

Jonas Greutert

Abstraction and Implementation of
 predictable Packet Processing Systems

History

Date Version Remarks

2005-10-21 1.0 First complete Version, reviewed and corrected.

ii

iii

Abstract
Computers and other electronic devices are increasing con‐
nected with each other. Besides computers and servers, small
and low‐cost embedded systems, from simple sensor/actor de‐
vices to more complex control units, are added to networks.
While raw throughput is the main concern for most elements
and applications in a network, there is a class of increasingly
used devices with a different objective, namely predictable be‐
havior. For these devices the absolute number of packets proc‐
essed is less important than that specific packets are guaran‐
teed to be processed within set limits.
Today, the most important issues when developing these de‐
vices are:

 The computational capacity of embedded systems has in‐
creased at a much lower pace than the bandwidth of the
network: The computational capacity represents a bottle‐
neck. It does not have the capacity to process all arriving
packets at full line‐speed. This problem will even increase
in the future.

 It is difficult to model such systems with traditional real‐
time methods, as the input is unknown; we do not know

iv

when, how fast and in which order packets arrive at the
system.

 As there is no analytical model for such systems, it is diffi‐
cult to determine the required hardware performance.
However to develop hardware with the required function‐
ality at reasonable and competitive cost, it is necessary to
determine the needed hardware performance with an ana‐
lytical model. Without an analytical model and to stay on
the safe side, we would be compelled to overbuild the
hardware, which would lead to uncompetitive hardware
costs.

In this thesis we present a method that allows the develop‐
ment and implementation of predictable packet processing
systems on low‐cost hardware. The main components are:

 A model for low‐cost packet processing systems that can
be adjusted according to the intended use. Using this
model we can analyze and explore the system properties
and determine what hardware performance is required.

 A software platform that allows to transform seamlessly
the model to an implementation. The result is a predictable
packet processing system. The practical and analytical re‐
sults match closely.

Kurzfassung

Contents
 Introduction 1-1

1.1 Problem Statement 1-2
1.1.1 Review of a Typical Embedded Low-Cost System 1-3
1.1.2 Summary of Problem Statement 1-6

1.2 Related Work 1-7
1.3 Target and Results of Thesis 1-10
1.4 Outline 1-11

 Model 2-1
2.1 Demands on Model 2-1
2.2 Design of Model 2-5

2.2.1 Input Model 2-5
2.2.2 Application Model 2-15
2.2.3 Mapping Input to Application 2-22
2.2.4 Resource Model 2-25
2.2.5 Mapping Application to Resources 2-28

2.3 Summary 2-28

 Analysis 3-1

viii

3.1 Basic Calculations 3-2
3.2 Calculation Scheme 3-5
3.3 Exploration 3-9

3.3.1 Example System 3-10
3.4 Admission Control 3-16
3.5 Summary 3-16

 Mapping to Implementation 4-1
4.1 From Application Model to Implementation Model 4-2

4.1.1 Task Instances 4-3
4.1.2 Annotation of Instance Information 4-13

4.2 Scheduler and Path-Threads 4-16
4.3 Source Flow 4-17
4.4 Summary 4-19

 Software Platform RNOS 5-1
5.1 Elements of RNOS 5-3

5.1.1 Tasks and Task Graphs 5-4
5.1.2 Packets 5-13
5.1.3 Flows and Path-Threads 5-19
5.1.4 Source Flows and Source-Thread 5-22
5.1.5 Scheduler 5-24
5.1.6 Summary 5-27

5.2 RNOS Integration with the RTOS 5-30
5.3 RNOS: A higher Level Programming System 5-31
5.4 Advanced Features of RNOS 5-33

5.4.1 Virtual Tasks 5-33
5.4.2 Instrumentation 5-35

5.5 Schedulability Region of RNOS 5-36

ix

5.5.1 Overhead 5-36
5.5.2 Throughput 5-39
5.5.3 Delay 5-42
5.5.4 Conclusion 5-56

5.6 Analysis with Network Calculus 5-57
5.6.1 Example Analysis: Worst-Case Packet Delay 5-59

5.7 Summary 5-64

 Example: Implementation & Measurements 6-1
6.1 System Description 6-2

6.1.1 Hardware Platform 6-2
6.1.2 Real-Time Operating System 6-3
6.1.3 Service Curve 6-5
6.1.4 Application 6-6
6.1.5 RNOS Attributes 6-8
6.1.6 Scheduleability Region of Example Implementation 6-18

6.2 Scenarios 6-20
6.3 Summary 6-23

 Conclusion 7-1

Introduction
As network infrastructure is becoming more widely available
at reasonable cost, the number of applications using it is rap‐
idly increasing. Packet processing takes place in all compo‐
nents of the network infrastructure and in all related applica‐
tions. Packet processing can be defined as a set of tasks that
are performed on a packet within a system from the time a
packet is received or created, until it is transmitted or con‐
sumed.
While for most elements and applications in a network the raw
number of packets that can be processed per second is the
main concern, there is a new class of devices with different ob‐
jectives. Small embedded devices, that have simple architec‐
tures and low performance, are deployed in large numbers.
These are gateways of any type and small sensor/actuator de‐
vices connected to a network that provides a variety of ser‐
vices. Although these devices do not have a high packet proc‐
essing capacity, they are often required to process specific

1-2

ʺVIPʺ (Very Important Packets) packets in real‐time. That
processing deadlines for specific packets are kept is more im‐
portant than total packet throughput. Just being faster is less
efficient than giving certain predefined packets preferential
treatment. Typically, these devices are low cost and are built
around a standard communication controller, i.e. they do not
contain a highly specialized network processor. Packet proc‐
essing is usually only a part of their task, although critical with
respect to predictability.
This thesis focuses on the analysis, exploration and implemen‐
tation of the packet processing part in low cost embedded de‐
vices with the requirement of predictable behavior.

1.1 Problem Statement
A rule of thumb says that you need a 2 MHz CPU to process a
1 MBit/s packet stream. Today, the widely used physical line
rate is 100 MBit/s and interfaces with a physical line rate of 1
GBit/s are currently being adopted by PCs. On the other hand,
typical embedded systems with network attachment contain a
communication controller running from 20 MHz to 100 MHz.
Therefore, low cost embedded systems are not capable of
processing the full line rates. Section 1.1.1 describes a typical
embedded low cost system and provides some measurement
results.
A typical requirement is that a system is capable of processing
a certain packet rate within a timeframe. Other packets that ar‐
rive at an input are processed as available resources allow.
However, as the arrival time of packets is unknown, it is very
difficult to model and implement systems that can give hard
real‐time guarantees. Traditional methods of real‐time com‐
puting are difficult to apply, as the arrival of input and the

1-3

availability of resources are not known in detail. Probabilistic
methods do not give hard real‐time guarantees and are best
used to get results about average behavior. We need a model
that is able to capture the unknown input and resources to cal‐
culate the processing requirements. This model must allow for
the analysis and exploration of systems as well as provide a
base for an efficient implementation.

1.1.1 Review of a Typical Embedded Low-Cost System

Typical embedded communication controllers consist of a core
CPU, a bus interface unit and several physical interfaces, e.g.
serial or Ethernet interfaces. A DMA controller takes care of
transporting the data to and from the interfaces via bus inter‐
face unit to an external memory. The core CPU processes data
packets in the external memory. Therefore, the core CPU and
the DMA controller share the external memory. The bus inter‐
face unit has a bus arbitration protocol that controls the access
to the external bus and memory. An example block diagram of
such an embedded communication controller is shown in
Figure 1‐1.

1-4

��������
�����		��

���
���

����

���
���

��	������

����

��	������
���

��	������ ��	

��������� ��	

��	
��������

������� ��	

������

��������

���

������

��������

���

����
����������

Figure 1-1: Block Diagram of a typical Embedded Communication Controller

A simple function of such an embedded communication con‐
troller is collecting information on one interface, processing
this information and forwarding it to another interface. As the
clock frequency of such a system typically is between 20 MHz
and 100 MHz, the system is not capable of processing packets
at full line rate (assuming that we have two Ethernet interfaces
with a maximum line rate of 100 Mbit/s each). Figure 1‐2 de‐
picts the result of a throughput measurement of a simple IP
forwarding application on such a system1. It is not capable of
full speed forwarding for small packet sizes. The number of
packets that can be processed is limited by the power of the

1 50MHz PowerPC CPU with commercial RTOS.

1-5

communication controller up to a certain packet size. From
there on, the limiting factor is the line rate. The formula to es‐
timate the achievable throughput p is given in (1.1).

 max() min(,)liner
p s r

s
= , (1.1)

where s is the packet size in bytes, rmax is the maximum for‐
warding rate in packets per second and rline is the maximum
line rate in bytes per second.

����

����

����

����

����

�����������������������

	
���� 	� �����

	
��� ���

������ �� ����� ������ �� 	�����
� ���

��� �������

Figure 1-2: Measured throughput in packets per second for different packet sizes

In the interval in which the throughput is line rate limited,
well‐known algorithms (e.g. [1, 2]) and standards (e.g. [3‐5])
can provide the requested quality of service. In the interval in
which the throughput is limited by the system, it is required to
schedule resources such that the requested quality of service
or real‐time behavior can be guaranteed. Not all packets can

1-6

be processed; some packets may be dropped without penalty,
while other packets must be processed with minimal delay or
within hard real‐time constraints. As the arrival of packets is
unknown, it is very difficult to create a scheduling algorithm
that is not excessively conservative, i.e. always assumes a
worst case arrival of packets. The following example shows
that it is not feasible to assume a constant worst case arrival of
packets: Assume that there are packets with hard real‐time
constraints. These packets are specified to arrive at an average
rate of 50% of the forwarding capacity of the system. How‐
ever, in worst case the packets can also arrive in bursts at line
rate (the average rate will still be the same). The conservative
scheduler would not allow processing any other packets, as a
burst of real‐time packets could arrive anytime and all re‐
sources must be ready for those packets.

1.1.2 Summary of Problem Statement

 Small, low‐cost embedded systems do not have enough re‐
sources to process packets at line rate.

 It is difficult to use traditional scheduling and modeling
methods for hard real‐time systems as the input to the sys‐
tem (arrival of packets) is unknown.

 A system state based on the continual assumption of the
worst‐case scenario is not a viable base for a scheduling al‐
gorithm.

 Packet processing has to share the resources with other
(real‐time) applications that run on the system.

1-7

1.2 Related Work
A lot of focus has been put, and is being put on research for
high‐performance core and edge‐network devices. The re‐
search objective is mainly processing power, that is, the num‐
ber of packets per second that can be processed, and the exten‐
sibility of those systems. The issues addressed are optimal de‐
sign, new architectures, better algorithms and implementation
methods and tools (see e.g. [6‐10]). Some of the results ob‐
tained there are also applicable to our target domain, the
small, low‐cost packet processing devices with predictable be‐
havior.
Several operating systems, middleware components and
frameworks that solve various issues in packet processing sys‐
tems have been developed. Some focus on improving systems
on a macro‐level, e.g. the receive livelock problem [11‐13],
while others focus on extensibility [6, 14‐16], traffic manage‐
ment [17‐19], protocol implementation [20, 21] or resource
scheduling [7, 22‐24]. None of the above results can cover the
requirements for low‐cost and predictable packet processing
systems. However, they contribute to the content of this thesis
in one or the other way.
x‐kernel [20] is an object‐oriented framework for implement‐
ing and composing network protocols (stacks) on end‐systems.
It is one of the first frameworks that provided the idea of com‐
posing network protocol stacks based on small, self‐contained
objects. Scout OS [21] is derived from x‐kernel and provides a
communication oriented abstraction called “path”. A path de‐
fines the sequence of processing functions that are executed
when data (packets) is moved through the system. Each path
runs in its own thread. Therefore, explicit paths can be used to

1-8

improve resource allocation and scheduling [22]. In summary,
Scout OS is a soft real‐time system that provides admission
control with respect to CPU load and memory, but does not
provide mechanisms to calculate backlog and delay of indi‐
vidual flows. The router plugin system [16, 25] was designed
to make IP routers extensible and provide a base for active
networks [26]. A router plugin is a special software module
that is executed based on the results of the classification of a
packet. There are fixed points in the IP forwarder path at
which such router plugins can be executed. Router plugins
provide an efficient implementation for the extension of IP
routers. However, they are highly specific to IP forward‐
ing/active network nodes. Click [13, 14] provides a software
architecture to build routers. In Click, routers are composed
from (small) packet processing elements, which is a natural
way to design networking applications. Click however lacks
the concept of flows and does not provide any mechanism to
schedule the available resources. Vera [7] is an extensible
router architecture that uses a notion of paths similar to Scout
OS [22] but with the focus on distributed resources. Resources
are assigned and reserved to/for paths to satisfy quality of ser‐
vice reservations. However, Vera cannot provide hard real‐
time guarantees.
A concept, that provides QoS to certain flows in a software
based router while optimizing the throughput for best effort
traffic, has been described in [23]. Although the concept is
based on scheduling the CPU resource, it does not provide any
real‐time guarantees. An Estimation‐based Fair Queuing
(EFQ) algorithm that is used to schedule processing resources
has been described in [24]. It also contains a concept for online
estimation of processing times and an admission control. A
computation framework for extensible network routers has

1-9

been proposed by [27]. It concentrates on isolating the per‐
formance and integrity of the core router while providing ex‐
tensible computation capabilities. It uses explicit flow contexts
and an explicit resource reservation model for scheduling to
provide soft real‐time guarantees and fairness for using excess
capacity.
However, all of these frameworks and architectures cannot
provide real‐time guarantees.
In summary, there are solutions available for various issues in
software based routers. A unifying approach for small em‐
bedded devices that enables a formal analysis as well as an
implementation that matches the predicted behavior is miss‐
ing.

1-10

1.3 Target and Results of Thesis
The target of this thesis is to provide a method to build pre‐
dictable packet processing systems on small, low cost hard‐
ware. In detail this thesis contributes:
1. A model that is well suited for the modeling of such sys‐

tems and their environment.
2. An analysis system that allows exploring the properties of

the modeled system and the application scenarios.
3. A method to map the model to an implementation
4. A software platform that supports the mapping to the im‐

plementation.

The concrete results of the thesis are:

 An easy to use model that allows to capture applications
for packet processing, the (unknown) arrival of input, the
real‐time requirements and the resource of a single CPU
low cost communication controller.

 A procedure to analyze, explore and test the system prop‐
erties based on the model.

 The software platform RNOS (Real‐time Network Operat‐
ing System) that allows a seamless implementation of an
application previously defined by the model.

 A sample implementation of a system based on RNOS,
which proves that the implementation results match the
analytical results.

In essence, it allows to build predictable packet processing sys‐
tems on low cost hardware.

1-11

1.4 Outline
Thesis structure:

Chapter 2 introduces the model that is used throughout this
thesis.

Chapter 3 presents the analysis of systems that are based on
the model of this thesis.

Chapter 4 discusses the mapping of the model to an imple‐
mentation.

Chapter 5 presents RNOS, which is a software platform to im‐
plement systems based on the model of this thesis.

Chapter 6 presents and discusses a sample implementation of
RNOS, its properties and the measurement results.

Chapter 7 concludes the thesis with a summary and review of
the results, and provides starting points for further research.

Part of the outline is shown (graphically) in Figure 1‐3. It also
depicts the overall design flow to implement predictable low
cost packet processing systems.

1-12

�����

����	

��	������

����	

��������

����	

������ ������

Model Analysis Method

���	������

�������� ������	

Implementation Model

Concrete Implementation

����
��	������ ����	 �� ���	��������� ����	

��� ������� ������������������������

������ � ������	��

������ ������ �� ���	��������� ����	 �	������
�� � !� �	������

�������� ���	��������� "��� �� � !�

Ch
ap

te
r 2

Ch
ap

te
r 3

Ch
ap

te
r 4

Ch
ap

te
r 5

Ch
ap

te
r 6

RNOS - Realtime Networking Operating System

�����������

Figure 1-3: Outline of the thesis

Model
This chapter describes the model that later is used in the
analysis and the implementation of low cost embedded packet
processing systems. In the first part of this chapter, the de‐
mands on such a model are discussed and some specific terms
are defined in the context of this thesis. The second part of this
chapter presents the model itself.

2.1 Demands on Model
The model must be able to capture the domain specific charac‐
teristics that apply to a single network element. These are the
input, the processing requirements of the input, the definition
of the application and the available system resources.

2-2

Input
The input is defined as packets that arrive at the system. Pack‐
ets belong to a flow (see Definition 1), for which there might
be a service level agreement (SLA, see Definition 3) including
quality of service parameters (see Definition 2) and a traffic
profile (see Definition 4). The model must also be able to cap‐
ture packets that belong to an unspecified flow or have no ser‐
vice level agreement or quality of service parameters.
By measuring a flow’s actual traffic profile, it is possible to
verify whether a flow is within the predefined limits. Such a
verification is done by a policer. A traffic source might use a
shaper to make sure that the traffic is within the specified
bounds.

Processing Requirements
The processing requirements for packet flows can be extracted
from end‐to‐end quality of service parameters and depend
mainly on the application’s tolerance to delay. Real‐time ap‐
plications need specific data by a certain point in time; if data
arrives late, it is useless. Elastic applications will wait for
packets for a certain amount of time.

Application
The application consists of functions that process packets.
Each packet is required to be processed within a limited
amount of time before it leaves the system or is consumed.
Packets of the same flow do not necessarily pass the same
processing functions. Typically, there is a common reception
and classification function for all packets. Only after the execu‐
tion of that function, it is clear to which flow a packet belongs.

2-3

It is important to understand that the packet processing may
only represent a small part of the complete system. Interfaces
connect the packet processing part with other applications of
the system.
In contrast to many other application domains (e.g. signal
processing), no recurrent or iterative computation takes place
that manipulates a fixed input data set throughout the lifetime
of the computation. Here, the packet itself and the current
state of the system dynamically define what functions are to
be computed.

System Resources
The main parts of a low cost embedded packet processing sys‐
tem are a CPU, memory and network interfaces. These ele‐
ments put constraints on the actual packet processing capacity:

 The network interfaces define the maximum bandwidth
for receiving or transmitting packets.

 The memory defines the maximum number packets that
can be queued.

 The CPU sets the maximum processing speed.
The bus bandwidth between the memory, the CPU, and the
DMA controllers represents an additional constraint to packet
processing speed, as the memory is shared between the CPU
and the DMA controllers. DMA controllers transfer the pack‐
ets from and to the network interfaces. If execution of instruc‐
tions is stalled due to DMA transfers, the available processing
power of the CPU is reduced.

2-4

Definition 1

Flow A flow is a set of packets that display common prop‐
erties within the data they contain. Typically, these
are the incoming interface, ranges of source and des‐
tination IP addresses, transport protocol and ports or
port ranges. Therefore, a flow may consist of an ag‐
gregation of packets from different applications or
transport layer sessions.

Definition 2

QoS The performance properties of a network service.
May include such parameters as throughput, transit
delay and priority.

Definition 3

SLA A service level agreement (SLA) is a contract be‐
tween a network service provider and a customer
that specifies, usually in measurable terms, what
services with which performance properties (QoS)
the network service provider will provide. Besides the
description of QoS parameters and assigned flows,
an SLA may also include specifications of network
availability, help desk, etc.

Definition 4

Traffic Profile A traffic profile shows whether traffic of a flow is in
compliance with the specified requirements or not.

2-5

2.2 Design of Model
The model proposed in this thesis consists of several parts.
There is an input model, an application model and a resource
model. Then there are the mappings between these parts,
namely a mapping that connects the input with the application
and a mapping that connects the application with the re‐
sources (see Figure 2‐1).

Input
Model

Application
Model

Resource
Model

Mapping Mapping

Figure 2-1: Model overview

2.2.1 Input Model

To provide any form of real‐time behavior in the processing of
packets on a per flow basis, packet arrivals from any flow
need to be bounded in some way. There are various means of
providing bounds on the incoming traffic profile. In this thesis,
we concentrate on worst‐case deterministic bounds. The fol‐
lowing two models are the most commonly used to define
traffic profiles [4, 30].

(σ, ρ) model: The (σ, ρ) model is defined by its two parame‐
ters, σ and ρ. σ describes the maximum burst size and ρ de‐
scribes the long‐term maximum rate. This is equivalent to the
token bucket model as shown in Figure 2‐2. The bucket is con‐

2-6

tinuously filled at rate ρ using tokens, which represent units of
bytes, up to the level σ, the size of the bucket. Initially, the
bucket is filled up with tokens and traffic is allowed to pass
the token bucket if there are a sufficient number of tokens in
the bucket to match the passing tokens, i.e. that the number of
tokens in the bucket has to be equal or higher than the length
in bytes of the next packet. With each packet passing the to‐
ken bucket, the number of tokens in the bucket is reduced by
the length in bytes (=number of tokens) of the packet. If there
are not enough tokens available, the packet has to “wait”.

������ ���	
�

�	�� ���� ρ

	 ������ 	� ����

������ ��� ������������ ������

�	�� �	�� σ

������� ���	�

������ �� ����

������� ��� ���� ����

	 ������ ������ ��� �
�	�����

�������

Figure 2-2: Single Token Bucket

The (σ, ρ) model is an input model in the sense that the output
of a single token bucket is conformant to the input model.

2-7

Token buckets cannot only be used to shape traffic, they can
also be used to check conformance of traffic (if a packet has to
“wait” for more tokens the traffic is non‐conformant) and to
police it (drop packets that would have to “wait” for more to‐
kens). The difference between shaper, policer and confor‐
mance checker is a possible queue in front of the token bucket
(in case of a shaper) and the action that is performed when not
enough tokens are available for the packet to pass (mark
packet as non‐conformant for conformance checker, drop
packet for policer, wait in queue for shaper).

TSpec: The TSpec model was introduced in the context of QoS
reservations on the Internet. Essentially, the TSpec model con‐
sists of two token buckets, as shown in Figure 2‐3.
The parameters of the TSpec models are a token bucket with a
token rate r and a bucket size b, and a second token bucket
with rate p (peak rate) and a bucket size M (maximum packet
size), and a minimum policed unit m.
Either the maximum throughput of a packet processing sys‐
tem is limited by the network interface bandwidth or by the
number of packets per second it can process. For those sys‐
tems, that are limited by the number of packets per second
they can process, the minimum policed unit m helps in bound‐
ing the maximum number of packets per second, see (2.1).
Without the term m, a system would have to assume that
every flow is sending minimum‐sized packets. With the term
m, a packet that has a size equal or less than m is treated as a
packet of size m. Obviously, m must be less or equal to M.

 (max)
packet

p
r

m
= (2.1)

2-8

������ ���	
�

�	�� ����

	� ������ 	� �����

������ ��� ���������� ������

�	�� �	�� �

������ ���	� ������

���� ���� ������ �� ���

������ ��� ��� ����

	� ������ ������ ��� �
�	����� 	� ���� �������

������ ���	
�

�	�� ���� �

	� ������ 	� �����

������ ��� ���������� ������

�	�� �	�� �

������

Figure 2-3: Dual Token Bucket for TSpec

The deterministic bounds on traffic flows considered in this
thesis are based on network calculus [30, 31]. The two traffic
profile models presented before can be easily translated to this
algebra. Definition 5 and Definition 6 give the basic mecha‐
nism to capture traffic profiles in our model [32].

2-9

Definition 5

Arrival Function The arrival function af(t) of a packet flow f is defined
as the number of bytes or packets belonging to the
flow that have arrived at a defined place in time in‐
terval [0,t]. Whether af(t) refers to the number of
bytes or the number of packets is either specified, or
apparent within the context.

Definition 6

Arrival Curve α l(∆) is the minimum number of bytes or packets of
the same flow that arrive in any given time interval
∆. Similar, α u(∆) is the maximum number of bytes
or packets of the same flow that arrive in any time
given interval ∆. Whether α l(∆) and α u(∆) refer to
the number of bytes or the number of packets is ei‐
ther specified, or apparent within the context.

The upper and lower arrival curves specify the upper and
lower bound for arrival of the number of bytes or packets in
any time interval.
Depending on the actual function that is executed in the sys‐
tem, the load is dependent on the number of packets or the
number of bytes (size of packets). Most packet processing
functions have a per‐packet resource demand and are more or
less independent on the packet size. Typical functions that are
dependent on the packet size are encryption, compression and
the processes that receive and transmit packets2.

2 For systems that do not use a DMA controller to transfer packets
from/to memory.

2-10

The (σ, ρ) model and the TSpec can be easily translated to ar‐
rival curves with packets as unit. (2.2) and (2.3) give the upper
arrival curve for a (σ, ρ) model and a TSpec. Figure 2‐4 and
Figure 2‐5 show their graphical representation. For the (σ, ρ)
model, m is the minimum packet size. For the TSpec, it is the
minimum policed unit, as defined by the TSpec.

 ()u

m m
σ ρα ∆ = + ⋅ ∆ (2.2)

 () min ,u pM b r
m m m m

α ⎧ ⎫∆ = + ⋅ ∆ + ⋅ ∆⎨ ⎬
⎩ ⎭

 (2.3)

�������

Figure 2-4: (σ, ρ) model as upper arrival curve

2-11

M/m

b/m

�������

Figure 2-5: TSpec as upper arrival curve

In truth, the arrival curves would look like an integer (dis‐
crete) curve (a packet can be processed only if it has arrived
completely), but to simplify calculations, we use the upper en‐
velop of the steps.

Examples
Assume that we have a constant rate packet source some‐
where in the network. The service level agreement defines a
maximum jitter j that is introduced by the network. From this
information we can create the arrival curves as follows:
First we create the arrival function, see Figure 2‐6. The maxi‐
mum jitter j defines the duration at which packets might arrive
back‐to‐back, resulting in a burst of packets at line rate.
Second, we create the lower and upper arrival curve thereof
(see Figure 2‐7). The lower and upper arrival curve satisfy the
inequality given in (2.4).

 () () () (), , , where 0l u

f ft s a t a s t s s t s tα α− ≤ − ≤ − ∀ ≤ ≤ (2.4)

2-12

For any ∆ ≥ 0, ()lα ∆ ≥ 0 and (0)lα = 0. Therefore, ()lα ∆ gives
the lower bound on the number of packets that can arrive
within any time interval ∆. ()uα ∆ gives the corresponding up‐
per bound.
Given the arrival function, lower and upper arrival curve can
be computed using (2.5) and (2.6).

 { }
0

() inf () ()l
f ft

a t a tα
≥

∆ = ∆ + − (2.5)

 { }
0

() sup () ()u
f f

t
a t a tα

≥
∆ = ∆ + − (2.6)

t
1

b+rt

b

packets at line rate

�������

a
f
(t)

j

Figure 2-6: Arrival function for constant rate packet source with network jitter

2-13

1

b

packets at line rate

�������

j

Figure 2-7: Arrival curves for constant rate packet source with network jitter

Internal “input”, namely packets generated by an application
or as part of a protocol, is modeled identically. If nothing is
known about the incoming traffic on a physical port, we have
to assume the worst case, namely packets arriving using the
entire bandwidth and the packets being of smallest possible
size. Figure 2‐8 depicts the resulting arrival curves.

1

�������

Figure 2-8: Arrival Curves for smallest packets back-to-back on line

2-14

Definition 7 defines the input of our model. It is based on
flows which are specified by arrival curves and a processing
requirement (quality of service parameter) in form of a dead‐
line (Definition 8). For non real‐time flows, the deadline can be
infinite. The deadline of a flow is used to prioritize a flow over
other flows. Alternatively, fixed priorities for flows can be
used.

Definition 7

Input The input to the system is a set of flows f ∈ F. Each
flow f has an associated lower arrival curve ()lα ∆
and upper arrival curve ()uα ∆ . These curves are the
lower and upper bound for the arrival of packets of
that flow. Additionally, each flow has an associated
processing requirement in form of a (possibly infi‐
nite) deadline.

Definition 8

Deadline The deadline of a flow is a relative deadline. The ab‐
solute deadline can be calculated by adding the time
when a packet of a flow enters the system and the
relative deadline. The relative deadline is specified as
an absolute value in e.g. milliseconds.

In summary, the proposed input model consists of flows
whose traffic profiles are specified by an upper and lower ar‐
rival curve. Further, the processing requirement in form of a
(relative) deadline or a fixed priority specifies how packets of
each flow shall be treated, i.e. if they are part of a real‐time
flow or not.

2-15

2.2.2 Application Model

The application model defines the required functionality of the
packet processing part of the system. We have to be aware
that other applications may also run on the system. Therefore,
the model must also be able to interface with these applica‐
tions.
To be useful, the application model has to be easy to use, i.e. it
must be optimized to model packet processing applications.
The application model proposed in this thesis is based on the
fact that typical packet processing applications can be parti‐
tioned into small individual processing units which we will
call tasks. In addition, the application model is based on the
notion of events, e.g. a packet has been received or a timer
elapsed. The combination of these concepts leads to a model
where each event in the system has its own “program” that is
triggered for execution when the event occurs. These “pro‐
grams” consist of tasks.

Tasks

Tasks are non‐preemptive execution blocks of code. Packets
are received and delivered through at most one input and an
arbitrary number of outputs, respectively. When a task exe‐
cutes, it takes the packet from the input, processes it and, de‐
pending on the content of the packet, puts the packet on ex‐
actly one of its outputs. There are three types of tasks: The
tasks we just discussed (normal tasks), source tasks and sink
tasks. Figure 2‐9 shows the different types of task.
A source task has no inputs and will receive its packets from a
driver, e.g. from an Ethernet driver, or create packets itself,
e.g. based on an event that elapsed.

2-16

A sink task has no outputs and will either consume the packet,
pass the packet to a driver for transmission, e.g. to the
Ethernet driver, or pass it to another application mode, e.g. by
the socket interface.
Source and sink tasks are also the interface to applications
which implementations are not based on the model of this the‐
sis.

������ ���	 ���	 �
�	 ���	

�� �����
�� �� �����
��
Figure 2-9: Tasks types

The different tasks are generally self‐contained and independ‐
ent of each other. However, they assume a packet of a given
type as input. For example, a tasks that forwards IP packets
based on a forwarding table expects an IP packet at its input.
Therefore, only tasks that output IP packets may be connected
to the input of the IP forwarder task. In order to connect the
output of a task with the input of another task the packet type
has to match, i.e. the packet type that is sent to the output has
to be the same as the packet type the connected tasks expects
at its input.
Any task can consume a packet and therefore become dynami‐
cally a sink. An example is the IP reassembly task, which con‐
sumes as many packets as are needed to reassemble a com‐
plete packet.

2-17

The worst‐case and best‐case execution times of each task need
to be known, either by formal analysis [33], by simulation in
case of soft real‐time constraints [34] or by measurement (see
Chapter 6).
The model does not say anything about the granularity of the
tasks. Later we will see that the granularity of the tasks has an
influence on the throughput and delay.

Definition 9

Task A task t has at most one input and n outputs. A task
t with no input is called a source task. A task t with
no output is called a sink task. A task takes a packet
from its input, processes it, and puts it on one of its
outputs. A source task creates the packet itself or gets
the packet from a driver/other application. A sink
task consumes the packet or forwards it to a
driver/other application. Each task may become dy‐
namically a sink task. Each task t has a worst‐case
(upper) execution time ue and a best‐case (lower)
execution time le .

Task Graph

A total application contains a set of task graphs, which consist
of connected tasks. In particular, each output of a task is con‐
nected to one input of another task and for each packet source
there is a task graph with a source task at its root. The task
graph is a connected, directed and acyclic graph. An applica‐
tion consists of as many task graphs as there are packet
sources.

2-18

Each output of a task is connected to exactly one input of an‐
other task. An input of a task may be the destination of several
outputs of other tasks. A packet will traverse the task graph
from the source to a sink. The source task will receive a packet,
e.g. from the Ethernet, process it, and, depending on the con‐
tent of the packet, pass it to one of its outputs where it is re‐
ceived and processed by the subsequent task. A packet will
follow exactly one path when it traverses the task graph.

Definition 10

Task Graph A task graph T is a connected, directed and acyclic
graph. It consists of a set of task nodes ti with exactly
one source task tsrc , the node without in‐edges, and
at least one sink task tsnk , a node without out‐edges,
and a set of directed edges, which connect the out‐
puts of the tasks with the input of other tasks. An in‐
put of a task may be the destination of several out‐
puts of other tasks.

Definition 11

Application A complete application consists of a set of task
graphs. The number of task graphs is equal to the
number of packet sources in the system. A packet
source can be an internal source, an interface to an
application part that is not part of this model or an
external source, e.g. a network interface.

2-19

Figure 2‐10 shows a simplified task graph for packet reception
in an IP router. The task graph is simplified as it only shows
the paths for IP packets. The complete application consists of a
number of such graphs, one for each packet source.

eth-m
ac-rx

ip-header-check

nat-rx

classifier-in

acl-in

ip-forw
arder

ip-reassem
bly

ip-rx

classifier-out

acl-out

nat-tx

ip-fragm
entation

eth-m
ac-tx

udp

socket

tcp

socket

Figure 2-10: Simplified task graph for packet reception that contains three paths

Often, there are task graphs with no forks, i.e. simple se‐
quences of tasks. Figure 2‐11 shows a task graph that handles
voice over IP data packets received from a DSP.

from
-dsp

packetizer

rtp-tx

udp-ip

ip-forw
arder

classifier-out

acl-out

nat-tx

ip-fragm
entation

eth-m
ac-tx

Figure 2-11: Task graph from DSP to Ethernet

2-20

Figure 2‐12 shows a more complex task graph, which adds IP
security support to the simple task graph of Figure 2‐10. The
tasks esp‐en, esp‐de, ah‐en, and ah‐de are collapsed into a single
task. As an example, the non‐collapsed version of the task esp‐
de is shown in the picture. As this task graph shows, it is pos‐
sible to have the outputs of several tasks connected to the in‐
put of the same task. The task graph is still a directed acyclic
graph. However, it is not allowed to have loops. This is why
the task graph in Figure 2‐12 contains the identical task ip‐
forwarder three times. There are several possibilities to draw a
task graph. Equivalence between task graphs can be tested us‐
ing Theorem 1 (see next section).

2-21

eth-m
ac-rx

ip-header-check

nat-rx

classifier-in

acl-in

ip-forwarder

ip-reassembly

ip-rx

classifier-out

acl-out

nat-tx

ip-fragmentation

eth-mac-tx

udp-rx

socket

tcp-rx

socket

ipsec-intercept

ip-forwarder

classifier-out

acl-out

nat-tx

ip-fragmentation

eth-mac-tx

esp-rx ah-rxisakmp

esp-de

ah-de
socket

ip-forwarder

ip-reassembly

ip-rx

udp-rx

socket

tcp-rx

socket

policy-manager

esp-en

ah-en

ip-tx

esp-rx-pre

authentication

esp-rx-inter

decryption

esp-rx-post

header-check

header-insert

Figure 2-12: Simplified task graph for packet reception with IPSec support

2-22

In summary, the application model consists of multiple, di‐
rected and acyclic task graphs. The tasks of the task graph are
non‐preemptive execution blocks that have one input and can
have several outputs. The input and output data of a task are
packets.

2.2.3 Mapping Input to Application

We have a model for the input and a model for the applica‐
tions. What is missing is the connection between the two.
Each packet in the system is associated with a flow. A flow has
associated arrival curves and parameters from the service level
agreement. Applications are made of task graphs. Each packet
source in the system has an associated task graph. Therefore,
packets that arrive at a specific source will traverse the same
task graph.
Each flow is mapped to the task graph that contains the source
task for this flow (where packets will arrive or will be created).
For some flows we might be able to exclude some branches of
the tasks graph. Therefore, the mapping is not to a complete
task graph but to a set of paths through a task graph. A path is
a sequence of tasks, starting at the source task and ending with
a sink task. Figure 2‐13 depicts a path p through a task graph,
p = (eth‐max‐rx, ip‐header‐check, nat‐rx, classifier‐in, acl‐in, ip‐
forwarder, ip‐reassembly, ip‐rx, udp, socket).

2-23

eth-m
ac-rx

other
ip-header-check

nat-rx

classifier-in

acl-in

ip-forw
arder

ip-reassem
bly

ip-rx

classifier-out

acl-out

nat-tx

ip-fragm
entation

eth-m
ac-tx

udp

socket

tcp

socket

Path p

Figure 2-13: Path through a task graph

Definition 12

Path A path is a sequence of connected tasks of a task
graph T. It starts with the source task and ends with
a sink task of the task graph T.

A task graph T contains a set PT of paths pj ∈ PT. Each path
starts with the same source task of T (there is exactly one
source task in every task graph). The maximum number of
task paths through a task graph can be computed using
Algorithm 1.
With each task graph T, a set FT of flows fk ∈ FT is associated,
i.e. those flows from which packets may enter the task graph
via its source task.
With each flow fk ∈ FT associated with task graph T, a set Pf of
paths is associated, where Pf ⊆ PT. The set Pf contains all the

2-24

paths through the task graph T a packet of flow fk might trav‐
erse.

Algorithm 1: Counting paths through a task graph

01 path_counter = 0;
02 for each sink task ts in task graph T
03 call traverse_and_count(ts);
04
05 // path_counter now contains the number of paths
06 // through the task graph T
07
08
09 traverse_and_count(task t)
10 {
11 if (t is a source task)
12 path_counter++;
13 else
14 for each previous task tp of t
15 call traverse_and_count(tp);
16 end if
17 }

Definition 13

Mapping of Flows
 To each flow f a set of paths p ∈ Pf is assigned. These

sets are made up of the sum of all paths through the
task graph T, which could potentially be traversed by
a packet of that flow. If PT is the set of all paths
through the task graph T, Pf ⊆ PT.

Theorem 1

Equivalence of Task Graphs
 Two task graphs are equivalent if and only if they

contain the same paths.

2-25

In summary, each flow is associated with a set of task paths.
Each packet of the flow will traverse one of the paths in that
set.

2.2.4 Resource Model

Analogous to arrival curves describing packet flows, the avail‐
ability of computation capacity is characterized using service
curves (see Definition 14 and Definition 15). The computation
capacity can be defined as the availability of computation re‐
source in microseconds in a given time interval [0,t]. The lower
and upper service curve describing the computation capacity
satisfy the inequality given in (2.7).

() () () (), , , where 0l ut s c t c s t s s t s tβ β− ≤ − ≤ − ∀ ≤ ≤ (2.7)

For any ∆ ≥ 0, ()lβ ∆ ≥ 0 and (0)lβ = 0. Therefore, ()lβ ∆ gives
the lower bound on the computation capacity within any time
interval ∆. ()uβ ∆ gives the corresponding upper bound.
Hence, the processing capacity over any time interval ∆ is al‐
ways greater than or equal to ()lβ ∆ and less than or equal to

()uβ ∆ .

Given the service function, the lower and upper service curve
can be computed using (2.8) and (2.9).

 { }

0
() inf () ()l

t
c t c tβ

≥
∆ = ∆ + − (2.8)

 { }

0
() sup () ()u

t
c t c tβ

≥
∆ = ∆ + − (2.9)

2-26

Definition 14

Service Function The service function c(t) of a CPU is defined as the
available computation capacity at a given time in
time interval [0,t].

Definition 15

Service Curve ()lβ ∆ is the minimum available computation capac‐
ity in any time interval ∆. Similar, ()uβ ∆ is the
maximum available computation capacity in any
time interval ∆.

The total computation capacity has to be shared with other
applications running on the system. To determine the poten‐
tial computation capacity, we need to know how much com‐
putation capacity is required by the other applications running
on the system and what the pattern of use is. Typically we will
have access to the resource in the first x% of a period, while
the rest of the period is reserved for use by other applications
(see Figure 2‐14). Figure 2‐15 shows the upper and lower ser‐
vice curves for such an access pattern.

2-27

������ �����		
�� ���
���
��

�����

�����		�	

��
	 ��� ���������� ��	����� ����		 �
��
� ���
�� ��

��

��

Figure 2-14: Resource Access Pattern

����������� �������

�� � � �
Figure 2-15: Upper and lower service curves for a CPU resource

Definition 16

Resource A resource C of a packet processing system is given
by its computation capacity, which is represented by
a lower service curve ()lβ ∆ and an upper service
curve ()uβ ∆ .

2-28

2.2.5 Mapping Application to Resources

To complete our model, we have to map the application to the
resources (compare Figure 2‐1). As we have a single resource,
the mapping of the application to the resource is trivial: All
tasks are mapped to the same resource.

Definition 17

Mapping of Resource
 All tasks t of the entire application are mapped to the

same single resource C.

The model proposed in this thesis has a very simple resource
model and mapping, which supports only one resource. We
think that it should be possible to extend the model for multi‐
ple resources with interdependencies between them. How‐
ever, this is out of scope of this thesis.

2.3 Summary
In this chapter we introduced a domain specific model for
small low cost packet processing systems that will be used
throughout the remainder of this thesis. It consists of an input
model, an application model, a resource model and the map‐
pings between these models.
The input and resource model are based on network calculus.
The input model consists of flows. For each of these flows
there are upper and lower arrival curves and associated qual‐

2-29

ity of service parameters, which in essence indicate the toler‐
ance to delay.
The application model is based on task graphs. Tasks are non‐
preemptive execution blocks. The task graphs are connected,
directed and acyclic graphs of such tasks. An entire applica‐
tion consists of many tasks graphs; there is one for each packet
source in the system. Packets arrive (or are created) at a source
task and traverse the task graph up to a sink task, where they
are either consumed or sent out of the system. This application
model leads to the natural way of designing packet processing
systems based on small (self‐contained) processing elements.
The mapping between the input and application model is ac‐
complished by assigning paths in a task graph to flows. Pack‐
ets of the same flow traverse the same task graph, but not nec‐
essarily all paths in the task graph are taken. Therefore, the set
of paths through the task graph that might be taken by any
packet of the flow is assigned to that flow.
The resource model provides the available computation capac‐
ity of the system. As other applications, which are not de‐
signed by our model, run on the same system, the available
computation capacity needs to be modeled.
The mapping between the application and resource model is
simple, as the application domain has a single resource only.
All tasks are assigned to the same and single resource.

Analysis
This chapter describes how to analyze a system based on the
model presented in the previous chapter. The first part of this
chapter gives some general background on using real‐time
calculus [35, 36]. The tools obtained there serve in the second
part where the calculation scheme for the model described in
Chapter 2 is introduced. The model and the analysis presented
in this chapter will allow us to explore application scenarios
and evaluate the properties of individual flows. In the third
part of this chapter we provide an example that demonstrates
the power of exploration provided by combination of model
and analysis. We are now able to evaluate a system for its in‐
tended usage before it is built.
As our aim is to offer guarantees and real‐time processing, we
need an admission control that verifies whether a new flow
with a specific requested quality of service should be admitted
into the system or whether this flow should be rejected as it
would hamper the processing of already admitted flows. The

3-2

last part of this chapter shows how to perform the admission
control for the model.

3.1 Basic Calculations
Based on the arrival curve of packets and a service curve for
processing the packets, worst‐case bounds for the delay and
the backlog can be calculated. It is important to note that the
arrival and service curve have to have the same units (e.g.
packets). Given a flow with an arrival curve and a processing
system with a service curve, the maximum delay and backlog
experienced by packets of the flows in the system are given by
the inequalities in (3.1) and (3.2) [30, 32, 37].

 { }{ }0
sup inf : 0 () ()u ldelay τ τ α β τ

∆≥
≤ ≥ ∧ ∆ ≤ ∆ − (3.1)

 { }

0
sup () ()u lbacklog α β
∆≥

≤ ∆ − ∆ (3.2)

A geometrical interpretation of these inequalities is depicted in
Figure 3‐1. The maximum delay experienced by packets wait‐
ing to be served by the system can be bounded by the maxi‐
mum horizontal distance between the upper arrival curve and
the lower service curve. The maximum backlog is bounded by
the maximum vertical distance between the same curves.

3-3

M/m

b/m

�������

delay

backlog

lβ

uα

Figure 3-1: Bounds on delay and backlog

Before continuing, we define some operators that will be used
throughout the remainder of this thesis.

{ }

{ }

{ }

{ }

0

0

0

0

() () min (), ()

() () inf () ()

() () sup{ () ()}

() () sup () ()

() () inf () ()

v w v w

v w v w

v w v w

v w v w

v w v w

λ

λ

λ

λ

λ λ

λ λ

λ λ

λ λ

≤ ≤∆

≤

≤ ≤∆

≤

∆ ∧ ∆ = ∆ ∆

∆ ⊕ ∆ = + ∆ −

∆ ⊗ ∆ = ∆ + −

∆ ⊕ ∆ = + ∆ −

∆ ⊗ ∆ = ∆ + −

 (3.3)

After the packets of a flow are processed, they have a different
traffic profile. The physical model is that of a traffic shaper, i.e.

3-4

a single token bucket with a queue in front and a token bucket
size of zero. The tokens represent the resource. The size zero of
the token bucket means that resources cannot be accumulated
or stored and that unused resources are thrown away imme‐
diately. Figure 3‐2 depicts this physical model.

������ ���	
�

�	�� ���� ρ

	 ����� ������ �� �����

	� 	� ������� 	����	�����

����� ������

�	�� �	�� ������

��������� ������

��	�	�� �������

Figure 3-2: Physical processing model

Figure 3‐3 shows the corresponding basic calculation layout
for arrival and service curves. The packets of a flow arrive
within the bounds specified by the lower and upper arrival
curve lα and uα . They are processed by a service with the
lower and upper service curve lβ and uβ . After processing,
packets of the flow are within the bounds specified by the
lower and upper arrival curve lα and uα . Similar, after proc‐

3-5

essing the packets, the bounds of the remaining available ser‐
vice are defined by lβ and uβ (see (3.4) to (3.7)) [35].

System

{ , }β βl u

{ , }α αl u { , }α αl u

{ , }β βl u

Figure 3-3: Basic calculation layout

 ()()() () () () ()u u u l uα α β β β∆ = ∆ ⊕ ∆ ⊗ ∆ ∧ ∆ (3.4)

 ()()() () () () ()l l u l lα α β β β∆ = ∆ ⊗ ∆ ⊕ ∆ ∧ ∆ (3.5)

 ()() () () 0u u lβ β α∆ = ∆ − ∆ ⊗ (3.6)

 ()() () () 0l l uβ β α∆ = ∆ − ∆ ⊕ (3.7)

3.2 Calculation Scheme
It is not possible to apply the calculus of the previous section
directly to our model, as the units of the arrival and service

3-6

curve do not match. The arrival curves define the arrival of
packets in number of packets per second, while the service
curves define the available processing capacity in number of
instructions executed per second. Therefore, we must trans‐
form the number of packets per second into number of instruc‐
tions executed per second. As we shall see, this transformation
is given by the mapping of the flow to the flow’s application.

Each task ti has a lower and upper execution time l

ie and u
ie .

Estimates of the lower and upper execution times can be
measured while the system is under maximum load or idle,
respectively. Nevertheless, this approach is restricted to soft
quality of service constraints only. Another possibility is to
formally analyze the tasks which yield bounds on the worst
case and best case execution times [33, 38].
A task tree T contains a set PT of task paths pj ∈ PT. Each task
path pj consists of a set of tasks ti ∈ pj. The lower and upper
execution time

j

l
pe and

j

u
pe of a task path pj is the sum of the

execution times l
ie and u

ie of its tasks ti (see (3.8) and (3.9)).

:
j

i j

l l
p i

i t p

e e
∈

= ∑ (3.8)

:
j

i j

u u
p i

i t p

e e
∈

= ∑ (3.9)

For each flow fk there is an associated set
kFP of task paths. The

lower and upper execution time for the processing of a packet
of that flow are given by (3.10) and (3.11) .

3-7

 ()min
k j

j fk

l l
f pp P

e e
∈

= (3.10)

 ()max
k j

j fk

u u
f pp P

e e
∈

= (3.11)

With this information we can transform the arrival curves
given in arrival of packets of a certain flow (designated with a
bar above the alpha) to arrival curves expressed in required
processing capacity of that flow (without bar). The transforma‐
tion is a simple scaling of the arrival curves, see (3.12) and
(3.13).

 () ()

k k k

u u u
f f feα α∆ = ∆ (3.12)

 () ()

k k k

l l l
f f feα α∆ = ∆ (3.13)

(3.4) to (3.7), (3.1) and (3.2) are now ready to be used. To trans‐
form back the resulting arrival curves after the processing to
their original form, (3.14) and (3.15) can be applied.

 1() ()
k k

k

u u
f fu

fe
α α

⎡ ⎤
∆ = ∆⎢ ⎥

⎢ ⎥⎢ ⎥
 (3.14)

 1() ()
k k

k

l l
f fl

fe
α α

⎢ ⎥
∆ = ∆⎢ ⎥

⎢ ⎥⎣ ⎦
 (3.15)

3-8

Figure 3‐4 depicts the complete calculation scheme for one
flow. In step 1, the lower and upper arrival curves are trans‐
formed such that they define the bounds for the required
processing capacity. Step 2 computes the bounds of the re‐
maining processing capacity and the lower and upper arrival
curves of the flow after it has been processed. Finally, step 3
converts the lower and upper arrival curves back to units of
packets per second.

{ , }α αl u { , }α αl u

convert
1

{ , }β βl u

{ , }β βl u

compute
2

convert
3

{ , }α αl u { , }α αl u
(3.12), (3.13) (3.14), (3.15)(3.4), (3.5)

(3.6), (3.7)

Figure 3-4: Calculation scheme for one flow

Figure 3‐5 is an example for a fixed priority scheme for multi‐
ple flows. It is an extension of the calculation scheme for one
flow by cascading the individual calculation schemes. The best
effort flow has the lowest priority (infinite deadline). Accord‐
ingly, it is processed last with the remaining processing capac‐
ity. A possible way to assign the priorities is to order the flows
according to their deadline. The lower the allowed delay (ear‐
lier deadline), the higher is the priority of the flow.

3-9

{ , }α αF
l

F
u

2 2

{ , }α αF
l

F
u

3 3

{ , }α αF
l

F
u

BE BE
{ , }α αF

l
F
u

BE BE

{ , }α αF
l

F
u

3 3

{ , }α αF
l

F
u

2 2

{ , }β βl u

{ , }β βl u

Flow 1 calculate{ , }α αF
l

F
u

1 1
{ , }α αF

l
F
u

1 1

Flow 2 calculate

Flow 3 calculate

Flow BE calculate

Priority

high

low

Figure 3-5: Calculation scheme for multiple flows

The calculations for the delay are correct for preemptive tasks
only. In our model, which consists of non‐preemptive tasks,
the worst case delay is the calculated delay plus the processing
time of the longest task (see (3.16)).

 (model) max

k k

u
f f ii

delay delay e
∀

= + (3.16)

In the following section we demonstrate how to use the model
and its calculation scheme to explore various system scenarios.

3.3 Exploration
The model and analysis methods presented so far are well
suited to explore various facets of a target system. The follow‐
ing sections offer an overview of possible explorations.

3-10

3.3.1 Example System

Our example consists of a so called intelligent access device
(IAD), which provides several services for home users. Figure
3‐6 depicts the IAD. The IAD provides data and voice services.
The voice services are provided through Voice over IP tech‐
nology (VoIP). There are ports to connect up to four phones
and it has two Ethernet ports. One Ethernet port, called busi‐
ness Ethernet has precedence over the other Ethernet port, the
kids and family Ethernet port. The business Ethernet is in‐
tended for VPN (Virtual Private Network) access to a com‐
pany network to work from home, while the kids and family
Ethernet is intended for Internet access in general. The xDSL
(Digital Subscriber Loop) port provides access to the a service
provider. In this example we assume that the access has a bidi‐
rectional access bandwidth of 2 Mbit/s.

���

� ����	
���

����	 ���	��	�

��� � ������ ���	��	�

����

��

������������� ��������	�

Figure 3-6: Example System

The flows are the following:

 Voice over IP data receive flow
 Voice over IP data transmit flow
 Voice over IP control receive flow

3-11

 Voice over IP control transmit flow
 Business data flow
 Kids and family data flow

The SLA (Service Level Agreement) for the VoIP data traffic
has to be very stringent for a quality comparable to traditional
PSTN quality should to be reached [39]. The SLA for VoIP data
traffic can be specified as shown in Table 3‐1.

Table 3-1: SLA parameters for the VoIP data flow

Parameter Value

Minimum bandwidth 108kbit/s

Maximum delay 160ms

Loss probability <1%

Maximum jitter 120ms

The minimum bandwidth can be calculated by adding the pro‐
tocol headers to the payload and multiplying it with the num‐
ber of packets per second. For G.711 [40] with a packet period
of 10ms, this gives 150 bytes per packet, which is about
118kbit/s per direction (14 to 18 bytes Ethernet header, 6 bytes
PPPoE header, 6 bytes PPP header, 20 bytes IP header, 8 bytes
UDP header, 12 bytes RTP header, 80 bytes payload and 4
bytes Ethernet CRC).
From the given SLA we determine the arrival curves. The arri‐
val curves are the lower and upper bounds for the number of
packets to be processed in any time window. The bandwidth
itself is not considered here. All the tasks in the application

3-12

have a per‐packet execution time only. The SLA defines a
maximum jitter of 120ms, which means that we could receive a
maximum burst of 12 VoIP data packets at line rate. The line
rate in our scenario is 2Mbit/s. A packet of the size of 138bytes
requires about 530µs on the line. Figure 3‐7 shows the arrival
curves for the VoIP data receive traffic.

���� ����� ����� ����� �����

�

�

�

�

��

��

��

l

u

��
	

�

�
��

��
��
��
�

������� ������ ��� ���� ���� ������� �������

���

���

Figure 3-7: Arrival curves for VoIP data receive flow

The total delay a user will experience consists of the network
delay plus the delay introduced by the end‐systems. As we
want to minimize the delay of VoIP data traffic introduced by
our system, the VoIP data flows will have highest priority. The
VoIP data transmit traffic is a constant packet rate flow. The
data packets are generated at a constant rate by the internal
DSP (Digital Signal Processor) of the IAD. Usually, this is a
10ms period for G.711 and longer periods for other coders.
VoIP control traffic occurs mostly at call setup and teardown.
During calls, not much information is exchanged between the
endpoints or an endpoint and the gatekeeper. The amount of
that information also depends on the actual protocol and
which variant thereof is used, see also [41‐45]. Here, we as‐
sume a simple constant rate of arrival for the control traffic of
10 packets per second. Business data traffic typically consists

3-13

of TCP connections for file transfers and data base lookups.
These TCP connections have a good behavior in the sense that
they do not produce large bursts [46, 47]. The same is true for
the kids and family type of traffic, also based mainly on TCP.
Here, the applications are web browsing and online games.
While web browsing is not demanding in respect to through‐
put and delay, online games are very sensitive to delay. For
both the business and kids and family traffic we allow a
maximum burst arrival of 140 packets at Ethernet line rate.
The sustainable rate we set to 2000 packets per second for the
business traffic and 100 packets per second for the kids and
family traffic. Table 3‐2 summarizes the flow specification and
adds the upper execution times. Note that the flows for the
VoIP are flows per call and that our example system is able to
handle up to four concurrent calls.

Table 3-2: Flow specification

Flow
Upper Execution

Time
Relative
Delay Priority

VoIP Data Receive 90µs 5ms 1

VoIP Data Transmit 50µs 5ms 2

VoIP Control Receive 700µs 40ms 3

VoIP Control Transmit 800µs 40ms 4

Business Data 300µs 50ms 5

Kids and Family Data 300µs 50ms 6

For our scenario we assume that we know the execution times
for all flows from a previous project, which used similar tasks
on a similar hardware, or that we did a worst case execution

3-14

time analysis for the tasks [33]. We assume that we have access
to the processing resource for 8ms in a period of 10ms (com‐
pare Chapter 2). Figure 3‐8 shows the available processing re‐
source as lower and upper service curves.

���� ����� ����� ����� �����

����

�����

�����

�����

��
��
��
��
	
��
�
	�

��
��

��
�
	

�	����	 ����	� �� ��������� ��������

lβ

uβ

Figure 3-8: Service curves for computation capacity

Now, we will explore whether the chosen hardware system is
sufficient to satisfy all requirements. We apply the calculation
scheme from this chapter. Table 3‐3 shows the results for back‐
log and delay for each individual flow.

Table 3-3: Initial results

Flow Delay [ms] Backlog [# packets]

VoIP Data Receive 2.56 10

VoIP Data Transmit 3.27 6

VoIP Control Receive 6.31 5

VoIP Control Transmit 9.99 5

Business Data 67.00 152

Kids and Family Data 1033.00 194

3-15

When we compare the results with the requirements for each
flow, we see that the delay for business data is slightly above
the requested maximum delay and that the delay for the kids
and family data is way beyond the requested maximum delay.
This means that with the given hardware we cannot satisfy the
requirements. As the CPU to be used in our example system is
available in different speed grades, we will explore which
clock speed we will need to satisfy all requirements. Figure 3‐9
shows the worst‐case delay for the kids & family and the busi‐
ness flow for different CPU clock speeds. This shows that we
can satisfy the delay requirements with a clock speed of
150MHz.
��

�

���

���

���

���

����

����

�	
� � ��	��

���	����

�����������������

���� ����	������ ��

Figure 3-9: Delay of kids & family and business flow for different CPU clock
speeds

In summary, the analysis presented in this chapter is well
suited to explore systems defined by our model. Bottlenecks in

3-16

the system can easily be determined and appropriate design
changes can be implemented.

3.4 Admission Control
The role of the admission control is to ensure that admittance
of new flows to the system does not violate any quality of ser‐
vice commitments made to already admitted flows and that
the quality of service requirements of new flows can be com‐
mitted and fulfilled. Obviously, we can use the calculation
scheme presented in Section 3.2 for the admission control. We
calculate the delay and backlog for each flow (including the
new flow) and admit the new flow only if the delay and back‐
log for each flow lies within the specified limits.

3.5 Summary
The analysis of the model is based on network calculus. It al‐
lows us to calculate the bounds for delay and backlog of indi‐
vidual flows. Thus, we can explore and design systems with
adequate resources before they are actually built. The same
calculation scheme is also used in the admission control of
new flows.
All this only makes sense if we can implement the model to
match the analysis results. The next chapter discusses how the
model can be mapped to an implementation.

Mapping to
 Implementation
In the previous chapters we have introduced a model and an
analysis system to capture and explore applications on low
cost hardware. We have modeled the input, the applications
and the processing resource, described the mapping between
them and are now able to explore the properties of the mod‐
eled system and the application scenarios. The goal of this the‐
sis is to achieve implementations of the model such that the
behavior matches that of the analysis. In this chapter we de‐
scribe what needs to be done to transform the model to an im‐
plementation; the existing model has to be enhanced with a
few additional concepts. The application model as it was in‐
troduced in the previous chapters is a functional model. It tells
us which paths a packet of a flow may take through a task
graph, which is essentially the functionality that will be ap‐
plied to the packet. It does not tell us anything about the

4-2

physical representation of the tasks (task instances) and
whether certain task instances are shared between different
task graphs. So we need an implementation model that de‐
scribes the physical representation of the tasks and a method
to transform the application model to the implementation
model. We need also an element that links an actual packet
with its path through the system. Again, the model tells us
which paths packets of a flow might take, but there is no no‐
tion of an individual packet. For an implementation we need
to handle the individual packet. In addition, a scheduler is
needed, that decides which task and therefore which packet
should be processed next. Lastly, we have to enhance the
model by a mechanism which accounts for the fact that the as‐
sociation of a packet to a flow is not known immediately when
a packet enters the system.

4.1 From Application Model to Implemen-
tation Model
The application model has to be tranformed to an implementa‐
tion model that can be implemented. In the implementation
model we are not so much interested in the actual function a
task provides, but in the actual physical representation of the
tasks, i.e. the instances of the tasks. From the application
model we know that each packet source in the system has its
own task graph. However, it is not clear how this relates to the
actual instances of tasks. If there are two identical physical
ports, represented by two tasks graphs with different associ‐
ated input specification, who can tell if the actual instances of
the tasks are the same or not for these task graphs? Further, if
there is any routing or switching element in the task graph
(e.g. a forwarding task), it might not show that there are sev‐

4-3

eral output ports as it is not necessary for the application
model; the actual sequence of tasks that are executed is inde‐
pendent of the output port. However, to implement the model,
it is mandatory not only to know the functional application
model but also its actual physical presentation. While the ap‐
plication model describes the functionality, the implementa‐
tion model tells us which tasks have to be instantiated in
which configuration (physical representation).
In the following sections we will discuss when tasks should be
separate instances and when and how they can be shared. Fi‐
nally, we will annotate the model with instance information,
such that it is also suitable for the implementation.
Implementations as click, router plugins and x‐kernel [13, 14,
16, 20, 25] are based on connectable elements, which directly
represent the implementation model. They do not have an ap‐
plication model and therefore do not require a transformation
of the application model to the implementation model.

4.1.1 Task Instances

There are several pros and cons to having separate instances of
tasks versus shared task instances. There is more involved
than might be obvious at first glance. A simple example will
give some idea about the decision process, and whether to
have separate or shared instances of tasks.
Look at a two port Ethernet router. Its sole task is to forward
packets from one port to the other or to deflect them such that
they leave the system by the port by which they have been re‐
ceived. Figure 4‐1 depicts the application model for the exam‐
ple. It consists of a total of six task graphs, three for each port.
Remember that we have a task graph for each packet source in
the system.

4-4

port 1

arp

eth-mac-rx

ip-header-check

ip-forwarder

mac-tx

-rx

arp-tx

eth-tx

mac-tx

eth-tx

arp-tx

eth-tx

port 2

arp

eth-mac-rx

ip-header-check

ip-forwarder

mac-tx

-rx

arp-tx

eth-tx

mac-tx

eth-tx

arp-tx

eth-tx

1

2 43

Figure 4-1: Model of two port router

The task graphs for both ports are identical. The tasks are de‐
scribed in Table 4‐1. The task graph with eth‐mac‐rx as source
task receives packets from an Ethernet port and depending on
whether it is an IP or ARP packet (ARP = Address Resolution
Protocol) the packet traverses a different path in the task
graph. Received ARP packets are either ARP requests or re‐

4-5

plies. ARP request packets will proceed to arp‐rx and might re‐
sult in a reply generated in arp‐tx that leaves the system by eth‐
tx. ARP reply packets will proceed to arp‐rx where the ARP in‐
formation will be extracted and stored in the ARP data base.
The task arp‐rx is a sink for ARP reply packets. The entries in
the ARP data base have a time‐out on which the information
has to be renewed. Therefore, new ARP requests are issued
periodically, which is modeled by the task graph with arp‐tx as
source task. IP packets proceed from eth‐mac‐rx to the ip‐
header‐check, ip‐forwarder, mac‐tx and leave the system by eth‐tx.
The mac‐tx task adds the Ethernet header to the packet. To be
able to do that it needs the Ethernet address of the next hop. If
this information is not available, the IP packet has to be
queued (arrow “1” in Figure 4‐1). In this case the task mac‐tx is
a sink task. The queuing of a packet in mac‐tx is an event for
the task graph arp‐tx, eth‐tx: An ARP request will be issued (ar‐
row “2” in Figure 4‐1). Once an answer is received, the proc‐
essing of the packet can continue (arrow “3” in Figure 4‐1).
The task mac‐tx, eth‐tx will be activated and the packet can
leave the system (arrow “4” in Figure 4‐1). Table 4‐1 gives a
description of the tasks in the two port Ethernet router. As this
simple example shows, the complexity of packet processing
systems is not to be underestimated.

Table 4-1: Tasks in the two port Etherent router

Task Description

eth‐mac‐rx Receives an Ethernet packet and processes the
Ethernet header. Depending on the type of pay‐
load, the next task is either arp‐rx or ip‐header‐
check.

4-6

Task Description

ip‐header‐check Verifies that the IP header of the packet is cor‐
rect.

ip‐forwarder Forwards packet based on the destination IP
address. Has a forwarding information base.

mac‐tx Adds the Ethernet header to the IP packet.
Looks up the ARP data base to for the next hop
Ethernet address (MAC Address). If the lookup
fails, it queues the packet and generates an
event that will trigger the arp‐request task
graph.

arp‐rx Receives an ARP packet and verifies its correct‐
ness. If it is an ARP reply, the ARP information
is stored in the ARP data base and the packet is
consumed. If it is an ARP request packet and
the system is the target of the request, the
packet is forwarded to the arp‐tx task.

arp‐tx If the arp‐tx task is triggered by a packet, an
ARP reply for that packet will be generated.
Otherwise, it will generate an ARP request.

eth‐tx Transmits a packet.

Now we would like to transform that application model to an
implementation. To do this, we need the instances of the tasks.
We have to map the functional model (our task graphs) to an
implementation model that consists of instantiated tasks.
Figure 4‐2 depicts a possible, natural implementation model of
the application. To distinguish an instance of a task from its
functional representation, a task instance is depicted with a
square instead of a circle. In Figure 4‐2 there are separate task

4-7

instances for all the tasks but the ip‐forwarder task. The ip‐
forwarder task instance is shared, as it has a switching function.
However, this is not mandatory: One might think of separate
ip‐forwarder task instances that contain a distributed forward‐
ing data base. The ARP data base is a data base per Ethernet
port. These data bases need to be accessed by the arp‐tx and
mac‐tx task. Usually, the mac‐tx task contains a mirrored, pas‐
sive data base of the original data base, which is located in the
arp‐tx task.

port 1 port 2

eth-mac-rx

ip-header-check

ip-forwarder

mac-tx

eth-tx

mac-tx

eth-tx

eth-mac-rx

ip-header-checkarp-rx

arp-tx

arp-rx

arp-tx

Figure 4-2: Possible implementation model of the two port router

Another possibility of an implementation model is shown by
Figure 4‐3. Here, all task instances are shared but the Ethernet
port receive and transmit task instances (eth‐mac‐rx and eth‐tx).
To make this implementation model work, the incoming port
information has to be annotated into the packet that traverses
the instantiated tasks. Further, the forwarding task instance

4-8

has to annotate the outgoing port into the packet such that the
mac‐tx task instance can multiplex the packet to the correct
sink task instance. Similar, the arp‐tx task instance has to mul‐
tiplex packets to the correct eth‐tx task instance.

����������

	
�������������

	
���������

������

������������

����������

��
���

��
���

Figure 4-3: Another implementation model of the two port router

As this example shows, there are several possibilities how the
implementation model of an application can look like. Before
we give an overview of the pros and cons for sharing tasks3
(instances), we discuss the ability of tasks to be sharable. Basi‐
cally, there are three types of tasks with regard to their ability
to be shareable:

1. Tasks that have no context information.

3 For better readability we omit the word “instance” in the context of
task instances from now on.

4-9

2. Tasks that have local context information, e.g. local sta‐
tistic values.

3. Tasks that have global context information, e.g. a for‐
warding information base.

Tasks that have no context information

It is obvious that these tasks can be shared any time, as there is
no information that is stored in its context. However, by shar‐
ing such tasks we loose information about previous tasks; each
task has only one input, therefore we do not know which task
preceded the current task. If we need this information, the
previous task can annotate the packet with that information.
Examples for tasks with no context information are pure data
processing tasks that do not have statistic values, e.g. tasks
that do packet compression or encryption.

Tasks that have local context information

These are the majority of tasks. Most of the context informa‐
tion is in form of statistic values that are part of the MIB (Man‐
agement Information Base). To make such tasks shareable,
some sort of instance information has to be carried in the
packet, either part of the data of the packet or as annotated in‐
formation by a previous task. With this instance information it
is possible for a task to have separate local contexts for each of
the required instances. If this is feasible from a software engi‐
neering point of view depends on the actual functionality of
the task and on the other tasks in the system. There is more ef‐
fort involved to manage the different contexts manually,
rather than letting the compiler handle it (assuming that an
object oriented language like C++ is used for the implementa‐

4-10

tion). Additionally, as we will see later, the available space for
annotation of information in a packet is limited. Also, the pre‐
condition that certain information has to be annotated in the
packet limits the independency of the tasks from each other.
Considering all this, it is preferable to have separate instances
of this type of tasks, rather than sharing a single instance.
Examples for tasks with local context information are ip‐
header‐check, ip‐fragmentation, access‐control etc.

Tasks that have global context information

These are typically tasks which have a switching functional‐
ity4. The switching decision is based on an information store
which is global to the system. Usually, these tasks are shared
and require that some information about the previous tasks is
annotated in the packet, e.g. the information about the incom‐
ing port. It is possible to separate these tasks. However in that
case they need a distributed implementation of the informa‐
tion store, or they have to access a “global” resource outside of
the task.
Examples for tasks with global context information are ip‐
forwarder with its forwarding information base or parts of the
routing protocols which usually have a distributed implemen‐
tation of the routing information base.

Table 4‐2 gives an overview of typical tasks in packet process‐
ing systems and the type of task in respect to context informa‐
tion.

4 Remember that tasks can not have more than one input; a task re‐
sembles a de‐multiplexer (at most one input, zero or more outputs).

4-11

Table 4-2: Context information in packet processing tasks

Task Context Description of Context

eth‐mac‐rx Local Statistic values.

ip‐header‐check Local Statistic values.

ip‐forwarder Global Statistic values and forwarding in‐
formation base.

ip‐fragmentation Local Statistic values and packet queue for
fragmentation.

eth‐tx Local Statistic values.

mac‐tx Local Statistic values and ARP database.

decryption /
encryption

None ‐

acl‐rx / acl‐tx Local Statistic values and filter database.

Overview pro/cons for sharing of tasks

As a basic rule, it makes no sense to share tasks (with a few
exceptions). The reasons are that the effort spent on making
tasks sharable is better spent somewhere else and that there
are no cache effects that we can profit from when sharing
tasks. On the contrary, the context administration in sharable
tasks adds additional instructions that have to be loaded and
executed. The following are exceptions for which it makes
sense to share a task:

1) “Switching” tasks should be shared as it better repre‐
sents the natural packet flow. This makes it easier to
understand, develop and maintain the software.

2) Tasks accessing a physical resource are usually shared
as they represent a single logical abstraction of a single

4-12

physical resource. Nobody would instantiate multiple
drivers to access the same hardware resource.

3) Tasks that logically belong together as they share the
same local context information should be shared, oth‐
erwise the context information becomes global and is
accessed by all these tasks. An example is the arp‐tx
task from the two port router model (see Figure 4‐1).
For each port the arp‐tx task is present in two task
graphs, however, they work on a common arp data‐
base. Therefore it would not make sense to have sepa‐
rate instances for these tasks. Another example is the
mac‐tx task, which may queue a packet and sometime
later process the queued packets. The packet‐queue is
the local context information that has to be shared be‐
tween the two mac‐tx tasks for each port. Again, it
would not make sense to instantiate two tasks.

In summary, we propose to create the implementation model
based on the following rules.
Tasks are shared if they

1) are a representation of a physical resource, e.g. net‐
work interfaces

2) share local context information, i.e. logically belong to‐
gether (usually this happens if there are source tasks
which create packets that will travel along paths that
are identical to paths in an other task graphs)

3) have global context information and a “switching”
function

4-13

4.1.2 Annotation of Instance Information

We will back‐annotate the instance information into the task
graphs. To uniquely identify it, each task graph receives an
identification number (Definition 18). In addition, each task
receives a unique identifier, which consists of the task graph
identifier of its task graph and separated by a dot, a second
identifier, which numbers the task inside the task graph over
the same task type (e.g. arp‐tx). The first task of a given task
type in a task graph is numbered “1”, the second task of the
same type will receive a “2”. Pre‐pending the task name to the
task identifier allows to uniquely identifying any task in the
application (e.g. arp‐tx.2.1). The complete identifier therefore
follows the format <task‐type>.<task‐graph‐id>.<number> (see
Definition 19). Each task also receives a set of task identifiers,
which at the minimum contains its own task identifier. If a
task instance is shared, the set of task identifiers must contain
the task identifiers of those tasks with which the task instance
is shared (see Definition 20). As an example, Figure 4‐4 de‐
picts the annotated task graph based on the implementation
model given in Figure 4‐2. As only identical tasks can be
shared, the task name in the task identifier can be omitted in
the task identifier set.

Definition 18

Task Graph Identifier
 Each task graph has a unique task graph identifier. It

consists of the number from the numeration of the
task graph.

4-14

Definition 19

Task Identifier Each task has a unique task identifier. It consists of
the task name, the task graph identifier and the
number of numeration of identical tasks in the same
task graph.

Definition 20

Task Identifier Set
 Each task has a set of task identifiers. It contains at

the least its own task identifier. If the instance of the
task is shared with other tasks, it contains the task
identifiers of those tasks with which it is shared. All
tasks that have the same instance have an identical
set of task identifiers.

4-15

port 1

arp-rx.1.1

eth-mac-rx.1.1

ip-header-check.1.1

ip-forwarder.1.1

mac-tx.1.1arp-tx.1.1

eth-tx.1.1

mac-tx.3.1

eth-tx.3.1

arp-tx.2.1

eth-tx.2.1

port 2

arp-rx.4.1

eth-mac-rx.4.1

ip-header-check.4.1

ip-forwarder.4.1

mac-tx.4.1arp-tx.4.1

eth-tx.4.1

mac-tx.6.1

eth-tx.6.1

arp-tx.5.1

eth-tx.5.1

{1.1,2.1,3.1}

{1.1,2.1}

{1.1}

{1.1}

{1.1}

{1.1,4.1}

{1.1,3.1}

{1.1,2.1,3.1} {1.1,2.1,3.1}

{1.1,2.1} {1.1,3.1}

task graph id = 1

task graph id = 2 task graph id = 3

task graph id = 4

task graph id = 5 task graph id = 6

{4.1,5.1,6.1}

{4.1,5.1}

{4.1}

{4.1}

{4.1}

{1.1,4.1}

{4.1,6.1}

{4.1,5.1,6.1} {4.1,5.1,6.1}

{4.1,5.1} {4.1,6.1}

Figure 4-4: Task graph of a two port router annotated with instance information

4-16

4.2 Scheduler and Path-Threads
The available processing resource must be assigned to the
processing of tasks such that the implementation adheres to
the agreed quality of service parameters (delay). Some packet
processing architectures do not require a scheduler as they fol‐
low a simple first come first served packet processing scheme
[13, 14, 16, 25]. Others use a light‐weight thread model to
schedule and control the processing of packets [7, 22, 23]. We
use a model that is similar to the light‐weight thread model.
To closely control the processing of a packet, we need a thread
for each packet in the system. The thread, called path‐thread in
our model, is a very light‐weight implementation; it does not
have its own stack or memory space and is only preemptible
at task boundaries (see Chapter 2). When a path‐thread is
scheduled, it processes one task before surrendering the con‐
trol back to the scheduler. Besides the processing of packets,
the path‐thread polices the packet behavior. A packet is only
allowed to travel paths as specified in the flow (see Chapter 2).
When a packet arrives in the system, it is classified to a flow.
Then, a path‐thread for that flow is created and the packet is
bound to that path‐thread. The path‐thread is then ready to be
scheduled (see Figure 4‐5).

4-17

Packet is classified to flow.
A Path-Thread is created for that flow.
The packet is bound to the Path-Thread.
The Path-Thread is scheduled.

Flow

Set of Paths
Priority

Packet

Path-Thread

3
3
2
1

2

1

4

Figure 4-5: Packet and Path-Thread

The scheduler’s decision which path‐thread to run next de‐
pends on the quality of service information of the flows (each
path‐thread belongs to a flow) and the scheduler’s algorithm.
A simple implementation can use a fixed priority algorithm; in
that case each flow must have an assigned priority (compare
Chapter 3). A more sophisticated scheduler would use EDF
(earliest deadline first); each flow must have a relative dead‐
line (see Chapter 2) from which the absolute deadline is calcu‐
lated on creation of the path‐thread. As the tasks are non‐
preemptive (the path‐threads are preemtible at task bounda‐
ries only), the granularity of the tasks provides the preemption
points for the EDF scheduler. Non‐real‐time flows have an in‐
finite deadline and therefore only get executed when there is
no pending packet of a real‐time flow.

4.3 Source Flow
When a packet arrives at the system, it is not known to which
flow it belongs. Only later, when the packet has been ana‐
lyzed, typically by a classifier, the association of the packet to

4-18

its flow becomes clear. However, without classification of the
packet to a flow we cannot create a path‐thread and the packet
is not processed. Therefore we classify packets that arrive at
the system to a source flow. There is a source flow for each
packet source that is the origin of packets of more than one
flow. A source flow has exactly one path. This path contains
all tasks until the packet is fully classified to a flow. The paths
as specified by the model are split at the flow classification
point. The parts before the classification point are assigned to
the source flow. Figure 4‐6 depicts an example for the splitting
of the paths. The path from the source to the classifier is as‐
signed to a source flow. The other paths are the existing but
shortened paths; they start at the task following the classifier.
A packet that arrives at the system is assigned to the source
flow. Then a path‐thread is created and the packet is bound to
that path‐thread. Later, when the path‐thread processes the
classifier task, a new path‐thread is created, based on the clas‐
sification result. The packet is bound to the new path‐thread,
while the old path‐thread is destroyed, as it executed the last
task in the packet’s path as member of the source flow.
A source flow inherits the maximum priority of all flows a
packet in the source flow later might be classified to. This is
because we have to assume that every packet that arrives
could be a high priority packet. Note that the arrival curve for
the source flow is typically defined by the physical interface.

4-19

�������
���	�

�������	����

	����
�
���

����	��	��
�	
�

������

�������	����

�
����

����	���	�
���

�����
�
����

������

��������
	�������

	����
�
���

��

��
�	�

�
�

��
�	�

��
�	�� ��	
�������	��

���� �� �����
�����

��
�	� ���� ���� �� �

���
	 ���� ��
�	� ���� �� �����
Figure 4-6: Source Flow from Splitting of Path

4.4 Summary
For an implementation, the original application model has to
be transformed to an implementation model that represents
the actual physical representation of the tasks. Here we need
to know which tasks have to be instantiated and in what con‐
figuration. This process is not straight forward; different in‐
stance configurations/compositions with similar results are
possible. The final implementation also depends on the design
of the tasks. Tasks can be implemented such that they can
handle multiple contexts or not. Both variants have their ad‐
vantages and disadvantages. We have given some guidelines
for the instantiation of tasks; finally it is also a designer’s
choice.
A scheduler controls the assignment of the processing re‐
source to the packets in the system. It uses path‐threads, a very
light‐weight thread model, to process the packets; for each
packet there is a path‐thread.

4-20

The fact that the flow of a packet is not always known when it
enters the system was omitted in the original model. For the
implementation, the mechanism of the source flow is intro‐
duced: Until the flow of a packet is known, it is assigned to a
source flow, which inherits the priority of the maximum prior‐
ity a packet might later be classified to.

Software
Platform RNOS
In the previous chapter we have discussed how our model can
be transformed to an implementation and what additional
elements are necessary to do this. In this chapter we present
the software platform Real‐time Networking Operating Sys‐
tem, in short RNOS, which supports the transformation of the
model to an implementation. It provides the necessary infra‐
structure and an application programming interface to imple‐
ment applications based on the model presented in the previ‐
ous chapters. The approach of RNOS is characterized by two
properties:

1. The software platform is constructed in a way that
matches the analysis model. Therefore, the perform‐
ance properties of the resulting implementation are
within the calculated bounds.

5-2

2. The programming interface reflects the abstraction
provided by the application structure, i.e. task graphs
and task paths, and the input model, i.e. flows.

This chapter is split into six parts. In the first part, we look at
the elements of RNOS. These elements represent the pro‐
gramming interface, most of them having a direct representa‐
tion in the model, and the core of RNOS. They allow a direct
transformation of the model to an efficient implementation.
The means by which this is reached and how even complex
applications can be modeled and implemented are described
in this part.
This thesis targets small low cost packet processing systems
and this is also where we will use RNOS. As we have stated
before, packet processing is only a (possibly small) part of the
complete application of the system. Such systems usually do
contain a standard real‐time operating system. The second
part of this chapter describes how RNOS can be integrated
into such standard real‐time operating systems.
A user that designs and implements applications based on our
model and RNOS works with tasks, tasks graphs, flows and
other packet processing and model related elements. We could
say that RNOS provides a higher level of programming ab‐
straction than a standard operating system. In the third part of
this chapter we will discuss these abstractions and compare
them to the elements of a standard real‐time operating system.
In the fourth part of this chapter we present some of the ad‐
vanced features of RNOS. They include basic instrumentation
of RNOS and a mechanism that allows to influence the pre‐
emption points and, as we shall see later, also the system per‐
formance properties.

5-3

Software platforms including RNOS are not free of overhead.
In the fifth part of this chapter we look at the schedulablity re‐
gion of RNOS. We investigate where overhead occurs in
RNOS and how it influences throughput and delay. Further
we analyze the worst‐case delay of a highest‐priority packet in
a RNOS based system.
In the last part of this chapter we show how to use the analysis
presented in Chapter 3 in combination with RNOS. The result
is a continuous design process from model, to analysis and to
the implementation that allows building predictable packet
processing systems.

5.1 Elements of RNOS
RNOS is a software platform. As such, it provides a construc‐
tion kit to build applications based on the model presented in
the previous chapters. A target of this thesis is the analysis and
the seamless design/implementation of packet processing ap‐
plications. Therefore, the elements of RNOS reflect the abstrac‐
tions provided by the model, such that there is a direct, prede‐
fined path from the model to the implementation. The ele‐
ments are

 tasks and task graphs,
 packets,
 flows and path‐threads,
 source flows and source‐threads,
 and the scheduler.

These are exactly the elements of the model (see Chapter 2)
and the additional elements required for implementation (see

5-4

Chapter 4). Here, we present their concrete implementation as
elements of the software platform RNOS.
RNOS is based on Embedded C++ [49], which is a standard‐
ized subset of the C++ language that is optimized for embed‐
ded systems. Language constructs which result in high mem‐
ory usage or unpredictable processing times are excluded in
Embedded C++.

5.1.1 Tasks and Task Graphs

The tasks and the task graphs represent the processing ele‐
ments and the application structure. The design targets for the
tasks and the task graphs are

 ease of use and
 efficiency.

As the application structure can become quite complex (see
Chapter 2), the ease of use is an important factor for the usabil‐
ity of the software platform. Complex structures can be sim‐
plified by introducing hierarchies; complexity is hidden by en‐
capsulating application‐parts in hierarchical entities. However,
it must not lead to a less efficient software platform: efficiency
is our primary concern. If applications based on the software
platform RNOS were not efficient, the usefulness of RNOS
would be limited. The two design targets seem to conflict; we
will see how RNOS is able to solve the conflict in the next sec‐
tions.

Task Object

The basic element of the model is the task. In RNOS tasks are
represented by task objects. A task object has at most one in‐
put connector and zero or more output connectors. The con‐

5-5

nectors reflect the connection hooks as defined by model. Re‐
member that an input connector can be the sink of multiple
output connectors. Figure 5‐1 shows four task objects with
their input and output connectors.

������ �����	��

����� �����	��

��� ����	�

Figure 5-1: Task objects with connectors

It is obvious that not all tasks (task objects) can be connected in
an arbitrary configuration. Tasks have some preconditions to
what kind of input they can process. One of the preconditions
is the content or payload type of the packet, e.g. an IP for‐
warder task requires IP packets as input. We associate a pay‐
load type to each input and output connector. A packet that
leaves a task object through an output connector must be of
the payload type associated to that connector. Likewise, a
packet that enters a task object through the input connector
must be of the associated payload type. Therefore, only con‐
nectors with equal associated payload types can be connected.
As a consequence, a task object can only process packets of
one payload type.
Some task objects require information about packets that are
calculated in another task object. To that purpose, the model
allots the annotation space that is available in each packet. In‐
formation can be carried and transported by packets along
their path. In RNOS, each input connector has an associated
payload type and an associated list of required information
that is calculated elsewhere. Each task that calculates informa‐

5-6

tion that might be used later along the path has an associated
list of that information on its output connectors.
In order to build a valid task graph the following conditions
apply:

1. For each connection between two task objects, the out‐
put and input connector must have equal associated
payload types.

2. A task object that requires information about packets
that is calculated in another task object can only be
connected to the task graph if the task object which
provides that information lies along the path to that
task object. Concretely, all items on the associated list
of information on the input connector have to be found
on the associated lists of the output connectors on pre‐
vious task objects.

Figure 5‐2 depicts a simple example of correct task graph.

5-7

Ethernet
Driver

Rx

IP
Forwarder

IP Header
Check

MAC
Rx

 (incoming interface)

(outgoing interface)

payload type: IP

payload type: Ethernet

payload type: IP

(incoming interface)

equal payload types
on outgoing and incoming
connectors

list of required information from elsewhere

list of calculated information
(stored in annotation space in packets)

payload type: Ethernet

payload type: IP

payload type: IP

required information
is calculated in previous
task object

Figure 5-2: Connectors must match in payload type and required annotations

5-8

Task Frames

To be able to handle complex application structures, RNOS
provides an element called task frame that allows grouping of
task objects. Complex applications are divided into sub‐
applications and an arbitrary number of hierarchical levels en‐
capsulate and hide details. Figure 5‐3 shows the basic concept
of task frames. A task frame has zero or more input connectors
(in contrary to the task object which has at most one input
connector) and zero or more output connectors. It contains
zero or more task objects or task frames. Therefore, task
frames can be nested and the functionality of an application
can be implemented in a top down approach.

���� ������

Figure 5-3: Basic Concept of Task Frames

Figure 5‐4 shows an example of a link layer, consisting of
Ethernet, ARP and PPPoE processing. The Ethernet frame con‐

5-9

sists of two other frames. One handles the MAC protocol,
while the other takes care of the hardware interface. The
Ethernet frame has three output connecters: IP, PPPoE and
ARP. It has two input connectors: MAC and Ethernet. The task
frames allow the programmer to hide the (sometimes com‐
plex) functionality, and the connectors provide the interface to
the task frames.

����� �����

�	
����	 �����

�� �����

��� � ��� ������� � ����� ��

������ �����

�	
 � �	
 ��

��� �����

��� � ��� ��

��

��� ���

Figure 5-4: Link Layer with Task Frames

Other packet processing frameworks as [13, 14] do not provide
hierarchical elements on a programming level. [14] provides a

5-10

tool for search‐and‐replace of parts of a task graph. The idea
behind it is to replace a collection of slow elements with a sin‐
gle, more specialized, faster element. They use patterns, which
essentially are single task frames, to group a collection of ele‐
ments. However, these patterns are only used as an off‐line
tool and not on a programming level.
It is obvious that the connectors and task frames would im‐
pose a heavy penalty on the efficiency of RNOS. This is why
RNOS follows the approach of separating the administration
of the application structure from the actual packet processing
part. What has been presented in the previous paragraphs is
the administrative part of tasks and task graphs, the packet
processing part is presented in the following sections. We will
see how the two parts are connected and how they yield to
high efficiency while preserving the design goal of “ease of
use”.

Task Object and Packet Processor

The first step to optimize for efficiency is concerned with the
task object. As we have learned, the task object is responsible
for the administrative part of the application structure. Aggre‐
gated into the task object is the packet processor. The packet
processor is the actual processing engine of the task. Figure 5‐5
figure shows the packet processor and how it is aggregated in
the task object. The separation of the processing engine from
the administrative part (the task object) has several advan‐
tages. The separation makes it easier to optimize the process‐
ing code, as it is isolated. Further, the processing code can run
in a different memory region (faster memory or locked cache),
a different CPU or even use a hardware accelerator. While the

5-11

task object is generic, the packet processor is tailored and op‐
timized for its function.

���������	
����	
��������

Figure 5-5: Task Object and Packet Processor

The second step to optimize for efficiency is concerned with
the flow of packets trough the application structure. The path
of a packet through a task object graph is not from connector
to connector, but directly from packet processor to packet
processor. Thus the path through the hierarchy of task frames
and task objects is optimized, such that packets take the short‐
est possible path, i.e. there is no overhead associated with task
frames (hierarchies) and connectors. Figure 5‐6 shows an ex‐
ample for the actual path a packet will take in a task object
graph. As we can see, the administrative part does not impose
an overhead to the packet processing, i.e. a task frame with no
task objects and therefore containing no packet processors is
completely removed from the packet path.

5-12

������ ����

�	
���������� ����

Figure 5-6: Packet path optimization

RNOS automatically creates the direct connections between
the packet processors at runtime when task objects are con‐
nected.
In summary, although RNOS supports hierarchical structures,
it does not impose a runtime penalty. The possibility to hide
complex protocols inside task frames makes RNOS more us‐
able.
Note that RNOS is built such that task objects can easily be ex‐
changed at runtime. This is useful when the current configura‐
tion of the system allows replacing a task object for reasons of
processing time and resource usage, e.g. with one that has re‐
duced but sufficient functionality or the other way round.

5-13

5.1.2 Packets

Packet processing is the target application of this thesis. There‐
fore much thought has been put into how packets are stored
and managed inside the system. The related objectives are

 support for different hardware architecture and buffer
schemes,

 transparent access to packet data and
 a possibility to annotate information to the packet.

First let us review how packet data is accessed during its life‐
time in the system. Each task of a task graph will only access
(read and/or write) a part of the packet. For example, the task
that processes the Ethernet header of an incoming packet will
look only at the Ethernet header part of the packet. Similarly,
the IP forwarder task will consider only the IP header of the
packet. More generally formulated, each task has a certain
scope on the packet content. In a previous section we have
spoken of the payload type that a task object expects at its in‐
put. The way how this is accomplished is as follows: A pointer
defines the beginning of the current scope, e.g. it points to the
beginning of the Ethernet header. Each task that completes the
processing of the current scope moves the pointer to the next
scope. Fortunately, packet processing is a sequential process;
the next scope starts at the end of the current scope. Packets
are processed from the outside to the inside and reverse. This
is shown in Figure 5‐7, where the left two illustrations show a
packet that is processed from the outside to the inside and the
right illustration shows a packet that is processed from the in‐
side to the outside.

5-14

��������

������

	

������

��

�����

�����
������

��������

������

	

������

��

�����

�����
������

��������

������

	

������

��

�����

�����
������

�������� ������� �������� ��������	
 �������
Figure 5-7: Scope on packet data

The payload type of a packet is defined by the current scope
on the packet. It is obvious that the pointer which defines the
current scope has to be stored somewhere. In RNOS, this
pointer is stored in an element called packet descriptor.

Packet Descriptor

To each packet a packet descriptor is associated. The packet
descriptor is an important element in RNOS. The packet de‐
scriptor has the tasks to

 hide the underlying buffer scheme and hardware ar‐
chitecture,

 provide a transparent access to packet data,
 provide space for annotations and
 provide the possibility for caching often used values.

Essentially, the packet descriptor is an abstraction layer for the
access of the packet data and its annotations. This abstraction
layer provides the possibility to use buffer schemes as found
in UNIX derivates (e.g. [50]) or simpler buffer schemes like
fixed sized buffers. Also, as low cost embedded systems do
not always support bus snooping, the actual packet data might

5-15

have to reside in a non‐cacheable memory region. In the latter
case, the caching of often used values in the packet descriptor
(which can reside in a cached memory region) brings a signifi‐
cant performance advantage. In RNOS, annotations are the
mechanism to cache values in the packet descriptor.
[14] has its own optimized packet buffering scheme that is not
compatible with standard buffer schemes that is typically
found in operating systems (e.g. [50], [53]). For pure forward‐
ing application the optimized packet buffering scheme is
probably slightly more efficient than RNOS’ portable packet
descriptor. On the other hand, as RNOS integrates into exist‐
ing packet buffering schemes, no complex packet transforma‐
tion is required for packets leaving or entering the RNOS con‐
trolled part of the software and the porting of existing code to
RNOS requires less effort.

Annotations

The space for the annotations is part of the packet descriptor.
For an efficient implementation, the packet descriptors are of a
fixed size. Therefore, the space for annotations is limited. In a
previous section we have learned that for each input and out‐
put connector there are associated lists of information that are
calculated (in case of the output connector) or required (in case
of the input connector). Information that is calculated is stored
in the annotation space of the packet. The task object (later
along the path the packet is traveling) that requires that infor‐
mation reads it from the annotation space. The last task along
the path of the packet that requires the information removes it
from the annotation space in order to free up space. To have
an efficient implementation, the location of information inside
the annotation space is static per compile time. With that we

5-16

can create simple access functions to the information in the
annotation space. An offline annotation compiler helps us in
optimizing the use of the limited annotation space. It assigns
the annotation space optimally to information items.
The annotation compiler requires a textual specification of the
task graph including the calculated information and required
information list on the output and input connectors. The for‐
mat is simple and has the following syntax:
a) declaration of task objects
name[number of output connectors]{comma separated
list of required information },{comma separated
list of calculated information on output connector
1}…{comma separated list of calculated information
on output connector n}

b) task graph: task object port ‐> task object
name1[output connector]->name2

The declaration of a task object includes its name “name”, the
number of output connectors “[number of output connectors]”,
the required information on the input connector “{comma sepa‐
rated list of required information},” and the calculated informa‐
tion for each output connector “{comma separated list of calcu‐
lated information on output connector 1}...{}”. Support for task
frames is not yet included, but could easily be added in the fu‐
ture. The connection statement “name1[output connector]‐>
name2” creates a connection from the output connector of task
object “name1” to the input connector of task object “name2”.
The task objects must be declared before they are used in con‐
nections. Example 5‐1 shows the definition of the task graph
shown in Figure 5‐2.

5-17

Example 5-1: Simple Input File for Annotation Compiler

01 // declaration of task objects
02 EthernetDriverRx[1]{},{}
03 MacRx[3]{},{}{incoming interface}{}
04 IPHeaderCheck[1]{},{}
05 IPForwarder[2]{incoming interface},{}{outgoing

interface}
06
07 // task graph
08 EthernetDriverRx[1] -> MacRx
09 MacRx[2] -> IPHeaderCheck
10 IPHeaderCheck[1] -> IPForwarder

The functionality of the annotation compiler can be compared
to register coloring in standard compilers [51]. The differences
are

 we do not want to move an annotated value from one
place to another place in the annotation space and

 we want to have a global assignment of the annotated
values to places in the annotation space.

This allows us to generate static access functions to the annota‐
tion space. Algorithm 2 is the core algorithm of the annotation
compiler. It optimally assigns annotation values to places in
the annotation space. It relies on the notion that an annotated
value is valid (active) for certain path fragments only. While
an annotated value is valid at a certain task, it is called active,
else it is called passive (see Definition 21 and Definition 22).

Definition 21

Active An annotated value is called active at a given task in
the task graph if the annotated value will be used af‐
ter this task.

5-18

Definition 22

Passive An annotated value is called passive at a given task
in the task graph if the annotated value is not used in
this task and after that task.

Algorithm 2: Coloring of Annotation Values

01 L = List of annotation values
02 e = head element of list L
03 remove head element in list L
04 put e in list A
05 n = 0
06 assign e place n in annotation space
07 While list L is not empty Do
08 e = head element of list L
09 remove head element in list L
10 For each element s in list A Do
11 failure = false
12 For each path through each task graph

 and not failure Do
13 For each task in the path

 and not failure Do
14 If e and s are active at task Then
15 failure = true;
16 End If
17 End For
18 End For
19 If not failure Then
20 assign e place of s in annotation space
21 break
22 End If
23 End For
24 put e in list A
25 If failure Then
26 assign e place n in annotation space
27 n = n + 1
28 End If
29 End While

5-19

5.1.3 Flows and Path-Threads

For a packet of a specific flow there are one or more allowed
paths through the task graph. The path‐thread, to which the
packet is bound, observes the path of the packet and will drop
the packet if it leaves the allowed sets of paths. Otherwise a
misbehaving packet stream could compromise the quality of
service of other packet streams. A trivial implementation that
compares the current path against all allowed paths (as speci‐
fied by the packet’s flow) is not very efficient. Two paths only
match, if they have the same sequence of tasks, from source
task to the current task. If the set of allowed paths contains
more than one path, the overhead becomes substantial. The so‐
lution of RNOS is to introduce a concept called microflows.

Microflow

The microflow concept is based on the fact that packets of the
same connection traverse exactly the same path through the
task graph. A connection, as we recall, is defined as having the
same incoming and outgoing interface, same source and desti‐
nation IP address, the same transport protocol and the same
source and destination port. In RNOS such connections are
called microflows. Packets that belong to the same microflow
will traverse exactly the same path through the task graph.
The result of this concept is that to each path‐thread there is an
associated microflow. Thereby the path‐thread can verify that
a packet follows the path defined by the microflow. The ad‐
vantage of having a defined path for a packet is that verifying
against one path is much easier and uses up less computation
capacity than verifying against a set of paths. Verification is
necessary as we do not want misbehaving sources to compro‐
mise the real‐time guarantees.

5-20

Figure 5‐8 depicts the object relations of RNOS. Note that there
are one to one relations between packet and path‐thread and
microflow and path. The microflow identifies a path for the
flow and links it to the path‐thread. Path‐threads are short
lived. They exist during the live‐time of the associated packet.
Microflows exist during the live‐time of the connection (which
usually consists of at least some hundreds of packets) or are
static. Note that a flow usually contains many microflows.
Flows on the other hand are static elements that are created
manually or by a resource reservation protocol [52]. They
carry the flow information, which essentially is the relative
deadline or priority (depending on the scheduler, as we later
will see) for packets of that flow.

����������� ��	
��

���

���
 ����	�

�

�

�

�

������	 ��� ��	
��

��

�

�

��	����

�

�

�

�
����

������	 ��� 	���	��� 	����	� ��� �������� 	����

Figure 5-8: Object Relation Diagram with Microflow Object

RNOS provides two mechanisms to create microflows. One is
to statically create a microflow and assign a path to it. The sec‐

5-21

ond is based on online learning the path of a microflow. The
basic learning sequence is as follows:

1. If the path for a microflow is unknown, a learn‐thread
is scheduled for this packet.

2. The learn‐thread records the path the packet traverses
through the task graph and compares it to the allowed
paths for this flow. Should it leave the allowed paths,
the packet is dropped.

3. Once the processing of the packet is completed, i.e. the
packet has been consumed or has been sent out of the
system, the state of the microflow is set to ready. From
that moment on the path of the microflow is known.

What will happen when a packet leaves the path pre‐defined
by the microflow? The path of a microflow can change over
time. As long as the new path is still in the path set of the flow
the packet does not need to be dropped. The solution here is
that when the path‐thread observes that the packet leaves the
microflow path, the microflow is put back in learning‐mode
and the new path taken is recorded.
As a flow might cover thousands of microflows, there might
be a storage limit on how many microflows the system can
handle at the same time. Depending on the application, micro‐
flows are short‐lived. RNOS does a least recently used re‐
placement of microflows. This means that there is another
quality of service parameter that has to be considered, namely
the number of maximum concurrent microflows or “connec‐
tions” that the system must be able to handle. RNOS provides
the option that best effort packets do not use the microflow
feature. This has the disadvantage that path verification is

5-22

turned off for best effort packets. However, as best effort pack‐
ets have the lowest priority, this is acceptable5.
Learning threads do not influence the real‐time behavior of ex‐
isting flows; the learning threads have lower priority than
standard path‐threads. Misbehaving packet sources either
never go beyond the learn thread, are easily policed within the
microflow, or are rate limited by a policing object early in the
task path. However, the setup of a microflow causes the first
packet of a microflow to potentially violate the agreed quality
of service. There are two approaches to overcome this possibil‐
ity. First, the contract could specifically not include the first
packet of a connection (microflow). Second, if the first ap‐
proach is not acceptable for a given connection, we must use
statically created microflows.

5.1.4 Source Flows and Source-Thread

In Chapter 4 source flows have been introduced. Source flows
cover all packets that have an unknown flow association.
These are those packets that arrive at the system and are not
classified to a flow yet. As long as a packet is not classified, we
have to assume that it belongs to the highest‐priority flow.
That means that the path‐thread to which the packet is bound
must run with highest priority. For simplification we call this
path‐thread “source‐thread”, due to its association to the
source flow. Obviously, for a good system performance, the
runtime of the source‐thread should be minimized. Therefore,
packets have to be classified to their flows as early as possible.
Most packet processing implementations do not care about

5 Buffer usage is also not a problem, as the buffer space for best‐effort
packets is limited.

5-23

this; they assume that there is enough processing power to
classify packets at the worst‐case packet rate [16, 24, 25, 27].
However, in our target domain of small, low‐cost embedded
devices, we cannot adopt this assumption. A common solution
to shorten the path until the classification is to add a hash‐
based classifier as a first task (immediately after the reception
of the packet). RNOS extends this concept in that it does not
classify to flows but to microflows. In RNOS, this task is called
filter‐task.

Filter-Task

The filter‐task works closely together with the learn‐thread in‐
frastructure. The filter‐task matches a packet directly to its mi‐
croflow. If no microflow exists yet, a learn‐thread is scheduled.
The filter‐task is necessary for those packet sources that are
input to more than one microflow. Typically, these are exter‐
nal interfaces, while internal sources usually “create” packets
of a predefined microflow.
Figure 5‐9 depicts a task graph with a filter task. The packet
reception and the filter task run in a thread called source
thread. This source thread inherits the highest priority any
thread of that task graph might have. Based on the matching
results, the filter task creates either a thread for the packet’s ac‐
tual microflow (in case a match was found), or a learn thread
to learn the packet’s path and create a new microflow. If path
verification is turned off for best effort flows, it also can be a
best effort flow thread.

5-24

�������
���	�

�������	����

	����
�
���

����	��	��
�	
�

������

�������	����

�
����

����	���	�
���

�����
�
����

������

��������
	�������

	����
�
���

��

��
�	�

�
�

��
�	�

��
�	�� ��	 ���
�	� �� ��
������

�������

��
�	� ����

���
	

���	�� ���
������� ��������	����
�	��	� �� ����	������

����	������

Figure 5-9: Source Thread creates Path-Threads

In contrary to standard path‐threads, the source‐thread is
never destroyed; it is always present, although it might be
idle. The source‐thread is idle if there are no packets pending
in interface input queues. When a packet arrives, the source‐
thread is woken and the packet is scheduled for execution
with a minimal deadline. The received packet on executing the
receive task is bound to the source‐thread. Once the packet is
classified to a microflow (by the filter‐task) a new path‐thread
is created and the packet is bound to that new path‐thread. If
there are no pending packets in interface input queues, the
source‐thread becomes idle again.

5.1.5 Scheduler

To complete the picture of the model elements in RNOS, the
scheduler is presented here. The scheduler is the core of RNOS
as it controls the execution of its threads. In RNOS, for each
flow there is only one path‐thread in the set of schedulable
threads. With that it is ensured that there is no reordering of

5-25

packets inside a flow. Note that threads6 are not threads in the
sense of operating system threads. They are very light‐weight
(as they must be; for each packet a thread is used) and do not
impose much overhead (basically, the costs of a virtual func‐
tion call7).
For each flow there is a waiting queue (first‐in first‐out) for
path‐threads. The scheduler will take another path‐thread out
of its waiting queue into its set of schedulable threads when a
path‐thread of that flow has terminated. Figure 5‐10 depicts
the RNOS scheduler architecture with an EDF scheduler using
a priority queue. The depth of the priority queue is identical to
the sum of the number of flows plus three (for the learn‐thread
queue, the source‐thread queue and the best effort queue).

6 The term ʺthreadʺ is used here, and shall from now on be used, for
any type of thread of RNOS (path‐threads, source‐threads, learn‐
threads, best‐effort‐threads).
7 Virtual function call: The call of a virtual method in C++. Using sin‐
gle inheritance (multiple inheritances are forbidden in Embedded
C++), it basically results into dereferencing a pointer and a jump.

5-26

������ �����

	��
��

���� ������ ������ �����

����� ������ ������ �����

��������� ���������

�������� �����

��� �����

	�� ��	�� �����

��	�� ������

Figure 5-10: Scheduler Architecture with EDF Algorithm

Algorithm 3 gives the core loop of the RNOS scheduler. It gets
the thread with the smallest deadline from the priority queue
and lets the thread execute. The thread will surrender control
back to the scheduler at the next preemption point8. If the
thread still has tasks to execute, the thread is scheduled again
(added into the priority queue). If a thread terminates, i.e. it
has executed the last task of a path, the next pending thread of
the same flow is added to the priority queue. If there are no
pending threads in the priority queue, the scheduler is idle. It
wakes up as soon as a thread is created. Note that the sched‐
uler runs at each preemption point, regardless of whether a
thread switch is necessary or not.

8 Remember that tasks cannot be preempted; the preemption points
lie between tasks.

5-27

The deadlines for the threads are calculated when the threads
are created (the deadlines are based on the relative deadline
defined by the flow, see also Chapter 2).

Algorithm 3: Scheduler

30 Forever {
31 pThread = priorityQueue.head();
32 if (0 != pThread) {
33 continue = pThread->execute();
34 if (true == continue) {
35 priorityQueue.add(pThread);
36 }
37 else { // thread has terminated
38 flowId = pThread->flowId();
39 pThread->terminate();
40 pThread= nextPendingThreadOfFlow(flowId);
41 if (0 != pThread) {
42 priorityQueue.add(pThread);
43 }
44 }
45 }
46 else { // idle
47 pendForThread();
48 }
49 } // forever

5.1.6 Summary

In summary, RNOS provides all the necessary elements to
build applications based on the model described in the previ‐
ous chapters. Most of the elements are a direct representation
of the elements of that model. The objectives for the software
platform RNOS are efficiency and ease of use. These objectives
are achieved by a carefully designing of the RNOS architec‐
ture. First of all, efficiency is reached by separating the admin‐

5-28

istrative part of the application structure from the actual data
path through the use of packet processors. Elements such as
the source thread with its filter task, the microflow infrastruc‐
ture and the use of a packet descriptor contribute to the effi‐
ciency of RNOS. The threads in RNOS are very light‐weight
and do not impose a large overhead. Second, ease of use is
reached by the introduction of hierarchical structure elements,
called task frames. They allow grouping and hiding fragments
of task graphs to aid in the building of complex applications.
Last, the packet descriptor allows a transparent handling of
packet buffers, regardless of the underlying hardware or oper‐
ating system architecture.
Figure 5‐11 gives an overview of some elements of RNOS. It
shows the scheduler as central element with the path‐threads
that are scheduled. Packets, consisting of a packet descriptor
and a buffering scheme, are bound to path‐threads. Each path‐
thread belongs to a microflow and each microflow belongs to a
flow. The three levels (path‐thread with packet, microflow and
flow) are necessary as they have different life‐times. A path‐
thread exists only for as long as a packet is bound to it (with
the exception of the source‐thread). A microflow represents a
connection between two endpoints and exists as long as this
connection is active. The flow is a more or less static element;
it is created by the admission control, either by configuration
(manually) or by a resource reservation protocol (e.g. [52])

5-29

Scheduler Algorithm

Priority Queue

One Entry (Path-Thread)
per Input Queue

Input Queues

Flows, per Admission Control
Microflows, per "Connection"
Predefined or created by a Learn-Thread

Packet Descriptors, per Packet

Buffers (e.g. mbufs)

Packet is bound to Path-Thread

Path-Thread is part of a connection: It has an associated Microflow
A Microflow has a defined Path
(from Set of Paths of associated Flow)

Set of Paths

Priority

Path
Priority

Path-Threads are created by
other Path-Threads, e.g. Source-Thread,
or are always present (Source-Thread).

PD PD

Buffer Buffer

Figure 5-11: Overview of some Elements of RNOS

5-30

5.2 RNOS Integration with the RTOS
In the target domain of RNOS, packet processing is only a
small part of the complete application. Therefore, RNOS has to
be integrated with a standard real‐time operating system. The
resources of the system have to be shared between RNOS and
other applications. The underlying real‐time operating system
provides RNOS with the computation resource, while RNOS
redistributes that resource to its own threads. Therefore,
RNOS runs in one (RTOS‐) process (see Figure 5‐12). Note that
the threads in the RNOS process are not threads of the RTOS
but RNOS threads as discussed in the previous subchapter.

��������� 	
������ ������

������� � ������� � ������� ��	�

��	�

��	� �������

Figure 5-12: RNOS running in an RTOS process

As defined by the resource model, RNOS requests having a
defined and guaranteed minimal access to computation re‐
source. Typically, this is a minimum number of CPU time in a
given time period. Figure 5‐13 shows an example in with
RNOS receives a CPU time t1 in every period t2.

5-31

����

�����

��	
�����

�� �� ��� ���������� ���	��
� �

��� ���� �	� ���� �� ����	� ��

��

��

Figure 5-13: RNOS running on RTOS as a process

As the example shows, RNOS is allowed to run for longer than
the minimum requested time t1, but must never receive less
CPU time than specified by t1. Interrupts also have to be taken
into account. An interrupt that occurs while RNOS is running
will consume CPU time assigned to the RNOS process. Either
interrupts are disabled during the runtime of the RNOS proc‐
ess, or they have to be included in the analysis of the system
(see subchapter 5.5).
In summary, there is a single requirement to the underlying
RTOS: to provide a minimum and guaranteed processing time
to the RNOS process. This makes it possible to port RNOS to
almost any available real‐time operating system. In Chapter 6
we will see how the guaranteed access to the computation re‐
source is implemented on top of a commercial RTOS.

5.3 RNOS: A higher Level Programming
System
A real‐time operating system provides an API (application
programming interface) with processes, threads, semaphores,
and for memory management, interrupt processing etc. RNOS

5-32

provides an API that is very domain specific and reflects the
model presented in the previous chapters. Using RNOS, the
programmer will construct his applications based on tasks by
connecting them to task graphs and define flows and their
quality of service parameter. Thus, RNOS provides a higher
level of programming abstraction for the target domain of
packet processing (see Figure 5‐14).

��������� 	
������ ������

��	�����

��	�����

�������

����
����

������

������
�

���

���� ���
�

����

������

����

���

��	�

Figure 5-14: RNOS' higher level of abstraction API

Comparing an RTOS with RNOS we can see that RNOS has a
similar structure to that of an RTOS. The difference is that the
elements of RNOS are on a higher level of abstraction. Instead
of instructions, RNOS executes tasks. Instead of a program,
RNOS has task paths. The equivalent to a process in an RTOS
is the RNOS thread. The program counter becomes a task
pointer (each path‐thread has a pointer to the task that will be
executed next) and the registers and memory are replaced by
packets and their annotations. Table 5‐1 relates the elements of
a standard real‐time operating system with the elements of

5-33

RNOS. Other frameworks to build packet processing systems
[6, 7, 13‐16, 18, 20, 21‐25] do not provide a full set of equivalent
elements to an RTOS on a higher level of abstraction. They
provide some elements which still need to be integrated and
combined with standard RTOS elements. RNOS on the other
hand provides a complete framework for packet processing
that is similar in its form to frameworks seen in signal process‐
ing [59].

Table 5-1: Analogy between RTOS and RNOS

RTOS RNOS

Instruction Task

Program Task Path

Thread Path‐Thread

Program Counter Task Pointer

Thread Priority Deadline

Registers and Memory Packet and Packet Annotations

5.4 Advanced Features of RNOS
RNOS has several configuration parameters and built‐in tools
to optimize and explore system behavior. Some of those fea‐
tures are presented here, as they are important in the context
of this thesis.

5.4.1 Virtual Tasks

As we have seen in a previous subchapter, the scheduler exe‐
cutes at each preemption point. It is obvious that this execu‐

5-34

tion is not free and requires some processing resources. In the
model, the tasks are non‐preemptive. The task boundaries rep‐
resent the preemption points. That means that a thread will
execute one task and once the task is finished, the control is
surrendered back to the scheduler. The granularity of the tasks
becomes an important factor in the system. The fewer tasks
there are in a task path (every task takes longer to execute as it
covers more functionality), the less preemption points there
are and, therefore, the less overhead is incurred by the sched‐
uler. On the other hand, as we have seen in Chapter 3, the
worst case delay is influenced by the task with the longest
processing time. There is a tradeoff between efficiency (nega‐
tively influenced by overhead) and delay (negatively influ‐
enced by the longest task). We will look at this more closely
later.
RNOS allows for the grouping of tasks into so called virtual
tasks. As a consequence, the preemption points are defined by
the boundaries of the virtual tasks, giving the programmer the
freedom to choose the task sizes and group them together into
virtual tasks. To simplify this, RNOS allows an automatic crea‐
tion of virtual tasks by specifying a minimum worst case proc‐
essing time of virtual tasks. RNOS then creates at runtime the
virtual tasks by traversing all task paths and grouping tasks
together to virtual tasks, such that their worst case processing
time is at least the specified time limit. This mechanism allows
having small tasks in respect to processing time while it re‐
duces the disadvantage of too many preemption points and
the overhead associated with these. Figure 5‐15 depicts an ex‐
ample of virtual tasks in a task graph. It also shows that a task
may be part of more than one virtual task for different paths
through the task graph.

5-35

���
��

�����

	

�������

������

�����

�����	�	��
�	

����	

	

�����

�����

	

��������

���

	

���

�����	�	��
����

�������

�����

	

������

����	�

���
��

�����

��

������

��

������

��
����	����� ����

Figure 5-15: Virtual Tasks

5.4.2 Instrumentation

The RNOS provides various statistics for gathering data about
the behavior of the system. As the gathering of statistic data
incurs additional overhead, it can be removed or added at
compile time. The following data is available:

 Worst‐case, best‐case and average processing time of
each task.

 Worst‐case, best‐case and average system presence
time of packets per microflow. The system presence
time of a packet is from the time it enters the system
until it leaves it again. This includes the processing
time and the time the packet has been waiting for proc‐
essing.

This built‐in statistic gathering allows a verification against ex‐
ternal measurement equipment. More about measurement is
available in Chapter 6.

5-36

5.5 Schedulability Region of RNOS
It is obvious that RNOS is not free of overhead and that this
overhead has an impact on the performance of the system. Be‐
fore looking at measurements (see Chapter 6), we will do a
formal overhead analysis of RNOS and find its schedulability
region. What are the conditions such that RNOS makes sense?
What is the influence of the overhead and other parameters on
throughput and delay?

5.5.1 Overhead

Overhead consists of everything except the actual processing
of packets. Applied to the model the overhead consists of eve‐
rything except the execution of the tasks (or packet processors
in RNOS). The overhead in an RNOS based system can be
classified into two categories:

1. Overhead that occurs in any implementation of a
packet processing system, i.e. that is not specific to
RNOS.

2. Overhead that is specific to the way RNOS works.

Non-specific Overhead

Overhead incurred by the operating system due to process
scheduling does not have to be considered, as RNOS requests
a predefined minimum amount of processing resources (see
section 5.2). On the other hand, overhead incurred by inter‐
rupt service routines has to be considered.
Interrupts are a common method for hardware components to
signal an event to the software. In case of packet processing
systems, interrupts are usually only used to wakeup an idle

5-37

system and not for each packet that arrives. However, there
are still driver models that are completely interrupt based, i.e.
that use interrupts for every packet [53, 54]. The interrupt
overhead related with packet reception and, depending on the
actual system, also with packet transmission (transmission
complete interrupt) has to be accounted for. All other non
packet processing related interrupts must be either disabled
during the time the RNOS process is running, or, if this is not
possible, we have to take into account that less processing time
might be available for the RNOS process. We will use arrival
curves to model interrupts (see section 5.6).

RNOS specific Overhead

RNOS specific overhead originates in its scheduler9 and in the
creation and termination of path‐threads. Other components
such as source‐threads or learn‐threads10 are either always
present, and as such do not impose a direct overhead, or are
not present in a stationary state.
The overhead of the scheduler is dependent on the number of
active flows and occurs for each preemption point, while the
overhead for the creation and termination of path‐threads is
per packet. The overhead of the scheduler is dependent on the
number of active flows because of the implementation of the
priority queue for the EDF algorithm of the scheduler as a
heap [55]. (5.1) shows the overhead of the scheduler per pre‐
emption point. The overhead is given as required processing

9 The overhead of thread switches is included in the scheduler over‐
head.
10 Learn‐threads are only active for the first packet of a connection
and only if there is not a predefined microflow for that connection.

5-38

time to process the overhead. Therefore, the unit of the over‐
head is a time unit (e.g. microseconds). Note that the overhead
is independent of whether a thread switch occurs or not. The
scheduler runs at each preemption point and a re‐scheduling
of the current thread takes the same time as scheduling a new
thread11. Also note that as the priority queue for the EDF is
implemented as a fixed‐sized heap. The maximum number of
possible flows is known12. The overhead incurred by the crea‐
tion and termination of a path‐thread is shown in (5.2).

 2log ,
where is the maximum number of flows.

preemption point scheduler prio queueo o o N
N
− −= + (5.1)

 − − − − −= +path thread path thread creation path thread terminationo o o (5.2)

Similar to the lower and upper execution time of packets in
Chapter 3, we will use lower and upper overhead in the fol‐
lowing explanations, the lower overhead being the minimum
overhead and the upper overhead being the maximum (worst‐
case) overhead.
With the knowledge about the overhead we can now look at
its influence on throughput and delay of an RNOS based sys‐
tem.

11 Valid for worst case only, cache effects could make a re‐scheduling
of the current thread faster.
12 The maximum number of flows is also known due to the admis‐
sion control, which must take place to admit a new flow (flows not
admitted are aggregated in the best effort flow)

5-39

5.5.2 Throughput

The throughput of a system is a common benchmark value for
packet processing systems. Here, we will look at the impact of
the RNOS specific overhead on throughput. Note that
throughput is defined (see Definition 23) without the notion of
flows or priorities; all packets have to be processed com‐
pletely, regardless of their priority. Buffering is not possible as
the packet rate is constant and an infinite period would re‐
quire infinite buffer space.

Definition 23

Throughput The maximum packet rate (number of packets per
second) that can be processed over an infinite period
of time without loosing or dropping any packet.

Maximum throughput is achieved when packets are processed
back‐to‐back, the system never being idle. (5.3) gives the gen‐
eral equation for the lower bound of the maximum through‐
put. It is defined by the upper bound for the packet processing
time u

packete (which is equal to
k

u
fe , the upper bound for the

packet processing time of a packet of flow kf , see Chapter 3)
and the upper bound for the associated overhead u

packeto .

 1
=

+
l
max u u

packet packet

p
e o

 (5.3)

(5.4) shows the overhead for an RNOS based system. It con‐
sists of the overhead due to the RTOS (interrupt service rou‐
tines and process scheduling) and the overhead specific to
RNOS.

5-40

 / /

u u u
packet RTOS packet RNOS packeto o o= + (5.4)

In the previous section we have learned that the overhead of
RNOS occurs on path‐thread creation, termination and at each
preemption point. The worst‐case scenario for the maximum
throughput is having a thread switch at each preemption
point. (5.5) shows the total RNOS specific overhead per
packet. Here we assume that non packet processing related in‐
terrupts are disabled during execution of the RNOS process
and that the packet processing related interrupts take place in
the RTOS overhead part. Note that the maximum number of
preemption points can be influenced by using the virtual task
mechanism of RNOS (compare previous subchapter about vir‐
tual tasks).

/

where is the maximum number of preemption points.
RNOS packet path thread preemption pointo o n o

n
− −= + ⋅

 (5.5)

By defining the upper bound for the RNOS specific overhead
as a factor RNOS specificc − of the RTOS overhead, the lower bound

for the maximum throughput of RNOS can be specified as in
(5.6).

/

1
(1)−

=
+ +

l
max u u

packet RNOS specific RTOS packet

p
e c o

 (5.6)

Using / /=u u

RTOS packet RTOS packet packeto c e and by dividing the lower
bounds of the maximum throughputs of RNOS and a system

5-41

without RNOS, we get the relative lower bound for the maxi‐
mum throughput of RNOS, see (5.7).

 /

/

1
1 (1)−

+
=

+ +
RTOS packetl

max-relative
RNOS specific RTOS packet

c
p

c c
 (5.7)

Figure 5‐16 shows the impact of the additional overhead (spe‐
cific overhead) of RNOS on throughput compared to a system
without RNOS. The RTOS overhead is assumed to be 5% of
the total packet processing time (/ 0.05=RTOS packetc). The factor

RNOS specificc − for the RNOS specific overhead in the plot range is

from 0 to 10, which means from zero to 10 times the overhead
of a system without RNOS. It also means that the RNOS spe‐
cific overhead is from 0% to 50% of the total packet processing
time, which is shown in the X‐axis of the figure.

� �� �� �� �� ��

���	
�
	 ��� ��������
� � �� ����� ��	��� ���	���
�� �
��

�� �

����

��

�� �

�� !

��!�

�

��
��
�

��

��
��
"�
��
"�

Figure 5-16: Impact of Overhead on Throughput

5-42

The figure shows that as long as the additional overhead in‐
curred by RNOS is small compared to the total packet process‐
ing time, the impact on maximum throughput is small. Having
an additional overhead of 10% of the total packet processing
time results in a lower bound of the maximum throughput of
92% of what a system without RNOS would achieve.

5.5.3 Delay

After having seen the influence of overhead on throughput,
we will now look at its influence on the delay of a packet. First
of all, we will give some definitions used throughout the re‐
mainder of this chapter. Looking at a packet lifetime inside a
system, we distinguish between different phases:

 Waiting Time
 Overhead Time
 Processing Time

See Definition 24 to Definition 26.

Definition 24

Waiting Time The waiting time is the total time the packet resides
inside the system and is idle due to higher priority
packets, i.e. processing is applied to other packet. The
waiting time only includes the time the packet is
waiting while other packets are being processed (incl.
the overhead associated with those packets) and not
any operating system overhead associated with the
packet itself.

5-43

Definition 25

Overhead Time The overhead time is the total time the packet resides
inside the system and the operating system is execut‐
ing overhead functions associated with this packet.

Definition 26

Processing Time The processing time is the total time the packet re‐
sides inside the system and is being processed, i.e.
processing is applied to the packet. It does not in‐
clude any operating system overhead.

Definition 27

Delay The delay of a packet is the time the packet resides
inside the system, e.g. from the time it enters the sys‐
tem (or is created) until the time it leaves the system
(or is consumed/deleted).

The total delay of a packet comprises waiting time, overhead
time and processing time (see Definition 27). The overhead as‐
sociated with the termination of a path‐thread is not part of
the overhead time, as the packet has already left the system (or
has been consumed) at that time. Figure 5‐17 depicts an exam‐
ple for the alignment of phases in a packet lifetime.

5-44

������� ���	
��	����� ���	

��	��	�� ���	

������� ���	

��	����� ���	

�	���
Figure 5-17: Example alignment of phases

We will now analyze the different parts of the delay by using a
worst‐case scenario. The aim is to analytically determine the
worst‐case delay of a highest‐priority packet. We assume that
non packet processing related interrupts are disabled during
the runtime of the RNOS process and that RNOS gets a fixed
amount of minimum processing time as described previously.
In the following paragraphs we will discuss only the time in‐
side the RNOS process, we mask out the time running outside
RNOS. At the end of this section, we will then calculate the ac‐
tual delay by also taking into account the time that elapsed
outside the RNOS process.

Waiting Time

Let us consider a highest‐priority packet. There is no other
packet in the system with higher priority. However, the source
thread with its reception and filter task (compare previous
subchapter) takes always precedence. Without that, we would
risk loosing packets due to input queue overflows.
The worst‐case waiting time can be elicited as follows:

0. The highest‐priority packet arrives at the system. Wait‐
ing time measurement starts.

5-45

1. The longest task in the system has started processing
just before the arrival of the highest‐priority packet.
While this task is being processed, other packets arrive
at the system. They arrive with the maximum packet
rate (defined by the physical line rate and the smallest
packet size).

2. Once this task has finished execution, the source thread
starts running. It will receive and filter all packets that
have in the meantime been received. While the source
thread is running, additional packets arrive with the
maximum packet rate. These packets also have to be
received and filtered.

3. As the packet can be processed now, we stop the
measurement of the waiting time. However, every time
that there is a preemption point, the source thread will
run again and process the packets that have arrived at
the system. During all the time, packets arrive with
maximum packet rate. These periods of source thread
processing are added to the waiting time.

Figure 5‐18 depicts the different phases in the lifetime of the
packet. The numbers in the figure relate to the above explana‐
tions.

5-46

������� ���	

���	 ��	���

��	�	�� ���	

���	����� ���	

�	���

� � � ��

����	�� ����

Figure 5-18: Worst-case waiting time for a high-priority packet

(5.8) gives the equation for the worst‐case waiting time of a
highest‐priority packet. The equation is grouped into three
parts which relate to the above explanations and Figure 5‐18.

()

() ()()

&

&

&

1

1 2 1

u
packet

u u
longest task preemption point

u
line rx filteru u

longest task preemption point u
line rx filter

line rx filteru u u u
preemption point preemption point packet last task

w

e o

r e
e o

r e

r e
n o n o e e

− −

− −

− − −

=

+ +

⎛ ⎞
+ +⎜ ⎟⎜ ⎟−⎝ ⎠

− + − ⋅ + −
&1

u

u
line rx filterr e

⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠

 (5.8)

The first part of the equation consists of the upper execution
time for the longest task u

longest taske − in the system and the over‐

head of RNOS due to the immediate thread switch to the
source thread u

preemption pointo − .

5-47

The term () &

&1

u
line rx filteru u

longest task preemption point u
line rx filter

r e
e o

r e− −

⎛ ⎞
+ ⎜ ⎟⎜ ⎟−⎝ ⎠

 in the second

part of the equation is the result of the source thread. The
packets that have arrived during the execution of the longest
task and the following thread switch have to be processed by
the source thread. The packets arrived with a packet rate of

liner , requiring an upper execution time &
u
rx filtere per packet, re‐

sulting in () &
u u
longest task max packet rx filtere r e− − . While the source thread

runs, new packets arrive at the system. Also these packets
have to be processed. And while these packets are processed,
new packets arrive and so on. We get

() ()& & & ...u u u u u
longest task max packet rx filter longest task max packet rx filter max packet rx filtere r e e r e r e− − − − −+ +

which is a geometric series and results in the said term.

In the following we will use &

&1

u
line rx filter

u
line rx filter

r e
s

r e
=

−
.

Also note that &
u

line rx filterr e can be interpreted as the fraction of
processing time that is required to receive and filter packets
from system interfaces and that &

u
line rx filterr e < 1 is required for a

valid system (otherwise the system is over‐occupied with re‐
ceiving and filtering packets and will not do anything useful).
Also note that &

u
rx filtere includes the creation of path‐threads (see

Section 5.1.4).
The third part of the equation is similar to the second part. It
covers the running of the source thread between each preemp‐
tion point. The source thread runs as long as the input queues
are not empty. Only then, the processing of the highest prior‐
ity packet is resumed. In the equation, n denotes the maximum
number of preemption points for the highest‐priority packet.

5-48

The term ()1 u
preemption pointn o −− represents the thread switches to

the source thread. The term ()()2 1 u u u
preemption point packet last taskn o e e− −− ⋅ + −

is the time during which new packets have arrived and the
source thread was not running. There are 2n‐1 thread
switches, from the highest‐priority packet processing to the
source thread and back. The upper execution time of the last
task of the highest‐priority packet has to be subtracted from
the total upper execution time of the packet as the packets that
arrive during the execution of the last task do not add to the
waiting time of the highest‐priority packet.

(5.9) gives a simplified form of (5.8) that assumes that the ap‐
plication of the highest‐priority packet has n preemption
points and that all the tasks in the system have an identical
processing time.

() ()
()1

1 2 1

u
packet

u
packet u

preemption point

u
packet u

preemption point

u
packetu u

preemption point preemption point

w

e
o

n
e

o s
n

e n
n o n o s

n

−

−

− −

=

+ +

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞−

− + − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.9)

(5.10) is identical to (5.9), but the terms are reordered such that
the influence of the number of tasks n is easier to understand.
With a growing n the first part of the equation will result in a
smaller value, while the second part of the equation will result
in a larger value. We can interpret this as follows: The more
tasks (or preemption points) there are, the less the influence of

5-49

the “longest” task will be, as it becomes “shorter”. On the
other hand, more tasks means more thread switches (as the
source thread has always higher priority), which results in
more overhead.

()

1

1 2

u
packet

u
packet

u
preemption point

w

s e
n

n s o −

=

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

+

 (5.10)

Figure 5‐19 shows the upper bound for the waiting time of a
highest priority packet for a different number of tasks and
packet processing times. The figures are plotted with

&
u

line rx filterr e =0.1, which is a reasonable load for the reception and
filter tasks. The upper bound for the packet processing times

u
packete are 100µs, 300µs, 500µs, 700µs and 900µs and the upper

bound of the preemption point overhead u
preemption pointo − is 6µs.

5-50

�� �� �� �� ��

���	
� � �����

u
packete

u
packetw

���

���

���

���

����

Figure 5-19: Upper bounds for waiting times for a highest priority packet

Overhead Time

The overhead time in the worst‐case scenario is simple to de‐
termine. There are as many thread switches as there are pre‐
emption points. Figure 5‐20 depicts the worst‐case overhead
times for a highest‐priority packet with four preemption
points in the path‐thread. Note that the overhead (e.g. thread
switches) associated with other threads are part of the waiting
time. Overhead time does only include the overhead for one
specific packet (see Definition 25). Again, the overhead associ‐
ated with the termination of a path‐thread is not part of the
overhead time, as the packet already has left the system (or
has been consumed) at that time and the overhead associated
with the creation of a path‐thread is included in the waiting
time (in &

u
rx filtere).

5-51

������� ���	

��
� �����	

��	��	�� ���	

����	

��� ���	

�	���

��������	�� �	���������

Figure 5-20: Worst-case overhead time for a highest-priority packet

(5.11) shows the upper overhead time for a highest‐priority
packet.

,
where is the maximum number of preemption points.

u u
packet preemption pointo no

n
−=

 (5.11)

Processing Time

The worst‐case processing time for a highest‐priority packet is
the upper processing time u

packete (which is equal to
k

u
fe , the up‐

per bound for the packet processing time of a packet of flow
kf , compare also Chapter 3).

Delay

As we know from the definition of delay (see Definition 27),
the upper bound for the delay u

packetd is the sum of the process‐

ing time, overhead time and waiting time
(u u u u

packet packet packet packetd e o w= + +). (5.12) shows the resulting equa‐

tion.

5-52

()1 1 2

u
packet

u
packet

u
preemption point

u u
packet preemption point

d

e

no

s e n s o
n

−

−

=

+

+

⎛ ⎞+ + +⎜ ⎟
⎝ ⎠

 (5.12)

Reordering the equation for the influence of the number of
preemption points (or (virtual) tasks) n yields (5.13).

()

(1)
1

2 1

u
packet

u u
packet preemption point

u
packet

u
preemption point

d

s e o

e
n
n s o

−

−

=

+ + +

+

+

 (5.13)

Before discussing the delay we have to include the time out‐
side the RNOS process. (5.13) does not give the actual delay, as
it does consider the time inside the RNOS process only. To get
the actual delay ʹu

packetd we have to

 add the worst‐case initial waiting time before the
RNOS process gets scheduled by the RTOS and

 consider also all the packets that have arrived during
that initial waiting time, i.e. also those packets that
have to be received and filtered by the source thread.

Here we assume that the RNOS process will run at least as
long as the time needed to process the highest‐priority packet
completely. This is always the case when packet processing is

5-53

an important part of the complete application.13 According to
the model, the RNOS process receives a minimum amount of
processing time in a defined period of time (compare previous
subchapter). (5.14) shows the actual delay ʹu

packetd , with
u
RNOS‐Processw as the upper waiting time before the RNOS process

gets access to the processing resource. By Figure 5‐13
u
RNOS‐Processw can be defined as 2 1

u
RNOS processw t t− = − .

 ʹ (1)u u u

packet packet RNOS‐Processd d s w= + + (5.14)

We recognize that the delay ʹu

packetd consists of a constant term, a

term that shrinks with larger n (the longest‐task in the system)
and a term that grows with larger n. The effect of the number
of preemption points n can easily been seen in Figure 5‐21,
which shows the upper bound of delay for highest priority
packets plotted versus the number of tasks or preemption
points n. The upper bound for the waiting time before the
RNOS process gets scheduled u

RNOS‐Processw is assumed to be
2000µs and other values are identical to those used for Figure
5‐19.

13 Otherwise, the packet throughput of the system is very low.

5-54

������ �� 	
���

’u
packetd

� �� �� �� ��

���

����

����

���� u
packete

Figure 5-21: Upper bound of delay for highest priority packet

For each upper packet processing time, there is a number of
tasks delay‐minn for which the delay is minimized. If delay ‐minn n> ,

the delay increases and the overall packet throughput de‐
creases (as more thread switches incur more overhead and
therefore the processing of each packet requires more system
resources). If delay‐minn n< the delay also increases, but the overall

system performance is higher. Therefore, n should be chosen
with delay‐minn n≤ . To get delay‐minn we derivate u

packetd with subject n

(5.15) and find the solutions for the derivation being equal to
zero (5.16).

 ()2
1 2 1

u
packet u u

packet preemption point

d
e s o

n n
δ

δ −= − + + (5.15)

 ()2
1 2 1 0u u

packet preemption pointe s o
n −− + + = (5.16)

5-55

(5.17) gives the solution for (5.16), which is the number of
tasks or preemption points delay‐minn that result in a minimum

worst‐case delay for a highest priority packet. This is also the
maximum number of preemption points that are feasible. Of
course the value must be a cardinal, therefore the actual n is
either delay‐minn⎢ ⎥⎣ ⎦ or delay‐minn⎡ ⎤⎢ ⎥ , depending on which results in a

lower delay value.

()&1

2

u u
packet line rx filter

delay‐min u
preemption point

e r e
n

o −

−
= (5.17)

Figure 5‐22 is a plot of (5.17) versus the total packet processing
time u

packete , other values being identical to those used in Figure

5‐19.
������ �� 	����	
��� 	���
�

u
packete

�� ��� ��� ��� ���� ���

�

�

�

��

������������
� ������ �� �

������� ����� ���� ������ 	����
�

������	�

���� ����� ���

�����	�����
�

	����
�

Figure 5-22: Feasible number of preemption points, depending on u

packete

5-56

The above figure gives the schedulability region for n. Inside
this region the following applies:

 The less preemption points the higher the packet
throughput and the larger the delay for a highest‐
priority packet

 The more preemption points the smaller the delay for a
highest‐priority packet and the less the packet
throughput.

Remember that the above discussions are valid under the as‐
sumption that the preemption points are equidistant. In gen‐
eral, the optimal number of preemption points depends on
more than one criterion (here: worst‐case delay for highest
priority flow). We call the analysis method we have used in
this section “runtime analysis”, as it models the exact behavior
for a given scenario. In Chapter 3 we have introduced an
analysis method for our model based on network calculus. In
Section 5.6 we show how network calculus can be applied to
RNOS based systems.

5.5.4 Conclusion

The schedulability region of RNOS is bounded by various sys‐
tem parameters. First of all, the processing time required to re‐
ceive and filter incoming packets multiplied by the maximum
packet rate of all incoming interfaces must be less than one,
preferably as small as possible. Otherwise, all or most of the
processing capacity is consumed for receiving and filtering
packets and not enough capacity is left to process packets.
Second, there is a tradeoff between maximum throughput and
the worst‐case delay that is tolerable for high priority packets.
The parameters of this tradeoff are the maximum number of
preemption points and the task with the longest execution

5-57

time. The execution time of the longest task directly adds to
the worst‐case delay. Third, the overhead incurred by RNOS
should be small compared to the total packet processing time.
Otherwise, the maximum throughput becomes small (too
small). An RNOS specific overhead of 10% of the total packet
processing time results in a 92% throughput compared to a
system without RNOS.

5.6 Analysis with Network Calculus
In Chapter 3 we have introduced how to do system analysis
with network calculus for systems based on our model. In this
section, we show how to build system models that are to be
implemented based on RNOS and how to analyze such sys‐
tems with network calculus.
Using RNOS as a base for the implementation requires that we
include the following properties in the system model and cal‐
culus:

 Source thread with its receive and classification task
 Overhead

The source thread can be modeled by a receive and classifica‐
tion flow which receives packets at all input interfaces at
maximum rate (defined by physical line parameters and
minimum packet size) (see also Figure 5‐9). Figure 5‐23 shows
the calculation scheme for RNOS. The source flow has higher
priority than all other flows. Packet flows have lower priority.
The figure also shows an ISR (Interrupt Service Routine) flow,
which can be used to model the interrupts.

5-58

{ , }α αf
l

f
u

s s

{ , }α αf
l

f
u

1 1
{ , }α αf

l
f
u

1 1

{ , }α αf
l

f
u

s s

{ , }β βl u

ISR calculate{ , }α αf
l

f
u

o o
{ , }α αf

l
f
u

o o

Source Flow calculate

Highest-priority
Packet Flow

calculate

Priority

high

low
Figure 5-23: Calculation scheme for RNOS

Overhead occurs at creation and termination of path‐threads
and at each preemption point (see section 5.5). We add the
overhead to the execution times:

 The overhead for the creation of a path‐thread is al‐
ready included in &

u
rx filtere . The overhead for the termi‐

nation of a path‐thread is modeled by adding an addi‐
tional task after the sink task, which represents the
termination of the path‐thread. Note that if we do a de‐
lay analysis, we have to omit the termination overhead
for the flow we are looking at14.

 The overhead at the preemption points is modeled by
adding two times the preemption‐point overhead for
each (virtual) task for each path except the one of the
source thread.

Consider the following: All input interfaces receive packets at
maximum rate and the source thread has higher priority than
any other thread. Therefore we have thread‐switches at each

14 Path‐thread termination occurs after the packet has left the system
or has been consumed.

5-59

preemption point. Figure 5‐24 shows an example for such a
scheduling pattern with two path‐threads and a source thread.

������ ����	

����	
������ ������	

����	
 �

����	
 �

���
Figure 5-24: Thread-switch pattern

With the above guidelines on how to do the analysis for a
RNOS based system, we have continuous design flow from
the model to the analysis and to the implementation. In the
following section we show how exactly to do the calculations.
We will repeat the worst‐case delay analysis for a highest‐
priority packet in RNOS. This time we use the calculus of our
model instead of the runtime analysis method of Section 5.5.

5.6.1 Example Analysis: Worst-Case Packet Delay

Step 1 – Define Flows

We have two flows to model, the source flow sf and the high‐
est priority packet flow hpf .

In the previous runtime analysis we have used &
u

line rx filterr e =0.1
for the arrival of packets. Therefore, the arrival curves

s

l
fα ,

s

u
fα

of the source flow look like shown in Figure 5‐25.

5-60

�� �� �� �� ���

�

�

�

�

��

����	�
 ��	�� �� ����� �
��

��
��
��
��
��

��
�
�
��

�
��

�

Figure 5-25: Arrival curves of source flow

The upper execution time15
hp

u
fe of the highest‐priority packet

flow hpf has to be modified as explained in the previous sec‐

tion. (5.18) shows the modified upper execution time
hp

u
fe′ ,

where n is the number of preemption points.

 (2 1)

hp hp

u u u
f f preemption pointe e n o −′ = + − (5.18)

Note that we do not add the overheads of the last preemption
point and the path‐thread termination, as in case of the delay
analysis the packet is already sent out of the system or has
been consumed at this point.
For

hp

u
fe we use the same values as in the previous analysis,

100µs, 300µs, 500µs, 700µs and 900µs. The arrival curves
hp

l
fα ,

hp

u
fα could look like shown in Figure 5‐26 (with

hp

u
fe = 300µs).

The actual slope does not matter (here) for the delay analysis.

15 For the worst‐case delay analysis we only need the upper execu‐
tion time.

5-61

�� �� �� �� ���

���

���

���

���

���	
�� ��
�� �� �	�� ��	��	�� ���� �	��
hp

u
fe

��
�
��
�	
��

�	
�
�
��

�
��

�

Figure 5-26: Example arrival curves of high-priority flow

Step 2 – Define Resource

The RNOS process periodically receives at least 8ms of proc‐
essing time within a period of 10ms. Therefore, the service
curves lβ , uβ can be defined as shown in Figure 5‐27.

���� ����� ����� ����� �����

����

�����

�����

�����

�����	� 	����� �� 	�������� 	���	���

��
��
��
��
�
��
	
��

��
��

��
�
�

Figure 5-27: Service curves of processing resource

5-62

Step 3 – Execute Calculations

Using the operators as defined in Chapter 3, we can now exe‐
cute the analysis by applying the calculation scheme for RNOS
as shown in Figure 5‐23. (5.19), (5.20) and (5.21) are used to
calculate the upper bound for the delay. Note, that we have to
add the execution time of the longest task to the calculated de‐
lay as defined in Chapter 3. In RNOS, we also have to add the
overhead of one additional preemption point (see (5.21)). Both
are necessary to model the initial waiting time. Again, n de‐
notes the number of preemption points.

 ()() () () 0
s

l l u
s fβ β α∆ = ∆ − ∆ ⊕ (5.19)

 { }{ }0
sup inf : 0 () ()

hp

u u l
hp f sd τ τ α β τ

∆≥
= ≥ ∧ ∆ ≤ ∆ − (5.20)

u
hpu u u

hp hp preemption point

e
d d o

n −′ = + + (5.21)

Figure 5‐28 shows the resulting worst‐case delay for packets of
the highest‐priority flow hpf . The results are identical to those

we got by using the runtime analysis method (compare Figure
5‐21). The results differ by 1.556µs, which is less than half of a
thousandth part of the delay and therefore is negligible.

5-63

������ �� 	
���

’u
packetd

� �� �� �� ��

���

����

����

���� u
packete

Figure 5-28: Upper bound for delay for packets of highest priority flow

We have presented two analysis methods for our system.
While the method based on network calculus works on the
model introduced in Chapter 2, the runtime analysis method
requires a thorough understanding of the mechanisms of
RNOS. While the network calculus only enables us to calculate
upper and lower bounds, the runtime analysis allows us to
understand what happens in the system on a finer grained
base. This allows us to also calculate average (statistical) val‐
ues. The biggest advantage of the analysis method based on
network calculus is its much easier application, especially if
we have many flows. However, both methods yield the same
results, at least for the scenarios we have calculated.

5-64

5.7 Summary
In this chapter we have presented the software platform
RNOS. It provides all the functionality and elements to im‐
plement packet processing applications defined by our model.
This allows for a seamless process from design to the imple‐
mentation.
RNOS is at the same time efficient and easy to use. Complex
applications can be built through the use of hierarchical struc‐
tures and efficiency is provided by separating the packet proc‐
essing part from the application structure part. The specialized
packet processing elements have a flat view of the system, by‐
passing any structural elements. To protect the system from
misbehaving packet sources, RNOS uses an element called mi‐
croflow to observe packets and acertain that they follow their
predefined path.
As packet processing is only a (possibly small) part of the
complete application in our target domain, RNOS has to be in‐
tegrated on standard real‐time operating systems. The integra‐
tion is such that RNOS runs in a process of the underlying
RTOS. The RTOS has to provide a minimum guaranteed proc‐
essing time to RNOS. As these are all the requirements to the
RTOS, RNOS can be ported to almost any available RTOS
(commercial, open source or proprietary).
RNOS can be looked at as a higher level programming system.
Based on tasks; the programmer puts together applications by
connecting tasks to task graphs. Flows are used to define the
input to these task graphs and the flow’s quality of service pa‐
rameter delay defines how packets of that flow will be treated
inside the system.

5-65

Obviously any software platform adds some overhead to exe‐
cution. RNOS, also, is not free of overhead and the schedulab‐
lity analysis has shown the influences of the overhead on de‐
lay and throughput. As the overhead of RNOS is dependent
on the number of preemption points, RNOS has a mechanism
that allows to determine the distance of the preemption points
(with the granularity of the underlying task sizes). This allows
optimizing a system for delay or throughput (the two optimi‐
zation targets are contrary), while leaving the tasks themselves
untouched.
Two analysis methods are available to explore the properties
of a RNOS based systems. Both yield the same results.
In conclusion, RNOS provides the means to have a seamless
engineering path from model to implementation.

Example:
Implementation &
Measurements
In this chapter we present as an example the implementation
of an application based on RNOS on a specific system. The
first part of this chapter describes the example system and
specific implementation issues. We then describe the applica‐
tion, and measure and calculate the attributes of the system
(overhead, execution time of individual tasks, minimum de‐
lay).
In the second part of this chapter we compare for specific sce‐
narios theoretical calculation results with practical measure‐
ment results.

6-2

6.1 System Description
The example consists of the hardware platform, the real‐time
operating system, the implementation of RNOS itself and the
example application on top of RNOS.

6.1.1 Hardware Platform

For the example, a hardware architecture was chosen that is
widely used in the target domains of industrial automation,
life science and small communication devices. It is based
around a PowerPC communication controller from Freescale
(formerly Motorola) that runs with 50 MHz [56]. The architec‐
ture of the communication controller consists of the core CPU
and various support units that offload the CPU. Independent
DMA controllers allow transporting data to and from memory
and to and from the physical interfaces without interaction of
the core CPU. The core CPU, a PowerPC derivate, has 4 Kbyte
instruction cache and 2 Kbyte data cache. The caches are small,
but together with external SDRAM, burst‐access to/from
memory is possible. The external bus runs with 50 MHz and
the size of the SDRAM is 16 MByte. A specialized micro‐
controller executes the low‐layer protocol for serial lines,
Ethernet and USB (other embedded controllers have these
functions hardwired). Although the specialized micro‐
controller is not programmable by the user, the manufacturer
(Freescale) is able to modify/upgrade the functionality by sup‐
plying microcode patches. Figure 6‐1 show the block diagram
of the embedded communication controller.

6-3

Figure 6-1: Block Diagram of Embedded Controller

The advantage of having the DMA controllers is that for recep‐
tion and transmission of packets the influence of the packet
size to the load of the CPU can be neglected, i.e. this results in
having the same packet throughput per second independent
of the packet size16.

6.1.2 Real-Time Operating System

As underlying “real‐time” operating system we use VxWorks
from WindRiver [53]. VxWorks provides a preemptive process
scheduling with priorities. Processes of the same priority will
do a round‐robin with a predefined time‐slice. The request of
RNOS for receiving a predefined minimum amount of proc‐
essing cycles in a defined time interval could not be satisfied

16 As long as the system is not line rate limited, compare Chapter 1.

6-4

directly. Therefore, we had to modify the RTOS such that it
satisfies the requirements of RNOS:
The basic idea is to let RNOS run with highest priority until
the minimum amount of processing cycles is consumed. Then,
RNOS waits on a semaphore to be signaled. The semaphore
will be signaled by the idle process or by the end of the time
interval, whichever is first. Figure 6‐2 depicts the basic idea.

RNOS

Other
Processes

t1 is the guaranteed resource access time for RNOS in period t2

t1

t2

timer starts

timer reaches end (t2),
signal semaphore,
restart timer

Idle Process

wait on semaphore

signal semaphore

system is idle

wait on semaphore if t > t1
and wait again after each execution of a RNOS task

Figure 6-2: RNOS on VxWorks

The minimum processing time is measured with a timer. As a
timer, a special hardware decrementer is used. The decre‐
menter is a register that counts back with system frequency.
For each time interval, the decrementer is reset to the start
value (length of time interval). Between the executions of
tasks, RNOS reads the current value of the decrementer and
compares it to a predefined value. The predefined value is cy‐
cles of the time interval minus minimum cycles for RNOS. As
soon as the decrementer is less than this value, RNOS waits on
the semaphore. Once this happens, the RNOS process waits
for the semaphore to be signaled and the RTOS will schedule

6-5

other processes. As soon as the system is idle, the idle process
will run and signal the semaphore. As a consequence, the
RNOS process wakes up (the semaphore has been signaled),
goes into ready state and is scheduled by the RTOS. The
semaphore will also be signaled whenever the decrementer
reaches zero and the time interval restarts.
Beside the kernel functionality of the RTOS (processes, sema‐
phores, memory), no services are used.

6.1.3 Service Curve

As we have now modified the RTOS such that it can satisfy the
demand of RNOS, it is simple to provide the service curve.
Remember that the service curve provides the lower and up‐
per bound of the computation capacity of the system for the
execution of RNOS tasks. The time intervals t1 and t2 define the
lower and upper bound of the computation capacity for RNOS
(see Chapter 5). Figure 6‐1 depicts the lower and upper service
curve for RNOS on the target system. We use 7ms for t1 and
10ms for t2 .

6-6

����������� �������

�� � � �
Figure 6-3: Lower and upper service curve for RNOS on target system

6.1.4 Application

We have implemented a standard IP router application. This
allows us to investigate the behavior of the system by injecting
traffic to the router and recording the output traffic. The re‐
corded traffic can be analyzed offline to get results about the
behavior of the system. The main task path is the IP forward‐
ing functionality. It consists of 11 tasks (without the filter and
receive task) as shown in Table 6‐1. We have determined the
worst‐case execution time of these tasks by using the internal
instrumentation of RNOS. For the measurement we turned off
all caches, which resembles a worst‐case situation. The worst‐
case execution time of the complete IP forwarding path is 314
µs.

6-7

Table 6-1: Tasks in the forwarding path

Task Short Description Worst‐case
Execution
Time [µs]

Eth‐mac‐rx Process Ethernet header 18

Ip‐hdr‐chk Validate IP header 48

Rtp‐interceptor Intercepts incoming RTP pack‐
ets for processing (special path)

15

Acl‐in Input access control list 17

Ip‐forwarder IP forwarder 38

Acl‐out Output access control list 11

Ipsec‐interceptor Intercepts outgoing IP packets
for IPSec processing (special
path)

13

Ip‐fragm IP packet fragmentation 9

Ip‐hdr‐compl Completes IP header 14

Eth‐mac‐ip‐tx Adds Ethernet header 52

Driver‐tx Transmits packet 79
u
fe Total forwarding time 314

We have implemented additional tasks for the RNOS software
platform, which are not used here. Table 6‐2 gives an overview
of the available protocols/functionality. Be aware that the im‐
plementation of these protocols consists of multiple tasks.

6-8

Table 6-2: Additional functionality that is available as tasks for RNOS

Protocol Short Description

RTP Realtime Transport Protocol

IPSec IP Security, tunnel and transport mode

PPTP Point to Point Tunneling Protocol

PPP Point to Point Protocol

PPPoE PPP over Ethernet

LinkScheduler Link scheduling with WFQ (SCFQ) and Priority

Dejitter Buffer Dejittering of RTP packets

IP Complete IP stack, incl. Options etc.

6.1.5 RNOS Attributes

To use our analysis method and explore system properties
under different scenarios, we have to determine the attributes
of RNOS as described in the previous chapter. The required
attributes are the upper execution time of the receive and filter
task &

u
rx filtere and the overhead incurred by a preemption point

u
preemption pointo − . With those we can apply our analysis method to

the model.

Determine Preemption-Point Overhead

Through the use of the virtual task mechanism of RNOS (see
Chapter 5), the preemption point overhead can easily be de‐
termined:

6-9

1) Measure the delay dn of a packet on a system config‐
ured for n preemption points.

2) Measure the delay dm of a packet on a system config‐
ured for m preemption points.

3) With d=|dn‐dm|we get the preemption point overhead
for |n‐m| preemption points. Therefore, the preemp‐
tion point overhead u

preemption pointo − =d/|n‐m|.

We measure the delay dn with a special measurement equip‐
ment from Spirent [57]. Figure 6‐4 shows the measurement
setup: The measurement equipment sends packets; they enter
our system and are forwarded; the measurement equipment
receives those packets and determines the delay for each
packet. We execute all measurements with caches turned‐off,
which resembles a worst‐case situation (cache misses).

������ �� �	�
�� ��	��� ���	� �� �� �	�
��

������

����

����

����	����� �	��

��
��

�

��
��

�

Figure 6-4: Measurement setup

For the determination of the preemption point overhead, we
inject single packets on the idle17 RNOS process and measure
the delay. By doing this continually (and for different number
of preemption points), we get results as shown in Figure 6‐5.

17 Idle here means that the RNOS process is idle; the other processes
do not surrender any computation time to the RNOS process, they
are NOT idle.

6-10

0

1000

2000

3000

4000

5000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

measurement run

de
lay

 [µ
se

c]

Figure 6-5: Delay measurement result (11 preemption points)

The result can be explained as follows. We know that RNOS
gets access to the computation resource with a regular perio‐
dicity (see Section 6.1.3). Depending on where the measure‐
ment run hits the period, RNOS has no access to the computa‐
tion resource and has to wait. Therefore the delay varies. Sta‐
tistically we should hit every region inside the computation
access period. Therefore, by sorting the measurement runs for
ascending delay, we get the distribution of delay inside the pe‐
riod (see Figure 6‐6). It correlates perfectly with RNOS’ service
curve (see Section 6.1.3). The first 70% of graph (Figure 6‐6)
shows a constant delay while after that the delay increases
linearly. We can map this to the delay inside the 10 ms compu‐
tation access period as shown in Figure 6‐7. The first 7 ms the
delay of a packet in a system in which the RNOS process is
idle is constant; RNOS is ready to process the packet immedi‐
ately. After that the packets have to wait for RNOS to get ac‐
cess to the computation resource again.

6-11

0

1000

2000

3000

4000

5000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

% of measurement runs

de
lay

 [µ
se

c]

Figure 6-6: Sorted measurement results (ascending delay)

�����

�� �	
����

��� ��	 �� ����		

�� ����������� ��	�����

Figure 6-7: Delay of single packet

To determine the preemption point overhead, we will use the
minimum delay that we receive for 70% of the delay meas‐
urement runs. Figure 6‐8 shows measurement results for
minimum delay. Note that the individual results vary by less
than +/‐1%. For the determination of the preemption point
overhead, we use the average of those results.

6-12

771

776

781

786

791

1 21 41 61 81

measurement run

de
lay

 [µ
se

c]

Figure 6-8: Minimum delay measurement (2 preemption points)

By determining the minimum delay for each number of pre‐
emption points we can calculate the preemption point over‐
head u

preemption pointo − . Figure 6‐9 shows the minimum delay versus

the number of preemption points. We can also determine the
preemption point overhead from this figure; it is the (average)
slope. The upper preemption point overhead u

preemption pointo − is

19µs.

6-13

750

800

850

900

950

1 2 3 4 5 6 7 8 9 10 11

preemption points

de
lay

 [µ
se

c]

min. delay Linear (min. delay)

Figure 6-9: Minimum delay vs. number of preemption points

We can use the same method to determine the preemption
point overhead by using the maximum delay instead of the
minimum delay. To capture the maximum delay in a meas‐
urement run is much harder than capture the minimum delay.
The reason for this becomes clear when looking at Figure 6‐6
and Figure 6‐7: For each 10ms time period, there is exactly one
moment for which a packet will experience the maximum de‐
lay. We tried to find the maximum delay by performing very
long measurement runs (each run 10’000 seconds). Figure 6‐10
shows measurement results for maximum delay. Note that the
variation here is larger than for the minimum delay. It is still
less than +/‐2%. Figure 6‐11 shows the maximum delay versus
number of preemption points. The resulting slope is identical
to the slope for the minimum delay versus number of preemp‐
tion points!

6-14

3747

3807

3867

3927

3987

1 21 41 61 81

measurement run

de
lay

 [µ
se

c]

Figure 6-10: Maximum delay (2 preemption points)

3'840
3'860
3'880
3'900
3'920
3'940
3'960
3'980
4'000
4'020
4'040

1 2 3 4 5 6 7 8 9 10 11

preemption points

de
lay

 [µ
se

c]

max. delay Linear (max. delay)

Figure 6-11: Maximum delay vs. number of preemption points

6-15

In summary, the additional overhead per preemption point is
about 2.5% of the minimum delay for a single preemption
point or about 0.5% of the maximum delay for a single pre‐
emption point.

Other results obtained are the minimum and maximum for‐
warding delay of a packet in case the RNOS process is idle but
does not receive any surplus computation time form other
processes (see Figure 6‐12).

-

1'000

2'000

3'000

4'000

5'000

1 2 3 4 5 6 7 8 9 10 11

preemption points

de
lay

 [µ
se

c]

min. delay max. delay

Figure 6-12: Minimum and maximum delay

Determining execution time of receive and filter task

As we know the minimum delay, we can easily calculate the
execution time of the receive and filter task. The minimum de‐
lay is made up of the execution time for the forwarding path,
the preemption point overhead and the execution time of the

6-16

receive and filter task. Therefore, (6.1) gives us what we are
looking for.

 & ()u u u

rx filter min f preemption pointe d n e no −= − − (6.1)

Evaluating (6.1) for all possible number of preemption points
results in &

u
rx filtere =424µs +/‐1%. This seems to be very high

compared with the execution time of the forwarding path
u
fe =314µs. However, this time also includes the delay from the

interrupt to the actual reception of the packet, which is in‐
curred by the underlying operating system.

As we have now all the required attributes of RNOS on the
target system, we can calculate the upper bound for the delay.
Figure 6‐13 shows the measured maximum and the calculated
upper bound of the delay. The calculated upper bound is
never surpassed by any measurement result. The minimal dif‐
ference between the bound and the maximum measured is
8µs.

6-17

3'840
3'860
3'880
3'900
3'920
3'940
3'960
3'980
4'000
4'020
4'040

1 2 3 4 5 6 7 8 9 10 11

preemption points

de
lay

 [µ
se

c]

max. delay calculated upper bound Linear (max. delay)

Figure 6-13: Measured max. and calculated upper bound of delay

Table 6‐3 summarizes the attributes of RNOS on our target
system.

Table 6-3: RNOS attributes and their values on target system

Attribute Upper Value
[µs]

Upper preemption point overhead
u
preemption pointo −

19

Upper execution time of receive and filter task

&
u
rx filtere

424

6-18

6.1.6 Scheduleability Region of Example Implementation

In Chapter 5 we have proposed (6.2) to get the maximum
number of preemption points that yield the minimum delay
for highest‐priority packets under a worst‐case scenario.

()&1

2

u u
f line rx filter

delay‐min u
preemption point

e r e
n

o −

−
= (6.2)

Figure 6‐14 shows (6.2) plotted for our example implementa‐
tion. Here, more than two preemption points do not make
sense and if the maximum line or burst rate that has to be
supported is higher than 1200 packets/s, one preemption point
is the right choice. However, this is only true for the worst‐
case scenario as modeled in Chapter 5. We will see in the next
section that for other scenarios higher number of preemption
points can make sense. Also, Figure 6‐15 shows (6.2) with

u
fe =3140µs. For such an application, more preemption points

are feasible.

6-19

� ��� ���� ���� ����

�������
�������� ���� ����������

�

�

�
��
��

�
��
��
�
��

��
��

Figure 6-14: Maximum number of feasible preemption points for forwarding

� ��� ���� ���� ����

�������
�������� ���� ����������

�

�

�

�

�

�
��
��

�
��
��
�
��

��
��

Figure 6-15: Maximum number of feasible preemption points for a long path

6-20

6.2 Scenarios
In this section we create scenarios, for which we will a) exe‐
cute the calculation scheme of our model and b) execute
measurements on the example implementation. We will then
compare the two results.
We choose a simple scenario that consists of forwarding one
real‐time flow and three non real‐time flows (best effort flows)
(see Figure 6‐16). The scenario is modified by altering the
packet rate of the flows. We start with very low packet rates
and then increase the rates for all flows. For the low rates, the
system will be capable to process all packets, whereas for the
highest rates, the system will have to drop most of the non
real‐time packets (but is still capable of forwarding all real‐
time packets).
Again, we will turn off all caches for the measurements in or‐
der to create a worst‐case situation.

������ �� �	�
��

��	����

�����	��

��� �	�
���

��	���� ���	� �� �� �	�
��

������

�����

����

���	����� �	��

�
��

�

�
��

�

Figure 6-16: Measurement setup with one rt-flow and multiple nrt-flows

6-21

Table 6-4: Scenarios

Scenario # Rate of teal‐time flow

[packets/s]

Rate of non real‐time flows
(all three flows together)

[packets/s]

1 45 136
2 68 203
3 90 271
4 113 340
5 136 407
6 158 475
7 181 543
8 204 611
9 226 679

10 249 747
11 272 815
12 294 883
13 317 951
14 340 1ʹ019
15 362 1ʹ087
16 385 1ʹ154
17 408 1ʹ223
18 430 1ʹ291

The calculations show that depending on the number of pre‐
emption points the worst‐case delay is infinite, i.e. that the
scenario is not feasible in the sense that an upper bound for
the delay can be specified. Figure 6‐17 shows the calculated
upper bound for the delay for scenarios 1 to 14 and from 1 to
11 preemption points. The numbers in the legend are µs and
the region above 14’000µs means “infinite”, i.e. no upper
bound can be specified. From the figure we also can see that

6-22

the upper bound for the delay is lowest for two and three pre‐
emption points from scenario 1 to 12, and that one preemption
point provides the lowest upper bound for scenarios 13 and 14
(only with one preemption point we get an upper bound for
scenario 14).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

8

9

10

11

scenario

preemption points

4000-5000 5000-6000 6000-7000 7000-8000
8000-9000 9000-10000 10000-11000 11000-12000
12000-13000 13000-14000 14000-15000

Figure 6-17: Calculation results for upper bound of delay

Figure 6‐18 shows the measurement results for two preemp‐
tion points and scenarios 1 to 14. The curve in the figure is the
calculated upper bound for the delay, while the single dots are
measurement results. We see that all measurement results lie
below the calculated upper bound. For scenarios 14 and above,

6-23

the system also looses real‐time packets and therefore the sce‐
narios cannot be satisfied on the actual hardware.

-

2'000

4'000

6'000

8'000

10'000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

scenario

ma
x.

de
lay

 of
 rt

 pa
ck

et
s [

µs
ec

]

Figure 6-18: Maximum delay measurement (2 preemption points, real-time flow)

6.3 Summary
In this chapter we have presented our example implementa‐
tion of a system based on RNOS. We have shown how RNOS
can be integrated on top of a commercial real‐time operating
system on a specific CPU and how to achieve a guaranteed ac‐

6-24

cess to the computation resource. We have implemented a
complete IP router based on RNOS. The division of the func‐
tionality into tasks made it easy to start with a minimal subset
and enhance it task by task. For the determination of the
RNOS attributes we used the IP forwarder path. The preemp‐
tion point overhead of 19µs is small enough such that it can
make sense for certain scenarios to have more than one pre‐
emption point. For the IP forwarding path it means 6% addi‐
tional execution time per preemption point. Here, it might not
make sense to have more than 2 preemption points. However,
if we have longer executing paths, e.g. with encryption or
compression functionality, it might well make sense to have
more preemption points.
We have measured and calculated various scenarios; all of
them show similar results:

 The calculated upper bounds are never surpassed by
any measurement.

 The calculated upper bounds are “near” the actual
measured worst‐cast delay, meaning that our model
closely represents reality.

The model stays true not only in theory, but also when im‐
plemented with RNOS.

Conclusion
In this thesis we have presented a method to build predictable
packet processing systems on small, low cost hardware. The
method is based on a domain specific model that is well suited
for the modeling of such systems. It consists of an input sub‐
model, an application sub‐model, a resource sub‐model and
the mappings between them. This domain specific model is
used for the analysis and as a basis for the implementation.
The analysis method used in our model is based on network
calculus. It allows us to explore the worst‐case bounds of indi‐
vidual flows for delay and backlog, which is a pre‐requisite for
tailoring the hardware with adequate but not superfluous re‐
sources at competitive costs.
For a seamless transformation of the model to an implementa‐
tion we have built the software platform RNOS. It provides a
complete set of elements and services that are inherent in our
model. Systems built with RNOS perform within the calcu‐
lated bounds.

7-2

As with every software platform, RNOS introduces an over‐
head to a system. The overhead is decisively influenced by the
scheduler; each preemption point adds to the overhead. For
each application and scenario there is therefore an optimal
number of preemption points. By using our analysis method,
the influence of the number of preemption points on the delay
and throughput of individual flows can be determined and the
optimal number found, before the system is built.
The main results of this thesis are:

 A model that allows capturing packet processing systems
and their scenarios.

 A software platform that allows a seamless implementa‐
tion of the systems captured by the model.

 An analysis method for systems that are based on RNOS
that allows calculating worst‐case bounds for different ap‐
plication scenarios. The implementation will perform in‐
side the calculated bounds.

The results of this thesis enable building predictable packet
processing systems while

 reducing the development risks by allowing to explore a
system before it is built and while

 reducing the hardware cost by allowing to tailor the hard‐
ware such that it exactly meets the requirements (no over‐
provisioning is necessary).

Our work gives rise to new questions and also provides vari‐
ous possibilities for improvements. A few of these are listed
below:

 Currently, the calculations (for system exploration) are
executed using a simple Mathematica [58] library. It re‐

7-3

quires a lot of programming to get to results. A tool should
be developed that allows the graphical modeling of packet
processing systems and simplifies system explorations.
One part that is currently particularly cumbersome is find‐
ing the sensitivity of parameters of the model regarding an
exploration result. Having a tool would allow to include
an automatic sensitivity analysis for all parameters,
thereby making it easier to find critical parts of the system.

 In this thesis we only did look at the processing (CPU) and
(marginally) at the memory resources. However, even
small low cost embedded systems have resources that are
shared between different processing engines, e.g. a DMA
controller uses the same bus and memory as the CPU does.
The resource model could be extended such that it can
cope with multiple and possibly shared resources.

 The system performance can be improved by a more effi‐
cient use of the instruction caches. This leads to the idea
called batch processing: Instead of processing only one
packet of a microflow we might be able to collect a few
packets and then process them as a batch; each packet
processor is executed for each packet in the batch, thereby
benefiting from better instruction cache usage. How this is
to be included into our model is for further study

 Improve event handling by using polling mode where ap‐
propriate. The idea is to switch dynamically between inter‐
rupt based event reception and a polling mode. The inter‐
rupt is used to wake‐up the idle system. It will then switch
to the polling mode, which is active until all events are re‐
ceived (all input queues are empty). Then the system
switches back to interrupt mode. A first prototype imple‐
mentation for the Ethernet interfaces shows that we can

7-4

reduce &
u
rx filtere . However, &

u
rx filtere does not change for the

first packet on an idle system. For most application cases it
makes no sense to include the behavior of the polling
mode, as we are interested in the worst‐case behavior to be
able to give absolute guarantees. One idea is to include the
polling mode into our model by analyzing the system for
both modes, the interrupt mode and polling mode. In the
polling mode we have a different value for &

u
rx filtere . The

polling mode is applicable when the system is under a de‐
fined and continuous load, while the interrupt mode is ap‐
plicable for all other situations. However, whether this is
feasible is for further study.

Bibliography

[1] Abhay K. Parekh and Robert G. Gallager, ʺA generalized

processor sharing approach to flow control in integrated
services networks: singlenode case,ʺ IEEE/ACM Transactions
on Networking, vol. 1, pp. 344‐357, 1993.

[2] Charles R. Kalmanek, Hemant Kanakia, and Srinivason Ke‐
shav, ʺRate controlled servers for very high‐speed net‐
works,ʺ GLOBECOMʹ90, New York, NY, USA, 1990.

[3] K. Nichols, S. Blake, F. Backer, and D. Black, ʺDefinition of
the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,ʺ Internet Engineering Task Force (IETF) De‐
cember 1998.

[4] Scott Shenker and John Wroclawski, ʺGeneral Characteriza‐
tion Parameters for Integrated Service Network Elements,ʺ
Request for Comments 2215, Internet Engineering Task
Force (IETF), September 1997.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.
Weiss, ʺAn architecture for differentiated services,ʺ Request
for Comment 2475, Internet Engineering Task Force, Decem‐
ber 1998.

Bibliography - 2

[6] R. Keller, L. Ruf, A. Guindehi, and B. Plattner, ʺPromethOS:
A dynamically extensible router architecture for active net‐
works,ʺ Proceedings of IWAN 2002, Zurich, Switzerland, 2002.

[7] Scott Karlin and Larry Peterson, ʺVERA: An Extensible
Router Architecture,ʺ Computer Networks, vol. 38, pp. 277‐
293, 2002.

[8] Lukas Kencl and J. Y. Le Boudec, ʺAdaptive load sharing for
network processors,ʺ Proceedings of Infocom, 2002.

[9] M. Gries, ʺAlgorithm‐Architecture Trade‐offs in Network
Processor Design,ʺ in Computer Engineering and Networks
Laboratory: Swiss Federal Institute of Technology Zurich,
2001.

[10] P. Crowley, M. Fiuczynski, and J.‐L. Bear, ʺOn the perform‐
ance of multithreaded architectures for network processors,ʺ
Department of Computer Science, University of Washington
2000 2000.

[11] P. Druschel, L. Peterson, and B. Davie, ʺExperiences with a
high‐speed network adatpor: A software perspective,ʺ Pro‐
ceedings of ACM SIGCOMM ʹ94, 1994.

[12] Jeffery C. Mogul and K. K. Ramakrishnan, ʺEliminating re‐
ceive livelock in an interrupt‐drivern kernel,ʺ ACM Transac‐
tions on Computer Systems, vol. 15, pp. 217‐252, 1997.

[13] E. Kohler, ʺThe Click Modular Router,ʺ in Department of Elec‐
trical Engineering and Computer Science: Massachusetts Insti‐
tute of Technology, 2000.

[14] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek, ʺThe Click Modular Router,ʺ ACM
Transactions on Computer Systems, vol. 18, pp. 263‐297, 2000.

Bibliography - 3

[15] Julian Elischer and Archie Cobbs, ʺThe Netgraph network‐
ing system,ʺ Whistle Communication January 1998.

[16] Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard
Plattner, ʺRouter plugins: A software architecture for next
generation routers,ʺ Proceedings of ACM SIGCOMM ʹ98, 1998.

[17] Kenjiro Cho, ʺA framework for alternate queueing: towards
traffic management by PC‐UNIX based routers,ʺ Proceedings
of USENIX 1998 Annual Technical Conference, 1998.

[18] B. Stiller, ʺThe Design and Implementation of a Flexible
Middleware for Multimedia Communication Comprising
Usage Experience,ʺ July 1998.

[19] J. Nieh and M.S. Lam, ʺThe design, implementation and
evaluation of SMART: A scheduler for multimedia applica‐
tions,ʺ Proceedings of 16th ACM Symposium on Operating Sys‐
tem Priniciples, 1997.

[20] C. Hutchinson and P. Peterson, ʺThe x‐Kernel: An architec‐
ture for implementing network protocols,ʺ IEEE Transactions
on Software Engineering, 1991.

[21] Larry L. Peterson, Scott C. Karlin, and Kai Li, ʺOS Support
for general purpose routers.,ʺ Proceedings of 7th Workshop on
Hot Topics in Operating Systems (HotOS‐VII), 1999.

[22] David Mosberger and Larry L. Peterson, ʺMaking Paths Ex‐
plicit in the Scout Operating System,ʺ Operating Systems De‐
sign and Implementation, 1996.

[23] X. Qie, A. Bavier, L. Peterson, and S. Karlin, ʺScheduling
Computations on a Programmable Router,ʺ ACM SIGMET‐
RICS 2001 Conference, 2001.

Bibliography - 4

[24] P. Pappu and T. Wolf, ʺScheduling Processing Resources in
Programmable Routers,ʺ Twenty‐First IEEE Conference on
Computer Communications (INFOCOM), New‐York, NY, USA,
2001.

[25] Dan S. Decasper, ʺA Software Architecture for Next Genera‐
tion Routers.ʺ Zurich: Swiss Federal Institute of Technology
Zurich, 1999.

[26] David L. Tennenhouse, Jonathan M. Smith, W. David Sin‐
coskie, David J. Wetherall, and Gary J. Minden, ʺA Survey of
Active Network Research,ʺ IEEE Communications Magazine,
vol. 35, pp. 80‐86.

[27] Prashant Pradhan and Tzi‐Cker Chiueh, ʺComputation
framework for an extensible network router: Design, imple‐
mentation and evaluation,ʺ 2000.

[28] Jonas Greutert and Lothar Thiele, ʺRNOS: A Middleware
Platform for Low Cost Packet Processing Devices,ʺ Third
Workshop on Network Processors & Applications (NP‐3) at the
10th International Symposium on High‐Performance Computer
Architecture (HPCA‐10), Madrid, Spain, 2004.

[29] Jonas Greutert and Lothar Thiele, ʺRNOS ‐ A Middleware
Platform for Low‐Cost Packet‐Processing Devices,ʺ in Net‐
work Processor Design, Issues and Practices Volume 3, P. Crow‐
ley, M. A. Franklin, H. Hadimioglu, and P. Z. Onufryk, Eds.:
Morgan‐Kaufmann, 2005, pp. 173‐195.

[30] Rene L. Cruz, ʺA calculus of network delay. Part I. Network
elements and isolation,ʺ IEEE Transactions on Information The‐
ory, vol. 37, pp. 114‐131, 1991.

Bibliography - 5

[31] Rene L. Cruz, ʺA calculus for network delay, Part II: Net‐
work analysis,ʺ IEEE Transactions on Information Theory, vol.
37, pp. 132‐141, 1991.

[32] Jean‐Yves Le Boudec and Patrick Thiran, Network calculus : a
theory of deterministic queuing systems for the Internet. New
York: Springer, 2001.

[33] J. Engblom, A. Ermedahl, M. Sjoedin, J. Gustafsson, and H.
Hansson, ʺWorst‐case execution‐time analysis for embedded
real‐time systems,ʺ Journal of Software Tool and Transfer Tech‐
nology (STTT), vol. 4, pp. 437‐455, 2003.

[34] Patrick Crowley and Jean‐Loup Bear, ʺA Modeling Frame‐
work for Network Processor Systems,ʺ First Workshop on
Network Processors (NP1) at the 8th International Symposium on
High Performance Computer Architecture (HPCA8), Cambridge,
MA, USA.

[35] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, Alex‐
ander Maxiaguine, and Jonas Greutert, ʺEmbedded Software
in Network Processors ‐ Models and Algorithms,ʺ Lecture
Notes in Computer Science, pp. 416‐434, 2001.

[36] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele,
ʺReal‐time calculus for scheduling hard real‐time systems,ʺ
IEEE International Symposium on Circuit and Systems (ISCAS),
2000.

[37] Jean‐Yves Le Boudec, ʺApplication of network calculus to
guaranteed service networks,ʺ IEEE Transactions on Informa‐
tion Theory, vol. 44, 1998.

[38] Reinhold Heckmann, Marc Langenbach, Stephan Thesing,
and Reinhard Wilhelm, ʺThe Influence of Processor Architec‐
ture on the Design and the Results of WCET Tools,ʺ Proceed‐

Bibliography - 6

ings of IEEE on Real‐Time Systems, vol. 91, pp. 1038‐1054,
2003.

[39] J. Janssen, Danny De Vleeschauwer, and Guido H. Petit, ʺDe‐
lay and distortion bounds for packetized voice calls of tradi‐
tional PSTN quality,ʺ Proceedings of the 1st IP‐Telephony Work‐
shop (IPTel 2000), pp. 105‐110, 2000.

[40] International Telecommunication Union, ʺPulse code modu‐
lation (PCM) of voice frequencies,ʺ Recommendation G.711,
Telecommunication Standardization Sector of ITU, Geneva,
Switzerland, November 1998.

[41] International Telecommunication Union, ʺPacket based mul‐
timedia communication systems,ʺ Recommendation H.323,
Telecommunication Standardization Sector of ITU, Geneva,
Switzerland, February 1998.

[42] F. Andreasen and B. Foster, ʺMedia Gateway Control Proto‐
col (MGCP) Version 1.0,ʺ Request for Comment (Informa‐
tional) 3435, Internet Engineering Task Force, January 2003.

[43] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and
J. Segers, ʺMegaco Protocol Version 1.0,ʺ Request for Com‐
ment (Proposed Standard) 3015, Internet Engineering Task
Force, November 2000.

[44] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg,
ʺSIP: Session Initiation Protocol,ʺ Request for Comment
(Proposed Standard) 2543, Internet Engineering Task Force,
March 1999.

[45] M. Handley and V. Jacobson, ʺSDP: Session Description Pro‐
tocol,ʺ Request for Comment (Proposed Standard) 2327,
Internet Engineering Task Force, April 1998.

Bibliography - 7

[46] Van Jacobson, ʺCongestion Avoidance and Control,ʺ In Pro‐
ceedings SIGCOMM ʹ99, pp. 314‐329, 1988.

[47] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, ʺModeling
TCP Throughput: A Simple Model and its Empirical Valida‐
tion,ʺ Proceedings of the ACM SIGCOMM ʹ98, pp. 303‐314,
1998.

[48] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wel‐
lings, ʺHard Real‐Time Scheduling: The Deadline Monotonic
Approach,ʺ in Proceedings of the 8th IEEE Workshop on Real‐
Time Operating Systems and Software, pp. 127‐132, 1991.

[49] JTC1 / SC22, ʺProgramming languages ‐‐ C++,ʺ ISO/IEC
14882:2003, International Organization for Standardization,
November 2003.

[50] ʺNetBSD,ʺ www.netbsd.org.

[51] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins,
and P. Markstein, ʺRegister allocation via coloring,ʺ in Com‐
puter Languages, vol. 6, pp. 47‐57.

[52] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, ʺRe‐
source Reservation Protocol (RSVP) ‐‐ Version 1 Functional
Specification,ʺ Request for Comment 2205, Internet Engi‐
neering Task Force, September 1997.

[53] WindRiver, ʺVxWorks,ʺ www.windriver.com.

[54] Microsoft, ʺWindows CE,ʺ
www.microsoft.com/windows/embedded.

[55] John Morris, ʺData Structures and Algorithms,ʺ University of
Western Australia 1998.

Bibliography - 8

[56] Freescale, ʺMPC850,ʺ www.freescale.com.

[57] Spirent, ʺSmartBits,ʺ www.spirent.com.

[58] Wolfram Research, ʺMathematica,ʺ www.wolfram.com.

[59] The MathWorks, ʺSimulinkʺ, www.mathworks.com

List of
Tables & Figures

Table 3-1: SLA parameters for the VoIP data flow 3-11
Table 3-2: Flow specification 3-13
Table 3-3: Initial results 3-14
Table 4-1: Tasks in the two port Etherent router 4-5
Table 4-2: Context information in packet processing tasks 4-11
Table 5-1: Analogy between RTOS and RNOS 5-33
Table 6-1: Tasks in the forwarding path 6-7
Table 6-2: Additional functionality that is available as tasks for RNOS 6-8
Table 6-3: RNOS attributes and their values on target system 6-17
Table 6-4: Scenarios 6-21

Figure 1-1: Block Diagram of a typical Embedded Communication Controller 1-4
Figure 1-2: Measured throughput in packets per second for different packet sizes 1-5
Figure 1-3: Outline of the thesis 1-12
Figure 2-1: Model overview 2-5
Figure 2-2: Single Token Bucket 2-6

List of Tables & Figures - 2

Figure 2-3: Dual Token Bucket for TSpec 2-8
Figure 2-4: (σ, ρ) model as upper arrival curve 2-10
Figure 2-5: TSpec as upper arrival curve 2-11
Figure 2-6: Arrival function for constant rate packet source with network jitter 2-12
Figure 2-7: Arrival curves for constant rate packet source with network jitter 2-13
Figure 2-8: Arrival Curves for smallest packets back-to-back on line 2-13
Figure 2-9: Tasks types 2-16
Figure 2-10: Simplified task graph for packet reception that contains three paths 2-19
Figure 2-11: Task graph from DSP to Ethernet 2-19
Figure 2-12: Simplified task graph for packet reception with IPSec support 2-21
Figure 2-13: Path through a task graph 2-23
Figure 2-14: Resource Access Pattern 2-27
Figure 2-15: Upper and lower service curves for a CPU resource 2-27
Figure 3-1: Bounds on delay and backlog 3-3
Figure 3-2: Physical processing model 3-4
Figure 3-3: Basic calculation layout 3-5
Figure 3-4: Calculation scheme for one flow 3-8
Figure 3-5: Calculation scheme for multiple flows 3-9
Figure 3-6: Example System 3-10
Figure 3-7: Arrival curves for VoIP data receive flow 3-12
Figure 3-8: Service curves for computation capacity 3-14
Figure 3-9: Delay of kids & family and business flow for different CPU clock speeds 3-15
Figure 4-1: Model of two port router 4-4
Figure 4-2: Possible implementation model of the two port router 4-7
Figure 4-3: Another implementation model of the two port router 4-8
Figure 4-4: Task graph of a two port router annotated with instance information 4-15
Figure 4-5: Packet and Path-Thread 4-17
Figure 4-6: Source Flow from Splitting of Path 4-19
Figure 5-1: Task objects with connectors 5-5
Figure 5-2: Connectors must match in payload type and required annotations 5-7

List of Tables & Figures - 3

Figure 5-3: Basic Concept of Task Frames 5-8
Figure 5-4: Link Layer with Task Frames 5-9
Figure 5-5: Task Object and Packet Processor 5-11
Figure 5-6: Packet path optimization 5-12
Figure 5-7: Scope on packet data 5-14
Figure 5-8: Object Relation Diagram with Microflow Object 5-20
Figure 5-9: Source Thread creates Path-Threads 5-24
Figure 5-10: Scheduler Architecture with EDF Algorithm 5-26
Figure 5-11: Overview of some Elements of RNOS 5-29
Figure 5-12: RNOS running in an RTOS process 5-30
Figure 5-13: RNOS running on RTOS as a process 5-31
Figure 5-14: RNOS' higher level of abstraction API 5-32
Figure 5-15: Virtual Tasks 5-35
Figure 5-16: Impact of Overhead on Throughput 5-41
Figure 5-17: Example alignment of phases 5-44
Figure 5-18: Worst-case waiting time for a high-priority packet 5-46
Figure 5-19: Upper bounds for waiting times for a highest priority packet 5-50
Figure 5-20: Worst-case overhead time for a highest-priority packet 5-51
Figure 5-21: Upper bound of delay for highest priority packet 5-54
Figure 5-22: Feasible number of preemption points, depending on u

packete 5-55

Figure 5-23: Calculation scheme for RNOS 5-58
Figure 5-24: Thread-switch pattern 5-59
Figure 5-25: Arrival curves of source flow 5-60
Figure 5-26: Example arrival curves of high-priority flow 5-61
Figure 5-27: Service curves of processing resource 5-61
Figure 5-28: Upper bound for delay for packets of highest priority flow 5-63
Figure 6-1: Block Diagram of Embedded Controller 6-3
Figure 6-2: RNOS on VxWorks 6-4
Figure 6-3: Lower and upper service curve for RNOS on target system 6-6

List of Tables & Figures - 4

Figure 6-4: Measurement setup 6-9
Figure 6-5: Delay measurement result (11 preemption points) 6-10
Figure 6-6: Sorted measurement results (ascending delay) 6-11
Figure 6-7: Delay of single packet 6-11
Figure 6-8: Minimum delay measurement (2 preemption points) 6-12
Figure 6-9: Minimum delay vs. number of preemption points 6-13
Figure 6-10: Maximum delay (2 preemption points) 6-14
Figure 6-11: Maximum delay vs. number of preemption points 6-14
Figure 6-12: Minimum and maximum delay 6-15
Figure 6-13: Measured max. and calculated upper bound of delay 6-17
Figure 6-14: Maximum number of feasible preemption points for forwarding 6-19
Figure 6-15: Maximum number of feasible preemption points for a long path 6-19
Figure 6-16: Measurement setup with one rt-flow and multiple nrt-flows 6-20
Figure 6-17: Calculation results for upper bound of delay 6-22
Figure 6-18: Maximum delay measurement (2 preemption points, real-time flow) 6-23

