
DISS. ETH NO. xxxxx

Implementation of Mixed-Criticality
Applications on Multi-Core

Architectures

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by
GEORGIA GIANNOPOULOU

M.Sc. ETH Zurich

born on 19.12.1985
citizen of Greece

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Rodolfo Pellizzoni, co-examiner

2016

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 167

Georgia Giannopoulou

Implementation of Mixed-Criticality
Applications on Multi-Core

Architectures

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

DISS. ETH NO. xxxxx

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Rodolfo Pellizzoni, co-examiner

Examination date: December 16, 2016

Abstract

Embedded systems are increasingly used in safety-critical domains, such
as avionics and automotive. Given the potential impact of failures on
human lives and the environment, the correct design of such systems
is typically subject to certification. Correctness depends not only on
functional specifications, but also on the ability to fulfill stringent
timing constraints. For this, system designers need to provide real-
time guarantees, usually in the form of analytically derived worst-case
execution time bounds.

Nowadays, safety-critical systems are often mixed-critical, in which
multiple functionalities with different safety criticality levels are
integrated in a common embedded platform for reduced cost, size,
weight and power dissipation. The current industrial practice requires
that applications with different safety criticality are temporally isolated,
such that they cannot delay the activities of each other. Given the
ever increasing computational demand, the next envisioned step is the
deployment of mixed-criticality applications on multi-core platforms.
However, this is challenging because multi-core platforms feature
shared resources, such as last-level caches and memory interconnects.
Concurrently executed applications (with potentially different safety
criticality) can delay each other due to contention on these resources.
Eliminating or bounding the temporal effects of such interference is not
trivial due to the uncertainty with respect to the occurrence of resource
accesses in time and the state of the resources.

In this thesis, we address challenges related to the development of
mixed-criticality multi-core systems. The main contributions can be
summarized as follows:
• We propose scheduling policies for efficiently exploiting the

computing power of multicores, while preserving temporal
isolation among applications with different safety criticality levels.
• We combine these policies with design optimization methods

for minimizing interference among applications with the same
criticality level.
• We proposes analytic and state-based approaches for bounding

the delays that concurrently executed tasks experience due to
contention on shared resources.
• We demonstrate how the proposed scheduling policies can be

deployed on a state-of-the-art many-core platform in a way that
enables the provision of real-time guarantees at design time and
ensures an efficient resource utilization at runtime.

ii Abstract

Zusammenfassung

Eingebettete Systeme finden immer mehr Anwendung in sicherheits-
kritischen Anwendungsbereichen, wie zum Beispiel in der Luftfahrt
oder Automobilindustrie. Aufgrund der potentiellen Auswirkungen
eines Fehlers auf Mensch und Umwelt, müssen solche Systeme
typischerweise zertifiziert werden. Die Korrektheit hängt nicht nur
vom Erfüllen funktionaler Spezifikationen ab, sondern auch davon,
dass strikte zeitliche Auflagen eingehalten werden. Dazu müssen
bei der Entwicklung Echtzeit-Garantien abgegeben werden können,
typischerweise in der Form analytisch hergeleiteter Obergrenzen der
schlechtesten Ausführungszeit.

Heutzutage werden bei sicherheitskritischen Systemen oft Funktio-
nalitäten verschiedener Kritikalität in einer gemeinsamen eingebetteten
Plattform integriert, um damit Größe, Gewicht, Energieverbrauch und
Kosten zu minimieren. Gemäß aktueller industrieller Praxis müssen dabei
Anwendungen unterschiedlicher Kritikalität zeitlich isoliert werden, um
gegenseitige Verzögerungen auszuschließen. Mit dem immer größer
werdenden Bedarf an Rechenleistung ist es voraussehbar, dass in Zukunft
für solche Systeme auch Multicore-Plattformen eingesetzt werden.
Eine besondere Herausforderungen stellen dabei die auf Multicore-
Plattformen vorhandenen geteilten Ressourcen dar, wie zum Beispiel
last-level Caches und Speicherbusse. Durch Konkurrenz bei der Nutzung
dieser Ressourcen ist es möglich, dass parallel ausgeführte Anwendungen
(mit möglicherweise unterschiedlicher Kritikalität) gegenseitig verzögert
werden. Die Eliminierung oder Begrenzung solcher zeitlicher Interferen-
zen ist nicht trivial, wegen der Unsicherheit bezüglich des Zeitpunkts der
Zugriffe und des Status der Ressourcen.

Diese Arbeit befasst sich mit den Herausforderungen bei der Ent-
wicklung von Multicore-Systemen mit unterschiedlichen Kritikalitäten.
Der Hauptbeitrag kann wie folgt zusammengefasst werden:

• Wir schlagen Ablaufplanungsmethoden für die effiziente Nutzung
der Rechenleistung von Multicore-Systemen vor, welche die
zeitliche Isolation von Anwendungen unterschiedlicher Kritikalität
weiterhin gewährleisten.

• Wir kombinieren diese Strategien mit Methoden zur Entwurfsopti-
mierung, um die Interferenz zwischen Anwendungen unterschied-
licher Kritikalität zu minimieren.

• Wir schlagen analytische und zustandsübergangsbasierte Vorgehen
vor, um die durch Konkurrenz um gemeinsame Ressourcen ent-
stehende Verzögerung parallel ausgeführter Tasks zu beschränken.

iv Zusammenfassung

• Wir demonstrieren wie die vorgeschlagenen Ablaufplanungs-
methoden auf hochmodernen Manycore-Plattformen eingesetzt
werden können, um Echtzeit-Eigenschaftem während des Designs
zu garantieren und eine effiziente Nutzung der Ressourcen zur
Laufzeit sicherzustellen.

Acknowledgments

Learning how to conduct academic research and writing a PhD thesis is a
challenging procedure. Here I would like to extend my sincere gratitude
to all those who helped me survive professionally and personally
throughout this great adventure.

First and foremost, I would like to thank Prof. Lothar Thiele for offering
the opportunity to write the thesis in his group and for being extremely
supportive throughout the last five years. Our discussions, of which
several conclusions are included in this thesis, taught me a lot not only
about the design of embedded systems, but also about asking the right
questions in research and working effectively towards addressing them.
I greatly appreciate the guidance and feedback during all stages of my
research, even if this entailed tedious requests from my side, like proof-
reading the same part of a paper for the third time or cross-checking an
outdated Matlab script with real-time calculus operations.

I sincerely thank Prof. Rodolfo Pellizzoni for accepting to review my
thesis and for the interesting and enlightening discussions about shared
memory interference in the first year of my graduate studies. His work
has been a source of inspiration in the years that followed.

Furthermore, I would like to thank all researchers who directly or
indirectly contributed to the technical content of this thesis: Pengcheng
Huang, Nikolay Stoimenov, Rehan Ahmed, Davide Bartolini, Benoit
Dupont de Dinechin, Kai Lampka, Rofolfo Pellizzoni, Zheng Pei Wu,
Andreas Tretter, Lukas Sigrist, Andres Gomez, Lars Schor, Pratyush
Kumar. Our discussions and joint work had a significant impact on
this dissertation.

I would like to express my gratitude to our partners in the Certainty
project for our collaboration towards building a common understanding
about the design of certifiable mixed-criticality multi-core systems.
Special thanks to Petro Poplavko, Dario Socci, Marius Bozga, Saddek
Bensalem for our close collaboration during the development of the DOL-
BIP-Critical tool chain and for inviting me to Verimag in April 2015;
to Madeleine Faugere and Sylvain Girbal for sharing their experience
concerning the avionics certification procedure and for kindly offering the
Flight Management System software which is used as case study in this
thesis; to Benoit Dupont de Dinechin and Amaury Graillat for providing
insights into the architecture and programming of the Kalray MPPA-
256 processor; to Pranav Tendulkar, Ioannis Galanommatis and Oded
Maler for providing access to their runtime environment for streaming

vi Acknowledgments

applications on the MPPA-256 and for interesting discussions on memory
benchmarking.

During my graduate studies, I had the opportunity to supervise
several semester and Master theses, which helped me gain a practical
insight into several aspects of the development of mixed-criticality and
more generally, embedded systems, and triggered a lot of interesting new
research questions. For this and all important lessons I learnt from our
collaboration, I sincerely thank Felix Wermelinger, Stefan Draskovic, Neil
Dhruva, Lukas Sigrist, Bartlomiej Grzeskowiak, Sujay Narayana, Fabian
Dalbert, Akos Pasztor, Matthias Baer and Michael Walter.

I owe a lot to all my current and former colleagues at the Computer
Engineering laboratory for educative and inspiring research-oriented
discussions, but also for the great working atmosphere throughout the
years. Special thanks go to my office-mate Pengcheng Huang for our
successful teamwork, for the long discussions about the interpretation of
mixed-criticality systems and for the insights I got into Chinese culture,
which helped me change a bit my view on the world and people. Many
thanks to Lars Schor and Pratyush Kumar for their friendship and advice
whenever I encountered difficulties in the first years of my studies. And
of course, many thanks to Felix Sutton, Devendra Rai, Balz Maag, Roman
Lim, Lukas Sigrist for the creative cake engineering hours; to Romain
Jacob and Matthias Meyer for social/political discussions over lunch; to
Philipp Miedl and Federico Ferrari for offering excursion opportunities
to Bern; to all members of the MPSoC group for summer BBQs at the lake.

Last but not least, I would like to thank my parents Theodoros and
Irene, my brother Nikos and my partner Thomas for being inexplicably
patient and coping with my moody behavior and limited free time over
the last years. I can confirm with high confidence that this thesis would
not exist without their support and encouragement. I hope to be able to
do something equally important for you one day.

The work presented in this thesis has been partially supported by the
European Union Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 288175 (CERTAINTY project). This support is
gratefully acknowledged.

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Trends in Embedded System Design 2
1.2 Challenges in Mixed-Criticality Multi-Core System Design 5
1.3 Aim of this Thesis . 11
1.4 Thesis Outline and Contributions 11

2 Eliminating Inter-Criticality Interference 15
2.1 Introduction . 16
2.2 Related Work . 18
2.3 System Model . 20
2.4 The IS-Server Policy . 23
2.5 The MC-IS-Server Policy . 33
2.6 Evaluation . 41
2.7 Summary . 49

3 Bounding Intra-Criticality Interference 51
3.1 Introduction . 52
3.2 Related Work . 54
3.3 System Model . 57
3.4 Flexible Time-Triggered Scheduling 67
3.5 Worst-Case Response Time Analysis 70
3.6 Design Optimization . 83
3.7 A Case Study: Flight Management System 90
3.8 Comparison to Existing Mixed-Criticality Scheduling Policies . . 99
3.9 Summary . 102

4 A Dedicated Execution Model for Tighter Interference Analysis 105
4.1 Introduction . 106
4.2 Related Work . 108
4.3 Background theory . 111
4.4 System Model . 113

viii Contents

4.5 Worst-case Response Time Analysis using Model Checking . . . 119
4.6 Reducing Complexity of Model Checking through Analytic

Abstractions . 123
4.7 Further Adaptations to Improve Scalability 133
4.8 Evaluation . 135
4.9 Summary . 146

5 Deployment of Mixed-Criticality Scheduling on a Multi-Core
Architecture 147
5.1 Introduction . 148
5.2 Related Work . 150
5.3 System and Scheduling Model . 152
5.4 Kalray MPPA-256 . 155
5.5 Implementation of Scheduling Primitives 156
5.6 Worst-Case Response Time Analysis 160
5.7 Evaluation . 163
5.8 Summary . 172

6 Conclusion and Outlook 175
6.1 Contributions . 175
6.2 Possible Future Directions . 177

Bibliography 181

List of Publications 197

Curriculum Vitæ 199

List of Figures

1.1 Design flow for the efficient and timing-predictable deployment
of mixed-criticality applications on shared-memory multi-core
architectures. 12

2.1 Example IS schedule with three task classes S1, S2 and S3. 20
2.2 MILP formulation for the partitioning phase of IS-Server. 24
2.3 TDMA server schedule for three task classes S1, S2, S3. 26
2.4 Supply and demand bound functions for task class S1 in TDMA

schedule. 27
2.5 MIQCP formulation for the partitioning phase of MC-IS-Server. 35
2.6 Isolation Scheduling: Impact of number of classes on schedulability. 42
2.7 Comparison of DP-Fair, IS-DP-Fair, IS-Server. 43
2.8 Comparison of MC-IS-Server (different partitioning approaches),

MC-IS-Fluid, partitioned EDF-VD. 44
2.9 Distribution of task class switches for MC-IS-Server and MC-IS-

Fluid for increasing system utilization (box-whisker-plot). . . . 46
2.10 Comparison of MC-IS-Server to state-of-the-art IS policies (4 cores). 48

3.1 Shared memory architecture. 59
3.2 MPPA-256 D-NoC topology and router model. 61
3.3 Memory bank request arbitration in an MPPA-256 cluster. 62
3.4 Communication protocol for reading data from external DDR

memory. 64
3.5 FTTS schedule for 2 cycles. 68
3.6 Memory Interference Graph I for a dual-bank memory. 72
3.7 Computation of barriers(f1, `)k for ` = {1, 2} and k = {1, 2} for the

FTTS schedule of Figure 3.5. 74
3.8 Memory Interference Graph I for a dual-bank memory with

higher-priority interference from the NoC Rx requester. 75
3.9 Modelling the packet flow i through a (σ, ρ)-regulator and a

sequence of routers j. 79
3.10 Delay bound defined as the maximum horizontal distance

illustrated for an arrival curve of a (σ, ρ) regulated flow and a
single router providing a rate-latency service curve βl

r,T. 81
3.11 FTTS Design Flow. 84
3.12 Effect of platform and design parameters on FMS schedulability

under the FTTS policy. 98

x List of Figures

3.13 Schedulable task sets (%) vs. normalized system utilization for
FTTS and EDF-VD (m = 1), UL = 0.05,UL = 0.75,ZL = 1,ZL =

8,P = 0.3, 1000 task sets per utilization point. 100
3.14 Schedulable task sets (%) vs. normalized system utilization for

FTTS and GLOBAL (m = 4), UL = 0.05,UL = 0.75,ZL = 1,ZL =

8,P = 0.3, 100 task sets per utilization point. 101

4.1 Two consecutive processing cycles of superblock sequence S1 =

{s1,1, s2,1} which is executed on core p1 with period T1 and initial
phase ρ1,1. 113

4.2 Superblocks s1,1 and s1,2 executed in isolation. ’A’ boxes denote
accesses to the shared resource with latency Tacc = 5. 118

4.3 Superblocks s1,1 and s1,2 executed in parallel on cores p1, p2 in the
first processing cycle. Marked boxes denote blocking time due
to contention on the round-robin resource arbiter. 118

4.4 Superblock and Scheduler TA. 120
4.5 Arbiter TA representating different arbitration mechanisms. . . 122
4.6 Upper access request trace derived from the superblock

parameters specified in Table 4.1. 126
4.7 Three cases for the position of the considered interval ∆. 127
4.8 RTC interference arrival curve representation. 131
4.9 Interference generating TA. 132
4.10 WCRT of EEMBC benchmarks: ATA vs. Conservative Bound vs.

Simulation for RR arbitration. 142

5.1 Two consecutive FTTS scheduling cycles (H = 100), with 2 frames
(L f1 = L f2 = 50) divided into flexible-length HI and LO sub-
frames. Jobs in frame f1 run in LO mode in the first cycle and in
HI mode in the second cycle. 153

5.2 Memory path from one processing pair to one memory bank on
the left or right side of an MPPA-256 Andey compute cluster. . . 155

5.3 Runtime overheads of scheduling primitives on MPPA-256
(200,000 measurements). 159

5.4 Timing diagram for an FTTS schedule frame. 160
5.5 Profiling of benchmarks: Statistical distribution of measured

values over 10,000 executions in isolation. 167
5.6 Availability of different configurations on the MPPA-256. 171

List of Tables

2.1 Number of task sets (out of 20,000 in total) that are deemed
unschedulable during the partitioning phase of MC-IS-Server. . 45

3.1 Important notation as defined/computed in each section. 65
3.2 Mutual delay matrix D for round-robin arbitration policy for

graph of Figure 3.6. 72
3.3 Mutual delay matrix D for round-robin arbitration with higher

priority for Rx for graph of Figure 3.8. 75
3.4 Flight Management System specification. 92
3.5 Optimized task mappingMτ for FMS on a 2-core, 2-bank subset

of a compute cluster. 94
3.6 Optimized memory mappingMmem for FMS on a 2-core, 2-bank

subset of a compute cluster. 94
3.7 Computation of barriers forMmem (Table 3.5), Mmem (Table 3.6),

Tacc = 55ns, memory interference graph I. 96

4.1 Superblock and shared resource parameters. 125
4.2 Benchmark parameters. 137
4.3 Benchmark periods for simulation. 138
4.4 WCRT results of EEMBC benchmarks: FTA vs. ATA vs. simula-

tion for RR arbitration. 140
4.5 Verification time for safety property regarding a superblock’s

WCRT. 144
4.6 Accuracy of ATA compared to state-of-the-art methods. The

results define the relative difference of ATA-derived WCRT
bounds compared to FTA for FCFS/RR (2 cores) and FlexRay,
to [PSC+10] for FCFS/RR (more than 2 cores) and to [SCT10] for
TDMA. 145

5.1 Specification of benchmark tasks. 165
5.2 Benchmark configurations and deployment on the MPPA-256.

The FTTS schedules with (*) were deemed inadmissible at design
time. 170

xii List of Tables

1
Introduction

Embedded and cyber-physical systems, which facilitate sensing of
environmental parameters, real-time processing and control of physical
processes through actuating devices, are used nowadays in almost
every aspect of personal and industrial life [Lee08, Sta08, RLSS10]. A
special class of such systems is employed in safety-critical application
domains, such as avionics, automotive, medical devices, defence and
factory automation. Since a potential failure in such applications can
have catastrophic consequences on human lives, the natural environment
and infrastructure, the design of safety-critical embedded systems must
be provably correct in terms of functionality and timeliness. Timing
guarantees in the form of worst-case execution time and communication
time bounds need to be provided at design time and enforced at
runtime. As an example, consider a flight management system which
is responsible for determining the current location of an aircraft based on
sensor inputs and for computing the trajectory that guides the auto-pilot
based on a predetermined flight plan and pilot directives. According to
safety specifications, a pilot directive must be processed so as to trigger
corresponding changes to the online computed trajectory within 200
ms [DFG+14]. Apparently, correctness in such a system depends not
only an the correct implementation of the required functionality, but also,
with equal importance, on the ability to invariably satisfy stringent timing
requirements like the above.

In recent years, industrial research for safety-critical embedded
systems explores two main trends. On the one hand, the advances in
performance of embedded computing platforms and the wish to reduce
size, weight and power of computing elements promotes the practice of
integrating multiple applications, with potentially different requirements

2 Chapter 1. Introduction

in terms of safety, in a common platform. This integration has led to the
design of so-called mixed-criticality systems [BD16]. On the other hand, the
ever-increasing computational requirements of safety-critical systems and
the prevalence of multi-core platforms in the electronics market makes
the exploitation of multi-core architectures an attractive design choice for
the next-generation safety-critical embedded systems.

Although the combination of the two trends, namely the deployment
of mixed-criticality applications on multi-core platforms, seems a very
promising solution in terms of performance, cost, size, weight and
power, it is not yet commonly applied. The main challenge lies in the
shared utilization of non-computational platform resources such as last-
level caches and memory buses in the majority of commercial multi-core
platforms. This undermines timing predictability because concurrently
executed applications (with potentially different safety criticality levels)
can delay each other due to contention on the shared resources. Providing
timing guarantees in the presence of such interferences is not trivial.
This is why existing government regulations and certification standards
for safety-criticality applications classify multi-core platforms as “highly
complex” systems and do not yet encourage their exploitation [PDK+15].

This thesis addresses existing challenges that are associated with the
implementation of mixed-criticality applications on modern multi-core
platforms. It presents scheduling methods for efficiently exploiting
the computing power of multicores, while eliminating interference
among applications with different safety criticality levels, and design
optimization methods for reducing interference among applications with
the same criticality. Moreover, it proposes different approaches for
bounding the delays that concurrently executed tasks experience due
to resource contention. Finally, it demonstrates how the proposed
scheduling policies can be deployed on a state-of-the-art commercial
platform, in a way that enables the provision of timing guarantees at
design time and ensures an efficient resource utilization at runtime.

1.1 Trends in Embedded System Design
In this section, we review two current trends in the design of embedded
systems in safety-critical domains, which form the basis for this thesis.

1.1.1 Mixed-Criticality Systems
The design of safety-critical applications, e.g., in the avionics and
automotive, is typically subject to certification due to the impact of
potential failures on human lives and the environment. Existing
certification standards classify applications into different criticality levels
which express the required protection against failure. For instance, the

1.1. Trends in Embedded System Design 3

DO-178C standard for avionics defines five Design Assurance Levels
(DAL A to DAL E) [RTC12], the ISO 26262 standard for automotive
defines four Automotive Safety Integrity Levels (ASIL 1 to 4) [iso11],
and a similar classification exists in EN 50129 for railway [CEN03] and
in IEC 61508 for industrial control [Com10]. According to DO-178C,
erroneous behavior of a DAL-A application might cause an aircraft
loss, whereas erroneous behavior of a DAL-D application might cause
inconvenient or suboptimal operation in the worst case [Ves07]. Driven
by the severity of potential failure consequences, the criticality level of an
application influences the design requirements and the rigor and cost of
the development, testing, validation and certification procedures. For
instance, providing timing guarantees for high-criticality applications
relies typically upon very conservative tools and formal approaches,
while for low-criticality applications it may suffice to use measurement-
based worst-case execution time estimations.

An increasingly popular trend in the design of safety-critical systems
concerns the integration of applications with different safety criticality
levels in a common hardware platform. For instance, in unmanned
aerial vehicles (UAVs) a single platform can be used to host safety-
critical functionalities related to the flight of the UAV and mission-
critical functionalities related to its designated mission [BEG16]. The
development of so-called mixed-criticality systems enables a significant
reduction in the cost, size and weight of embedded electronics as well
as a reduction in power dissipation which is particularly important in
mobile systems.

Certification standards require that safety applications of different
criticality levels are separated or isolated so that they do not interfere
with each other. Isolation reduces software complexity and certification
effort and cost, since several applications are integrated in a platform,
yet each of them can be developed and evaluated according to its own
criticality level [PDK+15]. System designers typically rely on partitioning
mechanisms on hardware and operating system level to achieve
isolation. For instance, in avionics, the ARINC 653 standard clearly
defines spatial and temporal partitioning mechanisms that “Integrated
Modular Avionics” systems need to implement [ARI03, Rus99]. Spatial
partitioning enforces isolation of address spaces, such that one partition
cannot corrupt the memory of another partition, and can be achieved
e.g., by designated memory management units (MMU) which check
if the active partition has permission to access the requested memory
address [HRK12, PDK+15]. Temporal partitioning enforces isolation
in time, such that different partitions cannot affect the execution of
each other, e.g., by using the same resource (processing core, memory,
interconnect, cache) simultaneously. Partitioning techniques in hardware
and software level consist a well-studied topic and have been applied
to industrial mixed-criticality systems on single-core processors over the

4 Chapter 1. Introduction

last two decades [PD14]. However, as processors become more complex,
e.g., by implementing multi-core architectures, ensuring the property
of isolation becomes increasingly difficult as will be discussed later in
Section 1.2.

1.1.2 Multi-Core Embedded Platforms
Following the breakdown of Dennard scaling and due to the resulting
inability to increase clock frequencies significantly, in the last 10 years
embedded processor manufacturers have mainly focused on multi-
core architectures as a means to continue improving computational
performance [EBSA+11]. Multi-core architectures enable workload
distribution across several processing cores which do not need to
run at maximal frequency, thus reducing the peak heat and power
dissipation. To meet the ever-increasing computational demand of
embedded systems, the number of processing cores on such architectures
has been increasing at a rapid pace. A characteristic example for
this demand can be identified in today’s smart phone devices which
often employ quad-core or octa-core processors, such as Qualcomm
Snapdragon 820 [Qua] or Samsung Exynos 8890 [Sam] which are
powered by a single battery and offer almost equivalent computational
performance as general-purpose computers.

Safety-critical industries also face an increasing pressure for migrating
to multi/many-core platforms. To illustrate the benefits, consider for
instance modern cars like Lexus LS460 (release series 2006) which
feature already more than 100 inter-connected Electronic Control Units
(ECUs) [Tak12]. Adding a multitude of advanced applications to facilitate
autonomous driving in next-generation cars becomes increasingly
difficult due to size, weight and cost limitations. Employing multi-core
architectures offers the opportunity for consolidating several applications
in a common platform, thus reducing the size requirements, the car weight
and production cost through a reduced amount of processing units and
wiring.

In this thesis, we focus our interest on homogeneous shared-memory
multi/many-core processors. All processing cores are identical with
respect to clock frequency and architecture, and share (symmetric) access
to a main memory. This abstract model describes, for example, Intel
Core i7 [int], Freescale P4080 [p40] and the ARM Cortex-A processor
family [ARM]. In shared-memory processors, one way to achieve
scalability in terms of core count is by applying a hierarchical cluster-
based pattern. According to this, processing cores are grouped into
(homogeneous shared-memory) clusters with a private address space,
and inter-cluster communication is achieved through a network-on-
chip. This paradigm is exploited in several state-of-the-art commercial
platforms, such as the Intel Single-chip Cloud Computer (SCC) with

1.2. Challenges in Mixed-Criticality Multi-Core System Design 5

24 dual-core clusters [HDH+10], the STMicroelectronics STHorm/P2012
processor with four 16-core clusters [MBF+12] and the Kalray MPPA-
256 processor with 16 16-core clusters [dDAB+13, dDvAPL14] and the
aspiration to scale to 1,024 cores (64 16-core clusters) within the next years.
Being able to exploit the computational performance and the relatively
low power dissipation of such architectures in safety-critical embedded
systems would indeed mark the start of a new era, with unprecedented
possibilities.

1.2 Challenges in Mixed-Criticality Multi-Core
System Design

Combining the previously discussed trends seems an attractive solution
for the next-generation safety-critical applications. Indeed, it could
facilitate the integration of multiple functionalities in a small number
of multi-core chips, thus increasing computational performance while
size, weight and power dissipation of embedded electronics get overall
reduced. However, the deployment of mixed-criticality multi-core
systems remains largely a research topic, without industrial applicability
yet. Below we review some of the challenges that hinder the realization
of mixed-criticality multi-core systems.

1.2.1 Isolation among Criticality Levels
As discussed in Section 1.1.1, the integration of mixed-criticality
applications on single-core processors has become possible based on
the property of separation or isolation. Industrial guidelines specify
hardware and software mechanisms that can be applied to achieve
temporal and spatial partitioning, such that any two partitions cannot
interfere by delaying the activities or by corrupting the address space of
each other [RTC12, ARI03, Rus99]. However, as the processors become
more complex, e.g., by integrating multiple cores on a system-on-chip,
ensuring the property of isolation is no longer trivial. The main difficulty
lies in the common fact that the cores of commercial multi-core platforms
share access to on-chip resources, such as last-level caches, interconnects
(e.g., NoC) and memories. If two partitions with applications of different
criticality level are executed concurrently on a multi-core platform,
temporal isolation is jeopardized by the potential contention on shared
resources. For instance, it is possible that a task from the lower-criticality
partition can delay a task from the higher-criticality partition by blocking
the access of the latter to the main memory or by evicting its cache lines
from the shared last-level cache.

To better illustrate the difficulty in ensuring isolation among criticality

6 Chapter 1. Introduction

levels in the presence of shared resources, we list below potential sources
of inter-core interference which exist in most of the commercial-off-the-
shelf multicores.

1) Shared Last-Level Cache. We distinguish two types of inter-core
interference on a shared cache: (i) storage interference due to contention
for allocation of memory blocks and (ii) temporal interference due to
contention for access to the shared cache.

Storage Interference. Mancuso et al. [MDB+13] list three types of cache
interference that fall into this category: intra-task interference,
occurring when a task evicts its own cached blocks, cache pollution
caused by asynchronous Kernel Mode activities, such as interrupt
service routines and deferrable functions, and inter-core interference,
occurring when two tasks running on different cores evict each other
on a shared cache. The first two types are common in single-core
systems too, whereas the last type is relevant only for multicores.

The contents of a shared cache at any point depend, therefore, on the
relative time order of cache accesses and the requested data from the
cores as well as the cache replacement policy and the implemented
coherence protocol (if any). A special case of inter-core interference
due the cache coherence protocol is known as false sharing [TS12].
This happens when tasks on different cores write to a shared cache
line, but at different locations, in a set-associative cache. Whenever
a core modifies its location, the cache coherence protocol marks the
cache line dirty, so when the other location(s) get(s) a read/write
request, a reload of the cache line from memory is forced. Frequent
(unnecessary) reloads of the shared cache line can result in severe
time penalties for the tasks, whose data remain actually coherent,
similarly to frequent reloads caused by mutual data evictions among
cores. Kim et al. [KKR13] have shown empirically that storage
interference can increase a task’s response time by up to 40% on
a quad-core processor with a shared L3 cache. Note that the term
response time differs from execution time, as the former accounts
for the delays caused by interference on shared resources, while the
latter does not (it is derived for task execution in isolation).

Temporal Interference. When a shared cache does not provide enough
ports to support parallel access for all cores, blocking effects appear.
Namely, execution on a core can stall until another core releases
a cache port. The delay in task execution depends on the access
patterns of all cores to the cache, the arbitration policy on the cache
ports and the state (contents) of the cache.

2) Shared Bus/Memory. We consider synchronous (blocking) memory
accesses, such as the ones caused by cache misses, which cause execution
on a core to stall until the access is completed. In architectures where the

1.2. Challenges in Mixed-Criticality Multi-Core System Design 7

cores (caches) are connected to the global memory through a shared data
bus (e.g., ARM Cortex A17 [ARM]), tasks from different cores interfere
with each other while trying to access the bus simultaneously. Depending
on the interfering access patterns and the bandwidth allocation policy
of the bus, the data fetch time varies since the requesting task cannot
exploit the full memory bandwidth, like in a single-core system. Similarly,
in architectures where the cores have private paths to the memory and
arbitration among access requests from different cores is handled at the
memory controller (e.g., Kalray MPPA-256 [dDvAPL14]), tasks can block
each other upon accessing the memory. Namely, every time a task issues
an access request, a delay must be accounted until pending accesses from
other cores are completed and the memory controller arbiter grants the
access. This delay depends on the access request patterns from other cores
and the exact arbitration policy of the memory. Kim et al. [KdNA+14]
empirically observed a 12x increase in the response time of a PARSEC
benchmark when the benchmark was executed in parallel to memory-
intensive tasks on a quad-core Intel Core i7 with a shared DRAM.

3) Shared I/O Peripherals. Similar to the memory, synchronous
accesses to mutually-exclusive shared platform resources, such as
DMA controllers for access to peripheral devices or external memories,
introduce delays to the task execution. Bounding these delays is non-
trivial as they depend on the access request patterns and data demand
of all other cores and the arbitration policy of the shared resource. Note
that arbitration policies for such resources are usually not documented for
commercial multicores. Pellizzoni et al. [PBB+11] have shown empirically
that I/O traffic can increase a task’s response time by more than 60% even
on a single-core processor.

A more detailed presentation of sources of inter-core interference that
jeopardize the property of temporal isolation on commercial multicores
can be found in [KNP+14]. Eliminating (or safely bounding) the temporal
effects of such interferences, while still exploiting hardware parallelism,
is not trivial. This is the reason why the current industrial practice
in avionics is to disable all but one core on multi-core processors
[KNP+14]. Authorities such as the European Aviation Safety Agency
(EASA) and the U.S. Federal Aviation Administration (FAA) only
recently started considering the utilization of multi-core (mainly dual-
core) processors for mixed-criticality applications [EAS11, Cer14b]. The
main concern for certification is exactly the enforcement of temporal
isolation in the presence of shared platform resources, which leads to
a classification of multi-core processors as highly complex systems for
which additional means for isolation are required compared to single-
core processors [PDK+15].

Based on the above discussion, the first question that is considered in
this thesis is the following:

8 Chapter 1. Introduction

How can resource-sharing multicores be utilized for mixed-criticality
applications in a way that ensures both, temporal isolation among different
criticality levels and efficient resource utilization (hardware parallelism)?

We address this question in Chapter 2 by proposing a scheduling model
which enforces temporal isolation by allowing only applications of the
same criticality level to be executed on the multi-core platform at any
time. In this way, the computing power of the multicore can be fully
exploited and interference on shared platform resources is constrained to
tasks with the same criticality level. The notion of temporal partitions
on single cores [ARI03] is now lifted to global partitions on multicores,
with exclusive access to all platform resources. Chapters 2 and 3 present
scheduling policies that comply with the introduced model and propose
design optimization approaches for efficient resource utilization.

1.2.2 WCRT Estimation under Resource Contention
Even if interference among applications with different criticality levels
is eliminated, thus fulfilling the requirement for isolation, the problem
of bounding the temporal effects of intra-criticality interference remains
open if one wishes to maximally utilize the computational resources of a
multi-core platform. Bounding worst-case execution times on single-core
processors is a well-studied problem with mature solutions and available
tools, e.g., based on formal static analysis and abstract interpretation [Inf].
On the contrary, bounding worst-case response times (WCRT) of
concurrently executed tasks on multicores while accounting for resource
contention is a relatively new and ongoing research topic, which arose
with the advent of multi-core processors [PSC+10, SNE10, DAN+11].

Based on the discussion of Section 1.2.1, two (but not the only) factors
that can significantly affect the response times of concurrently executed
tasks on a shared-memory multi-core architecture are the mutual data
evictions on the shared caches and the arbitration policy of mutually-
exclusive shared resources, such as the memory. In this thesis, we focus
on the second factor since we restrict our interest to multicores with
private caches. The challenge in bounding the temporal effects of the
memory interference lies mainly in the high uncertainty with respect to
(i) the degree of time overlap for the executions of any two tasks (which
depends on synchronization among cores and the employed scheduling
policies on the cores), (ii) the access patterns of the tasks to the shared
resources (which depends on the program paths and micro-architectural
states) and (iii) the accessed memory locations (which depends on the
program state). For upper-bounding the delays on the shared memory,
one needs, additionally, accurate knowledge of all components of the
memory path (buses, controllers) and the related arbitration policies. This
information is often not disclosed by the vendors. All above factors make

1.2. Challenges in Mixed-Criticality Multi-Core System Design 9

the derivation of safe and tight WCRT bounds for concurrently executed
tasks highly challenging [DAN+13].

Even if one possesses accurate models of all tasks’ execution and
access patterns as well as the platform architecture, enumerating
and analyzing all possible interference scenarios is a time-consuming
approach, which becomes intractable as the number of cores and executed
tasks increases [LYGY10]. An alternative approach is to rely on abstract
models to specify the task’s execution and access patterns, such as event
arrival curves [LBT01], and on pessimistic assumptions concerning the
state of the resource arbiter(s). Such approaches to WCRT derivation
are known to scale better with an increasing number of cores, however
they often lead to very pessimistic results. The analysis pessimism,
which typically increases with the system size, can lead to resource over-
provisioning and hence, inefficient utilization of the platform.

Based on the above discussion, the second question that is considered
in this thesis is the following:

How can we estimate safe and tight worst-case response time bounds of
concurrently executed tasks under resource contention scenarios using
methods that scale efficiently with the number of cores?

We address this challenge by proposing methods for bounding and
reducing the temporal effects of inter-core interference upon accessing
the shared memory. Chapter 3 presents an analytic approach to WCRT
estimation for cluster-based architectures such as the Kalray MPPA-
256 [dDvAPL14], in which memory accesses can be delayed either by
accesses of concurrently executed tasks on different cores or by incoming
traffic from a network-on-chip. We additionally propose optimization
methods for partitioning task to processing cores and data to memory
banks, such that interference on the memory path is minimized. Chapter 4
explores alternative approaches to WCRT estimation which are based on
state-based system models with timed automata [AD90] and exhaustive
model checking. The computational complexity of model checking
is alleviated by the adoption of a predictable execution model with
dedicated computation and memory access phases [PSC+10, PBB+11] and
by abstractly representing memory access patterns from several cores
with arrival curves from real-time calculus [TCN00]. Our methods for
bounding WCRT are applicable to multi-core architectures which fulfill
the property of full timing compositionality as defined in [WGR+09], i.e.,
in which execution and memory accessing times can be safely decoupled.
The Kalray MPPA-256 cores, for example, fulfill this property.

10 Chapter 1. Introduction

1.2.3 Efficient and Timing-Predictable Implementation of
Mixed-Criticality Scheduler

In safety-critical domains, the software employed for scheduling and
resource management, including for example the operating system,
software-based partitioning mechanisms, hypervisors, is itself subject to
verification. Thus, it needs to be provably correct in terms of functionality
and timeliness in the same sense as real-time applications [PBA+14].
In the railway domain, PikeOS [Fis13] is the first operating system for
multicores which has been successfully certified. According to the authors
of [PDK+15], a similar achievement in other safety-critical domains, such
as avionics, may be much harder to realize due to the requirement to
guarantee availability at very high assurance levels and to prove software
determinism as defined in [Cer14b].

From the above requirements it becomes obvious that any proposed
scheduling policy for mixed-criticality multi-core systems should be
also evaluated on the basis of whether it can be implemented on
existing platforms in a timing-predictable way, i.e., with bounded
runtime overheads. For an efficient resource utilization, it is also crucial
that the overhead bounds are low. However, most mixed-criticality
scheduling policies in research literature (for a survey, see [BD16]) rely
on computationally expensive runtime mechanisms, such as inter-core
synchronization, parallel execution time monitoring, dynamic schedule
adaptations, execution throttling or termination. Sigrist et al. [SGH+15]
have shown that the runtime overheads of a mixed-criticality multi-
core scheduler, implemented in the user space of the Linux operating
system, can have a detrimental effect on real-time schedulability. In their
experiments on Intel Xeon-Phi (8 cores), 50% of theoretically schedulable
task sets experienced missed deadlines at runtime due to unaccounted
scheduling overheads.

Based on the above discussion, the third question that is posed in this
thesis is the following:

How can we implement mixed-criticality scheduling primitives with
bounded and low overhead on existing multicores?

We consider implementation aspects of mixed-criticality scheduling
with focus on the Kalray MPPA-256 Andey processor [dDvAPL14] in
Chapter 5. By applying global temporal partitioning, as proposed in
Chapter 3, we evaluate alternative implementations of the required
scheduling primitives for temporal isolation and show how to empirically
bound their runtime overheads on the MPPA-256. We also show how the
measured overheads can be integrated into the timing analysis of the
system at design time in order to provide real-time guarantees for the
concurrently executed applications.

1.3. Aim of this Thesis 11

1.3 Aim of this Thesis
With this work, we aim to defend the following thesis:

By introducing novel scheduling policies, design optimization ap-
proaches, and methods for analyzing the worst-case response time of
concurrently executed tasks under resource contention, it is possible to
deploy mixed-criticality applications on timing-compositional multi-core
processors in an efficient and timing-predictable manner.

1.4 Thesis Outline and Contributions
This thesis proposes novel approaches for scheduling, design opti-
mization, worst-case response time analysis and deployment of mixed-
criticality applications on multi-core architectures. The developed
approaches aim (i) to ensure temporal isolation among applications
with different criticality level in the presence of shared resources, (ii)
to reduce and bound the effects of resource interference on the response
time on concurrently executed tasks, (iii) to demonstrate that a timing-
predictable and efficient implementation of mixed-criticality scheduling
on existing many-core platforms is feasible. The integration of the
proposed approaches yields a design flow for the development of mixed-
criticality multi-core systems, as illustrated in Figure 1.1. In the following,
we present the main contributions of the thesis.

Chapter 2: Eliminating Inter-Criticality Interference
In order to address the challenge of preserving temporal isolation among
applications with different safety criticality levels on a resource-sharing
multicore, we introduce a novel scheduling model called Isolation
Scheduling. Isolation Scheduling (IS) partitions temporally a platform,
such that only tasks with the same criticality level can be executed and
utilize the on-chip resources at any time. In this way, inter-criticality
temporal interference is avoided by construction.

For a better understanding and evaluation of the limitations of the
IS model, we propose a partitioned, hierarchical scheduling policy for
sporadic task sets, IS-Server. IS-Server partitions the platform according
to a time-triggered schedule and applies earliest-deadline-first (EDF) with
a fixed task to core mapping within each partition. For the mapping
of tasks to processing cores, we present and compare optimization
formulations and heuristic approaches with the goal of maximizing
schedulability. We evaluate the schedulability loss due to the IS constraint
(exclusive platform utilization by tasks of equal criticality) theoretically
and empirically, by introducing a speedup bound and by performing
extensive simulations with synthetic task sets which enable a comparison
between IS-Server and state-of-the-art scheduling policies that do not

12 Chapter 1. Introduction

Figure 1.1: Design flow for the efficient and timing-predictable deployment of
mixed-criticality applications on shared-memory multi-core architectures. The
main contributions of this thesis are listed on the right side of the figure.

enforce the IS constraint. Finally, we conduct a comparative study among
existing scheduling policies that comply with the IS model, showing
that IS-Server achieves comparable or better schedulability, while being
applicable under more general task assumptions, e.g., to task sets with
random (not equal or harmonic) deadlines.

Chapter 3: Bounding Intra-Criticality Interference
In order to bound the effects of intra-criticality interference under
the Isolation Scheduling model, we introduce a combined analysis of
computing, memory and communication scheduling. The analysis
is applicable to cluster-based many-core architectures, such as the
Kalray MPPA-256, in which accesses to shared cluster memory can be
delayed either by simultaneous accesses from other tasks or by incoming
traffic from a network-on-chip (NoC) which is used for inter-cluster
communication and access to external memories. For such architectures,
we propose an Isolation Scheduling policy which partitions the platform
according to a flexible time-triggered and criticality-monotonic scheme
(FTTS). Unlike IS-Server, FTTS does not allow dynamic task preemptions
in order to reduce the complexity of interference analysis. We present
a worst-case response time analysis under FTTS, which accounts for the
delays due to contention on the shared memory path and due to NoC data
transfers. For the memory interference analysis, we explicitly consider the
internal multi-bank structure of the cluster memory and assume a given
data to memory bank mapping, such that interference among tasks which

1.4. Thesis Outline and Contributions 13

access data in disjoint banks can be neglected. For the NoC analysis, we
assume that NoC flows are statically routed and regulated at the source
node. The worst-case data transfer times can be analyzed, then, using
the real-time calculus [TCN00]. Additionally, we propose optimization
approaches for the mapping of tasks to processing cores and of task
data and instructions to memory banks, such that memory interference
is minimized and the workload is distributed to the cores in a balanced
way, leaving maximal idle time for incremental design (adding tasks
later into the system). To demonstrate the applicability of the scheduling
policy and the impact of the design optimization approaches, we use
a case study based on a real-world avionics application and detailed
architecture models based on the Kalray MPPA-256. Finally, we evaluate
the efficiency of FTTS in finding schedulable solutions against state-of-the-
art approaches that do not comply with the Isolation Scheduling model,
showing that FTTS can outperform them in the special case of harmonic
workloads.

Chapter 4: A Dedicated Execution Model for Tighter Interference
Analysis

The previously introduced WCRT analysis is customized to the
architecture model of Kalray MPPA-256 and similar platforms, in
which the shared resources are arbitrated in-order, in a round-robin
fashion. Extending the analysis to more complex arbitration policies
that are common on commercial multicores, e.g., for DDR SDRAM
controllers [KdNA+14], is not trivial. An extension or adaptation of
our analytic method would need to rely on over-approximations due
to the inherent difficulty in modelling the dynamic state of the arbiters.
However, such over-approximations typically lead to very pessimistic
WCRT estimates, and in turn to resource over-provisioning and platform
under-utilization. To avoid this situation, we propose a novel state-based
analysis method for tightly bounding intra-criticality interference under
the Isolation Scheduling model. For this, we model all possible execution
and memory access patterns of the processing cores (given a fixed task
to core mapping and a fixed sequential schedule on each core) along
with the respective arbitration policy using timed automata [AD90]. For
the arbitration, we consider dynamic (first-come-first-serve or round-
robin), static (time multiplexing) or hybrid (FlexRay [fle]) policies. We,
then, employ a timed model checker [BDL04, BY04] which exhaustively
explores all feasible memory interference scenarios and allows to compute
a safe and tight WCRT estimation for every task.

This method apparently can become very time-consuming for a
large number of cores and concurrently executed tasks. To reduce
the complexity of model checking, we propose (i) a dedicated task
execution model and (ii) an abstract representation of the execution
and memory access patterns of some cores based on arrival curves

14 Chapter 1. Introduction

from the real-time calculus [TCN00]. On the one hand, the dedicated
execution model restricts accesses to particular, well-defined phases
of a task [PSC+10, PBB+11], thus reducing the non-determinism with
respect to their occurrence in time. On the other hand, the abstract
representation of the execution and access behavior of several cores and
the incorporation of the arrival curve into the timed automata system
model improves significantly the analysis scalability, by making the
number of timed automata in the model independent of the number
of cores or concurrently executed tasks in the system. We present a novel
approach for computing such an arrival curve and show how this can
be integrated into the timed automata model. Finally, we evaluate the
accuracy (tightness) and scalability of our state-based WCRT analysis
approach against architectural simulation and state-of-the-art analytic
approaches, using realistic automotive benchmarks. The experiments
confirm that our analysis yields safe WCRT estimates and can scale
efficiently to a large number of cores, without compromising the accuracy
of the WCRT bounds.

Chapter 5: Deployment of Mixed-Criticality Scheduling on a Multi-
Core Architecture
In the last chapter, we address the third challenge of Section 1.2,
namely the efficient and timing-predictable implementation of a mixed-
criticality scheduler on commercial multicores. For this, we develop
one of the first runtime environments for mixed-criticality multi-core
scheduling. The runtime environment implements the FTTS scheduling
policy of Chapter 3 and is deployed on the Kalray MPPA-256 (one
cluster). We propose different mechanisms to implement the necessary
scheduling primitives and show how to experimentally bound their
runtime overhead. We then propose a WCRT analysis method which
extends the respective method of Chapter 3 by modelling an additional,
previously unknown source of interference on the memory path and by
accounting for the runtime overheads of the scheduler. An empirical
evaluation with industrial-representative benchmarks from avionics and
signal processing enables us to validate the adherence to the analytically
derived WCRT bounds during runtime. Additionally, we demonstrate
a maximum achievable utilization of 73.6% (analytically guaranteed)
or 78.9% (no deadline misses in practice) on the 16 cores of an MPPA-
256 cluster. This effective utilization, which is significantly higher than
previously reported results [SGH+15, PMN+16, BDN+16] suggests that
FTTS and similar policies based on Isolation Scheduling can offer a viable
solution for the efficient and predictable deployment of mixed-criticality
applications on timing compositional multicores.

2
Eliminating Inter-Criticality

Interference

Deploying safety-critical applications on multicores is challenging
because tasks that are executed concurrently on different cores can
interfere on shared resources according to unpredictable patterns.
This complicates worst-case response time analysis and hinders the
provision of real-time guarantees. To address this challenge, we
propose in this chapter a scheduling model called Isolation Scheduling
(IS). IS provides a framework to exploit multicores for safety-critical
applications in which tasks are grouped into classes. IS enforces mutually
exclusive execution among different task classes, thus avoiding inter-
class interference by construction. In the context of mixed-criticality
systems, IS enables elimination of inter-criticality interference, which is
important for certification. Subsequent chapters of the thesis will present
methodologies for bounding intra-criticality interference.

In this chapter, we propose and analyze a novel approach for
Isolation Scheduling, IS-Server. This is a partitioned approach based
on hierarchical server scheduling, which can be applied to sporadic,
constrained-deadline task sets that are divided into task classes, and (in
an extended form, MC-IS-Server) to mixed-criticality task sets. Through
extensive simulations, we evaluate the proposed approach in terms of
schedulability and runtime overhead and quantify the schedulability loss
due to the isolation constraint. Moreover, we conduct a comparative
study among state-of-the-art approaches that comply with the IS model,
showing that (MC-)IS-Server can outperform existing approaches in terms
of schedulability.

16 Chapter 2. Eliminating Inter-Criticality Interference

2.1 Introduction

Nowadays there is a constantly increasing gap between the requirements
of safety-critical real-time applications and the guarantees that archi-
tectures of embedded processors can provide. On one hand, real-time
applications need predictability in order to enable safe operation based
on worst-case response time analysis. On the other hand, embedded
processors increasingly feature a multi-core architecture with shared
resources, such as last-level cache, memory bus and memory controller, in
order to improve performance and computational efficiency. To exploit
multi-core architectures, applications need to run jobs concurrently on
different cores. However, shared resources undermine predictability,
since jobs that run concurrently pay unpredictable performance penalties
due to contention on shared resources.

Deploying safety-critical applications on multicores in an efficient,
yet predictable manner is a challenging problem. Coarse-grained
static partitioning in time and space, e.g., based on the DO-178C
standard [RTC12] for avionics and the ISO 26262 standard [iso11]
for automotive systems, is an established technique for single-core
safety-critical systems, but it cannot be trivially extended to multi-core
architectures. If strictly applied, it would allow only one job to be executed
at any point in time. More fine-grained partitioning requires individual
access control to each shared resource [SCM+14], which relies on special
hardware and operating system support. Finally, the approach of finding
a global schedule and bounding the contention on shared resources at
any time is only feasible with knowledge of the detailed resource sharing
behavior of all tasks, and it quickly becomes computationally intractable
with an increasing number of cores and tasks [DAN+13].

In this chapter, we propose a scheduling model that we call
Isolation Scheduling (IS). IS enables efficient scheduling of safety-critical
applications on multi-core processors by exploiting hardware parallelism
and shared resources. To make the problem more tractable, IS is based
on the assumption that tasks are partitioned into task classes that have
exclusive access to the processor and the platform resources. This way,
interference on shared resources is greatly reduced, since inter-class
interference is eliminated by construction and only intra-class interference
needs to be considered. Well-established methods [NSE09, PSC+10,
LYGY10, WKP13] can then be applied to bound the interference within
each class. IS is particularly relevant in the context of mixed-criticality
systems [Ves07, BD16], in which tasks are naturally grouped into classes
of different safety criticality levels. Industrial standards [RTC12, iso11]
require isolation of these classes in order to allow independent certification
of criticality levels. IS guarantees that tasks of different criticality levels
do not interfere on shared platform resources, and therefore, it allows
independent certification as well as a much simplified intra-criticality

2.1. Introduction 17

interference analysis.
Theoretical aspects of the IS model have been already studied by

Huang et al. [HGA+15]. A global, preemptive scheduling policy
based on fluid scheduling was proposed in order to derive speedup
bounds for the IS model and explore its limitations. Although this
policy provides a rigorous framework for analysis, it cannot be easily
deployed on existing multicores, since it relies on very frequent task class
switches, task migrations and preemptions. Such mechanisms make
the implementation of scheduling prohibitively expensive in terms of
runtime overhead. To address this shortcoming, we propose and analyze
a novel scheduling approach for Isolation Scheduling. IS-Server and
its extension to mixed-criticality systems, MC-IS-Server, are partitioned
approaches based on hierarchical server scheduling, which can be applied
to sporadic, constrained-deadline real-time task sets with distinct task
classes. In IS-Server, virtual servers are responsible for scheduling the
tasks of the respective classes (one server per class). The servers follow
a time-triggered schedule, but within each server, tasks are scheduled
in a preemptive earliest-deadline-first (EDF) fashion. All cores perform
the same server schedule and only one server can be active at a time,
thus guaranteeing mutual exclusion among task classes. We propose and
compare approaches for partitioning the tasks to cores and dimensioning
the time-triggered schedule of the virtual servers. Additionally, through
extensive simulations we evaluate the new scheduling approach with
respect to schedulability and runtime overhead. The results deliver a deep
understanding of the IS model and corresponding scheduling techniques
and suggest that the IS model is a useful and flexible abstraction for
designing systems that require isolation among task classes.

Contributions. The main contributions of this chapter can be summarized
as follows:

• We formalize the Isolation Scheduling model for eliminating inter-
class (inter-criticality) interference of safety-critical applications on
resource-sharing multicores.

• We present a novel hierarchical scheduling policy, IS-Server,
which complies with the IS model. We propose and compare
several approaches for partitioning tasks to processing cores aiming
at maximizing schedulability under IS-Server, and provide an
algorithm for constructing IS-Server schedules. We prove a speedup
bound for enforcing inter-class isolation.

• We extend IS-Server and the respective analysis to the particular
case of mixed-criticality scheduling, by introducing MC-IS-Server.
We are among the first to analyze systems with more than two
criticality levels, a case which is often neglected in literature due to
its intrinsic complexity.

18 Chapter 2. Eliminating Inter-Criticality Interference

• We perform extensive simulations with synthetic task sets to
evaluate the proposed approaches with respect to schedulability
and runtime overhead (in terms of task class switches).

• We conduct a comparative study among five IS-compliant dual-
criticality scheduling approaches. We show that MC-IS-Server
performs at least equally well as existing approaches in terms of
schedulability, while being applicable under more general task
assumptions.

Outline. In the remainder of the chapter, Section 2.2 presents existing
methods for achieving isolation in safety-critical multi-core systems.
Section 2.3 presents our scheduling and task set model. Section 2.4 and
2.5 present the IS-Server scheduling policy and its extension to mixed-
criticality systems. Section 2.6 presents the empirical evaluation of the
scheduling policies in terms of schedulability and runtime overheads
and the comparison to state-of-the-art IS-compliant policies. Finally,
Section 2.7 summarizes the results of this chapter.

2.2 Related Work
In this section, we focus on task class isolation as commonly required for
the certification of mixed-criticality systems. Initial research on mixed-
criticality multi-core scheduling [LB12, KAZ11, Pat12] did not explicitly
address interference among task classes when tasks contend for access to
shared resources other than processing cores, thus implying that it can
be bounded. For instance, Anderson et al. proposed different strategies
(partitioned EDF, global EDF, cyclic executive) for scheduling different
criticality levels and used a bandwidth reservation server for temporal
isolation among criticality levels [ABB09, MEA+10]. In their scheduling
framework, tasks with different criticality could run in parallel and, like in
the previous works, the interference on shared platform was not explicitly
bounded. However, interference analysis for multiple shared resources is
a very challenging task. In fact, estimating response time bounds under
contention may be even impossible for mixed-criticality systems because
a certification authority for higher criticality tasks does not necessarily
possess information on the behavior of lower criticality tasks that are
co-hosted on the same platform. To address this challenge, Isolation
Scheduling minimizes inter-criticality interference by construction.

More recently, researchers acknowledged the problem of inter-
criticality interference and proposed mechanisms for criticality-aware
arbitration of shared resources, with the objective of statically bounding
interference from lower to higher criticality tasks. Yun et al. [YYP+12]
and Flodin et al. [FLY14] proposed a software-based memory throttling

2.2. Related Work 19

mechanism (with predefined [YYP+12] or dynamically allocated [FLY14]
per-core budgets) to explicitly control interference on a shared memory
controller. Yun et al. [YYP+13] introduced a memory bandwidth
reservation scheme with online reclamation support, for isolation of
applications on different cores. Paolieri et al. [PQnC+09] and Goossens
et al. [GAG13] proposed hardware modifications to a shared memory
controller for mixed hard and soft real-time systems. Hassan and
Patel [HP16] introduced a dynamically reconfigurable requirement- and
criticality-aware arbiter to shared memory buses and Cilku et al. [CFP14]
combined a dual-layer bus arbiter with a hypervisor for bounded
interference on the memory path. More criticality-aware memory
controllers were proposed in [JQA+14, GAGC16]. Several works [RLP+11,
WKP13, YMWP14, ETSE14, KBL+15] proposed partitioning data to
disjoint DRAM banks in order to minimize inter-core interference on
bank arbiters. Furthermore, Kim et al. [KWC+16] combined bank
partitioning with shared last-level cache partitioning. Sha et al. [SCM+14]
proposed a combination of aforementioned approaches envisioning the
design of single-core equivalent systems, for which timing analysis
is compositional, namely it can be performed locally on each core
with static, safe bounds on the interference from all other cores.
With regards to interference on networks-on-chip, Tobuschat et al.
[TAED13] implemented virtualization and monitoring mechanisms for
independence among mixed-criticality flows, while Tamas-Selicean et al.
[TSPS12] exploited the TTEthernet protocol to achieve spatial and
temporal isolation for mixed-criticality messages. Such mechanisms
ensure bounded interference among criticality levels. However, they
can suffer from poor flexibility, e.g., when the resource budgets cannot
adapt dynamically to varying resource demand, and they often require
hardware support which is not available in commercial-off-the-shelf
platforms. With the IS model, we sidestep the need for fine-grained
shared resource arbitration. The key idea is to only permit tasks of the
same criticality level (i.e., from the same class) to execute concurrently.
Based on this insight, the IS policies avoid resource interference among
task classes, exploit multiple cores, and only suffer a limited schedulability
loss to enforce temporal partitioning among task classes (we quantify this
loss analytically and experimentally later in this chapter).

It is worth mentioning that even though Isolation Scheduling does
not allow parallel execution of more than one task class, it cannot
completely eliminate inter-class interferences that exist due to the
state of the shared resources. For instance, pending accesses to a
shared memory that were requested from a task class but not served
within the task class execution interval can affect/delay future memory
accesses of another task class. Similarly, tasks of one task class can
“pollute” a shared cache (evict cache lines required by another class)
and cause a burst of cache misses at the beginning of the execution

20 Chapter 2. Eliminating Inter-Criticality Interference

Figure 2.1: Example IS schedule with three task classes S1, S2 and S3. Vertical
lines mark the synchronous switching between task classes on all cores.

interval of the next task class. These implicit interferences need to
be accounted for in the worst-case response time analysis of each
individual task class. To minimize them, Isolation Scheduling can be
combined with spatial partitioning approaches, such as memory bank
privatization [RLP+11, WKP13, YMWP14] (here, for partitioning memory
banks to task classes), shared cache partitioning [Kir89, CJDR00, HBHR11,
KKR13, WHKA13, ADLD14, KWC+16] and locking [SM08, MDB+13].

2.3 System Model
This section1 formalizes the Isolation Scheduling model (Section 2.3.1) and
the considered task set models in this chapter (Section 2.3.2). Additionally,
it provides an overview of a baseline mixed-criticality scheduling policy,
upon which MC-IS-Server is built (Section 2.3.3).

2.3.1 The Isolation Scheduling (IS) Model
The Isolation Scheduling (IS) model partitions a hardware platform
temporally among different task classes so that, at any time, only jobs
of the same task class can utilize the platform resources. The model
targets homogeneous multi-core processors with m identical cores that
share on-chip resources.

For any task set, we assume that tasks are partitioned into K task
classes S = {Sk | 1 ≤ k ≤ K}. If tasks need to satisfy timing constraints, we
define the set of task classes S to be IS-schedulable if all timing requirements
are met, while respecting the IS constraint of mutual exclusion between
task classes. Formally, the IS constraint is defined as follows.

Definition 2.1. A scheduling policy enforces the IS constraint if at any time t
the executed tasks across all cores belong to the same task class. Namely, for any
pair of tasks τi ∈ Sa and τ j ∈ Sb that are concurrently executed at time t, it must
hold that Sa = Sb. �

1Parts of this section have appeared in publication [HGA+15], which consists joint
work with Pengcheng Huang.

2.3. System Model 21

Note that the above definition can be extended also to inter-processor
communication if this happens in an asynchronous manner, e.g., over a
network-on-chip. In this case, any two active communication flows at
time t must be initiated by tasks that belong to the same task class. In the
following, we call a scheduling policy which enforces the IS constraint
compliant with the IS model or simply IS-compliant.

For an illustration of how the model works, Figure 2.1 shows an
example of an IS schedule. To enforce the IS constraint, all processing
cores switch synchronously between task classes. The synchronous switch
between two task classes can be triggered at runtime either dynamically
or based on a static time-triggered pattern.

2.3.2 Task Set Model
The proposed scheduling policies in this chapter target sporadic real-time
task sets. A special case of such task sets are sporadic mixed-criticality
task sets. We present the considered task set models in the following.

Sporadic Real-Time Task Sets. The IS model supports real-time task sets,
where each task sporadically instantiates single jobs. Given that the tasks
are partitioned into K task classes S = {Sk | 1 ≤ k ≤ K}, each task τi in class
Sk is characterized by a tuple (Ti,Di,Ci), which defines the period of the
jobs (minimal inter-arrival time), their relative deadline and worst-case
execution time. We consider constrained-deadline tasks, where Di ≤ Ti.
Eq. (2.1) defines the density δi and utilization ui of a task τi:

δi := Ci/Di, ui := Ci/Ti . (2.1)

A sporadic task set is schedulable under a given scheduling policy if all
jobs of tasks τi receive enough execution time according to their execution
bound Ci to complete by their deadlines.

Mixed-Criticality Task Sets. When we discuss the IS model in the
context of mixed-criticality systems, we focus on systems with two to
five task classes (i.e., safety criticality levels), as specified for instance by
the DO-178C standard [RTC12] with the design assurance levels DAL A
to DAL E. We summarize here the established mixed-criticality task set
model [BD16], which originated from the work of Vestal [Ves07].

Each task τi is characterized by a tuple (Ti,Di, χi,Ci), where the
period Ti and relative deadline Di are defined as before. χi ∈ {1, . . . ,K}
denotes the task’s criticality level, where 1 specifies the lowest and K
the highest criticality level in the system. Ci is now a vector consisting
of χi execution time bounds, which are monotonically non-decreasing.
For instance, for a task τi with χi = 3: Ci(1) ≤ Ci(2) ≤ Ci(3), while
Ci(χ) for χ > 3 is not defined. The existence of multiple execution time
bounds is based upon Vestal’s assumption that “the more confidence one
needs in a task execution time bound (the less tolerant one is of missed

22 Chapter 2. Eliminating Inter-Criticality Interference

deadlines), the larger and more conservative that bound tends to become
in practice. [Ves07]”. Therefore, one can “assume a task may have a set of
alternative worst-case execution times, each assured to a different level of
confidence [Ves07]”. Eq. (2.2) defines the density δi(χ) and utilization ui(χ)
of task τi as a function of its execution time bound on level χ ∈ {1, . . . ,K}:

δi(χ) := Ci(χ)/Di, ui(χ) := Ci(χ)/Ti . (2.2)

In the special case of dual-criticality systems, we use SLO to denote the
class of tasks with low (LO) criticality and SHI the class of tasks with high
(HI) criticality, respectively.

At runtime, a mixed-criticality system has K execution modes {Mk|1 ≤
k ≤ K} [BD16]. The system execution starts with mode M1 and remains
in this mode as long as all task jobs adhere to their level-1 execution
time bounds Ci(1). Whenever at least one task job overruns its level-k
execution time bound Ci(k), the system switches dynamically to mode
Mk+1. After a switch from Mk to Mk+1 mode, the system can switch back
to Mk mode under certain circumstances, e.g., when there are no more
ready jobs with criticality level χi = k + 1 (awaiting to be executed) in the
system [SGTG12, BCLS14]. In the special case of dual-criticality systems,
we use LO and HI to denote execution modes M1 and M2, respectively.

A mixed-criticality task set is schedulable under a scheduling policy if
the policy satisfies the following condition ∀k ∈ {1, . . . ,K}: In mode Mk,
all jobs of tasks τi with χi ≥ k receive enough execution time according to
their execution bound Ci(k) to complete by their deadlines.

2.3.3 Baseline Mixed-Criticality Scheduling Policy
Here, we provide a short overview of the dual-criticality scheduling policy
partitioned EDF-VD [BCLS14], which is used later in Section 2.5. For a more
extensive overview of existing mixed-criticality scheduling policies, we
refer to the survey by Burns and Davis [BD16].

Partitioned EDF-VD. Baruah et al. [BBD+12] introduced EDF with virtual
deadlines (EDF-VD) for uniprocessor implicit-deadline task sets, later
extended to multicores under static task partitioning [BCLS14]. EDF-VD
adapts classic preemptive EDF scheduling to ensure the schedulability of
HI criticality tasks when the system switches to HI mode. To achieve this
goal, EDF-VD assigns virtual deadlines to HI criticality jobs, i.e., to jobs of
tasks in the SHI class. The virtual deadline is computed by multiplying
the original deadline by a fixed factor x ∈ (0, 1]. In LO mode, jobs are
scheduled according to EDF, using the original deadlines for LO criticality
jobs and the virtual deadlines of HI criticality jobs. Since the virtual
deadlines are down-scaled, HI criticality jobs will have some slack to
“catch up” upon switching to HI mode. In case the system switches to
HI mode, all LO criticality jobs are dropped and HI criticality jobs are
scheduled with EDF using their original deadlines.

2.4. The IS-Server Policy 23

Baruah et al. [BBD+12] proved that, in LO mode, all deadlines (for HI
criticality tasks, virtual deadlines) will be met if:

x ≥
ULO

HI

1 −ULO
LO

. (2.3)

Moreover, Huang et al. [HGST14] proved that there will be no deadline
violations for HI criticality tasks during the switch to HI mode or during
HI mode operation if all HI criticality tasks finish by their virtual deadlines
in LO mode and ∑

τi∈SHI

ui(HI)
ui(LO) + (1 − x)

≤ 1 . (2.4)

We will use conditions (2.3) and (2.4) in our MC-IS-Server scheduling
policy (Section 2.5).

2.4 The IS-Server Policy
As mentioned earlier, theoretical aspects of the IS model have been
investigated in [HGA+15]. The authors proposed a fluid scheduling
policy, IS-DP-Fair, inspired by DP-Fair [LFS+10], which enforces
proportional progress of all tasks across the cores within dedicated
system slices (one task class per slice). IS-DP-Fair is an optimal,
in terms of schedulability, multi-core scheduling policy for periodic
implicit-deadline task sets under the IS constraint. Although fluid
scheduling policies [LFS+10, LPG+14, HGA+15] provide a rigorous tool
for schedulability analysis, their implementation on actual systems is
challenging. This is mainly because of the large number of required
task preemptions, migrations, and in our case, synchronous task class
switches, which can be costly. To address this concern, we explore a
hierarchical, server-based scheduling strategy for sporadic constrained-
deadline task sets under the IS model; we refer to this strategy as IS-Server.
Here, we present IS-Server for multiple (non mixed-criticality) task classes
and in Section 2.5 we extend the strategy to mixed-criticality systems.

IS-Server is a partitioned scheduling algorithm, i.e., tasks are not
allowed to migrate across cores. K virtual servers are responsible for
scheduling the tasks of the respective classes (one server per class). The
servers follow a time-triggered schedule, but within each server, tasks
are scheduled in a preemptive EDF-based fashion. All cores perform
the same server schedule and only one server can be active at a time,
thus guaranteeing mutual exclusion among task classes. The IS-Server
algorithm has two phases:

1. In the first phase, we partition tasks to cores2, using either a Mixed
2The development of partitioning methods in Section 2.4.1 and Section 2.5.1 consists

joint work with Rehan Ahmed.

24 Chapter 2. Eliminating Inter-Criticality Interference

Variables:

αi, j =

1, if task τi is assigned to core j
0, otherwise

Objective:

min
∑

1≤k≤K

max
1≤ j≤m

∑
τi∈Sk
αi, j=1

δi

Constraints: ∑
1≤ j≤m

αi, j = 1, ∀τi ∈ {Sk|1 ≤ k ≤ K},∑
αi, j=1

δi ≤ 1, ∀1 ≤ j ≤ m

Figure 2.2: MILP formulation for the partitioning phase of IS-Server.

Integer Linear Programming formulation (Section 2.4.1.1) or one
of the heuristic approaches Worst-Fit Decreasing and Worst-Fit
Decreasing-Max (Section 2.4.1.2).

2. After partitioning, we employ a search strategy to find a periodic
server schedule that satisfies the timing requirements of all tasks
(Section 2.4.2).

Note that existing server methods for multicore platforms [SEL08,
BBB09] subdivide the tasks into multiple virtual platforms (servers) that
can run in parallel. Such methods violate the IS constraint. Instead, we
propose global servers which have exclusive access to the underlying
platform. Switching the resource allocation between the global servers
happens synchronously on all cores.

2.4.1 Task Partitioning to Cores
In the partitioning phase, we look for task to core assignments. We denote
the assignment of task τi to core j, 1 ≤ j ≤ m, as αi, j. Variable αi, j equals to
1 if τi is assigned to core j, or 0 otherwise.

2.4.1.1 Mixed Integer Linear Programming Formulation

Figure 2.2 formulates the partitioning phase of IS-Server as a Mixed
Integer Linear Programming (MILP) problem. The objective function that
we aim to minimize is the sum of maximum per-class densities across all
cores. Having this sum not greater than 1 is a sufficient condition for
scheduling constrained-deadline sporadic tasks under the IS constraint

2.4. The IS-Server Policy 25

Algorithm 1: Worst-Fit Decreasing (WF)
Input: S: Task set
Output: M j: m sets of tasks assigned to individual cores.

1: M j← ∅ ,∀ 1 ≤ j ≤ m: Sets of tasks assigned to individual cores
2: density j← 0 ,∀ 1 ≤ j ≤ m: Densities of cores
3: for each Sk ∈ S do
4: Sort tasks τi ∈ Sk in descending order of density δi

5: while not all tasks in Sk are assigned do
6: τi← First unassigned task in class Sk

7: c← argmin
1≤ j≤m

(density j)

8: Mc←Mc ∪ {τi}

9: densityc← densityc + δi

10: end while
11: end for

(see Theorem 2.3, Section 2.4.2.3). Note that the objective function is not
linear due to the max operator. It can be linearized by adding a variable
zk for each 1 ≤ k ≤ K and m linear constraints for each zk in the form:

zk ≥

∑
τi∈Sk
αi, j=1

δi, ∀1 ≤ j ≤ m .

The objective then becomes
∑

1≤k≤K

zk. Since this objective is being minimized,

each individual zk will be set to its lowest possible value and so will
max
1≤ j≤m

{ ∑
τi∈Sk
αi, j=1

δi

}
.

The constraints of the MILP formulation guarantee that each task is
assigned to exactly one core and the total density on each core is bounded
by 1.

2.4.1.2 Worst-Fit Decreasing and Worst-Fit Decreasing-Max

Due to the complexity of solving the MILP problem, we also evaluate two
different heuristic approaches for assigning tasks to cores. The proposed
methods are adaptations of the Worst-Fit Decreasing (WF) bin packing
heuristic. The rationale behind choosing WF is that this heuristic generally
assigns items to individual bins with the objective of keeping the level
of all bins equal/balanced. In the context of task to core assignments,
this would mean that the densities of all cores for a given class are
balanced, which in turn can lead to lower values for the objective function
of our partitioning problem (see optimal formulation above). Algorithm 1

26 Chapter 2. Eliminating Inter-Criticality Interference

Figure 2.3: TDMA server schedule for three task classes S1, S2, S3. The server
schedule is repeated with a period P. Within each server slot (with respective
length `1, `2, `3), tasks are scheduled based on partitioned EDF.

outlines the WF algorithm. Essentially, we sort tasks in each task class
in descending order w.r.t. their density. Then, we assign tasks from each
task class iteratively to the core which has the lowest density.

WF-Max is an adaptation of Algorithm 1. In WF-Max, once all tasks
of a given task class are assigned, the densities of all cores are set to the
maximum density across all cores. Namely, the following line is added
after Line 10 in Algorithm 1:

density j = max
1≤k≤m

{
densityk

}
, ∀ 1 ≤ j ≤ m .

This adaptation models the schedulability loss due to the IS constraint.
Therefore, WF-Max is expected to provide better schedulability compared
to WF.

2.4.2 The IS-Server Algorithm
Once the partitioning phase is done, we apply hierarchical scheduling
using K global virtual servers, one for each task class Sk (1 ≤ k ≤ K). To
enforce the IS constraint, only one global server can be active at a time. To
achieve this, we consider the whole multicore as a time-division-multiple-
access (TDMA) resource [HHK01, WT06a] and assign disjoint time slots
to the servers. During each time slot, tasks of the respective class are
scheduled across the cores based on partitioned EDF.

A TDMA-based server schedule is illustrated in Figure 2.3 for three
task classes. IS-Server periodically assigns the TDMA resource, i.e., the
multicore platform, to the task class servers according to a predefined
pattern. This pattern recurs with a period P, to which we refer as the
TDMA cycle length. In every TDMA cycle, one single slot is assigned to
the server of task class Sk, with length `k which depends on its execution
demand. We call a TDMA server schedule feasible if the sum of the slot
lengths for all servers is less than or equal to the TDMA cycle length:

P ≥
K∑

k=1

`k . (2.5)

2.4. The IS-Server Policy 27

0 10 20 30 40 50 60
0

5

10

15

20

(P, `1)

P

(P − `1, 0)

Time interval t

Su
pp

ly

sbf(S1, t)

(a) Supply bound function for class S1.

0 10 20 30 40 50 60
0

5

10

15

20

(ξ1, 0)

Time interval t

D
em

an
d

cdbf(S1,t)

(b) Class demand bound function for class
S1. The dotted curve represents sbf(S1, t).

Figure 2.4: Supply and demand bound functions for task class S1 in TDMA
schedule.

2.4.2.1 Schedulability Analysis of IS-Server

To analyze the schedulability of a task set S under IS-Server, we use the
well-known concept of demand and supply bound functions [BCGM99,
MFC01, WT05, SL03, SL04]. We now show how to compute these
functions for IS-Server and formulate the schedulability conditions.

Execution Supply of TDMA Resource. A supply bound function sbf(t)
lower-bounds the amount of supplied execution time by a platform in any
time interval of length t [MFC01, WT05]. For instance, a unit-speed single-
core processor has sbf(t) = t. To determine the lower supply bounds for
each task class under IS-Server, we must consider that in the TDMA server
schedule: 1. The server for task class Sk may not be able to execute for a
time interval that is upper-bounded by P − `k; 2. After this interval, the
server is granted exclusive access to the platform for a time interval of
length `k. Therefore, there is no guarantee for supplied execution time
to the k-class server during any time interval 0 ≤ t < P − `k, but there
is a guarantee for a supplied execution time of (t − (P − `k)) in any time
interval P − `k ≤ t < P. This leads to the definition of the supply bound
function of the k-class server, sbf(Sk, t), as follows [WT06a]:

sbf(Sk, t) = max
{⌊ t

P

⌋
`k, t −

⌈ t
P

⌉
(P − `k)

}
. (2.6)

Figure 2.4(a) illustrates the supply bound function for server S1 in the
TDMA server schedule of Figure 2.3.

Execution Demand of Task Classes. We estimate the execution demand
of each task class Sk using the concept of demand bound functions, which
was described by Baruah et al. [BCGM99] for single tasks. First, we

28 Chapter 2. Eliminating Inter-Criticality Interference

introduce some definitions.

Task demand bound function (dbf)[BCGM99]: Function dbf(τi, t) de-
notes the maximum execution demand of task τi in any time interval
of length t. Execution demand is calculated as the total execution
time of jobs of τi that have arrival times and deadlines within the
time interval. For sporadic tasks, it is given by:

dbf(τi, t) = max
{⌊ t −Di

Ti

⌋
+ 1, 0

}
· Ci .

Per-Core Class Demand Bound Function (pc_cdbf): Function
pc_cdbf(Sk, t, j) denotes the maximum aggregate execution
demand of all tasks τi in task class Sk which run on core j, in any
time interval of length t:

pc_cdbf(Sk, t, j) =
∑
τi∈Sk
αi, j=1

dbf(τi, t) .

Class Demand Bound Function (cdbf): Function cdbf(Sk, t) denotes the
maximum aggregate execution demand of task class Sk across all
cores, in any time interval of length t:

cdbf(Sk, t) = max
1≤ j≤m

{
pc_cdbf(Sk, t, j)

}
.

A sample class demand bound function is illustrated in Figure 2.4(b).

Schedulability Conditions. It is known [SL03, SL04] that to ensure
schedulability of a given workload, the supply bound function must be
at least equal to the demand bound function for any time interval. This
leads to the following necessary and sufficient schedulability condition.

Theorem 2.1. A task set S is schedulable under IS-Server iff

∀t ≥ 0,∀k ∈ {1, . . . ,K} : cdbf(Sk, t) ≤ sbf(Sk, t) . (2.7)

Proof. The theorem follows directly from the schedulability test (1)
of [SL04]. �

Additionally, we use a necessary schedulability condition for quick
identification of unschedulable task sets. This condition is based on the
principle that the supply bound function of any resource cannot surpass
sbfmax(t) = t.

Theorem 2.2. For any task set S schedulable under IS-Server, the following
condition holds:

∀t ≥ 0 :
K∑

k=1

cdbf(Sk, t) ≤ t . (2.8)

Proof. The theorem follows directly from Theorem 1 of [BCGM99]. �

2.4. The IS-Server Policy 29

2.4.2.2 TDMA Parameter Selection

In this section, we show how to select the TDMA server schedule
parameters, i.e., the cycle length P and the slot length `k for each
server Sk, such that (i) the resulting supply bound function for each task
class satisfies the schedulability condition (2.7), and (ii) the frequency
of synchronous task class switches is minimized. For the derivation
of the TDMA server schedule, we adapt the approach described by
Wandeler et al. [WT06a], which applies a modular performance analysis of
TDMA resources based on real-time calculus [TCN00]. This approach was
originally developed for distributed systems with nodes communicating
via message passing over a shared TDMA-arbitrated bus. Here, we adapt
it to be applicable to real-time server scheduling.

First, we derive the minimum feasible slot length for each class Sk for
a given cycle length P, and then provide an upper bound on the cycle
length P itself, such that schedulability conditions can be satisfied. Next,
we present a search method for the selection of parameters P, Sk,∀k, with
the objective of minimizing the frequency of task class switches.

Minimum Slot Length for Given P. Suppose that the TDMA cycle
length P is fixed. By applying the results (Eq. 12) of [WT06a], we get the
minimum slot length `k that can be assigned to the server for task class
Sk, such that schedulability condition (2.7) is satisfied:

`k = sup
t≥0

min

cdbf(Sk, t)⌊
t
P

⌋ ,
cdbf(Sk, t) − t +

⌈
t
P

⌉
P⌈

t
P

⌉
 . (2.9)

Based on the analysis of [WT06a], `k is the smallest time slot allocation that
guarantees ∀t ≥ 0 : cdbf(Sk, t) ≤ sbf(Sk, t) on a TDMA resource with cycle
length P. The computation of `k can be performed using the operations of
the real-time calculus toolbox [WT06b], once cdbf(Sk, t) has been specified
in the form of an arrival curve [TCN00]. Note that `k is monotonically
non-decreasing with P.

Upper Bound on Cycle Length. Since the motivation for adopting IS-
Server is to reduce the frequency of synchronous task class switches
compared to previous IS fluid policies [HGA+15], we aim at maximizing
the TDMA cycle length P and consequently, the slot lengths `k which
increase monotonically with P. To provide an upper bound on P, we first
introduce parameter ξk, which is defined as the x-coordinate of the first
non-zero point of cdbf(Sk, t) (for an example, see Figure 2.4(b)):

ξk = inf
t≥0
{cdbf(Sk, t) > 0} . (2.10)

ξk determines the maximum time interval that the k-class server can "wait"
until it receives execution. In other words, ξk determines the maximum

30 Chapter 2. Eliminating Inter-Criticality Interference

sum of slot lengths that can be allocated to the remaining servers (for
classes S j, j , k) during a TDMA cycle:

K∑
j=1
j,k

` j ≤ ξk . (2.11)

By summing up Eq. (2.11) ∀k ∈ {1, . . . ,K}, we have:

(K − 1) ·
K∑

k=1

`k ≤

K∑
k=1

ξk . (2.12)

Hence, for K > 1, the sum of slot lengths for all servers is upper bounded
by:

max

 K∑
k=1

`k

 =
1

K − 1

K∑
k=1

ξk . (2.13)

In principle, the maximum cycle length Pmax can be greater than the
maximum sum of slot lengths for all servers Sk because slack time can
be reserved in every TDMA cycle, e.g., for future allocation of time slots
or for accounting of runtime overheads (see TDMA schedule specification
in Figure 2.3). Since in this work slack time reservation is not of interest,
we take the right-hand side of Eq. (2.13) as the upper limit Pmax of our
search for the TDMA cycle length.

Search Method. We now employ a search method to determine the cycle
length P and the server slot lengths `k,∀k of the TDMA server schedule.
The objective is finding the maximum cycle length P ∈ (0,Pmax] and the
corresponding minimum server slot assignments `k which lead to a feasible
IS-Server schedule according to condition (2.5). Note that for any cycle
length P in the search space, the computation of the minimum server slots
according to Eq. (2.9) ensures schedulability of the task set (condition
(2.7)), but not necessarily feasibility of the IS-Server schedule (condition
(2.5)).

Algorithm 2 implements the search method for the TDMA server
schedule parameters. Initially (lines 1–4), it checks whether the task
set S features more than one task class. In the special case of a single
task class, the respective server receives full service, hence the cycle
length and the slot length `1 are both set to infinity (no class switch).
Subsequently (lines 5–7), it checks the necessary schedulability condition
(2.8) for early detection of unschedulable task sets. Because this test can
be computationally expensive, in practice we perform it by computing
the long-term rate of functions cdbf(Sk, t), ∀k, and comparing their sum
against value 1 (the rate of function sbfmax(t) = t).

If this test is successful, the algorithm proceeds (lines 8–20) with linear
search for P in (0,Pmax] in reverse order, i.e., from Pmax to 0. To reduce

2.4. The IS-Server Policy 31

Algorithm 2: Search method for parameters of TDMA server schedule
Input: cdbf(Sk, t) for all classes, upper bound Pmax, search quantum q
Output: Cycle length P, slot lengths `k for all classes, or INFEASIBLE

1: if K = 1 then
2: P← Inf; `1 ← Inf . A single task class receives full service
3: return P, `1

4: end if
5: if ∃t :

∑K
k=1 cdbf(Sk, t) > t then

6: return INFEASIBLE . Violation of condition (2.8)
7: end if
8: for p← q ·

⌈
Pmax

q

⌉
to q do . Search function

9: for each k ∈ {1, . . . ,K} do
10: slot_len(p, k)←minimum slot length computed by Eq. (2.9)
11: end for
12: slack(p)← p −

∑K
k=1 slot_len(p, k)

13: if slack(p) ≥ 0 then
14: P← p . Max. cycle length leading to feasible solution
15: for each k ∈ {1, . . . ,K} do
16: `k ← slot_len(p, k)
17: end for
18: return P, `k,∀k ∈ {1, . . . ,K}
19: end if
20: end for
21: return INFEASIBLE . No feasible solution found

computational complexity, we quantize the search space with granularity
q. Namely, the algorithm searches in the period set

{
q, 2q, . . . , q ·

⌈
Pmax

q

⌉}
.

For each considered period, it computes: (i) the minimum slot lengths
for all servers such that schedulability condition (2.7) holds, and (ii) the
difference between the sum of the slot lengths and the period. If this
difference is non-negative, the current TDMA parameters define a feasible
server schedule, which satisfies the real-time requirements of all tasks.
Note that function slot_len(p, k) computes the minimum slot length for
the k-class server and for given period p, while slack(p) computes the
difference between the sum of the slot lengths and the current period p.

The search stops when a period p is found for which slack(p) ≥ 0
or when the whole search space has been explored. In the first case, p
represents the maximum cycle length in the search space that leads to a
feasible TDMA server schedule. If such a value is found, the algorithm
returns the cycle length and the respective minimum slot lengths for all
task class servers (lines 13–19). If no feasible solution has been found after
an exhaustive search of the period set, the algorithm returns INFEASIBLE
(line 21). Note that due to the quantization of the search space, it is

32 Chapter 2. Eliminating Inter-Criticality Interference

possible that existing feasible solutions with P ∈ (zq, (z + 1)q), z ∈ Z∗ are
not found by Algorithm 2. This can be solved by decreasing the search
quantum q at the expense of increased computational complexity.

2.4.2.3 Schedulability Loss of IS-Server

Here, we quantify the loss of schedulability due to enforcing the IS
constraint under partitioned scheduling. Note that we are only interested
in the schedulability loss due to Isolation Scheduling and not due to a
specific task partitioning method. Theorem 2.3 provides a bound on the
required speedup to enforce isolation in this case3.

Theorem 2.3. Any sporadic, constrained-deadline task set S schedulable by a
partitioned scheduling policy without the IS constraint on a m-core unit-speed
processor is schedulable under the IS constraint on a m-core processor that is
min{K,m} times faster. This speedup bound is tight in the special case of tasks
with implicit deadlines.

Proof. Assume that, after partitioning of a task set to m cores, the total
density of class k on core j is δ j

k. Since the task set is schedulable under
partitioned scheduling and EDF is an optimal uniprocessor scheduling

technique, we have ∀ j :
K∑

k=1
δ j

k ≤ 1. Given such a partitioning, a sufficient

condition so that the system is schedulable under the IS constraint is that:

K∑
k=1

max
1≤ j≤m

δ j
k ≤ 1 . (2.14)

To see why this condition is sufficient4, assume an IS-compliant policy
that is similar to the DP-Fair scheduling policy [LFS+10]. Namely, we have
arbitrary small quantum σ in the system (for IS-Server, equal to the TDMA
cycle length), and withinσ, a slot size ofσ·

m
max

j=1
δ j

k is allocated to task class k.

As long as any task class k receives its “fair” portion within the quantum,

i.e.,
K∑

k=1
σ ·

m
max

j=1
δ j

k ≤ σ, we know from fluid scheduling [LFS+10, HGA+15]

that all tasks in any task class will meet their deadlines.
Therefore, the problem of finding a speedup bound for Isolation

Scheduling can be formulated as:

max

 K∑
k=1

max
1≤ j≤m

δ j
k

 s.t. ∀1 ≤ j ≤ m :
K∑

k=1

δ j
k ≤ 1 . (2.15)

3The proof of Theorem 2.3 consists joint work with Pengcheng Huang.
4Note that condition (2.14) is also necessary if tasks have implicit deadlines.

2.5. The MC-IS-Server Policy 33

As a result, we have:

K∑
k=1

max
1≤ j≤m

δ j
k ≤

K∑
k=1

1 ≤ K . (2.16)

Furthermore, we have:

K∑
k=1

max
1≤ j≤m

δ j
k ≤

K∑
k=1

m∑
j=1

δ j
k ≤

m∑
j=1

K∑
k=1

δ j
k ≤

m∑
j=1

1 ≤ m . (2.17)

Thus, the upper bound of max
K∑

k=1
max
1≤ j≤m

δ j
k is min{K,m}. The theorem

follows directly.
The above speedup bound is tight w.r.t. Eq. (2.14), since it can be indeed

achieved with certain choices of task class densities (see the following
two cases). In addition, if tasks in S have implicit deadlines, our derived
speedup bound is also exact since condition (2.14) is an exact schedulablity
test in that case.

Case 1: K ≥ m. We let δ j
k = 1,∀k = j ∧ j ≤ m − 1, δm

k = 1
k−m+1 ,∀k ≥ m, and

δ j
k = 0 for all other cases. Then,

K∑
k=1

max
1≤ j≤m

δ j
k = m.

Case 2: K < m. We let δ j
k = 1,∀k = j∧ k ≤ K, and δ j

k = 0 for all other cases.

Then,
K∑

k=1
max
1≤ j≤m

δ j
k = K.

�

2.5 The MC-IS-Server Policy
In this section, we extend the IS-Server strategy to mixed-criticality
systems; we refer to the extended scheduling policy as MC-IS-Server.
The extension builds upon the theory of the EDF-VD scheduling
policy [BCLS14] which was presented in Section 2.3.3. We first
focus on dual-criticality task sets. We show how to adapt the task
partitioning algorithms of the previous section in order to capture
the special schedulability requirements of mixed-criticality systems and
propose a new heuristic approach, MC-EY-WF (Section 2.5.1). We then
show how MC-IS-Server algorithm is applied to dual-criticality systems
(Section 2.5.2) and how task partitioning and scheduling can be extended
to task sets with K > 2 criticality levels (Section 2.5.3).

34 Chapter 2. Eliminating Inter-Criticality Interference

2.5.1 Task Partitioning to Cores (Dual-Criticality)
The partitioning phase of MC-IS-Server assigns tasks to cores in order
to guarantee schedulability in both LO and HI execution mode (see
Section 2.3.2). Recall that in LO (or M1) execution mode, all tasks τi are
executed according to their LO-level execution time bound Ci(LO) and
need to complete by their deadlines. In HI (or M2) execution mode, only
high-criticality tasks τi ∈ SHI need to complete by their deadlines, when
executed according to their HI-level execution time bound Ci(HI). To
guarantee schedulability, we need to ensure that schedulability conditions
(2.3) and (2.4) of Section 2.3.3 hold for each core. In the following, we
first provide an overview about existing methods for partitioning dual-
criticality task sets to cores, and then we propose partitioning methods
that specifically aim at minimizing the schedulability loss due to the IS
constraint on dual-criticality multicores.

2.5.1.1 Existing approaches

We review existing approaches for partitioned mixed-criticality schedul-
ing on multicore platforms and reason why they may (not) be
applicable to Isolation Scheduling. Kelly et al. [KAZ11] proposed and
compared several bin packing heuristics for assigning mixed-criticality
tasks to multicores. However, their analysis is restricted application
and comparison of fixed-priority scheduling algorithms, making the
approaches of [KAZ11] not applicable to our work. Burns et al. [BFB15]
proposed partitioned scheduling of mixed-criticality tasks using cyclic
executives. In cyclic-executive scheduling, the processor executes a set
of frames. Each frame contains one or more tasks for which a static
schedule has been predetermined. This execution model is restrictive
in the sense that task periods/deadlines have to be multiples of frame
duration. Therefore, mostly equal-period or harmonic-period tasks are
supported. Nonetheless, the approaches presented in [BFB15] are relevant
to our work because the cyclic-executive strategy also enforces the IS
constraint. The authors evaluated three different partitioning schemes:
First-Fit (FF), Worst-Fit (WF), First-Fit with Branch and Bound (FFBB).
The results in [BFB15] show that FF is not a good heuristic for enforcing
Isolation Scheduling. This is because FF fills up one core before moving
on to the next core. This leads to utilization imbalance among the cores,
thus resulting in a high schedulability loss due to the IS constraint. The
performance of WF and FFBB is comparable, with FFBB being marginally
better for high utilizations. We compare our results with the FFBB
scheme in Section 2.6. Gu et al. [GGDY14] proposed a mixed-criticality
partitioning approach called MPVD. In this approach, first all HI criticality
tasks are assigned to cores using WF. Afterwards, virtual deadlines are
assigned to HI criticality tasks based on a per-task deadline shortening
approach, originally proposed by Ekberg and Yi [EY13]. After this phase,

2.5. The MC-IS-Server Policy 35

Variables: x j is the deadline scaling factor for HI tasks on core j

αi, j =

1, if task τi is assigned to core j
0, otherwise

Objective:

min

max
1≤ j≤m

∑
τi∈SHI
αi, j=1

δi(LO)/x j

 + max
1≤ j≤m

∑
τi∈SLO
αi, j=1

δi(LO)

Constraints: ∑
1≤ j≤m

αi, j = 1, ∀τi ∈ {SHI,SLO}

∑
τi∈SHI
αi, j=1

(
δi(HI)

δi(LO) + 1 − x j

)
≤ 1, ∀1 ≤ j ≤ m

Figure 2.5: MIQCP formulation for the partitioning phase of MC-IS-Server.

LO criticality tasks are assigned using FF. Baruah et al. [BCLS14] proposed
partitioned EDF-VD. In partitioned EDF-VD, first HI criticality tasks are
assigned to cores using FF. Any given core is allowed to have a maximum
HI mode utilization of 3/4. After assigning the HI criticality tasks, all
LO criticality tasks are assigned using FF. For both works [GGDY14]
and [BCLS14], the selection of FF makes the partitioning approaches ill-
suited for Isolation Scheduling. In this work, we focus on task partitioning
approaches based on Worst-Fit, since this heuristic provides a good
utilization balance and therefore, it is expected to incur low schedulability
loss due to the IS constraint.

2.5.1.2 Mixed Integer Quadratically Constrained Programming For-
mulation

Figure 2.5 formulates the partitioning phase of MC-IS-Server as a Mixed
Integer Quadratically Constrained Programming (MIQCP) problem.
Similarly to other mixed-criticality scheduling policies (see Section 2.3.3),
in LO execution mode we scale the deadlines of HI criticality tasks
assigned to core j by a factor x j. In our formulation, x j is a variable,
which makes the optimization problem quadratically constrained. The
objective function that we want to minimize is the sum of maximum
densities across all cores, for LO and HI criticality tasks, in LO execution
mode. The selected objective function leads to balanced loads for both
task classes in LO mode. Balancing load is crucial because it minimizes
the schedulability loss due to the IS constraint. Note that in HI mode there

36 Chapter 2. Eliminating Inter-Criticality Interference

is no such schedulability loss, since all LO criticality tasks are suspended.
The constraints of the formulation guarantee that each task is assigned to
exactly one core and that HI mode schedulability, as defined by Eq. (2.4)5,
is satisfied.

While solving the MIQCP problem is computationally expensive, this
phase only needs to run offline. In practice, the time the optimizer takes
to run is reasonable on modern hardware. For instance, 99% of the
evaluated task sets in Section 2.6 were partitioned in less than 100 seconds
on a quad-core Core-i7 Haswell platform. For cases with a very high
number of cores, where the complexity of solving the MIQCP problem
becomes prohibitive, heuristic approaches are proposed in the following
subsections.

2.5.1.3 MC Worst-Fit Decreasing and Worst-Fit Decreasing-Max

We evaluate two heuristic algorithms for partitioning dual-criticality
tasksets to cores, which build upon the algorithms of Section 2.4.1.2.
Details of the Mixed-Critical Worst-Fit Decreasing (MC-WF) are given in
Algorithm 3. We first sort the tasks of each criticality level in descending
order w.r.t. their LO mode density. Following this, the HI criticality
tasks are assigned to cores (lines 7–17). Specifically, we try assigning
a given HI criticality task to each of the m cores. For a given core j,
we compute the maximum value of the deadline shortening factor x∗j
(resulting in minimum increase in LO mode density), such that transition
from LO mode to HI mode is feasible for HI criticality tasks (line 10).
We then compute the LO mode density of all cores (vector l j, line 11),
while considering the newly computed value of x∗j. After trying all cores,
we choose the assignment which yields the lowest mean-squared error
(lines 13–14). The reason for choosing the assignment with the minimum
mean-squared error is that it results in minimal deviation of the LO mode
densities across all cores. In turn, this leads to the best load balancing
across the cores, hence minimizing the schedulability loss due to the IS
constraint. After all HI criticality tasks have been assigned, each LO
criticality task is assigned to the core which has the lowest LO mode
density.

Like in the non mixed-critical case, we also evaluate a Max version of
MC-WF algorithm (MC-WF-Max). In MC-WF-Max, after all HI criticality
tasks are assigned, LO mode densities of all cores are set to the maximum
LO mode density across the multi-core platform.

5Note that we use an adapted version of Eq. (2.4) where task utilizations are replaced
by task densities. This adaptation is done to accommodate mixed-criticality task sets
with constrained deadlines.

2.5. The MC-IS-Server Policy 37

Algorithm 3: Mixed-Critical Worst-Fit Decreasing (MC-WF)
Input: SHI: HI criticality task set, SLO: LO criticality task set
Output: M j: m sets of tasks assigned to individual cores, x j: m deadline

shortening factors for cores

1: for each S ∈ {SHI, SLO} do
2: Sort tasks in descending order w.r.t. LO mode density δi(LO)
3: end for
4: M j← ∅, ∀ 1 ≤ j ≤ m : Set of tasks assigned to core j.
5: density j← 0, ∀1 ≤ j ≤ m: LO mode density of core j.
6: x j← 1, ∀1 ≤ j ≤ m: Common deadline shortening factor for core j.
7: while not all tasks in SHI are assigned do
8: τz← First unassigned task in class SHI

9: for j← 1 to m do

10: x∗j ←max
{
x|

∑
τi∈(M j∪{τz})

δi(HI)
δi(LO) + (1 − x)

≤ 1 ∧ 0 < x ≤ 1
}

11: l j,k←

 ∑
τi∈(M j∪{τz})

δi(LO)

 /x∗j, if k=j

densityk, otherwise
12: end for

13: c← argmin
1≤ j≤m

{
1
m

m∑
k=1

(l j − l j,k)2
}
, where l j =

m∑
k=1

l j,k/m

14: Mc←Mc ∪ {τz}

15: xc← x∗c
16: densityc← lc,c

17: end while
18: while not all tasks in SLO are assigned do
19: τz← First unassigned task in class SLO

20: c← argmin
1≤ j≤m

{density j}

21: Mc←Mc ∪ {τz}

22: densityc← densityc + δz(LO)
23: end while

38 Chapter 2. Eliminating Inter-Criticality Interference

2.5.1.4 Per-Task Deadline Shortening Factor

In the partitioning approaches of the previous section, we considered a
common deadline shortening for all HI criticality tasks executing on a
given core. This is a restrictive assumption and schedulability may be
improved by considering a separate deadline shortening factor for each
task, instead of each core. In this section, we first present a scheme for
assigning per-task deadline shortening factors in dual-criticality systems,
proposed by Ekberg and Yi [EY13]. We refer to this deadline assignment
scheme as EY. We then propose the MC-EY-WF algorithm for partitioning
dual-criticality task sets for the MC-IS-Server policy.

EY Heuristic. EY [EY13] is a heuristic approach for assigning per-task
virtual deadlines to HI criticality tasks in sporadic, constrained-deadline
dual-criticality systems. EY is designed to improve dual-criticality
schedulability on single cores. Its basic principle lies in the construction
of separate task demand bound functions for tasks in LO mode and HI
mode. We use Di(LO) and Di(HI) to denote the LO and HI mode relative
deadlines of task τi. For τi, we use dbfLO(τi, t) and dbfHI(τi, t) to denote the
LO and HI mode demand bound functions, respectively. These functions
are defined as follows:

dbfLO(τi, t) = max
{⌊ t −Di(LO)

Ti

⌋
+ 1, 0

}
· Ci(LO), (2.18)

where Di(LO) = Di if τi ∈ SLO and Di(LO) ≤ Di(HI) = Di if τi ∈ SHI.
For τi ∈ SHI:

dbfHI(τi, t) = full(τi, t) − done(τi, t), (2.19)

where

full(τi, t) = max
{⌊ t − (Di(HI) −Di(LO))

Ti

⌋
+ 1, 0

}
· Ci(HI),

done(τi, t) =

max{Ci(LO) − n if Di(HI) > n ≥ Di(HI) −Di(LO)

+Di(HI) −Di(LO), 0},
0, otherwise

and n = t mod Ti. For τi ∈ SLO: dbfHI(τi, t) = 0, ∀t. For all tasks executing
on a unit-speed core, we have the following schedulability conditions:

∀t ≥ 0 :
∑
τi∈S

dbfLO(τi, t) ≤ t and
∑
τi∈S

dbfHI(τi, t) ≤ t . (2.20)

For a given HI critical task τi ∈ SHI, we can tune Di(LO) to improve
schedulability. Shortening Di(LO) shifts dbfHI to the right. Therefore,
schedulability in HI mode improves. However, shortening Di(LO)
simultaneously shifts dbfLO to the left, making the LO mode difficult

2.5. The MC-IS-Server Policy 39

Algorithm 4: Mixed Critical EY Worst-Fit Decreasing (MC-EY-WF)
Input: SHI: HI criticality taskset. SLO: LO criticality taskset
Output: M j: m sets of tasks assigned to individual cores or FAILURE.

Deadlines of HI criticality tasks are shortened

1: SHI, SLO, M j, density j as defined in Algorithm 3
2: while not all tasks in SHI are assigned do
3: τz← First unassigned task in class SHI

4: candidates← cores sorted in descending order w.r.t LO density
5: for each k in candidates do
6: Apply EY algorithm [EY13] to Mk ∪ {τz}

7: if Mk is schedulable then
8: Mk←Mk ∪ {τz} . Mk has tasks with shortened deadlines
9: update densityk based on new deadlines

10: break
11: end if
12: end for
13: if τz is not assigned to any core then
14: return FAILURE
15: end if
16: end while
17: density j← max

1≤k≤m
{densityk}, ∀ 1 ≤ j ≤ m

18: Assign tasks in SLO according to line 18-23 of Algorithm 3

to schedule. The EY algorithm iteratively reduces by 1 the deadline of the
HI criticality task τi, for which dbfHI(τi, l) - dbfHI(τi, l − 1) is the highest,
where l = min

t
{t|dbfHI(τi, t) > t}. This process of shortening deadlines is

repeated until the HI mode becomes feasible or the LO mode becomes
infeasible. We encourage interested readers to review [EY13] for details
on the EY algorithm.

Mixed-Critical EY Worst Fit (MC-EY-WF). Here, we propose a joint
task partitioning and deadline shortening heuristic. Task partitioning
is based on the Worst-Fit Decreasing heuristic. Deadline shortening for
HI criticality tasks is performed by the EY algorithm. The details of
this joint approach are given in Algorithm 4. Similar to the case for
MC-WF and MC-WF-Max, first tasks are sorted based on their LO mode
density. HI criticality tasks are assigned first. We always try assigning a
HI criticality task to a core with the lowest LO mode density. For each
assignment attempt, we evaluate the shortened LO mode deadlines of all
HI criticality tasks, such that both LO mode and HI mode are schedulable.
To check schedulability on a given core, conditions (2.20) need to be
satisfied for all tasks assigned to that core. If EY cannot find a feasible
deadline assignment, we try assigning the task to the core with the next

40 Chapter 2. Eliminating Inter-Criticality Interference

lowest LO mode density. This process is repeated until we have either
found a feasible assignment or tried all cores without finding a feasible
assignment. In the later case, the task set is deemed unschedulable. After
all HI criticality tasks are assigned, we set the LO mode densities of all
cores to the maximum LO mode density (similar to MC-WF-Max). Finally,
all LO criticality tasks are assigned in a WF fashion.

2.5.2 The MC-IS-Server Algorithm (Dual-Criticality)

After the partitioning of the dual-criticality task set is done, the
hierarchical scheduling of the task classes follows directly the IS-Server
approach of Section 2.4.2. Namely, we consider two global servers:
one for HI criticality tasks (class SHI) and one for LO criticality tasks
(class SLO). When the system is in LO mode, MC-IS-Server schedules
tasks within each global server according to partitioned EDF, using the
shortened deadlines for HI criticality tasks. For the partitioning methods
MIQCP, MC-WF, and MC-WF-Max, the deadlines are down-scaled by
x j on each core j, while for MC-EY-WF, the deadlines are down-scaled
by the respective per-task shortening factors. Upon switch to HI mode,
the MC-IS-Server disables the LO server and it schedules the remaining
HI criticality tasks according to partitioned EDF, using their original
deadlines.

For the selection of the TDMA server schedule parameters, the
task class demand and supply bound functions are computed as in
Section 2.4.2.1, with the difference that for HI criticality tasks, we consider
the shortened deadlines and their LO-level execution times. Derivation of
the maximum TDMA cycle length P and the respective minimum server
slots `k for a feasible MC-IS-Server schedule is performed by applying
Algorithm 2 (see Section 2.4.2.2).

2.5.3 Extension to K > 2 Criticality Levels

The partitioning methods and the selection of the TDMA server schedule
parameters of MC-IS-Server are also extensible to K > 2 criticality levels.
The principal difference to the dual-criticality case lies in the deadline
shortening phase, where multiple deadline shortening factors have to be
assigned to each task which does not belong to the lowest criticality. The
MC-EY-WF heuristic is applicable to K > 2 criticality levels and the details
of this extension are given in [EY13]. The extended algorithm assigns
multiple shortened deadlines to each task, depending on the number of
execution modes in the system. The construction of the MC-IS-Server
schedule follows then trivially from Algorithm 2 (see Section 2.4.2.2).

2.6. Evaluation 41

2.6 Evaluation
In the following, we evaluate the performance of IS-Server (Section 2.4)
and MC-IS-Server (Section 2.5) based on extensive simulations with
synthetic task sets. The task sets are generated based on the randomized
procedure of Section 2.6.1. The proposed policies are compared against
the optimal IS policy IS-DP-Fair and MC-IS-Fluid [HGA+15] in terms of
schedulability in Section 2.6.2 and synchronous switches between task
classes in Section 2.6.3. The evaluation allows a quantification of the
schedulability loss due to (i) the IS constraint, (ii) increasing number of
processing cores, (iii) increasing number of task classes or criticalities,
and (iv) the static task partitioning to cores. Finally, Section 2.6.4 presents
an extensive qualitative and quantitative comparison among (to the best
of our knowledge) all scheduling policies that have been proposed in
mixed-criticality literature and fit in the IS model. MC-IS-Server is
shown to outperform or follow closely state-of-the-art policies in terms
of schedulability.

2.6.1 Random Task Set Generation
For the experiments, we synthetically generate periodic implicit-deadline
task sets at different system utilization points. For basic (non mixed-
criticality) IS task classes, we generate tasks in the following manner:

• Periods are randomly chosen from {x ∈ Z | 2 ≤ x ≤ 2000}, with the
exception of task sets with harmonic periods (Section 2.6.4), where
periods are randomly chosen from {100, 200, 400, 800}, and task sets
with equal periods, where periods are always equal to 1000.

• Task utilizations (densities) are uniformly chosen from [0.01, 0.2].

• Tasks are equally likely to belong to task class {S1, · · · ,SK}.

• The number of task classes K varies in {2, 4, 5, 6}.

For dual-criticality task sets, we implement a widely used task set
generator [BBD+12, GSHT13, LPG+14] with the following parameters:

• Probability of any task being HI criticality is 0.4 unless otherwise
stated.

• The ratio r = Ci(HI)/Ci(LO) is chosen uniformly from [1, 5] for each
HI criticality task.

• Periods and LO level utilizations for dual-criticality task sets are
generated in the same way as for non mixed-critical task sets.

42 Chapter 2. Eliminating Inter-Criticality Interference

ææææææææææææææææææææææææææææææææææææææ

æ

æ

ààààààààààààààààààààààààààààààà
àà

à

à

à

à

à

àà

ììììììììììììììììììììììììììì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ììì

òòòòòòòòòòòòòòòò
òòòò

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò

ò
òòòòòò

æ K=2

à K=4

ì
K=5

ò K=6

DP-Fair

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(a) IS-Server (WF-Max), 4 cores.

ææ

æ

æ

æ

æ

àà
à
àà

à

à

à

à

à

à

à

à
ààà

ìì
ììì

ì
ìì

ì

ì
ì
ì

ì
ì

ìì

ìì

ì

ì

ì

ì
ì
ì
ìììììììì

òòòòòòòòòòòòòòòòòò
òò

òòò

òòò
ò

òò

ò
ò

ò

ò
ò

ò
ò
ò
ò

ò
ò
ò

òò
ò
ò
ò

ò
ò
ò
ò
òò

òòòòòòòòòòòòòòòòòòòòòòòòòòòò

æ K=2

à K=4

ì
K=5

ò K=6

DP-Fair

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(b) IS-Server (WF-Max), 8 cores.

Figure 2.6: Isolation Scheduling: Impact of number of classes on schedulability.

• The utilization (density) of any dual-criticality task set is defined as:

U := max
{
ULO

HI + ULO
LO,U

HI
HI

}
,

where Uχ2
χ1

denotes the utilization of task class Sχ1 with low (χ2 = LO)
or high (χ2 = HI) execution time bounds.

For all task sets, we perform experiments with system utilizations
varying in the interval [0.1, 4] (4 cores) or [0.1, 8] (8 cores). Utilization
is incremented in steps of 0.1, and for each utilization point we generate
500 task sets.

2.6.2 Schedulability
We intend to evaluate the ability to find schedulable solutions with
the IS-Server and MC-IS-Server approaches for multi-class and mixed-
criticality task sets. As reference, we consider the state-of-the-art
fluid-based policies IS-DP-Fair (optimal in terms of schedulability for
periodic implicit-deadline task sets under the IS constraint) and MC-
IS-Fluid [HGA+15] as well as DP-Fair [LFS+10] and partitioned EDF-
VD [BCLS14], which are not designed for Isolation Scheduling. We show
that the schedulability loss due to the IS constraint can be negligible, but
increases with increasing number of classes and cores. Additionally, we
show that IS-Server can perform very closely to the optimal IS-DP-Fair
depending on the task partitioning method.

2.6.2.1 Isolation Scheduling

Impact of Number of Classes. First, we evaluate the schedulability loss
caused by enforcing the IS constraint. For this purpose, we generate
500 task sets for each system utilization and compute the fraction of
task sets that are schedulable under the IS-Server approach (WF-Max

2.6. Evaluation 43

æææææææææææææææææææææææææææææææææææ
æ

æ

æ

æ

æ

ààààààààààààààààààààààààààààààà
àà

à

à

à

à

à

àà

ììììììììììììììììììììììììììììììì
ìì

ì

ì

ì

ì

ì

ìì

æ IS-DP-Fair

à IS-Server-MILP

ì
IS-Server-WF-Max

DP-Fair

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(a) K = 4 classes, 4 cores.

ææ
æææ

æ

æ

æ

æ

æ

ààà
à
à
à

à

à

à

à

à

à

àà

ìì
ì
ìì

ì

ì

ì

ì

ì

ì

ì

ì
ììì

æ IS-DP-Fair

à IS-Server-MILP

ì
IS-Server-WF-Max

DP-Fair

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(b) K = 4 classes, 8 cores.

Figure 2.7: Impact of IS constraint: Comparison of DP-Fair, IS-DP-Fair, IS-Server
(with MILP or WF-Max task partitioning).

partitioning6) on m = 4 and m = 8 cores. The results are depicted in
Figure 2.6(a) (4 cores) and Figure 2.6(b) (8 cores). For both configurations,
the acceptance ratio by IS-Server decreases as the number of classes
increases (for K > 2). This result matches with the theoretical analysis.
According to Theorem 2.3, with increasing number of classes or cores,
the speedup bound of IS-Server to preserve schedulability under the IS
constraint increases, resulting in decreased schedulability.

Comparison of DP-Fair, IS-DP-Fair, IS-Server. Second, we compare
schedulability under four different approaches: DP-Fair (optimal multi-
core scheduling), IS-DP-Fair (optimal multi-core IS policy) and IS-Server,
with the task partitioning in the last case being based on either the MILP
formulation or the WF-Max heuristic. For brevity, we consider the case
with K = 4 task classes, for which the results are presented in Figure 2.7(a)
(4 cores) and Figure 2.7(b) (8 cores). For IS-Server, the WF-Max heuristic
for task partitioning seems to work very efficiently, given the almost
identical effect on schedulability compared to the MILP optimization
formulation. The difference in schedulability between IS-DP-Fair and
IS-Server (MILP) reaches up to 61.6% for 4 cores (at U = 3.9) and 69.2%
for 8 cores (at U = 7.9) when the system is almost fully utilized. We
attribute this difference mainly to the static task partitioning and the
static time-triggered server scheduling of IS-Server. In practice, this cost
in schedulability for IS-Server can be compensated by significantly less
synchronous switches between task classes and zero task migrations, as
opposed to IS-DP-Fair. A comparison based on this criterion is presented
later. Additionally, we observe that the maximal deviation between IS-
DP-Fair and IS-Server is reduced as the number of task classes, resp. cores,
increases, dropping to 21.8% (4 cores) and only 3.6% (8 cores), for 6 classes.

6We consider WF-Max partitioning because here, it provides the highest
schedulability among the proposed heuristic approaches in Section 2.4.1.

44 Chapter 2. Eliminating Inter-Criticality Interference

æææææææææææææææææ

æææ
æ

æ
æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææ

ààààààààààààààààààà
àà

àà

àà

à
à

à
à

à

à

à

à

à

à

à

à

ààà

ììììììììììììììììììì
ìì

ìì
ìì

ì
ì

ìì

ì

ì

ì

ì

ì

ì

ì

ì

ììì

ò ò
ò

ò

ò
ò

ò ò

ò
ò

ò
ò

ò

ò

ò

ò

ò

ò

ò ò ò

æ MC-IS-Server-WF

à MC-IS-Server-WF-Max

ì
MC-IS-Server-EY-WF

ò MC-IS-Server-MIQCP

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(a) MC-IS-Server with WF, WF-Max, EY-
WF, MIQCP task partitioning, 4 cores.

æææææææææææææææææææææ
æ

æ
ææ

ææ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æææ

ààààààààààààààààààà
àà

àà
àà

à
à

àà

à

à

à

à

à

à

à

à

ààà

ìììììììììììììììììììììììììì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ìì

æ MC-IS-Fluid

à MC-IS-Server-EY-WF

ì
Partitioned EDF-VD

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(b) MC-IS-Fluid, MC-IS-Server (EY-WF)
and partitioned EDF-VD, 4 cores.

ææææææææææææææææææææææææææææ

æææ
ææ

ææ

ææ
æ

æ

æ

æ
æ

æ
æ
æ

æ
ææ

æ

æææ

æ

æ

ææ

ææ
æ

ææ

æ

æææ
æ
æ
ææææ

æææææææææ

àààààààààààààààààààààààààààà
à
àààààà

ààààà
à
àà

à

à
à
à
à

à
à
àà

à

à

à
à

àà

à

à
à

à

àà

à

à
à

à
à
à
à
ààààààààà

ìììììììììììììììììììììììììììì
ììììììì

ììììì
ì
ìì

ì
ì
ììì

ì
ì
ìì

ì

ì

ì
ì

ì
ì

ì

ì
ì

ì

ì
ì
ì

ì
ì

ì

ì
ì
ì
ì
ì
ììììììì

æ MC-IS-Server-WF

à MC-IS-Server-WF-Max

ì
MC-IS-Server-EY-WF

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(c) MC-IS-Server with WF, WF-Max, EY-
WF task partitioning, 8 cores.

ææææææææææææææææææææææææææææ
æ
ææææææ

æææææ

æ
ææ

æ
æ
æ
æ
æ

æ

æææ

æ

æ

æ
æ

ææ

æ

æ
æ

æ

æ

æ

æ
æ
æ

æ

æ
æ
ææææææææææ

àààààààààààààààààààààààààààà
ààààààà

ààààà
à
àà

à
à
ààà

à
à
àà

à

à

à
à

à
à

à

à
à

à

à
à
à

à
à

à

à
à
à
à
à
ààààààà

ììì
ìì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ìì

ì
ììììììììì

æ MC-IS-Fluid

à MC-IS-Server-EY-WF

ì
Partitioned EDF-VD

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(d) MC-IS-Fluid, MC-IS-Server (EY-WF)
and partitioned EDF-VD, 8 cores.

Figure 2.8: Impact of IS constraint in mixed-criticality systems: Comparison
of MC-IS-Server (different partitioning approaches), MC-IS-Fluid, partitioned
EDF-VD.

This implies a weaker impact of the number of classes on schedulability
for IS-Server as compared to IS-DP-Fair.

2.6.2.2 Mixed-Criticality Isolation Scheduling

Comparison of partitioning policies for MC-IS-Server. MC-IS-Server
has great practical potential due to its predictable and low-overhead time-
triggered implementation. On the other hand, offline task partitioning can
play a significant role in schedulability. Although several task partitioning
approaches have been proposed in mixed-criticality literature, so far
a quantitative comparison among them has not been available in the
context of Isolation Scheduling. For this purpose, we compare the
MIQCP formulation (Section 2.5.1.2), the heuristics MC-WF, MC-WF-
Max (Section 2.5.1.3) and MC-EY-WF (Section 2.5.1.4) w.r.t. their effect
on dual-criticality schedulability.

The results are presented in Figure 2.8(a) (4 cores) and Figure 2.8(c)
(8 cores), and show MC-EY-WF outperforming the other partitioning

2.6. Evaluation 45

MC-WF MC-WF-Max MC-EY-WF
4 cores 2969 4741 2387
8 cores 5928 11389 4980

Table 2.1: Number of task sets (out of 20,000 in total) that are deemed
unschedulable during the partitioning phase of MC-IS-Server.

methods, closely followed by MIQCP and MC-WF-Max. MC-EY-WF
enables maximal schedulability due to its freedom to select individual
deadline shortening factors per task, which allows it to perform even
better than the MIQCP approach (which still adopts a deadline shortening
factor per core). The MC-WF-Max heuristic proves to be a good candidate
for partitioning, mainly due to two key characteristics: (i) MC-WF-Max is
the most effective method in identifying unschedulable task sets already
from the partitioning phase. For the quad-core system (see Table 2.1),
it deems 1.6x more task sets unschedulable compared to MC-WF and
approximately 2x more compared to MC-EY-WF. For the octa-core system,
it deems 1.9x more task sets unschedulable compared to MC-WF and 2.3x
more compared to MC-EY-WF. This is attributed to its greedy behavior
w.r.t. load balancing among cores and criticality levels, and it enables an
early identification of unschedulable task sets; (ii) MC-WF-Max leads to
server schedules with greater cycle lengths (on average, greater by 0.85%
compared to MC-WF and MC-EY-WF, for 4 cores and 1% for 8 cores). This
results in less frequent class switches and lower runtime overhead.

In summary, empirical evaluation shows consistently that the best
partitioning methods are MILP and MC-WF-Max for IS-Server and MC-
EY-WF for dual-criticality scheduling (MC-IS-Server). We consider this
outcome important, since these methods can be applied offline to any
partitioned IS policy. Given their tendency to distribute fairly the
workload among task classes and cores, they are expected to perform
well also for other hierarchical server scheduling policies that are not
based on TDMA/EDF.

Comparison of MC-IS-Fluid, MC-IS-Server, Partitioned EDF-VD. To
evaluate further the effect of the IS constraint on dual-criticality systems,
we compare the MC-IS-Server approach (MC-EY-WF partitioning) to
two state-of-the-art scheduling techniques: MC-IS-Fluid [HGA+15]
and partitioned EDF-VD [BCLS14] (with the MC-PARTITION-UT-1
partitioning algorithm). The schedulability results are depicted in
Figure 2.8(b) (4 cores) and Figure 2.8(d) (8 cores), respectively. Note
that the schedulability of MC-IS-Fluid and MC-IS-Server is very close
to partitioned EDF-VD for all utilizations in the case of 4 cores. For
8 cores, partitioned EDF-VD performs better for utilizations between 4
(50%) and 6 (75%) and similar to MC-IS-Server otherwise. We conclude
that for dual-criticality systems the cost of enforcing the IS constraint
is relatively low (though expected to rise for increasing number of

46 Chapter 2. Eliminating Inter-Criticality Interference

 MC-IS-Server

MC-IS-Fluid

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

0

100000

200000

300000

400000

U

#
C
la
ss
S
w
it
ch

Figure 2.9: Distribution of task class switches for MC-IS-Server and MC-IS-Fluid
for increasing system utilization (box-whisker-plot).

criticality levels). Additionally, MC-IS-Server incurs an almost negligible
loss in schedulability compared to MC-IS-Fluid. We attribute the good
performance of MC-IS-Server to the MC-EY-WF partitioning method,
which allows individual deadline shortening factors per task, as opposed
to MC-IS-Fluid, where a common factor for all tasks is applied. This
result is encouraging given the applicability of MC-IS-Server to real-world
systems, which does not need to come at the cost of schedulability.

2.6.3 Runtime Overhead

Conceptually, the advantage of adopting MC-IS-Server over a fluid
approach for Isolation Scheduling, such as MC-IS-Fluid, lies in the
reduced number of synchronous task class switches, which can cause
a significant runtime overhead. Additionally, MC-IS-Server requires no
task migrations, since tasks are statically partitioned to cores. We quantify
the advantage of reduced task class switches in a dual-criticality quad-
core setting in the following.

Specifically, we compare the required number of synchronous switches
between two criticality levels for MC-IS-Server and MC-IS-Fluid. To this
end, we consider a fixed, sufficiently large time interval Π = 2 × 106

time units. The number of class switches within Π for the various
task sets is presented for MC-IS-Server (MIQCP partitioning) and MC-
IS-Fluid in Figure 2.9. Data in these plots are represented in the form
of a box-whisker-plot to reveal the distribution of class switches for the
500 considered task sets at each utilization point (median, minimum,
maximum). To enhance readability, only the points that lie within the
inner fence of the distribution are shown. Also, we consider utilizations
up to U = 3, since beyond it a significant amount of task sets are
not schedulable. The results confirm the significant reduction of class
switches by the MC-IS-Server approach. Given the median of class
switches across all utilizations, MC-IS-Server achieves a 2.4 to 4.4-fold
reduction in synchronous class switches compared to MC-IS-Fluid.

2.6. Evaluation 47

2.6.4 Comparison to State-of-the-art Mixed-criticality Iso-
lation Scheduling

While we are the first to formalize the Isolation Scheduling model,
existing works have also advocated the need for separation in multi-
core environments and have proposed scheduling policies that comply
with the IS model. In the following, we conduct a thorough comparison
among those policies and the MC-IS-Server presented in this chapter. To
the best of our knowledge, the currently existing Isolation Scheduling-
compliant policies (besides the already mentioned MC-IS-Fluid) are the
following:

• Flexible Time-Triggered scheduling with Synchronization points
(FTTS, presented in Chapter 3), a partitioned time-triggered
scheduling policy with globally synchronized time frames across
all cores. Within each frame, tasks are executed in different,
dynamically dimensioned sub-frames, such that only tasks of the
same criticality run in parallel. Task partitioning and scheduling
is based on a simulated-annealing heuristic approach. FTTS can be
applied to task sets with arbitrary periods, however it performs best
for equal or harmonic periods (see Section 3.8).

• Partitioned Cyclic Executive scheduling (CE-Partitioned) [BFB15],
a cyclic-executive policy, where in each (major) time frame, tasks
are distributed to (minor) frames depending on their criticality. The
dimensions of the major and minor frames are fixed, as well as the
partitioning of tasks to cores. A comparative study in [BFB15] shows
that the best heuristic approach for task partitioning is first-fit with
a branch-and-bound implementation (FFBB). CE-Partitioned can be
applied to task sets with equal or harmonic periods. The methods
of [BFB15] are directly applicable only to equal-period task sets.

• Global Cyclic Executive scheduling (CE-Global) [BB14], a global
cyclic executive policy, similar to CE-Partitioned, yet without the
limitation of fixed partitioning of tasks to cores. LO-criticality
tasks are allowed to start executing once all HI-criticality tasks have
finished execution. The schedulability test is based on a network
flow criterion (Theorem 1, [BB14]), which can be validated in
polynomial time by applying the Ford-Fulkerson algorithm [FF56].
This policy is applicable only to equal-period task sets.

In the following, we consider dual-criticality systems with harmonic or
equal periods to enable a comparison between MC-IS-Server and the
state-of-the-art IS approaches. To evaluate schedulability under FTTS,
the FTTS framework (see Chapter 3) with the integrated partitioning and
scheduling optimizer was used. For CE-Partitioned, we implemented
FFBB for task partitioning and tested schedulability based on condition

48 Chapter 2. Eliminating Inter-Criticality Interference

ææææææææææææææææææææææææææææææææææææ

æ

æ

æ

æ

àààààààààààààààààààààààààààààààààààà
à

à

à

à

ììììììììììììììììììì
ìì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ììììììì

æ MC-IS-Fluid

à MC-IS-Server-EY-WF

ì
FTTS

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(a) MC-IS-Fluid, MC-IS-Server, FTTS, harmonic periods.

æææææææææææææææææææææææææææææææææææææ

æ

æ

æ

àààààààààààààààààààààààààààààààààààà
à

à

à

à

ììììììììììììììììììììììììììììììììììììì

ì

ì

ì

òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò

ò

ò

ò

ôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô

ô

ô

ô

æ MC-IS-Fluid

à MC-IS-Server-EY-WF

ì
FTTS

ò Burns-Partitioned-FFBB

ô Burns-Global

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Utilization

A
c
c
e
p

ta
n

c
e

R
a
ti

o

(b) MC-IS-Fluid, MC-IS-Server, FTTS, CE-Partitioned, CE-
Global, equal periods.

Figure 2.10: Comparison of MC-IS-Server to state-of-the-art IS policies (4 cores).

(6) of [BFB15]. For CE-Global, we constructed digraphs for each task set,
as presented in [BB14], and used a Java implementation [SW07] of the
Ford-Fulkerson algorithm to test the condition of Theorem 1 in [BB14].

Task Sets with Harmonic Periods. Here, the generated task sets have
harmonic periods, randomly selected from set {100, 200, 400, 800}. The
schedulability results for policies MC-IS-Server (MC-EY-WF), MC-IS-
Fluid and FTTS are depicted in Figure 2.10(a). FTTS follows similar
schedulability trends as in the experiments of Section 3.8 and is clearly
dominated by MC-IS-Server and MC-IS-Fluid, which perform almost
identically in this case. The difference in acceptance ratio between
FTTS and the two IS policies reaches up to 100% for utilizations above

2.7. Summary 49

3.2. This significant schedulability loss can be explained as follows:
(i) FTTS is a static, non-preemptive policy with fixed-size time frames.
This is a limitation compared to the other two policies, which support
preemptive scheduling. (ii) FTTS does not permit task migrations, which
limits its schedulability compared to global policies such as MC-IS-Fluid.
This experiment indicates a very good performance of MC-IS-Server
with MC-EY-WF partitioning in the case of harmonic periods, since the
schedulability gap to MC-IS-Fluid is indeed negligible.

Task Sets with Equal Periods. In the last experiment, the generated task
sets have equal periods. The schedulability results for MC-IS-Server (MC-
EY-WF), MC-IS-Fluid, FTTS, as well as the partitioned and global cyclic-
executive policies are shown in Figure 2.10(b). As expected, schedulability
under all policies is at its highest, with the first unschedulable task
sets appearing only for system utilization above 3.5. That is because
several factors that limit schedulability, e.g., no support for preemptions
or migrations (FTTS, CE-Partitioned), fixed-length time frames (CE-
Partitioned, MC-IS-Server), do not have an impact on equal-period task
sets7. It is interesting to note that the two global IS policies, i.e., MC-IS-
Fluid and CE-Global, perform identically for the special case of equal
periods. Moreover, FTTS and CE-Partitioned perform very closely.
Their schedulability conditions are indeed equivalent, with their only
difference lying in the task partitioning method (simulated annealing
versus FFBB heuristic). Based on the results, FFBB outperforms the
simulated annealing approach at utilization points 3.8 and 3.9. Finally,
MC-IS-Server follows closely the above policies. The schedulability loss
compared to FTTS and CE-Partitioned could be possibly attributed to the
pessimism of the schedulability analysis (Section 2.4.2.1).

Summarizing the results for harmonic and equal-period task sets,
MC-IS-Fluid and CE-Global are the dominant policies in terms of
schedulability among the state-of-the-art IS policies. As opposed to CE-
Global, MC-IS-Fluid enforces no limitations to the task periods. MC-IS-
Server performs very closely to MC-IS-Fluid, and better or close to other
IS policies. This is a promising result for its future applicability in mixed-
criticality industrial settings, where the case of task sets with harmonic
periods is common.

2.7 Summary
In this chapter, we formalized the Isolation Scheduling (IS) model, a
flexible abstraction for safety-critical real-time scheduling on resource-
sharing multicores. The model is based on the common requirement
for separation and enables interference-free scheduling of different task

7Notice e.g., the improvement in FTTS schedulability compared to the harmonic case.

50 Chapter 2. Eliminating Inter-Criticality Interference

classes, by enforcing the IS constraint: at any time, only one task class
can run exclusively on the platform. We presented two IS-compliant
scheduling policies, which support arbitrary number of task classes: IS-
Server is based on hierarchical server scheduling, provides a practical
approach towards implementing IS systems with low runtime overhead,
yet satisfying schedulability; MC-IS-Server is an extension of IS-Server
applicable to mixed-criticality systems.

Extensive simulations indicated that enforcing the IS constraint incurs
low schedulability loss, which however tends to increase with increasing
number of task classes, resp. criticality levels, and number of cores.
Exploration of several task partitioning methods for the IS-Server and
MC-IS-Server approaches revealed effective techniques, which can lead to
comparable schedulability between server-based scheduling and optimal
IS fluid-based scheduling approaches. Moreover, a comparative study
among IS-compliant mixed-criticality scheduling policies validated the
good performance of MC-IS-Server in the special cases of harmonic
or equal-period task sets, for which it can outperform state-of-the-art
partitioned approaches. Additionally, compared to existing approaches,
MC-IS-Server enjoys wider applicability to task sets with multiple
criticality levels, without posing limitations on the task periods. Based
on the results, (MC-)IS-Server provides a viable solution to implementing
IS-compliant systems with satisfying schedulability and reduced runtime
overheads for synchronous inter-class switches and task migrations.

3
Bounding Intra-Criticality

Interference

The designers of safety-critical systems are facing an increasing
pressure for migrating from single-core to multi-core platforms for
size, performance and cost purposes. However, scheduling mixed-
criticality applications on existing multicores and providing safe worst-
case response time bounds for the real-time applications is challenging
given their timing interference on shared platform resources. The
Isolation Scheduling model that was introduced in the previous chapter
addresses this challenge by eliminating inter-criticality interference by
construction. In this chapter, we focus on methods for bounding the
intra-criticality interference.

For this, we introduce a combined analysis of computing, memory and
communication scheduling. Our analysis targets cluster-based many-core
systems with two shared resource classes, i.e., a shared memory within
each cluster and a network-on-chip for inter-cluster communication and
access to external memories. For such architectures, we propose: (1)
An IS-compliant mixed-criticality scheduling policy based on a flexible
time-triggered criticality-monotonic scheme. Tasks of the same criticality
level are scheduled in a partitioned, non-preemptive fashion to reduce the
complexity of interference analysis; (2) A response time analysis for the
proposed scheduling policy, which takes into account the interferences
from the two classes of shared resources; and (3) A design exploration
framework and algorithms for optimizing the resource utilizations under
mixed-criticality timing constraints. The applicability of the approach
is demonstrated with a real-world avionics application. Its efficiency
in finding schedulable solutions is evaluated through simulations with

52 Chapter 3. Bounding Intra-Criticality Interference

synthetic task sets and compared against state-of-the-art mixed-criticality
scheduling policies.

3.1 Introduction
Following the prevalence of multi-core systems in the electronics market,
the field of embedded systems has experienced an unprecedented
trend towards integrating multiple applications in a single platform.
Migration to multicores is envisioned even in safety-critical domains,
such as avionics and automotive. Applications in these domains are
usually characterized by criticality levels, known as Safety Integrity
Levels [iso11] or Design Assurance Levels [RTC12], which express the
required protection against failure. For the integration of mixed-criticality
applications in a common platform, many scheduling approaches have
been proposed. However, most of them do not explicitly address
the timing effects of resource sharing. Moreover, existing industrial
certification standards require temporal isolation among applications
of different criticality levels. For single-core systems, designers
rely mainly on operating system and hardware-level partitioning
mechanisms [ARI03]. For multi-core systems, there is currently no widely
accepted solution on how isolation can be achieved in the presence of
shared platform resources.

The Isolation Scheduling model that was introduced in the previous
chapter allows to exploit task parallelism and resource sharing in a way
that eliminates inter-criticality interference by construction. However,
it does not solve the problem of bounding the timing effects of intra-
criticality interference. This problem can become intractable even for
scheduling policies like IS-Server, since micro-architectural features, such
as the resource arbitration policy, the access overheads, the memory sub-
system organisation, need to be known and accounted for under all
interference scenarios. The fact that IS-Server supports dynamic task
preemptions makes the problem of bounding delays due to resource
contention even more challenging, since all preemption points need to
be considered as well as the timing effects of preemptions, e.g., overhead
for context switching and mutual eviction of cache lines from tasks
running on the same core that leads to increased cache misses. To reduce
the complexity of intra-criticality interference analysis, we introduce in
this chapter a new IS-compliant policy with restricted support for task
preemptions. Timing isolation on core level is achieved through time-
triggered scheduling and on global level (shared resources) through
dynamic inter-core synchronization with a barrier mechanism. The points
of inter-core synchronization are defined by the scheduling strategy and
vary in runtime to reflect the dynamic behavior of the applications and
enable efficient resource utilization.

3.1. Introduction 53

The scheduling policy targets cluster-based many-core platforms, such
as the Kalray MPPA-256 [dDAB+13] and the STHorm/P2012 [MBF+12].
In such architectures, a cluster consists of several cores with a local
shared memory and a private address space, while clusters are connected
by specialized networks-on-chip (NoC). Tasks can be delayed when
accessing local cluster shared resources not only because of concurrently
executing tasks in the same cluster, but also because of data being
received/sent from/to other clusters. Typically, the data arriving from
other clusters are written to the local cluster memory with the highest
priority, thus introducing timing delays to all tasks that try to access the
local memory at the same time. Currently, no mixed-criticality scheduling
and analysis methods exist that address such interference effects that
are present in modern cluster-based architectures. This chapter extends
the state-of-the-art by proposing a combined computation, memory
and communication analysis and optimization framework for mixed-
criticality systems deployed on cluster-based platforms.

Contributions. The main contributions of the chapter can be summarized
as follows:

• We introduce an architecture abstraction for cluster-based many-
cores with shared computing (processing cores), storage (local
cluster memory, external DDR memory) and communication (NoC)
resources.

• We propose an IS-compliant mixed-criticality multi-core scheduling
policy. This follows a flexible time-triggered and criticality-
monotonic scheme, which allows interference on the shared
communication and storage infrastructure only among applications
with the same criticality level within each cluster.

• We present a worst-case response time (WCRT) analysis for the
scheduling policy which accounts for the blocking delays due to
contention on the shared memory of a cluster and due to NoC
data transfers. We assume that NoC flows are statically routed and
regulated at the source node [LMJ+09]. The NoC is modelled and
analyzed using network and real-time calculus [LBT01, TCN00].

• We propose a heuristic approach for finding an optimized mapping
of mixed-criticality task sets to the cores of a cluster. It accounts for
the interferences on the shared cluster memory due to concurrently
executed tasks and inter-cluster NoC communication.

• We propose a heuristic approach for finding an optimized
partitioning of task data to the memory banks of a cluster. It also
accounts for the interferences on the shared memory banks.

54 Chapter 3. Bounding Intra-Criticality Interference

• We combine the two inter-dependent heuristic approaches to find
optimized mappings of tasks to cores and data to memory banks
such that the workload distribution is balanced among cores and
interference effects are minimized within a cluster.

• We demonstrate the applicability and efficiency of the design
optimization approaches as well as the effect of memory sharing
and inter-cluster communication on mixed-criticality schedulability
using a real-world avionics application.

• We, also, compare the efficiency of the proposed scheduling policy
against state-of-the-art policies based on simulations with synthetic
task sets. The proposed policy is shown to outperform existing
policies for harmonic workloads.

Outline. The chapter is organised as follows. Section 3.2 provides an
overview of recent publications concerning mixed-criticality scheduling
and resource interference analysis. Section 3.3 introduces the considered
mixed-criticality task model and the many-core architecture abstraction.
Section 3.4 describes the flexible time-triggered scheduling policy (FTTS)
for mixed-criticality systems. Section 3.5 presents a method for worst-
case response time analysis under FTTS, which considers explicitly the
delays that each task suffers due to contention on the shared memory
path by concurrently executed tasks within a cluster and by incoming
NoC traffic. Section 3.6 suggests heuristic optimization approaches for (i)
mapping tasks to the cores of a cluster, (ii) mapping data to memory banks,
and (iii) an integrated approach for solving these two inter-dependent
problems. In Section 3.7 we apply the developed optimization methods
to a real-world case study and in Section 3.8 we compare the FTTS with
other state-of-the-art mixed-criticality scheduling policies. Section 3.9
summarizes the main results of the chapter.

Note that to facilitate reading, a summary of the most important
notations is presented in Table 3.1, while Figure 3.11 presents an overview
of the design optimization flow and how the results of the individual
sections are integrated into it.

3.2 Related Work

Mixed-Criticality Scheduling. Scheduling of mixed-criticality appli-
cations is a research field that has been attracting increasing attention
in recent years. After the original work of Vestal [Ves07], which
introduced the currently dominating mixed-criticality task model, several
scheduling policies were proposed for both single-core and multi-core
systems, e.g., [BLS10, BBD+12, BF11, BCLS14, Pat12]. For an up-to-date

3.2. Related Work 55

compilation and review of these policies, we refer the interested reader
to the study of Burns and Davis [BD16].

Among the policies for multicores, we highlight the ones that
were designed for temporal isolation among criticality levels, which
is a common requirement of certification authorities. Anderson et al.
proposed scheduling mixed-criticality tasks on multicores, by adopting
different strategies for different criticality levels and utilizing a bandwidth
reservation server for temporal isolation [ABB09, MEA+10]. Tamas-
Selicean and Pop presented an optimization method for task partitioning
and time-triggered scheduling on multicores [TSP11], complying with
the ARINC-653 standard [ARI03], the objective being the minimization
of the certification cost. These works along with most existing multi-core
scheduling policies, however, did not address explicitly the interference
when tasks access synchronously shared platform resources and its
effect on schedulability. We claim that this can be dangerous since
Pellizzoni et al. have shown empirically that traffic (from peripheral
devices) on the memory bus in commercial-off-the-shelf systems can
increase the response time of a real-time task up to 44% [PBCS08],
while Kim et al. empirically observed a 12x increase in the response
time of a PARSEC benchmark when the benchmark was executed in
parallel to memory-intensive tasks on a quad-core Intel Core i7 with
a shared DRAM [KdNA+14]. Also, in Section 3.7, we show that
platform parameters, such as the memory or NoC latency or the internal
memory organisation, have a significant effect on the schedulability
of mixed-criticality task sets. Note that [TSP11] considers inter-task
communication via message passing, but the message transmission occurs
asynchronously over a broadcast time-triggered bus such that no task’s
execution is blocked. This requires that no shared memory exists and that
the bus schedule can be manually configured, assumptions which do not
necessarily hold on commercial platforms.

The proposed scheduling policy in this chapter considers explicitly
the timing effects of resource interference. Isolation among tasks with
different criticality is achieved despite resource sharing and without
need for hardware support, by enforcing the IS constraint. We present
response time analysis and design optimization methods for cluster-
based architectures where a task can experience interference from tasks
executing concurrently in the same cluster, but also from inter-cluster
NoC flows of data read/written from/to the cluster. For the analysis and
design optimization, we use realistic models for resource (memory, NoC)
arbitration based on the Kalray MPPA-256 architecture and compute real-
time properties of the NoC flows such as delay and burst characteristics
using network calculus.

Mixed-Criticality Resource Sharing. Recent works target at bounding
the delay that high-criticality tasks suffer due to contention on shared

56 Chapter 3. Bounding Intra-Criticality Interference

resources, while assuming partitioned task scheduling under traditional
(single-criticality) policies, e.g., fixed priority. These methods differ from
our policy in nature, since they accept interference among tasks with
different criticality levels as long as it is bounded. For our IS-compliant
scheduling policy, the delay imposed to high-criticality tasks by lower-
criticality ones is invariably zero.

Existing methods for bounded interference on the shared memory
have been already documented in Section 2.2. With regards to the NoC
infrastructure, Tobuschat et al. [TAED13] implemented virtualization
and monitoring mechanisms to provide independence among flows of
different criticality. Particularly, using back suction [DE10], they targeted
at maximizing the allocated bandwidth for lower criticality flows, while
providing guaranteed service to the higher criticality flows. In our work,
we assume real-time guarantees for all NoC flows. However, our work
can be also combined with mixed-criticality NoC guarantees, as in the
work of Tobuschat et al. [TAED13].
Data Partitioning. In this chapter, we also address the problem of
mapping task data to the banks of a shared memory in order to optimize
the memory utilization and minimize the interference among tasks
of the same criticality. In the same line, Kim et al. [KLSP10] and
Mi et al. [MFXJ10] proposed heuristics for mapping data of different
application threads to DRAM banks to reduce the average thread
execution times. Contrary to our work, these methods do not provide
any real-time guarantees. Liu et al. implemented in [LCX+12] a bank
partitioning mechanism by modifying the memory management of the
operating system to adopt a custom page-coloring algorithm for the
data allocation to banks, the objective being throughput maximization.
Closer to our objective lies the work of Yun et al. [YMWP14], where the
authors implemented a DRAM bank-aware memory allocator, using the
page-based virtual memory system of the operating system to allocate
memory pages of different applications/cores to private banks. The
target is performance isolation in real-time systems, since partitioning
DRAM banks among cores eliminates bank conflicts. In our work, we
assume that bank sharing is inevitable, since tasks share access to buffers
for communication purposes. We try to minimize the bank conflicts,
though, through a combination of task scheduling and data mapping
optimization. Note, that mechanisms like in [LCX+12, YMWP14] can
be used to implement the memory mapping decisions of our design
optimization method. Finally, the works of Reineke et al. [RLP+11]
and Wu et al. [WKP13] rely on DRAM controllers to implement bank
privatization schemes, where each core accesses its own banks. Similar to
the work of Yun et al. [YMWP14], such controllers can ensure performance
isolation, however they do not consider data sharing among tasks
running on different cores. Additionally, they are hardware solutions,
not applicable to commercial off-the-shelf platforms.

3.3. System Model 57

3.3 System Model
This section defines the task and platform model as well as a set
of mixed-criticality scheduling requirements that are important for
certification. The task model (Section 3.3.1) and scheduling requirements
(Section 3.3.3) are based on the established mixed-criticality assumptions
in literature [BD16], but also on an avionics case study which we
addressed in the context of an industrial collaboration. The avionics
application is described later in Section 3.7. The platform model is
inspired mainly by the Kalray MPPA-256 architecture [dDvAPL14]. An
overview of this architecture is provided in Section 3.3.2. For ease of
presentation, all introduced notations in this and the following sections
are summarized in Table 3.1.

3.3.1 Mixed-Criticality Task Model
We consider periodic mixed-criticality task sets τ = {τ1, . . . , τn} with
criticality levels between 1 (lowest) and K (highest). A task is
characterized by a 5-tuple τi = (Ti,Di, χi,Ci,Ci,deg), where:

• Ti,Di ∈ N
+ denote the task period and relative deadline.

• χi ∈ {1, . . . ,K} denotes the criticality level.

• Ci is a size-K vector of execution profiles, where Ci(`) =
(emin

i (`), emax
i (`), µmin

i (`), µmax
i (`)) represents a lower and an upper

bound on the execution time (ei) and number of memory accesses
(µi) of τi at level of assurance ` ≤ χi. Note that execution time ei

denotes the computation or CPU time of τi without considering the
time spent on fetching data from the memory. Such decoupling of
the execution (computation) time and the memory accessing time is
feasible on fully timing compositional platforms [WGR+09].

• Ci,deg is a special execution profile for the cases when τi (χi < K)
runs in degraded mode. This profile corresponds to the minimum
required functionality of τi so that no catastrophic effect occurs in
the system. If execution of τi can be aborted without catastrophic
effects, Ci,deg = (0, 0, 0, 0).

For simplicity, we assume that the first job of all tasks is released at
time 0 and that the relative deadline Di of τi is equal to its period, i.e., Di =
Ti. Furthermore, the worst-case parameters of Ci(`) are monotonically
increasing for increasing ` and the best-case parameters are monotonically
decreasing, respectively. Namely, the minimum/maximum interval
of execution times and memory accesses in Ci(`) is included in the
corresponding interval of Ci(` + 1). Note that the best-case parameters
are only needed (i) to ensure that the minimum distance constraint of

58 Chapter 3. Bounding Intra-Criticality Interference

dependent tasks is not violated and (ii) to obtain more accurate results
from the response time analysis, as discussed in Section 3.5.

The bounds for the execution times and access numbers can be
obtained by different tools. For instance, at the lowest level of
assurance (` = 1), the system designer may extract them by profiling
and measurement, as in [PBCS08]. At higher levels, certification
authorities may use static analysis tools with more and more conservative
assumptions as the required confidence increases. Note that the execution
profile Ci(`) for each task τi is derived only for ` ≤ χi. For all ` > χi,
Ci(`) = Ci,deg. That is because we assume that certification at level of
assurance ` ignores all tasks with a lower criticality level. At runtime, if
a task with criticality level greater than χi requires more resources than
initially allocated to it, then to preserve schedulability, τi may run in
degraded mode with execution profile Ci,deg.

The motivation behind defining a degraded execution profile, Ci,deg, is
that in safety-critical applications, tasks typically cannot be aborted due to
safety reasons. Several mixed-criticality scheduling policies in literature
assume, nonetheless, that if a higher criticality task requires at runtime
more resources than initially assigned to it (according to some optimistic
resource allocation), then all lower criticality tasks can be aborted from
that point on, permanently or temporarily (see study [BD16]). In our
work, we assume that each task has a minimal functionality that must be
executed under all circumstances so that no catastrophic effect occurs in
the system. The corresponding execution requirements (Ci,deg) must be
fulfilled by any mixed-criticality scheduling policy.

Finally, we define Dep(V,E), a directed acyclic graph representing
dependencies among tasks with equal periods. Each node τi ∈ V

represents a task of τ. A weighted edge e ∈ E from τi to τk implies
that within a period the job of τi must precede that of τk. The weight w(e)
denotes the minimum time that must elapse from the completion of τi’s
execution until the activation of τ j. If w(e) = 0, τ j can be scheduled at
earliest right after τi. We refer to w(e) as the minimum distance constraint.
Dependency graphs are a common consideration in scheduling to model
e.g., data dependencies among tasks. In our work, we introduce the
minimum distance constraint for dependent tasks. This is necessary to
model scheduling constraints that stem from inter-cluster communication
through a NoC in cluster-based architectures. Such constraints are
discussed in Section 3.3.2 and 3.6.1.

Note that the considered task model differs from the one introduced
in Section 2.3.2 in that it contains more detailed information on the
tasks’ execution (min. bound on execution time, min./max. bound on
memory access number), it defines a degraded execution profile for lower-
criticality tasks and it models possible dependencies among tasks.

3.3. System Model 59

Tx Rx RM

router

router

router

router

Compute
Cluster

Compute
Cluster

I/O
Subsystem

External
DDR

Memory

Compute
Cluster RAM

Figure 3.1: Shared memory architecture.

3.3.2 Resource-Sharing Platform Model
We consider a cluster P of m processing cores, P = {p1, . . . , pm}. Here, the
cores are identical but there are no obstacles to extend our approach to
heterogeneous platforms. The mapping of the task set τ to the cores in P
is defined by functionMτ : τ→ P. Note thatMτ is not given, but it will
be determined by our approach in Section 3.6.

Each core in P has access to a private cache memory (we restrict our
interest to data caches, denoted by ‘D’ in Figure 3.1), to a shared RAM
memory and to an external DDR memory, which is local to another cluster.
The shared cluster memory is organized in several banks. Each bank must
have a sequential address space (not interleaved among banks). Under
this assumption, two concurrently executed tasks on different cores can
perform parallel accesses to the shared memory without delaying each
other provided that they access different banks. We assume that each
memory bank has a dedicated request arbiter. Also, each core has a
private path (bus) to the shared memory. The private paths of the cores
are connected to all bank arbiters, as depicted abstractly (for Arb1) in
Figure 3.1. For the bank arbitration, we consider the class of round-robin-
based policies, potentially with higher priority for some bank masters
other than the cores inP (if such exist), e.g., the Rx interface in Figure 3.1.
We assume that only one core can access a bank at a time and that once
granted, a bank access is completed within a fixed time interval, Tacc (same
for read/write operations and for all banks). In the meantime, pending

60 Chapter 3. Bounding Intra-Criticality Interference

requests to the same bank from other cores stall execution on their cores
until they are served.

Additionally, the cores in P have access to external memories of
remote clusters, which they access through a Network-on-Chip (NoC).
Contention may occur in the NoC on router level every time two flows
(virtual channels) need to be routed to the same outgoing link. Again, the
assumed arbitration policy is round-robin at packet level.

The discussed abstract architecture model fits very well commercial
manycore platforms, such as the Kalray MPPA-256 [dDvAPL14] and the
STHorm/P2012 [MBF+12]. In the remainder of the chapter we motivate
our models and methods based on the former architecture; therefore we
look at it into greater detail in the following. Note that our response time
analysis in Section 3.5 is valid for hardware platforms without timing
anomalies, such as the fully timing compositional architecture which is
defined in [WGR+09]. On such architectures, a locally worse behavior
(e.g., a cache miss instead of a cache hit) cannot lead to a globally better
effect for a task (e.g., reduced worst-case response time). The absence of
timing anomalies allows the decoupling of execution and communication
times during timing analysis. For a more detailed discussion on the
property of timing compositionality, the interested reader is referred to
[WGR+09] and for a rigorous definition of the term in resource-sharing
systems to [HRW13], respectively. The MPPA-256 cores are fully timing
compositional [dDvAPL14]. Note that our response time analysis and
design optimization methods can be extended to cover other arbitration
policies too, e.g., the first-ready first-come-first-serve, which is a common
policy on COTS multicores [KdNA+14], on condition that the assumption
of timing compositionality still holds.

Kalray MPPA Architecture. The Kalray MPPA-256 Andey processor
integrates 256 processing cores and 32 resource management cores
(denoted by ‘RM’ in Figure 3.1 and 3.3), which are distributed
across 16 compute clusters and four I/O sub-systems. Each compute
cluster includes 16 processing cores and one resource management
core, each with private instruction and data caches. The processing
cores and the resource management core implement the same VLIW
architecture. However, the resource management core is distinguished
by its connection to the NoC interfaces. Each I/O sub-system includes
four resource management cores that share a single data cache, and
no processing cores. Application code is executed on the compute
clusters (processing cores), whereas the I/O sub-systems are dedicated
to the management of external DDR memories, Ethernet I/O devices,
etc. Each compute cluster and I/O sub-system owns a private address
space. The DDR memory is only visible in the address space of the
resource management cores of the I/O sub-system. Communication
and synchronization among compute clusters and I/O sub-systems is

3.3. System Model 61

(a) MPPA-256 D-NoC topology.

(b) MPPA-256 D-NoC router model.

Figure 3.2: MPPA-256 D-NoC topology and router model.

supported by two explicitly routed, parallel networks-on-chip, the data
(D-NoC) and the control (C-NoC) network-on-chip. Here, we consider
only the D-NoC. This is dedicated to high-bandwidth data transfers and
may operate with guaranteed services, thanks to non-blocking routers
with flow regulation at the source nodes [LMJ+09], which is an important
feature for the deployment of safety-critical applications.

Figure 3.2(a) presents an overview of the MPPA-256 architecture and
the D-NoC topology. Each square in the figure corresponds to a switching
node and interface of the D-NoC, for a total of 32 nodes: one per compute

62 Chapter 3. Bounding Intra-Criticality Interference

Figure 3.3: Memory bank request arbitration in an MPPA-256 cluster.

cluster (16 internal nodes) and four per I/O sub-system (16 external nodes).
The I/O sub-systems are depicted on the four sides. The NoC topology is
based on a 2D torus augmented with direct links between I/O sub-systems.
Figure 3.2(b) depicts the internal structure of a D-NoC router. The MPPA-
256 routers multiplex flows originating from different directions (input
ports). Each originating direction (north N, south S, west W, east E,
local node L) has its own FIFO queue at the output interface, so flows
interfere on a node only if they share a link (output port) to the next node.
This interface performs a round-robin arbitration at the packet granularity
between the FIFOs that contain data to send on a link. NoC traffic through
a router interferes with the memory buses of the underlying I/O sub-
system or compute cluster only if the NoC node is a destination for the
transfer.

Each of the compute clusters and the I/O sub-systems have a local
on-chip memory, which is organized in 16 independent banks with a
dedicated access arbiter for each bank. In the compute clusters, this
arbiter always grants access to data received (Rx) from the D-NoC. That
is, if an access request from D-NoC Rx arrives, it will be immediately
served after the current access to the memory bank is completed. The
remaining bandwidth is allocated to two groups of bus masters in round-
robin fashion. The first group comprises the resource management core,
the debug support unit and a DMA engine dedicated to data transmission
(Tx) over the D-NoC. The second group is composed by the processing
cores. Inside each group, the allocation policy is also round-robin. In
practice, one may abstract the arbitration policy of memory banks as
illustrated in Figure 3.3, where the debug support unit is omitted for
simplicity. Within a compute cluster, the memory address mapping can be
configured either as interleaved or as sequential. In the sequential address
configuration, each bank spans 128 KB consecutive addresses. This is the
assumed configuration in our work. By using linker scripts, one can
statically map private code and data of each processing onto the different
memory banks. This guarantees that no interference between processing

3.3. System Model 63

cores occurs on the memory buses or the arbiters of the memory banks.
Such memory mapping optimization to eliminate inter-core interference
will be considered in Section 3.6.

When a processing core from a compute cluster requires access to
an external DDR memory, this is achieved through the I/O sub-systems,
since compute clusters do not have direct access to the external memories.
Each I/O sub-system includes a DDR memory controller, which arbitrates
the access among different initiators according to a round-robin policy.
The initiators include, among others, the D-NoC interfaces and the
resource management cores of the I/O sub-systems.

Communication Protocol between a Compute Cluster and an I/O sub-
system. In the remainder of this chapter, we consider the processing
cores of one MPPA-256 compute cluster as the core set P, introduced
earlier in the abstract model. The cores in P share access to the SRAM
memory banks of the cluster and can transfer data from/to an external
DDR memory over the D-NoC. For the data transfer, we consider a specific
protocol. This is illustrated in Figure 3.4 and described below:

• For each periodic task τi ∈ τ, which requires data from an external
memory, there is a preceding task τinit,i with the same period and
criticality level, which initiates the data transfer. Specifically, τinit,i

communicates with a dedicated listener task which is executed
in an I/O sub-system with access to the target DDR. τinit,i sends a
notification to the listener, including all relevant information for the
DDR access, e.g., base address in DDR, data length, base address
of allocated space in cluster memory. To send the notification,
τinit,i activates the cluster’s NoC Tx interface. The transfer is
asynchronous, i.e., τinit,i can complete its execution after sending the
notification, without expecting any acknowledgement of reception.
We denote the maximum time required for the transmission of
the notification packet(s) over the D-NoC as worst-case notification
time (WCNT). This time is computed by our response time analysis
method is Section 3.5.2.

• Upon reception of the notification, the remote listener: (i) decodes
the request, (ii) allocates a D-NoC Tx DMA channel and a flow
regulator, (iii) sets up the D-NoC Tx DMA engine with the transfer
parameters, and (iv) initiates the transfer. From there the DMA
engine will transmit the data through the D-NoC to the target
compute cluster. We denote the maximum required time interval for
actions (i)-(iv) as worst-case remote set-up time (WCRST). We assume
that the WCRST can be derived based on measurements on the
target platform.

• The transmitted packets follow a pre-defined route on the D-NoC

64 Chapter 3. Bounding Intra-Criticality Interference

listener

notification transfer from CC to I/OW
C

N
T

W
C

R
S
T

data tra
nsfe

r fr
om I/O

 to
 CC

W
C

D
FT

Activate Tx;
Return

(i) Decode request
(ii) Allocate Tx
 DMA & regulator
(iii) Set up Tx DMA
(iv) Initiate transfer
 from DDR

Read data

m
in

im
u
m

 d
is

ta
n
ce

 c
o
n
st

ra
in

t

Compute Cluster (CC) I/O Subsystem

D-NoC

External
DDR

Memory

Figure 3.4: Communication protocol for reading data from external DDR
memory.

before they are written to the local cluster memory by the cluster’s
NoC Rx interface. We denote the maximum time required for
the data transmission over the D-NoC as worst-case data fetch time
(WCDFT). We show how to compute this time for pre-routed and
regulated flows in Section 3.5.2.

Note that for the considered protocol, τinit,i should be scheduled early
enough so that the required data are already in the cluster memory when
τi is activated. This implies that for every pair of (τinit,i, τi) in τ, where τinit,i

initiates a data transfer from a remote memory for τi to use these data, an
edge between τinit,i and τi must exist in the dependency graph Dep. The
edge is weighted by the minimum distance constraint, which in this case,
equals the sum of the worst-case notification time, WCNT, the worst-case
remote set-up time, WCRST, and the worst-case data fetch time, WCDFT.

The communication protocol has been described for data transfer
between a compute cluster and an I/O sub-system. Note, however, that a
similar procedure takes place also for inter-cluster data exchange. Note
also that for sending data to a remote memory, a task can directly initiate
the transfer through the cluster’s NoC Tx interface or by setting up a
DMA transfer over the D-NoC. The transfer is assumed asynchronous
and no handshaking with the remote cluster is required.

3.3. System Model 65

Notation Meaning Source

System Model - Section 3.3

τ Task set Fixed
K Number of criticality levels Fixed

Ti, χi Period and criticality level of task τi Fixed
Ci(`) Execution profile with lower and upper bounds Fixed

on execution time (ei) and number of memory
(µi) of τi at level ` ≤ χi

Ci,deg Execution profile of τi at level of assurance ` > χi Fixed

Dep
Dependency Graph

The edges (dependencies) are fixed,
but their weight is determined from
NoC analysis (Section 3.5.2)

P Set of processing cores on a target cluster Fixed
Tacc Memory access latency Fixed
Mτ Mapping of tasks of τ to cores of P Optimized in Section 3.6

Remote Fetch Protocol - Section 3.3.2

τinit,i → τi Initiating task for remote data fetch, Fixed
task using fetched data

WCNT Worst-case time for transfer of notification Computed in Section 3.5.2
from τinit,i to listener in remote cluster (Eq. (3.12))

WCRST Worst-case time for set-up of DMA transfer Based on measurements
in remote cluster

WCDFT Worst-case time for complete transfer of data Computed in Section 3.5.2
from remote cluster (Eq. (3.12))

FTTS Scheduling - Section 3.4

H FTTS cycle Computed as hyper-period of τ
F Set of FTTS frames Computed based on frame lengths
L f Length of FTTS frame f Selected manually

barriers(f , l)k Worst-case length of k-th sub-frame in Computed for a givenMτ,Mmem
frame f at level ` in Section 3.5.1 (Eq. (3.6))

Response Time Analysis - Section 3.5

I Memory interference graph Consisting of E1,E2
E1 Mapping of tasks to memory blocks Fixed
E2 Mapping of memory blocks to memory banks Optimized in Section 3.6

Mmem Equivalent to E2 Optimized in Section 3.6

D Mutual delay matrix
Computed in Section 3.5.1.1
and 3.5.1.2

Rx Special node in I indicating a high-priority Added to I in Section 3.5.1.2
NoC Rx access

δ Weight of edge between Rx Computed in Section 3.5.2
and accessed memory block(s) (Eq. (3.13))

WCRTi(f , l) Worst-case response time of τi in frame f Computed in Section 3.5.1.1
at level ` (Eq. (3.4))

CWCRTp,k(f , l) Worst-case response time of tasks executing on Computed in Section 3.5.1.1,
core p in the k-th sub-frame of frame f at level ` updated in Section 3.5.1.2

Design Optimization - Section 3.6

‖barriers‖3 3rd norm of barriers for all f ∈ F , ` ∈ {1, . . . ,K} Computed for each candidateMτ

(Eq. (3.6))
T0 Initial temperature Parameter of SA algorithm

a Temperature decreasing factor Parameter of SA algorithm
T f inal Final temperature Parameter of SA algorithm

timemax Time budget Parameter of SA algorithm

Table 3.1: Important notation as defined/computed in each section.

66 Chapter 3. Bounding Intra-Criticality Interference

3.3.3 Mixed-Criticality Scheduling Requirements
Under the above system assumptions, we seek a correct scheduling
strategy for the mixed-criticality task set τ on P, which will enable
composable and incremental certifiability. We define below the properties
of correctness, composable and incremental certifiability, which are key
elements for a successful and economical certification process.

Definition 3.1. A scheduling strategy is correct if it schedules a task set τ such
that the provided schedule is admissible at all levels of assurance. A schedule of
τ is admissible at level ` if and only if:

• the jobs of each task τi, satisfying χi ≥ `, receive enough resources
between their release time and deadline to meet their real-time requirements
according to execution profile Ci(`),

• the jobs of each task τi, satisfying χi < `, receive enough resources
between their release time and deadline to meet their real-time requirements
according to execution profile Ci,deg. �

The term resources, in this context, refers to both processing time and
communication time for accessing the shared memory and NoC.

Definition 3.2. A scheduling strategy enables composable certifiability if all
tasks of a criticality level ` are temporally isolated from tasks with lower criticality,
for all ` ∈ {1, . . . ,K}. Namely, the execution and access activities of a task τi

must not delay in any way any task with criticality level greater than χi. �

The requirement for composability enables different certification
authorities to certify task subsets of a particular criticality level ` even
without any knowledge of the tasks with lower criticality in τ. This
is important when several certification authorities need to certify not
the whole system, but individual parts of it. Each authority needs
information on the scheduling of tasks with higher criticality level than
the one considered. Such information can be provided by the responsible
authorities for the higher-criticality task subsets.

Definition 3.3. A scheduling strategy enables incremental certifiability if the
real-time properties of the tasks at all criticality levels ` ∈ {1, . . . ,K} are preserved
when new tasks with lower criticality level are added to the system. �

This property implies that if the schedule of a task set τ is certified as
admissible, the certification process will not need to be repeated if new,
lower-criticality tasks are added later to the system. This is reasonable,
since repeating the certification process of already certified tasks if the
system is designed incrementally results in excessive costs.

Note that the above notion of correctness (Definition 3.1) is not
new in mixed-criticality scheduling theory. On the other hand, the
requirements for composable and incremental certifiability seem to be

3.4. Flexible Time-Triggered Scheduling 67

crucial in safety-critical domains, e.g., avionics, for reducing the effort
and cost of certification. Nonetheless, they are usually not considered
explicitly in mixed-criticality scheduling literature (see study [BD16]).
Exceptions are the works that are based on temporal partitioning as
defined in the ARINC-653 standard [ARI03], such as the approach of
Tamas-Selicean and Pop [TSP11] and the works that use servers for
performance isolation among applications of different criticality levels,
such as the approach of Yun et al. [YYP+12].

3.4 Flexible Time-Triggered Scheduling
In the following, we present the Flexible Time-Triggered and
Synchronization-based (FTTS) mixed-criticality multi-core scheduling
policy. FTTS is an IS-compliant policy, namely it allows only tasks with
the same criticality level to be executed at any time. It is partitioned
and non-preemptive, but it can support fixed preemption points (task
splitting). In this section, we assume that an FTTS schedule for a
particular task set and platform is given. For the given schedule, we
describe the runtime behavior of the scheduler and introduce useful
notation. We show how to determine an FTTS schedule (when it is not
given) later, in Section 3.6.1.

The FTTS scheduling policy combines time and event-triggered task
activation to enforce the IS constraint. A global FTTS schedule repeats
over a scheduling cycle equal to the hyper-period H of the tasks in τ, i.e., the
least common multiple of the periods. The scheduling cycle consists of
fixed-length frames (set F). Each frame is divided further into K flexible-
length sub-frames. A sub-frame contains tasks of a single criticality level.
The beginning of frames and sub-frames is synchronized among all cores.
Frames start at predefined time points. The frame lengths can differ, but
they are upper bounded by the minimum period in τ. Each sub-frame
(except the first of a frame) starts once all tasks of the previous sub-
frame complete execution across all cores. Synchronization is achieved
dynamically via a barrier mechanism, for the sake of efficient resource
utilization. The sub-frames within a frame are ordered in decreasing order
of their criticality. Within a sub-frame, tasks are scheduled sequentially
on each core following a predefined order, namely every task is triggered
upon completion of the previous one.

Example 3.1. An illustration of an FTTS schedule is given in Figure 3.5 for
seven tasks with hyper-period H = 200 ms. Figure 3.5 depicts two consecutive
scheduling cycles. The solid lines define the frames and the dashed lines the sub-
frames, i.e., potential points where barrier synchronization is performed. The
FTTS schedule has a cycle of H = 200 ms and is divided into four frames of equal
lengths (50 ms), each with K = 2 sub-frames: the first for criticality 2 (high)

68 Chapter 3. Bounding Intra-Criticality Interference

Figure 3.5: FTTS schedule for 2 cycles (dark annotation: criticality level 2, light:
criticality level 1).

and the second for criticality 1 (low), respectively. A scheduling cycle includes
H/Ti invocations of each task τi, i.e., the number of jobs of τi that arrive within
a hyper-period.

At runtime, the length of each sub-frame varies based on the different
execution times and accessing patterns that the executed tasks exhibit. For
example, in Figure 3.5, the first sub-frame of f1 finishes earlier when τ1, τ2

run w.r.t. their level-1, i.e., low-criticality profiles (cycle 1) than when
at least one task runs w.r.t. its level-2, i.e., high-criticality profile (cycle
2). Despite this dynamic behavior, the worst-case sub-frame lengths
can be computed offline for a given FTTS schedule by applying worst-
case response time analysis under memory contention (see Section 3.5).
Function barriers : F × {1, . . . ,K} → RK defines the worst-case length
of all sub-frames in a frame, at a particular level of assurance. We
denote the worst-case length of the k-th sub-frame of frame f at level ` as
barriers(f , `)k. Note that the k-th sub-frame of f contains tasks of criticality
level (K− k + 1). Also, ` corresponds to the highest level execution profile
that the tasks of f exhibit at runtime. For ` > 1, execution in certain
sub-frames of f (with index k > 1) may be degraded.

Note that we use the notion of dynamic barriers for efficiency. On one
hand, if sub-frames started at fixed time points, they would have to be
dimensioned for the worst-case execution profiles of the tasks, so that all
possible execution scenarios are covered. This is a common practice, e.g.,
when dimensioning the timing partitions in ARINC-653 architectures,
where only the execution profile at each task’s own criticality level is
considered [TSP11]. This approach can be very inefficient since the higher
criticality tasks may never reveal the corresponding execution profiles in
practice. Resources, however, are reserved for them, leading to large
idle times, during which the platform resources cannot be used by tasks
of another criticality level. On the other hand, barrier synchronization
occurs dynamically depending on the execution scenarios revealed at
runtime, thus enabling efficient resource utilization.

Runtime behavior. Given an admissible FTTS schedule and the barriers
function, the scheduler manages task execution on each core within each
frame f ∈ F as follows (initially, `max = 1):

3.4. Flexible Time-Triggered Scheduling 69

• For the k-th sub-frame, the scheduler triggers sequentially the
corresponding jobs following the predefined order. Upon
completion of the jobs’ execution, it signals the event and waits
until the remaining cores reach the barrier.

• Let the elapsed time from the beginning of the k-th sub-frame until
the barrier synchronization be t. Given `max:

`max = max
argmin
`∈{1,...,K}

{
t ≤ barriers(f , `)k

}
, `max

 , (3.1)

the scheduler will trigger jobs in the next sub-frame such that tasks
with criticality level lower than `max run in degraded mode.

• The two previous steps are repeated for each sub-frame, until the
next frame is reached.

Note that the decision on whether a task will run in degraded mode affects
only the current frame.

Admissibility. Let an FTTS schedule be constructed such that all H/Ti

jobs of each task τi ∈ τ are scheduled on the same core, in frames between
their release times and deadlines and all dependency constraints hold.
The FTTS schedule is `-admissible if and only if it fulfills the following
condition:

K∑
k=1

barriers(f , `)k ≤ L f , ∀ f ∈ F , (3.2)

where L f denotes the length of frame f . If the condition holds for all
frames f ∈ F , all scheduled jobs can meet their deadlines at level of
assurance `. If the condition holds for all levels ` ∈ {1, · · · ,K}, it follows
that the FTTS schedule is admissible according to Definition 3.1. That is,
it can be accepted by any certification authority at any level of assurance
and the scheduling strategy is correct.

Composable and Incremental Certifiability. If different certification
authorities certify task subsets of different criticality levels, then for
composable certifiability (Definition 3.2), the authorities of lower-
criticality task subsets need information on the resource allocation for
the higher-criticality task subsets. For the FTTS scheduling strategy, this
information is fully represented by function barriers. Hence, FTTS enables
composable certifiability. Similarly, it enables incremental certifiability
(Definition 3.3), since new tasks with lower criticality levels can be added
to the system if there is sufficient slack time at the end of the FTTS
frames. In this case, the new tasks do not affect the real-time properties
of the tasks that were already scheduled in the system. It follows
from the above that the computation of function barriers is necessary to
evaluate if an FTTS schedule is admissible, but also as an interface among

70 Chapter 3. Bounding Intra-Criticality Interference

certification authorities and system designers. In the next section, we
show how to compute this function step-by-step, considering all possible
task interferences for a given FTTS schedule.

3.5 Worst-Case Response Time Analysis

This section describes how to compute function barriers for a given FTTS
schedule. For the computation of barriers, we need to bound the worst-
case length of each sub-frame of the FTTS schedule at every level of
assurance ` ∈ {1, . . . ,K}. For this, first we perform worst-case response
time (WCRT) analysis for every single task that is scheduled within the
sub-frame. Second, based on the results of the first step, we derive the
worst-case response time of the sequence of tasks which is executed on
every core within the sub-frame (per-core WCRT, CWCRT). Once the last
value is computed for all cores in P, the worst-case sub-frame length
follows trivially as the maximum among all per-core WCRTs.

The challenge in the above procedure lies in the computation of an
upper bound for the response time of a task in a specific sub-frame. Note
that for the timing compositional architectures which we consider, such
as the MPPA-256, it is safe to bound the WCRT of a task by the sum of its
worst-case execution (CPU) time and the worst-case delay it experiences
due to memory accessing and communication [WGR+09]. The worst-case
execution time of each task τi is known at different levels of assurance
as part of its execution profile Ci. However, to bound the second WCRT
component, one needs to account for the interference on the shared cluster
memory, i.e., interference from tasks running in parallel and from the
NoC interface, when some of them try to access the same memory bank
simultaneously. Therefore, to derive the WCRT of a task in a specific
sub-frame, we need to model the possible interference scenarios based on
the tasks that are concurrently executed and the NoC traffic patterns and
then, to analyze the worst-case delay that such interference can incur to
the execution of the task under analysis.

Section 3.5.1 shows how to bound the worst-case delay a task can
experience on the shared memory path. For this, we consider as inputs:
the mappingMτ of task set τ to the cores inP, the mapping of task data to
memory banks, the characteristics (patterns) of the incoming NoC traffic,
and the memory access latency Tacc. Section 3.5.2 describes a method
for NoC analysis, based on the network and real-time calculus [LBT01,
TCN00], which enables us to compute a bound on all NoC incoming
traffic patterns at the shared memory of a cluster. This bound is an input
to the analysis of Section 3.5.1.

3.5. Worst-Case Response Time Analysis 71

3.5.1 Bounding Delay on Cluster Memory Path
Within an FTTS sub-frame, we identify two sources of delay that a task
may experience on the memory path based on the platform model of
Section 3.3.2:

I. Blocking on a memory bank arbiter due to contention from other access
requesters, specifically any other processing core or the NoC Tx DMA
interface. Since contention is resolved among these requesters in a
round-robin fashion, the task under analysis will have to wait for its
turn in the round-robin cycle to be granted access to the memory bank.

II. Blocking on a memory bank arbiter due to contention from the NoC
Rx interface. This requester has higher priority when accessing the
memory, so in the worst case, the task under analysis will have to wait
for all accesses of the NoC Rx interface to be served before it can gain
access to the memory bank.

In the following, we model interference on the shared memory in the
form of a memory interference graph. Based on this graph, we compute
the maximal delay that each task can cause to another when they are
executed in parallel and in the presence of incoming traffic from the NoC
Rx interface. This way, we are able to estimate the WCRT of each task
within the FTTS sub-frame and subsequently, the global worst-case sub-
frame length.

3.5.1.1 Memory Interference among Requesters with Equal Priorities

To model the inter-task interferences due to contention on a round-robin-
arbitrated memory controller, we introduce a graph representation, called
the memory interference graph I(V,E). We define V = Vτ ∪ VBL ∪ VB,
where Vτ represents all tasks in τ (running on processing cores and
NoC Tx), VBL represents all memory blocks BL accessed by τ, i.e., the
tasks’ instructions, data and communication buffers, and VB represents
all banks B of the shared memory. Each memory block node is annotated
with a corresponding size in bytes. Respectively, each memory bank
node is annotated with the bank’s capacity in bytes. I is composed by
two sub-graphs: (i) the bipartite graph I1(VT ∪VBL,E1), where an edge
e ∈ E1 from τi ∈ VT to bl j ∈ VBL with weight w(e) implies that task τi

performs at maximum w(e) accesses to memory block bl j per execution,
and (ii) the bipartite graph I2(VBL ∪VB,E2), where an edge e ∈ E2 from
bl j ∈ VBL to bk ∈ VB denotes the allocation of memory block bl j in exactly
one memory bank bk. Note that the weighted sum over all outgoing edges
of a task τi equals the memory access bound of its execution profile at its
own criticality level, i.e., µmax

i (χi). The weights can be, however, reduced if
WCRT analysis is performed for lower levels of assurance, ` < χi. In this
case, the weighted sum over the outgoing edged of τi equals the (more

72 Chapter 3. Bounding Intra-Criticality Interference

bl1

bl2

bl3

bank1

bank2

10
(64)

(16)

bl4

bl5

(512)

(128)

τ1

τ2

τ3

τ4

(64 K)

(64 K)

(16K)
τ5

20

10

10

5

1024

Figure 3.6: Memory Interference
Graph I for a dual-bank memory.

τ1 τ2 τ3 τ4 τ5

τ1 0 10·Tacc 0 0 0
τ2 10·Tacc 0 10·Tacc 0 0
τ3 0 10·Tacc 0 0 0
τ4 0 0 0 0 5·Tacc
τ5 0 0 0 5·Tacc 0

Table 3.2: Mutual delay matrix D for
round-robin arbitration policy for graph
of Figure 3.6.

optimistic) µmax
i (`), which enables tighter WCRT analysis for the specific

level of assurance.

Definition 3.4. Tasks τi and τ j are interfering if and only if ∃k, l, r ∈ N+ :
(τi, blk) ∈ E1, (τ j, bll) ∈ E1 and (blk, br) ∈ E2, (bll, br) ∈ E2, i.e., they access blocks
in the same memory bank. �

Example 3.2. Figure 3.6 presents a memory interference graph for a set of five
tasks, accessing in total five memory blocks. The memory blocks can be allocated
to two banks. Ellipsoid, rectangular and diamond nodes denote tasks, memory
blocks and banks, respectively. Note that for the depicted mapping of memory
blocks to banks, tasks τ1 and τ2 are interfering, whereas τ1 and τ3 or τ4 or τ5 are
not. Interfering tasks can delay each other when executed in parallel.

In the general problem setting, the mapping of memory blocks to
banks, Mmem : BL → B (E2 of I), is not known, but derived by our
optimization approach (see Section 3.6). Here, however, for the WCRT
analysis we assume that it is fixed. Based on it, we introduce the mutual
delay matrix, D. D is a two-dimensional matrix (n×n), where Di, j specifies
the maximum delay that task τi can suffer when executed concurrently
with τ j. Di, j is positive if τi and τ j (i , j) are (i) of the same criticality
level, i.e., potentially concurrently executing in an FTTS schedule, and (ii)
interfering, i.e., accessing memory blocks in at least one common bank.

For the computation of D, we need to consider the bank arbitration
policy, which in the case of MPPA-256 and for the memory requesters
that we consider is round-robin. For the round-robin policy, each access
request from a task τi can be delayed by at most one access from any other
concurrently executed task that can read/write from/to the same memory
bank which τi is targeting. That is because we assume that each core has
at most one pending request at a time (Section 3.3). In other words, τi can
be maximally delayed by a concurrently executed task τ j for the duration
of τ j’s accesses to a shared memory bank, provided that τ j’s accesses are

3.5. Worst-Case Response Time Analysis 73

not more that τi’s accesses to this bank. If τi and τ j share access to more
than one memory bank, the sum of potential delays across the banks has
to be considered. This yields:

Di, j =
∑

b,bl:(τi ,bl)∈E1
∧(bl,b)∈E2

∑
bl′ :(τ j ,bl′)∈E1
∧(bl′ ,b)∈E2

min
{
w((τi, bl)),w((τ j, bl′))

}
· Tacc . (3.3)

Example 3.3. For the memory interference graph of Figure 3.6, we assume that
tasks τ1, τ2, τ3 are of criticality level 2, whereas τ4 and τ5 of criticality level
1. In this case, Table 3.2 presents the mutual delay matrix D for the memory
interference graph. Matrix D represents the worst-case mutual delays when τ1,
τ2, τ3 are executed in parallel in the same FTTS sub-frame. Tasks τ4 and τ5 are
assumed to run in parallel, too.

We use matrix D to compute the worst-case length of the k-th sub-
frame of an FTTS frame f at level of assurance `. According to the
notation introduced in Section 3.4, the computed length corresponds to
barriers(f , `)k. First, we compute the WCRT of every task τi executed in
the k-th sub-frame of frame f at level of assurance ` as:

WCRTi(f , `) = emax
i (`) + µmax

i (`) · Tacc + di(f , `), (3.4)

namely, as the sum of its worst-case execution time, the total access time
of its memory accesses under no contention, and the worst-case delay it
encounters due to contention. This last term, di(f , `), is defined as:

di(f , `) = min

∑

τ j∈parallel(τi, f)

Di, j, µmax
i (`) · (m − 1) · Tacc

 , (3.5)

where function parallel : τ × F → Sτ defines a set of tasks Sτ ⊆ τ that
are executed in parallel to task τi (on different cores) in frame f and m
is the number of interfering requesters with equal priorities. Note that
µmax

i (`) ·(m−1) ·Tacc is a safe upper bound on the delay that a task can suffer
due to contention under round-robin arbitration. In Eq. (3.5), we take the
minimum of the two terms to achieve a more accurate estimation. This is
useful in cases e.g., where (some of) the parallel executed tasks with τi are
scheduled sequentially on a single core. It is then possible that not all of
them can delay τi on the memory path. In such cases, the second bound
may be tighter than the one based on matrix D.

Example 3.4. For a demonstration of the use of the above equations, let us
consider the FTTS schedule of Figure 3.5. In the 1st sub-frame of frame f1,
tasks τ1 and τ2 with criticality level χ1 = χ2 = 2 are executed in parallel on
m = 2 processing cores. According to the definition of function parallel, it holds
that parallel(τ1, f1) = {τ2} and parallel(τ2, f1) = {τ1}. The accessing behavior of
tasks τ1 and τ2 is described by the memory interference graph of Figure 3.6. The

74 Chapter 3. Bounding Intra-Criticality Interference

0 20050

...

...

250

Figure 3.7: Computation of barriers(f1, `)k for ` = {1, 2} and k = {1, 2} for the FTTS
schedule of Figure 3.5.

depicted weights on the edges of the memory interference graph, i.e., the number
of accesses that each task performs to the respective memory blocks, are derived
at level of assurance ` = 2. Based on the graph of Figure 3.6, tasks τ1 and τ2

can interfere only on bank1 because τ1 accesses block bl1 and τ2 accesses block
bl2, with both blocks being mapped to the same memory bank bank1. Given this,
Eq. (3.3) yields D1,2 = D2,1 = 10 · Tacc. In other words, task τ1 can delay τ2 at
most 10 times when accessing the shared memory, by issuing interfering access
requests to the same bank. The same also holds for the maximal delay that τ2 can
cause to τ1. These results can be seen in the mutual delay matrix D, which is
already given in Table 3.2. At a next step, by applying Eq. (3.5), we compute the
worst-case delay that task τ1 can experience due to memory contention in frame
f1 of the FTTS schedule of Figure 3.5, at level of assurance ` = 2:

d1(f1, 2) = min
{
D1,2, µ

max
1 (2) · (2 − 1) · Tacc

}
= min {10 · Tacc, 10 · Tacc} .

Similarly for task τ2,

d2(f1, 2) = min
{
D2,1, µ

max
2 (2) · (2 − 1) · Tacc

}
= min {10 · Tacc, 30 · Tacc} .

Hence, d1(f1, 2) = d2(f1, 2) = 10 · Tacc. Namely, the WCRT of both tasks is
augmented by 10 · Tacc as a result of the inter-core interference on the shared
memory.

Once the WCRT of all tasks in the k-th sub-frame of frame f are
computed at all levels of assurance ` ∈ {1, . . . ,K}, we derive the WCRT
of the task sequence on each core p, CWCRTp,k(f , `), by summing up the
WCRTs of the tasks that are mapped on p in the particular sub-frame. For
an illustration of the notation used, please refer to Figure 3.7. It follows
trivially that:

barriers(f , `)k = max
1≤p≤m

{
CWCRTp,k(f , `)

}
. (3.6)

3.5. Worst-Case Response Time Analysis 75

Rx

bl1

bl2

bl3

bank1

bank2

10
(64)

(16)

bl4

bl5

(512)

(128)

τ1

τ2

τ3

τ4

(64 K)

(64 K)

(16K)
τ5

20

10

10

5

1024

Figure 3.8: Memory Interference
Graph I for a dual-bank memory with
higher-priority interference from the
NoC Rx requester.

τ1 τ2 τ3 τ4 τ5

τ1 0 10·Tacc 0 0 0
τ2 10·Tacc δ · Tacc 10·Tacc 0 0
τ3 0 10·Tacc δ · Tacc 0 0
τ4 0 0 0 δ · Tacc 5·Tacc
τ5 0 0 0 5·Tacc δ · Tacc

Table 3.3: Mutual delay matrix D
for round-robin arbitration with higher
priority for Rx for graph of Figure 3.8.

3.5.1.2 Memory Interference from Requesters with Higher Priority

When introducing the memory interference graph in Section 3.5.1.1,
we implicitly assumed that all memory blocks, i.e., task instructions,
private data and communication buffers, fit into the memory banks of
the shared cluster memory so that the mapping of blocks to banks can
be decided offline and no remote access to other compute clusters or I/O
sub-systems is required. However, in realistic applications, such as the
flight management system which is used for evaluation in Section 3.7,
there may be tasks which need access to databases or generally, complex
data structures that do not fit in the shared memory of a compute cluster.
We assume that these data structures are stored in the external DDR
memories and parts of them (e.g., some database entries), which can fit
into the cluster memory together with the data of the remaining tasks, are
fetched whenever required.

One possible implementation of a remote data fetch protocol has been
described for the MPPA-256 platform and similar many-core architectures
in Section 3.3.2. Here, we focus on its last step, namely the actual transfer
of data packets from the I/O sub-system to the cluster over the NoC.
During the data transfer, the NoC Rx interface tries to write to the shared
cluster memory every time a new packet arrives at the cluster. Therefore,
any task in the cluster attempting to access the memory bank where the
remote data are stored will experience blocking due to the higher priority
of the NoC Rx interface (see Figure 3.3). In the worst case, the task will
stall for the duration of the whole remote transfer before it is granted
access to the memory bank.

To model the interference from the NoC Rx interface: First, we extend
the memory interference graph, as shown in Figure 3.8. The task with

76 Chapter 3. Bounding Intra-Criticality Interference

the bold outline represents the DMA transfer from the I/O sub-system
(resp. another compute cluster) to the compute cluster. There can be
arbitrarily many tasks representing DMA transfers. The weight δ of the
newly added edge from Rx to the target memory block can be derived
as the minimum between (i) the total number of fetched packets and (ii)
the maximum number of packets that can be fetched over the NoC in the
time interval of one FTTS frame. To compute δ for a particular data flow,
we need information about the flow regulation, the flow route and the
NoC configuration. We show how to use this information to derive δ in
Section 3.5.2 (Eq. (3.13)).

Second, we update the mutual delay matrix D by setting entries D j, j

to δ ·Tacc for all tasks τ j that are interfering with Rx, as shown in Table 3.3.
This applies to all tasks independently of their criticality level or whether
they run in parallel to Rx, and it expresses that an interfering task τ j can
be delayed by δ higher-priority requests any time it executes. The update
helps during memory mapping optimization to distribute the memory
block(s) to which Rx writes to different banks compared to all remaining
memory blocks.

Third, we update the computed in Section 3.5.1.1 per-core WCRTs,
CWCRTp,k(f , `) for all p ∈ P. Recall that CWCRTp,k(f , `) in a given FTTS
schedule denotes the sum of WCRTs of the tasks that are mapped on core
p in the k-th sub-frame of frame f , given the task execution profiles at
level of assurance `. In the following, we consider the communication
protocol between a compute cluster and an I/O subsystem, as described
in Section 3.3.2. For every task τi ∈ τ, which uses remote data from the
DDR, and its preceding task τinit,i, which initiates the transfer from the
I/O sub-system, let fprec and fsucc be the FTTS frames in which τinit,i and
τi are scheduled, respectively. Since tasks τi and τinit,i have the same
criticality level, χi, it follows that they are scheduled in the k-th sub-frame
of frames fprec and fsucc, respectively, where k = K − χi + 1. For instance,
in a dual-criticality system (K = 2), if τi and τinit,i have criticality level
χi = 2, they will be scheduled in the 1st sub-frame of their corresponding
FTTS frames. For the update of CWCRTp,k(f , `), we distinguish two cases,
depending on whether frames fprec and fsucc are equal or not. Particularly,
for every core p ∈ P:

Case 1 If fprec = fsucc and in the k-th sub-frame of fprec there are tasks on p
scheduled between τinit,i and τi, which are interfering with Rx, then
CWCRTp,k(fprec, `) is increased by δ ·Tacc, for all ` ∈ {1, . . . ,K}. In other
words, if there is at least one task executing between τinit,i and τi,
which can access a common memory bank as Rx, this (these) task(s)
can be delayed by the higher priority NoC Rx data transfer by up
to δ · Tacc. This is accounted for by increasing the CWCRTp,k(fprec, `)
accordingly.

Case 2 If fprec , fsucc, then for each sub-frame k′ from the k-th sub-frame

3.5. Worst-Case Response Time Analysis 77

of fprec up to and including the k-th sub-frame of fsucc: if there are
tasks on p other than τinit,i, τi, which are interfering with Rx, then
CWCRTp,k′(f ′, `) for the including FTTS frame f ′: fprec ≤ f ′ ≤ fsucc

is increased by δ · Tacc, for all ` ∈ {1, . . . ,K}. The intuition is similar
as in the previous case. If any sub-frame between the one where
τinit,i is scheduled and the one where τi is scheduled includes tasks
that are accessing a common bank as Rx, then this (these) task(s)
can be delayed by the higher priority NoC Rx data transfer by up
to δ · Tacc. Note, however, that in every frame f ′: fprec ≤ f ′ ≤ fsucc,
such an increase to CWCRTp,k′(f ′, `) happens only once, for the first
sub-frame k′ that includes interfering tasks with Rx. This is done for
tighter analysis1.

Example 3.5. As an illustration of the per-core WCRT updates of the third step
above, consider again the FTTS schedule of Figure 3.5. Suppose that τ4 initiates
a remote data transfer for τ5, which reads the fetched data. Both tasks have
criticality level χ4 = 1. For the first instance of the dependent tasks, fprec = f1

(frame where τ4 is scheduled), fsucc = f2 (frame where τ5 is scheduled) and k = 2
(corresponding sub-frame within the above frames). Since fprec , fsucc, for the
per-core WCRT updates we have to consider all FTTS sub-frames starting from
the 2nd sub-frame of f1 up to and including the 2nd subframe of f2. In this case,
there are three such sub-frames to be considered. We assume that the memory
accessing behavior of tasks τ1 to τ5 and the DMA transfer Rx are modelled
by the memory interference graph of Figure 3.8. Tasks τ6 and τ7 of the FTTS
schedule are not modelled in this graph because they perform no accesses to the
shared memory. Given these assumptions, it follows that CWCRTp1,2(f1, `) and
CWCRTp2,2(f1, `) for the 2nd sub-frame of f1 and ` = {1, 2} remain unchanged.
This is because on core p1 no other task than τ4 is scheduled, so the DMA
transfer cannot cause any delay in this sub-frame on this core. Also on core
p2, the scheduled task τ6 is not interfering with Rx, so the DMA transfer
cannot delay its execution. In contrast, CWCRTp1,1(f2, `) and CWCRTp2,1(f2, `)
for the 1st sub-frame of f2 and ` = {1, 2} are increased by δ · Tacc. This is
because the scheduled tasks τ3 (on core p1) and τ2 (on core p2) are interfering
with Rx (accessing the same memory bank bank2). Finally, CWCRTp1,2(f2, `),
CWCRTp2,2(f2, `) for the 2nd sub-frame of f2 remain unchanged, since no task
other than τ5 is scheduled on p1 and the unique task on p2, τ6, is not interfering
with Rx.

After the discussed updates are performed, the computation of
function barriers follows from Eq. (3.6) for the updated CWCRTp,k(f , `)
values.

1Given the definition of δ, Rx cannot perform more than δ high-priority memory
accesses within one single frame. Therefore, it is too pessimistic to increase
CWCRTp,k′ (f ′, `) for several sub-frames k′ of the same frame f ′. This would lead to
a potential increase of

∑K
k=1 barriers(f ′, `)k by multiples of δ · Tacc.

78 Chapter 3. Bounding Intra-Criticality Interference

3.5.1.3 Tighter Response Time Analysis

In Section 3.5.1.1 and 3.5.1.2, we derived closed-form expressions for the
worst-case sub-frame lengths of the FTTS schedule (function barriers).
Although several sources of pessimism were avoided, there may be still
cases where the computed bounds are not tight. For instance, if the
memory accesses of the tasks follow certain patterns (dedicated access
phases, non-overlapping in time) such that even if two tasks are executed
in parallel, they cannot interfere on the memory path, then the given
bounds do not reflect this knowledge. In such cases, more accurate
response time analysis can be provided by the method presented in
Chapter 4, which uses a state-based model of the system with timed
automata [AD94] and model checking to derive the task WCRTs. The
system model in Chapter 4 specifies shared-memory multicores with
equal-priority requesters, however it can be easily extended to model
also the incoming traffic from the NoC, as computed in Section 3.5.2.

Since a model checker explores exhaustively all feasible resource
interference scenarios, the above method can have a high complexity.
Therefore, during design optimization (Section 3.6), where we need to
compute function barriers for often thousands of potential FTTS schedules,
it is preferred to use the WCRT bounds as derived earlier. We can then
apply the method of Chapter 4 to the optimized FTTS solution to refine
the computation of barriers. Also, if no admissible FTTS schedule can be
found during optimization, the same method can be applied to the best
encountered solutions, as the more accurate computation of barriers may
reveal admissible schedules.

3.5.2 Bounding Delay for Data Transfers over NoC
This section shows how to characterize the incoming NoC traffic at the
shared cluster memory. Based on the incoming traffic model, we compute
upper bounds on (i) the delay for transferring a given amount of packets
over a NoC and (ii) the number of accesses that the NoC Rx interface
performs to the shared cluster memory in a given time interval. The first
result (Eq. (3.12)) is used for defining the minimum distance constraint
between a task initiating a remote data transfer, τinit,i, and a task using the
fetched data, τi, in the remote fetch protocol of Section 3.3.2. The second
result (Eq. (3.13)) is used as a parameter of the memory interference
graph, representing the maximal interference from the NoC Rx interface,
as discussed in Section 3.5.1.2.

We consider an explicitly routed NoC with wormhole switching and
assume that each traffic stream uses a dedicated predetermined virtual
channel throughout the NoC which is in line with previous approaches,
see [ZSO+13]. Each NoC node is a router and also a flow source/sink.
Routers contain only FIFO queues with one set of queues per outgoing
link, with round-robin arbitration. Routers are work-conserving, i.e., not

3.5. Worst-Case Response Time Analysis 79

αi … …j(σ, ρ)

regulator router

NOC

delNOCdelREG

WCDFT

α’iαiα(σ, ρ)

βi
NOC

flow

Figure 3.9: Modelling the packet flow i through a (σ, ρ)-regulator and a sequence
of routers j.

idling if data are ready to be transmitted.
All flows are (σ, ρ) regulated at the sources [LMJ+09]. The parameters

of the regulators are selected such that performance guarantees are
provided for all flows and no FIFO queue in a router can overflow.
Therefore, stalls due to backpressure flow control are not present.
However, we assume that stalls due to switch contention are present,
i.e., when packets from different input ports or virtual channels compete
for the same output port. Such assumptions simplify the presented
NoC analysis. However, if necessary, backpressure stalls can be easily
integrated by using existing results [Cha00, TS09, ZSO+13].

Since we consider hard real-time guarantees on the NoC, we have
to show that each network packet in a certain flow is delivered to its
destination within a fixed deadline. For the analysis, we use the theory
of Network and Real-time calculus [Cru91, LBT01, TCN00]. It is a
theory of deterministic queuing systems for communication networks
and scheduling of real-time systems. Network calculus has been
applied in recent works and its effectiveness has been validated for the
analysis of NoC-based systems, see [QLD, QLD10, ZSO+13]. The theory
analyzes the flow of packet streams through a network of processing and
communication resources in order to compute worst-case backlogs, end-
to-end delays and throughput. The overall modelling approach is shown
in Figure 3.9.
A General Packet Stream Model. Packet streams are abstracted by
the function α(∆), i.e., an upper arrival curve which provides an upper
bound on the number of packets in any time interval of length ∆ ∈ R,
where α(∆) = 0 for all ∆ ≤ 0. Arrival curves substantially generalize
conventional stream models such as sporadic, periodic or periodic with
jitter. Note that a packet here is defined as a fixed-length basic unit of
network traffic. Variable-length packets can be viewed as a sequence of
fixed-length packets.

A General Resource Model. The availability of processing or
communication resources is described by the function β(∆), a lower

80 Chapter 3. Bounding Intra-Criticality Interference

service curve which provides a lower bound on the available service
in any time interval of length ∆ ∈ R, where β(∆) = 0 for all ∆ ≤ 0. The
service is expressed in an appropriate workload unit compatible to that
of the arrival curve, e.g., packets.

Packet stalls at routers can happen when packets from different input
ports or virtual channels compete for the same output port. We assume
a round-robin arbiter for every router j where each flow i is given a fixed
slot of size si, e.g., proportional to the maximum packet size for this flow.
The packet size is defined as the number of (fixed-length) packets of a
flow. The accumulated sizes of all flows going through a router j can
be expressed as s j =

∑
i flows through j si. If the lower service curve that the

router can provide is denoted as β j, then the lower service curve under
round-robin arbitration for a flow with slot size si is [ZSO+13]:

β j
i (∆) =

si

s jβ
j(∆ − (s j

− si)) , (3.7)

which expresses the fact that in the worst-case a packet may always have
to wait for s j

− si time units before its slot becomes available.

A Resource Model for a Network. When a packet flow traverses a system
of multiple interconnected components, one needs to consider the service
curve provided by the system as a whole, i.e., the system service curve
is a concatenation of the individual service curves [LBT01, TS09]. For
example, the concatenation of two routers 1 and 2 with lower service
curves β1

i and β2
i for a flow i can be obtained as:

β1,2
i (∆) = β1

i ⊗ β
2
i (∆) ,

where ⊗ is the min-plus algebra convolution operator that is defined as:

(f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆ − λ) + g(λ)} .

As a result, the cumulative service βNOC
i for a flow i is the convolution of

all individual router service curves on the path of the flow through the
network:

βNOC
i (∆) = (

⊗
i flows through j

β j
i)(∆) . (3.8)

Flow Regulator. A flow regulator with a (σ, ρ) shaping curve delays
packets of an input flow such that the output flow has the upper arrival
curve α(σ,ρ)(∆) = (ρ · ∆ + σ) for all ∆ > 0, independent of the timing
characteristics of the input flow, and it outputs packets as soon as possible
without violating the upper bound α(σ,ρ).

Delay Bounds. A packet stream constrained by an upper arrival curve
αi is first regulated by a (σ, ρ) regulator and then it traverses a network
that offers a cumulative lower service curve βNOC

i of the routers on the

3.5. Worst-Case Response Time Analysis 81

Δ

f, g

f

g

del(f,g)

Δ

α, β

ρ Δ β(r, T)

delNOC
σ

T

r Δ

α(σ, ρ)

Figure 3.10: Delay bound defined as the maximum horizontal distance
illustrated for an arrival curve of a (σ, ρ) regulated flow and a single router
providing a rate-latency service curve βl

r,T.

packet path. It is well known from the network and real-time calculus that
the maximum packet delay is related to the maximal horizontal distance
between functions (see Figure 3.10) which is defined as:

del(f , g) = sup
λ≥0

{
inf{τ ≥ 0 : f (λ) ≤ g(λ + τ)}

}
.

Now, the worst-case delay at the regulator delREG experienced by a
packet from a flow i constrained by an arrival curve αi and regulated by
a (σ, ρ) flow regulator can be computed as follows [WMT06]:

delREG = del(αi, α(σ,ρ)) . (3.9)

The output of the regulator is constrained by (αi ⊗ α(σ,ρ))(∆) and
therefore, the worst-case packet delay delNOC for flow i within the NoC
that has a cumulative lower service βNOC

i can be determined as:

delNOC = del(αi ⊗ α(σ,ρ), β
NOC
i) . (3.10)

Example 3.6. An example of worst-case delay computation is shown in
Figure 3.10. We consider a single router which serves a single flow constrained
by an upper arrival curve α(σ,ρ). The NoC consists of a single router that provides
to the flow a lower rate-latency service curve βr,T(∆) = r(∆ − T) for ∆ > T, and
β(r,T)(∆) = 0 otherwise. The arrival curve implies that the source can send at most
σ packets at once, but not more than ρ packets per cycle in the long run, while
the service curve implies a pipeline delay of T for a packet to traverse the router
and an average service rate of r packets per cycle. As shown in Figure 3.10, the
worst-case delay bound corresponds to the maximum horizontal distance between
the upper output arrival curve of the flow regulator and the lower service curve
of the NoC.

Output Flow Bounds. When a packet stream constrained by arrival
curve αi is regulated by a (σ, ρ) regulator and traverses a network that
offers a cumulative lower service curve βNOC

i , the processed output flow
is bounded by α′i computed as follows [WTVL06]:

α′i(∆) = ((αi ⊗ α(σ,ρ)) � βNOC
i)(∆) , (3.11)

82 Chapter 3. Bounding Intra-Criticality Interference

where � is the min-plus algebra deconvolution operator that is defined
as:

(f � g)(∆) = sup
λ≥0
{ f (∆ + λ) − g(λ)} .

Data Transfer Delay. Finally, we compute an upper bound on the total
delay for transferring a buffer of data using multiple packets, e.g., the
maximum delay for transferring 4KB of data from external memory over
a NoC. The availability of data can be modelled as an upper arrival curve
which has the form of a step function: αi(∆) = B for ∆ > 0, where B is
the total amount of data measured as the number of packets. Then an
upper bound on the total delay can be computed as a sum of the delays
computed by Eq. (3.9) and (3.10), where the first equation bounds the
delay experienced by all of the data at the regulator, i.e., the delay for the
regulator to transmit all of the data, and the second equation bounds the
delay for transferring the last packet of the data through the NoC.

In other words, a bound on the total delay for transferring a buffer
of B packets regulated by a (σ, ρ) regulator over a NoC that provides a
cumulative lower service curve of βNOC

i can be computed as:

WCDFT = delREG + delNOC , (3.12)

where αi(∆) = B for ∆ > 0, delREG and delNOC are defined in Eq. (3.9)
and (3.10), respectively, and WCDFT denotes the worst-case data fetch
time, as originally defined in the remote fetch protocol of Section 3.3.2.

Note that the above model is valid under the assumption that during
the data transfer, the regulator does not stall because there are no packets
available for transmission. For instance, in the case of external memory
data fetch, the memory controller should be able to insert packets fast
enough into the buffer of the regulator. Moreover, the regulator should
not experience stalls due to backpressure.

Bound on NoC Rx Memory Accesses within an FTTS Frame. For
representing interference from the NoC Rx interface within a compute
cluster, in Section 3.5.1.2 we introduced the value δ, which bounds the
number of memory accesses that the NoC Rx can perform within a time
frame f . For the time interval of the frame f , denoted as L f , δ can be not
greater than α′(L f) (Eq. (3.11)), but also not greater than the total number
of packets in the transmitted buffer, B. Therefore,

δ = min
{
α′(L f),B

}
. (3.13)

The D-NoC in the Kalray Platform. The models and methods described
above are compatible with the many-core Kalray MPPA-256 platform. In
the following, we give a short summary of flow regulation for the MPPA
NoC, which is based on (σ, ρ) regulators. Precisely, in the MPPA-256
processor, each connection is regulated at the source node by a packet

3.6. Design Optimization 83

shaper and a traffic limiter in tandem. This regulator can be configured
via two parameters, both defined in units of 32-bit flits: (i) a window
length (Tw), which is set globally for the NoC node and (ii) the bandwidth
quota (Nmax), which is set separately for each regulator. At each cycle, the
regulator compares the length of a packet scheduled for injection plus the
number of flits sent within the previous Tw cycles to Nmax. If not greater,
the packet is injected at the rate of one flit per cycle.

The (σ, ρ) parameters can be set at the source node through Tw and
Nmax (all measured in units of 32-bit flits, including header flits). We link
these parameters with the (σ, ρ) model by observing that ρ = Nmax/Tw.
This corresponds to the fact that no regulator may let more than Nmax flits
pass over any duration Tw. On the other hand, the regulator is allowed to
emit continuously until having sent Nmax flits within exactly Nmax cycles.
This defines a point on the ρ + σ linear time function and by regression,
the value of the function at time t = 0 (corresponding to σ) is found to be
σ = Nmax(1 −Nmax/Tw). Note that σ ≥ 0. For a more detailed presentation
of the MPPA NoC flow regulation, the interested readers are referred
to [dDvAPL14].

The MPPA NoC routers multiplex flows originating from different
directions. Each originating direction has its own FIFO queue at the
output interface, so flows interfere on a node only if they share a link to
the next node. This interface performs a round-robin arbitration at the
packet granularity between the FIFOs that contain data to send on a link.
The NoC routers have thus been designed for simplicity while inducing
a minimal amount of perturbations on (σ, ρ) flows. An additional benefit
of this router design is that eliminating backpressure from every single
queue through (σ, ρ) flow regulation at the source effectively prevents
deadlocks. Therefore, it is not necessary to resort to specific routing
techniques such as turn-models. Selecting (σ, ρ) parameters for all flows
is treated as an optimization step at design time, which however is outside
the scope of this chapter.

3.6 Design Optimization
Section 3.4 presented the runtime behavior of the FTTS scheduler and
Section 3.5 the response time analysis for tasks that are scheduled under
FTTS and can experience blocking delays on the shared memory path
of a cluster by concurrently executing tasks in the cluster or by the
incoming traffic from the NoC. In both sections, we assumed a given
FTTS schedule, with known task mapping to cores and data mapping to
memory banks. In this section, we discuss the problem of actually finding
an FTTS schedule while optimizing resource utilization in our system.

The problem can be formulated as follows. Given (i) a periodic mixed-
criticality task set τ with dependency graph Dep, (ii) a cluster consisting

84 Chapter 3. Bounding Intra-Criticality Interference

Figure 3.11: FTTS Design Flow. The white blocks represent the main tasks of
the design flow, resp. the main contributions of the chapter. The grey blocks
represent inputs/outputs to/from the design tasks.

of processing cores P with access to a banked memory, (iii) the memory
interference graph I with undefined edge set E2, (iv) the memory access
latency Tacc; Determine the mappingMτ : τ → P of tasks to processing
cores and the mapping Mmem : BL → B (E2 of I) of memory blocks to
banks such that:

• all tasks meet their mixed-criticality real-time requirements at all
levels of assurance,

• the worst-case sub-frame lengths are minimized, which leads to
a balanced workload distribution across the cores and minimal
schedulability loss due to the IS constraint,

• the minimum distance constraints of the dependency graphDep are
not violated, and

• the memory bank capacities are not surpassed.

The mappingMτ defines both the spatial partitioning of tasks among
the cores in P as well as the timing partitioning into frames and the
execution order on each individual core. These three aspects (spatial,
timing partitioning, relative execution order) determine fully an FTTS
schedule for task set τ.

For each of the two considered optimization problems (Mτ in
Section 3.6.1 andMmem in Section 3.6.2), we assume an existing solution to
the other one. Finally, we show how to solve both optimization problems
in an integrated manner (Section 3.6.3). To facilitate reading, please refer
to Figure 3.11, which depicts the inputs and outputs of the optimization
procedure as well as the flow of analyses (NoC analysis, response time
analysis) and information (task set, platform model, etc.) which enable
us to determine some of the inputs, e.g., the memory interference graph,
and to evaluate the visited solutions during optimization.

3.6. Design Optimization 85

3.6.1 Task MappingMτ Optimization
The problem of optimal task mapping on multiple cores is known to be
NP-hard, resembling the combinatorial bin-packing problem. To reduce
the complexity of finding an optimal mappingMτ, we propose a heuristic
method which is based on simulated annealing (SA) [KGV83]. In its
general form, the SA algorithm seeks the global minimum of a given
cost function in a state space. It begins with an arbitrary solution (state)
and it considers a series of random transitions based on a neighbourhood
function. At each step, if the neighbouring state S′ is of lower cost than
the current state S, SA accepts the transition to S′. Else, SA accepts the
transition with probability e−(Cost(S′)−Cost(S))/T, where T is a positive constant,
commonly known as temperature. SA is only one of the methods that can
be applied for the design optimization. If the optimization problem itself
was the focus, one could consider also e.g., constraint solvers or other non
black box heuristics. This is, however, outside the scope of this chapter.

Our optimization approach starts by generating a random task
mapping solution, resp. FTTS schedule for the given task set τ.
Specifically, it selects the FTTS cycle as the hyper-period H of tasks in
τ and also, the FTTS frame lengths depending on the task periods (the
greatest common divisor of the periods is used for all frames unless
otherwise specified by the system designer). For every task τi ∈ τ, it
selects arbitrarily a core on which the task will be mapped. Then, it
computes the number of jobs that are released by task τi within a hyper-
period H (H

Ti
) and the range of FTTS frames in which each job can be

scheduled, such that it is executed between its release time and absolute
deadline. For every job of τi, it selects arbitrarily an FTTS frame from
the allowed range. This procedure is repeated for all tasks in τ. The
constraints that must be respected during the generation of the initial
FTTS schedule are:

• All jobs of the same task are scheduled on the same core.

• For every dependencyτi → τ j in the dependency graphDep, the jobs
of the two tasks are scheduled on the same core, with a job of τ j being
scheduled in the same or a later frame than the corresponding job
of τi within their common period. If they are scheduled in the same
frame, the job of τ j must succeed that of τi. The sum of the best-case
execution times of the jobs that are scheduled in between τi and τ j

and the lengths of the intermediate frame(s) (if any exist between the
two jobs) must be no lower than their minimum distance constraint,
i.e., the weight of the corresponding edge inDep.

Note that this is the procedure that a system designer would follow to
generate a random FTTS schedule for a given task set τ. It provides no
guarantee on the schedule admissibility. If at this initial step no solution

86 Chapter 3. Bounding Intra-Criticality Interference

can be found to satisfy the above criteria, the search is aborted, i.e., τ is
considered non-schedulable on P.

Once an initial mapping solution is determined, the optimizer applies
simulated annealing [KGV83] to explore the design space for task
mapping. Particularly, new solutions are found by randomly selecting
a task τi ∈ τ and applying one of two possible variations with given
probabilities: (i) re-mapping all jobs of τi (and its dependent tasks in
Dep) to a different core or (ii) re-allocating one randomly selected job of
τi to a different FTTS sub-frame or to a different position within the same
sub-frame. Design space exploration is restricted to solutions that satisfy
the dependency constraints in Dep. The exploration terminates when it
converges to a solution or a computational budget is exhausted.

A task mapping solution is considered optimal if all jobs meet their
deadlines at all levels of assurance, i.e., the schedule is admissible, and
the worst-case sub-frame lengths are minimized, implying a balanced
workload distribution. Based on these requirements, we define the cost
function of the optimization problem as:

Cost(S) =

{
c1 = max f∈F

{
max`∈{1,...,K} late(f , `)

}
if c1 > 0

c2 = ‖barriers‖3 if c1 ≤ 0, (3.14)

where late(f , `) is the difference between the worst-case completion time
of the last sub-frame of f and the length of f at level of assurance `:

late(f , `) =

K∑
i=1

barriers(f , `)i − L f . (3.15)

If late(f , `) > 0, the tasks in f cannot complete execution by the end of
the frame for their `-level execution profiles. Therefore, with this cost
function, we initially guide design space exploration towards finding an
admissible solution. When such a solution is found, cost c1 becomes
negative or 0. Then, c2, i.e., the 3-norm of all sub-frame lengths, ∀ f ∈
F ,∀` ∈ {1, . . . ,K}, is used to minimize the worst-case lengths of all sub-
frames. The 3-norm of a vector x with n elements (here, positive real
numbers) is defined as ||x||3 :=

(∑n
i=1 |xi|

3)1/3. We selected the particular
value to map (represent) the vector with the barriers values for all f ∈ F
and ` ∈ {1, . . . ,K}, as we empirically found this to be the best among other
considered norms, such as the average, the maximum, the sum or the
Euclidean norm. Namely, the selected norm provides a trade-off between
reducing the worst-case sub-frame lengths (to ensure schedulability) and
enabling progress in the optimization via improving the average-case
lengths. However, alternative norms, such as the ones mentioned above
can be also used in our cost function (3.14). Note that during exploration,
the barriers function is computed for each visited solution, as discussed
in Section 3.5. For the WCRT analysis, the memory mapping Mmem is
assumed to be known.

3.6. Design Optimization 87

The task mapping optimization method can be easily extended to
account for fixed task preemption points, mapping constraints, solution
ranking, etc. We discuss the case of fixed preemption points below.

Extension: Preemption Points. In certain cases, some sort of preemption
is indispensable for schedulability, esp. when one considers task sets with
one or more computationally intensive tasks, which may not “fit” in any
frame of a global FTTS schedule. Enabling a preemptive scheduling
strategy, where each task can start executing in one sub-frame and
continue over several frames (in the respective sub-frames of its criticality
level) would not be efficient because:

• The computationally intensive tasks would be allowed to run up to
the end of each frame in which they are scheduled, thus preventing
any other tasks with the same or lower criticality level from being
executed. This behavior would affect not only tasks on the same
core, but also on the remaining cores due to the Isolation Scheduling
constraint.

• The fact that these tasks could be preempted at any possible point of
execution makes accurate interference analysis impossible, since the
execution profiles of the tasks (including memory accesses) cannot
be extracted for any possible partial execution.

To avoid these problems, we use the concept of fixed preemption points.
A task may have a certain amount of well-defined preemption points,
so that execution profiles for the corresponding partial executions can be
extracted. We specify each “preemptable” task by a list of alternative
executions, e.g., one with no preemption, one with 1 preemption point,
etc. In each case, the partial executions are defined as chains of d ependent
tasks with the same period, e.g., a chain with one task or 2 dependent
tasks, respectively. The alternatives are given as input to our optimization
algorithm. An admissible FTTS schedule must eventually include one of
the alternative executions of the related tasks. Note that this extension
introduces a new possible variation of a solution during design space
exploration. Namely, a new solution can be found by randomly selecting
a task chain and substituting it for one of its alternative executions.

3.6.2 Memory MappingMmem Optimization
The goal of memory mapping optimization is to determine a static
allocation of the task instructions, private data and communication buffers
(memory blocks) BL to banks B of the shared memory (E2 of memory
interference graph I), so that the timing interferences of tasks when
accessing the memory are minimized. For a given task mappingMτ, this
leads to a minimization of the worst-case sub-frame lengths (barriers).
A constraint of the optimization problem is that the total size of the

88 Chapter 3. Bounding Intra-Criticality Interference

allocated memory blocks in a bank must not surpass the bank capacity.
This constraint holds e.g., for the memory mapping in Figure 3.6.

For this problem, we adopt a heuristic method based on simulated
annealing, similar to the task mapping optimization. The method is
described in Algorithm 5. It receives as inputs an initial temperature
T0, a temperature decreasing factor a ∈ (0, 1), the maximum number of
consecutive variations with no cost improvement that can be checked
for a particular temperature Failmax, a stopping criterion in terms of
the final temperature T f inal, and a stopping criterion in terms of search
time (computational budget) timemax. It returns the best encountered
solution(s) in the given time.

The algorithm starts with an arbitrary initial solution S, satisfying
the bank capacity constraints. If function GenerateInitialSolution() can
provide no such solution, exploration is aborted (lines 1–4). Otherwise,
design space exploration is performed by examining random variations
of the memory mapping. Particularly, function Variate() selects randomly
a memory block and remaps it to a different memory bank such that no
bank capacity constraint is violated (line 10). The new solution S′ is
accepted if e−(Cost(S′)−Cost(S))/T is no lesser than a randomly selected real
value in (0,1) (lines 11–13). The cost of S′ is, also, compared to the
minimum observed cost, Costmin. If it is lower than Costmin, the new
solution and its cost are stored even if transition to S′ was not admitted
(lines 15–19). The temperature T of the simulated annealing procedure
is reduced geometrically with factor a. Reduction takes place every time
a sequence of Failmax consecutive solutions are checked, none of which
improves Costmin. After temperature reduction, exploration continues
from the so-far best found solution (Scur_best) (lines 22–26). Design space
exploration terminates when the lowest temperature T f inal is reached or
the computational budget timemax is exhausted.

Memory mapping affects the WCRT of a task τi by defining which
of the tasks that can be executed in parallel with it are also interfering
with it. The less interfering tasks, the lower the delay τi experiences
when accessing the shared memory. Therefore, to evaluate a memory
mapping solution we select a cost function which reflects the increase in
task WCRT due to interference on the shared memory banks. The cost
function is based on the mutual delay matrix D, which was defined in
Section 3.5.1.1, and has two alternative definitions.

One alternative to solve the optimization problem is to compute (part
of) the Pareto set of memory mapping solutions with minimal interference
between any two tasks with the same criticality level. The intuition behind
this approach is that we try to minimize simultaneously all elements of the
mutual delay matrix D, namely all blocking delays that a task can cause
to any other task (with the same criticality). This problem can be seen
as a multi-objective optimization problem with the n2 elements of matrix
D as individual cost functions. For this set of objectives, we compute

3.6. Design Optimization 89

Algorithm 5: Modified Simulated Annealing for Memory MappingMmem.
Input: T0, a, Failmax, T f inal, timemax

Output: S̄best

1: S← GenerateInitialSolution()
2: if S = null then
3: return null
4: end if
5: S̄best← {S}, Scur_best ← S, Costmin ← Cost(S)
6: T← T0

7: FailCount← 0
8: time← StartTimer()
9: while time < timemax and T > T f inal do

10: S′← Variate(S)
11: if e−(Cost(S′)−Cost(S))/T

≥ Random(0,1) then
12: S← S′

13: end if
14: UpdateBestSolutions(S′)
15: if Cost(S′) < Costmin then
16: Scur_best← S′

17: Costmin← Cost(S′)
18: FailCount← 0
19: else
20: FailCount← FailCount + 1
21: end if
22: if FailCount = Failmax then
23: T← a · T
24: S← Scur_best

25: FailCount← 0
26: end if
27: end while

the Pareto set of memory mapping solutions. Algorithm 5 maintains
such a set S̄best of non-dominated solutions. In particular, a newly visited
mapping solution S′with matrix D′ is inserted into set S̄best if it has a lower
value for at least one element of D′ than the corresponding element of any
solution in S̄best. If a solution S ∈ S̄best is dominated by S′, i.e., S′ has lower
or equal values for all elements of D, then S is removed from the set. This
update is performed by function UpdateBestSolutions() (line 14).

The second alternative is to define the scalar cost function Davg as the
average over all elements of matrix D, i.e., the average delay that tasks
with the same criticality level cause to each other when interfering on
shared banks. Then we can seek the best solution in terms of Davg. In
this case, S̄best contains only one solution characterized by the minimum

90 Chapter 3. Bounding Intra-Criticality Interference

encountered Davg.

3.6.3 Integrated Task and Memory Mapping Optimization
The problems of optimizingMτ andMmem are inter-dependent. Namely,
design space exploration for the optimization of the task mapping requires
information on the memory mapping for computing function barriers.
Similarly, matrix D, which defines the cost of a memory mapping solution,
can be refined for a particular task mapping depending on the tasks that
can be executed in parallel. In the following, we outline two alternative
approaches towards an integrated optimization solution.

I. Task mapping optimization for each memory mapping in Pareto set.
As discussed previously, one can compute using Algorithm 5 part
of the Pareto set S̄best of memory mapping solutions that minimize
the interference between any two tasks of the same criticality level.
These solutions consider that all tasks with the same criticality level are
potentially executed in parallel (worst-case task mapping). The next step
is to solve the task mapping optimization problem for each memory
mapping in the set S̄best. Finally, the combination of solutions which
minimizes ||barriers||3 is selected.

II. Iterative task and memory mapping optimization. Since the
complexity of computing the Pareto set solutions for the memory
mapping optimization problem can be prohibitive, one can select
an iterative solution to the two problems. Then, for each visited
solution during design space exploration forMτ, a memory mapping
optimization is also performed to find the solution with minimized cost
||barriers||3. Here, we use the cost function Davg.

It cannot be said that one method clearly outperforms the other in terms of
efficiency. Empirical evaluation has shown that depending on the sizes of
the search spaces of the task mapping and memory mapping optimization
problems, one algorithm can perform faster than the other.

3.7 A Case Study: Flight Management System
To evaluate the proposed design optimization approaches, we use an
industrial implementation of a flight management system [DFG+14].
This application was the central use-case of the European Certainty
project [cer]. The purpose for the evaluation is first, to show applicability
of our optimization methods and demonstrate the results of the response
time analysis for the optimized task and memory mapping solution.
Second, we investigate the effect of various platform parameters, such
as the memory access latency and the number of memory banks, or

3.7. A Case Study: Flight Management System 91

design choices, such as the selection of routes and (σ,ρ) parameters for
the NoC flows, on the schedulability of the application under FTTS. The
optimization framework has been implemented in Java and the evaluation
was performed on a laptop with a 4-core Intel i7 CPU at 2.7 GHz and 8
GB of RAM.

Flight Management System. The flight management system (FMS)
from the avionics domain is responsible for functionalities such as the
localization of an aircraft based on periodically acquired sensor data, the
computation of the flightplan that guides the auto-pilot, the detection of
the nearest airport, etc. We look into a subset of the application, consisting
of 14 periodic tasks for sensor reading, localization and computation of
the nearest airport. Seven are characterized by safety level DAL-B (we
map it to criticality level 2, i.e., high) and seven by safely level DAL-C
(we map it to criticality level 1, i.e., low) based on the DO-178C standard
for certification of airborne systems [RTC12]. The periods of the tasks
vary among 200 ms, 1 sec and 5 sec, as shown in Table 3.4. Based on the
periods, we select the cycle and the frame length of the FTTS schedule as
H = 5 sec and L f = 200 ms for all f ∈ F , respectively. The worst-case
execution times of the tasks were derived through measurements on a
real system or for few tasks for which the code was not available (e.g.,
τinit,13) based on conservative estimations. A discussion on how the worst-
case execution time parameters of the FMS tasks can be derived can be
found in the technical report [Cer14a]. For the level-2 profiles Ci(2) of
tasks τi with χi = 2, we augment the worst observed execution times by a
factor of 5. Similarly, for the memory accesses, we consider conservative
bounds based on the known memory footprints for the tasks and derive
the Ci(2) parameters by multiplying these bounds by 5. Factor 5 is selected
arbitrarily to augment the worst-case task parameters and thus, increase
the safety margins. Such augmentation of the worst-case parameters
seems a common industrial practice for safety-critical applications. The
best-case execution time and access parameters are taken equal to 0 due
to lack of more accurate information. Last, the degraded profiles Ci,deg of
tasks τi with χi = 1 correspond to no execution, i.e., Ci,deg = (0, 0, 0, 0). The
task periods, criticality levels, level-1 and level-2 worst-case execution
times and memory accesses as well as the memory blocks that each task
accesses and the maximum number of accesses at the task’s own criticality
level are shown in Table 3.4.

To model the memory accessing behavior of the tasks according to
Section 3.5.1, we define a memory interference graphIwith the following
memory blocks: one block per task with size equal to the size of its data
as measured on the deployed system and one block per communication
buffer with known size, too. This yields in total 27 memory blocks.

The FMS requires access to a navigation database with a memory
footprint of several tens of MB. Particularly task τ13, which is responsible

92 Chapter 3. Bounding Intra-Criticality Interference

Purpose
Task CL Period Level-1 (2) Level-1 (2) Max. Accesses
τi χi Ti (ms) emax

i (ms) µmax
i to Mem. Blocks

Sensor data

τ1 2 200 11 (55) 213 (1065)
b1 (100), b2 (425),
b4 (70), b6 (190)
b8 (190), b10 (90)

τ2 1 200 20 (0) 117 (0) b3 (10), b4 (107)
acquisition τ3 1 200 18 (0) 129 (0) b5 (10), b6 (119)

τ4 1 200 18 (0) 129 (0) b7 (10), b8 (119)
τ5 1 200 20 (0) 129 (0) b9 (10), b10 (119)

Localization

τ6 2 200 7 (35) 145 (725)
b2 (425), b11 (100),
b12 (100), b13 (90)
b4 (10)

τ7 2 1000 6 (30) 56 (280)
b13 (90), b14 (100)
b15 (90)

τ8 2 5000 6 (30) 57 (285)
b15 (17), b16 (100),
b17 (90), b19 (78)

τ9 2 1000 6 (30) 57 (285)
b17 (90), b18 (100),
b21 (78), b22 (17)

τ10 1 200 20 (0) 130 (0) b12 (120), b24 (10)
τ11 1 1000 20 (0) 113 (0) b19 (103), b25 (10)
τ12 1 200 20 (0) 113 (0) b21 (103), b26 (10)

Nearest Airport
τ13 2 1000 48 (192) 1384 (6920)

b17 (90), b20 (100),
b23 (1610), b27 (5120)

τinit,13 2 1000 2 (10) 18 (90)
b17 (90), Triggers
Rx to b27 (403)

Table 3.4: Flight Management System specification.

for the computation of the nearest airport, needs read-access to certain
entries (up to 4 KB of data). In the following, we assume that the database
is maintained in an external DDR memory and the required data are
fetched to the local memory of a cluster, where the FMS application
is executed. The data transfer is initiated by the preceding task τinit,13,
which has the same criticality level and period as τ13. The memory block
corresponding to the database data is bl27. We add a high-priority task
Rx13 to I to indicate the remote data transfer. Rx13 is connected to the
memory block b27 via an edge with weight δ.

Note that the FMS contains no task dependencies other than that
between the task requesting the database entries for the computation of
the nearest airport, τinit,13, and the task that performs the computation,
τ13. In the following, we show how to compute the minimum distance
constraint between τinit,13 and τ13 in the dependency graph Dep as well
as the weight δ for the edge from the node Rx13 to bl27 in the memory
interference graph I.

NoC Flow Routing and Regulation. Task τ13 reads upon each activation
4 KB of data from the database. The data are transferred from the remote
cluster with access to the DDR over the D-NoC in packets of 4 Bytes.
Namely, a transfer of 1024 packets must be executed between any two
successive executions of τ13. We assume that this flow is (σ, ρ) regulated

3.7. A Case Study: Flight Management System 93

at the I/O sub-system, with σ = 10 packets and ρ = 2000 packets/sec.
The (σ, ρ) parameters are selected arbitrarily here, such that they are
reasonable for the required amount of transferred data and they allow
the transfer over the NoC to be completed within a period of task τ13.
The flow routing is fixed and passes through two D-NoC routers. On the
first router, the flow can encounter interference from one more flow on
the output link. Respectively, on the second router, the flow interferes
with three more flows on the output direction. The clock frequency on
the chip is 400 MHz. The routers forward the packets over the D-NoC
links at a rate of 1 packet/cycle, equiv. 400,000,000 packets/sec. Given the
above assumptions and by applying Eq. (3.12) and (3.13) of Section 3.5.2,
we derive the worst-case data fetch time, WCDFT = 511.4 ms, and the
maximum number of packets fetched during 200 ms (duration of an FTTS
frame), δ = 403, respectively.

Based on the remote fetch protocol of Section 3.3.2, to specify the
minimum distance constraint between task τinit,13 and τ13, we need to
know besides WCDFT, the worst-case notification time, WCNT, for the
transfer of the notification from τinit,13 to the remote listener task in the
I/O sub-system as well as the worst-case remote set-up time for the data
transfer, WCRST. WCNT can be derived in a similar way as WCDFT.
Assuming that τinit,13 sends only one packet (4 Bytes) to the remote cluster,
following the exact same route as the flow from the I/O sub-system to the
cluster, it follows from Eq. (3.12) that WCNT = 0.4 ms. Regarding WCRST,
a conservative bound is assumed to be given, WCRST = 25 ms (here,
arbitrary selection). Summarizing on the above results, the dependency
between τinit,13 and τ13 in the dependency graphDep is weighted with the
minimum distance constraint: w =(0.4 + 25 + 511.4) ms = 536.8 ms.

Platform Parameters. For the deployment of the FMS, we consider
a target platform resembling a cluster of the MPPA-256 platform. In
particular, P includes 8 processing cores with shared access to 8 memory
banks of 128 KB each. We consider round-robin arbitration on the memory
arbiters with higher priority for the NoC Rx interface, according to the
description in Section 3.3.2. Once a memory access is granted, the
fixed memory latency is Tacc = 55 ns. The memory latency bound has
been empirically estimated on the MPPA-256 platform using benchmark
applications. Note, however, that it is not necessarily a safe bound for the
MPPA-256 memory controller.

3.7.1 Design Optimization and Response Time Analysis
With the first experiment we intend to evaluate the applicability
and efficiency of the optimization framework of Section 3.6 w.r.t. the
deployment of the FMS on a compute cluster. The scheduling policy
in the cluster is FTTS with a cycle of H = 5000 ms, consisting of
25 frames with length 200 ms each, based on the periods of our task

94 Chapter 3. Bounding Intra-Criticality Interference

Frame Core Sub-frame 1 Sub-frame 2 Frame Core Sub-frame 1 Sub-frame 2
f1 p1 τinit,13 τ10, τ2, τ3 f2 p1 - τ10, τ2, τ3

[0,200] p2 τ6, τ1 τ4, τ12, τ5 [200,400] p2 τ6, τ1 τ4, τ12, τ5

f3 p1 - τ10, τ2, τ3 f4 p1 τ13 τ10, τ2, τ3
[400,600] p2 τ6, τ1 τ4, τ12, τ5, τ11 [600,800] p2 τ6, τ1 τ4, τ12, τ5

f5 p1 τ7, τ9 τ10, τ2, τ3 f6 p1 τinit,13 τ10, τ2, τ3
[800,1000] p2 τ6, τ1 τ4, τ5, τ12 [1000,1200] p2 τ6, τ1 τ4, τ5, τ12

f7 p1 τ7 τ2, τ10, τ3 f8 p1 τ9 τ10, τ2, τ3
[1200,1400] p2 τ6, τ1 τ4, τ12, τ5 [1400,1600] p2 τ6, τ1 τ4, τ5, τ11, τ12

f9 p1 - τ10, τ3, τ2 f10 p1 τ13 τ10, τ2, τ3
[1600,1800] p2 τ6, τ1 τ4, τ12, τ5 [1800,2000] p2 τ6, τ1 τ4, τ12, τ5

f11 p1 τinit,13 τ10, τ2, τ3 f12 p1 - τ10, τ2, τ3
[2000,2200] p2 τ6, τ1 τ12, τ5, τ9 [2200,2400] p2 τ6, τ1 τ4, τ11, τ12, τ5

f13 p1 τ7 τ10, τ2, τ3 f14 p1 τ13 τ10, τ2, τ3
[2400,2600] p2 τ6, τ1 τ12, τ4, τ5 [2600,2800] p2 τ6, τ1 τ4, τ12, τ5

f15 p1 τ9 τ10, τ2, τ3 f16 p1 - τ10, τ2, τ3
[2800,3000] p2 τ1, τ6 τ4, τ12, τ5 [3000,3200] p2 τ6, τ1 τ4, τ12, τ5

f17 p1 τinit,13, τ9 τ10, τ2, τ3 f18 p1 τ7, τ8 τ10, τ2, τ3
[3200,3400] p2 τ6, τ1 τ4, τ12, τ5, τ11 [3400,3600] p2 τ6, τ1 τ12, τ4, τ5

f19 p1 - τ10, τ2, τ3 f20 p1 τ13 τ10, τ2, τ3
[3600,3800] p2 τ6, τ1 τ4, τ5, τ12 [3800,4000] p2 τ6, τ1 τ4, τ12, τ5

f21 p1 - τ10, τ2, τ3 f22 p1 τinit,13, τ9 τ10, τ2, τ3
[4000,4200] p2 τ6, τ1 τ4, τ12, τ5 [4200,4400] p2 τ6, τ1 τ13, τ4, τ5, τ11

f23 p1 - τ10, τ2, τ3 f24 p1 τ7 τ10, τ2, τ3
[4400,4600] p2 τ6, τ1 τ4, τ12, τ5 [4600,4800] p2 τ6, τ1 τ5, τ12, τ4

f25 p1 τ13 τ10, τ2, τ3
[4800,5000] p2 τ6, τ1 τ4, τ12, τ5

Table 3.5: Optimized task mappingMτ for FMS on a 2-core, 2-bank subset of a
compute cluster.

Bank Mapped memory blocks
1 b1 to b15, b24
2 b16 to b23, b25 to b27

Table 3.6: Optimized memory mapping Mmem for FMS on a 2-core, 2-bank
subset of a compute cluster.

set. Each FTTS frame is divided into two sub-frames, since the FMS
has K = 2 criticality levels. We configure the simulated annealing
search (Algorithm 5 of Section 3.6) for both task and memory mapping
optimization with parameters: a = 0.8, Failmax = 100, T0 based on the
average cost change of 100 random solutions, T f inal = 0.1, timemax = 30
min. For the task mappingMτ optimization, the probabilities of selecting
a sub-frame or core variation to find new solutions are 0.85 and 0.15,
respectively. The memory mapping optimizationMmem uses as objective
function the average value of the delay matrix Davg and is performed
for each visited task mapping solution during design space exploration,
i.e., according to the integrated solution II of Section 3.6.3. The overall
optimization goal is to maximize the slack time at the end of the frames
(equiv. minimize ||barriers||3), which indicates a maximal exploitation of
computation parallelism and memory accessing parallelism.

We consider all possible configurations with one to eight processing

3.7. A Case Study: Flight Management System 95

cores and one to eight memory banks for the deployment of the FMS. The
optimized task and memory mapping solution which yields the minimum
value for the objective function ||barriers||3 is found for the configuration
with two processing cores and two memory banks. Selecting more memory
banks or more cores is not beneficial since it does not lead to a solution
of lower cost, namely a solution with more slack time at the end of the
frames. This is important information for a system designer, who tries
not only to design a safe system, but also to allocate the minimal amount
of resources.

For the configuration with two cores and two memory banks, the
optimization framework returns an admissible FTTS schedule after
evaluating 4919 task and memory mapping combinations and converging
to one within 4.3 minutes. The optimized task and memory mapping
are shown in Table 3.5 and 3.6, respectively. Note that the dependency
between tasks τinit,13 and τ13 is respected and that the two tasks are
scheduled in different frames on the same core such that the minimum
distance constraint (536.8 ms) is not violated. For the optimized solution,
function barriers can be computed based on the memory interference
graph I and the memory latency Tacc, as described in Section 3.5.1.
The values of barriers, i.e., the worst-case sub-frame lengths for every
FTTS sub-frame and level of assurance, as computed by our optimization
framework, are shown in Table 3.7. Note that for every FTTS frame, the
sum of barriers for its two sub-frames, under both levels of assurance,
is not greater than the size of the frames, i.e., 200 ms. This shows that
the admissibility condition of Eq. (3.2) is valid, which yields the FTTS
schedule admissible.

3.7.2 Effect of Platform Parameters and Design Choices on
FTTS Schedulability

With the second experiment we intend to evaluate the sensitivity of
our optimization approach when certain parameters, e.g., the number of
memory banks, the memory access latency Tacc, the incoming traffic from
the NoC, the number of available processing cores vary. We evaluate
schedulability of the FMS application for the alternative configurations
(combinations of the above parameters) based on the cost ||barriers||3 of
the optimized task and memory mapping solution in each case. For the
definition of metric ||barriers||3, see the discussion on the cost function
(3.14) in Section 3.6.1. The lower the cost of the optimized solution, the
higher the probability that an admissible FTTS schedule for the considered
configuration exists. In all following scenarios, the optimizer converges
to a task and memory mapping solution in less than 7 minutes. For the
simulated annealing algorithm, we use the same parameters as in the
previous section.

First, we evaluate the effect of the memory access latency Tacc on the

96 Chapter 3. Bounding Intra-Criticality Interference

Frame f Level-1 barriers(f , 1) Level-2 barriers(f , 2)
Subframe1 Subframe2 Subframe1 Subframe2

f1 18 58.1 90.1 0
f2 18 58.1 90.1 0
f3 18 78.1 90.1 0
f4 48.1 57.9 192 0
f5 18 58.1 90.1 0
f6 18 58.1 90.1 0
f7 18 58.1 90.1 0
f8 18 78.1 90.1 0
f9 18 58.1 90.1 0
f10 48.1 57.9 192 0
f11 18 58.1 90.1 0
f12 18 78.1 90.1 0
f13 18 58.1 90.1 0
f14 48.1 57.9 192 0
f15 18 58.1 90.1 0
f16 18 58.1 90.1 0
f17 18 78.1 90.1 0
f18 18 58.1 90.1 0
f19 18 58.1 90.1 0
f20 48.1 57.9 192 0
f21 18 58.1 90.1 0
f22 18 78.1 90.1 0
f23 18 58.1 90.1 0
f24 48.1 57.9 192 0
f25 18 58.1 90.1 0

Table 3.7: Computation of barriers for Mmem (Table 3.5), Mmem (Table 3.6),
Tacc = 55ns, memory interference graph I.

FMS schedulability. We assume that the value of Tacc varies within {55
ns, 550 ns, 5.5 us, 55 us}. We perform design space exploration after
fixing the number of memory banks to two. Figure 3.12(a) shows how
the schedulability metric, ||barriers||3, changes for the FMS as the number
of available cores increases from one to eight, for different Tacc values.
For each combination of Tacc and number of cores, the depicted point in
Figure 3.12(a) corresponds to the best found solution by our optimization
framework. The value on the y-axis represents the 3-norm ||barriers||3 for
the optimized task and memory mapping solution. The points within the
dashed rectangle correspond to schedulable implementations, namely to
combinations of Tacc and number of cores m for which the optimized
mapping solution is admissible according to Definition 3.1. The points
that do not fall into this rectangle correspond to implementations for
which the optimizer could not converge to any admissible solution within
the given time budget of 30 minutes. We observe that, like in the previous
section, the FMS schedulability under FTTS increases or remains stable as
the number of cores increases. This is partly explained by the low task set

3.7. A Case Study: Flight Management System 97

utilization of the FMS. Two processing cores suffice to find an admissible
FTTS schedule, whereas more cores are not beneficiary. Moreover, the
effect of Tacc in schedulability is significant. For Tacc ∈ {5.5 us, 55 us} no
admissible schedule can be found even when all cores of the cluster are
utilized. This is an important indicator that in shared-memory multi-
core and many-core platforms, the increase in number of cores must be
followed by a simultaneous increase in memory bandwidth (reduction
of Tacc) or mechanisms for the reduction of memory contention, for real
exploitation of task parallelism.

Second, we evaluate the effect of data partitioning on the FMS
schedulability. We fix Tacc to 550 ns and perform design space exploration
for all cluster configurations with one to eight memory banks and one to
eight cores. Figure 3.12(b) shows the schedulability metric (cost ||barriers||3
of the optimized task and memory mapping solution) as the number of
cores increases, for the configurations with one bank (blue line) or more
than one banks (magenta line). Deploying more than two memory banks
does not improve the optimized solutions. This can be partly explained
by the low memory utilization of the FMS (fraction of cluster memory
required for task data and communication buffers). Also, note that the
cost of the solutions for one bank are only marginally worse than those
for several banks. By carefully examining the optimized solutions, we
conclude that in cases where no flexibility exists w.r.t. memory mapping,
the optimizer tends to select the task mapping by maximally distributing
the tasks across the FTTS frames (not letting empty frames), such that a
minimal set of tasks are executed in parallel in the same frame and hence,
interfere on the memory bank. The periods of the FMS tasks and the
considered dimensioning of the FTTS schedule (25 frames over H = 5sec)
help in this direction, since many tasks have a high degree of freedom in
the range of frames to which they can be mapped. We conclude that for
the FMS, the combined task and memory mapping optimization performs
efficiently, in the sense that the optimizer exploits maximally the flexibility
in solving one problem (task mapping) when the flexibility of the second
problem (memory mapping) is limited.

Finally, we evaluate the effect of the incoming NoC traffic at the
cluster memory on the FMS schedulability. We assume that by selecting
different regulation parameters and/or NoC routes for the data flow that
is requested by task τinit,13, we can affect the maximum number of NoC Rx
accesses to the local memory, δ, such that it varies within {403, 803, 1024,
4096, 8192}. We fix Tacc to 550 ns and the number of memory banks to 2.
The FMS schedulability metric (cost ||barriers||3 of the optimized task and
memory mapping solution) for increasing number of cores and for the
different δ values is shown in Figure 3.12(c). Again, schedulability is not
severely affected by increased incoming NoC traffic. This is achieved in
that the optimizer isolates the memory block corresponding to the fetched
database entries (b27) so that no or very few FMS tasks are interfering with

98 Chapter 3. Bounding Intra-Criticality Interference

(a) FMS schedulability for variable Tacc.

(b) FMS schedulability for variable number of banks.

(c) FMS schedulability for variable number of NoC Rx memory
accesses in an FTTS frame δ.

Figure 3.12: Effect of platform and design parameters on FMS schedulability
under the FTTS policy.

the higher-priority Rx13 requester, thus exploiting the memory accessing
parallelism that the two memory banks enable. This way, the WCRT of the
FMS tasks becomes immune to changes of δ. This observation justifies the
benefits of the combined task and memory mapping optimization, where
the interference of the tasks on shared platform resources is considered.

3.8. Comparison to Existing Mixed-Criticality Scheduling Policies 99

3.8 Comparison to Existing Mixed-Criticality
Scheduling Policies

The benefit of using FTTS in the presence of shared platform resources,
e.g., memory banks and networks-on-chip, has been discussed and
evaluated in Section 3.7. In this section, we evaluate the efficiency of
the FTTS policy in finding admissible schedules against state-of-the-
art scheduling policies that have been proposed for mixed-criticality
systems. Specifically, we intend to evaluate the limitations posed by
the (flexible) time-triggered implementation of FTTS and their impact
on schedulability. Recall that a comparison between FTTS and other
IS-compliant policies has been already presented for synthetic task sets
with harmonic periods in Section 2.6.4. Here, we compare FTTS to
more dynamic, non IS-compliant state-of-the-art MC scheduling policies,
particularly the EDF-VD algorithm for single-core [BBD+12] and its
GLOBAL variant for multi-core systems [LB12]. Since these algorithms
do not consider resource sharing, comparison is based upon synthetic
task sets that require no memory or NoC accesses.

For task set generation we use the algorithm of [LB12] (TaskGen,
Figure 4 in [LB12]) for 2 criticality levels. Per-task utilization Ui is selected
uniformly from [UL,UH] = [0.05, 0.75] and the ratio Zi of the level-2
utilization to level-1 utilization is selected uniformly from [ZL,ZH] =[1,8].
The probability that a task τi has χi = 2 is set to P = 0.3. Period Ti

is randomly selected from the set {100, 200, 300, 400, 500}. Because FTTS
cannot handle dynamic preemption, if the assigned execution time of a
task is larger than the minimum frame length of the FTTS scheduling
cycle, the task is split into sub-tasks through fixed preemption points.
The number of preemption points is selected such that each sub-task can
“fit” within the FTTS frame with minimal length.

Figures 3.13(a)-3.13(d) (FTTS vs. EDF-VD) and Figures 3.14(a)-3.14(d)
(FTTS vs. GLOBAL) show the fraction of task sets that are deemed
schedulable by the considered algorithms as a function of the ratio Usys/m
(normalized system utilization). Usys is defined in [LB12] as follows:

Usys := max
{
ULO

LO(τ) + ULO
HI (τ),UHI

HI(τ)
}
, (3.16)

where Uy
x(τ) represents the total utilization of the tasks with criticality

level x for their y−level execution profiles (LO≡1, HI≡2). Note that the
normalized utilization increases from 0.25 to 1.10 in steps of 0.05. For
each utilization point in the graphs, 100 or 1000 randomly generated
task sets (as annotated in respective figures) are considered. To check
schedulability of each randomly generated task set for FTTS, we use the
optimization framework of Section 3.6.1 and check condition (3.2) for the
optimized solution. For the design space exploration, we use the same
configuration for the simulated annealing algorithm as in Section 3.7 and a

100 Chapter 3. Bounding Intra-Criticality Interference

(a) Ti ∈ {100, 200, 300, 400, 500}. (b) Ti ∈ {100}.

(c) Ti ∈ {200, 400}. (d) Ti ∈ {200, 400, 800}.

Figure 3.13: Schedulable task sets (%) vs. normalized system utilization for FTTS
and EDF-VD (m = 1), UL = 0.05,UL = 0.75,ZL = 1,ZL = 8,P = 0.3, 1000 task sets
per utilization point.

time budget of 10 minutes. In all cases, however, the optimizer converged
to a solution in less than 5 minutes. Additionally, to check schedulability
of each randomly generated task set for EDF-VD and GLOBAL, we check
the sufficient conditions from [BBD+12, LB12]. These conditions are given
below.

• For EDF-VD on single cores [BBD+12]:

UHI
HI(τ) + ULO

LO(τ) ·
ULO

HI (τ)

1 −ULO
LO(τ)

≤ 1. (3.17)

• For GLOBAL on multicores with m cores [LB12]:

ULO
LO(τ) + min

(
UHI

HI(τ),
ULO

HI (τ)

1 − 2 ·UHI
HI(τ)/(m + 1)

)
≤

m + 1
2

, (3.18)

On single-core systems, FTTS faces two limitations compared to EDF-
VD, i.e., the fixed preemption points and the time-triggered frames. EDF-
VD is more flexible with scheduling task jobs as they arrive and can
preempt them any time. The results of Figure 3.13(a) show that as
the utilization increases, EDF-VD can schedule 0 up to 52.9% (Usys =

3.8. Comparison to Existing Mixed-Criticality Scheduling Policies 101

(a) Ti ∈ {100, 200, 300, 400, 500}. (b) Ti ∈ {100}.

(c) Ti ∈ {200, 400}. (d) Ti ∈ {200, 400, 800}.

Figure 3.14: Schedulable task sets (%) vs. normalized system utilization for FTTS
and GLOBAL (m = 4), UL = 0.05,UL = 0.75,ZL = 1,ZL = 8,P = 0.3, 100 task sets
per utilization point.

0.85) more MC task sets than FTTS (on average, EDF-VD has 17.9%
higher schedulability than FTTS). The impact of the FTTS limitations
on schedulability becomes even clearer if we repeat the experiment such
that these limitations are avoided. This happens when all tasks have the
same period (Ti = 100), hence the FTTS cycle consists only of 1 frame. The
corresponding results in Figure 3.13(b) exhibit now reverse trends, with
FTTS being able to schedule up to 57.2% (Usys = 1.0) more task sets than
EDF-VD (on average, FTSS has 10.5% higher schedulability than EDF-
VD). In fact, if we consider safety-critical applications with harmonic
task periods, such as the FMS of Section 3.7, the performance of FTTS
is comparable to that of EDF-VD. This can be seen in Figure 3.13(c) and
3.13(d), where the task periods for the generated task sets are selected
uniformly from sets {200, 400} and {200, 400, 800}, respectively. In the case
of two harmonic periods, FTTS can schedule up to 16.2% (on average
2.2%) more tasks sets than EDF-VD. In the case of three periods, FTTS
can schedule up to 8.1% more task sets (Usys = 1), but on average across
all utilization points, it schedules 1.2% less task sets than EDF-VD. The
comparable performance of the two policies in terms of schedulability for
equal or harmonic task periods is a significant outcome, given that FTTS
was designed targeting at temporal isolation rather than efficiency.

102 Chapter 3. Bounding Intra-Criticality Interference

On multicores, we expect GLOBAL to perform more efficiently than
FTTS not only because of the previously discussed advantages, but also
because it enables task migration. Namely, several jobs of the same task
can be scheduled on different cores and a preempted job can be resumed
on a different core. The results of Figure 3.14(a) show that the effectiveness
of GLOBAL in finding admissible schedules for the generated task sets
is up to 65% higher (Usys = 0.40) than for FTTS. Recall, however, that
the increased efficiency comes at the cost of ignoring the timing effects of
shared resources which are not negligible especially in the presence of task
migrations. If the limitations of FTTS are avoided as before, the results
(Figure 3.13(b)) are again reversed. Then, FTTS schedules up to 82.3%
(Usys = 0.65) more task sets than GLOBAL (on average, FTTS has 20.8%
higher schedulability than GLOBAL). Figure 3.14(c) and 3.14(d) show the
schedulability vs. utilization trends when the task periods are selected
from the harmonic sets {200, 400} and {200, 400, 800}, respectively. In the
case of two harmonic periods, can schedule up to 53% (on average 3.8%)
more tasks sets than GLOBAL. In the case of three periods, it can schedule
up to 31% more task sets, but on average across all utilization points, it
schedules 3.6% less task sets than GLOBAL. Therefore, schedulability is
again comparable between the two policies when the task periods are
harmonic.

It follows that FTTS, despite its imposed limitations for achieving
temporal isolation, e.g., the lack of dynamic preemption, the static
partitioning of tasks among cores and the fixed-length frames, can actually
compete with state-of-the-art scheduling algorithms which were designed
for efficiency. In other words, FTTS not only enables Isolation Scheduling
to ease the process of certification, but it is also a competent solution
for efficient (processing, memory, communication) resource utilization in
mixed-criticality environments.

3.9 Summary
This chapter presented a unified analysis approach for computing,
memory and communication scheduling. The approach targets modern
cluster-based many-core architectures with two shared resource classes:
a shared multi-bank memory within each cluster and a network-on-chip
(NoC) for inter-cluster communication and access to external memories.
To model such architectures and the communication flows through
the NoC, we used the Kalray MPPA-256 architecture as reference and
introduced a protocol for inter-cluster communication with formally
provable timing properties. For the scheduling of mixed-criticality
applications on cluster-based architectures, we proposed a policy based
on flexible time-triggered and synchronization scheduling (FTTS), which
complies with the Isolation Scheduling model of Chapter 2. For this

3.9. Summary 103

policy, we presented a worst-case response time analysis which (i) models
interference on the shared memory of a cluster by concurrently executing
tasks in the cluster and by incoming traffic from the NoC, (ii) bounds
safely and tightly the end-to-end delays for data transfers through the
NoC, (iii) models the incoming traffic from the NoC in the form of
arrival curves from the real-time calculus, (iv) integrates the results of
the memory interference analysis and the NoC analysis. Moreover, we
proposed design exploration methods targeting at the optimization of
resource utilization within a cluster at the levels of computing (core
utilization), memory (exploitation of internal memory structure for data
partitioning) and communication (management of incoming traffic from a
NoC). The applicability and efficiency of the optimization approach were
demonstrated for an industrial implementation of a flight management
system. Additionally, the FTTS scheduling policy was compared in terms
of schedulability to state-of-the-art policies for mixed-criticality systems.
The results showed a comparable or even higher schedulability than
existing approaches for harmonic workloads.

Later, Chapter 5 presents an implementation of the FTTS scheduler on
the Kalray MPPA-256 platform. The methods developed here for system-
level design optimization are then put into practice to enable the efficient
and timing-predictable deployment of the flight management system and
other industrial-representative applications. This implementation will
allow us to refine and validate the proposed worst-case response time
analysis.

104 Chapter 3. Bounding Intra-Criticality Interference

4
A Dedicated Execution Model for

Tighter Interference Analysis

Multi-core architectures offer the potential for drastically increasing the
performance of embedded real-time systems. However, the potential
is usually not fully exploited because of contention on shared platform
resources. Concurrently executed tasks mutually block their accesses to
the shared resources, causing non-deterministic delays which are difficult
to bound. Chapter 2 presented a scheduling model for eliminating
such timing interference among tasks with different safety criticality
levels. Chapter 3 presented a method for bounding the effects of resource
contention on the response time of concurrently executed tasks (with the
same criticality level) on manycores with shared memory and network-
on-chip infrastructure. The proposed worst-case response time analysis
is applicable to shared resources that are round-robin arbitrated. Its
extension to more complex arbitration schemes is, however, not trivial
and may result in excessive pessimism. In fact, even for round-robin
arbitration, the analysis of Chapter 3 may be pessimistic in certain cases,
since it is based on the assumption of worst-case interference for every
single resource access of a task, which may not be realistic depending
on the accessing patterns of the concurrently executed tasks. In order to
reduce this pessimism, we propose in this chapter a dedicated execution
model and a state-based method for worst-case response time analysis.

Specifically, we consider real-time tasks composed of superblocks, i.e.,
sequences of computation and resource access phases. Resource accesses
are synchronous (blocking), causing execution on the processing core to
stall until the access is served. For such systems, we present a state-
based modelling and analysis approach based on timed automata which

106 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

can model accurately different resource arbitration schemes. Based on
it, we compute safe bounds on the worst-case response times of tasks.
The scalability of the approach is increased significantly by abstracting
several cores and their tasks with one arrival curve, which represents their
resource accesses and computation times. This curve is then incorporated
into the timed automata system model. The accuracy and scalability
of the approach are evaluated with benchmark applications and a real-
world automotive application, and compared against simulation-driven
and state-of-the-art analytic approaches.

4.1 Introduction
Multi-core systems become increasingly popular as they allow perfor-
mance gains by exploiting parallelism without sacrificing too much on
power consumption or cost. However, the reduction in cost is achieved by
sharing resources among the processing cores. Such shared resources can
be buses, caches, scratchpad memories, main memories, DMA engines. In
safety-critical embedded systems, such as controllers in the Automotive
Open System Architecture (AutoSAR) [aut] or the flight management
system of the previous chapter, accesses to the shared resources can be
non-periodic and bursty, which may result in missed deadlines in the
worst case. Therefore, a designer needs to consider the interference
due to contention on the shared resources in order to verify the real-
time properties of the system. At the same time, the interference-
induced delays need to be tightly bounded to avoid extreme resource
over-provisioning and hence, platform under-utilization.

Performing timing analysis for such systems is challenging because the
number of possible interleavings of resource accesses from the different
processing cores can be very large. Analytic approaches for bounding
the worst-case response times (WCRT) under resource contention, such
as the method presented in Section 3.5, have the advantage of scalability.
Since they are based on closed-form expressions, they can be applied to
analyze systems with an arbitrarily large number of cores or tasks. On the
other hand, they are often based on over-approximations which result in
overly pessimistic WCRT estimations, particularly in cases of state-based
arbitration mechanisms like first-come-first-serve (FCFS) or round-robin
(RR). This shortcoming is of concern, as industrial standards like the
FlexRay bus protocol [fle] or the first-ready first-come-first-serve (FR-
FCFS) arbitration policy [RDK+00, NALS06] for DDR memory controllers,
explicitly exploit state-dependent behaviors. In this chapter, we rely on
the formalism of timed automata [AD90] in order to model accurately the
behavior of such state-dependent arbiters and we use model checking to
derive tight WCRT bounds.

Contrary to analytic approaches, model checking is based on

4.1. Introduction 107

exhaustive search of a state space and can reveal the actual worst-case
response time of a task without over-approximations. Additionally, the
expressiveness of timed automata enables an accurate modelling of any
given resource arbitration scheme. These advantages come at the cost
of analysis complexity, which often makes state-based modelling and
analysis not applicable to systems of industrial size. In order to alleviate
the state-space explosion problem which is inherent to model checking,
we combine in this chapter model checking with two main abstractions.
The first abstraction is that tasks follow a dedicated execution model, i.e.,
they are composed of superblocks. The second abstraction is that some
of the processing cores can be substituted by simpler models, i.e., arrival
curves that represent their resource accesses in the time interval domain.

The superblock model for structuring real-time tasks is based on the
assumption that tasks are composed of sequentially executed superblocks
for which the minimum/maximum number of resource accesses and
execution times are known. This model, which fits very well signal-
processing and control applications, has been extensively used in several
methods [PSC+10, SCT10, SPC+11] for WCRT estimation in resource-
sharing multicores with synchronously accessed resources. Different
variants of the model are compared in [SPC+10]. They differ mostly in that
superblocks may have phases where resource accesses are not required
(computation-only phases). Such phase structure can be enforced by a
compiler as shown in [PBB+11]. [FDNG+09] shows how the superblock
model can be mapped to an AutoSAR system for automotive applications.

Arrival curves as known from network and real-time calculus [TCN00]
are used to bound the maximum number of events arriving in any time
interval of any given length. Several methods [NSE09, PSC+10, SNE10]
have utilized them before to represent the maximum number of resource
accesses from a task. The novelty of this chapter is their integration
into a timed automata model of the system in order to combine accurate
modelling of complex arbitration schemes with analysis scalability.

Our results are applicable to hardware platforms without timing
anomalies, such as the fully timing compositional architecture proposed
by Wilhelm et al. [WGR+09]. We assume that a task partitioning to cores
is predefined and that tasks are scheduled on each core sequentially
according to a static schedule, which is the case for example within each
sub-frame of an FTTS schedule (Section 3.4).

Contributions. The main contributions of the chapter can be summarized
as follows:

• For the proposed system model, we introduce a state-based WCRT
analysis approach. Timed automata are used to model concurrent
execution of processing cores and their tasks (superblocks) as well
as resource access arbitration according to an event-driven (FCFS,
RR), time-driven (TDMA) or hybrid (FlexRay) policy. The Uppaal

108 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

model checker [BDL04] is then used to derive the exact WCRT of
each task in the system.

• To increase the scalability of the approach, we introduce an
abstraction based on arrival curves. We show how to compute
tight curves that bound the number of resource accesses from each
core in the time interval domain. Using the interfaces between
real-time calculus and timed automata presented in [LPT10], the
timed automata model of the system is reduced by replacing the
models of several processing cores with a single model that can
generate non-deterministic streams of access requests according to
the arrival curves of the abstracted cores.

• We demonstrate the accuracy and scalability of the approach using
a set of embedded benchmark applications (EEMBC) and a real-
world automotive application. The WCRT bounds derived by the
proposed method are compared to those obtained by a simulation
framework and to state-of-the-art analytic approaches. The results
show that our state-based analysis approach yields safe WCRT
estimates and can scale efficiently to a large number of cores, without
compromising the accuracy of the WCRT bounds.

Outline. The chapter is organised as follows. Section 4.2 presents related
analytic or state-based methods for bounding the worst-case response
times of tasks under resource contention. Section 4.3 shortly introduces
some of the necessary theory on timed automata and real-time calculus.
Section 4.4 defines our system model. Section 4.5 introduces the formal
model of a system using timed automata and the new state-based analysis
method. Section 4.6 and 4.7 address explicitly the challenge of analysis
scalability. Finally, Section 4.8 presents the empirical evaluation of the
proposed approach and Section 4.9 summarizes the main results of the
chapter.

4.2 Related Work
Performing timing analysis for multi-core systems with shared resources
is challenging as the number of possible orderings of access requests
that arrive at a shared resource can be exponentially large. Additionally,
resource accesses can be asynchronous (non-blocking) such as message
passing or synchronous (blocking) such as memory accesses due to cache
misses. For the asynchronous accesses, the timing analysis needs to take
into account the arrival pattern of accesses from the processing cores
and the respective backlogs. In this case, traditional timing analysis
methods such as real-time calculus [TCN00] and SymTA/S [HHJ+05] can
compute accurate bounds on the worst-case response times (WCRT) of

4.2. Related Work 109

tasks and the end-to-end delays of accesses. For the synchronous accesses,
if we assume in-order execution without support for simultaneous multi-
threading (which describes for example execution on the Kalray MPPA-
256 processing cores [dDvAPL14]), an access request stalls the execution
until the access is completed. This leads an increase of the task’s WCRT.
This increase exists because, once an access request is released, the task
execution cannot be preempted. Moreover, once service of an access
request starts, the latter cannot be preempted by other accesses. Bounding
the blocking times of tasks under these assumptions is far from trivial, as
one has to take into account the currently issued accesses from all other
cores and the state of the resource arbiter. In this chapter, like in Chapter 3,
we consider synchronous accesses. Note that, in the following, we use
the terms ‘synchronous’ and ‘blocking’ interchangeably.

Schliecker et al. [SNE10] proposed methodologies to analyze the
worst-case delay of a task due to synchronous accesses to shared memory.
The authors used event activation models [SNE09] to capture the memory
request distances by single tasks or by sequences of tasks that are executed
on the same core, assuming that a minimum and maximum number of
access requests in particular time windows is known. By considering
preemptive fixed-priority scheduling on the processing cores and first-
come first-serve (FCFS) arbitration on the shared memory, the worst-
case memory delay is derived in an iterative fashion based on the access
patterns of higher priority tasks and tasks executing concurrently on
other cores. The authors evaluated the approach with a system with
two processing cores. Shortcomings of this method which lead to
increased pessimism were identified and addressed in the work of Dasari
et al. [DAN+11]. By following a similar approach, yet considering the
access request distribution of the tasks in a time window (rather than
a uniform distribution as in [SNE10]) and non-preemptive scheduling,
this work provided tighter bounds on the worst-case delays that a task
can experience due to interference on the shared bus to the memory. In
[NSE09] Negrean et al. considered the multiprocessor priority ceiling
protocol where tasks have globally assigned priorities, and similarly
used a system with two processing cores for evaluation. An alternative
approach to analyzing the duration of accesses to a time-division-
multiple-access (TDMA)-arbitrated resource was presented by Kelter et al.
[KFM+11]. The proposed approach is based on abstract interpretation and
integer linear programming. It statically computes all possible offsets for
access requests within a TDMA arbitration cycle. This way the authors
aimed at high accuracy of analysis results and reasonable analysis times.
None of the above works considered complex scheduling policies such
as FlexRay [fle] or systems with a high number of processing cores, as
analyzed in this chapter.

Pellizzoni et al. [PSC+10] and Schranzhofer et al. [SCT10, SPC+11]
proposed methods for WCRT analysis in multi-core systems where

110 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

the shared resource is arbitrated according to FCFS, round-robin (RR),
TDMA or a hybrid time/event-driven strategy which combines TDMA
and FCFS/RR. Contrary to previous works, the proposed methodology
was shown to scale efficiently. The analysis, however, used over-
approximations which can result in extremely pessimistic results,
particularly in cases of state-based arbitration mechanisms, like FCFS
or RR. This shortcoming is of concern, as modern multi-core architectures
tend to exploit complex, state-dependent behaviors. The presented work
in this chapter exploits the same model of computation (superblocks).
It uses the concept of event arrival curves for capturing the non-
deterministic arrivals of service requests at the shared resource. The
main difference to previous results can be seen in the fact that our work
relies on a state-based modelling and analysis approach, based on model
checking. This way we ensure that the system model captures accurately
the behavior of the state-dependent resource arbiters and minimizes
analysis pessimism.

In later sections, we consider the FlexRay protocol [fle] as an example
of a complex state-based arbitration policy, even though it is not originally
designated for bus arbitration in shared-memory systems. FlexRay was
analyzed by Pop et al. [PPE+08] and by Chokshi et al. [CB10], but these
approaches dealt only with the asynchronous case of resource accesses.
On the other hand, FlexRay with synchronous accesses has never been
modelled with analytic approaches. In [SPC+11], Schranzhofer et al.
modelled a hybrid arbitration mechanism as a combination of a static
(TDMA) and a dynamic segment, the latter behaving according to FCFS
or RR. Model checking enables us to model and analyze FlexRay with
synchronous accesses for the first time.

Model checking techniques have been previously applied for timing
analysis in resource-sharing multicores by Lv et al. [LYGY10] and
Gustavsson et al. [GELP10]. The methods dealt accurately with complex
arbitration schemes, however, none of them could scale efficiently beyond
two cores due to the state explosion problem. We address this problem
by combining state-based and analytic techniques for the modelling and
analysis of multi-core systems.

Such techniques were introduced by Lampka et al. [LPT10, LPT12]
for the combination of timed automata [AD90] and real-time calcu-
lus [TCN00]. Altisen and Moy [AM10] handled the case of synchronous
data-flow component models and real-time calculus, while Simalatsar
et al. [SRL+11] introduced the coupling of parametric timed automata
and real-time calculus on top of an SMT-based analysis technique for
deriving regions of parameters for task activation patterns under which a
system is scheduled. Our WCRT analysis in multi-core resource-sharing
settings is based on the aforementioned coupling of timed automata and
real-time calculus [LPT10, LPT12], for which we exploit specific concepts
as implemented in the timed model checker Uppaal [BDL04, BY04].

4.3. Background theory 111

4.3 Background theory
In this section, we briefly introduce some important concepts from the
theories of timed automata and real-time calculus which will be needed
in the remainder of the chapter. For a more detailed presentation, the
reader is referred to the respective literature.

4.3.1 Timed Automata
A timed automaton (TA) [AD90] is a state machine extended with clocks.
Let C be a set of clocks and let ClockCons be a set of constraints on
these clocks. In timed automata, the clock constraints are conjunctions,
disjunctions and negations of atomic (clock) guards of the form x ./ n,
where x ∈ C,n ∈ N0 and ./∈ {<,≤, >,≥,=}. A TA T is then defined as
a tuple T = (Loc,Loc0,Act,C, ↪→, I), where Loc is a finite set of locations,
Loc0 ⊆ Loc is the set of initial locations, Act is a (finite) set of action (or edge)
labels, C is the finite set of clocks, ↪→⊆ Loc×ClockCons(C)×Act× 2C

× Loc
is an edge relation and I : Loc → ClockCons(C) is a mapping of locations
to clock constraints, the latter being referred to as location invariants.

Let the active location be the location in which the TA currently
resides. The operational semantics associated with a TA can be informally
characterized as follows:

Delay transitions. As long as the location invariants of the active
location are not violated, time may progress with all clocks
increasing at the same speed.

Edge executions. The traversal of an edge potentially changes the active
location; self-loops are possible. The traversal or “edge execution”
is instantaneous and possible as long as the source location of the
edge is marked active and the guard of the edge evaluates to true.
Upon edge executions, clocks can be reset.

This operational semantics yields that for a TA one may observe infinitely
many different behaviors. This is because edge executions may occur at
any time, namely as long as the edge guard evaluates to true. However,
with the concept of clock regions [AD90] it is possible to capture all
possible behaviors in a finite state graph, such that timed reachability
is decidable. In fact, modern timed model checkers incorporate clock
zones [LWYP99] as they often result in a coarser partitioning of the clock
evaluation space in comparison to the original definition of clock regions.

In this chapter we employ the timed model checker Uppaal [BDL04],
which implements timed safety automata extended with variables.
Similarly to clocks, variables can be used within guards of edges and
location invariants. Upon an edge execution, a variable can be updated.
The used variable values must build a finite set, which, however, does not

112 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

need to be known beforehand, i.e., it can be constructed on-the-fly upon
the state space traversal.

For modelling execution and resource access in a multi-core system,
we use networks of cooperating TA. In such a setting, clocks and
variables can be shared among the different TA, and dedicated sending
and receiving edges are jointly traversed depending on the selected
synchronization policy (1 : 1 binary synchronization or 1 : n broadcast
synchronization). For a system model, expressed as a network of TA, the
Uppaal model checker enables verification of functional and temporal
properties. For conciseness, we omit further details, and refer the
interested reader to the literature [AD90, Yov98, BDL04].

4.3.2 Real-time Calculus
Real-time calculus (RTC) [TCN00] is a compositional methodology for
system-level performance analysis of distributed real-time systems. We
briefly recapitulate the basic concepts that are used in this chapter.

In the context of real-time systems design, the timing behavior of event
streams is usually characterized by real-time traffic models. Examples of
such typically used models are periodic, sporadic, periodic with jitter,
and periodic with burst. RTC provides an alternative characterization
of event streams: a pair (αl, αu) of arrival curves bounds the number of
events seen on the stream for any interval of length ∆ ∈ [0,∞). Let R(t) be
a stream’s cumulative counting function which reports the actual event
arrivals for the time interval [0, t). The upper and lower arrival curves
bound R(t), i.e., the possible event arrivals in the time interval domain, as
follows:

αl(t − q) ≤ R(t) − R(q) ≤ αu(t − q) with 0 ≤ q ≤ t. (4.1)

As each event from a stream may trigger some behavior within a down-
streamed component, arrival curves provide an abstract lower and upper
bound on the amount of resources demanded for processing the events
within a time interval ∆ = t−q. Note also that for a given pair (αl, αu) there
might be a (possibly infinite) set of event streams, namely all streams for
which the counting function satisfies Eq. (4.1).

In this work we restrict our attention to the case of discrete amounts of
events and a simple burst-model for event arrivals. In RTC, such scenarios
can be modelled as staircase curves. In particular, the upper arrival curve
αu(∆) can be defined as the staircase function:

αst(∆) := B +
⌊
∆

δ

⌋
· s. (4.2)

Parameter B > 0 models the burst capacity, namely the number of events
that can arrive at the same time instant in a stream upper-bounded by
αst(∆). Parameters δ and s are related to the maximum long-term arrival
rate of events in the stream and the step size (y-offset), respectively.

4.4. System Model 113

Figure 4.1: Two consecutive processing cycles of superblock sequence S1 =

{s1,1, s2,1} which is executed on core p1 with period T1 and initial phase ρ1,1.
Each superblock complies with the dedicated superblock model, consisting of
an acquisition, an (access-free) execution and a replication phase. Superblocks
are triggered sequentially within each processing cycle.

The timing behavior of streams modelled as staircase arrival curves
(Eq. (4.2)) can be correctly and completely modelled with timed automata
models as described in [LPT10].

4.4 System Model
This section presents the models of real-time task sets and resource-
sharing multi-core architectures that are considered in our analysis and
the problem statement.

4.4.1 Task Set and Processing Cores
We consider systems with m processing elements or cores,P = {p1, . . . , pm}.
The cores in P support in-order execution without simultaneous
multithreading, such that no timing anomalies exist and the property of
timing compositionality holds [WGR+09]. The processing cores execute
independent tasks but can access a common resource, such as a bus to
a shared memory. Accesses to this resource are synchronous (blocking),
namely they cause execution to stall until they are served.

We assume a given task partitioning, in which a periodic task set τ j

is assigned to a predefined processing core p j ∈ P. All tasks is τ j have
a common period T j and implicit deadlines, i.e., their deadline is equal
to T j. For simplicity, we assume that the first job of each task arrives at
time zero. For structuring the tasks, we exploit the so called superblock
model [SCT10]. This phase-based model of computation assumes that
each periodic task consists of a sequence of superblocks. The superblocks
are non-preemptable execution units with known lower/upper bounds
on their computation time and the number of resource accesses that they
may require. The number of superblocks per task is fixed and different
tasks can have different numbers of superblocks.

For each core p j, we assume a static, non-preemptive schedule for
the superblocks of the assigned task set τ j. The schedule defines a fixed

114 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

order of execution of the superblocks. The superblocks that belong to a
single task in τ j can be ordered sequentially (one after the other) or their
execution can be interleaved with superblocks of other tasks. Let the static
schedule of superblocks on core p j be denoted S j = (s1, j, s2, j, . . . , s|S j|, j),
where index i in si, j defines the execution order (not the corresponding
task). This schedule is repeated periodically with period T j, to which
we also refer as processing cycle. Processing cycles may be different
among the cores (depending on the periods of the assigned task sets). We
assume that T j is large enough so that all superblocks in S j can complete
execution within a processing cycle even under resource contention
scenarios. Namely, deadline misses are not possible by design and
successive processing cycles cannot overlap.

In the first processing cycle, the first superblock s1, j of sequence S j

starts executing at time ρ1, j. The superblocks in S j are repeatedly executed
then in [ρ1, j, ρ1, j+T j), [ρ1, j+T j, ρ1, j+2T j) and so forth, with each superblock
si+1, j being triggered upon completion of its predecessor, si, j

1. For an
illustration, Figure 4.1 depicts the execution of superblock sequence S1 =
{s1,1, s2,1} on core p1, where superblocks s1,1, s2,1 may belong to the same or
different tasks. The starting times of processing cycles on different cores
may be synchronized, such that the first superblock in all first processing
cycles starts at time 0 (ρ1, j = 0,∀ j), or non-synchronized, with ρ1, j ∈ [0,T j).

In order to reduce non-determinism with respect to the occurrence of
access requests, every superblock is divided into three phases, known
as acquisition, execution and replication, which are denoted with a, e, r
in Figure 4.1. As an example, let us consider a system with a shared
main memory. During the acquisition phase, a superblock reads the
required data from the main memory. During the execution phase,
computations are performed on the local processing core. During the
replication phase, the superblock writes the modified/new data back
to the main memory. This is a common model for signal-processing
and control real-time applications. For our analysis, we consider in
particular the dedicated superblock model, in which resource accesses
are restricted to the acquisition and the replication phase and no accesses
are allowed in the execution phase. The dedicated superblock structure
is the first abstraction proposed in this chapter, since the restriction of
resource accesses to dedicated phases leads to increased predictability
when analyzing the system’s timing behavior. Schranzhofer et al. have
shown that the schedulability of the dedicated sequential superblock
model dominates that of other models in which accesses may occur any
time during execution [SPC+10].

As a result of the discussed structure, a superblock is fully defined by
the following parameters: the minimum and maximum number of access
requests during its acquisition and replication phase, µmin,{a,r}

i, j and µmax,{a,r}
i, j ,

1Idle intervals between successive superblocks may also exist.

4.4. System Model 115

and the minimum and maximum computation time during its execution
phase, emin

i, j and emax
i, j . For simplification, we consider the computation

time to initiate the accesses in the acquisition or replication phase, e{a,r}i, j ,
equal to zero. If this time is too large, i.e., it cannot be neglected, we
divide the corresponding acquisition or replication phases into several
superblocks with smaller acquisition/replication and execution phases
so that eventually each superblock phase features either computation or
accesses only. Note that the terms computation time and execution time
are used interchangeably in the following and do not include the time
spent on resource accesses or blocking due to contention.

For a superblock with logical branches, the above parameters may be
overestimated. In any case, they are assumed to be conservative, i.e., best-
case bounds may be too optimistic and upper bounds too pessimistic, such
that the worst-case execution time can be safely bounded. We assume
that the access request parameters can be derived either by profiling
and measurement for soft real-time systems, as shown in [PBCS08], or
by applying static analysis and abstract interpretation techniques, as
provided, e.g., by the aiT analysis tool [Inf], when hard bounds are
necessary. Note that these parameters define the worst-case execution time
of a superblock when this is executed in isolation, without any interfering
superblocks in parallel. Our analysis in Section 4.5 will enable a derivation
of the worst-case response time of each superblock. Response time is
defined as the elapsed time between the execution start and completion
of a superblock, and it considers potential delays due to contention on
the shared resource. Once the worst-case execution (response) time of all
superblocks is known, the worst-case execution (response) time of a task
is derived as the sum of the respective times of all constituent superblocks.

The superblock model in practice. For systems employing caches, we
rely on the PRedictable Execution Model (PREM) to carefully control
when tasks access shared memory. Under PREM, a task’s superblocks
are specially compiled such that during the acquisition phase, the core
accesses either main memory or last level cache to prefetch all required
data for the superblock execution into the private core cache. During the
subsequent execution phase, the superblock performs computations on
the previously fetched data, without incurring any private cache misses.
Finally, as first proposed in [BYPC12], during the replication phase, write-
backs can be forced for modified cache lines in the private cache [SPC+11].
This ensures that modified data are written back to the shared memory
resource. In the PREM implementation [PBB+11] which we employ for the
empirical evaluation (Section 4.8), PREM-compliant tasks are produced
through modifications of existing applications written in standard high-
level languages such as C. Certain constraints are present which limit
the applications that can be made PREM-compliant. These constraints,
however, are not significantly more restrictive than those imposed by

116 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

state-of-the-art static timing analysis tools.

4.4.2 Shared Resource and Arbiter
In the considered systems, superblock execution is suspended every time
an access request is issued, until the latter is completely processed by the
resource arbiter. Once the arbiter grants access of a request, the accessing
time is equal to Tacc time units. That is, if a superblock si, j could access
the shared resource at any time, its worst-case execution time would be
emax

i, j +(µmax,a
i, j +µmax,r

i, j)·Tacc. It is assumed that access can be granted to at most
one request at a time and that processing of an ongoing access cannot be
preempted. Once a pending access request is served, either execution on
the corresponding core is resumed by performing computations or a new
access request is issued or the core remains idle until the start of a new
processing cycle. Access to the shared resource is granted by a dedicated
arbiter. The implemented arbitration policy can be time-driven, e.g.,
TDMA, event-driven, e.g., FCFS or RR or hybrid, e.g., the FlexRay bus
protocol. A more detailed discussion on the possible arbitration schemes
follows.

TDMA Arbiter. In a TDMA arbitration scheme, access to the shared
resource is statically organized by assigning time slots to each core, such
that only one core can access the resource at a time. TDMA arbitration
policies are widely used in timing and safety-critical applications to
increase timing predictability and alleviate schedulability analysis, since
they eliminate mutual interferences of tasks executing on different cores
by construction [RAEP07, AEPR08, SCT10, KFM+11]. A TDMA arbiter
uses a predefined cycle of fixed length, which is specified as a sequence
of time slots. The time slots can be of variable lengths and there is at least
one slot for each core p j ∈ P. An access request issued by a superblock on
core p j during the i-th time slot of the TDMA cycle is enabled immediately
if the latter slot is assigned to core p j and the remaining time of the slot
suffices to process the new access. Requests that arrive “too late” have
to wait until the next allocated slot. To provide meaningful results, we
assume that all slots in a TDMA schedule are at least of length Tacc.

RR Arbiter. RR-based arbitration can be seen as a dynamic version of
TDMA with a varying arbitration cycle. This is because the unused slots of
the cycle are skipped whenever the respective cores do not need to access
the shared resource. To implement this behavior, the RR arbiter checks
repeatedly (circularly) all cores in P, starting with the first identifier, p1,
up to the last one, pm. If the core with the currently considered identifier
pi has a pending request, access is granted to it immediately. Otherwise,
the arbiter checks the next identifier, and so forth.

FCFS Arbiter. The FCFS resource arbiter is responsible for maintaining a
first-in first-out (FIFO) queue with the identifiers of the cores which have

4.4. System Model 117

a pending access request. Access is granted based on the time ordering
of their occurrence, i.e., the oldest request is served first. This scheme
guarantees fairness given that, if core pi issues an access request before
core p j, pi’s request will be served at an earlier point in time, without
considering any priorities between the two cores.

FlexRay Arbiter. The FlexRay protocol [fle] has been introduced by a
large consortium of automotive manufacturers and suppliers. It enables
sharing of a resource (usually interconnection bus among the processing
cores of an automotive system), featuring both time and event-driven
arbitration. In the FlexRay protocol, a periodically repeated arbitration
cycle is composed of a static (ST) and a dynamic (DYN) segment. The ST
segment uses a generalized TDMA arbitration scheme, whereas the DYN
segment applies a flexible TDMA-based approach. The lengths of the two
segments may not be equal, but they are fixed across the arbitration cycles.
Both segments are defined as sequences of time slots. The ST segment
includes a fixed number of slots with constant and equal lengths, d. Each
slot is assigned to a particular core and one or more access requests from
this core can be served within its duration. The DYN segment is defined
as a sequence of minislots of equal length, ` � d. The actual duration of
a slot depends on whether access to the shared resource is requested by
the corresponding core or not: if no access is to be performed, then the
slot has a very small length (minislot length, `). Otherwise, it is resized
to enable the successful processing of the access (access length, here equal
to Tacc). To obtain reasonable results, we assume that each ST slot as
well as the DYN segment are at least equal to Tacc. The assignment of ST
or DYN (mini)slots to the processing cores is static. However, since the
introduction of FlexRay 2.0, cycle multiplexing has become also possible
for the DYN segment, i.e., some minislots may be assigned to different
cores in different cycles, resulting in more than one alternating arbitration
schedule.

The above description implies that in the static part of FlexRay, like
in TDMA, interference can be neglected due to isolation. In the dynamic
part, however, the actual delay of an access is interference-dependent,
which makes it difficult to analyze without a state-based approach. The
accurate modelling and analysis of such an arbitration policy (and similar
policies) for the case of synchronous resource accessing has been one of
the major motives of the developed approach in this chapter.

4.4.3 Problem Statement
The problem that we address in this chapter can be formulated as
follows. Given the superblock sequences S j for each core p j ∈ P (incl. all
relevant execution and resource access bounds for the superblocks), the
corresponding periods T j, the initial phases ρ1, j, the resource access
latency Tacc, and one of the aforementioned resource arbitration policies

118 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Figure 4.2: Superblocks s1,1 and s1,2 executed in isolation. ’A’ boxes denote
accesses to the shared resource with latency Tacc = 5.

Figure 4.3: Superblocks s1,1 and s1,2 executed in parallel on cores p1, p2 in the
first processing cycle. Marked boxes denote blocking time due to contention on
the round-robin resource arbiter.

with relevant parameters (e.g., cycle length and slot assignment for a
TDMA arbiter), compute a safe and tight worst-case response time (WCRT)
bound for each superblock si, j ∈ S j on each core p j ∈ P.

Analysis is performed under the assumption that the total worst-
case response time of all superblocks si, j ∈ S j cannot be greater than T j.
Namely, all superblocks can be fully executed within a processing cycle.
We illustrate with an example some of the challenges that are related to
the computation of a tight WCRT bound under resource contention.

Example 4.1. Consider a system with m = 2 processing cores and a shared
memory with RR arbitration and access latency Tacc = 5 time units. Superblock
sequence S1 = {s1,1} consists of a single superblock with µa,min

1,1 = µa,max
1,1 = 5,

emin
1,1 = emax

1,1 = 50, µr,min
1,1 = µr,max

1,1 = 3, T1 = 400, ρ1,1 = 35. Superblock
sequence S2 = {s1,2} also consists of a single superblock with µa,min

1,2 = µa,max
1,2 = 10,

emin
1,2 = emax

1,2 = 100, µr,min
1,2 = µr,max

1,2 = 5, T2 = 400, ρ1,2 = 0. Figure 4.2 depicts
the worst-case execution time (WCET) of the two superblocks when they are
executed in isolation. Based on the superblock parameters and Tacc, it follows
trivially that WCET1,1 = 90 and WCET1,2 = 175. When we consider the
parallel execution of s1,1 and s1,2, a safe WCRT bound for each superblock can be
derived in a similar way as in Chapter 3, by assuming worst-case interference
on the shared memory (every memory access is delayed by an access from the
other core). In this case, for instance, the WCRT of s1,1 can be computed as
WCRT1,1 = m ·Tacc · (µmax,a

1,1 +µmax,r
1,1)+emax

1,1 = 130. Figure 4.3, though, illustrates
the actual WCRT of s1,1 which is equal to WCRT1,1 = 105. The reason for the
pessimism of the former result is that the acquisition/replication phases of the two
superblocks cannot fully overlap (maximally three resource accesses of s1,1 can be
delayed by accesses from s1,2).

4.5. Worst-case Response Time Analysis using Model Checking 119

Note that this was a very simple (deterministic) example, with only one
superblock per core, equal minimum/maximum bounds for the resource
access and computation time parameters, equal processing cycles, and
only two cores. If any of these parameters change, e.g., if there is
a large number of cores or different minimum/maximum bounds for
the superblock parameters, the possible interference scenarios increase
rapidly. Enumerating all feasible scenarios for the derivation of a tight
WCRT bounds becomes intractable, which is the reason why we typically
resort to conservative estimations like before. This, however, comes at
the cost of over-provisioning and resource under-utilization.

To avoid the pessimism of analytic approaches for the derivation of
WCRT bounds, we present in the next section a state-based method for
system modelling and we derive safe and tight WCRT bounds based on
model checking.

4.5 Worst-case Response Time Analysis using
Model Checking

For the state-based analysis of resource contention scenarios in multicores,
the system specification of Section 4.4 can be modelled by a network of
cooperating timed automata (TA). This section presents the TA that were
used to model the system and shows how we can derive tight WCRT
bounds for each superblock and verify their safety using the Uppaal
timed model checker. The next sections will then propose abstractions to
reduce the required verification effort.

4.5.1 Modelling Concurrent Execution
The parallel execution of sequences of superblocks on the processing cores
is modelled using instances of two TA, which are denoted as Scheduler and
Superblock in the following. The TA in Uppaal notation are depicted in
Figure 4.4. In a system with m cores and a total of n superblocks executed
on them, (n + m) TA instances are needed to fully model execution.

Each of the m instances of the Scheduler TA (Figure 4.4(b)) enforces the
predefined execution order (schedule) of superblocks on its associated
core p j. Whenever a new superblock must be scheduled, the respective
instance of TA Scheduler emits a start[sid] signal, with start being an
array of channels and sid the index of the respective superblock. Due
to the underlying composition mechanism, this yields a joint execution
(synchronization) of the start-labelled edges by the respective instances
of the TA Scheduler and Superblock. Similarly, when the superblock’s
execution is completed, the two instances of TA Scheduler and Superblock
execute their finish-labelled edges, with finish being again an array of

120 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

m <= umax_acq()

x_exec <= exec_max()

access[pid[tid()]]!

access[pid[tid()]]!

Exec

m<=umax_rep()

Acq

Inactive

Rep

finish[id]!

accessed[pid[tid()]]?

accessed[pid[tid()]]?

start[id]?

x_exec=0

m=0,
x_exec=0

m++

m++

m=0

m>=umin_acq()

m>=umin_rep()

x_exec >= exec_min()

m=0,
x=0 m<umax_acq()

m<umax_rep()

(a) Superblock.

SbExec

p <= period()

finish[sid]?

StartPeriod

EndOfPeriod

last_sb()
finish[sid]?

start[sid]!

update_seq_indx()

p=0

!last_sb()

p == period()

sid=read_next_sid()

update_seq_indx()

(b) Static Scheduler.

Figure 4.4: Superblock and Scheduler TA.

channels. Once the last superblock in a processing cycle has terminated
(last_sb()), the instance of TA Scheduler moves to location EndOfPeriod,
where it resides until the end of the processing cycle (function period()
returns value T j). T j time units after the activation of the first superblock of
core p j, the Scheduler TA triggers a new execution sequence of superblocks
S j. For simplicity, the depicted TA does not model the initial phaseρi, j of S j

(it is assumed zero). However, this can be easily modelled by enforcing the
TA to reside in location StartPeriod for ρi, j time units before triggering
a new execution of s1, j.

A Superblock TA (Figure 4.4(a)) models the three phases of each
superblock and is parameterized by the lower and upper bounds on
access requests and computation times. Once a Superblock instance is
activated, it enters the Acq location, where the respective TA resides until
a non-deterministically selected number of resource accesses (within the
specified bounds) has been issued and served. Access requests are issued
through channel access[pid], whereas notification of their completion
is received by the arbiter through channel accessed[pid] (see ’loop
transitions’ over Acq in Figure 4.4(a)). For location Acq, we use Uppaal’s
concept of urgent locations to ensure that no computation time passes
between successive requests from the same core, which complies with the

4.5. Worst-case Response Time Analysis using Model Checking 121

specification of our system model. Subsequently, the Superblock TA moves
to the Exec location, where computation (without resource accesses) is
performed. The clock x_exec measures here the elapsed computation
time to ensure that the superblock’s upper and lower bounds, emax and
emin, are guarded. The behavior of the TA in the following location Rep is
identical to that modelled with location Acq (successive resource accesses).

For the case of a single superblock in S j, clock x is used to measure its
total execution time. Checking the maximum value of clock x while the
TA is not in its Inactive location allows to obtain the WCRT of the whole
superblock. With Uppaal this is done by specifying the lowest value of
WCRT for which the safety property:

A[] Superblock(i).Rep imply Superblock(i).x <= WCRT

holds2. The property implies that location Rep is never traversed with
x showing a clock value larger than WCRT. This way we ensure that for
all reachable states, the value of superblock si’s clock x is bounded by
WCRT (safety). To find the lowest WCRT satisfying the previous property
(tightness), binary search can be applied. Upon termination, the binary
search will deliver a safe and tight bound on the superblock’s WCRT.
Similarly, we can compute a WCRT bound on a whole sequence S j by
adapting the TA of Figure 4.4(a) to model more than 3 phases.

4.5.2 Modelling Resource Arbitration
The TA models for the four suggested arbitration policies of Section 4.4.2
are depicted in Uppaal notation in Figure 4.5. Depending on the
implemented policy, the respective model is included in the TA network
of our system.

The FCFS and the RR Arbiter share a similar TA, depicted in
Figure 4.5(a). Both arbiters maintain a queue with the identifiers of the
cores that have a pending access request. In the case of FCFS, this is a FIFO
queue with capacity m, since each core can have at maximum one pending
request at a time. When a new request arrives, the arbiter identifies its
source, i.e., the emitting core, and appends the respective identifier to the
tail of the FIFO queue. If the queue is not empty, the arbiter enables access
to the shared resource for the oldest request (active() returns the queue’s
head). After time Tacc, the access is completed, so the arbiter removes the
head of the FIFO queue and notifies the respective Superblock instance
that the pending request has been processed. For the RR arbiter a bitmap
is maintained instead of a FIFO queue. Each position of it corresponds
to one of the cores and pending requests are flags with the respective bit
set to 1. As long as at least one bit is set, the arbiter parses the bitmap

2Verification query sup{Superblock(i).Rep}:Superblock(i).x could be also used
for the same purpose.

122 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

(a) FCFS / RR Arbiter.

(b) TDMA Arbiter.

(c) FlexRay Arbiter.

Figure 4.5: Arbiter TA representating different arbitration mechanisms.

4.6. Reducing Complexity of Model Checking through Analytic Abstractions 123

sequentially granting access to the first request it encounters (return value
of active()).

The TDMA Arbiter of Figure 4.5(b) implements the predefined TDMA
arbitration cycle, in which each core has one or more, sequential or
randomly assigned time slots. It is assumed that the cores (Scheduler
instances) and the arbiter initialize simultaneously such that the first slot
on the shared resource and the first superblock on each core start at
time 0 (assuming synchronized processing cycles among the cores). The
arbiter’s clock slot_t measures the elapsed time since the beginning of
each TDMA slot. When slot_t becomes equal to the duration of the
current slot, the clock is reset and a new time slot begins. According to
this, a new access request from core eid is served as soon as it arrives
at the arbiter on condition that (i) the current slot is assigned to eid and
(ii) the remaining time before the slot expires is sufficiently large for the
processing of the access. If at least one condition is not fulfilled, the
pending request remains in the arbiter’s queue and is granted as soon as
the next dedicated slot to eid begins.

The FlexRay Arbiter in Figure 4.5(c) is substantially an extension over
the TDMA arbiter. This extension models the DYN segment of the
FlexRay arbitration cycle that is executed after each ST segment. Once
the ST segment is completed (EndStatSegment()), the arbiter checks if
the core assigned to the first DYN minislot has a pending request. If
this is true (inQueue(proc_indx)), the DYN minislot is resized to Tacc
time units to accommodate the access. Otherwise, the arbiter waits until
expiration of the minislot and then, it checks for pending requests from
the core assigned to the next minislot. This procedure is repeated until
the DYN segment expires. According to this model, during the FlexRay
DYN segment, a new access request from core eid is served immediately
on condition that (i) the current minislot is assigned to eid and (ii) the
remaining time until the DYN segment expires is at least equal to Tacc, so
that the DYN segment cannot interfere with the upcoming ST segment. If
a condition is not fulfilled, then serving eid’s access request is postponed
until its following ST or DYN (mini)slot.

In all Arbiter TA, new access requests can be received any time, either
when the queue is empty or while the resource is being accessed. Multiple
requests can also arrive simultaneously.

4.6 Reducing Complexity of Model Checking
through Analytic Abstractions

Based on the results of Section 4.5, modelling a resource-sharing multicore
requires a network consisting of m Scheduler, n Superblock and one Arbiter
TA instances. By verifying appropriate temporal properties in Uppaal,

124 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

we can derive WCRT estimates for each superblock (sequence) that is
executed on a processing core. However, scaling is related to the number
of TA instances as the verification effort of the model checker depends
on the number of clocks and clock constants used in the overall model.
Particularly, the more the processing cores, the more the required clocks
for modelling execution on them, which leads gradually to state space
explosion. In this section, we propose safe abstractions for achieving a
better analysis scalability.

In the proposed abstractions, only one processing core (core under
analysis, CUA) is considered at a time, while all remaining cores which
compete against it for access to the shared resource are abstracted away
(but not ignored). To model the access requests of abstracted cores, we
use arrival curves as defined in the real-time calculus (Section 4.3.2).
This way an arrival curve capturing the aggregate interference pattern
of the abstracted cores can be computed and then, modelled using TA.
Eventually, the network of TA that models our system will include only
one Scheduler, |Si| Superblock (number of superblocks executing on CUA
pi), one Arbiter and two Request Generator TA, i.e., the number of TA
instances will not depend on the number of abstracted cores.

In the following, Section 4.6.1 presents how to derive an event arrival
curve which bounds the resource accesses that are issued by a sequence
of superblocks on a single core. Section 4.6.2 shows how to derive
an aggregate interference arrival curve based on the individual access
request arrival curves of several cores. Finally, Section 4.6.3 shows how
to integrate such an interference curve into the TA-based system model.

4.6.1 Abstract Representation of Access Request Patterns
We consider a sequence of dedicated superblocks S j, executing on
processing core p j with period T j and accessing a shared resource. The
possible resource access patterns depend on the minimum and maximum
number of access requests, µmin

i, j and µmax
i, j (sum for acquisition and

replication phase) and the minimum and maximum computation time,
emin

i, j and emax
i, j (execution phase) of each superblock si, j ∈ S j as well as the

order of superblocks in the sequence. In the following, we introduce a
method to represent abstractly the possible access patterns as an upper
arrival curve. The latter will provide an upper bound on the number
of access requests that can be issued by the corresponding core in any
interval of time.

The arrival curve for a core p j is derived assuming no interference on
the shared resource. Namely, the superblock sequence of p j is analyzed
in isolation, as if it had exclusive access to the resource. This is an over-
approximation as it maximizes the issued resource access requests in the
time interval domain. The computation of the arrival curve is performed
as follows.

4.6. Reducing Complexity of Model Checking through Analytic Abstractions 125

Acquisition {µa,min, µa,max} {3,4}
Execution {emin, emax} {50,70}
Replication {µr,min, µr,max} {1,2}
Period T 250
Access Latency Tacc 20

Table 4.1: Superblock and shared resource parameters.

4.6.1.1 Computation of an Upper Access Request Trace

In the time domain, different access request traces R j can be derived for
core p j if one considers all possible numbers of accesses and computation
times within the lower/upper bounds of the superblocks in S j. Note
that since p j is examined in isolation, the inter-arrival time between any
two successive accesses issued by the core is equal to the resource access
latency, which we denote Tacc. That is, every time p j emits an access
request, the access is assumed to be granted immediately, hence being
served within Tacc time units. Among all possible access request traces,
we identify the upper trace Ru

j which is computed by considering the
maximum number of accesses and the minimum computation time for all
superblocks of S j. This trace corresponds to the scenario in which core p j

issues as many requests as possible (based on the memory access demand
of S j) as early as possible.

Lemma 4.1. Any feasible access request trace R j of core p j satisfies the inequality:

R j(t) ≤ Ru
j (t), ∀t ∈ [0,∞) . (4.3)

Proof. Consider a single execution of superblock sequence S j in the
interval [0,T j) and any time instant 0 ≤ t < T j. Let trace point Ru

j (t)
specify the total number of access requests up to a certain execution
point of a superblock sk, j ∈ S j. Given the deterministic computation
method of Ru

j (t) there can be only one such superblock (if at time t all
superblocks have been executed, we take k = |S j|). First, we consider
the acquisition and replication phases of all superblocks preceding (and
incl. up to t) sk, j in sequence S j. If we compute a trace R j with less than
the maximum access requests for at least one acquisition or replication
phase of these superblocks, then R j will represent less or equal access
requests in [0, t] compared to Ru

j . Second, we consider the execution
phases of all superblocks preceding (and incl. up to t) sk, j. If we compute
a trace R j with a greater than the minimum computation time for at least
one execution phase of these superblocks, then emission of Ru

j (t) access
requests can be delayed in time, i.e., Ru

j (t) = R j(t + λ) with λ ≥ 0. Thus,
we conclude that no feasible access request trace R j for p j can represent
more accesses than Ru

j in time interval [0, t], where t ∈ [0,T j). Since Ru
j (t)

is computed periodically, the same argumentation holds for subsequent
periods [T j, 2T j), [2T j, 3T j), namely inequality (4.3) holds ∀t ∈ [0,∞). �

126 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Figure 4.6: Upper access request trace derived from the superblock parameters
specified in Table 4.1.

Example 4.2. To illustrate the construction of Ru
j with an example, we consider

a single superblock as specified in Table 4.1. If the superblock is solely executed
on a core, then the trace Ru of access requests that this core can emit is given in
Figure 4.6, where µtot is the total maximum number of accesses in one period, i.e.,
in this example, µtot = µa,max +µr,max. In particular, in Figure 4.6, in the interval
[0, 80) Ru makes 4 steps which reflect the maximum number of accesses in the
acquisition phase of the superblock. Each access takes the same access latency
of Tacc = 20 which corresponds to the flat segments of length 20 after each step
in Ru. These acquisition phase accesses are followed by the minimum execution
phase of length 50 which corresponds to the flat segment in Ru in the interval
[80, 130). In the interval [130, 170), Ru makes 2 steps which correspond to the
maximum number of accesses in the replication phase. They are followed by a
flat segment for the interval [170, 250) which is denoted as the gap until the next
execution of the superblock can start.

Determining the length of this gap for the purpose of our analysis will be
described next.

4.6.1.2 Lower Bounding the Gap Between Re-executions

In the computed upper access request trace, we can identify the gap (idle
interval) between the end of the last phase of S j and the start of the next
processing cycle. In the example trace of Figure 4.6, this gap can be
computed as T − (µtot

· Tacc + emin) as a result of the isolation assumption.
However, on the actual multi-core system, where p j competes against
other cores for access to the shared resource, it is in fact possible that
the incurred delays will cause the execution of S j to be extended closer
to the end of the processing cycle. Therefore, in the general case, where

4.6. Reducing Complexity of Model Checking through Analytic Abstractions 127

Figure 4.7: Three cases for the position of the considered interval ∆: i) within
one processing cycle, ii) starting in one processing cycle and ending in the next
processing cycle, iii) spanning more than two processing cycles.

no upper bounds on these delays can be provided, we need to consider
a zero-interval as the minimum gap between two successive executions
of S j. Note that the gap cannot be negative because we assume that
execution of a superblock sequence always finishes within the current
processing cycle.

This estimation can be refined in particular cases. For instance, when
the resource is FCFS or RR-arbitrated, in the worst-case every access of S j

can be delayed by all (m − 1) competing cores. Since access requests are
blocking, every core can have up to one pending access request at a time.
Therefore, each access request of S j can be delayed by at most (m− 1) ·Tacc

time units due to the interference of the other cores. As a result, a lower
bound on the gap can be computed as follows:

gapmin = T j − (m · Tacc ·

∑
∀si, j∈S j

(µa,max
i, j + µr,max

i, j) +
∑
∀si, j∈S j

emax
i, j) . (4.4)

4.6.1.3 Deriving the Access Request Arrival Curve

Derivation of p j’s access request arrival curve follows from the computed
upper trace Ru

j and the lower bound on the gap gapmin. Before we proceed,
we need to define the shift operator . as:

(R . g)(t) =

{
R(t − g) , t > max(g, 0)
0 , 0 ≤ t ≤ max(g, 0) (4.5)

The arrival curve that will be derived upper bounds the amount of
access requests that p j can emit in any time interval ∆. To safely obtain
this bound, one has to consider time intervals [t − ∆, t), with ∆ ≥ 0 and
t ≥ ∆, which may start any time after the first triggering of the superblock
sequence S j. Depending on the number of processing cycles over which
the intervals may span, we differentiate three cases for the start and the
end of interval ∆, as illustrated in Figure 4.7.

Case i) 0 ≤ t − ∆ ≤ t ≤ Tj. Here, the intervals [t − ∆, t) are contained
entirely in one processing cycle, as depicted in Figure 4.7. The
number of access requests in such an interval is computed simply

128 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

as: R j(t) − R j(t − ∆). An upper bound on the access requests of
this interval is computed by considering all possible positions for
the interval ∆ on the upper access request trace Ru

j and taking the
maximum as follows:

αu
j,i(∆) = max

t≥0

{
Ru

j (t) − Ru
j (t − ∆)

}
. (4.6)

Lemma 4.2. There is no feasible access request trace R j of p j such that:
R j(t) − R j(t − ∆) > αu

j,i(∆), where 0 ≤ t − ∆ ≤ t ≤ T j and αu
j,i is computed

according to Eq. (4.6).

Proof Sketch. Suppose that there exists an (adversary) feasible trace
R j, a time instant t1 and an interval ∆, with 0 ≤ t1 ≤ t1 + ∆ ≤ T j, such
that R j(t1 + ∆) − R j(t1) > αu

j,i(∆) (reformulation for ease of notation).
Let the superblock which is executed at time t1 according to trace
R j be sk, j. We assume that t1 falls into an acquisition or replication
phase of sk, j, since sk, j issues no access requests during execution
phase (the adversary strategy would not be able to maximize the
number of request arrivals in ∆ since by default there would be no
accesses for at least a part of ∆). Suppose that at time t1 superblock
sk, j has µ̂ remaining access requests (not yet issued) in the current
acquisition/replication phase according to trace R j. Let, now, t2

be the corresponding time instant at which superblock sk, j has µ̂
remaining access requests in the same phase according to the upper
trace Ru

j . Note that t2 is a well defined point because Ru
j represents

at least equal accesses for each acquisition/replication phase as R j.
Hence, if sk, j has µ̂ remaining accesses in a phase according to R j, a
point describing the same situation at Ru

j will surely exist. The initial
hypothesis implies that R j(t1+∆)−R j(t1) > Ru

j (t2+∆)−Ru
j (t2) based on

definition (4.6), i.e., R j represents more access requests in [t1, t1 + ∆]
than Ru

j in [t2, t2 + ∆]. However, following a similar argumentation
for interval [t2, t2 + ∆] as in Lemma 4.1 (where t2 corresponds to
0 and t2 + ∆ to t in the proof of Lemma 4.1), we conclude that the
above statement cannot be true, i.e., R j cannot represent more access
requests than Ru

j for the superblock phases included in [t2, t2 + ∆].
This contradicts the initial hypothesis and proves the lemma. �

Lemma 4.2 simplifies the computation of αu
j,i, since this depends on

a single access request trace, Ru
j .

Case ii) 0 ≤ t − ∆ ≤ Tj ≤ t ≤ 2Tj. In this case, the intervals [t − ∆, t) span
over two processing cycles, as they start in one processing cycle and
end in the next one. An example is shown in Figure 4.7. Again,
the number of access requests in this interval is calculated based on
R j(t) − R j(t − ∆).

4.6. Reducing Complexity of Model Checking through Analytic Abstractions 129

Let us substitute λ := t − T j. Then R j(t) can be expressed as R j(T j) +
R j(λ). In order to obtain an upper bound, we use the upper access
request trace: Ru

j (T j)+Ru
j (λ). The reason why considering only trace

Ru
j is sufficient for deriving a safe upper bound is similar as in case

i). The maximum total number of access requests in one processing
cycle is a constant, calculated as µtot,max

j =
∑
∀si, j∈S j

(µa,max
i, j + µr,max

i, j),
i.e., we have Ru

j (T j) = µtot,max
j . After the substitution, we can express

R j(t−∆) as R j(T j+λ−∆). In order to obtain an upper bound, we need
to consider the minimum gap between the end of the superblock
sequence in the first processing cycle and the start of the superblock
sequence in the next processing cycle. For this purpose, we use the
shifted to the right upper access request trace Ru

j . g which takes into
account the lower bound on the gap, gapmin from Eq. (4.4), where g
is computed as follows:

g = T j − (Tacc ·

∑
∀si, j∈S j

(µa,max
i, j + µr,max

i, j) +
∑
∀si, j∈S j

emin
i, j) − gapmin . (4.7)

Considering all possible positions of the interval ∆ and taking the
maximum, we obtain the arrival curve in this case:

αu
j,ii(∆) = max

0≤λ≤∆

{
µtot,max

j + Ru
j (λ) − (Ru

j . g)(T j + λ − ∆)
}
. (4.8)

Case iii) 0 ≤ t − ∆ ≤ kTj ≤ (k + 1)Tj ≤ t, k ≥ 1. In this case, the intervals
[t − ∆, t) may span over more than two processing cycles, as shown
in Figure 4.7. We can observe that this case is similar to the previous
one. However, the end of the interval ∆ is not in the next processing
cycle, but can be in later processing cycles. Therefore, knowing that
the maximum number of access requests in one processing cycles
is µtot,max

j and having K processing cycles between the start and the
end of interval ∆, we can use the results from the previous case to
obtain an arrival curve as follows:

αu
j,iii(∆) = max

1≤K≤
⌊

∆
Tj

⌋ {αu
j,ii(∆ − K · T j) + K · µmax,tot

j

}
. (4.9)

By combining the individual results of all three cases, we obtain the upper
arrival curve αu

j that upper bounds all access request traces of sequence
S j executing on core p j for any time interval ∆ ≥ 0. To this end, we take
the maximum of expressions (4.6), (4.8), and (4.9):

αu
j (∆) = max{αu

j,i(∆), αu
j,ii(∆), αu

j,iii(∆)} . (4.10)

The arrival curve obtained by Eq. (4.10) is a safe upper bound on the
access requests that can be issued by a core, but it is more accurate than

130 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

the upper bounds derived with earlier methods [PSC+10, GLST12]. The
method presented in [PSC+10] introduces inaccuracy of the computation
of the arrival curve because for simplicity it assumes zero inter-arrival
time of access requests from the core. The method presented here
improves on this by considering that the minimum inter-arrival time
is bounded by the access latency Tacc of the shared resource. Similarly, the
method presented in [GLST12] introduces inaccuracy because it considers
that the minimum gap gapmin can appear between all successive executions
of a superblock sequence, effectively shortening the processing cycle of
the core, while the method presented here always considers the correct
processing cycle.

4.6.2 Derivation of Interference Curve of Multiple Cores
Recall that for our analytic abstraction, we intend to use a single arrival
curve to represent the access patterns of several processing cores, when
analyzing the WCRT of a particular superblock sequence on a core under
analysis (CUA). In this case, the interference caused by all the other cores
is taken as the sum of their individual arrival curves, which are computed
by Eq. (4.10) and by considering the cores in isolation. The sum represents
a safe over-approximation of the interference that the cores may cause on
the arbiter as we deal with monotone systems, where the number of
requests received by the arbiter for any given interval ∆ cannot exceed
the sum of the issued requests by the interfering cores.

The sum of the arrival curves of all cores except the CUA is mentioned
in the following as the interference curve α and it is computed as follows:

α(∆) =
∑

p j∈P\{pi(CUA)}

αu
j (∆) . (4.11)

4.6.3 Embedding of Interference Curve into TA Model
For embedding the worst-case interference arrival curve α of the
abstracted processing cores (Eq. (4.11)) into the TA-based system model,
we exploit the results of Lampka et al. [LPT10]. The goal is to translate
α into a meaningful set of TA that will model the emission of interfering
access requests at such a rate so thatα is never violated. In other words, we
are looking for a state-based access request generator, capable of emitting
all possible event streams that are upper bounded by α.

Initially, to reduce the complexity of the embedding, we over-
approximate curve α by a single staircase function3 αst(∆) ≥ α(∆),∀∆ ∈

3Instead of a single staircase curve, αst can also be composed of sets of staircase curves
integrated via nested maximum and minimum operations[LPT10, PLT11]. This allows
to model more complex curves, however it substantially adds to the complexity of the
model checking problem to be solved when determining the WCRT of a superblock.

4.6. Reducing Complexity of Model Checking through Analytic Abstractions 131

Figure 4.8: RTC interference arrival curve representation.

[0,∞), as defined in Eq. (4.2). Such a function is illustrated in Figure 4.8.
The staircase function is selected so that (i) it coincides with the original
α on the long-term rate and (ii) it has the minimum vertical distance
to it. The event streams that are bounded by this new arrival curve
can be generated by two TA, as depicted in Figure 4.9. These TA are
adapted versions of the ones presented in [LPT10], so as to comply with
our system specification. The Upper Bound TA (UTA) is responsible
for guarding the upper staircase function αst (with fixed parameters
Bmax, Delta and s corresponding to B, δ, s of Eq. (4.2)), whereas the
Access Request Generator (ARG) emits access requests “on behalf of” the
abstracted cores on condition that UTA permits it.

UTA models partly what is known from the computer networks field
as a leaky bucket. When the leaky bucket contains at least one token
(unreleased access request), a corresponding event (request emission)
can take place. If the leaky bucket is, however, empty, no requests can be
emitted before new tokens are generated. The leaky bucket is configured
so as to implement the upper staircase function αst. Namely, it has a
maximal capacity of B, being full in its initial state. An amount of s new
tokens is produced every δ time units and one token is consumed every
time a request is emitted by ARG.

Request emission by ARG is enabled as long as (i) at least one token is
contained in the leaky bucket and (ii) the current amount of pending
interfering requests is lower than the number of abstracted cores (to
consider only realistic scenarios). If both conditions are valid, then ARG
may issue a new request, without restriction on the time point when
the latter occurs (to account for all traces below αst). Note that in the
TA of Figure 4.9, ’1’ refers to the default identifier of the access request
generator as seen by the arbiter (representing without distinction any of

132 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

x == Delta

bucket <= Bmax

x <= Delta

access[1]?

x = 0,
bucket = (bucket+s < Bmax) ?
bucket+s : Bmax

if(bucket==Bmax) x=0,
bucket−−

(a) Upper Bound (UTA).

access[1]!

arb_len_abstr < AProcessors &&
bucket > 0

(b) Access Request Generator
(ARG).

Figure 4.9: Interference generating TA.

the abstracted cores’ identifiers).

Note that in the new system model, where the two presented TA
substitute all Scheduler and Superblock TA instances that were previously
used to model execution and resource accessing on m − 1 cores, the total
number of TA instances is independent of the number of cores in the
system. To illustrate the reduction in the size of the TA-based system
specification, consider a system with 32 cores, each executing a single
superblock. If all cores were modelled individually, i.e., each by its own
component TA as described in Section 4.5, the complete system model
would consist of 65 TA: 32 instances of the TA Scheduler, 32 instances of
the TA Superblock and one instance of the TA Arbiter. Therefore, the system
model would contain in total 97 clock variables and 128 synchronization
channels. By applying the above abstraction, one obtains a system model
which contains five component TA only: one instance of the TA Scheduler,
one instance of the TA Superblock, one instance of the TA Arbiter and one
instance of the TA Upper Bound and Access Request Generator. In total, this
yields a system model with 5 clocks and 6 synchronization channels.

Substitution of the (m − 1) Scheduler and the (n − |Si|) Superblock TA
instances of the abstracted cores with the presented pair of interference
generating TA is expected to alleviate significantly the verification effort
for the WCRT estimation of the superblocks executing on CUA (core pi).
This comes with the cost of over-approximation, since the interference
arrival curve α provides a conservative upper bound of the interfering
access requests in the time-interval domain and ast over-approximates
it. Additionally, the interference generating TA emit interfering requests
non-deterministically in time, enabling the exploration of certain request
streams that are bounded by αst but may never occur in practice. As
shown in Section 4.8, though, the pessimism in the WCRT estimates for
the superblocks of CUA is limited.

4.7. Further Adaptations to Improve Scalability 133

4.7 Further Adaptations to Improve Scalability
Besides the basic abstraction step of Section 4.6, i.e., the interference
representation with arrival curves and the modelling of the latter with
TA, further abstractions and optimizations of our system specification
can be considered. We briefly discuss these in the following, such that the
experimental results of Section 4.8 can be reproduced:

1. For system models in which execution on all cores is modelled
explicitly and the resource is FCFS or RR-arbitrated, the state
space exploration for a superblock’s WCRT can be restricted to
the duration of one hyper-period of the cores’ processing cycles.
The hyper-period is defined as the least common multiple of
the cycles’ periods, lcm(T1, · · · ,Tm), and within its duration all
possible interference patterns are exhibited. Therefore, deriving
a superblock’s WCRT by exploring the feasible scenarios in this
time window only is safe. Note that a similar simplification can
be applied in case of TDMA-arbitrated resources if the hyper-
period is redefined to account for the period of the arbitration cycle,
lcm(T1, · · · ,Tm,Θ), where Θ denotes the TDMA arbitration cycle.

2. In system specifications where execution on some cores is abstracted
and the resource is FCFS or RR-arbitrated, the TA Superblock
can be simplified to model not periodic execution, but a single
execution. Since all feasible interference streams bounded by αst

can be explored for the time interval of one superblock execution,
the WCRT observed during this interval is a safe WCRT bound. This
simplification also eliminates the need for including the Scheduler
and the remaining Superblock instances of the CUA in the TA system
model. The same can be applied to systems with a TDMA arbiter if
we enumerate and model all possible offsets for the starting time of
the superblock within the TDMA arbitration cycle.

3. To bound the WCRT of a superblock, one can add the WCRT of the
individual superblock phases. Similarly as before, we can model
single acquisition or replication phases and explore all interference
streams bounded by αst for the time interval of one phase execution.
Based on the arrival curve properties, the obtained WCRT bound
for each phase is safe. For the execution phase, one can simply
consider the maximum execution time and add this to the previous
sum. The total WCRT of the superblock (sum) of the individual
phases can be more pessimistic than the WCRT found when the
sequence of superblocks is analyzed in a single step. This is because
it may not be possible for all phases to exhibit their WCRT in a single
superblock execution. Nevertheless, this simplification reduces the
verification effort, by dividing the original problem into smaller
ones, each analyzed independently.

134 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

4. In system models with a TDMA resource arbiter, the interference
from the competing cores can be ignored (not modelled) due to the
timing isolation that a TDMA scheme offers. Namely, for deriving
a superblock’s WCRT, the model checker needs to consider all
possible relative offsets between the arrival of the CUA’s access
requests and the beginning of its dedicated slot in the arbitration
cycle. The interference from the remaining cores does not affect the
superblock’s WCRT. The same holds for the static segment of the
FlexRay arbitration cycle.

5. In system models with a FCFS or RR resource arbiter, granularity of
communication between the Access Request Generator and the Arbiter
TA may become coarser, by letting access requests arrive in bursts
at the arbiter. For this, the interference generating TA can emit
requests in bursts of b, where b is a divider of the maximum burst
size B in Eq. (4.2) and b ≤ m − 1. The arbiter TA can be adapted
to store the requests and serve them like in the original system
(as if they were emitted one by one). New bursts of interfering
requests can be generated any time after the previous b requests
have been served. This optimization decreases the need for inter-
automata synchronization and also the number of explored traces
below αst, since the inter-arrival times among the requests in a burst
are no longer non-deterministic, but fixed to 0. The traces that
are not explored could not cause worse response times for CUA’s
superblocks than the ones with the bursty arrivals. This is because,
if some of the b interfering access requests arrived later (non-zero
inter-arrival time), the next access of CUA would suffer equal or
less delay compared to the bursty case. Specifically, if the “delayed”
interfering requests arrived still before the next request of CUA
(FCFS arbitration) or before the turn of CUA (RR arbitration), the
delay for serving the latter’s request would be the same as if the
interfering requests had arrived in a burst. Otherwise, the “delayed”
interference requests would not be served before CUA’s request,
thus reducing its response time. Therefore, the omission of the
non-bursty traces has no effect on the correctness or tightness of the
WCRT estimates. The same holds also for the dynamic segment of
the FlexRay arbitration cycle.

6. The Upper Bound TA requires to reset its clock once Access Request
Generator has emitted the maximal number of resource access
requests at a single point in time, i.e., it has produced a burst of
access requests. It is safe to omit this clock reset, since the Access
Request Generator could simply emit more events than bounded by
the original curve αst. For instance, the TA Access Request Generator
of Figure 4.9 could release Bmax events just before clock x expires
(through successive traversals of edge access[1]?). Without

4.8. Evaluation 135

resetting clock x upon the Bmax-th traversal, one could actually
release more access requests once clock x expires, i.e., x == Delta
holds. This yields emissions of more requests than bounded by
the original αst, which in turn could introduce pessimism into the
analysis. On the other hand, it can help with lowering the state
space explosion, as it reduces the number of clock resets. In the case
of our model, we cannot notice any additional pessimism w.r.t. the
WCRT of the superblocks. That is because the maximum number
of pending requests is not derived from Bmax, but from the number
of cores in the system. Additional resource access requests can only
be issued at the rate of service experienced at the shared resource.

4.8 Evaluation
This section presents two case studies, to which the proposed state-based
WCRT analysis approach was applied in order to evaluate its scalability
and the accuracy of the obtained results. We consider multi-core systems
in which cores have private caches and shared access to a main memory.
The systems are modelled either fully with TA (FTA, Section 4.5) or
with a combination of TA and arrival curves (ATA, Section 4.6). Further
modelling optimizations as discussed in Section 4.7 are applied whenever
possible. In the first case study (Section 4.8.1), we model systems with
two to six cores, on which a set of industrial benchmarks is executed.
We evaluate the scalability of the FTA and ATA analysis methods and
compare the respective WCRT estimates with results obtained from
architectural simulations. In the second case study (Section 4.8.2), we
model systems with two to 64 cores, on which an automotive application
is executed. We evaluate the scalability limits of the ATA analysis method
for different arbitration policies of the shared memory and we compare
the WCRT estimates to those of state-of-the-art analytic approaches.

4.8.1 Case Study I: State-based Analysis vs Simulations
First, we consider systems with two to six cores, which access the main
memory in a round-robin fashion when cache misses occur. We model
such systems with the FTA and ATA formal approaches and compare the
scalability and accuracy of the respective analyses. We also compare
our derived WCRT bounds with results obtained from architectural
simulations. While simulations by definition might fail to reveal the real
worst-case scenario, they are nevertheless useful in validating the overall
system settings and providing a lower bound on WCRT to compare with
the safe upper bound provided by analysis.

We base our evaluation on a simulated multi-core platform using
private LVL1 and LVL2 caches and shared main memory. The

136 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Gem5 [BBB+11] architectural simulator is used to execute selected
benchmarks and obtain superblock parameters for accesses to main
memory. The simulator is configured as follows: in-order core based
on x86 instruction set running at 1 GHz; split LVL1 cache of 32 kB for
instruction and 64 kB for data; unified LVL2 cache of 2 MB; cache line size
of 64 bytes; a constant time of 32 ns for each memory access. Section 4.8.1.1
provides more details on the evaluated benchmarks. Section 4.8.1.2
describes our multi-core simulation settings and presents comparative
results for the simulation and the two suggested analysis methods.
Finally, Section 4.8.1.3 evaluates the accuracy of our analysis by comparing
WCRT estimates obtained with ATA to conservative WCRT bounds that
can be derived (without model checking) for the RR arbitration policy.

4.8.1.1 Benchmarks and Determination of Superblock Parameters

To evaluate the proposed techniques, we considered six benchmarks
from the AutoBench group of the EEMBC (Embedded Microprocessor
Benchmark Consortium) [eem] and ported them to PREM4 [PBB+11]. We
examined benchmarks representing streaming applications that process
batches of input data and produce a stream of corresponding output.
Specifically, the six benchmarks we used from the AutoBench group
were “a2times” (angle to time conversion), “canrdr” (response to remote
CAN request), “tblook” (table lookup), “bitmnp” (bit manipulation),
“cacheb” (cache buster) and “rspeed” (road speed calculation). Ideally
more benchmarks would have been examined, however, making a
benchmark PREM-compliant is a time-consuming operation. A similar
approach to benchmarking was employed in past works using PREM, in
particular [PBB+11, YPB+12, BYPC12].

Each benchmark in the EEMBC suite comes with a sample data file that
represents typical input for the application. The benchmark comprises
required initialization code, followed by a main processing loop. Each
iteration of the benchmark algorithm processes a fixed amount of input
data, and the number of iterations is selectable. We configured the number
of iterations such that each benchmark processes its entire sample data.
Then, we compiled the whole main loop into a superblock. This way every
periodic execution of the resulting task consists of a single superblock.
During the acquisition phase, the whole sample data of the benchmark,
static data and code of the main loop are loaded into cache. In the
execution phase, the main loop is repeated for the selected number of
iterations. Finally, during the replication phase all output data are written
back to main memory. Note that we did not include the initialization code
of the benchmark in the superblock, since such code must be run only

4The application of the PREM framework for the derivation of the benchmark
superblock parameters and the simulations with the Gem5 simulator consist joint work
with Zheng Pei Wu and Rodolfo Pellizzoni.

4.8. Evaluation 137

Benchmark Iterations
PREM

µmax,a µmax,r emax,a emin,e emax,e

a2times 256 129 26 1561 215552 296448
canrdr 512 186 26 1821 110080 1047552
rspeed 256 90 23 1094 92160 163328
tblook 128 271 23 2453 103424 795648
bitmnp 64 170 47 1678 4669760 5173056
cacheb 32 100 33 1025 8704 11872

Table 4.2: Benchmark parameters.

once at the beginning of the benchmark and is not executed as part of a
periodic task.

Table 4.2 provides the derived characterization for the six benchmarks
run on our architectural simulator. To obtain valid measures for our
superblock model, each benchmark was executed in isolation on one
core, with no other computation in the system. We provide the number
of iterations for each benchmark. We report the maximum number
of accesses µmax,a, µmax,r for the acquisition and replication phases, the
maximum execution time emax,a (ns) for the acquisition phase, as well
as minimum and maximum execution times emin,e, emax,e (ns) for the
execution phase. Note that in our simulations, the replication phase was
implemented by flushing the cache content before the next superblock
starts, hence the cache was empty at the beginning of each acquisition
phase. Since furthermore the amount of processed and modified data is
constant for a given number of benchmark iterations, we have µmin,a =
µmax,a and µmin,r = µmax,r, i.e., the number of accesses in the acquisition and
replication phases is constant. Also note that the largest working set in
Table 4.2 (see “tblook”) is 271 cachelines× 64 bytes-per-cacheline = 17,344
bytes, which can fit in LVL2 cache for commonly used processors. The
number of accesses during the execution phase is zero. The execution
time during the acquisition phase is also constant and dependent on the
number of instructions required to prefetch µmax,a cache lines. We do not
report the execution time of the replication phase since a single instruction
can be used to flush the cache independently of its content. Finally,
the minimum and maximum lengths of the execution phase depend on
the input data, and were thus computed as follows: we first measured
the minimum and maximum execution time for a single iteration of the
benchmark. Then, we obtained emin,e, emax,e by multiplying the number
of benchmark iterations by the measured minimum and maximum per-
iteration time, respectively. Since the provided sample data are designed
to test all code paths in the algorithms, we believe that this way, we
sufficiently approximated the minimum and maximum execution time
bounds that would be computed by a static analysis tool. For an in-depth
comparison of PREM versus normal (non-PREM) execution, we refer the

138 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Benchmark Period (ns) Benchmark Period (ns)
a2times 360000 tblook 900000
canrdr 1350000 bitmnp 5400000
rspeed 200000 cacheb 40000

Table 4.3: Benchmark periods for simulation.

interested reader to [PBB+11, YPB+12]. In general, the number of cache
line fetches under PREM is slightly higher than the number of fetches
under non-PREM execution, but this overhead is relatively low for most
benchmarks.

4.8.1.2 Evaluation: FTA vs ATA vs Simulation

We simulated the parallel execution of two to six tasks on an equal
number of cores, where each task is composed of a single superblock,
based on one of the described benchmarks. We used simulations to
provide a meaningful lower bound to the WCRT of each task considering
contention for access to the shared resource and to validate our model.
Our resource simulator uses traces of memory requests generated by
running each benchmark in isolation on Gem5, as described earlier in
Section 4.8.1.1. The simulator keeps track of simultaneous requests by
multiple cores and arbitrates accesses to the shared resource based on
round-robin arbitration. Since we assume an in-order model where the
core is stalled while waiting for main memory, the simulator accounts for
the delay suffered by each memory access by delaying by an equivalent
amount all successive memory requests performed by the same core.

For each scenario, we simulated a synchronous system, i.e., all tasks
were activated for the first time simultaneously. Each task was then
executed periodically with a given period, shown in Table 4.3, on its
dedicated core. The task periods were selected so that each task can
complete execution within them. Namely, a superblock’s period is at
least equal to its conservative WCRT estimate:

WCRTcons = (µmax,a + µmax,r) ·m · Tacc + emax,a + emax,e , (4.12)

which assumes that every access experiences the worst possible delay, i.e,
m · Tacc under RR resource arbitration (e.g., for m = 6 and Tacc = 32ns,
we have WCRTcons = 327769 ns for benchmark “a2times”). In both the
simulations and the analytical model, we allowed the execution time
of the execution phase to vary between emin,e and emax,e. To enable
this variability, we decided to simulate each scenario until the task
with the largest period has executed 2000 times, and we recorded the
maximum response time for each task during the simulation; the length
of the execution phase of each job was randomly selected based on a
uniform distribution in [emin,e, emax,e]. For each scenario, we also applied

4.8. Evaluation 139

the proposed WCRT analysis methods, first the one where the system
is fully modelled with TA (FTA) and then, the one where a part of
the system (interfering cores) is abstractly modelled with arrival curves
(ATA). The additional abstractions of Section 4.7 were also applied
whenever possible. Table 4.4 presents the WCRT of each task as observed
during simulation as well as the difference among this value and the
corresponding WCRT with the two analysis methods. The difference is
defined for each task as:

Di f f erence = 100 ·
WCRTanalytic −WCRTsimulation

WCRTsimulation
. (4.13)

Table 4.4 presents also the time required to verify one WCRT query
with the Uppaal timed model checker in each case. Note that the total
verification time will be a multiple of the presented time because of the
binary search performed to specify a tight response time bound. All
verifications were performed with Uppaal v.4.1.7 on a system with an
Intel Xeon CPU @2.90 GHz and 128 GB RAM. Note that the experimental
results should be reproducible also on machines with a lower RAM
capacity (e.g., 8 GB). In particular, the model checker required up to
4.3 GB RAM for the FTA analysis, for systems with 2-3 cores. For the
WCRT analysis of benchmarks “a2times” and “rspeed” in the 4-core
scenario, the RAM utilization surpassed 25 GB. This is the only case where
model checking for the FTA method could fail to complete on a machine
with restricted RAM capacity. Respectively, model checking for the ATA
analysis required several tenths of MB in most cases. The peak RAM
consumption was observed when verifying the WCRT of benchmark
“bitmnp” in the 6-core scenario and was equal to 1.2 GB.

The FTA analysis method could be applied to systems with up to 4
cores. For tasks “canrdr” and “tblook” in the 4-core scenario as well as for
the 5-core and 6-core scenarios, verification of a WCRT query with Uppaal
required more than 120 hours and was, thus, aborted. Nevertheless,
for the scenarios where the FTA method could be applied, the obtained
WCRT results are very close to the ones observed during simulation.
The maximum deviation between the corresponding values is 0.85%,
confirming that our formal modelling is a good reflection of the dedicated
superblock (PREM) execution. This can be explained as follows: PREM
yields phase structured executables, respectively compiled code, and we
used this code with the simulator. It can actually be expected that higher
timing determinism allows the upper WCRT bounding to be close to the
measured results of the simulation. This has also as a consequence that
the comparison of ATA and simulation is almost as decisive as the direct
comparison between ATA and FTA. This is particularly important for
cases where the FTA WCRT estimates cannot be obtained, e.g., because
the analysis runs out of memory.

Note that the scalability of FTA is already improved compared to

140 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Cores
Benchmark Simulation FTA ATA

Set WCRT (ns) Diff.(%) Verif. time Diff.(%) Verif. time (sec)

2
a2times 305540 0.28 2.4 sec 0.78 1.5
canrdr 1058020 0.09 2.5 sec 0.29 1.9

3
a2times 308431 0.51 16 min 1.44 2.7
canrdr 1060294 0.15 16.25 min 0.43 3.3
rspeed 172712 0.45 15.25 min 1.48 1.8

4

a2times 312839 0.64 79.9 hrs 1.60 3.6
canrdr 1066062 - - 0.78 5.2
rspeed 175588 0.85 12.2 hrs 1.88 2.2
tblook 819105 - - 0.44 7.0

5

a2times 315704 - - 2.25 4.6
canrdr 1068112 - - 1.42 6.6
rspeed 178424 - - 2.29 2.8
tblook 822330 - - 1.13 10.8
cacheb 28666 - - 19.22 4.0

6

a2times 319802 - - 2.49 5.0
canrdr 1074540 - - 1.45 7.2
rspeed 181249 - - 2.69 3.4
tblook 827793 - - 1.43 14.4
cacheb 32251 - - 19.17 4.4
bitmnp 5202608 - - 0.26 11.1

Table 4.4: WCRT results of EEMBC benchmarks: FTA vs. ATA vs. simulation
for RR arbitration.

earlier model checking-based analysis methods, e.g., [GELP10, LYGY10],
in which analysis did not scale efficiently beyond two cores for event-
driven resource arbitration schemes. This improvement can be attributed
to our first proposed abstraction, namely the dedicated superblock
structure of the tasks.

On the other hand, the ATA analysis method scales efficiently, with
the verification of each WCRT query being completed in few seconds in
all cases, almost independently of the number of cores in the system. One
can observe that the obtained WCRT results are slightly more pessimistic
than the ones derived with FTA, as the differences to the simulation
observations are now larger. However, the pessimism of ATA compared
to FTA is limited, reaching at maximum 1.03% for task “rspeed” in the
3-core and the 4-core scenarios.

The small deviation between the FTA and ATA estimates can be
explained as follows: the two methods produce the same WCRT for a
superblock if the system under analysis operates close to the conservative
case. For instance, for RR arbitration of a shared memory, this happens
when each core uses its assigned slot for accessing the resource while an
access of the core under analysis is pending. Likewise for FCFS-based
resource arbitration, this happens when the FIFO buffer is always filled
with m − 1 requests upon the arrival of a request from the core under
analysis; assuming that there are m cores in the system. It appears that

4.8. Evaluation 141

with the considered benchmarks most of the time the system shows such
a behavior and this is why both methods produce comparable results.
In the general case, if the real-time system exhibits a smaller overlap of
the access requests from different cores, the ATA method can become
more pessimistic. This is due to (i) the construction of the interference
curve α (sum of individual curves, Section 4.6.2), which provides a
conservative upper bound on the interfering access requests, (ii) its over-
approximation by the staircase function αst, and (iii) the behavior of the
access request generator (Section 4.6.3), which emits interfering requests
non-deterministically over time, thus enabling the exploration of certain
request streams that are bounded by αst but may never be encountered at
runtime.

The maximum difference between the ATA WCRT and the correspond-
ing simulation-based WCRT is observed for task “cacheb” in the 5-core
scenario and is equal to 19.22%. What differentiates “cacheb” from other
benchmarks and contributes to this high difference is the fact that the
access-to-computation time ratio is considerably high for this benchmark.
If we look at the maximum bounds from Table 4.2, resource accessing
accounts for 25% of the total execution time when “cacheb” is executed in
isolation. This is why the effects of a pessimistic analysis method affect the
WCRT of “cacheb” more than other less memory-intensive benchmarks.
As pointed out above, a similar picture could be expected also when
comparing the FTA and ATA method, as FTA and simulation produce
similar WCRT due to the code structuring. The results of Table 4.4
show, however, also that the difference (pessimism) is limited since in
most cases, the ATA-derived WCRT are only up to 2.5% greater than the
corresponding simulation results. This allows us to conclude that the
gain in scalability, obtained by the abstraction of a part of the system with
arrival curves, does not compromise the accuracy of the WCRT. The topic
of accuracy is discussed further in the next section.

4.8.1.3 Evaluation: ATA vs Conservative WCRT Estimation

Figures 4.10(a)-4.10(f) illustrate the absolute WCRT estimates of each
EEMBC benchmark for each scenario (different number of concurrently
executed benchmarks), as obtained by (i) the ATA analysis methodology,
(ii) the simulation environment presented in Section 4.8.1.2, and (iii)
a conservative WCRT estimation under RR resource arbitration, given
by Eq. (4.12). The results of the first two methods are the same as in
Table 4.4. The last estimation assumes that every single access of a core
under analysis is delayed by all interfering cores in the system. This
conservative, yet safe assumption, which was also the basis of the WCRT
analysis in Chapter 3, enables modelling RR through a TDMA scheme,
where each core has one slot of length equal to Tacc (access latency) in
every arbitration cycle. Independently of whether the interfering cores

142 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

●

●

●

●

●

■

■

■

■

■

◆

◆

◆

◆

◆

2 3 4 5 6
300 000

305 000

310 000

315 000

320 000

325 000

330 000

Number of cores

W
C
R
T
a2
tim
es

ns

● ATA
■ Conservative
◆ Simulation

(

(

(a) Benchmark a2times.

●

●

●

●

●

■

■

■

■

■

◆
◆

◆
◆

◆

2 3 4 5 6
1.05 ×10 6

1.06 ×10 6

1.07 ×10 6

1.08 ×10 6

1.09 ×10 6

Number of cores

W
C
R
T
ca
nr
dr

ns

● ATA
■ Conservative
◆ Simulation

(

(

(b) Benchmark canrdr.

●

●

●

●

■

■

■

■

◆

◆

◆

◆

3 4 5 6

175 000

180 000

185 000

Number of cores

W
C
R
T
rs
pe
ed

ns

● ATA
■ Conservative
◆ Simulation

(

(

(c) Benchmark rspeed.

●

●

●

■

■

■

◆
◆

◆

4 5 6

820 000

830 000

840 000

850 000

Number of cores

W
C
R
T
tb
lo
ok

ns

● ATA
■ Conservative
◆ Simulation

(

(

(d) Benchmark tblook.

●■

◆

5 6
Number of cores

● ATA
■ Conservative
◆ Simulation

◆

●■

26 000

28 000

30 000

32 000

34 000

36 000

38 000

40 000

W
C
R
T
ca
ch
eb

ns

(

(

(e) Benchmark cacheb.

●●■■

◆◆

6
5.200 ×10 6

5.205 ×10 6

5.210 ×10 6

5.215 ×10 6

Number of cores

W
C
R
T

bi
tm
np

ns

● ATA
■ Conservative
◆ Simulation

(

(

(f) Benchmark bitmnp.

Figure 4.10: WCRT of EEMBC benchmarks: ATA vs. Conservative Bound vs.
Simulation for RR arbitration.

emit accesses within a cycle, the corresponding slots cannot be used by the
core under analysis, which has to wait for a whole cycle interval between
any two successive accesses.

Based on the depicted results, the difference between the ATA esti-
mates and the observed through simulation WCRT varies between 0.26%
(“bitmnp”, 6 cores) and 19.22% (“cacheb”, 5 cores). Respectively, the
difference between the ATA and the conservative WCRT estimates varies
between 0% (benchmarks “a2times”, “rspeed”, “cacheb”, “bitmnp”) and
1.8% (“tblook”, 6 cores). The equality of the ATA and the conservative
estimates for some benchmarks is a special case stemming from the
nature of the considered benchmarks. Particularly, the six benchmarks (i)
exhibit similar structure with a burst of hundreds of access requests at the
beginning of their execution and (ii) start synchronously (at time 0) among

4.8. Evaluation 143

all cores. This results in massive interference on the shared memory
at the beginning of each hyper-period, where the memory accessing
(acquisition) phases of the benchmarks overlap. Consequently, for the
considered case study the exhibited interference at runtime is closely
described by the conservative assumption mentioned above. A larger
deviation between the two estimates would be expected if the benchmarks
started their execution after given phases, so that their acquisition phases
would only partially (or not at all) overlap.

In general, for more complex arbitration policies than RR, like FlexRay,
the derivation of a conservative bound is not trivial and can be only based
on overly pessimistic assumptions (e.g., no access provided during the
dynamic FlexRay segment) due to the complexity of modelling the state
of the arbiter. Under such arbitration scenarios, we expect the ATA WCRT
to be more accurate than any conservative estimates. The same applies
also to cases, where the initial phases of the benchmarks (here, 0) are
synchronized such that the interference on the memory path is reduced.
If the interference arrival curves are computed by considering the initial
phases, the ATA WCRT will be refined as opposed to the conservative
bounds which do not reflect this information.

4.8.2 Case Study II: ATA vs Analytic Approaches
In the second case study, we explore the scalability limits of our WCRT
analysis approach when resource accesses of some of the processing cores
are abstracted with an arrival curve, i.e., for the ATA approach5. We also
evaluate the accuracy of ATA for different arbitration schemes w.r.t. state-
of-the-art analytic methods.

For this purpose, we used a real-world application provided by an
automotive supplier, which consists of 4 independent tasks. Each task is
defined as a sequence of 2-8 general superblocks (resource accesses can
occur also during execution phases), of which the access requests and
computation parameters were derived with static analysis techniques.
The superblock parameters cannot be disclosed due to confidentiality
restrictions.

We consider systems with 2, 4, 8, 16, 24, 32 or 64 cores and a shared
memory that can be arbitrated according to any of the policies addressed
in this chapter. Each of the application tasks is assumed to be executed
periodically on one core (for systems with more than 4 cores, tasks
are replicated), and depending on the arbitration policy of the memory
controller, we make the following additional assumptions:

• When the shared memory arbitration is FCFS or RR, the processing
cycles of different cores are considered non-synchronized, i.e.,

5For the derivation of the access request arrival curve of each core, we used here the
method presented in [GLST12], which is more conservative compared to the method of
Section 4.6.1.

144 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

Cores
FCFS RR TDMA FlexRay

FTA ATA FTA ATA FTA/ATA FTA ATA
2 1.2 sec 1 sec 1.2 sec 0.5 sec 0.1 sec 0.7 sec 27.1 sec
4 - 1.7 sec - 1.1 sec 0.2 sec 0.9 sec 28.5 sec
8 - 31.3 sec - 1.2 sec 0.5 sec 2.8 sec 17.8 sec
16 - 4.9 min - 1.3 sec 0.9 sec - 10.4 sec
24 - 18.8 min - 1.6 sec 1.1 sec - 26.8 sec
32 - - - 1.9 sec 1.2 sec - 57.4 sec
64 - - - 2.7 sec 1.7 sec - 7 min

Table 4.5: Verification time for safety property regarding a superblock’s WCRT.

execution of superblock s1, j can start at any time within [0,T j). On
the other hand, for TDMA and FlexRay, the processing cycles are
considered synchronized to each other and also to the arbitration
cycle, i.e., all tasks and the arbitration cycle start at time 0.

• The DYN segment of FlexRay corresponds to 20% of the total
arbitration cycle and enables cycle multiplexing. Namely, there
are two minislot assignments which alternate with each other in
consecutive arbitration cycles.

The system model exploits the interference abstraction ATA. There-
fore, we analyzed the WCRT of a selected task running on a particular core
(CUA), while all other cores were modelled by an access request generator
that emits request streams bounded by their aggregate interference curve
(Section 4.6). Additionally, abstractions from Section 4.7 were applied
whenever possible. Verification of the WCRT queries was performed
with Uppaal v.4.1.7 on a system with a dual-Core AMD Opteron CPU
@2.7GHz and 8 GB RAM.

Table 4.5 shows the verification time required for each WCRT
estimate for the different system configurations and arbitration policies.
For comparison, the respective verification times for FTA are also
included, when available. For the FCFS and RR cases, the analysis
scalability for FTA gets severely challenged due to the complexity
of the considered industrial application and the assumption of non-
synchronized processing cycles among the cores. Particularly, non-
determinism w.r.t. the starting time of each task’s first execution causes the
analysis not to scale beyond 2 cores. The application of the interference
abstraction (ATA), however, enabled us to overcome this obstacle and
obtain safe upper bounds on the WCRT of the considered tasks in a few
minutes for systems with up to 24 cores for FCFS and 64 cores for RR and
FlexRay. This is a major step forward compared to any of the existing
approaches, opening the way for efficient interference analysis even in
many-core systems. In the case of TDMA arbitration, analysis scales very
efficiently for any number of cores due to abstraction 4 of Section 4.7, i.e.,

4.8. Evaluation 145

Cores FCFS (%) RR (%) TDMA (%) FlexRay (%)
2 0 0 0 0
4 11.1 11.1 0 0
8 13.8 13.8 0 1.8

16 17.2 17.2 0 -
24 17.3 17.3 0 -
32 - 16.8 0 -
64 - 25.4 0 -

Table 4.6: Accuracy of ATA compared to state-of-the-art methods. The results
define the relative difference of ATA-derived WCRT bounds compared to FTA
for FCFS/RR (2 cores) and FlexRay, to [PSC+10] for FCFS/RR (more than 2 cores)
and to [SCT10] for TDMA.

the non-representation of interference in the system model. Because of
this, the verification time in Table 4.5 is the same for both systems with
(ATA) and without (FTA) the interference abstraction.

Furthermore, Table 4.6 shows the accuracy of ATA, measured as the
relative difference to the best known WCRT estimate for each scenario.
For FCFS and RR arbitration schemes in systems with up to 2 cores,
accuracy was compared against the results given by FTA. For systems
with more than 2 cores, however, accuracy was compared against the
methods presented in [PSC+10]. A value of ’0’, in this case, means that
the results of both ATA and the analytic method exhibit the same degree of
pessimism. For TDMA systems, accuracy was evaluated against results
obtained with the method in [SCT10]. Since for FlexRay arbitration no
analytic methodology is known, the accuracy of the obtained WCRTs was
compared to the results of FTA when the latter were available.

For FCFS and RR, comparison shows that the results of ATA can be
more pessimistic (up to 25.4%) than the analytic approach [PSC+10], with
higher pessimism for higher number of cores. As main source of this
pessimism, we identified the behavior of the Access Request Generator TA
in the abstract system specification (Section 4.6.3), which emits interfering
requests non-deterministically over time, thus enabling the exploration
of several request streams that are bounded by αst, but may never be
encountered in the real-time system. Unlike the results of case study
I (Section 4.8.1.3, it seems that the structure and the parameters of the
superblocks in this case study (general superblocks with relatively many
access requests and very high access latency Tacc compared to superblocks’
execution time) lead to high pessimism for the ATA analysis.

For TDMA, the ATA results are identical to those of the analytic
method [SCT10]. Finally, for systems with a FlexRay arbiter, the WCRT
estimates are identical for the FTA and ATA approaches for systems with 2
and 4 cores, and only slightly more pessimistic (1.8%) for ATA for systems
with 8 cores. Note that beyond 8 cores, pessimism could not be evaluated

146 Chapter 4. A Dedicated Execution Model for Tighter Interference Analysis

as no other approach can compute tight WCRT bounds for tasks with
synchronous access requests to a FlexRay-arbitrated resource.

In summary, the results show that ATA analysis scales efficiently
to a large number of cores, unlike previous state-based analysis
approaches [GELP10, LYGY10]. Analysis scalability is achieved without
compromising the accuracy of the obtained results in the cases of
TDMA and FlexRay resource arbitration. For purely event-driven
arbitration policies, like FCFS and RR, the accuracy of ATA analysis as
compared to FTA and state-of-the-art analytic approaches depends on
the characteristics of the considered applications. For instance, not being
able to enforce the dedicated superblock execution model has a significant
contribution to analysis pessimism.

4.9 Summary
This chapter presented a framework for state-based worst-case response
time (WCRT) analysis of periodic tasks that are executed in parallel on
a multi-core platform and perform synchronous (blocking) accesses to
a shared resource under e.g., FCFS, RR, TDMA or FlexRay arbitration
schemes. For achieving deterministic execution and hence, analysis
scalability, tasks are organized in dedicated superblocks, namely
sequences of resource access and computation phases. We showed
how such systems can be precisely modelled with timed automata and
analyzed using exhaustive model-checking techniques (FTA analysis).
Empirical evaluations with benchmark applications showed that the
proposed approach delivers safe WCRT bounds, which due the precise
system model lie very close to simulation-driven results from the Gem5
architectural simulator. On a next step, we abstractly represented access
requests of cores which compete for the shared resource against a core
under analysis by a real-time calculus arrival curve and integrated this
curve into the timed automata system specification (ATA analysis). A
case study based on a real-world automotive application showed that
this method scales much better than previous state-based approaches
without compromising the accuracy of the WCRT estimates.

The presented methods are the first to analyze the worst-case response
time of tasks with synchronous accesses to a shared resource arbitrated
by FlexRay and can be easily extended to model any well-defined arbiter
of commercial-off-the-shelf multicores. This opens the way for safe and
tight worst-case timing analysis even for industrial-size applications on
many-core systems.

5
Deployment of Mixed-Criticality

Scheduling on a Multi-Core
Architecture

The deployment of mixed-criticality applications on resource-sharing
multicores is challenging mainly due to two reasons. The first reason
is the need to bound temporal interference among applications with
different safety criticality levels for certification purposes. This challenge
has been addressed in Chapters 2 and 3, by proposing scheduling
policies that avoid inter-criticality interference by construction. The
second reason is the implementation of mixed-criticality schedulers,
which is itself subject to certification. Mixed-criticality scheduling policies
typically employ runtime mechanisms to monitor task execution, detect
exceptional events like task overruns, and react by switching scheduling
mode. Implementing such mechanisms efficiently, but also with bounded
overhead, is crucial for any scheduler to detect runtime events and react
in a timely manner without compromising the system’s safety. Although
several mixed-criticality multi-core scheduling approaches have been
proposed in recent years, currently there are very few implementations
on hardware that demonstrate the ability to bound interference on shared
resources and the overheads of scheduling mechanisms.

To address this necessity, we develop in this chapter a mixed-
criticality runtime environment on the Kalray MPPA-256 many-core
processor. The runtime environment implements the FTTS scheduling
policy of Chapter 3. We evaluate different mechanisms to implement
the scheduling primitives and we propose a worst-case response time
analysis which accounts for scheduling overheads and for the inter-task

148 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

interference on the shared cluster memory. Using realistic benchmarks
from avionics and signal processing, we validate the adherence to the
analytic response time bounds and demonstrate a maximum achievable
utilization of 78.9% on the 16 cores of an MPPA-256 cluster. This result
promotes FTTS and similar policies as a viable solution for the efficient
and predictable deployment of mixed-criticality multi-core systems.

5.1 Introduction
The prevalence of multi-core architectures in the electronic market has led
to an ongoing shift from single-core to multi-core designs even in safety-
critical domains, such as avionics and automotive [NP12]. As has been
previously discussed, this shift is challenging due to the need to bound
interferences on shared platform resources. Such interference can cause
lower-criticality applications to delay higher-criticality applications, e.g.,
upon accessing a shared memory, thus hindering certification. Scheduling
of mixed-criticality applications requires typically complex mechanisms
to enable sufficient isolation among different criticality levels. Consider
for instance the flexible time-triggered and synchronization-based (FTTS)
scheduling policy of Chapter 3, which is based on frequent inter-
core synchronization through a barrier mechanism, dynamic scheduling
decisions at runtime, etc. Given that the scheduler itself is subject to
certification, such mechanisms need to be implemented with bounded
execution times.

Although theoretical aspects of mixed-criticality multi-core schedul-
ing have been studied [BD16], currently there are very few implementa-
tions on hardware that demonstrate efficient resource utilization (through
efficient scheduling mechanisms) or the ability to bound interference on
shared resources. In this chapter, we show that the deployment of mixed-
criticality applications on multicores can be achieved with a high degree
of predictability and efficiency, such that real-time guarantees are provided
for all applications and a high utilization of the platform resources is
possible. We accomplish this based on four key design factors:

1) Timing-predictable hardware. Providing real-time guarantees
on multicores requires that execution times and resource access times
can be (tightly) bounded. For this, we employ the Kalray MPPA-256
processor [dDvAPL14], a cluster-based architecture consisting of clusters
with a 16-core shared-memory architecture. To the best of our knowledge,
it is the only many-core platform where the cores are designed for timing
compositionality [WGR+09]. This makes it appropriate for bounded
worst-case response time analysis (see also Chapter 3).

2) Adaptive temporal partitioning. Our multi-core scheduling
approach reduces the complexity of interference analysis by applying
Isolation Scheduling (IS, Chapter 2), i.e., by temporally partitioning the

5.1. Introduction 149

platform and allowing only applications of the same criticality to be
executed at any time. For efficient resource utilization, the schedule of
the temporal partitions can be dynamically adapted at runtime to react to
occasionally higher resource demand (from high-criticality applications).
To further reduce the complexity of bounding intra-partition interference,
we look into a subset of IS-compliant scheduling policies which do not
allow (dynamic) task preemptions or migrations. In the following, we
refer to this scheduling class as adaptive temporal partitioning. Note that
the FTTS scheduling policy of Chapter 3 belongs to this class.

3) Efficient implementation of scheduling primitives. The successful
deployment of mixed-criticality applications on multi-core architectures
depends on the ability to implement scheduling primitives, such as
inter-core synchronization and dynamic scheduling adaptations, with
bounded and low overhead. With the majority of commercial multicores
and operating systems being optimized for average-case rather than
worst-case performance, this is not trivial. In previous work, we have
shown that the overhead of mixed-criticality mechanisms can have a
prohibitive effect on schedulability [SGH+15]. To avoid this, we employ
the simplest possible primitives for the implementation of adaptive
temporal partitioning on the MPPA-256 and optimize them with respect
to runtime overhead.

4) Bounded interference on shared resources. Bounding the tasks’
mutual delays due to interference on shared resources is highly complex,
since all possible overlapping access patterns need to be considered
and all resource arbitration mechanisms need to be precisely modelled.
With an increasing number of applications and shared resources,
random access patterns and proprietary architectures, the problem of
interference bounding becomes soon intractable [DAN+13]. We show
how implementing adaptive temporal partitioning on the MPPA-256 can
lead to a tight bounding of such delays.

This chapter focuses mainly on the last two design goals. Note that
although existing mixed-criticality policies such as FTTS and the cyclic-
executive approach of [BFB15] implement adaptive temporal partitioning,
so far there has been insufficient empirical evidence on whether these
two goals can be achieved on available multicores. By presenting the first
deployment of adaptive temporal partitioning on a timing-predictable
many-core platform, we show that this approach is indeed a viable
solution to mixed-criticality scheduling.

Contributions. The main contributions of the chapter can be summarized
as follows:

• We develop a runtime environment for adaptive temporal parti-
tioning on the MPPA-256 Andey processor. We propose alternative
implementations for the scheduling primitives and compare them
w.r.t. overhead.

150 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

• We use an accurate model of the MPPA-256 shared memory and
benchmarks to bound the worst-case delay that a task can suffer
due to contention on the memory path. The results improve upon
the analysis of Section 3.5 by considering an additional source of
interference between neighbouring processing cores, which was not
modelled before.

• We present a worst-case response time analysis which accounts
for the scheduler overheads and the worst-case interference on the
memory path. Based on this, we can provide real-time guarantees
for the scheduled task sets.

• With a set of industrial-representative benchmarks, we validate
runtime adherence to the analytically derived response time bounds
and show that complex applications with utilization up to 78.9%
can be scheduled on 16 cores without deadline misses. This
utilization, which is significantly higher than previously reported
results [SGH+15, PMN+16, BDN+16], confirms the applicability
of adaptive temporal scheduling for efficient and predictable
deployment of mixed-criticality applications on multicores.

Outline. The chapter is organised as follows. Section 5.2 provides
an overview of existing implementations of mixed-criticality systems.
Sections 5.3 and 5.4 present the application and scheduling models and
the relevant features of the MPPA-256 architecture for timing analysis.
Section 5.5 details the implementation of our runtime environment and
Section 5.6 presents a method for bounding the worst-case length of the
temporal partitions. Section 5.7 presents the empirical evaluation on the
MPPA-256 platform and Section 5.8 summarizes the main results of the
chapter.

5.2 Related Work
Previous chapters presented alternative approaches that have been
proposed in research literature for bounding temporal interference among
applications with different criticality levels that are co-hosted in a multi-
core platform and access shared resources, see Section 2.2 and 3.2. From
these approaches, we adopt Isolation Scheduling and particularly, a
subset of IS-compliant approaches which, like FTTS (Chapter 3), do not
permit task preemptions or migrations so as to reduce the complexity
of intra-criticality interference analysis. In the following, we highlight
existing works that consider implementation aspects of mixed-criticality
scheduling and explicitly account for the runtime overhead of scheduling
mechanisms on commercial-off-the-shelf platforms.

5.2. Related Work 151

First, Herman et al. [HKM+12] considered the implementation
and runtime overhead of multi-core mixed-criticality scheduling by
implementing the scheduling method of [ABB09, MEA+10] in the real-
time operating system LITMUS [CLB+06]. The implemented framework
operates at kernel level and is customized for the specific scheduling
scheme. Unlike our work, the scheduling scheme in [HKM+12] does
not explicitly support temporal isolation among criticality levels in the
presence of shared non-computational resources. Huang et al. [HGL]
implemented several mixed-criticality policies on top of a standard
Linux kernel and evaluated their runtime overheads on an Intel Core
i7 processor. The developed framework, however, addresses single-core
and mainly priority-driven scheduling policies. Sigrist et al. [SGH+15]
presented a user-space implementation of the FTTS scheduling policy
(Chapter 3) and partitioned EDF-VD [BCLS14] on top of the Linux
operating system. The authors opted for a user-space implementation
for quick prototyping of different scheduling policies and comparison
of their performance on different platforms. Their evaluation on Intel
Xeon Phi and Intel Core i5 showed that the overhead of certain runtime
mechanisms, such as the barrier synchronization and the sub-frame
initialization of FTTS, can be extremely high, resulting in significant
schedulability loss. This can be justified since neither the operating
system nor the target platforms were designed for timing predictability.
We show how to mitigate such effects through a careful, light-weight
implementation of the scheduling primitives on the Kalray MPPA-256.

To the best of our knowledge, this chapter presents the first
implementation of adaptive temporal partitioning on a many-core
platform designed for timing predictability. From an implementation
perspective, close to our work lie the scheduling frameworks of
[PMN+16, BDN+16]. Both aim at providing contention-free execution
of safety-critical applications on the Kalray MPPA-256. Unlike our
work, the authors eliminate all possible sources of interference on shared
resources by adopting spatial partitioning of cores and memory banks,
time-triggered access to shared resources, hypervisors for enforcement
of resource budgets [PMN+16] and/or dedicated execution models with
computation and resource access phases (similar to the superblock model
of Chapter 4) and fine-grain scheduling of these phases [BDN+16].
Although the scope of these works is more general, as they can utilize
several compute clusters of the MPPA-256 (our framework currently does
not support inter-cluster communication), the methods for elimination
of contention on shared resources can have a detrimental effect on
schedulability. The empirical evaluation of the frameworks validates
this hypothesis, since in [BDN+16] the maximum achievable utilization
of a cluster with 14 cores is 14.3% for task sets with a 10% accessing-
to-execution time ratio. We show that a much higher utilization can be
achieved by allowing contention among same-criticality applications.

152 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

5.3 System and Scheduling Model

We consider the same application model as in Section 3.3 and
mixed-criticality scheduling policies that implement adaptive temporal
partitioning such as FTTS of Section 3.4. For convenience, we recapitulate
here the basic principles of the application and scheduling model for
a simplified dual-criticality system. For a more detailed presentation,
please refer to Chapter 3.

5.3.1 Mixed-Criticality Task Model

We consider periodic mixed-criticality task sets τ = {τ1, . . . , τn} executed
on a shared-memory multi-core architecture with m processing cores. For
simplicity, we focus on dual-criticality systems, in which the criticality
levels are denoted as high (HI) and low (LO). Each task τi ∈ τ is
characterized by a tuple τi = (Ti,Di, χi,Ci(LO),Ci(HI)), where Ti,Di ∈ N

+

denote the period and relative deadline, χi ∈ {LO,HI} the criticality level,
and Ci = (ei, µi) represents an upper bound on the task’s execution time
(ei) and number of shared memory accesses (µi). The execution time ei

is specified when τi runs in isolation, i.e., without considering the delay
it may experience due to contention on the shared memory1. Each task
has two execution profiles, at different assurance levels [Ves07]. For high-
criticality tasks, the HI-level profile Ci(HI) is more conservative since
at a higher assurance level more stringent safety guarantees need to
be provided. Depending on the actual profile of high-criticality tasks
at runtime, a dual-criticality system can execute in two modes. In
LO (default) mode, all tasks are scheduled according to their LO-level
parameters Ci(LO). If a high-criticality task runs according to its HI-
level profile Ci(HI), from then on the system switches (temporarily or
permanently) to HI mode. In HI mode, high-criticality tasks require
more resources, i.e., if χi =HI: ei(HI) ≥ ei(LO) and µi(HI) ≥ µi(LO).
Low-criticality tasks may need to execute in degraded mode, i.e., with
reduced functionality, to preserve the system schedulability. Execution
in degraded mode is specified by Ci(HI), i.e., if χi =LO: ei(HI) ≤ ei(LO)
and µi(HI) ≤ µi(LO). For simplicity, we assume that the first job of all
tasks is released at time 0 and that the relative deadline of τi is equal to its
period, i.e., Di = Ti. Precedence constraints may exist among tasks with
equal periods as long as the resulting dependencies are acyclic. Finally,
we define the total utilization of a periodic dual-criticality task set τ as

1In Section 3.3, ei was defined as the maximum computation time without considering
at all the memory accessing time. Here, ei is the maximum execution time including
memory accessing when the task runs in isolation (no memory contention). This
differentiation does not affect WCRT analysis, but makes the extraction of parameters ei,
µi easier in the experimental evaluation of our runtime environment.

5.3. System and Scheduling Model 153

Figure 5.1: Two consecutive FTTS scheduling cycles (H = 100), with 2 frames
(L f1 = L f2 = 50) divided into flexible-length HI and LO sub-frames. Jobs in frame
f1 run in LO mode in the first cycle and in HI mode in the second cycle.

the maximum utilization across LO and HI execution mode:

Uτ := max
{
ULO

LO(τ) + ULO
HI (τ),UHI

LO(τ) + UHI
HI(τ)

}
, (5.1)

where Uy
x(τ) represents the total utilization of the tasks with criticality

level x for their y−level execution time (in isolation), i.e., Uy
x(τ) =∑

χi=x ei(y)/Ti.

5.3.2 Adaptive Temporal Partitioning
As mentioned earlier, adaptive temporal partitioning is a special case of
Isolation Scheduling (Chapter 2). Isolation Scheduling policies partition
a platform temporally and allow only jobs of a single task class (here,
criticality level) to utilize the platform resources at any time. To
implement this principle, all processing cores switch synchronously
between task classes. The switch can be triggered dynamically or based on
a static time-triggered pattern. In contrast to the more general Isolation
Scheduling model, adaptive temporal partitioning does not allow task
preemptions or migrations. This makes it applicable to the MPPA-256,
where cores do not support multitasking, and reduces the complexity
of interference bounding within each partition. In the following, we
recapitulate the basic principles of FTTS scheduling (Section 3.4), which
is a representative policy for adaptive temporal partitioning and is
implemented in our runtime environment.

FTTS combines time and event-triggered task activation. An FTTS
schedule repeats over a scheduling cycle H equal to the hyper-period of
the tasks in τ. The cycle consists of fixed-length frames (set F). Each
frame is divided further into two flexible-length sub-frames, the first
containing high-criticality tasks (HI sub-frame) and the second containing
low-criticality tasks (LO sub-frame). The beginning of frames and sub-
frames is synchronized among all cores. Frames start at predefined time

154 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

points. Within a frame, the HI sub-frame begins immediately. The LO
sub-frame begins once all tasks of the HI sub-frame complete execution
across all cores. Synchronization for switching from the HI to the LO
sub-frame is achieved dynamically via a barrier mechanism, for efficient
resource utilization. Namely, if the HI sub-frame completes earlier than
statically expected, the platform can be used by the following task class,
without wasting resources. Within the sub-frames, tasks are scheduled
sequentially on each core following a predefined order. The mapping of
tasks to cores is fixed.

At runtime, the length of a sub-frame varies depending on: (i)
the exhibited execution profile of high-criticality tasks, (ii) the memory
interference patterns of the co-running tasks, (iii) the scheduling
overheads, e.g., the cost of barrier synchronization on the target platform.
We use barriers(f ,LO)k (resp. barriers(f ,HI)k) to denote the worst-case
length for the k-th sub-frame of frame f ∈ F , when the tasks in it exhibit
their LO (resp. HI)-level execution profile. At runtime, the FTTS scheduler
monitors the actual length of the sub-frames. If the length of the HI sub-
frame does not exceed barriers(f ,LO)1, it triggers normally the execution
of tasks in the LO sub-frame (LO mode). However, if the length of the
HI sub-frame exceeds barriers(f ,LO)1, the tasks of the LO sub-frame are
triggered in degraded mode (HI mode). A LO to HI mode switch depends,
therefore, on the monitored length of the HI sub-frame and it can affect
the execution of LO-criticality tasks only in the current frame. The same
procedure is repeated independently for the following frames.

We show how to compute the worst-case sub-frame lengths, namely
function barriers, in Section 5.6. Once this function is computed for a
given FTTS schedule, we consider the schedule admissible, i.e., all tasks
are guaranteed to meet their deadlines, if in every frame f ∈ F (with fixed
length L f), the last sub-frame completes by the end of the frame in either
LO or HI mode, i.e., if ∀ f ∈ F :

max
{

barriers(f ,LO)1 + barrier(f ,LO)2,
barriers(f ,HI)1 + barrier(f ,HI)2

}
≤ L f (5.2)

Finding an admissible FTTS schedule for a given task set τ can be
performed by the optimization framework of Section 3.6 once a method
for computing barriers is specified.

Note that the deployment of FTTS on a multi-core platform requires
support for: global time synchronization for the time-triggered frame
activation, inter-core barrier synchronization, inter-core communication
for the implementation of dynamic scheduling decisions, static per-core
schedule tables. These mechanisms are supported in most commercial
platforms. The results of this chapter are relevant not just to FTTS, but to
any scheduling policy that uses the above primitives.

5.4. Kalray MPPA-256 155

Figure 5.2: Memory path from one processing pair to one memory bank on the
left or right side of an MPPA-256 Andey compute cluster.

5.4 Kalray MPPA-256

We present a brief overview of the Kalray MPPA-256 with emphasis
on the memory system, which is important for the timing analysis in
Section 5.6. Note that the memory model includes a source of temporal
interference within pairs of neighbouring cores, which was not addressed
in the respective model of Chapter 3. More details on the MPPA-256
architecture and runtime environment can be found in [dDvAPL14].

Architecture. The Kalray MPPA-256 Andey processor integrates 256
processing cores (PE) and 32 resource management (RM) cores, which
are distributed across 16 compute clusters and four I/O sub-systems.
Application code is executed on compute clusters, whereas the I/O sub-
systems are dedicated to the management of external memories and I/O
devices. Each compute cluster and I/O sub-system owns a private address
space and inter-cluster communication is supported by network-on-chip.

A compute cluster includes 16 processing cores and one resource
management core, each with private instruction and data caches. All
cores implement the same VLIW architecture and execute at 400 MHz.
Each cluster has a local 2 MB SRAM memory, which is organized in
16 independent banks with a dedicated access arbiter for each bank.
The memory banks are arranged in two sides (left, L and right, R) of
8 banks. Each memory bank arbiter is connected to 12 masters: the NoC
Rx interface, the NoC Tx DMA engine, a debug support unit (DSU),
the resource management core and 8 processing pairs. A processing pair
consists of two neighbouring processing cores. As shown in Figure 5.2 (for
simplicity, only for processing pair 1), the access path from a processing
core to a memory bank passes through three request arbiters. The path
starts with a bus shared by the cores of the processing pair. Access to
this bus is arbitrated round-robin among the two data caches (DC) and
the two instruction caches (IC) of the cores. Each processing pair has two
buses, one for each side. This means that if the two cores of the processing
pair need to access simultaneously two memory banks on different sides,
there is no interference on the bus level. The buses of the processing
pairs, along with all other masters are connected to the bank arbiters,

156 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

which implement a non-preemptive round-robin arbitration scheme with
higher priority for NoC Rx (illustrated by the two-stage arbitration on
Figure 5.2).

Runtime Environment. The runtime environment used in this work
(Accesscore 1.4) supports two programming modes for the cores of a
compute cluster: one using the services of a light-weight operating
system and precompiled POSIX libraries for thread management and
synchronization (we refer to it as OS) and a bare-metal mode (we refer
to it as BM). Through Makefiles, the programmer can specify at compile
time which binaries will be executed on each compute cluster. In OS
mode, the code is automatically launched on processing core PE1 of
every enabled cluster. This core can then spawn POSIX threads on
the remaining 15 processing cores, PE2 to PE16 (maximum one thread
per core). The resource manager of each cluster hosts the operating
system and is involved in the management of interrupts, NoC access
requests and system calls. In BM mode, the code is automatically
launched on the resource management core of the cluster, so all 16
processing cores PE1 to PE16 can be used for application execution. The
programmer has to handle explicitly the thread creation, management
and synchronization, interrupt handling, NoC accesses, cache coherence
using low-level operations. The BM mode offers complete control of the
platform to the programmer, yet at the cost of increased programming
effort. For comparison purposes, we implement our runtime environment
in both modes. Concerning the shared cluster memory, the programmer
can configure the memory address mapping as sequential (each bank
spans 128 KB consecutive addresses) or interleaved (data are distributed
over all banks). The programmer can also enable or disable the data cache
of each individual core and is responsible for cache coherence, which is
entirely managed through software.

5.5 Implementation of Scheduling Primitives
Adaptive temporal partitioning, such as FTTS, is based on three main
primitives: (i) the enforcement of a predefined time pattern within a
scheduling cycle, (ii) the dynamic synchronization among all cores, e.g.,
upon completion of their tasks in a partition, (iii) the communication
of dynamic decisions of the scheduler to all cores, e.g., when the next
partition needs to be triggered in degraded mode. The first goal for a
successful deployment is to implement these primitives with bounded and
low overhead. In the following, we discuss alternative implementations
on the MPPA-256 and compare their overhead. We start by introducing
the basics of our FTTS runtime environment on MPPA-256.

FTTS Runtime Environment. Our runtime environment features a

5.5. Implementation of Scheduling Primitives 157

scheduler thread, mapped on processing core 1 (PE1) of a compute cluster
in OS programming mode (resp. on the resource management core in BM
mode), and 1 to 15 (resp. 1 to 16) worker threads, mapped on processing
cores PE2 to PE16 is OS mode (resp. PE1 to PE16 in BM mode). The
scheduler thread is responsible for enforcing the time pattern of an FTTS
schedule (timekeeping), synchronizing with the worker threads at the
beginning on each FTTS frame, performing dynamic decisions at runtime
and communicating them to the worker threads. The worker threads
are responsible for executing sequentially the functions that implement
the task functionality in each FTTS sub-frame and synchronizing with
the scheduler thread when all functions are executed. Each worker
thread has access to its schedule table, hence activation of individual
task functions is managed without involving the scheduler. Execution
of every task function is followed by a data cache flush to ensure
cache coherence. The memory address mapping is interleaved, since all
threads share libraries and scheduling information and shared-memory
inter-task communication is supported, thus making the benefits of
bank privatization under sequential address mapping unattainable. The
scheduler thread collects profiling data regarding the beginning/end of
each frame and sub-frame. Respectively, the worker threads collect
profiling data regarding the beginning/end of each task. The overhead
measurements later in this section are based on post-processing of these
profiling data.

Time-triggered Activation of FTTS Frames. Timekeeping for syn-
chronous time-triggered frame activation is a responsibility of the
scheduler thread. Our runtime can be configured to use the following
methods: (i) the POSIX function nanosleep, which is called after the
completion of the last sub-frame with the remaining time until the end of
the frame as input argument, (ii) the POSIX function cond_timed_wait
which is configured at the beginning of the frame with an absolute value
indicating its exact completion time, and (iii) a custom busy-wait function
(default option) which is called upon completion of the last sub-frame
and performs nop operations for a given amount of cycles (dynamically
computed by the scheduler). The first two methods are applicable only in
OS mode. The overhead of their call often leads to the scheduler "waking
up" hundreds of cycles later than expected. In contrast, the busy-waiting
approach is highly accurate, resulting in negligible offsets (few cycles)
from the expected frame completion time.

Barrier Synchronization. This primitive is of utmost importance for a
correct and efficient FTTS deployment, given that barrier synchronization
among all active cores of a compute cluster is performed at the beginning
of each frame and upon completion of each sub-frame. Our runtime
environment supports two alternative implementations: (i) the POSIX
function pthread_barrier_wait, which is supported only in OS mode,

158 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

and (ii) a custom function using event signals, which is supported only
in BM mode. In the second case, we are able to use hardware event lines
which connect every processing core directly to the resource management
core of a cluster. This way, barrier synchronization is achieved by
letting all worker threads notify the scheduler thread on the resource
management core, e.g., once the tasks of the current sub-frame are
completed, and letting the resource management core broadcast the end
of the barrier once it has received a notification from all processing cores.

Figures 5.3(a), 5.3(b) depict the statistical distribution (box-whisker-
plot) of the overhead of the two implementations as a function of active
cores, based on measurements. For the measurements we used an FTTS
schedule, consisting of two frames, with two sub-frames each. In each
sub-frame, one or two instances of a single task run on every worker
thread. The task performs busy waiting for 2 µs. We selected this
setup after observing that the cost of barrier synchronization typically
increases when all worker threads reach the synchronization point almost
simultaneously (which happens if one instance of the same task runs on
every worker thread) and when the time distance between successive
barrier synchronizations is short (which is achieved by the low busy
waiting interval). The FTTS schedule was executed on the MPPA-256
for 100,000 scheduling cycles (in total 200,000 frames). For each FTTS
frame, we measured the interval between the completion of the last task
of a sub-frame and the completion of barrier synchronization as seen by
the scheduler thread (osync in Figure 5.4). Repetitions of the experiment
with other schedules (with different busy waiting interval or different
tasks from Section 5.7) produced similar results. Therefore, we consider
it a realistic upper bound for the barrier synchronization overhead in our
experiments. Note that the overhead of the custom implementation is an
order of magnitude lower than that of the POSIX function call.

Communication of Scheduling Decision. This operation is performed
upon completion of the HI sub-frame in a frame. After barrier
synchronization, the scheduler checks the elapsed time since the
beginning of the HI sub-frame. If the sub-frame duration surpasses
a statically determined value (function barriers), the scheduler notifies
all worker threads to run the tasks of the following LO sub-frame
in degraded mode. Note that this is the only scheduling decision
that must be communicated from the scheduler to the worker threads,
since otherwise the worker threads manage the execution of their
schedule tables independently. Our runtime provides two alternative
implementations: (i) the POSIX function pthread_cond_wait, which is
supported only in OS mode and is based on conditional variables and
mutex locks for blocking the worker threads until a decision is made by
the scheduler and communicating the decision through a shared protected
variable in memory, and (ii) a custom function, which is supported only

5.5. Implementation of Scheduling Primitives 159

0

1000

2000

3000

4000

5000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Overhead o
sync

 in clock cycles

(a) Operating System (POSIX).

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10111213141516

Overhead o
sync

 in clock cycles

(b) Bare-metal (Custom).

 0

 5000

10000

15000

20000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Overhead o
comm

 in clock cycles

(c) Operating System (POSIX).

0

100

200

300

1 2 3 4 5 6 7 8 9 10111213141516

Overhead o
comm

 in clock cycles

(d) Bare-metal (Custom).

Figure 5.3: Runtime overheads of scheduling primitives on MPPA-256 (200,000
measurements). On each box, the central mark, bottom and top edges indicate
the median, 25th and 75th percentiles, respectively. The whiskers extend to 10
times the interquartile range. Outliers are denoted with circles.

in BM mode and uses the hardware event lines. In the second case,
the same mechanism is used as for barrier synchronization, differing
in that the scheduler does not notify the worker threads immediately
after it receives their notifications of completion, but it first makes the
scheduling decision, it writes the decision in a global variable in memory
and broadcasts a signal to all processing cores afterwards.

The statistical distribution (box-whisker-plot) of the overhead of the
two implementations for the same experiment as before (over 100,000
scheduling cycles of the FTTS schedule), is depicted in Figures 5.3(c),
5.3(d). The overhead is defined as the measured interval between the
completion time of barrier synchronization at the scheduler thread and
the latest starting time of a task in the LO sub-frame (ocomm in Figure 5.4).
The difference is significant, with the OS implementation having up to
68 times (two orders of magnitude) higher maximal overhead than the
BM implementation. A full explanation of this difference is impossible
since the implementation of the POSIX libraries on the MPPA-256 is not
open-source. One possible factor for the higher overhead is related
to the data cache flush, which automatically follows the call of POSIX

160 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

Figure 5.4: Timing diagram for an FTTS schedule frame.

synchronization functions due to the lack of hardware cache coherence
protocols. In BM mode, such a flush operation is unnecessary since the
scheduler writes explicitly its decision in shared memory (bypassing the
cache) and similarly, the worker threads read it directly from the memory.
Note also the variance of the measured OS overhead, ranging e.g., from
6,210 to 19,038 clock cycles for 16 active cores. This variance represents
a certain source of pessimism in our timing analysis, since the overhead
of communicating the scheduler’s decision cannot be tightly bounded in
OS mode.

5.6 Worst-Case Response Time Analysis
The previous section focused on the first goal for successful adaptive
temporal partitioning, i.e., the ability to (experimentally) bound the
overhead of scheduling primitives. Here, we investigate also the
second goal, i.e., the ability to bound the worst-case delays that tasks
experience due to memory contention. Generally, this is an arbitrarily
complex problem, since all possible accessing patterns of co-running
tasks need to be considered and precise models of the resource arbiters
needs to be available. By employing adaptive temporal partitioning on
MPPA-256, we reduce the complexity of the problem by restricting the
tasks that can interfere at any time, by avoiding preemptions and by
accurately modelling all interference sources in the memory architecture
(Section 5.4).

In the following, we propose a method for the computation of function
barriers, i.e., for the offline estimation of the worst-case sub-frame lengths
of a given FTTS schedule. The timing analysis accounts for the runtime
overheads of the scheduling primitives and for the task execution delays
on the shared memory path of an MPPA-256 cluster. This analysis enables
the classification of an FTTS schedule as admissible or inadmissible,
according to Condition (5.2).

5.6. Worst-Case Response Time Analysis 161

5.6.1 Impact of Runtime Scheduling Overheads
Figure 5.4 presents a timing diagram of an FTTS schedule for a single
frame with two sub-frames. The thick lines indicate the completion of
barrier synchronization as seen by the scheduler thread at the beginning
of the frame, at the end of each sub-frame and at the end of the frame,
respectively. We identify the following runtime overheads that have an
impact on the actual length of the FTTS sub-frames:

• Barrier synchronization. This overhead, denoted as osync must be
considered in every sub-frame, since barrier synchronization is used
always to detect the sub-frame completion.

• Communication of scheduling decision. This overhead, denoted
as ocomm must be considered in every LO sub-frame, since the
scheduler decides about the normal or degraded execution of
subsequent tasks only after completion of the HI sub-frame. For
HI sub-frames, ocomm = 0.

Let WCRTi(f , `) denote the worst-case response time of task τi in frame
f at level ` ∈ {LO,HI}, when it executes in parallel with other tasks
(considering all possible interference delays), m the number of active
cores in an FTTS schedule, and S(c, f , k) ⊆ τ the set of tasks executing on
core c in the k-th sub-frame of frame f . The worst-case length of sub-frame
k ∈ {1,2} in f can be expressed as:

barriers(f , `)k = ocomm + max
1≤c≤m

∑

τi∈S(c, f ,k)

WCRTi(f , `)

 + osync . (5.3)

We show how to compute WCRTi(f , `), ∀τi ∈ τ in the following.

5.6.2 Impact of Interference on Shared Memory
The problem of bounding the worst-case response time of tasks
under FTTS scheduling and memory contention on the MPPA-256 was
previously investigated in Section 3.5. However, the shared memory
model used then differs from the model of Section 5.4 by not accounting
for timing interference on the shared bus between the cores of a processing
pair. Here, we extend the timing analysis of Section 3.5 to account
for this additional source of interference and guarantee safe response
time bounds2. Recently, Skalistis et al. [SS16] used a similar memory

2Note that despite not modelling interference on the shared bus of each processing
pair, the experimental results of Sections 3.7 and 3.8 remain correct. This is because
the considered systems have up to m = 8 processing cores. By selecting one core from
each processing pair in an MPPA-256 cluster and assuming no instruction cache misses
during task execution, interference on the shared bus cannot exist.

162 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

model as in Section 5.4 for WCRT analysis, yet assuming dataflow-
based scheduling, where certain tasks cannot interfere due to precedence
constraints.

For our analysis, we assume enabled data caches and interleaved
memory address mapping, which is the default configuration in our
runtime environment. The latter leads to conservative WCRT bounds
because any two tasks with the same criticality level are potentially
interfering (accessing the same memory bank). The WCRT bounds
can, however, be refined if sequential address mapping is applied
with a known allocation of data to memory banks (see Section 3.5.1.1).
Additionally, we assume that no memory access requests are generated
by the NoC Rx, NoC Tx, the debug support unit or the resource
management core of a compute cluster. This can be achieved by not
allowing any data transfer over the NoC, not using debug support and
not performing operations on the resource management core that may
result in data/instruction cache misses during the FTTS sub-frames.

Under these assumptions and given the memory model of the MPPA-
256 Andey architecture, every memory access request of a task can be
delayed at two points: (i) on the shared bus of the processing pair where
the task is executed, by pending requests from the other three caches
(in the worst-case, all requests target banks on the same side), (ii) on the
round-robin arbiter of the target bank, by pending requests from the other
seven processing pairs (see Figure 5.2). This yields a worst-case delay of
31 memory accesses until the access request can be served, in case all four
caches of the processing pair are active and at least one core is active in
each of the seven interfering processing pairs.

Recall that the level-` execution profile Ci(`) of a task τi consists of its
worst-case execution time ei(`) when τi runs in isolation and the maximum
number of memory access requests µi(`) (due to data cache misses) that it
can generate. Following the previous discussion, the WCRTi(f , `) of task
τi which runs in processing pair 1 ≤ p ≤ 8 can be upper-bounded by:

WCRTi(f , `) = ei(`) + µi(`) ·

Ncaches(f , p) ·
8∑

j=1

active(f , j) − 1

 · Tacc , (5.4)

where the second term specifies the worst-case delay due to interference
on the memory path. Ncaches(f , p) denotes the number of active caches in
the processing pair p to which τi is mapped. If there is at least one task
running on the neighbouring core in the same sub-frame of frame f as
τi, then Ncaches(f , p) = 4, otherwise Ncaches(f , p) = 2. Function active(f , p)
returns 1 if there is at least one task running in processing pair p in the
same sub-frame of frame f as τi, or 0 otherwise. Finally, Tacc bounds
the latency of a single memory access (under no contention). Using
an assembler-based benchmark, we have estimated a bound of Tacc =14

5.7. Evaluation 163

cycles on the MPPA-256 (details below). By substituting WCRTi(f , `)
in Eq. (5.3), we can bound the worst-case sub-frame lengths in LO and
HI execution mode and validate the admissibility of any given schedule
according to Condition (5.2).

Empirical Estimation of Single Memory Access Latency Tacc. We
describe, here, how we derived the memory access latency bound
Tacc on the Kalray-MPPA 256 Andey processor3. For this purpose,
different assembler code snippets were executed in bare-metal mode with
interleaved memory address mapping. The execution time of the code
was measured using a hardware cycle counter. All experiments were run
twice in a row, with the first run to load all code into the instruction cache
and the second run for the actual measurement.

For a ground truth comparison, a varying number of no-operation
(nop) instructions were executed as the body of a hardware-controlled
loop. The number of loop iterations was continuously incremented from
1 to 128. As expected, each time the number of loop iterations was
incremented by one, the total execution time for all iterations of the loops
increased exactly by the number of nop words in the loop body. In other
words, we were able to measure the execution time of one nop instruction
as exactly one cycle.

Afterwards, an additional instruction was added to the loop. This
triggered a double-word memory access (64-bit load or 64-bit store) and
an increment of the memory address by at least 64 bytes to ensure cache
misses as well as accesses to different memory banks. The total execution
time was now increased by 10 additional cycles per iteration. If the
number of nop instructions in the loop was smaller than 4, the execution
time of one loop iteration was constantly equal to 14 cycles independently
of the number of nop’s. This execution time was always the same for load
and store accesses. We conclude from this that a memory access has a
latency of 10 cycles, however loading an entire cache line requires 14
cycles. If the accesses are executed too quickly in a row (less than 4 cycles
between two accesses), the processor stalls until the last cache line refill
is finished, i.e., for 14 cycles. In this way, we derived the memory access
latency Tacc = 14 cycles, which is used in the experimental evaluation of
the next section.

5.7 Evaluation
This section presents the experiments that were performed on the
MPPA-256 to empirically validate the WCRT analysis of Section 5.6
and to evaluate the schedulability loss due to the temporal partitioning
(FTTS) constraints, the scheduling overheads and the mutual delays

3The development of this benchmark consists joint work with Andreas Tretter.

164 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

of co-running tasks on the shared memory. We start by presenting
our experimental setup (Section 5.7.1) and the employed benchmarks
(Section 5.7.2). The experiments that follow (Section 5.7.3) show that
for admissible FTTS schedules, the analytically derived function barriers
(Eq. (5.3)) bounds the actual sub-frame lengths at runtime, and that
an effective utilization of 78.9% on 16 processing cores with realistic
workload is possible without deadline misses.

5.7.1 Experimental Framework
The experimental framework enables: 1) specification of a mixed-
criticality application, 2) automatic generation of an admissible FTTS
schedule (if one exists), 3) deployment of the FTTS schedule on an MPPA-
256 cluster for a given number of scheduling cycles, 4) post-processing
and statistical analysis of collected profiling data. The required inputs
by the programmer are the specification of tasks to be scheduled (period,
criticality, execution profiles), the number of available cores, the desired
execution mode (OS or BM), and the C/C++ source code which describes
the tasks’ functionality (initialization and execution).

For the first two steps, we used the FTTS design optimization
framework of Section 3.6. This aims at finding an admissible FTTS
schedule for a specified application and number of cores, with maximal
aggregate slack time at the end of frames. This objective implies a
balanced workload among the cores and allows for incremental design,
e.g., if more tasks of lower criticality need to be integrated later into
the system. For the design space exploration, the framework employs a
simulated annealing approach. We extended the framework so that the
worst-case timing analysis, which is performed for every visited solution,
becomes cognizant of the scheduler overheads and all potential sources
of interference on the memory path (Section 5.6). For the overhead of
barrier synchronization osync and communication of scheduling decision
ocomm, we considered the upper bounds shown in Figure 5.3 for each
number of active cores. The output of the optimization framework is an
XML file and in case of a BM implementation, also auto-generated source
code for the deployment of the schedule on the platform.

For the next two steps, the framework that executes the FTTS schedule
repeatedly on the MPPA-256 and collects and post-processes profiling
data was built upon an existing C++ runtime environment for static
dataflow applications [TPM+15]. The runtime environment was modified
to implement the FTTS scheduling policy instead of the previous data-
driven approach, to collect/analyze different types of profiling data and
to run in bare-metal mode. After the schedule deployment, the collected
profiling data (start/finish time and data cache misses of each task
execution, start/finish time of each FTTS frame and sub-frame) are sent
from the MPPA-256 to a host computer for post-processing.

5.7. Evaluation 165

App. Task τi
Crit. Period Execution Data Cache
χi Ti (ms) Cycles ei misses µi

FM
S

sens_c1 HI 5 14752 84
loc_c1 HI 5 8545 105
loc_c2 HI 40 2245 41
loc_c3 HI 40 11162 103
loc_c4 HI 40 2189 51

R
O

SA
C

E

engine HI 5 1214 8
elevator HI 5 1249 10

aircraft_dynamics HI 5 9159 31
h_filter HI 10 1302 12
az_filter HI 10 1301 12
Vz_filter HI 10 1299 12
q_filter HI 10 1252 12

Va_filter HI 10 1296 12
altitude_hold HI 20 1220 8

Vz_control HI 20 1224 11
Va_control HI 20 1256 11

St
re

am
It

matmult LO 5 56483 156
fft LO 5 19655 102

bitonic_sort LO 5 202041 102
insertion_sort LO 5 80755 134
dct_2D_coarse LO 5 59833 137
idct_2D_coarse LO 5 57125 342

fm LO 5 36736 905
filter_bank LO 5 1538871 253

autocorrelation LO 5 2859 12

Synth.
busy_wait_HI HI 5 80043 6
busy_wait_LO LO 5 1600025 6

Table 5.1: Specification of benchmark tasks.

5.7.2 Benchmarks
For the evaluation, we used two avionic benchmarks, nine streaming
benchmarks from the StreamIt suite [TKA02] and two synthetic
benchmarks which perform busy waiting. The benchmarks are
characterized by diverse computational/memory requirements and
memory accessing patterns. A brief presentation of the benchmarks
follows.

• The flight management system (FMS) [DFG+14] is a safety-
critical application, responsible for aircraft localization, flightplan
computation, detection of the nearest airport, etc. We used an
industrial implementation of an FMS sub-set, consisting of one
task (sens_c1) which periodically reads (hard-coded) sensor data
and four tasks (loc_cx) which compute the current aircraft location
based on the data. The tasks communicate through shared memory,

166 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

but their read/write operations are non-blocking. Namely, if no new
data exist in a shared buffer, a reader task uses “stale” data, read
previously. This avoids execution delays due to blocking.

• The ROSACE application [PSG+14, PMN+16] is an open-source
avionic benchmark, implementing a longitudinal flight controller. It
consists of 11 tasks: three perform environment simulation and eight
implement the controller logic. For the environment simulation,
which requires inputs simulating different pilot instructions to
change the flight level, we used hard-coded inputs. Reading/writing
to shared data is again non-blocking.

• For the class of low-criticality applications, we used nine bench-
marks from the StreamIt suite [TKA02], since most of them represent
computation and memory-intensive applications. The selected
benchmarks include: a matrix multiplication of 20x20 matrices,
a fast-Fourier transform (fft) of signals with length 128, a bitonic
sorting network for lists of 512 integers, an insertion sort algorithm
for lists of 512 integers, IEEE compliant implementations of discrete
cosine transforms (dct) and inverse discrete cosine transforms
(idct) used in the MPEG/JPEG standards, a FM radio with multi-
band equalizer, a filter bank for multi-rate signal processing, and
a filter generating the autocorrelation series of an input with
2048 elements. For the benchmark implementation, we used the
reference C implementations for single cores from the benchmark
suite repository. We avoided parallel implementations, since for
these applications blocking reads/writes are necessary, which would
complicate timing analysis.

• Finally, we implemented two synthetic tasks which simply perform
busy waiting for 200 µs and 4 ms, respectively.

All benchmarks were implemented so that their code and data fit
into the memory of a compute cluster, without the need to access the
address space of other compute clusters or I/O subsystems. Their inputs
are set during an initialization phase prior to their first execution. The
specification of all tasks, which is given as input to our FTTS optimization
framework, is presented in Table 5.1. The task periods were assigned
according to their specification for high-criticality tasks (the FMS periods
being down-scaled) or randomly for low-criticality tasks. The execution
profiles were obtained through measurements on the MPPA-256, since
we do not have access to static analysis tools for this platform.

Specifically, we used FTTS schedules in which either a single task or a
sequence of tasks under analysis ran in every sub-frame on a single core.
Running the tasks in sequence is important for the FMS and ROSACE
applications, where some tasks exhibit their worst-case execution time

5.7. Evaluation 167

0.94

0.96

0.98

1

1.02

1.04

1.06

au
to

 co
rre

lat
ion

air
cr

af
t d

yn
am

ics

alt
itu

de
 h

old

az
 fil

te
r

bit
on

ic
so

rt

dc
t2

DCoa
rs

e

ele
va

to
r

en
gin

e fft

filt
er

 b
an

k

h
filt

er

idc
t2

DCoa
rs

e

ins
er

tio
n

so
rt
loc

c1
loc

c2
loc

c3
loc

c4

m
at

rix
 m

ult

q
filt

er

se
ns

c1

Va
co

nt
ro

l

Va
filt

er

Vz c
on

tro
l

Vz f
ilte

r fm

bu
sy

 w
ait

 L
O

bu
sy

 w
ait

 H
I

E
xe

cu
tio

n
tim

e
/ m

ea
n(

E
xe

cu
tio

n
tim

e)
 [1

]

4.49

(a) Execution time vs mean execution time ratio. For ease of
presentation, 10 outliers of “fm” at 4.49 have been omitted.

 0

100

200

300

400

500

600

700

800

900

au
to

 co
rre

lat
ion

air
cr

af
t d

yn
am

ics

alt
itu

de
 h

old

az
 fil

te
r

bit
on

ic
so

rt

dc
t2

DCoa
rs

e

ele
va

to
r

en
gin

e fft

filt
er

 b
an

k

h
filt

er

idc
t2

DCoa
rs

e

ins
er

tio
n

so
rt
loc

c1
loc

c2
loc

c3
loc

c4

m
at

rix
 m

ult

q
filt

er

se
ns

c1

Va
co

nt
ro

l

Va
filt

er

Vz c
on

tro
l

Vz f
ilte

r fm

bu
sy

 w
ait

 L
O

bu
sy

 w
ait

 H
I

D
at

a
ca

ch
e

m
is

se
s

[1
]

(b) Data cache misses.

Figure 5.5: Profiling of benchmarks: Statistical distribution of measured values
over 10,000 executions in isolation. On each box, the central mark, bottom
and top edges indicate the median, 25th and 75th percentiles, respectively. The
whiskers extend to 10 times the interquartile range. Outliers are denoted with
circles.

depending on the output of previously executed tasks (implicit data
dependencies). The FTTS schedules were executed for at least 10,000
scheduling cycles, and the maximum observed execution time and data
cache misses in Table 5.1 were extracted from the collected profiling data.

168 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

Figure 5.5 presents the statistical distribution of the execution time and
data cache miss measurements over 10,000 executions in the form of a box-
whisker-plot. Note that the measured execution times include the cost of
data cache flush, which takes place at the end of each task execution
for data coherence. This operation costs approximately 1,100 cycles.
Execution time variance is relatively low for all benchmarks except “fm”,
which executes for 4.49 times its mean execution time on every 1000th
execution. Cache miss variance is also low or zero for most benchmarks,
with the exception of “idct2DCoarse” and “fm”.

The measured worst-case parameters specify the LO-level execution
profile Ci(LO) of all tasks. For high-criticality tasks, we assume
Ci(HI)=Ci(LO) and for low-criticality tasks Ci(HI)=(0, 0). At design time,
an admissible schedule must ensure that all tasks meet their deadlines
when running according to the execution profiles of Table 5.1 (LO mode).
High-criticality tasks are not expected to run longer than WCRTi(LO). If,
nonetheless, the length of a HI-subframe exceeds its statically computed
value (e.g., due to unusually high scheduling overhead), the next LO-
subframe will not be executed (HI mode).

5.7.3 Results
In the following, we experiment with several combinations of the
benchmarks with a two-fold objective: (i) to validate whether the analysis
of Section 5.6 bounds the FTTS sub-frame lengths at runtime, and (ii)
to investigate the practical limits of our scheduling approach in terms
of maximum achievable utilization. With these objectives in mind, we
evaluate every deployed FTTS schedule based on two criteria:

• Number of frame violations. It is defined as the portion of
FTTS frames in which the LO sub-frame was not completed by
the end of the frame. If an FTTS schedule is statically deemed
admissible based on condition (5.2), then a frame violation should
never happen at runtime. If it happens, this implies that either
our worst-case timing analysis is incorrect or the considered upper
bounds for scheduling overheads, single memory access latency,
task execution and accessing parameters are not safe. Note that
the second case cannot be excluded in our experiments, since all
mentioned parameters were acquired through measurements. For
the deployment of a safety-critical system, more rigorous methods
would need to be applied.

• Availability. It expresses how many computational resources are
available, if needed for incremental design, and it is defined as:

A := (16 −ma) + ma ·

∑
∀ f∈F

(
L f −

∑2
k=1 barriers(f ,LO)k

)
H

, (5.5)

5.7. Evaluation 169

where ma is the number of active cores (implementing the schedule)
out of the 16 processing cores of an MPPA-256 cluster and H
is the period of the FTTS scheduling cycle. Availability is a
combined expression of the number of currently inactive cores and
the aggregate portion of time when all active cores are idle, which
happens in each frame between the completion of the last sub-frame
and the frame end. In an ideal 16-core platform, without scheduling
or memory interference overheads and without the constraint of
temporal partitioning, A = 16 − U should hold for any application
with utilization U. By comparing the availability of our deployed
FTTS schedules to the “ideal” availability, we get a measure of the
schedulability loss due to the temporal partitioning constraint and
the overheads of implementation on a real platform.

We consider 15 experimental configurations, with different com-
binations and number of instances (replications) of the benchmarks.
Configuration 1 (C1) contains only the high-criticality benchmarks, FMS
and ROSACE. Configurations 2 and 3 contains the FMS, ROSACE and
StreamIt benchmarks, with one and two instances of each benchmark,
respectively. Configurations 4–10 contain the FMS, ROSACE and
StreamIt benchmarks except “fm”, with three to nine instances of each
benchmark. “fm” has been excluded due to its large memory footprint,
since having more than two instances of this task along with all other
benchmarks was exceeding the memory capacity of 2 MB. Similarly,
hosting more than 10 instances of each benchmark in a single cluster
led to memory allocation problems. For this reason, Configurations 11–
15 contain nine instances of the FMS, ROSACE, StreamIt benchmarks and
respectively {1, 2, 3, 4, 5} instances of the synthetic benchmarks, which
have a very low memory footprint. In configurations with multiple
instances of the same benchmarks, each instance is regarded as an
individual task, with its own code, acting on its own private data, to
avoid race conditions and erroneous behavior.

The number of tasks and the utilization of each configuration are
shown in Table 5.2. Columns 4 and 5 of the table show the number
of active cores in the obtained schedules from the FTTS optimization
framework. The optimizer was able to find admissible FTTS schedules
for configurations C1 to C11 for OS deployment and C1 to C13 for BM
deployment. For the remaining configurations, it returned the best found
solutions even if admissibility under the timing analysis of Section 5.6
could not be guaranteed. All FTTS schedules have a cycle period H = 40
ms, consisting of 8 frames with a fixed length of 5 ms each. Note that for
configurations with low utilization, the OS schedule employs one more
active core than the respective BM schedule. This is because in OS mode
processing core PE1 is used exclusively by the scheduler thread, whereas
in BM mode this core can be used for task scheduling. This explains also
the higher achievable utilization in BM mode.

170 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

Conf. Tasks U Cores Cores Frame Frame
OS BM Viol. OS Viol. BM

C1 16 0.02 2 1 0% 0%
C2 25 1.05 3 2 0% 0%
C3 50 2.10 4 3 0% 0%
C4 72 3.09 5 4 0% 0%
C5 96 4.12 6 5 0% 0%
C6 120 5.15 7 6 0% 0%
C7 144 6.18 9 8 0% 0%
C8 168 7.20 11 9 0% 0%
C9 192 8.23 12 11 0% 0%
C10 216 9.26 15 13 0% 0%
C11 218 10.10 16 15 0% 0%
C12 220 10.94 16 (*) 16 0% 0%
C13 222 11.78 16 (*) 16 0% 0%
C14 224 12.62 16 (*) 16 (*) 99.9% 0%
C15 226 13.46 16 (*) 16 (*) - 99.9%

Table 5.2: Benchmark configurations and deployment on the MPPA-256. The
FTTS schedules with (*) were deemed inadmissible at design time.

Using the MPPA-256 runtime environment, we deployed the best
found FTTS schedule (even if it was deemed inadmissible by the
optimizer) for each configuration and each execution mode (OS or
BM) on one compute cluster. Each schedule was executed for 10,000
scheduling cycles, for a total duration of approximately 7 minutes. The
last two columns of Table 5.2 show the ratio of frame violations detected
during deployment. Figure 5.6 illustrates the availability metric. For
comparison purposes, three computations of availability are depicted:
(i) the “ideal” availability, considering no overheads, interferences or
partitioning constraints, which is equal to 16−U, (ii) the availability of an
FTTS schedule, computed by the FTTS optimization framework (Eq. (5.5))
based on our WCRT analysis, and (iii) the minimum availability of a
deployed FTTS schedule based on the profiling data of 10,000 scheduling
cycles. In case (iii), L f and

∑2
k=1 barriers(f ,LO)k are substituted in Eq. (5.5)

by the actual frame lengths and the completion time of the last sub-frames
in each scheduling cycle.

Frame Violations. For the FTTS schedules that were deemed admissible
offline, i.e., up to C11 (OS) and up to C13 (BM), there was no frame
violation at runtime. Frame violations occurred only for inadmissible
schedules at high utilizations (C14, C15 in Table 5.2). For admissible BM
schedules, we detected in total 9 HI sub-frame overruns over 130,000
scheduling cycles (1,040,000 frames), leading to 9 skipped LO sub-frames
(0.009%�). Since sub-frame overruns occurred only in BM mode, we
consider an unusually high overhead of the scheduling primitives in BM
mode as the most probable cause. Note that the runtime reaction to the

5.7. Evaluation 171

0

2

4

6

8

10

12

14

16

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

Ideal Availability
Availability FTTS, Analytic

Availability FTTS, Measured

(a) Operating System Implementation.

0

2

4

6

8

10

12

14

16

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

0.
01

Ideal Availability
Availability FTTS, Analytic

Availability FTTS, Measured

(b) Bare-metal Implementation.

Figure 5.6: Availability of different configurations on the MPPA-256.

HI sub-frame overruns prevented frame violations, resp. a practically
inadmissible schedule, which supports the claim for adaptive temporal
partitioning.

By comparing the analytic versus measured availability in Figure 5.6,
we observe that the pessimism of timing analysis increases with
increasing utilization, especially for OS schedules. Note that no
admissible FTTS schedules could be found for configurations C12 and
C13 (OS), although the best found solutions were deployed successfully
without any frame violations. Namely, the maximum achievable

172 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

utilization with guaranteed schedulability is 10.10 (63.1%, C11), while
a utilization of 11.78 (73.6%, C13) is practically possible without frame
violations. In our timing analysis the pessimism can stem from (i) over-
estimated task execution parameters, (ii) over-estimated memory access
latency, (iii) over-estimated scheduling overheads, (iv) the assumption
that every memory access can be delayed by simultaneous accesses from
all other cores to the same bank (if this rarely happens in practice).
The very low variance in the statistical distribution of measured task
execution parameters (Figure 5.5) and the measured memory access
latency (benchmark of Section 5.6.2) provide evidence against the first
two sources. In contrast, the very large variance in the statistical
distribution of the scheduling overheads, especially ocomm (Figure 5.3(c)),
shows their important effect on the analysis pessimism (in the analysis we
consider only the upper bound, which was encountered extremely rarely
in the measurements). The role of overhead ocomm explains partly why
pessimism increases with an increasing number of active cores (so does the
variance of ocomm) and why BM schedules suffer less pessimism compared
to OS schedules. Besides scheduling overheads, the assumption of
maximal interference on the same memory bank leads inevitably to
increasing pessimism as the number of cores (bank masters) increases.
This is however a necessary assumption for safe WCRT analysis for a
shared memory with interleaved address mapping.

Maximum Achievable Schedulability. For evaluating the schedulability
loss that is caused by temporal partitioning and the runtime overheads
and interferences, we compare the “ideal” to the empirical availability
in Figure 5.6. As expected, the difference between the two metrics is
higher for OS than for BM schedules. This is because in BM mode,
there is one more processing core available for running worker threads
and the worst-case runtime scheduling overheads are significantly lower.
These two factors lead to a higher availability of the platform, closer
to the ideal bound. The maximum achievable utilization of 11.78
(73.6%, C13) with guaranteed schedulability or 12.62 (78.9%, C14) for
a practically admissible solution is a significant result of this work.
The comparison to previous works, e.g.,[BDN+16], where the maximum
achievable utilization is 14.3% on 14 cores (without considering runtime
overheads), shows that adaptive temporal partitioning is a viable solution
for the efficient, yet predictable implementation of safety-critical systems
on existing many-core architectures.

5.8 Summary
This chapter presented a runtime environment for adaptive temporal
partitioning on many-core platforms, with focus on the Kalray MPPA-

5.8. Summary 173

256 Andey processor. Applicability was demonstrated based on the FTTS
scheduling policy for periodic mixed-criticality applications (Chapter 3).
We proposed alternative implementations of the FTTS scheduling
primitives and evaluated them w.r.t. runtime overhead. Additionally,
we proposed a worst-case response time analysis methodology for
evaluating the admissibility of FTTS schedules, by accounting for
scheduling overheads and the interference of co-running tasks on the
shared resources of a compute cluster. Using industrial-representative
benchmarks, we were able to validate runtime adherence to the analytic
worst-case response time bounds. We also showed that by optimizing
the implementation of the scheduling primitives, an effective utilization
of 73.6% (analytically guaranteed) or 78.9% (empirically admissible) can
be achieved on the 16 cores of an MPPA-256 cluster. This suggests that
adaptive temporal partitioning is a promising solution for efficient and
predictable safety-critical application deployment on many-cores, since it
enables sufficient isolation among applications with different criticality,
yet at a low schedulability cost.

174 Chapter 5. Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture

6
Conclusion and Outlook

This chapter summarizes the contributions of this thesis and outlines
possible future research directions.

6.1 Contributions
Driven by the need to reduce the cost, size and power dissipation
of embedded electronics, systems in safety-critical domains become
increasingly mixed-critical, i.e., integrating applications with different
safety criticality levels. With a constantly increasing computational de-
mand (consider, for instance, the required functionalities for autonomous
driving in next-generation cars), deployment of mixed-criticality systems
on multi-core platforms is the next milestone for industrial safety-critical
applications. The design and certification of mixed-criticality multi-
core systems comes with certain challenges though. These are mainly
related to the utilization of shared platform resources and the difficulty
in characterizing the temporal interference of concurrently executed
applications due to resource contention.

The aim of this thesis is to show that the deployment of mixed-
criticality applications on timing-compositional multi-core processors is
indeed feasible, in a way that enables efficient resource utilization and
real-time guarantees. To this end, the main contributions of the thesis are:

• We proposed the Isolation Scheduling (IS) model which enforces
interference-free scheduling of applications with different safety
criticality, by partitioning the platform temporally and allowing
only tasks with the same criticality to execute at any time.
The IS model is applicable not only to mixed-criticality systems,
but to any system with task classes among which resource

176 Chapter 6. Conclusion and Outlook

interference should be avoided. By introducing the IS-Server
policy and exploring approaches for optimal task to processing core
partitioning (applicable to any partitioned IS policy), we showed
experimentally that Isolation Scheduling does not incur significant
schedulability losses compared to existing mixed-criticality multi-
core policies, even if those were designed for efficiency rather than
isolation among criticality levels.

• For reducing the complexity of intra-criticality interference analysis,
we proposed the IS-compliant FTTS policy, based on flexible time-
triggered, partitioned and non-preemptive scheduling. Under
FTTS, we were able to provide the first unified WCRT analysis for
cluster-based manycores, such as the Kalray MPPA-256, in which
accesses to a shared (cluster) memory can be delayed by accesses
from concurrently executed tasks in the cluster or by incoming
traffic from a network-on-chip (NoC). Our approach accounts for
interference on the shared memory and on the NoC routers/links.
Additionally, we proposed design optimization approaches for
partitioning tasks to processing cores and task data/instructions
to memory banks with the purpose of minimizing intra-criticality
interference and achieving an overall efficient resource utilization.

• For increasing the accuracy of intra-criticality interference analysis
and enabling scalable WCRT analysis under different resource
arbitration policies, we introduced a state-based analysis approach.
The system is modelled with timed automata and model checking
is applied to derive safe and tight WCRT bounds. The novelty
of our approach compared to existing model checking approaches
for multicores lies in the adoption of a dedicated execution model
(superblock) and in an abstraction of the execution and resource
accessing behavior of several interfering cores in the form of an
arrival curve. These two choices enabled unprecedented scalability.
A comparison of the WCRT estimates against results from hardware
simulations and analytic approaches confirmed further that the gain
in scalability does not come at the cost of analysis accuracy.

• Finally, to demonstrate the applicability of Isolation Scheduling on
commodity platforms, we implemented the FTTS policy on the
Kalray MPPA-256 processor. Our previous WCRT analysis was
extended to capture besides the temporal effects of interference on
the shared cluster memory, also the (measured) runtime overheads
of the FTTS scheduling primitives. An empirical evaluation
with real-world benchmarks validated runtime adherence to the
analytic WCRT bounds and a maximal guaranteed utilization of
73.6% on 16 cores. This result promotes Isolation Scheduling
as a worth-considering solution for the efficient and predictable
implementation of industrial-size mixed-criticality systems.

6.2. Possible Future Directions 177

6.2 Possible Future Directions

The contributions of the thesis represent an important step towards
efficient and timing-predictable implementation of mixed-criticality
systems on resource-sharing multicores. Nevertheless, there exists
potential for further improvements and extensions. The following list
details possible directions for future research.

Extension of Isolation Scheduling to Multiple Clusters
The proposed IS-compliant policies, e.g., FTTS in Chapter 3, target
cluster-based many-core architectures, in which processing cores are
grouped into shared-memory clusters and inter-cluster communication
is supported by a network-on-chip. Our WCRT analysis and design
optimization methods were developed with focus on a single cluster
although global knowledge on the NoC data flows was assumed. A
straightforward extension of FTTS and similar policies to multiple clusters
would require that the executed tasks in any cluster at any time are
characterized by the same criticality level, in order to avoid inter-criticality
interference e.g., on the NoC or the external memory. This constraint,
however, may be too restrictive and inter-cluster synchronization can be
too costly, thus resulting in severe system under-utilization. The relative
benefits and drawbacks of enforcing either global temporal isolation
across all clusters or local temporal isolation within each cluster combined
with a deterministic, e.g., time-triggered access schedule on the NoC and
external memory [BDN+16, PMN+16], need therefore to be investigated.

With regards to design optimization and WCRT analysis, an extension
to multiple clusters would introduce several open questions. For instance,
how can we schedule the NoC (DMA) transfers and choose the flow
regulation parameters and routing such that the requested data are
available on time (thus, minimizing blocking delays in tasks’ execution),
interference on the routers is minimized and no deadlocks are possible
on the NoC? How can WCRT analysis (in a single cluster) be extended
to account for the inter-core interference not only on the cluster memory,
but also on the NoC Tx (transmit) interface? How can we efficiently map
applications/tasks to compute clusters considering their criticality level,
computation and memory requirements, existing data dependencies?
Potential solutions to individual problems, e.g., selection of NoC flow
regulation parameters for the avoidance of deadlocks [dDYvAG14],
CPU-DMA co-scheduling on multicores aiming at minimizing task
response times [YPB+12, WP14, AP14, AWP15], NoC aware real-time
scheduling [CDPB+14, SRM14, AJF+16] have been recently proposed.
However, the integration of such solutions and the development of a
holistic design optimization and schedulability analysis framework for
cluster-based manycores seems challenging and requires further research.

178 Chapter 6. Conclusion and Outlook

Spatial Isolation among Criticality Levels
Besides temporal isolation, industrial standards typically require mecha-
nisms for spatial isolation [ARI03], such that applications with different
criticality levels do not “pollute” the address space of each other. Spatial
isolation has been outside the scope of this work. However, it is interesting
to notice that adding this requirement could lead to contradictory
objectives during design optimization. Suppose, for instance, that
memory bank partitioning is applied as a means to achieve spatial
isolation. For temporal isolation under the IS model, the presented design
optimization approach in Chapter 3 aims to maximally distribute the
memory blocks of tasks with the same criticality level to disjoint memory
banks, such that interference during their execution is minimized. This
likely results in a memory configuration, in which the allocated blocks
in every bank belong to tasks with different criticality levels (since these
tasks cannot be executed concurrently and hence interfere). For spatial
isolation, however, it is preferable to avoid bank sharing among tasks with
different criticality level. Similarly, consider the exploitation of a cluster-
based architecture for spatial isolation. By partitioning applications
with different criticality levels to disjoint compute clusters, we could
define an isolated address space (shared cluster memory) per application.
However, such a design does not necessarily preserve temporal isolation,
since applications with different criticality can delay each other e.g., on
the NoC or the external memory. The trade-off between temporal and
spatial isolation needs to be further studied, and design optimization
approaches that account for the potentially contradictory objectives need
to be proposed.

Benchmarking of Multicores w.r.t. Worst-Case Timing Behavior
For providing safe WCRT bounds on resource-sharing multicores,
accurate models of the architecture and all resource arbitration policies
are necessary. However, such models are often not disclosed by
the vendors or only limited information is available. This can lead
researchers to the adoption of hardware models which do not reflect
realistic systems, as discussed in [KdNA+14]. Although there are several
benchmarks suites for shared-memory systems, e.g., PARSEC [Bie11],
aiming to evaluate the average-case performance of new platforms
and operating systems, to the best of our knowledge there exist no
(platform-independent) benchmark suites for evaluating the worst-case
timing behavior on resource-sharing multicores. Such benchmarks could
be configured, for instance, to generate maximal interference on the
shared memory (by exhibiting no locality in their accesses, so that cache
misses are continuously triggered) or to maximally stress the NoC (by
using different flow configurations depending on the NoC topology,
routing policy, flow control). Our experience with implementing low-
level hardware benchmarks for the Kalray MPPA-256 has shown that

6.2. Possible Future Directions 179

this is a challenging and error-prone procedure, which currently needs to
be repeated for every new target platform (if the new platform features
different shared resources). The existence of “worst-case” benchmarks or
commonly accepted guidelines on how to design them would ease the
characterization of a platform w.r.t. timing predictability, would enable
the derivation of realistic resource models (e.g., inference of arbitration
policy, resource access latency under zero/maximal interference) and
hence, would enable safe and accurate WCRT analysis for commercial-off-
the-shelf platforms. For the inference of the worst-case timing parameters
for resource accessing, even learning procedures could be considered. We
believe that benchmarking of resource-sharing multicores for revealing
(and bounding) their worst-case timing behavior is an often neglected
practical problem, which requires however a deeper understanding.

Security
Besides safety considerations, industrial certification standards often pose
requirements regarding security and the integration of applications with
different security levels. System design concepts, such as temporal and
spatial isolation, which are commonly used in mixed-criticality systems
for fulfilling safety requirements can be applied (but do not suffice) to
achieve a secure design. Security requires controlled information flow
among applications [Rus81] and a multi-layer design approach, such that
an attacker has to circumvent multiple security barriers before acquiring
access to the protected assets of a system [PDK+15]. Implementing
mixed-criticality applications on multicores introduces new challenges
in terms of security. The impact of shared memory controllers and
I/O devices on security has been studied in [NP12, MSTP14, PDK+15].
Additionally, recent works have demonstrated how covert channels
based on shared last-level cache can be established on commodity
multicores [YYG14, MNHF15, YST16]. Integrated solutions for safe
and secure implementation of mixed-criticality multi-core systems will
be required for addressing such challenges. To this end, extensions of
the Isolation Scheduling model for security could be considered and
evaluated in future work.

180 Chapter 6. Conclusion and Outlook

Bibliography

[ABB09] J. Anderson, S. Baruah, and B. Brandenburg. Multicore operating-
system support for mixed criticality. In Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification, 2009.

[AD90] R. Alur and D. L. Dill. Automata For Modeling Real-Time Systems.
In M. Paterson, editor, Proc. of the 17th International Colloquium
on Automata, Languages and Programming (ICALP), volume 443 of
LNCS, pages 322–335. Springer, 1990.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183 – 235, 1994.

[ADLD14] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis. Evaluation
of cache partitioning for hard real-time systems. In 26th Euromicro
Conference on Real-Time Systems (ECRTS), pages 15–26, 2014.

[AEPR08] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable
implementation of real-time applications on multiprocessor
systems-on-chip. In 21st International Conference on VLSI Design
(VLSID), pages 103–110, 2008.

[AJF+16] L. Abdallah, M. Jan, C. Fraboul, et al. Reducing the contention
experienced by real-time core-to-i/o flows over a tilera-like
network on chip. In 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 86–96, 2016.

[AM10] K. Altisen and M. Moy. ac2lus: Bringing SMT-solving and
abstract interpretation techniques to real-time calculus through
the synchronous language Lustre. In 22nd Euromicro Conference on
Real-Time Systems (ECRTS), 2010.

[AP14] A. Alhammad and R. Pellizzoni. Schedulability analysis of global
memory-predictable scheduling. In 14th International Conference
on Embedded Software (EMSOFT), pages 20:1–20:10, 2014.

[ARI03] ARINC. ARINC 653-1 avionics application software standard
interface. Technical report, 2003.

[ARM] ARM. Cortex-a17 processor. http://www.arm.com/products/
processors/cortex-a/cortex-a17-processor.php.

[aut] AutoSAR. Release 4.0. http://www.autosar.org.

http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
http://www.autosar.org

182 Bibliography

[AWP15] A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient
global scheduling of real-time tasks. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages
285–296, April 2015.

[BB14] S. Baruah and A. Burns. Achieving temporal isolation in
multiprocessor mixed-criticality systems. In Proc. 2nd Workshop
on Mixed Criticality Systems (WMC), page 21, 2014.

[BBB09] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor
platforms: Specification and use. In 30th Real-Time Systems
Symposium (RTSS), pages 437–446, 2009.

[BBB+11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, 2011.

[BBD+12] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, S. Van der Ster, and L. Stougie. The preemptive
uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems. In 24th Euromicro Conference on Real-Time
Systems (ECRTS), pages 145–154, 2012.

[BCGM99] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks. Real-Time Systems, 17(1):5–22, 1999.

[BCLS14] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 50(1):142–177,
2014.

[BD16] A. Burns and R. Davis. Mixed criticality systems - A review. 2016.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
M. Bernardo and F. Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems (SFM-
RT), number 3185 in LNCS, pages 200–236. Springer–Verlag, 2004.

[BDN+16] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and
T. Nolte. Contention-free execution of automotive applications
on a clustered many-core platform. In 26th Euromicro Conference
on Real-Time Systems (ECRTS), pages 14–24, 2016.

[BEG16] S. Baruah, A. Easwaran, and Z. Guo. Mixed-criticality scheduling
to minimize makespan. 2016.

[BF11] S. Baruah and G. Fohler. Certification-cognizant time-triggered
scheduling of mixed-criticality systems. In 32nd Real-Time Systems
Symposium (RTSS), pages 3–12, 2011.

Bibliography 183

[BFB15] A. Burns, T. Fleming, and S. Baruah. Cyclic executives, multi-core
platforms and mixed criticality applications. In 27th Euromicro
Conference on Real-Time Systems (ECRTS), pages 3–12, 2015.

[Bie11] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, 2011.

[BLS10] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 13–22, 2010.

[BY04] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, volume 3098
of LNCS, pages 87–124. Springer, 2004.

[BYPC12] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-aware
scheduling of multicore task sets for real-time systems. In
18th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 300–309, 2012.

[CB10] D. B. Chokshi and P. Bhaduri. Performance analysis of flexray-
based systems using real-time calculus, revisited. In Proceedings
of the 2010 ACM Symposium on Applied Computing, pages 351–356,
2010.

[CDPB+14] T. Carle, M. Djemal, D. Potop-Butucaru, R. De Simone, and
Z. Zhang. Static mapping of real-time applications onto massively
parallel processor arrays. In 14th International Conference on
Application of Concurrency to System Design (ACSD), pages 112–121,
2014.

[CEN03] CENELEC. EN 50129. railway applications - communication,
signalling and processing systems - safety related electronic
systems for signaling, 2003.

[cer] European Commission’s 7th framework programme: Certification
of real-time applications designed for mixed criticality (CER-
TAINTY). www.certainty-project.eu.

[Cer14a] Certainty. D8.3 - validation results. Technical report, 2014.

[Cer14b] Certification Authorities Software Team. CAST-32 position paper.
Federal Aviation Administration / European Aviation Safety
Agency, 2014.

[CFP14] B. Cilku, B. Fromel, and P. Puschner. A dual-layer bus arbiter
for mixed-criticality systems with hypervisors. In 12th IEEE
International Conference on Industrial Informatics (INDIN), pages
147–151, 2014.

[Cha00] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer, 2000.

www.certainty-project.eu

184 Bibliography

[CJDR00] D. Chiou, P. Jain, S. Devadas, and L. Rudolph. Dynamic cache
partitioning via columnization. In Proceedings of Design Automation
Conference (DAC), 2000.

[CLB+06] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
Litmusrt : A testbed for empirically comparing real-time
multiprocessor schedulers. In 27th IEEE International Real-Time
Systems Symposium (RTSS), pages 111–126, 2006.

[Com10] I. E. Commission. IEC 61508-3: Functional safety of elec-
trical/electronic/programmable electronic safety-related systems,
2010.

[Cru91] R. L. Cruz. A calculus for network delay. i. network elements in
isolation. IEEE Transactions on Information Theory, 37(1):114–131,
1991.

[DAN+11] D. Dasari, B. Anderssom, V. Nelis, S. Petters, A. Easwaran,
and J. Lee. Response time analysis of cots-based multicores
considering the contention on the shared memory bus. In 10th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pages 1068 –1075, 2011.

[DAN+13] D. Dasari, B. Akesson, V. Nélis, M. A. Awan, and S. M. Petters.
Identifying the sources of unpredictability in cots-based multicore
systems. In 8th IEEE International Symposium on Industrial Embedded
Systems (SIES), pages 39–48, 2013.

[dDAB+13] B. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert,
B. Ganne, P. de Massas, F. Jacquet, S. Jones, N. Chaisemartin,
F. Riss, and T. Strudel. A clustered manycore processor architecture
for embedded and accelerated applications. In HPEC, pages 1–6,
2013.

[dDvAPL14] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-
critical computing on a single-chip massively parallel processor. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 97:1–97:6, 2014.

[dDYvAG14] B. de Dinechin, D. Y., D. van Amstel, and A. Ghiti. Guaranteed
services of the noc of a manycore processor. In International
Workshop on Network on Chip Architectures (NoCArc), 2014.

[DE10] J. Diemer and R. Ernst. Back suction: Service guarantees for
latency-sensitive on-chip networks. In 4th ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), pages 155–162, 2010.

[DFG+14] G. Durrieu, M. Faugere, S. Girbal, D. G. Pérez, C. Pagetti,
and W. Puffitsch. Predictable flight management system
implementation on a multicore processor. In Embedded Real Time
Software (ERTS), 2014.

Bibliography 185

[EAS11] EASA. Certification memorandum-development assurance of
airborne electronic hardware (chapter 9). CM EASA CM-SWCEH
- 001 Issue 01, 2011.

[EBSA+11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In ISCA,
pages 365–376, 2011.

[eem] EEMBC 1.1 Embedded Benchmark Suite. http://www.eembc.
org/benchmark/automotive_sl.php.

[ETSE14] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical
memory controller using bank privatization and fixed priority
scheduling. In 20th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), pages 1–10,
2014.

[EY13] P. Ekberg and W. Yi. Bounding and shaping the demand of
generalized mixed-criticality sporadic task systems. Real-Time
Systems, 50(1):48–86, 2013.

[FDNG+09] A. Ferrari, M. Di Natale, G. Gentile, G. Reggiani, and P. Gai.
Time and memory tradeoffs in the implementation of AUTOSAR
components. In Design, Automation, Test in Europe Conference
(DATE), pages 864 –869, 2009.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399–404, 1956.

[Fis13] S. Fisher. Certifying applications in a multi-core environment: The
world’s first multi-core certification to sil 4. SYSGO white paper,
2013.

[fle] FlexRay Communications System Protocol Specification, Version
2.1, Revision A. http://www.flexray.com/.

[FLY14] J. Flodin, K. Lampka, and W. Yi. Dynamic budgeting for settling
dram contention of co-running hard and soft real-time tasks. In
9th IEEE International Symposium on Industrial Embedded Systems
(SIES), pages 151–159, 2014.

[GAG13] S. Goossens, B. Akesson, and K. Goossens. Conservative open-
page policy for mixed time-criticality memory controllers. In
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 525–530, 2013.

[GAGC16] S. Goossens, B. Akesson, K. Goossens, and K. Chandrasekar.
Memory controllers for mixed-time-criticality systems. Springer,
2016.

[GELP10] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards
WCET Analysis of Multicore Architectures Using UPPAAL. In

http://www.eembc.org/benchmark/automotive_sl.php
http://www.eembc.org/benchmark/automotive_sl.php
http://www.flexray.com/

186 Bibliography

10th International Workshop on Worst-Case Execution Time Analysis
(WCET), pages 101–112, 2010.

[GGDY14] C. Gu, N. Guan, Q. Deng, and W. Yi. Partitioned mixed-criticality
scheduling on multiprocessor platforms. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 1–6, 2014.

[GLST12] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. Timed
model checking with abstractions: Towards worst-case response
time analysis in resource-sharing manycore systems. In 10th ACM
International Conference on Embedded Software (EMSOFT), pages 63–
72, 2012.

[GSHT13] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele.
Scheduling of mixed-criticality applications on resource-sharing
multicore systems. In 11th ACM International Conference on
Embedded Software (EMSOFT), pages 1–15, 2013.

[HBHR11] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. Cama: A
predictable cache-aware memory allocator. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 23–32, 2011.

[HDH+10] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, et al. A 48-core ia-32
message-passing processor with dvfs in 45nm cmos. In 2010 IEEE
International Solid-State Circuits Conference-(ISSCC), pages 108–109.
IEEE, 2010.

[HGA+15] P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini, and
L. Thiele. An isolation scheduling model for multicores. In Real-
Time Systems Symposium (RTSS), pages 141–152, 2015.

[HGL] H.-M. Huang, C. Gill, and C. Lu. Implementation and evaluation
of mixed-criticality scheduling approaches for sporadic tasks.
ACM Trans. Embedded Computing Systems, 13(4s):126:1–126:25.

[HGST14] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service
adaptions for mixed-criticality systems. In ASP-DAC, pages 125 –
130, 2014.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System Level Performance Analysis-The SymTA/S Approach.
IEEE Proceedings-Computers and Digital Techniques, 152(2):148–166,
2005.

[HHK01] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-
triggered language for embedded programming. In Embedded
Software, volume 2211 of LNCS, pages 166–184. 2001.

[HKM+12] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
RTOS support for multicore mixed-criticality systems. In 18th Real
Time and Embedded Technology and Applications Symposium (RTAS),
pages 197–208, 2012.

Bibliography 187

[HP16] M. Hassan and H. Patel. Criticality- and requirement-aware bus
arbitration for multi-core mixed criticality systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2016.

[HRK12] A. Hattendorf, A. Raabe, and A. Knoll. Shared memory protection
for spatial separation in multicore architectures. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES),
pages 299–302, 2012.

[HRW13] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in
execution time analysis-definition and challenges. In Workshop on
Compositional Theory and Technology for Real-Time Embedded Systems,
2013.

[Inf] A. A. Informatik. aiT software suite. http://www.absint.com/.

[int] Intel-core i7 processor for lga2011 socket: Datasheet, vol.
1. http://www.intel.com/content/www/us/en/processors/
core/4th-gen-core-i7-lga2011-datasheet-vol-1.html.

[iso11] ISO 26262, Road Vehicles - Functional Safety, 2011.

[JQA+14] J. Jalle, E. Quiñones, J. Abella, L. Fossati, M. Zulianello, and F. J.
Cazorla. A dual-criticality memory controller (dcmc): Proposal
and evaluation of a space case study. In Real-Time Systems
Symposium (RTSS), pages 207–217, 2014.

[KAZ11] O. R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling
of fixed-priority mixed-criticality task sets. In 10th International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pages 1051–1059, 2011.

[KBL+15] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and
J. Oh. A predictable and command-level priority-based dram
controller for mixed-criticality systems. In 21st IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
317–326, 2015.

[KdNA+14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.
Rajkumar. Bounding memory interference delay in cots-based
multi-core systems. In 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 145–154, 2014.

[KFM+11] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and
A. Roychoudhury. Bus-aware multicore wcet analysis through
tdma offset bounds. In 23rd Euromicro Conference on Real-Time
Systems (ECRTS), pages 3 –12, 2011.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

http://www.absint.com/
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html

188 Bibliography

[Kir89] D. Kirk. Smart (strategic memory allocation for real-time) cache
design. In Real Time Systems Symposium (RTSS), pages 229–237,
1989.

[KKR13] H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach
for practical os-level cache management in multi-core real-time
systems. In 25th Euromicro Conference on Real-Time Systems
(ECRTS), pages 80–89, July 2013.

[KLSP10] Y. Kim, J. Lee, A. Shrivastava, and Y. Paek. Operation and data
mapping for cgras with multi-bank memory. In Proceedings of the
ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 17–26, 2010.

[KNP+14] O. Kotaba, J. Nowotsch, M. Paulitsch, S. M. Petters, and
H. Theiling. Multicore in real-time systems–temporal isolation
challenges due to shared resources. In Workshop on Industry-Driven
Approaches for Cost-effective Certification of Safety-Critical, Mixed-
Criticality Systems, 2014.

[KWC+16] N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, et al. Attacking the one-
out-of-m multicore problem by combining hardware management
with mixed-criticality provisioning. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2016.

[LB12] H. Li and S. Baruah. Global mixed-criticality scheduling on
multiprocessors. In 24th Euromicro Conference on Real-Time Systems
(ECRTS), pages 166–175, 2012.

[LBT01] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of
deterministic queuing systems for the internet, volume 2050. Springer,
2001.

[LCX+12] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A
software memory partition approach for eliminating bank-level
interference in multicore systems. In 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages
367–376, 2012.

[Lee08] E. A. Lee. Cyber physical systems: Design challenges. In 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 363–369. IEEE,
2008.

[LFS+10] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. DP-
FAIR: A simple model for understanding optimal multiprocessor
scheduling. In 22nd Euromicro Conference on Real-Time Systems
(ECRTS), pages 3–13, 2010.

[LMJ+09] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and
H. T. Flow regulation for on-chip communication. In Design,

Bibliography 189

Automation & Test in Europe Conference & Exhibition (DATE), pages
578–581, 2009.

[LPG+14] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and
I. Lee. Mc-fluid: Fluid model-based mixed-criticality scheduling
on multiprocessors. In Real-Time Systems Symposium (RTSS), pages
41–52, 2014.

[LPT10] K. Lampka, S. Perathoner, and L. Thiele. Analytic real-time
analysis and timed automata: A hybrid methodology for the
performance analysis of embedded real-time systems. Design
Automation for Embedded Systems, 14(3):193–227, 2010.

[LPT12] K. Lampka, S. Perathoner, and L. Thiele. Component-based
system design: analytic real-time interfaces for state-based
component implementations. International Journal on Software Tools
for Technology Transfer, pages 1–16, 2012.

[LWYP99] K. G. Larsen, C. Weise, W. Yi, and J. Pearson. Clock difference
diagrams. Nordic Journal of Computing, 6(3):271–198, 1999.

[LYGY10] M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract
interpretation with model checking for timing analysis of
multicore software. In IEEE Real-Time Systems Symposium (RTSS),
pages 339–349. IEEE Computer Society, 2010.

[MBF+12] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley,
G. Haugou, F. Clermidy, and D. Dutoit. Platform 2012, a many-
core computing accelerator for embedded SoCs: Performance
evaluation of visual analytics applications. In 49th Annual Design
Automation Conference (DAC), pages 1137–1142, 2012.

[MDB+13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-time cache management framework for multi-
core architectures. In 19th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 45–54, April 2013.

[MEA+10] M. Mollison, J. Erickson, J. Anderson, S. Baruah, J. Scoredos, et al.
Mixed-criticality real-time scheduling for multicore systems. In
10th International Conference on Computer and Information Technology
(CIT), pages 1864–1871, 2010.

[MFC01] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In Real-Time Technology and Applications Symposium
(RTAS), pages 75–84, 2001.

[MFXJ10] W. Mi, X. Feng, J. Xue, and Y. Jia. Software-hardware cooperative
dram bank partitioning for chip multiprocessors. In Network and
Parallel Computing, volume 6289 of LNCS, pages 329–343. 2010.

[MNHF15] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: cross-
cores cache covert channel. In International Conference on Detection

190 Bibliography

of Intrusions and Malware, and Vulnerability Assessment, pages 46–64.
Springer, 2015.

[MSTP14] K. Müller, G. Sigl, B. Triquet, and M. Paulitsch. On mils i/o sharing
targeting avionic systems. In 10th European Dependable Computing
Conference (EDCC), pages 182–193, 2014.

[NALS06] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair
queuing memory systems. In 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 208–222, 2006.

[NP12] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. In 9th European Dependable Computing
Conference (EDCC), pages 132–143, 2012.

[NSE09] M. Negrean, S. Schliecker, and R. Ernst. Response-time analysis of
arbitrarily activated tasks in multiprocessor systems with shared
resources. In Design, Automation, Test in Europe Conference (DATE),
pages 524–529, 2009.

[p40] Freescale p4080 processor documentation. http://www.
freescale.com/webapp/sps/site/prod_summary.jsp?code=
P4080.

[Pat12] R. Pathan. Schedulability analysis of mixed-criticality systems on
multiprocessors. In 24th Euromicro Conference on Real-Time Systems
(ECRTS), pages 309–320, 2012.

[PBA+14] D. Potts, R. Bourquin, L. Andresen, J. Andronick, G. Klein, and
G. Heiser. Mathematically verified software kernels: Raising the
bar for high assurance implementations. 2014.

[PBB+11] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo,
and R. Kegley. A predictable execution model for COTS-based
embedded systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 269–279, 2011.

[PBCS08] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling of
CPU and I/O transactions in COTS-based embedded systems. In
Real-Time Systems Symposium (RTSS), pages 221–231, 2008.

[PD14] M. Paulitsch and K. Driscoll. Industrial communication technology
handbook. Chapter 48 SAFEbus. CRC Press, 2014.

[PDK+15] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench,
and J. Nowotsch. Mixed-criticality embedded systems – a balance
ensuring partitioning and performance. In Euromicro Conference
on Digital System Design (DSD), pages 453–461, 2015.

[PLT11] S. Perathoner, K. Lampka, and L. Thiele. Composing hetero-
geneous components for system-wide performance analysis. In
Design, Automation and Test in Europe (DATE), pages 842–847, 2011.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4080

Bibliography 191

[PMN+16] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and
B. Triquet. Temporal isolation of hard real-time applications on
many-core processors. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016.

[PPE+08] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of
the flexray communication protocol. Real-Time Systems, 39(1):205–
235, 2008.

[PQnC+09] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero.
Hardware support for WCET analysis of hard real-time multicore
systems. volume 37, pages 57–68, 2009.

[PSC+10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele. Worst case delay analysis for memory interference
in multicore systems. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 741–746, Dresden, Germany,
2010.

[PSG+14] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron. The
ROSACE case study: From Simulink specification to multi/many-
core execution. In 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 309–318, 2014.

[QLD] Y. Qian, Z. Lu, and W. Dou. Analysis of communication delay
bounds for network on chips.

[QLD10] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds
for on-chip packet-switching networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 29(5):802–
815, 2010.

[Qua] Qualcomm. Snapdragon 820 specification. https://www.
qualcomm.com/products/snapdragon/processors/820.

[RAEP07] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization
for predictable implementation of real-time applications on
multiprocessor systems-on-chip. In 28th IEEE International Real-
Time Systems Symposium (RTSS), pages 49–60, 2007.

[RDK+00] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In ACM SIGARCH Computer
Architecture News, volume 28, pages 128–138. ACM, 2000.

[RLP+11] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET
DRAM controller: bank privatization for predictability and
temporal isolation. In 7th IEEE/ACM/IFIP International Conference
on Hardware/software Codesign and System Synthesis (CODES+ISSS),
pages 99–108, 2011.

[RLSS10] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical
systems: the next computing revolution. In 47th Design Automation
Conference, pages 731–736. ACM, 2010.

https://www.qualcomm.com/products/snapdragon/processors/820
https://www.qualcomm.com/products/snapdragon/processors/820

192 Bibliography

[RTC12] RTCA. DO-178C/ED-12C software considerations in airborne
systems and equipment certification, 2012.

[Rus81] J. M. Rushby. Design and verification of secure systems, volume 15.
ACM, 1981.

[Rus99] J. Rushby. Partitioning in avionics architectures: Requirements,
mechanisms, and assurance. Technical Report NASA Contractor
Report CR-1999-209347, NASA Langley Research Center, 1999.

[Sam] Samsung. Exynos 8 octa (8890) specification. http:
//www.samsung.com/semiconductor/minisite/Exynos/w/
solution/mod_ap/8890/.

[SCM+14] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon,
R. Pellizzoni, H. Yun, et al. Single core equivalent virtual machines
for hard real-time computing on multicore processors. Technical
report, University of Illinois at Urbana-Champaign, 2014.

[SCT10] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing Analysis for
TDMA Arbitration in Resource Sharing Systems. In 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2010.

[SEL08] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 181–190, 2008.

[SGH+15] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and
L. Thiele. Mixed-criticality runtime mechanisms and evaluation
on multicores. In 21st IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 194 – 206, 2015.

[SGTG12] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP.
In 24th Euromicro Conference on Real-Time Systems (ECRTS), pages
155–165, 2012.

[SL03] I. Shin and I. Lee. Periodic resource model for compositional real-
time guarantees. In Real-Time Systems Symposium (RTSS), pages
2–13, 2003.

[SL04] I. Shin and I. Lee. Compositional real-time scheduling framework.
In Real-Time Systems Symposium (RTSS), pages 57–67, 2004.

[SM08] V. Suhendra and T. Mitra. Exploring locking & partitioning for
predictable shared caches on multi-cores. In 45th Annual Design
Automation Conference (DAC), pages 300–303, 2008.

[SNE09] S. Schliecker, M. Negrean, and R. Ernst. Response time analysis
on multicore ecus with shared resources. IEEE Transactions on
Industrial Informatics, 5(4):402–413, 2009.

http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890/

Bibliography 193

[SNE10] S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared
resource load for the performance analysis of multiprocessor
systems. In Design, Automation, Test in Europe Conference (DATE),
pages 759–764, 2010.

[SPC+10] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and
M. Caccamo. Worst-case response time analysis of resource access
models in multi-core systems. In Proceedings of the 47th Design
Automation Conference (DAC), pages 332–337, 2010.

[SPC+11] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and
M. Caccamo. Timing analysis for resource access interference on
adaptive resource arbiters. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 213–222, 2011.

[SRL+11] A. Simalatsar, Y. Ramadian, K. Lampka, S. Perathoner,
R. Passerone, and L. Thiele. Enabling parametric feasibility
analysis in real-time calculus driven performance evaluation. In
14th International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 155–164. ACM, 2011.

[SRM14] M. Shekhar, H. Ramaprasad, and F. Mueller. Network-on-chip
aware scheduling of hard-real-time tasks. In 9th IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 141–150,
2014.

[SS16] S. Skalistis and A. Simalatsar. Worst-case execution time analysis
for many-core architectures with NoC. In International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS),
pages 211–227, 2016.

[Sta08] J. A. Stankovic. When sensor and actuator networks cover the
world. ETRI journal, 30(5):627–633, 2008.

[SW07] R. Sedgewick and K. Wayne. Algorithms and data structures.
Princeton University, COS, 226, 2007.

[TAED13] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. IDAMC: A NoC
for mixed criticality systems. In 19th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 149–156, 2013.

[Tak12] H. Takada. Introduction to automotive embedded
systems. http://estc.dsr-company.com/images/b/b5/
Automotive-embedded-systems.pdf, 2012.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. Intl. Symposium on
Circuits and Systems, volume 4, pages 101–104, 2000.

[TKA02] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A
language for streaming applications. In International Conference on
Compiler Construction, pages 179–196, 2002.

http://estc.dsr-company.com/images/b/b5/Automotive-embedded-systems.pdf
http://estc.dsr-company.com/images/b/b5/Automotive-embedded-systems.pdf

194 Bibliography

[TPM+15] P. Tendulkar, P. Poplavko, J. Maselbas, I. Galanommatis, and
O. Maler. A runtime environment for real-time streaming
applications on clustered multi-cores. Technical Report TR-2015-6,
Verimag Research Report, 2015.

[TS09] L. Thiele and N. Stoimenov. Modular performance analysis of
cyclic dataflow graphs. In 7th ACM international conference on
Embedded software (EMSOFT), pages 127–136, 2009.

[TS12] T. Tian and C.-P. Shih. Software techniques for shared-cache multi-
core systems. Intel Software Network, 2012.

[TSP11] D. Tamas-Selicean and P. Pop. Design optimization of mixed-
criticality real-time applications on cost-constrained partitioned
architectures. In Real-Time Systems Symposium (RTSS), pages 24–
33, 2011.

[TSPS12] D. Tamas-Selicean, P. Pop, and W. Steiner. Synthesis of
communication schedules for ttethernet-based mixed-criticality
systems. In 8th IEEE/ACM/IFIP International Conference on
Hardware/software Codesign and System Synthesis (CODES+ISSS),
pages 473–482, 2012.

[Ves07] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Real-Time Systems
Symposium (RTSS), pages 239–243, 2007.

[WGR+09] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory hierarchies, pipelines, and buses for
future architectures in time-critical embedded systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 28(7):966 –978, 2009.

[WHKA13] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making
shared caches more predictable on multicore platforms. In 25th
Euromicro Conference on Real-Time Systems (ECRTS), pages 157–167,
2013.

[WKP13] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of
dram latency in multi-requestor systems. In Real-Time Systems
Symposium (RTSS), pages 372–383, 2013.

[WMT06] E. Wandeler, A. Maxiaguine, and L. Thiele. Performance analysis
of greedy shapers in real-time systems. In Design, Automation
& Test in Europe Conference & Exhibition, pages 444–449, Munich,
Germany, 2006.

[WP14] S. Wasly and R. Pellizzoni. Hiding memory latency using fixed
priority scheduling. In 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 75–86, 2014.

Bibliography 195

[WT05] E. Wandeler and L. Thiele. Real-time interfaces for interface-based
design of real-time systems with fixed priority scheduling. In
5th ACM International Conference on Embedded Software (EMSOFT),
pages 80–89, 2005.

[WT06a] E. Wandeler and L. Thiele. Optimal TDMA time slot and cycle
length allocation for hard real-time systems. In Asia and South
Pacific Conference on Design Automation (ASP-DAC), 2006.

[WT06b] E. Wandeler and L. Thiele. Real-time calculus (rtc) toolbox. http:
//www.mpa.ethz.ch/Rtctoolbox, 2006.

[WTVL06] E. Wandeler, L. Thiele, M. Verhoef, and P. Lieverse. System
architecture evaluation using modular performance analysis - a
case study. International Journal on Software Tools for Technology
Transfer, 8(6):649 – 667, 2006.

[YMWP14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. PALLOC:
DRAM bank-aware memory allocator for performance isolation
on multicore platforms. In 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 155–166, 2014.

[Yov98] S. Yovine. Model checking timed automata. In Lectures on Embedded
Systems, pages 114–152. Springer, 1998.

[YPB+12] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time
Systems Journal, 48(6):681–715, 2012.

[YST16] M. Yan, Y. Shalabi, and J. Torrellas. Replayconfusion: Detecting
cache-based covert channel attacks using record and replay. 2016.

[YYG14] P. Yang, Z. Yang, and S. Ge. Establishing covert channel on shared
cache architecture. In 2014 10th International Conference on Natural
Computation (ICNC), pages 594–599, 2014.

[YYP+12] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
access control in multiprocessor for real-time systems with mixed
criticality. In 24th Euromicro Conference on Real-Time Systems
(ECRTS), pages 299–308, 2012.

[YYP+13] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 55–64, 2013.

[ZSO+13] J. Zhan, N. Stoimenov, J. Ouyang, L. Thiele, V. Narayanan, and
Y. Xie. Designing energy-efficient NoC for real-time embedded
systems through slack optimization. In 50th Annual Design
Automation Conference (DAC), pages 1–6, 2013.

http://www.mpa.ethz.ch/Rtctoolbox
http://www.mpa.ethz.ch/Rtctoolbox

196 Bibliography

List of Publications

The following list includes publications that form the basis of this thesis.
The corresponding chapters are indicated in parentheses.

P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini and L. Thiele. An
Isolation Scheduling Model for Multicores. In Proceedings of the IEEE
Real-Time Systems Symposium (RTSS). San Antonio, Texas, December
2015. (Chapter 2)

G. Giannopoulou, N. Stoimenov, P. Huang and L. Thiele. Scheduling
of Mixed-Criticality Applications on Resource-Sharing Multicore
Systems. In Proceedings of the 13th ACM International Conference
on Embedded Software (EMSOFT). Montreal, Canada, October 2013.
(Chapter 3)

G. Giannopoulou, N. Stoimenov, P. Huang and L. Thiele. Mapping
Mixed-Criticality Applications on Multi-Core Architectures. In
Proceedings of the 2014 Design, Automation and Test in Europe Conference and
Exhibition (DATE). Dresden, Germany, March 2014. (Chapter 3)

G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele and B. D. de
Dinechin. Mixed-Criticality Scheduling on Cluster-Based Manycores
with Shared Communication and Storage Resources. In Real-Time
Systems Journal, Volume 52, Issue 4. Springer, 2016. (Chapter 3)

G. Giannopoulou, K. Lampka, N. Stoimenov and L. Thiele. Timed
Model Checking with Abstractions: Towards Worst-Case Response
Time Analysis in Resource-Sharing Manycore Systems. In Proceedings
of the 12th ACM International Conference on Embedded Software (EMSOFT).
Tampere, Finland, October 2012. (Chapter 4)

K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu and N. Stoimenov.
A Formal Approach to the WCRT Analysis of Multicore Systems with
Memory Contention under Phase-structured Task Sets. In Real-Time
Systems Journal, Volume 50, Issue 5-6. Springer, 2014. (Chapter 4)

198 List of Publications

The following list includes publications that were written during the
PhD studies, yet are not part of this thesis.

S. Narayana, P. Huang, G. Giannopoulou, L. Thiele and V. Prasad.
Exploring Energy Saving for Mixed-Criticality Systems on Multi-cores.
In Proceedings of the 22nd IEEE Real-Time Embedded Technology and
Applications Symposium (RTAS). Vienna, Austria, April 2016.

F. Sutton, R. Da Forno, M. Zimmerling, R. Lim, T. Gsell, G. Giannopoulou,
F. Ferrari, J. Beutel and L. Thiele. Bolt: A Stateful Processor Interconnect.
In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems (SenSys). Seoul, South Korea, November 2015.

F. Sutton, R. Da Forno, M. Zimmerling, R. Lim, T. Gsell, G. Giannopoulou,
F. Ferrari, J. Beutel and L. Thiele. Demo: Building Reliable Wireless
Embedded Platforms using the Bolt Processor Interconnect. In
Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems (SenSys). Seoul, South Korea, November 2015.

L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez and L. Thiele.
Mixed-Criticality Runtime Mechanisms and Evaluation on Multicores.
In Proceedings of the 21st IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). Seattle, Washington, April 2015.

P. Huang, P. Kumar, G. Giannopoulou and L. Thiele. Run and
Be Safe: Mixed-Criticality Scheduling with Temporary Processor
Speedup. In Proceedings of the 2015 Design, Automation and Test in Europe
Conference and Exhibition (DATE). Grenoble, France, March 2015.

P. Huang, P. Kumar, G. Giannopoulou and L. Thiele. Energy Efficient
DVFS Scheduling for Mixed-Criticality Systems. In Proceedings of the
14th ACM International Conference on Embedded Software (EMSOFT). New
Delhi, India, October 2014.

N. Dhruva, P. Kumar, G. Giannopoulou and L. Thiele. Computing a
Language-Based Guarantee for Timing Properties of Cyber-Physical
Systems. In Proceedings of the 2014 Design, Automation and Test in Europe
Conference and Exhibition (DATE). Dresden, Germany, March 2014.

P. Huang, G. Giannopoulou, N. Stoimenov and L. Thiele. Service
Adaptions for Mixed-Criticality Systems. In Proceedings of the 19th Asia
and South Pacific Design Automation Conference (ASP-DAC). Singapore,
January 2014.

Curriculum Vitæ

Personal Data
Name Georgia Giannopoulou

Date of Birth December 19, 1985

Citizenship Greek

Education
2011–present ETH Zurich, Switzerland

Computer Engineering and Networks Laboratory
Ph.D. under the supervision of Prof. Dr. Lothar Thiele

2009–2011 ETH Zurich, Switzerland
M.Sc. ETH in Electrical Engineering and Information
Technology

2003–2009 University of Patras, Greece
Diploma in Computer Engineering and Informatics
(equivalent to M.Sc.)

Professional Experience

2011–present ETH Zurich, Switzerland
Computer Engineering and Networks Laboratory
Research and teaching assistant

2010 Siemens Building Technologies, Zug, Switzerland
Research and Development intern

2007 University of Patras, Greece
Teaching assistant

Awards
March 2014 GI/ITG biennial award for best Master thesis in

Measurement, Modelling and Evaluation of Computing
Systems (MMB)

2009–2011 Latsis Foundation scholarship for Master studies at ETH
Zurich

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Trends in Embedded System Design
	Challenges in Mixed-Criticality Multi-Core System Design
	Aim of this Thesis
	Thesis Outline and Contributions

	Eliminating Inter-Criticality Interference
	Introduction
	Related Work
	System Model
	The IS-Server Policy
	The MC-IS-Server Policy
	Evaluation
	Summary

	Bounding Intra-Criticality Interference
	Introduction
	Related Work
	System Model
	Flexible Time-Triggered Scheduling
	Worst-Case Response Time Analysis
	Design Optimization
	A Case Study: Flight Management System
	Comparison to Existing Mixed-Criticality Scheduling Policies
	Summary

	A Dedicated Execution Model for Tighter Interference Analysis
	Introduction
	Related Work
	Background theory
	System Model
	Worst-case Response Time Analysis using Model Checking
	Reducing Complexity of Model Checking through Analytic Abstractions
	Further Adaptations to Improve Scalability
	Evaluation
	Summary

	Deployment of Mixed-Criticality Scheduling on a Multi-Core Architecture
	Introduction
	Related Work
	System and Scheduling Model
	Kalray MPPA-256
	Implementation of Scheduling Primitives
	Worst-Case Response Time Analysis
	Evaluation
	Summary

	Conclusion and Outlook
	Contributions
	Possible Future Directions

	Bibliography
	List of Publications
	Curriculum Vitæ

