
 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 41

Matthias Gries

Algorithm-Architecture
Trade-offs in Network

Processor Design

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Diss. ETH No. 14191

Algorithm-Architecture Trade-offs
in Network Processor Design

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Technical Sciences

presented by
MATTHIAS GRIES

Dipl.-Ing., TU Hamburg-Harburg, Germany
born May 15, 1972
citizen of Germany

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Wolfgang Fichtner, co-examiner

2001

Examination date: May 21, 2001

Abstract

The increasing use of computer networks for all kinds of information exchange
between autonomous computing resources is associated with a number of side-
effects. In the Internet, where computers all over the globe are interconnected,
the traffic volume grows faster than the infrastructure improves, leading to con-
gestion of networking routes. In the application domain of embedded systems,
networks can be used to couple complex sensor systems with a computing core.
The provision of raw bandwidth may not be sufficient in such systems to allow
control with real-time constraints. The underlying requirement in both cases is
a network service with a defined quality, for instance, in terms of traffic loss
ratio and worst-case communication delay. The provision of suitable communi-
cation services however requires a noticeable overhead in terms of computing
load. Therefore, application-specific hardware accelerators – so-called network
processors – have been introduced to speed up or even enable the maintenance
of certain network services. The following issues have not yet been dealt with:

• Although there are network processors for high-speed networks, no processor is
available that considers the requirements of the interface between networks of a
service provider and a customer.

• While each individual task of a network processor is well understood, it is un-
clear how different tasks, that potentially show interfering properties, should
cooperate to preserve the service quality.

The above issues are addressed in this thesis and the major contributions in
the research area of algorithms and architectures for network processors are:

• A service scheme is defined which takes care of the requirements at the interface
between networks of a service provider and a customer.

• Various combinations of network processing tasks are explored for this service
scheme by exhaustive simulation. The exploration focuses on the preservation
of service quality parameters.

ii

• The exploration of processing tasks is combined with an evaluation of suitable
building blocks for architectures of network processors so that the interaction
of algorithm behavior and timing of hardware resources can be examined by
co-simulation of both aspects.

• Due to its impact on the overall performance, refinements of a particular build-
ing block – the memory controller – are evaluated. The influence of an
application-specific memory controller is explored by extensive simulation of
various benchmarks, dynamic RAMs, and memory access schemes incorpo-
rated into a mature CPU simulator.

Kurzfassung

Aufgrund der zunehmenden Verbreitung von Computernetzwerken für den In-
formationsaustausch aller Art zwischen autonomen Rechnern kann man gewis-
se Seiteneffekte beobachten. Im Internet, das Rechner verteilt auf der ganzen
Welt miteinander verbindet, steigt die Menge des Verkehrs stärker an, als Netz-
werkinfrastruktur nachgerüstet werden kann. Dies führt zu einer Überlastung
von Netzwerkverbindungen. Ein weiteres Beispiel sind eingebettete Systeme, in
denen Netzwerke eingesetzt werden können, um Sensorsysteme an einen Rech-
nerkern zu koppeln. Es ist in solchen Systemen meistens nicht ausreichend,
lediglich Durchsatz durch ein Netzwerk zur Verfügung zu stellen, da ggf. Echt-
zeitbeschränkungen nicht eingehalten werden können. Beide Anwendungsfälle
haben gemeinsam, dass Dienste definierter Qualität benötigt werden, z.B. spe-
zifiziert gemäss einer Verlustrate oder einer maximalen Verzögerung. Die Un-
terstützung von geeigneten Kommunikationsdiensten bringt jedoch einen merk-
lichen Anstieg an Rechenzeitbedarf mit sich. Deshalb sind anwendungsspe-
zifische Hardwarebeschleuniger – sog. Netzwerkprozessoren – vorgeschlagen
worden, um Netzwerkdienste zu etablieren und zu ermöglichen. Die folgenden
Fragestellungen sind bisher noch nicht behandelt worden:

• Obwohl viele Netzwerkprozessoren für hohen Durchsatz erhältlich sind, fehlen
Prozessoren, welche die Bedürfnisse an der Schnittstelle zwischen Netzwerken
eines Dienstanbieters und eines Kunden berücksichtigen.

• Während die einzelnen Aufgaben eines Netzwerkprozessors umfassend verstan-
den sind, ist nach wie vor unklar, in welcher Form mehrere Funktionen, deren
Eigenschaften sich möglicherweise gegenseitig beeinflussen, zusammenarbei-
ten müssen, um eine Dienstqualität beizubehalten.

Diese Punkte werden in der vorliegenden Arbeit behandelt, und die Haupt-
beiträge zum Forschungsgebiet der Algorithmen und Architekturen von Netz-
werkprozessoren sind:

• Eine Abstufung von Netzwerkdiensten wird vorgestellt, welche die Anforde-
rungen an der Schnittstelle zwischen Kunden- und Dienstanbieternetzwerken
berücksichtigt.

• Verschiedene Kombinationen von Funktionen, die ein Netzwerkprozessor
ausführen muss, werden für die vorgeschlagene Abstufung von Diensten mit

iv

Hilfe von umfangreichen Simulationen untersucht. Dabei wird sich auf die Bei-
behaltung der Dienstqualität konzentriert.

• Die Untersuchung der Funktionen wird mit einer Bewertung geeigneter Archi-
tekturblöcke für Netzwerkprozessoren kombiniert, so dass der Einfluss von Al-
gorithmen auf die Auslastung von Hardwareressourcen durch gleichzeitige Si-
mulation beider Aspekte ergründet werden kann.

• Die Diskussion eines bestimmten Hardwareblocks, des sog. Speichercontrol-
lers, wird weiter verfeinert, da dieser Block grosse Auswirkungen auf die Ge-
samtperformanz eines Systems zeigt. Der Einfluss eines anwendungsspezifi-
schen Speichercontrollers wird durch umfangreiche Simulationen verschiede-
ner Testanwendungen, dynamischer RAMs und unterschiedlicher Speicherzu-
griffsverfahren aufgezeigt, die in einen ausgereiften CPU-Simulator integriert
worden sind.

I would like to thank

• Prof. Lothar Thiele for providing a pleasant research environment, for advising
my research work, and for the assistance during my thesis as well as Prof. Wolf-
gang Fichtner for his support as a co-examiner of my thesis,

• my colleagues Marco Platzner, Jan Beutel, Jonas Greutert, and Samarjit
Chakraborty for valuable discussions and suggestions to improve my work as
well as for carefully proof-reading my thesis,

• my colleagues Rob Esser, Jörn Janneck, Kim Mason, and Martin Naedele, who
are the authors of the modeling and simulation tool-set MOSES/CodeSign [46,
90, 4], for their personal assistance in using their excellent software.

vi

Contents

1 Introduction 1
1.1 Computer networks . 2

1.1.1 Communication layers 2
1.1.2 Terms and definitions 3

1.2 Design challenges . 5
1.2.1 Efficient network processing 5
1.2.2 Data handling in network nodes 6

1.3 Overview . 7

2 IP packet processing: Requirements and existing solutions 9
2.1 Packet processing tasks . 11

2.1.1 Header parsing . 11
2.1.2 Classification and routing 11
2.1.3 Policing . 20
2.1.4 Queuing . 24
2.1.5 Link scheduling . 26

2.2 Preserving QoS . 38
2.3 Available services . 44

2.3.1 Best-effort service . 44
2.3.2 Integrated Services (IntServ) 44
2.3.3 Differentiated Services (DiffServ) 47
2.3.4 Open issues in providing Quality of Service 49

3 IP packet processing: Algorithm-architecture trade-offs 51
3.1 Background . 52

3.1.1 Multi-provider/multi-service access networks 53
3.1.2 Provision of QoS in multi-service access networks . . . 54
3.1.3 Node architecture . 59

3.2 Evaluation models . 60
3.2.1 Performance models of algorithms 61
3.2.2 Architecture models 74
3.2.3 Stimuli . 79

3.3 Results . 81
3.3.1 Evaluation methodology 81
3.3.2 Experiments and analysis 85

viii Contents

3.3.3 Conclusion of the design space exploration 112
3.4 Related Work . 115
3.5 Summary . 118

4 Exploitation of RAM resources 121
4.1 Performance bottle-neck of RAMs 122

4.1.1 Organization of DRAMs 123
4.1.2 Organization of SRAMs 127
4.1.3 Available synchronous RAM types 127

4.2 The role of the memory controller 129
4.3 Performance model of a memory subsystem 130

4.3.1 Why use high-level Petri nets? 130
4.3.2 Modeling environment 131
4.3.3 Overview of the model 132
4.3.4 SDRAM architecture 134
4.3.5 Memory controller . 135
4.3.6 Memory subsystem . 139
4.3.7 Conclusion for the performance model 139

4.4 Performance impact of controller and DRAM type 139
4.4.1 Simulation environment 140
4.4.2 Experimental results 143
4.4.3 Conclusion for the design space exploration 151

4.5 Related work . 151
4.6 Summary . 153

5 Conclusion 155

A An introduction to Petri nets 159
A.1 Petri net basics . 159
A.2 Petri net extensions . 161

Bibliography 163

Acronyms 179

1
Introduction

The access and exchange of information is more and more being driven by the
globally available Internet that interconnects various kinds of autonomous com-
puting resources. Moreover, computer networks are increasingly being used to
link several distributed computers for scientific calculations and other compu-
tations. Due to the tremendous growth rate of the Internet and an increasing
spread of networking technology in various application domains, e.g. in em-
bedded systems, the objectives of network design are more and more shifting
from providing raw bandwidth to providing services with a defined quality. The
enhanced functionality needed by nodes of the network to adequately support
services requires application-specific hardware accelerators – so-called network
processors. These processors are designed to relieve the main computing re-
sources from service tasks and to enable additional services.

An outline of the functionality of a computer network is given in Section 1.1
and some specific terms are introduced which will be used throughout the thesis
to discuss issues related to networks. Section 1.2 motivates the research topics
that are addressed by this work. It is shown that there is a lack of work related
to suitable algorithms and architectures for network processors that are targeted
on the interface between networks of a customer and a service provider. In
addition, the contributions of this thesis are discussed. Finally in Section 1.3 an
overview of the remaining chapters is given.

2 Chapter 1. Introduction

1.1 Computer networks
During the early stages of building the Internet the main goal was to set up a
decentrally organized interconnection of computers with redundancy so that a
breakdown of a part of the network would not affect the connectivity and effi-
ciency of the overall Internet. Consequently, a node of the network only knows
its neighbors which are identified by unique addresses. Since routes through the
network are not determined statically but dynamically depending on the current
state of the network, every single data entity must be processed by every in-
termediate network node from the source to the destination of a transmission.
Packets from different transmissions should be treated equally by the network.
Nodes make a “best effort” to handle all packets in the order of their arrival.

In the following, basic background information is provided that shows how
the communication between two computers over a network is organized so that
the information exchange is transparent for applications. Moreover, some am-
biguous network terms used in this thesis are clarified. The next section will
then motivate the focus of this thesis.

1.1.1 Communication layers

The tasks involved with the end-to-end communication of two network nodes
can be divided into a set of abstract functionalities, called layers, that form a hi-
erarchy. Each layer can only pass information to the next higher or lower layer
through defined interfaces. At each layer, protocols define the operations and
responses necessary to exchange information between peer layers at different
network nodes. This information is held by layer-specific header fields that are
added to traffic entities. Lower layers only consider the transmission of traffic
between neighboring network nodes whereas the higher layers affect the end-to-
end transmission through several intermediate nodes. The Open Systems Inter-
connection (OSI) reference model by ISO is composed of seven abstract layers.
The Transmission Control/Internet Protocol (TCP/IP) stack used by the Internet
only considers five of these layers. The reader is referred to further introductory
literature – e.g. [157] – for a more detailed discussion of network layers. The
TCP/IP protocol stack distinguishes the following layers1, see Fig. 1:

• Physical layer: This is the lowest layer. It considers the plain transmission of
data streams through a physical medium, e.g. a copper wire, between neighbor-
ing nodes.

• Link layer: This layer is responsible for reliable transmission of traffic entities
(frames) between neighboring nodes.

• Network layer: This is the lowest layer that affects the plain end-to-end trans-
mission of data packets. At this level, the actual navigation (routing) through

1The original TCP/IP reference model in [29] does not include any description of a physical
or a link layer. These two layers have been added from the OSI reference model to show a
complete hierarchy of layers as it is used in the Internet.

1.1. Computer networks 3

the network is enabled.

• Transport layer: The transport layer is responsible for end-to-end transmission
of aggregated packets, so-called segments or messages. A reliable transmission
may be enabled by packet sequencing and flow control.

• Application layer: This layer deals with the exchange of data between applica-
tions running at different network nodes. For instance, the FTP protocol handles
whole file transfers and the HTTP protocol is responsible for web page down-
loads.

The different layers are often numbered, beginning with the lowest layer.

network

link

physical

transport

application

network

link

physical

transport

application

through
interfaces

communication
physical

physical medium

layers of
first host

layers of
2nd host

peers using protocols
virtual communication between

HTTP, NNTP, FTP, etc.

TCP, UDP

IP

...

...

Fig. 1: Communication layers used by the TCP/IP protocol stack with interfaces and protocols.
The grey-marked layers affect the end-to-end transmission of information between two
nodes along a route through the network whereas the white layers only influence the
transfer to the next node.

1.1.2 Terms and definitions

Communication networks can be categorized according to different criteria.

• Classification according to geographic coverage: A Local Area Network (LAN)
interconnects end devices (workstations, printers, etc.) within a relatively small
area, e.g. bounded by a room, a building, or some buildings belonging to the
same institution. In the latter case, LANs are also called campus area or en-
terprise networks. Almost always some shared medium is used for communi-
cation and no explicit routing is required between nodes of the same LAN. A
Wide Area Network (WAN) interconnects LANs that are possibly based on dif-
ferent technologies and may belong to different organizational units spread over
a large geographic area. Explicit routing is needed to find a path between LANs.
A WAN network with intermediate extension limited to a town or a city is also
called a Metropolitan Area Network (MAN).

4 Chapter 1. Introduction

• Classification according to connectivity: Especially when talking about the In-
ternet, a hierarchy of networks is introduced. Routers under a single technical
administration and a single routing policy are interconnected to an Autonomous
System (AS) which aggregates a group of address prefixes. The interconnec-
tion of autonomous systems forms the Internet. An autonomous system will
belong to the highest (outermost) level of a network, the so-called access net-
work, if customer links enter the Internet via this autonomous system. The first
router seen by the customer’s traffic is the edge router of an Internet Service
Provider (ISP) running the autonomous system. The remaining interconnection
of autonomous systems without the network edge constitutes the lowest net-
work level, the core or backbone network. One can define an additional level
between the access and the core network, called distribution network. Whether
an autonomous system belongs to the backbone or to the distribution network
is determined by the number of connections to other autonomous systems [47].
Autonomous systems in the distribution network use less connections to other
systems than autonomous systems in the core. The distribution network pro-
vides the transit between the access and core parts of the network.

The following clarification of network terms is included to unambiguously
determine their meaning in the context of this thesis.

Def. 1: (Router) A router is a processing stage of a network node that determines the
next node to which a packet should be forwarded in order to reach the destina-
tion. The router is therefore connected to several nodes. It individually decides
for each incoming packet based on the current state of the network which way
the packet should be sent. Routers operate at the network layer.

Def. 2: (Hop) A hop is an intermediate network connection between two routers over
which a packet is transmitted to reach its destination.

Def. 3: (Flow) A flow is a sequence of packets passing a network node. The packets of a
flow are similarly treated by the node with regard to routing and other policies.
That means, each processing stage within a node only uses a single setting to
handle the packets of a flow. A flow may be an aggregation of packets from
different applications or transport layer sessions which are the subject of the
same service requirement.

Def. 4: (Service) A service may range from the provision of plain network access to the
support of certain protocols and applications such as e-mail, video streaming,
or voice telephony.

Def. 5: (Quality of Service (QoS)) QoS is a performance specification that covers the
properties of a service for a single flow or a whole class of flows. QoS may be
specified by parameters such as data loss ratios, delay and throughput guaran-
tees, delay characteristics (jitter), etc.

1.2. Design challenges 5

Def. 6: (Service Level Agreement (SLA)) An SLA is a contract between a network
service provider and a customer that specifies, usually in measurable terms,
what services with which QoS the provider will offer for the customer. Besides
the description of QoS parameters and assigned flows an SLA may also include
specifications of the network availability, the number of concurrent users, etc.

1.2 Design challenges

Looking at the current growth rate of the performance of networking, comput-
ing, and volatile storage technology, a diverging development can be recog-
nized. The random access time of dynamic RAMs only halves approx. every
ten years [126]. Contrary to that, the computing performance of CPUs doubles
every 18 to 24 months [131, 146, 138]. This is why RAM resources have be-
come the major performance bottle-neck of computing systems [24, 18, 167].
Moreover, although the maximum link bandwidth used in the Internet increases
at almost the same speed as computing performance, the volume of Internet
traffic currently doubles every six months [131]. Therefore, packet processing
tasks will no longer be performed by general computing resources but must be
accelerated by application-specific network processors. The lack of computing
and RAM resources for networking motivates the discussion of the following
two research areas.

1.2.1 Efficient network processing

The current growth rate of the Internet leads to congestion of major parts of the
network since the infrastructure cannot be updated at the same speed. As a re-
sult, degraded connectivity and even starvation of transmissions are appearing.
Moreover, certain flows may occupy more networking resources than others
because nodes usually handle packets without considering any flow-specific in-
formation. Consequently, a flow may greedily use bandwidth by, for instance,
transferring only relatively large packets. Therefore, the access to networks
must be regulated according to reservations and the network must be protected
against greedy flows. A network node has to apply more sophisticated methods
than best effort to maintain the QoS for customers. Algorithms are required
to affect the packet processing starting at the network layer from which end-
to-end transmissions are distinguishable. This thesis will hence elaborate on
packet processing tasks at the network layer. In particular, the following points
are addressed:

• The end-to-end QoS preservation through a core network that only handles ag-
gregates of flows depends on flow classification and policing performed at the
edge of the network. Hence, this thesis will focus on proficient packet process-
ing at the access network.

6 Chapter 1. Introduction

• Related works only investigate single packet processing stages. It is therefore
shown how the cooperation of policing, specific queuing, and packet scheduling
can actually be used to preserve and guarantee QoS requirements of a service
level agreement.

• Moreover, a new service scheme is introduced that considers the requirements
of multi-service access networks.

• Although processors for distribution and core networks are available that sup-
port QoS distinction, no processors with such facilities can be found for the
requirements of the access network edge. An exploration of suitable architec-
tures together with varying combinations of algorithms is thus performed by
co-simulation of algorithm behavior and hardware timing of selected building
blocks. In this way, algorithm behavior, hardware resource load, and QoS prop-
erties are evaluated together for a network processor application.

1.2.2 Data handling in network nodes

A network processor has to manage a variety of data objects with different char-
acteristics. There are traffic streams that must be buffered. As more flows are
distinguished, the access patterns of the buffer memory become more uncor-
related [98] so that caches cannot effectively be employed. Moreover, each
packet processing stage uses some local variables and parameters. We will see
that the use of caching is prohibitive for processing stages until the QoS context
information can be deduced for a packet. Processing stages that could poten-
tially employ additional caches for parameters and values however suffer from
a lack of access locality due to possibly random flow variations from packet to
packet. This is why all currently available network processors with QoS dis-
tinction rely on several separate memory areas of different technology and do
not use caches. We will therefore have a closer look at the exploitation of dif-
ferent RAM resources in this thesis. The design space exploration for network
processors is refined by an exploration of memory access schemes applying dif-
ferent benchmarks and RAM types. The exploration underpins the impact of
an adequate memory controller that should be integrated into a network proces-
sor as an application-specific circuit. The following contributions of this thesis
towards the efficient utilization of RAM resources can be stated:

• Based on an analysis of RAM architectures a memory controller model is de-
rived in a visual formalism which takes advantage of internal parallel hardware
blocks of dynamic RAMs. In this manner we graphically document the proper-
ties of the inner architecture of a memory controller more precisely than current
data sheets do.

• Based on the insight gained by the preceding analysis, performance models of
different memory controllers and DRAMs are added to a mature CPU simulator.
An exploration of computing performance is performed by simulation of vari-
ous applications, memory controller access schemes, and DRAM types. In this

1.3. Overview 7

way we are able to show how heavily the performance of an embedded system
such as a network processor depends on the chosen memory controller access
scheme.

1.3 Overview
This thesis contributes to the design of application-specific network processors
that relieve a main computing system from packet processing tasks such as
preserving Quality of Service (QoS) for traffic flows. It is focused on access
networks where a customer’s traffic enters the network of a service provider.
Algorithms and architectures for suitable network processors supporting a new
service scheme are explored and evaluated. This work is structured as follows:

• Chapter 2 introduces packet processing tasks at the network layer that are can-
didates for acceleration by network processors in the common Internet. Related
work for each task is discussed and available service schemes are presented.
Moreover, a method based on service curves is shown which simplifies the de-
termination of Quality of Service (QoS) requirements.

• Chapter 3 continues with an introduction of a new service scheme. Packet pro-
cessing tasks that are responsible for preserving the QoS are adapted according
to the needs of the new service scheme. A design space exploration of network
processors aimed at access networks is performed by co-simulating different
combinations of packet processing tasks and hardware resources. Solutions de-
scribed in the preceding and the following chapter are incorporated into the sim-
ulation models for algorithms and hardware blocks. In this manner, algorithm
behavior and hardware load are evaluated together.

• Chapter 4 describes the properties of current RAM architectures and motivates
the RAM timing model used for the evaluation in the preceding chapter. A
memory subsystem containing a decent memory controller is modeled by a vi-
sual formalism to graphically analyze advantageous memory access patterns
that are supported by the controller. Access schemes derived from the analysis
are integrated into a mature CPU simulator to perform an exploration of DRAM
types and memory controller features by simulating the execution of various ap-
plications. The exploration underpins the large impact of a memory controller
on the computing performance and motivates the integration of an application-
specific controller into a network processor.

• Chapter 5 concludes with a summary of the main results of the thesis and pro-
vides some starting points for further research.

8 Chapter 1. Introduction

2
IP packet processing:
Requirements and existing solutions

In this chapter, packet processing tasks are described which enable and influ-
ence the Quality of Service (QoS) experienced by a flow. Related work and
existing service schemes are discussed which are used in the common Internet.
A methodic framework based on service curves is presented that eases the un-
derstanding of QoS requirements. The given insight into existing solutions will
be used as a basis for the motivation and evaluation of our own service scheme
in Chapter 3.

The network layer is the lowest layer in the OSI reference model that con-
cerns end-to-end transmission of data. Its job is therefore to deliver packets
where they are supposed to go. Reaching the destination may require to hop
from network node to network node and to find a route to the destination. In the
TCP/IP reference model, the Internet Layer with its Internet Protocol (IP) plays
the role of the network layer. For each incoming IP packet a network node must
decide to which node the packet will be forwarded next. The decision is based
on the information stored in the IP packet header and additional state informa-
tion in the node itself. In order to make a routing decision several tasks are
involved that we call packet processing all together. Packet processing includes
parsing the packet header, classification of the packet so as to assign a packet
to a Quality of Service class, determination of the next hop (forwarding), check
of Service Level Agreements (policing), queuing, and finally link scheduling,
see Fig. 2. Whether all tasks are required and how complex they may become
depends on the services that the network node wants to provide.

By parsing the header of an incoming packet, information about the packet
becomes available for later processing such as the length of the packet, the des-
tination address, and the protocol type. A filter stage with a small set of rules

10 Chapter 2. IP packet processing: Requirements and existing solutions

from
incoming
link

header
parsing &

filtering

to processing of
outgoing link,
backward direction

(local processing)
embedded component

to outgoing link,
forward direction

drop
(impermissible)

drop
(non-conforming to
profile / congestion)

destination reached /

required
local processing

(IP packets)

(go ahead) policing scheduling

(queuing)

forwarding

(feedback)

classification

IP packet processing chain

Fig. 2: The packet processing chain for the forwarding path in the Internet layer, modeled by a
Petri net.

then decides based on the extracted header information whether the packet is
allowed to pass further processing stages or whether it should be dropped im-
mediately. In case of admission, a classification stage uses the extracted header
fields to associate the packet with its context information such as the corre-
sponding Quality of Service (QoS) class – a flow identifier – and the reserved
rate. A forwarding stage which may be combined with the classifier uses the
destination address of the packet to determine whether the packet should be
passed on to a particular outgoing link or to further internal processing tasks.
Further internal processing may be required when the destination is reached or
some higher protocol layers must be processed. If it is decided to forward the
packet to an outgoing link, the packet will be handed to the policer. The policer
uses the context information assigned by the classifier to check whether a packet
complies to a defined traffic profile of the corresponding flow. A traffic profile
may specify properties like the maximum burstiness and the rate of incoming
traffic. A profile is subject of a Service Level Agreement (SLA) between a cus-
tomer and a service provider. An SLA states that as long as traffic complies to a
profile, the provider will ensure a certain level of service, for instance, in terms
of delay and loss. Thus, the profiler marks a packet as conforming or as non-
conforming to a flow’s profile. Non-conforming packets may be immediately
dropped. Before the packet can finally be transmitted through the outgoing link,
it must be queued until the link scheduler chooses the packet for transmission.
The policy by which the scheduler chooses packets for transmission may de-
pend on the header and context information assigned to the packet such as the
packet length, the reserved rate, and the assigned QoS class.

The different packet processing tasks are introduced in the next section. In
Section 2.2 the tasks which are responsible for preserving the quality of the ser-

2.1. Packet processing tasks 11

vices during congestion and among greedy-behaving traffic are discussed. It is
pointed out how the tasks cooperate so as to be able to guarantee delay bounds
for packet delivery. Section 2.3 continues with a description of forwarding ser-
vices for today’s networks.

As introductory reading about networks in general Tanenbaum’s book [157]
is the first choice. The background, the enabling technologies, and the motiva-
tion for the distinction of Quality of Service (QoS) are described in Ferguson
and Huston’s book [52] and some further articles [73, 168, 16, 169]. Finally,
discussions of forthcoming standards concerning the Internet and documenta-
tions of current standards can be found at the Internet Engineering Task Force
(IETF [2]).

2.1 Packet processing tasks
2.1.1 Header parsing

Problem statement: Fields from the packet header must be extracted because
their contents decide how the packet will be processed. Fields may include
checksums, source and destination addresses, protocol specifiers, type of ser-
vice fields as well as the length of the packet. The parsing need not be limited
to the network layer header, but may also comprise headers of other OSI lay-
ers. For instance, IP-based routers often look at the source and destination port
numbers of the transport layer in order to refine the classification of packets.

Although most of the required fields can be found at fixed offsets from the
header start address, the parsing process becomes difficult by variable length
headers which additionally use some optional fields, e.g. fields that determine
secure handling or strict routes through the network. Moreover, since header
parsing must be executed for all incoming packets, performance constraints may
necessitate the concurrent treatment of different parts of the header although it
is not clear at the beginning whether all the gathered information will be used
at all. The level of parallelism is however bounded by decisions that can only
be made after having read particular fields and which then require further fields
from the same or another layer header.

2.1.2 Classification and routing

After having parsed the packet header, field information is available by which
the incoming packet can be characterized, such as the source and destination
addresses. The header fields are used to assign context information to a packet,
for instance, the corresponding QoS class and the outgoing link to the next hop.

In detail, a packet may pass the following processing stages to be classified
and routed:

• Filtering: Since every incoming packet is examined in this stage, only a small
number of rules are applied. The rules assure that only authorized packets pass

12 Chapter 2. IP packet processing: Requirements and existing solutions

through the following processing elements and that packets, which are directed
to the current node, are taken out of the traffic stream. The latter task can also
be performed by the forwarding stage.

• Classification: This stage resembles the filtering stage though a higher number
of rules are usually applied. Context information is assigned to a packet de-
pending on the header fields and according to a set of rules. Accounting and
billing facilities as well as QoS-aware packet handling are thus enabled.

• Forwarding: In this stage, the actual routing decision takes place. Using the
destination address the outgoing link to the next hop is determined.

Although a complete classification of a packet including filtering and routing
could be executed by a single hardware stage or a single software process, the
functionality is usually shared out among different sequential tasks since not all
classification results are of interest for every incoming packet.

Diverse services may directly be provided by the classification stages or
enabled for further processing by tasks inside or outside the packet processing
chain, including:

• Access control: The network node may act as a firewall by blocking certain
flows or traffic classes in order to prevent unauthorized use of network re-
sources. This task is performed by the filtering stage.

• Load balancing: Traffic may be distributed among different routes and/or web
servers. An appropriate routing protocol is responsible to adapt the routing
tables of the forwarding stage accordingly.

• Network address translation: For instance, addresses of a virtual private net-
work (VPN) must be converted into addresses of the public Internet. The corre-
sponding addresses may be assigned to routing entries or classification rules.

• Quality of service (QoS) differentiation: Real-time traffic may be isolated from
elastic and best-effort traffic. Traffic classes are processed with different prior-
ities. Further traffic class refinements may concern user specific information.
This task is performed by further stages of the packet processing chain that rely
on the context information determined by the classifier.

• Accounting and billing: Traffic statistics are gathered for network engineering,
for checking service level agreements and reservations as well as for billing cus-
tomers according to the current network load and their actual traffic profile. This
functionality could be integrated with the policer stage of the packet processing
chain. The policer uses the context information derived by the classifier.

• Policy-based routing: For instance, secure communications should only pass
network nodes of trusted and reliable service providers. An appropriate routing
protocol is responsible to adapt the filter, classification, and routing rules of a
node accordingly.

2.1. Packet processing tasks 13

Packet classification and routing algorithms are usually evaluated by the
following parameters:

• Search time: Time needed in order to look up the associated context information
of a packet. Often, the search time is bounded by the number of required mem-
ory accesses since computation delays can frequently be neglected compared
with memory access delays.

• Storage space requirements: The amount of memory needed for saving the
lookup data structure.

• Update time: Time required to incrementally update the lookup data structure
when a classification or routing rule must be inserted or deleted.

Note that algorithms which rely on caching and/or queuing are prohibitive
for the classification and routing tasks because caching and queuing are meth-
ods to optimize the average case. The behavior of cache-based designs would
heavily depend on traffic characteristics. Thus, the slowest path of the system
architecture could be responsible for the occurrence of congestion and packet
dropping. In this situation however, the router is forced to apply some con-
gestion control and queuing without any context knowledge such as quality of
service information. Therefore, any queuing delays are only acceptable after
the classification. Consequently, classification and routing algorithms should
be optimized for the worst-case and work at wire speed.

2.1.2.1 Forwarding
Problem statement: Since the Classless Inter Domain Routing (CIDR [129])
scheme has been introduced in 1993, routes are defined by the address of the
destination network which is specified by an address prefix plus a prefix length.
In this way, destination addresses which share the same prefix can be aggre-
gated into a single routing table entry. The search for the next hop can then be
performed by finding the longest matching prefix among N routes in the routing
table in two steps. First, the set of prefixes is determined that match the given
destination address of the IP packet. Then, among these prefixes, the longest
prefix is selected. The packet is forwarded to the next hop that is assigned to the
longest prefix.

Ex. 1: (Forwarding by longest matching prefix search) Without restriction of the
general applicability of the CIDR scheme 8 Bit addresses are used in the exam-
ple whereas IPv4 employs 32 Bit addresses. Suppose a router uses the following
routing table:

network address prefix informal next
(hexadecimal) length (binary mask) hop

0 0 ∗ (default route)
20 3 001∗ link 1
20 4 0010∗ link 2
24 5 0010 1∗ link 3
52 7 0101 001∗ link 2

14 Chapter 2. IP packet processing: Requirements and existing solutions

An incoming packet with the destination address 23h (0010 0011b) matches
the prefixes 20h/3 and 20h/4 as well as the prefix entry for the default route.
Among these matches, 20h/4 is the longest prefix. Therefore, the packet will be
forwarded to the next hop connected to link 2.

Forwarding algorithms are usually discussed by assuming a backbone-like
router environment, i.e., a routing table with several 10000 entries is used. Un-
less otherwise stated, the following comparison of algorithms only considers
IPv4 destination address lookups (32 Bit addresses). The complexity of up-
dates of the routing data structure is not attached much significance in most
of the papers since it is generally agreed that forwarding tables do not have to
be updated for every route change but a decent number of route changes can
be bundled into a single table update. That means, table updates may occur in
intervals of minutes.

Overview: A Patricia trie [114] is a general data structure that has been used
for forwarding tasks in a number of software implementations. It is also often
used as a basis of further specializations. Forwarding algorithms must trade off
fast search times for small memory footprints. An extreme is to precompute the
largest reasonable lookup table in order to find a match with a small number of
memory accesses. This approach is presented by Gupta et al. [74]. The other
extreme is to compress the data structure as much as possible at the expense of a
higher number of memory accesses as it is done by Degermark et al. [43]. More
balanced solutions are level compressed tries [119], multi-way search [102], and
subtrie compression [159]. Since most of the approaches are based on obser-
vations of IPv4-based routing tables and hence depend on the characteristics of
the distribution of network addresses, these data structures cannot adequately be
used with IPv6. The binary search of prefix lengths illustrated by Waldvogel et
al. [161] is a considerable exception since it allows to implement IPv6 lookups
at a feasible complexity without depending on assumptions of the address dis-
tribution. Finally, content addressable memories provide a general hardware
platform to implement search and match tasks and can consequently be used to
execute forwarding lookups [108].

• Patricia tries: Many variations of this basic data structure described in [114] are
used in software implementations of routing stages by Unix kernels [143]. The
name trie is derived from the word retrieval. Tries are basically tree-like data
structures. However, the sequence of bits or characters of the value or name to
be searched is directly used to navigate through the tree by selecting a branch in
each level of the tree. In the worst-case, Patricia tries are thus as bad as general
binary trees. However, a Patricia trie allows to skip unpopulated levels of the
tree by specifying the index of the bit or character of the argument to use for
addressing the next branch. In every step through the levels of the tree, a bit of
the IP destination address decides whether the left or right child node must be
chosen. When a leaf node of the tree is reached, a comparison with the prefix
assigned to that leaf must be performed. If the destination address of the current
packet does not match the prefix, the packet can either be forwarded to a default

2.1. Packet processing tasks 15

router or one backtracks up the trie to find a more general prefix1. The search
and the update time can be bounded by O(ipaddr) where ipaddr is the length
of an IP destination address (32 Bit for IPv4). The storage space requirements
are determined by O(N) where N is the number of routes in the data structure.

• Large precomputed tables: The work presented by Gupta et al. in [74] mini-
mizes the number of memory accesses. In the worst-case, only two accesses
are needed. This result is however obtained at the expense of memory space by
precomputing an up to 24 Bit-wide prefix table. More than 30 MBytes of RAM
are then needed. This approach is motivated by the observation that prefixes of
current backbone routing tables such as the often used MAE-EAST data sets
[111] are hardly ever longer than 24 Bits. Moreover, by using DRAM memory,
the storage of precomputed tables can be kept cheap. Unfortunately, moder-
ately efficient updates of the routing table require further extensions to the data
structure and may still demand several hundred memory accesses per update.

• Multi-level dense data structure: Contrary to the preceding approach,
Degermark et al. [43] use a dense data structure for storing the routing table
completely in on-chip RAM by varying the length and the nesting level of
pointer fields in dependence on the distribution of prefixes. The storage re-
quirements have O(N) complexity. Measurements with up to 40000 routing
entries show that the data structure only requires about twice as much mem-
ory as it would be needed to just store all the prefixes. However, more than ten
memory accesses may be needed to find the matching routing entry. Updates are
performed by rebuilding the data structure and thus require O(N) operations.

• Level Compressed (LC) tries: LC tries applied to routing tables [119] show two
advantageous properties. On the one hand, weakly covered regions of a binary
prefix trie can be compressed using skip values along the branches, similarly to
Patricia tries. On the other hand, completely occupied subtries can be converted
into efficient array substructures. However, in order to estimate the actually re-
quired number of memory accesses and the memory space, further knowledge
about the address prefix distribution is required. Experimental results with up to
40000 routing entries show that LC tries roughly require twice as much mem-
ory space as Degermark’s solution in favor of halving the number of memory
accesses. Again, updates are implemented by rebuilding the data structure re-
quiring O(N) operations. Another very similar approach using variable length
subtables is presented in [85].

• Multiway and multicolumn search: Lampson et al. [102] make use of cache
lines in order to store efficient representations of subtries. Again, further in-
formation about the address prefix distribution is required to derive worst-case
bounds for the memory usage. Using 32 Byte cache lines, measurements with
up to 40000 routing entries show results for the search time and the storage

1Backtracking may also lead to the default router which is usually assigned to the root node
of the trie.

16 Chapter 2. IP packet processing: Requirements and existing solutions

requirements which are comparable with LC tries. Updates are performed by
rebuilding the data structure with complexity O(N).

• Representing compressed subtries by fixed-sized pages: The data structure de-
scribed by Tzeng et al. in [159] is well suited for the estimation of worst-case
bounds. The bounds only depend on the number of routing prefixes typically
stored in today’s biggest routing tables and not on the distribution of the pre-
fixes. Nevertheless, the obtained bounds are competitive compared with the
bounds of the other cited papers. Moreover, a prefix trie compression scheme
is introduced which allows the efficient storage of a subtrie in fixed-sized mem-
ory segments. Tzeng et al. use a 17 Bit precomputed prefix table. A table entry
points to a binary prefix trie which is partitioned into subtries of a minimal depth
five and a maximal number of 31 nodes (the depth corresponds to the number of
levels). Each node of such a subtrie has been encoded by three Bits. A subtrie
is fetched by a single memory access. Therefore, at most five memory accesses
are necessary to access a routing table entry: one access for the precomputed
table, at most three accesses for the subtries, and one final access for the rout-
ing information. The storage requirements are O(N) and an update of the data
structure requires rebuilding it.

• Binary search on prefix lengths: Waldvogel et al. [161] also determine worst-
case bounds independent of the distribution of address prefixes by performing
a binary search on prefix lengths with complexity O(log ipaddr) where ipaddr
is the length of an IP destination address. However, the underlying data struc-
ture is based on perfect hashes. Storage as well as update time requirements
thus heavily depend on the chosen hash architecture. The resulting bounds for
IPv4 lookups are usually worse than the bounds presented in the other cited pa-
pers. The strength of Waldvogel’s scheme however lies in its scalability with
the address length. In this way, it may be well suited for IPv6 address lookups.

• Using Content Addressable Memories (CAMs): CAM memories implement a
map data structure. They are able to compare a given value with all keys in a
stored set concurrently. Ternary CAMs allow “don’t care” bits enabling prefix
matches by masking bits [108]. Thus, matches can be found in O(1) time.
However, updates require O(N) operations. Current CAMs only permit small
routing tables with up to some thousand entries. Moreover, access times are
rather slow compared with current RAM technology.

2.1.2.2 Filtering and classification
Problem statement: The classifier determines the flow an incoming packet be-
longs to looking at one or more fields of the packet header. The classifier em-
ploys a set of N rules, each rule consisting of d ranges corresponding to d header
fields (so-called dimensions). A range specifies an interval of valid values of the
corresponding header field. A cost or priority value is assigned to each rule. A
packet will match a rule if, for all dimensions, the field value lies in the cor-
responding range of the rule. Ranges in different rules are allowed to overlap,

2.1. Packet processing tasks 17

i.e., a packet may match several rules. Thus, the classification problem is to de-
termine the least cost / highest priority rule which applies to the packet. In the
TCP/IP case, the most common fields are IP source and destination addresses,
port numbers of the source and destination applications as well as the protocol
type and its associated flags. One may also think of using additional informa-
tion for the classification task that does not belong to the packet header such as
the incoming link of the packet or the current system state, e.g., the time-of-day.

Ex. 2: (Two-dimensional classification) The source and destination addresses of a
packet are used for the classification in this example. The addresses are spec-
ified by 8 Bit values. The router uses the following set of rules which is also
displayed in Fig. 3:

Rule X range Y range priority flow and
(source addr.) (destination addr.) context info.

R1 20 - 70 20 - 200 20 multi-media
R2 150 - 180 70 - 110 10 CBR video
R3 40 - 220 50 - 120 30 video
R4 110 - 190 140 - 210 5 voice
R5 0 - 255 0 - 255 100 best-effort

X

0 100 200

100

200

Y

R5

R4R1

R2R3

Fig. 3: Exemplary two-dimensional rule set of a packet classifier.

Ranges may overlap and a rule may even be completely covered by another
rule. An incoming packet with source address 60 and destination address 80
matches the rules R1, R3, and R5. Rule R1 has the highest associated priority
(lowest priority value) and the packet is thus classified to belong to the class of
multi-media traffic.

18 Chapter 2. IP packet processing: Requirements and existing solutions

Although it is agreed in stating that updates of the rule set occur infrequently
compared with the occurrences of classifications a router must perform, it is
unclear how often updates actually appear. On the one hand, in [101] Lakshman
and Stiliadis assume that updates happen in intervals of tens of seconds. On
the other hand, in [75] update times of tens of milli-seconds are a reasonable
guess. And finally, in [145] it is shown that every single packet transmission
may trigger the insertion of a classification rule.

Note that Feldmann and Muthukrishnan present a framework in [51] by
which the general multi-dimensional packet classification problem can be
mapped to several instances of a longest prefix match problem. That is, all
algorithms presented in the preceding subsection can also be utilized to solve
the classification problem.

Overview: The classification problem can be solved by several search ap-
proaches which are implemented by bitmap intersection [101], walking through
so-called fat inverted segment trees [51], or heap on trie data structures [76].
These algorithms provide different – sometimes configurable – trade-offs be-
tween search and update times as well as the storage requirements. Since they
employ general data structures, their worst-case behavior does not depend on
the actual range distribution. Opposed to that, the method of hierarchical cut-
tings [75] adaptively subdivides the range space into subproblems which can be
solved by linear search. Finally, tuple space search [145] starts with a linear
search in a rule set, whose number of rules has been reduced by heuristics, and
then jumps into a hash table.

• Linear search: The simplest algorithm one may imagine in order to find the best
matching classification rule is a linear search over all ranges and rules which
are compared by decreasing priority value. However, the search time as well
as the storage requirements increase linearly with the number of rules N and
dimensions d making this search algorithm only feasible for a small set of rules
and dimensions. At least, the update time can be bounded by O(log N) if binary
search is applied to a sorted data structure which is arranged by decreasing
priority.

• Bitmap intersection: The optimization of one goal must usually be traded off
for another goal. Fast search times can be achieved by precomputing complex
data structures at the expense of larger update times. In [101], the set of pos-
sibly overlapping ranges is subdivided into non-overlapping intervals for each
dimension. The set of rules in which the interval is a part of the correspond-
ing range is assigned to each interval. Rules within a set are sorted by priority
and the sets are stored as bitmap vectors. The classification task can thus be re-
duced to an intersection of sets implemented by a logical AND operation among
bitmaps. These bitmaps represent the results of individual interval searches in
each dimension using binary search, for instance. The highest priority entry in
the resulting bit vector then corresponds to the best-matching rule. The search
complexity reduces to O(d logN), the update complexity increases to O(dN),
and the storage requirements to O(dN 2), respectively. Further refinements of

2.1. Packet processing tasks 19

the scheme reduce the storage space requirements by coding only the difference
between bitmaps at the cost of a higher number of memory accesses.

• FIS tree search: The so-called fat and inverted segment (FIS) tree presented
in [51] also heavily employs precomputation to speed up search times. A FIS
tree is a balanced, inverted t-ary tree with an arbitrary number of levels l. Thus,
with t = dN

1

l e, each node has a pointer to its parent and at most t incoming
arcs. Leaves represent the non-overlapping intervals of the range space defined
by the end points of the ranges in the rule set, looking at a single dimension.
Internal nodes denote the union of intervals stored at their child nodes. A rule
will be assigned to a node if the node’s interval is part of the corresponding
range and if the parent node’s interval is not part of the range. In a recursive
manner, further FIS trees are constructed at every node projecting the set of rules
which has been assigned to a node to the next dimension. FIS trees for the last
dimension only have one level. In this way, the space required can be bounded
by O(N(lN

1

l log N)d−1) and the search time by O(ld−1 log N). By varying the
number of levels l in a FIS tree space requirements and search time behavior
can be traded off. The support for dynamic updates of the data structure needs
further modifications of the FIS tree. The update time for the multi-dimensional
case has not been bounded in [51]. In the one-dimensional case, updates show
a complexity of O(lN

1

l log N).

• Heap on trie: In [76], a range is split into a set of maximal prefixes. In the
IPv4 case, for instance, there are 62 such prefixes. These prefixes are organized
in a binary trie [96] data structure (basically a binary tree where the sequence
of bits of the search argument is used to select a branch in each level of the
tree to navigate through the tree). A range is assigned to the trie nodes which
represent the range’s set of maximal prefixes. Since ranges may overlap, sev-
eral ranges can be assigned to a trie node. Therefore, ranges associated with a
particular trie node are arranged in a heap which is ordered by cost or priority
values. In the multi-dimensional case, a hierarchical trie is used, one level per
dimension except the last one, for which the described heap-on-trie data struc-
ture is built. The space consumption can be bounded by O(NW d), the search
time by O(W d), and the update time by O(W d log N) operations where W is
the maximal number of bits used to represent a range in one dimension. A sec-
ond data structure is proposed that reduces the update time to O(W d−1 log N) at
the expense of possibly larger search times which are bounded by O(W d log N)
operations.

• Hierarchical cuttings: Precomputation combined with heuristics to take advan-
tage of the characteristics of real-life rule sets is used in [75] where a decision
tree data structure is traversed to find a suitable leaf node. A leaf stores a set
of rules that is searched linearly. During the building of the data structure, the
range space is cut into a variable number of pieces. Each decision only affects
the division along a single dimension. The cutting is performed recursively until
the number of rules associated with a single piece of the range space falls be-

20 Chapter 2. IP packet processing: Requirements and existing solutions

low a defined threshold. These pieces become leaves of the decision tree. The
number of intervals per cutting, the choice of the dimension to cut along, and
the threshold to stop the process of subdividing are all free parameters of the
algorithm. Although heuristics work well with current rule sets, it is inherently
clear that the algorithm may perform as bad as linear search in the worst-case.

• Tuple space search: The approach presented in [145] also combines precom-
putation and heuristics. The data structures are derived by the observation that
only a small number of combinations of prefix and range lengths are used in
current rule sets. Hence, filter rules with the same prefix and range lengths in
every dimension are represented by a d-tuple of length values. The tuple set is
searched linearly for a match. The corresponding significant bits of a packet
header are then used as a key for an underlying hash table. One may think of
two extreme cases: on the one hand, rules could not be compressed into tuples
at all and a linear search of rules would actually be performed. On the other
hand, all filter rules could be matched by a single tuple and packets would be
classified by hashing with no need of a linear tuple search. Therefore, the stor-
age and update time requirements are determined for the most part by the choice
of the hashing function and the hash data structure. Again, in the worst-case,
the search time can be as bad as in the case of a linear search since tuple space
search tries to exploit the structure of existing rule sets.

2.1.3 Policing

Problem statement: After having classified a packet its context information is
available. In particular, the traffic flow to which the packet belongs has been
determined. Service guarantees can now be checked by verifying Service Level
Agreements (SLAs) between customers and the provider of a service for that
flow. This is done by measuring the flow’s actual traffic profile. If the current
packet is within the guaranteed profile, the packet will be processed without any
restriction and marked as conforming to the SLA. If the profile is not kept, there
are different options which depend on the currently available resources. Packets
that violate the SLA could be immediately dropped. If, however, sufficient
shared resources are available, the packet can be marked as non-conforming
and nevertheless be processed at a somewhat degraded service level.

In addition, a packet may be delayed before policing in order to shape the
flow according to a profile. This approach will be advantageous if there is some
background knowledge that the flow has actually entered the network accord-
ing to that profile and has been reshaped by the characteristics of intermediate
network nodes. If the shaper and the policer use the same profile for the flow,
the shaper may take over the marking task. Without prior knowledge about the
expected profile, shaping does not make much sense because the shaper could
always run into congestion and drop packets. In this case, a more sensible solu-
tion would be to spend more memory which is controlled by the queue manager
at the link scheduler rather than buffer space for shapers. If no SLA exists for
a given flow, a policer may nevertheless be employed to bound the amount of

2.1. Packet processing tasks 21

unspecified traffic.
In the following, it is shown how traffic profiles are usually specified.

Then, mechanisms to meter these profiles are described. If these measurement
blocks are additionally allowed to delay packets, they can also be used for
shaping traffic. The concept of arrival curves α is used which will formally be
introduced in Section 2.2 to describe a worst-case traffic envelope for a given
flow. An arrival curve α(t) bounds traffic for any interval of length t. That is, if
the lengths of packets passing a defined place in the network are monitored, the
sum of the packet lengths within any measuring interval of length t will not be
more than α(t).

2.1.3.1 Traffic specifications

• (σ, ρ) model: With the (σ, ρ) model, the maximum burst size σ (an amount of
bits) and the long-term bounding rate ρ of a traffic source are specified. The
traffic can then be bounded by the arrival curve α(t) = σ + ρt.

• TSpec: The TSpec [141] has been introduced by the Internet community to treat
QoS reservations and can be seen as a conjunction of two (σ, ρ) specifications.
A TSpec is defined by a peak rate p, an average rate r, a burstiness b, and
the maximum packet size M . The TSpec specifies one further parameter, the
minimal policed unit m which determines that packets smaller than m should
be treated as packets being of length m. In the end, traffic bounded by a TSpec
is described by an arrival curve α(t) = min{M + pt, b + rt} with M ≥ m, see
Fig. 4.

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

α

t

TSpecb

M

M + pt

b + rt

Fig. 4: The arrival curve for a TSpec traffic specification.

• (Xmin,Xave, I,Smax) model: This model has been introduced in a framework
for real-time communication over packet-switched networks [8]. Xmin denotes
the minimal inter-arrival time of packets, Xave the minimal average inter-arrival
time in any interval of length I , and Smax the maximal packet size respectively.

22 Chapter 2. IP packet processing: Requirements and existing solutions

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Xave

I2

t

I0

I Smax

t
Smax
X

t
Smax
X ave

min

α

Fig. 5: The arrival curve for a (Xmin, Xave, I, Smax) traffic specification.

The corresponding arrival curve has been determined in [165] to be (see Fig. 5)
α(t) = b t

I
c · I·Smax

Xave
+ min{d(t

I
− b t

I
c) · I

Xmin
e, I

Xave
} · Smax.

2.1.3.2 Metering

• Token bucket: A token bucket is defined by two parameters: its capacity B
and the fill rate R. The bucket is continuously filled by the rate R with tokens
representing units of Bytes up to the level B. The bucket is initially filled up
with tokens. Traffic is allowed to pass the token bucket in the presence of a
sufficient amount of tokens. The corresponding amount of tokens representing
the length of the current packet is then taken from the bucket and the packet
is marked as conforming to the profile. Otherwise, no tokens are taken from
the bucket and the packet is marked as non-conforming. In this way, the traffic
is allowed to have a certain burstiness up to a size of B. However, since the
bucket is refilled by the rate R, the traffic is bounded in the long term by R.
That is, conforming packets can be described by a (σ, ρ) model with σ = B and
ρ = R. ATM’s generic cell rate algorithm (GCRA [7]) is a metering algorithm
that is based on a token bucket. The traffic is checked whether it is within the
bounds of a peak rate (PCR) and the cell delay variation tolerance (CDVT).
The GCRA is thus equivalent to a token bucket with rate R = PCR and capacity
B = CDVT · PCR + SizeOf(ATMCell).

• Conjunction of token buckets: Accordingly, traffic may be marked as conform-
ing to a TSpec by checking two token buckets running in parallel. One bucket
has the size M and is filled by the peak rate p, the other one has the capacity
b and is filled by the average rate r. A packet will be allowed to pass the dual
token bucket as conforming to the TSpec if there is a sufficient amount of tokens
in each of the buckets. Then, the corresponding amount of tokens is taken from
both buckets.

• Nested token buckets: In order to enable a graceful service degradation if traffic
does not meet a certain profile but is within a somewhat less restrictive profile,

2.1. Packet processing tasks 23

one could think of nesting token buckets. In its simplest form [81] by nesting
two token buckets with profiles (b, r) and (B, R), b ≤ B and r ≤ R, a packet
will be marked as conforming to the (b, r) profile if there are enough tokens
in both buckets. Then, tokens are taken from both buckets and the packet is
marked for premium service. If, however, the packet does not fit into the (b, r)
but only into the (B, R) profile, the packet is marked for degraded service and
tokens are only taken from the (B, R) bucket. At last, if there are not enough
tokens in the (B, R) bucket, the packet will be marked as non-conforming and
no tokens will be taken from any bucket.

• Testing a (Xmin,Xave, I,Smax) profile: The arrival time ak of the kth packet
of a traffic flow must be checked whether it is valid compared with the arrival
times of preceding packets. That is,

ak ≥ max{ak−1 + Xmin, a
k−b I

Xave
c+1

+ I} with ak = −I, k ≤ 0

must be true in order to mark the current packet as conforming to the profile
assuming a length of the packet less or equal Smax. Consequently, one must
be aware of the traffic’s history by storing the arrival times of the preceding
b I

Xave
c − 1 packets which conformed to the profile.

2.1.3.3 Shaping
All the mechanisms described in the preceding subsection can be used as a basis
for a corresponding shaper entity. The only difference is that a packet is never
dropped – unless the shaper runs out of buffer space – but is delayed until it
finally conforms to a given profile.

A special case of a shaper is the fluid model of a leaky bucket that is often
confused with a token bucket. Network traffic is assumed to pour into a bucket
with capacity B. Fluid, i.e. network traffic, is continuously leaking out of the
bucket through a hole in the bottom at a constant bit rate cbr as long as there
is fluid in the bucket. Fluid will be lost if the bucket overflows. Thus, a leaky
bucket may tolerate a certain level of burstiness of the incoming traffic at its
input until the maximum level of the bucket is reached but will always generate
constant bit rate traffic at its output as long as there is backlog in the bucket.
Opposed to that, a token bucket allows a bounded burstiness at its output be-
cause traffic is immediately forwarded as long as there are enough tokens in the
bucket. The token bucket’s level however regenerates with constant bit rate.

With a slight modification, a leaky bucket can be used as a smoothing el-
ement by introducing some additional delay. If it is known that a constant bit
rate source with rate cbr has been partially delayed in the network and now has
a jitter of δ, the constant bit rate flow can be reconstructed without any losses
and any gaps by feeding a leaky bucket of size δ · cbr with it. At the beginning,
one must wait until the buffer is half-filled and then start to read out the bucket
at the constant bit rate cbr.

24 Chapter 2. IP packet processing: Requirements and existing solutions

2.1.4 Queuing

Problem statement: After a packet has been admitted for a possible transmis-
sion, it must be buffered in the system until it will be either chosen by the link
scheduler for transmission or be discarded in case of a congested link. It is
the responsibility of a queue manager to operate the packet storage space which
may include dynamically allocating and deallocating memory to store or release
packets as well as coping with congestion, i.e., choosing packets to discard.

Ideally, the behavior of the different flows should be isolated from each
other. Packets marked as conforming to their profiles should always be stored
regardless of other greedy traffic sources and surplus storage space should be
shared in a fair manner. In order to balance the separation of flows and the
number of flows that can be managed, different approaches are possible:

• Single queue: Packets from all flows are simply enqueued in the order they ar-
rive at the queue manager without storing any addition per flow state. Although
a high number of flows can be aggregated this way since one does not depend
on any per flow state information, the search for a packet of a particular flow
needs an exhaustive linear search among all enqueued packets.

• Separate queues: There is a separate FIFO queue for each flow. The mem-
ory space is statically subdivided into parts which are exclusively assigned to
distinct flows. The expense for organizing a FIFO queue can be kept at a mod-
erate level, e.g. by employing ring queue data structures based on arrays. While
this approach achieves perfect isolation of the flows, storage resources may be
wasted since flows are not allowed to exploit memory which is currently unused
by another flow.

• Shared memory: FIFO queues for the flows are organized as linked lists of data
segments of a decent size. Thus, the contents of a packet may be distributed
over several segments. Memory space is dynamically allocated and released for
every single packet, e.g. by maintaining a list of free segments. By defining
individual thresholds of memory space utilization for each flow according to
some reservation rule, a flow can be protected against other flows as long as
its occupation of the memory is below its threshold. Memory beyond these
thresholds can be shared arbitrarily at the expense of the preservation of more
complex data structures and per flow state information.

Independently of the organization of the memory the congestion behavior of
the queue manager can be determined using the following guidelines:

• Congestion avoidance: A congestion situation may be avoided by preventively
discarding packets dependent on the system’s state before the appearance of
congestion.

• Congestion recovery: Packets are dropped in times of congestion to avoid dead-
locks.

2.1. Packet processing tasks 25

In order to succeed, the queue manager may apply

• Rejection of packets at the arrival: Packets may not be allowed to enter the
queue manager dependent on the system’s state.

• Pushing out already stored packets: Packets that have already been enqueued
in the queue manager are discarded at the arrival of new packets. Common
actions are to drop packets from the front or from the tail of a queue as well as
to randomly select a packet [21].

Commonly used implementations of congestion avoidance approaches are:

• Early Packet Discard (EPD): Incoming packets will be immediately dropped
by EPD [132] if the current size of the queue passes a fixed threshold.

• Random Early Detection (RED): RED [54] starts to drop incoming packets
with a defined probability as soon as the average size of allocated memory ex-
ceeds a given threshold. The probability to be dropped then increases linearly
with the memory size. If a second, larger threshold is passed, every incoming
packet will be dropped. Note that the calculation of the average memory size
introduces further parameters. Flow random early drop (FRED [105]) is an ex-
tension to RED that employs per flow state information – in particular queue
lengths for individual flows – in order to more fairly drop packets from flows
depending on individual memory utilizations.

Congestion recovery mechanisms – partly extended by using policing informa-
tion and congestion avoidance ideas – have been implemented in:

• Longest Queue Drop (LQD): LQD [156] simply pushes out packets from the
currently longest flow queue. Assuming an equal reservation of resources for all
flows, flows are protected against misbehaving flows that show a longer backlog
of packets and thus experience higher loss rates. However, one must keep track
of the longest queue in the system.

• Extended Threshold Policy (ETP): ETP [34] pushes out packets in order to
cope with congestion. Congestion may be avoided because all packets which
have been marked as non-conforming by the policer and which are currently
stored above a defined threshold will be discarded if a packet marked as con-
forming arrives. Note that a packet arrival may initiate several packet discards.

• Extended Simulated Protective Policy (ESPP): ESPP [34] also pushes packets
out in order to recover from congestion. A second queuing system is maintained
as a reference which only deals with conforming traffic. The goal is to ensure
that the main system offers the same service for conforming traffic as the ref-
erence system at any point of time. That means in particular, the main system
should always offer at least as much buffer space to conforming traffic as the
reference system. Therefore, incoming packets which conform to their profile
will push out non-conforming packets if no free buffers are available.

26 Chapter 2. IP packet processing: Requirements and existing solutions

2.1.5 Link scheduling

Problem statement: A link scheduler is a kind of arbiter that must decide which
of the buffered packets will be transferred next through an outgoing link of
a networking node. The scheduler may use further information such as the
system state, service level agreements, or recent traffic characteristics metered
by a policer to guide and support its decision which packet to choose next.

There are several features by which schedulers may be distinguished:

• Fairness: Schedulers will be considered to be fair if surplus bandwidth is dis-
tributed to backlogged flows in proportion to their reservation, i.e., they should
not give preference to any flow.

• Efficiency: The complexity of an implementation is valued here. Issues like
whether and how the number of operations and memory accesses depends on
the number of flows and packets in the system are answered.

• Worst-case behavior: The service a flow receives according to an SLA should
not depend on any properties of other flows, i.e., the behavior of flows should
be isolated from each other. Thus, conforming flows should not be disturbed by
greedy flows.

• Quality of service guarantees: Some schedulers may only offer some distinct
rates and not arbitrary reservations and provide worse delay bounds than others.
Yet other ones are able to decouple response time and throughput guarantees
to some extent. In Section 2.2, it is discussed in detail how service guarantees
have an effect on resource requirements and depend on traffic specifications.

• Utilization: The number and variety of flows that a scheduler is able to permit
transmission according to their SLAs – in particular with respect to guaranteed
delay bounds – may vary from scheduler to scheduler. The utilization of a
scheduler is often determined by its schedulability region.

2.1.5.1 Static priority-driven schedulers

• First Come First Served (FCFS): An FCFS server only provides a single pri-
ority level. Therefore, packets are served in the order of their arrival. An un-
derlying queue manager can easily be implemented since only a single queue
must be maintained. The overall complexity is also very low: insertion and
deletion from the queue as well as a schedule decision can be done in O(1)
time. Obviously, FCFS does not provide any isolation of flows or any fairness
since a greedy flow may capture an arbitrary fraction of the link bandwidth.
Moreover, individual delay guarantees are as bad as for a single flow occupy-
ing the whole queue: in the worst-case, assuming that an incoming packet has
been stored in a nearly filled-up queue, the packet must wait for service until
all the preceding packets in the queue have been processed. Although these
disadvantageous properties of FCFS including the possible collapse of whole

2.1. Packet processing tasks 27

networks are known for a long time [116], FCFS combined with a RED queue
manager, for instance, is still a very popular solution for backbone routers due
to its simplicity. Hence, FCFS is still discussed in recent publications [72, 156].
The suggestion is to combine FCFS with queue managers that retain per-flow
states so as to enhance FCFS with some isolation properties. These approaches
accept bad delay characteristics and a high overhead in terms of memory space
to achieve a somewhat passable schedulability region – necessary schedulability
tests for (σ, ρ) constrained sources in terms of queuing resources and rate reser-
vations are derived in [72] – in favor of an implementation of low complexity.
This may still be a reasonable choice for high-speed backbone routers.

• Static Priority (SP): A natural extension to FCFS is to provide a bounded num-
ber of distinct FIFO-organized queues and associate a fixed priority level with
each queue. A packet of low priority will only be transmitted if all higher pri-
ority queues are empty. In this way, a decision of the scheduler on the next
packet to transmit remains a task of complexity O(1). However, it is still pos-
sible that a greedy flow of a particular priority starves all other flows of the
same and of lower priority. That is, high priority flows are only protected
against misbehaving flows of lower priority. Moreover, high priority flows
benefit alone from surplus bandwidth as long as they are backlogged. Neces-
sary and sufficient schedulability tests for flows constrained by concave arrival
curves are derived in [40] in terms of arbitrary delay bounds – a single delay
bound per priority level. Sufficient tests for flows bounded by the non-concave
(Xmin, Xave, I, Smax) model are presented in [170, 171]. Finally, necessary and
sufficient conditions for arbitrary arrival curves can be found in [104]. The con-
ditions are not discussed any further at this point since they are significantly
more complex than the schedulability tests for EDF-based schedulers. Since
EDF is also the more flexible approach compared with SP, the conditions for
EDF will be considered in more detail later in this subsection.

• Round-Robin (RR) based schedulers: In order to bound the time interval by
which flows of a high priority level may starve lower prioritized flows, one
could think of limiting the amount of service a particular priority level receives
in a SP-based system at a point of time. One could proceed to the next lower
priority level after the current priority level has taken its quantum. After having
served the lowest priority level, one would begin again with the queue of high-
est priority. Levels without backlog would be skipped. This way, a share of the
link bandwidth can be guaranteed to each priority level even under heavy load
and surplus bandwidth is also shared in a fair manner according to quantum
values. Different priority levels can be considered by individually adjusting the
quantum value of each priority level. The scheduling decision remains a con-
stant time operation. However, the delay properties still depend on the number
of distinct queues that are currently active in the system. The Round-Robin
idea applied to networking nodes has been introduced in [116, 117, 78] us-
ing fixed-sized quantum values. Hierarchical Round-Robin (HRR) [94] allows
variable-sized quantum values and several levels of HRR schedulers to take dif-

28 Chapter 2. IP packet processing: Requirements and existing solutions

ferent packet sizes and rate reservations into account as well as schedule flows
within a particular priority level fairly by RR instead of FCFS. Finally, Deficit
Round-Robin (DRR) [142] allows to accumulate the shares of a quantum that
have not been exploited during preceding scheduling rounds as long as the as-
signed queue is backlogged.

2.1.5.2 Dynamic priority-driven schedulers
Dynamically generated priorities are used for schedulers of this class. That is,
since the priority of a packet is derived during the run-time of the system, pack-
ets must be dynamically sorted according to these priority values. The sched-
uler cannot apply any fixed scheme as described in the preceding subsection
but serves the packet with the currently highest priority from a sorted queue.
The sorted data structure is also often called a priority queue. That means, not
only the calculation of priority values is needed, but also a sorted data structure
must be maintained. However, it is sufficient to sort only the N head-of-queue
elements from each of the N flow queues. Thus, N distinct FIFO queues can
be kept up. Additionally, for most of the following algorithms it is sufficient
to compute a priority value when a packet reaches the head of a FIFO queue
and not already on arrival at the system. Data structures for priority queues are
evaluated in general in [133, 93, 96, 158], applied to packet scheduling algo-
rithms in [95, 148], and hardware building blocks for network applications are
described in [30, 130, 112].

• Weighted Fair Queueing (WFQ): The approach to adapt the behavior of a per-
fectly fair fluid server to the time-multiplex in packet networks is the basis for
a variety of packet scheduling algorithms. The idea is introduced in [44] un-
der the name Fair Queueing (FQ) and is thoroughly analysed in [122]. A fluid
server is configured by N positive real numbers (weights) Φ1, Φ2, . . . , ΦN that
are assigned to N distinct FIFO queues. During any time interval (τ1, τ2] when
there are exactly n ∈ [1, . . . , N] queues backlogged the fluid server serves the n
packets at the head of the corresponding queues simultaneously, each at a rate

rn(t) =
Φn

∑

j∈B(τ2) Φj

·R(t), t ∈ (τ1, τ2] (2.1)

where B(τ2) is the set of backlogged queues which is constant in the time period
(τ1, τ2] and R(t) is the – possibly variable – link speed respectively. Therefore,
let Wn(τ1, τ2) be the amount of traffic from queue n served in interval (τ1, τ2]

2,

Wn(τ1, τ2)

Wj(τ1, τ2)
≥

Φn

Φj

, j = 1, 2, . . . , N

is true for any queue n that is continuously backlogged in the interval (τ1, τ2]. In
other words, the rate rn(t) = Φn

∑N

j=1
Φj

·R(t) can be guaranteed to queue n by the

2Wn(τ1, τ2) includes service provided after time τ1 to packets of queue n whose transmis-
sion started before time τ1 and the service provided until time τ2 to packets whose transmission
is finished after time τ2.

2.1. Packet processing tasks 29

fluid server and surplus bandwidth is shared fairly in proportion to the weights
Φn of the currently backlogged queues. Without restricting the generality of the
method, assuming normalized weights Φn ∈ (0, . . . , 1] and a stable system, i.e.,
∑N

j=1 Φj ≤ 1, the worst-case rate guarantee can be uncoupled from the weights
of all other flows and one can state that a fluid server guarantees a rate rn(t) =
Φn ·R(t) to queue n in the worst-case independently of the behavior of all other
queues.

Since packets cannot be served simultaneously in a packet system on a sin-
gle outgoing link, the packetized version of a fluid server – the Weighted Fair
Queueing (WFQ) server – schedules packets according to the order in which
they would finish service in the fluid system. Hence, a WFQ server must em-
ulate the fluid system in the background in order to function properly. Before
the actual WFQ algorithm can be presented, a method to keep track of the fluid
server is introduced which is based on the evolution of a single virtual time
measure.

The evolution of virtual service in the emulated fluid system: By restricting
the outgoing link to a constant bit rate, the rate allocation in eq. (2.1) may only
change at packet arrivals and departures in the fluid system because the set of
backlogged queues B(τ2) may only alter at these events. In [122], an algorithm
derived from the concept of virtual time – often also called virtual service – is
presented that keeps track of the fluid server.

– Virtual time evolution: The virtual time V (t)3 is defined to be zero when the
server is idle. For any interval dt with a constant set of backlogged flows
within any busy period, the virtual time evolves as follows:

V (t + dt) = V (t) +
dt

∑

j∈B(t) Φj

·R (2.2)

and each backlogged queue receives service rn(t)·dt = (V (t+dt)−V (t))·Φn

in interval dt. In this way, one only needs to keep track of a single service
measure V (t) in order to derive individual service amounts for each queue
which are needed to fairly schedule packets from different queues.

– Scheduling tag calculation: At each packet arrival, the service levels S and
F of the virtual service V (t) are computed at which the packet would start to
receive service (S) and finish service (F) in the fluid system. Suppose that
the kth packet of queue n arrives at time an,k and has the length lkn. The start
and finish virtual service times can be computed by4

Sk
n = max(F k−1

n , V (a−n,k)), with F 0
n = 0

F k
n = Sk

n +
lkn
Φn

(2.3)

3By applying the notation of weights Φn the virtual time V (t) is measured in units of Bits.
An alternative notation can be derived by using the reserved rates rn instead of Φn so that V (t)
is measured in seconds.

4In the following, the notation τ {−|+} for any point of time τ of an event means just prior
the event and just after the event at time τ respectively.

30 Chapter 2. IP packet processing: Requirements and existing solutions

The finish times F of all packets enqueued in the fluid system are sorted in
the order of increasing times. The maximum operation for the calculation of
Sk

n in eq. (2.3) would prevent a queue from accumulating credits for unused
service if the queue was not backlogged during a busy time of the scheduler.

– Real time of next packet departure: Let Fmin be the minimal finish time of
packets in the fluid system, the real time next(t) can be calculated at which
the next packet will leave the fluid system assuming that there will be no
arrivals in the interval (t, next(t)] by

next(t) = t + (Fmin − V (t−))

∑

j∈B(t+) Φj

R
(2.4)

That is, next(t) is the next point of real time at which the set of backlogged
flows may possibly be altered and the slope of the virtual time may change
(eq. (2.2)).

The WFQ algorithm can now be described as follows:

Alg. 1: (WFQ with emulated fluid server)

System state parameters of the fluid server:
R [Bit/s] link rate
N number of flows
Φn, 1 ≤ n ≤ N WFQ weights

System state variables of the fluid server:
V (t) [Bit] virtual time
B(t) set of backlogged flows
F k−1

n , 1 ≤ n ≤ N [Bit] virtual finish times of preceding packets
Fmin [Bit] minimum virtual finish time among all en-

queued packets
next(t) [s] point of real time of next packet departure

Input parameters:
an,k [s] arrival time of the kth packet of flow n

lkn [Bit] length of the kth packet of flow n

At each packet arrival at time t := an,k

1. If the fluid system was idle just before the packet arrival, reset the system
by setting the virtual time V and all preceding scheduling tags F k−1

n of all
flows to zero, else update V (t) according to eq. (2.2).

2. Calculate the finish time for the packet with eq. (2.3).

3. Add n to the set of backlogged queues B(t) if n /∈ B(t).

2.1. Packet processing tasks 31

4. Sort the packet into two priority queues: one queue models the behavior
of the fluid system and the other represents the actual packet system.

5. Calculate the real time of the next packet departure next(t) in the fluid
system with eq. (2.4).

At each packet departure event in the fluid system at time t := next

1. Update the virtual time V (t) according to eq. (2.2).

2. Dequeue the packet with the smallest finish time from the priority queue of
the fluid system. Let the corresponding flow identifier be n.

3. If the flow n is no longer backlogged in the fluid system, take n from the
set of backlogged queues B(t).

4. If there are still packets backlogged in the fluid system, calculate the time
of the next event next(t) in the fluid system with eq. (2.4).

The packet system serves packets independently of the departure events in the
fluid system. Packets are served in order of increasing finish times. It is shown
in [122] that by applying WFQ the packet system can only be a packet length
behind the service of the ideal fluid system in the worst-case. However, there is
a tremendous overhead for the calculation of the scheduling tags because events
may appear frequently in the fluid system since virtually all backlogged flows
may finish service at the same time.

In order to find a suitable trade-off between the complexity of a scheduling
algorithm, the fairness of the distribution of excess bandwidth, and the provision
of sharp delay bounds, different approaches have been applied to implement
WFQ.

– Self-clocked fair schedulers: So-called self-clocked methods no longer emu-
late a fluid system but estimate scheduling tags by the tags of packets which
are currently queued in the packet system. Self-Clocked Fair Queueing
(SCFQ) [62] uses the finish time of the packet currently in service for the
estimation of the virtual time V (t) of the fluid server in eq. (2.2). Contrary to
that, Start-time Fair Queuing (SFQ) as described in [64] uses the start time
of the packet currently in service for the estimation and serves packets in
increasing order of their start times. Minimum Starting-tag Fair Queueing
(MSFQ) [33] serves packets in increasing order of their finish times and the
virtual time of the fluid server is estimated by the minimum of the start times
of backlogged flows. A second priority queue is therefore required. The
same approach has been independently published in [36] under the name
time-shift scheduling. Self-clocked algorithms decrease the implementation
complexity of WFQ since the state of the fluid system is simply modeled.
However, they usually provide poor delay bounds which may depend on the
number and the reservations of other flows passing the scheduler.

32 Chapter 2. IP packet processing: Requirements and existing solutions

– Approximation by potential functions: More methodical approaches of fair
queuing designs that also exploit the self-clocked idea are based on the the-
ory of Rate-Proportional Servers (RPS) [152]. A scheduler of the type RPS
keeps track of the state of the fluid system by a system potential function that
models the behavior of the virtual time V (t). A so-called base potential func-
tion is employed in order to recalibrate the system potential at certain points
of time. The system potential then increases linearly between recalibrations –
assuming the system is not idle – so as to resemble the increase of the virtual
time V (t) in eq. (2.2). Different base potential functions as well as different
recalibration time intervals can be chosen in order to find a suitable trade-
off between fairness and complexity of the scheduler. RPS-based schedulers
achieve the same worst-case delay bounds as WFQ. Starting Potential-based
Fair Queueing (SPFQ) and Frame-based Fair Queueing (FFQ) have been
presented in [150]. SPFQ recalibrates the system potential at every packet
departure. The base potential is updated at every packet arrival and is set
to the minimum start potential of all backlogged flows, that is, the potential
at which the corresponding packet would begin getting service in the fluid
system. Thus, SPFQ is very similar to MSFQ. MSFQ however does not use
a system potential and moreover recalibrates at packet arrivals. FFQ uses
a simpler base potential than SPFQ and larger intervals between recalibra-
tions at the expense of fairness. Minimum Delay Self-Clocked Fair Queueing
(MD-SCFQ) [31] uses the same recalibration intervals as SPFQ together with
a simplified base potential which does not need to maintain a second priority
queue in order to manage start potentials. However, MD-SCFQ can achieve
better fairness than SPFQ for certain flow settings.

– Eligible packet selection: Although the amount of service by which a WFQ
system may be behind a fluid system is bounded, the WFQ system schedule
can be quite ahead of the fluid system [122]. This behavior will show unde-
sired properties if feedback congestion control is used, e.g. for the regulation
of best-effort traffic [14]. In order to retain fairness between the flows shar-
ing a link not only on the average but also on a fine time granularity, there
are scheduling algorithms which use two distinct priority queues for sorting.
Worst-case fair Weighted Fair Queueing (WF2Q) [14] and its more efficient
implementation WF2Q+ [13] sort arriving packets according to their start
time in the fluid system. Only packets which are eligible for transmission,
that is, for which service would have been started in the fluid system, are then
transferred to the second priority queue which is sorted according to finish
times. WF2Q+ does not need to emulate a fluid server but utilizes an approx-
imation function similar to SPFQ and MSFQ. Opposed to these algorithms,
WF2Q+ considers only eligible packets for transmission. Leap Forward Vir-
tual Clock (LFVC) [155] transfers packets from backlogged but oversub-
scribed flows to a second priority queue. Packets residing in this queue are
not eligible for transmission yet. Care is taken that packets are written back
to the first priority queue before any delay bound may be missed. WF2Q and
LFVC have in common that the full contents of one priority queue must pos-

2.1. Packet processing tasks 33

sibly be copied to the other priority queue between two scheduling decisions
in the worst-case.

– Round-Robin variants: There are scheduling algorithms with low complex-
ity which enhance the concept of a Round-Robin scheduler with virtual ser-
vice ideas. However, Virtual Time-based Round-Robin (VTRR) [32] cannot
provide such sharp delay or fairness bounds as schedulers which use a fluid
server as reference model. Note that Deficit Round-Robin (DRR) [142] is of-
ten used as a somewhat standardized comparison basis for fair schedulers and
is thus usually considered to be a WFQ implementation of low complexity
and accordingly degraded service guarantees.

– Hierarchical grouping: If a single level of flows or flow classes is not de-
tailed enough so as to distinguish QoS, one may think about using several
levels of schedulers within a hierarchy [13, 55, 153]. However, the delay
and fairness properties of the schedulers are accumulated through the lev-
els of the hierarchy. Moreover, looking at the latter paper ([153]) where a
scheduler based on service curves is used [137], one should be aware of the
complexity overhead involved if service curves were applied which model
more complex behavior than sources constrained by token buckets.

Two measures have evolved in order to assess the fairness of an algorithm. In
the fluid system, from eq. (2.1), it immediately follows that for any two queues
i, j that are continuously backlogged in the interval (τ1, τ2] and have guaranteed
service rates ri and rj respectively, the following holds:

∣

∣

∣

∣

Wi(τ1, τ2)

ri

−
Wj(τ1, τ2)

rj

∣

∣

∣

∣

= 0

Def. 7: (Fairness index F by Golestani [62]) Given any two queues i, j that are con-
tinuously backlogged in the interval (τ1, τ2] and have guaranteed service rates
ri and rj respectively, Golestani defines a fairness index Fi,j for the packet sys-
tem by

∣

∣

∣

∣

Wi(τ1, τ2)

ri

−
Wj(τ1, τ2)

rj

∣

∣

∣

∣

≤ Fi,j (2.5)

That is, any two queues i, j that are continuously backlogged in any interval
(τ1, τ2] must not receive normalized service which differs from the other queue’s
service by more than Fi,j.

Since in the packet system a packet transmission cannot be preempted, there is
a lower bound for the fairness index given by Fi,j ≥

1
2
(Li

ri
+

Lj

rj
) where L{i,j}

are the maximum packet lengths of the corresponding queues.

Def. 8: (Time Worst-case fairness index A by Bennett et al. [14]) A Time Worst-case
Fair Index (T-WFI) An is defined for a constant bit rate server which states that,
for any time an,k the kth packet arrives for queue n with a guaranteed service

34 Chapter 2. IP packet processing: Requirements and existing solutions

rate rn, the delay of the packet should be bounded by the level of queue n at
time an,k and a parameter An by

dn,k − an,k ≤
Qn(a+

n,k)

rn

+An (2.6)

where dn,k specifies the time at which the packet departs the system – the last bit
of the packet has been served – and Qn(a+

n,k) is the length of queue n measured
in Bits just after time an,k, i.e. including packet k.

That means, if the value ofAn and therefore the maximum delay experienced by
a packet in queue n only depends on the state of queue n and parameters of the
server such as the link rate, the server will be considered to handle queue n fairly
because the delay properties of queue n are not influenced by other misbehaving
flows. The T-WFI is generalized in [13] for variable rate servers and arbitrary
points of time as in the following definition.

Def. 9: (Bit Worst-case fairness index γ by Bennett et al. [13]) The Bit Worst-case
Fair Index (B-WFI) γn is guaranteed for flow n by a server if for any packet
departing the system at time dn,k and for any interval [τ1, dn,k] during which
queue n is continuously backlogged the following holds

Wn(τ1, dn,k) ≥
Φn

∑N
i=1 Φi

W (τ1, dn,k)− γn (2.7)

where W (τ1, dn,k) is the overall amount of traffic served in interval (τ1, dn,k].
That is, each backlogged queue should get at least its service share Φn

∑

Φi
guar-

anteed by the server minus γn.

In other words, if the outgoing traffic W of the server was metered in an interval
beginning at an arbitrary point of time τ1 and ending at the time of the finished
transmission of a packet from queue n, at least Φn

∑

Φi
W − γn Bits should belong

to flow n assuming that queue n has continuously been backlogged during the
metering interval.

The fairness index by Golestani looks at the normalized service of two queues
whereas Bennett’s fair index compares the link service with a queue’s service. If
the server is allowed to be one of the queues in Golestani’s definition in eq. (2.5),
one will see that Bennett’s fair index in eq. (2.7) can be expressed as a subcase
of Golestani’s fairness index.

In Tab. 1 latency and fairness values for some selected scheduling algorithms are
gathered from [62, 150, 31, 149]. The latency Θi is defined to be the worst-case
latency that a maximum-sized packet of a beforehand idle flow i with guaran-
teed service rate ri will experience if it arrives at an empty queue. Note that the
T-WFI fairness index Ai in eq. (2.6) can be derived from Θi by Ai = Θi −

Li

ri
,

where Li is the maximum packet length of flow i. Eq. (2.6) can then be used

2.1. Packet processing tasks 35

Tab. 1: Latency and fairness properties of selected WFQ-influenced schedulers. There are N

flows. Li is the maximum packet size of flow i and L = max1≤n≤N Li. The rate ri is
guaranteed to flow i by the scheduler that utilizes a link rate R. DRR is configured by
assigning quantum values qi to the flows.

Server Latency Θi Fairness Fi,j, eq. (2.5)

WFQ Li

ri
+ L

R
max(Li

ri
+ L

rj
+ fi,

Lj

rj
+ L

ri
+ fj) where

fi = min((N − 1) L
ri

, max1≤n≤N
Ln

rn
)

SCFQ Li

ri
+ (N − 1)L

R
Li

ri
+

Lj

rj

SPFQ Li

ri
+ L

R
max(Li

ri
, Lj

rj
) + max1≤n≤N

Ln

rn
+ L

R

MD-SCFQ Li

ri
+ L

R
max(fi,j, fj,i) where

fi,j = Li

ri
+ max

(

L
rj

, max1≤n≤N
Ln

rn
−

ri

R−rj
(max1≤n≤N

Ln

rn
− Li

ri
)− Li

R

)

DRR
3·
∑N

n=1
qn−2qi

R

3·
∑N

n=1
qn

R

to deduce schedulability tests by bounding the maximum level of flow queues.
However, a more generic approach that not only looks at the available resources
but also at the traffic characteristics will be shown in Subsection 2.2.

An undesired property of Self-Clocked Fair Queueing (SCFQ) and Deficit
Round-Robin (DRR) is their dependence on the number of flows sharing the
link when individual guarantees should be given. However, SCFQ achieves the
best fairness of all algorithms. Assuming the same maximal packet length for
all flows, MD-SCFQ realizes a better worst-case fairness than SPFQ. SPFQ in
turn shows better fairness than WFQ. Since SPFQ and MD-SCFQ both belong
to the class of RPS servers they have the same worst-case latency as WFQ. Ob-
viously, one cannot have both good latency and fairness bounds. Moreover, one
should always consider the implementation complexity in addition. WFQ must
emulate the fluid system, SPFQ requires a second priority queue, and finally
MD-SCFQ has to compute a somewhat complex base potential function.

• Earliest Deadline First (EDF): An exhaustive survey of the EDF scheduling
discipline can be found in [147]. EDF applied to link scheduling means that
each incoming packet from a traffic stream is assigned a deadline. Packets are
served in order of increasing deadlines. The scheduler sets a packet’s scheduling
tag to the deadline at which it will be sent at the latest if it arrives according to
a traffic specification. That is, a deadline is calculated by adding the worst-case
delay bound – the guaranteed delay – to the expected arrival time of the packet.

36 Chapter 2. IP packet processing: Requirements and existing solutions

A packet may be delayed longer than its local delay bound if its actual arrival
time is smaller than the expected arrival time. Since traffic streams are seldom
periodic but rather sporadic, the most common EDF-based packet schedulers
[160, 53] use the (Xmin, Xave, I, Smax) traffic profile as a basis for deadline
calculations. That means, characteristics of the outgoing traffic such as the av-
erage rate are inherently determined by the traffic profile of the incoming traffic
whereas the worst-case delay bounds are guaranteed by the scheduler. The al-
location of both – the profile and the delay bound – can arbitrarily be chosen to
some extent, i.e., flows with a low average rate may reserve sharp delay bounds
as long as the system remains schedulable. Opposed to that, WFQ-based sched-
ulers cannot weigh rate against delay guarantees since a WFQ weight always
corresponds to a fixed share of the available link bandwidth. This is why EDF
allows larger schedulability regions [57]. The necessary and sufficient schedu-
lability condition for flows specified by arrival curves is derived in [104]. A
slightly less restrictive and sufficient condition is stated in [58] that is presented
here due to its simple graphical interpretation.

Theor. 1: (EDF schedulability test by Georgiadis et al. [58]) A set of N flows given by
their arrival curves αn(t) and assigned deadlines dn is EDF-schedulable if:

R · t− L ≥
N

∑

n=1

αn(t− dn), t ≥ 0 (2.8)

where L = max1≤n≤N Ln is the maximum packet length of all flows and R is
the link rate.

Ex. 3: (EDF schedulability test with TSpec-compliant flows) In Fig. 6 an example
for the EDF schedulability test is shown for two flows that are specified by
TSpecs with arrival curves αi(t) = min{Mi + pit, bi + rit} and have been
assigned guaranteed delays di. The system is schedulable since the sum of the
arrival curves shifted by the corresponding delay di is below the link service
R · t−L. In order to compute the test for this example, one must check the sum
of the arrival curves at all points where the slope changes. For further tests in
case a new flow will be checked for admission, all these inflexion points have to
be stored. Obviously, the complexity of the tests depends on the chosen traffic
specification.

Thus, packets will always meet their deadlines, even in times of congestion,
since packets of aggressive flows that arrive too early at the router are assigned
corresponding late deadlines according to the agreed traffic profile.

EDF Fairness: By the first impression one may become convinced that EDF is
indeed a fair scheduling algorithm since deadlines are calculated with relation
to the expected arrival time of the packet. In the following example, we will
look at the resulting service for two backlogged flows.

2.1. Packet processing tasks 37

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���

���

M1

p1

M2

r1

d1

��
����

t

service
[byte]

R t

0 L
R

r + p1

r + r1

d2

2

2

Fig. 6: EDF schedulability test for two TSpec-compliant flows. The system is schedulable
since the resulting arrival curve of the incoming traffic is below the link service.

Ex. 4: (EDF surplus bandwidth distribution) Let two flows with (σ, ρ) traffic pro-
files be continuously backlogged for an arbitrary interval. In Fig. 7, the corre-
sponding schedulability test is shown. Note that a third flow has been admitted
which is currently not backlogged. The deadlines for the backlogged flows are
calculated according to the (σ, ρ) profiles and the assigned worst-case delay
bounds. Since the EDF scheduler is work-conserving, packets are immediately
served as soon as the link becomes idle although the expected arrival time of
a packet may lie in the future. In this way, the resulting guaranteed services
are virtually condensed somewhat in proportion to their reservation because
the generated schedule with time stamps for a link under full load has been
shrunk to a shorter interval. The resulting actual service is sketched by the
dotted line in Fig. 7. Deadlines and the average rates are improved. Although
this actually looks very fair, the situation collapses when the third flow becomes
backlogged. The other two flows have packets enqueued with deadlines far in
the future. The newly backlogged flow however receives very small deadlines
for its packets compared with the other flows. As a result, only packets of the
newly backlogged flow are served for a long period. Therefore, the short-term
unfairness may be extremely high.

When surplus bandwidth is available, one must adapt the models accordingly
that calculate the expected arrival times to bound the short-term unfairness of
EDF. Otherwise, flows are handicapped for using surplus bandwidth in the past.
Adapting the calculations of deadlines however means to adjust the individual
formula for each flow. Contrary to that, this effect is taken into account by a
single formula in WFQ – the updates of the virtual time in eq. (2.2) – because
the virtual time increases with the normalized marginal rate of all backlogged

38 Chapter 2. IP packet processing: Requirements and existing solutions

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

���

��

link service

actual service

reserved service

α, β

t

Fig. 7: EDF surplus bandwidth distribution for two continuously backlogged flows.

flows. In conclusion, the advantage of being able to more flexibly trade delay
off for bandwidth comes at the price of more complex schedulability tests and
per-flow profile adaptations during run-time.

2.2 Preserving QoS
In the preceding section, scheduling algorithms and their schedulability tests
have been described almost independently of all other components in the packet
processing chain. Moreover, the scheduling tests presented so far only con-
sider whether the scheduler is limited by timing, that is, whether the individual
worst-case delays introduced by the server are smaller than the corresponding
deadlines of the flows. However, some of the tests, for instance in the FCFS
case, actually require the state of the queuing system such as the length of the
queue in order to derive a test condition for the scheduler. Besides, every sched-
uler needs a certain amount of buffer space to guarantee lossless transmission
as an option. Consequently, one could in turn think of additional schedulability
tests which check whether the schedulability of a system is limited by buffer
resources. Finally, for the WFQ scheduler, only delay bounds for the rather un-
likely assumption that a packet arrives at an empty queue of an idle flow could
be presented in Tab. 1. Obviously, the functionality of the scheduler and the
buffer space are closely related to each other and a framework is required to
reveal their connection in general to properly make use of queuing and packet
scheduling in a real system.

In order to distinguish QoS at least a policer, some queuing space, and a
link scheduler (server) are needed as sketched in Fig 8. These components have

2.2. Preserving QoS 39

to rely on proper QoS classification by a preceding classifier stage to establish
per-flow service distinction. How the required buffer space for lossless trans-

α
enforces arrival

curve β
offers service

curve
buffer delayed

packets

to outgoing
link

packets coming
from classification

flow queues

Policer

link
scheduler

Fig. 8: Infrastructure for enabling QoS distinction and preservation.

mission depends on the guaranteed service and how delays can in turn be de-
termined from buffer allocations, guaranteed service, and traffic specifications
will be described in this section. Traffic specifications will be given by arrival
curves which have already been introduced informally in the preceding section
to describe a traffic envelope. The policer then checks whether incoming traf-
fic is compliant to the corresponding arrival curve α. Service offered by the
link scheduler will be specified by a service curve β which describes the least
amount of service guaranteed in the worst-case. Arrival curve α and service
curve β together can be used to derive bounds for the queuing space, that must
at least be provided to guarantee lossless transmission, and bounds for the delay
that packets will at most experience in a lossless system.

The following analysis of buffer and delay bounds is based on the framework
of service curves which has been applied first by Cruz [40] to communication
networks. The nomenclature is adapted and some properties of service curves
are shown that have been presented by Le Boudec et al. [103].

Def. 10: (Arrival function x) The arrival function x(t) of a data flow is equal to the
number of bits seen on the flow in time interval [0, t] at a defined place in the
network.

Def. 11: (Input/output functions x,y of a system) The input function is the arrival
function x(t) of a flow or an aggregate of flows seen at an input of a system
in the network, e.g., at the input of a router. Accordingly, the output function
y(t) is defined to be the arrival function of a flow or an aggregate of flows at an
output of a system in the network.

Def. 12: (Arrival curve α) Given a non-decreasing function α(t) defined for t ≥ 0, a
flow x is constrained by the arrival curve α if and only if for all s ≤ t:

x(t)− x(s) ≤ α(t− s)

That means, during any time window of width τ , the amount of traffic for the
flow is limited by α(τ).

40 Chapter 2. IP packet processing: Requirements and existing solutions

That is, since one is not aware of the exact arrival pattern of the packets of a
flow, the traffic is rather bounded by a worst-case envelope.

Def. 13: (Service curve β) Given a system S and a flow through S with input and output
functions x(t) and y(t), S offers a service curve β to the flow if and only if for
all t ≥ 0 there is some t0 ≤ t such that

y(t)− x(t0) ≥ β(t− t0)

That means in particular, a flow backlogged during any interval τ receives at
least a flow-through of β(τ).

Worst-case bounds for the flow’s backlog at system S as well as the delay
experienced by a bit arriving at the system can now be determined.

Theor. 2: (Bounded backlog b) A flow constrained by the arrival curve α passes a system
that offers a service curve β to the flow. The backlog b(t) satisfies for all t:

b(t) ≤ sup
τ≥0

(α(τ)− β(τ)) (2.9)

That is, in order to guarantee lossless transmission of a flow bounded by α and
with assured service β, buffer space of at least supτ≥0(α(τ) − β(τ)) must be
available.

Theor. 3: (Bounded delay d) A flow constrained by the arrival curve α passes a system
that offers a service curve β to the flow. The delay d(t) experienced by a bit in
the system satisfies for all t:

d(t) ≤ sup
s≥0

(inf{τ : τ ≥ 0 and α(s) ≤ β(s + τ)}) (2.10)

Ex. 5: (Bounds for TSpec flow at WFQ scheduler) The backlog and delay bounds
have a simple graphical interpretation. Given a flow bounded by the arrival
curve α and a system that offers a service curve β to the flow, the maximum
horizontal distance between the arrival curve α and the service curve β deter-
mines the upper bound for the delay whereas the maximum vertical distance
between the curves shows the upper bound for the backlog. In Fig. 9, bounds
for a flow n constrained by a TSpec α(t) = min{M + pt, b + rt} passing a
WFQ scheduler with guaranteed rate rn, link speed R, and maximum packet
length L are derived. The guaranteed service offered by a WFQ scheduler to a
flow n is always described by a straight line service curve beginning at t = L

R
.

This offset considers the worst-case delay penalty due to non-preemptive packet
scheduling. The slope of the straight line is determined by the reserved rate rn

for flow n.

2.2. Preserving QoS 41

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������
p-r

b-M L
R

L
R

rn

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
�
�
�
�
�
�

	
	
	
	
	
	
	

t

b

M

M + pt
b + rt

TSpec

()t -

delay

backlog

α, β

Fig. 9: Bounds on delay and backlog for a TSpec constrained flow with arrival curve α(t) =

min{M + pt, b + rt} and a WFQ scheduler with guaranteed rate rn, maximum packet
length L, and link rate R.

Delay d(t) and backlog b(t) for flow n are bounded by:

d(t) ≤











L
R

+ M
rn

, p ≤ rn

L
R

+ M
rn

+ b−M
p−r

(1− p

rn
) , p > rn

b(t) ≤



























b + L
R
· r , L

R
≥ b−M

p−r

M + b−M
p−r

(p− rn) + L
R
· rn , L

R
< b−M

p−r
and p > rn

M + L
R
· p , otherwise

Obviously, the special case for the worst-case delay L
R

+ Ln

rn
experienced by a

packet of arbitrary length Ln arriving at an empty queue of an idle flow given
in Tab. 1 is included in the results of this example since Ln ≤ M is true per
definition.

Ex. 6: (Bounds for TSpec flow at EDF scheduler) A flow bounded by a TSpec
α(t) = min{M +pt, b+rt} is assigned a deadline dn at an EDF link scheduler
with link rate R and maximum packet length L. Since the EDF scheduler as-
sures that every incoming packet will finish service at most dn seconds after its
arrival at the system, the assigned service curve grows impulse-like from zero
to infinity at time dn, see Fig. 10. Note that the starting point of the impulse
is variable, since the deadline can arbitrarily be chosen as long as the system
remains schedulable according to eq. (2.8) and L

R
< dn. Again, the term L

R

is caused by the non-preemptive packet service. Opposed to that, the starting
point of a service curve for a WFQ scheduler is always fixed at t = L

R
whereas

the slope of the service curve – the reserved rate – may arbitrarily be chosen.

42 Chapter 2. IP packet processing: Requirements and existing solutions

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

L
R

dn

��
�
�
�
�
�
�

�
�
�
�
�
�

b

M

TSpec

delay

α, β

M + pt b + rt

t

backlog

Fig. 10: Bounds on delay and backlog for a TSpec constrained flow with arrival curve α(t) =

min{M + pt, b + rt} and an EDF scheduler with guaranteed deadline dn, maximum
packet length L, and link rate R.

Obviously, the delay bound for the EDF system must be the deadline and the
backlog bound for flow n becomes

b(t) ≤ b + r · dn

Since a flow passing a system experiences a variable delay, the burstiness of
the resulting flow potentially increases. The arrival curve of the flow leaving the
server can be described by the following theorem.

Theor. 4: (Output flow constraint) A flow constrained by the arrival curve α passes a
system that offers a service curve β to the flow. The outgoing flow is constrained
by the arrival curve α∗

α∗(t) = sup
τ≥0

(α(t + τ)− β(τ)) (2.11)

In summary, the following can be done with service curves as introduced in
this section:

• Given a set of flows constrained by αn and service reservations βn: Derive delay
bounds with eq. (2.10) and buffer requirements with eq. (2.9). Check whether
deadlines will be met if deadlines are defined. Check whether sufficient memory
is available.

• Given a set of flows constrained by αn and deadlines: Use eq. (2.10) to derive
suitable service reservations in order to keep the deadlines for each flow. Deter-
mine the buffer requirements with eq. (2.9) and check whether there is sufficient
memory available.

2.2. Preserving QoS 43

That is, beside the usual schedulability condition that tests whether a system
is bounded by timing, there is now the additional option to define a condition
that tests whether the system is bounded by buffer space. In other words, the
accurate mode of operation for preserving QoS does not only depend on the
scheduler which guarantees service curves βn and the policer that enforces ar-
rival curves αn but also on the queue manager that must have sufficient memory
available for individual flows.

In the end, one further theorem enables the analysis of whole networks of
nodes. The following theorem is required to explain some assumptions of avail-
able services which are described in the next section.

Theor. 5: (Concatenation of nodes) A flow passes two systems S1 and S2 in sequence
which offer service curves β1 and β2 respectively. The resulting service offered
by the concatenation of the two systems can be described by a service curve β ′

β ′(t) = inf
s:0≤s≤t

(β1(t− s) + β2(s))

Ex. 7: (Concatenation of service curves) Theorem 5 has a simple graphical inter-
pretation for piecewise-linear, convex curves. In order to derive the resulting
service curve for the concatenation of two service curves with this property,
the linear segments of both curves must be put together end to end sorted by
increasing slope. In the special case of the concatenation of two WFQ-like ser-
vice curves we end up with adding the delay offsets and using the minimum rate
as shown in Fig. 11.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����������
�����������
�����������

�����������
�����������
�����������

t1

β1

r1

r2

t

t2

β2

r4

r3
t

r1

r2

r3

t2 t2t1+

β2β1, concatenated

t

t2

β2

t2t1+

β2β1, concatenated

t1

β1

r1

r1
r2

t tt

Fig. 11: Some examples for the concatenation of service curves .

44 Chapter 2. IP packet processing: Requirements and existing solutions

2.3 Available services

In this section, the most common end-to-end service classes provided by to-
day’s Internet are reviewed. Integrated Services are well suited for reliable
real-time communication and provide a connection oriented-like distinction be-
tween flows. Differentiated Services define a relative priority scheme that distin-
guishes a fixed number of service classes which represent aggregates of flows.
If the network does not provide any differentiation of traffic, flows will be for-
warded by best-effort. Open issues under research in order to implement ser-
vices efficiently are outlined at the end of this section.

2.3.1 Best-effort service

This type of service does not guarantee or define any bounds, reliable service, or
QoS at all. All packets are handled in the order they arrive at the system as long
as there are sufficient resources available. The system does its best to forward
all incoming traffic. Flows are not distinguished and therefore not protected
against each other. Service is never denied but potentially degrades with higher
load for all participants. Despite these limitations, best-effort service is still a
suitable solution and can be found in most of today’s Internet routers since it can
simply be provided. All incoming packets are stored in a FIFO-organized queue
and served in FCFS order. No admission or schedulability tests are performed.
Congestion may be avoided and/or resolved by the queue manager, e.g. with a
RED policy, or by overprovisioning of network resources. The latter solution is
especially feasible in a distribution network of a service provider.

2.3.2 Integrated Services (IntServ)

IntServ [20] is characterized by resource reservation. That is, flows which may
represent, for instance, customers, applications, or whole organizations must set
up paths through the network and reserve resources at each networking node.
That is, routers are expected to maintain per-flow state information. The re-
source reservation protocol RSVP [22] is usually applied as a signalling proto-
col for this purpose. Traffic is policed at the edge of the IntServ network and
may be reshaped to a defined profile within the network. The underlying service
scheme works as follows. Each network node i in the path is expected to offer
a service which resembles the service of an ideal fluid server. In practice, a
node’s service is specified by a rate and two error terms Ci and Di which define
the deviation from the service of an ideal fluid server as sketched in Fig. 12.
The term C includes all rate-dependent errors whereas D considers additional
constant offsets. C is at least the maximum length of a packet since a packet
transmission cannot be preempted. Moreover, each node along the path uses
the same service rate R. Thus, the impact of the error terms is additive along
the path, see Theorem 5 and Ex. 7, and the destination router sees a resulting
service curve

β ′(t) = max{0, (t−

∑

Ci

R
−

∑

Di) ·R}

2.3. Available services 45

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

actual
server

ideal
server

iC
R

+ Di
�L
R

��

��������������������

�	

R t
β

t

Fig. 12: Service offered by a network node i in an IntServ path supporting a service rate R. The
error term Ci represents rate-dependent delay effects whereas Di stands for fixed delay
offsets. Ci must be greater or equal the maximum packet length L.

A path is set up by sending a PATH message from the source to the destina-
tion router together with a flow descriptor and a traffic characterization specified
by a TSpec (Fig. 13). The route of the path has been determined beforehand by
a routing protocol and is not part of any IntServ/RSVP procedure. As the path
message advances along the route to the destination, each intermediate node
adds its specific delay characteristics Ci and Di to the message. Together with
the TSpec of the source traffic, the destination router can now determine the
service rate R which is needed to achieve a suitable end-to-end delay due to
the delay characteristics of the path in a similar way as in Ex. 5. The requested
rate R is advertised by a RESV message that is directed from the destination to
the source and which follows the same route as the PATH message in reverse
direction. Each intermediate node can now calculate the buffer space required
to support the desired service since the local service curve is known by the pa-
rameters Ci, Di, and R. Moreover, a traffic characterization can be derived from
the TSpec at the source and the service curves of the nodes between source and
the current node. The current node is able to reconstruct the delay properties of
these nodes since their cumulative error terms have been broadcast with the pre-
ceding PATH message. By applying a schedulability test a node may detect that
it is not able to support the rate R or that not enough buffer space is available.
Appropriate teardown messages reset the nodes in the path in this case.

Two types of service are distinguished:

• Guaranteed service [140]: This service guarantees the reliable delivery of con-
forming traffic with fixed delay bounds as it would be expected from a dedicated
constant bit rate line. Excess traffic should be forwarded as best-effort traffic.

46 Chapter 2. IP packet processing: Requirements and existing solutions

���������
���������
���������

���������
���������
���������

�������
�������
�������

�������
�������
������������

�����
�����

�����
�����
�����

α

flow profile

Rrate
β

resulting service

destination
node

source
node

Rrate

service of
intermediate node

β

1.)

2.)

3.)

PATH

PATH

PATH

PATH

RESV

RESV

RESV

RESV

Fig. 13: RSVP signalling for path establishment and resource reservation. 1.) A PATH message
collects the delay error terms of the intermediate network nodes from the source to the
destination node and carries the flow specification of the source. 2.) The destination
allocates a service rate R which is broadcast by a RESV message. 3.) Each node uses
the flow profile, the service rate R, and the announced delay properties of the path to
reserve buffer space.

• Controlled-load service [166]: Controlled-load service offers the delivery of
traffic by an enhanced best-effort service. It approximates the service an un-
loaded best-effort network would provide, i.e. without the appearance of con-
gestion or heavy load. However, there are no quantitative delay or loss guar-
antees. This type of service thus allows the provider to more flexibly allocate
resources along the path. Note that the signalling procedure described above
is still required for the controlled-load service, i.e., the traffic is in particular
expected to conform to the TSpec. However, non-conforming traffic is not con-
sidered to be unusual and the router will be obliged to forward excess traffic on
a best-effort basis if sufficient resources are available.

The advantages of IntServ/RSVP are:

• Perfect isolation of flows by using guaranteed service classes.

• Hard guarantees of delays and reliable transmission are especially suited for
real-time communication.

• The “one size fits all” approach for resource reservations along a path simplifies
the resource allocation which can be performed in a single run along the path.

The disadvantages of IntServ/RSVP are:

• There is a signalling overhead – even for the controlled-load service – which
may noticeably delay short-time flows and require considerable computing.

• All routers must maintain per-flow state information which may be inadequate
for backbone routers.

2.3. Available services 47

• The infrastructure of all networking nodes that take part of IntServ must support
decent scheduling, signalling, and classification of packets.

• On the one hand, the guaranteed service type has no concept of sharing re-
sources. On the other hand, the controlled-load service allows sharing of re-
sources but without supporting any quantitative guarantees.

• The “one size fits all” approach for resource reservations along a path prevents
individual resource allocations, for instance, dependent on the load of a router
so as to flexibly compensate individual delays.

• IntServ will not explicitly prevent packet reordering if excess traffic appears for
the corresponding flow.

• There are no guarantees on the end-to-end jitter.

2.3.3 Differentiated Services (DiffServ)

Service levels in DiffServ [17] are based on relative priorities with different
sensitivities to delay and loss, but without quantitative guarantees. DiffServ
does not require signalling to take place for each flow. There may be a static
SLA with the provider that specifies the number of different service classes and
the amount of traffic allowed in each class. Dynamic SLAs may be negotiated
by using an enhanced version of RSVP. Opposed to IntServ/RSVP, the resource
reservation is then initiated from the source and not from the destination node.
Note that the provider may arbitrarily assign network resources to the different
classes. At the ingress nodes of the DiffServ network packets are classified and
marked in the DS-field – six Bits of the redefined ToS field of the IP header –
with the corresponding class identifier, the so-called codepoint. Alternatively,
the originating traffic host is allowed to set the DS-field in order to encourage
the corresponding service. It is the customer’s responsibility to share bandwidth
between flows within the same class. Moreover, if too many flows share the
same class, the service may degrade to best-effort. Within the network, the DS-
field is used at each node to determine the corresponding service class, the so-
called Per-Hop forwarding Behavior (PHB). Only two standardized PHB should
be supported by a DiffServ-capable router. However, the provider may define a
limited number of own service classes within a DiffServ domain. Thus, a PHB
usually processes an aggregate of flows and not individual flows. It is tolerable
to some extent that a DiffServ aggregate passes a DiffServ-incapable node. The
DS-field is simply ignored by this node and best-effort service is applied.

Note that being DiffServ-compliant only means that a router has resources
to support packet classification, policing, and marking based on code-points and
perhaps other header fields if the router is placed at the edge of the DiffServ net-
work. It does not imply any quantitative service guarantee or supported traffic
profile. The number of QoS classes, the traffic profiles, and the kind of service
to support are the subjects of individual service level agreements between cus-

48 Chapter 2. IP packet processing: Requirements and existing solutions

tomers and the provider of the DiffServ domain. The format of these agreements
is not fixed by any standard.

Per-Hop-Behaviors that should be supported by a DiffServ-capable router are:

• Expedited Forwarding (EF, or Premium Service, [89]): This single class pro-
vides the relatively highest level of service in terms of delay and loss. Excess
traffic will be dropped at the ingress nodes of the DiffServ domain. EF traffic
has higher priority than any other traffic from other PHBs. The provider must
limit the amount of bandwidth admitted to EF if a static priority scheduler is em-
ployed so as to not completely starve other classes. EF must have a well-defined
minimum departure rate independent of the state of the node.

• Assured Forwarding (AF [80]): AF defines up to four classes with up to three
drop precedence subclasses within each class which should provide better re-
liability than best-effort service. Thus, AF consists of up to 12 different code-
points. More AF classes and drop precedence levels may be defined for local
use within an administrative domain. Non-conforming traffic is demoted to a
higher loss precedence and not necessarily dropped. Packets with different drop
precedence levels maintain their relative order within a class. The parameters
of the dropping algorithm must be independently configurable for each packet
drop precedence and for each AF class. There are no regulations concerning
the relative priority between the AF classes. A minimum amount of forwarding
resources must be reserved for each implemented AF class. There are no rules
how to handle surplus resources.

The advantages of the DiffServ approach are:

• Multi-field classification must only be performed at the ingress nodes of a Diff-
Serv domain. Due to the DS-field, classification reduces to a table lookup within
the domain. This resembles the network structure since ingress routers usually
work at lower bandwidths than core routers and are therefore able to spend more
time with classification and policing.

• The complexity of the scheme scales with the small number of possible classes
and not with the number of flows.

• Soft bounds which are negotiated between customers and service providers al-
low the providers to exploit their equipment by sharing resources and individual
reservations at each router.

• A graceful service degradation will be performed if an AF class exceeds its
profile.

• There is no reordering of packets.

• The EF class is served in isolation from the AF classes, and AF classes are
treated in isolation from each other.

2.3. Available services 49

The disadvantages of DiffServ are:

• There are no guarantees on delay and the level of loss.

• A flow is not protected against a greedy flow within the same service class.

• Since resource reservations for the PHBs are not explicitly communicated and
balanced between the routers of a domain, the relative priority between the
classes may fluctuate from hop to hop along a path.

• An application may not be aware whether a particular service is being delivered
because there are no explicit feedback mechanisms which, for instance, adapt
the policer in dependence on the system’s state. This is why resource availability
signalling has been proposed recently [86].

2.3.4 Open issues in providing Quality of Service

Since IntServ and DiffServ only provide a framework for the preservation of
QoS, implementations suffer from a variety of still unsolved problems and
rarely achieve a high utilization of resources. Some of the most often discussed
points are:

• Traffic engineering: Some congestion situations will be avoided if traffic is
better distributed over the network resources. Since most of the routers today
only consider the shortest path to a destination, it is often the case that some
few routes are congested while others are lightly loaded. A more elaborated
routing scheme would find a route which fulfills the QoS requirements of a
given request while balancing the utilization of the network.

• Service allocation: This issue points to the problem of pricing the Internet. For
instance, look at a customer’s domain connected to a DiffServ domain. Since
there is only a small number of service classes and it is the customer’s respon-
sibility to rationally balance the usage of the classes according to an SLA, indi-
vidual hosts should not access the DiffServ domain directly. An arbiter instance,
such as a bandwidth broker, should regulate the access to the different DiffServ
codepoints and configure markers and policers accordingly.

• IntServ over DiffServ: Smaller LANs such as enterprise networks are able to
afford the sophisticated QoS distinction of IntServ. IntServ however is not a fea-
sible solution for a WAN interconnecting IntServ capable enterprise networks.
IntServ flows should thus be aggregated into DiffServ classes in a way that the
service appears as a virtual leased line to the IntServ flows. This topic has re-
cently been discussed in [15].

• TCP-aware services: Current Internet technology for providing QoS can be
considered to be TCP-hostile [86]. For instance, the TSpec used to specify a
flow in the IntServ framework that corresponds to a conjunction of token buck-
ets may abruptly change from marking packets as conforming to dropping pack-
ets for several packets in a row. This may result in an excessive degradation of

50 Chapter 2. IP packet processing: Requirements and existing solutions

the average usable bandwidth due to enlarged retransmission timeouts. Thus,
a marker which randomly marks packets with some probability is suggested in
[48]. A similar effect appears with queue managers that use a rather determin-
istic approach to drop packets such as a tail-drop policy. In this case, it is very
likely that packet from several TCP flows are dropped. These flows reduce their
transmission rate at the same time. These consequences can again be avoided
by some level of randomization in choosing packets to drop, e.g. by applying
RED [54]. Last but not least, the behavior of a TCP flow additionally depends
on the availability of the corresponding feedback mechanism and vice versa, see
[99]. That is, the service quality of the forward direction influences the level of
service needed for the backward direction. How these results affect the stability
of the whole network and which amount of resource reservation would prevent
aberrant behavior is not yet understood.

• Individual resource allocations and end-to-end behavior: The IntServ/RSVP
service model uses a constant rate in order to reserve resources along a path
in the network. The network however could be better utilized by individually
reserving resources dependent on the router’s load so as to compensate long de-
lays at one node by short delays at other nodes. The same problem arises for
the provider of a DiffServ domain that has to route traffic from different cus-
tomers. The effects of a given reservation on the end-to-end delay and buffer
requirements are however well understood for a variety of traffic characteris-
tics and heterogeneous networks using diverse packet schedulers. Networks of
schedulers that reshape traffic at each node to a given profile are analyzed in
[59, 171]. Heterogeneous networks that do not necessarily depend on reshaping
are investigated in [151]. In addition, time-varying rate allocations are consid-
ered in [63]. Reshaping at each networking node has the advantage that the
traffic conforms to the profile at every node. This way, buffer requirements are
balanced along the path. The average delay may be affected by reshaping but
not the worst-case delay as long as only packets are delayed which are ahead
of their profiles. If no reshaping is applied, the buffer requirements will po-
tentially increase toward the destination node and the jitter may be in the same
order of magnitude as the end-to-end delay because the burstiness of the flow
raises from hop to hop. In any case, the end-to-end delay analysis derives tighter
delay bounds than simply adding the delay bounds of all nodes in the path.

3
IP packet processing:
Algorithm-architecture trade-offs

In this chapter, a new application area for access networks is introduced that
we call multi-provider/multi-service access networks. For this kind of network
this chapter is devoted to an evaluation of packet processing algorithms and
architecture blocks that will be used by dedicated processing elements at the
network access points. In order to achieve comprehensive results, the following
methodic approaches are applied:

• A new service scheme is defined which is derived from the requirements of
multi-service access networks. It combines the advantages of existing services
by providing quantitative guarantees for flows as well as qualitative guarantees
for aggregates of flows.

• For the first time a combined evaluation of processing stages which are responsi-
ble for the Quality of Service (QoS) behavior of network access points, namely
policing, queuing, and link scheduling, is presented.

• A design space exploration of suitable algorithms and hardware resources is
performed by co-simulation of performance models for algorithms and timing
models of hardware building blocks. Thus, the usage of networking resources
can be appraised more flexibly and exhaustively than it has been done up to now
with static complexity analysis or existing hardware platforms.

We are thus not only able to show how the combination of policing, queuing,
and link scheduling affects the behavior of an access network element in terms
of Quality of Service (QoS) but we also reveal the expense in terms of hardware
resources required to implement sophisticated QoS preservation.

52 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

Evaluation
models

algorithm
performance

models

architecture
models

traffic models
(stimuli)

section 3.2

QoS
performance resource

hardware

load

co-simulation

section 3.3

Design-space
exploration

multi-service
access networks

section 3.1
packet

processing
requirements

chapter 2

memory
exploitation

chapter 4

Basics

Fig. 14: Chapter overview.

This chapter is structured as displayed in Fig. 14. In the next section, multi-
service access networks are defined and their requirements are determined. The
effects on our suggested QoS scheme are derived and a suitable access node
architecture is shown. Based on the definition of multi-service access networks
and the results of the preceding and the next chapter, the settings for the eval-
uation – algorithms, hardware blocks, and traffic models – are discussed and
determined in Section 3.2. Algorithms are modeled without any architectural
assumptions or constraints whereas the hardware architecture models reproduce
timing and load of hardware resources. The two types of models cooperate
by exchanging statistics about their inner state during run-time. Moreover, the
characteristics of the network traffic which is used to stimulate the access net-
work node are described. The results of our design space exploration by simu-
lation of different combinations of algorithms with diverse input traffic patterns
and various architecture blocks is presented in Section 3.3. Finally, an overview
of related work can be found in Section 3.4 at the end of this chapter.

3.1 Background

The concept of multi-provider/multi-service networks is introduced in this sec-
tion. The consequences on the provision of QoS and on a suitable architecture
for a dedicated packet processor are derived. A new service scheme is defined
that combines the advantages of IntServ and DiffServ concerning the require-
ments of multi-service access networks.

3.1. Background 53

3.1.1 Multi-provider/multi-service access networks

In the Internet one can see the evolution of various content providers, for in-
stance, for news, voice telephony, and multi-media streams such as movies.
Currently, the access link from the customer to the network is only used for
accessing a single kind of contents at a time, for instance, the customer either
uses the link for telephony or for accessing the Internet at a time. Moreover,
the customer’s traffic is delivered independently of the contents by the service
of the underlying Internet technology, i.e., with best-effort. As soon as access
link technologies are available for a broad range of customers that provide an
access to the network with several MBits per second such as cable modems and
DSL lines, the distinction of QoS will become more and more important be-
cause access links will be used for concurrent connections to several content
providers with different tolerable QoS levels. An enterprise, for instance, may
have several Service Level Agreements (SLAs) for telephony, for accessing the
Internet, and for reliable interconnection of Virtual Private Networks (VPNs) of
the enterprise that are distributed all over the globe. A private customer may ac-
cess movies, Internet contents, and telephony services from different providers.
The resulting network structure is sketched in Fig. 15. The customer will have

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

VPN

voice

video

web �����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

different providers with
core networks

customer’s
network

virtual
leased
lines

network
access

point

access link

Internet access

multimedia

voice traffic

core network

core network

access provider
with core network

core network

core network

VPN

VPN

video
voice

web

Fig. 15: Network structure with a single access link and multiple content providers.

an SLA with the provider of the access link which guarantees the somewhat
reliable distribution of traffic to different content providers. The customer may
have additional SLAs with these providers. Alternatively, the access link and
different contents/services may be supplied by the same provider. In any case,
the customer will use several virtual leased line-like traffic classes at the net-

54 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

work access point. Traffic classes may be further divided into subclasses that
consider the type of application, the origin, etc. This shift of the objective from
the provision of raw bandwidth to the delivery of services at access networks is
also promoted in [113].

3.1.2 Provision of QoS in multi-service access networks

The assumption of a multi-service access network has several effects on issues
concerning the preservation of QoS. Two types of services – green and yellow
service – are therefore defined to consider the special requirements of this kind
of network. The new service scheme combines the advantages of the existing
IntServ and DiffServ approaches. Based on the characteristics of packet pro-
cessing requirements discussed in the preceding chapter, traffic profiles, guar-
anteed bounds, and reservations are adapted to suit the new service scheme.

Our network processor is aimed to bundle and arbitrate traffic streams at the
bound of the customer’s network to the bottle-neck link – i.e., the access link.
It is assumed that the customer’s traffic shows a high amount of non-reactive
flows in the sense that these flows do not respond on packet drops by adaptively
reducing their bandwidth. Examples for such flows are voice and video traffic
streams without feedback control. As a consequence, we are able to use policing
elements which are known to be TCP-hostile. The policer thus carries the main
responsibility to limit flows to a given profile in our solution.

• Service classes: Since the customer may have several SLAs with different con-
tent providers, a minimum service for distinct flows to each provider should be
guaranteed during times of congestion on the access link. A green service QoS
class will be introduced later to take care of these reservations. Moreover, there
should be maximum bounds for the overall traffic to a provider during light load
of the access link. These maximum bounds are constraints of so-called meta-
classes because they only concern the type of service for the virtual leased line
to the corresponding provider. The service quality of a meta-class is defined by
a so-called yellow service QoS class. Within a meta-class there may be several
green service classes that may correspond to traffic from different application
types, various users, diverse origins, etc. These requirements of a multi-service
access network motivate the following new combination of QoS classes.

Def. 14: (Green service) Green service is provided to classes that are specified by min-
imum traffic profiles within a meta-class. The green service includes lossless
transmission of data with guaranteed delay bounds as long as a flow complies
with its traffic profile. No packet reordering is allowed.

Green service offers the same quality of service as IntServ’s guaranteed ser-
vice [140]. Contrary to the IETF specification, no particular traffic profiles or
service curves are assumed.

Def. 15: (Yellow service) Yellow service is provided to a flow that exceeds its traffic
profile for green service but complies with the traffic profile of its meta-class.

3.1. Background 55

Quantitative guarantees need not be given. Depending on the resource alloca-
tion the service may vary from best-effort to green service. In particular, a flow
may experience loss. The packet order within a flow however must be preserved,
not only among yellow packets but also among yellow and green packets.

Green service corresponds to an IntServ-like service whereas yellow service
relatively weighs the service for meta-classes in a DiffServ-like style. Graceful
service degradation is enabled by adaptively changing from green to yellow ser-
vice and packet reordering is forbidden in a similar manner as it is defined by
DiffServ. Opposed to DiffServ quantitative guarantees are given for green ser-
vice including lossless transmission, but yellow service need not be defined sep-
arately for each green service class. In this way the advantages of both IntServ
and DiffServ are combined in the suggested new service scheme. On the one
hand, flow isolation and lossless transmission is offered as IntServ does and on
the other hand exploitation of resources by sharing is facilitated as DiffServ per-
mits. In this way, the system complexity may be chosen to scale with a small
number of meta-classes or with a higher number of flows within meta-classes.
Note that surplus bandwidth need not be shared in a fair manner. The resulting
new hierarchic service allocation can be interpreted as sketched in Fig. 16.

= service for virtual

defined by yellow
traffic profiles

^

leased lines to providers

meta-classes
VPN

video

voice

web

access link

green

profiles

=̂ flows

traffic
etc.

ftp
email

http

Fig. 16: Service allocation in multi-provider access networks.

• Traffic specifications: For our evaluation, traffic profiles for green and yellow
services are specified by (σ, ρ) models with burstiness σ and rate ρ (see subsec-
tion 2.1.3) as an example. Index g denotes a green service profile and index y a
yellow service profile respectively. The following constraints must be kept for
all meta-classes m since each meta-class profile should at least accommodate its
included green traffic profiles. Nm denotes the number of green service classes
within meta-class m:

Nm
∑

i=1

σg,i ≤ σy,m,
Nm
∑

i=1

ρg,i ≤ ρy,m

Nested token buckets are used (see subsection 2.1.3) to meter a meta-class and
its included classes. A packet will be marked as conforming to a green service
profile if a sufficient number of tokens are available in the flow’s bucket and in

56 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

the bucket of the meta-class. If there are only enough tokens in the bucket of the
meta-class but not in the flow’s bucket, the packet will be marked as conforming
to the meta-class profile (yellow). Otherwise, the packet will be dropped.

Simple traffic profiles are chosen by using the (σ, ρ) model to limit the number
of token buckets that must be supported. However, one can easily extend our
nested token bucket model in order to meter TSpec-compliant flows.

• Choice of the link scheduler: Since the QoS and the delay bounds for a flow
should not depend on the admission and behavior of other flows, a dynamic
priority-driven scheduler is the first choice. Comparing an Earliest Deadline
First (EDF)-based system with a Weighted Fair Queueing (WFQ)-based system
there are two possible solutions. As described in the preceding chapter, EDF
tends towards punishing flows that made use of surplus bandwidth in the past. In
order to prevent this behavior, one could implement a policing element that only
forwards traffic to flow queues that complies with green profiles. The policer
could separate yellow traffic from green traffic. Yellow traffic would be served
from queues which are distinct from green queues and which are characterized
by own service profiles. Opposed to that, a WFQ system will be able to enqueue
green- and yellow-marked packets in the same queue if they belong to the same
flow. No additional service profile must be maintained for yellow traffic because
surplus bandwidth is inherently shared fairly in proportion of the reservation
for green traffic. The two choices are shown in Fig. 17. Although the EDF

separate yellow queues
(per flow/ per meta-class/ single)

incoming
packets

incoming
packets

flow queues

}

EDF-based system:

WFQ-based system: flow queues

Policer

Policer EDF

WFQ

yellow-marked packets

green-marked packets

outgoing link

outgoing link

Fig. 17: Packet scheduling for multi-provider/multi-service access networks.

system allows a more flexible distribution of surplus bandwidth that need not

3.1. Background 57

necessarily be fair it also does not prevent reordering of packets. An alternative
EDF-based system would enqueue packets in the same way the WFQ-based
system does. However, the calculation of individual deadlines would have to
be adaptively adjusted at the occurrence of surplus bandwidth as described in
Section 2.1.5. Therefore, a WFQ-based system is chosen since we rely on the in-
order transmission of packets and do not want to cope with adaptively adjusting
per-flow deadline calculations during run-time. A positive side-effect of the
WFQ-based system is the fair sharing of surplus bandwidth in proportion to
the reserved green service. The green service is guaranteed by corresponding
weights Φg,i at the WFQ scheduler and the yellow service is bounded by the
policer and the queue manager. A more sophisticated solution would be to
use a hierarchy of WFQ schedulers. The top level would weigh the yellow
services of the meta-classes against each other and the underlying level of WFQ
schedulers would distribute the green service within meta-classes. However,
since delay and fairness properties are accumulated through the levels of the
hierarchy ([13]) and the delay penalty of a single level due to non-preemptive
packet transmission may already be noticeable with our settings, the scheduler
is restricted to a single level.

• Guarantees, reservations, and SLAs: Since a multi-provider access node
with a combination of a policer based on nested token buckets and a sin-
gle WFQ scheduler is implemented, the following services can be provided.
Green traffic profiles are defined by (σg,i, ρg,i) traffic envelopes for all flows
i ∈ [1, 2, . . . , Nm] and all meta-classes m ∈ [1, 2, . . . , M] where Nm is the
corresponding number of flows in meta-class m. Yellow traffic profiles for
all meta-classes are given by (σy,m, ρy,m) envelopes. WFQ weights for green
services and all flows i are specified by Φg,i. The bounds can be derived by
applying the theorems 2 and 3 in the same way as described in example 5.

Guaranteed delay bound for green service: A green service class with a traffic
profile (σg,i, ρg,i) and a WFQ weight Φg,i is guaranteed a delay bound dg,i of

dg,i =
L

R
+

σg,i

Φg,i ·R
(3.1)

and lossless transmission as long as the green traffic profile is kept where L is
the maximum packet length at the link and R is the link rate. WFQ weights in
the range Φg,i ∈ (0, 1] are assumed.

System schedulability: The system is schedulable and keeps the delay bounds
for green services if

– the flows are within their green traffic profiles,

– a flow’s assigned deadline – if defined – is greater or equal to the corre-
sponding delay bound dg,i,

– the system is stable

M
∑

m=1

Nm
∑

i=1

Φg,i ≤ 1, ρg,i ≤ Φg,i ·R ∀i

58 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

where M is the number of meta-classes and Nm the number of flows
within meta-class m respectively,

– and there is enough buffer space B available:

B =
M
∑

m=1

Nm
∑

i=1

(

σg,i +
L

R
· ρg,i

)

(3.2)

Delay bound for yellow service: As soon as a flow i violates its green traffic pro-
file, the worst-case delay bound drops to the bound dy,m,i which is determined
by the characteristics of the meta-class m to which flow i belongs:

dy,m,i =
L

R
+

σy,m

Φg,i ·R

The packets are still served in-order and packets marked as green do not expe-
rience loss. Yellow-marked packets however may suffer loss.

By varying the allocation of buffer space for yellow service one may shift the
main task of congestion avoidance from the policer to the queue manager and
vice versa. Suppose that as much buffer space is allocated to accommodate the
sum of all yellow profiles. In this case, the system would rather be bounded by
the profiles enforced by the policer than by limited buffer space. The latter case
could however still appear since the sum of the yellow profiles usually represent
an overreservation of the access link. Another buffer allocation scheme could
reserve as much buffer space for yellow service to fulfill the needs of the max-
imum yellow profile only. In this way, we would attach high importance to the
sharing of buffer resources controlled by the queue manager.

The SLA with the provider of the access link should at least contain the spec-
ification of a guaranteed rate – the bandwidth of the access link – and a bound
of the burstiness of the traffic aggregate. The SLA could also be very detailed,
specifying bandwidth and burstiness bounds for every meta-class and every dis-
tinct flow therein. Recall that the burstiness seen by the access provider is not
the same as the burstiness of the policed traffic profile. The link scheduling
stage may potentially introduce additional burstiness as it has been derived in
Theorem 4 in the preceding chapter. How a WFQ scheduler possibly affects the
burstiness of a (σ, ρ)-constrained flow is shown in the next example.

Ex. 8: (output flow constraint for a (σ, ρ)-constrained input flow and WFQ) In
Fig. 18, the arrival curve α of a (σ, ρ)-constrained flow, the service curve β
of a WFQ scheduler with guaranteed rate r and link rate R, and the arrival
curve α∗ of the resulting outgoing flow determined by eq. (2.11) are shown. In
addition, delay and buffer bounds at the WFQ scheduler are drawn where L
is the maximum packet length at the access link. The arrival curve α∗ of the
outgoing flow is a shifted version of the arrival curve α of the incoming flow
enforced by the policer. We see that the burstiness σ∗ of the outgoing flow is
equal to the buffer requirements at the scheduler.

3.1. Background 59

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

α ∗

������L
R

σ∗

σ

slope ρ

slope r

������������������

t

α

delay

buffer

service

0

β

Fig. 18: Output constraint α∗ of a (σ, ρ)-constrained flow (arrival curve α) after WFQ schedul-
ing (service curve β) with link rate R, max. packet length L, and guaranteed rate r.

That means, given an allowed burstiness σ∗ by the SLA, the burstiness for a
(σ, ρ)-constrained flow at the policer can be determined by σ = σ∗ − ρ · L

R
.

Burstiness bounds for a traffic aggregate, meta-classes, and/or distinct flows
can be derived from the SLA in this way.

3.1.3 Node architecture

The goal is to compile the functionality of a multi-provider access node into a
System on a Chip (SoC) design. We will focus on the packet processing chain
in this study. Prefabricated building blocks we can use are different kinds of
CPU cores such as ARM or PowerPC cores, on-chip memory blocks of differ-
ent technology (SDRAM, SRAM), and application-specific memory controllers
for handling on-chip or off-chip memory. Configurable parameters of the CPU
cores are the technology – and thus the clock frequency – the number and type
of functional units, the size and organization of the cache, and the kind and
number of special peripheral modules. The size, the technology, the organiza-
tion, and the width of the memory bus are parameters of the building blocks
for RAMs. Building blocks for memory controllers may show different levels
of refinement. How selected operating modes of a controller affect the overall
memory performance will be discussed in Chapter 4. Particular functions may
be accelerated by mapping their functionality onto hardware, e.g. in an FPGA
or hardwired.

Since we want to map the packet processing chain onto CPU cores, one
possible solution would be to map distinct processing stages to different CPU
cores. The CPUs would form a kind of pipeline of processing elements. A
packet would be handed from core to core to be entirely processed. Each task
needs some memory space to store local context information. A router needs

60 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

its routing table, a queue manager keeps track of the FIFO queues of each flow,
etc. This data could locally be stored at each CPU or in a global RAM. Finally,
all tasks might simply be mapped onto a single CPU. In the same way, special
purpose hardware may be assigned to each distinct CPU or offered centrally to
all tasks. Some possible configurations are shown in Fig. 19. An additional

CPU pipeline
with local RAMs
and local special
hardware

CPU pipeline
with central RAM
and central special
hardware

single CPU module

CPUCPU CPU

payload RAM

CPUCPU CPU

payload RAM

CPU payload RAM

context RAM FPGAcontext RAM FPGA context RAM FPGA

context RAM FPGA

context RAM FPGA

Fig. 19: Different options for the hardware configuration of the multi-provider access node.

RAM is always assumed to store payload. The payload RAM is only accessed
once for each packet at the beginning and at the end of the processing chain. In
Section 3.3 at the evaluation we start with a pure software implementation on a
single CPU and then extend to several CPUs and special hardware blocks.

3.2 Evaluation models

Algorithm and hardware blocks as well as the traffic traces are discussed which
are used for the evaluation of options for QoS preservation in multi-service
access networks. In detail, three different kinds of models are required:

• Algorithm models: Models of this class reproduce the behavior of algorithms for
packet processing tasks. The behavior is not bounded by assuming any prop-
erties of computing resources. However, the models enable the simultaneous

3.2. Evaluation models 61

exploration of algorithms and hardware architectures by generating statistics
about their inner state that are used by architecture models to estimate the load
of computing resources.

• Architecture models: These models imitate the timing behavior of hardware
building blocks which can be used to implement a network processor for multi-
service access networks. The timing together with the statistics generated by
algorithm models are used to estimate the load of hardware resources.

• Traffic generation models: Typical network traffic must be modeled to stimu-
late the network processor. The inter-arrival time of packets determines the fre-
quency of packet processing events. The length of the packet and other packet
header information decide the QoS a packet will receive.

The algorithms described in this section are based on the packet process-
ing tasks explained in the preceding chapter. However, due to our new service
scheme of green and yellow service, most of the algorithms must be adapted to
suit the requirements of multi-service access networks. The architecture mod-
els include models for CPUs, RAMs, and some special building blocks. The
assumed timing parameters for synchronous DRAMs are derived from the eval-
uation of memory controller operation modes in Chapter 4. Memory accesses
are considered in a more abstract manner than in Chapter 4 by aggregating acti-
vation and precharge delays into some few average delays. By the interplay of
algorithm and architecture models a more flexible and exhaustive design space
exploration is enabled than it has been carried out up to now based on static
complexity analysis or existing hardware.

3.2.1 Performance models of algorithms

The algorithms for policing, queuing, and packet scheduling that are used for
the evaluation are explained in the following. It is assumed that packets have
passed a header parser as well as filter, forwarding, and classifier stages when
they enter the policer. These stages are not modeled for the evaluation since
their outcome – header fields, next hop address/link, and a QoS class identi-
fier – is constant independently of the chosen algorithms. These stages thus
do not affect the QoS preservation behavior of the packet processor in terms of
packet delay and buffer space. Moreover, they are candidates for special hard-
ware blocks because header parsing, filtering, classification, and routing must
be performed for almost all incoming packets. Since the packet’s QoS context
information is only available after the classification step, queuing is prohibitive
before the classification and the classifier should therefore work at wire speed.
In an access network environment, routing tables should be relatively small – at
most some thousand entries as in enterprise networks – and the classifier should
only manage some tens to one hundred different rules. A hardware implemen-
tation is hence moderately straightforward and a reasonable solution.

The support for the suggested multi-service networks with green and yellow
QoS requires some adaptations of the policing and queuing components. Exist-

62 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

ing solutions for the link scheduler need not be adjusted. The state variables and
parameters are mentioned in detail since this information will be used to size up
the local memory requirements of each processing stage. The simulation mod-
els of all algorithms generate additional information about their inner state and
the operations performed during run-time. These statistics are used by archi-
tecture models to determine the load of hardware resources. The type of the
statistical data issued by the models is described at the end of this subsection.

3.2.1.1 Policer
Since traffic profiles are described by (σ, ρ) specifications, nested token buck-
ets are the only policing element which is considered in the evaluation. An
individual policing component covers the check of a single meta-class’ traffic
profile and all its included green traffic profiles. It is assumed that packets are
time-stamped with their arrival time at the packet processor and that they have
passed a classification element so that a QoS class identifier including the cor-
responding meta-class identifier is assigned to each packet.

Compared with common implementations of nested token buckets [81],
there is a new additional constraint considering multi-service access networks
with our hierarchic service allocation scheme. Since tokens must be taken from
both buckets – a flow’s green service bucket and the corresponding meta-class
bucket – for green packets, a certain amount of tokens in the bucket of the
meta-class must be reserved which may only be consumed by green packets.
Otherwise, greedy flows within the same meta-class could prevent the genera-
tion of green marked packets of other flows by emptying the shared bucket of
the meta-class. That is, the condition under which a packet is marked yellow is
more precisely stated by saying that the number of tokens in the bucket of the
meta-class minus a threshold – the sum of the capacities of the green service
buckets in the meta-class – must be greater than the length of the packet.

Alg. 2: (Nested token bucket policer for green profiles and a single yellow profile)

System state parameters:
Nm number of flows within meta-class m

(σg,i, ρg,i), 1 ≤ i ≤ Nm [Bit, Bit
s

] green traffic profiles in meta-class
(σy, ρy) [Bit, Bit

s
] yellow traffic profile for meta-class

σg =
∑Nm

i=1 σg,i [Bit] sum of reserved green burstiness
System state variables:

tLastUpd ,i, 1 ≤ i ≤ Nm [s] point of time at which token bucket of
class i has last been updated

tLastUpd ,y [s] point of time of last update of token
bucket for meta-class

bg,i, 1 ≤ i ≤ Nm [Bit] bucket level for green profile i

by [Bit] bucket level for meta-class profile
Input parameters:

ct [s] current time
li [Bit] length of packet from flow i

3.2. Evaluation models 63

Initialization at time ct

bg,i := σg,i, 1 ≤ i ≤ Nm

by := σy

tLastUpd ,i := ct, 1 ≤ i ≤ Nm

tLastUpd ,y := ct

At each arrival of a class i’s packet at time ct at the policer

• Update bucket levels:

bg,i := min{σg,i, bg,i + ρg,i · (ct− tLastUpd ,i)}
by := min{σy, by + ρy · (ct− tLastUpd ,y)}
tLastUpd ,i := ct
tLastUpd ,y := ct

• Mark packet and adjust bucket levels accordingly:

if (bg,i − li ≥ 0){
mark packet as green
bg,i := bg,i − li
by := by − li

} else if(by − σg − li ≥ 0){
mark packet as yellow
by := by − li

}
else { mark packet as red }

3.2.1.2 Link Scheduler
After having marked a packet, the policer hands the packet to the link scheduler.
Depending on the state of the link, the scheduler decides whether the packet can
immediately be forwarded to the link or whether it must be enqueued. In the
latter case, the packet will directly be stored in the priority queue within the
scheduler if the packet represents the head-of-line element of the correspond-
ing flow since the flow was not backlogged before. Otherwise, the packet is
passed on to the queue manager. As soon as the link becomes idle, the sched-
uler chooses the packet with the minimum virtual service tag to be transmitted
through the link. If there are more packets in the queue for the corresponding
flow, a new head-of-line packet will be transferred from the queue manager to
the scheduler. A packet’s virtual service finish time is generated when the packet
enters the priority queue and not already at the packet arrival at the system. In
this manner, the queue manager will be prevented from generating large holes
in the virtual service time of a flow if the QM is forced to drop packets.

Four packet schedulers are chosen for the evaluation: Deficit Round-Robin
(DRR [142]), Self-Clocked Fair Queueing (SCFQ [62]), Starting Potential-
based Fair Queueing (SPFQ [150]), and Minimum Delay Self-Clocked Fair
Queueing (MD-SCFQ [31]). Since DRR has become a well established basis for
comparing scheduling properties, it is included in the comparison although it is

64 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

not based on WFQ or Earliest Deadline First (EDF) and thus provides relatively
bad worst-case delay bounds. DRR is considered to have low complexity and to
supply a fair distribution of bandwidth in the long-term at the expense of rela-
tively poor delay bounds. SCFQ is taken in the evaluation since SCFQ is based
on a simple approximation of the virtual service of an underlying fluid server.
SCFQ is known to show very good short-term fairness but to provide worst-case
delay bounds that depend on other flows sharing the link. Since we are espe-
cially interested in tight worst-case delay bounds for green service and tolerate
short-term unfairness to some extent, we have also chosen two representatives
of the class of rate-proportional servers [152] – SPFQ and MD-SCFQ – that are
therefore able to guarantee the best worst-case delay bounds. One could argue
that SPFQ needs two priority queues and therefore is rather complex. How-
ever, opposed to other algorithms that also provide tight delay bounds and use
two priority queues such as WF2Q+ ([153]) and Leap Forward Virtual Clock
(LFVC) ([155]), the number of priority queue operations in the packet system
can strictly be bounded for SPFQ to a single enqueue or dequeue operation per
priority queue and event. With the help of the second priority queue the approx-
imation of the virtual service in the fluid system becomes simple. Contrary to
that, MD-SCFQ uses a more complicated calculation of the virtual service but
does not need a second priority queue.

We restrict the description of the scheduling algorithms to pointing out the
parameters and variables and refer to the corresponding papers for a detailed
description of the algorithms. The algorithm for SPFQ is given as an example
to show the interplay with the queue manager.

Alg. 3: (WFQ-based scheduling: SCFQ [62], SPFQ [150], MD-SCFQ [31])

System state parameters:
NM =

∑M
m=1 Nm number of flows in all meta-classes m

Φi, 1 ≤ i ≤ NM WFQ weights
MD-SCFQ/SPFQ-specific:

R [Bit/s] link rate
System state variables:

V [Bit] global virtual time
Fi, 1 ≤ i ≤ NM [Bit] virtual service finish times
qprio priority queue data structure with up to NM

head-of-line elements, sorted according to Fi’s
MD-SCFQ/SPFQ-specific:

V [Bit] global virtual time ' system potential
tLastUpd [s] time of last update of V

MD-SCFQ-specific:
lall [Bit] sum of the lengths of the head-of-line packets
Φall sum of the WFQ weights of backlogged flows

3.2. Evaluation models 65

Fall [Bit] weighted sum of the virtual service finish times
of the head-of-line packets

SPFQ-specific:
Si, 1 ≤ i ≤ NM [Bit] virtual service start times
qs
prio priority queue with up to NM head-of-line el-

ements, sorted according to Si’s
Input parameters:

li [Bit] length of the packet from flow i

MD-SCFQ/SPFQ-specific:
ct [s] point of time of current event

Starting Potential-based Fair Queueing (SPFQ):
At each packet arrival at time ct

• Update potential:

if (scheduler idle) { V := 0 , Fi := 0 ∀i }
else { V := V + (ct− tLastUpd) ·R }
tLastUpd := ct

• Packet handling:

if (qprio contains no entry for flow i) {
Si := max{Fi, V }
Fi := Si + li

Φi
(see eq. (2.3))

if (link is idle) { forward packet to link }
else { enqueue packet in qprio and qs

prio }
}
else { hand packet to queue manager }

At each packet departure (completed service) at time ct

• Update potential:

V := V + (ct− tLastUpd) ·R
tLastUpd := ct

• Recalibrate potential:

V := max{V, min. start time in qs
prio}

• Choose next packet for transmission:

if (qprio is not empty) {
dequeue packet with smallest finish time Fi from qprio

dequeue corresponding entry of flow i from qs
prio

forward packet to link
if (flow i is backlogged in the queue manager) {

dequeue flow i’s head-of-line element from queue manager
Si := max{Fi, V }
Fi := Si + li

Φi
(see eq. (2.3))

66 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

enqueue packet in qprio and qs
prio

}
} else { scheduler is idle }

Alg. 4: (Deficit Round-Robin (DRR [142]) packet scheduling)

System state parameters:
NM =

∑M
m=1 Nm number of flows in all meta-classes m

R [Bit/s] link rate
qi, 1 ≤ i ≤ NM [Bit] quantum values of the Round-Robin frame

System state variables:
qci, 1 ≤ i ≤ NM [Bit] currently accumulated (unused) quantum
act linked list of backlogged flows

Input parameters:
li [Bit] length of the packet from flow i

3.2.1.3 Queue manager
The queue manager (QM) exchanges packets with the link scheduler compo-
nent. Since a WFQ-based scheduler relies on per-flow queuing, a QM is obliged
to maintain per-flow state information and a distinct FIFO-organized queue per
flow must be maintained. In times of congestion a QM for multi-service access
networks must warrant that only yellow-marked packets suffer from loss but no
green-marked packets. Green and yellow packets of a flow are enqueued in or-
der within the same queue. One may think of different mechanisms to find a
yellow packet to push out. Since fairness is not mandatory for yellow service
one can simply aggregate pointers to yellow packets from all flows and meta-
classes into a single FIFO-organized yellow queue. A yellow packet is either
served by the scheduler from a flow’s queue or dropped by the queue manager
from the yellow queue according to some rule. The corresponding entry in the
other queue which is linked with the current entry must then be dropped as well,
see Fig. 20. This is our straightforward extension to existing per-flow queuing
schemes to cope with graceful service degradation and in-order delivery pro-
vided by multi-service access networks.

serviced by
link scheduler

internal data structure
for choosing packets
to drop

flow queues

central yellow queue

Fig. 20: Administration of yellow-marked traffic by the queue manager.

3.2. Evaluation models 67

The payload is stored separately from the QM’s parameter memory so that
an entry in a FIFO queue only carries a pointer to the packet contents. It is
assumed that the QM’s local memory is large enough so that the QM’s behavior
is only determined by the current level of the payload memory.

In times of congestion packets are simply dropped from the tail of the cen-
tral yellow queue. Since only non-reactive flows are modeled, it virtually makes
no difference whether packets are dropped from the front or from the tail of the
yellow queue1. Opposed to a central yellow queue one may want to implement
a QM that provides fair dropping of yellow packets in times of congestion. In
this case, a distinct yellow queue is assigned to each flow queue and packets are
dropped from the relatively longest yellow queue according to some measure.
Suitable measures could be, for instance, the absolute length of a queue or the
relative excess of yellow traffic compared with the green reservation. In the lat-
ter case, the Longest Queue Drop (LQD [156]) scheme is adapted to the needs
of multi-service access networks. Note that we focus on congestion recovery
by pushing out packets. Congestion avoidance by preventing packets from en-
queuing is already performed by the policer to some extent. We however also
look at the common congestion avoidance mechanism RED [54] that we apply
to a central yellow queue. Recall that the usual scope of RED assumes reactive
flows. Thus, RED cannot completely avoid congestion with our settings, but we
can still use our results to estimate the expense of using such a tool.

The following four QMs rely on conventional per-flow queuing for green
traffic but are augmented with additional data structures to manage yellow traf-
fic. A QM which employs tail-drop on a central yellow queue (CYQ), a slightly
modified version of the first QM that also considers the green reservation (CYQ-
enh.), a QM that applies RED to a central yellow queue (CYQ-RED), and a QM
that uses tail-drop from the relatively longest queue (YQ-Fair) are presented.

Alg. 5: (CYQ: QM with central yellow queue and tail-drop)

System state parameters:
NM =

∑M
m=1 Nm number of flows in all meta-classes m

ShrdMemmax [Bit] maximum amount of shared memory
available for payload

Memg,i, 1 ≤ i ≤ NM [Bit] reserved amount of shared memory for
flow i’s green traffic

System state variables:
ShrdMem [Bit] current amount of shared memory oc-

cupied by payload
qi, 1 ≤ i ≤ NM data structures to manage flow queues
qy data structure to manage yellow queue

1For a discussion of the influence of drop-from-front and drop-from-tail on TCP see [100].

68 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

Input parameters:
i identifier of the flow to process
li [Bit] length of the current packet

At each packet enqueue event signalled by the link scheduler

if (ShrdMem + li ≤ ShrdMemmax) {
add packet to qi and – if packet is yellow – to qy

ShrdMem := ShrdMem + li
} else if (packet is yellow-marked) {

drop packet
} else {

tail-drop packets from qy until (ShrdMem + li ≤ ShrdMemmax)
add packet to qi

ShrdMem := ShrdMem + li
}

At each packet dequeue event signalled by the link scheduler

dequeue first packet from qi and – if packet is yellow –
the corresponding entry from qy

ShrdMem := ShrdMem − li

The description of the QMs is continued by only outlining the differences
to the first QM. The following QM is a slightly modified variant in which it
will be tried first to push out yellow packets from the packet’s flow queue if the
flow occupies more than its minimal buffer reservation. Otherwise, packets are
tail-dropped from the central yellow queue.

Alg. 6: (CYQ-enh.: Enhanced QM with central yellow queue and tail-drop)

System state variables:
ShrdMemi , 1 ≤ i ≤ NM [Bit] current amount of shared memory oc-

cupied by payload of flow i

At each packet enqueue event signalled by the link scheduler

if (ShrdMem + li ≤ ShrdMemmax) {
add packet to qi and – if packet is yellow – to qy

ShrdMem := ShrdMem + li, ShrdMemi := ShrdMemi + li
} else if (ShrdMemi + li > Memg,i){

if (packet is yellow-marked) {
drop packet

} else {
do {

3.2. Evaluation models 69

search a yellow packet in qi beginning from the tail
drop the found yellow packet from qi and qy

} while (ShrdMem + li > ShrdMemmax)
add packet to qi

ShrdMem := ShrdMem + li, ShrdMemi := ShrdMemi + li
}

} else {
tail-drop packets from qy until (ShrdMem + li ≤ ShrdMemmax)
add packet to qi and – if packet is yellow – also to qy

ShrdMem := ShrdMem + li, ShrdMemi := ShrdMemi + li
}

The third QM adds the RED [54] congestion avoidance scheme to the central
yellow queue of the preceding CYQ-enh. QM. RED defines two thresholds on
the average length of the yellow queue. When the first threshold is passed,
incoming yellow packets are dropped with a probability that increases linearly
with the average length from zero up to a defined level. If the average length
reaches the second threshold, all incoming yellow packets must be dropped. In
case of congestion, the preceding CYQ-enh. is applied.

Alg. 7: (CYQ-RED: CYQ-enh. with RED congestion avoidance for yellow traffic)

System state variables:
ShrdMemy [Bit] current amount of shared memory occupied by

the central yellow queue
avg [Bit] average length of the central yellow queue
Thmin [Bit] minimum threshold on avg

Thmax [Bit] maximum threshold on avg

pdrop drop probability

At each packet enqueue event signalled by the link scheduler

if (packet is green-marked) { continue with CYQ-enh. }
else {

estimate average queue length avg of yellow queue
if ((Thmin ≤ avg) && (avg < Thmax)) {

calculate drop probability pdrop

drop packet with probability pdrop

} else if(Thmax ≤ avg){ drop packet }
if (packet not dropped){ continue with CYQ-enh. }

}

The last QM is regarded to be fair since a distinct yellow queue is assigned
to each flow and packets are dropped from the yellow queue with the highest
relative overload. The overload is calculated by the ratio of the current length
of a flow’s queue to the size of the reserved buffer for green traffic.

70 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

Alg. 8: (YQ-Fair: Fair QM with per-flow yellow queues)

System state variables:
Ovldi = ShrdMemi/Memg,i current overload of flow i, 1 ≤ i ≤ NM

qy,i, 1 ≤ i ≤ NM data structures to manage yellow queues
for all flows i

At each packet enqueue event signalled by the link scheduler

if (ShrdMem + li ≤ ShrdMemmax){
add packet to qi and – if packet is yellow – to qy,i

ShrdMem := ShrdMem + li, ShrdMemi := ShrdMemi + li
recalculate Ovldi

} else if (packet is yellow-marked){
drop current packet

} else {
do {

drop packet from yellow queue with highest Ovld value
recalculate Ovld for that flow

} while (ShrdMem + li > ShrdMemmax)
add packet to qi

ShrdMem := ShrdMem + li, ShrdMemi := ShrdMemi + li
}

3.2.1.4 Statistics generation by algorithm models
The algorithm models generate additional statistics which are handed to archi-
tecture models to calculate the load of hardware resources. In this way, the
simultaneous exploration of algorithm behavior, timing, and hardware usage is
enabled. The information output by the algorithm models can be divided into
two main areas: information about the operation performed and information
that helps to assess the QoS properties of the system, i.e., the inner state. For
the latter purpose, the following data is generated:

• Queue lengths: The queue manager can output the lengths of the flow queues
as well as the amount of queued yellow traffic.

• Dropped packets: Policer and queue manager may output dropped packets.

• Bucket levels: The policer may output the current token bucket levels.

• Virtual time evolution: The packet scheduler may output the current global vir-
tual time as well as the virtual finish times of all packets in the priority queue.

• Delay due to queuing and scheduling: Two points of time are assigned to each
packet, the arrival time at the system and the point of time at which the packet
has completely been serviced.

3.2. Evaluation models 71

In addition, the models generate histograms about the performed operations
to process a packet. The counted operations can be of fine granularity such
as additions and subtractions or of coarse granularity such as priority queue
operations. The histograms of fine-grained operations can directly be used by
architecture blocks to assess the load of a hardware component whereas the
data about coarse-grained operations must further be processed by intermediate
models. The architecture models that analyze these histograms are described
in the next subsection. The histograms are output for every elementary packet
processing step such as the policing of a packet, enqueuing, dequeuing, etc. The
operations counted by the algorithm models are the following:

• CPU-like: Arithmetic operations with two inputs; integer and floating-point
operations are counted separately.

– Min / Max / Cmp: Minimum, maximum, and compare computations.

– Add / Sub: Addition and subtraction computations.

– Mul: Multiplications.

– Div: Divisions.

• Other CPU-like operations:

– Branch

– Register copy: Elementary register copy operations, e.g., for initializing
a variable, which are not counted otherwise as they are not performed
together with any arithmetic operation.

– Address offset calculations: Operation needed to address particular fields
in a structured data element whereas the index is only known during run-
time. Since there are architectures that provide execution units just for this
operation type, it is counted separately from arithmetic operations.

• Memory accesses: Accesses of the context information, such as the state pa-
rameters and variables including the packet payload, are counted. It is assumed
that the context information is stored in on-chip or off-chip RAM. The type of
the access – read or write – and the length of the access in Bit are recorded.

• Priority queue operations: Priority queue operations are: enqueue, dequeue,
read minimum, delete. The operations are recorded together with the current
length of the priority queue. These histograms must be processed by further
architecture blocks to assess an implementation of a sorted data structure.

• Dynamic memory allocation: The queue manager relies on dynamic memory al-
location. The number of memory allocation and deallocation events is counted.
These values must be handled by further architecture models to consider an
implementation of this task.

72 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

Counting methodology
An algorithm is presented that is used to analyse packet processing tasks off-
line. Each so-called basic block of the description of a packet processing task
is annotated with the high- and low-level operations that must be performed by
network processing hardware to execute the corresponding code fragment. In
this way, overall operation histograms can be generated during the (simulated)
run-time of the system.
Assumptions and limitations: In order to generate the operation histograms at
the high level of a given performance model of an algorithm, some assumptions
must be made:

• Memory accesses caused by instruction fetches cannot be taken into account.
Thus, if a task is implemented in software, it will be assumed that the program
entirely fits into the instruction cache.

• A set of free-programmable registers is available to hold interim results within a
basic block of code and to hand interim results from basic block to basic block.2

• Read accesses to context information always generate RAM accesses when they
appear first during an elementary packet processing task. Write accesses to
context information always generate RAM accesses. That means, data cache
misses will always be assumed if the algorithms are mapped onto a CPU.

• Procedure calls cannot be taken into account. That means in case of a soft-
ware implementation, the elementary packet processing tasks are implemented
without any call hierarchy, e.g., by using in-line functions.

• When counting CPU instructions it is assumed that the CPU supports register-
direct, register-indirect, absolute, and indexed (register-indirect plus an offset)
addressing modes. The first three addressing modes do not generate any addi-
tional overhead to calculate the effective address. Only indexed addressing will
require an address offset calculation if the offset is only known during run-time.

• An algorithm model may not adequately reflect reasonable data structures for an
implementation. The RAM access and CPU operation counters must however
reproduce the statistics for a virtual implementation. That is, the operations to
count may not directly be seen in the performance model and require further
assumptions about the data structures to use in an implementation.

Before the operations’ counting algorithm can be presented, two further defini-
tions are required that determine our region of interest – a basic block of code –
and shared data between these regions.

Def. 16: (Basic block) A basic block of code is a code fragment given in a program-
ming language where the control flow is only allowed to enter the sequence of

2Note: The application of the following Alg. 9 on our algorithm models has shown that 16
registers are sufficient for the configurations presented in this chapter.

3.2. Evaluation models 73

instructions at the beginning of the fragment and to branch at the end of the
fragment but not in between. That is, once the control flow enters a basic block,
the instructions of the block are deterministically processed in order.

Def. 17: (Active variable) An active variable is a data item which is handed from a
basic block to another basic block and read in the latter block – before it may
be possibly written. That is, an active variable is a candidate to be held by a
temporary register to save memory accesses.

Alg. 9: (Off-line counting of operations) For a given elementary packet processing
task (dequeue, enqueue, policing, etc.) specified by a programming language:

• Detect the basic blocks.

• Determine the control flow between the basic blocks.

• Beginning from the entry point of the control flow of the overall task, determine
the sets of active variables at the entry point and at the branch point of every
basic block.

• For every basic block:

– Extract code dealing with priority queues and dynamic memory manage-
ment. Count priority queue and dynamic memory allocation operations.

– In the remaining code fragment:

∗ Detect variables and constants which belong to the context informa-
tion and which are not active.

∗ Count the required memory accesses and address offset calculations
to read these variables from memory.

∗ Count the required CPU operations.

∗ Detect the context variables which have been set in the basic block.

∗ Count the required write accesses and address offset calculations to
write these variables back to memory at the end of the basic block.

– Assign the determined counter values to the basic block.

In the end, overall histograms of operations can be gathered for arbitrary orders
of packet processing events with the help of the assigned counter values per
basic block. Operations will only be counted if the actual control flow passes
the corresponding basic block during run-time of the simulation.

Ex. 9: (Off-line counting of operations) The following code fragment is taken from
an update method of a potential-based packet scheduler. Context variables are
lastUpdate, linkrate, and V . At the entry point of the basic block, time is active.
At the end of the basic block, lastUpdate must be active. The write and read
counter methods for the memory accesses have the length of the access and the
number of accesses as parameters.

74 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

[...]
else if (!HPTrafficStall){
// -- basic block starts here --

V += (time - lastUpdate) * linkrate;
lastUpdate = time;

// statistics ------
cnt.addRead(Prec.TIME,1) // lastUpdate
cnt.addRead(Prec.VTIME,1); // V
cnt.addRead(Prec.LINKRATE,1); // linkrate
cnt.addSubFP += 2; // floating-point add/sub
cnt.mulFP++; // floating-point mul
cnt.copy++; // register copy
cnt.addWrite(Prec.TIME,1); // lastUpdate
cnt.addWrite(Prec.VTIME,1); // V
// ------

}
// -- basic block ends here --
else {
[...]

First, the non-active context variables lastUpdate, linkrate, and V must be
read from memory. Then, the arithmetic operations can be performed. Last,
the context variables lastUpdate and V are written back to memory. Note that
the context variable lastUpdate is written back to memory and held by a reg-
ister – this is why an additional register copy operation is counted – because
lastUpdate must be active at the end of the basic block.

3.2.2 Architecture models

Histograms of operations and other statistical data are output by algorithm mod-
els. This output is analyzed to derive estimations of the utilization of resources
by models described in this subsection. They consider the operation-specific
timing of hardware blocks. Since these models are simulated together with the
algorithm models, the simultaneous exploration of algorithm behavior and re-
source load is enabled without relying on any execution traces.

3.2.2.1 CPU timing model
As it will be shown by a discussion of related work in Section 3.4, all currently
available network processors employ a general-purpose computing core to some
extent to flexibly adapt to protocol changes or new communication standards.
We also start with the assumption of a software implementation and profile our
implementation to point out whether there are subtasks that should be moved to
hardware. The CPU cores taken into consideration are listed in this subsection.

Only the latency introduced by a CPU’s execution stage of the pipeline is
taken into account by a timing model. It is assumed that the latency for other
stages like fetch and decode are virtually hidden by the concurrent processing

3.2. Evaluation models 75

in the pipeline. If the execution stage allows variable delay for a class of oper-
ations, only the maximum value will be considered. The individual values for
the operation counts in the histograms generated by the algorithm performance
models are weighted with the latency of the execution stage and the resulting
values are summed up. Since this kind of analysis is performed in fixed periods,
a rough estimate of the average load of the CPU in a particular period can be
derived. We do not make use of any superscalar architectural features of the
CPU because the histograms do not provide any information about the order of
the operations and we cannot perform any dependency analysis.

Three simple CPU timing models have been implemented in order to assess
the load generated by packet processing tasks. ARM cores are used for a broad
range of embedded systems. In particular, ARM CPUs are employed for sys-
tems where the power dissipation is a critical design constraint such as in hand-
held devices. The application area of the ARM9 core we have modeled ([6])

Tab. 2: Timing of the CPU models in clock cycles.

Operation [cycles] ARM9ES SH4 PPC 750
Integer Min / Max / Cmp 1 1 1

Add / Sub 3 1 1
Multiply 5 4 6
Division 224 4 19
Address offset 3 1 1

Floating-point Min / Max / Cmp 8 5 3
Add / Sub 17 9 3
Multiply 18 9 4
Division 378 26 31

Branch 3 3 3
Register copy 1 1 1
Clock [MHz] 120 200 500

is focused on integer computation. The ARM9 neither has a floating-point unit
nor a divider unit. These operations must be emulated by integer operations. We
have applied the methods described in ([82], chapter 4) to map floating-point
operations and divisions to integer computations. The Hitachi 7750 (“SH4”,
[83]) is a more sophisticated embedded CPU with a floating-point unit includ-
ing a divider. Finally, a PowerPC 750 ([87]) represents the computing power
utilized in common personal computer systems. The timing values used for the
evaluation are listed in Tab. 2. The timing values for floating-point operations
assume a precision of 64 Bit whereas the integer operations use a precision of
32 Bit. Although the assumption of high-precision operations turns out to be
rather inappropriate for an efficient implementation of the algorithms, it how-
ever causes the calculation of load values which are closer to the worst-case so
that the design-space exploration becomes more reliable.

76 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

3.2.2.2 RAM timing model
Two representative timing models for off-chip RAMs are chosen for the eval-
uation. The first RAM is a common PC100-compliant SDRAM [88] as it will
be used for the evaluation of memory controller access schemes in Chapter 4.
The timing employed by the SDRAM model is derived by averaging over all ac-
cesses of all simulation runs presented in Section 4.4 applying open-page mode
with interleaved address mapping but without overlapped processing. SDRAMs
are preferred over RDRAMs since accesses of parameters and variables are
rather small so that an RDRAM cannot take advantage of its superior bus band-
width. The second RAM is a pipelined static RAM with late write. This is a
typical component used in order to implement off-chip caches. All major RAM
manufacturers offer SRAMs of this class.

Since the algorithm models only provide access histograms without any in-
formation about the order of accesses, an average latency overhead for reads
and writes is considered in the SDRAM case that aggregates the latencies for
activations and precharges. For the same reason, we do not make use of the late
write facility of the SRAM. The timing used for the evaluation is given in Tab. 3.
The histograms generated by the algorithm models distinguish the access type
– read or write – and the length of an access. As the histograms are analyzed
in regular intervals, one can estimate the load of the RAM within a period by
summing up all the delays caused by the accesses in that period divided by the
length of the period. The delay d caused by a single access is calculated by

d =
(

⌈ access length
memory bus width

⌉

+ access overhead
)

·
1

bus clock

Tab. 3: Timing of the RAM models.

Parameter SDRAM SRAM
width of memory bus [Bit] 32 32
clock of the memory bus [MHz] 100 166
read access overhead [cycles] 4 2
write access overhead [cycles] 3 2

3.2.2.3 Priority queue model
Since the complexity for sorting and searching heavily depends on the chosen
data structure, the behavior of priority queues has been separated from the al-
gorithm models of the processing chain to ease the analysis of the influence of
a priority queue on the overall performance.

A priority queue is a data structure in which elements are sorted in increas-
ing/decreasing order of assigned key values. A priority queue is needed for two
tasks of the packet processing chain. The packet scheduler must sort packets
according to deadlines or virtual finish times. The fair queue manager drops

3.2. Evaluation models 77

packets from the relatively longest queue during times of congestion. Thus, the
queue manager maintains a priority queue in which flows are sorted according
to their current buffer occupancies.

A priority queue for a link scheduler must support the following operations:

• Enqueue: A new entry is sorted into the data structure.

• Dequeue: The entry with the minimum/maximum key is removed.

A priority queue for a fair queue manager must additionally support:

• Read out: The entry with the maximum key is read out (but not removed).

• Delete: An entry with a given field value (which is not the key) is removed.

The right choice for a suited data structure for sorting and searching depends
on the number of entries to sort, the type of operations to support, the character-
istics of the key distribution, and the frequency of operations. In our case, the
maximum number of entries in a priority queue can be bounded since at most
one entry per flow must be sorted into the data structure. The maximum num-
ber of entries is relatively small since only some hundred flows must at most be
scheduled. The support for merge operations is not required because only a sin-
gle key is processed at a time. The keys may be arbitrary floating-point values
which are usually not limited by a fixed range. Due to the small number of flows
to sort, a software implementation of a mature data structure is chosen. Thus,
the priority queue statistics output by the algorithm models are transformed into
CPU and RAM operations that are additionally transferred to the architecture
blocks. A heap organized binary tree [96] mapped onto a fixed-sized array is
assumed for the data structure implementing a priority queue. A heap shows
logarithmic complexity with the number of entries to sort, inherently maintains
a balanced tree, and child and parent nodes within the tree can easily be ad-
dressed by shift and increment operations if mapped onto an array. Since no
additional operations are required to balance the data structure, heaps can be
analyzed well. Although the key values cannot be bounded to a fixed range or
approximated by integers, a heap nevertheless competes reasonably well with
more sophisticated priority queue data structures [133, 93].

3.2.2.4 Dynamic memory allocation model
Dynamic memory allocation is a special processing block which has been sep-
arated from the algorithm models to evaluate its impact on the overall system’s
performance. The queue manager relies on dynamic memory allocation. A
packet’s payload must be stored at a packet arrival and context information ex-
tracted from the packet header must be appended to a flow’s FIFO queue. For
both tasks, the QM needs to dynamically manage memory space. A simple
software implementation with fixed-sized blocks is considered. The memory
allocation counters output by the algorithm models are transformed into CPU
and RAM operations which are also transferred to the CPU and RAM models.

78 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

The concept to store dynamically generated data of variable length as
a linked list of fixed-sized segments has been established several decades
ago [164]. This mechanism still is the most common solution used in switches
and routers since the management of dynamic memory allocation becomes sim-
ple due to the absence of fragmentation loss. It therefore is well suited for
storage systems which work under real-time constraints and where the length of
the data to store may not be known at the beginning of the store process.

The basic idea of our simple software implementation is that a memory
region is exclusively reserved for a free list of pointers to available memory
blocks. The free list is organized as a stack of pointers. This way, the stack
can be easily managed by two additional pointers, e.g. held by registers, if the
stack region and the block memory do not overlap. However, some memory
space is wasted since the reserved space for the stack cannot be used for stor-
ing additional memory blocks although the stack may be empty. Nevertheless,
the overhead for reserving a separate memory region for the free list is about
6% by using 68 Byte segments (64 Byte payload plus 4 Byte address to the
next segment) and 4 Byte addresses as an example. By applying the results
from [164], our memory allocation scheme utilizes the memory best – in terms
of the least share of occupied memory for storing pointers in order to link seg-
ments – for average packet lengths in the range of 500 to 600 Byte. Fig. 21
shows the memory allocation scheme. As long as freeListStart is not equal to
freeListBase there are free memory segments available and we can allocate a
memory block where the entry at freeListStart points to. freeListStart is de-

stack of pointers
to free blocks

fixed-sized
memory blocks

free

free

freeListBase

freeListStart

memory
space

...

...
occupied

occupied

Fig. 21: Simple dynamic memory allocation scheme using exclusive memory areas and fixed-
sized memory blocks.

3.2. Evaluation models 79

creased afterwards. When a block becomes free again, its address is pushed onto
the stack and freeListStart is increased. A packet’s payload may be distributed
over several memory blocks.

3.2.3 Stimuli

In order to stimulate the packet processing chain, there are different options for
choosing traffic patterns. One can use:

• Public traffic traces from the Internet: Traces that are publicly available in the
Internet usually record traffic seen at backbone routers. In particular, the number
of distinct flows is high and understanding their traffic profile needs a thorough
analysis of the traces. Traces can be found at various places in the Internet, for
instance, [3, 109] are two well-known sites among others.

• Real traffic sources: For instance, one could imitate the exact behavior of TCP
to initiate real HTTP downloads and use video codecs to generate UDP traffic,
etc. That is, the simulated packet processing chain would participate in the
network protocol stack of a real system.

• Statistical source models: There is a variety of statistical source models that
have been derived by measurement and analysis of Internet traffic. The follow-
ing references should therefore only be seen as starting points for further read-
ing. World Wide Web traffic is modeled in [9, 10]. It is in particular pointed out
that the characteristics of WWW traffic change over the years. Studies which
especially focus on TCP behavior can be found in [121, 27]. The former work
discusses TCP’s steady-state behavior whereas the latter paper enhances the
model by adding startup effects which are important to imitate short-term TCP
connections. Finally, models for video traffic with variable bit rate are presented
in [107, 56, 134]. Further studies that focus on traffic characteristics to facilitate
traffic engineering can be found in [123, 50].

In our case where access networks are investigated Internet backbone traces
cannot be used effectively. These traces aggregate a high number of flows on
a best-effort basis and their time stamps reflect backbone speeds. The integra-
tion into a real system would require to emulate the behavior of the access link
provider and the contents providers. Finally, statistical source models have been
derived by analyzing traffic traces with a duration from hours up to days. How-
ever, the periods that we use for the analysis of resource load and the behavior
of the packet processing chain only cover at most some minutes so that the sta-
tistical models would probably not reflect a representative traffic pattern. It has
thus been decided to use a set of traces generated by some own synthetic models
and not to cope with existing models, Internet traces, or the overhead of imple-
menting TCP/UDP. The traces should reflect an aggressive load for the packet
processing chain. The following types of traces have been generated to model
traffic patterns on incoming LAN links, e.g. fast-Ethernet:

80 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

• Constant Bit Rate (CBR) sources: Every 10 ms, a packet of the size 128 Byte is
generated. In this way, a 64 KBit/s uncompressed voice source is modeled.

• Variable Bit Rate (VBR) Video: A packet corresponds to a video frame. MPEG
or H.263 coded video shows some periodic behavior. Every eight to 12 video
frames, an intra-coded frame is transmitted which is relatively large whereas the
other frames are predicted by some inter-frame coding and hence are smaller.
The inter-arrival time of the packets is determined by the video standard. For
instance, NTSC uses an approx. 30 Hz frame rate and PAL 25 Hz respectively.
If interlaced frame coding is employed, the inter-arrival time of packets will
halve. The inter-arrival time may show some jitter due to variable coding delay.
Video traffic resembling 128 KBit/s PAL MPEG, 42 KBit/s NTSC H.263, and
an aggregate of two MPEG streams and an H.263 stream are modeled.

• Call signalling: Around ten packets are generated every three to four seconds
with lengths varying from 128 to 512 Byte and a peak rate of 5 MBit/s to model
the connection establishment procedure for voice traffic.

• HTTP-like traffic: HTTP-requests are modeled by bursts of five to ten packets
with varying size of 40 to 300 Bytes and a peak rate of 5 MBit/s. These bursts
appear every 0.5 to five seconds. HTTP-downloads are imitated by bursts of
maximum-sized packets (1536 Byte) with a peak rate of approx. 50 MBit/s and
lengths of four to 10 ms.

• FTP-like traffic: FTP downloads are simply modeled by longer bursts than in
the HTTP case. The burst duration now varies from 10 ms to 0.5 s.

• Transactions: Every 0.3 to two seconds, two to five packets with varying length
from 250 to 320 Byte are generated to imitate transactions with banks, band-
width brokers, etc. The peak rate is approx. 10 MBit/s.

• Flooding: Maximum small packets flood the packet processing chain. The
packet size varies from 40 to approx. 46 Bytes and the peak rate from 10 to
50 MBit/s respectively.

A list of the flow characteristics of the synthetic traces is given in Tab. 4.
N(avg, dev) stands for a normal distribution with mean avg and standard devi-
ation dev and U(l, r) denotes a uniform distribution in the interval [l, r). Packet
lengths are rounded to the next integer. Packet lengths below 40 Byte are
rounded up to 40 Byte and lengths above 1536 Byte are round off to 1536 Byte.

It is realistic that all these types of traffic patterns appear from the customer’s
network to the access network since the access link may be used to interconnect
distributed enterprise networks via a VPN. Thus, enterprise servers may also be
distributed in the same way. Moreover, the enterprise may offer information for
the public Internet. Some of these traces are displayed in Fig. 22 as an example.

Besides the traces that stimulate the system at the inputs a timed link model
is required that signals to the system when the link is idle and ready to transmit

3.3. Results 81

Tab. 4: Characteristics of the source models for the synthetic trace generation. After the gen-
eration step, the packet lengths below 40 Byte have subsequently been rounded up to
40 Byte and lengths above 1536 Byte have been rounded off to 1536 Byte.

Trace type packet inter-arrival packet length burst length burst
time [ms] [Byte] [ms] spacing [s]

CBR voice 10 128 no bursts –
Video P-frame N(20, 5) N(230, 50) no bursts –
Video I-frame N(160, 40) N(900, 100) no bursts –
Signalling N(0.5, 0.05) U(128, 512) U(4.5, 5.5) U(3, 4)
HTTP request N(0.25, 0.1) N(150, 100) U(1, 3) U(0.5, 5)
HTTP downld. N(0.25, 0.1) N(1700, 400) U(4, 10) U(0.5, 5)
FTP download N(0.25, 0.1) N(1700, 200) U(10, 500) U(0.5, 5)
Transactions N(0.25, 0.1) N(275, 30) U(0.5, 1) U(0.3, 2)
Flooding 50Mb N(6.7 · 10−3, 1 · 10−3) N(40, 2) no bursts –
Flooding 32Mb N(1 · 10−2, 2 · 10−3) N(40, 2) no bursts –
Flooding 10Mb N(3.3 · 10−2, 3 · 10−3) N(40, 2) no bursts –

a packet as well as when the transmission of a packet ends according to the
link bandwidth. In this way, the link model stimulates the packet scheduler to
choose packets for transmission.

3.3 Results

The following design space exploration not only shows the influence of com-
bined policing, queuing, and link scheduling on the Quality of Service (QoS)
behavior of a network processor for multi-service access networks but also the
expense in terms of hardware resources required to implement sophisticated
QoS preservation.

3.3.1 Evaluation methodology

The goal of this study is to perform a design space exploration of different
combinations of policers, queue managers, and link schedulers stimulated by
different traffic traces with varying characteristics. We are interested in the tim-
ing and fairness behavior of the algorithms as well as the utilization of hardware
resources for every configuration. However, since the number of suitable com-
binations is only some hundred, the design space exploration is performed by
exhaustively simulating every possible combination.

Simulation environment: The MOSES Tool Suite [4, 90] is used as modeling
and discrete event simulation environment. MOSES allows to simultaneously
use different formalisms with or without graphical notation to model heteroge-
neous systems. Two graphical notations are used for this study, namely process

82 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

time [s]

packet
length
[Byte]

FTP

Voice Signalling

Video

HTTP

Transactions

x 10
3

x 10
3

x 10
3

x 10
3

x 10
3

Fig. 22: Some parts of synthetic traffic traces. An excerpt of eight seconds is shown.

networks and Petri nets. Process networks as defined in MOSES consist of
a collection of concurrently executing processes which have input and output
ports and which are interconnected. The execution of a process is dataflow-
driven, that is, as soon as a data token appears at any input port of a process,
its execution is altered or initiated. As a result of an execution, data tokens are
generated at the output ports. Process networks can be nested hierarchically
and the execution model of a process can be specified by any supported for-
malism. The simulation backplane and process networks in MOSES support a
notion of time. Data tokens are therefore assigned time stamps that may affect
the execution of a process. Process networks are used to model the interconnec-
tion of policer, queue manager, and link scheduler components. Whole packets

3.3. Results 83

or excerpts from the packet header are passed from component to component.
The programming language Java is employed for the underlying computational
model of a component to execute a process – an algorithm and the generation
of statistical data in our study. In addition to that, processes specified by Petri
nets are employed to gather statistics or prepare the timing analysis of a config-
uration.

Determining the load of resources: Since we want to explore the behavior
of different combinations of algorithms under ideal conditions, timing infor-
mation generated by the architecture blocks for CPUs and RAMs are not feed
back into the algorithm models. The load of hardware components is calcu-
lated in the way sketched in Fig. 23. Different time bases affect the behavior

time [s]

events of flow a
packet arrival

events of flow n
packet arrival

time [s]

time [s]

events at link
packet departure

time [s]

time [s]

events of flow a
packet arrival

events of flow n
packet arrival

events at link
packet departure

time [s]

averaging
interval

Policer

link
scheduler

flow queues

Fig. 23: Methodology for the calculation of load values.

of the simulated system. On the one hand, packet arrival events from different
packet traces stimulate the system at the input. On the other hand, packet de-
parture events at the outgoing link trigger further packet dequeuing tasks. With
each packet arrival or departure event a number of operation histograms are
generated by the policer, the queue manager, and the link scheduler. These his-
tograms are accumulated for the period of a defined averaging interval avgIntv .
The accumulated histogram is evaluated by architecture blocks. The resulting
delay scaled to the length of the averaging interval determines the load of the
corresponding architecture block for that averaging interval. This procedure is
repeated for every following averaging interval. In this way, the progress of the
load of a component will be modeled with an avgIntv granularity if we allow
an additional delay of avgIntv to be experienced by the packet processing chain
in order to process a packet arrival or departure event. The additional delay is

84 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

caused by the buffering of events to balance the load of a hardware component
within a period of avgIntv .

1 s 0.1 s 10 ms 1 ms 0.1 ms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 MBit/s link

10 MBit/s link

2 MBit/s link with flooding

10 MBit/s link with flooding

maximum
load

averaging interval

Fig. 24: Impact of the length of the averaging interval on the maximum experienced CPU load.

Impact of buffering packet processing events: In order to estimate the impact
of the length of the averaging interval on the load peaks of an architecture block,
the duration of avgIntv is varied for some simulation runs of selected configu-
rations. The result is shown in Fig. 24. The maximum load generated with an
ARM CPU core is taken by means of an example. Four configurations are inves-
tigated. The two lower curves resemble a light load caused by traffic traces with
strongly varying characteristics. The two upper curves show the load caused
by greedy traffic traces with very small packets. For these particular configura-
tions, the ARM core is overloaded for almost all choices of avgIntv . For most
of the configurations one will only experience a noticeable increase in the max-
imum load from the long-term average if avgIntv is set below 10 ms. On the
one hand, the maximum experienced load for the light-load configurations may
raise by up to a factor of three if avgIntv is reduced from 1 ms to 0.1 ms. On
the other hand, the load caused by high-load configurations only increases by
20% for the same change of avgIntv . That means, since the greedy traces stress
the system for a long period of time, the system cannot significantly reduce its
load by longer buffering events before computation. The reverse statement is
obviously true for the light-load configurations. For our settings it is not very

3.3. Results 85

suitable to reduce avgIntv far below 0.1 ms since avgIntv would then only be
a fraction of the transmission time of an average packet. The following list in
Tab. 5 shows some examples of the transmission time of packets through links
with different bandwidths. By analyzing the load of hardware resources with a

Tab. 5: Packet transmission time for some link bandwidth - packet length combinations.

packet size link bandwidth - packet transmission time
[Byte] 2 MBit/s 10 MBit/s 30 MBit/s

40 1.6 · 10−4s 3.2 · 10−5s 1.1 · 10−5s
512 2.1 · 10−3s 4.1 · 10−4s 1.4 · 10−4s

1536 6.2 · 10−3s 1.2 · 10−3s 4.1 · 10−4s

too low avgIntv , one would very likely see high load peaks followed by peri-
ods of idle resources. Four our studies averaging intervals of length 1 ms are
used. This way we make a compromise between the additional delay introduced
by buffering events before computation and the resolution in order to recognize
load peaks. Since link bandwidths up to 10 MBit/s will be investigated in the
following experiments, the delay distortion introduced by buffering events be-
fore computation is in the same order of magnitude as the delay penalty caused
by non-preemptive packet transmission.

3.3.2 Experiments and analysis

The main goal of the evaluation is to answer the following questions:

• How do different combinations of queue managers and packet schedulers per-
form to preserve the QoS? Do the algorithms protect flows against misbehaving
flows in times of congestion? Are the worst-case delay guarantees kept?

• How do CPU load values generated by the different components compare to
each other? Does a component – policer, queue manager, or packet scheduler –
dominate the others or is the overall load rather balanced among the tasks?

• How does the CPU load of the components scale with a higher link rate? We are
interested in future access networks and look at two representative bandwidths
of the access link. A 2 MBit/s link imitates forthcoming high-bandwidth cable
modem and DSL solutions whereas a 10 MBit/s link resembles, for instance,
the capability of future wireless access networks.

• What are worst-case situations for combined policing, queuing, and schedul-
ing? Although it is simple to separately define worst cases for each component,
tracking down worst-cases for the overall system is not straightforward.

• How does the behavior of the queue manager impact the fairness properties
of the system in times of congestion? Is it worthwhile to afford a per-flow
distinction during times of congestion?

86 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

• Can we encounter noticeable differences between the behavior of a Deficit
Round-Robin (DRR)- and a Weighted Fair Queueing (WFQ)-based scheduler?
The system must only cope with a relatively small number of classes at an ac-
cess network. The well-known behavior of DRR that delay properties decline
with an increasing number of flows sharing a link may not be observed with our
access link settings.

• How does a queue manager with per-flow state distinction compare with the
common Random Early detection (RED) [54] in terms of complexity?

• Can performance bottle-necks be detected or would an unoptimized software
implementation already perform well? That is, is there a need to optimize the
implementation and move tasks to hardware blocks, etc.?

• How does high-priority voice traffic disturb the system behavior?

• In the end, can a reasonable trade-off be found among the complexity, the fair-
ness, and the delay properties of the overall system?

3.3.2.1 System specifications
The system for the evaluation is displayed in Fig. 25. It corresponds to the
structure discussed in Subsection 3.1.2. Four meta-classes are defined contain-
ing eight classes all together. The WWW traffic meta-class consists of HTTP
and FTP traffic. Transactions are handled by a separate class. Video and voice
signalling form their own media meta-class. A Virtual Private Network (VPN)
meta-class holds three classes. Voice traffic does not go through the main path
but has highest priority under all circumstances guaranteed by a simple static
priority scheme. All inputs are stimulated by corresponding packet traces as
described beforehand in Tab. 4. Each meta-class is policed by nested token-
buckets as depicted in Subsection 3.2.1.1. The queue manager communicates
with the scheduler component since the scheduler decides whether a packet can
immediately be forwarded to the link or must be buffered. Finally, the model of
the outgoing link stimulates the scheduler to choose packets for transmission.

The service level agreements with possibly several providers state:

• WWW meta-class: At least 10% of the link bandwidth must be available for
WWW traffic, divided into 6% for HTTP traffic and 4% for FTP traffic. If
surplus bandwidth is available, WWW traffic will be allowed to occupy the
whole link bandwidth. Green-only HTTP traffic should not experience longer
delays than one second. In the FTP case, this bound increases to five seconds.

• Transactions: Transaction traffic should at least experience the service of a vir-
tual leased line with 128 KBit/s bandwidth. It must not exceed 500 KBit/s.

• Media meta-class: This meta-class consists of voice signalling and video traffic
classes. Video packets must not experience longer delays than 40 ms. Video
must at least receive 128 KBit/s of the link bandwidth. For voice signalling,
64 KBit/s are reserved. Media-traffic is upper-bounded by 500 KBit/s.

3.3. Results 87

Queue
Manager

Policer

Policer

Policer

Policer

transactions

HTTP

FTP

voice signalling

video

VPN trans.

VPN FTP

VPN HTTP

voice

Packet
Scheduler

scheduler and
link model

static priority

VPN

media

WWW

transactions

(busy / idle)

Fig. 25: Overview of the system for evaluation. The process network model shows the intercon-
nection of policers, queue manager, and link scheduler.

• VPN meta-class: VPN traffic, consisting of FTP, HTTP, and transactions, must
not surpass half of the link bandwidth. At least 10% of the link bandwidth must
be available for VPN WWW traffic, divided into 6% for HTTP traffic and 4%
for FTP traffic. VPN transaction traffic should experience the service of a virtual
leased line with 128 KBit/s bandwidth.

Two types of service reservations can be distinguished. The first type spec-
ifies a minimal rate rg,i together with a maximum delay bound dg,i. With
eq. (3.1), the corresponding burstiness parameter σg,i to configure the policer
(σg,i, ρg,i) can be determined by

σg,i = (dg,i −
L

R
) · rg,i

where L is the maximum packet length and R is the link rate. The rate ρg,i

can simply be set to the rate rg,i. The second type of service reservation only
mentions a minimum bandwidth rg,i. In order to derive the burstiness parameter
σg,i for the policer, some properties of the incoming traffic must be known. For
instance, in the voice signalling case, it is known that bursts may only consist

88 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

of a small number of packets. Then, a suitable σg,i can be set and a delay bound
can be derived by eq. (3.1). Again, the policer’s rate ρg,i is set to rg,i.

3.3.2.2 Required context RAM space
Before the results from simulation runs will be described in detail, the mem-
ory space required to store parameters and variables per component is roughly
estimated based on the description of the algorithms in the preceding section.
The following data type precisions and parameters are assumed:

Maximum number of QoS classes 128
Maximum number of meta-classes 32
Maximum number of packets to be buffered by the QM 10000
Payload pointer size 32 Bit
Pointer used only within context RAM 16 Bit
Integer field precision 32 Bit
Floating-point precision 64 Bit
Packet length descriptor 11 Bit
Color mark 2 Bit
Flow identifier 7 Bit

The following RAM space bounds can then be derived, see Tab. 6.

Tab. 6: Bounds for the required space of the context RAM per component.

Policer
Nested token buckets 5 KByte
Link Schedulers
Deficit Round-Robin (DRR) 2 KByte
Self-Clocked Fair Queuing (SCFQ) 5 KByte
Minimum Delay SCFQ (MD-SCFQ) 5 KByte
Starting Potential-based Fair Queueing (SPFQ) 7 KByte
Queue managers (QMs)
FIFO and yellow queues (needed by all QMs) 166.5 KByte
Free lists for yellow and FIFO queues (needed by all QMs) 39.5 KByte
Free list for payload RAM (needed by all QMs) 156.5 KByte
Central Yellow Queue (CYQ) QM 2 KByte
Enhanced Central Yellow Queue (CYQ-enh.) QM 2.5 KByte
CYQ with Random Early Detection (CYQ-RED) QM 2 KByte
Fair per-flow yellow queue QM 4 KByte

Notes:

• Link scheduler: In addition to the data structures mentioned in Subsec-
tion 3.2.1.2, a scheduler uses a set of backlog counters which keep track of

3.3. Results 89

the current number of packets in the QoS classes. With the help of these coun-
ters, the scheduler can quickly determine the backlog state of a flow without the
necessity to ask the queue manager.

A priority queue which is implemented by a heap-organized array uses entries
that consist of a payload pointer, a scheduling tag, and a flow identifier. The
size of a priority queue is below 2 KByte and included in the numbers of Tab. 6.
Recall that SPFQ requires two priority queues.

An entry in the active list of a DRR scheduler consists of a flow identifier and a
pointer to the next element.

• Queue manager: An entry in the priority queue of a fair queue manager consists
of an overload value and a flow identifier.

Three different free lists are required. A list is employed to stack addresses of
free entries in the context memory that are used to store packet header informa-
tion in a flow’s queue. A list of free entries is needed which are used to enqueue
packet header information in a yellow queue. A third list of free addresses of
payload RAM entries is needed to store the actual contents of a packet. The lat-
ter list manages 68 Byte segments of the payload RAM. 64 Byte of a segment
are usable for storing the contents of a packet and 4 Byte are reserved for an
optional pointer to the next segment if the packet contents are divided among
several segments. The number of addresses held by this free list may be up to
four times the maximum number of packets – 40000 in our case. Recall that the
payload memory is a RAM separated from the context RAM.

An entry in a double-linked yellow queue consists of three pointers: two point-
ers to maintain the data structure and another pointer to the corresponding entry
in the FIFO queue. As a result, an entry in the yellow queue needs 6 Byte.

An entry in a FIFO queue of a flow consists of a pointer to the payload, a
pointer to the next element in the queue, a pointer to a potential entry in the
yellow queue, a packet length field, a color mark, and a flow identifier which
sums to 11 Byte for a FIFO queue entry representing a packet. In the worst-
case, a packet occupies an entry in the FIFO queue of its flow and an additional
entry in the yellow queue.

• Code memory: The algorithm models cannot provide any precise estimates of
the required code memory. We however want to point out the Java byte-code
size of the performance models which may give us a hint of the order of mag-
nitude of the needed code memory. The policer’s code requires 7.4 KByte, the
queue manager’s code up to 14.4 KByte, and the link scheduler’s code up to
13.8 KByte respectively. These code segments contain some overhead to in-
terface with the simulation environment but do not include code for priority
queues and dynamic memory allocation. These two subtasks are rather simple
compared with, for instance, link scheduling. We thus believe that an additional
64 KByte of code memory should be more than enough to implement policing,
queue management, and link scheduling in software.

90 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

The RAM space required to store parameters and variables is rather small for
all components and scales linearly with the number of QoS classes to support.
These RAM areas can probably be implemented with on-chip RAM. The data
structures however that facilitate dynamic memory allocation and release scale
linearly with the number of packets to be buffered. Their memory consumption
can be rather high. The same statement is true for the payload memory. Since
40000 payload segments can be stored in our configuration, the payload needs
2.6 MByte of memory which clearly favors an off-chip DRAM implementation.
The payload free list should also be mapped onto the payload memory in this
case. Since the payload memory must only support a throughput of approx.
twice the access link bandwidth to store and read packets at link speed, the pay-
load memory will rather be bounded by capacity than by bandwidth utilization.

3.3.2.3 Simulation results for a 10 MBit access link
This link bandwidth models future access links, e.g. provided by wireless net-
works. The simulation settings assuming a 10 MBit/s access link are listed in
Tab. 7. The policer settings as well as the worst-case delay bounds are derived
from the requirements of the SLAs. Individual buffer requirements for the QoS
classes can be determined by σg,i + L

R
· ρg,i according to eq. (3.2) where L is

the maximum packet length and R is the link rate respectively. For our buffer
reservations, the second term is rounded up to L and another L is added to ac-
count for possible blocking due to high-priority voice traffic. Thus, the buffer
requirements are derived by adding two maximum packet lengths to the bursti-
ness σg,i at the policer. The rate reservations at the scheduler are augmented by
1 % compared with the policer settings to allow queues to shorten their lengths
in times of heavy utilization by green traffic. The quantum values for DRR are
derived from the maximum packet length of 1.5 KByte. The shared memory
of 670 KByte is dimensioned to just hold the sum of the green profiles or the
maximum yellow profile. In this way, the queue manager takes a big part of the
responsibility for the recovery from congestion.

Traffic traces (see Tab. 4) stimulate the system for a simulated time of 30
seconds. The system swings out afterwards for another 1.5 seconds to empty
buffers. Load values for architecture blocks are calculated every 1 ms. Different
simulation runs are performed in which additional voice traffic – an aggregation
of eight voice sources – is fed in and/or the amount of video traffic varies.

Observation: With the given simulation settings, none of the combinations of
policing, queuing, and scheduling shows congestion. Thus, only the policer has
to drop packets, but not the queue manager. Therefore, the delay experienced
by the flows is only influenced by the interplay of policer and link scheduler.
Delay properties: In Fig. 26, the maximum delays experienced by packets of
different QoS classes are displayed. Four system configurations are considered
which are defined by the choice of a link scheduler. One can state:

• All delays are far below the worst-case calculation.

• WFQ-based systems – MD-SCFQ, SCFQ, and SPFQ – punish the video traffic

3.3. Results 91

Tab. 7: Simulation settings for a 10 MBit/s link. Policer buckets are described by the bursti-
ness σ and long-term bounding rate ρ. The WFQ weights Φi are scaled to the interval
[0 . . . 1). The DRR quantum values qi denote the portions of the overall Round-Robin
frame. The worst-case delay for a WFQ-based system is derived by eq. (3.1) assuming
no high-priority voice traffic.

Policer QM Scheduler WFQ
QoS classes buckets (σ, ρ) allocation WFQ DRR wc-delay

[Byte,Bit/s] [Byte] Φi qi [Byte] [ms]

WWW meta-class (610 · 103 , 10 · 106) (670K)
HTTP (74908 , 600 · 103) 77980 0.0606 14400 991
FTP (249939 , 400 · 103) 253011 0.0404 9600 4951

Trans. meta-class (6000 , 5 · 105) (670K)
Transactions (1375 , 128 · 103) 4447 0.012928 3072 87

Media meta-class (10000 , 5 · 105) (670K)
Voice signal (3200 , 64 · 103) 6272 6.464·10−3 1536 398
Video (621 , 128 · 103) 3693 0.012928 3072 40

VPN meta-class (610 · 103 , 5 · 106) (670K)
VPN HTTP (74908 , 600 · 103) 77980 0.0606 14400 991
VPN FTP (249939 , 400 · 103) 253011 0.0404 9600 4951
VPN trans. (1375 , 128 · 103) 4447 0.012928 3072 87

class with longer delays when the video rate is increased from 42 KBit/s to
298 KBit/s. In the former case, the video traffic fits well in its green profile
while in the latter case the profile is exceeded by more than a factor of two.
The delay properties of the other flows are not affected by the variation of video
traffic. These flows are well isolated from the behavior of the video class.

• Opposed to WFQ-based systems, the DRR system shows a completely different
behavior. Not only are the maximum delays of small bandwidth flows clearly
above the delays experienced in WFQ-based systems, but also the delay does
not increase for the video class with traffic exceeding the green profile. DRR
thus rewards the greedy behavior of the video class.

• The high-priority voice traffic deranges all traffic classes. The overhead can be
quite high for low bandwidth - low latency classes such as the transactions class.
The maximum delay increases by up to 50% whereas the overhead in terms of
delay varies from 7% to 18% for the high bandwidth FTP and HTTP classes.

In order to compare the delay properties of all systems, Fig. 27 shows the
maximum delays scaled to the delays in the MD-SCFQ-based system. MD-
SCFQ is chosen as reference because it belongs to the class of rate proportional
servers [152] and therefore shows the same worst-case delay properties as the
ideal WFQ. From Fig. 27 one can see that:

92 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

VoiceVPN Trans.VPN FTPVPN HTTPVideoVoice sign.Trans. FTP HTTP
10

−3

10
−2

10
−1

10
0

SPFQ,QMYListSimple max. delay

VoiceVPN Trans.VPN FTPVPN HTTPVideoVoice sign.Trans. FTP HTTP
10

−3

10
−2

10
−1

10
0

DRR,QMYListSimple max. delay VoiceVPN Trans.VPN FTPVPN HTTPVideoVoice sign.Trans. FTP HTTP
10

−3

10
−2

10
−1

10
0

SCFQ,QMYListSimple max. delay

VoiceVPN Trans.VPN FTPVPN HTTPVideoVoice sign.Trans. FTP HTTP
10

−3

10
−2

10
−1

10
0

MDSCFQ,QMYListSimple max. delay

8x voice, 298KB video
8x voice, 42KB video
no voice, 298KB video
no voice, 42KB video

SCFQMDSCFQ

Voice

VPN FTP
Video

Voice
 sig

n.

Trans.
FTP

HTTP

VPN HTTP

VPN Trans.

[s]
delay
max.

10-2

10-1

100

10-3

10-2

10-1

100

10-3

Voice

VPN FTP
Video

Voice
 sig

n.

Trans.
FTP

HTTP

VPN HTTP

VPN Trans.

SPFQDRR

QoS classes

Fig. 26: Maximum delay experienced by the flows using a 10 MBit/s link without the occurrence
of congestion. Since the timing behavior of the system does not depend on the choice
of the queue manager, only four configurations are shown which differ in the employed
link scheduler. The amount of voice and video traffic is varied.

• SCFQ and DRR handicap small bandwidth - low delay traffic classes. However,
the effect is significantly less for SCFQ than for DRR.

• MD-SCFQ and SPFQ perform quite similarly in terms of maximum delay.

Resource utilization: Tab. 8 lists the maximum load experienced by architec-
ture blocks. Since the system is quite underutilized, only the results for the
slowest architecture blocks are given. That means, the maximum load for the
components – policer, queue manager, and link scheduler – is listed when each
component is mapped onto its own ARM CPU core with an assigned SDRAM
as well as when the components share a single ARM CPU core and a single
SDRAM. There is always a separate SDRAM for the payload. Moreover, the
maximum load caused by priority queues in the fair queue manager and in all
WFQ-based schedulers is shown. The following can be observed:

3.3. Results 93

VPN Trans.VPN FTPVPN HTTP Video Voice sign. Trans. FTP HTTP

1

2

3

4

5

6

7

8

9

SPFQ,QMYListSimple max. delay per flowVPN Trans.VPN FTPVPN HTTP Video Voice sign. Trans. FTP HTTP

1

2

3

4

5

6

7

8

9

SCFQ,QMYListSimple max. delay per flow

VPN Trans.VPN FTPVPN HTTP Video Voice sign. Trans. FTP HTTP

1

2

3

4

5

6

7

8

9

DRR,QMYListSimple max. delay per flowVPN Trans.VPN FTPVPN HTTP Video Voice sign. Trans. FTP HTTP

1

2

3

4

5

6

7

8

9

MDSCFQ,QMYListSimple max. delay per flow

8x voice, 298KB video
8x voice, 42KB video
no voice, 298KB video
no voice, 42KB video

VPN Trans.

VPN FTP

VPN HTTP

Voice
 sig

n.
FTP

HTTP
Video

Trans.

VPN Trans.

VPN FTP

VPN HTTP

Voice
 sig

n.
FTP

HTTP
Video

Trans.

DRR SPFQ

rel.
delay

(reference system)

MDSCFQ SCFQ

QoS classes

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

Fig. 27: Maximum delay experienced by the flows at an uncongested 10 MBit/s link in compar-
ison with the MD-SCFQ-based system.

Tab. 8: Maximum load of architecture blocks for the 10 MBit/s link. Only the load of the
slowest architecture models are shown, i.e., for ARM CPU cores and SDRAMs.

Scheduler Queue Manager Poli- Prio- Over-
Load [%] MD-SCFQ SCFQ DRR SPFQ CYQ CYQ- CYQ- YQ- cer Queue all

enh. RED Fair
CPU 6.1 2.5 0.2 3.1 1.2 1.2 2.1 5.0 2.8 0.7 8.7
RAM 1.6 1.3 0.2 1.5 6.1 6.1 7.0 6.3 1.1 0.6 7.9

Payload 3.4

• The scheduler generating the highest CPU load is MD-SCFQ. Although SPFQ
requires a second priority queue, MD-SCFQ’s calculation of the system poten-
tial seems to be a greater burden.

• DRR causes considerably lower load than WFQ-based schedulers.

• Maintaining per-flow state for yellow traffic in the queue manager affects the

94 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

CPU load by more than a factor of two. The RAM overhead can be neglected.

• The CPU load is quite balanced between the scheduler, the queue manager, and
the policer. The RAM load however is dominated by the queue manager.

• The sum of the maximum per-component load values is significantly greater
than the maximum load of a single, shared CPU and a single RAM. That means,
the load peaks of the components do not appear at the same time and one can
benefit from sharing computing resources.

Discussion: Delay properties: DRR cannot support as tight delay bounds as
the WFQ-based schedulers can, since the minimum slot length within a Round-
Robin frame should be at least one maximum packet length [142]. In this way,
frames become very large for small bandwidth - small delay flows. For instance,
in our case (Tab. 7) a transmission of a frame may take about 50 ms. This
however is already of the same order of magnitude than WFQ’s delay bounds
for the low delay classes for transactions and video traffic.

The aggregated voice traffic consists of eight constant bit rate voice sources.
On the average, it occupies 8.2% of the link bandwidth. A burst of eight voice
packets takes about 1 ms. These bursts appear every 10 ms. Therefore, the
service of a backlogged queue with assigned worst-case delay above 9 ms may
be interrupted for several times by voice traffic until a packet is transmitted.

ARM9

ARM9 ARM9

SH4

SH4 SH4

PPC

PPC PPC

0

0 0

0.2

0.2 0.2

0.4

0.4 0.4

0.6

0.6 0.6

0.8

0.8 0.8

1

1 1

�����������������������������������

����������������������������������� ��

��

�������������������������

�������������������������

����������������������������

����������������������������
	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������������������

��������������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

��

��

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

��

��

�����������������������������������

�����������������������������������

������������������������������

������������������������������

��

��

���

���

Fair Queue Manager

MDSCFQ Scheduler

Min/Max/CmpINT
Add/SubINT

MulINT not present
DivINT not present

Min/Max/CmpFP
Add/SubFP
MulFP
DivFP
Branch
Reg copy
Addr calc

���������� � � � �
!�!�!!�!�!"�"�""�"�"
#�#�##�#�#$�$�$$�$�$

CPU Operations:

Policer

Fig. 28: Normalized overall execution time for selected components divided among operation
types for different CPU models.

3.3. Results 95

Resource utilization: The load generated by a component heavily depends on
the share of floating-point operations. Fig. 28 illustrates an example. The over-
all run-time profile generated by a WFQ-based scheduler, the fair queue man-
ager, and the policer are displayed. The overall execution time is divided among
the monitored CPU operations and shown for all implemented CPU models. If
MD-SCFQ or a fair queue manager are mapped onto an ARM core, the load will
be determined by more than 70% by floating-point division operations. This
share can be drastically reduced, for instance, by employing a CPU with a ded-
icated floating point unit such as an SH4 or a PowerPC. The CPU load peaks
can thus be reduced by more than a factor of three (not displayed). The policer’s
load is strongly influenced by the performance of floating-point additions and
min/max operations. The impact of these operations cannot largely be reduced
by changing the CPU. The load peaks rather decrease due to higher clock rates.

Marking statistics of different traffic traces after policing are displayed in
Fig. 29. The transactions traces, the voice signalling traces, the 42 KBit/s video
trace, and the HTTP traces can be considered to comply with their green pro-
files. The FTP traces however represent greedy, unresponsive flows since more
than 60% of the traffic is already dropped at the policer and more than half of the
remaining traffic only fits into the meta-class profile. By increasing the video
traffic from 42 KBit/s to 298 KBit/s, the amount of green-marked video traffic
is more than halved. However, the traffic still fits into the meta-class profile and
no packet is dropped at the policer. Together with the policer statistics, we have
another indication that the system is actually underutilized. Although the FTP
traces and the 298 KBit/s video trace do not keep their green profiles, the system
still meets the assigned worst-case delays for these flows.

0

0.2

0.4

0.6

0.8

1
policed traffic with 298 KBit/s video

VPN Trans

VPN Trans

VPN FTP

VPN FTP

VPN HTTP

VPN HTTP
Video

Video

Voice
 Sign.

Voice
 Sign.

Trans.

Trans.
FTP

FTP
HTTP

HTTP
0

0.2

0.4

0.6

0.8

1
policed traffic with 42 KBit/s video

green
yellow
red

Fig. 29: Traffic statistics after policing. The relative amount of green-, yellow-, and red-marked
traffic is shown for each QoS class. Video traffic is varied from 42 KBit/s to 298 KBit/s.

Conclusion for the non-congested 10 MBit link:

• Although congestion does not occur, the highest load for a RAM component is
already generated by the queue manager for maintaining per-flow queues.

96 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

• The CPU load is rather balanced among scheduler, policer, and queue manager.
Thus, one cannot achieve much speed-up by just optimizing a single component.
Since all components show a high dependence on floating-point operations, one
could either spend a dedicated floating-point processing unit or further investi-
gate the replacement of floating-point operations by integer or fixed-point ones.
The latter case would of course react upon the timing behavior of the algorithms.

• Although the number of classes is small, DRR shows considerably worse delay
properties than WFQ-based schedulers. DRR however generates less than one
fifth the load for RAM and CPU than WFQ-based schedulers.

• The best delay properties are supplied by MD-SCFQ and SPFQ. SPFQ causes
lighter load than MD-SCFQ although SPFQ utilizes two priority queues.

3.3.2.4 Simulation results for a 2 MBit access link
Further simulation results for a non-congested system are presented with a re-
duced link rate of 2 MBit/s modeling forthcoming high-bandwidth cable mo-
dem and DSL solutions. The discussion focuses on the load of CPU and RAM
components to derive how strongly the load scales with the supported link rate.
Since the same SLAs, traffic traces, and minimum and maximum packet lengths
are employed as in the preceding subsection, the settings for the policer, queue
manager, and packet scheduler must be adjusted accordingly. The settings for a
2 MBit link are given in Tab. 9. Since some of the traffic classes specify a fixed
rate in the SLA such as the video and the transaction classes, their share of the
link bandwidth now increases.

Observation: Delay properties:

• None of the simulated configurations shows congestion as long as no voice traf-
fic is fed in. Moreover, all worst-case delays are met again, although the FTP,
HTTP, and video classes have a high amount of yellow-marked traffic.

• With additional voice traffic, the queue manager must drop up to 18% of the
yellow-marked traffic from the FTP classes. The video class no longer keeps its
worst-case delay when video traffic with an average rate of 298 KBit/s is fed in
so that the green traffic profile is not matched any more.

• The maximum delay penalty of small bandwidth - small delay flows caused by
the DRR packet scheduler reduces by a factor of two to three compared with the
10 MBit link settings. The maximum delays experienced in a DRR system are
however still by a factor two to four worse than in the WFQ-based systems.

Resource utilization: The maximum load values experienced by the architecture
blocks in absence of voice traffic are listed in Tab. 10. Since the system is rather
underutilized, only the results for the slowest architecture blocks – ARM CPU
cores and SDRAMs – are given. Compared with the results of the 10 MBit link
in Tab. 8, one recognizes that:

3.3. Results 97

Tab. 9: Simulation settings for a 2 MBit/s link. Policer buckets are described by the burstiness σ

and long-term bounding rate ρ. The WFQ weights Φi are scaled to the interval [0 . . . 1).
The DRR quantum values qi denote the portions of the overall Round-Robin frame.
The worst-case delay for a WFQ-based system is derived by eq. (3.1) assuming no
high-priority voice traffic.

Policer QM Scheduler WFQ
QoS classes buckets (σ, ρ) allocation WFQ DRR wc-delay

[Byte,Bit/s] [Byte] Φi qi [Byte] [ms]

WWW meta-class (150 · 103 , 2 · 106) (160K)
HTTP (14908 , 120 · 103) 17980 0.0606 2880 990
FTP (49939 , 80 · 103) 53011 0.0404 1920 4951

Trans. meta-class (6000 , 5 · 105) (160K)
Transactions (1375 , 128 · 103) 4447 0.06464 3072 92

Media meta-class (10000 , 5 · 105) (160K)
Voice signal (3200 , 64 · 103) 6272 0.03232 1536 403
Video (542 , 128 · 103) 3614 0.06464 3072 40

VPN meta-class (150 · 103 , 106) (160K)
VPN HTTP (14908 , 120 · 103) 17980 0.0606 2880 990
VPN FTP (49939 , 80 · 103) 53011 0.0404 1920 4951
VPN trans. (1375 , 128 · 103) 4447 0.06464 3072 92

Tab. 10: Maximum load of architecture blocks for the 2 MBit/s link. Only the load for the
slowest architecture models are shown, i.e., for ARM CPU cores and SDRAMs.

Scheduler Queue Manager Poli- Prio- Over-
Load [%] MD-SCFQ SCFQ DRR SPFQ CYQ CYQ- CYQ- YQ- cer Queue all

enh. RED Fair
CPU 3.8 1.9 0.2 2.6 1.0 1.0 1.9 4.6 2.8 0.8 7.2
RAM 1.5 1.3 0.1 1.4 5.1 5.1 5.6 6.8 1.1 0.8 7.8

Payload 2.7

• The CPU load for the scheduling components roughly decreases by one third
whereas the RAM load reduces by less than 10%.

• The load caused by the queue manager reduces by 10% to 20%.

• The CPU load remains quite balanced among the different components and the
RAM load is especially caused by the queue manager.

Discussion: Delay properties: The reduction of DRR’s delay penalty is not
caused by DRR itself. Since the reservations of the flows which are penalized
most by DRR – video and transactions – are not changed compared with the
10 MBit link settings, the negative impact of the Round-Robin frame length is
reduced since these flows now reserve a greater share of the link bandwidth.

98 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

The additional aggregated voice traffic is a great burden for the 2 MBit link.
Eight constant bit rate voice sources occupy more than 40% of the link band-
width which is almost as much as the reservation for all green profiles that take
up 43% of the link bandwidth. The transmission of a burst of eight voice pack-
ets takes 4 ms. These bursts occur every 10 ms. Consequently, since the voice
traffic is not regulated by the packet scheduler, the maximum experienced delay
at least doubles for all flows. Even flows are affected that fit well within their
green profile due to the fixed higher priority of voice traffic.

The transmission of a packet with maximum length 1.5 KByte already takes
6 ms. This is already of the same order of magnitude as the delay experienced
by low delay flow classes. Since a transmission cannot be preempted, the max-
imum delay that, for instance, a transaction class suffers is virtually more than
doubled compared with the 10 MBit link.
Resource utilization: The maximum CPU and RAM load values only moder-
ately decrease with the smaller link rate because the load peaks appear after an
idle period when the token buckets of the policer are filled up. Then, traffic may
pass with its peak rate generating relatively high load for the queue manager

ARM load

queue lengths

SDRAM load

accumulated
input traffic

FTP traffic burst

VPN FTP traffic burst

time [s]

[Byte]

[Byte]

x 10
-2

x 104

x 10
-2

x 106

Fig. 30: Excerpt from an execution trace: Load peaks are shown that appear at the beginning of
a busy period when traffic may fill up the queue memory at its peak rate.

3.3. Results 99

and the scheduler. An example from an execution trace is shown in Fig. 30.
Two traffic bursts appear at time 1.35 s and 1.43 s respectively. The queues are
empty beforehand. About one tenth of a second after the beginning of a burst,
the policer begins to limit the incoming traffic to the reserved rate. This is why
the queue lengths then stagnate for the rest of the burst period. After the end of a
burst, the backlog in the corresponding queue can gradually be served. The load
peaks appear at the beginning of the busy period when a burst fills the memory
up at its peak rate until the policer finally limits the incoming traffic.

Conclusion for the non-congested 2 MBit link:

• The supported link rate does not heavily affect the maximum load of the re-
sources since the load peaks are experienced at the input side of the system. To
decrease the influence of the peak rate of incoming traffic, the policer could use
a more complicated traffic profile – for instance a TSpec – that not only bounds
the burstiness but also the peak rate of a flow. This may decrease the pressure
on the queue manager but would in turn rise the load of the policer.

• Eight uncompressed voice sources with fixed highest priority already are a great
burden for the system. Guarantees and stability of the system are jeopardized.

• A non-preemptive transmission of a packet with maximum length may consid-
erably impair the delay properties of a flow. This overhead can be reduced by
fragmentation at the expense of additional packet headers.

3.3.2.5 Simulation results for a 10 MBit link with flooding
With the following simulation runs worst-case configurations are investigated.
The system is stimulated by a flood of very small packets which results in con-
gestion. It is assumed that the system has three incoming links that correspond
to a virtual private network, video sources, and other network traffic. The set-
tings for policer, queue manager, and link scheduler are retained according to
Tab. 7. Traffic traces are assigned to the QoS classes in the following way:

QoS class Trace type (see Tab. 4)
HTTP flooding trace
FTP transactions-like
Transactions transactions-like
Voice signal. Voice signalling
Video flooding trace
VPN HTTP flooding trace
VPN FTP transactions-like
VPN trans. transactions-like

Additionally, aggregated voice traffic is fed in. Since the flooding traffic
takes up all incoming links, the remaining classes are only stimulated by small
bandwidth traces. This traffic therefore is compliant with the green profiles and

100 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

green-marked completely. The flooding traffic can only be bounded to some
extent by the meta-classes and thus consists of a high amount of yellow traffic.
Observation: Delay properties: In Fig. 31, the maximum delays experienced
by the flows for all combinations of link schedulers and queue managers are
shown. The values are scaled to the delays experienced in a system with a MD-
SCFQ scheduler and a fair queue manager. The peak rate of the stimulating
flooding traces is varied from 10 MBit/s over 32 MBit/s to 50 MBit/s. In a
mixed setting, the HTTP class is fed by a 50 MBit/s trace, the video class by
a 32 MBit/s trace, and the VPN HTTP class by a 10 MBit/s trace respectively.
The flooding trace characteristics have been introduced in Tab. 4. The following
description is restricted to relative delays since the absolute delay values do
not reveal any new insights which are specific for the congested system. All
deadlines are met for traffic that completely complies with green profiles. For
instance, the maximum delay experienced by the transactions class is only about
10 ms in a WFQ-based system. This value increases by the factor 2.5 in a DRR
system. The relative delay behavior displayed in Fig. 31 shows the following:

• SCFQ together with a fair queue manager performs as well as the other WFQ-
based systems during times of congestion. This was not the case in the uncon-
gested scenario where delays were worse by up to a factor of three.

• DRR again extremely punishes some of the classes. Moreover, the combination
with a fair queue manager cannot improve this property.

• MD-SCFQ and SPFQ again show virtually equal delay properties.

• The queue managers that do not distinguish per-flow state for yellow traffic –
CYQ, CYQ-enh., and CYQ-RED – show a uniform behavior: one of the queues
that are fed by a flooding source is heavily punished in terms of delay in favor
of another queue that also holds traffic from a flooding source.

Resource utilization: A detailed listing of the maximum load values for differ-
ent architecture blocks derived from simulations with 50 MBit/s flooding input
traces is shown in Tab. 11 and Tab. 12. The former table shows the maximum
load values if the components of the system – policer, queue manager, and link
scheduler – are mapped onto individual CPU and RAM blocks as well as if all
components are mapped onto the same CPU and RAM resources. The latter
table illustrates the maximum load generated by special blocks which imple-
ment dynamic memory allocation and priority queuing as described in Subsec-
tion 3.2.2. Their load is included in the respective component load in Tab. 11.
For the priority queue, we consider two subcases. First, the packet scheduler
SPFQ needs two priority queues opposed to SCFQ and MD-SCFQ that only
require a single priority queue. Secondly, the combination of SPFQ with a fair
queue manager needs a third priority queue. Moreover, the RAM load gener-
ated for payload storage is displayed. The packet payload is stored separately
from parameters and variables of the system. The following can be remarked:

3.3. Results 101

HTT
P

FT
P

Vid
eo

Tr
an

s.

Voi
ce

 s
ig

na
l.

VPN tr
an

s.
VPN F

TP
VPN H

TT
P

HTT
P

FT
P

Vid
eo

Tr
an

s.

Voi
ce

 s
ig

na
l.

VPN tr
an

s.
VPN F

TP
VPN H

TT
P

HTT
P

FT
P

Vid
eo

Tr
an

s.

Voi
ce

 s
ig

na
l.

VPN tr
an

s.
VPN F

TP
VPN H

TT
P

HTT
P

FT
P

Vid
eo

Tr
an

s.

Voi
ce

 s
ig

na
l.

VPN tr
an

s.
VPN F

TP
VPN H

TT
P

S
C

F
Q

D
R

R
S

P
F

Q
M

D
-S

C
F

Q

(reference system)

YQ-Fair CYQ-enh. CYQ CYQ-RED

mixed10 Mbit/s50 Mbit/s32 Mbit/s
peak rate of

flooding traces

Queue Manager

Li
nk

 S
ch

ed
ul

er1

0.5

1.5

2

5

0

10

15

1

0.5

1.5

2

1

0.5

1.5

2

Fig. 31: Maximum delay experienced by the flows at a 10 MBit/s link scaled to the MD-SCFQ
system with a fair queue manager. Horizontally aligned diagrams belong to the same
link scheduler whereas vertically aligned graphs belong to the same queue manager.
The peak rate of the flooding traces (Tab. 4) is varied from 10 MBit/s over 32 MBit/s to
50 MBit/s. In the mixed setting, the HTTP class is fed by a 50 MBit/s trace, the video
class by a 32 MBit/s trace, and the VPN HTTP class by a 10 MBit/s trace respectively.

• The difference in the load caused by DRR and WFQ-based schedulers de-
creases. However, DRR’s load still is roughly one third of SCFQ’s load.

• The system may be overloaded not only if all components are mapped onto
shared resources but also if the components are mapped to separate CPUs and
RAMs. Due to the load generated by the policer, the system cannot be imple-
mented by ARM cores only.

• Maintaining per-flow states for yellow traffic in the queue manager during times

102 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

Tab. 11: Maximum load of architecture blocks for the 10 MBit/s link. The system is flooded by
maximum small packets at 50 MBit/s peak rate.

Scheduler Queue Manager Poli- Over-
Load [%] MD-SCFQ SCFQ DRR SPFQ CYQ CYQ- CYQ- YQ- cer all

enh. RED Fair
CPU blocks

ARM 49.6 20.1 7.4 39.1 19.5 20.6 99.0 153.8 100.8 302.5
SH4 11.9 5.1 4.0 11.5 6.4 6.9 18.8 20.3 32.4 63.9
PPC 3.3 2.0 1.6 3.2 2.6 2.8 6.1 7.8 6.8 17.6

RAM blocks
SDRAM 16.8 4.3 0.8 17.1 58.0 58.0 89.1 93.5 37.3 146.9

SRAM 6.8 1.8 0.3 7.0 23.0 23.0 34.5 37.2 14.9 58.6

Tab. 12: Maximum load of architecture blocks for the 10 MBit/s link. The system is flooded by
small packets at 50 MBit/s peak rate. The load generated by special hardware blocks is
listed. Their load values are included in the load of the respective component in Tab. 11
(besides payload storage).

Load [%] Payload
Priority queue Dynamic memory

SPFQ + YQ-Fair SPFQ only allocation
CPU blocks

ARM – 30.2 5.6 3.3
SH4 – 10.5 2.1 1.0
PPC – 3.4 0.7 0.4

RAM blocks
SDRAM 5.5 33.0 5.3 23.4

SRAM 3.1 13.3 2.1 8.8

of congestion enormously increases the maximum CPU load by a factor of seven
and the RAM load by about one half.

• The queue manager CYQ-RED employs RED on a single yellow queue without
maintaining per-flow state. Nevertheless, CYQ-RED is almost as complex as
the fair queue manager.

• The CPU load is especially determined by the policer and the choice of the
queue manager.

• The RAM load is defined for the most part by the queue manager.

• By using a CPU with a dedicated floating-point unit, the system can be imple-
mented by a single, shared CPU chip.

• One cannot gain much in efficiency in times of congestion by sharing resources.

3.3. Results 103

The maximum load derived for a single, shared CPU and a single, shared RAM
is almost as bad as the sum of the respective load values of distributed resources.

• A 10 MBit/s link does not burden an SDRAM-based payload RAM very much.

• (Not displayed) The maximum load appears again at the beginning of a busy
period when the policer allows traffic to pass with its peak rate.

• (Not displayed) When the peak rate of the flooding traces at the input is reduced
from 50 MBit/s to 10 MBit/s, RAM and CPU load values of the overall system
reduce to one third. In detail, the maximum load caused by the policer decreases
by a factor of five, the QM’s load by a factor of 3.5 to four, and the scheduler’s
load up to a factor of 1.6 respectively.

Discussion: Delay properties: Recall the latency dependencies in Tab. 1.
SCFQ’s worst-case delay bound not only depends on the number of flows shar-
ing the link but also on the maximum packet length. Maximum small packets
may not be the most challenging configuration for SCFQ in terms of timing.
Some additional simulation runs have been performed in order to increase the
impact of this term. The flooding traces with maximum small packets are re-
placed by flooding traces with maximum large packets maintaining peak rates.
Looking at a system with a fair queue manager and an SCFQ scheduler, the
delay properties become moderately worse. The almost ideal relative delay of
one compared with the MD-SCFQ-based system increases to 1.5 for the voice
signalling and the VPN transactions classes. However, this is still one order of
magnitude better than the maximum factor 15 experienced in the DRR-based
system. By using another queue manager than the fair queue manager the dif-
ferences between the WFQ-based systems increasingly vanish.

In order to understand the timing of queue managers during congestion that
do not maintain per-flow state for yellow traffic – i.e. CYQ, CYQ-enh., and
CYQ-RED – one must additionally consider their dropping behavior. Fig. 32
shows drop statistics for combinations of the DRR and MD-SCFQ link sched-
ulers with the four different queue managers. MD-SCFQ represents the WFQ-
based systems that all basically show the same drop amounts. The share of
dropped traffic from yellow-marked packets is shown in dependence on the used
queue manager. The HTTP, VPN HTTP, and Video classes are fed by flooding
traces. Since the meta-class to which HTTP belongs allows the largest amount
of yellow traffic to pass the policer, the fair queue manager deletes most of the
yellow traffic from this class. Note that none of the yellow packets from the
video class must be dropped. This perfect isolation of flows however will van-
ish if a queue manager is employed that does not distinguish per-flow state for
yellow traffic. One sees that the amount of traffic dropped from the VPN HTTP
and video classes increases giving preference to the HTTP class. This effect
will still be somewhat bounded if a WFQ-based link scheduler is employed.
However, the flow isolation will virtually collapse if DRR is used. In the end,
one can state that by using a somewhat unfair queue manager the most greedy

104 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

HTTP VPN HTTP Video

55.2

9.5

48.0

23.8

1.8

45.7

28.4

5.6

48.1

23.8

2.5
10

20

30

40

50

60

MDSCFQ drop statistics:
[%]

CYQ-REDYQ-Fair CYQ-enh. CYQ
0.0

10

20

30

40

50

60 55.0

9.9

47.6

23.6
19.4

54.2

35.5

45.3 47.5

23.422.8

DRR drop statistics:
[%]

CYQ-REDYQ-Fair CYQ-enh. CYQ

0.0

Fig. 32: Drop statistics for a congested 10 MBit/s link: the share of yellow traffic dropped by
the queue managers is shown.

traffic class experiences longer maximum delays because less packets have been
dropped from this class compared with a system that uses a fair queue manager.
More packets must be dropped from other classes so that – as a side-effect – the
remaining backlog of these classes may see smaller maximum delays.
Resource utilization: The fair queue manager employs a priority queue in which
the flows are sorted according to their relative overload by yellow traffic. If a
packet is dropped from a flow with the largest overload, its relative overload
value must be dequeued from the priority queue, recalculated, and enqueued
again. Thus, a single packet drop initiates several priority queue operations.
This is why the impact of the priority queue used in the fair queue manager
has a greater impact on the load than the priority queues in the link scheduler
in Tab. 12. One further setting is investigated to explore whether the high im-
pact of the fair queue manager on the RAM and CPU load due to packet drops
can possibly be even higher. The system is again flooded by maximum small
packets. After the shared memory has been filled up with small packets, the
input traffic abruptly changes from maximum small to maximum large pack-
ets (1536 Byte). In this way, the enqueuing of a single maximum large packet
may trigger the discard of more than 30 small packets. The resulting overall
load of the system is displayed in Fig. 33. The length of the packets abruptly

3.3. Results 105

changes after three seconds. However, the overall load decreases. Moreover,
the per-component maximum load values do not increase either (not displayed).
Working with maximum small packets therefore seems to be the right way to
investigate the worst-case utilization of the system.

ARM load

SDRAM load

time [s]

Fig. 33: Load for the flooded 10 MBit/s link. The MD-SCFQ scheduler and the fair queue
manager are used. The system is stimulated by small packets at a peak rate of 50 MBit/s
for three seconds. Then, the packet size changes to the maximum length while the peak
rate is maintained.

The load caused by the fair queue manager could be reduced in many ways.
The current calculation of the relative overload of a flow is based on floating-
point computations. Moreover, one could apply an heuristic such as to only
determine the flow with the highest overload once per packet arrival and not
at every packet drop event. Besides exchanging floating-point computations by
fixed-point or integer ones, we do not see much improvement potential for the
RED-based queue manager. The RED implementation already includes most of
the assumptions of the original paper ([54]) such as table-based random num-
bers and power-of-two approximations of exponential functions. Thus, the cal-
culation of the average queue length required by RED generates considerable
overhead close to the overhead experienced with the fair queue manager that
maintains per-flow state for yellow traffic.

The high load values encountered for the policer in this study do not seem
to be problematic for an actual implementation. On the one hand, token buckets
can be easily implemented by programmable counters in hardware. On the
other hand, the side-effects involved by replacing floating-point with another
data type can best of all be estimated for the policer’s computations.

Conclusion for the congested 10 MBit link:

• In times of congestion handling small packets, SCFQ performs just as well as

106 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

the other WFQ-based schedulers at half the load.

• DRR shows the advantage of low complexity. However, DRR’s timing behav-
ior is by far the worst one among all investigated scheduling algorithms. A
sophisticated queue manager cannot ease DRR’s bad timing.

• It is not worth implementing RED to avoid per-flow state distinction for yellow
traffic. RED’s complexity is already close to the complexity of a fair queue
manager. However, by using the proposed fair queue manager, a better separa-
tion of tasks is achieved since packets are only dropped on arrival at the policer
and not on arrival at the queue manager. The queue manager only pushes al-
ready stored packets out when congestion appears. In this way, we avoid to
immediately drop packets which have just been classified and routed.

3.3.2.6 Simulation results for a 2 MBit link with flooding
The rate of the outgoing link is reduced to 2 MBit/s. The settings for po-
licer, queue manager, and link scheduler are retained according to the preceding
2 MBit link experiment in Tab. 9. The assignment of flooding traces to QoS
classes is taken over from the preceding experiment with the 10 MBit link.
Since the analysis of the timing does not show any new insights we focus on the
maximum load values derived in this experiment.
Observation: In Tab. 13 and Tab. 14, the load values derived for a flooded
2 MBit link are listed. The former table shows the maximum load values expe-
rienced by the policer, different queue managers, and schedulers as well as by
the overall system. The latter table focuses on maximum load values generated
by special building blocks for priority queues and dynamic memory manage-
ment as well as for payload storage. Compared with the preceding results for a

Tab. 13: Maximum load of architecture blocks for the 2 MBit/s link. The system is flooded by
maximum small packets at 50 MBit/s peak rate.

Scheduler Queue Manager Poli- Over-
Load [%] MD-SCFQ SCFQ DRR SPFQ CYQ CYQ- CYQ- YQ- cer all

enh. RED Fair
CPU blocks

ARM 25.9 8.9 6.4 23.7 18.7 19.6 252.0 243.9 100.8 372.0
SH4 8.4 4.0 3.5 8.3 6.0 6.6 29.2 34.5 32.4 72.8
PPC 2.3 1.6 1.4 2.3 2.4 2.6 10.1 13.5 6.8 22.0

RAM blocks
SDRAM 10.8 1.4 0.2 10.9 54.5 54.5 90.7 163.5 37.3 204.4

SRAM 4.4 0.6 0.1 4.4 21.6 21.6 35.1 63.6 14.9 80.1

flooded 10 MBit link, the following can be observed:

• The maximum RAM and CPU load generated by schedulers roughly reduces by
one third to one half. SCFQ’s load comes close to the load generated by DRR.

3.3. Results 107

Tab. 14: Maximum load of architecture blocks for the 2 MBit/s link. The system is flooded by
small packets at 50 MBit/s peak rate. The load generated by special hardware blocks is
listed. Their load values are included in the load of the respective component in Tab. 13
(besides payload storage).

Load [%] Payload
Priority queue Dynamic memory

SPFQ + YQ-Fair SPFQ only allocation
CPU blocks

ARM – 39.9 1.7 5.0
SH4 – 13.5 0.7 1.5
PPC – 4.4 0.2 0.6

RAM blocks
SDRAM 5.4 48.3 1.6 35.7

SRAM 3.0 19.3 0.7 13.5

• The maximum load generated by the fair and RED-based queue managers in-
creases by more than one half whereas the load for the simple queue managers
remains the same.

• (Not displayed) When the peak rate of the flooding traces at the input is reduced
from 50 MBit/s to 10 MBit/s, RAM and CPU load values of the overall system
are again reduced by a factor of three.

Discussion: Again, the maximum load values are experienced at the beginning
of a simulation run when the policer lets incoming traffic pass at its peak rate.
However, the situation shows a little difference compared with the 10 MBit set-
tings. The initialization phase for the flooded 2 MBit link with a fair queue
manager is displayed in Fig. 34. The resolution of the averaging interval has
been increased from 1 ms to 0.1 ms to better show the effects. This is why
the load values in Fig. 34 are slightly higher than the corresponding values in
Tab. 13. Approximately after 13 ms, the queue manager must start to drop
packets before the policer finally bounds the incoming traffic two milliseconds
later. Within this interval when the queue manager has to cope with the in-
coming traffic at the peak rate, the maximum load values are experienced. This
was different for the 10 MBit link where the policer was already bounding the
incoming traffic when the queue manager started to drop packets.

Conclusion for the congested 2 MBit link:

• The maximum load is generated at the beginning of a busy period when the
policer lets traffic pass at its peak rate and the queue manager is forced to drop
packets. The influence of a fair queue manager on the system’s load can be
reduced by spending more shared memory and by bounding the peak rate at the
policer. If more memory is available, the policer will bound the incoming traffic

108 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

VPN HTTP / HTTP
(curves overlap)

ARM load

SDRAM load

queue lengths

accumulated traffic
dropped by policer

accumulated traffic
dropped by QM

time x 10 [s]
-2

[Byte]

[Byte]

Video

VPN HTTP
HTTP

HTTP

VPN HTTP

Video

[Byte]
x 104

x 104

x 105

Fig. 34: Load in the initialization phase of the system. The system is flooded by small packets
and the link supports a rate of 2 MBit/s. The queue manager must drop packets before
the policer limits the incoming traffic.

before the queue manager starts to drop packets. Moreover, it may no longer
be required to use a fair queue manager since a queue manager with a central
yellow queue performs well enough for coping with rare dropping events.

• RAM and CPU load values are especially determined by the choice of the queue
manager. The overhead for maintaining per-flow state for yellow traffic is con-
siderably high when congestion appears.

3.3.2.7 Looking at fairness
The preceding experiments have looked at the timing behavior and the maxi-
mum load values of the system. This subsection focuses on the fairness proper-
ties of the overall system which is influenced by the choice of the queue manager

3.3. Results 109

and the link scheduler. We use the concept of relative service as it is used for
the fairness index by Golestani in Def. 7 to assess the short-time unfairness of a
system. The relative service Wi(τ1 ,τ2)

ri
for a flow i is defined by the served amount

of flow i’s traffic Wi(τ1, τ2) in the interval (τ1, τ2] and the reserved rate ri.
Fairness of the link scheduler: The simulation runs use a 2 MBit/s link. Most
of the settings from Tab. 9 are maintained. In order to increase the effect of un-
fairness, the reserved rate for the video class is reduced to 20 KBit and for the
VPN HTTP class to 60 KBit. The settings for all components are adjusted ac-
cordingly. The fairness index F by Golestani (Def. 7 and Tab. 1) then becomes
0.78 s for SCFQ, 1.15 s for MD-SCFQ, 1.16 s for SPFQ, and 1.73 s for DRR.
That means, looking at any two backlogged flows, one flow should not be ahead
of the other flow by more than F seconds in terms of received service.

The FTP, HTTP, VPN FTP, VPN HTTP, and video classes are fed by FTP
traces with characteristics as listed in Tab. 4. No congestion appears, i.e., no
packets must be dropped by the queue manager. Thus, solely the link scheduler
determines differences in service. In Fig. 35, the relative services for these five
backlogged flows are displayed for a backlog period of approx. 0.4 s for three
different link schedulers. The accounting resets afterwards because the set of
backlogged flows changes. Since the plots for MD-SCFQ and SPFQ are very
similar, only the plot for SPFQ is included in Fig. 35. The average slope of
all curves is above one for all flows. Therefore, every flow at least receives its
minimum reserved share of the link rate. The best fairness is shown by SCFQ
with a variance of only 0.1 s to 0.2 s in the relative services. SPFQ’s results are
slightly worse than the results for SCFQ but still very close to SCFQ’s fairness.
DRR however shows a variance in the relative services which is three times
worse than in SPFQ’s case. The experienced unfairness however is far below the
bounds given by Golestani’s fairness index F for all four schedulers. Since the
fairness for WFQ-based systems only depends on the maximum packet length
and the smallest reservable rate, the unfairness will not necessarily increase if
more flows share the link. Opposed to that, a DRR-based system will show
decreased fairness in any case if more flows are backlogged since the unfairness
of DRR is directly coupled with the Round-Robin frame length.
Fairness of the queue manager: In order to investigate the influence of the
queue manager on the overall fairness of the system, we let the link run into
congestion by reducing the available memory space and look at the behavior
of different queue managers. Due to limited shared memory, for every two
transmitted packets at least one packet must be dropped. In Fig. 36, the rela-
tive service for a SCFQ scheduler combined with two different queue managers
is shown. The fair queue manager uses per-flow state for yellow packets and
therefore drops packets in a fair manner. The queue manager with a central
yellow queue does not distinguish per-flow state for yellow service but drops
yellow packets in LIFO order of their arrival. Fig. 36 reveals that the choice
of the queue manager does not influence the fair distribution of service among
backlogged flows by the scheduler. The queue manager may only shorten or
lengthen the busy period of a flow by affecting the backlog due to loss.

110 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

0.0

0.0

0.0

0.4

0.4

0.4

0.8

0.8

0.8

1.2

1.2

1.2

1.6

1.6

1.6

2.0

2.0

2.0

1.60

1.60

1.60

1.70

1.70

1.70

1.80

1.80

1.80

1.90

1.90

1.90

2.00

2.00

2.00

Wi
ri
[s]

service
relative

Wi
ri
[s]

relative
service

Wi
ri
[s]

relative
service

time [s]

SCFQ

SPFQ

DRR

Fig. 35: Relative service for five flows backlogged for approx. 0.4 s at an uncongested 2 MBit/s
link. The set of backlogged flows changes afterwards so that the accounting resets.
Three different link schedulers are investigated. The relative service Wi

ri
for a flow i is

defined by the served amount of flow i’s traffic Wi and the reserved rate ri.

3.3. Results 111

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

1.2

1.2

1.4

1.4

1.6

1.6

1.8

1.8

2.0

2.0

2.2

2.2

2.4

2.4

0.00

0.00

0.05

0.05

0.10

0.10

0.15

0.15

0.20

0.20

0.25

0.25

0.30

0.30

0.35

0.35

0.40

0.40

SCFQ and queue manager with
central yellow queue

SCFQ and fair queue manager
W i
r i

relative
service

[s]

W i
r i

relative
service

[s]

time [s]

Fig. 36: Relative service for five flows backlogged for approx. 0.4 s at a congested 2 MBit/s
link. Two queue managers combined with an SCFQ link scheduler are investigated.
The relative service Wi

ri
for a flow i is defined by the served amount of flow i’s traffic

Wi and the reserved rate ri.

Conclusion for the fairness of a system: The fair distribution of service ac-
cording to the fairness index introduced by Golestani (Def. 7) is only determined
by the choice of the link scheduler. The queue manager has no impact on the
characteristics of the sharing of the link service, but may only shorten the pe-
riod a flow is backlogged by dropping packets to a greater extent. The choice
of the queue manager in turn defines the fair push-out of already stored packets
and thus influences the loss rate experienced by a flow. However, a link sched-
uler that does not provide the tightest delay bounds will potentially increase the

112 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

probability to experience loss if the amount of shared memory is not increased
accordingly (recall Fig. 32).

3.3.3 Conclusion of the design space exploration

The description of the simulation results is concluded by replying to the ques-
tions which have been put at the beginning of the discussion. For our system
configuration and the number and kind of supported QoS classes we can state:

• QoS performance: Since our provision of Quality of Service (QoS) for guaran-
teed (green) service is based on resource reservation and schedulability tests, the
system is always capable of keeping delay guarantees without experiencing any
loss. The choice of a scheduler and a queue manager thus influences the num-
ber and the type of different demands of flows that can be supported as well as
the way surplus resources are shared. A Deficit Round-Robin (DRR) scheduler
cannot support the same variety of delay guarantees as Weighted Fair Queueing
(WFQ)-based schedulers can. Low bandwidth flows receive considerably worse
service in terms of delay in a DRR-based system than in a WFQ-based system.

• Distribution of CPU and RAM load: The CPU load will be balanced among
policer, queue manager, and scheduler if a WFQ-based scheduler is chosen to-
gether with a simple queue manager that only uses a central queue for yellow-
marked traffic. The CPU load will be dominated by the queue manager if a
fair queue manager is employed which distinguishes per-flow state for yellow-
marked traffic. The share of the CPU load caused by the link scheduler can
considerably be reduced by using a Deficit Round-Robin based scheduler. The
load of the RAM is determined to a great extent by the queue manager.

• Scaling of the load with the supported link rate: The maximum load experi-
enced by the policer and the queue manager does not depend on the supported
link rate but rather on the characteristics of the incoming traffic. The maximum
load caused by the link scheduler may potentially double for CPU and RAM
when the supported link speed is increased from 2 MBit/s by a factor of five.
Opposed to that, the load caused by the overall system triples when the peak
rate of incoming greedy traffic is increased by a factor of five. That means, the
rate of the access link rather plays a secondary role for the determination of the
worst-case load of the system.

• Worst-case scenario: The highest load is generated at the beginning of a busy
period when the policer lets traffic pass at its peak rate and the queue manager is
forced to drop packets. The effect becomes stronger with smaller packet sizes.

• Queue manager fairness: The queue manager is responsible for the fair push-
out of packets from the shared memory during times of congestion and thus
decides the experienced loss rate of a flow. The dropping behavior of the queue
manager however does not affect the properties of the fair sharing of service
defined by the link scheduler. It is not worthwhile to afford a per-flow distinction

3.3. Results 113

for yellow-marked traffic since the overall role of the queue manager in coping
with congestion can be reduced by getting the system more shared memory.
That means, the overhead for avoiding congestion by the policer is strictly less
than the overhead of recovering from congestion by the queue manager.

• DRR vs. WFQ timing behavior comparison: Although only a small number
of QoS classes are supported, the delay penalty imposed by DRR can be con-
siderably large and in addition increases the likelihood of loss experienced by
a flow. Therefore, our access link scenario already shows the usefulness of a
WFQ-based scheduler for preserving the QoS of a small number of classes.

• RED vs. Fair queue manager complexity comparison: The overhead for main-
taining the average queue length to apply Random Early Detection (RED [54])
congestion avoidance is almost as high as for supporting per-flow distinction
for congestion recovery. Since congestion avoidance is performed by the po-
licer anyway, implementing RED is therefore not worthwhile from a complexity
point of view.

• Performance bottle-necks: In the current state of development, the policer and
queue managers based on RED or per-flow distinction for yellow traffic cannot
be implemented on a simple ARM CPU core. If a CPU with a floating-point
unit cannot be used but the support for per-flow distinction or RED is manda-
tory, the complexity must be decreased by reducing the size and kind of the
data type or by applying heuristics to determine the longest queue and the av-
erage queue length respectively. If a CPU with a floating-point unit was used,
the whole system could be implemented on a single CPU core. Due to its sim-
plicity, the policer anyway is a candidate for a hardware implementation with
programmable counters.

The same statements accordingly apply to the required RAM resources. The
more advanced queue managers cannot be implemented based on SDRAM tech-
nology. If however SRAM technology was utilized, parameters and variables
for all components of the system could be mapped onto a single SRAM area.
If a simple queue manager is implemented and SDRAM is used for parameters
and variables, separate memories must be afforded for the queue manager and
the remaining components of the system.

The results for certain building blocks to implement priority queues and dy-
namic memory allocation show that their acceleration by special hardware
blocks would not affect the overall system speed sufficiently to be a worthwhile
investment since their share in the overall load is too low.

• Influence of high priority voice traffic: Voice traffic should carefully be limited.
A tolerable share seems to be 10% of the link bandwidth. A higher share poten-
tially jeopardizes the teamwork of policer, queue manager, and link scheduler
to provide a reliable service without bursts of lost or transmitted packets.

114 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

• Trading timing behavior off for complexity and fairness: A configuration with
Deficit Round-Robin (DRR) and a queue manager with a central queue for yel-
low traffic clearly shows the lowest complexity but the worst timing and fair-
ness. For the 2 MBit link however, Self-Clocked Fair Queueing (SCFQ) already
comes close to DRR in terms of caused load. Due to the better timing and fair-
ness behavior of SCFQ, it should be preferred as link scheduler for that system.
If guarantees for tight deadlines are a major concern, a Weighted Fair Queue-
ing (WFQ)-based scheduler is mandatory. Since the timing behavior of Starting
Potential-based Fair Queueing (SPFQ) and Minimum Delay Self-Clocked Fair
Queueing (MD-SCFQ) is very similar, one should choose the service discipline
with lower complexity. For our configuration that would be SPFQ. Moreover,
MD-SCFQ and SPFQ’s difference in short-time fairness compared with SCFQ
is probably of no practical significance. As discussed before, it is not worth-
while to implement a fair queue manager since its importance can be decreased
by spending more payload memory and by adjusting the policer. In conclusion,
we encourage the use of a WFQ-based link scheduler although the number of
classes to support is rather small. The best timing for our purposes is then
provided by SPFQ whereas the lowest complexity is offered by SCFQ. Both
service disciplines provide almost perfect fair sharing of surplus bandwidth.

As a result we suggest the following System-on-a-Chip solution in Fig. 37
to implement the system consisting of a policer, a queue manager, and a WFQ-
based link scheduler in its current form without any further optimizations of
algorithms or data types. We use a central CPU core that must have a ded-
icated floating-point unit, two separate on-chip memory areas which may be
based on different technologies, and an off-chip payload memory. If the three

256 KByte

context DRAM for
free lists and queues

context SRAM
16 KByte

3 MByte
Payload & payload freelist DRAM

floating-point unit
CPU core with

M
em

 C
trl

M
em

 C
trl

Mem Ctrl

Fig. 37: Suggested implementation of the packet processor based on the assumption that algo-
rithms and data types are not optimized further.

required memory controllers are not integrated into the CPU, they will share a
common front-side bus to the CPU as sketched in the figure. This is suitable

3.4. Related Work 115

since the load values derived from the simulations have been added to dimen-
sion the RAM resources. That means, all accesses of the RAMs can be per-
formed strictly sequentially without overloading the architecture. As discussed
in subsection 3.3.2.2, the performance models of algorithms cannot provide any
precise estimates of the required code memory but we believe that an additional
64 KByte memory segment should be more than enough to implement policing,
queue management, and link scheduling. Whether this code segment can be
mapped onto payload or context memory cannot be answered at this place since
the required throughput is not known.

3.4 Related Work
Architectures of current network processors: The number and kind of tasks
supported by network processors of different manufacturers vary greatly. The
only common property seems to be that network processors are targeted on the
acceleration of packet processing tasks somewhere above the physical layer of a
network so that they can be distinguished from integrated switching and routing
solutions. However, popular “stars” in the universe of packet processing tasks
can be found which include header parsing, classification and routing, traffic
reshaping as well as queuing. Packet scheduling often is not part of a network
processor. Depending on the field of application and the place in the network
where the processor will be used a diversity of architectures is available.

• Low bandwidth communications without QoS distinction in hardware: In the
same way a general CPU core becomes an embedded CPU by adding spe-
cial purpose blocks and a number of I/O interfaces to cope with sensor signals
and interrupts, a general CPU is converted to a network processor by adding
hardware blocks, for instance, that take over Ethernet medium access as well
as packet segmentation and reassembly. A network processor can be consid-
ered to be a special case of an embedded processor. Examples are NetSilicon’s
NET processor family, Virata’s communication processors, Intel’s IXP225 and
Conexant’s CX82100 which are all based on ARM CPU cores. An interesting
technology platform for the implementation of network processors with some
dedicated functions may be the combination of a CPU core, a memory con-
troller, and an array of reconfigurable logic or processing elements offered by
Tricend’s A7 or Chameleon Systems’ CS2000 System-on-a-Chip designs.

• Medium bandwidth – fast Ethernet to rates of one GBit/s: The simplest ap-
proach is to use a faster general CPU core. Galileo Technology’s Discovery
product line offers a variety of MIPS- or PowerPC-based network processors.
Another examples is Hitachi’s SH7615. The CPU cores can be augmented with
chips sets – ASICs that accelerate special network-related functions. MMC
Networks’ AnyFlow line of chip sets can speed up classification, routing, per-
flow queuing, and scheduling. ASICs specializing on classification and partly

116 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

on header parsing and modification are PMC-Sierra’s PM2329 ClassiPI, Intel’s
IXE100, and Solidum’s PAX.port 1100. Chips that are solely responsible for
encryption are offered by Chrysalis-ITS and Broadcom.

• High bandwidth: In order to sustain bandwidths beyond one GBit/s the ex-
ploitation of parallelism becomes more and more important. The following
developments can be observed:

– Multi-processing: Several CPU cores are employed that can be grouped
in different ways. A CPU may exclusively be allocated to a particular
packet processing task. Several CPUs then form a pipeline and packets
are handed from processor to processor. EZchip Technologies’ TOPcore
uses this approach. Four processors in a chain support classification and
policing. Scalability is preserved by extending the system in a superscalar
way. Another approach is to assign a CPU to an outgoing link or to a set
of flows. In this case, the CPU is responsible to perform all packet pro-
cessing tasks for that link or that set of flows. This binding of tasks to
processors is especially attractive since the communication between pro-
cessors is minimized. Data dependencies among packet processing tasks
are usually caused by packets from the same flow or packets sharing an
outgoing link. CPort’s C-5 Digital Communications Processor (DCP) uses
16 MIPS-based CPU cores. These CPUs can be assigned to flows or whole
links so that they perform all tasks that come up with the packets. Alter-
natively, the CPUs can be arranged as a pipeline of processors. Intel’s
IXP1200 uses six RISC CPU cores – so-called microengines – that can
individually be assigned to tasks. A superordinate StrongARM CPU core
is responsible for managing the workload of the microengines and can be
used for processing as well. In IBM’s PowerNP NP4GS3 one can find
16 so-called picocode engines that are optimized for 32 Bit bit-wise ALU
operations. Packets are individually assigned to processors by a dispatch
unit. There additionally is a superordinate PowerPC CPU core.

– RAM diversity: All chips of this class have in common that they use a vari-
ety of RAM areas and types. The CPU cores have their own local memory
to store parameters and variables. Larger data sets such as routing tables
may be stored in off-chip SRAM. Payload is redirected to DRAM-based
memory. That means, a packet processor for high bandwidths usually em-
ploys several types of memory and corresponding controllers.

– Several thread contexts: Since the RAM resources usually are the perfor-
mance bottle-neck of a network processor, the CPUs support fast context
switches and multiple threads running quasi-concurrently by large register
sets and several program counters. In this way, the penalty introduced by
threads waiting for RAM resources can partly be hidden by delegating the
CPU to other threads. In Intel’s IXP1200, a microengine supports four
threads. A channel processor in CPort’s DCP also supports four threads.
A picocode engine in IBM’s PowerNP maintains up to two threads.

3.4. Related Work 117

– Special hardware units: Although the discussed network processors of-
fer a high number of CPU cores, they additionally employ dedicated pro-
cessing units that are optimized for certain tasks and shared by the CPU
cores. CPort’s C-5 uses special hardware blocks for queuing and forward-
ing. Intel’s IXP1200 employs a special unit to generate hash keys. Almost
all general packet processing tasks are supported by hardware blocks in
IBM’s PowerNP including parsing, classification and forwarding, polic-
ing, queuing, and link scheduling.

In the end, all network processors use a general-purpose CPU to some extent.
This allows to adapt to changes of protocol and other networking standards.
Mature software development tools can partly be reused which not only shortens
time-to-market but also increases time-in-market periods.
Issues in current research: Only few papers about network processors are
available so far. Most of the papers are restricted to a comparison and analysis
of architecture or technology issues without any statements about practical per-
formance. A survey of currently available network processors and their appli-
cation areas can be found in [60, 38]. In [61], CPort’s Digital Communications
processor is introduced. Issues of network processors for fast backbones are
discussed in [26]. In particular, a heuristic is presented which can be used to
balance the load of CPU cores within a multi-processor system in which flows
are assigned to CPUs and a CPU performs all packet processing tasks required
for that flow. In [118], beginning with an ARM CPU core, new instructions
and extensions to the CPU are introduced based on a static analysis of tasks a
network processor has to perform. The new instructions support unaligned data
accesses and bit-wise operations to better cope with streams. The execution of
loops and branches is accelerated to achieve higher performance for control-
driven tasks. A fast task switch is implemented for at most four tasks. The
processor is targeted on low bandwidth applications of some MBytes/s. The
paper does not present any performance investigations. In [37], a MIPS-based
CPU is enhanced with fast interrupt handling, with variable-size data move-
ments from interfaces to the RAM, and with zero-overhead context switches.
The usefulness of the approach is shown by simulation of a segmentation and
reassembly benchmark. A technology design study is presented in [106] to show
how dynamically reconfigurable logic can be used to implement certain func-
tionality of a network processor to find a reasonable trade-off between hardware
utilization, speed, and adaptability to particular processing needs of flows. The
performance evaluation of Intel’s IXP1200 network processor in [144] gives
an insight into the problem to make full use of a network multiprocessor that
contains shared resources. The overhead of dynamically allocating tasks to mi-
croengines has been avoided by applying a static allocation scheme. In this way
however, microengines can only be utilized to two third of their full capacity.
Moreover, the evaluation platform will be limited by RAM speed if the sys-
tem is flooded by small packets. The influence of the CPU architecture on the
processing speed of software implementations for forwarding, encryption, and

118 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

authentication is investigated in [39]. In particular, it is pointed out how super-
scalar architectures, multi-threaded extensions, and multi-processor setups as
well as combinations of these features have an impact on the packet process-
ing speed of the system. The simulation results underpin why multi-threaded
multi-processor systems are so popular for high bandwidth network processors.
Standardization in progress: Different committees have been founded to fa-
cilitate the design of a switch or a router based on network processors from dif-
ferent manufacturers and to enable the reuse of hard- and software components.
The Common Switch Interface (CSIX) forum is responsible for the definition
of hardware interfaces between network processors and a switch fabric as well
as between different network processors. The Common Programming Interface
(CPIX) forum’s aim is to define standardized application programming inter-
faces (APIs) between network processors and other hardware and software enti-
ties. Finally, the Network Processing Forum (NPF) wants to define standardized
benchmarks and test cases to ease objective comparisons. The different working
groups can be found at [1]. Independently of the NPF, a first suggestion for a
set of software kernels that can be used as a benchmark for network processors
used at access networks is presented in [163].

3.5 Summary

The concept of a multi-provider/multi-service access network has been intro-
duced in this chapter. We have suggested a premium service with guaranteed
lossless transmission and delay bounds for individual flows or flow aggregates.
The service will gracefully be degraded by weakening delay bounds and intro-
ducing loss if the customer’s traffic exceeds an agreed traffic profile for pre-
mium service. In this way, the advantages of IntServ and DiffServ have been
combined. We have discussed how the suggested service model influences the
choice of algorithms for policing, queue management and link scheduling.

A thorough design space exploration for algorithms and architectures aimed
at network processors supporting multi-service access networks has been per-
formed. The main results from exhaustive simulation runs can be summarized
as follows:

• Even if a small number of classes are supported, Weighted Fair Queueing-based
systems will show significantly better delay properties than Deficit Round-
Robin-based systems.

• Worst-case load is generated in the initialization phase of the system after an
idle period when traffic passes the policer at its peak rate.

• The CPU load is rather balanced among policer, queue manager, and scheduler
whereas the RAM load is determined by the queue manager for the most part.

3.5. Summary 119

• Load peaks will be decreased if packets are preventively discarded at arrival at
the policer rather than dropped by the queue manager to cope with congestion.

• An implementation of the network processor without any further optimization
of the algorithms would only require a single CPU core but several memory
areas. The load generated by priority queues and dynamic memory allocation is
too small to justify a dedicated hardware implementation.

For the first time, the resource utilization of different hardware configura-
tions has been evaluated concurrently with an investigation of the interplay of
various combinations of policing, queue management, and link scheduling to
preserve Quality of Service. As a result, reasonable trade-offs among com-
plexity, delay, and fairness have been explored for network processors aimed at
access networks. A preliminary study how the presented multi-service access
node can be augmented with support for a line-like shared-medium distribution
network can be found in [69]. The QoS distinction mechanism described therein
is used as a case-study in [154].

120 Chapter 3. IP packet processing: Algorithm-architecture trade-offs

4
Exploitation of RAM resources

The potential speedup for quality of service networking support by using a
dedicated network processor mainly depends on two factors: the acceleration
of network-specific computations and the exploitation of available RAM re-
sources. The computation part is discussed in Chapter 3. The influence of the
RAM part is the main focus of this chapter. A network processor has to man-
age a diversity of data structures such as packets that must be buffered, context
information that is used to decide to which outgoing link a packet should be for-
warded, and quality of service-specific parameters and values. For most of the
data structures it is mandatory that a network processor is able to access them
fast enough to process packets at “wire speed” of the supported network. This
is why almost all commercially available network processors have to employ a
multitude of different RAM areas and types – as it is shown in the related work
section of Chapter 3. Moreover, the characteristics of packet processing tasks
imply that caches either are prohibitive or cannot be exploited due to the lack of
access locality, see Chapter 2. Therefore, great significance must be attached to
the exploitation of RAM resources and this chapter is devoted to this topic.

This chapter will answer the following questions:

• There is a diversity of different RAM types. What are their specific characteris-
tics and for which application areas are they well suited?

• What is the impact of the memory controller on the performance of the overall
system? A memory controller is placed between a computing core and RAMs
and can thus take advantage of different operating modes of the memory chips
to shorten memory access schedules. Its complexity is manageable so that
application-specific controllers could be integrated into a network processor.

122 Chapter 4. Exploitation of RAM resources

• What does the performance of a current DRAM influence more, the throughput
of the interface to a processor or the delay properties of the underlying memory
core? Is it therefore worthwhile to use a RAM with a high throughput interface?

Two models of different resolution are elaborated to evaluate RAMs and
memory controllers in detail. First, a detailed model of a controller and a dy-
namic RAM chip is developed to document, analyze, and optimize the inter-
play of controller and memory for typical memory access patterns. This step is
mandatory since the architecture and the functionality – such as state machines
– are not documented by manufacturers. The memory controller is therefore
reverse-engineered from RAM data sheets. The insights gained by the refine-
ment of the model are then used to combine an abstract performance model of
the controller and suitable RAMs with a mature CPU simulator so that whole
benchmarks can be applied to evaluate the performance of a memory subsystem.
We are hence able to show for the first time, how heavily the overall comput-
ing performance of an embedded system actually depends on the exploitation
of RAM resources by a memory controller. Moreover, by augmenting the con-
troller with more resources than there are in currently available controllers we
assess the potential to make full use of recently emerged RAM features.

Why RAMs are a potential performance bottle-neck of network processors
is analyzed in the next section by describing the architecture and properties of
dynamic and static memories. Section 4.2 emphasizes why the memory con-
troller is the key component to speed up memory accesses. Section 4.3 presents
a detailed performance model of a memory subsystem described by a visual
formalism to analyze and optimize the interplay of controller and memory. Sec-
tion 4.4 continues with a design space exploration of the performance of a mem-
ory subsystem by varying the type of used DRAM, the features of the memory
controller, and the application which is processed by the memory subsystem.
The chapter concludes with a discussion of related work.

4.1 Performance bottle-neck of RAMs

Memory chips have become the main performance bottle-neck of computing
systems [18, 167, 24]. Chip manufacturers try to bypass the weak performance
of the asynchronous memory core by designing complex memory interfaces
which isolate the behavior of the slow memory core from the fast interconnec-
tions between the memory chip and the memory controller. This leads to a
variety of synchronous interface implementations which essentially are based
on the same memory core technology and functionality.

In this section it is shown why the delay caused by read and write accesses
of dynamic RAMs (DRAMs) depends on the state of the RAM, the placement
of data within the RAM, and the order of the accesses. Contrary to that, access
delays caused by static RAMs (SRAMs) may only depend on the type of access

4.1. Performance bottle-neck of RAMs 123

– read or write. This section is concluded by an overview of available RAM
types. A more thorough discussion can be found in [66]. Only the most recent
RAMs with a synchronous interface are considered in this section.

4.1.1 Organization of DRAMs

A certain amount of data, typically four to 32 Bit, forms the smallest accessible
piece of information that can be addressed. Memory cells are arranged in a two-
dimensional array. An arbitrary access therefore is a two-step process. The pin
count of a RAM chip is reduced by successively transferring the row and the
column addresses to the RAM. In this manner, a whole row within a memory
array is selected first and a column is chosen thereafter. In the context of DRAM
organization, a row of an internal memory array is often called a memory page.
After a row has been addressed, the contents of that row are held by the so-called
sense amplifiers. Thus, the sense-amplifiers can be seen as an internal single row
cache of the corresponding memory array. Accesses to that particular row are
fast and just need the column access time. Accessing another row however is
slow, since the current row in the sense-amplifiers must always be precharged
before another row of the array can be addressed. A memory array together
with decoders and sense amplifiers is usually called a memory bank. A RAM
chip may consist of several memory banks. On the one hand, each memory
bank within a memory chip has its own row of sense amplifiers. On the other
hand, the banks within the same chip must share input and output pins and
buffers. Moreover, recent DRAMs have pipelined synchronous interfaces which
isolate the memory arrays from memory bus signals. Read and write accesses
to consecutive addresses are thus usually performed in burst operation mode.

A detailed description of the organization of RAMs with the main focus on
electronical properties and semiconductor structures as well as the development
history of dynamic RAMs can be found in [5, 45].

4.1.1.1 DRAM operation

• Read accesses: If the CPU wants to read the contents at a particular address in
the RAM, the memory controller will at first have to transfer the bank number
and the row address of that location to the RAM. The RAM chip now decodes
the row address and transfers the information of that row to the sense amplifiers.
This first phase of a read access is often called the activation of a memory row.
In order to select a particular column entry within the activated row, the memory
controller now has to supply the according column address. After decoding, the
RAM is able to drive the data bus with the contents of the sense amplifiers for
that column entry. Subsequent column entries will be transferred through the
data bus during consecutive clock cycles without any further control signals of
the memory controller if a burst read instruction is used. The column address is
automatically incremented by the RAM. An example for a burst read operation
of eight data words is sketched in Fig. 38.

124 Chapter 4. Exploitation of RAM resources

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

of a row
activation read

operation
begin of
transfer

Read operation timing:a)

���
���
���
���

���
���
���
���

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���
���
���
���

���
���
���
���

1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�������
�������
�������
�������

�������
�������
�������
�������

control
signals

clock

data bus

addresses

row
 decoder

memory array

sense amplifier

column decoder

selection of a column entry
and transfer to the output buffer

column address
decoding of the

decoding of the
row address

Corresponding operations on the memory array:b)

1

3

4

2 activation of the row

4

2

3

��������������������������

steps

burst of consecutive column entries
steps

act read

bank
row

bank
col.

read data words

Fig. 38: General functionality of a read operation: timing a), functionality b).

• Write accesses: At the beginning of a write access, a row of the memory array
must be activated in the same way as in the read access case. That is, with the
help of a bank number and a row address, the information in the corresponding
row is transferred to the sense amplifiers for further processing. Then, the mem-
ory controller has to transmit a column address and the data word which will be
written to a particular column entry of the activated row. A write access may
also use a burst write instruction to simplify write accesses to subsequent col-
umn entries. The memory controller must just drive the data pins of the RAM
with different data words in consecutive clock cycles. An example for a burst
write operation of eight data words is sketched in Fig. 39.

• Precharging: Accesses to memory cells of a dynamic RAM through the sense
amplifiers are destructive, i.e., the charge is lost and cannot be reconstructed by
the cell itself. Hence, a precharge operation is needed to reconstruct the cell
contents based on the current information that is held by the sense amplifiers.
The memory controller must initiate the precharge of a memory bank before
it is allowed to activate another row of the same memory array. Some of the

4.1. Performance bottle-neck of RAMs 125

1
3

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

activation
of a row

write
operation

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

4

control
signals

addresses

clock

data bus

1 decoding of the row address

2 activation of the row

4
selection of a column entry and transfer of the input
buffer contents to the selected column entry

3 decoding of the column address

2
����������������������������steps

burst of data words for consecutive column entries

steps

Write operation timing:

data words for writing

act write

bank
row

bank
col.

Fig. 39: General functionality of a write operation.

delay introduced by the precharge operation can be hidden if a read operation is
performed before the precharge. The precharge of the corresponding memory
array may be performed concurrently to the read out of the output buffer because
the contents of the sense amplifiers are no longer needed.

• Refreshing: A dynamic RAM slowly looses the charge of the memory cells
due to leakage effects. This is why the charge of the cells must periodically be
restored. This process is called refresh and implemented by an activation and a
following precharge of each row of all memory arrays in the RAM. The whole
device can be refreshed at once. Alternatively, one can refresh only a single row
by time in smaller intervals. In the latter way, the delay penalty for refreshing
the device is distributed over the whole refresh interval.

4.1.1.2 DRAM Timing
Around 30 to 40 timing parameters are necessary to describe the exact timing
behavior of a RAM chip. Only some of them are pointed out at this place which
will be sufficient to model the behavior of a RAM if it is properly controlled,
for instance, without breaking an instruction by issuing another one too early.

• tRCD : This is the time it takes to activate a row of an idle memory bank. That
means, the memory bank is in a precharged state and not subject to be refreshed
within some few clock cycles before the activation. After a row address has
been decoded, the sense amplifiers are filled with data from the memory array.

• tRP : This time is needed to precharge an active row. The charge of the memory
cells of a row is restored according to the information held by the sense am-

126 Chapter 4. Exploitation of RAM resources

plifiers. The memory bank is in an idle state after the precharge operation has
finished.

• tRAS: This is the minimal period an activated row must be kept activated before
it may be precharged. This parameter is measured from the beginning of the
activate instruction to the beginning of the precharge operation for the same
row. That is, tRAS includes tRCD .

• tCAS : This parameter describes the so-called column address strobe delay or
CAS latency (CL). This is the time between issuing a read instruction on the
control bus and the appearance of the first data item on the output pins.

• tDPL: This delay must be spent between the transfer of the last data item of a
burst write and a following precharge operation in the same bank. This delay
assures that the information which is held by the sense amplifiers is up to date
and that the array is precharged accordingly.

• tREF : The maximal refresh interval of the whole memory chip is specified by
this value. The RAM chip must completely be refreshed at least once within an
interval of length tREF .

• tWAR: This is the minimal write-after-read operation delay. This time interval
must be spent between the transmission of the last data word of a read operation
on the data bus and the transfer of a following write instruction on the control
bus. This delay may be necessary because the flow direction of data words
changes on the bus. By violating this delay requirement, there may be the pos-
sibility that data read out from the sense amplifiers collides with data which is
already latched into the RAM chip for writing.

• burst length: The length of a burst of read or write accesses is specified by this
parameter. Typical burst lengths are four column entries or a full page burst.
This length is the number of data word items – i.e., the number of column
entries in the sense amplifier row – that are transferred consecutively without
the need of providing new column addresses by the memory controller.

The timing parameters are illustrated in Fig. 40.

tRP
t
CAS

t
WAR

t
DPL

t
RCD

memory bus
signals:

control
signals

data
bus

clock

t
RAS

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

burst length

read write actact

burst data read burst data write

pre

Fig. 40: Exemplary write after read access timing.

4.1. Performance bottle-neck of RAMs 127

4.1.2 Organization of SRAMs

Synchronous SRAMs use the same operation modes as synchronous DRAMs.
Read and write instructions may be used in burst mode, the synchronous inter-
face is pipelined and thus allows to issue a memory instruction in every clock
cycle. Since SRAMs are optimized for speed as their main application area is
the implementation of caches, the address of a data item is not split into row
and column addresses but fully specified in one clock cycle. The pin count is
increased but an arbitrary data item can be read out with a delay of just one or
two clock cycles independently of the address and the state of the SRAM. As-
suming a read access delay of two clock cycles a DRAM with equivalent timing
ought to have the timing parameters tRCD = 0, tCAS = 2 cycles, tRAS = 0, and
tRP = 0. Due to SRAM technology, a refresh operation is not necessary and
there is no limiting minimal row active time parameter that must be kept. On the
other hand, the worst-case power dissipation of an SRAM in operation is higher
than for any DRAM type. SRAMs are roughly one order of magnitude more
expensive than DRAMs with the same capacity since SRAMs have a higher pin
count and need more silicon area.

4.1.3 Available synchronous RAM types

4.1.3.1 Synchronous DRAMs
SDRAM: SDRAM currently is the most often used synchronous DRAM type.
Especially, the RAM modules according to the PC 100/ PC 133 SDRAM speci-
fication [88] are popular. SDRAMs are available on standardized modules with
a fixed data bus width on which several memory chips are mounted. The most
widespread modules are Dual In-line Memory Modules [92] (DIMMs) that of-
fer a 64 Bit wide memory bus. SDRAMs usually employ two to four internal
memory banks. The overhead for refreshing an SDRAM can be kept below 1%
of the run-time. A variety of modified SDRAMs is available, including:

• Virtual-Channel (VC) SDRAM: The enhancement introduced with VC-
SDRAMs consists of a number of small SRAM cache areas called channels.
The channels have a size of a quarter of a row called a segment. The contents
of a row’s segment can be transferred into an arbitrary channel. All read and
write operations perform on channel contents. Since the memory arrays and the
channels can operate concurrently, activation, precharge, and refresh penalties
can completely be hidden. However, the memory controller has to take care of
the data consistency of the sense amplifiers and channel contents.

• Enhanced SDRAM: The performance of ESDRAMs is increased by coupling
each memory bank with an additional full-row SRAM cache line. These caches
can be used concurrently to the basic sense amplifiers. However, the SRAM row
caches can only be utilized for read accesses. Read access overheads and refresh
operations may completely be hidden as long as read operations can be fulfilled
by the SRAM cache contents. However, write operations always perform on the
sense amplifiers.

128 Chapter 4. Exploitation of RAM resources

• Synchronous Graphic RAM (SGRAM): SGRAMs are smaller and thus faster
SDRAMs with additional functionality that especially supports basic graphic
operations. SGRAMs additionally have two special registers, a bit mask register
and a color register. The bit mask register is used to individually mask bits on
the data bus during a write operation. In block write mode, the color register
may be copied into eight consecutive column entries of a sense amplifier row in
just one clock cycle. The data bus width per chip of 32 Bit is larger than the bus
width of ordinary SDRAMs (four to 16 Bit).

• Double Data Rate (DDR) SDRAM and SGRAM: DDR-SDRAMs and DDR-
SGRAMs are high throughput variants of their single data rate (SDR) counter-
parts. Contrary to SDRAMs and SGRAMs, DDR-RAMs use both the rising and
the falling edge of the clock for data transfers in order to double the potential
throughput of the input-/ output interface.

Direct Rambus DRAM: Direct Rambus DRAM (RDRAM) is a memory speci-
fication developed by Rambus Inc. The Rambus approach for improved memory
utilization is to use narrow buses, so-called channels, at very high clock rates.
In traditional SDRAM based main memory systems, several chips are needed
to fit the width of the memory bus. Thus, these chips cannot be controlled con-
currently. A single RDRAM chip, however, spans the whole Rambus channel
so that two RDRAM chips can already be controlled concurrently. The Ram-
bus memory bus has a width of only 16 Bit. The transmission of all kinds of
information needs four clock cycles for completion. Since even control signals
need several clock cycles for transmission, RDRAMs are often referred to as
DRAMs which use packets for communication. RDRAMs have write buffers.
The memory controller must take care of the data consistency between the write
buffers and the sense amplifier contents. RDRAMs are also available on mem-
ory modules, so-called RIMMs specified by Rambus Inc. Several RIMMs are
interconnected in a serial fashion.

4.1.3.2 Synchronous SRAMs
On the one hand, a pipelined burst SRAM (PBSRAM) usually needs two clock
cycles to read out the contents at an arbitrary address after the read instruction
has been issued. On the other hand, write data must instantaneously be supplied
with the write instruction. Thus, the data bus cannot completely be exploited
if a read access follows a write access. Therefore, a gain in throughput can be
achieved by delaying the supply of the write data relatively to the write instruc-
tion on the control bus by the same amount of time as the SRAM delays the
read out of data relatively to the read instruction. This mode of operation is
called late write. SRAMs supporting this mode of operation are called Zero Bus
Turnaround (ZBT) SRAMs or no-turnaround SRAMs. Finally, there are double
data rate (DDR) SRAMs which use both edges of the clock to transfer data.

4.2. The role of the memory controller 129

4.2 The role of the memory controller
Fig. 41 shows a minimal computing system with a central processing unit
(CPU), a memory controller, and memory chips forming the main memory. The
memory controller is responsible for the translation of read and write requests
of the CPU into control signals for the DRAM array. In addition, the controller
must satisfy the timing requirements of the memory chip because the timing of
control signals is not checked by the DRAM itself. The memory controller may
stall the issue of new requests by the CPU until the DRAM is again capable of
accepting read or write accesses. As we have learned from the preceding de-
scription of RAM properties, the delay penalty caused by activation, precharg-
ing, and bus turn-arounds does not only depend on the type of access but also
on the inner state of the RAM and the order of the accesses. An optimized
controller should therefore keep track of these aspects.

The format of the memory accesses issued by the CPU depends on the CPU
architecture and is usually set at start-up time. The size of an access equals
the size of a cache line so that a single burst transfer is sufficient to exchange
the contents of a cache line. Embedded CPUs often use a memory controller
integrated into the CPU core. Personal computing systems rather use an exter-
nal controller through a front-side bus for more flexibility in the system design
accepting an additional delay of one to two bus clock cycles per access.

2D array addresses

control signals

datadata

buffer
internal
caches

Memory
Controller

front-side bus memory bus

linear address

read/write operation

stall signal

CPU

MMU

Memory

Fig. 41: A minimal computing system.

Memory controllers without additional operation queues are not able to
reschedule read and write operation requests from the CPU. Most of the mem-
ory controllers currently found in PCs and embedded systems belong to this
class. However, the latency of a memory operation can be reduced by using
heuristics which exploit the row-wise organization of DRAMs. For instance,
leaving memory rows activated as long as possible to save some precharge and
activate operations is called an open-page policy. In contrast to that, a closed-
page policy precharges an active memory row as soon as possible. This method
will be employed if row or bank changes appear frequently. Moreover, the con-
troller may buffer additional memory requests of the CPU. Such a controller
is able to exploit the pipelined memory interface of modern DRAMs by over-
lapped processing of the current and the next pending accesses. Requests cannot
be rescheduled but the sequence of control signals can be shortened. Finally,
the memory controller may implement simple schemes to map physical address
ranges to other regions by address permutations for interleaving bank accesses.

130 Chapter 4. Exploitation of RAM resources

Besides a full-custom design there are some other design choices to imple-
ment a memory controller:

• Integrated memory controller: Processors aimed at embedded systems such as
network processing often already include one or several memory controllers.
The implementation reduces to a configuration of some operation mode reg-
isters in this case. Integrated controllers have the advantage to facilitate the
communication between the CPU core and the controller without the overhead
of using a front-side bus.

• Stand-alone controller: A variety of stand-alone controllers is available which
are used as supporting chip sets of CPUs. This type of controller usually al-
lows more flexible RAM configurations and organizations at the expense of an
additional front-side bus.

• Synthesizable block: Memory controllers are also available as pre-designed
building blocks for a given technology or in a high level design language such
as VHDL. The controller can hence be adapted to individual requirements.

4.3 Performance model of a memory subsystem

This section describes a performance model of a memory subsystem consisting
of a CPU, a memory controller, and RAM. The model is represented by a Petri
net [115, 128], a formalism with a visual notation. The model is developed
with the goal to have a graphic documentation and to analyze the interplay of
the different components. Animated simulation moreover ease debugging so
that deadlock and race conditions can fast be found. We especially focus on
the functionality of the memory controller since its architecture and the inner
state are not well documented by manufactures. Its required functionality is ba-
sically reverse-engineered from descriptions of DRAM data sheets. Additional
features are added afterwards to exploit inherent parallelism of the inner DRAM
architecture. We therefore begin with a description of the memory model and
continue with the memory controller whose properties heavily rely on the mem-
ory features. The performance models derived in this section will serve as a
basis for the performance design-space exploration in the next section.

4.3.1 Why use high-level Petri nets?

State machine based approaches, such as StateCharts [79] or ROOMchart [139],
are best suited for control dominated systems and suffer from their inability to
express data flow. Another discrepancy between a system and its model repre-
sentation can be found looking at all the tools that do not allow to express struc-
tural similarity between a system and its model, e.g. spreadsheet based mod-
els and models written exclusively in the form of programming language code.

4.3. Performance model of a memory subsystem 131

The use of object-oriented modeling [19, 136] becomes more and more com-
mon. Although object-oriented formalisms contain several features to produce
detailed models, they are not intended to be executable as such. Place/Transition
Petri nets [115] have several desirable properties, such as being intuitive, graph-
ical, able to express concurrency and data flow. However, they are confined to
the use in small scale models because a concept of hierarchy is missing. High-
level Petri nets (such as Coloured Petri Nets [91]) are best suited, since they
have an expressive inscription language and also structuring features.1

Since the main focus of the investigations is on performance issues as the
determination of the data bus usage and throughput as well as the duration of
schedules, the option to associate periods with transitions in timed Petri Nets is
preferred over the option to formally check properties like liveness or reachabil-
ity of a Place/Transition net. Furthermore, it is an advantage to use colored to-
kens and guard functions because the size of the whole net becomes sufficiently
small by shifting some complexity into transitions and tokens to facilitate a
quick overview of the entire system. We thus employ a similar methodology as
the one presented in [25] in which by modeling the instruction execution of a mi-
croprocessor the same problems are dealt with as, for instance, data-dependent
conditions of action execution and accurate instruction flow representation. Fi-
nally, the similarity between the hardware system and its model is additionally
supported by (hierarchically) using subnets as components.

4.3.2 Modeling environment

The CodeSign tool is used to model and simulate a memory subsystem repre-
sented by a Petri net [115, 128]. A detailed description of the tool can be found
in [46]. CodeSign is freely available [4]. It is based on a kind of colored Petri
net that allows efficient modeling of control and data flow. CodeSign’s specific
properties can be summarized as follows:

• Components, composition, and hierarchy: Components are subnets of Petri nets
with input and output interfaces that are applied to interconnect components.
Inside components, input interfaces are connected to places and transitions are
connected to output interfaces. Linking output with input interfaces, compo-
nents are directly interconnected maintaining Petri net semantics. In Fig. 42 the
model of a RAM basic cell with its interfaces is shown as an example. The
model is explained in detail in section 4.3.4. If input interfaces are connected
together, a single token will produce several tokens with the same data value
for each component. Connecting output interfaces together is equivalent to con-
necting several transitions to a single place. Therefore, the examples in Fig. 43
are equivalent. Thus, models can be hierarchically structured and components
can be reused. Moreover, as interfaces do not disturb Petri net semantics, a flat
Petri net with the same functionality can always be generated from the hierar-
chically structured net.

1An introduction to Petri nets can be found in Appendix A.

132 Chapter 4. Exploitation of RAM resources

place:
[name]
[type]
[capacity]

input interfaces

output interface

Fig. 42: Petri net model of a RAM cell component.

• Object oriented concepts: Components are instances of classes that are arranged
within an inheritance tree. That is, classes inherit features and (token) data
types from their parents. They may contain functions which can be used in
transitions. Functions are written in an appropriate imperative language. With
these facilities, incremental updates and evolution of models and components
are supported as well as configurability and parameterization.

=̂

Assumption: the transition on the left produces tokens of the same type for each component.

component boundary (only the interfaces of the component are shown)

outputinput

Fig. 43: Using interfaces in CodeSign.

• Notion of time and simulation properties: An enabling delay interval can be
associated with each transition. As a consequence, tokens carry time stamps
containing information about their creation date. Models and components can
be inspected and simulated at all levels of abstraction. That is, performance
evaluations and functionality checks like race conditions and timeouts can easily
be performed. Finally, the simulation can be animated at run-time.

4.3.3 Overview of the model

In this subsection, the modeled memory subsystem is described which includes
a memory controller, a synchronous memory chip as well as the relevant parts
of the CPU and the data bus. In Fig. 44 an overview of the system is given.
The CPU issues data read and data write requests. Each request token carries
information about the type of the request (read or write) and the address where

4.3. Performance model of a memory subsystem 133

interface

synchronous

(pipelines, etc.)

data bus

input/output buffer

memory chip

CPU

memory bank

controller
memory

Fig. 44: CodeSign screen shot showing the model of a memory subsystem.

the data can be found in memory. The sequence of requests can arbitrarily be
chosen and may be extracted from address traces generated by a tool like [35].

After having received a request token from the CPU, the memory controller
preprocesses the token for the SDRAM chip. The address value of the token has
to be split into memory bank, row, and column addresses as these values must be
transferred at different times to the RAM chip. Besides, additional instruction
tokens are generated which are necessary to prepare the memory, in particular
tokens that initiate activate or precharge behavior of the memory cells. The
memory controller is explained in more detail in section 4.3.5. At this stage, the
instruction tokens may be seen as micro instructions for the control logic of the
memory chip which have been created from the relatively coarse grained read
and write requests of the CPU.

134 Chapter 4. Exploitation of RAM resources

Finally, the memory chip obtains the modified tokens from the memory con-
troller. An appropriate memory data transfer is initiated. The model of the
memory chip is described in the next section. At last, the requested data item is
put on the data bus and either received by the controller in case of a read request
or received by the RAM in case of a write request.

The explanation of the model is organized “bottom-up” beginning with a
description of the memory chip itself and ending with the subsystem overview.
The description of the memory controller is the most precise one since our main
goal is to reveal its properties.

4.3.4 SDRAM architecture

Asynchronous RAM array: In Fig. 45, a conventional memory bank with
its sense amplifiers, row, and column decoders can be seen. The decoders are
realized using mutual exclusive guard functions within the transitions because
only a single transition may be enabled per address. The data within a memory
cell is represented by a token of the type integer in the center place as it can
be seen in Fig. 42. When a row of the memory array is selected by an activate
instruction issued by the memory controller – a token containing a row address
value, a memory bank address, and an operation identifier –, all data tokens in
that row of memory cells are transferred to the sense amplifiers.
Sense amplifiers: After the activation of a memory row, the data tokens in the
sense amplifiers can be read or updated column by column. The read or write
state is reached when the memory controller issues read or write instruction
tokens each containing an operation identifier and a column address. Read and
write operations are destructive. Once the information is transferred from the
cells to the sense amplifiers, the charge in the memory cells is lost. Therefore,
the information in the sense amplifiers must be written back to the cells when
the data of that special row is no longer needed. This operation is forced by a
precharge command of the memory controller. In this case, the integer tokens
carrying the memory information are written back to the cells.
Synchronous interface: The memory chip is completed by adding an input/
output buffer pair, registers, control logic (the synchronous interface), and by us-
ing multiple memory banks that have to share buffers. The control logic imple-
ments several instruction pipelines, one for each memory bank. The pipelines
are represented by successive transitions with an enabling delay of one clock
cycle and places with limited capacity. That way, tokens carrying operations
and addresses are delayed until the asynchronous memory array has finished
the previous operation. Furthermore, the address may be incremented for burst
transfers of consecutive addresses. Thus, memory banks are able to work con-
currently due to separated instruction pipelines, but only a single one is actually
able to transfer data through the shared input/output buffers at a time.

All timing parameters described in subsection 4.1.1.2 except the refresh
period are considered in the CodeSign model. All modeled delays within an
SDRAM component are derived from these timing constants.

4.3. Performance model of a memory subsystem 135

row decoder

sense amplifier

column decoder

memory cell

Fig. 45: A conventional asynchronous memory bank with 4× 2 = 8 memory cells.

4.3.5 Memory controller

Functionality: A memory controller receives requests from the CPU at arbi-
trary times. They consist of the type of operation (read or write) and address in-
formation (typically 32 Bit addresses for a bytewise linearly addressable mem-
ory space). Sometimes, this address information has been preprocessed by a
memory management unit (MMU, see Fig. 41) that usually maps addresses to
other memory regions due to memory page limits or protected memory regions
(e.g. reserved for memory mapped IO). The memory controller now has to take
care of delays of the memory array. Since there typically are several memory
banks within a memory chip, the controller must prevent data tokens from col-
lision with other tokens, e.g. on the data bus. The memory chip will translate
the instructions coming from the controller into actions on the memory cells
without any timing checks.
Petri Net model: At first, the controller has to split the address information of
the request tokens from the CPU into several tokens since memory chips are or-

136 Chapter 4. Exploitation of RAM resources

generation:

instructions

read / write
instructions

already known

next request
not known

}

}
}

}

next CPU request

token

activation

preparation of
next instruction
if next request

completion
of current
instruction if

current CPU requestOutput: instruction tokens for SDRAM

Output: synchronization with CPU (stall CPU signal)

Input: request tokens from CPU

Fig. 46: Model of the memory controller.

ganized as two-dimensional arrays. The split address information is transferred
to the selected memory chip at different times within the memory access cycle.
The respective memory row must be opened with an activate command (token)
which consists of an instruction identifier and bank and row addresses. Then,
the request token itself is transmitted to the memory chip which consists of an
instruction identifier of a read or a write operation and the bank and column
addresses. Read and write operations on the same memory row can be repeated
several times until finally the memory row must be closed. For this, the con-
troller transfers a precharge instruction token holding an identifier for this type
of operation as well as bank and row addresses. This control flow-dominant part
of the system resembles the behavior of a finite-state machine. When the cur-
rent state changes, actions are performed so that an instruction token according
to the current state of the system is issued to the RAM.

In Fig. 46, the memory controller is shown. Dotted arrows are read only

4.3. Performance model of a memory subsystem 137

connections. In principle, they could always be replaced by a read and a write
connection because the token data is read from a place, never modified, and re-
turned to the place. The controller can be seen as two distinct Mealy-like finite-
state machines, one for processing read requests from the CPU and another one
for processing write requests. In Fig. 47, the state machine responsible for pro-
cessing the read requests is shown (extracted from Fig 46). Places that keep

mutual exclusive
transition enabling

mutual exclusive
transition enabling {

{

Fig. 47: State machine handling the read requests.

track of the global state – the request token currently in process – or that buffer
request and instruction tokens at the interfaces of the controller are not shown.
In other words, Fig. 47 only shows the state transitions and not the input and
output places which are responsible for mutual exclusive transition enabling.

Ex. 10: (Memory access cycle) Let us assume that a read request currently is in pro-
cess, as shown in Fig. 47, and another read request which is already known
in advance should be processed next. This next read wants to access another
memory row of the same memory bank. Thus, the transition ar sb is enabled
(ar sb stands for “read after read, same bank”). As an example of a guard
function, the condition for enabling the transition ar sb is shown in Fig. 48. The
function checks the different value fields of the current tokens in the places cmd,
last cmd, and read. The places cmd and last cmd are displayed in the top-right
and the bottom-right corners of Fig. 46. The transition ar sb fires after a certain
amount of time which depends on the used SDRAM and the chosen burst trans-
fer mode. This firing generates an instruction token for the SDRAM that starts

138 Chapter 4. Exploitation of RAM resources

check if the next

read request
request is another

check if the current
and the next request

same memory bank
want to access the

check if the current
and the next request

memory rows
want to access different

check if the current
read request has been

returns the burst length)
(the function burstl()
processed completely

(cmd[1] = ’read’) & (cmd[2] = last_cmd[2]) & (cmd[3] <> last_cmd[3]) & (read >= (burstl() - 1))

Fig. 48: Guard function of the transition ar sb.

the precharge of the corresponding memory row. Then, the transition pre is en-
abled and fires after the SDRAM precharge time tRP . Therefore, when reaching
the place idle the corresponding memory bank will be in the idle state and the
controller can issue another instruction token for the SDRAM by firing the tran-
sition act issue. This instruction token activates the corresponding memory row
for the next read request. The transition r act fires after the SDRAM activation
delay tRCD and generates a read instruction token for the SDRAM. Finally, the
transition r cas models the CAS latency tCAS .

In Fig 49, a black box view of the controller is given in which three arbi-
trary read request tokens from the CPU produce six instruction tokens on the
output interface of the memory controller. All tokens for a whole memory cy-
cle containing an activation, two reads, and a precharge can be seen followed
by another activation and a read instruction. The time stamps in this example
are integer values as requests and instructions are transferred at multiples of the
clock cycle time. The flow of instructions from the controller to the RAM is

to SDRAMfrom CPU

with time stamp
memory instruction tokens

with time stamp
request tokens

operation identifier, bank, row,
and column addresses

token values:

Memory
Controller

Model

operation identifier, bank address,
row (act/pre case) and column address
(read/write case) respectively

token values:

Fig. 49: Instruction token generation by the memory controller model.

modeled using tokens which consist of a string value and two integer values
(see Fig. 49 on the right). This way, the tokens emulate commands with an
operation field (read, write, precharge, activate) and two address fields (bank
address, row and column address respectively). Besides, a token with an integer
type is used within the controller to model the current state. The value is used
as relative time reference in clock cycles during the whole memory cycle of the
corresponding read or write request.

The read-after-read access explained in ex. 10 can be observed between the
second and third request token in Fig 49. The read-after-read request for an

4.4. Performance impact of controller and DRAM type 139

entry in the same memory bank but in a different row causes the generation of
two additional instruction tokens for precharge and activation. Moreover, some
tokens must be delayed to cope with the timing restrictions of the SDRAM.
Model characteristics: Basically, the controller behaves like commonly used
controllers in PCs, i.e. it schedules read and write requests of the CPU sequen-
tially without affecting their order. However, it is capable of abbreviating the
latency penalty in case the next request by the CPU is already known by over-
lapping the processing of control signals for consecutive requests. The penalty
is usually introduced due to a change of the memory row or bank. This feature
will be described in more detail in Section 4.4.

4.3.6 Memory subsystem

The memory subsystem is completely modeled by adding a data bus and the
I/O part of a CPU. The data bus is shared for read and write data and therefore
realized by a mutual exclusive access scheme. Read and write request tokens
may be extracted from previously generated address traces. The flow of read and
write requests from the CPU to the memory controller is modeled using tokens
which consist of a string value and three integer values (see Fig. 49 on the left).
Thus, the tokens may be seen as instructions with an operation identifier (read or
write request) and one big address field which is already grouped into three main
areas (bank, row, and column address) e.g. by a memory management unit. In
addition, the controller may stall the CPU in order to synchronize data transfers
between CPU and RAM. Note that we model a memory controller which is
supposed to be integrated into the CPU since the data bus directly interconnects
RAM and CPU.

4.3.7 Conclusion for the performance model

With the help of the quickly developed performance model, promising perfor-
mance increases have been deduced for particular access patterns. A more de-
tailed description is published in [68, 65, 70]. Further investigations in the fol-
lowing section focus on examinations of real applications to quantify how often
the different access patterns are actually used. Accordingly, virtual performance
improvements will be determined which depend on the processed application
and the properties of the memory and the controller used in the system.

4.4 Performance impact of controller and DRAM type

Based on the insight derived from the analysis of the Petri net-based perfor-
mance model of a memory subsystem, we are now able to investigate the per-
formance impact of memory controller operation modes and the interplay with
different DRAM types for selected benchmarks. In order to simulate memory
access patterns generated by whole applications running on a CPU, performance

140 Chapter 4. Exploitation of RAM resources

models of a memory controller and DRAMs have been incorporated with a ma-
ture CPU simulation tool set. The Petri net model has especially contributed to
an accurate implementation of the open-page operation mode and overlapped
processing of the memory controller which are described later in this section.
The impact of the underlying memory system on the performance of a comput-
ing system is explored by an extensive simulation of a variety of benchmarks,
memory controller configurations, and DRAM types. More background infor-
mation about the performed simulations can be found in [67, 71].

The section starts with a description of the features of the CPU simulation
environment and the properties of the added memory controller and DRAM
types. We define the set of applications used as benchmark and finish with an
analysis of the simulation runs.

4.4.1 Simulation environment

SimpleScalar tool-set CPU simulator: We use SimpleScalar [23], version
3.0a, for cycle-true, execution-driven simulations. The architecture of the in-
struction set of the simulated CPU, called Portable ISA (PISA), has been in-
spired by the MIPS IV instruction set [125]. The CPU’s internal data path is
32 Bit wide. There are separate reorder buffers for compute and load/store
instructions and register renaming facilities to make out-of-order instruction ex-
ecution possible. The five stages of the pipeline can be reconfigured as well
as the number of execution units. The cache levels use writeback mode and
non-blocking loads and stores.

Simulator enhancements: We have integrated the following DRAM and mem-
ory controller models into SimpleScalar. An SDRAM-based system represents
a mature and widespread RAM configuration whereas the RDRAM configura-
tion considers the recent approach to use narrow memory buses at high clock
rates with an increased number of internal memory banks.

Tab. 15: SDRAM timing parameters.

tRCD 20 ns row address strobe to column address strobe delay: time
to activate a row of an idle memory bank

tCAS 20 ns column address strobe delay: time between issuing a
read instruction and the appearance of the first data item

tRP 20 ns precharge time: time to precharge an active row
tDPL 20 ns data input to precharge delay: time needed from the last

data bus cycle of a burst write to a following precharge
of the bank

tWAR 20 ns write after read delay: delay being subject to bus turn
around limitations of the DIMM

4.4. Performance impact of controller and DRAM type 141

• SDRAM: A mature PC100 [88] compliant SDRAM of the newest 256 MBit
generation with a 16 Bit organization, four internal memory banks, and a row
size of 1 KByte is modeled. Hence, four devices have to be controlled in parallel
to form a common 64 Bit wide memory bus, similar to a DIMM with four
mounted devices. The controller sees memory banks four times the size of a
single chip’s bank. The memory bus is clocked at 100 MHz. The following
timing parameters described in [88] are considered, see Tab. 15.

The CPU uses 32 Byte cache lines which corresponds to burst transfers of length
four. Refresh operations take less than 1% of the run-time and are neglected.

• RDRAM: The RDRAM memory bus is 16 Bit wide as is an RDRAM chip.
Again, 256 MBit devices are modeled. The Rambus channel consists of four
RDRAMs. The channel configuration allows to control the banks of each mem-
ory chip individually. The chosen RDRAM [127] consists of 32 internal mem-
ory banks with a row size of 2 KByte. However, adjacent banks have to share
sense amplifiers. The Rambus channel runs at 400 MHz using both edges. The
following timing parameters described in [127] are modeled, see Tab. 16.

Tab. 16: RDRAM timing parameters.

tRCD 17.5 ns row to column address strobe delay
tCAC 20 ns column address strobe delay
tCWD 15 ns column address strobe write delay: time needed from

the end of the control packet which initiated the write
access to the beginning of the corresponding data
packet

tRP 20 ns row precharge time
tRTR 20 ns retire delay: time needed for data to be transferred

from the write buffer of the device to the correspond-
ing sense amplifiers

tRDP 10 ns read to precharge delay: time needed from the end of
a control packet initiating a read access to the end of
a precharge control packet

tPP 20 ns precharge to precharge delay: for precharge control
packets in the same device

tpacket 10 ns time to transmit a packet

The CPU’s cache line size corresponds to two data packets transferred over the
Rambus channel. Again, refresh operations which take 1.0% of the run-time
have been neglected.

• Address translation: The memory controller has the option to map the physical
addresses to chip, bank, row, and column addresses of the main memory. Two
variants are implemented.

142 Chapter 4. Exploitation of RAM resources

– linear translation: The memory controller maps physical addresses in a
linear manner to the chips and banks of the main memory. That is, passing
the boundaries of a DRAM row results in an access of the next row in the
same internal DRAM bank.

– interleaved translation: Memory rows are mapped in an interleaved man-
ner to the internal banks of the DRAMs. Our generic address permu-
tation scheme results from the row size of the DRAM. One may think
of interleaving divisions of a row. These address permutations however
must individually be derived from the software and data sets used. In
our scheme, whenever the address passes the boundaries of a DRAM row,
the next address accesses another bank and not the next row of the same
bank. This mode will be beneficial if an application accesses streamed
data since changing to another memory bank is usually faster than access-
ing another memory row in the same memory bank. Due to shared sense
amplifiers every second bank is allocated consecutively for streamed data
in the RDRAM case.

• Activation policies:

– strict open-page policy: Memory rows are kept activated as long as pos-
sible by the controller. This way, accesses bounded to the current row do
not need to precharge and activate the row again. However, the controller
needs additional open-page counters to keep track of activated rows.

– closed-page policy: The controller precharges an active row as soon as
possible. If row changes happen frequently, this mode will result in better
performance because some of the precharge time can be hidden.

• Overlapped processing: The controller is able to process an access on the mem-
ory bus while receiving further requests from the CPU. The CPU must support
this mode of operation by non-blocking load/store execution. The controller
may buffer requests to hide some of the latency introduced by activation and
precharge tasks, taking advantage of the pipelined interface of recent DRAMs.

Ex. 11: (Overlapped processing of memory accesses) An example is given in Fig. 50.
The second operation is a read access to another bank of the memory than
the bank of the preceding write access. Thus, a row miss occurs leading to
additional precharge and activation commands. Now assume that the second
operation, the read access, is known during the processing of the first access,
since the corresponding request has already been transferred from the CPU to
the controller. The latency for precharging and activation can completely be
hidden in this example.

The amount of clock cycles which can be overlapped depends on the current
as well as the buffered accesses and the inter-arrival time of the requests at
the memory controller. The requests are not rescheduled but stored in an in-
order queue. Overlapped processing has not been modeled in closed-page mode.

4.4. Performance impact of controller and DRAM type 143

signals
control

bus
data

memory bus
signals:

signals
control

bus
data
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

���
���
���
���

���
���
���
���

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�������
�������
�������
�������

�����
�����
�����
�����

�
�

�
�

�
�

�
�

���
���
���
���

overlapped processing:

overlapped processing

write access to the current bank, row miss

read access to another bank, row miss

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����
�����
�����
�����

�����
�����
�����
�����

�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������

�����
�����
�����
�����

���
���
���
���

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

 � �
 � �
 � �
 � �

!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!
!�!�!�!�!�!�!�!�!�!�!�!�!�!�!

"�"�"�"�"�"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"�"�"�"�"�"
"�"�"�"�"�"�"�"�"�"�"�"�"�"

clock

no overlapping:

read access to another bank, row misswrite access to the current bank, row miss

write read

write read

act pre act

burst data readburst data write

pre

pre act pre act

burst data write burst data read

Fig. 50: SDRAM, overlapped processing.

Therefore, linear and interleaved address translation are not distinguished in
closed-page mode since both translation schemes result in the same latencies.

In closed-page mode, two different cases must be distinguished for
SDRAMs and RDRAMs because only the request type (read or write) is of im-
portance. Using open-page mode and SDRAMs without overlapped processing,
18 different cases are determined depending on the request type of the current
and the buffered operations, the bank addresses, and the row state (row hit/miss).
For RDRAMs, 36 main cases have been identified. The higher number of cases
compared to the SDRAM controller is mainly caused by shared sense ampli-
fiers, write buffers, and the use of several concurrent devices. If the overlapped
processing mode is enabled in addition, the overlapping period will be of vari-
able size. The period of time a request occupies the memory is determined at
the arrival time of the request at the controller.

4.4.2 Experimental results

4.4.2.1 Applications
A mixed collection of programs is chosen to generate memory access patterns
with high diversification, see Tab. 17. Sorting and searching tasks are a manda-
tory part of every network processor to lookup routes, sort packets according to
dynamic priorities, manage queues, etc. All kinds of data compression and me-
dia processing will be employed if a networking node is the source and/or the
destination of multi-media traffic. This is very likely the case for a networking
node situated at an access link to the Internet. Finally, the program compilation
is augmented by selected mature CPU benchmarks and some other applications.
In this way, the set of programs chosen for evaluation of a memory subsystem
shows greatly varying features. Tab. 18 lists selected properties of some charac-
teristic programs. The first two columns present cache miss rates for instructions

144 Chapter 4. Exploitation of RAM resources

and data. The last two columns reveal the relative amount of executed load/store
and branch instructions for a typical simulated program run. One can see that
the share of cache misses and executed instructions exceptionally deviates from
program to program. Therefore, any potential and future network processing
task should closely match the characteristics of one of the chosen applications
for evaluation so that the results of this section can potentially be applied to a
variety of programs.

Tab. 17: Programs for simulation. Those programs which are freely available have been com-
piled from different sources at [12].

CPU benchmarks
spec95 ijpeg Image compression (input file specmun.ppm), integer perfor-

mance rating.
spec95 li Lisp interpreter (input test.lsp), integer performance rating.
spec95 swim Finite difference approximations (input file swim.in), floating-

point performance rating.
linpack Linear algebra routines, floating-point performance rating.
Voice / video / data compression
g723 ITU-T rec. g723.1 speech decoder integer reference code. De-

codes test vector dtx63.rco encoded at 6.3 KBit/s.
g723enc Corresponding voice encoder. The test vector dtx53mix.tin is

encoded at 5.3 KBit/s.
tmn 3.1.2 ITU-T rec. H.263 video decoder by the Univ. of British

Columbia and Telenor Research. 100 frames of a sequence
encoded at 1 KBit/frame in qcif picture format are decoded.

tmnenc 3.1.2 Corresponding H.263 video encoder. 15 frames of a sequence
are encoded at 3 KBit per frame.

gzip 1.2.4a Compresses its own distribution archive (2.5 MByte) using
Lempel-Ziv coding.

tfft Fast Fourier Transform of 16 to 216 samples (floating-point).
Sorting and searching
c4 1.0 Connect-four game solver. Performs search operations on

hash tables with more than one million 32 Bit hash entries.
heapsort 1.0 Sorts random heap-organized arrays with up to 219 integers.
Other applications
nsieve 1.2b Computes prime numbers based on the algorithm of Eratos-

thenes. Integer arrays of several MBytes are used.
sim Finds seven best non-intersecting alignments between two

strings with 2500 characters using dynamic programming.

4.4. Performance impact of controller and DRAM type 145

Tab. 18: Selected program execution statistics.

program cache miss exec. load/store exec. branch
instr. [%] data [%] rel. [%] rel. [%]

swim 1.3 41.4 29.4 6.4
g723 0.5 0.1 13.4 22.3

tmn 1.2 8.5 55.5 10.5
c4 10.9 3.4 32.6 8.8

nsieve 0.0 25.9 11.7 28.1

4.4.2.2 Simulations
Settings: The following settings for SimpleScalar have been chosen to compare
SDRAMs with RDRAMs under different memory controller configurations in
an embedded system scenario. The CPU runs at a clock speed of 200 MHz and
is two-way superscalar with out-of-order issue. Bimodal prediction with 512
entries is used. The reorder buffers have eight entries for compute and four en-
tries for load/store instructions. The direct mapped first level cache is split into
an 8 KByte instruction cache and an 8 KByte data cache. The cache line size
is 32 Byte. There is no second level cache. Loads and stores are non-blocking.
The following functional units are available: an integer ALU, an integer multi-
plier/divider, a floating-point ALU, and a floating-point multiplier/divider.

As described in subsection 4.4.1, the memory controller can apply linear
(lin) as well as interleaved (int) address translation. Moreover, a closed-page
(c-p), an open-page (o-p), and an open-page activation policy with overlapped
processing can be chosen. We have not bounded the number of buffered re-
quests in the performance model of our memory controller. However, the char-
acteristics of the CPU architecture, especially the length of the reorder buffers,
limit the number of pending requests. Finally, SDRAMs and RDRAMs can be
controlled. The controller is supposed to be integrated in the embedded CPU.
Results: The simulated execution times of our set of applications are displayed
in Tab. 19. The values are scaled to the corresponding execution time using
SDRAMs and closed-page mode. Tab. 20 provides information about program
execution statistics: cache miss rates, the amount of main memory accesses
scaled to the number of all executed instructions (total), the ratio between the
number of memory accesses that can make use of overlapped processing to the
number of all main memory accesses (overl.), the amount of loads and stores
scaled to the number of executed instructions (rel.), and the absolute count of ex-
ecuted load and store instructions (abs.). Since the amount of memory requests
which can make use of overlapped processing does not vary remarkably by
changing the address translation mode or the DRAM type, only the maximum
of these simulation runs is considered in the table. Finally, Tab. 21 shows hit
and miss statistics for the main memory system using open-page mode. Look-
ing at two consecutive memory requests, the next pending request may access

146 Chapter 4. Exploitation of RAM resources

Tab. 19: Simulated program execution times for different memory controller operation modes.
The results are scaled to the execution time with an SDRAM-based system using
closed-page mode.

program addr. SDRAM RDRAM
transl. c-p o-p overl. c-p o-p overl.

heapsort
lin

1.0
1.02 1.02

0.99
1.01 1.01

int 1.01 1.01 0.96 0.95

tmnenc
lin

1.0
1.00 0.99

0.99
0.99 0.98

int 0.99 0.99 0.97 0.96

g723
lin

1.0
0.99 0.99

0.99
0.98 0.98

int 0.98 0.98 0.97 0.97

g723enc
lin

1.0
0.98 0.98

0.98
0.97 0.96

int 0.97 0.97 0.95 0.95

jpeg
lin

1.0
0.99 0.98

0.98
0.96 0.94

int 0.98 0.97 0.93 0.91

li
lin

1.0
0.97 0.95

0.96
0.93 0.88

int 0.95 0.93 0.85 0.80

c4
lin

1.0
0.86 0.84

0.92
0.81 0.75

int 0.86 0.84 0.78 0.72

swim
lin

1.0
1.15 1.06

0.95
0.84 0.69

int 1.01 0.88 0.75 0.61

sim
lin

1.0
1.09 1.05

0.98
1.00 0.93

int 0.98 0.93 0.77 0.70

nsieve
lin

1.0
1.10 1.03

0.96
1.05 0.93

int 0.96 0.91 0.82 0.71

tmn
lin

1.0
1.06 1.02

0.95
1.00 0.93

int 0.89 0.87 0.81 0.74

gzip
lin

1.0
1.09 1.05

0.96
1.04 0.99

int 1.01 0.96 0.86 0.80

linpack
lin

1.0
1.06 1.06

0.96
1.02 1.01

int 0.92 0.91 0.84 0.82

tfft
lin

1.0
1.03 1.01

0.96
0.98 0.94

int 1.00 0.98 0.91 0.87

the same row in the DRAM as the current access. This situation is called a hit
in the current bank (cb hit). If the pending request wants to access a different
row in the same bank, a miss in the current bank occurs (cb miss). Finally, the
situations where the pending request will hit or miss a row in another bank than
the current one are counted as accesses to another bank (ob). The negligible
amount of accesses to idle banks is not quoted in the table.

Analysis: For four programs the execution time is almost independent of the

4.4. Performance impact of controller and DRAM type 147

Tab. 20: Program execution statistics.

program cache miss [%] DRAM accesses [%] exec. load/store
instr. data total overl. rel. [%] abs. [106]

heapsort 0.0 2.7 1.1 0.3 22.1 310
tmnenc 0.2 1.5 0.7 12.7 28.5 368

g723 0.5 0.1 0.6 3.0 13.4 120
g723enc 0.8 1.3 1.0 2.2 12.4 189

jpeg 0.7 3.7 1.9 17.4 25.2 147
li 4.5 2.3 6.4 9.3 47.9 495

c4 10.9 3.4 13.8 8.4 32.6 1229
swim 1.3 41.4 16.1 42.6 29.4 237

sim 2.3 17.9 11.4 18.2 36.3 1595
nsieve 0.0 25.9 5.9 45.0 11.7 113

tmn 1.2 8.5 7.1 27.3 55.5 250
gzip 0.0 17.0 5.3 28.6 28.0 138

linpack 6.1 8.9 4.5 3.7 26.9 21
tfft 1.0 7.7 5.5 15.7 38.9 80

memory and controller used: heapsort, the video encoder tmnenc, and the voice
processing programs g723 and g723enc. The programs show almost no misses
in the cache. Although load and store instructions take around 20% of the exe-
cuted instructions, only slightly more than 1% of the executed instructions result
in a main memory access. This rate is too low to produce any run-time effects.
For instance, looking at RDRAMs and the tmnenc program, the rate of expen-
sive row misses can be reduced from 42% for linear address translation to 2%
using interleaved address translation. However, there is no noticeable difference
in the execution time.

For another group of programs – jpeg, li, and c4 – using interleaved address
translation always shortens the execution time. In most configurations however,
the differences are negligible. The programs run faster by controlling RDRAMs
instead of SDRAMs. Applying overlapped processing only improves the per-
formance of RDRAM configurations noticeably. Using open-page mode instead
of closed-page mode improves the execution time for both DRAM types. The
programs have in common that they generate moderate miss rates in the instruc-
tion cache and almost no misses in the data cache, see Tab. 20. Since the share
of loads and stores of all executed instructions is high (up to 48% for li), a no-
ticeable amount of the simulated instructions results in main memory accesses.
Moreover, the accesses to main memory are very localized. At least 56% of
the memory accesses hit an already activated memory row. Thus, the memory
controller well benefits from the open-page policy. The remaining amount of
access misses is too small to influence system performance by changing from
linear to interleaved memory translation.

148 Chapter 4. Exploitation of RAM resources

Tab. 21: Main memory access statistics in percent of all memory accesses.

program addr. SDRAM [%] RDRAM [%]
transl. cba obb cba obb

hit miss hit miss hit miss hit miss

heapsort
lin

4.4
91.7 2.7 1.2

3.1
59.5 6.8 30.6

int 32.2 20.5 42.9 0.8 86.4 9.7

tmnenc
lin

30.9
45.6 15.6 7.9

30.1
31.5 28.0 10.3

int 20.9 36.2 12.0 0.5 67.8 1.6

g723
lin

71.1
25.5 2.6 0.8

69.9
26.7 2.4 1.0

int 6.6 19.7 2.6 0.0 29.8 0.3

g723enc
lin

57.7
26.1 14.6 1.6

57.3
26.5 14.6 1.5

int 3.7 36.9 1.7 0.0 42.6 0.0

jpeg
lin

41.0
36.2 15.5 7.3

39.2
24.3 25.5 11.0

int 19.5 26.6 12.9 0.7 58.7 1.3

li
lin

55.5
26.8 8.9 8.8

55.0
27.3 8.2 9.4

int 13.3 17.0 14.2 0.3 43.3 1.4

c4
lin

79.5
8.9 8.0 3.6

77.3
9.5 8.0 5.2

int 7.5 5.5 7.5 1.3 17.0 4.4

swim
lin

13.9
85.8 0.1 0.1

9.8
10.0 62.3 17.8

int 11.1 34.8 40.1 0.0 88.9 1.2

sim
lin

30.1
59.1 4.9 5.9

30.1
59.1 4.9 5.9

int 9.7 29.9 30.3 0.1 69.8 0.0

nsieve
lin

1.6
98.3 0.0 0.0

1.4
88.4 1.7 8.5

int 24.9 54.4 19.1 0.3 89.3 9.0

tmn
lin

16.1
74.0 6.0 3.9

15.8
70.9 8.1 5.2

int 9.8 65.4 8.7 0.2 82.5 1.5

gzip
lin

7.6
92.3 0.1 0.0

6.5
93.4 0.1 0.0

int 25.5 32.7 34.2 0.1 92.5 0.9

linpack
lin

9.6
88.0 1.7 0.7

8.8
88.9 1.7 0.6

int 15.2 67.4 7.8 0.1 91.0 0.1

tfft
lin

29.3
62.5 4.0 4.2

28.3
63.1 4.3 4.3

int 42.0 19.8 8.9 21.7 33.7 16.2

a cb hit/miss: hit/miss in the current bank.
b ob hit/miss: hit/miss in another bank than the current.

The remaining group of programs, consisting of swim, sim, nsieve, tmn,
gzip, linpack, and tfft, shows a noticeable performance improvement by using
overlapped processing (except linpack). The execution time can be shortened
up to 19% for RDRAMs using overlapped processing (swim, interleaved trans-
lation) and up to 13% for SDRAMs respectively (swim, interleaved translation)
since up to 45.0% of all main memory accesses can make use of this mode.

4.4. Performance impact of controller and DRAM type 149

Interleaved address translation shortens the execution time by up to 25% (sim,
RDRAM, with overlapped processing). Since the programs generate high miss
rates in the data cache combined with a high count of load and store instruc-
tions, at least 5.3% of all executed instructions result in a main memory access.
RDRAMs benefit more from overlapped processing since their level of pipelin-
ing can better cope with bus turn-around situations. For instance at nsieve, for
which almost 90% of the memory transfers have been classified as read after
write or write after read accesses (not displayed), the RDRAM configuration
shows a 13% increase in performance compared with only 6% for the SDRAM
configuration. The significant performance improvements by using interleaved
address translation instead of linear translation can be achieved because the
programs show high DRAM miss rates in the current bank compared with the
preceding group of programs. Using interleaved translation, these relatively ex-
pensive accesses can be exchanged for cheaper accesses in other memory banks.
Moreover, RDRAMs benefit more from interleaving, since the high number of
internal banks causes considerably less conflict misses. The high miss rate in
the current bank also explains why the SDRAM configurations using open-page
mode and linear translation perform poorer than the corresponding configura-
tions using closed-page mode. A closed-page policy is able to hide some of the
precharge overhead which may be caused by frequent memory row changes.

heap tmnenc g723 723enc jpeg li c4 swim sim nsieve tmn gzip linpack tfft
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

SDRAM, c − p
SDRAM, o − p, linear
SDRAM, o − p, interl.
RDRAM, c − p
RDRAM, o − p, linear
RDRAM, o − p, interl.

Fig. 51: Normalized simulated execution times for closed-page and open-page modes with over-
lapped processing. SDRAM with closed-page mode is used as reference.

150 Chapter 4. Exploitation of RAM resources

Summary: The results are summarized in Fig. 51. On the one hand, the
RDRAM configuration using open-page mode and interleaved address trans-
lation always outperforms all other configurations. The minimal performance
gain ranges from some percent to up to 25% for the sim application. On the
other hand, the RDRAM more heavily depends on the chosen memory con-
troller access scheme due to the level of pipelining and the number of memory
banks involved. In the worst-case, the sim program looses more than 50% of its
best-case performance by using RDRAMs with closed-page mode. SDRAMs
using open-page mode and interleaved address translation compete well with
RDRAMs using linear translation. In the end, address translation influences the
overall performance more than exploiting pipelined RAM interfaces.

he
ap

he
ap

tm
ne

nc

tm
ne

nc
g7

23
g7

23

72
3e

nc

72
3e

nc
jpe

g
jpe

g lili c4c4
sw

im
sw

im simsim
ns

iev
e

ns
iev

e
tm

n
tm

n
gz

ip
gz

ip

lin
pa

ck

lin
pa

ck tff
t

tff
t0

0.2

0.4

0.6

0.8

1

ideal memory ideal bus, real memory real bus and memory

RDRAM SDRAM

Fig. 52: Normalized simulated execution times for open-page mode with overlapped processing
and interleaved address mapping. SDRAM with closed-page mode is used as reference.
The influence of memory latency and restricted bus bandwidth is shown.

Additional simulation runs have been performed employing the methodol-
ogy defined in [24] to separate the impact of raw bus bandwidth from the influ-
ence of DRAM latency. In this way, we are able to assess whether the Rambus
performance advantage is based on architecture features or on raw throughput.
A simulation run assumes an ideal memory with a single CPU-cycle delay. A
second simulation run uses an ideal memory bus width but employs the DRAM
latency models. A 32 Byte wide bus is assumed in the SDRAM case and a 32 Bit
bus in the RDRAM case so that a cache line transfer needs a single data cycle
and a single packet length respectively. The curves representing the fastest con-
figurations – open-page mode with interleaved address mapping – from Fig. 51
are redrawn in Fig. 52. The execution time is divided into a share caused by
inadequate bus throughput (upper part), memory timing (middle part), and raw
computation time (lower part). One can clearly see that the performance advan-

4.5. Related work 151

tage of RDRAMs is mainly based on increased memory bus bandwidth. Only
some of the benchmarks – swim, sim, nsieve, and gzip – can noticeably reduce
the execution time by five to 10 % due to enhanced features of RDRAMs such as
better bus turn-around behavior and a greater number of internal banks. There-
fore, a further increase of the bus bandwidth is not a reasonable option but the
properties of the memory core must improve for future memory solutions.

4.4.3 Conclusion for the design space exploration

The influence of recent DRAM technologies – SDRAMs and Direct Rambus
RAMs – on embedded systems performance has been investigated. Especially,
the impact of the memory controller has been explored by exhaustive simulation
of a modern 32 Bit out-of-order superscalar CPU architecture together with
different RAMs, applications, and memory access schemes. These schemes
have been kept simple so that they can be implemented in custom-designed
controllers, e.g. for network processors. The results from the simulation of 14
different applications on our modeled system can be summarized as follows:

• Looking at RDRAMs, applying an open-page access heuristic results in better
system performance than a closed-page access scheme. SDRAMs however do
not necessarily perform better in open-page mode.

• Exploiting the internal multi-bank structure of modern DRAMs by a row-wise
interleaved address translation scheme accelerates the program execution by up
to 25%. The amount of resolved capacity misses thus has always outperformed
the newly caused conflict misses.

• Using additional in-order request buffers to overlap the processing of successive
memory accesses may decrease the execution time by up to 19% for RDRAMs
and by up to 13% for SDRAMs.

• The RDRAM system outperforms the SDRAM system by up to one third us-
ing the same memory controller settings. RDRAMs benefit from a higher bus
throughput, more internal banks and a better bus turn-around behavior. How-
ever, RDRAMs depend more on the chosen access scheme than SDRAMs.

Thus, from a performance point of view, the transition from the mature SDRAM
to the new RDRAM technology can be indeed beneficial for embedded systems.
Besides, applying an interleaved address translation scheme has a greater impact
on the system performance than exploiting pipelined memory interfaces.

4.5 Related work
Common memory controller features: Tab. 22 gives an overview of current
SDRAM memory controllers. The support for a closed-page (c-p) activation

152 Chapter 4. Exploitation of RAM resources

policy, for an open-page policy together with the maximal number of open pages
(o-p/#pages), and for overlapped processing is shown.

Tab. 22: Memory controller features.

chip name c-p o-p / #pages overl.

embedded CPUs with integrated memory controller
Hitachi SH-4/7750 yes yes / 4 yes
Intel 80960RN no yes / 8 no
Motorola Coldfire yes yes / 1 no
Motorola MPC8xx yes no no
Motorola MPC8240 yes yes / 4 no
NEC V832 yes yes / 1 no
stand-alone memory controllers
Intel 440BX yes yes / 32 yes
Motorola MPC106 yes yes / 2 yes
NEC VRC5074 yes yes / 8 yes
workstation class stand-alone memory controllers
AMD 751 yes yes / 24 yes
Digital 21174 yes yes / 24 yes
Via Tech. KT133 yes yes / 16 yes

Only few memory controllers are available for RDRAMs. Rambus offers
two reference controller designs which can be used as a basis for own opti-
mized ASICs. Address mapping and overlapped processing are supported and
an open-page activation mode is mentioned as a future option without specifying
the supported number of open pages. Intel’s line of controllers (i820/i840/i850)
has in common that only a small number of up to eight open pages can be used
concurrently. This number is even less than the number of open pages supported
by Intel’s own SDRAM-based controller line.

Our modeled controller supports up to four open pages in the SDRAM sys-
tem and 64 open pages for the RDRAM channel. In this way, we can be sure
that the performance of our system is not bounded by a lack of open-page coun-
ters. We are hence able to evaluate the performance potential of using a high
number of memory banks concurrently. Recent announcements of RDRAM
controllers [77] even talk about the support of several hundred open pages. Our
simulation model thus covers a reasonable set of memory controller features.
Issues in current research: Detailed cycle-true simulators of CPUs have been
used for a variety of investigations to explore future processor systems together
with their memory subsystem. These studies either focus on the influence of
different CPU architecture features and cache designs on the memory behavior
using standardized SPEC [146] CPU benchmarks [24, 49, 162] and particular

4.6. Summary 153

applications [135, 162] or concentrate more on the workload generated for the
memory subsystem by certain applications [11]. These studies have in common
that due to large second level caches the impact of the main memory is supposed
to be low. The main memory is simulated by a simple model which only consists
of two to three access delay parameters. Our study models the main memory
system more precisely and emphasizes the role of the memory controller.

Enhancements of memory controllers such as stream buffers [110, 84, 124]
and configurable complex address remapping functions [28] are rather com-
plex and are thus unlikely to be introduced in embedded memory controllers in
the near future. These concepts need adjustments in the compiler, may gener-
ate additional run-time overhead for reconfigurations, and may introduce addi-
tional delay for applications which do not show regular memory access patterns.
We have restricted our study to simple memory controller architectures and en-
hancements which can already be found in current workstation systems.

Recent RAM surveys [126, 120, 97] focus on the functionality, the architec-
ture, and typical applications of dynamic RAMs. However, they do not provide
performance measurements under realistic workloads. An analysis of different
DRAM architectures has been combined with performance investigations by
simulation of a complex CPU model by Cuppu et al. in [41]. However, their ob-
jective differs from ours in that they simulate a workstation class computer with
larger caches, longer cache lines, more superscalar units, and a higher clock
frequency than embedded systems usually have. Cuppu et al. concentrate on an
analysis and comparison of different DRAM types in order to clarify where time
is spent during a main memory access. Opposed to that, we are interested in the
impact of the memory controller on the performance of the whole computing
system. We have restricted our studies to the two most recent DRAM types, but
have investigated the influence of address permutations and pipelined accesses
performed by the memory controller.

A performance study simulating forthcoming double data rate ESDRAMs
and VC-SDRAMs combined with a 5 GHz, 8-way superscalar CPU is presented
in [42]. The authors also focus on simple memory controller operation modes
assuming that the circuit complexity of the controller will be rather limited at
such clock speeds. Interestingly, they also come to the same conclusion for their
high-end configuration as we do for embedded systems that address mapping
has a greater impact on the performance than all other controller policies.

4.6 Summary

Since the main tasks of network processors such as packet header parsing and
forwarding must not rely on caches, network processors only employ small
caches (if at all). Accordingly, their performance particularly depends on the
exploitation of RAMs. This is why this section has been devoted to the perfor-
mance optimization of memory resources.

154 Chapter 4. Exploitation of RAM resources

The functionality and timing constraints of synchronous RAMs have been
explained to show why access delays not only depend on the type of operation
but also on the inner state of the RAM and on the order of the accesses. Conse-
quently, the role of the memory controller has been emphasized in order to make
full use of RAM resources. A memory controller with enhanced features that
take advantage of the inherent parallelism of multi-bank memory architectures
with pipelined interfaces has been reverse-engineered and modeled by a visual
formalism to ease the understanding of the interplay of controller and memory.
Based on the gained insight performance models of different controllers and
RAM types have been incorporated into a mature CPU simulator. The influence
of recent DRAM technologies – SDRAMs and Direct Rambus RAMs – on em-
bedded systems performance has been investigated by exhaustive simulation for
the first time focusing on the impact of the memory controller. Returning to the
questions that have been put at the beginning of this chapter we can say:

• RAM characteristics: SRAMs provide constant timing and thus only require
a simple memory controller. SRAMs offer superior performance but are only
worthwhile for small capacities. DRAM controllers have to cope with varying
access latencies depending on the inner state of the DRAM, on the order, and
on the type of accesses. DRAMs however are the only choice to supply large
capacities. SDRAMs can use different access granularities. SGRAMs moreover
offer a bit mask that can be employed for efficient header manipulations of
network packets. RDRAMs only support relatively coarse-grained data packets
to access memory but they will constitute a faster solution than SDRAMs if
their synchronous interface can be exploited by a suitable controller.

• Impact of the memory controller: The extensive exploration of operating modes
of a memory controller has shown that a controller indeed has a high impact
on the overall performance of a memory subsystem. Taking advantage of the
pipelined interface and the row-wise organization of DRAMs has less effect on
the performance of the evaluated embedded system than making use of several
internal memory banks by simple address permutations. The latter operation
mode alone is able to reduce the overall execution time by up to one quarter.
The integration of an application-specific controller into a network processor
hence is feasible and advantageous.

• DRAM throughput vs latency properties: The comparison of SDRAMs with
RDRAMs has shown that the performance advantage of RDRAMs is rather
caused by improved bus bandwidth than by any other architectural property.
The use of a high throughput interface could therefore be beneficial. The ac-
cess granularity of an RDRAM however is relatively coarse compared with an
SDRAM. Forthcoming double data rate (DDR) SDRAMs could therefore be a
more flexible solution if different or finer access resolutions were required.

Abstract RAM timing models derived from the simulation runs shown in
this chapter are used in Chapter 3 for a design space exploration of our network
processor.

5
Conclusion

The goal of this work is to reveal new insights into the recently emerging field of
network processor design. Network processors are utilized to accelerate as well
as enable tasks which are required to manage and maintain computer networks.
This thesis has focused on access networks with Quality of Service (QoS) dis-
tinction among customers, applications, or even individual flows. In order to
explore not only suitable algorithms for QoS preservation but also reasonable
architectures for network processors, the following new methodical approaches
have been applied:

• A new scheme for network services has been derived from the requirements of
multi-service access networks. The scheme combines the advantages of exist-
ing services by providing quantitative guarantees for flows in terms of loss and
delay, in-order delivery, graceful service degradation, and qualitative guarantees
for aggregates of flows to enable resource sharing.

• A new combined evaluation of processing stages which are responsible for the
QoS behavior of network access points, namely policing, queuing, and link
scheduling, has been performed to study the interplay of these components that
are responsible for QoS preservation.

• A design space exploration of QoS enabling algorithms and hardware resources
for network processors has been carried out by co-simulation of algorithms and
timing models of hardware building blocks. In this way, we have been able to
appraise the usage and performance of networking resources more flexibly and
exhaustively than it has been done up to now with static complexity analysis or
experimental hardware platforms.

• Detailed performance models of a memory controller and synchronous DRAMs
have been developed and incorporated into a mature CPU simulator. We have

156 Chapter 5. Conclusion

been able to show how heavily the properties of a memory subsystem influence
the overall computation performance of an embedded system.

Based on the above methods, the following results contribute to the field of
network processor design:

• In order to implement multi-service access networks, solutions with superior
timing behavior are preferred over configurations with reduced resource require-
ments. Setups based on Weighted Fair Queueing (WFQ) scheduling disciplines
are therefore favored over solutions based on Deficit Round-Robin. This will
be the right choice even if only a small number of QoS classes are supported
since the delay properties can clearly be improved by using WFQ at the cost of
a moderate increase in load.

• The simulation results underline that a compromise between tight delay bounds,
resource requirements, and fairness properties must be found in order to imple-
ment QoS preservation policies. These three objectives cannot be optimized
together. Different configurations have been suggested that optimize two of the
three goals. Worst-case scenarios and inconvenient configurations for a com-
bination of policing, queuing, and link scheduling have been determined. As a
result, the policer should avoid congestion by preventively dropping packets at
arrival so that the queue manager does not need to recover from congestion.

• The exploration of operating modes of a memory controller has shown that a
controller indeed has a high impact on the overall performance of a memory
subsystem. Taking advantage of the pipelined interface and the row-wise or-
ganization of DRAMs has less effect on the performance than making use of
several internal memory banks by simple address permutations. Moreover, the
performance advantage of RDRAMs compared with SDRAMs is due to the im-
proved bus bandwidth rather than any other architectural property. It is thus fea-
sible and pragmatic to integrate a network processor with an application-specific
memory controller that supports simple operating modes and a high-bandwidth
interface.

Finally, a suitable architecture for a network processor aimed at multi-
service access networks has been proposed. It is characterized by a single CPU
core and three distinct memory areas using different RAM types.

There are several starting-points for further research, including the following:

• It could be beneficial to feed back delay information from the architecture mod-
els to the algorithm models since an impending lack of resources should affect
the behavior of a network processor. That is, besides buffer congestion, an over-
load of computing resources should also be considered by algorithm models.

• The QoS preservation algorithms could be adapted to support reactive flows
which depend on the signalling of packet dropping and congestion events

157

through a feedback flow. In this case, QoS preservation requires the introduction
of mechanisms for accurate reservations of the forward and feedback paths.

• In addition to the operating mode of a memory controller the careful placement
of data to enhance memory performance could be taken into consideration. A
suitable heuristic could be, for instance, to map parameters and variables be-
longing to different flows to separate internal memory banks.

158 Chapter 5. Conclusion

A
An introduction to Petri nets

A Petri net is a formalism which can be used to model the behavior, the timing,
and the structure of a system. Petri net models are used at two places in this
thesis. In Chapter 4, Petri nets document the properties of a memory subsystem
consisting of several components. They are used in addition for performance
evaluations. In Chapter 2, a Petri net model depicts the sequence of tasks that
must be performed to process a packet of information passing a network node.

A.1 Petri net basics
In the following, the basic functionality of a Petri net is defined. A Petri net is a
visual formalism that not only allows to model the static properties but also the
dynamic behavior of a system. More background information can be found in,
for instance, [115, 128, 46].

Def. 18: (Petri net)
A Petri net is a directed, bipartite graph (P, T, A) with nodes P, T and arcs A:

P is a finite set of places,

T is a finite set of transitions,

A is a finite set of directed arcs A ⊆ (P × T) ∪ (T × P),

P ∩ T = ∅,

P ∪ T 6= ∅.

In the usual graphical representation, circles represent places, rectangles depict
transitions, and directed arrows describe arcs.

160 Appendix A. An introduction to Petri nets

Def. 19: (Pre-set •x) The pre-set •x of a node x ∈ P ∪ T is the set of input nodes
y ∈ P ∪ T defined by •x = {y|(y, x) ∈ A}.

Def. 20: (Post-set x•) The post-set x• of a node x ∈ P ∪ T is the set of output nodes
y ∈ P ∪ T defined by •x = {y|(x, y) ∈ A}.

Def. 21: (Marking M) Petri net places may hold an arbitrary number of tokens. A
defined distribution of tokens among the places of a Petri net is called a marking
M that represents a system state. A marking is graphically represented by the
corresponding number of dots within the places of a Petri net.

Def. 22: (Place-transition Petri net)
A place-transition Petri net is a 6-tuple (P, T, A, C, W, M0):

(P, T, A) is a Petri net,

C : P → N ∪ {∞} is the capacity function that defines the maximum
number of tokens hold by places,

W : A → N defines a weight for each arc,

M0 : P →N0 is an initial marking and M0(p) ≤ C(p), ∀p ∈ P .

Weights are graphically assigned to arcs and capacities to places respectively.
The default weight of an arc is one whereas the default capacity of a place is
unlimited.

Ex. 12: (Place-transition Petri net) Fig. 53 shows a place-transition Petri net. There
are three places and three transitions. The weight of arc (p1, t2) is two and of
arc (p2, t3) is three respectively. All other arcs have the default weight one. The
marking is M(p1) = 2, M(p2) = 1, and M(p3) = 0. Only the capacity of place
p2 is limited to 12 tokens. Some exemplary pre- and post-sets are •t2 = {p1},
•p2 = {t1, t2}, t1• = {p2}, and p1• = {t1, t2}.

t2

t3

p
1 p

3

t1

p
2

[2]

[3]

12

Fig. 53: An example of a place-transition Petri net.

Up to now, only the static structure of a Petri net has been described. The
following definitions enable the dynamic representation of the behavior of a
system. A change of the system state is modeled by a movement of tokens
according to enabling and firing rules.

A.2. Petri net extensions 161

Def. 23: (Enabling rule) A transition t ∈ T of a place-transition Petri net is enabled
with marking M if:

∀p ∈ •t : M(p) ≥ W ((p, t)), i.e., there are enough tokens in all input
places of t, defined by arc weights,

∀p ∈ t • \ • t : M(p) ≤ C(p)−W ((t, p)), i.e., there is enough remaining
capacity for all places that are only outputs of t,

∀p ∈ (t • ∩ • t) : M(p) ≤ C(p) − W ((t, p)) + W ((p, t)), i.e., there is
enough remaining capacity for each place that is an input and an output
of t.

Def. 24: (Firing rule) An enabled transition may fire. A firing of a transition t causes
the following token movements in a place-transition Petri net with marking M :

∀pin ∈ •t : W ((pin, t)) tokens are removed from M(pin),

∀pout ∈ t• : W ((t, pout)) tokens are added to to M(pout).

Ex. 13: (Token movement) Fig. 54 shows some possible markings derived from Ex. 12
by firing different transitions. Obviously, Ex. 12 models a conflict between tran-
sitions t1 and t2 since both transitions are enabled by the marking of place p1.
Which transition may fire is chosen non-deterministically. Fig. 54.a) displays a
marking if transition t2 fires whereas Fig. 54.b) represents a marking if transi-
tion t1 fires twice. The net in Fig. 54.a) is dead since none of the transitions can
be enabled by the current marking whereas in Fig. 54.b) transition t3 could fire
once.

t2

t3

p
1 p

3

t1

p
2

t2

t3

p
1 p

3

t1

p
2

t1 fires twiceb) marking if

[2]

[3]

12

t2 firesa) marking if

[2]

[3]

12

Fig. 54: Some possible markings derived from Ex. 12.

A.2 Petri net extensions
An overview of extensions to Petri nets is given. In order to understand the
necessary adjustments of enabling and firing rules the reader is referred to the
corresponding literature.

162 Appendix A. An introduction to Petri nets

A so-called high level Petri net may show the following properties:

• Colored tokens: Tokens become distinguishable since a variable of an arbitrary
data type may be assigned to a token. Enabling and firing rules may take the
current values of tokens into account. An action assigned to a transition may
modify the value of a token when the transition fires. An example of such a
Petri net is a Coloured Petri net [91].

• The consideration of time: Two approaches have evolved to consider a notion
of time in a Petri net model. A timed Petri net fires a transition as soon as it
is enabled. However, a finite firing duration is assigned to each transition so
that there is a delay between the removal of tokens from the pre-set and the
addition of tokens to the post-set of a transition. Contrary to that, time Petri nets
associate a finite enabling duration with each transition. Thus, a transition may
fire if it is continuously enabled for at least the minimum duration and for at
most the maximum duration. A time Petri net is more general than a timed Petri
net, i.e., a timed Petri net can be modeled by a time Petri net. Examples of Petri
net definitions that consider time can be found in [115, 91, 46].

• Abstraction by a hierarchy of Petri nets: Places and transitions can be refined
by subnets forming a hierarchy of Petri nets. Moreover, the concept of compo-
nents can be introduced to ease the reuse of Petri nets. An example of such an
approach is described in [46].

The consideration of time enables the performance evaluation of a system.
The use of colored tokens and hierarchical nets reduces the complexity of a
model by more effectively describing the structure as well as the control and
data flow of a system.

Bibliography

[1] Common Programming / Switch Interface forum (CSIX /
CPIX), Network Processing Forum (NPF). http://www.csix.org,
http://www.cpixforum.org, http://www.npforum.org.

[2] Internet Engineering Task Force (IETF). http://www.ietf.org.

[3] The Internet Traffic Archive. http://www.acm.org/sigs/sigcomm/ITA/,
sponsored by the ACM Special Interest Group on Data Communication
(SIGCOMM).

[4] The Moses project: Modeling, Simulation, and Evaluation of Sys-
tems, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology Zurich, Switzerland.
http://www.tik.ee.ethz.ch/∼moses.

[5] E. Adler, J.K. DeBrosse, S.F. Geissler, S.J. Holmes, M.D. Jaffe, J.B.
Johnson, C.W. Koburger, J.B. Lasky, B. Lloyd, G.L. Miles, J.S. Nakos,
W.P. Noble, S.H. Voldman, M. Armacost, and R. Ferguson. The evolu-
tion of IBM CMOS DRAM technology. IBM Journal of Research and
Development, 39(1-2):167–188, March 1995.

[6] ARM, Ltd. ARM9E-S Technical Reference Manual, ARM DDI 0165A,
December 1999. http://www.arm.com.

[7] ATM Forum Technical Committee. ATM user-network interface (UNI)
specification version 3.1, September 1994.

[8] Anindo Banerjea, Domenico Ferrari, Bruce A. Mah, Mark Moran, Di-
nesh C. Verma, and Hui Zhang. The Tenet real-time protocol suite:
Design, implementation, and experiences. IEEE/ACM Transactions on
Networking, 4(1):1–10, February 1996.

[9] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella.
Changes in Web client access patterns: characteristics and caching im-
plications. World Wide Web, 2(1-2):15–28, 1999.

[10] Paul Barford and Mark Crovella. Generating representative Web work-
loads for network and server performance evaluation. Performance Eval-
uation Review, 26(1):151–160, June 1998.

164 Bibliography

[11] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion.
Memory system characterization of commercial workloads. In 25th In-
ternational Symposium on Computer Architecture, pages 3–14, 1998.

[12] BenchWeb. Benchmark branch of the Netlib repository, University of
Tennessee. http://www.netlib.org/benchweb/.

[13] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair queueing algo-
rithms. IEEE/ACM Transactions on Networking, 5(5):675–689, October
1997.

[14] Jon C.R. Bennett and Hui Zhang. WF2Q: worst-case fair weighted fair
queueing. In IEEE INFOCOM ’96, The Conference on Computer Com-
munications, volume 1, pages 120–128, 1996.

[15] Yoram Bernet, Peter Ford, Raj Yavatkar, Fred Baker, Lixia Zhang,
Michael Speer, Bob Braden, Bruce Davie, John Wroclawski, and Eyal
Felstaine. A framework for integrated services operation over Diffserv
networks. Request for Comments 2998, Internet Engineering Task Force
(IETF), November 2000.

[16] Saleem N. Bhatti and Jon Crowcroft. QoS-sensitive flows: Issues in IP
packet handling. IEEE Internet Computing, 4(4):48–57, July 2000.

[17] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng
Wang, and Walter Weiss. An architecture for differentiated services. Re-
quest for Comments 2475, Internet Engineering Task Force (IETF), De-
cember 1998.

[18] Keith Boland and Apostolos Dollas. Predicting and precluding problems
with memory latency. IEEE Micro, 14(4):59–67, August 1994.

[19] Grady Booch. Object-oriented analysis and design, with applications.
Benjamin/Cummings, 2nd edition, 1994.

[20] Bob Braden, David Clark, and Scott Shenker. Integrated Services in the
Internet architecture: an overview. Request for Comments 1633, Internet
Engineering Task Force (IETF), June 1994.

[21] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Steve Deer-
ing, Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig
Partridge, Larry Peterson, K. K. Ramakrishnan, Scott Shenker, John
Wroclawski, and Lixia Zhang. Recommendations on queue management
and congestion avoidance in the Internet. Request for Comments 2309,
Internet Engineering Task Force (IETF), April 1998.

[22] Bob Braden, Lixia Zhang, Steve Berson, Shai Herzog, and Sugih Jamin.
Resource ReSerVation Protocol (RSVP) – version 1 functional specifi-
cation. Request for Comments 2205, Internet Engineering Task Force
(IETF), September 1997.

Bibliography 165

[23] Doug Burger and Todd. M. Austin. The SimpleScalar tool set, version
2.0. Technical Report 1342, Computer Sciences Department, University
of Wisconsin-Madison, June 1997.

[24] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth
limitations of future microprocessors. In 23th International Symposium
on Computer Architecture, pages 78–89, 1996.

[25] Frank P. Burns, Albert M. Koelmans, and Alex V. Yakovlev. Analysing
superscalar processor architectures with coloured Petri nets. Interna-
tional Journal on Software Tools for Technology Transfer, Springer-
Verlag, 2(2):182–191, 1998.

[26] Werner Bux, Wolfgang E. Denzel, Ton Engbersen, Andreas Herkers-
dorf, and Ronald P. Luijten. Technologies and building blocks for fast
packet forwarding. IEEE Communications Magazine, 39(1):70–77, Jan-
uary 2001.

[27] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP
latency. In IEEE INFOCOM 2000, volume 3, pages 1742–1751, 2000.

[28] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang,
Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael
Parker, Lambert Schaelicke, and Terry Tateyama. Impulse: building a
smarter memory controller. In Fifth International Symposium on High-
Performance Computer Architecture, pages 70–79, 1999.

[29] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network
intercommunication. IEEE Transactions on Communications, COM-
22(5):637–648, May 1974.

[30] H. Jonathan Chao, Yau-Ren Jenq, Xiaolei Guo, and Cheuk H. Lam. De-
sign of packet-fair queuing schedulers using a RAM-based searching en-
gine. IEEE Journal on Selected Areas in Communications, 17(6):1105–
1126, June 1999.

[31] Fabio M. Chiussi and Andrea Francini. Minimum-delay self-clocked
fair queueing algorithm for packet-switched networks. In Proceedings.
IEEE INFOCOM ’98, the Conference on Computer Communications,
volume 3, pages 1112–1121. IEEE, 1998.

[32] Ki-Ho Cho and Hyunsoo Yoon. Design and analysis of a fair scheduling
algorithm for QoS guarantees in high-speed packet-switched networks.
In ICC ’98 IEEE International Conference on Communications, vol-
ume 3, pages 1520–1525, 1998.

[33] Yen-Ping Chu and E-Hong Hwang. A new packet scheduling algorithm:
minimum starting-tag fair queueing. IEICE Transactions on Communi-
cations, E80-B(10):1529–1536, October 1997.

166 Bibliography

[34] Israel Cidon, Roch Guérin, and Asad Khamisy. On protective buffer
policies. IEEE/ACM Transactions on Networking, 2(3):240–246, June
1994.

[35] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator
for execution profiling. In SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, pages 128–137. ACM, May 1994.

[36] Jorge A. Cobb, Mohamed G. Gouda, and Amal El-Nahas. Time-shift
scheduling-fair scheduling of flows in high-speed networks. IEEE/ACM
Transactions on Networking, 6(3):274–285, June 1998.

[37] Charles D. Cranor, R. Gopalakrishnan, and Peter Z. Onufryk. Architec-
tural considerations for CPU and network interface integration. IEEE
Micro, 20(1):18–26, Jan.-Feb. 2000.

[38] Nicholas Cravotta. Network processors: The sky is the limit. EDN-
Magazine, US-edition, 44(24):108–119, November 1999.

[39] Patrick Crowley, Marc E. Fluczynski, Jean-Loup Baer, and Brian N. Ber-
shad. Characterizing processor architectures for programmable network
interfaces. In International Conference on Supercomputing (ICS) 2000,
pages 54–65. ACM, May 2000.

[40] Rene L. Cruz. A calculus for network delay. Part I. Network elements
in isolation. IEEE Transactions on Information Theory, 37(1):114–131,
January 1991.

[41] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. A perfor-
mance comparison of contemporary DRAM architectures. In 26th Inter-
national Symposium on Computer Architecture, pages 222–233, 1999.

[42] Brian Davis, Trevor Mudge, and Bruce Jacob. DDR2 and low latency
variants. In Solving the Memory Wall Workshop at ISCA’00, Vancouver
BC, Canada, June 2000.

[43] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink.
Small forwarding tables for fast routing lookups. Computer Communi-
cation Review, ACM SIGCOMM, 27(4):3–14, October 1997.

[44] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and sim-
ulation of a fair queueing algorithm. Internetworking: Research and
Experience, 1(1):3–26, September 1990.

[45] Robert H. Dennard. Evolution of the MOSFET dynamic RAM - a per-
sonal view. IEEE Transactions on Electron Devices, 31(11):1549–1555,
November 1984.

Bibliography 167

[46] Robert Esser. An Object Oriented Petri Net Approach to Embedded Sys-
tem Design. PhD thesis, Computer Engineering and Networks Labora-
tory (TIK), ETH Zurich, Switzerland, 1996.

[47] Wenjia Fang and Larry Peterson. Inter-AS traffic patterns and their impli-
cations. In GLOBECOM’99, volume 3, pages 1859–1868. IEEE, 1999.

[48] Wenjia Fang, Nabil Seddigh, and Biswajit Nandy. A time sliding window
three colour marker (TSWTCM). Request for Comments 2859, Internet
Engineering Task Force (IETF), June 2000.

[49] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic.
Memory-system design considerations for dynamically-scheduled pro-
cessors. In 24th International Symposium on Computer Architecture,
pages 133–143, 1997.

[50] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger.
Dynamics of IP traffic: a study of the role of variability and the impact
of control. In SIGCOMM’99, conference on Applications, technologies,
architectures, and protocols for computer communication, pages 301–
313, August 1999.

[51] Anja Feldmann and S. Muthukrishnan. Tradeoffs for packet classifica-
tion. In IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[52] Paul Ferguson and Geoff Huston. Quality of Service. Delivering QoS on
the Internet and in Corporate Networks. John Wiley & Sons, 1998.

[53] Domenico Ferrari and Dinesh C. Verma. A scheme for real-time channel
establishment in wide-area networks. IEEE Journal on Selected Areas in
Communications, 8(3):368–379, April 1990.

[54] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–
413, August 1993.

[55] Sally Floyd and Van Jacobson. Link-sharing and resource management
models for packet networks. IEEE/ACM Transactions on Networking,
3(4):365–386, August 1995.

[56] Mark W. Garrett and Walter Willinger. Analysis, modeling and genera-
tion of self-similar VBR video traffic. In SIGCOMM’94, conference on
Communications architectures, protocols and applications, pages 269–
280, August 1994.

[57] Leonidas Georgiadis, Roch Guérin, and Abhay Parekh. Optimal multi-
plexing on a single link: delay and buffer requirements. IEEE Transac-
tions on Information Theory, 43(5):1518–1535, September 1997.

168 Bibliography

[58] Leonidas Georgiadis, Roch Guérin, Vinod Peris, and R. Rajan. Efficient
support of delay and rate guarantees in an internet. Computer Communi-
cation Review, 26(4):106–116, October 1996.

[59] Leonidas Georgiadis, Roch Guérin, Vinod Peris, and Kumar N. Sivara-
jan. Efficient network QoS provisioning based on per node traffic shap-
ing. IEEE/ACM Transactions on Networking, 4(4):482–501, August
1996.

[60] Linda Geppert. The new chips on the block [network processors]. IEEE
Spectrum, 38(1):66–68, January 2001.

[61] Glenn Giacalone, Tom Brightman, Andy Brown, John Brown, James
Farrell, Ron Fortino, Tom Franco, Andrew Funk, Kevin Gillespie, El-
liot Gould, Dave Husak, Ed McLellan, Bill Peregoy, Don Priore, Mark
Sankey, Peter Stropparo, and Jeff Wise. A 200 MHz digital communica-
tions processor. In 2000 IEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 416–417, 2000.

[62] S. Jamaloddin Golestani. A self-clocked fair queueing scheme for broad-
band applications. In INFOCOM 94, volume 2, pages 636–646. IEEE,
June 1994.

[63] Pawan Goyal and Harrick M. Vin. Generalized guaranteed rate schedul-
ing algorithms: a framework. IEEE/ACM Transactions on Networking,
5(4):561–571, August 1997.

[64] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair queu-
ing: a scheduling algorithm for integrated services packet switching
networks. Computer Communication Review, 26(4):157–168, October
1996.

[65] Matthias Gries. Modeling a memory subsystem with Petri Nets: a case
study. In Workshop Hardware Design and Petri Nets HWPN98 at ATPN,
pages 186–201, Lisbon, Portugal, June 1998.

[66] Matthias Gries. A survey of synchronous RAM architectures. Technical
Report 71, Computer Engineering and Networks Laboratory (TIK), ETH
Zurich, Switzerland, April 1999.

[67] Matthias Gries. The impact of recent DRAM architectures on embedded
systems performance. In 26th Euromicro Conference on Digital System
Design, volume 1, pages 282–289, Maastricht, Netherlands, September
2000. IEEE Computer.

[68] Matthias Gries. Modeling a memory subsystem with Petri Nets: a case
study. In Alex Yakovlev, Luis Gomes, and Luciano Lavagno, editors,
Hardware Design and Petri Nets, pages 291–310. Kluwer Academic
Publishers, March 2000.

Bibliography 169

[69] Matthias Gries and Jonas Greutert. Modeling a shared medium access
node with QoS distinction. Technical Report 86, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, Switzerland, April 2000.

[70] Matthias Gries, Jörn W. Janneck, and Martin Naedele. Reusing design
experience for Petri Nets through patterns. In High Performance Com-
puting’99 (HPC99), pages 453–458, April 1999.

[71] Matthias Gries and Andreas Romer. Performance evaluation of re-
cent DRAM architectures for embedded systems. Technical Report 82,
Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
Switzerland, November 1999.

[72] Roch Guérin, Sanjay Kamat, Vinod Peris, and R. Rajan. Scalable QoS
provision through buffer management. Computer Communication Re-
view, 28(4):29–40, October 1998.

[73] Roch Guérin and Vinod Peris. Quality-of-service in packet networks:
basic mechanisms and directions. Computer Networks, 31(3):169–189,
February 1999.

[74] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing lookups in hard-
ware at memory access speeds. In INFOCOM’98, volume 3, pages 1240–
1247. IEEE Computer and Communications Societies, 1998.

[75] Pankaj Gupta and Nick McKeown. Classifying packets with hierarchical
intelligent cuttings. IEEE Micro, 20(1):34–41, January 2000.

[76] Pankaj Gupta and Nick McKeown. Dynamic algorithms with worst-case
performance for packet classification. In IFIP Networking Conference,
Paris, France, May 2000.

[77] Linley Gwennap. Alpha 21364 to ease memory bottleneck. Micropro-
cessor Report, 12(14):12–15, October 1998.

[78] Ellen L. Hahne and Robert G. Gallager. Round robin scheduling for fair
flow control in data communication networks. In IEEE International
Conference on Communications’86, volume 1, pages 103–107. IEEE,
New York, NY, USA, 1986.

[79] David Harel. StateCharts: A visual formalism for complex systems. Sci-
ence of Computer Programming, 8(3):231–274, 1987.

[80] Juha Heinanen, Fred Baker, Walter Weiss, and John Wroclawski. As-
sured forwarding PHB group. Request for Comments 2597, Internet En-
gineering Task Force (IETF), June 1999.

[81] Juha Heinanen and Roch Guérin. A two rate three color marker. Request
for Comments 2698, Internet Engineering Task Force (IETF), September
1999.

170 Bibliography

[82] John L. Hennessy and David A. Patterson. Computer Organization &
Design, the Hardware / Software Interface. Morgan Kaufmann Publish-
ers, 1994.

[83] Hitachi Kodaira Semiconductor Co., Ltd. SH7750 Series Hardware Man-
ual, ADE-602-124C, 4 edition, March 2000.

[84] Sung I. Hong, Sally A. McKee, Maximo H. Salinas, Robert H. Klenke,
James H. Aylor, and Wm. A. Wulf. Access order and effective band-
width for streams on a Direct Rambus memory. In Fifth International
Symposium on High-Performance Computer Architecture, pages 80–89,
1999.

[85] Nen-Fu Huang and Shi-Ming Zhao. A novel IP-routing lookup scheme
and hardware architecture for multigigabit switching routers. IEEE Jour-
nal on Selected Areas in Communications, 17(6):1093–1104, June 1999.

[86] Geoff Huston. Next steps for the IP QoS architecture. Request for Com-
ments 2990, Internet Engineering Task Force (IETF), November 2000.

[87] IBM Corp. Microelectronics Devision. PowerPC 740/750 RISC Micro-
processor User’s Manual, GK21-0263-00, February 1999.

[88] Intel Corp. PC SDRAM Specification, Rev. 1.7, November 1999.

[89] Van Jacobson, Kathleen Nichols, and Kedarnath Poduri. An expedited
forwarding PHB. Request for Comments 2598, Internet Engineering
Task Force (IETF), June 1999.

[90] Jörn W. Janneck. Syntax and Semantics of Graphs: An approach to the
specification of visual notations for discrete-event systems. PhD thesis,
Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology Zurich, Switzerland, June 2000.

[91] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, volume 1: Basic Concepts of EATCS Monographs in
Computer Science. Springer-Verlag, 1992.

[92] Joint Electron Device Engineering Council (JEDEC). Standard 21C
(JESD21C): Configurations for solid state memories: official and pre-
liminary releases.

[93] Douglas W. Jones. An empirical comparison of priority-queue and event-
set implementations. Communications of the ACM, 29(4):300–311, April
1986.

[94] Charles R. Kalmanek, Hemant Kanakia, and Srinivason Keshav. Rate
controlled servers for very high-speed networks. In GLOBECOM ’90,
volume 1, pages 12–20. IEEE, New York, NY, USA, 1990.

Bibliography 171

[95] Srinivasan Keshav. On the efficient implementation of fair queueing.
Internetworking: Research and Experience, 2(3):157–173, September
1991.

[96] Donald E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley, 2 edition, 1998.

[97] Masaki Kumanoya, Toshiyuki Ogawa, Yasuhiro Konishi, Katsumi
Dosaka, and Kazuhiro Shimotori. Trends in high-speed DRAM archi-
tectures. IEICE Transactions on Electronics, E79-C(4):472–481, April
1996.

[98] Vijay P. Kumar, T.V. Lakshman, and Dimitrios Stiliadis. Beyond best
effort: router architectures for the differentiated services of tomorrow’s
Internet. IEEE Communications Magazine, 36(5):152–164, May 1998.

[99] T.V. Lakshman, Upamangu Madhow, and Bernhard Suter. Window-
based error recovery and flow control with a slow acknowledgement
channel: a study of TCP/IP performance. In INFOCOM ’97, volume 3,
pages 1199–1209. IEEE Comput. Soc. Press, Los Alamitos, CA, USA,
1997.

[100] T.V. Lakshman, Arnold Neidhardt, and Teunis J. Ott. The drop from front
strategy in TCP and in TCP over ATM. In INFOCOM ’96, volume 3,
pages 1242–1250. IEEE Computer, March 1996.

[101] T.V. Lakshman and Dimitrios Stiliadis. High-speed policy-based packet
forwarding using efficient multi-dimensional range matching. Computer
Communication Review, 28(4):203–214, October 1998.

[102] Butler Lampson, Venkatachary Srinivasan, and George Varghese. IP
lookups using multiway and multicolumn search. In INFOCOM’98, vol-
ume 3, pages 1248–1256. IEEE Computer and Communications Soci-
eties, 1998.

[103] Jean-Yves Le Boudec and Patrick Thiran. A short tutorial on network
calculus. I: fundamental bounds in communication networks. In IEEE In-
ternational Symposium on Circuits and Systems (ISCAS) 2000, volume 4,
pages 93–96, 2000.

[104] Jörg Liebeherr, Dallas E. Wrege, and Domenico Ferrari. Exact admission
control for networks with a bounded delay service. IEEE/ACM Transac-
tions on Networking, 4(6):885–901, December 1996.

[105] Dong Lin and Robert Morris. Dynamics of random early detection. Com-
puter Communication Review, 27(4):127–137, October 1997.

172 Bibliography

[106] John W. Lockwood, Naji Naufel, Jon S. Turner, and David E. Taylor.
Reprogrammable network packet processing on the field programmable
port extender (FPX). In ACM International Symposium on Field Pro-
grammable Gate Arrays (FPGA’2001), pages 87–93, Monterey, CA,
USA, February 2001.

[107] Pictro Manzoni, Paolo Cremonesi, and Giuseppe Serazzi. Workload
models of VBR video traffic and their use in resource allocation policies.
IEEE/ACM Transactions on Networking, 7(3):387–397, June 1999.

[108] Anthony J. McAuley and Paul Francis. Fast routing lookup using CAMs.
In IEEE INFOCOM’93, volume 3, pages 1382–1391, 1993.

[109] Tony McGregor, Hans-Werner Braun, and Jeff Brown. The NLANR
network analysis infrastructure. IEEE Communications Magazine,
38(5):122–128, May 2000.

[110] Sally A. McKee, Robert H. Klenke, Kenneth L. Wright, William A. Wulf,
Maximo H. Salinas, James H. Aylor, and Alan P. Batson. Smarter mem-
ory: improving bandwidth for streamed references. IEEE Computer,
31(7):54–63, July 1998.

[111] Merit Networks Inc. and the University of Michigan. Internet perfor-
mance management and analysis project. http://www.merit.edu/ipma/.

[112] Sung-Whan Moon, Kang G. Shin, and Jennifer Rexford. Scalable hard-
ware priority queue architectures for high-speed packet switches. In
Third IEEE Real-Time Technology and Applications Symposium, pages
203–212, 1997.

[113] Akio Moridera, Kazuo Murano, and Yukou Mochida. The network
paradigm of the 21st century and its key technologies. IEEE Commu-
nications Magazine, 38(11):94–98, November 2000.

[114] Donald R. Morrison. PATRICIA - practical algorithm to retrieve infor-
mation coded in alphanumeric. Journal of the Association for Computing
Machinery, 15(4):514–534, October 1968.

[115] Tadao Murata. Petri nets: Properties, analysis, and applications. Pro-
ceedings of the IEEE, 77(4):541–580, April 1989.

[116] John Nagle. On packet switches with infinite storage. Request for Com-
ments 970, Internet Engineering Task Force (IETF), December 1985.

[117] John B. Nagle. On packet switches with infinite storage. IEEE Transac-
tions on Communications, 35(4):435–438, April 1987.

Bibliography 173

[118] Xiaoning Nie, Lajos Gazsi, Frank Engel, and Gerhard Fettweis. A new
network processor architecture for high-speed communications. In IEEE
Workshop on Signal Processing Systems (SiPS) 1999, pages 548–557,
1999.

[119] Stefan Nilsson and Gunnar Karlsson. IP-address lookup using LC-tries.
IEEE Journal on Selected Areas in Communications, 17(6):1083–1092,
June 1999.

[120] Yoichi Oshima, Bing J. Sheu, and Steve H. Jen. High-speed memory
architectures for multimedia applications. IEEE Circuits and Devices
Magazine, 13(1):8–13, January 1997.

[121] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling
TCP throughput: a simple model and its empirical validation. Computer
Communication Review, 28(4):303–314, October 1998.

[122] Abhay K. Parekh and Robert G. Gallager. A generalized processor shar-
ing approach to flow control in integrated services networks: the single-
node case. IEEE/ACM Transactions on Networking, 1(3):344–357, June
1993.

[123] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Trans-
actions on Networking, 7(3):277–292, June 1999.

[124] Mario Porrmann, Jörg Landmann, Karl M. Marks, and Ulrich Rückert.
HiBRIC-MEM, a memory controller for PowerPC based systems. In
23rd Euromicro Conference: New Frontiers of Information Technology,
pages 653–657, September 1997.

[125] Charles Price. MIPS IV Instruction Set, revision 3.1. Mips Technologies,
Inc., Mountain View, CA, USA, January 1995.

[126] Betty Prince. High Performance Memories: New Architecture DRAMs
and SRAMs - Evolution and Function, revised ed. John Wiley & Sons
Ltd., 1999.

[127] Rambus Inc. Direct RDRAM 256/288-MBit (512K x16/18 x 32s), Prelim-
inary information, April 2000.

[128] Wolfgang Reisig. Petri Nets, An Introduction. Springer-Verlag, 1985.

[129] Yakov Rekhter and Tony Li. An architecture for IP address allocation
with CIDR. Request for Comments 1518, Internet Engineering Task
Force (IETF), September 1993.

[130] Jennifer L. Rexford, Albert G. Greenberg, and Flavio G. Bonomi.
Hardware-efficient fair queueing architectures for high-speed networks.
In IEEE INFOCOM ’96, Fifteenth Annual Joint Conference of the IEEE

174 Bibliography

Computer Societies, volume 2, pages 638–646. IEEE Comput. Soc.
Press, 1996.

[131] Lawrence G. Roberts. Beyond Moore’s law: Internet growth trends.
IEEE Computer, 33(1):117–119, January 2000.

[132] Allyn Romanow and Sally Floyd. Dynamics of TCP traffic over
ATM networks. IEEE Journal on Selected Areas in Communications,
13(4):633–641, May 1995.

[133] Robert Rönngren and Rassul Ayani. A comparative study of parallel and
sequential priority queue algorithms. ACM Transactions on Modeling
and Computer Simulation, 7(2):157–209, April 1997.

[134] Oliver Rose. Simple and efficient models for variable bit rate MPEG
video traffic. Performance Evaluation, 30(1-2):69–85, July 1997.

[135] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett
Witchel, and Anoop Gupta. The impact of architectural trends on operat-
ing system performance. In 15th ACM Symposium on Operating Systems
Principles, pages 285–298, 1995.

[136] James Rumbaugh, Michael Blaha, William Premerlani, and Frederick
Eddy. Object-oriented modeling and design. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1991.

[137] Hanrijanto Sariowan, Rene L. Cruz, and George C. Polyzos. SCED:
A generalized scheduling policy for guaranteeing Quality-of-Service.
IEEE/ACM Transactions on Networking, 7(5):669–684, October 1999.

[138] Robert R. Schaller. Moore’s law: past, present and future. IEEE Spec-
trum, 34(6):52–59, June 1997.

[139] Bran Selic, Garth Gullekson, and Paul Ward. Real-time object-oriented
modeling. John Wiley & Sons Ltd., 1994.

[140] Scott Shenker, Craig Partridge, and Roch Guérin. Specification of guar-
anteed quality of service. Request for Comments 2212, Internet Engi-
neering Task Force (IETF), September 1997.

[141] Scott Shenker and John Wroclawski. General characterization param-
eters for integrated service network elements. Request for Comments
2215, Internet Engineering Task Force (IETF), September 1997.

[142] M. Shreedhar and George Varghese. Efficient fair queuing using Deficit
Round-Robin. IEEE/ACM Transactions on Networking, 4(3):375–385,
June 1996.

[143] Keith Sklower. A tree-based packet routing table for Berkeley UNIX. In
USENIX Winter Conference, pages 93–103, January 1991.

Bibliography 175

[144] Tammo Spalink, Scott Karlin, and Larry Peterson. Evaluating network
processors in IP forwarding. Technical Report TR–626–00, Department
of Computer Science, Princeton University, November 2000.

[145] Venkatachary Srinivasan, Subhash Suri, and George Varghese. Packet
classification using tuple space search. Computer Communication Re-
view, 29(4):135–146, October 1999.

[146] Standard Performance Evaluation Corporation. Open Systems Group,
CPU benchmark suite. http://www.spec.org.

[147] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C.
Buttazzo. Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms, volume 460 of Kluwer International Series in Engineering
and Computer Science. Kluwer Academic Publishers, 1998.

[148] Donpaul C. Stephens, Jon C.R. Bennett, and Hui Zhang. Implementing
scheduling algorithms in high-speed networks. IEEE Journal on Selected
Areas in Communications, 17(6):1145–1158, June 1999.

[149] Dimitrios Stiliadis. Traffic Scheduling in Packet-Switched Networks:
Analysis, Design, and Implementation. PhD thesis, Dept. of Computer
Engineering, University of California, Santa Cruz, June 1996.

[150] Dimitrios Stiliadis and Anujan Varma. Efficient fair queueing algorithms
for packet-switched networks. IEEE/ACM Transactions on Networking,
6(2):175–185, April 1998.

[151] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers: a general
model for analysis of traffic scheduling algorithms. IEEE/ACM Transac-
tions on Networking, 6(5):611–624, October 1998.

[152] Dimitrios Stiliadis and Anujan Varma. Rate-proportional servers: a de-
sign methodology for fair queueing algorithms. IEEE/ACM Transactions
on Networking, 6(2):164–174, April 1998.

[153] Ion Stoica, Hui Zhang, and T. S. Ng. A hierarchical fair service curve
algorithm for link-sharing, real-time and priority services. Computer-
Communication-Review, 27(4):249–262, October 1997.

[154] Karsten Strehl, Lothar Thiele, Matthias Gries, Dirk Ziegenbein, Rolf
Ernst, and Jürgen Teich. FunState - an internal design representation
for codesign. accepted for publication: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems.

[155] Subhash Suri, George Varghese, and Girish Chandranmenon. Leap for-
ward virtual clock: a new fair queuing scheme with guaranteed delays
and throughput fairness. In Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing, 1997.

176 Bibliography

[156] Bernhard Suter, T.V. Lakshman, Dimitrios Stiliadis, and Abhijit K.
Choudhury. Buffer management schemes for supporting TCP in giga-
bit routers with per-flow queueing. IEEE Journal on Selected Areas in
Communications, 17(6):1159–1169, June 1999.

[157] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall Int., 3 edi-
tion, 1996.

[158] Mikkel Thorup. On RAM priority queues. SIAM Journal on Computing,
30(1):86–109, 2000.

[159] Henry Hong-Yi Tzeng and Tony Przygienda. On fast address-lookup
algorithms. IEEE Journal on Selected Areas in Communications,
17(6):1067–1082, June 1999.

[160] Dinesh C. Verma, Hui Zhang, and Domenico Ferrari. Delay jitter con-
trol for real-time communication in a packet switching network. In TRI-
COMM ’91, pages 35–43. IEEE, New York, NY, USA, April 1991.

[161] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner.
Scalable high speed IP routing lookups. Computer Communication Re-
view, ACM SIGCOMM, 27(4):25–36, October 1997.

[162] Kenneth M. Wilson and Kunle Olukotun. Designing high bandwidth on-
chip caches. In 24th International Symposium on Computer Architecture,
pages 121–132, 1997.

[163] Tilman Wolf and Mark Franklin. CommBench - a telecommunications
benchmark for network processors. In 2000 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages
154–162, April 2000.

[164] Eric Wolman. A fixed optimum cell-size for records of various lengths.
Journal of the ACM, 12(1):53–70, January 1965.

[165] Dallas E. Wrege, Edward W. Knightly, Hui Zhang, and Jörg Liebeherr.
Deterministic delay bounds for VBR video in packet-switching networks:
fundamental limits and practical trade-offs. IEEE/ACM Transactions on
Networking, 4(3):352–362, June 1996.

[166] John Wroclawski. Specification of the controlled-load network element
service. Request for Comments 2211, Internet Engineering Task Force
(IETF), September 1997.

[167] William A. Wulf and Sally A. McKee. Hitting the memory wall: im-
plications of the obvious. Computer-Architecture-News, 23(1):20 – 24,
March 1995.

Bibliography 177

[168] Xipeng Xiao and Lionel M. Ni. Internet QoS: a big picture. IEEE Net-
work, 13(2):8–18, March-April 1999.

[169] Hui Zhang. Service disciplines for guaranteed performance service in
packet-switching networks. Proceedings of the IEEE, 83(10):1374–1396,
October 1995.

[170] Hui Zhang and Domenico Ferrari. Rate-controlled static-priority queue-
ing. In IEEE INFOCOM ’93. The Conference on Computer Communi-
cations, volume 1, pages 227–236. IEEE Computer Society, 1993.

[171] Hui Zhang and Domenico Ferrari. Rate-controlled service disciplines.
Journal of High Speed Networks, 3(4):389–412, 1994.

178 Bibliography

Acronyms

AF Assured Forwarding PHB [80]
ALU Arithmetic Logic Unit
API Application Programming Interface
AS Autonomous System
ATM Asynchronous Transfer Mode
B-WFI Bit Worst-case Fair Index [13]
CAM Content Addressable Memory
CAS Column Address Strobe (DRAM parameter)
CBR Constant Bit Rate
CDVT Cell Delay Variation Tolerance (GCRA parameter)
CIDR Classless Inter Domain Routing [129]
CL CAS Latency (DRAM parameter)
c-p Closed-page (memory controller parameter)
CPIX Common Programming Interface forum [1]
CPU Central Processing Unit
CSIX Common Switch Interface forum [1]
CYQ Central Yellow Queue (queue manager)
CYQ enh. Enhanced Central Yellow Queue (queue manager)
CYQ-RED Central Yellow Queue with RED (queue manager)
DDR Double Data Rate (RAM variant)
DiffServ Differentiated Services [17]
DIMM Dual In-line Memory Module [92]
DPL Data-in to Precharge Latency (DRAM parameter)
DRAM Dynamic RAM
DRDRAM see RDRAM
DRR Deficit Round-Robin [142]
DSCP DiffServ Code Point (field in IP header)
DSL Digital Subscriber Line
EDF Earliest Deadline First [147]
EF Expedited Forwarding PHB [89]
EPD Early Packet Discard [132]
ESDRAM Enhanced SDRAM
ESPP Extended Simulated Protective Policy [34]
ETP Extended Threshold Policy [34]

180 Acronyms

FCFS First Come First Served (scheduling discipline)
FFQ Frame-based Fair Queueing [150]
FIFO First In First Out
FIS Fat and Inverted Segment tree [51]
FP Floating Point
FPGA Field-Programmable Gate Array
FQ Fair Queueing [44]
FRED Flow Random Early Drop [105]
FTP File Transfer Protocol
G.723 ITU recommendation: Dual rate speech coder for multi-

media communications transmitting at 5.3 and 6.3 kbit/s
GCRA Generic Cell Rate Algorithm [7]
H.263 ITU recommendation: Video Coding for low bit rate com-

munication
HRR Hierarchical Round-Robin [94]
HTTP HyperText Transfer Protocol
IETF Internet Engineering Task Force [2]
int Interleaved address map (memory controller parameter)
Int Integer
IntServ Integrated Services [20]
I/O Input / Output
IP Internet Protocol
ISA Instruction Set Architecture
ISO International Organization for Standardization
ISP Internet Service Provider
ITU International Telecommunication Union
JEDEC Joint Electron Device Engineering Council
JPEG Joint Photographic Experts Group
LAN Local Area Network
LC Level Compressed trie [119]
LFVC Leap Forward Virtual Clock [155]
LIFO Last In First Out
lin Linear address map (memory controller parameter)
LQD Longest Queue Drop [156]
MAN Metropolitan Area Network
MD-SCFQ Minimum-Delay Self-Clocked Fair Queueing [31]
MMU Memory Management Unit
MOSES MOdeling, Simulation, and Evaluation of Systems [4]
MPEG Moving Picture Experts Group
MSFQ Minimum Starting-tag Fair Queueing [33]
NNTP Network News Transfer Protocol
NPF Network Processing Forum [1]
NTSC National Television Standards Committee

Acronyms 181

o-p Open-page (memory controller parameter)
OSI Open Systems Interconnection reference model of ISO
PAL Phase Alternation Line (television display standard)
PBSRAM Pipelined Burst SRAM
PC Personal Computer
PCR Peak Cell Rate (GCRA parameter)
PHB Per Hop Behavior [17, 80, 89]
PISA Portable ISA [23]
QM Queue Manager
QoS Quality of Service
RAM Random Access Memory
RAS Row Address Strobe (DRAM parameter)
RCD RAS to CAS Delay (DRAM parameter)
RDRAM (Direct) Rambus DRAM
RED Random Early Detection [54]
RfC Request for Comments (IETF document status)
ROOM Real-time Object-Oriented Modeling [139]
RP RAS Precharge time (DRAM parameter)
RPS Rate-Proportional Server [152]
RR Round-Robin (scheduling discipline)
RSVP Resource ReSerVation Protocol [22]
SCFQ Self-Clocked Fair Queueing [62]
SDRAM Synchronous DRAM
SFQ Start-time Fair Queueing [64]
SGRAM Synchronous Graphic RAM
SLA Service Level Agreement
SoC System-on-a-Chip
SP Static Priority (scheduling discipline)
SPEC Standard Performance Evaluation Corp. [146]
SPFQ Starting Potential-based Fair Queueing [150]
SRAM Static RAM
TCP Transmission Control Protocol
ToS Type of Service (field in IP header)
trie Data structure for reTRIEval
TSpec Traffic Specification [141]
T-WFI Time Worst-case Fair Index [14]
UDP User Datagram Protocol
VBR Variable Bit Rate
VC-SDRAM Virtual-Channel SDRAM
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VPN Virtual Private Network
VTRR Virtual Time-based Round-Robin [32]

182 Acronyms

WAN Wide Area Network
WAR Write-After-Read (memory access sequence)
WFQ Weighted Fair Queueing [122]
WF2Q Worst-case Fair WFQ [14]
WWW World Wide Web
YQ-Fair Fair Yellow Queue (queue manager)
ZBT Zero Bus Turnaround (RAM operating mode)

