilities are a12 = a1 3 = & and azp = a23 = agy =
az,2 = a3 3 = a3 4 = %

The three-dimensional trellis is illustrated in Figure 3.3. For all
time points the two emitting states are shown as cubes. Printed on
every cube are the partial log probabilities d, the precursor state i and
the vector ¢ pointing to the selected precursor time point. The states
on the optimal path Q are printed in grey.

.
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Figure 3.3: Trellis of a 2-dimensional Viterbi example

From this optimal path the optimal sequence of sub-word units Z
is found to be S,5,9;5,. For observation sequence X(!) the resulting
state sequence is Q) = §,5,5,5,55;5, and for X2 it is Q@ =
5,5,5,5,555;.

It can be seen that the found path conforms to the used constraints;
a state change only takes place on the transition from times (3,3) to
(4,4), i.e. if the path proceeds on both time axes.

An example where the effect of the second constraint can be ob-
served is (95,4,2). Without the constraints the preceding state would
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have been (5,,3,2) rather than (S5;,3,2) because of the higher log like-
lihood of S,. A state transition on the temporal transition from (3,2)
to (4,2) is however not allowed since the path proceeds only in one
temporal dimension.

3.2.4 Approximation of the Extended Viterbi Algo-
rithm

In the approximation to the K-dimensional Viterbi algorithm we do
not compute the optimal sequence of sub-word units at once (i.e. with
one forward and one backward pass). Rather we first perform a two-
dimensional Viterbi with any two of the K observation sequences X (1)
and X, From the optimal sequence of this two-dimensional Viterbi
we build a wirtual observation sequence X(“2) which represents the
two observation sequences which were processed. With this virtual
observation sequence X (*2) and another observation sequence X we
perform a further two-dimensional Viterbi which yields again a new
virtual observation sequence X (V3 which now represents the three
already processed observation sequences. We proceed in this manner
until all of the K observation sequences are included in the virtual
observation sequence. The desired sequence of sub-word units is then
the optimal sequence of sub-word units for this last virtual observation
sequence X (") Thus we perform rather K—1 Viterbi algorithms for
two observation sequences than one Viterbi algorithm for K observation
sequences. We now need to describe how observation sequences are
aligned and how two aligned observation sequences are merged.

Alignment of Two Observation Sequences

From the two-dimensional Viterbi algorithm we get the optimal se-
quence of sub-word units and the corresponding alignment of the pre-
vious virtual observation sequence X~ and the newly added ob-
servation sequence X(¥). From the alignment of X(*"*=1) and X*) we
determine the new virtual observation sequence X (V:¥),

From the two-dimensional Viterbi we get the alignment as a se-
quence of sub-word units with the assigned observations from both ob-
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servation sequences. This situation is depicted in Figure 3.4 b) where
observations of the two sequences assigned to the same sub-word unit
are printed in the same color. Within all observed sub-word units we
need to align the sequence of observations which were assigned from
X (©+=1) with those observations assigned from X*). Since the obser-
vations within a sub-word unit are supposed to be similar we argue
that a linear alignment within a sub-word unit is enough.

The question which arises is how exactly this linear alignment
should be performed and in particular how long the part of the new
virtual sequence X(**) which corresponds to an observed sub-word
unit should be. In experiments which are not shown in this thesis we
have seen that a good length of the full new virtual observation se-
quence X(“*) is chosen such that it is as long as the average length
of the observation sequences contributing to the the virtual observa-
tion sequence. Therefore we calculate the length of each part of X (V)
corresponding to an observed sub-word unit with

Typ—1%(k—1)+ Tk)
k

T, = round ( (3.11)

where T}, ;1 is the remaining time of X @:k=1) within a given state,
T}, the remaining time of X(*) in that state and Ty, the length of the
corresponding part on the new virtual observation sequence.

This implies that some parts of the observations sequences X (V=1

and X(¥) have to shrink and others have to dilate. We implemented the
dilation by inserting some of the observations more than once. In Figure
3.4 ¢) this dilation is shown as two identical observations separated with
a dashed line. Shrinking is implemented by using the average of two or
more observations at one time index of the virtual observation sequence.
In the illustration this is depicted with a horizontal bar separating two
observations at one time index of the new virtual observation sequence.

Merging of Aligned Observation Sequences

We will now explain how two aligned observation sequences are merged.
Merging of observation sequences would get complicated especially if
one observation sequence is a virtual observation sequence and is there-
fore composed of several individual observation sequences.
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Figure 3.4: Illustration of the merging process in the approximative
K-dimensional Viterbi algorithm.

In the core of the Viterbi algorithm we do however not need the
observation sequences themselves. We rather need for every state S, a
sequence L,, which gives for every observation the log likelihood that it
was produced by state 5,,. We can therefore perform the merging op-
erations analogously on all log likelihood sequences L,,, n =1,..., N.
Merging of two aligned observation sequences thus leads to an addition
of the log likelihoods in the sequences L,,.

From this process it can also be seen that the average log likelihood
of subsequent virtual observation sequences gets smaller with the num-
ber of added observation sequences. This has the desired effect that the
virtual observation sequence has the bigger influence than an individual
observation sequence in the two-dimensional Viterbi algorithm.

This approximation of the Viterbi algorithm is computationally
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much less costly. The exact K-dimensional Viterbi algorithm has a com-
plexity of O(TX) for K signals which have a mean length of T, whereas
the complexity of the approximative algorithm is only O(K * T?).

The way observations sequences are dilated or shrunk leads to a
slightly different objective as the one of the exact algorithm. Whereas
in the exact algorithm the weight of an observation sequence is propor-
tional to the number of observations in the sequence, each observation
sequence has the same weight in the approximative algorithm. This
could be changed by using a different strategy of observation weight-
ing. We have seen however, that this leads to slightly worse results for
our tasks.

3.3 Appropriate Sub-Word Units

In order to build a speech recognizer with an utterance-based vocab-
ulary which is based on HMMs we need suitable sub-word units, i.e.
sub-word units which can be concatenated to model speech utterances
in any language. The sub-word units should therefore fulfill the follow-
ing requirements:

1. Each sub-word unit should only model the acoustics of a quasi-
stationary segment of speech — an acoustic sub-space — but no
temporal patterns because temporal patterns can be modeled by
the concatenation of sub-word units.

2. The acoustic sub-space covered by a sub-word unit should be
small enough and it should be positioned in a way that all acoustic
vectors located in this sub-space are perceived as phonetically
very similar.

3. The acoustic sub-spaces should be large enough to cover the vari-
ability of the same phoneme being produced by different speakers
and transmitted over different channels.

4. All sub-word units together should cover the whole part of the
acoustic space which occurs in the languages for which the sub-
word units are used.
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3.3.1 Phonemes

In dictionary-based recognizers phonemes are used as sub-word units.
There the choice is given because the pronunciation dictionaries specify
the pronunciation in phonemes. Phonemes, which are nowadays usually
modeled with a linear HMM with three emitting states, cover segments
which are not necessarily quasi-stationary. Therefore they do not meet
the first requirement.

Phonemes have further disadvantages as sub-word units for
utterance-derived word models. The optimal number of states may
vary between the phonemes since some phonemes such as plosives are
likely to have more different phases than others. Another issue is that
for example begin or end phases of different phonemes might be mod-
eled by the same statistical model because they have similar acoustic
properties. This is not possible with phoneme models unless techniques
such as enhanced tree clustering ([YS03]), which is an extension of tree-
based state tying ([You94]), is used. Furthermore the optimal mapping
of states to phoneme models may not always be the same for each
speaker, an issue which is tackled with pronunciation variants or a
more flexible phoneme to model mapping as for example described in
[HW99].

Further considerations go in the direction of language independence.
It was observed in [WTK98] that monophones perform better than tri-
phones if they are used in a cross-language scenario. In [SWO00] it was
shown that monophones cover foreign languages on average better than
triphones. In [Byr00] experiments with model-mapping to foreign lan-
guages showed that a mapping at the state-level performed better than
a mapping at the phoneme level. These results suggest that the fourth
requirement is easier to satisfy for a language-independent system if
the sub-word unit models have only one state and no context.

3.3.2 Abstract Sub-Word Units

The use of abstract, data-driven sub-word units was motivated by the
fact that phoneme models did not meet the requirements. Some ap-
proaches to abstract acoustic elements have been described in the lit-
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erature.

A simple approach is to use the codebook classes, which are for
example used in discrete-density HMMs, as acoustic units. We have
not performed experiments with this approach because poor results
have been reported for recognizers based on discrete-density HMMs in
[Rab89] and [Har01]. An alternative presented in [HO99] is based on
the information-theoretic approach of multigrams introduced in [DB95].
This approach yielded good results in a language identification task.
In [EP06] abstract acoustic elements are based on quasi-stationary seg-
ments of the speech signal.

We have chosen abstract acoustic elements as described in [BB93],
there called fenones, as a basis for this work. There they have however
only been used for discrete-density HMMs. A fenone-variant called
senone for continuous-density HMMs was presented in [HH92]. Some
further suggestions for the training of abstract acoustic elements are
given in [Jel98].

In this thesis we have further developed these ideas and defined
abstract acoustic elements that satisfy all requirements given above.

3.4 Abstract Acoustic Elements

We now have to find a way to create a suitable set of abstract acoustic
elements ®. This means that an appropriate structure for the elemen-
tary HMMs ¢,, which model the abstract acoustic elements has to be
defined and a method to train their parameters has to be found. The
structure of the elementary HMMs will be defined in Section 3.4.1. Be-
fore describing the training of abstract acoustic elements we will look
at the training of phonemes in Section 3.4.2 because there is much more
knowledge available to train phonemes than to train abstract acoustic
elements. Based on this we will then formulate a training scheme for
abstract acoustic elements in Section 3.4.3.
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3.4.1 Structure of Abstract Acoustic Elements

According to the first requirement an abstract acoustic element should
not define temporal properties since it covers a quasi-stationary seg-
ment of a speech signal. Therefore the elementary HMM ¢,, which
describes an abstract acoustic element A, is composed of only one
emitting state and has fixed transition probabilities (age = ass = 0.5,
aia = 1), resulting in the structure shown in Figure 3.5. Each
wn,n = 1...,N is thus defined only through the probability density
function b,,(x), which is used to calculate the observation likelihood of
an observation x, given the abstract acoustic element A,,.

From now on we will refer to the abstract acoustic element A,, with
the elementary HMM ¢,, which is used to model it and to a set of
abstract acoustic elements A with the set of elementary HMMs &.

a22

v
b, (x)

Figure 3.5: Structure of an HMM ¢,,, which is used to model an
abstract acoustic element. The only emitting state S, is printed in grey.
The production likelihood b, (x) of an observation x is defined with a
GMM.

by (x) is defined with a Gaussian mixture model (GMM) which has
the form

M
bn(x) = Z Cm N (X, My s Znm ) (3.12)
m=1

where Cnm, Mym, and 3, are the weights, the mean vectors and the
covariance matrices of the M mixture components, respectively. Since
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the features used in the experiments (see Appendix C.1) are supposed
not to be very much correlated, we use diagonal covariance matrices
Som-

3.4.2 Training of Phonemes as a Starting Point

Before explaining the training of abstract acoustic elements we outline
the training mechanisms which are normally used to build phoneme
models. The set of elementary HMMs & = {¢1,...,pn} models the
phonemic alphabet. The elementary HMMs are nowadays usually lin-
ear HMMs with three emitting states.

Usually the sequence of phonemes which was spoken in an utterance
(i.e. a training utterance) is known through orthographic annotations
and a pronunciation dictionary. Therefore a composite HMM \j can
be built for every training utterance X%,

The optimization criterion which is normally used to determine the
parameters of elementary HMMs ¢,, € ®, is the maximization of the
likelihood for K observation sequences X = {X(1) ... X},

K
P(X|®) = H ®)\1) (3.13)

There is no analytical solution to solve this optimization problem. With
the Baum-Welch algorithm ([Bau70]) there is however a method to
iteratively determine the optimal parameters.

An alternative method to find the set of parameters is the segmental
k-means algorithm (see [Rab86],[JR90]), which is also known as Viterbi
training. Here the objective is to maximize the joint probability of the
set of observation sequences X' and the set of optimal state sequences

Q {Q(l) ) Q(K)}

P(X,Q|®) = B A\k) (3.14)

u',:]N

This training method is based on two steps. In the first step the opti-
mal state sequences Q*) are determined for each observation sequence
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X ) For continuous-density HMMs like in our case also the optimal
sequence of used mixtures G*) (the sequence which indicates for every
chosen state on X*) the best mixture) has to be determined. With
this first step an unambiguous assignment of observations to mixtures
in the HMM states is performed. In the second step the statistics can
be computed for all mixtures individually and the parameters can be
updated. Also the new estimate of the transition probabilities can be
computed from the alignment determined in the first step.

In [JRO0]it was shown that the production likelihood of the training
data for a set of phoneme models ® in a given iteration is at least
as hight as the likelihood in the previous iteration. Furthermore in
[ME91] it was both theoretically and experimentally shown that Viterbi
training leads to similar results as Baum-Welch training for the typical
settings in speech recognition.

Difference to the Training of Abstract Acoustic Elements

In the phoneme training the classes into which the acoustic space has to
be partitioned are known prior to model training. The training proce-
dure thus has to align the observation sequences X*) appropriately to
the corresponding composite HMMs A\, and estimate the parameters.

In the case of abstract acoustic elements the training is more com-
plicated since the classes into which the acoustic space is divided are
not known in advance but have to be estimated together with the model
parameters.

3.4.3 Training Procedure of Abstract Acoustic El-
ements

We use a training procedure which determines the parameters c,m,
Ky and 3, for all elements n and mixtures m by iterating between
the assignment of all feature vectors to the states of the abstract acous-
tic elements vectors and the parameter reestimation. The assignment
is defined by means of state sequences Q = {QW), ..., QU)} for all
utterances X1 ... . X(¥) How the state sequences O are determined
will be described later. The parameters are reestimated by maximizing
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the joint probability of the observation sequences and the given state
sequences P(X, Q|®). This criterion is quite similar to the criterion in
equation (3.14) used in Viterbi training, but Q is used instead of Q.

The training of abstract acoustic elements follows a training flow as
shown in Figure 3.6. It consists of three loops. In the innermost loop
the parameters are reestimated while Q is not changed. In the next
outer loop Q is redetermined. In the outermost loop the number of
mixtures is increased. This loop starts directly with a reestimation of
the parameters since a determination of Q does not make sense directly
after splitting the mixtures.

The properties of abstract acoustic elements are therefore deter-
mined through the parameters of this training flow. The following
parameters need to be defined:

initial ® the set of initial elementary HMMs
Q determination the algorithm with which Q is determined

Ry the number of reestimations which is per-
formed without changing Q

R the number of redeterminations of Q for a
given number of mixtures

M the final number of mixtures in each abstract
acoustic element

How the initial models are constructed will be described in Section
3.4.4. The reestimation of the parameters will be described in Section
3.4.5. The main difference between different abstract acoustic elements
types results from the way Q is determined. Different abstract acoustic
element types and their method to choose Q are presented in Section
3.5.

3.4.4 Initial Models

The initial models are determined with a clustering of the acoustic
space. The whole acoustic space is partitioned in as many clusters as
abstract acoustic elements are desired.
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{

reestimation

split mixtures

Figure 3.6: Flow chart of the training process of abstract acoustic
elements.

Clustering algorithms are used in the construction of vector quan-
tizers. There a codebook vector is used to represent a cluster of vectors.
The vector quantizer assigns an input vector to the cluster whose code-
book vector is closest. In the domain of speech, vector quantization is
used for speech coding (see for example [MRG85]) or for HMMs with
discrete-valued observation sequences ([RLS83]). Given a set of train-
ing vectors, the clustering algorithms aim at choosing the codebook
vectors such that the distortion within each cluster (i.e. the distortion
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of all training vectors which are assigned to a codebook vector) is mini-
mized. A very popular algorithm is the Linde-Buzo-Gray or short LBG
algorithm, which was introduced in [LBGS80].

Using the LBG algorithm with the squared-error distortion measure
d we partition the acoustic space into the number of desired abstract
acoustic elements N. A GMM with a single mixture is then taken as
initial model for each abstract acoustic element ¢,,. Mean and variance
of the mixture are determined from the observation vectors which were
assigned to codebook vector z,,.

3.4.5 Parameter Reestimation

All methods to train abstract acoustic elements, which will be described
in Section 3.5, use the same way to update the model parameters ac-
cording to the collected statistics. The algorithms described in Section
3.5 assign each frame xgk) to a state. This state is given with Q',Ek). The
algorithms do not determine the mixture within the states. Always the
most likely mixture is taken in every state like in the Viterbi training
of phonemes. This mixture is therefore termed g,f’“).

For the parameter reestimation the following auxiliary variables are
defined for all observation sequences k, times ¢, states S, and mixtures

m:

~(k
(k) _ 1 itg =S, 315
() {O othelrWlse7 (3.15)
~(k) - (k)
1 d g
P n,m) = =5, and g, (3.16)
0 othervvlse.

The new parameters can then be reestimated in every iteration with
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the following formulas:

K Ty
k
o = ;k (3.17)
SN )
k=1t=1
k
ch(k) (n,m) xgk)
o = (3.18)
ch(k)
k=1 t=1
K Ty
k k -
Z Ct( ) n m “nm)( ( )_ I-‘l‘nm)t
2nm = kL= K Tn (319)
k=1 t=1

3.5 Abstract Acoustic Element Types

In this Section we present three different types of abstract acoustic
elements. The training protocol of all types corresponds to the training
flow shown in Section 3.4.3, but differs in the way Q is determined.

The first two types of abstract acoustic elements do not require any
annotation of the training data. The last type presented in Section
3.5.3 requires orthographic annotations.

3.5.1 Purely Acoustic Clustering Based on the LBG
Algorithm

The first approach to the construction of a set of abstract acoustic
elements is purely acoustical and therefore completely unsupervised.
The idea of this approach is to keep the acoustic clustering which was
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done during the model initialization explained in Section 3.4.4 during
the whole training process. Each cluster is modeled with a GMM.

Using the terminology introduced in Section 3.4.3 the elements of
the sequences Q%) are determined as follows:

n = argmin d(xgk)7 Zn) (3.20)
1<n<N
i = ea (3.21)

The parameter R is in this case 1 and therefore Q will never change
during the process. This also means that the GMM for each cluster and
therefore for each abstract acoustic elements is modeled independently
of the other clusters.

3.5.2 Acoustic Clustering Optimized for GMMs

The approach described in Section 3.5.1 has the drawback that the
shapes of the clusters are still restricted to the shape which was given
by the Voroni tessellation determined by the codebook vectors even
though GMMs are capable to model more complex distributions. The
approach presented in this section allows the clustering of the acoustic
space to change with the increased modeling flexibility of the GMM if
the number of mixtures is increased.

The state sequences Q which determine the assignment of observa-
tions to abstract acoustic elements are in this case for every observation
sequence X(¥) determined like in Viterbi training as the optimal state
sequence Q(k) which can be determined with the Viterbi algorithm:

QW = QW = argmax P(Q™), X*)|\) (3.22)
QU
The composite HMM A\ is here an abstract element loop composed of
the elementary HMMs from ® which describe the abstract acoustic
elements ¢,,n =1,..., N. Note that in contrast to the usual training
of phonemes summarized in Section 3.4.2 this composite HMM A is the
same for all training utterances.

The state sequences Q are periodically updated. Therefore the clus-
ters can gradually adapt to the modeling capability of GMMs which
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grows with the number of mixtures used to model each abstract acous-
tic element.

There is no analytically proven guarantee that this training proce-
dure, nor any of the ones described in Section 3.5.3 will converge to a
good clustering of the acoustic space. That the clustering is reasonable
has to be shown experimentally.

Favor Longer Sequences of the Same Element

Speech is often considered as a quasi-stationary process since the vocal
tract of a speaker does not make arbitrarily fast movements. There-
fore the properties of the signal are usually considered as stationary
within a speech frame. We also expect consecutive frames to be simi-
lar. With some modification to the approach presented in this section
we aim at making the abstract acoustic elements less sensitive to small
fluctuations of the features. In other words the decoder which uses
the abstract acoustic elements should remain as long as possible in one
abstract acoustic element.

In order to achieve this we use again an abstract acoustic element
loop A but impose a fixed additional penalty H on all transitions leading
to a different abstract element. Such an HMM was shown in Figure
3.2. With this additional penalty in the HMM the state sequences o)
are determined according to equation (3.22) as well.

3.5.3 Use of Orthographic Annotations

All previously described approaches did not use any annotation of the
training data. It is interesting to evaluate whether knowledge of the
content of the training material may be used to create better abstract
acoustic elements.

In [Jel98] a method is proposed, which assumes that it is known
for every training utterance, which word it contains. All training ut-
terances containing the same word are then supposed to be described
by the same sequence of abstract acoustic elements. We developed an
approach similar to the one presented in [Jel98], with modifications
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necessary mainly since the HMMs used in [Jel98] allow non-emitting
transitions.

The K training utterances are therefore distributed into groups ac-
cording to the word which they contain. Therefore we have as many
groups W as we have words in the training material and each group
contains the utterances which contain the corresponding word. Here we
describe every group with the set of V,,,w = 1..., W of utterance in-
dices which contain the word w. Now the sequence of abstract acoustic
elements Z(*) which produces the observation sequences X% k € V,,
with highest probability has to be computed for every word w. In Sec-
tion 3.2 this optimization problem and its solution are described. Now
a linear HMM JA,, can be built by concatenating elementary HMMs
pn € ® in the same order as they occur in Z) for every word. The
state sequence Q) can then be determined for every training utter-
ance:

Q™ = argmax P(Q®), X*)|),,) (3.23)
Q)

This equation is almost identical to equation (3.22), but the A, is
specific for the word the training utterance k belongs to.

3.6 Experiments

3.6.1 Used Training Parameters and Training Data

The parameters introduced in Section 3.4.3 to control the training pro-
cess were as follows: Ry was 8 and Ry was 4 for all abstract acoustic
elements with the exception of the abstract acoustic elements described
in 3.5.1. Here R; was 32 and R, was 1. We have empirically chosen
these parameters in a way that the average log likelihood per frame on
the training data did not increase further when more iterations were
used.

All sub-word units used in this thesis were trained on data of speak-
ers of the speaker set Sg pory,1 for German and Sgypoy,1 for French.
These speaker sets are disjoint from the speaker sets Sg pory,3 and
SF poly,3 Which were used in the test tasks.
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3.6.2 Comparison of Different Sub-Word Units

In Section 3.5 we have presented different methods to train abstract
acoustic elements. In this Section we evaluate the performance of the
abstract acoustic elements generated by the described methods. In
all experiments we kept the used number of elements N at 128 and
the number of mixtures per element M at 16. These numbers yield
about the same number of trainable parameters as for the training
of phonemes. The influence of these parameters will be described in
Section 3.6.5. We used the features Feat,,,cms as described in Appendix
C.1.

In Table 3.1 we show the results for the German and the French
ten-word IWR task in a speaker-dependent scenario (tasks 1 and 4).
In these experiment we used only one utterance to construct each word
HMM \,. Arpg are the elements which perform the clustering only
with the LBG algorithm as described in Section 3.5.1. The elements
Apree are elements trained with the unsupervised clustering described
in Section 3.5.2. Here we used an additional log-likelihood of -2 as
a penalty on transitions to other elements. Orthographic annotations
were necessary to train the elements Awordconstrain as described in
Section 3.5.3. Additionally we also evaluated phonemes as described in
Appendix D.

The ranking of the systems was the same for both languages even
though the recognition rates were considerably lower for the French
test tasks. The reason is most probably the shorter average dura-
tion of the French words. The abstract acoustic elements Argqs had
by far the worst performance. This clearly showed that a clustering
based only on the LBG algorithm is not sufficient. The abstract acous-
tic elements Ap.. already yielded much better results but were still
worse than phonemes. They were however still interesting since they
require no annotation of the training data. The abstract acoustic el-
ements A wordConstrain Showed the best performance, also better than
phonemes.
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’ sub-word unit type \ German \ French ‘

Arsc 65.3 % | 55.7 %
Apree 85.7% | 71.6 %
-AWordConstrain 93.3 % 86.6 %
phonemes 90.9 % | 84.8%

Table 3.1: Recognition rates for different sub-word unit types in a
speaker-dependent scenario. All tests are performed with sub-word mod-
els of the target language.

3.6.3 Language-Independence of Abstract Acoustic
Elements

In contrast to training of phoneme models there is no pronunciation
dictionary necessary to train abstract acoustic elements for a given
language or dialect. If abstract acoustic elements have to be trained
for the target language it is however still necessary to have acoustic
training data of this language and for abstract acoustic elements of type
AwordConstrain additionally orthographic annotations are necessary.

It would therefore be desirable if abstract acoustic elements could be
used for a cross-language scenario, i.e. that abstract acoustic elements
which were trained on one or several languages could be used in a
recognizer of a language not used for the training.

Therefore we evaluated which sub-word unit type is most appro-
priate to be used in a cross-language scenario. We tested phonemes,
abstract acoustic elements of type A wordconstrain and abstract acoustic
elements of type Ap. in the German and French tasks of a speaker-
dependent scenario (tasks 1 and 4). The results are given in Table 3.2.
Intra-language means that tests were performed with sub-word mod-
els of the same language. Cross-language means that French sub-word
models were used in the German test task and vice versa. The rela-
tive increase of the error rate when switching from language-dependent
models to cross-language models is shown in Table 3.3.

The first fact to notice is that the decrease in performance if mod-
els from the other language are used was much higher for the French
test task than for the German test task. For the German test task the
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German French
sub-word . .
. intra- Cross- intra- Cross-
unit type
language | language | language | language
.AFree 85.7 % 85.0 % 71.6 % 65.7 %
AWordConstrain 93.3 % 91.5 % 86.6 % 76.3 %
phonemes 90.9 % 86.0 % 84.8 % 71.5 %

Table 3.2: Recognition rates for different sub-word unit types in
a speaker-dependent scenario. Results for intra-language and cross-
language tests are given.

average relative increase of the error rate was only 4.9 % whereas it
was 20.1 % for the French task. This indicates that the German lan-
guage was much better covered by the French models than the other
way round. At the first glance this is astonishing since the German
phoneme-based recognizer had 47 phoneme models whereas the French
recognizer had only 40. If we look closer at the German phoneme mod-
els we see that there are a lot of diphthongs and affricates which may
be substituted by two phoneme models (e.g. 'au’ or ’ts’). Furthermore
there are a lot of vowel-phoneme models which occur in a long and a
short version (e.g. 'u’ and 'u:’). On the other side French has a lot of
nasals which do not occur in German.

’ sub-word unit type H German \ French H average ‘

AFree 4.9 % 20.1 % || 125 %
AWordConstrain 26.9% | 76.9% || 51.9 %
phonemes 53.9% | 87.5 % || 70.7 %

’ average [ 287% [615% [| 45.0 % |

Table 3.3: Relative increase of the error rates for different sub-word
unit types if using cross-language instead of language-dependent sub-
word units.

Now we look at the different sub-word unit types. As expected
the performance of the phoneme models degrades most if phoneme
models of another language are used instead of phoneme models of the
target language. The abstract acoustic elements A wordaconstrain Show
a bigger performance loss in cross-language tests compared to intra-
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language tests than the elements Ap... This is probably due to a
language dependence which is introduced into the models by forcing all
utterances of a word to the same sequence of abstract acoustic elements
Z during the training.

Looking again at the absolute recognition rates, the elements
AwWordConstrain. Were still much better than the elements Apgqe.. Fur-
thermore, the superiority over phonemes was bigger in cross-language
tests than in intra-language tests.

3.6.4 Influence of Transition Penalties

In Section 3.5.2 we have described how transition penalties can be used
to force the Viterbi decoder to remain longer in an abstract acoustic
element. This can be used during the training of the abstract acoustic
elements but also during the concatenation of sub-word units to a word
HMM from utterances as described in 3.1.

In this section we report results of the influence of the penalties
Hirain used during the abstract acoustic element training and Hies
used during the construction of the word models. We tested the in-
fluence in the two families of abstract acoustic elements Apgq. and
AwordConstrain, as defined in Section 3.6.2. The penalties are imple-
mented in the HMMs by subtracting the value Hypqin or Hyest for each
transition between abstract acoustic elements.

All parameters except for the penalties were constant: The num-
ber of abstract acoustic elements was 128 and the number of mixtures
per element was 16. The used features Feat,,cms are described in
Appendix C.1.

The resulting recognition rates are shown in Figure 3.7 for the Ger-
man speaker-dependent task (task 1) and in Figure 3.8 for the French
speaker-dependent task (task 4). In order to distinguish the influence
of Hyrqin from Hy.s; we ran the experiments twice. In the first runs we
changed both Hi,qin and Hiest. In the second runs we did not apply
a penalty during training but only during testing. These are the plots
denoted as " Hypqin = 07. For German we also printed the average
log likelihood per frame during the training and the average segment



74 3 Utterance-based Word Recognition with Hidden Markov Models

length, i.e. the average number of frames during which the decoder
remained in the same abstract acoustic element.

We could observe that it was crucial to have appropriately chosen
penalty values Hypqin and Hyesy for Appee . If varying only Hyes; and
keeping Hypqin = 0 the results were constantly worse than if penalties
were used both during training and testing. This demonstrated that the
quality of the abstract acoustic elements with respect to our task was
better if a penalty Hy,.q;n, was used. In the case of Aworaconstrain the
values of Hypgin and Hi.sr could be chosen much smaller. This showed
that using several utterances to determine a sequence of abstract acous-
tic elements Z leads to better results and that a high penalty on tran-
sitions to a different sub-word unit was not necessary.

The average log likelihood per frame during training did not de-
crease very much with an increased segment length. It was however
much lower if all utterances of the same word were forced on the same
sequence of abstract acoustic elements.

3.6.5 Suitable Number of Abstract Acoustic Ele-
ments and Mixtures

So far we have not observed the influence of the number of abstract
acoustic elements N and the number of mixtures per element M on
the recognition rate. Therefore we trained and tested abstract acoustic
elements of the Awordaconstrain family to find the number of elements
which is suitable to model speech.

The results of a speaker-dependent scenario are given in Figure 3.9
for German (task 1) and in Figure 3.10 for French (task 4). Each line
corresponds to a set of abstract acoustic elements with a given size. The
recognition rate is then given as a function of the number of mixtures
in each element.

The results showed that it is especially important to have enough
abstract acoustic elements. Using more than 128 elements did how-
ever not improve the recognition rate a lot but increased the recogni-
tion time. This number of abstract acoustic elements is much more
than the number of phonemes which are usually used in monophone-
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Figure 3.7: Influence of transition penalties on the recognizer for a
German speaker-dependent scenario. The effect on the recognition rate,
the average log likelihood during training and the average segment length
in frames during training is shown as a function of the penalty. The ab-
stract acoustic element types AwordConstrain nd Apree are tested twice.
In the tests denoted "Hiyqin=0" only Hicst ts varied while Hipqin Te-
mains 0. In the other tests Hiest and Hyyqin were varied.
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Figure 3.8: Influence of transition penalties on the recognition rate
of a French speaker-dependent scenario. The abstract acoustic element
types AwordConstrain and Ape. are tested twice. In the tests denoted

"Hirain=0" only Hes; 1s varied while Hyqin, remains 0. In the other
tests Hiesy and Hiygin were varied.

based recognizers (our German recognizer has 47 phonemes and the
French recognizer has 40). If we consider however, that each phoneme
is composed of three states, the number of Gaussian mixture models in
monophone-recognizers is quite close to 128.

3.6.6 Comparison of Algorithms to Find a Sequence
of Sub-Word Units from Several Utterances

In Section 3.1.2 we sketched two algorithms to determine the optimal
sequence of sub-word units for several utterances and described them
in detail in Section 3.2. We will now evaluate these algorithms.
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Figure 3.9: Recognition rate for German in a speaker-dependent sce-
nario with different numbers of abstract acoustic elements and miztures.

In the following we will refer to the exact algorithm which is pre-
sented in Section 3.2.2 as Alg,,., and to the approximative algorithm
presented in Section 3.2.4 as Alg ;- All tests were performed with
abstract acoustic elements of type Awordconstrain -

Compared Algorithms

Additionally to the algorithms Alg ..., and Alg ..., We tested two al-
ternative algorithms to determine the best sequence of sub-word units:

® Alg.phoosenest: Lhis algorithm falls in the first category of algo-
rithms described in Section 3.2.1. It was implemented along the
lines of [MJ99]. We determined for each utterance the 20 best
sequences of abstract acoustic elements with the token-passing-
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Figure 3.10: Recognition rate for French in a speaker-dependent sce-
nario with different numbers of abstract acoustic elements and miztures.

based Viterbi algorithm (see [You89]) with ten tokens per node.
From the resulting sequences, we used that as reference, which
best described all reference utterances.

® Algpuyatign: In this approximative algorithm the available refer-
ence utterances of a vocabulary word were aligned with DTW
in order to get a time-synchronous version of the sequences. All
sequences were mapped on the sequence which had the smallest
DTW-distance to all others. For these time-aligned sequences
it was straight-forward to perform a Viterbi search by using the
joint observation probability of the aligned feature vectors to find
the best sequence of abstract acoustic elements.
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Tests in Speaker-Dependent IWR

The first experiments show how the different algorithms performed in
a speaker-dependent scenario (tasks 1 and 4, cf. Appendix E.2). In
Table 3.4 the results of several algorithms are listed as a function of
the number of utterances which were used to form each word model.
The data available for the speaker-dependent scenario allowed to use
only up to three utterances per vocabulary word.

language German French
# utterances 1 \ 2 \ 3 1 \ 2 \ 3
Alg eract 96.2 | 97.0 93.4 | 95.2
Alg oppros 96.2 | 96.8 93.4 | 94.8
AlG chooseBest 93.5 95.6 | 96.4 86.6 90.9 | 92.8
Alg prwatign 94.7 | 95.0 89.6 | 91.9

Table 3.4: FEwvaluation of different algorithms to find the optimal se-
quence of sub-word units for several utterances in a speaker-dependent
scenario. Recognition rates are given in %.

Tests in Speaker-Independent IWR

In a speaker-independent scenario (tasks 3 and 6, cf. Appendix E.2) we
could also evaluate how the algorithms perform with more utterances
per vocabulary word. The recognition rates as a function of the number
of available utterances per reference word are given in Figure 3.11.
We evaluated the same algorithms as in the speaker-dependent case
except for the algorithm Alg,,,.., which had a too high computational
complexity to be applied for 20 utterances.

A comparison of the algorithms showed that Alg,,,., yielded better
results than AlgchooseBest and AlthwAlign' Moreover Algapp'row ylelded
almost as good results as Alg.,,..- As expected the recognition rate
with Al poosenes: iNCreased with the number of available utterances.
Its recognition rate was however also with 20 utterances per reference
word still considerably lower than the one with Alg,,, .- It is a wel-
come property of the Alg ..., systems that the recognition rates are
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Figure 3.11: Recognition rate as a function of the number of reference
utterances in a speaker-independent scenario (tasks 7 and 8).

already with a few utterances quite high, since a smaller effort is nec-
essary to record all utterances.

Another important aspect is the computational complexity of the
algorithms. The exact algorithm Alg.,,.. has a computational com-
plexity of O(TX) for K utterances of average length T. The algo-
rithms Alg .poosepest A0 AlG pryajign have a computational complexity
of O(T?). The algorithm Alg ., is linear with respect to 7.

3.7 Concluding Remarks

We have shown that abstract acoustic elements are more suitable sub-
word units than phonemes to build word HMMs by concatenating sub-
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word units according to utterances of the words. The superiority of
abstract acoustic elements is particularly evident in a cross-language
scenario.

We could also show that the K-dimensional Viterbi and the approx-
imation thereof which were presented in Section 3.2 are better for the
task of determining the optimal sequence of abstract acoustic elements
than other methods described in the literature.

Abstract acoustic elements A wordConstrain for which orthographic
annotations are necessary perform considerably better than abstract
acoustic elements Ap.. for which no annotations are necessary. This
is disadvantageous for languages for which only unannotated training
data is available.

Even though the language mismatch had a smaller impact on the
recognition rate when abstract acoustic elements were used than when
phonemes were used, it still resulted in a performance loss.

We have seen however that abstract acoustic elements
AWordConstrain  Which are trained on annotated training data of
another language still performed better than abstract acoustic
elements Ap.. which are trained on data of the target language.
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Chapter 4

Comparison of Different
Isolated Word
Recognition Techniques

This chapter compares the best-performing systems both of the DTW-
approach described in Chapter 2 and of the HMM-approach de-
scribed in Chapter 3 in speaker-dependent, cross-speaker and speaker-
independent scenarios. All scenarios are compared for the intra-
language case in which the training material was taken from the target
language and for the cross-language case in which the training material
was taken from another language. In Section 4.2 the recognizers with
an utterance-based vocabulary are compared with a state-of-the-art
dictionary-based recognizer.

4.1 Comparison of Recognizers with an
Utterance-based Vocabulary

Two recognizers were based on DTW pattern matchers as described
in Section 2. DTW gy used a standard Euclidean distance measure
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whereas DTW v p used the posterior-feature transformation and a
VMLP as a distance measure. HMM 4 was a HMM-recognizer based
on abstract acoustic elements A wordconstrain @S described in Section
3.5.3. To build a word HMM from several utterances the approximative
K-dimensional Viterbi as described in Section 3.2.4 was used.

First the results of the speaker-dependent, cross-speaker and
speaker-independent scenarios are given in Section 4.1.1 and then dis-
cussed in Section 4.1.2.

4.1.1 Results of Recognizers with an Utterance-
based Vocabulary

Speaker-Dependent Scenario

This section gives the results of the speaker-dependent tasks 1 and 4.
In Table 4.1 the results of several recognizers are listed in dependence
of the number of utterances which were used to form each word repre-
sentation.

language German French
# utterances 1 2 3 1 2 3
DTW guel 86.6 | 89.3 | 91.6 || 67.5 | 71.8 | 76.8

intra.- | DTWypyrp || 93.1 | 92.8 | 94.6 || 79.1 | 80.2 | 84.1
lang. HMM s 93.5 | 96.2 | 96.8 || 86.6 | 93.4 | 94.8
cross- | DTWyyrp || 929 | 92.4 | 93.7 || 76.9 | 78.5 | 82.5
lang. HMM 4 g 91.5 | 944 | 96.2 || 76.3 | 85.4 | 88.3

Table 4.1: FEvaluation of different recognizers in a speaker-dependent
scenario. Several utterances were used to construct the word represen-
tations. Recognition rates are given in %.

Cross-Speaker Scenario

Table 4.2 shows the performance of the various recognizers for cross-
speaker tasks 2 and 5. The results are given in Table 4.2.
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language German French
# utterances 1 2 3 1 2 3
DTW gyl 62.1 | 64.6 | 66.4 || 49.7 | 52.8 | 56.4

intra.- | DTWyprp | 80.6 | 80.9 | 82.8 || 67.5 | 69.3 | 72.6
lang. HMM ag 86.3 | 90.6 | 92.0 || 80.6 | 88.6 | 90.8

cross.- | DTWyyrp || 75.6 | 79.6 | 80.9 || 63.9 | 65.9 | 69.6
lang. HMM 4 g 80.1 | 84.7 | 86.8 || 66.3 | 74.8 | 78.1

Table 4.2: Evaluation of different recognizers in a cross-speaker sce-
nario if several utterances were used to construct the word representa-
tions. Recognition rates are given in %.

Speaker-Independent Scenario

These experiments have shown how a recognizer performed if the word
representations are speaker-independent as in tasks 3 and 6. In these
tasks up to 20 utterances per word were available. The utterances
were randomly chosen from a large number of utterances spoken by
a big population of speakers. The language-dependent (black lines)
and cross-language (grey lines) recognition rates in dependence of the
number of available utterances per reference word are given in Figure
4.1.

4.1.2 Discussion of Recognizers with an Utterance-
based Vocabulary

Comparing the results of the speaker-dependent and the cross-speaker
scenario clearly showed that the inter-speaker variability had an adverse
effect on the recognition rate. This effect was however much more severe
for DTW gy than for DTW vyp and HMM 4. This shows that
the developed techniques enhance the robustness against inter-speaker
variability.

If the word representations could be build from three utterances of
several speakers, as is the case of the speaker-independent scenario, the
recognition rates were only slightly worse than in the speaker-dependent
case. If 20 utterances could be used the results were even better than
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Figure 4.1: Recognition rate as a function of the number of reference
utterances for speaker-independent tasks 8 and 6. The black lines give
the results for systems which use resources (VMLPs, abstract acoustic
elements) trained on the target language. The grey lines give results
for cross-language experiments, i.e. experiments in which the resources
were taken from the other language.

in the speaker-dependent scenario with three utterances — it is indeed
likely that more utterances are available in the speaker-independent
case since they do not need to be collected for every user separately.

Among the DTW-based recognizers DTW vpp performed much
better than DTW gy¢;. The largest gain of a VMLP used in the DTW-
based approach was observed in difficult tasks such as the French recog-
nition task with one reference utterance per word. The recognizer based
on abstract acoustic elements HMM 4 i performed however again much
better. The superiority of abstract acoustic element recognizers was
particularly high if several observation sequences were used.
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In the cross-language case the systems performed quite well in
the speaker-independent scenario even though the effect of language-
mismatch was clearly observable. For the HMM 4p systems with 20
utterances the recognition rate decreased from 97.9 % to 94.7 % for
German and from 95.6 to 88.0 for French. This decrease may seem
quite high, but if we consider that the recognition rates of DTW gy
were only 81.3 % for German and 72.8 % for French, these figures are
still satisfactory. More concretely, the cross-language systems HMM 4 p
yielded a decrease of the error rate relative to DTW gy, of more than
70 % for German and almost 60 % for French. For the language-
dependent HMM 4 systems these numbers were almost 90 % for Ger-
man and more than 80 % for French.

We have seen that HMM sop generally performed better than
DTW yyrp. In the cross-language case the difference between the
techniques was however considerably smaller than in the language-
dependent case. This suggests a higher robustness against language-
mismatch of the DTW/VMLP-based technique.

4.2 Comparison with Dictionary-based
Recognizers

It remains to evaluate how close the devised techniques come to speaker-
independent isolated word recognizers (IWR) which are possible to con-
struct for resource-rich languages. The two languages German and
French which we used to test our methods both fulfill this requirement.
We therefore tested all tasks with our standard phoneme-based speaker-
independent recognizer as described in Appendix D. The results are
listed in Table 4.3 along with the recognition rates of the best perform-
ing systems based on an utterance-based vocabulary. The results are
given for three reference utterances in all scenarios and additionally for
20 reference utterances in the speaker-independent scenario.

First we compared the HMM system based on abstract acoustic el-
ements concatenated according to utterances to the dictionary-based
system in a speaker-dependent scenario in the intra-language case. On
a first glance this comparison could be considered as unfair since the
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num. of . . HAMM ap dict.-
language rofs. scenario DTW gyer | intra.- | cross.- based
lang. lang.
spkr.-dep. 91.6 96.8 96.2 96.9
German 3 cross-spkr. 66.4 92.0 86.8
spkr -indep. 69.4 95.8 90.7 97.4
20 81.3 97.9 94.7
spkr.-dep. 76.8 94.8 88.3 96.7
French 3 cross-spkr. 56.4 90.8 78.1
spkr -indep. 57.1 92.8 80.5 96.7
20 72.8 95.6 88.0

Table 4.3: Comparison of recognition rates in % between different rec-
ognizers. The results are given for all scenarios. For HMM g results
for intra-language (abstract acoustic elements from the target language)
and cross-language (abstract acoustic elements not from the target lan-
guage) experiments are given. For the recognizers with an utterance-
based vocabulary three utterances were used in the all scenarios and in
the speaker-independent scenario additionally the results with 20 utter-
ances are given.

dictionary-based recognizer is speaker-independent. There may how-
ever be situations where one has to build an IWR for a single speaker
and thus both, an utterance-based speaker- and language-dependent
and a dictionary-based speaker-independent recognizer are viable op-
tions. If there is only a single utterance available for each vocabulary
word, the best utterance-based recognizer yielded an error rate which
was around twice as high than the one of a dictionary-based recog-
nizer for German and around around three times as high for French
(cf. Tables 4.1 and 4.3). These results clearly suggest to use the
dictionary-based recognizer in this case. With as few as three utter-
ances per vocabulary word the utterance-based recognizer had a sim-
ilar performance as the dictionary-based recognizer for German while
it was a bit worse for French. A reason for the better performance of
the utterance-based system in German was probably the test-speaker
population. Most speakers were of Swiss German mother tongue. This
caused a dialectal influence of their pronunciations which therefore dif-
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fered from the standard German pronunciations which were used in the
dictionary-based recognizer.

Next we compared the results of speaker-independent tasks 3 and 6.
With around 20 utterances from several speakers per reference word the
best utterance-based method presented in this thesis reached a similar
performance as a dictionary-based recognizer if models of the target
language were available.

For a cross-language usage, the recognizer with an utterance-based
vocabulary achieved a lower recognition rate than a recognizer which is
built for the target-language. In the speaker-independent scenario with
20 reference utterances the HMM 4 g recognizer had an around twice as
high error rate than a language-dedicated dictionary-based recognizer
for German (2.6 % vs. 5.3 % absolute error rate) and an around 3.5
fold higher error rate for French (3.3 % vs. 12.0 % absolute error rate).

The results of the French tasks are consistently worse than the re-
sults of the German tasks. One reason for this is the higher average
length of the utterances in the German tasks than the one in the French
tasks.

4.3 Conclusion

We could see that the HMM-based approaches to ITWR with a
utterance-based vocabulary performed better than the DTW-based ap-
proaches even though the use of a VMLP instead of the Euclidean dis-
tance yielded a substantial performance gain. The abstract acoustic
elements which exploit orthographic annotations performed by far bet-
ter than abstract acoustic elements which are trained in a completely
unsupervised way even if applied in another language than the training
language of the elements. The abstract acoustic elements performed
also better than phonemes.

By using the HMM-based technique the error rate of recognition
with an utterance-based vocabulary could be reduced by around 65 %
compared to a standard template-based recognizer even if the abstract
acoustic elements were not trained on the target language.
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In the intra-language and speaker-dependent scenarios the best
recognizer with utterance-based vocabulary presented in this thesis
achieved almost the same performance as a dictionary-based recognizer
if about three utterances of each word in the vocabulary were available
to build the word models. In a speaker-independent scenario a word
recognizer with an utterance-based vocabulary could compete with a
dictionary-based recognizer only if the abstract acoustic elements were
language-dependent. If abstract acoustic elements of another language
were used it produced considerably more errors than a dictionary-based
recognizer. The difference is however that in contrast to the training of
phonemes which are necessary for a dictionary-based recognizer, only
acoustic training data but no pronunciation dictionary is necessary for
the training of abstract acoustic elements.

In terms of resource requirements the dictionary-based recognizer
needs both a pronunciation dictionary and annotated training data
from the target language. For the intra-language case the utterance-
based technique achieves a similar performance to the dictionary-based
recognizer but requires only orthographic annotations and no pronunci-
ation dictionary. In the cross-language case which requires no resources
of the target language the recognition rates are lower than the ones of a
dictionary-based recognizer but still considerably higher than the ones
of a standard utterance-based recognizer.



Chapter 5

Other Application
Scenarios

In previous chapters we have investigated isolated word recognition
for languages that do not allow to build a dictionary-based recognizer
because no pronunciation dictionary is available and therefore only the
use of a vocabulary which is based on sample utterances of the words
is a viable alternative. We have presented two techniques which are
considerably better than dynamic time warping which is usually used
for this task.

There are other applications which can profit from these techniques
in that these applications need to compare two utterances in some way.
Some of these applications are

e Utterance Verification: In some applications it has to be verified
whether two utterances are equally worded. With the techniques
developed in this thesis this task can be performed without even
knowing which language is spoken in the two utterances. The
techniques promise in particular a higher speaker-independence
compared to standard DTW-based techniques. Such a task arises
for example in educational applications if it has to be verified
whether a student has pronounced the same word or phrase as in
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a reference recording of a teacher and that he has pronounced it
correctly.

e Acoustic Data Mining: Acoustic keyword spotting, also known
as spoken term detection, is nowadays mostly based on word lat-
tices ([Wei95]), phone lattices ([JY94]) or both ([MRS07], [Mil07])
which are generated with a large vocabulary speech recognition
(LVCSR) system. This makes these systems language-dependent.
The techniques presented in this thesis facilitate the construction
of systems which are language-independent.

e Speaker Verification: Speaker verification systems which are
based on the comparison of words which occur both in the ref-
erence and the test utterance usually use a LVCSR to find the
common words. This makes the systems language-dependent.
The developed techniques open new possibilities to find common
words in two speech signals in a language-independent way.

In this thesis we investigated acoustic data mining with a task to
find common segments such as words or phrases in two signals. These
investigations will be presented in Section 5.1. An application of this
task in a speaker verification application is presented in Section 5.2.

5.1 Acoustic Data Mining

In this section we investigate a task of acoustic data mining, namely to
find common segments such as words or syllables in two speech signals
with techniques that are language-independent, i.e. techniques which
can be applied for speech signals of any language.

The amount of literature available for this task is scarce. The only
algorithm we are aware of is Segmental DTW presented in [PGO5]. Tt
bears indeed some similarity to the algorithm which we present in Sec-
tion 5.1.1 since it is also based on a distance matrix. The algorithm
partitions the distance matrix in overlapping bands in diagonal direc-
tion and finds the optimal path for each band. From this optimal path
a subsegment with a low distance is sought with an algorithm presented
in [LJC02]. A disadvantage of the algorithm is that it finds only one
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matching segment in a diagonal band. This has a big impact if the two
signals are almost identically worded but have some inserted, substi-
tuted or deleted words. In this case the common segments are expected
in a few bands around the diagonal of the distance matrix.

How a derivate of the DTW algorithm in combination with verifica-
tion multilayer perceptrons (VMLP) as presented in Section 2.2 can be
used for this task is shown in Section 5.1.1. In Section 5.1.2 we show
how HMMs based on abstract acoustic elements can be used for the
task. The two approaches are compared in Section 5.1.3.

5.1.1 Seek Similar Segments with Modified DTW
Distance / Probability Matrix

In speech applications the DTW algorithm is usually used to find the
best alignment between two observation sequences which are hypoth-
esized to contain the same wording. In the usual case of a distance
matrix it is expected that there is a valley of small local distances
approximately along the diagonal through the whole distance matrix
if the hypothesis is true (i.e. both observation sequences contain the
same word). If a VMLP as described in Section 2.2 which outputs the
probability that the two input frames are from the same phoneme for
each frame pair is used, a ridge in diagonal direction is expected.

In the task we are aiming to solve we do not expect that the two
signals are equally worded. Therefore there will be no ridge across the
whole probability matrix. If there are however segments of the two
signals which match, there will be ridges in approximately diagonal
direction at the corresponding locations. An example of a probability
matrix is shown in Figure 5.1.

Search Algorithm

Given a probability matrix of the type described above we need an
algorithm to detect the ridges. We have therefore devised an algorithm
which is related to DT'W but is not restricted to find one optimal path
through the full probability matrix.
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Figure 5.1: Probability matriz spanned by the German numbers 71}
( “siebenhundertvierzehn”) and 143 (“hundertdreiundvierzig”) uttered
by two different speakers. Common segments show as ridges, e.qg., the
word “hundert” which occurs in both numbers shows as a ridge between
0.6 and 1 s in signal 1 and between 0.1 and 0.4 s in signal 2.
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In contrast to the standard application of DTW where processing
starts and ends at more or less constrained starting and end points and
is unidirectional, we use bidirectional DTW that starts at the peak of
a potential ridge and proceeds in both directions until the ridge ends.
More precisely the detection is as follows:

1. The processing starts at the point where F;; is maximal.

2. From this initial point DTW is used to follow the potential ridge,
i.e. to construct a warping curve in both directions. As usual,
slope constraints are used that allow to compensate a maximum
local speaking rate difference of the two speech signals of a factor
of two.

3. The ridge ends where FP;; is smaller than threshold P, for two
consecutive DTW steps.

4. The points of P;; constituting the found ridge are excluded from
further processing.

5. If the found ridge is longer than the minimum length L,,, the
partial warping curve with the frame pairs is kept as a part of the
result of the algorithm.

6. If the maximum of all not yet excluded Pj; is greater than thresh-
old P,, processing loops back to step 1.

The parameters of the ridge detection, i.e. the thresholds P, for starting
a ridge and P, for ending a ridge and the minimum length L,, have to
be optimized by means of an appropriate data set. If P, and P, are
chosen too high the probability of missing a common segment increases
whereas low P, and P, may lead to spurious common segments. Also
the choice of L,, is a tradeoff between missing short segments for a long
L,, and finding unreliable matches for a short L,,.

5.1.2 HMDMs to Seek Similar Segments

By means of abstract acoustic elements the common segments in the
observation sequences X and X from the two speech signals S;
and Sy are detected as follows: In the first step the optimal sequence
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Z(W) of acoustic elements for X! is determined. In the second step we
seek segments of the observation sequence X2 which are sufficiently
well described by model subsequences of the sequence Z(1).

Decoding the First Signal

To determine the optimal sequence ZM of XMW we use an HMM as
shown in Figure 3.2 in the same way which is used to determine the
word-HMMs for isolated word recognition as described in Section 3.1.
This results in a sequence of abstract acoustic elements as e.g.

72V = peepispas .- . por (5.1)
FRE SF QNN L IR (5.2)

For all elements 2, in Z™) we save also the time ty(2,) when the element
was entered and t.(Z,) when the element was left.

Find Similar Segments in the Second Signal

Now we extend the HMM of Figure 3.2 with the model sequence AQ)
which results in an HMM as shown in Figure 5.2. This HMM consists
of two parts. The part on the right side is identical to the one used to
decode the first signal. The part on the left side represents the sequence
ZMW of acoustic elements found for X, These elements constitute first
of all a linear HMM. There are additional connections through the non-
emitting states that have got again penalties. The motivation for theses
penalties H, and Hj is similar as in keyword-spotting, where penalties
are used to tune the operation point of the system to minimize false
alarms and missed detections (see e.g. [RP90]). Here the penalties
control the number and the lengths of the detected segments. The
penalties are implemented by subtracting the value H, or Hy from the
accumulated path log likelihood if a transition with a penalty is taken.
In the absence of such penalties the Viterbi decoder would almost never
use a transition 2, — 2;,, because X can’t be better modeled than
with a free sequence of acoustic element models as represented by the
right-hand side of the HMM of Figure 5.2. In this HMM the penalties
H, are higher (i.e. a larger log-likelihood value is subtracted in the
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Figure 5.2: Special Markov model to find segments of the observa-
tion sequence X2 that match parts of the sequence ZW Al emitting
states (printed in grey) are modeled by acoustic elements. Either di-
rectly through @, € ® or indirectly through the 2&1). Non-emitting
states are printed in white. H, and Hy are additional penalties associ-

ated with some transitions.

corresponding transitions) than the penalties H, in order to prevent
the detection of very short segments.

The Viterbi decoder delivers a sequence of abstract acoustic ele-
ments Z(?) through the HMM of Figure 5.2 for the observations se-
quence X(?). This sequence Z() could look like

79 = Pr - @952%) 2&19) 2%)2;)%7 A (5.3)

In sequence Z2) the subsequences consisting of elements 2,31) represent
the desired common segments. In the example above the subsequence
of interest is 2%)2%)2%)2;). With the entry times tb(é%)) and the
leaving times te(ég)) of Z1 and Z® we can determine the positions
of the segment in the two signals.
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A handicap of this method is that it can detect for a segment of
X () only one matching segment in X (the other way round is no
problem). To alleviate this problem we split the state sequence A
into several overlapping windows and perform the algorithm described
above for every window of Z(1).

5.1.3 Experimental Comparison
Objectives

In the problem of finding common segments in two sequences there are
two objectives which should be optimized.

e The found segments should be correct

e All potentially available segments should be detected

The devised methods are likely to optimize one objective at the cost
of the other. Which objective will be predominantly fulfilled depends
on the parameters P,, P, and L,, for the DTW-based algorithm pre-
sented in Section 5.1.1 and on H, and H; for the HMM-based algorithm
presented in Section 5.1.2.

In order to evaluate the quality of the segment search algorithm it
was therefore suitable to test the systems with various parameter-sets
and determine the Pareto-front of the algorithms for the two objectives.

In the next sections we will show how the two objectives were mea-
sured.

Matching Quality

We generated phonetic segmentations of all utterances in the test set
with a forced-alignment using only one pronunciation variant per word.
In this way we could check for all frame pairs from the found common
segments, whether the two frames were assigned the same phoneme
label. If the phoneme labels were matching, we assigned the value 1.
If only the phoneme label in a directly neighboring frame of the other
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signal matched we assigned the value 0.3. All other frame pairs were
assigned the value 0. We then calculated the total matching score as
the mean of the values assigned to all frame pairs.

Completeness of the Found Sequences

The other objective is the ratio between the number of detected com-
mon segments and the number of common segments which are effec-
tively available in the two speech signals. Therefore we determined
potential matches by seeking common phoneme sequences in the pho-
netic segmentations of the signals. We required the phoneme sequences
to be at least four phonemes long. With the phonetic segmentations
also the locations of every common phoneme sequence in the two speech
signals were known. A potential match determined in this way was con-
sidered as detected if the tested algorithm detected a common segment
at roughly the same positions in the two signals.

Test Setup

We used recordings of German three-digit numbers. Every recording
contained four three-digit numbers. The recording pairs in which the
common segments were sought never contained the same three-digit
numbers. Thus only parts thereof could match. The recordings were
taken form speakers of the Sg qigit,3 set as described in Appendix E.1.
This yielded a total of 1299 tested record pairs for speaker-dependent
tests and a total of 1189 record pairs for cross-speaker tests.

We used the features Feat s as described in Appendix C.1. The
VMLPs and the abstract acoustic elements were trained with data of
the Sg poiy,1 and Sgpory,1 sSpeaker sets as described in Appendix E.1.
We used abstract acoustic elements A woraconstrain trained as described
in Section 3.5.3 and VMLPs with one hidden layer containing 209 neu-
rons.
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Results

First we evaluated the intra-language case, i.e. if the VMLPs and the
abstract acoustic elements were trained in the target language. Due to
the lack of suitable testing data for French we tested only with German
words.

Intra-Language Case

The Pareto fronts for the DTW-based system as described in Section
5.1.1 and the HMM-based system as described in Section 5.1.2 are
shown in Figure 5.3. The parameter L,, of the DTW-based system
was fixed at 120 ms and also for the HMM based systems only seg-
ments longer than L,, were accepted. For the DTW-based system the
parameter P, was varied between 0.9 and 0.98, and P, between 0.8 and
0.97. In the HMM-based systems the parameter H, was varied between
4 and 13 and H}, between 12 and 40.

From the resulting plots in Figure 5.3 we concluded that seeking
common segments was a much more difficult task if the two speech
signals were not from the same speaker. We always performed the
tests for pairs of different speakers with the same parameters which we
also used for testing the signal pairs from different speakers. We could
see that mostly the completeness of the found segments was impaired
if the signals are from different speakers and not so much the quality.

For both, signal pairs from the same speaker and signal pairs from
different speakers the DTW-based systems performed better but the
difference was a bit bigger for signal pairs from the same speaker.

Cross-Language Case

In order to investigate whether the suggested algorithms to seek com-
mon segments can also be used if there is no training material available
for the target language or if the target language is not even known we
tested the algorithms in a cross-language scenario. The VMLPs and
the abstract acoustic elements were trained with French data and the
tests were performed on a German test set.
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Figure 5.3: Pareto fronts for the two objectives completeness and
matching quality in intra-language experiments. The tests in which
the two recordings in a pair are from the same speaker are plotted in
black, the tests in which the recordings were from different speakers are
plotted in grey.
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Figure 5.4: Pareto fronts for the two objectives completeness and
matching quality in cross-language experiments. The tests in which
the two recordings in a pair are from the same speaker are plotted in
black, the tests in which the recordings were from different speakers are
plotted in grey.
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The result is again illustrated with the Pareto fronts shown in Figure
5.4. The fronts for the DTW-based systems were quite similar as in the
intra-language experiments, indicating that the VMLPs were not very
language-dependent, at least not within the two languages German and
French. For the HMM-based systems the performance dropped much
more.

5.2 Speaker Verification

In this section we investigate a novel approach to text-independent
speaker verification as an application scenario for the methods to seek
common segments which were presented in the Section 5.1. The tar-
get is to make speaker-verification based on pattern matching (PM),
which yields very good results for text-dependent speaker verification,
applicable for text-independent scenarios. This is achieved by detecting
phonetically similar segments in two speech signals with the methods
devised in this thesis. The PM approach is then applied for the found
common segments. Since the algorithm requires common segment to
be available in two speech signals it is more correctly termed quasi
text-independent speaker verification.

The devised speaker verification method is related to other meth-
ods as outline in Section 5.2.1 but distinguishes itself by the fact that
it is not dependent on a LVCSR system and is therefore language-
independent.

5.2.1 Related Work

Speaker verification is the task of verifying whether a test signal Sicqt
is from the same speaker as a reference signal S,.¢. The first step in
most approaches is that observation sequences X("¢/) and X(est) are
extracted from both signals by short-time analysis. The approaches
differ in the way they compute a score which reflects the probability
that the two signals are from the same speaker.

We can distinguish between text-dependent speaker verification
and text-independent speaker verification. In text-dependent speaker-
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verification the signals S,y and Sies contain the same text. This al-
lows verification techniques which are not possible for text-independent
speaker-verification, where the content of the signals is unknown.

Text-dependent Speaker Verification

In our lab text-dependent speaker verification is used for forensic pur-
poses because of the high confidence which can be achieved (see for
example [PB03]). The system is based on the distances between the
frame pairs along the warping curve between X("¢f) and X5t which
is determined by means of DTW. In [NP04] it was shown that the er-
ror probability could be significantly reduced by using an appropriately
trained verification multilayer perceptron (VMLP) (cf. Section 2.2).

Text-independent Speaker Verification

Text-independent speaker verification systems can be roughly grouped
into system which consider the observations of both observation se-
quences X(¢f) and X(*es) individually and neglect their temporal or-
der and systems which consider the observations in their natural order.

The first group of approaches, also termed bag-of-frames methods,
is used more often because of its good performance at a moderate com-
putational cost. The standard approach is the GMM-UBM approach
which is well described in [RQDO00]. The universal background model
(UBM) is a GMM which models the feature distribution of a large
population of background speakers. From the observation sequence
of the reference speaker X("¢f) a speaker-dependent GMM is adapted
with maximum a posteriori adaptation. The score is then computed as
the ratio between the likelihood that the observations of X (€5t were
produced by the speaker dependent model and the likelihood that the
observations were produced by the UBM.

More recently support vector machines have been used for the bag-
of-frames approach. Some approaches are based on specially developed
sequence kernels ([Cam02], [MBO07]). Other approaches such as the one
presented in [CSR06] have their origin in the GMM-UBM approach.
They train a support vector machine for each speaker by using the
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supervector (concatenation of the mean vectors of all mixture compo-
nents) as input vector.

A big source of errors in speaker verification is channel mismatch.
By using factor analysis it was possible to distinguish between dif-
ferences caused by a different speaker and differences caused by a
channel mismatch ([KDO04]). This benefit of factor analysis could be
used to achieve better results for speaker verification in [MSFBO07] and
[CSRS06] by integrating factor analysis into support vector machine
supervector based systems.

The method presented in this thesis belongs the second group of
approaches which considers the frames of X(¢f) and X(*est) within
their context. Most of these approaches are based on the output of a
LVCSR system which makes them language-dependent.

Some of these systems calculate a verification score only based on
higher-level sequential information such as speech prosody in [AHO3]
or phoneme n-gram statistics in [EP07].

The systems presented in [PCCO00] or [PJ02] use individual GMMs
for phonetic classes or more acoustically motivated classes. The systems
described in [CE98], [HHO3] or [GSP05] go one step further regarding
the use of sequential information by aligning the frames belonging to
the same phoneme with DTW and using the average distance as system
output. In [New96] a system was presented which uses the ratio of the
likelihood of a speaker-adapted LVCSR system to the likelihood of a
speaker-independent LVCSR system as verification score. Usually this
family of systems showed a performance gain especially if they were
used in combination with a global GMM system (see for example [PJ02]
or [WPN*00]).

Other systems which are based on LVCSR systems calculate a score
on a predefined set of keywords. In [Stu02] individual GMMs are
trained for each keyword found sufficiently often in S,.;. The ap-
proach chosen in [BP04] is similar but used word-HMMs to model each
keyword. As shown in [MHO5] these approaches are successful for long
signals and if used in combination with a GMM system. In [ABA04]
the keywords are detected with a DTW-based system and also the final
verification score is computed from the DTW-scores.
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The system described in [PGO6] resembles to our approach since it
is based on the comparison of common segments, which are detected
with a DTW-based algorithm and not with a LVCSR system. The
differences are however that only the best matching segment is used and
that it uses the same Euclidean distance metric both for detecting the
common segments and for determining the speaker verification score.

5.2.2 System Description

The speaker verification approach presented in this thesis involves three
steps. First phonetically matched segments (e.g. common words or
common syllables) are sought in the two speech signals. This step pro-
vides a series of frame pairs where both frames in a pair are phonetically
matched. In a second step the probability that the two frames in a pair
come from the same speaker is computed for every frame pair with a
VMLP as presented in Section 5.2.4. Finally, a global indicator that the
two speech signals were spoken by the same speaker can be calculated
from these frame-pair-level probabilities. This is described in Section
5.2.5.

5.2.3 Seeking Equally Worded Segments

We need an algorithm which seeks common segments in two speech
signals which have a minimum length. In Section 5.1 we devised two
such algorithms, one based on HMMs, the other based on DTW.

There we have formulated the task as a problem with two objectives
— one being the completeness of the found segments and the other
the correctness of the found segments. In this task there is only one
objective: the performance of the speaker verification algorithm. The
speaker verification is impaired by a bad matching quality and by a
high rate of missed detections of available common segments. If the
matching quality is bad, the MLP will be fed with vector pairs of non-
matching frames, which will deteriorate its performance. If on the other
hand not all common segments are detected, the final decision does not
consider all available information.

A further requirement is that the system is speaker-independent, or
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more precisely formulated that the systems works equally well on two
signals which are from different speakers as it works on two signals of
the same speaker. In Section 5.1 we have seen that this is not totally
fulfilled. The completeness is considerably smaller if the signals are
from different speakers. This means that information which may be
beneficial for speaker verification is lost. This also implies that the
optimal parameters can only be determined by optimizing the speaker-
discriminating ability of the system.

5.2.4 'VMLP-based Probability Estimation

We use a VMLP to calculate for each frame pair on the warping curve
the posterior probability that the two frames are from the same speaker.
This speaker verification MLP is trained to output the posterior prob-
ability that the two observations x; and x5 are from the same speaker
given they are from the same phoneme:

Plocat = P(spkr(x1) = sphkr(x2)[x1, X2, phon(x1) = phon(xz)) (5.4)

The VMLP has shown good results for text-dependent speaker-
verification in [NP04] and has been further developed in this thesis.

Training Data for Speaker Verification MLPs

The preparation of training data for speaker verification is similar to
the approach described in Section 2.3.3, but both the positive and
the negative observation pairs are taken from observation pairs on the
warping curve — the positive observation pairs from warping curves of
signals from the same speaker and the negative observation pairs from
warping curves of signals from different speakers.

5.2.5 Final Decision

Finally we evaluate from the scores of all frame pairs the global score
that can be used to decide whether the two speech signals were spoken
by the same speaker or not. The global score is the average over the
frame-level scores of all found common segments.
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5.2.6 Experiments
Compared GMM System

As a baseline system we used a GMM system as described in [RQDO00].
We found 1024 Gaussians to be optimal. For each speaker verification
trial a speaker model was created by adapting the UBM with the first
of the two given signals using a maximum a posteriori adaption (see
[GL94]). We have seen, that the system performed best if only the
means of the Gaussians were adapted. This is in accordance with the
results given in [RQDO0]. The log-likelihood (LL) of the second signal
was calculated for the adapted speaker model and for the UBM. The
difference of the two LL values is the desired output of the GMM sys-
tem. For the training of the UBM, the maximum a posteriori adaption
and the calculation of the LL we have discarded silence frames.

System Combination

In order to verify whether the devised PM system and the GMM system
make use of complementary information, we also evaluated a system
combination. We used a weighted average of the scores delivered by the
two systems. We empirically evaluated equal weights to be optimal.
The scores of both systems were normalized to zero mean and unit
variance before the fusion.

Experiment Setup

For the speaker verification part, i.e. as input for the GMM system
and as input to the speaker discriminating VMLP we used features
Feat spyeri as described in Appendix C.1. Only for the algorithm to
seek common segments we used Feat .

The VMLPs used for speaker verification (both for static and delta
features) had one hidden layer with 209 neurons. In experiments not
shown in this thesis we have found this a suitable size.

For the DTW-based algorithm (cf. Section 5.1.1) the parameters P,
and P, were 0.95 and 0.9 respectively. For the HMM-based algorithm
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(cf. Section 5.1.2) the parameters H, and Hj, were 9 and 27 respectively.
In both algorithms segments shorter than 120 ms were discarded.

For the experiments we used recordings with German three-digit
numbers, here called words. The average duration of a spoken three-
digit number is 1.5s.

All speaker verification trials were conducted with signals containing
one to seven words taken from speaker set Sg gigit,3 as described in
Appendix E.1. None of the words of the first signal occurred in the
second one. Therefore only common digit names could be detected,
not whole numbers.

The speaker sets Sg,qigit,i and Sq aigit,2 were used to train the
speaker verification MLPs and the UBM of the baseline system. Since
these speaker sets are disjoint from S, 4;¢4t,3, the VMLPs and the UBM
were used in a speaker-independent way.

The abstract acoustic elements and the phoneme verification MLPs
which were used in the algorithms to find common segments were
trained with data of the polyphone databases and were therefore also
speaker-independent. The training data for the intra-language exper-
iment was taken from the Swiss German polyphone database whereas
the training data for the cross-language experiments was taken from
the Swiss French polyphone database.

Results

We tested the two PM systems PM ppw which used the DTW-based
segment search algorithm and PM gps which used the HMM-based
search algorithm along with the GMM system.

Segment Search in the Intra-Language Case

First we tested the speaker verification systems which use models of
the target language (i.e. German). The results are given in Figure 5.5.

It could be observed that for only one word the GMM system was
clearly superior to the PM based systems. The performance of the PM
systems increased however with the number of words and was finally
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Figure 5.5: EER of various systems as a function of the number of
used words in intra-language experiments.

better than the GMM system. With seven words the significance level
of the superiority of both PM system over the GMM system was < 0.1 %
according to the McNemar test (see for example [GC89]).

Further considerable improvements could be achieved if the systems
were fused. This allows the conclusion that the PM system uses comple-
mentary information to the GMM system to compute the probability
that two signals are from the same speaker.

Segment Search in the Cross-Language Case

In Section 5.1.3 we have seen that the segment detection rate was im-
paired if abstract acoustic elements or VMLPs not of the target lan-
guage were used. It remained to show what impact this language-
dependence has on the speaker verification based on these segment-
search algorithms. The results are shown in Figure 5.6.

The results of the PM g system alone were clearly inferior to the
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Figure 5.6: EER of various systems as a function of the number of
used words in cross-language erperiments.

ones achieved in the intra-language experiments. With seven available
words a system combination yielded however still an improvement over
the GMM system alone (significance level < 0.1 %). The PM prw
system was more immune against language-dependence effects which is
in line with the results obtained in Section 5.1.3. The PM pryw system
alone was still significantly better than the GMM system (significance
level < 0.1 %).

Note on the Parameter Selection

The parameters were all constant. It is likely that better results could
be achieved if the parameters were dependent on the length of the
available utterance. The PM systems could for example be given a
higher weight if the available utterances are long. We optimized the
parameters for recordings of four words.
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5.3 Concluding Remarks

In this chapter we have presented how the techniques developed in this
thesis can be used for other applications than isolated word recognition.
For both, DTW- and HMM-based approaches we presented algorithms
to use them to find similar segments in two speech signals. The common
segments of both approaches could be used in a pattern-matching based
approach to quasi text-independent speaker verification.

For this application the DTW-based approach was superior to the
HMM-based approach whereas the opposite was true for isolated word
recognition. Since the basic techniques such as abstract acoustic ele-
ments and VMLPs were identical, the difference is likely to be in the
algorithms to detect the segments. We had indeed to use some trickery
to make segment search work satisfactorily with the HMM-approach.
An example is the necessity to divide the reference signal into several
overlapping windows.



Chapter 6

Conclusion

In this thesis we have developed techniques which allow to construct
reliable isolated word recognizers (IWR) which have an utterance-based
vocabulary. The advantage of this recognizer approach is that it has
smaller resource requirements than dictionary-based recognizers and
can therefore be used in any language or dialect even if no pronunciation
dictionary is available. For the tested languages German and French a
big improvement of the recognition rate relative to a standard approach
to utterance-based recognition could be achieved with the developed
techniques even if no resources of the target language were used (i.e. if
resources of the other language were used). An even better performance
was however possible if annotated acoustic training data from the target
language was used.

Furthermore, the developed techniques could also be successfully
used for other applications such as acoustic data mining in languages
which do not allow to build a large vocabulary speech recognizer be-
cause of limited resources such as dictionaries and annotated speech
databases.
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6.1 Advances in Isolated Word Recogni-
tion with an Utterance-based Vocab-
ulary

With the developed techniques the error-rate of recognizers with an
utterance-based vocabulary could be more than halved in comparison
with a standard DTW-approach even if exclusively resources of an-
other language were used to train the necessary models and multilayer
perceptrons.

If the VMLPs presented in this thesis were used in a DTW rec-
ognizer instead of the Euclidean distance, the IWR error rate could
be greatly reduced. The DTW/VMLP recognizer was however outper-
formed by the developed HMM-based approach to recognition with an
utterance-based vocabulary.

If abstract acoustic elements could be trained with data of the target
language, only three utterances of each word sufficed that the utterance-
based approach reached a similar performance as a dictionary-based
recognizer in the speaker-dependent case. Around 20 utterances per
word were necessary in the speaker-independent case. This result also
showed the power of the presented extension of the Viterbi algorithm,
which allows to find the sequence of sub-word units which optimally
describe several utterances and could thus be used to build suitable
word models. The relevance of these good results for languages with
limited resources lies in the smaller resource requirements for the ab-
stract acoustic element-based recognizer. Only acoustic data with or-
thographic annotations but no pronunciation dictionary is necessary to
train abstract acoustic elements. In this intra-language case a different
reduction of necessary training data could be achieved than with the
approaches summarized in Section 1.3.2. With those approaches the
amount of necessary annotated training data could be reduced while a
pronunciation dictionary was still necessary. With the approach pre-
sented in this thesis annotated training data is still necessary for the
intra-language case but there is no need for a pronunciation dictionary.

If the abstract acoustic elements were used in a cross-language sce-
nario the approaches with an utterance-based vocabulary did not reach
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the performance of dictionary-based recognition. The application of the
abstract acoustic elements from another language is however an attrac-
tive choice if no resources for a language or dialect are available.

6.2 Benefits for Other Applications

The developed techniques also allow to improve techniques such as
utterance verification or acoustic data mining for languages with scarce
resources.

In this thesis we have presented two novel approaches in a rarely-
treated field of acoustic data mining: to find similar segments such
as word or syllables in two speech signals. Except for the method
presented in [PGO05] these are to our knowledge the only approaches
which tackle the problem of finding similar segments in a language-
independent way.

The approaches to find common segments could be successfully em-
ployed in a quasi text-independent speaker verification system.

6.3 Comparison of DTW- and HMM-
based Approaches

We could see in IWR and in data mining tasks that the HMM-based ap-
proach was much more sensitive to data mismatch than the DTW-based
approach. This was especially evident in the performance-decrease if
German models were used instead of French models for a French task.
This indicated that the acoustic space of French was not sufficiently
covered by German acoustic elements. Since using French abstract
acoustic elements for German was almost as good as using German
models we argue that the abstract acoustic elements are suitable suit-
able sub-word units to be concatenated to word models according to
sample utterances of the words.
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6.4 Outlook

This thesis is rather a broad investigation for various techniques which
alm at improving speech recognizers with an utterance-based vocab-
ulary than an in-depth evaluation of a specific technique. This work
may motivate further work intended to improve a particular approach.

In this work we have not performed an in-depth search for the best
performing features but have relied on standard features. Research
in this area might enhance the performance of both DTW- and HMM-
based approaches. For the HMM-based techniques we see further possi-
bilities for improvement by using model-adaptation techniques to adapt
basic models for a specific language or a specific speaker population.
This may also help to cope with the observed performance-loss due to
data-mismatch which was observed for the HMM-based approaches.

In this thesis we have used German and French as experimental
languages which we think to be a reasonable choice because the two
languages are from two language families (Germanic and Romance) and
have an only partially overlapping phoneme inventory. It is however
interesting to investigate how the devised approaches work for a broader
set of languages including non-Indo-European languages.

If a broader set of languages is available it is also possible to pool
training data from several languages in order to build a set of abstract
acoustic elements with a better coverage of the acoustic space and there-
fore also with a higher degree of language-independence. It may also be
beneficial to have different sets of abstract acoustic elements for differ-
ent language families. If the language families are not chosen too small
it is likely that they contain some languages with abundant resources.
The models produced from these languages may then also be suitable
for resource-poor languages of the same family.



Appendix A

Performance of
Verification Multilayer
Perceptrons

In order to show that a VMLP has the capability to perform the ver-
ification task both for the classes which were seen during the training
and for unseen classes we used two test steps. In a first step we showed
the optimality of the VMLP for a closed set of classes with a KNN
approach. In a second step we showed that the VMLP also generalizes
for unseen classes with a real-world verification problem.

A.1 Reformulation as a Classification
Problem

In order to evaluate a VMLP, we measure its verification error rate
for a given dataset and compare it to a reference error rate which is
optimal in a certain sense. By formulating our verification task as a
classification problem, we can use the Bayes error as a reference. The
Bayes error is known to be optimal for classification problems given the
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distribution of the data.

To reformulate a verification task as a classification problem, each
pair of vectors is assigned to one of the following two groups:

Ggs group of all vector pairs in which the two vectors are from the
same class

Gp group of all vector pairs in which both vectors are from differ-
ent classes

Provided that the same classes which are present in the tests are used
to estimate the distributions of Gg and Gp, the Bayes error is optimal,
since the two distributions are modeled properly. Otherwise there is a
mismatch which leads to ill-modeled Gg and Gp and thus the Bayes
classifier is not necessarily optimal any more.

In the case of synthetic data it is possible to calculate the Bayes
verification error since the data distributions are given in a paramet-
ric form. For real-world problems the data distributions are not given
in a parametric form and hence the Bayes verification error can’t be
computed directly. In this case we can use a k nearest neighbor (KNN)
classifier to asymptotically approach the Bayes error as described be-
low.

The KNN approach is a straightforward means of classification. The
training set for the KNN algorithm consists of training vectors with
known classification (ar,i, bir;) Where ag,; is the training vector and
byr i is its associated class. A test vector ayq ; is classified by seeking the
k nearest training vectors a;.; and it is assigned to the class which is
most often present among the k nearest neighbors. The KNN classifier
is known to reach the Bayes error if an infinite number of training
vectors is available (see e.g. [DHSO01]) and is therefore a means to
approximate the Bayes error if the data distributions are not known in
a parametric form.
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Figure A.1: Synthetic data: two classes with two-dimensional non-
Gaussian distributions.

A.2 Synthetic Data

The aim of the experiments with synthetic datasets, i.e. datasets with
known data distributions, was to evaluate if the VMLP achieves the
lowest possible verification error from a Bayesian point of view. The
data sets had two to four classes and were two- to five-dimensional. We
illustrate these investigations by means of an experiment with a two-
dimensional dataset with two classes that were distributed as shown in
Figure A.1.

The number of training epochs which were necessary to train the
VMLP depended largely on the type of the dataset. We observed the
following properties:

e If only a few features carried discriminating information and all
other features were just random values the VMLP learned quickly
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Figure A.2: Class verification error for the test set as shown in Figure
A.1: the KNN wverification error is shown in function of the training set
size. As expected, with increasing size it approximates the Bayes limit
which is indicated with the dotted line. The error rate of the VMLP is
close to the Bayes error.

which features were useful and which ones could be neglected.

e The shape of the distributions strongly influenced the number of
epochs that were necessary for the training. For example, two
classes distributed in two parallel stripes or classes that had a
nonlinear Bayes decision boundary, such as those shown in Figure
A.1, required many epochs.

Figure A.2 shows the error rates of different verification methods for
data distributed as shown in Figure A.1. It can be seen that the error
of the VMLP was almost as low as the Bayes error. The used VMLP
had two hidden layers with 20 hidden neurons in the first hidden layer
and 10 in the second.
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For the KNN-algorithm the error rate was evaluated as a function
of the number of training vectors to see the asymptotic behavior which
allows to estimate the Bayes error. For the VMLP we were only in-
terested in the best possible verification error for a given task and not
in the verification error in function of the number of training vectors.
Therefore the VMLP training set was chosen as large as necessary. In
the case of the synthetic data shown in Figure A.1 this is 20’000 vector
pairs.

For all investigated datasets the verification error achieved with the
VMLP was not significantly higher than the Bayes verification error.

A.3 Speech Data

Even though we have seen that VMLPs performed well for synthetic
data distributions with a quite complex decision boundary as shown
in Figure A.1 it is not sure whether they also provide good results for
real world data which have often much more dimensions. Therefore we
performed experiments with two tasks from speech processing; namely
phoneme verification and speaker verification.

With speech data it was also possible to investigate how the VMLPs
perform if they were used for a verification task with classes (i.e.
phonemes or speakers) which were not seen during the training.

Phoneme Verification

Features Feat,,cms as described in Appendix C.1 were extracted from
German words spoken by 4000 speakers and from French words spo-
ken by 3600 speakers. From these speakers, disjoint speaker sets were
formed as described in Appendix E.1. Within all sets vector pairs are
composed as described in Section 2.3.3. The German VMLPs were
trained with the vector pairs of Sg poiy,4 and the training was stopped
when the verification error reached a minimum on the validation set
8¢ poly,5 - The French VMLPs were trained analogously with Sgpo1y,4
and Sg poty,5 - The used VMLPs had one hidden layer with 140 neurons.
For the KNN experiments the validation sets Sa,poty,5 and Sp,pory,5 Were
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Figure A.3: Frame pair phoneme verification rate for German test
frame pairs on the left and for French test frames pairs on the right.
The KNN wverification is plotted as a function of the number of KNN
training vectors. Results with data and VMLPs from the same language
are in black, cross-language results in grey.

used to determine the best k and the training sets to do the actual clas-
sification.

For both languages tests were performed by assigning test vec-
tors either to group Gg or to group Gp as described in Section A.l.
Intra-language experiments were performed by using training, valida-
tion and test data from the same language (e.g. S poiy.4: Sa,poiy,5 and
Sa poiy,6)- In order to evaluate also the cross-language performance,
the VMLPs trained for a given language were also evaluated with the
task of the other language.



A.3 Speech Data 123

A comparison of the VMLPs and KNN in the intra-language ex-
periments (black line and black dots in Figure A.3) confirmed that the
VMLPs yielded results which are close to optimality in a Bayesian sense
even though the convergence of the KNN could only be guessed due to
the lack of a sufficient number of training vector pairs.

The cross-language KNN experiments (grey line in Figure A.3)
showed that the mismatch between the data of the two languages was
not very big since the performance was only slightly worse than on
data of the same language. Also the VMLPs used in a cross-language
scenario (grey dots in Figure A.3) were only marginally worse.

Speaker Verification

We then looked at the verification of speakers, a task which was likely
to have a bigger mismatch between training and test data. The data
which we used for these experiments was split into three sets. Since the
speaker sets from the polyphone database were not suitable for speaker
verification experiments we had to use the three-digit database which
contains much less speakers. The speaker sets Sg. digit,1, SG,digit,2 and
8¢, digit,3 Were taken as training-, validation-, and test set, respectively.
The vector pairs were extracted as described in Section 5.2.4. The
KNN-verification converged quite slowly if the input vector pairs were
a simple concatenation of the two feature vectors p;, = (xl,xQ) as
also used for phoneme verification. Therefore we tested additionally a
coded version of the input vector pairs p;, = (|x1 — X2|, %1 + X2) (see
[NP04] for details about the input coding). The used VMLPs had two
hidden layers with 70 neurons in the first and 18 in the second layer.
Here we used the features Featspyer; as described in Appendix C.1.

The results are shown in Figure A.4. It can be seen that the KNN
verification error in function of the training set size decreased much less
steeply than in the experiments done with synthetic data and did not
even get as low as the verification error of the VMLP. This was possible
since the training and test set had some mismatch because the speaker
sets are disjoint. Here it could be seen very well that the KNN which is
based on coded vector pairs converged with much less training vectors.
The VMLP which used coded vector pairs was a bit worse however.
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Figure A.4: Frame pair speaker verification: The KNN error rates
decrease with increasing number of KNN training vectors. The error
rates of the VMLPs are shown as dots. The error rates for both, KNN
and VMLP are given for coded and uncoded input vectors.

A.4 Concluding Remarks

We could show that the VMLPs have an optimal performance in the
Bayesian sense if data with the same distribution was used for training
and for testing. In experiments with unmatched data, in particular if
discriminating between speakers not seen in the training of the VMLP,
we could see that the VMLP rather learned to discriminate between
classes of a given task than the actual class distributions.
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Qualitative Experiments
with the Extended
Viterbi Algorithm

This appendix gives qualitative results of the algorithms which are
described in Sections 3.2.2 and 3.2.4 to provide an impression of the
result of the algorithms.

B.1 Automatic Phonetic Transcriptions

We estimated phonetic transcriptions of words from one or several ut-
terances of each word. For this we used a phoneme loop, i.e. a compos-
ite HMM which is a full connection of elementary HMMs which model
the German monophones. The monophones are described in Appendix
D.
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B.1.1 Automatic Transcriptions of Seven Words

The automatically generated transcription of the German names of the
weekdays are listed in Table B.1 along with the transcriptions from
a pronunciation dictionary ([Dud05]). The transcriptions are given as
they were determined from the individual three observation sequences
with the normal Viterbi algorithm and as they were determined from
the exact K-dimensional algorithm and its approximation from the
three available observation sequences.

In the transcriptions generated from individual observation se-
quences the word were often hardly recognizable. The transcriptions
which were generated from several observation sequences look much
more appropriate even though they were not completely identical to the
transcriptions from the pronunciation dictionary. Noteworthy is also
that the transcriptions from several observations often differed much
from any of the individual transcriptions. The transcription from the
approximative algorithm was not identical to the one of the exact al-
gorithm but both transcriptions looked similarly appropriate. More in
depth comparisons were made in Section 3.6.6.

B.1.2 Alignment of Three Utterances

In this example we have a particular look at the determination of the
sequence of phonemes which optimally describes three utterances of
the German word Montag (Monday) spoken by two female and one
male speaker. This examples also demonstrates the alignment of the
phonemes with the signals as it is done by the exact K-dimensional
Viterbi algorithm. In Figure B.1 the signals of the three utterances
are plotted. In Figure B.1 a) the joint optimal sequence of phonemes
for the three signals is shown and the corresponding positions of the
phonemes is indicated with the vertical lines. In Figure B.1 bl) — b3)
the optimal sequences of phonemes for the individual signals are given.
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Word

Viterbi

K-dim.
Viterbi

approx K-dim.
Viterbi

1 Utterance

3 utterances

3 utterances

pronunc.
dictionary

Montag

movulypaik
munnthak
mo:mudvazgr

mo:mnta:k

movnytatk

mo:nta:k

Dienstag

dirnsdapk
djufdazke
tsgiigstahatk

dirusdaark

dirnstdaa:k

dimstak

Mittwoch

PTertvox?
mirtox
vItvox

vitvox

VItvox

mitvox

Donnerstag

roorspdaks
duvloestazk
domorssda:p

donoersdazk

dovnoerstark

donesta:k

Freitag

dvairpdauk
tszvaitkpdezerp
fvaistak

fvaitak

tsfvaitark

fraitatk

Samstag

baustha:t
ptanxdaazk
zansteeaxeark

zavnst?a:k

zavnst?ak

zamsta:k

Sonntag

fosnpvaik
tsvountaps
dovntauarpk

zountaipk

zouvnta:pk

zontak

Table B.1: Automatically generated transcriptions of the German

names for weekdays.

The results of the exact K-dimensional Viterbi

algorithm and its approximation as described in Section 3.2.4 are listed
along with the pronunciations determined from individual observation
sequences and the transcriptions from a pronunciation dictionary.
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Figure B.1: Optimal sequence of phonemes for three utterances of the
German word Montag.
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Features

This appendix gives the detailed parameters of the features which were
used in this thesis in Section C.1. Investigations about the subtraction
of cepstral means are presented in Section C.2.

C.1 Feature Description

The main focus of this thesis was on different modeling approaches of
isolated word recognition and not on the evaluation of different features
for this task. Therefore we used features which are commonly known
to yield good results for speech recognition, especially in clean-speech
scenarios. We have decided to use Mel cepstral coefficients introduced
in [DM80]. Besides LPC cepstral coefficients they are probably the
most widely used features for speech recognition.

For two reasons we worked with three variants of Mel frequency
cepstral coefficients:

e In [Rey94] was shown that higher cepstral coefficients have a ben-
eficial influence for speaker verification. We could experimentally
confirm this result. Therefore we used more cepstral coefficients
for the speaker verification features Feat spyeri-
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e Very often the mean values of the cepstral coefficients are com-

puted for a signal and subtracted from the cepstral coefficients.
This compensates linear channel distortions. For the case of iso-
lated word recognition this can however be quite dangerous since
the signal which the cepstral mean can be computed from is small
(i.e. only the signal length of a word is available unless knowledge
of a wider context around the word is available). Therefore the
cepstral mean may contain phoneme-discriminating information
which should not be discarded. Whether the cepstral mean is
subtracted or not is therefore a tradeoff between channel com-
pensation and discarding of useful information. Experiments to
examine this issue are described in Section C.2.

We always used a short-time analysis with a window length of
37.5 ms and a window shift of 10 ms. All feature vectors were a con-
catenation of Mel frequency cepstral coefficients and their first temporal
derivatives.

The parameters of all feature extractions are listed in Table C.1.

H FeatnoCms Featcms ‘ Featsp'ue'ri ‘

preemphasis coeff. -0.9
window Hamming
Mel scale break freq. 700 Hz
number of filters 24 \ 24 34
used coefficients 0-12 1-16
total vector length 26 32
cepstral mean subtr. no | yes

Table C.1: Parameters of the used feature extractions.

C.2 Investigation of Cepstral Mean Sub-

traction

For the reasons explained in Section C.1 we tested whether the subtrac-
tion of the cepstral mean values is beneficial for isolated word recogni-

tion.
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C.2.1 Experiments

Speaker-dependent and cross-speaker experiments for French and Ger-
man were performed according to the tasks 1, 2, 4 and 5 as defined in
Appendix E.1. Since these tasks all involve mostly short words we per-
formed additional experiments with German three-digit numbers (tasks
7 and 8) since the cepstral means can be estimated more reliably from
these utterances which are on average 1.5 s long.

The DTW recognizer described in Chapter 2 was based on the Eu-
clidean distance measure. The HMM recognizer described in Section 3
used abstract acoustic elements A wordconstrain Of the target language
as described in Section 3.5.3.

word type DTW HMM
no CMS | CMS | no CMS | CMS
speaker- long German 85.8 97.8 97.8 99.2
dependent short German 86.6 86.5 93.5 84.4
short French 67.5 67.1 86.6 72.7
oSS long German 72.3 89.2 93.5 96.9
speaker short German 62.1 65.1 86.3 72.3
short French 49.7 51.3 80.6 63.1

Table C.2: Feature evaluation. The recognition rates in % for different
languages and scenarios are listed for features which have the cepstral
mean subtracted (CMS) and features which don’t (no CMS). Results
are given both for a DTW recognizer and a HMM recognizer.

The results are listed in Table C.2. Two big differences can be
observed: one between long and short utterances, the other between
DTW and HMM recognizer. The difference between long and short
utterances comes with no surprise since the cepstral means can be esti-
mated much more accurately on a longer speech segment. Therefore the
benefit from the channel compensation dominated over the information
loss for longer words. Here it should also be noted that in the database
used for the longer utterances one single user used different telephones
whereas in the database used for short utterances one speaker used
only one telephone. Therefore there was a smaller channel mismatch
for the short utterances. This effect was however not present in the
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cross-speaker experiments.

The difference between DTW and HMM recognizer is more inter-
esting. It seems that the channel mismatch had a big impact on the
DTW recognizer. The channel mismatch could be dealt with much bet-
ter by the GMMs used in the HMM approach. This is at least partly
an effect of the temporal derivatives present in the used feature vectors.
These derivatives are also free of linear channel distortions because of
the logarithmization in the calculation of the Mel frequency cepstral
coefficients.

Since utterance durations in the order of the ones in the tasks
for short utterances are much more realistic we performed all other
isolated word recognition experiments in this thesis with the mean-
uncompensated features Feat,,cms-



Appendix D

Dictionary-based
Recognizer and Used
Phonemes

This appendix briefly describes the phone model inventories and the
dictionary-based recognizer which were used in this thesis.

D.1 Phonemes

Every phoneme was modeled with a linear three-state HMM. The ob-
servation probability density function of each state was modeled with
32 Gaussian mixtures. The Gaussians were parameterized with the
weights, the mean vectors and diagonal covariance matrices. Every
phoneme was modeled independently of the context, i.e. the models
were monophones.

The phone models for both French and German were trained on
the respective Polyphone databases (cf. Appendix E.1.1). The pho-
netic transcriptions were automatically generated from the available
orthographic annotations and a pronunciation dictionary. The models
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were initialized with a flat start. The training was then continued with
Viterbi training (cf. Section 3.4.2). The number of mixtures in each
GMM was iteratively doubled until the final 32 mixtures were reached.
For every number of mixtures the expectation maximization process
was iterated four times, except for 32 mixtures where it was iterated
nine times. Except for the very beginning of the training additional
silence models were inserted at the beginning and at the end of the
sentences and speech pause models were inserted between the words.

No transition probabilities were used in the recognizer.

D.1.1 Phone Model Inventories

The phonemes are listed in Table D.1.

German |o¢eery1gooy [uvaaraiaubd
eerfghiitj klmnoorogo:p
frsttsuwvxyyiz
French Ja(e)deovjzsyéuakgeten
t?vsyebarzdwofino
emlpro

Table D.1: List of used phonemes.

D.2 Dictionary-based Recognizer

Every word of the isolated word recognizer was modeled with a sequence
of phonemes according to a pronunciation dictionary. We have used
only one pronunciation per word since the systems which we compared
the recognizer with also used only one pronunciation per word.
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Test Data and Tasks

This appendix gives a detailed description of the experimental data
used in this thesis and the speaker subsets which were created from it
in Section E.1. The test tasks for isolated word recognition experiments
in various sections of the thesis are described in Section E.2.

E.1 Used Databases

E.1.1 Polyphone Database

The Swiss German and Swiss French Polyphone databases ([PSG],
[PSF]) were recorded in the German- and French-speaking part of
Switzerland, respectively. Both databases were recorded over various
telephones including a few mobile phones. We used recordings from
4000 speakers of the German database and from 3600 speakers of the
French database. The recordings of each speaker were captured in a
single session over a single telephone.

The polyphone databases are available as utterance recordings with
orthographic annotations. The utterances have different content types.
Some contain single words, but most contain several words (e.g. com-
plete sentences, sequences of numbers or proper names and their
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spellings). The Swiss German database contains totally 130500 utter-
ances and the used part of the Swiss French database contains totally
167328 utterances.

The polyphone database was not originally designed to perform
test which need several utterances of the same word spoken by a single
speaker. To build the utterance-based vocabularies this was however
required. Therefore the speakers who had enough occurrences of at
least ten words in the available utterances had to be selected from the
test speaker set. Therefore data from less speakers was used in the test
tasks than there were speakers in the test sets.

To train the abstract acoustic elements and to train the verification
multilayer perceptrons several utterances of the same word was needed
from the speakers of the training speaker-set. The number of utterances
available from each word depended very much on the word. Some words
(e.g. number words) were very frequent while from other words only
one utterance was available.

Since the exact word positions are not given in the polyphone
databases we used forced alignment to extract the words from the
databases. This may have led to a few not very precise word bound-
aries.

Data Sets

Several speaker subsets were formed from the whole speaker population
according to Table E.1.

The first three speaker subsets of each language were mutually dis-
joint and also the last three sets were mutually disjoint.

E.1.2 German Three-Digit Numbers Database

Signals containing 15 different natural numbers spoken in German were
recorded by our laboratory. All numbers had three digits (e.g. 398 -
dreihundertachtundneunzig). The recordings from the various speakers
were recorded over telephone line in several sessions. The speakers were
asked to use various telephones including mobile phones. The utterance
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German French
purpose name number of name number of
speakers speakers
training Sa . poly.1 3000 SF.poly.1 2400
validation Sg’poly,g 500 Sp,poly,z 600
test SG,p(,l%g 500 Sp,pol%g 600
training Sa poly.4 1500 SF poly.4 1500
validation || Sa poiy,s 1500 SFpoly,s 1500
test SG,poly,6 1000 SF,poly,G 600

Table E.1: List with the names of the different speaker sets derived
from the polyphone database and the number of speakers in each set.

boundaries were manually corrected. The utterances had an average
length of about 1.5 seconds.

Data Sets

Several speaker sets were formed from the data of the German three-
digit numbers database. These sets are listed in Table E.2. The speaker
sets Sa.digit,1, Sa,digit,2 and Sa,digit,3 were disjoint.

number of
purpose name gender
speakers
training Sa,digit 1 26 male
validation || S digit.2 10 male
test Sa,digit,3 13 male
’ test H Sa,digit. 4 \ 25 \ male & female ‘

Table E.2: List with the names of the different speaker sets and the
number of speakers in each set for the three-digit numbers database.
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E.2 Test Tasks for Isolated Word Recogni-

tion

We used speaker-dependent, cross-speaker and speaker-independent
scenarios both for German and French. This resulted in six main
tasks. Additionally there were two tasks for speaker-dependent and
cross-speaker scenarios with longer German words (three-digit num-

ber).

e German tasks: For the German tasks 835 vocabularies were

formed by randomly choosing ten words from a pool of mostly
short German words. For every vocabulary several words were
chosen as test words. The utterances from which the word rep-
resentations in the vocabulary were formed and the utterances
used for each test word were chosen according to the scenario as
described below:

— Task 1 — speaker-dependent: The word-representations of

each vocabulary were formed from utterances of one speaker.
The vocabularies were formed for 64 speakers of the Sg poiy,3
speaker set. The utterances of the test words were chosen
from the same speaker. Totally 7885 tests were performed.

Task 2 — cross-speaker: The vocabularies with the same
word representations as in task 1 were used. Now the utter-
ances for the test words were however taken from utterances
of other speakers than the speaker whom the vocabulary
utterances are from. Totally 23655 tests were performed.

Task 3 — speaker-independent: The word-representations of
each vocabulary were formed from utterances of randomly
chosen speakers of the Sg poiy,3 speaker set except from
speakers of the test utterances. The same test utterances
as in task 2 were used. Therefore also here 23655 tests were
performed.

o French tasks: For the French tasks 1882 vocabularies were formed

by randomly choosing ten words from a pool of mostly short
French words. For every vocabulary several words were chosen
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as test words. The utterances from which the word representa-
tions in the vocabulary were formed and the utterances used for
each test word were chosen according to the scenario as described
below:

— Task 4 — speaker-dependent: The word-representations of
each vocabulary were formed from utterances of one speaker.
The vocabularies were formed for 465 speakers of the
SF poly,3 speaker set. The utterances of the test words were
chosen from the same speaker. Totally 33371 tests were per-
formed.

— Task 5 — cross-speaker: The vocabularies with the same
word representations as in task 4 were used. Now the utter-
ances for the test words were however taken from utterances
of other speakers than the speaker whom the vocabulary
utterances are from. Totally 66742 tests were performed.

— Task 6 — speaker-independent: The word-representations of
each vocabulary were formed from utterances of randomly
chosen speakers of the Sppoy,3 speaker set except from
speakers of the test utterances. The same test utterances
as in task 5 were used. Therefore also here 66742 tests were
performed.

e German tasks with long words:

— Task 7 — speaker-dependent: Word recognition experiments
were performed for 25 speakers taken from the Sg gigita
set of the three-digit numbers database. For every speaker
around three vocabularies were formed by randomly choos-
ing ten number words. Every vocabulary was tested with ap-
proximately 70 numbers spoken by the same speaker. This
resulted in a total of 5037 performed tests.

— Task 8 — cross-speaker: Word recognition experiments were
performed for 25 speakers taken from the Sg gigit,4 set. For
every speaker four vocabularies were formed by randomly
choosing ten number words. Every vocabulary was tested
with approximately 110 number words spoken by each of
the other 24 speakers. This resulted in a total of 98440
performed tests.
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In order to provide an impression of the words occurring in the test
tasks we give random extracts from the word lists of all test tasks in
Table E.3.

’ language \ tasks H sample words
aber, auf, das, des, eine,
ende, ich, kann, lina, mit
nicht, null, raute, sechs, sie,
siebzehn, uhr, was, wiederholen, zuriick
siebenhundertvierzehn,
sechshundertsiebenundzwanzig
accent, anna, bien, cent, comme,
deux, espace, grave, inconnu, madame,
millions, nous, point, quoi, seize,
société, tiret, trait, vous, école

German | 1,2, 3

German 7,8

French | 4, 5, 6

Table E.3: List with sample words from all test tasks.
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