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Abstract

Over the past few decades, batteries played a central role
in the design of wireless sensing systems. Large storage
devices provide a stable energy supply, ensuring long system
lifetimes even when energy demands are highly variable.
Current trends point towards the deployment of billions of
interconnected sensing devices gathering information from
their surrounding, also known as the Internet-of-Things (IoT).
While energy flow is absolutely necessary for IoT devices to
function, large energy storage capacity is not. Minimized
energy provisioning will make the IoT more economically
viable and environmentally friendly. It also restricts the use of
high-power peripherals and introduces intermittence, raising
new challenges in application development.

In this dissertation, we address how rich data sensing
systems can be designed for robust and efficient operation
with a minimized transducer and storage element. Batteryless
systems are particularly suited for energy-driven sensing
applications, where energy and information are simulta-
neously available in the environment. To this end, we
design a general-purpose power subsystem compatible with
transducers whose output cannot directly sustain system
operation. Then, we introduce a data aggregation scheme
which can drastically reduce average transactional costs to
power hungry peripherals. Finally, we present a specification
model for intermittence-tolerant applications. With it,
developers can write arbitrarily long (single-core) sensing
applications and automatically calculate the optimal energy
burst partitioning with optimized data state retention and
restoration. Specifically, the following contributions are
presented in this dissertation.

• We design an Energy Management Unit (EMU), which
acts as a broker between a low-power transducer
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and a high-power application circuit while keeping
their operation independent from each other. The
EMU uses an application-specific capacitor to buffer
energy for a single execution cycle or burst. This
absorbs the transducer’s I-V variability and guarantees
atomic execution. Compared to existing solutions, this
enables energy-proportional operation down to tens of
microwatts of harvested power at wide voltage ranges.

• We develop the Non-Volatile Memory Hierarchy
(NVMH) for long-term data logging of rich data sensors.
Current approaches to power-hungry peripherals
greedily access them regardless of their initialization
cost. By temporarily storing multiple data samples
in an energy-efficient nonvolatile memory, NVMH
can significantly reduce average storage costs of large
density memories such as SD cards.

• We propose a data-flow-based specification model for
batteryless sensing applications. By composing multiple
atomic kernels with explicit data dependencies, an entire
application can be optimally partitioned into bursts and
minimize energy cost, given a capacity bound. As
opposed to existing solutions, this method provides an
application with energy guarantees required for atomic
tasks, like sending radio packets, and automatically
saves/restores the minimal amount of non-volatile data
for each execution unit.

From the thorough experimental evaluation, it is concluded
that batteryless applications based on architectures with
tunable energy guarantees can operate robustly and efficiently
even in low and intermittent energy harvesting scenarios.
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Negli ultimi decenni, le batterie hanno giocato un ruolo
centrale nella progettazione dei sistemi sensoriali senza fili.
Un dispositivo di stoccaggio energetico di grandi dimensioni
può fornire un’alimentazione constante, garantendo un lungo
funzionamento del sistema anche quando le sue necessità
energetiche sono molto variabili. Le attuali tendenze indicano
una diffusione di miliardi di sistemi sensoriali interconnessi
che raccolgono informazioni dall’ambiente circostante, noti
anche come Internet of Things (IoT). Sebbene un constante
flusso di energia sia assolutamente necessario per il corretto
funzionamento dei dispositivi IoT, la disponibitilità di una
grande capacità di immagazzinamento energetico non lo è. Un
approvvigionamento energetico ottimizzato renderebbe l’IoT
più redditizio e più ecologico. Inoltre, tale approccio limi-
terebbe l’uso di periferiche ad alta potenza ed introdurrebbe
un funzionamento intermittente, ponendo nuove sfide nello
sviluppo applicativo.

In questa dissertazione affrontiamo come i sistemi senso-
riali possano essere progettati per il funzionamento robusto
ed efficiente minimizzando sorgente e stoccaggio energetico.
I sistemi senza batteria sono particolarmente adatti per
applicazioni di monitoraggio in cui l’energia e l’informazione
sono disponibili simultaneamente nell’ambiente. A tal fine,
presentiamo un sottosistema generico per la generazione
di potenza, compatibile con trasduttori che altrimenti non
potrebbero garantire il corretto funzionamento nel tempo.
Inoltre, nel presente lavoro viene introdotto uno schema
di aggregazione dei dati che può ridurre drasticamente i
costi transazionali medi per le periferiche ad alto consumo
energetico. Infine, presentiamo anche un modello di specifiche
per applicazioni con tolleranza all’intermittenza. Grazie ad
esso, gli sviluppatori possono scrivere applicazioni sequen-
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ziali di lunghezza arbitraria e calcolare automaticamente la
ripartizione ottimale degli energy bursts (pacchetti di energia)
al fine di minimizzare il costo energetico per la conservazione
dei dati in memoria. In particolare, i seguenti contributi sono
presentati in questa tesi.
• La progetazione di una Energy Management Unit (EMU)

(Unità di Gestione Energetica), che funge da inter-
mediario tra un trasduttore a bassa potenza ed un
circuito applicativo ad alta potenza, mantenendo il loro
funzionamento indipendente. La EMU utilizza un
condensatore, dimensionato in base all’applicazione, per
immagazzinare l’energia necessaria per un singolo ciclo
di esecuzione, o energy burst. Questa EMU assorbe la
variabilità I-V del trasduttore e garantendo l’esecuzione
atomica dell’applicazione. In confronto alle soluzioni
esistenti, ciò consente un funzionamento lineare rispetto
alla potenza raccolta fino a decine di microwatt con
un’ampia gamma di tensioni.

• Lo sviluppo di una Non-Volatile Memory Hierarchy
(NVMH) (Gerarchia delle Memorie Non Volatili) per
il salvataggio a lungo termine delle informazioni pro-
venienti da sensori che producono un’elevata mole
di dati. I tradizionali approcci nella gestione delle
periferiche ad alta potenza non tengono conto del loro
costo di inizializzazione. Grazie alla conservazione
temporanea di più campioni di dati in una memoria non
volatile ad alta efficienza energetica, la nostra NVMH
è in grado di ridurre significativamente i costi medi di
memorizzazione per le memorie a grande densità, come
le schede SD.

• Un modello di specifiche basato sul flusso di dati per
applicazioni sensoriali senza batterie. Attraverso il
raggruppamento di più kernel atomici con esplicite
dipendenze di dato, un’applicazione può essere suddi-
visa in diversi energy bursts. Il dimensonamento degli
stessi può essere ottimizzato al fine di minimizzare i
costi energetici dell’applicazione, rispettando la limitata
capacità di immagazzinamento energetico del sistema.
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Questo è reso possibile dal salvataggio e dal ripristino
automatico della quantità minima dei dati non volatili
per ogni unità di esecuzione. A differenza delle soluzioni
esistenti, questo metodo fornisce ad un’applicazione le
garanzie energetiche necessarie per l’esecuzione atomica
dei kernel, come l’invio di pacchetti radio.

Attraverso un’attenta valutazione sperimentale, si è con-
cluso che le applicazioni senza batteria basate su architetture
dove il livello di garanzia energetica è configurabile, possono
operare in modo robusto ed efficiente anche in scenari in cui la
sorgente energetica risulta essere limitata ed intermittente.
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1
Introduction

Information is one of the key economic factors in many sectors
including healthcare, energy, transportation, infrastructure,
supply chain networks, among many others [JW14]. When this
information can only be obtained in the physical realm, sensing
systems need to be deployed to acquire, process, store and
transmit relevant data. Designing these systems for long-term
deployments is a difficult challenge given size, cost, reliability
and maintenance restrictions. As the emerging Internet
of Things (IoT) envisions information and communication
technologies as services available ’anytime, anywhere’, these
challenges will only get more difficult [UHM11].

This vision of ubiquitous sensing systems has in part been
enabled by the advances in microelectronics, material sciences
and related fields. They have not only reduced the costs
and energy consumption of digital devices but also allowed
their miniaturization to 1 mm3 scale [LBL+13]. These ultra-
low-power systems are not only capable of ambient sensing
and wireless transmission, but also efficient acquisition and
parallel processing of complex biomedical signals [GHS+17].
Sensing systems have been successfully used in a wide range
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application scenarios like healthcare [AE10], infrastructure
monitoring [ELE06], precision agriculture [GVMNGPG14],
surveillance [CMB15] and assisted living [WSV+08] among
many others.

Among the most fundamental problems to solve when
designing long-term deployments is how to supply sensing
systems with electrical energy. For many decades, primary
batteries have been a popular solution to supply wireless sen-
sor and actuator systems [WHSC01]. These non-rechargeable
batteries can have lifetimes spanning several years, in part
because of their low current drain and very high energy
density [Hug10]. Researchers have also developed techniques
including dynamic power management [BCMS01, SC01] and
low-power design [PBB98, CSB92] to reduce the average power
and energy requirements for many applications. This has
relaxed some design constraints and extended system lifetimes
even further. Due to stringent reliability requirements, a
few specific applications (e.g. pacemakers [MIR04]) will
remain battery-powered for the foreseeable future. In many
other application scenarios, however, energy harvesting has
been successfully introduced to reduce costs and extend
system lifetimes even further [RKH+05]. This trend has also
been fueled by advances in secondary (rechargeable) battery
technology [SPM15].

1.1 Energy harvesting-based systems

Figure 1.1 depicts the energy flow in all harvesting-based
systems, starting from primary (ambient) energy into electrical
energy to useful work. Ambient energy can be found in
many different forms including solar, thermal and vibrational
[SK11]. Even though virtually every environment has some
primary energy to offer, all energy availability exhibits some
temporal- and spatial-dependent behavior. Since transducers
can only convert ambient energy to electrical energy, this
dynamic behavior directly influences the system’s energy
budget. Besides the environment, transducer output depends
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primary
energy

transducer
electrical
energy

application
circuit useful work

f(Vt,It) f(Vapp,Fapp)

Figure 1.1: All harvesting-based systems convert primary energy into
electrical energy, which can then be buffered and used by application circuits
to do useful work. Transducer output is a function of its voltage and current,
while that of the application depends on its voltage and operating frequency.

on other factors including its size (e.g. area, volume or
weight), its I-V curve and its operating point [SPM15]. While
sensing systems are typically designed to provide minimum
service level guarantees, energy sources rarely behave in a
consistent and predictable manner. Consequently, energy
produced by transducer must be stored and conditioned
before it can be used effectively [RKH+05]. How much
energy a system can generate and store depends on many
interconnected factors which can radically change resulting
behavior [SGL+17]. There are different ways to cope
with harvesting variability, among them service adaptation
[MTBB10], power subsystem capacity planning [BSBT14], and
multi-model energy harvesting [WMM+13].

1.1.1 Multi-harvesting

Harvesting-based systems which are exposed to a single source
of primary energy can work efficiently with an appropriate
transducer. In certain application domains, like wearable
systems [MBS+16], they can be exposed to different types
of primary energy. Given that primary energy availability
is highly space and temporal dependent, coupling different
sources of energy can increase the total harvested energy
[DRF+15]. Multi-modal harvesting can be costly since it
requires multiple transducers and larger form factors, but it can
increase the energy reliability of systems with small harvesting
and storage capabilities [BJJ18]. To do this efficiently, however,
independent impedance matching and power point tracking
systems must be implemented for each source [BC11]. Even
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if multiple sources are being used, the dependence on
the environment and its potentially long periods of energy
unavailability might require further measures. Some systems
increase overall storage capacity by combining different types
of energy storage (e.g. fuel cells, batteries, and supercapacitors)
and their different benefits [WMM+13].

1.1.2 Energy neutral operation

In the best-case scenario, a system is able to harvest
and store enough energy to continuously fulfill application
requirements. When this occurs, it is said that the system
has energy neutral operation. Realistic deployments depend
on high-power periodic source (i.e. the sun) to provide
enough for operation. To design energy neutral systems, it
is necessary to have a detailed energy generation [SPC12],
storage [BAB13] and consumption model [HZK+06]. Among
the difficulties in designing such systems is to provide closed-
form expressions for minimum harvesting requirements
depending on application parameters [BSB+13]. One of the
simplest parameters to analyze is the excess time (texcess),
defined as the maximum theoretical time the system can
operate without harvesting any energy (see Figure 1.2). If
the time during which no energy is harvested (tunavailable) can
be bounded, then a necessary but not sufficient condition for
energy neutrality is that texcess > tunavailable. Having enough
energy storage capacity is crucial for energy neutrality. But
many energy storage technologies have a low number of
recharge cycles, which limits the overall system lifetime.

1.1.3 Energy storage

Batteries are often one of the most expensive components of a
sensing system in terms of form-factor and cost considerations
[ZGL13] as well as environmental impact [VdBVVM+06].
Though certain battery technologies do have high energy
densities, their lifetimes can be restricted due to their limited
number of charge cycles and high self-discharge rates [NHP03].
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Figure 1.2: Operation of harvesting-based systems depends on the energy
source, energy storage and load. For energy neutral operation, it is necessary
(but not sufficient) that storage capacity be enough to supply the system when
primary energy is not available (texcess > tunavailable).

In addition, certain technologies [ST 17] impose current peak
limits that would hinder the use of power-hungry peripherals.
Broadly speaking, storage capacity and system lifetime do not
scale well with cost and energy efficiency. For this reason,
current trends [HSS15a, BWM+15, WCK+14, GSM+16] point
towards the optimization of the energy buffer’s size according
to application-specific parameters. In doing so devices
become smaller, cheaper and more efficient but time-driven
behavior is sacrificed for event-driven behavior. When energy
requirements are small enough, electrostatic energy is an
advantageous form of storage. Compared to electrochemical
storage elements, small (SMD) capacitors have much higher
power densities [Hug10]. In addition, these passive devices
have small form factors and are made from cheap materials
[Cra17]. Though their energy density is lower than batteries,
they have very high reliability. In fact, some technologies like
solid aluminum [KEM18] and tantalum [BBMP13] capacitors
do not have aging effects within given temperature, voltage,
and current limits. Referring back to Figure 1.2, one of the key
parameters is again texcess and designing it to ensure functional
correctness, even with power-hungry peripherals. If a sensing
system is able to run reliably and efficiently with these small
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energy storage devices, they could have a potentially infinite
useful lifetime.

1.1.4 Batteryless Systems

In an ideal scenario, energy and information come from
the same source. When this is the case, harvesting-based
systems with limited storage capacity can efficiently obtain
information from an event using energy from the event itself.
There are several application scenario where this principle of
energy-driven operation can be applied. For example, cameras
[NSF15] and UV sensors [HBD13] can be powered by light.
In the case of movement, ferroelectret insoles can be used to
power fitness tracking [RBL+17], vibrations inside a tire can be
used to monitor tire pressure [LKWH07], and vibrations from
earthquakes, wind and traffic can be harvested to monitor their
effects on infrastructure [ELE06]. In all of these applications,
the usefulness of information is tied to the energy availability.
For example, if a camera takes a picture in the dark or a fitness
tracker measures stillness, there is little to no information in the
data. As soon as there is light or movement, the camera or the
fitness tracker can both harvest energy and produce valuable
information. Batteryless sensing systems can fulfill application
requirements in a wide variety of scenarios, and they can do so
with minimized cost, area, and energy overheads. However,
there are many challenges which need to be solved for such
systems to be efficient.

1.2 Challenges in batteryless operation

The design and optimization of batteryless sensing systems
must take into account some general restrictions in order to
execute applications in an efficient and reliable manner. The
main challenges we have identified are the following:

1. Transducers have low conversion efficiency and power density
Depending on the technology being used, transducers



1.2. Challenges in batteryless operation 7

have very different conversion efficiencies and power
densities (see Figure 1.3). Thermoelectric generators
(TEGs), for example, have conversion efficiencies of 0.1-
3% and power densities ranging from 60 to 3000µW/cm2

in wearable (δT < 10◦K) and industrial scenarios (δT ≥
100◦K), respectively [SPM15]. Photovoltaic cells have
conversion efficiencies ranging from 10 to 25%[BASM16]
and power densities ranging from 10 to 1500 μW /cm2 in
indoor and outdoor environments, respectively [GB08].
Even transducers with high power densities can have an
insufficient open circuit voltage and closed circuit current
for power-hungry peripherals such as thermal cameras
[FLI18]. To operate reliably under these conditions, the
system needs to have separate voltage domains for the
source and load. In this way, the power subsystem can
become transducer-independent and allow impedance
matching for maximum power transfer without affecting
the load.

2. Environmental energy is difficult to predict and can be
adversarial
Micro-level energy harvesting, which is capable of
supplying energy to low-power devices, has received
considerable attention in recent years [BASM16]. One
important characteristic of all ambient energy sources
is their dynamic behavior. It is typically infeasible to
predict the harvested power from sources like light,
temperature and wind in a fine-grained and accurate
manner due to the amount information it would require
[KLCL16]. Wearable harvesters, for example, exhibit
highly user-dependent behavior[MBS+16], which can
vary significantly. Since the system designer has no
control over ambient conditions, a conservative but
realistic assumption is that the source could fail at any
moment, even during application execution. This means
that for any design to be reliable and efficient, it must
be able to both adjust to time-dependent primary energy
and tolerate its sudden disappearance.
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3. Loads have highly variable current, voltage and energy
requirements
low-power sensing systems typically have components
such as microcontrollers, memories, and peripherals (e.g.
sensors and wireless transceivers). Microprocessors can
be efficiently power scaled using voltage and frequency
[BCMS01, PBB98] within a narrow range. However,
external peripherals such as radios [Dig09] can have
different voltage and current requirements, which are
significantly higher than digital CMOS logic [Tex15].
In fact, these peripherals typically demand to be used
in an atomic fashion, since their functionality depends
on it. During packet transmission, for example, a
radio has a precise power dissipation which must be
satisfied for the packet to be sent successfully. These
power and energy requirements can pose a challenge
when supplying loads from transducers in dynamic
environments. Unless the complete sensor node and
its peripherals are fully scalable in terms of voltage and
current, the load’s operating point can be incompatible
with the transducer’s.

These combined challenges must all be addressed from
the system design perspective. Conventional low-power
design dictates that any harvesting-based system should,
at all times, maximize the energy input and minimize
the energy output. To maximize the harvested energy
in dynamic scenarios, the source’s maximum power point
needs to be tracked. To minimize the load’s energy, its
operating point needs to be continuously adjusted to meet
dynamic application requirements. These two criteria can
differ significantly, especially when variable environmental
conditions are taken into account. This variability, in turn,
demands that the design use energy storage to provide some
minimal energy guarantees, otherwise no application progress
can be guaranteed. Designing an architecture that addresses
these issues requires innovative methods that combine both
hardware and software aspects. The main challenge is to
design systems that can operate efficiently, have minimized
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Figure 1.3: Conventional transducers, sensors, microcontrollers and
transceivers exhibit a discrepancy between energy production and energy
consumption capability.

storage and start-up costs given these conditions.

1.3 Thesis Outline and Contributions

This thesis proposes several building blocks for the design
and specification of batteryless sensing systems. Two of the
most important design parameters are the storage capacity and
application energy cost. Though both are ideally minimized,
there are fundamental trade-offs between these objectives.
Figure 1.4 shows an overview of the proposed building blocks
in the two-dimensional design space. In Chapter 2, we begin by
introducing the notion of reliable execution in sense-process-
store applications. We define reliable execution as being able
to guarantee the completion of an activation cycle once it is
begun. Since our energy sources can be adversarial (e.g. they
can disappear at any moment), the energy storage device must
be able to supply the energy necessary for one activation cycle.
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Whether this cycle runs an entire application or just a part of it,
the system performance and overhead will vary. In Chapter 3,
we address aggregation as a means to reduce the average
energy cost logging data. Since certain peripherals like high-
density non-volatile memories can have high initialization
costs, it is very costly duty-cycle them for single data items.
By aggregating multiple measurements, the high initialization
cost can be efficiently amortized among many data items at
the expense of a larger required storage capacity. Our final
building block for batteryless system design, discussed in
Chapter 4, is partitioning. When processing tasks dominate
application energy, they can be effectively distributed among
many small activation cycles to reduce storage requirements.
To do this efficiently, advanced state retention techniques need
to be employed such that only the input and output data of
these small processing tasks are transferred between volatile
and non-volatile data.
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Figure 1.4: Overview of the building blocks presented in this thesis. Chapter 2
presents reliable task-based execution of sensing applications. Chapter 3 then
includes aggregation to reduce the average energy cost of the same application.
Chapter 4 introduces partitioning to reduce the energy storage required for
task-based execution.

In the following, we present the main contributions of the
thesis.



1.3. Thesis Outline and Contributions 11

Chapter 2: Reliable execution in adverse environments
In this chapter, we present an energy-efficient Energy
Management Unit (EMU) to supply generic loads when the
transducer voltage and current are lower than required for
sustained system operation. By slowly building up charge to a
pre-defined energy level, the EMU can generate short energy
bursts reliably, even under variable harvesting conditions.
Furthermore, we propose a dynamic energy burst scaling
(DEBS) technique to adjust the supply voltage of these bursts
in accordance with the load’s requirements. Using a simple
digital interface, the load can dynamically configure the EMU
to supply small bursts of energy at its optimal power point,
independent from the harvester’s operating point. Using
two implementations of vision-based sensing systems, we
demonstrate the general applicability of traditional low-power
design to batteryless operation. Extensive theoretical and
experimental data demonstrate the high energy efficiency of
our approach, reaching up to 73.6% even when harvesting
only 110µW and supplying a load of 3.89 mW.

Chapter 3: Reducing energy costs through aggregation
Sensing systems using an Energy Management Unit (EMU)
and Dynamic Energy Burst Scaling (DEBS) can generate small
bursts of energy to execute sense-process-store applications in
an energy efficient manner. However, energy efficiency alone
does not encompass other important systems parameters such
as application energy cost and storage capacity. In this chapter,
we will demonstrate a fundamental trade-off between these
last two parameters. Using a solar-powered image logging
system, we propose and evaluate a Non-Volatile Memory
Hierarchy (NVMH) to reduce the average energy cost per
store image, at the expense of a larger energy storage device.
Furthermore, we study the energy proportional aspects of
EMU-based designs, both from the harvester and the load
perspectives. Experimental data show that, regardless of its
configuration, the EMU can supply energy bursts to a 43.4
mW load with energy efficiencies of up to 79.7% and can work
with input power levels as low as 140 µW. When the system is
configured to use both DEBS and NVMH, the total energy cost
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of acquiring, processing and storing an image can be reduced
by 77.8%, at the price of increasing the energy buffer size by
65%.

Chapter 4: Reducing energy storage through partitioning
Using EMU-based designs, entire applications can be easily
executed within a single activation cycle in an efficient and
reliable manner. However, this approach is not scalable
as applications grow in data and energy consumption. If
complex tasks can be partitioned among multiple energy
bursts, a much smaller storage capacity will be required. At
the same time, data consistency between bursts needs to be
guaranteed. These state retention systems can incur significant
energy costs as they transfer data between volatile and non-
volatile domains. In this chapter, we study the optimization
of complex processing applications following an energy burst
execution scheme. Our method, Julienning, automates the
energy optimization of batteryless applications based on a
novel specification model. With this model, developers can
define applications as a set of atomically-executed kernels
with explicit data dependencies. By leveraging inter-kernel
data dependencies, our optimizer can partition arbitrarily
long applications into small execution cycles with minimized
data overheads. We validate our methodology with transient
cameras running CNN-based applications. Results show that
compared to ad-hoc solutions, our method can reduce the
required energy storage by 17.4× while incurring a negligible
0.08% energy overhead.



2
Reliable sensing

in adverse environments

2.1 Introduction

Over the past decade, there has been a considerable research
effort to reduce the energy consumption of electronic devices.
While there has been considerable progress, the lifetime
of battery-based devices remains the bottleneck in their
development. Broadly speaking, the problem of how to supply
low-power embedded systems with the energy they require in
an efficient, low-cost, long-term, scalable, and self-sustainable
manner has not yet been adequately solved. Over-provisioning
with large energy harvesting and storage elements can be
prohibitively expensive in many application scenarios such as
wearable, distributed, miniaturized or "smart dust" systems.
Fortunately, a purely harvesting-driven system can still meet
application requirements in many of these scenarios.

Batteryless sensing systems acquire and store/transmit
environmental data using environmental energy. However,
they are supplied by volatile energy sources which can, at most,
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directly power the system for only a limited amount of time.
During this time, the energy harvesting rate might not be high
enough to complete even one atomic task execution. We define
an atomic task as a set of instructions whose functionality
depends on its timely and uninterrupted execution. Common
examples of atomic tasks include reading a sensor, transmitting
a wireless packet, or transferring a block of data from a
volatile to a non-volatile domain. Consequently, batteryless
sensing systems need to be able to buffer at least the amount
of energy needed to bridge the environmental power deficit
and guarantee the completion of an atomic task. In this
application domain, attempting to use a buffer that stores
large amounts of energy inevitably leads to high losses due
to self-discharge, idle currents and converter inefficiencies.
Though energy can be stored in many forms: thermal,
mechanical, electrostatic and electrochemical [Hug10], only
the last two are commonly found in low-power sensing
systems. Electrochemical devices such as lithium-ion batteries
and supercapacitors are particularly unsuited because they
are either expensive in terms of cost and area, have limited
recharge cycles, high self-discharge rates, or are not easily
integrated onboard [ZGL13]. Electrostatic devices such as
ceramic or tantalum capacitors can only store limited amounts
of energy, but have virtually unlimited recharge cycles, low
self-discharge rates, are cheaper and can be easily integrated
on board due to their smaller size.

Typical low-power cyber-physical systems have compo-
nents such as microcontrollers [Tex15, Tex17], memories
[Cyp15], and peripherals, for example, sensors[Bos15, Sen18]
and transceivers [Sem16, Dig09]. Microcontrollers usually
have a wide operating voltage range, but on-chip converters
operate most efficiently at lower supply voltages [GPB+15].
External peripherals such as sensors and radios can have
substantially different voltage requirements, but system
designers usually avoid multiple voltage domains to reduce
converter losses and simply choose the highest minimum
voltage required to supply the entire system. In order to design
a flexible platform that is able to efficiently harvest energy
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from different sources, it is necessary to decouple the source
and load voltages, allowing each to operate at their respective
optimal operating point. We argue that batteryless sensing
systems should take all of these issues into consideration. More
precisely, we believe these systems should have the following
properties in order to be considered useful and efficient:

1. Source and load operating points are decoupled.

2. System has a minimally-sized energy buffer.

3. Load receives required energy at a supported voltage.

The first property ensures functionality and maximum
power point tracking [BBMT08] for a wide range of input
power and voltage. The second limits the energy that the
system can buffer to the absolute minimum since anything
larger would not improve functionality but would increase
energy losses during cold-start. We define this minimum to
be the energy known to be required for the execution of one
atomic task. If an application consists of several tasks, the
maximum energy level allowed corresponds to the task with
the highest energy requirement. In this way, the system has the
ability to guarantee functionally correct application progress
regardless of environment and transducer dynamics. The third
property implies that when the load is activated to execute a
given atomic task, it can receive said energy while respecting
minimum voltage requirements.

This chapter presents an Energy Management Unit (EMU)
which allows a system with limited energy buffering to operate
predictably and efficiently, even under very lower power
harvesting conditions. Existing works [Yak11, AM15, LPRR10]
have looked at low-power systems with energy harvesting and
storage capabilities. However, these systems are extremely
expensive in terms of harvesting and storage requirements
for long-term, efficient functionality under transient power
conditions. Our proposed EMU has an optimally sized
capacitor which minimizes the required start-up time and
energy from zero while maintaining a low cost, small form
factor, high efficiency and virtually unlimited charge cycles.
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Furthermore, we propose the novel concept of Dynamic
Energy Burst Scaling (DEBS) to track the load’s optimal power
point and minimize its per task energy consumption. To
evaluate our proposed methodology, we have implemented
two vision-based sensor nodes which acquire, process (and
store) images. Our experimental results are based on
extensive characterization and evaluation of both systems. We
summarize the main contributions of this chapter as follows:

• Energy Management Unit that efficiently converts low
power levels to short, high power energy bursts.

• Feedback-based Dynamic Energy Burst Scaling tech-
nique to track the load’s optimal power point.

• Accurate model to optimize system’s application-specific
parameters for low input power scenarios.

• The design and implementation of two energy-
proportional vision sensor nodes.

• Experimental validation of the high energy efficiency and
proportionality of the proposed transfer scheme using
two separate vision-based sensing applications.

2.1.1 Roadmap

The remainder of this chapter is structured as follows: In
Section 2.2n we identify other works in batteryless system
design. Our main building block, the Energy Management
Unit (EMU), is described in Section 2.3. While the EMU
can operate in stand-alone mode, a feedback technique called
Dynamic Energy Burst Scaling (DEBS) to minimize application
energy is presented in Section 2.4. In Section 2.5, we present
two low-power vision sensors that perform sense-process-
store applications. These applications are optimized for low
energy consumption and adapted to energy-driven, batteryless
operation. Our experimental evaluation using both vision
sensors is presented in Section 2.6. Lastly, we summarize our
findings in Section 2.7.
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2.2 Related Work

2.2.1 System architectures

Cyber-physical systems have traditionally been used in
conjunction with energy harvesting and energy storage. More
recently, the research community has focused on systems with
very limited energy storage capacity. In the most extreme
case, energy storage is so limited that guaranteed application
progress occurs at a very fine granularity, possibly down to
a single instruction per activation cycle. Depending on the
environment, transducer and application, different types of
circuits might be need to supply the system with the energy
necessary for program progress at a supported voltage range.
Generally speaking, there are three types of architectures for
batteryless, or transiently powered systems:

Directly-Coupled

When the energy source has an I-V curve compatible with the
load, they can be directly connected. These systems typically
use a small decoupling capacitance (<20 µF) to buffer small
amounts of energy. If the energy storage is too small, atomic
tasks such as sensor measurements and radio transmission
cannot be guaranteed unless the environment and the
transducer can meet the power and energy requirements of
such tasks. The authors of [BWM+15, JRR14] have proposed a
combined HW/SW approach to perform computation when the
source can directly sustain a computational load during short
periods of time. These works use volatile logic that requires
state-retention mechanisms. An approach to federating energy
proposed in [HSS15a] increases the computational ability by
using multiple independent capacitors, each dedicated to a
specific peripheral. In [LC15, WLW+15, WCK+14, KCWP10],
the authors present storage-less and converter-less harvesting
systems in which the load uses frequency scaling to track the
maximum power point of the source. While frequency scaling
can maximize the energy input in CPU-based applications,
it does not minimize the load’s energy consumption and
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is limited to a narrow active power range. Even though
directly-coupled systems avoid converter losses, if the power
input is below this narrow active range, the load cannot be
powered and the system’s efficiency immediately drops to 0%.
Unfortunately, this is often the case in batteryless systems.
When the energy source and load have incompatible operating
points, decoupling them with converters becomes a necessity.
As opposed to traditional, battery-based systems, decoupled
transient systems have a limited energy buffer between the
source and load.

Boost Converter Only

In [DBL+15, DLBL+15], the authors propose a low-power
management system that requires very low input voltage and
current. Using a large buffer capacitor at the converter input,
they are able to start the energy conversion at very low input
power level. However, both approaches suffer from cold-start
times of at least 18 minutes due to charging a large input
capacitance of 140 mF at a constant input power of 2.5µW.
As will be explained in Section 2.3.4, our capacitance is chosen
to minimize the cold-start energy and time.

Boost Buck Converter Combination

The authors of [NPK+15] also use a boost converter for optimal
power point tracking. However, their proposed system utilizes
RF harvesting to accumulate charge in a supercapacitor and
then power a camera application with a buck converter. The
boost/buck converter topology with an energy buffer also
serves as a basis for the approach presented in this work. While
a charge-state model is used to characterize the capacitor’s self-
discharge rate, energy losses such as impedance matching and
converter inefficiencies are neglected. More importantly, the
system has a large startup cost and can only supply the load
with bursts of a constant size and voltage. In Section 2.6, it will
be shown that this approach can lead to a substantially higher
energy consumption, larger storage elements and longer start-
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up times.
To summarize, we propose an Energy Management Unit

(EMU) to decouple the load from the source, and efficiently
build up charge regardless of the load’s operating point.
In addition, we propose a feedback-loop technique called
Dynamic Energy Burst Scaling (DEBS) that optimizes an
application’s energy requirements by supplying the minimum
voltage per task. In this way, a smaller storage can still
guarantee the application’s completion with a smaller startup
time and energy.

2.2.2 Vision Sensors

In this chapter, we will present two wearable vision sensors
that acquire pictures and perform image processing. One
of these can be used to estimate the walking speed of the
user wearing the device. This is done by running an optical
flow algorithm. Optical flow, as introduced by Gibson
[Gib50] is a basic concept in visual perception that describes
the apparent velocities of patterns in the perceived image
[HS81]. Since these concepts were first proposed, they have
become fundamental in computer vision and signal processing,
with applications ranging from video compression [Bar04] to
fluid measurements [Far01] among others. For a survey on
optical flow algorithms, interested readers are encouraged
to look at [BB95]. Due to the applicability of optical flow,
researchers have been implementing algorithms on a variety
of systems. V. More et al. proposed a visual navigation
system for UAVs based on optical flow estimation using the
Lucas-Kanade method and an ultrasonic sensor [MKK+15]. To
account for the high computational effort for the Lucas-Kanade
method, the system runs on an onboard Linux computer
(Odroid-U3), which consumes up to 10 W. Computing the
optical flow with the Lucas-Kanade method can also be done
on computationally constrained microcontrollers such as the
Atmel ATmega2560. K. Schneider et al. [SCN13] took this
approach and used the same Stonyman vision chip from
Centeye as in this work. However, low-power microcontrollers
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have very limited memories and, in their case, it could only
handle camera resolutions up to 28 × 28 pixels due to the
memory intensive Lucas-Kanade method.

In general, vision sensors have either required too much
power, bandwidth or offered too little performance to design
functional batteryless devices. In [OHP15], for example, a
stereo vision system for a micro aerial vehicle capable of
processing 640x480 frames at 60 fps, requiring 5 W and 50
grams for the FPGA subsystem alone. In [HMTP13], the
authors use a PX4FLOW optical flow sensor to provide velocity
and position estimation at high update rates for mobile robot
navigation. The system is not only vision-based but also
includes a gyroscope and an ultrasonic sensor. The power
consumption of this system is specified as 575 mW. To design
a batteryless system with these power requirements would
require a solar panel with an area of 100’s cm2, which is
no longer wearable. Thanks to our low-power components
and aggressive energy optimizations, we can perform many
measurements per minute in ambient lighting conditions.

2.3 Reliable Execution with Energy Bursts

In this section, we present the model and architecture of
a batteryless sensing system with the proposed Energy
Management Unit (EMU). Since the EMU can work with a
wide variety of sources, this section omits the transducer and
focuses on the EMU and the load. In Section 2.6 we will
discuss evaluate our proposed EMU with two different loads
to demonstrate how it is compatible with different application
requirements.

2.3.1 Energy-driven operation

In this section, we have so far presented two low-power vision-
based sensing systems. While these could indeed be battery-
powered, having a multi-month or multi-year lifetime would
require a large energy storage device and the device would no
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Figure 2.1: Feedback loop for Dynamic Energy Burst Scaling.

longer be wearable or affordable. Current trends in harvesting-
based systems point towards a significant reduction in storage
capability due to cost, size and environmental considerations.
The trade-off in doing so is that a minimal service cannot
be guaranteed for long periods of time. This is because as
storage capability decreases, the behavior of these systems
becomes more immediately influenced by the environment.
Since all environments show some form of spatial or temporal
dependence, energy availability will vary and affect system
operation. Duty-cycling is a common technique which
allows a system to adjust its average energy consumption
by introducing low-power sleep states. However, in order
to perform single tasks such as reading a sensor value or
transmitting a data packet, these systems need to be able
to buffer the required energy. Otherwise, environmental
conditions can rapidly change and turn off the load before
it completed its task. Consequently, we argue that a novel
Energy Management Unit (EMU) is needed to provide energy
guarantees in such disadvantageous scenarios in an efficient,
transducer-agnostic manner. Due to the limited energy intake
in batteryless systems, the unit should self-start requiring as
little time and energy as possible. During those short periods
of limited energy intake, it maximizes the energy build-up
by harvesting at the source’s optimal power point. When
powering the load with short energy bursts, it should provide
a control interface to the load so its optimal power point can be
tracked. In this work, we present an EMU that satisfies these
requirements, shown in Figure 2.1.

The proposed Dynamic Energy Burst Scaling (DEBS)
technique aims to exploit the EMU’s control interface by
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closely following the application’s minimum required power
envelope. To illustrate with an example, imagine a simple
sensing application with two tasks: 1) acquisition and 2)
transmission. The first requires a sensor supplied with 3 V,
while the second requires only 2 V. One approach, used in
[NPK+15], uses bursts of constant size and supply voltage.
Using DEBS, our proposed EMU is able to produce one burst
at 3 V for sensing, and another burst at 2 V for transmission,
thus minimizing the total energy.

2.3.2 System Model

We now describe our model of the proposed Energy
Management Unit (EMU), shown in Figure 2.3. One of the
main goals is to derive equations which can apply to a wide
variety of energy sources and loads. The proposed model will
then be used to optimize important system parameters, namely
the EMU’s start-up costs and the load’s energy. The accuracy
of the proposed model will be experimentally validated in
Section 2.6.

2.3.3 Energy Buffering and Losses

The amount of energy buffered in the EMU depends on
several parameters including the input and load power, and
the system’s non-idealities. The equation governing the time-
dependent energy level in a capacitor is as follows:

E′cap(t) =
d
dt

Ecap(t) = ηboost (Vin(t), Iin(t)) × Pin(t)

− Pload(Si)/ηbuck − Pleak(t)
(2.1)

In this equation, the positive term represents the energy intake,
while the negative ones represent the energy consumption.

Input Power: The system has only one power input,
Pin(t), supplied by the transducer. We focus on the adverse
scenario where Pin < Pload and Vin < Vload,min. This means
that directly coupling the transducer to the load is not possible
since it would not meet voltage requirements. Furthermore,
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the batteryless sensing system can be placed in dynamic
environments. In these cases, maximizing the system’s overall
energy flow demands that the source’s maximum power point
be tracked.

Load Power: In the proposed model, the load can have
two states (Si): active or inactive. When active, the load is
characterized by three quantities: Eburst,i,Vload,i,Pload,i; where
Eburst,i defines the energy burst size required for one execution
of task i, Vload,i its supply voltage and Pload,i the power
consumption during the execution of task i. These parameters
were characterized experimentally. In the inactive state, the
load is in deep sleep and awaits the trigger from the energy
management unit. Though the actual power consumption
during deep sleep depends on the hardware, many systems
achieve nW levels [Tex15]. If the deep sleep power is higher, it
will simply take longer for the EMU to accumulate the energy
necessary for the next burst.

Converter Efficiencies: Since decoupled systems can have
the source and load operating at different voltages, converters
are needed. This step, while necessary, introduces non-
negligible losses, which are represented by boost and buck
converter efficiencies ηboost(V, I) and ηbuck. The boost converter’s
efficiency is particularly sensitive to the operating voltage and
current, meaning it must be parameterized. These efficiencies
were also characterized experimentally, and a simple look-up
table is used for simulations.

Other Energy Losses: Unfortunately, converter inefficien-
cies are not the only sources of energy losses. The maximum
power point tracking unit and the control circuit also consume
energy. The consumption of the control circuit Ictrl and buck
converter Ibuck consists of a constant current and resistive
component and hence depends on Vcap. For the energy
buffer, a capacitor of size Ccap, a resistive leakage Rcap is
assumed. Considering these components, the system leakage
is summarized as:

Pleak(t) =Vcap(t) ×
(
Ictrl

(
Vcap(t)

)
+ Ibuck

(
Vcap(t)

))
+ Vcap(t)2/Rcap.

(2.2)
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Figure 2.2: Start-up time and cold-start energy overhead.

Equations 2.1 and 2.2 can accurately describe the time
evolution of the system’s energy levels, as will be shown in
Section 2.6.3. They will be used in the remainder of this section
to estimate how different parameters impact the system’s
losses, to then calculate the optimal parameters that minimize
the losses.

2.3.4 Minimizing Cold-Start Energy and Start-up Time

Given the system model presented above, we can start
optimizing the cold-start energy and start-up time. By
definition, this is the fixed start-up cost to turn a batteryless
system on. Figure 2.2 shows that after a period of energy
unavailability, the capacitance first needs to be recharged to
the level of Vload. In order to minimize these fixed costs for
a given input power, we need to minimize the start-up time
defined as:

tstart-up =

t | Vcap(t) =

√√
2
∫ t

0 E′cap(τ) dτ

Ccap
= Vload

 (2.3)

However, the minimum capacitance is limited by the EMU’s
maximum supported voltage swing, as shown in the following
equation:

Cmin,i =
2Eload,i

ηbuck(V2
max − V2

load,i)
, (2.4)

where Eload,i and Vload,i are the energy and voltage required to
execute task i, and Vmax is the EMU’s maximum supported



2.3. Reliable Execution with Energy Bursts 25

voltage. The optimal capacitor value is then selected as the
highest Cmin,i among all tasks i.

2.3.5 Regulating Load Voltage

To show the advantages of our EMU’s boost-buck architecture
compared to the boost-only architecture, let us consider the
case of supplying a constant current load. Assuming the load
has a maximum supply voltage tolerance from Vmax down to
Vmin, we have the following power consumption: for boost-
only architecture, the average power of a task is PA = (Vmin +
Vmax)/2·Iload, while the buck has a constant power of PB = (Vmin ·

Iload)/ηbuck. By comparing these two power consumptions, it
directly follows that buck converter reduces the load’s power
consumption if the following condition for the buck converter
efficiency holds:

ηbuck >
2Vmin

Vmin + Vmax
(2.5)

To illustrate with a numerical example, suppose a load has a
voltage tolerance of 3 to 5 V. This means that a buck converter
has a lower power consumption if ηbuck > 75%. Furthermore,
the use of a buck adds the possibility of tracking the load’s
optimal power point. When an application consists of multiple
tasks with different voltage requirements, we can use Dynamic
Energy Burst Scaling (DEBS) to minimize the load’s energy.

2.3.6 Energy Management Unit Architecture

The Energy Management Unit (EMU) is tasked with building
up energy and producing short bursts to power the load. The
EMU provides a control interface to dynamically adjust the
bursts’ size and voltage, as shown in Figure 2.3. Our proposed
Dynamic Energy Burst Scaling (DEBS) technique exploits this
by using a feedback loop to track the load’s optimal power
point and minimize its energy consumption.

Converters. The harvesting part of the system is based
on the commercial bq25505 energy harvesting chip. This
chip uses a boost converter to convert the input voltage to
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Figure 2.3: Architecture of the proposed Energy Management Unit and its
interconnection to the source and load.

a level where the energy can be stored in a storage device.
Using its integrated maximum power point tracking (MPPT),
the boost converter adjusts the input impedance such that
the power source always operates at its optimal power point
to maximize the harvested energy. To provide the required
output voltage to the load, the TPS62740 buck converter is
directly connected to the energy buffer. This buck converter
was chosen for two reasons: 1) its high efficiency, and 2) its
digitally controlled adjustable output voltage. Given that the
measured ηbuck is ≥ 85% for both applications circuits and the
EMU supports a maximum voltage swing from 5.5-1.8 V, the
inequality 2.5 confirms that using a buck converter is more
efficient. Furthermore, it allows tracking the load’s power
point, which will be discussed in Section 2.4.

Energy Buffer. The energy buffer between the input
voltage boosting and output voltage regulation guarantees
voltage and current separation of the source and load, thus
allowing independent optimization of these parts. Although
actual energy requirements are highly application-specific,
the fact that we only need to supply a single, short
burst of activity means that energies are relatively small.
Typical applications scenarios like sensing [Sen18, Sil13] and
transmitting [Tex16, Dig09] have activity cycles less than one
second. SMD capacitors (ceramic, tantalum and electrolytic)
are capable of storing enough energy for many low-power
applications. They are also very suitable for batteryless
applications because of their high power density [CC00] and



2.3. Reliable Execution with Energy Bursts 27

virtually unlimited number of charge cycles [Col18]. When the
energy is minimized per task, the smallest capacitor capable
of guaranteeing atomicity can be used. In this case, it can also
be said that such capacitor also minimizes the EMU’s start-up
time and energy cost from zero.

Control Circuit The control circuit manages the burst
size as well as the output voltage and oversees the energy
accumulation in the buffer. For the first, the battery OK signal
of the bq25505 is used to trigger the activation of the load, once
the capacitor voltage reached the threshold level Vth at which
the requested energy burst was accumulated. The threshold
voltage Vth is configured using a resistor network, which is
controlled by a digital switch to dynamically adjust Vth and
therefore the burst size. The load supply voltage Vload can be
controlled using the TPS62740 buck converter’s digital input.

2.3.7 Application Circuit (Load)

All sensing systems have an application circuit, or load, which
includes the components that actually perform the sensing
application. They include a microcontroller and peripherals
(e.g. sensors and radios). In Section 2.5, the two sample sensing
systems used in the evaluation were presented. Regardless of
the specific components being used, all sensing applications
can be decomposed into tasks, depending on the peripherals
they use. For example, one application with two tasks can
determine an environmental parameter with a sensor, and
transmit the result wirelessly with a radio. To be compatible
with batteryless execution, the application circuit must have
at least two states: on and off. Since batteryless execution
is energy-driven, the EMU needs to control over when state
transition happens, otherwise, task completion cannot be
guaranteed.

For higher energy efficiency, the sensing system’s execution
flow, shown in Figure 2.4, is more intricate. Instead of a single
Vload = 0 V off state, there is an additional low-power deep
sleep state. If the environment has a long period of energy
unavailability, Vload will inevitably enter cold-start and reach
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Figure 2.4: Execution flow in all duty-cycled systems has low-power modes
(blue) and an active mode (green). For energy-driven execution, the transition
between states is handled by the EMU.

0 V. It is said that the system exits cold-start once Vload reaches
the minimum load voltage and checks the Power-On-Reset
(POR) flag. Then the microcontroller performs some basic
initialization and immediately enters deep sleep. This deep
sleep is preferably ultra-low-power, in the nW range, since it
directly influences the buildup of energy for the next burst.
When the next burst is generated, the EMU triggers a control
signal to wake up the load. The system then reads the next
task configuration from non-volatile memory and starts its
execution after initializing the peripherals needed for that task.
At the end of the task, the configuration is updated and the next
required burst is configured. Afterward, the load enters deep
sleep again and waits for the next energy burst to build up.

2.4 Per Task Energy Minimization

As was discussed in Section 2.5, there are application circuits
whose optimal power point varies according to the task. This
can occur when tasks use peripherals with different voltage
requirements. For this scenario, our proposed EMU provides
a control interface to dynamically adjust the burst size and
voltage. Our proposed Dynamic Energy Burst Scheduling
(DEBS) technique is based on a feedback loop (Figure 2.1) that
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allows the load to configure the EMU to supply an energy
burst to execute a task at the task’s optimal operating point.
This configuration only requires changing the value of 4 digital
I/O pins.

There are multiple benefits to tracking the load’s operating
point. For starters, it reduces the energy required to execute
a single application. In single-burst applications, these energy
savings directly translate to a smaller storage device. However,
if it is possible to split the application into multiple bursts, the
required storage can be reduced even further. The minimal
required energy storage depends on the largest atomic task,
and not on the entire application.

To illustrate the potential energy savings from DEBS, let us
use a simple application consisting of two tasks T1 and T2. First,
let us assume that they require the same voltage (V1,2=3.3 V),
current (I1,2=10 mA) and execution time (τ1,2=100 ms). These
values are representative of typical sense and transmit tasks.
The total application energy, Eapp, can be calculated as follows:

Eapp = ET1 + ET2 = V1 × I1 × τ1 + V2 × I2 × τ2 (2.6)

If we now assume the voltage requirements for T2 are now
reduced, we can apply DEBS to reduce the application energy.
T2’s energy consumption will be reduced if the supply By
how much depends on how the actual component’s current
scales. We evaluate two conservative possibilities: the current
is constant, and the current decreases linearly with the voltage.
Figure 2.5 shows the potential reduction in application energy
(Eapp) by using DEBS. The X-axis is the minimum voltage
requirement of T2, or Vmin,T2 . For each Vmin,T2 , we calculate
application energy when using DEBS and we normalize it
by the non-optimized version with V2=3 V. The blue dashed
line was computed with the assumption that T2’s current is
constant (I1=I2=10 mA), while the green dotted line assumes
linear scaling (I2 = Vmin,T2/V1 ∗ I1). As expected, the application
energy is proportional to Vmin,T2 . In the case of constant I2
current, DEBS can reduce the application energy by up to 23 %.
If I2 scales linearly with V2, the reduction is almost 36 % at
V2=1.8 V. Finally, it should be noted that compared to a single
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burst scheme, the optimized two-burst application requires an
energy storage element only half as big (dominated by E1).

Figure 2.5: Normalized application energy with and without Dynamic Energy
Burst Scaling (DEBS). Energy reduction depends mainly on the operating
voltage difference between tasks. In this plot, VT1 = 3.3 V and VT2 ∈ [1.8, 3.3] V.

2.5 Low-Power Sensing Systems

For over a decade, there has been significant research and
development into low-power sensing systems. These systems
are typically designed to obtain environmental information,
process it, and transmit wirelessly. Though they were
originally meant to run for multiple years on a small
battery, current trends point towards systems that run entirely
from harvested energy, without long-term storage. Vision
sensors, which acquire and process images, are typically high-
bandwidth devices which require substantial computational
resources. For this reason, it was not until recently that it
became feasible to have harvesting-based vision sensors in
a wearable form factor, thanks to new paradigms in energy
harvesting systems. Wearable vision sensors are a nascent
field with many potential applications in fields including
healthcare, security, leisure and the quantified self [BDR17]. In
[MBS+16] and [CPA+17], for example, vision data partly used
to determine the user’s context. In [OVV17], a wearable camera
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is shown to have lower false positive rates than accelerometer-
only systems for detecting falls of elderly users. This section
presents two low-power vision-based applications which were
implemented and evaluated for energy-driven operation. The
results presented here were obtained in collaboration with
Lukas Sigrist, Thomas Schalch and Michele Magno.

In this work, we implemented two low-power vision
sensor nodes which can acquire, process and store images.
The general overview of both vision sensors can be seen
in Figure 2.6. Both are based on the Centeye Stonyman
sensor [Cen13], which takes 114 × 114 pixel black-and-white
images and features low energy consumption and ultra-low-
power deep sleep mode. Each sensor node uses its own
microcontroller from the MSP family: MSP432 [Tex17] and
MSP430FR [Tex15]. The former has a 32-bit ARM Cortex M4
CPU with a floating point unit, 64 KB of SRAM and 256 KB of
Flash. The latter is an ultra-low-power 16-bit microcontroller
with 64 KB of on-chip FRAM. For high-density data storage,
an external 2 GB Class 10 microSD card [San04] is used.
With these vision sensors, we will implement two sensing
applications: Sense-Process and Sense-Process-Store. Sense-
Process applications obtain sensor data and perform some
processing of the data to either filter, compress, or otherwise
prepare data. Sense-Process-Store application can also save
data in non-volatile memory for future use.

2.5.1 Walking Speed Estimation (Sense-Process-Store)

Vision sensors have been studied for many years, and there
has been a significant research effort to use them for optical
navigation of unmanned aerial vehicles (UAV) or robots. V.
More et al. proposed a visual navigation system for UAVs
based on optical flow estimation using the Lucas-Kanade
method and an ultrasonic sensor [MKK+15]. K. Schneider et
al. [SCN13] took this approach and used the same Stonyman
vision chip from Centeye as in this work. However, low-power
microcontrollers have very limited memories and in their case,
it could only handle camera resolutions up to 28 × 28 pixels
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Figure 2.6: Overview of implemented low-power vision sensors. Two
microcontrollers from the MSP family (MSP430FR [Tex15] and MSP432
[Tex17]) will be used to read images from Centeye’s Stonyman sensor [Cen13].
There is also the possibility to store data in external non-volatile memory.

due to the memory intensive Lucas-Kanade method. Here,
we propose a low-power wearable vision sensor based on
the generic architecture shown in Figure 2.6. This sensor is
attached to a user’s glasses to estimate and log the walking
speed of the person. Figure 2.7 shows the generic function
of a visual velocity estimation sensor node, which can be
divided into three parts: Image Acquisition and Compensation,
Image Processing and Storage.

Figure 2.7: Overview of Sense-Process-Store application. After acquiring two
images and estimating user displacement, the walking speed can be estimated.
Both pictures, as well as the velocity estimation, are stored in the external
microSD card.

Image Acquisition and Compensation. The image acqui-
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sition task takes two images in a sequence and compensates
for the fixed pattern noise (FPN). In order to minimize the
computational effort of the motion estimation algorithm, the
time difference between the two acquired images should be
minimal. This was achieved by operating the vision sensor at
the maximum frame rate of 37.5 frames per second. To achieve
this frame rate, the CPU frequency has to be at least 24 MHz.
Using a CPU frequency of 48 MHz even allows compensating
for the FPN on-line during acquisition, while still achieving
the same frame rate. This task is executed at 3 V since it is
the Centeye camera’s minimum supported voltage. The time
and energy characterization can be seen in Table 2.1. For all
characterizations, the circuit was supplied a DC source and
its power consumption recorded for the energy calculation.
The evaluation reveals that configuration with the lower CPU
frequency is beneficial in a batteryless system since the overall
energy consumption is 42% lower.

FPN compensation CPU Freq. Executions Etask,avg ttask,avg
on-line 48 MHz 1152 930 µJ 53 ms
sequential 24 MHz 1829 537 µJ 61 ms

Table 2.1: Energy consumption and execution time of the image acquisition
task with compensation.

Image Processing. Using the two acquired image frames,
a velocity estimation needs to be calculated. This is done
using a motion estimation algorithm which will be discussed
below. The result of the motion estimation algorithm is a so-
called optical flow field, a vector field in which every vector
indicates the displacement of the corresponding part of the
image between the two frames. This optical flow field is
then reduced to one single displacement vector indicating
the displacement between the two frames. Together with the
user’s height, camera view angle and image acquisition times,
this displacement can be scaled to a final velocity estimation.

Here, we implement a block-based algorithm. This heuris-
tic estimates the motion between two images by comparing
them for all possible displacements and determining where the
images "fit best". Such a method only works, if there is a pure
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translation and only a negligibly small rotation between the
images. To relax this condition, one could think of dividing the
image into blocks and then search for each block the position
in the next image where the block "fits best". The smaller the
block size, the more robust the method is to rotations. The
result of the algorithm is an independent translation vector for
each block, which represents an estimate for the optical flow of
the pixels within the considered block. Block-based methods
are not restricted to small displacements like the differential
methods and are therefore able to recognize displacements of
many pixels.

For the task characterization, the block size of the block-
matching algorithm is set to 48px and the search area to
±3 and ±8 in x- and y-direction respectively. The supply
voltage for this task was set to 2.2 V since it is the MSP432’s
minimum supported voltage for the required frequency range.
Table 2.2 compares the energy consumption and the execution
time of the processing task for different CPU frequencies. As
expected, higher CPU frequencies lead to shorter execution
times. However, shorter execution times do not necessarily
result in lower energy consumption, because the MSP432
MCU consumes much more power for higher clock frequencies
[Tex17]. As the results in Table 2.2 show, the energy
consumption of the processing task is lowest at a CPU
frequency of 24 MHz.

CPU Freq. Executions Etask (mean) ttask (mean) Ptask (mean)
48 MHz 1079 757 µJ 56 ms 13.5 mW
24 MHz 1254 635 µJ 110 ms 5.8 mW
12 MHz 770 1371 µJ 388 ms 3.5 mW

Table 2.2: Energy consumption, execution time and power consumption of
the processing task.

Storage Task. The storage task takes the result from the
image processing, as well as the two acquired pictures, and
stores it in non-volatile memory (NVM). Each image has a size
of 12544 bytes, while the resulting velocity is only 2 bytes.
Although the SD card only requires 2.7 V, its high current
peaks made it necessary to raise the operating voltage. For
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our specific system, the safe operating voltage was empirically
determined to be 3 V. The energy required for storing both
images and the walking speed estimation was 6684µJ.

Power Management and Non-Volatility. To support
batteryless operation, a sensor node needs to be able to reduce
its activity and, consequently, its power consumption. The
Stonyman vision chip supports a software shut-down and can
be connected directly to the supply voltage. The FRAM chip is
connected to the supply voltage via a load switch (TPS22960)
controlled by GPIO pins of the MSP432. This allows the MCU
to activate the microSD card only when needed. The MSP432
is optimized for low-power applications and features various
low-power modes (LPMs) [Tex17]. In the deepest low-power
mode (LPM4.5), all peripherals including the CPU and the
SRAM bank are disabled. For this reason, it is imperative
to perform all three tasks within a single activation cycle,
otherwise, on-chip data memory is lost. During deep sleep, the
GPIOs can be configured to lock their previously configured
state which will be kept as long as there is power. This is
of particular importance if the sensor node needs to interface
with other external components. The current consumption
in LPM4.5 is only 25 nA [Tex17], allowing the device to
significantly reduce its average power consumption.

2.5.2 Image Capture (Sense-Process)

Following our vision-based sensing examples, we now
present a simpler Sense-Process application. Using the
MSP430FR5969-based vision sensor, we implement an image
capture application. This microcontroller features 64 KB of
FRAM, a high endurance, low-power non-volatile memory
(NVM). For this application, the images are simply stored (and
overwritten) in the on-chip NVM. The application consists of
two tasks: 1) an image acquisition task, and 2) a basic image
processing task, which are present in all vision-based sensor
nodes. During the image acquisition task, the raw image
from the Stonyman’s analog output is read with the ADC.
Because the sensor node has only one power domain and the
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Figure 2.8: Image of the wearable, batteryless vision sensor prototype
mounted on conventional glasses (no transducer shown).

sensor’s minimum voltage requirement, this task requires a
supply of 3 V. The processing task, however, only requires
the microcontroller which can operate at 3.0 V, but also at the
reduced voltage of 2 V. Table 2.3 shows the characterization
of the task energies. For these measurements, the circuit was
supplied a DC source and its power consumption recorded for
the energy calculation.

Task Voltage [V] ttask [ms] Etask [µJ]
Image Acquisition 3.0 47 174.0
Image Processing 3.0 50.6 220.8
Image Processing 2.0 50.6 143.7

Table 2.3: Energy consumption at different operating voltages of the Image
Capture application.

Power Management and Non-Volatility. The
MSP430FR5969 has a deep sleep power consumption of
less than 50 nW, making it very efficient for aggressive
duty-cycling. In addition, the IO state lock mechanism and
non-volatile FRAM features of the microcontroller enable it
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to keep the interface state during deep sleep and maintain
a well-defined state with external components. Due to this
microcontroller’s unified memory system, the need for state
retention mechanisms is mitigated. Valuable data can be
stored and processed entirely in the non-volatile domain, thus
saving expensive transitions between volatile and non-volatile
memory.

2.6 Experimental Evaluation

2.6.1 Methodology

This section evaluates the costs, performance, and efficiency of
the Energy Management Unit (EMU). To do this, we utilize the
two low-power vision sensors and their initial characterization
first presented in Section 2.5. They implement two different
applications: Sense-Process-Store, and Sense-Process. In the
former, we highlight the ability of the EMU to supply the
application circuit with the voltage necessary to minimize the
application per task. In the latter, we emphasize additional
system parameters like cold-start energy and startup times
as well as the energy savings from using Dynamic Energy
Burst Scaling (DEBS). To do this, we will test the performance
of the EMU by running the Sense-Process application using
two execution profiles: 1) Dynamic Bursts (using DEBS), and
2) Constant Bursts (no DEBS). Both execution profiles will
be tested under a) constant power input, and b) variable
power input. These last experimental results will also be
compared to a discrete-time simulation of the model presented
in Section 2.3.2 using Matlab. With both applications, we
will demonstrate the energy efficiency and proportionality of
batteryless execution.

Experimental Setup

Both application circuits are interfaced with the EMU. Flexible
solar panels from PowerFilm were used as transducers for both
systems. The Sense-Process-Store application used the MP3-37
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version, with an area of 42 cm2. The Sense-Process application
used the MP3-25 version, with an area of 28.5 cm2. In both
scenarios, controlled lighting was used to expose the system
to different illumination levels typically representative of low
light levels (<1000 lux).

Figures of Merit

For the system performance analysis, the following metrics are
used in all experiments:

• Ein =
∫ Texp

0 Pin(t) dt, for the total input energy,

• Eapp, j =
∑Ntasks

i=1

∫
tactive,i, j

Pload(t) dt, for active

energy consumed by the j-th application execution,

• Eload =
∑

j Eapp, j, the total energy consumed by the

load for all application executions,

• ηsys = Eload/Ein, the total system efficiency, and

• Rexec = Nbursts/(Ntasks ·Texp), the application execution rate.

In the formulas above, tactive,i, j denotes the time interval
of task i in the j-th application execution, Ntasks the number of
tasks in the application, and Nbursts the number of bursts during
the experiment of duration Texp. By measuring the currents and
voltages at the relevant points, we can accurately measure Pin
and Pload, and experimentally calculate these metrics.

2.6.2 Sense-Process-Store Application

The walking speed estimation system consists of an MSP432-
based vision sensor which takes two pictures in sequence,
estimates the user’s displacement, and stores the images as
well as the walking speed estimation on an external microSD
card. The simplest execution profile for this application is to
have a single activation cycle which performs all of these tasks.
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EMU-based execution requires the configuration of energy
bursts, which supply the load with a predefined amount of
energy at a given voltage. For this application, only one energy
burst is required.

Single-Burst Configuration. During this burst, the vision
sensor will perform all of the aforementioned tasks (Sense-
Process-Store). The two EMU configuration parameters which
are missing are operating voltage and the capacitance value.
The vision node’s energy optimizations were presented in
Section 2.5.1. The minimized energy for the entire application
is 7.856 mJ. To guarantee this energy between the 5 V-3 V
voltage gap, a 1 mF capacitor can be used. This way, reliable
execution of the walking speed estimation can be guaranteed,
even with highly variable energy sources.

Motion Estimation Accuracy. To find an optimal value
for the block size, a sample image data set was first acquired
from a development prototype with an SD card to continuously
record images of a controlled displacement. These images
were then post-processed to compare the estimated and the
measured displacements. A Matlab model of the block-
matching algorithm tested different block sizes between 96
pixels (using the whole image as one single block) and 16
pixels (dividing the whole image into 36 blocks). The size of
the search area was set to ±8px in x- and y-direction. A block
size of 48px showed the best combination of sensitivity against
rotations and high x-direction accuracy. After a traveled
distance of 42 m, its estimated position deviates only 57 cm
from the reference value, which corresponds to only 1.4% of the
traveled distance. Though this accuracy does depend on the
type of floor surface, we assume it also holds for our real-world
experiment, which has an equivalent experimental set-up.

Real-World Velocity Estimation. In order to demonstrate
the velocity estimation in a typical wearable scenario, the
wearable vision sensor prototype was attached to the glasses
(see Figure 2.8), such that the Stonyman vision chip faces
downwards and captures the floor in front of the person. For
this experiment, the user tested a stand-walk pattern for a few
seconds each and with different walking speeds. The prototype
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was continuously powered to acquire as much data as possible.
The vision sensor executes a loop of acquiring two images,

estimating the displacement between two images and writing
the images and the results onto the NVM. Because changing
the clock frequencies during runtime causes some overheads
and for optimizing the application for speed, a CPU frequency
of 48 MHz is used for the whole application. The search area
of the block-matching algorithm is configured to ±3 pixels in
x-direction and ±8 pixels in y-direction. The block size of the
block-matching algorithm is set to 48px, which was found to
be optimal according to the pre-characterization.

Figure 2.9: Velocity of the walking person estimated by the vision sensor
prototype (blue crosses) and post-processed in Matlab using a low-pass filter
(red line).

Figure 2.9 presents the walking speed estimations depicted
as blue crosses, as well as the low-pass filtered data
using a moving-average FIR filter in Matlab (solid line).
The different phases of the experiment can clearly be
recognized. Furthermore, the velocity estimation sensor
is able to distinguish between different walking speeds.
Batteryless operation will not always guarantee that the
maximum execution rate is always achieved, as this depends
on the harvesting conditions which can be highly variable.
However, EMU-based designs operate on the notion of energy
guarantees, which means that measurements are only begun
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when their completion is guaranteed. Furthermore, the
load’s operating point can, for this brief moment of time, be
guaranteed to be per task optimal.

Energy Efficiency and Proportionality

For this experiment, the batteryless sensing system consisting
of the solar panel, the EMU, and the MSP432-based application
circuit was exposed to different illumination levels. Each
measurement lasts between 300 s (for high input powers)
and 900 s (for low input powers) to ensure capturing a
representative number of burst executions. The energy
efficiency, calculated by measuring the energy harvested by
the EMU and consumed by the vision sensor, can be seen in
Fig. 2.10. The same plot also shows the average number
of estimations per minute which were recorded during each
experiment.
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Figure 2.10: Measured energy efficiency and execution rate as a function of
the input power.

As expected, both velocity estimations per minute and the
system’s energy efficiency increase with the input power. In
both cases there is X-intercept is greater than zero since the
EMU has a minimum input power in the µW range before
any application circuit can be effectively turned on. Once the
minimum input power is surpassed, the number of velocity
estimations is proportional to the input power, and the slope
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is determined by the average energy needed for one velocity
estimation. Though there is an upper bound to the number
of velocity estimations, it was not reached due to the duty-
cycling required in low energy harvesting conditions. The
overall energy efficiency, however, does saturate rather quickly.
This can be explained by the product of the EMU’s boost
and the buck converter non-ideal efficiencies. The EMU’s
maximally achievable efficiency for this circuit was measured
to reach up to 78.7%. For input power levels above 600 µW,
the efficiency is higher than 70%. The lowest input power
level in the experiment is 198 µW and achieves an efficiency of
43% when supplying the vision sensor with an average power
consumption of 6.85 mW.

2.6.3 Sense-Process Application

The second vision-based application we have presented in this
chapter was the image capture. The MSP430FR-based system
acquired and processed an image on on-chip NVM. This
application consists of two tasks: acquisition and processing,
whose energy optimization was presented in Section 2.5.2. We
will evaluate this application with two EMU-based execution
profiles. The first is to execute the entire application within a
single energy burst. The second is to generate one energy burst
per task using DEBS.

Single-Burst Configuration. With this configuration,
the vision node will perform the entire application within
a single activation cycle. Consequently, reliable execution
under variable harvesting conditions requires that the entire
application energy be buffered before it is consumed. This
is the only way to guarantee completion if the source stops
harvesting energy when the application starts. Without any
feedback-based control loop, a constant supply voltage would
need to be selected. Due to the voltage requirements of the
vision sensor, this constant supply voltage was set to 3 V. The
required energy burst size, according to the data presented in
Table 2.3, should be at least 394.8µJ. The minimum capacitance
supported by the EMU is 80µF, which can provide this energy
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(plus a safety margin) in the 5 V to 3 V voltage gap. Since all
activation cycles are the same in terms of energy, we will call
this configuration constant bursts.

Multi-Burst Configuration. The image capture application
can also be executed with two separate bursts using DEBS.
During the first burst, only 174µJ at 3 V are consumed for
image acquisition. Once enough charge has been built up, the
EMU’s control circuit configures the buck converter’s digital
input to set the output to 3 V and triggers the load to acquire the
image. Afterward, the load uses the EMU’s interface again and
configures the second burst by a new wake-up threshold and
operating voltage. The energy burst should supply 143.7µJ to
the sensor (plus any start-up overhead) at 2 V.

Thanks to the MSP430FR’s unified memory, the application
can be easily split amongst multiple energy bursts. Application
data already resided in non-volatile memory at the end of the
first burst, meaning no addition state-retention techniques are
necessary. This allows the microcontroller to easily use DEBS
to supply separate bursts.Since these bursts can have variable
energies and voltages, both load-configurable, we call this
configuration dynamic bursts. Without DEBS, the EMU would
generate one burst at 3 V to acquire and process the image,
similar to the approach proposed in [NPK+15], which can lead
to larger bursts sizes due to the non-optimal operating point.
These two approaches, dynamic and constant bursts, will be
evaluated experimentally in the following section.

Start-Up Time and Cold-Start Energy Costs

As was discussed in Section 2.3.4, the energy buffer was
optimized to minimize the cold-start’s required energy and
start-up time and still guarantee the completion of atomic
tasks. To characterize these costs, the capacitor was completely
discharged, and the flexible solar panel was exposed to
constant illumination level until the cold-start phase ended.
The measured start-up time and cold-start energy as a function
of the input power can be seen in Figure 2.11. The maximum
cost, which occurs at the minimum input power of 20µW was
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118 s and 2.49 mJ. This was expected since the harvester, by
definition, cannot operate efficiently in this region. It should
be noted that with an input power of 400µW, the start-up costs
go down to 3.9 s and 1.54 mJ. This translates to reduced reaction
times and energy costs in batteryless systems, and highlights
the importance of a minimized capacitance.
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Figure 2.11: Measured start-up time and cold-start energy of image capture
application. Even in the low-power harvesting scenario of 50µW, the system
starts up from zero Volts in less than a minute.

Energy Efficiency and Proportionality

In this experiment, the flexible solar panel was exposed to
a constant illumination level for 5 min, supplying the EMU
with a constant power. This experiment was repeated for
different power levels using Dynamic and Constant Bursts.
The system was then analyzed using the previously discussed
performance metrics dependent on the input power level.

The resulting analysis of the task execution rate and
system efficiency is shown for both task execution profiles in
Figure 2.12, together with model-based simulation results for
the same scenarios. The results show up to 50 and 39 task
executions per minute when using Dynamic and Constant
Bursts, respectively. For both profiles, the system efficiency
ηsys reaches more than 70% for a wide range of input power,
with a peak system efficiency of up to 75.1% for Dynamic
Bursts. It should be noted that the system model presented
in Section 2.3.2 allows accurate simulation of the number of
task executions as well as system efficiency. However, some
additional non-linear leakage effects of the boost converter at
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the very low input power of < 50µW at high buffer capacitor
voltages cannot be captured by the model, and results in an
optimistic efficiency for Constant Bursts.

The experimental results show that execution rate Rexec
when using Dynamic Bursts is on average 27% higher than
Constant Bursts. Further, Dynamic Bursts lowers the minimal
system operating input power down to 19µW compared to
36µW for Constant Bursts. Lastly, the system efficiency ηsys is
increased across the whole input power range for Dynamic
Bursts, with significant improvements for input powers of
200µW and below.
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Figure 2.12: Experimental evaluation of image capture application under
constant input power conditions: execution rate Rexec and system energy
efficiency ηsys.
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Figure 2.13: Time domain comparison between model simulation and
experimental evaluation of image capture application using Dynamic Bursts
under variable input power.

Variable Harvesting Conditions

In this experiment, the system performance was evaluated in
an indoor real-world scenario, again for both task execution
profiles. The two execution profiles were each evaluated with
a 15 min experiment that included walking around with the
setup in the office hallway partly illuminated by natural and
artificial light, walking in a dimly lit basement and sitting at a
well-illuminated office desk.

Burst Size Avg. Pin Metric Simulation Experiment Error

Dynamic 92.3µW
Rexec 9.93 min−1 10.33 min−1 -3.9%
avg. Eapp, j 368.4µJ 369.0µJ -0.2%
Eload 54.9 mJ 57.2 mJ -4.0%
ηsys 66.11% 68.82% -3.9%

Constant 111.9µW
Rexec 9.87 min−1 9.93 min−1 -0.7%
avg. Eapp, j 460.8µJ 459.7µJ +0.2%
Eload 68.2 mJ 68.5 mJ -0.4%
ηsys 67.76% 68.01% -0.4%

Table 2.4: Execution rate and efficiency of image capture application for
variable harvesting power. Even though Dynamic Bursts had a lower average
input power, their execution rate was higher thanks to the reduced energy
cost.

The experimental metrics for Dynamic and Constant Bursts
under variable input power conditions are shown in Table 2.4.
The first thing to note is that Dynamic Bursts reduces the
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average energy per application execution by 19.7% when
compared to Constant Bursts. Even though the Dynamic
Bursts experiment had on average a lower input power Pin,
both the execution rate and energy efficiency ηsys are still
higher. This can be explained by the lower energy consumption
per task execution due to DEBS’ minimization of load energy.
Normalized to the average input power, this results in 22%
more task executions with Dynamic Bursts compared to
Constant Bursts, which shows the considerable advantage of
using DEBS.

The table also compares the experimental results to the
model simulation that uses the experimental Pin data as input.
Here, the comparison to experimental values shows that even
in a real-world scenario with variable input power, the model
is able to predict the system behavior with a maximum error of
4% for both task execution profiles. This fact is also reflected in
Figure 2.13: it shows the input power, simulated and measured
energy level of the buffer capacitor during a 40 second sample
time window of the Dynamic Bursts experiment. Beside a
small time drift in the energy accumulation during very low
input power, where not all effects can be represented by our
model, it tracks the buffer’s energy level and bursts with high
accuracy. This high accuracy results only in small deviation
in the time diagram, despite the accumulation of simulation
errors in the time domain.

2.6.4 Result Discussion

Sense-Process-Store. The hardware and firmware of the
vision sensor have been highly optimized for low energy
consumption. In particular, the first two tasks have
strict dependencies between operating voltage and operating
frequency. There is, however, almost no connection between
execution time, average power, and energy consumption in
the image acquisition and processing tasks. In converterless
systems [LC15, WCK+14], there is no chance to guarantee
the operating conditions necessary for energy minimization.
Thanks to the decoupling guaranteed by the EMU, and the high
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power density of capacitors, this vision-based sensing system
achieves high performance and energy efficiency. Experiments
show that the vision sensor prototype can produce reliable
velocity estimations in an energy-proportional manner.

Sense-Process. The results from the constant power
characterization and variable input experiment highlight the
four main advantages of our proposed approach. First, thanks
to our minimized energy buffer, the cold-start energy and
start-up time are minimized: at 400µW, they were only
1.54 mJ and 3.9 s, respectively. Second, in the very common
low-power harvesting scenario for batteryless systems, the
EMU completely decouples the source’s and the load’s power
points. Even though the harvested power never surpassed
400µW, the EMU still provided the 3.83 mW load with a 75.1%
energy efficiency using DEBS. With direct coupling, it is simply
impossible to power the same load. Third, the proposed
DEBS technique uses the EMU in a feedback loop to track
the load’s optimal power point and significantly reduce its
energy consumption. Fourth, the proposed model is able to
accurately predict the experimental results. This validates the
minimization of our model parameters, namely the minimized
energy buffer and start-up costs.

2.7 Summary

In this chapter, we have presented an energy management
unit (EMU) that minimizes the cold-start energy and start-up
time for batteryless sensing systems. By only accumulating the
energy necessary for an activation cycle in an optimally-sized
buffer, the EMU is able to supply generic loads predictably and
efficiently, even when harvesting only a small fraction of the
load’s power. Furthermore, we proposed a Dynamic Energy
Burst Scaling (DEBS) technique to track the load’s optimal
power point. Using a simple interface consisting of only a
few digital inputs, the EMU is able to dynamically adjust the
burst size and voltage according to an application’s needs,
thus minimizing the load’s energy consumption and reducing
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the required storage element size. We have applied these
techniques to two different vision-based sensing devices and
our proposed model is able to predict the system’s performance
and energy efficiency within 4.0% of the experimental values,
even under variable power input conditions. With our Sense-
Process and (-Store) applications, we have demonstrated that
batteryless execution can leverage low-power optimization
techniques, independent of the transducer’s operating point.
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3
Reducing energy costs

by aggregation

3.1 Introduction

Over the past decade, there has been a considerable research
effort to reduce the energy consumption of electronic devices.
While there has been considerable progress, the lifetime
of battery-based devices remains a bottleneck in their
development. Supplying low-power embedded systems
with the energy they require in an efficient, low-cost, long-
term, scalable, and self-sustainable manner remains an open
question. Over-provisioning with large energy harvesting
and storage elements is either infeasible or unnecessary in
many application scenarios such as wearable, autonomous,
miniaturized or "smart dust" systems. Fortunately, a
purely harvesting driven system can still meet application
requirements in many of these scenarios.

Batteryless sensing systems are supplied by variable energy
sources which can, at most, directly power the system for only
a limited amount of time. Even then, the energy harvesting
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rate might not be high enough to complete one atomic task
execution, such as performing a sensor reading or transmitting
a radio packet. Consequently, such systems need to be able
to buffer at least the amount of energy needed to bridge this
power deficit and thereby to guarantee the completion of any
single execution cycle. The developer has the liberty to define
what this single execution cycle achieves. In the previous
chapter, we studied how an application can be executed either
atomically or in multiple bursts. By splitting the application
over multiple bursts we were able to achieve two important
goals. The first was minimizing the energy storage required
for executing the application reliably. The reduction in storage
depends on the ratio between the number of tasks and their
energy ratios.. The second goal was a reduction of the
energy cost per application cycle. These energy savings were
achieved by adjusting the operating voltage to the minimum
supported per task. The techniques presented in Chapter 2
result in a Pareto-optimal point on the application energy cost
vs energy storage capacity design space. In this chapter, we will
present additional techniques, applicable to tasks with high
initialization costs, to determine another point in the Pareto
front. Compared to previous techniques, they can be used to
reduce the average energy cost of an image logging application
but with a higher energy storage capacity.

3.1.1 Batteryless System Challenges

Batteryless systems must be able to tolerate highly volatile
sources and still guarantee program progress. In order for
these systems to operate reliably and efficiently, they have
to accumulate harvested energy until enough is available for
the execution of a predefined activation cycle, also called a
burst. Choosing what an activation cycle consists of has a
significant impact on two important metrics: the application’s
energy cost and the system’s required energy storage capacity.
In Chapter 2, we saw one scenario where both metrics were
simultaneously minimized. In applications where activating
peripherals incurs a significant energy overhead, there is
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an inherent trade-off between energy storage capacity and
application energy cost. Batteryless, or transiently powered
systems, thus face multiple challenges that lead to design trade-
offs:

• Constraint (1) Bounded Storage Capacity Energy storage
is necessary for reliable execution with adversarial
harvesting conditions. Though desirable, minimizing
energy storage and application energy cost is not always
possible. A trade-off exists when tasks have high
initialization overheads.

• Constraint (2) Time-dependent Tasks There is no control
of the time interval between two bursts since this
depends on the available input power. If necessary, the
application needs to be split into separate bursts with no
temporal dependencies.

• Constraint (3) Data Consistency Data-logging appli-
cations need non-volatile memory (NVM) to guarantee
long-term data consistency. Many batteryless sensing
applications also require NVM for functionality. If one
application cycle spans multiple bursts, NVM is the only
way to guarantee program progress on a system that can
loose all power between bursts.

3.1.2 Transient System Configurations

As has been previously discussed, the different properties
of batteryless sensing systems require novel approaches to
operate efficiently in such disadvantageous scenarios. In
this work, we argue that an additional Energy Management
Unit (EMU), shown in Figure 3.1, is needed to maximize the
harvested energy, minimize the load’s power, and provide
the load with the energy guarantees necessary for program
progress. Due to the limited energy intake in transiently
powered systems, the unit should self-start requiring as little
time and energy as possible. During those periods of limited
energy intake, it maximizes the energy build-up by harvesting
at the source’s optimal power point. When powering the load
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with short energy bursts, it should provide a control interface
to the load such that the application circuit’s optimal power
point can be tracked.

Energy
Management Unit Load

Source
(Transducer)

harvests

@ MPP

provides

Eburst @ Vload

configures Eburst and Vload

control interface

Application Circuit

Non-Volatile Memory

Ba�eryless Sensor Node

FRAM Flash

Figure 3.1: Overview of EMU-based systems with a DEBS feedback loop. In
this chapter, we will focus on external non-volatile memories for long-term
logging applications.

While existing works [MMB+12, Yak11, AM15, LPRR10]
have looked at low-power systems with energy harvesting
and storage capabilities, these are expensive in terms of
harvesting and storage requirements for long-term, efficient
functionality under transient power conditions. State of the art
transient system design [BWM+15, JRR14], connects the energy
source directly to the load, without any other intermediaries.
However, these works only focus on non-atomic execution
of processing tasks and only work when specific harvesting
conditions generate a safe operating voltage on the solar panel.
The Energy Management Unit (EMU), presented in Chapter 2,
was first proposed to decouple the operating point of the source
from the load. Additionally, the EMU can apply Dynamic
Energy Burst Scaling (DEBS) to track the load’s optimal power
point. The EMU allows a system to operate predictably and
efficiently with limited energy buffering, even under very low
power harvesting conditions where the harvested power is
much lower than the load’s minimum power requirement. In
this work, we focus on specific design aspects of batteryless
vision sensors performing long-term logging. Vision-based
systems have the property of guaranteed information and
energy availability since darkness provides neither energy nor
information and light provides both.
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3.1.3 Contributions

Rich data sensors such as cameras bring their own challenges
to batteryless system design. Logging applications are
particularly costly, due to the large volume of data that rich
data sensors produce. We thus propose a novel Non-Volatile
Memory Hierarchy (NVMH), which increases the energy
efficiency of rich data sensor logging applications. We will
show how the addition of the NVMH introduces a trade-off
between the energy cost per stored byte and the minimum
energy buffer size. Our proposed EMU-based design uses
an optimally sized capacitor which minimizes the required
start-up time and energy from zero, while maintaining a low
cost, small form factor, high efficiency and virtually unlimited
charge cycles.

The main contributions of this work are summarized as
follows:

• A Non-Volatile Memory Hierarchy (NVMH) that reduces
the average energy costs of reliable sensing applications
with high-power peripherals (e.g. microSD cards).

• Accurate model to optimize system’s application-specific
parameters for low input power scenarios, including
energy and data buffer sizes as well as harvester’s
dimension.

• Experimental validation of the high energy efficiency and
proportionality of the proposed transfer scheme in long-
term image acquisition application.

• Experimental validation of the trade-off between energy
cost per image stored and required energy storage
capacity.

3.1.4 Roadmap

The remainder of this chapter is organized as follows. In
Section 3.2, we will give a detailed overview of the state of
the art in batteryless and state-retentive systems, as well as
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external non-volatile memory technologies. The model and
architecture of the EMU are presented and discussed in detail in
Section 3.3. The main application scenario, long-term logging
of images, as well as the architecture of our baseline vision
sensor is explained in Section 3.4. Our novel energy-efficient
Non-Volatile Memory Hierarchy (NVMH), composed of both
Flash and FRAM memories is presented in Section 3.5. The
optimized system design, which includes the NVMH for long-
term logging, is described in detail, along with its design trade-
offs, in Section 3.6. The experimental evaluation of our different
load configurations and analysis of the energy efficiency and
proportionality are shown in Section 3.7. Lastly, we summarize
our work in Section 3.8.

3.2 Related Work

Cyber-physical systems have traditionally been used in
conjunction with energy harvesting and energy storing. When
coupled with aggressive duty-cycling techniques, they are
able to significantly reduce their average power consumption,
possibly to the point of self-sustainability. Due to the
prohibitive costs of storing energy, there is a new trend
to design systems with minimized storage capacity. As a
consequence of this limited capacity and the variability of
energy harvesting, Non-Volatile Memory (NVM) is required to
ensure data consistency. For long-term logging applications,
this poses a challenge to store large amounts of data. While
there are many different memory technologies, each has its
own characteristics in terms of storage density, read/write
cycles, and power consumption. In this section, we will
summarize the state of the art of transient systems and non-
volatile memory technologies.

3.2.1 Reliable execution

The authors of [NPK+15] propose a decoupling-based system
which utilizes RF harvesting to accumulate charge in a
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supercapacitor and then powers a camera application with
a buck converter. The boost/buck converter topology with
an energy buffer also serves as the basis for the approach
presented in this work. While a charge-state model is used to
characterize the capacitor’s self-discharge rate, energy losses
such as impedance matching and converter inefficiencies are
neglected. More importantly, the system has a large startup
cost and can only supply the load with bursts of a constant size
and voltage. Due to the controllability of the RF source, this
startup cost is not incurred often. In fact, this constant energy
availability is one of the key differences to our work, which
focuses on adverse environments that can stop generating
energy at any point in time. Furthermore, energy might not be
available for prolonged periods of time, leading the system to
inevitably discharge down to zero Volts. In Section 3.7, it will
be shown that constant bursts can lead to a substantially higher
energy consumption, larger storage elements and longer start-
up times.

In the previous chapter, we presented the feedback-based
DEBS technique (Section 2.4). Assuming the system has
available non-volatile memory, applications can be split up into
multiple bursts. Though this might incur some state retention
overhead, the required energy storage can be significantly
reduced by up to the number of bursts. Additionally, when
tasks operate at different voltages, DEBS can introduce large
energy savings by dynamically adjusting the supply voltage.
However, when single tasks like storing or transmitting incur
a high initialization cost, it is not energy efficient to have many
activation cycles. In this chapter, we will introduce the NVMH
to reduce the average cost of accessing a microSD card.

3.2.2 State-Retentive Systems

To have efficient long-term data retention, a system necessarily
needs non-volatile elements. Fully non-volatile systems are
those where both logic and data memory are built exclusively
from non-volatile elements. While these architectures have
guaranteed data retention by definition, there are many differ-
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ent trade-offs related to the low-level technology. Compared
to standard CMOS technologies, non-volatile devices exhibit
reduced performance, high power consumption and larger die
area [MV16]. Furthermore, novel manufacturing processes
are expensive, not yet scalable and can suffer from reduced
reliability [TBCS13]. Nonetheless, the promise of efficient,
fine-grained duty-cycling with zero leakage has received a
lot of attention. Researchers have explored many different
technologies to design fully non-volatile processors, for a
survey we recommend [Xie16].

Recent designs based on FRAM include [BKC+13, WLL+12]
and feature very low energy per read or write. Spin-torque
transfer magnetoresistive RAM (STT-MRAM), which offers
higher access speeds, has also been used to design non-volatile
processors [STN+14, GIS10]. Magnetic-tunnel-junction (MJT)
memory is yet another technology used for fully non-volatile
architectures and has been successfully demonstrated using
90 nm CMOS/100 nm MJT processes [OMTH15]. All non-
volatile designs are highly resilient to frequent power outages,
even with tiny storage devices. Nonetheless, this resilience
comes at an increased energy cost per instruction and is limited
to processing tasks. Should larger energy storage be allowed,
longer activity cycles could be guaranteed and volatile logic
would become more energy efficient. For this reason, we
will use digital systems with volatile logic and complement
them with (additional) external non-volatile memories. In the
particular case of the MSP430FR5969, there are 64 KB of on-chip
FRAM which can be used for data storage, but it is too limited
to hold pictures for long-term data logging, thus requiring high
density external non-volatile memories.

3.2.3 External Non-Volatile Memories

In the design of sensing systems, one of the key considerations
is the choice of Non-Volatile Memory (NVM). Due to the
inherent power cycling of transient nodes, any data saved
in volatile memory will be lost. Consequently, the choice of
NVM technology is closely related to the application’s power



3.3. EMU-Based System Operation 59

envelope, reliability and storage requirements.
One of the most mature non-volatile technologies used in

cyber-physical systems today is Flash Memory. While it offers
one of the highest storage densities available, it suffers from
two main drawbacks: power consumption and reliability. SD
Cards alone, for example, can have a capacity in the order
of 100’s of GB and a power consumption in the range of 50-
100 mW. Each memory block also has a restrictive read/write
cycle limit of 104 - 105 [TBCS13].

For many years, researchers have been actively searching
for new NVM technologies that can (ideally) offer ultra-
low-power consumption, unlimited read/write cycles, ultra-
high densities, and compatibility to standard fabrication
processes. Unfortunately, no global optimum has been found
yet, and commercially available technologies offer different
trade-offs between these important parameters. We will
focus on one specific technology, Ferro-electric Random Access
Memory (FRAM), which is a promising candidate for unified
(instruction and data) memory due to its high endurance (1015

read/write cycles), and its low power consumption [Tex15].
The main limitation of FRAM for long-term logging of rich data
sensors is its capacity since the largest commercially available
capacity is in the order of 100’s of KB [Cyp15].

3.3 EMU-Based System Operation

In this section, we review the model and architecture of the
Energy Management Unit (EMU), which will be the basis of
our batteryless execution profile.

One of the main goals is to derive an analytical model which
can be applied to a wide variety of energy sources and loads.
The model will then be used to optimize important system
parameters, namely the EMU’s start-up costs and the load’s
energy. The accuracy of the model will be experimentally
validated in Section 3.7.
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3.3.1 Modeling Energy Buffering and Losses

The amount of energy buffered in the EMU depends on several
parameters including the input power and load powers, and
the system’s non-idealities. The equation governing the time-
dependent energy level in a capacitor is as follows:

E′cap(t) =
d
dt

Ecap(t) = ηboost (Vin(t), Iin(t)) × Pin(t) − Pleak(t)

− Pload(S j)/ηbuck(Vload(t), Iload(t))
(3.1)

In this equation, the positive term represents the energy intake,
while the negative ones represent the energy consumption.

Input Power. The system has only one power input, Pin(t),
supplied by the harvester’s transducer. This work focuses
on the scenario where Pin < Pload. In order to maximize the
transducer’s efficiency, the maximum power point must be
tracked to account for variable harvesting conditions.

Load Power. In our model, the load can have two states
(S j): active or inactive. When active, the load is characterized
by three quantities: Eburst,i,Vload,i,Pload,i; where Eburst,i defines
the energy burst size required for one execution of task i, Vload,i
its supply voltage and Pload,i the power consumption during
the execution of task i. These parameters will be characterized
experimentally. In the inactive state, the load is in deep sleep,
consumes very little power, and awaits the trigger from the
energy management unit.

Converter Efficiencies. Since decoupled systems can have
the source and load operating at different power points, voltage
converters are used. This step, while necessary, introduces
non-negligible losses, which are represented by boost and
buck converter efficiencies ηboost(V, I) and ηbuck(V, I). The boost
converter’s efficiency is particularly sensitive to the operating
voltage and current, meaning it must be parameterized. For
these efficiencies, a look-up table is used for simulations. The
overall system efficiency of the EMU will be bounded by the
product of the boost and buck converter efficiencies. While this
depends on both the input and output voltage/current, broadly
speaking for our application domain, it goes up to ∼75%, see
our experimental results in Section 3.7.
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Figure 3.2: When the application consists of bursts at different supply voltages,
the bands of energy usable by the load change according to the task.

Other Energy Losses Unfortunately, converter inefficien-
cies are not the only sources of energy losses. The maximum
power point tracking unit and the control circuit also consume
energy. The consumption of the control circuit Ictrl and buck
converter Ibuck consists of a constant current and a resistive
component and hence depends on Vcap. For the energy buffer,
a capacitor of size Ccap, a resistive leakage Rcap in parallel is
assumed. Considering these components, the system leakage
is summarized as:

Pleak(t) =Vcap(t) ×
(

Ictrl

(
Vcap(t)

)
+ Ibuck

(
Vcap(t)

) )
+ Vcap(t)2/Rcap.

(3.2)

Equations 3.1 and 3.2 can accurately describe the time
evolution of the system’s energy levels, as will be shown in
Section 3.7.4. They will be used in the remainder of this section
to estimate how different parameters impact the system’s
losses, to then calculate the optimal parameters that minimize
these losses.

3.3.2 Optimizing Cold-Start Energy and Start-up Time

Given the system model presented above, we can start
optimizing the cold-start energy and start-up time. By
definition, this is the fixed start-up cost to turn a transient
system on. Figure 3.2 shows that after a period of energy
unavailability, the capacitance first needs to be recharged to
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the level of Vload,min = mini{Vload,i}. In order to minimize these
fixed costs for a given input power, we need to minimize the
start-up time. Assuming Vcap(t = 0) = 0, this start-up time is
defined as:

tstart-up =

t | Vcap(t) =

√√
2
∫ t

0 E′cap(τ) dτ

Ccap
= Vload,min

 (3.3)

However, the minimum capacitance is limited by the
EMU’s maximum supported voltage swing, as shown in the
following equation:

Cmin,i =
2Eload,i

ηbuck(V2
max − V2

load,i)
, (3.4)

where Eload,i and Vload,i are the energy and voltage required
to execute task i, and Vmax is the EMU’s maximum supported
voltage. These values must be known at design time, such
that the optimal capacitor value can be selected as the highest
Cmin,i among all tasks i, i.e. Coptimal = maxi{Cmin,i}. For the
implementation we selected the next higher available capacitor
size Cbu f f er to guarantee task completion. It should be noted
that whenever the load has multiple operating voltages, a small
phase difference will be introduced between the tasks. This is
due to the fact that the bands of usable energy are different
between tasks. This gap depends on the supply voltages,
Vload,min and Vload,max = maxi{Vload,i}. This time is defined as:

tphase =

t | Vcap(t) =

√√√
2
∫ t

tstart−up
E′cap(τ) dτ

Ccap
= Vload,max

 (3.5)

3.3.3 Minimizing Load Energy

To show the advantages of our EMU’s boost-buck architecture
compared to the boost-only architecture, let us consider the
case of supplying a constant current load, consuming Iload. The
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harvesting power of a transiently powered system which is
typically much smaller than the load’s power consumption,
therefore has a negligible impact on the linear voltage decrease
during the time in which the load is supplied with an
energy burst. Assuming the load has a maximum supply
voltage tolerance from Vmax down to Vmin, this results in the
following power consumption: for the boost-only architecture
the average power of a task is PA = (Vmin + Vmax)/2 × Iload,
while the buck converter provides a constant power of PB =
(Vmin × Iload)/ηbuck to the load. By comparing these two power
consumptions, it directly follows that a buck converter reduces
the load’s power consumption if the following lower bound for
its conversion efficiency holds:

ηbuck >
2Vmin

Vmin + Vmax
(3.6)

To illustrate with a numerical example, suppose a load has a
voltage tolerance of 3 to 5 V. This means that a system using a
buck converter has a lower power consumption if ηbuck > 75%.
Furthermore, the use of a buck converter adds the possibility
of tracking the load’s optimal power point for all tasks by
dynamically switching the voltage level. When an application
consists of multiple tasks with different voltage requirements,
we can use Dynamic Energy Burst Scaling (DEBS) to minimize
the load’s energy.

3.3.4 EMU Architecture

The Energy Management Unit (EMU) controls the buildup of
energy from the source, and controls the energy transfer to
the load, or application circuit. A brief summary of the main
components will now be discussed.

Harvesting and Buffering

The harvesting part of the system is based on the commercial
BQ25505 energy harvesting chip. This chip uses a boost
converter to accumulate charge on buffer capacitor. In doing
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so, both the transducer’s voltage and current are independent
from the capacitor’s voltage and discharge current. The BQ
has integrated maximum power point tracking (MPPT) which
adjusts the input impedance such that the power source always
operates at its optimal power point to maximize the harvested
energy. This is done in a duty-cycled fashion, by sampling
the open circuit for 256 ms voltage every 16 s. Although this
means it won’t be able to harvest energy 1.6% of the time, it
will be able to track dynamic environments.

Since application circuits need a regulated voltage to
operate efficiently, we selected the TPS62740 buck converter
for its high efficiency in a wide current range. The input of
the buck converter is directly connected to the energy buffer
to provide a single, regulated voltage domain. Though it is
possible to use multiple converters to create separate voltage
domains [DXS+18], we argue that only one is necessary to
execute batteryless applications in a cost-efficient manner.

The energy buffer between the input voltage boosting and
output voltage regulation guarantees complete separation of
the harvesting and load supply unit and therefore allows
independent optimization of these parts. As was shown in
Chapter 2, minimizing the storage element is an application-
specific process. In this chapter, we will show that two different
implementations of the same application can exhibit a trade-off
between storage size, and the amount of work completed with
the same energy budget.

Control Circuit

The control circuit manages the burst size as well as the output
voltage and oversees the energy accumulation in the buffer.
For the first, the battery OK signal of the bq25505 is used to
trigger the activation of the load, once the capacitor voltage
reached a threshold level Vth. At this voltage, the energy level
is reached at which enough energy has been accumulated to
provide the requested energy burst to the load. The variable
burst size dependent threshold voltage Vth is configured using
a resistor network. This comparator threshold can be switched
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digitally from the control circuit by selecting between different
resistor networks. Besides very large resistor values, the
bq25505 control circuit uses duty cycling to reduce the energy
consumption of the comparator and resistor network. The
load supply voltage Vload can be controlled directly using the
TPS62740 buck converter’s digital input.

Requirements for EMU Operation

Thanks to its inherent decoupling of source and load power
points, the minimum requirements for EMU operation are
conceptually independent from the load and are only tied
to the EMU’s circuit implementation. In our case, the first
requirement is a minimum input voltage of 330 mV, which
is required to turn on a diode in the BQ harvester. If this
requirement is met, charge is transferred from the solar panel to
a small capacitance. After a certain voltage on this capacitance
is reached, the main boost converter is turned on. This
transition requires a minimum input current of ∼60µA. This
means that so long as the input power is greater than ∼20µW,
the EMU is guaranteed to exit the cold-start phase and enter
the energy build-up phase. During this phase, the charge on
the capacitor will increase as long as Pin > Pleak,max, where

Pleak,max =
{
Pleak(t′) | Vcap(t′) = Vmax

}
. (3.7)

After some time, which depends on the input power, enough
charge will be accumulated in the capacitor to guarantee a task
completion. This makes only the frequency of task activations
dependent on the harvesting conditions, but not the task
itself. Once triggered, the actual task execution is guaranteed
regardless of the harvesting conditions.

3.4 Long-Term Logging of Rich Data Sensors

Up to now, we have discussed how energy can be efficiently
buffered, even in low power harvesting scenarios. How this
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Figure 3.3: Architecture of the proposed batteryless vision sensor. Using a
solar cell and an EMU, the MSP430FR959-based vision sensor can capture and
store images in different non-volatile memories.

energy is consumed, however, is a function of the application
circuit itself. To highlight the flexibility and efficiency of our
approach, we will focus on nodes which do long-term logging
of rich data sensors. More specifically, we focus on batteryless
vision sensors, which acquire and store images in Non-Volatile
Memory (NVM).

3.4.1 Sensing System Architecture

The architecture of our proposed system can be seen in
Figure 3.3. The transiently powered vision sensor is composed
of an MSP430FR5969 microcontroller and a Centeye Stonyman
image sensor, both of which feature low-power consumption
and ultra-low-power deep sleep modes. The IO state lock
mechanism and the microcontroller’s non-volatile features are
important to keep the interface state of the energy manager
during deep sleep and maintain the task configuration across
periods of energy unavailability. In order to store long-term
data, external memories with high capacities are needed. One
of the most commonly used technologies for this purpose is an
SD Card, which is based on Flash. As will be highlighted in
Section 3.5, SD Cards generally suffer from very high power
and energy consumption but offer the highest densities.
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3.4.2 Energy Burst Configuration

In order to configure the EMU for correct operation, it is
important to characterize the application’s voltage and energy
needs. For our rich data sensor logger, the baseline application
consists of three tasks: 1) image acquisition to read the sensor,
2) basic image processing, and 3) image storage to copy data
from volatile to non-volatile memory. Table 3.1 shows the
energy burst configuration (Vload,Eburst) for each task. As was
previously mentioned in Section 3.3.2, the EMU’s capacitor has
to be dimensioned according to the largest task: transferring
an image to the SD Card. The energy cost for this transfer has
two components, a constant initialization cost and a transfer
cost which depends on the amount of data transferred. For the
baseline application using DEBS, which acquires, processes
and transfers a single image, the costliest task is the image
transfer which requires 11.67 mJ. The minimum available
capacitance that can store this energy between 5.1 V and 2.7 V
is 1 470µF. If DEBS is not used then all tasks would need to
execute in a single burst at a constant voltage, requiring a
minimum capacitance of 2 200µF.

Task Voltage (Vload) Energy (Eburst)
Acquire One Image 3.0 V 156µJ
Process One Image 2.0 V 527µJ

SD Card Initialization 2.7 V 10 536µJ
SD Card Data Transfer (per Image) 2.7 V 1 137 µJ

Table 3.1: Baseline voltage requirements and energy costs for individual task
execution.

3.4.3 Software Execution Flow

The execution flow of an EMU-based sensing system is shown
in Figure 3.4. Once the system has exited cold-start, after 2 V,
the Power-On-Reset (POR) flag is checked. Since the reset
was not triggered from the EMU pin, the microcontroller
performs some basic initialization and immediately enters
deep sleep. With a measured power consumption of < 600 nW,
deep sleep minimizes losses during the buildup of energy
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Figure 3.4: Sample execution with an arbitrary Vcap trace. Once Vcap = Vmax,
the application circuit can be triggered for one activation cycle, incurring some
overheads for booting up, initializing and shutting down.

for the next burst. The system will stay in this state until
the EMU has accumulated enough energy to reliably execute
a task. When this happens, the system then reads the next
task configuration and starts its execution after initializing the
peripherals needed for that task. There are some unavoidable
energy overheads involved in the peripheral initialization since
this might include a power switch enabling the peripheral
power domain. At the end of the task, the configuration is
updated, unnecessary power domains are disabled and the
next required burst is configured. The load then enters deep
sleep again and waits for the next energy burst to build up.
For all of our evaluated applications, all of the tasks will
be repeatedly executed in a static schedule. For example,
the baseline application will repeatedly execute the following
tasks: 1) acquire one image, 2) process one image, 3) store one
image on the SD Card.

3.4.4 Feedback Control for Dynamic Energy Burst Scaling
(DEBS)

As was discussed in Section 3.3.3, there are many application
scenarios where the load has a varying optimal power point.
This occurs when tasks use peripherals with substantially
different voltage requirements. For this scenario, the EMU
provides a control interface to dynamically adjust the burst size
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and voltage. Our DEBS technique is based on a feedback loop
(Figure 3.1) that allows the load to configure the EMU to supply
the energy burst at the optimal operating point. Following
our baseline image acquisition example, when using DEBS the
EMU generates three bursts, one for each task. During the first
burst, 156µJ at 3 V were requested. Once enough charge has
been built up, the EMU’s control circuit configures the buck
converter’s digital input to set the output to 3 V and triggers
the load to acquire the image. Afterward, the load uses the
EMU’s interface again and requests the second burst (image
processing) by setting the energy and voltage to 527 µJ and
2 V, respectively. Lastly, at the end of the second burst, the load
requests the third burst for storing an image with energy and
voltage set to 11.67 mJ and 2.7 V, respectively. So long as the
EMU’s buffer has energy, the buck converter will maintain this
output voltage until the next burst is generated, the next task
executed, and the load requests the next energy burst size and
voltage.

Without DEBS, the EMU would only be able to generate
bursts at a constant voltage of 3 V. This results in an approach
similar to the one proposed in [NPK+15], where one large burst
would be used to acquire, process, and store one image. This
approach leads to significantly larger burst sizes due to the
grouping of tasks with a non-optimal operating point. These
two approaches, single burst and DEBS based bursts, will be
evaluated experimentally in Section 3.7.

3.5 Non-Volatile Memory Hierarchy

In order to make long-term logging of rich data sensors viable,
the energy cost per unit of data stored needs to be as small
as possible. To this end, we propose the use of a novel Non-
Volatile Memory Hierarchy (NVMH) that combines the best
characteristics of different technologies. The use of a NVMH is
independent from Dynamic Energy Burst Scaling (DEBS). The
former is an application-side optimization to reduce the cost of
storing data to non-volatile memory, while the latter is EMU-
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based feedback technique to split a single transient application
into task-based burst executions. Over the following sections,
we will discuss how to combine both techniques to optimize the
system design of a transient image sensor for long-term logging
applications. The insights presented here were obtained in
collaboration with Lukas Sigrist and Thomas Schalch.

3.5.1 Non-Volatile Memories (NVM)

As was discussed in Section 3.2.3, Flash is the most
mature NVM technology available and boast very large
storage capacities, but suffers from high energy consumption.
Contrarily, Ferro-electric Random Access Memory (FRAM)
offers ultra-low-power/energy consumption, but is limited to
very low storage capacities.

Flash

While Flash memories can have a very large capacity (up to
100’s of GB), they have a high power consumption during
the initialization and write phases. The time-consuming
initialization procedure results in a very high constant energy
overhead as it is needed before the actual memory can
be accessed. In burst-powered transient systems, this
initialization has to be paid for every energy burst that requires
SD Card access and can lead to prohibitively large overheads.
Furthermore, Flash memories alone have low durability
(around 100 000 read/write cycles) and typically use a controller
to spread the wear of individual memory cells evenly, also
called wear-leveling [HXZ+13]. Unfortunately, wear-leveling
leads to additional delays and energy consumption and
introduces additional variability in the total overhead.

FRAM

In recent years, FRAM has emerged as a viable alternative with
very low-power consumption. FRAM provides ultra-low-
power read and write actions at high read and write speeds. In
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addition to high energy efficiency, FRAM also provides very
high durability. Unfortunately, due to the incompatibility with
standard manufacturing processes, FRAM components have
relatively low storage capacities (∼ 100’s KB).

In the following section, we show how these two
memory technologies can be combined in long-term logging
applications to exploit the advantages of each technology:
Flash’s high density and FRAM’s energy efficiency.

3.5.2 Non-Volatile Memory Hierarchy (NVMH)

Novel NVM technologies have not reached densities that allow
them to replace Flash in data-intensive applications. However,
since they consume significantly lower energy than traditional
Flash, they open the door to reducing the energy requirements
of long-term logging.

We propose to use energy efficient FRAM to increase the
efficiency of transiently powered logging applications that
rely on an SD Card as a large storage device for long-term
logging. More specifically, we introduce a small FRAM data
cache before the SD Card to distribute its high initialization cost
among several image transfers. As shown in Figure 3.3, this
can be added to the sensor node as an additional component
on the SPI bus. Thanks to the ultra-low energy read and
write operations in FRAM, multiple images can be cheaply
buffered before transferring them in one single batch to the
SD Card. Compared to writing the images one by one on
the SD Card, as described in Section 3.4, the high SD Card
initialization cost is required only once for writing all images
buffered in the FRAM to the SD Card. This reduces the SD Card
initialization cost by a factor determined by the FRAM buffer
size. Because of the high energy overhead for initialization, this
non-volatile memory hierarchy allows significant reductions in
the energy needed to acquire, process and store one image. The
experimental results described in Section 3.7 will show that on
average 294.8% more images can be stored in Flash when the
baseline application discussed in Section 3.4.2 uses a 10 image
FRAM buffer, compared to the same application without it.
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It is important to note that the non-volatility property of the
FRAM is a key requirement in this memory hierarchy, because
this buffer is only supplied with energy when an acquired
image is buffered or the full buffer is flushed to the SD Card.
In between bursts with memory access, it is powered off to
reduce leakage losses. Deploying any volatile component
in the memory hierarchy, like SRAM, is not be suitable for
a transiently powered system because the content would be
lost at the point where the memory is turned off, or when the
system enters cold start due to low input power.

The proposed memory hierarchy combines the advantages
of low energy consumption available in novel NVM technolo-
gies with the high density of traditional Flash. This allows
building long-term rich data sensor logging applications with
large storage requirements and high energy efficiency.

3.5.3 Energy Cost vs Minimum Capacitor Size Trade-Off

The key design parameter of the proposed memory hierarchy is
the size of its intermediate FRAM buffer. The larger the buffer,
the more images can be buffered before flushing them to the SD
Card. By distributing the initialization cost of the SD Card, the
average energy requirement per image decreases. The energy
overhead for reading and writing the image to the FRAM buffer
is negligible compared to the SD Card: even with a buffer
of only 2 images, the energy saved for one initialization is
larger than the additional energy cost for the FRAM. However,
because of the larger transfer size from FRAM to the SD Card
during the flush operation, the amount of energy that needs
to be guaranteed by the EMU also increases. This results in a
trade-off between the required energy buffer size and energy
cost of the storing data in NVM. In this work, which focuses
on long-term logging of rich data sensors, our primary concern
is minimizing the energy cost of non-volatile data. How one
can select the optimal parameter values at design time will be
discussed in Section 3.6.1.
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3.6 Optimized System Design

In this section we demonstrate how the Energy Management
Unit (EMU) model with Dynamic Energy Voltage Scaling
(DEBS) presented in Section 3.3.1 is used during the design
of a transient system for determining individual system
parameters. For that, we use the following two use-cases: 1)
selecting the FRAM size in the Non-Volatile Memory Hierarchy
(NVMH), and 2) dimensioning the solar panel for a desired
application performance.

3.6.1 FRAM Buffer Size and Cost/Capacitance Trade-Off

As was previously mentioned, the main focus of this work
is to minimize the total energy cost Eimg required to acquire,
process and store image data in non-volatile memory for long-
term logging applications. It has already been shown that for
generic applications, using DEBS reduces the load’s energy
requirements through task-level optimizations. Now we will
focus on optimizing the non-volatile storage component of
Eimg through the use of both DEBS and NVMH. To design the
NVMH, we will first select the FRAM buffer size, since this has
a direct impact on the energy cost reduction. As a second step,
we will select the value for the capacitance such that all other
costs like form factor and start-up time/energy are minimized.

As long as Flash memory remains the cheapest and densest
technology available for embedded systems, it will always
be required in long-term image logging applications. In the
transient application scenario, which involves duty-cycling the
SD Card, it is inevitable to pay the SD card’s initialization cost
before transferring any data. Since this initialization cost is
constant, the main purpose of the NVMH is to divide this
cost, on average, over as many images as possible. Because of
this, the first relevant parameter is how large the FRAM buffer
can be. Currently, the main limitation is technology scaling,
which has so far prevented FRAM to have capacities greater
than 100’s KB. At the time of writing, the largest commercially
available FRAM can only buffer 10 images from our vision
sensor.
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Once the FRAM buffer size has been determined, the only
remaining question is how small the buffer capacitance can
be such that the energy savings are as high as possible for a
given FRAM buffer size. To minimize the capacitance, it is
important to understand how much energy is needed to flush
the entire FRAM buffer to Flash. To simplify the discussion,
we assume that once the FRAM buffer is full, the application
schedule ensures the buffer is fully flushed before acquiring
new pictures. Depending on the capacitor size, which limits
the maximum burst size, flushing the entire buffer might take
one or more bursts. The data-dependent energy cost to transfer
a block of one or more images from the FRAM to the SD card
is given by

Etrans(Nimg) = Nimg × (EFRAM,img + EFlash,img), (3.8)

where Nimg is the total number of images that can be buffered
in FRAM before being flushed to the SD card and Ex,img is
the data-dependent cost of storing one image in memory X.
As mentioned earlier, if the EMU buffer capacitor is not big
enough to guarantee that the FRAM can be flushed in one
single burst, then several bursts will be needed for the complete
data transfer. The number of bursts Nburst required to complete
the FRAM flush can be calculated as

Nburst(Nimg,Ebu f f ) =

⌈
Etrans(Nimg)

Ebu f f − Emem,init

⌉
, (3.9)

where Emem,init is the initialization cost of both FRAM and Flash
memories, and Ebu f f = 1

2 Cbu f f (V2
max −V2

min) is the energy stored
in the EMU buffer capacitor Cbu f f between the flush task’s
lowest operating voltage of Vmin=2.7 V and the EMU’s highest
buffer voltage of Vmax=5.1 V. UsingEq. (3.8) and Eq. (3.9), it is
possible to calculate the total energy E f lush required to flush the
FRAM buffer of Nimg images as

E f lush(Nimg,Ebu f f ) =Nburst(Nimg,Ebu f f )
× Emem,init + Etrans(Nimg)

(3.10)
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Figure 3.5: DEBS+NVMH simulation results show how a given FRAM buffer
size can have very different energy cost per image stored if the capacitor size
is not chosen appropriately.

Figure 3.5 plots the normalized energy per image stored
transfer cost Ē f lush = E f lush/Nimg. Each line in the plot represents
a specific EMU configuration with a different Cbu f f . As
discussed earlier, this has a direct influence on the number
of bursts required to flush the FRAM buffer. For a given
capacitance value, the image cost decreases monotonically up
until the point where the data flush needs to be split into more
than one burst. This step increase in E f lush,img is introduced by
the need of an additional Flash initialization for the subsequent
bursts and decreases as the transfer size becomes multiple of
the specific buffer size. From Eq. (3.10) it follows that all Etrans
minima of a given Cbu f f are equal, since the NVMH mechanism
amortizes the SD Card initialization cost by the same ratio.
The optimized Cbu f f is the minimum capacitance that has not
reached its first minimum for a given FRAM buffer size, since
any larger capacitance will not introduce higher savings but
would require larger start-up costs.
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Optimized Burst Configuration

As mentioned earlier in Section 3.4.2 for the baseline DEBS
application, it is important to characterize the application’s
voltage and energy needs in order to guarantee correct op-
eration of the EMU. With the introduction of the Non-Volatile
Memory Hierarchy (NVMH), the application scheduling needs
to be modified to 1) image acquisition to read the sensor,
2) basic image processing, 3) buffer processed image in the
FRAM, and 4) when the buffer is full, flush the entire buffer
to the SD Card. With respect to the energy costs presented
in Table 3.1, there is only the additional task of buffering one
image in FRAM. This task was characterized to require 32µJ at
2.0 V. Since the energy cost of transferring data to the SD card
has a data proportional term, the new cost of writing to Flash
is much larger than without NVMH. This is because a new
transfer of 10 images is needed to flush the entire FRAM buffer,
instead of transferring a single picture to Flash. Compared
to the DEBS Only configuration, the minimum capacitance
increases from 1 470µF to 3 300µF, while the energy cost per
stored image was lowered from 11.11 mJ to 2.73 mJ when using
DEBS+NVMH. This is the fundamental trade-off presented by
NVMH: significantly reduced energy costs of stored images at
the expense of a larger capacitance.

Design Space

So far, three critical parameters for a transient vision sensor
with NVMH have been discussed: FRAM buffer size, EMU
buffer capacitance, and energy cost per image stored. Figure 3.5
shows that when using DEBS+NVMH, the minimum energy
cost and start-up time/energy is achieved when the FRAM
buffer is maximized and the capacitance minimized for that
buffer size. Figure 3.6 shows the energy cost per image stored
vs the minimum capacitor size of all four configurations in a
Pareto plot. It should be noticed that whenever DEBS is applied
to a baseline configuration, the result is a reduced capacitor and
a reduced energy cost per image stored. In fact, the Pareto front
consists of all configurations that employ DEBS. By contrast,
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Figure 3.6: Pareto plot of the trade-off between minimal buffer size and energy
used to acquire, process and store an image. Regions dominated by the shown
design points are grayed out. The design goal is to minimize both the energy
per image stored and the capacitor size.

whenever NVMH is added to a baseline application, the energy
cost per image stored always decreases, but at the expense
of a larger buffer capacitor. This corresponds to the expected
behavior from previously presented models and highlights the
fact that there is a trade-off between energy per image stored
and buffer capacitance.

3.6.2 Minimum Harvester Size

In order to calculate the necessary size of the solar panel
for an application, it is important to determine the desired
performance. Depending on the lighting conditions the sensor
node will be exposed to, the size of the solar panel might need
to be bigger or smaller. Simulation can be used to optimize the
solar panel area.

Four different PowerFilm flexible solar panels with sizes
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ranging from 12.7 mm×64 mm to 37 mm×114 mm, with cor-
responding areas from 8 cm2 to 42 cm2, were considered as
harvesting sources. We first evaluated the output power of the
individual solar panels for illuminance levels in the range from
100 lx up to 2000 lx. To do so, the solar panels were connected
to the bq25505 harvester with maximum power point tracking
(MPPT). The buffer capacitor of the harvesting circuit was
replaced by a source meter (Keithley SMU 2450), which was
configured to keep the buffer voltage constant at the expected
average capacitor voltage of 4 V. For measuring the actual
power extracted from the solar panel a small shunt resistor
of 10 Ω was inserted between the solar panel and the bq25505
to measure the current. The power was then calculated using
the measured current and the solar panel voltage.

The input power derived from these measurements was
then used to simulate the application’s behavior under the
given constant illuminance using the model presented in
Section 3.3.1. For this use-case, the application configuration
that includes both Dynamic Energy Burst Scaling (DEBS) and
the Non-Volatile Memory Hierarchy (NVMH) with a FRAM
buffer size of 10 images was used in the model. The application
was simulated for a time window of one hour and the output
is then analyzed to determine the average number of images
that can be acquired, processed and stored per minute.

In Figure 3.7, the results of these simulations are shown
for solar panels with different areas Apanel depending on the
illuminance level. It can be seen that for a typical indoor
illuminance (<1000 lux) a solar panel with an area of 42 cm2

can acquire, process and store up to 11 images per minute.
The linear relationship between application performance and
the solar panel area is also clearly visible. Considering an
example where the expected room illuminance is 750 lux
and the application should acquire 6 images per minute (one
every 10 seconds on average), the results show that the solar
panel with Apanel = 42 cm2 should be used to get the desired
performance. This is also the solar panel that will be used for
experimental evaluation in Section 3.7.
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Figure 3.7: The application’s performance is shown as the average number
of stored images per minute vs the illuminance level for different solar panel
areas Apanel.

3.7 Experimental Evaluation

This section evaluates the costs, performance and efficiency
of an EMU-based transient vision sensor in four different
configurations. These configurations represent all the possible
combinations of our two main contributions: Dynamic Energy
Burst Scaling (DEBS) and Non-Volatile Memory Hierarchy
(NVMH). We will compare the performance vs efficiency
trade-offs that these different combinations introduce. For the
purposes of our sample life-logging application, our main goal
is to minimize the energy costs/requirements since it will allow
the transient camera to acquire, process and store the greatest
number of pictures during a day.

3.7.1 Experimental Setup

The performance of our wearable prototype will be tested with
four different configurations. Experiments will be done in
both controlled (constant) and real-world (variable) harvesting
conditions. All evaluation results shown in this section
were done with the same MP3-37 flexible solar panel from
PowerFilm, which has an area of 42 cm2. For the analysis of the
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system and application performance, all the relevant voltages
and currents in the source, EMU and load were measured. To
compare the experimental and simulation results, the input
power traces were also recorded and used as input to our
Matlab model.

In order to identify the effect of both DEBS and NVMH,
different configurations will be individually tested for pro-
longed periods of time. The performance of each configuration,
under different harvesting conditions, is measured, compared
and contrasted. Their main characteristics are summarized in
Table 3.2.

Single Burst This configuration is the baseline for all compar-
isons. It buffers the energy for one entire application
execution and does it in a single burst with constant
voltage. This means that within a single burst, one
picture is taken, processed and stored in Flash directly.

DEBS Only This configuration, described in Section 3.4.2,
uses Dynamic Energy Burst Scaling for each task. This
means that the first burst does acquisition, the second
does processing, and the third saves to Flash. Each of
these bursts is configured to its optimal voltage.

NVMH Only This configuration introduces the Non-Volatile
Memory Hierarchy (NVMH) with a FRAM buffer size
set to ten, as was described in Section 3.6.1. This means
that, conceptually, each burst executes an application
cycle. The first 9 bursts write only to the FRAM buffer:
each burst doing acquisition+processing+buffering. The
10th burst performs an additional SD card flush, which
transfers the ten buffered images from FRAM to Flash.

DEBS + NVMH This configuration combines the previous
two, but with one task executed per burst. This
means that it takes 30 bursts (acquisition, processing
and buffering 10 times each) to fill up the FRAM buffer.
One additional burst transfers the buffered data to Flash.
Again, each burst is executed at its optimal voltage.
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Configuration Name Burst Size Execution Profile DEBS NVMH
Single Burst

∑
i Etask,i Entire Application X X

DEBS Only maxi{Etask,i} Single Tasks X X
NVMH Only

∑
i{Etask,i} Entire Application X X

DEBS + NVMH maxi{Etask,i} Single Tasks X X

Table 3.2: Description of the evaluated transient configurations.

Performance Metrics

In order to compare the performance of different transient
configurations, the following metrics are calculated for all
experiments:

• Ein =
∫ Texp

0 Pin(t) dt, for the total input energy,

• Eapp, j =
∑Ntasks

i=1

∫
tactive,i, j

Pload(t) dt, for active energy con-
sumed by the j-th application execution,

• Eload =
∑

j Eapp, j, the total energy consumed by the load
for all application executions,

• ηsys = Eload/Ein, the total system efficiency,

• Eimage = Eload/Nimage, the average energy cost for
acquiring, processing and storing one image in NVM,
and

• Θapp = Nimage/Texp, the average number of images
acquired, processed and stored per time.

In the formulas above, tactive,i, j denotes the execution time of
task i in j-th application execution, Ntasks the number of tasks
in the application, and Nimage the number of images acquired,
processed and stored in Flash memory during the experiment
of duration Texp.

3.7.2 Start-Up Time and Cold-Start Trade-Offs

As was discussed in Section 3.3.2, each configuration requires a
different minimized capacitor that guarantees the completion
of its largest atomic task. This minimized capacitor in turn
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Figure 3.8: The cold-start time vs the input power for the EMU with different
storage capacitor sizes.

minimizes the required energy and start-up time for each
configuration’s cold-start. To characterize these costs that
occur after an input power loss and depletion of the buffer
capacitor, the buffer capacitor was completely discharged, and
the flexible solar panel was exposed to constant illuminance
level until the cold-start phase ended. The time measured
to go through this cold-start phase as a function of the input
power is shown in Figure 3.8 for all four configurations. As
expected, the start-up time for all configurations decreases with
higher input power. More specifically, a maximum start-up
time of 1055 s for the NVMH configuration (Cbu f f = 4 300µF)
was reached at the minimum measured input power of 110µW.
For an input power higher than 1 000µW, all start-up times
decrease to values below 44 s.

The start-up time overhead analysis shows the need for
a minimized buffer capacitor, since this also minimizes the
time/energy overhead of a given configuration. So long as
the harvesting scenario provides enough energy, the transient
node can exit cold-start and begin executing its application.
In our specific life-logging scenario, we assume that typical
human activities satisfy the requirements for EMU operation
and last long enough for the transient vision node to start
storing images.



3.7. Experimental Evaluation 83

3.7.3 Constant Input Power

In this part of the evaluation, the solar panel was exposed to a
constant illumination level, resulting in an energy management
unit with constantly supplied power. The experiments lasted
for 10 min. For low input power levels of 200µW and lower
this time was extended to 15 min to observe a sufficient number
of application triggers. For each application configuration,
Single Burst, DEBS only, NVMH Only and DEBS + NVMH, the
experiment was repeated for constant power levels ranging
from 145µW up to 1875µW. Measuring the currents and
voltages at the EMU’s input, output and buffer capacitor, as
well as the load supply, the system’s state and energy flow
can be tracked to later calculate the performance metrics of
the experiment. With these measurements, the previously
introduced metrics system efficiency ηsys and the number of
images stored per time Θapp were calculated. The results of
these metrics are analyzed depending on the different input
power levels and discussed in detail in the following sections.

System Efficiency

The analysis of the system efficiency ηsys is shown in Figure 3.9
for the four configurations mentioned earlier. The results
show a consistent behavior: despite small variations between
individual configurations, they all show a system efficiency ηsys
that reaches at least 70% when the input power is greater than
1 000µW. At the higher end of the evaluated input power the
efficiencies asymptotically approach the maximum efficiency
dictated by the product of the boost and buck converter
efficiencies. During the experiments, the highest observed
efficiency reached a value of 78.6% at 1 875µW, the highest
input power for which the system was evaluated. Also
common for all configurations is the fact that the efficiency
drops sharply for input power levels close to the minimum
required input power of 140µW. During experiments below
that minimum input power level, no task executions were
observed, resulting in a system efficiency ηsys of 0%.
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Figure 3.9: Evaluation of the EMU’s system efficiency at different input power
levels.

Number of Stored Images

While the results for the system efficiency are very consistent, a
large difference can be observed in the application performance
that is characterized by the average number of stored images
per time Θapp. The results for this metric as a function of
the input power level are shown in Figure 3.10. The most
noticeable difference is the increase in the number of images
stored per minute when deploying DEBS + NVMH instead of
NVMH Only or DEBS only instead of Single Burst: in either
case, the inclusion of DEBS significantly increases the number
of images stored per minute. In the case of DEBS Only, the
increase was 30.1% at an input power of 1 750µW, compared
to Single Burst. Using the NVMH Only configuration offers a
significant performance boost of 294.8% on average compared
to Single Burst. It is the DEBS+NVMH combination, however,
that clearly offers the highest number of stored images per time,
thanks both of the proposed enhancements. The properties that
all configurations have in common are the minimum input
power of 140µW and, once that power level is reached, the
energy proportional increase of the number of stored images.
Comparing the slopes of Θapp for the individual configurations,
it is visible that deploying DEBS instead of using the very basic
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Figure 3.10: Evaluation of the average number of images stored on the SD
Card per time at different input power levels.

Single Burst configuration already results in an improvement
of 26% on average. Making use of DEBS+NVMH has the
highest impact and increases the application performance by
268% or 365% when compared to the DEBS only or Single Burst
configuration, respectively.

These experiments show the performance gain of deploying
not only a dynamic energy burst scheme, but also an efficient
memory hierarchy design for transiently powered logging
applications.

3.7.4 Variable Input Power

The experiments discussed in this subsection were performed
in an indoor real-world scenario, again for all three config-
urations. Each configuration was evaluated with a 15 min
experiment that included walking around with the setup in
the office hallway illuminated by artificial light, walking in a
dimly lit basement and sitting at an office desk well illuminated
by natural and artificial light.

The experimental metrics for Single Burst, DEBS Only,
NVMH only, and DEBS + NVMH under variable input power
conditions are shown in Table 3.3. The first thing to note is that
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Configuration Avg. Pin Cbu f f er Metric Simulation Experiment

Single Burst 731.94µW 2 000µF
Θapp 2.39 min−1 2.13 min−1

avg. Eimg 12.06 mJ 12.58 mJ
ηsys 63.51% 60.93%

DEBS Only 706.98µW 1 470µF
Θapp 2.62 min−1 2.62 min−1

avg. Eimg 10.54 mJ 11.12 mJ
ηsys 64.48% 68.59%

NVMH Only 663.93µW 4 300µF
Θapp 5.96 min−1 6.28 min−1

avg. Eimg 4.28 mJ 4.35 mJ
ηsys 63.99% 68.65%

DEBS + NVMH 607.71µW 3 300µF
Θapp 7.78 min−1 8.29 min−1

avg. Eimg 3.27 mJ 2.79 mJ
ηsys 64.48% 63.53%

Table 3.3: Results for variable input power experiments: average number
of images stored per minute Θapp, average of energy cost per image Eimg and
EMU efficiency ηsys.

adding DEBS to a baseline configuration reduces the average
energy per image costs (Eimg). This is the case for DEBS Only,
which is an enhancement of the Single Burst configuration, as
well as DEBS+NVMH, which is an enhancement of the NVMH
Only configuration. This is expected since DEBS optimizes the
load’s operating point to minimize its energy requirements per
task, simultaneously reducing the load’s energy requirements
as well as the minimum required capacitance. Comparing
the buffer capacitances of the configurations without NVMH
we see that the minimum required capacitor increases when
NVMH is used. This is the fundamental trade-off of NVMH,
and it is expected since the improved energy performance
requires a larger energy guarantee for the SD Card flush task.
Compared to the Single Burst configuration, the DEBS+NVMH
configuration uses a 65% larger capacitor, but is able to reduce
the average energy cost per stored image by 77.8%, down to
only 2.79 mJ per image. It should also be noticed that even
though the average input power during the DEBS + NVMH
experiment was only 607.71µW, the average number of images
stored per minute was almost 4× that of Single Burst, up to 8.29
images per minute.

Table 3.3 also compares the experimental results to the
model simulation that takes the measured harvested power
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as input. Here, the comparison to experimental values shows
that even in a real-world scenario with variable input power,
the model is able to predict the system behavior with a
maximum error of ∼6% for most performance metrics. This
fact is also reflected in Figure 3.11: it shows the input
power, simulated and measured energy levels of the buffer
capacitor during a 350 second sample time window of the
DEBS + NVMH experiment. Besides a small time drift in the
energy accumulation during very low input power, where
not all effects can be represented accurately by our model, it
tracks the buffer’s energy level and bursts with high accuracy.
This high accuracy results only in small deviation in the time
diagram, despite the accumulation of simulation errors in the
time domain.
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Figure 3.11: Time domain comparison between model simulation and
experimental evaluation of image capture application using DEBS and NVMH
under variable input power.
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3.8 Summary

In this chapter, we have presented an EMU-based vision
sensor that acquires and stores images in external non-volatile
memory. By accumulating only the minimum amount of
energy in an optimally-sized capacitance, the EMU is able to
supply the sensing system reliably and efficiently, even when
it harvests only a small fraction of the load’s active power.
Dynamic Energy Burst Scaling (DEBS) can be used with the
EMU to track the load’s optimal power point and minimize
an application’s energy, which in turn minimizes the start-up
time and energy.

In long-term logging applications, where non-volatile
memory can dominate the application’s energy requirements,
novel memory technologies such as FRAM can be introduced
to form a Non-Volatile Memory Hierarchy (NVMH) that
reduces the average energy cost of storing data. We show
evidence of an important design trade-off between the energy
cost per image and the minimum required capacitance. By
adding only a ten-image FRAM buffer, 77.8% of the energy
cost per image can be saved, though the minimum required
capacitance grows 65%.

The EMU model can be used to dimension the solar panel to
achieve a minimum performance for a given lighting condition.
Experimental results show that a 42 cm2 solar panel under
indoor lighting conditions of 870 lux can be used to acquire,
process, and store more than 11 images per minute on an SD
Card. The EMU powered the 43.4 mW load at 69.90% efficiency
requiring only 746µW input power.



4
Reducing energy storage

by partitioning

4.1 Introduction

In previous chapters, we have seen how the EMU can provide
guaranteed energy bursts at specified voltages over a wide
input power and voltage range. Furthermore, we have seen
how different energy storage capacities can have an impact on
important metrics like average energy cost per unit of work.
We studied aggregating multiple transactions into a larger
one can reduce the average energy cost. We will now study
the same trade-off but instead of grouping multiple atomic
transactions together, we will now decompose previously
atomic tasks (i.e. data processing) into a set of smaller atomic
kernels which can be executed separately without affecting
the task’s functionality. By partitioning applications with long
processing tasks, we will ensure that they can be correctly and
efficiently executed in wide range of energy storage capacities.
Furthermore, the tools we present will be able to determine
the minimum required energy storage capacity for reliable
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execution, as well as the minimum application energy for a
given energy storage capacity. As opposed to the methods
presented in Chapter 2, the data processing task can be
arbitrarily long and not dominate the size of the energy storage
device. Using our specification model, sense-process-transmit
applications can be optimized for burst-based execution such
that truly atomic tasks like sensing or transmitting determine
the lower bound for the energy storage capacity.

Recent work has identified two approaches for batteryless
operation: atomic and state-retentive execution. Atomic
execution of tasks [NPK+15, GSM+16, GSS+17b] relies on
having enough storage capacity to complete either full
applications or individual tasks without preemptions. In
Chapter 2, we have seen how dynamic adjustments of
the supply voltage can be used to reduce the application
energy. If the system has unified memory schemes like
the MSP430FR[Tex15], most application data is already non-
volatile. We leveraged this fact in Section 2.5 with our low-
power vision sensor. The sense-and-process application was
manually split into two separate bursts without any state
retention overhead. For architectures without unified memory
schemes, data will need to be transferred between volatile
and non-volatile memory (NVM). Data-intensive applications
will thus require optimized data transfers for energy-efficient
execution. If a system’s energy storage capacity cannot
guarantee the atomic execution of the application, then state-
retentive execution becomes necessary. As opposed to atomic
execution, state-retentive execution needs to account for
preemption, typically due to a power-critical interrupt. These
systems [BWM+15, JRR14, RBMW18] can be very efficient
when the environment can sustain computation since it can
avoid checkpointing. However, applications with power-
hungry peripherals like cameras or radios might not be able to
complete if their energy requirements are not met.

Sensing applications can have widely varying energy
requirements depending on their tasks. Some tasks (e.g.
sensing and transmitting) cannot be interrupted and require
a precise energy storage capacity. Other tasks (e.g. data
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processing) can be interrupted but data needs to be transferred
between volatile and non-volatile domains. Applications with
both types of tasks can be difficult to optimize for multiple
reasons. Reliable execution depends on the ability to determine
energy bursts sizes, which depend on both tasks sizes and the
amount of data which needs to be saved and restores from
NVM. Determining memory requirements of conventional
code is not feasible, and conservative estimates would lead to
large energy overheads. Our proposed optimization scheme,
called Julienning, is based on a data-flow specification model
where programmers declare atomic kernels with explicit data
dependencies. Our optimizer can then partition an arbitrarily
long sense-process-transmit application into bursts with a
bounded energy size and minimal energy overheads. In doing
so, atomic tasks can have the energy guarantees necessary for
application progress and precious harvested energy will be
efficiently used by the application itself.

4.1.1 Contributions

Complex processing tasks have two main hurdles for efficient
batteryless execution. First, large and energy-hungry
applications would require a very large energy storage capacity
for the atomic execution of the entire application. In reality,
large applications consisting of multiple tasks only require
task-based atomicity for functionally correct execution with
minimized energy cost per unit of work. Second, batteryless
execution of data-intensive raise specific challenges since
preempting a task due to energy unavailability would incur
in a large penalty to transfer data from the volatile to
the non-volatile domain. We will use head counting as
a sample batteryless sense-process-transmit application, and
demonstrate how our design tools can efficiently execute an
energy-demanding and data-intensive application. To this
end, two head counting systems were designed: one based on
a normal vision sensor, the other based on a thermal (infrared)
sensor. To detect the number of heads in each type of image,
we trained CNN’s and we implemented them in a low-power
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microcontroller and applied Julienning. By varying the storage
capacity bound, we will identify the Pareto front of both the
thermal and the vision-based systems.

The main contributions presented in this chapter are the
following:

• Design and implementation of two head-counting
embedded systems, based on visual and thermal images.

• Trained CNN’s with small memory footprint. Software
was implemented using a data-flow specification model
with explicit data dependencies.

• The Julienning optimization flow which partitions a large
sequential application into bursts with a bounded energy
size and minimum energy overhead.

• Experimental evaluation of both head-counting applica-
tions and their batteryless execution using the minimum
feasible storage capacity.

• Design space exploration using Julienning over a wide
storage capacity range.

4.1.2 Roadmap

The remainder of this chapter is structured as follows: In
Section 4.2, we summarize current approaches to preempting
batteryless applications. Section 4.3 introduces our general
approach to specifying atomic kernels with explicit data
dependencies. Our application and partitioning models are
presented in Section 4.4. Section 4.5 presents the Julienning
optimization algorithms. Two head-counting embedded
systems optimized for batteryless operation are presented
in Section 4.6. These systems will be used to evaluate
our proposed optimization flow in Section 4.7. Finally, we
summarize our work in Section 4.8.
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4.2 Related Work

The intermittent power produced by transducers and its
impact on the reliable execution of sensing applications has
been studied in recent years. When the energy storage device
is treated as a design variable, it can be dimensioned to
guarantee the non-preemptive execution of a single sense-
process-transmit cycle. While this approach avoids any run-
time overheads, it typically requires a large energy storage
device. If neither the energy source nor energy storage can
guarantee one full application cycle, then the application will
inevitably be preempted, thus requiring special techniques
guarantee progress and functional correctness. We identify
two general approaches which have been developed. If an
application contains tasks with atomic execution requirements
(e.g. sensing and transmitting), then sufficient energy storage
must be provided for these tasks to execute reliably under
adversarial harvesting conditions. When applications do not
have task atomicity requirements, they can rely on mechanisms
to detect power-critical instances to then consistently transfer
data from volatile to non-volatile memory before powering
down. These software-based mechanisms focus on developing
robust code that can withstand constant resets and still have
consistent program progress.

4.2.1 Energy storage-based program progress

When information is short-lived, like in sense-and-send
applications, a correctly dimensioned storage device can
guarantee the uninterrupted execution of a single application
cycle, independent of transducer intermittence. If minimizing
state retention overheads is the only objective, this solution
would be optimal since the data lifetime starts and ends
within one activation cycle. Examples of such systems include
cameras that wirelessly transmit pictures[NPK+15], a wearable
camera that can estimate a user’s walking speed [GSS+17b]
and ambient sensors that transmit measurements via BLE
[MB11] and LoRa [MB16]. Dimensioning energy storage for
uninterrupted application cycles is not a scalable approach
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as it increases linearly with application requirements. Other
works [CRL18] have proposed a reconfigurable energy storage
architecture, which can adjust to dynamic application energy
demands. By contrast, our Julienning approach uses the energy
storage capacity as an optimization constraint. This allows a
designer to explore a wide range of energy storage bounds
to find the minimum capacitance necessary for guaranteeing
atomic tasks, not entire application cycles. In this way, the
capacitance can be greatly reduced and our optimization model
minimizes the energy overhead given this energy storage
bound.

4.2.2 Software-based program progress

When application requirements exceed a system’s storage
capacity, software execution requires specialized methods for
guaranteeing consistent program progress. Backing up data
in non-volatile memory is a common support mechanism
for data consistency in batteryless applications, and a lot of
work has gone into optimizing this process. Architectural
support for checkpointing includes specialized data transfer
between volatile flip-flops and shadow non-volatile flip-
flops, for example scan-chain based methods [HFdGB17].
Furthermore, advanced data tracking techniques restrict data
transfer to registers which changed after previous backup
[HXZ+13]. FRAM-enabled designs have been shown to have
costs of 3.44 pJ per bit [QAC14] and <400-ns wake-up time
[KBC+14] using 130 nm technology, while a 65 nm ReRAM-
based design [LWL+16] has 20 ns restore time, operating
at 100 MHz. SW-based methods are based on an external
signal which warns the system of an imminent undervoltage
condition, triggering a data transfer from the volatile to the
non-volatile domain. Software libraries have been developed
to intermittently execute processing tasks by automatically
saving/restoring volatile data based on voltage thresholds
[JRR14, BWM+15]. In [RBMW18], support for re-configuring
external peripherals was added. These works have been
demonstrated to work on 16-bit MSP430 microcontrollers
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with on-chip FRAM. Automatic checkpointing techniques
have also been demonstrated on flash-based systems [RSF11],
32-bit Cortex M3 systems [BM16] along with energy-aware
optimizations [BM17]. Additional state-retention policies have
also been proposed to exploit the different properties of both
FRAM and Flash to find the most efficient policy/platform
[VBM18], Besides checkpointing, applications have also been
decomposed into tasks which are then executed individually
[GSM+16, HSS15b, GSS+17a]. These systems require manually
transferring data to non-volatile memory. While state-retentive
systems excel at minimizing the required energy storage
for executing arbitrarily long processing tasks, they have a
fundamental limitation from their small storage. Large atomic
tasks using power-hungry sensors or transceivers are simply
not supported.

Specialized languages and runtimes have been developed
for batteryless systems. The Drewdrop [BGW11] runtime,
developed for flash-based MSP430’s, is able to dynamically
adjust the system’s wake-up voltage to find the lowest value
for reliable task execution. Due to the high costs of flash
memory access, Dewdrop does not support state retention.
The DINO[LR15] programming and execution model which
breaks down applications into sets of instructions manually
defined task boundaries. DINO can guarantee consistency by
tracking both volatile and non-volatile states, and re-executing
any interrupted task from the most recent task boundary.
With Chain [CL16], developers can specify applications as
static task graphs with statically multi-versioned channels,
with restricted access to volatile and non-volatile memory
domains. Chain is able to reduce checkpointing costs, with
guaranteed consistency, by marshaling data and allocating
multiple copies of data in non-volatile memory. CleanCut
[CL18] can automatically decompose applications into tasks,
by placing task boundaries such that they can be executed
with a given energy storage. CleanCut works by analyzing
the application’s control-flow graph and using a statistical
energy model to avoid non-terminating path bugs. The Mayfly
[HSS17] language and runtime, developed for MSP430’s with



96 Chapter 4. Reducing energy storage by partitioning

on-chip FRAM, allows developers to declare tasks with time-
dependent data flows. In this way, the runtime can decide
whether or not to execute tasks based on the age of sensed
data.

All of these programming models assume an inherently
unreliable hardware layer that can reset the system at any
point. In contrast, we build on top of an Energy Management
Unit (EMU), which can guarantee a specified amount of
energy, regardless of the variability in a transducer’s voltage
and current. This opens the door for a programming
model with guaranteed program progress with controlled,
consistent preemption at predefined program points. This
allows us to run energy-hungry tasks, even if their power
requirements are beyond the limits of the source. Furthermore,
our programming model can automatically minimize the
total application energy using a transducer-independent,
energy burst execution model. Related work embraces a
greedy execution model contingent on energy source behavior.
Missing.

4.3 General Approach

In this chaper, we will use sample head-detecting embedded
systems to demonstrate and evaluate our proposed Julienning
approach. Though the implementation details will be
discussed in greater detail in Section 4.6, we will introduce
our custom specification model with a generic sense-process-
transmit application. This specification model is based on
Ladybirds [Tre18]. Ladybirds was specifically designed for
efficient data exchange for parallel applications in multi-core
architectures. There are three phases to using Ladybirds:
front-end, optimization, and code generation. During the
front-end phase, developers specify the application with a
C dialect. During the optimization phase, the application
and its energy costs are analyzed to determine the optimal
partitioning for a given storage bound. During the back-
end phase, platform-specific C code is generated. A custom
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back-end was developed for the low-power LPC5400 platform
[NXP15]. We will now discuss in more detail the specification
model used in the front-end. The next section will focus on the
optimization phase.

The specification model distinguishes between kernels and
metakernels. Kernels can be thought of as conventional C
functions with explicitly specified inputs and outputs of fixed
sizes [Tre18]. Kernels implement a specific functionality, while
metakernels interconnect kernels to build up applications.

A kernel describes how input data is transformed into
output data in the front-end. A call to a kernel is called a
task. In Listing 4.1, we have a front-end representation of a
sense-process-transmit application. In this example, we have
defined three kernels with explicit data dependencies and one
meta-kernel joining them. Though this simple example would
generate one task per kernel, this is not always the case. A
hierarchy of metakernels will be flattened out by Ladybirds and
depending on the data dependencies, multiple tasks can be
instantiated. In the case of our head counting application, for
example, we have specified 7 processing kernels, 3 of which
are CNNs. The code generated from this specification includes
over 5400 tasks, the vast majority being CNNs analyzing
different image segments.

For our batteryless execution model, kernels (and tasks)
will be executed atomically. When an application needs to be
partitioned into multiple bursts, Julienning can only possibly to
preempt execution in between tasks, where memory usage was
explicitly declared. Conceptually, this is similar to cooperative
scheduling[BBY13], where the developer can choose when a
thread yields control of the CPU. Our specified application is
basically a vector of tasks. Partitioning is then the process of
selecting which tasks to execute together before preempting.
For these execution bursts to be reliable, they need to respect
the system’s storage capacity. This means that the energy
required to load input data, execute tasks and save output data
needs to be known. We will propose a burst energy model for
calculating these costs based on pre-characterization data. By
default, Julienning can generate one task per burst partitioning
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Listing 4.1: Sample definition of atomic kernels with explicit dependencies.

# define Dx 80
# define Dy 60

kernel sense ( out uint8_ t img [Dx ] [ Dy ] ) {
camera_enable ( ) ;
AcquireImage ( img ) ;
camera_disable ( ) ;

}

kernel process ( in uint8_t img [Dx ] [ Dy] , out uint8_ t headCount ) {
//Picture is processed, result saved to ’headCount’
headCount = runCNN( img ) ;

}

kernel t ransmit ( in uint8_t headCount ) {
radio_enable ( ) ;
BLE( headCount ) ;
r a d i o _ d i s a b l e ( ) ;

}

metakernel main ( ) {
uint8_t img [Dx ] [ Dy ] ;
uint8_t headCount ;

//Acquire picture and store it in ’img’
sense (Dx , Dy, img ) ;
//Process picture and save result in ’headCount’
process (Dx , Dy, img , headCount ) ;
//Transmit result via BLE
transmit ( headCount ) ;

}
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to facilitate energy characterization measurements using a DC
source. For the state retention, Julienning can determine the
amount of data which needs to be transferred, and a linear
model is used to determine the energy cost. The systems
energy storage capacity is an independent design parameter
to be chosen by the developer. This will have a clear impact
on how, if at all, the application will be partitioned. Using
the application model and energy characterization, Julienning
will then find the optimal burst partitioning such that the
burst size respects the energy bound, and the total overhead is
minimized.

4.4 System Model

In this section, we introduce our model for specifying
computationally intensive applications. This methodology
is the result of a collaboration with Andreas Tretter, Pascal
Alexander Hager, and Praveenth Sanmugujarah. Our
proposed specification model is composed of discrete tasks,
or kernels, with well defined inputs and outputs. All discrete
tasks have guaranteed reliable execution if the EMU’s storage
capacity was dimensioned properly. However, their input and
output data needs to be loaded and stored in Non-Volatile
Memory (NVM) to tolerate power outages. Accessing NVM
is more expensive than on-chip SRAM, and its use needs to
be optimized in order to keep energy overheads manageable.
We will first describe application and energy model with
optimized data transfers.

4.4.1 Application model

A sequential application A is defined a 4-tuple (T,M, In,Out)
with a vector of tasks T = {t1, t2, ..., tNtasks }, a set of memory
blocks M = {m1,m2, ...,mNmem }, a data access function to obtain
input data memory blocks In : T → P(M) 1 and a data access
function to obtain output memory blocks Out : T → P(M).An

1
P(M) denotes the powerset of M, or the set of all the subsets of M.



100 Chapter 4. Reducing energy storage by partitioning

application consists of tasks which can have multiple inputs
and outputs, kept in separate memory blocks. By definition,
every task t ∈ T can only access memory blocks enclosed in
In(t) ∪ Out(t) ⊆ M. The size of each memory block m ∈ M can
be obtained with the function s : M→N.

4.4.2 Partitioning Model

If an entire application can be directly executed from energy
storage, then there is no need to partition an application.
However, as batteryless applications grow in complexity
and energy requirements, energy storage bounds will play a
decisive role in their development. Partitioning enables an
application to be divided into smaller units of execution. Using
a burst-based execution model, these units of execution have
guaranteed reliable execution. Since we focus on sequential
applications, whose tasks need to be executed in a predefined
order, the process of partitioning is reduced to defining the
starting point of the application’s Nbursts bursts. To distinguish
which tasks belong to which bursts, we define an execution
configuration. An execution configuration of an application is
a vector R of starting task indices R= (r1, r2, ..., rNbursts ) and
rk < rk+1 ∀k|1 ≤ k < Nbursts. The auxiliary function burstBounds
determines the starting and ending indices of the i-th burst
given an execution configuration (R). It is defined as follows

burstBounds : (i,R)→ (ri, ei) (4.1)

where i ∈ {1, ...,Nbursts} and rn < en.

Optimizing NVM Data Transfer

As mentioned in the introduction of this section the considered
system needs to regularly save results of the executed tasks
on an external non-volatile memory, to guarantee that data is
available for the subsequent burst after a power loss. A burst
needs to load data from an external non-volatile memory into
the main memory, before the system can start executing tasks.
One possibility is to load all the input memory blocks from the
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non-volatile memory and storing all the output memory blocks
on the non-volatile memory of each task. This is not efficient
in terms of energy since each transfer consumes energy and
usually not all of the data needs to be stored and/or loaded.
Another possibility is to only consider memory blocks that are
needed. This leads to the minimum number of memory blocks
that have to be transferred for functional correctness. Two
access functions Memload : T → P(M) and Memstore : T → P(M)
are introduced to reduce NVM data transfer.

Memload(tk,n) determines which memory blocks need to
be loaded for the task tk in the n-th burst with (i, j) =
burstBounds(n,R) and can be described as follows:

Memload(tk,n) = {In(tk) \ ∪k−1
l=i (Out(tl) ∪ In(tl))} (4.2)

Not all the input memory blocks of task tk need to be
considered for loading. Some might be generated within the
burst and others might have been already loaded by previous
tasks in the burst. In both cases, data transfer can be omitted
since memory blocks will already be in SRAM. Therefore
Memload(tk, i) has to consider only all the input memory blocks
that are not generated within the i-th burst before the task tk
and exclude also input memory blocks that will be loaded from
previous tasks within the i-th burst. All the common input and
output memory blocks of the previous tasks within the bursts
are removed from all the input memory blocks of the task tk.
The results set of memory blocks are those which need to be
loaded from the external memory for the task tk.

Memstore(tk,n) similarly determines which memory blocks
need to be stored after task tk is executed in the n-th burst with
(i, j) = burstBounds(n,R), as follows:

Memstore(tk,n) ={
m ∈ Out(tk)

∣∣∣findIn(m, j) < findOut(m, k)
} (4.3)

Just like with loading, not all the output memory blocks
of the task tk have to be considered for data transfer. Some
of the output memory blocks might only be used within the
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same burst. Only if the memory blocks are the input of tasks
in subsequent bursts will those blocks need to be transferred
to NVM. However, we still need to check whether other tasks
within the same burst also write to those blocks, since we only
want to transfer blocks once they are no longer being used
within the burst. We use two additional functions to determine
this:

findIn(m, k) = min
{
j ∈ {k + 1, ...,Ntasks}|m ∈ In(t j)

}
(4.4)

findOut(m, k) = min
{
j ∈ {k + 1, ...,Ntasks}|m ∈ Out(t j)

}
(4.5)

f indIn(m, k) returns the index of the first task after the k-th
which also uses the memory block as an input memory block,
or Ntasks +1 if there are no tasks. Similarly, f indOut(m, k) is used
for the output memory block. With the help of these functions,
Memstore(tk, i) returns the set of memory blocks which needs to
be stored on the external memory for future bursts.

4.4.3 Execution of Partitioned Applications

Algorithm 1 gives an overview of burst execution using
Julienning. Given an application and partitioning R, Algorithm
1 will execute all tasks using burst with minimized energy
overheads. The outer loop iterates through every burst in the
application. To keep track of the burst, a counter b is used.
Each burst entails the following steps: loading data, executing
tasks and storing data. After every burst, the system goes to
sleep and waits for an external interrupt from the EMU.

At the beginning of each burst, the burst counter is loaded
from the NVM into the main memory using the function
loadState() and the burstBounds(b,R) function calculates the
indices of the starting and the ending tasks of each burst.
When tasks require input data, Memload gives the optimized
list of memory blocks that needs to be loaded for a specific
task.

As soon as all the required inputs for the bursts’ tasks have
been loaded, all tasks will be executed sequentially. Once
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Algorithm 1: Execution of partitioned application
with Julienning

Input :A,R
1 foreach b in R do
2 (i,j) = burstBounds(b,R);
3 foreach k in (i,j) do

/* load input data from NVM */
4 load(Memload(tk, b))
5 end
6 foreach k in (i,j) do

/* execute tasks in burst */
7 execute(tk);
8 end
9 foreach k in (i,j) do

/* store output data to NVM */
10 store(Memstore(tk, b));
11 end
12 b = b + 1;
13 storeState(b);
14 sleep();
15 b = loadState();
16 end

all tasks have been completed, Memstore provides the list of
memory blocks that need to be stored. Auxiliary functions,
load and store, transfer the data to and from the NVM. Lastly,
the algorithm increases the burst-round number and stores it
on NVM using the function storeState().

Thanks to the specification of the explicit data dependen-
cies, Julienning can calculate the required memory blocks to
load and to store. Non-optimized specifications models would
need to load and store the entirety of the application data, since
it is not known a priori which data will be read or modified.
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4.4.4 Energy Model

As was shown in Algorithm 1, applications executed over
multiple bursts have the following four stages: boot-up,
loading of input data, task execution, and storing of output
data. Naturally, single-burst applications would not have
loading/storing stages since all data is produced and consumed
within the same burst. For all other burst configuration, we
need to calculate both individual burst costs as well as total
energy costs.

Individual Energy Burst Costs

Of the four stages we have identified, we can distinguish
between “useful” and overhead energy. The former is the
energy which goes towards task execution, while the latter
are costs which cannot be avoided. Both energies need to
be modeled to have an accurate notion of a burst’s energy.
The energy necessary to boot-up the system, Estart−up, depends
on many parameters (voltage, operating frequency, etc). The
energy consumed for data transfers depends on the type of
memory, its energy cost per byte (EreadByte and EwriteByte) and
the amount of data being transferred. Which specific memory
blocks need to be transferred from/to NVM depends on the set
of tasks in each burst. The input and output memory blocks of
the n-th burst with (i, j) = burstBounds(n,R) can be determined
as follows:

MemInputpartition = ∪k∈(i, j) Memload(tk,n) (4.6)
MemOutputpartition = ∪k∈(i, j) Memstore(tk,n) (4.7)

To find the input memory blocks, we apply the union over
the inputs to all tasks belonging to the same burst. The same
procedure is also applied for output memory blocks. Lastly,
the burst energy (Eburst) is calculated by determining the size
of these blocks and adding all of the tasks energies.
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Eread = EreadByte · bytes(Inpartition) (4.8)
Ewrite = EwriteByte · bytes(Outpartition) (4.9)

Eburst = Estart−up + Eread + Ewrite +
∑
k∈B

Etask,k (4.10)

Total Energy Costs

We have seen so far the energy costs for an individual burst. We
now study the energy costs for running entire an application
over multiple bursts. The energy required to execute the
application, without any overheads, is simply the sum of
all tasks: Eapp =

∑Ntasks
i=1 Etask,i. As we have seen, partitioned

applications incur energy overheads to turn on the system
and transfer data between on-chip and off-chip memories. We
distinguish overhead between start-up costs and data transfer
costs as follows. For an application executed over Nbursts bursts,
the system boots-up once per burst incurring a cost of Estart−up.

To obtain the energy consumption for the transferred data
S : P(M) → N is introduced. It returns the number of Bytes
that is contained in a set of memory blocks. This relation can
be described as follows:

S(M) =
∑
m∈M

s(m) (4.11)

The energy overhead from data transfers can be decom-
posed in two: energy for reading (optimized) data inputs, and
energy for writing (optimized) data outputs. The burst counter,
of size Sctr, is the one variable that is always loaded, updated
and stored, as it is essential for program progress.

Etrans f er = Eload + Estore (4.12)

Since the amount input and output data can be different,
they are modeled separately. We calculate the energies by
multiplying the amount of data (in bytes) times the read/write
energy per byte. Note that many NVMs have asymmetrical
read/write energies.
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Eload =

 ∑
i∈{1,...,NB}

∑
t∈T

S(Memload(t, i)) + Sctr ·Nbursts

 · EreadByte

(4.13)
To obtain the energy consumption for writing data the

same procedure like for obtaining the energy consumption for
reading is applied.

Estore =

 ∑
i∈{1,...,NB}

∑
t∈T

S(Memstore(t, i)) + Sctr ·Nbursts

 · EwriteByte

(4.14)
The total energy consumption can be described as follows

where the energy of the application is also considered:

ETotal = Eapp + Eoverhead (4.15)
= Eapp + Etrans f er + Nbursts ∗ Eboot−up (4.16)

4.5 Optimal Partitioning

The partitioner takes a sequence of tasks and segments it into
certain bursts. The aim of the partitioner is on the one hand
to reduce the required energy guarantee for an application
and on the other hand to find a partition such that the
total energy consumption of the application is minimized.
In the previous section, we have seen that data transfer
between volatile and non-volatile memory can be optimized
thanks to the explicit data dependencies in Julienning.
However, this alone is not enough to optimize the total energy
consumption. In sequential applications, partitioning is the
only possible way to reduce the required storage capacity.
When this is combined with the aforementioned data transfer
optimizations, partitioning can be done with very low energy
overheads.
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Figure 4.1 shows examples of fixed task partitioning.
Following our sense-process-transmit application, we have
defined 1 acquisition, 4 processing and 1 transmit kernels.
Each processing kernel processes one frame of the image. The
simplest partitioning is no partitioning at all, where one burst
contains all kernels. Though this has the advantage of having
zero data being transferred between volatile and non-volatile
memory, it requires a large storage capacity. By splitting
the application into multiple bursts, we hope to reduce this
required capacity. When one kernel is assigned an individual
burst, one can note several effects. The number of bursts is
maximized, as is the amount of data transfer. If the kernels
dominate the burst energy, then burst size is also minimized.
Note that when data transfer is more expensive, bursts sizes
can get larger. For our application and NVM technology,
however, this is not the case.

Fixed partitioning takes a constant number of tasks per
burst. Even though this is fairly simple to implement, it
can lead to great inefficiencies. Since all bursts need to be
executed atomically, the storage capacity needs to match the
largest bursts. Ideally, all bursts can be the same size but since
kernels are specified by application designers, they will very
likely have different energy costs. Consequently, we need an
automated way to calculate optimal partitions that can make
the most of a bounded storage capacity and also minimizes
energy overheads.

This section explains how an application A can be
partitioned into bursts such that the burst sizes are bounded,
and the total application energy is minimized. For a
given sequential application there are 2|Ntasks |−1 possibilities to
partition it into bursts. An exhaustive search for finding the
optimal partition is computationally infeasible for arbitrarily
long applications. To solve the partitioning problem,
Julienning transforms it into a shortest path problem, which
can be solved in polynomial time.

The following example illustrates the steps to achieve
the shortest path-problem transformation. A sequential
application with three tasks and explicit data dependencies is
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shown in step 1) of Figure 4.2. In a second step, we introduce
Ntasks + 1 new states (S0 to S3).

S0 indicates the state before the application is executed,
while S3 indicates the state after the application is executed.
States in between indicate a sleep state where the system is
switched off. In this state graph, a burst is defined as a change
of states. The edges between the states indicate the energy that
is needed to advance the state. For instance, to get from S0 to
S1, the system must turn on, execute task t1, store da in NVM,
and then go to sleep. To get from S0 to S4, the system needs
to wake up and execute all tasks (no data transfers necessary).
To fully populate this graph, the following energy costs are
needed:

• energy cost of each task Etask

• energy cost of transferring one byte EreadByte and EwriteByte

• energy cost for booting up the system Estart−up

Step 2) in Figure 4.2 illustrates all the possible transitions in
the new state graph. If there were no energy storage bounds,
then the graph could be left as is. The shortest path between S0
and S4 would simply be {t1, t2, t3}. However, with Julienning,
designers can specify an arbitrary storage bound and still find
the partitioning that minimizes the total energy. To do so, all
the edges that exceed the storage bound Qmax are removed
from the graph. In this example, we color the {t1, t2, t3} edge
to denote a removed path. Afterward, in step 3) we find the
shortest path between S0 and S4 using Dijkstra’s algorithm,
which finds the optimal path in polynomial time. Each node
on the obtained path indicates the last task of a burst. Lastly,
in step 4) we convert the node index into starting indices to get
the optimal execution configuration R.

4.5.1 Minimizing Storage Capacity

At this point, we have already solved the problem of finding the
optimal partition that minimizes the total energy and satisfies
a storage bound. However, our execution configuration
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2) Problem
    Transformation

3) Shortest
    Path

4) Optimal
    Partition

da db
t1 t2 t3

1) Sequential
    Specification

da dbt1 t2 t3
da db

{t1,da} {da,t2,db}

{da,t2,t3}

{db,t2}

{t,t2,db}

{t1,t2,t3}

S0 S1 S2 S3

{t1,da} {da,t2,db} {db,t2}
S0 S1 S2 S3

Figure 4.2: Optimization flow using Julienning starts with a high-level
specification. This is then transformed to state-based graph with energy burst
costs. Partitioning with minimum energy is found using the shortest path
algorithm.

might require a much smaller storage capacity than the actual
bound. There are several factors which determine this, namely
the distribution of kernel energies and their ratio to storage
overheads. Ultimately, the total energy does not have a
continuous range and will experience possibly large gaps. To
find the actual minimum capacity Qmin of an application with
an execution configuration R, we adapt Dijkstra’s algorithm.
Instead of summing up all the weights on a path, we simply
find the highest weighted edge of that path. This is the actual
storage capacity needed for this path/partitioning.
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4.6 Head Counting Embedded System

Detecting the number of people occupying an environment
is an important use case for surveillance in public spaces
such as airports, stations and squares, but also for smaller
environments such as classrooms (e.g. to track occupation
of classrooms). Using visible imaging for this task is often
suboptimal because 1) it potentially violates user privacy
2) to have a good final count, high-resolution cameras are
required. Long-wave infrared imaging is a viable solution
to both these issues. Here, we present a people counting
algorithm on thermal images based on convolutional neural
networks (CNNs) small enough to be executed on a limited-
memory low-power platform. This algorithm results from a
collaboration with Francesco Conti.

4.6.1 Detection Algorithm

Convolutional Neural Networks (CNN’s) [LBBH98], are a
popular method for many image recognition tasks. CNN’s
use a set of filter kernels which are convoluted with the input
image to extract certain features from it in a succession of
multiple layers, each convolving its own filter kernels with the
output of the previous one, thus extracting increasingly higher-
level features. CNN’s have successfully achieved better-than-
human performance in a variety of computer vision problems
in the visible light spectrum. Due to their high spatial
resolution, these images contain texture details consistent
with the human visual system [MML18]. For this reason,
visible image recognition tasks are usually deployed on high-
performance hardware with an abundance of memory and
computing power. By contrast, thermal or infrared imaging
can make objects stand out due to their temperature, making
them more immune to weather, lighting conditions or body
pose.

Dataset collection and tagging. In order to effectively train
any Neural Network, a large set of tagged training data is
required. We collected a dataset targeted at people recognition
in the context of a classroom by setting up five Raspberry Pi
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single-board computers in a student workroom. Each of the
Rasperry Pi’s was fit with both a thermal and a visible light
camera and set up to capture the room from different angles.

The low-power thermal camera[FLI18] encodes each image
pixel as a 16-bit value between 0 and 65536 proportional to the
impinging amount of infrared radiation; each thermal image
has 80×60 pixel resolution, considerably smaller than typical
visual cameras. To collect the dataset, we coupled the low-
power thermal camera with an off-the-shelf visual camera,
whose collected output was scaled to 80×60 to allow for a
fair comparison between the two approaches.

We developed a small Python tool to aid with the manual
tagging of these images, which was performed based on the
visual images, which are much better recognizable from a
human’s perspective. The tagged dataset was then shuffled
and divided in a training set with 2089 images, a validation
set with 446 images and a test set with 450 images. Due to the
different image resolutions, aspect ratios and possible slight
differences in camera orientation, the tags from visual images
cannot directly be used for the corresponding thermal image.
To achieve this, we fit a transformation of the form

(
x′

y′

)
=

(
T11 T12 T13
T21 T22 T23

)
︸                 ︷︷                 ︸

T

·

 x
y
1

 (4.17)

to a list of coordinates (x, y) on the visual image and
(x′, y′) on the thermal image corresponding to the same point.
Using the resulting transformation matrix T, we were able to
reconstruct accurate thermal tags out of the visual ones.

Head detection and counting. The detector we developed
focused on detecting people in a student’s work room, where
people are often partially occluded by the desk they are sitting
at. This occlusion of body parts makes it unreasonable to try a
full-body detection but favors detecting only the heads. This
can be justified by the fact that the head is usually the most
visible body part in such a setting, and also one which radiates
a high amount of heat that makes them even more visible
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through a thermal camera.
We decided to detect each head individually by sliding a

windowed classifier on top of the input image and classifying
each window as a head or background rather than use a direct
regression approach on the full image. This approach adds
robustness, is easier to train and has an overall lower memory
footprint. The lower memory footprint originates from the
fact that only small portions (windows) of the input image are
fed to the CNN, which greatly reduces the size of the feature
maps that have to be held in memory. The simplicity of a
binary head or background classification also implies a simpler
overall structure for the employed CNN, meaning less layers
and smaller convolution kernels, thus reducing the number of
weights needed.

The general topology of the applied CNN was thus inspired
by the work of Li et al. [LLS+15]. Their CNN consists of a total
of six stages, where calibration stages follow detection stages
to correct the position of windows classified as faces. These
corrected or calibrated windows are then passed to the next
classification stage which has a more complex topology and
analyses the window at a higher resolution than the previous
one. In our work, we build on the first and simplest CNN
they propose, using 12×12 detection window as input and 3×3
convolution kernels to predict whether it contains a head or
not, performing binary classification.

At the native 80×60-pixel resolution, 12×12 already covers
an area larger than the biggest expected head size on the image
produced by the thermal camera. To be able to detect smaller
details without increasing the size of the window, during
detection we upscale the input image, creating a pyramid
of three images sized 80×60, 120×90 and 160×120 pixels,
respectively. To increase numerical stability during the training
procedure, the images in the pyramid are normalized to a range
of [0, 1], using maximum and minimum values collected from
the entire training set.

A 12×12 detection window is slid along each of the pyramid
images using a stride of 2 pixels in each direction. The collected
detection windows are then fed to the CNN-based classifier.
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Figure 4.4: Example of non-maximum suppression reducing the initial 45
detections on the left to the 6 ones on the right.

Similarly to Li et al [LLS+15], the network uses the ReLU
activation function, max pooling after the convolutional layer
and a final softmax activation2 for the output. Figure 4.3 shows
the overall methodology illustrated in this section, from the
dataset images up to the proposed classifier topology.

The output of the sliding window classifier is an array
of confidence values ranging in [0, 1], each indicating how
confident the CNN is that the corresponding image patch
contains a head. However, one particular head on the image
will usually still be detected by multiple windows at different
positions and scales making it necessary to determine the
most confident one of all of these overlapping windows. This
is done by applying non-maximum suppression as defined in
Felzenszwalb et al. [GFM]. It greedily takes the detection
with the highest confidence and eliminates all others with
significant overlap, then proceeds to the next highest until only
the local maxima are left. One example of detections before and
after the application of non-maximal suppression is shown in
Figure 4.4. After this step, only the correct detections remain,
so the remaining windows can be counted to obtain the final
people count in the image.

For the purpose of training the CNN head detector, the

2The softmax function converts a number of output values to values in
the range (0, 1) that add up to one and can be interpreted as a probability

distribution. It is defined as σ(z) j = e
zj∑K

k=1 ezk
where z is a vector of N output

values.
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Figure 4.5: Overview of the ultra-low-power people recognition platform.
One system uses a visual sensor (OV7670 [Omn06]), while another uses an
infrared sensor (Lepton [FLI18]).

presented people counting algorithm was implemented in
Python targeting the Keras [Cho15] deep learning framework
with the TensorFlow [AAB+15] backend. The CNN training
set was created using 4203 head patches cut out from the
full training dataset and 5000 randomly selected backgrounds,
while a CNN validation set using all patches from the
full validation dataset was used to select the “best” result
from the training. Batch normalization was used after each
convolutional layer and dropout layers were inserted before
the two fully connected ones to aid with training and minimize
overfitting.

4.6.2 Embedded Implementation

Two standalone head counting systems were developed
with commercial-off-the-shelf components. The vision-based
version used the OV7670 [Omn06] camera as sensor input,
while the thermal-based version used the FLIR Lepton [FLI18]
sensor. The head-counting algorithm (same for both versions)
was implemented on a LPC54102 microcontroller [NXP15]. A
BLE radio [ACK14] was used to transmit the results of the
head counting process. Lastly, an external FRAM memory
[Cyp15] was selected as a high endurance, low-power non-
volatile memory.

In Figure 4.5 we show a simplified diagram of the full
platform, which is battery powered. The LPC54102 contains
an ARM Cortex-M4F core with 512 kB of Flash memory
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(a) Thermal image version. (b) Visual image version.

Figure 4.6: Head counting system prototypes with integrated EMU.

and 104 kB of on-chip SRAM, with no data caches. This
poses severe memory constraints for the embedded CNN
implementation, which must be able to fit all weights within
the 512 kB of Flash and all data (including intermediate
results between CNN layers) within the 104 kB of local
memory. In both implementations, the voltage supply was
2.8 V, the minimum required by the Lepton, and compatible
with all other peripherals including the LPC microcontroller,
the OV7670 vision sensor, and the BLE radio. To facilitate
interfacing with peripherals, the platform runs at a frequency
of 80 MHz. The thermal image acquisition via the camera’s
SPI interface, while the visual image is acquired via 8 (parallel)
GPIO pins. In both cases, the acquired image is stored in
SRAM. The prototypes of both the thermal and visual based
detector prototypes can be seen in Figure 4.6.

We implemented the full algorithm described in Sec-
tion 4.6.1 in bare-metal embedded C targeted at the deploy-
ment on the LPC54102. In the case of atomic application
execution, the head detection CNN runs directly on SRAM
data without transferring any data to NVM. The CNN itself
uses a pure C implementation of convolutional and densely
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connected layers, without machine-dependent optimizations
or special instructions.

4.7 Experimental evaluation

4.7.1 Methodology

This section evaluates the proposed optimization flow for
batteryless sensing systems. More precisely, we focus on
applications with energy-intensive processing tasks since these
can be easily partitioned into separate bursts of execution.
To this end, we first evaluate the head counting embedded
system presented in Section 4.6.1. We will evaluate the
accuracy and energy costs of the same system using a
thermal (infrared) sensor [FLI18] and a tradition vision sensor
[Omn06]. Afterward, we will evaluate three partitioning
schemes, including our optimal Julienning method. Lastly, we
perform a design space exploration of both the thermal and the
visual applications. Using Julienning, we can effectively sweep
a range of storage capacities and determine the partitioning
that minimized the total energy.

Set-Up

All energy characterizations were made using an external DC
power supply. The open source RocketLogger measurement
device[SGL+17] was connected for low side current measure-
ments. GPIO pins were used to mask power traces and thus
determine the energy consumption.

For the partitioning evaluation, the energy costs for the
kernels and the external NVM were used. Our optimization
tool can then calculate the different figures of merit.

Figures of Merit

For the analysis of the system performance, the following
metrics are used in all experiments:
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Nbursts the number of bursts necessary to execute the entire
application.

Estart−up the energy required to boot up the system.

Eload the energy required to load the input data for all bursts
of a given partitioning.

Etask,i (kernel energy) the energy required to execute the i-th
kernel.

Esave the energy required to save the output data for all bursts
of a given partitioning.

Eapp =
∑

i Ekernel,i (application energy) the energy required to
execute the entire application atomically (without state
retention overheads).

Etotal = Estart−up ∗Nbursts + Eload + Esave + Eapp the total energy re-
quired the execute an application with a given partition-
ing.

Qmax (energy storage bound) the maximum storage capacity
allowed by the system

Qmin (minimum storage) the minimum storage capacity
needed to reliably execute an application with a given
partitioning.

4.7.2 Head-counting embedded system

Detection Accuracy

Similar to many of the image recognition challenges out
there, like the Face Detection Data Set and Benchmark
(FDDB) [JLM10], the bounding boxes produced by the
detection algorithm were compared to the original annotations
(tags) by calculating their overlap. If a detection overlaps with
a tag by more than 30%, it is accepted as correct, otherwise,
it is counted as a false positive. This enables the creation
of a realistic accuracy statistic over all the full images in the
validation dataset. We trained the topology shown in Figure 4.3
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for 300 epochs, using the Adam optimizer with learning rate
5 × 10−5. We reached a final validation accuracy of 97.6%.
As the validation set is used during the training phase, a new
“untouched” test set is built using 67540 background windows
and 872 head windows from the full-image test set. The
CNN achieves a 95.9% accuracy on this set; non-maximum
suppression with a hard confidence threshold calibrated at
0.9997 yields a net improvement to accuracy up to 99%.

While this final post-training error is low (∼1%), the CNN
is applied many times to each image, and even a single error
can drop the overall algorithmic accuracy. To quantify this
phenomenon, we evaluated the overall counting accuracy on
the full image test set. The algorithm predicts the correct count
on 53.7% of all the test images, and in 84.4% of the images
the error is bound within ±1. The non-maximum confidence
threshold was calibrated so that false positives are of similar
cardinality as false negatives.

As a point of comparison, we also trained a similar CNN
to that shown in Figure 4.3 using the collected visual images
as input (in full-color, but downscaled to 80×60). We used the
same training methodology and parameters as in the thermal
case. Our results have shown that the features are typically
too small and the images too cluttered for the CNN to be
able to converge to a decently discriminating model; in fact,
in most iterations, they simply converge to a local minimum
where all patches, regardless of their content, were predicted
as backgrounds. To highlight the differences between the
two results, in terms of discrimination between heads and
backgrounds and of correct overall count, we split the two
test sets. One was a subset for empty rooms, where the
correct prediction is always 0 people, and the other subset
was for occupied room, where the number of people varies
from image to image. Ideally, both the thermal-based and
visual-based algorithms should perform well on either subset.
Instead, while the two algorithms perform similarly on pure
backgrounds, their results are dramatically different on the
occupied rooms. Whereas the thermal-based algorithm is able
to discriminate between heads and backgrounds leading to a
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correct count in 45% of the images and an error bound within
±1 head for 81% of the predictions, the visual-based algorithm
can identify the correct number of people only in ∼10% of the
subset images.

Even though the detection accuracy using visual images is
poor, we will continue the same CNN as a point of comparison
for batteryless execution. From an energy perspective, the
only difference between the versions using thermal and visual
images is the cost of the image acquisition kernel.

Memory

There are three key data elements: the image itself, the weights
of the CNN and the intermediate results. The Lepton sensor
produces an 80 × 60 matrix of the type int16_t, while the weights
and intermediate results are float . The code was compiled with
the −Os optimization flag to minimize its size. The memory
breakdown of the compiled application can be seen in the left
column of Table 4.1. It should be noted that the biggest section,
Text, contains all of the constants for the CNN filters. The BSS
section is almost one fourth the Text size and fits comfortably
in the available 104 kB SRAM.

Section Size [B]
Text 444×103

BSS 63×103

Data 186

Table 4.1: Memory requirements for people recognition application running
on the LPC54102 (stride 3×3).

Kernel characterizations

To characterize the energy requirements for different kernels,
we used a DC source to supply 2.8 V. Once again, the
Rocketlogger was connected for low side measurements and
GPIO flags were used to mask the power trace and calculate
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the kernel energy. For our two sensor prototypes, the only
difference is in the image acquisition kernel; all other kernels
are the same. Table 4.2 shows the energy costs of kernels
using external peripherals. As expected, the thermal sensor
consumes much more energy than the visual camera. It should
be noted that this energy already includes the overhead for
turning on the camera. In the case of the Lepton camera, this
start-up energy actually represents over 90% of the total cost.

The energy breakdown of the compiled application can
be seen in the right column of Table 4.1. The execution of
the CNN has a computational complexity of ∼50k multiply-
accumulate operations for each window in the input pyramid,
for a total of 16k windows for the 2×2 stride considered in
Section 4.7.2;∼7300 windows if we consider a bigger 3×3 stride.
For batteryless operation, we select the 3×3 stride since it has
lower processing needs.

Table 4.3 shows the energy necessary to perform the full
algorithm including the bulk of CNN computation as well as
the pyramid construction, the non-maximum suppression and
the final thresholding. These measurements were based on
running the kernels over 100 times. In the case of the CNN
kernels, they were executed over 1000 times. For all kernels,
we took the maximum measured energy.

Kernel Energy per Kernel [mJ]
Thermal Image Acquisition 131
Visual Image Acquisition 4.4
BLE Transmission 0.086

Table 4.2: Energy costs for kernels using external peripherals. Measurements
were done with VDD=2.8 V.

4.7.3 Partitioning Results

Once the energy requirements of the individual kernels are
known, we can proceed to choose the execution configuration.
We will evaluate three different algorithms to partition the
sequential head-counting application into bursts. We will
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Kernel Ekernel [mJ] Ntasks Esum [mJ]
Normalize 0.043 1 0.043
Initialize 0.003 1 0.003
CNN1 0.396 4125 1 633.5
CNN2 0.396 936 370.7
CNN3 0.403 391 157.6
Sort 0.010 1 0.010
NMS 0.006 1 0.006
Total head-counting 2 162

Table 4.3: Energy cost of processing kernels during one complete head-
counting application execution (3×3 stride). Measurements were done with
VDD=2.8 V @ 80 MHz.

compare Julienning to two fixed partitioning schemes: Single
Task and Whole Application. These partitioning schemes were
discussed in Section 4.5. In Single Task partitioning, each
kernel execution is assigned its own burst and state retention
is not optimized, meaning every burst will save and restore
all application data. With Whole Application, all kernels are
assigned to a single burst. Due to the image acquisition kernel,
which is the energy-dominant kernel in both versions of the
application, a minimum storage capacity of Eacquistion + Esave, is
required to acquire an image and save it in NVM reliably.

Figure 4.7 shows the results for the three partitioning
schemes in different figures of merit. Single Task partitioning
uses the lowest possible storage capacity, but due to its
inefficient state retention scheme, it will end up transferring
over 438 MB of data over its 5458 bursts. The energy overhead
ends up being larger than the application energy itself. Whole
Application minimizes the data overhead since everything is
executed within a single burst no state retention is necessary.
However, the overhead is actually the required storage
capacity. Since batteryless sensing systems are designed to
minimize storage capacity, Whole Application scheme is not a
scalable solution. Julienning is able to have the minimum
feasible storage capacity, like Single Task, and have a very low
data and burst overhead, similar to Whole Application. Since
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every kernel was specified with explicit data dependencies,
every burst loads the data required for its own kernels.
Furthermore, our optimization algorithm can group together
multiple kernels together such that all energy bursts are as
close a possible to the minimum storage capacity. In the end,
this reduces the number of bursts to just 16, as opposed to 5458
with Single Task. Boot-up and data overheads are only 2 mJ, or
less than 0.1% of the application energy.

Etotal [mJ]

Eoverhead[mJ]

Energy Storage (Qmin) [mJ]

Nbursts

2,292

1 · 10−3

2,292

1

4,680

2,388

131

5,458

2,294

2

131

16

Head-Counting from Thermal Images

Whole Application Singe Task Julienning

Figure 4.7: Figures of merit when partitioning the thermal head
detection application using three algorithms. Julienning was evaluated with
Qmax=131 mJ, or the largest atomic task. Results show that by splitting the
application into 16 optimized bursts, Julienning reduces energy storage by
more than 17× compared to Whole Application partitioning, and increases the
total energy by only 0.08%.
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Design Space Exploration

To further illustrate the flexibility of our Julienning method,
we now look at the design exploration of both the visual and
thermal head-counting applications. The energy characteriza-
tion of all individual kernels has been shown in Table 4.2 and
Table 4.3. In previous sections, we saw how basic partitioning
schemes are kernel-based. In other words, a certain number
of kernels can be grouped in the same burst. These fixed
kernel schemes were shown to be inefficient, leading either
to large data overhead or very large storage capacities. With
Julienning, we can select an energy burst bound (Qmax) and
it will find the partitioning that will minimize the total
application energy within that bound. In addition, Julienning
can find the minimum required energy storage capacity (Qmin),
which can be lower than the bound. These values depend on
several parameters including the weights of the kernels, the
data transfer costs, and the boot-up costs. In the following,
we will see how the Qmax parameter will impact the main
design metrics, namely: Etotal, Nbursts, and the Qmin. For each
application, each point at a given Qmax belongs to the same
solution.

Figure 4.8 shows the results from Julienning when applied
to the thermal (Figure 4.8(a)) and visual (Figure 4.8(b)) head
counting applications. The X axis is the Qmax used in
each optimization run. Each point represents the optimized
partitioning and its resulting Etotal, which includes boot-up,
data transfer and application energy. It should first be noted
that the visual application has a wider feasibility range. This
is due to the fact that the dominant kernel, the visual image
acquisition, requires relatively little energy. In the thermal
image version, the minimum required storage is already quite
high (131 mJ). As expected, the results show that as the storage
bound is increased, the total energy is reduced, and it levels off
when the entire application is executed within a single burst.

Figure 4.9 shows the design space exploration using Juli-
enning on the thermal (Figure 4.9(a)) and visual (Figure 4.9(b))
head counting applications. The X-axis is the Qmax used in
each optimization run, and the Y-axis is the optimal Nburst.
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(a) Thermal head counting design space.
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(b) Visual head counting design space.

Figure 4.8: Total energy obtained when applying Julienning to thermal and
visual head counting applications.

Once again, the visual application exhibits a wider feasibility
range due to its fine-grained kernels. This allows Julienning to
partition the visual application into 456 bursts, while incurring
an 875.6 mJ overhead. Nbursts decreases monotonically with
Qmax, which is expected as doing so reduces boot-ups and data
transfers. Once Qmax > Eapp + Eboot−up, the optimal Nbursts is
always 1.

Lastly, Figure 4.10 depicts the design space exploration
using Julienning on the thermal (Figure 4.10(a)) and visual
(Figure 4.10(b)) head counting applications. The Y-Axis shows
the normalized storage Qmin/Qmax as a function of the storage
bound (Qmax). The behavior here once again has the boundary
condition at Qmax = Eapp + Eboot−up. If Qmax is below this
threshold, Julienning is able to make full use of the storage
bound. This, however, strictly depends on the granularity of
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(b) Visual head counting design space.

Figure 4.9: Nbursts obtained when applying Julienning to thermal and visual
head counting applications.

the kernels. In both of our head counting applications, the
CNN’s constitute the vast majority of the kernels and when
added also dominate the total energy consumption. As such,
most energy bursts are very close in size. In other applications
which much greater variability, this would not be the case. If
Qmax is above the application threshold, then Qmin will always
stay the same.

4.7.4 Analysis of Partitioning Results

EMU-based designs are guaranteed to have reliable execution
thanks to the safely calculated storage capacity. In previous
chapters, we have seen applications which consisted of few
tasks whose energy costs were in the sub-mJ range. Here,
we face a more daunting challenge with a CNN-based head
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(a) Thermal head counting design space.
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(b) Visual head counting design space.

Figure 4.10: Normalized storage resulting from applying Julienning to thermal
and visual head counting applications.

detection application consisting of thousands of kernels and
consuming a few Joules. Burst-based execution follows a
traditional initialize-run-deinitilize cycle, as was shown in
Figure 2.4. Using Julienning, we automate the generation of
optimized code for batteryless operation.

Our optimization model takes as input the application
graph with data dependencies and energy costs. Our tool then
determines the partitioning which minimizes the total energy,
satisfying a storage capacity bound. This capacity bound can
be used by application designers to scan the entire design space
and easily prune the application graph of infeasible partitions.
Furthermore, Julienning can determine the storage device for
the optimal partition, which can be significantly below the
capacity bound.
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Our proposed methodology has been demonstrated with
two prototypes of the head detection system. They have very
different hardware requirements since the thermal version
uses a power-hungry infrared sensor, and the vision-based
uses a lower power device. The relative energy cost of these
kernels has a direct impact on the capacity reduction. In
our application, loading and saving has a low energy cost
compared to the actual kernels. This is due to both the low-
power FRAM as well as the power intensive convolutional
workload. Since kernels are executed atomically, the maximum
reduction is given by the following ratio:

max
{
Eload,i + Ekernel,i + Esave,i

}∑
i Ekernel,i

(4.18)

The numerator is the largest possible (single-kernel) burst,
and the denominator is the total application energy. For this
reason, the thermal application had a more limited feasibility
range than the visual application. It should be noted that if the
kernels are very small and Eload + Esave dominate burst energy,
single-kernel bursts will not be as energy efficient as multi-
kernel bursts with lower data transfers.

The generality of EMU-based designs allowed both head
detection systems to be developed independently from
transducer characteristics and guarantee reliable execution. In
fact, the only difference between them is the storage capacity
(i.e. capacitor size). We have seen how different capacity
bounds affect important figures of merit like energy overhead,
number of bursts and minimum storage. Thanks to Julienning,
arbitrarily long applications can be executed in reliable energy
bursts with optimized data transfers and minimized energy.

4.8 Summary

In this chapter, we have seen the design and implementation
of two head counting applications: one based on visual images
and another on infrared images. These applications were
implemented in a low-power platform with stringent memory
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constraints. To enable EMU-based batteryless operation,
we have developed Julienning, an optimization flow to
partition large sequential applications into energy bursts
with bounded size and minimized energy overhead. To
use Julienning, software must be specified using a data-flow
model with explicit data dependencies. Using experimentally
characterized energy costs, we transform the partitioning
problem into a shortest path problem, easily solvable in
polynomial time. Due to explicit data dependencies, Julienning
optimizes the data transfer for every burst, loading only the
data required for burst execution and saving only the data
required by future kernels. In batteryless systems, where
storage capacity needs to be minimized, Julienning can be
used to rapidly explore the design space of an arbitrarily long
sequential application. Using the thermal head detection as
a benchmark, our proposed methods can reduce the energy
storage by 17× compared to no partitioning, while incurring
less than 0.1% energy overhead.



5
Conclusion and Outlook

This chapter summarizes the contributions of this thesis and
outlines possible future research directions.

5.1 Contributions

The aim of this thesis is to show that reliable execution
of batteryless sensing applications is possible, even when
harvesting conditions are not compatible with sustained
system operation. Though the designer cannot directly control
how much energy is available, it is possible to control under
what conditions the application executes. By buffering small
amounts of energy, designers can control the operating voltage
and maximize the amount of work done per unit of energy. To
support these claims, we have proposed four main building
blocks and applied them to multiple vision-based sensing
systems.

Energy Management Unit (EMU)
The power generation of transducers depends on both their
size and their environment. Even large transducers can have
voltage and current ranges that are far below the requirements
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of low-power sensing systems. In these scenarios, it is
necessary to decouple the transducer’s voltage and current
from that of the load. Our proposed Energy Management
Unit (EMU) uses a boost-buck topology to effectively decouple
the source from the load. In doing so, it also allows for the
possibility to independently adjust the voltage of both the
source and the load. On the source side, the commercial
boost converters already implement maximum power point
tracking algorithms. The EMU efficiently builds up charge in a
small capacitor to predefined energy levels and supply the load
with a short, high power energy burst. By using an optimized
capacitor, the load can reliably execute power-hungry tasks of
up to 1 W even if the harvested power was intermittent, as long
as it can generate at least 20µW.

Dynamic Energy Burst Scaling (DEBS)
While Energy Management Units (EMUs) can efficiently
accumulate charge in dynamic and adverse environments, by
default they generate energy bursts of constant size and at a
constant supply voltage. In certain applications consisting of
a single atomic task with only one voltage requirement, this
configuration is enough for efficient operation and minimized
capacity. However, in many application circuits have external
peripherals like sensors, non-volatile memories and radios,
which can have very different operating voltage ranges. In
addition, applications composed of multiple atomic tasks can
be manually split into multiple tasks

Non-Volatile Memory Hierarchy (NVMH)
In many applications peripherals with very high initialization
costs can dominate an application’s energy requirements.
Long-term logging using Flash memory is just one example.
By using novel memory technologies such as FRAM, we can
form a Non-Volatile Memory Hierarchy (NVMH) that reduces
the average energy cost of storing data. We demonstrate
an important design trade-off between the average energy
cost per logged measurement and the minimum required
capacitance to reliably execute the logging application.



5.2. Possible Future Directions 133

Julienning
This optimization framework can be applied to batteryless
applications. The applications consisting of an arbitrarily long
chain of computational kernels can be automatically optimized
for minimal application energy, given a storage element bound.
Using a custom specification language, data dependencies
between finely-grained kernels can be accurately calculated
such that only the essential data is transferred between volatile
and non-volatile domains. Our optimization formulation
allows the designer to efficiently explore the design space of
batteryless applications to identify the Pareto front.

5.2 Possible Future Directions

Sensing systems offer the possibility of obtaining valuable data
from physical environments. Batteryless sensing systems can
do the same with unparalleled scalability thanks to a reduction
of monetary, environmental and maintenance costs brought
by using tiny storage elements. We have shown how vision
sensors, which are typically energy and data-intensive, can
effectively run many complex applications in a batteryless
fashion. In places where the presence of light correlates
with the presence of people, as is the case in many indoor
environments, batteryless vision sensors can play an important
role. There is, however, the need to identify other scenarios
where true deploy-and-forget batteryless systems can leverage
simultaneous availability of energy and information. Though
this thesis has introduced key building blocks in the design
and specification of such systems, much work can be done to
improve the responsiveness and efficiency in specific scenarios.

Improving cold-start
Cold-start is a critical phase of any harvesting-based system.
By definition, the energy harvested during this phase is not
transferred to the load, but it is used by the harvesting system
itself before entering a steady operating state. Electronically
speaking, it is difficult to design circuits that behave well
down to 0 V. Current designs clamp the transducer’s voltage
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at 330 mV and rely on there being enough current to charge
up internal capacitors. This charging phase is typically
inefficient and can lead to long charge times depending on
the storage element being used. Novel converter circuits are
necessary to increase the energy efficiency during this critical
phase. Systems with optimized cold-start would be much more
responsive, which could be a critical factor in highly dynamic
systems.

Multi-source harvesting

Up until now, all of our EMU designs have been single-
source. As we have seen, adding different types of energy
sources would increase the probability of harvesting more
energy. For example, a small weather station with a solar
panel and a windmill could, in theory, measure luminosity
and wind speed in a batteryless and self-sustainable fashion.
Building such a system and optimizing it for inexpensive and
efficient operation is challenging. AC and DC sources have
different needs in rectification, voltage conversion, impedance
matching and tracking. Pooling the energy is a single storage
might not always be the best option. Specialized circuitry will
then be needed for generating energy bursts from multiple
storage elements.

Dynamic energy management

Applications with multiple tasks and peripherals can have
multiple operating points. Not only can different tasks have
different voltage ranges, but their power consumption can
also be very different. The average active power (P̄load,active)
naturally depends on the individual power levels of different
tasks. When Pin << P̄load,active, the EMU can very efficiently
duty-cycle the load using energy bursts. However, if Pin ≈

P̄load,active the EMU can, for a moment, saturate its storage
element because it was executing a lower power task. When
this saturation happens, the boost converter shuts off and no
energy is harvested to protect the storage element. There
is no way to avoid this is the load is statically managed,
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meaning the order in which tasks are executed is constant.
The only way to avoid this saturation is to introduce some
level of power awareness, possibly by sampling the capacitor
voltage and estimating the input power. With this information,
a dynamic scheduler can choose an appropriate task such
that the load’s power is always higher than the input power.
Assuming Pin is always less than Pload,max, dynamic scheduling
can effectively guarantee that saturation never happens. For
the application to dynamically adapt its task execution, and
thus its power consumption, there needs to be a large enough
memory buffer such that the outputs of a particular task can be
stored. Input power awareness can also be useful to identify
low power scenarios. Assuming the load is compatible with
approximative computing, there is a correlation between result
quality and spent energy. A dynamic scheduler would then be
able to choose a lower quality result when energy is scarce.
In effect, this would allow a batteryless system to adjust its
service in quality and not just duty-cycle adjustment.
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