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Abstract

Urban air pollution is a major concern in many cities worldwide.
Atmospheric pollutants are responsible for health problems ranging from
asthma to cancer. Air pollution also causes environmental damages.

Monitoring airborne pollutants is of utmost importance to reliably
assess the impact of air pollution on the human health, enable urban
planners to craft and accurately evaluate new policies, and increase public
awareness. Nowadays, air pollution is monitored by networks of highly
accurate but fixed measurement stations. Hence, the gathered data has a
low spatial resolution and can not be used to assess the spatial variability
of pollutants in detail. As a result, little is known about the spatial
distribution of air pollutants in urban environments.

In this thesis, we tackle this challenge and derive fine-grained
intraurban pollution maps valuable for a range of applications. We use
compact low-cost sensors installed on top of public transport vehicles
to obtain a high spatial measurement resolution within a large urban
area. We develop algorithms, which allow us to accurately monitor the
phenomena of interest despite using noisy, low-cost sensors. Finally, we
use the measurement to derive air pollution maps with a high spatial and
temporal resolution. The main contributions of this thesis are:

• We build a mobile air quality monitoring network by equipping
public transport vehicles with low-cost air quality sensor nodes
collecting spatially resolved measurements. It is the first mobile air
pollution monitoring network operating for over three years by now.

• We are the first to study multi-hop calibration of mobile sensor
networks, with respect to a reference signal, in detail. We develop a
new calibration algorithm to accurately calibrate networks of low-
cost sensors by highly reducing error propagation in the network.
Further, we assess the quality of the measurements by integrating
generic models for the phenomena monitored and the sensors used.

• We describe a new modeling approach and use the measurements
collected with our mobile network to derive accurate urban
pollution maps with an unprecedented spatial and temporal
resolution. The maps open up many new application opportunities.
For example, we introduce a novel route planning service, which
helps urban dwellers to reduce their exposure to airborne pollutants.
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Zusammenfassung

Die Luftverschmutzung in städtischen Ballungsgebieten ist weltweit
ein grosses Problem. Luftschadstoffe verursachen unterschiedlichste
Krankheiten (hauptsächlich Erkrankungen der Atemwege und des
Kreislaufsystems) und führen zu Umweltproblemen.

Deshalb ist die Kontrolle der Immissionsbelastung äusserst wichtig
und wird heutzutage in vielen Ländern staatlich reguliert. Üblicherweise
werden die Luftschadstoffe mit statischen Messnetzen überwacht,
welche mit sehr genauen Messgeräten bestückt sind, aber durch die
geringe Anzahl Messstationen keine flächendeckende Messabdeckung
ermöglichen. Dies hat zur Folge, dass heute über die räumliche Verteilung
der Luftschadstoffe innerhalb urbaner Gebiete wenig bekannt ist.

In dieser Arbeit stellen wir uns dieser Herausforderung und
ermöglichen die Entwicklung von innerstädtischen Karten, welche
detailliert die Belastung durch Luftschadstoffe aufzeigen können.
Wir installieren kompakte und kostengünstige Sensoren auf Dächern
von Trams und messen damit mit einer sehr hohen Auflösung die
Luftverschmutzung entlang der Zürcher Tramlinien. Dazu entwerfen wir
intelligente Algorithmen, welche uns erlauben eine gute Messgenauigkeit
zu erreichen, ungeachtet der kleinen Grösse und dem günstigen Preis
der eingebauten Sensoren. Dies ermöglicht uns Karten zu berechnen,
die mit einer sehr hohen zeitlichen und räumlichen Auflösung, die
Luftverschmutzung in der Stadt Zürich aufzeigen. Die Hauptbeiträge
dieser Arbeit können folgenderweise zusammengefasst werden:

• Wir entwickeln ein einzigartiges mobiles Messnetz, welches mit
schuhschachtelgrossen Boxen, installiert auf Dächern von Zürcher
Trams, die Konzentration verschiedener Luftschadstoffe misst.

• Wir sind die Ersten, die eingehend die Multihop-Kalibrierung
von mobilen Sensornetzwerken analysieren. Wir beschreiben ein
neuartiges Verfahren, das die Fehlerfortpflanzung in Sensor-
netzwerken deutlich reduziert und dadurch eine viel genauere
Sensorkalibrierung ermöglicht als bisher bekannte Verfahren.

• Wir benutzen ein ausgeklügeltes Modellierungsverfahren um,
basierend auf unseren Daten, hochaugelöste Karten zur Luftver-
schmutzung zu erstellen. Diese Karten erlauben neue Einsichten
und ermöglichen eine grosse Zahl neuer Applikationen.
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1
Introduction

Air pollution is a major concern in many cities worldwide. Atmospheric
pollutants considerably affect human health; they are responsible for a
variety of respiratory (e.g., asthma) and cardiovascular diseases (e.g.,
heart attack) and are known to cause cancer if humans are exposed to
them for extended periods of time [MOP+96]. According to the 2014
WHO report, in 2012 air pollution caused more than 7 million deaths
worldwide [WHO14]:

WHO reports that in 2012 around 7 million people died—one in
eight of total global deaths—as a result of air pollution exposure.
This finding more than doubles previous estimates and confirms that
air pollution is now the world’s largest single environmental health
risk. Reducing air pollution could save millions of lives.

Additionally, air pollution is responsible for environmental problems,
such as eutrophication and acidification of ecosystems. Hence, air
pollution monitoring is of utmost importance to reliably assess the
impact of air pollution on the human health and the environment.
Better assessment of human exposure to air pollution, more knowledge
about the diseases caused by air pollution, and the use of improved
measurement technology enable better estimations about the impact of
air pollution on our daily lives [WHO14].

At the present time, the concentration of air pollutants is mainly
assessed by the measurements of fixed stations. These stations are highly
reliable and able to accurately measure a wide range of air pollutants.
However, their high acquisition and maintenance costs severely limit the
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number of installations [CCG07]. As a result, very little is known about
the spatial distribution of air pollutants in urban environments. There is
a lack of reliable, intraurban air pollution maps, despite the need for it,
especially for pollutants with high spatial variability. Such maps could
raise the citizens’ awareness about air pollution, enable environmental
scientists to craft and evaluate new policies, and help epidemiologists to
better quantify the impact of air pollution on the human health.

In this thesis, we introduce a mobile measurement network to
monitor various air pollutants with a high spatial resolution. We
develop algorithms to calibrate unstable and noisy low-cost gas sensors
and to assess the reliability of the measurements. Then, we use
the measurements to derive pollution maps with an accuracy that is
comparable to state-of-the-art air pollution maps [HBdH+08], while
achieving unprecedented spatio-temporal resolution. Subsequently, we
use these pollution maps to create a smartphone application, which
empowers city dwellers to assess and reduce their exposure to air
pollution.1

1.1 State-of-the-art Air Quality Monitoring
Nowadays, air pollution is monitored by networks of fixed measurement
stations operated by official authorities. These fixed stations are highly
reliable and able to accurately measure a wide range of environmental
parameters (e.g., wind speed, solar radiation, precipitation) and air
pollutants using traditional analytical instruments, such as mass
spectrometers and gas chromatographs [Fed13]. These static monitoring
networks are crucial to monitor all important airborne pollutants with
a very high accuracy and temporal resolution. The measurements from
these certified instruments provide regulators a solid basis to assess the
air quality and allow them to be responsive and take counteractions in
case of high exposure levels.

The drawbacks of these complex measurement systems are their
large size, high price, and laborious maintenance. To assure high
precision, the instruments are manually calibrated (adjusted in the
parts-per-thousand range) every 14 days [Fed13]. During calibration,
a sensor is exposed to a predefined set of gas concentrations, and the
sensor’s calibration parameters are adjusted such that the deviations
between applied gas concentrations and sensor outputs are minimized.
The extensive cost of acquiring and operating these stations severely

1hRouting–The Health-Optimal Route Planner: https://itunes.apple.com/us/
app/hrouting-health-optimal-route/id931299863

https://itunes.apple.com/us/app/hrouting-health-optimal-route/id931299863
https://itunes.apple.com/us/app/hrouting-health-optimal-route/id931299863
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(a) Locations of the fixed stations. (b) Fine particle pollution map.

Figure 1.1: Measurements from the Swiss National Air Pollution Monitoring
Network (NABEL) are used to derive regional-scale air pollution maps.

limits the number of installations [CCG07]. For example, the Swiss
National Air Pollution Monitoring Network (NABEL) [Nat14a] operates
16 measurement stations, distributed over an area of 41,300 km2, as
depicted in Figure 1.1(a). The 16 stations monitor the pollution levels
in seven typical exposure areas (e.g., urban heavy traffic, suburban, and
rural). The whole area of Switzerland is also categorized in these seven
areas and the measurements from the fixed stations are used to generate
pollution maps, such as the one shown in Figure 1.1(b). These maps can
be used to analyze regional differences but their spatial resolution is not
high enough to derive intra-urban pollution distributions. It is important
to notice that NABEL’s measurement density is fairly high compared to
other national monitoring networks [Nyf01].

The concentration of air pollutants is highly location-dependent.
Traffic junctions, urban canyons, industrial installations, and topological
structure all have considerable impact on local air pollution [VFPGF03].
Hence, in recent years several research groups started experimenting with
mobile air pollution monitoring systems [HBPW08, VNKL08, DAK+09,
CKCH09, DSL+13, RPV14].

1.2 Mobile Air Quality Monitoring
Mobile measurement systems trade off temporal coverage against spatial
coverage, enabling a high spatial resolution across large areas without
the need for a huge number of fixed nodes, e.g., the GreenOrbs
deployment needs up to 330 fixed sensor nodes to realize an all-
year ecological surveillance of a small forest area [MHL+09, LHL+11].
Mobile measurement networks often leverage existing vehicle-based
networks (e.g., taxicab fleets [ALPR12], bicycle messengers [Kan10], and
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Figure 1.2: Trade-off between obtainable measurement coverage, tolerable
sensor cost, and expected data quality for different system architecture classes.

public transport networks [RPV14]) and involve individuals from the
general public to collect measurements [FOC+11]. In vehicle-based and
participatory sensor networks it is not possible to use the same high-end
sensing instruments as the ones deployed in fixed stations. Hence, with
these types of system architecture we face a new interesting trade-off

between obtainable measurement coverage and expected data quality,
as depicted in Figure 1.2. In this thesis, we use measurements from
static networks to enhance the quality of the measurements collected by
vehicle-based and participatory-based sensor networks.

Vehicle-based sensor networks. The deployment of sensor nodes on
top of mobile vehicles with either fixed (e.g., buses and streetcars of
the public transport network [DSL+13, RPV14]) or arbitrary (e.g., private
cars and taxicabs [VNKL08, CZZ+13]) movement patterns, enables the
automatic collection of large, spatially resolved data sets. Especially,
installing sensor nodes on top of public transport vehicles facilitates
the coverage of a large urban area on a regular schedule to derive
fine-grained pollution maps, as exemplified in Figure 1.3. While in
vehicle-based sensor networks energy and size requirements are not as
strict as in participatory sensing scenarios, there are still limitations on
the available space, the acceptable weight, and the maximum allowed
power consumption. This prohibits the installations of most standard
instruments used in fixed stations. Further limitations are introduced
as the sensor nodes are potentially in operation around the clock with
limited maintenance possibilities and under harsh deployment settings.
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(a) Sensor node on top of a public transport vehicle.
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(b) Fine-grained pollution map.

Figure 1.3: Mobile sensor nodes achieve a good measurement coverage, which
is necessary to derive pollution maps with a high spatial resolution.

Participatory air quality monitoring. Spatially fine-grained air
pollution data can also be acquired with a community-driven sensing
infrastructure [BEH+06]. Such initiatives that pursue the public
gathering of reliable data, gained increasing popularity in the last
years, e.g., worldwide data collection of local food conditions and
nuclear radiation.2 These examples show that it is possible to collect
region-wide measurements by involving the general public. Given
the broad availability of personal GPS-equipped smartphones, these
devices can be used to build a large-scale sensor network of mobile
devices for participatory monitoring of pollution data [SD10, ZLW+14].
Involving the average citizen in sensing the air she breathes also helps
to rise public awareness and encourages to move towards a sustainable
development [UNO92].

However, obtaining and retaining the critical mass of participants to
get a coherent picture of the exposure situation in an area of interest
is a formidable challenge and may require hundreds to thousands of
contributors. This is particularly difficult as long as smartphones are not
equipped by default with the sensors required.

Combination of participatory and vehicle-based monitoring. In this
thesis, we introduce a prototypical participatory air quality monitoring
platform using an off-the-shelf smartphone, which allows anyone to
collect air quality data. Additionally, we install sensor nodes equipped
with multiple low-cost gas sensors on top of several public transport
vehicles to achieve a good coverage of the whole city while only using a
small number of nodes. The public transport network forms an attractive
backbone for performing periodic measurements as their vehicles are

2https://costofchicken.crowdmap.com, https://radiation.crowdmap.com

https://costofchicken.crowdmap.com
https://radiation.crowdmap.com
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operating (i) on a large number of spatially distributed and predefined
routes, (ii) on a regular schedule, and (iii) with a high reliability. In the
following, we describe the arising challenges in the use of mobile sensor
nodes for urban air pollution monitoring.

1.3 Challenges in Mobile Sensor Networks

Operating mobile sensor networks and making use of data collected by
these networks entail several challenges, which we discuss below.

1.3.1 Measurement System

The components used in mobile measurement systems have to be suitable
for mobile measurements. Especially, the sensors need to have a short
response time to deliver accurate measurements even while moving.
Furthermore, typically mobile systems have limited processing power,
memory storage, and upload bandwidth requiring data aggregation and
data filtering techniques. Participatory and vehicle-based sensing system
put forward some specific additional challenges.

Vehicle-based sensing systems. Sensor nodes installed on top of vehicles
(e.g., taxicabs, buses, and streetcars) have usually relaxed requirements
concerning form factor and power requirements. This simplifies part of
the design of such sensor nodes, e.g., larger and more reliable components
can be used compared to participatory sensing devices. However,
nodes installed on top of a network of mobile vehicles have to endure
harsh deployment settings. We have to expect constant vibrations, high
temperature and humidity variations, and long, unattended operating
times (often requiring a design for 24/7 operation).

Participatory-based sensing systems. Getting the general public
involved in participatory air quality monitoring to collect useful data
posts several challenges. These involve providing the user with an
affordable low-cost and low-power measurement hardware with minimal
maintenance requirements. The data acquisition and processing software
on the user’s device needs to be unobtrusive and user-friendly to not
interfere with other applications in use. Furthermore, the data acquisition
application should support the user in gathering high-quality data, e.g.,
by indicating and aiding sensor calibration. To motivate the user to keep
up data collection, we are in need of a suitable information feedback
system offering rewards and incentives to the participating users.
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(a) Front. (b) Back.

Figure 1.4: Semiconductor ozone (O3)
sensor with attached microprocessor.

Figure 1.5: Electrochemical carbon
monoxide (CO) sensor with analogue
transmitter board.

1.3.2 Sensors for Air Pollution Monitoring
Nowadays, most low-cost gas sensors are either metal-oxide semiconduc-
tor (MOS) gas sensors (e.g., the ozone sensor depicted in Figure 1.4) or
electrochemical gas sensors (e.g., the carbon monoxide sensor depicted
in Figure 1.5). These sensors are affordable (essential in participatory
sensing scenarios) and due to their form factor highly suited for mobile
measurements. Below, we briefly describe the functional principle of both
gas sensor types and discuss their limitations.

Semiconductor gas sensors. Semiconductor gas sensors are electrical
conductivity sensors. The impedance characteristic of the active sensing
layer is altered through the contact with the gas to be detected. A wide
range of gases can be monitored with semiconductor sensors, such as
surface ozone (O3), carbon monoxide (CO), and nitrogen oxides (NOx,
which is the sum of nitric oxide NO and nitrogen dioxide NO2). In the
ideal case, the oxidation and reduction processes at the sensing layer are
totally reversible. For example, the sensing mechanism of ozone can be
modeled as

O3 + e− → O− + O2, (1.1)

where e− is a conduction electron from the sensitive layer and O− is a
surface oxygen ion. The result is a reduced electron flow in the sensitive
layer resulting in the increase of its electric resistance. This resistance of
the sensitive layer is measured to derive the ozone concentration.

Electrochemical gas sensors. Electrochemical gas sensors consist of
two electrodes (a sensing electrode and a counter electrode), which
are separated by an electrolyte. The target gas reacts at the sensing
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electrode involving an oxidation or reduction process. This generates
a current between the two electrodes, which is proportional to the gas
concentration. For example, when measuring carbon monoxide the
reaction at the sensing electrode can be modeled as

2CO + 2H2O→ 2CO2 + 4H+ + 4e−. (1.2)

At the same time there is a reaction at the counter electrode

O2 + 4H+ + 4e− → 2H2O. (1.3)

Hence, the overall reaction is 2CO + O2 → 2CO2, depicting that a small
amount of oxygen (O2) is required to complete the reaction. For this
purpose electrochemical gas sensors have a vent hole on the back of the
sensor cell.

Limitations. The main drawbacks of both types of low-cost gas
sensors are their limited accuracy and resolution, low stability, and
poor selectivity. Low-cost gas sensors are usually installed in industrial
production factories to measure high-level concentrations (e.g., in
the automotive industry [PPS+99]). However, the monitoring of
environmental gases in ambient air requires to measure very low gas
concentrations. The supported ranges by the gas sensors are often 1000x
larger than the typical concentration ranges of the pollutants in ambient
air, which amplify the problem of limited accuracy and resolution in the
intended monitoring range.

Additionally, low-cost gas sensors are unstable [HZG11]. Due
to sensor aging, they must be re-calibrated every month [DVMP+08,
TYIM05] or even every week [KBP06]. Another great challenge is the
poor selectivity of the sensors. The sensor output is sensitive to ambient
humidity and temperature, and responsive to influences of interfering
gases [KBP06]. Frequent sensor calibration can compensate for part
of these effects in order to improve or at least preserve the desired
measurement accuracy [BMEP03, BN07, MLCOS08, LB14].

Regularly calibrating sensors, analyzing the quality of the measure-
ments collected, and deriving thereof useful information for others
(e.g., environmental scientists, epidemiologists, and general public) are
challenging tasks. In the following, we discuss the arising difficulties.

1.3.3 Post-Processing of the Measurements
As discussed above, low-cost gas sensors need periodic calibrations to
retain a high measurement accuracy. There are two common approaches
for the calibration of gas sensors. The calibration can take place in
the laboratory using artificial gas mixtures [CKCH09] or in the field
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with real pollution measurements by placing the sensor close to a fixed
station providing reliable measurements [BM98, CMC+01, KBP06]. The
disadvantage of calibrating the sensors with real pollution measurements
is the dependency on weather conditions and local pollution dispersion,
which both cannot be controlled. For a precise calibration, reference
measurements under a wide range of environmental conditions are
desirable, e.g., low, middle, and high concentrations of the target
pollutant under distinct humidity and temperature settings [TYIM05].
Nevertheless, usually, calibrating sensors in the field is the only feasible
option, since the sensors are part of a measurement systems (e.g., installed
in smartphones) and cannot be taken into a laboratory every time a
calibration is required. Hence, automatic calibration algorithms are
needed to keep calibration parameters up-to-date. This is particularly
challenging in networks with uncontrolled mobility, where sensors can
not be forced to pass by certain locations, e.g., to stay close to a fixed
station to use its reliable measurements for sensor calibration.

Low-cost sensors are increasingly used in applications scenarios
where wrong or inaccurate sensing may lead to wrong decisions with
crucial societal and economical impacts [CCD+11, LLL+09, CLBR10]. For
example, on days with high air pollution levels the government could
decide to restrict speed limits on highways, impacting the mobility of
people and goods. Therefore, for many applications it is relevant to
not only assess the absolute value of the sensor readings, but also gain
information about the quality of individual measurements. This is a
challenging task as the measurement quality depends on many factors,
such as type of sensor used, sensor aging effects, calibration quality, and
environmental conditions. In addition, quality estimates for individual
sensor readings enable the detection of measurement outliers and help to
track down defective sensors.

1.3.4 Providing Useful Applications
Data users are in general not interested in single pollution measurements
but rather in a consistent view of the pollution distribution in a certain
region. Hence, we need methods to accurately model the distribution
of urban air pollutants at a high temporal and spatial resolution. Node
mobility trades off temporal resolution against spatial resolution, enabling
a high spatial resolution across large areas with a small number of sensor
nodes. However, due to the reduced temporal resolution of any covered
location, it is a formidable challenge to derive pollution maps with a high
temporal resolution (e.g., with a daily or hourly resolution).

The public availability of reliable pollution maps is essential. They
raise the citizens’ awareness, empower environmental scientists to craft
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and evaluate new policies, and enable in combination with other spatial
data sets (e.g., road network, population density, and real estate prices)
a wide range of novel applications. Different modeling approaches exist
to derive pollution maps [JAK+04]. Simple interpolation-based methods
only require the concentration and location of the measurements while
complex physical dispersion models need a rich set of supplementary
data, such as detailed geometric building models. It is important to
choose the right model depending on the required accuracy, resolution,
and available input data.

1.4 Thesis Contributions

The four main contributions of this thesis are:

• We are the first to study multi-hop calibration in detail. We propose a
novel multi-hop calibration algorithm, which exploits co-located sensor
measurements to enhance sensor calibration. Our algorithm highly
reduces error propagation in the network and considerably outperform
existing multi-hop calibration algorithms.

• We introduce models to describe the phenomenon of interest and the
sensor hardware and propose a model-driven approach to compute
accuracy bounds for noisy sensor readings. Additionally, we can
automatically detect systematic and transient sensor errors.

• We integrate gas sensors in mobile sensor nodes, which are deployed
on top of public transport vehicles to collect spatially highly resolved
data sets of urban air pollutants. We use the collected data to
develop a novel modeling approach, which enables us to derive
pollution maps with an unprecedented spatio-temporal resolution.

• The derived high-resolution pollution maps enable new types of
applications and provide valuable information to environmental
scientists, epidemiologists, and the general public. We integrate the
derived pollution maps in a smartphone application, which helps
urban dwellers to assess and reduce their exposure to air pollutants.

In the following, we detail the outline of the thesis and separately list
the contributions of every chapter.
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Figure 1.6: Organization of this thesis.

1.5 Thesis Outline
The organization of this thesis is depicted in Figure 1.6. We present
the hardware systems and software algorithms required to accurately
monitor and reason about phenomena, which are spatially highly variable
and, hence, can not be profoundly monitored by fixed measurement
stations only. In particular, the main scope of this thesis is to increase
the knowledge about the spatio-temporal distribution of air pollutants
in urban areas. We introduce a mobile air pollution monitoring
network (Chapter 2) to monitor urban air pollutants with a high spatial
resolution. We use the collected measurements to build pollution
maps with an unprecedented spatio-temporal resolution (Chapters 3–5).
Finally, we use the derived pollution maps to provide urban dwellers a
health-optimal routing service, which helps them to reduce their exposure
to air pollution (Chapter 6). Besides analyzing common air pollutants,
we also explore whether useful inferences can be drawn from spatially
resolved monitoring of electromagnetic pollution on the GSM and Wi-Fi
frequency bands (App. A).

The contributions of the individual chapters are as follows:

Chapter 2: Mobile Air Pollution Monitoring Network
This chapter introduces the mobile air pollution monitoring network
developed to monitor a wide range of pollutants with a high spatial
and temporal resolution. We present the design of two independent
measurement platforms, which together constitute a powerful and
flexible air pollution monitoring network.

• We describe the architecture, implementation, and evaluation of a
city-scale mobile measurement system based on ten sensor nodes
deployed on top of streetcars of the local public transport network.
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• We introduce a low-power mobile sensing system for participatory
air quality monitoring. The prototypical implementation interfaces
a low-cost gas sensor with an off-the-shelf Android smartphone.

Chapter 3: Calibrating a Mobile Network of Low-Cost Sensors
This chapter tackles the main drawbacks of low-cost gas sensors, which
are limited sensibility, low stability, and poor selectivity. We propose a
novel multi-hop calibration algorithm, which is able to calibrate large,
heterogeneous, mobile sensor networks. Hence, we can achieve a good
measurement accuracy despite the limitations of the low-cost gas sensors
deployed in our sensor platforms.

• We introduce a novel network-wide calibration algorithm with
small multi-hop error propagation influence.

• We investigate the accuracy of our calibration algorithm with a
detailed theoretical analysis, simulations under various settings,
and real pollution measurements from our mobile sensor network.

Chapter 4: Accuracy Bounds for Low-Cost Sensor Readings
This chapter presents a model-driven approach to provide accuracy
bounds for calibrated measurements from low-cost sensors and to detect
systematic and transient sensor errors.

• We introduce generic models to describe a phenomenon of interest
and the characteristics of the sensor in use. We present an algorithm,
which uses these models to compute reliable accuracy bounds for
individual sensor readings and detect erroneous measurements.

• We demonstrate the feasibility of the method proposed by analyzing
large sets of calibrated sensor readings from static and mobile sensor
networks.

Chapter 5: Developing Fine-Grained Air Pollution Maps
This chapter makes use of calibrated and cleaned measurements from the
mobile monitoring network to derive urban air pollution maps with a
high spatial and temporal resolution.

• We derive land-use regression models with a spatial resolution of
100 m x 100 m and use standard metrics to analyze the quality of the
models for different temporal resolutions.

• We propose a novel modeling approach to increase the quality of
pollution maps with high (sub-weekly) temporal resolutions.
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Chapter 6: The Health-Optimal Route Planner
This chapter makes use of the generated high-resolution pollution maps
to provide urban dwellers a health-optimal routing service. Citizens
can reduce their exposure to air pollution by not taking the shortest
path between origin and destination but a healthier and slightly longer
alternative route.

• We analyze the occurring trade-off between the lower exposure to
air pollution, which is payed by a longer travel distance.

• We develop a smartphone application, which computes shortest and
health-optimal paths between two arbitrary locations in the city.

Besides common air pollutants, the deployed sensor nodes also
monitor various wireless communication frequency bands.

Appendix A: Monitoring Radio-Frequency Electromagnetic Fields
Radio-frequency electromagnetic fields are emitted by applications using
wireless communication. A part of the general public is increasingly
concerned about the long-term effects of electromagnetic radiation on
human health. This chapter examines whether expensive state-of-the-
art exposure meters can be replaced with commodity sensor nodes to
simplify the monitoring of radio-frequency electromagnetic fields.

• We demonstrate that radio-frequency electromagnetic field mea-
surements are feasible with off-the-shelf smartphones and the
commodity sensor nodes of our mobile measurement network.

• We show that the measurement accuracy is similar to that of state-
of-the-art exposure meters used in medical studies.

• We use the data collected to develop a fine-grained GSM exposure
map with a high spatial resolution of 100 m x 100m.
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Mobile Air Pollution Monitoring

Network

In recent years, wireless sensor networks (WSNs) have become a
mature technology and are successfully used in a number of long-term
installations [BGH+09, CMP+09]. Most deployments are composed of
static sensor nodes fixed at desired locations, which are carefully chosen
according to the node’s communication and sensing ranges. The data
gathered by such deployments is usually highly temporally resolved at
every covered location. The main drawback of static installations is,
however, their poor spatial scalability to monitor large areas, e.g., an
entire city.

In many urban areas, public transport vehicles, such as streetcars
and buses, provide a suitable basis for deploying wireless sensor
nodes [BM98, ASC+10, DSL+13, RPV14]. The inherent mobility and
coverage of public transport systems enables monitoring a large area
with a few mobile sensor nodes. We monitor airborne pollutants and
environmental parameters with sensor nodes installed on top of streetcars
of the public transport network in the city of Zurich, Switzerland.

The measurements gathered by fixed stations and vehicle-based
sensor networks may not adequately represent the exposure situation of
individual persons. We tackle this challenge by additionally introducing
a community-driven sensing infrastructure. Given the broad availability
of personal GPS-equipped smartphones, we aim to use these devices to
build a large-scale sensor network of mobile devices for participatory air
pollution monitoring [SD10].
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(a) High-quality instruments. (b) Air quality sensor node.

Figure 2.1: The air quality sensor node is installed on top of a fixed station (a)
of the NABEL network close to the station’s air inlets (b). Every sensor reading
from the sensor node can be compared to a high-quality reference measurement.

Contributions. This chapter has the following contributions. First, we
introduce our long-term sensor testbed, which we use to evaluate the
quality of low-cost gas sensors. Only sensors, which perform well are
installed in our sensor nodes. Second, we describe our system design
consisting of two parts:

• A compact air quality sensor node, which is able to monitor the
concentration of different air pollutants (e.g., ultrafine particles
(UFP), carbon monoxide (CO), and nitrogen dioxide (NO2)) along
with temperature and humidity conditions. This sensor node is
designed to be deployed on top of mobile vehicles.

• A small and portable prototypical participatory measurement
device, composed of an off-the-shelf smartphone and a low-cost
gas sensor to monitor the ozone (O3) concentration.

Finally, we describe the different deployments where our sensor nodes
are in operation and detail the data sets collected.

2.1 Long-Term Sensor Testbed
Low-cost gas sensors are either delivered uncalibrated or with a
factory calibration. The factory calibration is often not intended for
low concentration measurements as found when monitoring urban
air pollutants. Usually, the calibration parameters are only based
on measurements of a small number of different gas concentrations
under one specific temperature and humidity setting [Alp14a, Alp14b].
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Figure 2.2: Measurements from two factory calibrated semiconductor ozone
sensors compared to reference measurements from the fixed station.

Possibly, the chosen setting is not suitable for the intended measurement
campaign (e.g., different conditions apply for indoor and outdoor
monitoring of pollutants). Additionally, low-cost gas sensors have
limited accuracy and resolution, low stability, and poor selectivity, i.e.,
the sensors’ output is sensitive to ambient humidity and responsive to
influence of interfering gases [KBP06]. Hence, it is essential to assess the
quality of the sensor readings with tests in the field, i.e., with real urban
pollution measurements.

For this purpose we operate since April 2011 a sensor testbed
infrastructure. We installed a reconfigurable and easily extendable sensor
node with multiple gas sensors on top of a fixed station of the National
Air Pollution Monitoring Network (NABEL), as depicted in Figure 2.1.
We use this side-by-side operation of low-cost sensors and high-quality
instruments as long-term sensor testbed to analyze the performance of
low-cost gas sensors. For example, Figure 2.2 shows the measured ozone
concentration from two factory calibrated ozone gas sensors and the fixed
station over a period of one week. We see that the measurements are off

the mark by up to a factor of two. However, the sensor readings show a
very high correlation with the reference signal (Pearson correlation of 0.96
and 0.97, respectively). This indicates that using more suitable calibration
parameters will highly improve the accuracy of the measurements. Only
sensors which perform well with respect to measurement accuracy,
reliability, and response time, are finally installed in the sensor nodes
of the mobile measurement network, as we will describe in Section 2.2.

The sensor testbed also allows us to evaluate the long-term signal
stability of the deployed sensors. For example, one low-cost sensor is
continuously monitoring the ozone concentration since more than three
years by now, giving useful insights about the sensor’s performance under
a variety of different conditions.
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Data set
Measurements Sampling

Time period
[in millions] interval

Ozone (O3) 1.7 60 s 3.5 years (ongoing)
Temperature / Humidity 1.7 60 s 3.5 years (ongoing)
Carbon monoxide (CO) 2.4 10 s 9 months (ongoing)
Nitrogen dioxide (NO2) 2.4 10 s 9 months (ongoing)

Table 2.1: Data sets collected by the static sensor node installed on top of a fixed
measurement station (from April 2011 to August 2014).

2.1.1 Data Sets
Table 2.1 shows the different data sets collected with the sensor testbed
over the past 3.5 years (from April 2011 to August 2014). We tested many
different sensors over this time span, but we only list measurement from
sensors that are able to deliver a good measurement quality and, hence,
are installed in the sensor nodes of the mobile sensor network. For every
measurement listed in the table, we have a corresponding high-quality
reference signal from the fixed station.

Within our sensor testbed, gas sensors are tested in a static setting.
However, the gas sensors finally selected are deployed in a mobile sensor
network. Therefore, we also analyze how mobility, specifically the wind
speed, affects sensor readings.

2.1.2 Effect of Mobility on Sensor Readings
In the following, we analyze how sensor mobility effects the measure-
ments of semiconductor gas sensors (we did not observe any influence for
electrochemical gas sensors). Semiconductor gas sensors have a sensing
layer, whereof the resistance is measured to derive the concentration
of the monitored pollutant. This resistance R is heavily temperature
dependent. Hence, each sensor reading includes not only the value of
the resistance R but also the on-board temperature T to compute the
temperature-compensated resistance R̃

R̃ = R · eK·(T−T0), (2.1)

with reference temperature T0 = 25 ◦C and temperature coefficient K, e.g.,
for the ozone sensor the coefficient is K = 0.025 [SGX14].

We analyze the effect of sensor mobility on the accuracy of the sensor
readings, which is due to the varying air flow around the sensor head.
We carry out several experiments in a closed room with constant ozone
concentration. We use a table fan, which generates a maximum wind
speed of 6.6 m/s to analyze the influence of the air flow on the raw sensor
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Figure 2.3: Air flow generated by a fan (shaded area) influences the readings of
the on-board temperature sensor. A maximum drop of 8 ◦C is measured.

readings. We observe that the air flow mainly impacts the on-board
temperature T, which is used to calculate the temperature-compensated
resistance R̃ of the sensing layer. The air flow around the sensor head
influences the heat dissipation on the sensor board and results in a
lower temperature reading of at most Ta = 8 ◦C, as shown in Figure 2.3.
Using the temperature coefficient of the ozone sensor, we derive that
the temperature drop induces a maximum relative error of 14 % in the
calculation of the temperature-compensated resistance:

1 − R̃a/R̃ = 1 − e−K·Ta = 0.14. (2.2)

This maximum relative difference is negligible for low ozone concen-
trations, but results in a high offset under high pollution levels. No
precaution is required for measurement campaigns with pedestrians,
which are usually moving at slow speeds. However, we recommend
to protect the sensor head from a direct exposure to air flow under rapid
motion speeds of the sensor head, e.g., on top of mobile vehicles and
while riding the bicycle. Alternatively, accelerometer data can be used
to measure motion speeds in order to compensate the temperature drop
due to mobility.

2.2 System Architecture
In the following, we describe our system architecture for mobile air
pollution monitoring. First, we depict the design of our vehicle-mounted
sensor node, which can be used to automatically monitor large urban
areas. Second, we introduce our low-power mobile sensing subsystem
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for participatory air pollution monitoring. Finally, we briefly outline the
back-end infrastructure.

2.2.1 Vehicle-Mounted Air Quality Sensor Node

The air quality sensor node is based on the sensor platform [BYL+11]
developed within the PermaSense [BGH+09] and X-Sense [BBF+11]
projects for high-alpine permafrost monitoring. We adapted and
extended this platform to enable mobile air pollution monitoring. The
core of the sensor node, depicted in Figure 2.4, is a Gumstix embedded
computer with a 600 MHz CPU running the Ångström embedded Linux
operating system [Gum14]. A GPS receiver supplies the station with
precise geospatial information [Ub14]. The station supports bidirectional
communication over GSM and WiFi on the 2.4 GHz and 5 GHz frequency
bands [Gem14, Mik14]. GSM is used for data transmission under regular
system operation while WiFi is used during debugging and maintenance
phases. All radio signals (GPS, GSM, and WiFi) are processed by a
single planar antenna, which is mounted on top of the box as shown
in Figure 2.4(b). The weight of a node is approximately 4.5 kg and it has
a maximum power draw of around 40 W. The sensor node requires an
external power source, e.g., from the vehicle on which it is mounted on.

All air intakes are equipped with protection covers, as depicted in
Figure 2.5. The bottom side of the aluminum cover has multiple air vents
and two inclined bars to retain water and dust. Additionally, the cover
protects the sensor heads from a strong direct air flow, which would
influence the sensor readings, as discussed in Section 2.1.2. The fan
on the back of the node draws air out of the box to ensure a steady
air flow. To monitor air pollution, the sensor nodes are equipped
with a semiconductor ozone (O3) sensor [SGX14], electrochemical carbon
monoxide (CO) and nitrogen dioxide (NO2) sensors [Alp14a, Alp14b],
and a novel compact device to measure ultrafine particle (UFP)
concentrations [FHSB11]. Additionally, the nodes monitor radio-
frequency electromagnetic fields using the GSM modem and the WiFi
access point (more details in App. A) and environmental parameters,
such as temperature and humidity [Sen14].

We use Python scripts to communicate with the different sensors over
their serial communication port. All measurements are annotated with
time and location information and then stored on the local memory card
in an SQLite database. The data packets are transmitted to the back-
end server as soon as a connection is available (either through GSM or
WiFi). The sensor readings are removed from the local database once
their reception is acknowledged by the back-end server.
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Figure 2.4: The air quality sensor node is equipped with UFP, CO, O3, and
NO2 sensors. Geotagged and time-stamped measurements are transmitted over
GSM (cellular network) to the back-end server for further processing.
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(a) Inner view. (b) External view.

Figure 2.5: All air intakes have protection covers to retain water and dust.

2.2.2 Participatory Sensing Using Smartphones
We introduce our prototypical air quality measurement system GasMo-
bile, which interfaces a small-sized, low-cost ozone sensor with an off-the-
shelf smartphone running the Android OS. In the following, we describe
the hardware and software system designs.

Hardware architecture. Our measurement system consists of four parts
as displayed in Figure 2.7(a). We use a semiconductor-based ozone sensor
from SGX Sensortech [SGX14] (same as the one in the air quality sensor
node) to sense the ozone concentration in the atmosphere based on the
measured resistance of the sensor’s tin dioxide (SnO2) layer. Digital
communication is possible over the board’s RS232-TTL interface, which
is directly connected to an HTC Hero smartphone providing a USB Mini-
B port. All parts are off-the-shelf hardware available for low prices (in
the range of hundreds of dollars in total). This is essential to obtain
widespread acceptance of participatory sensing equipment.

Having an extended battery lifetime is crucial for mobile and
participatory sensing applications. We analyze the total current draw
of the ozone sensor and the USB-RS232 translator, both components
being powered by an external battery pack.1 We use an Agilent digital
multimeter with a sampling rate of 100 ms; the measured current draws
are illustrated in Figure 2.6. After each power-on, the tin dioxide layer of
the ozone sensor is overheated for 60 s. This overheating decreases the
sensor drift over time. The current draw during the overheating phase is
47 mA. After overheating, the sensor is ready for taking measurements.
We put the sensor in automatic mode in which it uses its own clock to
automatically perform measurements every two seconds. This ensures
that always an up-to-date measurement reading is available whenever
the smartphone application decides to request a sensor reading. Each

1Today’s smartphones support USB host mode and, hence, can power peripherals.
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Figure 2.6: Current draw of the ozone sensor and USB translator over time.
Sensor polling does not noticeably increase the current draw.

measurement results in a short 50 mA peak of the current draw, as shown
in Figure 2.6. Applications polling sensor readings do not noticeably
increase the current draw.

We operate the gas sensor using four AAA NiMH batteries with a
nominal capacity of 2500 mAh at 1.2 V. Considering the highest measured
current draw of 50 mA (240 mW), we roughly estimate a battery lifetime of
50 hours. This lifetime allows us to monitor the ozone concentration for
approximately one month, assuming that an adult spends on average
1.7 hours per day outdoors [FBG+02]. Most standard operations on
today’s smartphones use more energy, e.g., sending an SMS amounts
to 302 mW, a phone call over GSM needs 1054 mW [CH10].

Android application. The application starts with the main menu depicted
in Figure 2.7(b). The user can access the settings, take measurements,
calibrate the sensor, or upload the measurements to a server. In the
settings screen, the user can change several configuration parameters.
In the measurements screen (see Figure 2.7(d)) the user can put the
sensor in automatic mode and choose whether to poll the sensor once
or continuously with a pre-configured poll interval. The application polls
the latest raw data from the ozone sensor (resistance, temperature, and
humidity), and position and speed information from the GPS module.
The ozone concentration is calculated and displayed in the plot on
the screen. The geo-localized and time-stamped measurements can be
permanently stored on the smartphone’s memory card and uploaded to
the back-end server for further processing and visualization.
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(a) Hardware architecture. (b) Main menu.

(c) Calibration. (d) Measurements.

Figure 2.7: GasMobile hardware architecture (a) and Android application (b)-
(c). The user can set the poll interval, adjust calibration parameters, poll sensor
measurements, and upload the measurements to a server for further processing.

Extensibility to other gas sensors. Extending GasMobile to support
other sensors is straightforward and only requires minor modifications
in two software components, as long as the sensor provides serial
communication over USB. First, the serial communication protocol has
to be tailored to the software and hardware requirements of the intended
sensor. Second, the Android application must be implemented to facilitate
the interaction between user and sensor.
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2.2.3 Back-end Infrastructure
The back-end infrastructure is shared with the PermaSense and X-
Sense projects [ETH14]. We use the same setup but adapt the data
processing units to handle air pollution data. On the back-end server
we run two instances (private and public) of the Global Sensor Network
(GSN) [AHS06] software package, a Java-based software middleware
that facilitates data collection in sensor networks. The sensor nodes
communicate with the private GSN instance. It is used to store all
the measurements obtained in a MySQL database without any further
processing of the data. This enables us to re-process the data if needed
and serves as backup of the original raw measurements received from the
sensor nodes.

The private GSN instance streams the received data to the public GSN
instance where we post-process the measurements, e.g., by aggregating
different data streams, filtering out outliers, and updating calibration
coefficients. The post-processed data are stored in a separate MySQL
database. The public GSN instance also offers a publicly accessible
webpage, which allows researchers and the general public to download
the measured pollution concentrations and enables us to monitor the
proper functioning of the sensor nodes and to visualize the spatial
distribution of the monitored air pollutants.2 We use Vizzly [KBST12]
for the need to handle increasingly larger data volumes. Vizzly is a web-
based caching and visualization tool, which allows us to quickly display
and analyze large data sets on top of Google Maps.

2.3 Deployments and Collected Data Sets
This section introduces three deployments where the air quality sensor
node and smartphone device described above are in operation.

2.3.1 Deployment 1: Streetcar Measurement Network
The main deployment of this thesis is formed by a network of air quality
sensor nodes installed on top of vehicles of the public transport network
in Zurich, Switzerland. Starting in the year 2012, we gradually equipped
ten streetcars with our sensor nodes, as shown in Figure 2.8(a). The
nodes are mounted on top of a platform to allow an optimal air flow to
the sensitive layer of the gas sensors. The instrumented streetcars cover
on a regular schedule a large urban area of 100 km2.

2http://data.opensense.ethz.ch

http://data.opensense.ethz.ch
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(a) Sensor node on top of a streetcar.

2 km

Governmental station

Streetcar measurement

(b) Measurement coverage.

Figure 2.8: Ten air quality sensor nodes are installed on top of streetcars of the
public transport network in Zurich, Switzerland. The sensor nodes achieve a
good coverage within an urban area of 100 km2.

The spatial coverage of the sensor nodes’ measurements is shown in
Figure 2.8(b). The dots denote locations (100 m x 100 m) with at least 50
measurements over the course of the last 2.5 years (from April 2012 to
August 2014). The ten mobile sensor nodes achieve a good coverage of the
region, in particular compared to the three governmental stations denoted
with triangles in Figure 2.8(b). One station belongs to the NABEL network
and two stations are part of the cantonal measurement network OSTLUFT.
These two stations are located very close to the streetcar tracks with a
distance of 4 m and 16 m, respectively. Hence, we can use their high-
quality measurements to adjust the calibration parameters and assess
the measurement accuracy of the passing sensor nodes (for more details
see Chapter 3 and Chapter 4).

We show in Figure 2.9(a) the operation times of the individual nodes.
A sensor node is on average 20 hours per day in operation. During the
night, typically from 1 AM to 5 AM, the streetcars are in their depots and
the nodes are powered off. The streetcars equipped with our sensor nodes
collect air pollution data on 80 % of the days on average, as depicted in
Figure 2.9(b). As it can be seen in the figure, not all sensor nodes were
deployed at the same time. We had two installation phases, the first
five sensor nodes were mounted in April 2012 and the remaining five
ten months later in February 2013. A wide range of different factors
contribute to the difference between total number of days deployed and
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Figure 2.9: The sensor nodes on top of the streetcars are on average 20 hours a
day and 80 % of the days in operation.

Data set
Measurements Sampling

Time period
[in millions] interval

Ultrafine particle (UFP) 69 5 s 2.5 years (ongoing)
Ozone (O3) 11 20 s–60 s 2.5 years (ongoing)
Temperature / Humidity 11 20 s–60 s 2.5 years (ongoing)
Carbon monoxide (CO) 9 10 s 4 months (ongoing)
Nitrogen dioxide (NO2) 9 10 s 4 months (ongoing)
RF electromagnetic fields 4 15 s–30 s 4 months (finished)

Table 2.2: The ten mobile sensor nodes collected a wide range of pollution
measurements over the course of two years.

number of days in operation. Streetcars may be out of service for several
reasons: (i) The public transport company has more streetcars than the
number of vehicles needed on a regular day, (ii) streetcars have regular
maintenance phases and may be out of operation for several weeks after
an accident, and (iii) also the air quality sensor nodes contribute to the
downtime by having maintenance, repair, and upgrade phases.

We collected a diverse set of spatially highly resolved pollution
measurements, as summarized in Table 2.2. We have large data sets of
ultrafine particle (UFP), ground ozone (O3), carbon monoxide (CO), and
nitrogen dioxide (NO2) measurements. Additionally, the nodes monitor
radio-frequency electromagnetic fields and environmental parameters,
such as temperature and humidity. In total, we collected more
than 110 million pollution concentration measurements annotated with
accurate timing and location information from all over the city of Zurich.
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Figure 2.10: The latency of most data packets of the streetcar deployment is
below 2 s, which makes real-time services feasible.

We finish the description of this deployment by showing the data
latency, defined as the time passed between data generation on the sensor
node and data reception at the back-end server. Low data latency is
key to enabling real-time applications, e.g., to provide a timely warning
system for days with high exposure levels. The sensor nodes on top of the
streetcars are connected to the GSM network most of the time and, hence,
can immediately transmit the monitored concentrations to the back-end
server. The median latency is at 0.8 s. The maximum latency is as high as
multiple weeks due to back-end server upgrades leading to offline times
of several weeks. Figure 2.10 shows the latency distribution for all packets
with a latency below 10 s. It can be seen that most of the data packets
have a latency below 2 s.

2.3.2 Deployment 2: LuftiBus Measurements
Our second mobile deployment is in cooperation with
Lunge Zurich [Lun14], which is a health organization for lung diseases
such as asthma, sleep apnea, and tuberculosis. Lunge Zurich consults
and treats patients and cooperates with universities for clinical trials.
Additionally, Lunge Zurich strives to reduce the number of patients with
lung diseases by supporting and realizing prevention and health check
campaigns.

We cooperate within the LuftiBus campaign. LuftiBus (depicted in
Figure 2.11(a)) is a bus equipped with instruments for measuring the
functioning of lungs to detect possible dysfunctions. The goal is to prevent
and early diagnose lung-related diseases. The LuftiBus can be rented by
schools, universities, cities, companies, and events (e.g., sports meetings).
People interested can then use the medical equipment and the available
professional staff of the LuftiBus to test their lung capacities and get
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(a) LuftiBus vehicle.

10 km

Medical campaign
LuftiBus measurement

(b) Measurement locations.

Figure 2.11: The air quality sensor node is installed on top of the LuftiBus vehicle
making measurements all around Zurich (displayed in (b)) and Switzerland.
Long measurements periods were possible at the medical campaign sites.

feedback of their measurement results.
We installed one of our air quality sensor nodes on top of the LuftiBus

vehicle. This allows us to monitor the air quality while the bus is on
the road and at locations it is stopping for the medical campaigns. The
aim is to analyze the correlation between the medical test results and
the measured air pollution concentration in the region. We collect air
pollution measurements on top of LuftiBus since January 2013. The
LuftiBus visited during the last 1.5 years over 50 locations, mainly around
the city of Zurich as depicted in Figure 2.11, but also at some other
locations in Switzerland. The triangles show locations with conducted

Data set
Measurements Sampling

Time period
[in millions] interval

Ultrafine particle (UFP) 1.3 5 s 1.5 years (ongoing)
Ozone (O3) 0.12 60 s 1.5 years (ongoing)
Temperature / Humidity 0.12 60 s 1.5 years (ongoing)
Carbon monoxide (CO) 0.13 10 s 6 months (ongoing)
Nitrogen dioxide (NO2) 0.13 10 s 6 months (ongoing)

Table 2.3: Data sets collected on top of the LuftiBus vehicle.
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Figure 2.12: GasMobile pollution measurements from several bicycle rides with
a polling interval of five seconds. The quality of the measurements can be
assessed by comparing them to data collected by governmental stations and the
streetcar network.

medical campaigns where our sensor node was able to monitor air
pollutants over longer time periods (from multiple hours up to several
days). Table 2.3 lists the amount of data collected for every monitored
pollutant. So far, we collected around 2 million pollution measurements.

2.3.3 Deployment 3: Participatory Pollution Monitoring
We have available a full system for mobile participatory sensing, ranging
from the sensing hardware and client software as described in the
previous sections to a powerful web-based visualization tool to analyze
the measured concentrations on top of Google Maps. In the following, we
briefly present results from a measurement campaign using GasMobile.

We used GasMobile during multiple days to monitor the ozone
concentration in the city of Zurich, Switzerland. For this, we mounted the
smartphone with the connected sensor on a bicycle (protected from wind)
and took measurements from several bicycle rides at different locations
in the city, as shown in Figure 2.12. Throughout the measurement
campaign we used a sampling interval of five seconds and collected in
total 2,800 spatially distributed data points. All sensor readings were
directly uploaded to the back-end server running GSN. The location- and
time-based caching tool Vizzly enables users to efficiently retrieve the
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data and allows combining the measurements with data sets gathered
by other sensor networks. Measurements collected in the vicinity of
governmental stations and the streetcar network (see Figure 2.12) can be
used to update GasMobile’s calibration parameters and to assess its data
quality, as described in Chapter 3 and Chapter 4.

2.4 Related Work

Vehicle-based sensing. Mobile vehicles are very useful to collect a
wide range of spatially resolved measurements enabling novel types of
applications.

Taxicab networks are well-suited to collect spatially resolved sensory
data in metropolitan areas. Often large number of taxicabs operate
within a dense, highly populated area (e.g., in New York City over 13,000
taxicabs provide around 485,000 trips per day [Tax14]) enabling a fine-
grained coverage of the region. Additionally, taxicabs often automatically
upload vehicle status and location information to central dispatching
centers to optimize routes for passenger pick ups. The data collected
from taxicab networks can be used for a wide range of applications.
Aslam et al. [ALPR12] infer traffic volumes through data collected from
a sensor network of taxicabs. The authors propose models and inference
procedures to detect traffic patterns in real-time. Chen et al. [CZZ+13] and
Shang et al. [SZT+14] use taxicab GPS traces to optimally plan routes for a
night bus network and to infer gas consumption and pollution emission
of vehicles, respectively.

Furthermore, also other means of transport are used to collect sensory
data. Völgyesi et al. [VNKL08] use car-mounted sensor nodes to collect
air pollution data. They introduce a prototype platform to monitor
ozone (O3), carbon monoxide (CO), and nitrogen dioxide (NO2). The
measurements are periodically uploaded to a server and displayed as
contour maps. Mathur et al. [MJK+10] equip cars with ultrasonic range-
finder sensors and GPS receivers to determine parking spot occupancy.
The sensed data is aggregated at a central server to create a real-time map
of parking availability. Kapoor et al. [KHLH14] make use of airplanes as
large-scale sensor network for identifying wind speeds on a continental
scale. The authors assess air and ground speeds reported by aircrafts at
different locations and altitudes to infer the prevailing wind speeds and
directions.

We are not the first with the vision to use public transport vehicles for
air pollution monitoring. Devarakonda et al. [DSL+13] propose two data
farming models to collect air pollution data. One that can be deployed
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on public transportation and a second than can be used as a personal
sensing device. The authors present preliminary prototypes and discuss
implementation challenges. Re et al. [RPV14] envision to extend the
network of fixed air quality stations in Palermo, Italy, with mobile bus-
mounted sensor nodes for air quality monitoring.

In comparison to the works described above, we are the first to
demonstrate that it is feasible to reliably operate a mobile air quality sensor
network for multiple years collecting millions of useful measurements
throughout a large urban area.

Participatory sensing. There is a plethora of new application scenarios,
which are enabled by participatory sensing networks. Thiagara-
jan et al. [TBGE10] introduce a cooperative transit tracking application
using data collected by the public transport user’s smartphones. The
goal is to improve rider experience by reducing waiting times at bus
stations. Faulkner et al. [FOC+11] make use of acceleration data collected
with smartphones and community-owned sensors to detect emerging
earthquakes allowing to issue real-time alerts. Rana et al. [RCK+10] and
Meurisch et al. [MPSS13] use smartphone sound recordings to collect
noise pollution data to create noise maps, while Zheng et al. [ZLW+14]
use data from a public platform where citizens can report incidences
(such as loud music) to create a noise map of New York City.
Ganti et al. [GPA+10] use participatory sensing data of measurements
of vehicular fuel consumption sensors to map fuel consumptions on
city streets. Koukoumidis et al. [KPM11] use smartphones to detect
and predict traffic signal schedules to provide drivers and their onboard
computational devices with information about the schedule of the traffic
signals ahead. This enables the drivers to optimally adjust their speed or
take a detour if required to minimize fuel consumption.

Smartphones are also widely used to facilitate data collection.
For example, Miluzzo et al. [MLF+08] use smartphones for visibility
monitoring, Mohan et al. [MPR08] to monitor road and traffic
conditions, Rachuri et al. [RMM+10] for sensing individual emotions,
and Lai et al. [TTLLSC11] for bicycle localization.

Many of these smartphone-based sensing applications either do not
need any external sensors or use bluetooth for data transfer between
sensor and smartphone [FKS+11, JLT+11, HBPW08, DAK+09]. Bluetooth
gives the user great freedom in sensor placement, but leads to higher
battery drain due to bluetooth communication on the device and sensor
side. We instead exploit USB host mode and directly connect the sensor
to the smartphone and therewith reduce the power consumption of the
measurement system.

Monitoring air pollution using low-cost gas sensors has gained high
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interest in recent years [TYIM05, ZBP+12, KEH+13, JJWF13]. Low-cost
gas sensors are often embedded in custom-build sensor nodes that are
part of mobile sensor networks [HBPW08, CKCH09, DAK+09]. Instead,
we control the gas sensor with minimal additional hardware using an
off-the-shelf smartphone. This keeps material costs low and thus makes
our measurement system attractive to a large number of people as a large-
scale sensor network of mobile phones [KGZ07].

2.5 Conclusions
In this chapter, we introduced our mobile air quality measurement
network consisting of a continuously running vehicle-based sensor
network and a prototypical smartphone device suitable for participatory
sensing scenarios.

Our mobile air quality sensor nodes can monitor a wide range of
highly relevant air pollutants. The sensor nodes are in operation at
three different deployment sites. Our main installations consists of ten
air quality sensor nodes deployed on top of ten streetcars of the public
transport network in Zurich, Switzerland. The instrumented vehicles are
traversing a large urban area on a regular schedule collecting large data
sets of spatially resolved air pollution data. From April 2012 to August
2014, we collected more than 110 million time-stamped and geo-localized
pollution measurements. With the LuftiBus deployment, we facilitate
the investigation of a possible correlation between lung function and air
quality and with our smartphone-based GasMobile prototype system, we
show that participatory air pollution monitoring is feasible.

In the following, we examine the quality of the gathered measurements
and propose strategies and algorithms, which enable the calibration of
a network of low-cost gas sensors (Chapter 3) and allow assessing the
quality of calibrated gas sensor measurements (Chapter 4).
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3
Calibrating a Mobile Network of

Low-Cost Sensors

Frequent sensor calibration is essential in sensor networks with low-cost
sensors. We exploit that temporally and spatially close measurements of
different sensors measuring the same phenomenon are similar. Hence,
when calibrating a sensor, we adjust its calibration parameters to
minimize the differences between co-located measurements of previously
calibrated sensors. A freshly calibrated sensor can now be used to
calibrate other sensors in the network, referred to as multi-hop calibration.

We are the first to study multi-hop calibration with respect to a
reference signal (micro-calibration) in detail. We show that ordinary
least squares regression—commonly used to calibrate noisy sensors—
suffers from significant error accumulation over multiple hops. In
this chapter, we propose a novel multi-hop calibration algorithm using
geometric mean regression, which (i) highly reduces error propagation
in the network, (ii) distinctly outperforms ordinary least squares in the
multi-hop scenario, and (iii) requires considerably fewer ground truth
measurements compared to existing network calibration algorithms.
The proposed algorithm is especially valuable when calibrating large
networks of heterogeneous sensors with different noise characteristics.
We provide theoretical justifications for our claims. Then, we conduct a
detailed analysis with artificial data to study calibration accuracy under
various settings and to identify different error sources. Finally, we use
our algorithm to accurately calibrate large data sets of air pollution
measurements gathered by our mobile air pollution monitoring network.
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Figure 3.1: Calibration curves of one low-cost ozone sensor over the period of
one year. For every week of the year the optimal calibration curve is depicted.

3.1 Introduction
Wireless sensor networks (WSNs) are increasingly used in a wide
range of application domains to gather information about the physical
world. Nowadays, WSNs are embedded in real-world deployments that
go beyond research prototypes. Examples include the monitoring of
permafrost in high-alpine regions [BGH+09], surveillance of a heritage
building in Northern Italy [CMP+09], and air pollution monitoring in
urban regions [LFS+12]. All these installations have been in operation for
multiple years. Such long-term deployments need to function correctly
over long time periods without requiring frequent maintenance phases.
In addition, in many of these deployments the quality of the gathered
data is vital for the success of the whole application. Data collected
by WSNs are used for adaptive lighting in road tunnels [CCD+11], data
center monitoring [LLL+09], and clinical patient surveillance [CLBR10].
In these application scenarios wrong or inaccurate sensing may lead to
wrong decisions with significant societal and economic impact.

Challenges. Achieving a good data quality and preserving it during
the whole system lifetime is essential. However, in most application
scenarios this is a very challenging task. Deployment specifics and limited
budgets often constrain the choice of sensing hardware. Typical limits
apply to sensor size, price, and energy consumption. Advances in sensor
technology constantly widen the spectrum of phenomena that can be
captured with WSNs by bringing small, cheap, and portable sensors onto
the market. The downside of this trend is a reduced accuracy, precision,
and reliability of many available sensors [MSPD09]. One common
example are sensors produced for air quality monitoring. In recent
years, low-cost gas sensors (∼100 dollars) appeared on the market, which
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are compact in size and suitable for mobile air pollution measurements.
However, compared to traditional instruments, many gas sensors have
a very limited accuracy, e.g., [SGX14, Alp14a, Alp14b]. Furthermore,
many low-cost sensors suffer from sensor drift, have limited stability, and
are sensitive to changing environmental conditions [RBB+06, HZG11].
Figure 3.1 shows a typical example how the sensitivity of low-cost sensors
fluctuates over time. The figure depicts the calibration curves of one low-
cost ozone sensor over the course of one year. We derive the sensor’s
optimal calibration curve for every week of the year, using reference
measurements from our sensor testbed described in Section 2.1. There
is no clear indication where the bipartition of the calibration curves
is coming from. Hence, it is evident that low-cost sensors need to
be frequently calibrated to preserve a good data quality [MLCOS08,
BN07, LB14]. Manual calibration is an elaborate and time-consuming
task [TPS+05, RBB+06]. Automatic sensor calibration is essential but
challenging, particularly in networks with uncontrolled mobility.

Problem statement. In the context of this work, a fundamental
observation is that two measurements taken in the spatial and temporal
vicinity of each other are similar. The required spatio-temporal closeness
between two measurements depends on the locality of the process
monitored. If two sensors fulfill the vicinity requirements, we term
their meeting point a rendezvous. Rendezvous between calibrated and
uncalibrated sensors can be used to calibrate uncalibrated sensors. These
sensors in turn, can calibrate other uncalibrated sensors. We refer to this
as multi-hop sensor calibration.

One-hop calibration, i.e., the calibration between a high-quality
reference signal and an uncalibrated sensor, is common practice. State-
of-the-art network calibration algorithms designed for mobile sensing
networks only perform one-hop calibration [MLCOS08, MLE+15]. Hence,
these algorithms can only calibrate sensors, which directly pass by a high-
quality reference sensor. This introduces a strong constraint, requiring
a high density of reference sensors, which is not feasible for many
application scenarios. Moreover, many large-scale monitoring systems
have limited and uncontrollable mobility patterns preventing sensors to
frequently pass by a reference sensor, e.g., sensors installed in private
smartphones [MPSS13].

The only work we know of that studies multi-hop calibration by
leveraging meeting points between uncalibrated sensors is [BMEP03].
Further, in our previous work we also analyze multi-hop calibration,
where our initial simulation results reveale a linear error accumulation
with increasing network size [HST12]. Both works use ordinary least
squares regression (OLS) to calibrate a network of sensors. OLS is
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typically used to map uncalibrated raw sensor readings to calibrated
measurements if the dependency between target signal and sensor
response is linear [LUWP11, BN07, MLE+15]. In this chapter, we
show that, despite the linear dependency between target signal and
sensor response, OLS is not appropriate for multi-hop calibration.
We propose a novel multi-hop calibration algorithm, which distinctly
outperforms existing works by considerably reducing error propagation
in the network.

Contributions and road-map. We are the first to study multi-hop
calibration with respect to a reference signal in detail. This work
presents a thorough theoretical analysis based on assumptions and
models introduced in Section 3.2 and Section 3.3. We analyze the
sources of error propagation and propose a network calibration scheme,
which (i) considerably reduces error propagation in the multi-hop
setting, (ii) distinctly outperforms multi-hop calibration with OLS,
and (iii) compared to existing work does not require high density of
reference sensors. The algorithm proposed leverages geometric mean
regression (GMR) and one of its main proporties: absence of regression
dilution bias, caused by noise in sensor readings [Woo41].

In summary, this chapter makes the following contributions:

• We analyze in Section 3.4 the OLS line fitting method—commonly
used to calibrate sensors—and introduce GMR line fitting, the
centerpiece of our multi-hop calibration algorithm.

• In Section 3.5, we present a detailed theoretical analysis of
calibration error accumulation in a network of uncalibrated sensors.
We prove that multi-hop calibration with GMR is optimal under
specific assumptions. Further, we show with simulations that GMR
outperforms OLS in many scenarios.

• We show in Section 3.6 how to best choose calibration paths in dense
networks, where uncalibrated sensors can calibrate themselves to
possibly multiple calibrated sensors.

• We run in Section 3.7 the proposed network calibration algorithm
on real data of more than 13 million air pollution measurements
from our streetcar deployment. We show the benefits of calibrating
real, noisy, and low-cost sensors with our novel algorithm.

The algorithm proposed enables the multi-hop calibration of large,
heterogeneous, and mobile sensor networks, e.g., as found in participa-
tory sensing scenarios [BEH+06]. Until now, this has not been possible
with existing network calibration algorithms. We survey related work in
Section 3.8, and conclude in Section 3.9.
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Figure 3.2: Two MiCS-OZ-47 ozone sensors with a linear dependence between
raw sensor readings and reference measurements.

3.2 Assumptions and Models

Let a monitoring system consist of a set of sensor nodes (or sensors) U
measuring a phenomenon H. A sensor node can be either static or mobile.
Each node knows its position and current time. A sensor u ∈ U takes a
time-ordered sequence of measurements and meets other sensors from
time to time. There are no constraints on the sensor sampling rate and on
the frequency of rendezvous between any two sensors.

3.2.1 Phenomenon Model

Let a phenomenon of interest H exhibit a continuous measurable
signal h: T × L→ D at time t ∈ T ⊆ R+, at location l ∈ L ⊆ R ×R defined
by latitude and longitude coordinates, and domain of measurable values
D ⊆ R. We assume that the process change is upper bounded in both time
and space, i.e., for any two locations (ti, li), (t j, l j) ∈ T × L in time and in
space, it holds that

|h(ti, li) − h(t j, l j)| ≤ fω(|ti − t j|, |li − l j|), (3.1)

where fω is a monotonically non-decreasing function of temporal and spatial
distances |ti − t j| and |l j − l j|. The slower fω grows and the smaller the
distances |ti − t j| and |li − l j| are, the more similar are the values of h at the
two time-space locations (ti, li) and (t j, l j).
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3.2.2 Sensor Model
A sensor u ∈ U takes a sequence of measurements {mu(ti, li)} ∈ Du of
a phenomenon of interest H from the domain of values Du possibly
aperiodically at discrete time-space locations (ti, li) ∈ T × L, i ∈N. We
consider a measurement as point measurement, that is, it has no duration.
A sensor u is perfect if at any point in time and space (t, l) ∈ T × L it holds
that mu(t, l) = h(t, l). We call h the phenomenon signal and denote with mu

the raw measurements of sensor u.
Many low-cost sensors show a close to linear dependence between

sensor values mu and phenomenon signal h, e.g., [SGX14, Alp14a, Alp14b].
For example, we depict in Figure 3.2 one week of measurements from two
semiconductor ozone sensors [SGX14] gathered with our sensor testbed
infrastructure. Both sensors show a linear dependence between high-
quality reference measurements and raw sensor readings. We assume for
all sensors ∀u ∈ U that

h = αu + βumu + eu, (3.2)

where αu and βu are calibration coefficients of the first order polynomial and
eu is the noise component (or sensor error) with zero mean [BMEP03, BN07].
This noise component includes all variations not explained by the
calibration curve [Smi09]. We assume that the errors of any two
sensors are independent. The calibration parameters αu and βu describe
intercept (offset) and slope (gain) of the calibration curve. We calibrate
a sensor u ∈ U by assigning it calibration parameters. A calibrated
measurement is then

m̂u = αu + βumu. (3.3)

We distinguish two types of sensors: reference sensors u∗ ∈ U∗, which
are calibrated at all times, and low-cost sensors v ∈ U \U∗, which require
periodic calibration. We require (infrequent) rendezvous between at least
one reference sensor and one low-cost sensor to calibrate a network of
low-cost sensors.

3.3 Rendezvous Between Sensors
We perform sensor calibration by leveraging rendezvous between
sensors, defined as spatially and temporally close measurements of two
sensors. This section introduces the main concepts.

3.3.1 Definition of a Rendezvous
Let u, v ∈ U be two sensors. Both sensors take measurement sequences
{mu} ⊂ Du, {mv} ⊂ Dv and eventually meet, i.e., some measurements are
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in each other’s vicinity. We define the set of spatially and temporally
close pairs of measurements Φ(u,v) between sensors u and v within a time
interval s as

Φ(u,v) = { (mu(ti, li),mv(t j, l j)) |
ti, t j ∈ s ∧ |ti − t j| ≤ ∆t ∧ |li − l j| ≤ ∆d }. (3.4)

The parameters ∆d and ∆t set temporal and spatial constraints on the
required closeness of the measurements and, thus, limit the possible
change of the monitored phenomenon (see (3.1)). The choice of ∆d and
∆t depends on the process of interest. For example, the change of ozone
concentration over short distances is insignificant [SHWT13, MLE+15] in
contrast to the concentration variability of fine particles [PTPB13]. We
detail in Section 3.7 our choice of ∆d and ∆t for temperature, ozone (O3),
and carbon monoxide (CO) measurements.

Set Φ(u,v) represents a rendezvous between sensors u and v. We refer to
the measurement pairs (mu,mv) ∈ Φ(u,v) as calibration pairs and use them to
improve sensor calibration. We use the projection operator "↓" to split the
measurements belonging to calibration pairs according to the sensors by
which the measurements were made. For example, the measurements of
rendezvous Φ(u,v) can be split into the two sets Φ(u,v)

↓u = {mu} and Φ(u,v)
↓v = {mv}

denoting the measurements of sensor u and sensor v, respectively.
A rendezvous Φ(u,v) is characterized by the parameters ∆d and ∆t,

which control the number of calibration pairs |Φ(u,v)
| in the set. There

is an important trade-off when choosing the values of the rendezvous
parameters. On the one hand, high values of ∆d and ∆t result in a
high number of calibration pairs |Φ(u,v)

|, potentially giving calibration
possibility to a larger set of uncalibrated sensors. On the other hand,
large ∆d and ∆t may lead to high values of fω in (3.1) and, thus, to poor
correlation of the measurements belonging to a rendezvous. In this case,
a rendezvous Φ(u,v) may include many dissimilar pairs of measurements
and result in high calibration errors.

3.3.2 Rendezvous Connection Graph
A rendezvous connection graph Γ is an undirected graph with sensors U
as set of nodes and set of edges E = {(u, v) | ∀u, v ∈ U,u , v,Φ(u,v) , ∅}
between nodes with co-located measurements in time interval s. We
assign to each edge in E the corresponding set of measurements. We
introduce set N(u) = {v | (v,u) ∈ E} to represent the direct neighbors of
sensor u in graph Γ, i.e., comprises sensors that have rendezvous with
sensor u.

Let sensor u be calibrated and consider a rendezvous connection
graph Γ with edge (u, v) ∈ E. Sensor u can calibrate sensor v (denoted as
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u→ v) by leveraging rendezvous Φ(u,v) to compute calibration coefficients
αv and βv for sensor v. We denote the path in graph Γ used to calibrate a
sensor as calibration path, e.g., u→ v→ . . .→ p→ q, and refer to sensor p,
the immediate parent of sensor q, as calibration parent of q.

Let Γ be an arbitrary rendezvous connection graph constructed for a
time interval s. A multi-hop calibration algorithm accepts Γ as input and
assigns calibration coefficients to every uncalibrated sensor in Γ if the
sensor is part of a connected component of the graph including at least
one reference sensor.

Our multi-hop network calibration algorithm consists of two parts:
a calibration method and a calibration parent selection strategy. Given
a calibrated and an uncalibrated sensor connected with an edge in Γ,
the calibration method defines how to compute calibration parameters for
the uncalibrated sensor, which best map the uncalibrated raw sensor
readings to calibrated measurements. The parent selection strategy defines
how to best choose the calibration path between a reference sensor and
an uncalibrated sensor in Γ. In the following, we present an in-depth
theoretical analysis of multi-hop calibration, identify calibration error
sources, and propose a calibration method and a strategy to best select
calibration parents.

3.4 Calibration Methods
We start by introducing the calibration metric used throughout this
chapter to (i) compare line fitting methods (Section 3.4.2), (ii) evaluate
their ability to suppress multi-hop error propagation (Section 3.5), and
(iii) quantify the goodness of sensor calibration (Section 3.7).

3.4.1 Calibration Metric
We use the root-mean-square error (RMSE)—a standard metric to quantify
calibration errors [BMEP03, BN07]—to evaluate the calibration accuracy.
We compute the RMSE between calibrated measurements m̂v of sensor v
and the corresponding phenomenon signal h as

RMSEv =
( 1
|{m̂v}|

∑
(m̂v − h)2

) 1
2
. (3.5)

We know the true phenomenon signal for every generated sensor reading,
when evaluating calibration methods with artificial data. For real data
sets, we derive this from data collected with high-quality instruments in
the temporal and spatial vicinity of m̂v.
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Figure 3.3: OLS minimizes the sum of squared vertical residuals AB. GMR
minimizes the sum of the areas of triangles ABC formed by the vertical and
horizontal residuals AB and AC.

3.4.2 Line Fitting Methods
Let sensor u ∈ U be recently calibrated. Consider an uncalibrated sensor
v ∈ U, which meets u and forms a rendezvous Φ(u,v). In the following,
we discuss line fitting methods that can be used to find the calibration
parameters αv and βv of uncalibrated sensor v.

Ordinary least squares regression. Ordinary least squares (OLS) is
a well-known standard method for line fitting, e.g., [BN07, LUWP11,
HST12, MLE+15]. It is optimal with respect to RMSE as error metric.
OLS chooses the calibration parameters αv and βv such that the sum
of squared differences between calibrated measurements m̂v = αv + βvmv

of uncalibrated sensor v and measurements of calibrated sensor u is
minimized: ∑

(m̂u,mv)∈Φ(u,v)

(
(αv + βvmv) − m̂u

)2

=
∑

(m̂u,mv)∈Φ(u,v)

(
m̂v − m̂u

)2
→ min . (3.6)

Hence, OLS minimizes the sum of squared vertical residuals, as depicted
with distance AB in Figure 3.3.

OLS treats the measurements of uncalibrated sensor v and the
calibrated sensor u as independent and dependent variables, respectively.
Due to this distinction, two different lines regress v on u (denoted as u→ v)
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and u on v (denoted as v→ u), as it makes a difference wether the residuals
AB or AC are minimized in Figure 3.3. Figure 3.4 shows both regression
lines OLS(u→ v) and OLS(v→ u) for a sample set of measurements in
Φ(u,v). The true parameters denote the used calibration parameters for
sensor v to generate the artificial data. As stated in (3.6), we regress v on
u to compute the slope βu→v

OLS of the calibration curve (above denoted in
short form as βv):

βu→v
OLS =

cov(Φ̂(u,v)
↓u ,Φ(u,v)

↓v )

var(Φ(u,v)
↓v )

. (3.7)

The slope depends on cov(Φ̂(u,v)
↓u ,Φ(u,v)

↓v ), which is the covariance between
calibrated measurements of u and uncalibrated measurements of v
at rendezvous Φ(u,v) and on var(Φ(u,v)

↓v ), which is the variance of the
latter. The covariance is independent of sensor noise eu and ev as
they are independent variables (i.e., cov(eu, ev) = 0, cov(Φ(u,v)

↓u , ev) = 0, and

cov(Φ(u,v)
↓v , eu) = 0). However, the variance in the denominator in (3.7)

depends on sensor noise ev of the uncalibrated sensor v because

var(Φ(u,v)
↓v ) = var(Φ(u,v′)

↓v′ ) + var(ev), (3.8)

where Φ(u,v′)
↓v′ denotes the noise-free measurements of sensor v. Hence,

sensor noise ev introduces a bias towards zero in the computed slope βu→v
OLS .

The greater the noise of sensor v, the stronger the estimated slope
approaches zero instead of the true slope. This is known as regression
attenuation or regression dilution [FT00, CRSC06]. It is in particular a
problem if sensors are calibrated over multiple hops as the bias towards
zero increases with every hop. We discuss this in detail in Section 3.5.

A number of methods tackle the regression dilution problem by
compensating the bias in slope estimates [Gil06, FT00]. Many of these
methods assume that the variance of the sensor noise is known in advance,
e.g., Deming regression [Dem44] requires that the ratio of the sensors’
noise variances is known. This is particularly difficult with real sensors,
which can change their characteristics over time, e.g., due to changing
environmental conditions and aging effects. Using imprecise sensor noise
estimates for compensating the bias may lead to worse results than not
compensating at all [SP96].

Below, we present geometric mean regression, a line fitting method
that does not suffer from regression dilution and does not require any
knowledge on the sensor noise. It is frequently used in natural sciences
(e.g., astronomy and biology) and is known under different names,
such as reduced major axis [Smi09], line of organic correlation [KH50],
Strömberg’s impartial line [FB92], and geometric mean regression [Ric73].
The latter name is used throughout this work.
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Figure 3.4: With OLS two different lines regress u on v and v on u. With GMR
there is only one line as it is symmetric. The regression OLS (u→ v) is optimal
with respect to the RMSE when calibrating sensor v using sensor u.

Geometric mean regression. Geometric mean regression (GMR)
minimizes the sum of the areas of triangles formed by the deviation of a
point from the regression line in both axis directions. We depict such a
triangle in Figure 3.3, encapsulated by the lines AB, AC, and BC. The point
A has coordinates (m̂u,mv) ∈ Φ(u,v). The calibration m̂v = αv + βvmv maps
raw measurements mv to calibrated values m̂v. Due to noise in sensor
readings m̂v , m̂u. We can convert the calibrated values m̂u of sensor u to
the domain of raw measurements of sensor v using −αv

βv
+ 1

βv
m̂u. Thus, the

sum of areas minimized by GMR is∑
(m̂u,mv)∈Φ(u,v)

(
(αv + βvmv) − m̂u

)
·

(
mv − (−

αv

βv
+

1
βv

m̂u)
)

=
1
βv

∑
(m̂u,mv)∈Φ(u,v)

(
m̂v − m̂u

)2
→ min . (3.9)

The slope βu→v
GMR of the calibration curve (above denoted in short form as

βv) is

βu→v
GMR =

(
βv→u

OLS

βu→v
OLS

) 1
2

=

var(Φ̂(u,v)
↓u )

var(Φ(u,v)
↓v )


1
2

. (3.10)

The proof of this result is given in [Woo41]. We show in Figure 3.4 the
GMR line for a sample set of measurements. It is always located between
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the regression lines OLS(v→ u) and OLS(u→ v), the same holds true for
the line based on the true parameters.

Both OLS and GMR are least squares methods, in that they optimize
the sum of squared residuals using different definitions for residuals.
However, the following three properties make GMR more attractive in
the context of multi-hop sensor calibration:

• Symmetry. Regressing v→ u and u→ v yields the same regression
line (i.e., βu→v

GMR = 1/βv→u
GMR), since switching the axes does not affect

the areas of triangles to be minimized. Thus, GMR does not make a
distinction between dependent and independent variables.

• Scale-invariance. The GMR line is invariant to linear transformations
of the two variables, i.e., scaling measurements of either sensor leads
to an equivalent regression equation [Sam42, Kru53].

• No bias towards zero. In contrast to OLS, GMR does not suffer from
regression dilution. This is essential to reduce calibration error
propagation in the network.

Next, we investigate the error accumulation of the two line fitting
methods discussed above. We investigate the worst-case scenario when
noisy sensors are calibrated along a line topology with one reference
sensor at one end of the line. We show that under the given assumptions
GMR does not suffer from error accumulation and leads to accurate
network calibration.

3.5 Reducing Error Accumulation
In the following, we provide a theoretical analysis of calibration error
accumulation over multiple hops using OLS and GMR. We emphasize
our findings with detailed simulation results. Our main findings are:

• OLS suffers from significant multi-hop error accumulation due to
sensor noise.

• In contrast to OLS, GMR is optimal and does not suffer from any
multi-hop error accumulation if the variances var(Φ(p,q)

↓p ), ∀p ∈ U are
accurately estimated.

• In the general case, GMR suffers from error accumulation but at a
distinctly lower rate than OLS.
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Figure 3.5: Calibration path u→ a→ . . .→ x→ y→ z. The sensors a, . . . , x, y, z
are calibrated hop-by-hop starting from reference sensor u.

3.5.1 Theoretical Analysis
We continue with a detailed theoretical analysis.

Setting. Assume a calibration path u→ a→ . . .→ x→ y→ z starting
with the calibrated sensor u (reference sensor), as depicted in Figure 3.5.
The line topology presented in the plot enforces sensor calibration hop-by-
hop from sensor u to sensor z using the available intermediate rendezvous
Φ(u,a), . . . ,Φ(x,y),Φ(y,z). All sensors but u and z have two direct neighbors.
For example, sensor y has two neighbors N(y) = {x, z}, and the projections
Φ

(x,y)
↓y and Φ

(y,z)
↓y are sets of measurements of sensor y taken in the vicinity

of its direct neighbors x and z, respectively. In the general case, we can
not control sensor mobility patterns and can not choose when sensors
meet. Thus, the measurements in both sets have different means and
variances. We use this setup to analyze multi-hop error accumulation of
the previously discussed line fitting methods.

OLS multi-hop error accumulation. We analyze the calibration error of
sensor z, which receives its calibration over multiple hops starting from
reference sensor u. We derive the slope of the calibration curve βu→z

OLS using
(3.2) and (3.7) as

βu→z
OLS =

cov(Φ̂(y,z)
↓y ,Φ(y,z)

↓z )

var(Φ(y,z)
↓z )

=
cov(αu→y

OLS + βu→y
OLS ·Φ

(y,z)
↓y ,Φ(y,z)

↓z )

var(Φ(y,z)
↓z )

= βu→y
OLS ·

cov(Φ(y,z)
↓y ,Φ(y,z)

↓z )

var(Φ(y,z)
↓z )

= . . .

=
cov(Φ(u,a)

↓u ,Φ(u,a)
↓a )

var(Φ(u,a)
↓a )

· . . . ·
cov(Φ(x,y)

↓x ,Φ(x,y)
↓y )

var(Φ(x,y)
↓y )

·

cov(Φ(y,z)
↓y ,Φ(y,z)

↓z )

var(Φ(y,z)
↓z )

. (3.11)

The covariances are independent of sensor noise, as discussed in the
previous section. However, the denominators with the variances of all
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sensors along the calibration path depend on sensor noise, as denoted
in (3.8). Every additional sensor in the calibration path, introduces an
additional term in the denominator, which increases the bias towards
zero. The total introduced bias is given by

var(Φ(u,a′)
↓a′ )

var(Φ(u,a)
↓a )
·. . .·

var(Φ(x,y′)
↓y′ )

var(Φ(x,y)
↓y )

·

var(Φ(y,z′)
↓z′ )

var(Φ(y,z)
↓z )

, (3.12)

where Φ(u,a′)
↓a′ denotes the noise-free measurements of sensor a. In the

following, we show that GMR, in contrast to OLS, does not accumulate
errors over multiple hops under certain conditions.

GMR multi-hop error accumulation. We use the line topology above
to show that, in contrast to OLS fitting, GMR does not suffer from error
accumulation if all rendezvous sets of a sensor have the same variance.
For example, we require that the measurements of sensor y in Figure 3.5
have the same variance in the rendezvous involving sensor x and sensor z,
i.e., var(Φ(x,y)

↓y ) = var(Φ(y,z)
↓y ). We prove our statement by showing that the

GMR calibration of a sensor is independent of the calibration path. Later,
we release the above assumption of equal variances and analyze error
propagation in the general case. We show that the error obtained is
distinctly lower than with OLS.

Theorem 1. Let us consider a rendezvous connection graph Γ with a
calibration path u→ a→ . . .→ x→ y→ z. Let u be a reference sensor. If
var(Φ(p,r)

↓r ) = var(Φ(r,q)
↓r ), ∀p, q ∈ N(r), ∀r ∈ U, then the calibration of sensor z is

independent of the path between reference sensor u and sensor z.

Proof. It suffices to show that the statement of the theorem holds for
the slope β of the calibration curve, since it uniquely determines the
intercept α of the calibration curve. We use (3.2) and (3.10) to derive the
calibration slope βu→z

GMR of sensor z, calibrated over multiple hops starting
from reference sensor u:

βu→z
GMR =

var(Φ̂(y,z)
↓y )

var(Φ(y,z)
↓z )


1
2

=

var(βu→y
GMR ·Φ

(y,z)
↓y + αu→y

GMR)

var(Φ(y,z)
↓z )


1
2

= βu→y
GMR ·

var(Φ(y,z)
↓y )

var(Φ(y,z)
↓z )


1
2

= . . .
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=

var(Φ(u,a)
↓u )

var(Φ(u,a)
↓a )
·. . .·

var(Φ(x,y)
↓x )

var(Φ(x,y)
↓y )
·

var(Φ(y,z)
↓y )

var(Φ(y,z)
↓z )


1
2

(3.13)

=

var(Φ(u,a)
↓u )

var(Φ(y,z)
↓z )


1
2

. (3.14)

We leverage in (3.14) the assumption of equal variances, i.e.,
var(Φ(x,y)

↓y ) = var(Φ(y,z)
↓y ). Since the calibration slope βu→z

GMR of sensor z

only depends on the measurements of sensor u and z, i.e., on var(Φ(u,a)
↓u )

and var(Φ(y,z)
↓z ), it is independent of the choice of intermediate sensors

along the calibration path. �

If the assumption of the theorem holds, calibration parameters
calculated with GMR are independent of the choice of calibration paths
and are optimal, since the minimization function of GMR defined in (3.9)
achieves its minimum.

Relaxing the assumption. The theorem assumption implies that the
variance of the phenomenon signal at rendezvous between any pair of
sensors must be the same. In reality this is hard to achieve, since meeting
points between sensors cannot be enforced. Therefore, in many real
systems the reduction used from (3.13) to (3.14) does not apply and, thus,

βu→z
GMR =


var(Φ(u,a)

↓u )

var(Φ(y,z)
↓z )
·

∏
∀p→r→q
p,q∈N(r)

var(Φ(r,q)
↓r )

var(Φ(p,r)
↓r )


1
2

. (3.15)

In multi-hop calibration, GMR does not continuously introduce a bias
in one direction (like OLS towards zero), since both nominator and
denominator contain the sensor noise term (see (3.8)):

var(Φ(r,q)
↓r )

var(Φ(p,r)
↓r )

=
var(Φ(r′,q)

↓r′ ) + var(er)

var(Φ(p,r′)
↓r′ ) + var(er)

. (3.16)

This observation is essential to understand the small error propagation
property of GMR. OLS continuously underestimates the sensor slopes,
and, hence, introduces an ever-increasing bias towards zero. In contrast,
GMR closely approaches the true slope (sometimes underestimating and
other times overestimating it) and, thus, does not accumulate a bias
towards one direction.

Next, we show through extensive simulations that GMR achieves
significantly lower calibration errors than OLS.
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Figure 3.6: Impact of measurement quantity and sensor noise on the variance
estimate. High noise and low number of measurements impede the accurate
estimation of the variance.

3.5.2 Simulation Results

In the following, we use a line topology graph Γ and artificially
generated rendezvous Φ between pairs of adjacent sensors to highlight
the differences between OLS and GMR. Generated data correspond to
typical carbon monoxide (CO) concentrations in urban environments.
Artificial data generation gives us three advantages: we (i) can freely
choose the topology of the rendezvous connection graph, (ii) can precisely
control sensor characteristics (e.g., noise level, calibration parameters),
and (iii) know for every generated sensor reading the true phenomenon
signal value, which allows us to accurately evaluate calibration errors.

Setup. All generated line topologies comprise 21 sensors, with a noise-
free reference sensor at the beginning of the line, followed by 20 noisy
sensors. The sensor IDs denote the hop distance to the reference sensor.
A rendezvous Φ(u,u+1) between a pair of sensors u and (u + 1) in Γ

is constructed by uniformly sampling 1000 phenomenon signal values
in the range [0.2, 2] ppm. This range is typical for carbon monoxide
concentrations in urban areas.

We randomly sample for each sensor u the calibration parameters
αu ∈ [0, 1] and βu ∈ [0.3, 2]. We use these parameters to convert the gen-
erated phenomenon signal values to sensor-specific raw measurements
and add sensor noise eu to get uncalibrated sensor measurements mu.
The variance of the sensor noise is randomly sampled from [0, 0.2] ppm
for each sensor. The RMSE between phenomenon signal and calibrated
sensor measurements is used to quantify calibration errors. All plots
show average RMSEs over 100 randomly generated line topologies. For
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Figure 3.7: Fixed phenomenon range (Theorem 1 holds). GMR can accurately
calibrate all sensor nodes of a 21-node line topology with very small error
propagation.

each sensor, optimal parameters are obtained by computing OLS regression
between raw sensor data (including noise) and the known phenomenon
signal. The optimal parameters represent the best calibration parameters
achieving the minimum possible RMSE between phenomenon signal and
calibrated sensor measurements.

Impact of sensor noise. We need to know the variances of the
sensor measurements to compute the sensors’ calibration slopes, as
described in the previous section. We estimate the variances based on
rendezvous Φ between pairs of sensors. However, both (i) low number
of measurements in rendezvous and (ii) sensor noise make an accurate
variance estimation difficult. We exemplify this in Figure 3.6 using
artificial data. We show the fluctuation of the variance estimates for
two noisy measurement sets depending on the number of measurements
in the set. As expected, variance estimation exhibits less fluctuation as the
number of measurements increases. Moreover, we observe that higher
sensor noise leads to higher variance estimation errors.

In Figure 3.7, we compare the calibration errors of OLS and GMR
assuming that the values of the phenomenon signal for all rendezvous
are sampled from the same fixed interval (the statement of Theorem 1
holds). Since the assumption of Theorem 1 holds, in theory GMR should
not accumulate any calibration errors. With noisy sensor data, however,
we observe an insignificant error accumulation due to small inaccuracies
in estimating the variance of the measurements (for node 20 there is
a small difference between optimal parameters and GMR). Nevertheless,
the RMSE of GMR is close to the RMSE achieved with optimal parameters.



52 Chapter 3. Calibrating a Mobile Network of Low-Cost Sensors

Sensor node [ID]
2 4 6 8 10 12 14 16 18 20

C
a
lib

ra
ti
o
n
 e

rr
o
r 

(R
M

S
E

) 
[p

p
m

]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

OLS
GMR
Optimal parameters

Figure 3.8: Despite the 2x higher noise of sensor 8, GMR accurately calibrates
sensors 9–20. With GMR a sensor’s calibration is mostly independent of the
calibration parent’s sensor noise.

In contrast, OLS suffers from rapid error accumulation. This is the result
of regression dilution: due to sensor noise, the calibration slope of a sensor
has a stronger bias towards zero with every additional calibration hop.

We make the impact of noise on the calibration error more explicit by
increasing the noise of sensor 8 by factor two. Naturally, sensor 8 gets
worse RMSE for any parameter setting, as depicted in Figure 3.8. We
observe that OLS suffers from high error increase for nodes 9–20, due to
the high bias towards zero of the calibration slope of sensor 8. In contrast,
the nodes calibrated by GMR are mostly independent of the high noise of
sensor 8. There is a minor error increase due to an increased inaccuracy
in estimating the variance var(Φ(8,9)

↓8 ) of the measurements of sensor 8.
The above analysis shows that for GMR (i) calibration error of a sensor

mostly depends on the sensor’s noise, but the noise of the calibration
parent has minor impact, (ii) calibration error of a sensor can be smaller
than the calibration error of its calibration parent, and (iii) there is almost
no multi-hop accumulation of errors. The last two findings are crucial
when calibrating a network of heterogeneous sensors with different noise
characteristics.

Impact of phenomenon signal range. The assumption of Theorem 1
rarely holds for real data sets, because rendezvous between sensor
nodes might occur at different ranges of the phenomenon signal. In
the following, we use the line topology above but randomly choose for
each rendezvous the maximum signal range in [1, 4] ppm. The resulting
RMSE of each sensor is plotted in Figure 3.9. Both fitting methods suffer
from error accumulation as showed by the theoretical analysis, although
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Figure 3.9: Variable phenomenon range (Theorem 1 does not hold). GMR has
distinctly slower error accumulation than OLS when calibrating sensors on a
21-node line topology.

GMR is less affected than OLS.
To better understand the source of error accumulation, we use equal

phenomenon signal ranges for all rendezvous, except between sensor 8
and 9, i.e., Φ̂(8,9). The latter range is decreased in Figure 3.10 and
increased in Figure 3.11 by factor three compared to the rendezvous of
all other sensors. This changes the respective range-to-noise ratios (RNRs).
Decreasing the range lowers RNRs, which means that the noise has an
increasing impact on the sensor measurements. This, in turn, makes it
more difficult to estimate the variance of the measurements (see Figure 3.6)
and, hence, results in a higher calibration error of OLS and GMR.
Moreover, the introduced error affects any sensor that has sensor 9 in
its calibration path, as (3.11) and (3.15) suggest and Figure 3.10 shows.
By contrast, increasing the range, raises the RNR. The calibration error
of both fitting methods increases because the calibration of sensor 8 is
based on measurements from the standard (small) range. However, in
the rendezvous with sensor 9, sensor 8 has to measure in a much larger
(factor three) range. This introduces with GMR only a small error, because
GMR can accurately estimate the true slope of sensor 8, even if it only has
a small range of measurements available. However, the bias introduced
by OLS has a large impact on the calibration error when the range is
increased. Hence, increasing the range has a much larger impact on its
calibration accuracy, as shown in Figure 3.11.

We conclude that (i) varying the phenomenon signal range between
rendezvous degrades the performance of both GMR and OLS, although
OLS is significantly more affected than GMR, and (ii) a low RNR
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Figure 3.10: The 3x smaller measurement range between sensor 8 and 9 results
in lower range-to-noise ratios of the two sensors, which influences the calibration
error of all subsequent sensors.
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Figure 3.11: The 3x larger measurement range between sensor 8 and 9 results
in higher range-to-noise ratios of the two sensors. This does not influence the
calibration of sensors 10–20.
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is particularly problematic, since the introduced calibration error
propagates over multiple hops. Our findings suggest that calibration
parents need to be carefully selected to minimize error propagation in the
network.

3.6 Network Calibration
In this section, we present our calibration parent selection algorithm and
analyze it in combination with the OLS and GMR line fitting methods
on artificial topologies. Later, we evaluate their performance on real air
pollution data sets.

3.6.1 Selecting the Calibration Parent
We showed with our previous analysis that an efficient parent selection
algorithm must build on the following two properties:

• Maximize number of checkpoints with calibration parents to reduce
inaccuracies in estimating the variance.

• Avoid calibration parents with low RNR to reduce multi-hop error
propagation.

Optimizing each of the above properties is not straightforward for the
following reasons: Given a noisy measurement, it is impossible to split
it into its noise-free and noise components, as done in (3.8), without
additional knowledge about the sensor noise. Therefore, it is difficult
to reliably identify parent candidates with low RNR. Similarly, despite
high number of calibration pairs, we may have low correlation between
paired values leading to a poor regression line. In the worst case, the
phenomenon signal has the same value for all calibration pairs making
them useless for sensor calibration.

In order to achieve the properties listed above, we propose to (i) use
a combination of multiple calibrated sensors as calibration parent to
increase the number of measurements involved in sensor calibration, and
(ii) analyze the Pearson correlation with the calibration parent to avoid
sensors with low RNR.

Combining rendezvous of multiple calibrated sensors u, . . . , v and
using the combination as calibration parent results in the following slope
computation:

βu,...,v→z
GMR =

var(Φ̂(u,z)
↓u ∪ . . . ∪ Φ̂(v,z)

↓v )

var(Φ(u,z)
↓z ∪ . . . ∪Φ(v,z)

↓z )


1
2

. (3.17)
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Choosing multiple parents (i) maximizes the number of measurements
used to compute the calibration slope, and (ii) potentially increases the
phenomenon signal range and, thus, increases the RNR. The latter holds
with high probability if rendezvous occur randomly at distinct values
of the phenomenon signal. RNR is then maximized as the result of the
increased phenomenon range.

To minimize the chance of having a parent with low RNR, we compute
the Pearson correlation between measurements of different sensors,
i.e., between measurements in Φ(u,z)

↓z ∪ . . . ∪Φ(v,z)
↓z and Φ̂(u,z)

↓u ∪ . . . ∪ Φ̂(v,z)
↓v of

(3.17), and use it as noise estimate. We blacklist rendezvous between
sensors if their correlation is below a given threshold.

Putting everything together. The last key piece is to tie all parts together.
Calibration parameters may vary over time, since low-cost sensors
typically loose sensitivity over time and are influenced by environmental
conditions. This has significant influence on the sensor measurements
and results in the fluctuation of the calibration coefficients α and β (see
Figure 3.1). We introduce a periodic calibration approach by partitioning
the time domain T into a sequence of equally-spaced, non-overlapping
time intervals {sk} = S ⊆ T. We assume that the calibration parameters of
all sensors do not change within sk. For each sk, we consider all meeting
points that occurred between pairs of sensors and construct a rendezvous
connection graph Γsk , which is used as input for the calibration algorithm.

Using the rendezvous connection graph Γsk , the calibration algorithm
calibrates the network of noisy sensors hop-by-hop starting from a
reference sensor. The calibration algorithm starts by calibrating sensors
that directly pass by reference sensors (first-hop sensors). Once calibrated,
the sensors can be used as references by the second-hop sensors. The
algorithm stops as soon as all sensors in the network are calibrated. We
use for the calibration of a sensor u ∈ U\U∗, all non-blacklisted previously
calibrated sensors in N(u) as calibration parent.

3.6.2 Simulation Results
We end this section by showing a comparison between hop-by-hop
calibration with OLS and GMR and demonstrating the benefit of our
parent selection strategy. We generate artificial data as described in
the previous section, but use a grid topology in order to have multiple
possible calibration parents for every sensor node. We arrange 36 nodes
on a grid with 35 uncalibrated sensors and one reference node in the top
left corner of the grid. The node IDs increase with increasing hop-distance
from the reference sensor, i.e., sensor 1 and 2 are the direct neighbors of
the reference sensor.
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Figure 3.12: Comparison of OLS and GMR on a 35-node grid topology. The
hop-by-hop calibration algorithms use multiple calibration parents and, thus,
achieve a lower calibration error than the single parent version.

Figure 3.12 depicts the comparison between two versions of OLS and
GMR: hop-by-hop, using the parent selection scheme described above and
single parent, selecting as calibration parent the sensor with the maximum
number of measurement pairs. We see again that OLS accumulates errors
with a much faster rate than GMR and that multiple parents help to reduce
the calibration error.

3.7 Calibrating the Mobile Sensor Network
In this section, we use the proposed network calibration algorithm to
calibrate a large set of air pollution measurements collected with our
mobile sensor nodes installed on top of ten streetcars of the public
transport network, as described in Section 2.3.1. We demonstrate on
real measurements that Hop-by-hop GMR considerably reduces error
propagation and is able to more accurately calibrate a set of low-cost gas
sensors than Hop-by-hop OLS.

In this chapter, we focus on the calibration of the temperature,
ozone (O3), and carbon monoxide (CO) data sets. We evaluate 13 million
measurements collected in six months between March and August 2014,
as summarized in Table 3.1.

Two stations of the local governmental measurement network are
located in the city center very close to the streetcar tracks, as depicted in
Figure 2.8 in Chapter 2. We use the stations’ high-quality measurements
to calibrate our low-cost sensors deployed on top of the streetcars.
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Data set
Measurements Sampling interval

[in millions] [s]

Temperature 2.7 20
Ozone (O3) 2.1 20
Carbon monoxide (CO) 8.5 10

Table 3.1: Evaluated data sets of the mobile air pollution monitoring network
collected from March to August 2014.
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Figure 3.13: Number of meeting points among mobile sensors and reference
stations accumulated every ten days during three months of operation.

3.7.1 Setup
We use all measurements to create every ten days a rendezvous connection
graph. We assume that the measurements from two different sensors
are similar if their spatial and temporal distances are within ∆d = 50 m
and ∆t = 5 min. We found through extensive evaluations that this
parameterization achieves a good trade-off between number of meeting
points and similarity of the measured phenomena. The automatic
selection of the most meaningful parameter settings has yet to be
investigated. On average, within a slot size of ten days, the rendezvous
connection graph of the ozone measurements comprises 4000 meeting
points among mobile sensors and 500 meeting points between reference
stations and mobile sensors, as shown in Figure 3.13. We blacklist a
rendezvous if the correlation of the sensors’ measurements is below 0.5.

3.7.2 Evaluation
We evaluate the calibration accuracy with a two-fold cross-validation
approach. We calibrate the network using one reference station and
evaluate the calibration accuracy with the second reference station. In
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Data set
Average calibration error [RMSE]

Single calibration Periodic calibration

Temperature 2.3 ◦C 1.6 ◦C
Ozone (O3) 12.9 ppb 9.8 ppb
Carbon monoxide (CO) 0.23 ppm 0.08 ppm

Table 3.2: Average calibration errors. Single calibration, only calibrates sensors
once at the beginning of the deployment, compared to periodic calibration, which
calibrates the sensors every ten days.
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Figure 3.14: Number of calibration paths with two to five sensor nodes.

every time slot, we repeat this approach with both reference stations
acting once as reference station. Table 3.2 shows the average RMSE
between calibrated measurements of the mobile sensor nodes and the
reference station. The achieved accuracy is reasonable for the deployed
low-cost sensors and is considerably better than what is obtained if the
sensors are only calibrated once at the beginning of the deployment,
also listed in Table 3.2. Different applications require different accuracy
levels, e.g., detecting whether the concentration is below or above a
given threshold is easier than delivering accurate absolute measurements.
As a rule of thumb, as long as the calibration error is below 20 % in
comparison to the intraurban concentration variation (as found in our
case), the measurements can be used to analyze the spatial distribution of
air pollutants.

We illustrate the advantages of GMR by extracting specific calibration
path lengths from the rendezvous connection graph. We compare the
calibration errors of GMR and OLS by analyzing more than 100,000
different calibration paths composed of 2 to 5 sensor nodes, as shown
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Data set
Sensors calibrated Total

one-hop multi-hop sensors

Temperature 4.7 8.2 9
Ozone (O3) 3.8 6.2 7
Carbon monoxide (CO) 4.5 8.2 10

Table 3.3: Average number of sensors calibrated over a 10-day period using
one-hop and multi-hop calibration algorithms.

in Figure 3.14. We show in Figure 3.15 that on all three pollution data sets
the error accumulation of GMR is considerably lower than with OLS. The
difference between OLS and GMR increases for longer path lengths. These
results with real measurements are in line with our previous findings
based on theoretical analysis and simulations.

Finally, we compare in Table 3.3 the number of sensors, which can
be calibrated with existing one-hop algorithms (i.e., only calibrating
sensors directly passing by a reference sensor, e.g., [MLCOS08]) to the
number of nodes reached with our multi-hop calibration approach. Note
that not all ten sensor nodes are equipped with all sensor types. We
observe that our multi-hop algorithm calibrates at least 34 % more sensors
than its one-hop alternative. This is remarkable, since our air pollution
monitoring network is well-connected with two reference stations located
in the city center. We expect an even higher benefit when using multi-
hop calibration algorithms for large-scale systems, e.g., in participatory
sensing applications.

3.8 Related Work
This section summarizes existing knowledge related to this chapter. We
overview line fitting methods in the context of sensor calibration, list state-
of-the-art sensor calibration algorithms, and discuss their differences to
the work described in this chapter.

3.8.1 Line Fitting
Linear regression is a common statistical operation in many sciences.
Besides of OLS and GMR, both discussed in detail in this work, there is a
broad range of line fitting methods, such as Theil-Sen estimator [The50,
Sen68], which chooses the median slope among all lines through pairs
of points, total least squares regression [MVH07], which optimizes the
sum of squared orthogonal residuals to the regression line, and Deming
regression [Dem44], which is the maximum likelihood estimator. Each
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Figure 3.15: Dependency between calibration error and length of the calibration
path. Hop-by-hop GMR has a considerably lower error accumulation than OLS
for all three pollutants.
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method was designed for a specific regression model, that must match
application requirements. In the context of sensor network calibration,
the following requirements are important: we need to (i) account for
errors in both variables, (ii) handle both variables symmetrically, and
(iii) be invariant to changes in the scale. Our choice of line fitting method
and its alternatives are detailed below.

When calibrating a sensor using another noisy sensor, the chosen
regression method must account for measurement errors in both
variables. Standard OLS ignores the problem and thus suffers
a noise-driven bias in estimating the slope, known as regression
dilution [CRSC06]. The bias can be compensated [Gil06, FT00], but
requires additional knowledge about the errors, e.g., their variances or the
ratio thereof [Dem44]. This knowledge is often not available, especially
if sensor noise depends on environmental conditions.

Many regression methods make a distinction between the predictor
(independent) variable and the response (dependent) variable, because
their optimization functions are asymmetric with respect to the two
variables, e.g., OLS and Theil-Sen estimator. Thus, these regression
methods derive two different regression lines depending on the direction
of regression. Using asymmetric regression methods poses a dilemma
in many applications, when trying to identify a cause-effect relationship
between the variables, e.g., if one would want to find the dependency
between body length and body mass [Smi09]. Thus, it is often desirable
to have one regression line describing the relationship rather then two. A
similar problem arises in the context of sensor calibration: It is hard to fix
the direction of calibration for a pair of noisy sensors of the same type.
In this case, symmetric regression models, such as GMR and total least
squares, produce a more comprehensible fit.

Lack of scale invariance makes the regression dependent on the range
of raw measurements limiting its applicability for sensor calibration. For
example, total least squares is not scale-invariant.

GMR is known under different names such as reduced major
axis [Smi09], line of organic correlation [KH50], and Strömberg’s impartial
line [FB92]. It is the only linear regression method in the two-dimensional
space, which is simple (i.e., only based on the ratio of the variables’
variances), symmetric, and scale-invariant [Sam42].

3.8.2 Sensor Calibration
A great body of work is dedicated to calibrating low-cost sensors,
e.g., [DVMP+08, MLB+12, MLCOS08, LB14]. The existing literature on
sensor calibration can be classified into micro- and macro-calibration
approaches [WC02, TXY+13].
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Micro-calibration. Micro-calibration algorithms calibrate every sensor
in the network according to a high-quality reference signal [TPS+05,
RBB+06, MLCOS08, HST12]. The goal is to have accurate absolute sensor
measurements of the phenomenon monitored.

Tolle et al. [TPS+05] and Ramanathan et al. [RBB+06] calibrate
their sensors in the laboratory before the deployment phase. Manual
calibration is an elaborate and time-consuming task and many sensors
need periodic re-calibrations to deliver measurements with a good data
quality during the whole system lifetime (see Table 3.2).

Miluzzo et al. [MLCOS08] propose CaliBree, a self-calibration system
for mobile sensor nodes. CaliBree makes use of meeting points
between low-cost sensors and high-quality reference sensors to update
the calibration of low-cost sensors. Compared to the algorithm proposed
in this chapter, it ignores all meeting points between low-cost sensors and,
thus, requires in general a high density of reference sensors to calibrate
all sensors in a network (see Table 3.3).

Hasenfratz et al. [HST12] introduce a multi-hop calibration algorithm
applying OLS regression to calibrate a network of low-cost sensors.
They show with simulations a linear increase of calibration error with
increasing number of nodes in the calibration path. We show with
our theoretical analysis, simulations, and real pollution measurements
a considerably smaller error accumulation.

Macro-calibration. Macro-calibration algorithms try to maximize
the similarity among the measurements of all sensor nodes in the
network [BMEP03, FMP03, BN07, LB14, TXY+13]. In macro-calibration,
the main goal is not to adjust sensor calibration according to a reference
signal but to achieve a high similarity between sensors in the network.
Hence, most macro-calibration algorithms do not require access to
reference measurements.

Bychkovskiy et al. [BMEP03] propose a two phase multi-hop
calibration algorithm. In the first phase, the algorithm derives
relationships between co-located sensors and in the second phase it
maximizes the consistency among groups of sensor nodes. The authors
assume that sensor noise can be filtered out. In general, this is very
difficult to achieve in mobile sensing networks.

Balzano and Nowak [BN07] and Lipor and Balzano [LB14] introduce
blind calibration algorithms to determine sensor gains by oversampling
the phenomenon signal. The authors compare different methods to derive
calibration parameters: singular value decomposition and OLS in [BN07],
and total least squares in [LB14]. Blind calibration methods depend on
the assumption that the mean of the monitored signal is zero (or the same
for all sensors). This is in most real-world deployments not the case, e.g.,
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air pollution monitoring.
Xiang et al. [XBP+12] propose a collaborative sensor calibration and

placement approach using meeting points between mobile sensors to
adjust their calibration parameters and error estimates. The goal is to
compensate for sensor drift errors. The measurements from our long-
term, mobile air quality monitoring system indicate that sensor drift has
a minor effect on the fluctuation of calibration parameters. In contrast,
dynamically changing environmental conditions highly affect sensor
performance. This observation is in line with the findings published
in [RBB+06].

Other macro-calibration algorithms improve target
detection [TXY+13], localization [WC02], and the calibration of light
sensors [FMP03].

In contrast to all above works, the distributed monitoring of
physical phenomena (e.g., urban noise monitoring [MPSS13], earth-
quake detection [FOC+11], and air pollution monitoring [RPV14])
requires accurate absolute sensor measurements. Hence, in these
scenarios a micro-calibration approach is needed, such as the calibration
algorithm proposed in this chapter. Moreover, a good micro-calibration
algorithm also accomplishes the goals of macro-calibration, namely a high
consistency among measurements of co-located sensor nodes, whereas
the opposite is not true.

3.9 Conclusions
Wireless sensor networks (WSNs) are used in an increasing number of
applications enabling the dense monitoring of the environment. Many
sensors used in WSNs need to be frequently calibrated to constantly
deliver accurate measurements.

Calibrating a whole network of sensors based on a few high-quality
reference measurements is challenging. Error propagation in the network
hinders the accurate calibration of all sensor nodes. In this chapter,
we propose a novel multi-hop calibration algorithm, which distinctly
reduces error accumulation in the network. Instead of using ordinary
least squares—typically employed to calibrate noisy sensors—we use
geometric mean regression and exploit its robustness against regression
dilution, which is caused by noisy sensor readings. This is essential in
order to reduce error propagation in multi-hop calibration systems.

We show the benefits of our algorithm by performing a detailed
theoretical analysis, conducting simulations under various settings, and
calibrating measurements from our mobile air pollution monitoring
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network. We demonstrate the following key features of our calibration
algorithm: (i) Very low hop-by-hop error propagation in the network.
Hence, the algorithm can handle long calibration paths incorporating
many sensors without accumulating large errors. (ii) The calibration
quality of a sensor is largely independent of the calibration error of its
calibration parent. A low-noise sensor can be accurately calibrated despite
having a high-noise calibration parent. (iii) Due to multi-hop calibration,
only a low number of reference sensors are required since meeting points
between low-cost sensors are also exploited as calibration opportunities.

Hence, the algorithm proposed is suitable for the accurate calibration
of large, mobile, and heterogeneous sensor networks, such as found
in participatory sensing scenarios. Further, it enables the accurate
calibration of our mobile air pollution monitoring network.

In Chapter 4, we introduce a model-driven approach to provide
individual accuracy bounds for calibrated sensor measurements and to
detect systematic and transient sensor errors.
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4
Accuracy Bounds for Low-Cost

Sensor Readings

Wireless sensor networks are increasingly used in application scenarios
where a high data quality is inevitable. Nevertheless, many deployments
must live with strict constraints regarding the sensing hardware and
may have to employ sensors with limited reliability and accuracy, e.g.,
due to limited energy budget, size, and bandwidth. Additionally,
many applications would benefit from not only gathering absolute
sensor readings but also knowing the quality of their low-cost sensor
measurements, e.g., to ignore inaccurate sensor readings and to schedule
extra measurements. In this chapter, we use calibrated sensor readings
and introduce a model-driven approach that (i) provides reliable accuracy
bounds for individual noisy measurements and (ii) detects systematic
and transient sensor errors. We apply our method to temperature and
ozone data sets collected with our static and mobile deployments. We
find that the proposed algorithm successfully calculates precise accuracy
bounds. We compare them to measurements of high-quality instruments
and show that up to 96 % of the reference measurements are inside the
computed accuracy bounds in the static scenario and up to 94 % in the
mobile scenario. By analyzing data from our static long-term deployment,
we reveal that the ozone sensor’s reliability is dependent on seasonal
weather conditions.
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4.1 Introduction

Until a few years ago wireless sensor networks (WSNs) were mainly
deployed by system researchers to understand and solve fundamental
challenges (e.g., time synchronization and reliable communication).
Examples are short-living deployments, such as structural monitoring for
a few days [XRC+04] and habitat monitoring for several months [TPS+05].
The progress in the last years enabled researchers to install long-term
deployments operating for multiple years. Examples of long-standing
installations are the monitoring of permafrost in alpine regions [BGH+09,
KWL+11] and heritage buildings in Northern Italy [CMP+09], both in
operation for multiple years. The improvements in wireless technologies
also made it possible to install large-scale WSNs in industrial production
areas [GH09, PSLN+12]. In many of these recent deployments the
quality of the gathered data is vital for the success of the whole
application. Nowadays, data collected by WSNs are used for adaptive
lighting in road tunnels [CCD+11], data center monitoring [LLL+09],
clinical patient surveillance [CLBR10], and, as in our case, for pollution
monitoring [RPV14]. In all these application scenarios wrong or
inaccurate sensing may lead to wrong decisions with crucial impact on
the failure safety of the system.

Challenges. Many WSN deployments have strict constraints regarding
the sensing hardware. The deployed sensors need to be low-cost in
multiple domains, such as size, energy consumption, and price. The strict
obedience to these design goals typically leads to a reduced measurement
accuracy and reliability of the produced sensors [EN03a, MSPD09]. One
common example are sensors for air quality monitoring. Fixed stations
use state-of-the-art instruments, which are very accurate but have
a large size and cost tens of thousands of dollars. Low-cost gas
sensors (∼100 dollars) are compact in size and suitable for mobile
measurements but show a 100x higher uncertainty than the standard
instruments.

Additionally, for many applications it is relevant to not only gather
the absolute sensor readings, but also to estimate the quality of individual
measurements. The measurement quality depends on many factors,
such as type of sensor used, sensor aging effects, calibration quality,
environmental conditions, and type of the monitored phenomenon.
Certain applications may only allow a small tolerance in the inaccuracy
of the collected data [RCM+12].

Contributions and road-map. We exploit the fact that every measurable
phenomenon underlies certain physical processes. This enables us to
calculate upper and lower bounds on the maximum feasible phenomenon
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change over a given temporal and spatial distance. Similarly, also sensors
show an assessable performance over time allowing to calculate bounds
on the maximum sensor drift for a given time period. We use these
bounds together with the collected sensor readings to augment each
measurement with individual accuracy bounds, indicating the reliability
of the measured values. Our approach does not impose any overhead
on the sensor nodes. Furthermore, the proposed method automatically
detects and filters out systematic (e.g., hardware failure) as well as
transient (e.g., outliers) sensor errors.

The main contributions described in this chapter are:

• We introduce a novel model-driven algorithm to calculate reliable
accuracy bounds for noisy sensor readings and detect erroneous
measurements.

• We demonstrate the applicability of our method by using the
proposed algorithm to analyze large sets of static and mobile
temperature and ozone measurements from our deployments
described in Chapter 2.

• By comparing the sensor readings to measurements of high-quality
instruments, we show that the calculated accuracy bounds are
highly accurate, and by analyzing 1.5 years of data from our
sensor testbed we reveal a dependency between the ozone sensor’s
reliability and seasonal weather conditions.

We give in Section 4.2 a system overview and introduce generic models
to characterize the phenomenon of interest and the sensing hardware. We
describe our method in Section 4.3, which uses these models to compute
for each sensor reading corresponding accuracy bounds. Section 4.4
presents our case study and details the specific models that are used
in Section 4.5 to evaluate two measurement campaigns. We monitor
temperature and urban air pollution by using unstable and noisy low-cost
sensors. We present results from (i) our static installation on top of a fixed
station and (ii) our mobile deployment on top of streetcars of the public
transport network. We show that the algorithm can calculate accurate
bounds for different sensor types under static and mobile settings. When
compared to high-quality instruments, in the static up to 96 % and in the
mobile scenario up to 94 % of the reference measurements are inside the
computed accuracy bounds. We survey related work in Section 4.6, and
conclude in Section 4.7.
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Figure 4.1: System overview. Calibrated sensor readings, reference data, and
sensor and phenomenon models are used to calculate for each sensor reading
individual accuracy bounds and to detect erroneous measurements.

4.2 System Models
We start by giving a high-level overview of our approach and introduce
models to describe the phenomenon of interest and sensor characteristic.

4.2.1 System Overview
We start by giving a high-level overview, as illustrated in Figure 4.1.
We consider application scenarios where sensor nodes monitor a specific
phenomenon and transmit their measurements to a base station for further
processing [BGH+09, CMP+09]. We make use of additional information
at the base station consisting of (i) reference data containing at least one
tuple of a reference measurement and a corresponding calibrated sensor
reading collected at a rendezvous (see Section 3.3 for the definition of a
rendezvous), (ii) measurements from sensor nodes in the network, and
(iii) two independent models that describe the phenomenon of interest
and the sensor characteristic. This information is combined to calculate
for each sensor reading an upper and a lower accuracy bound indicating
the quality of the measurement and to detect erroneous sensor readings.
We require as input calibrated sensor readings, based on any desired
calibration algorithm, e.g., [BMEP03, XBP+12] or the one described in
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Chapter 3. We consider sensor calibration as being independent from the
computation of accuracy bounds. It would be possible to combine the
two, this is, however, beyond the scope of our work.

Model assumptions. We assume for the phenomenon model that the
maximum phenomenon changes within a given time period and distance
are bounded. Also, we assume for the sensor model that sensor drift and
sensor noise are bounded. In reality, phenomenon variations and sensor
characteristics are based on physical and chemical processes and are only
with a certain (high) degree of probability within the assumed bounds.
Hence, also the derived statements only hold with a high probability. We
will show in our evaluation in Section 4.5 with real temperature and ozone
measurements how the chosen model parameters impact the significance
of the derived accuracy bounds.

4.2.2 Phenomenon Model
We exploit the fact that every phenomenon underlies certain physical
processes. Hence, it is possible to calculate bounds on the maximum
possible phenomenon change over a given temporal and spatial distance.
We introduce the phenomenon model to describe the behavior of the
monitored phenomenon of interest.

Model. Let a phenomenon of interest H exhibit a continuous measurable
signal h : T × L→ D at time t ∈ T ⊆ R+, at location l ∈ L ⊆ R ×R, and
with a domain of measurable values D ⊆ R. Consider a measurement
h(ti, li) performed by a perfect sensor at time ti ∈ T and location li ∈ L. We
introduce a positive-definite function fω that defines the bounds on the
possible signal values at time t j ∈ T and location l j ∈ L depending on the
temporal and spatial distances |ti − t j| and |li − l j|:

|h(ti, li) − h(t j, l j)| < fω(|ti − t j|, |li − l j|). (4.1)

For simplicity, we assume that fω is symmetric. The generalization to
an asymmetric fω is straightforward. The interval [Ωi, j]1 represents the
maximum possible signal change from time ti and location li to time t j and
location l j, that is, the lower and upper bounds on the maximum variation:

[Ωi, j] = [− fω(|ti − t j|, |li − l j|), fω(|ti − t j|, |li − l j|)]. (4.2)

Example. Figure 4.2 shows an example where we assume, for simplicity, a
static location (i.e., li = l j = ll). In this example, the phenomenon function

1To make the notation of intervals more compact, we will often represent intervals
with squared brackets [a] without writing the exact lower and upper bounds [al, au].
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Figure 4.2: Phenomenon model. The phenomenon function fω is applied to
signal value h(ti) at time ti to limit possible signal values at time t j to h(ti) + [Ωi, j].

fω is linear and provides bounds on the possible phenomenon change
around the known phenomenon level h(ti) at time ti. The possible signal
values of the phenomenon at time t j are bounded by h(ti) + [Ωi, j].

4.2.3 Sensor Model

We introduce the sensor model to describe the characteristic of the sensor
used to monitor the phenomenon of interest. We exploit the fact that most
sensors show a well-defined performance over time, e.g., solid-state gas
sensors suffer from an incremental loss of sensitivity over time [HZG11].

Model. Consider a sensor that takes measurements of a phenomenon H.
This leads to a sequence of discrete raw measurements {m(ti)} at time ti ∈ T
(we will not explicitly write the measurement location li ∈ L to keep the
formulas compact). We consider a measurement as point measurement,
that is, it has no duration.

If the sensor is perfect then m(ti) = h(ti), where h(ti) is the value of
the actual measured phenomenon. However, low-cost sensors typically
suffer from the effects of aging, are sensitive to ambient humidity and
temperature changes, and responsive to the influence of interfering
gases [KBP06, HZG11]. These have a significant influence on the sensor
readings and result in a deviation of m(ti) from h(ti). This deviation can
be minimized by adjusting the sensor calibration, e.g., as described in
Chapter 3. We denote with m̂(ti) the calibrated sensor reading.

Let us denote with d(ti) the sensor offset, that is, d(ti) = m̂(ti) − h(ti).
The offset d(ti) is zero if the sensor is perfectly calibrated at time ti.
We introduce a monotonically increasing,2 positive-definite function fγ,
which models the maximum accumulated sensor drift from time ti to time

2The drift of most sensors is gradually increasing over time [HZG11].
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t j ∈ T depending on the time difference |ti − t j|:

|d(ti) − d(t j)| < fγ(|ti − t j|). (4.3)

The interval [Γi, j] specifies bounds on the maximum possible accumulated
drift of the calibrated sensor reading from time ti to time t j:

[Γi, j] = [− fγ(|ti − t j|), fγ(|ti − t j|)]. (4.4)

Typically, sensor readings are noisy. We describe with en the sensor noise
and with [m̂(ti)] = [m̂(ti)−en, m̂(ti)+en] the calibrated noisy sensor reading.

4.3 Computation of the Signal Range
We use the introduced models to calculate accuracy bounds. For this, we
use the following interval arithmetics given the two intervals [a] and [b]:

[a] + [b] ≡ [al + bl, au + bu] (addition) (4.5)
[a] ∧ [b] ≡ [max(al, bl),min(au, bu)] (intersection) (4.6)

We define the size of an interval [a] as [a] = au
− al, if au

≥ al and otherwise
[a] is undefined.

4.3.1 General Approach
In the following, we introduce the concept of sensor accuracies and signal
ranges, both principal elements of the algorithm introduced later on.

Sensor accuracy. No sensor is perfect, hence sensor readings have a
certain uncertainty, e.g., due to sensor drift and noise. We use the sensor
model introduced above to calculate for each sensor reading m̂(t j) the
corresponding sensor accuracy [δ(t j)]. The sensor accuracy at time t j is
narrowed by the immediate preceding and succeeding sensor accuracies
[δ(t j−1)] and [δ(t j+1)], and the maximum possible sensor drifts Γ j−1, j and
Γ j+1, j between times t j±1 and time t j:

[δ(t j)] = [δ(t j)] ∧
∧

i= j±1

([δ(ti)] + [Γi, j]). (4.7)

Figure 4.3 illustrates the calculation of [δ(t j)] by using a linear sensor
drift model (dotted lines). Considering only the immediately preceding
and succeeding sensor readings is enough, since the sensor drift is
modeled by a monotone function that is only time-dependent. The
chronological order of the evaluation is irrelevant, since the interval
intersection operation, as defined above, is associative.
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Time

Sensor accuracy

Figure 4.3: Sensor accuracy. The sensor accuracies at times t j±1 and the
maximum sensor drifts (dotted lines) between t j±1 and t j bound the sensor
accuracy [δ(t j)] at time t j.

Without any additional knowledge, all sensor accuracies are un-
bounded, i.e., [δ(ti)] = [−∞,+∞]. Hence, we require at least one reference
tuple consisting of a high-quality (i.e., higher than the low-cost sensor’s
quality) reference measurement r(tl) and a sensor reading [m̂(tl)], which
were measured in each other’s immediate spatial and temporal vicinity
(e.g., as defined in Chapter 3). We assume that all reference measurements
have a constant accuracy [ar]. We use this additional information to adjust
the sensor reading [m̂(tl)] = [r(tl), r(tl)] and to set the initial accuracy of this
measurement to [δ(tl)](0) = [ar]. Then, we iteratively calculate bounds for
all other sensor accuracies:

[δ(t j)](n+1) = [δ(t j)](n)
∧

∧
i= j±1

([δ(ti)](n) + [Γi, j]). (4.8)

We continue with the definition of the signal range.

Signal range. We define the signal range [c(t j)] as the feasible phenomenon
range at time t j given the calibrated sensor reading [m̂(t j)] and sensor
accuracy [δ(t j)]:

[c(t j)] = [m̂(t j)] + [δ(t j)]. (4.9)

We use the phenomenon model to calculate bounds for the signal range.
We reduce its size by integrating all possible phenomenon drifts [Ωi, j]
between signal range [c(t j)] and any other signal range [c(ti)]:

[c(t j)](n+1) = [c(t j)](n)
∧

∧
∀i

([c(ti)](n) + [Ωi, j]). (4.10)

We take all available signal ranges [c(ti)] into account (from all sensors
available), since in general, the feasible change of the phenomenon is
not only time- but also location-dependent. In practice, we limit the
number of measurements to be evaluated by ignoring data collected
outside a given radius (e.g., 1 km), as with a very high probability these
measurements will not help to lower the signal ranges.
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Example. We outline a simple example using temperature measurements.
Consider a temperature sensor without noise (i.e., en = 0 ◦C) and with a
presumed sensor accuracy of [δ(t1)] = [−3, 3] ◦C at time t1. Assume we
know the sensor accuracy [δ(t0)] = [−1, 1] ◦C at time t0, which is more
accurate than at time t1, and the sensor drift [Γ0,1] = [−0.5, 0.5] ◦C between
times t0 and t1. We use this information to get tighter sensor accuracy
bounds for [δ(t1)] using (4.8):

[δ(t1)] = [−3, 3] ∧ ([−1, 1] + [−0.5, 0.5]) = [−1.5, 1.5] ◦C. (4.11)

Next, consider a calibrated sensor reading m̂(t1) = 10 ◦C at time t1. Despite
that the sensor is measuring 10 ◦C, due to the sensor’s uncertainty the
feasible temperature range is in [c(t1)] = 10 + [−1.5, 1.5] = [8.5, 11.5] ◦C.

We use the phenomenon model to get a tighter signal range. Consider
measurement [c(t5)] = [12, 13] ◦C and assume a maximum phenomenon
change of [Ω5,1] = [−2, 2] ◦C between times t5 and t1. We use (4.10) to
re-evaluate [c(t1)]:

[c(t1)] = [8.5, 11.5] ∧ ([12, 13] + [−2, 2]) = [10, 11.5] ◦C. (4.12)

We curtailed the signal range from [7, 13] ◦C to [10, 11.5] ◦C by using
two additional sensor readings and the bounds given by the sensor and
phenomenon models.

4.3.2 Algorithm
We sketch in Alg. 1 the proposed algorithm. For the evaluation of

the signal ranges, we require a finite set of calibrated sensor readings
S = {[m̂(t1)], . . . , [m̂(tp)]} and a finite, non-empty set of reference pairs
R = {(r(t1), [̂s(t1)]), . . . , (r(tm), [̂s(tm)])}.

The algorithm starts with an initialization phase (lines 1–10), where all
sensor readings for which we have reference measurements are adjusted
and the corresponding sensor accuracies are set to [ar]. The initial sensor
accuracies of all other measurements are unbounded. Then, we first
solve (4.8) for all uncertainties (line 14) until the sensing accuracies stay
unchanged. The required number of iterations depends on the maximum
number of measurements between any sensor reading [m̂(t j)] ∈ S and its
time-wise closest reference measurement. Next, (4.10) is solved for all
signal ranges (line 25) until the ranges stay unchanged. The maximum
number of iteration depends on the phenomenon model used, number of
invalid measurements, and their order of detection.

Detection of erroneous measurements. The intersect operation on line 25
can lead to an empty signal range, i.e., c(t j)l > c(t j)u. This occurs if the
signal range bounds of a sensor reading are not overlapping with the
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Algorithm 1 Calculation of the signal range.
Input: Calibrated sensor readings S = {[m̂(t1)], . . . , [m̂(tp)]} and reference

pairs R = {(r(t1), [m̂(t1)]), . . . , (r(tm), [m̂(tm)])}with accuracy [ar].
Output: Set of signal ranges C = {[c(t1)], . . . , [c(tp)]}.

1: D := ∅;
2: C := ∅;

# Initially all sensor accuracies are unbounded.
3: for all [m̂(t j)] ∈ S do
4: [δ(t j)] := [−∞,+∞];
5: D := D ∪ [δ(t j)];
6: end for

# Reference measurements provide safe bounds.
7: for all (r(t j), [m̂(t j)]) ∈ R do
8: [̂s(t j)] := [r(t j), r(t j)];
9: [δ(t j)] := [ar];

10: end for
# Evaluate for each sensor reading the sensor accuracy.

11: repeat
12: D′ := D;
13: for all [δ(t j)] ∈ D do
14: [δ(t j)] := [δ(t j)] ∧

∧
i= j±1([δ(ti)] + [Γi, j]);

15: end for
16: until D == D′

17: for all [δ(t j)] ∈ D do
18: [c(t j)] := [m̂(t j)] + [δ(t j)];
19: Mark [c(t j)] as valid;
20: C := C ∪ [c(t j)];
21: end for

# Evaluate for each sensor reading the signal range.
22: repeat
23: C′ := C;
24: for all valid [c(t j)] ∈ C do
25: [c(t j)] := [c(t j)] ∧

∧
∀i([c(ti)] + [Ωi, j]);

# If the signal range is empty, build a conflict graph
to find the erroneous measurements.

26: if c(t j)l > c(t j)u then
27: Build conflict graph G = (V,E);
28: Find maximum independent set I of G;
29: Mark all [c(t j)] ∈ V \ I as invalid;
30: end if
31: end for
32: until C == C′
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(a) Signal ranges of four measurements. (b) Conflict graph.

Figure 4.4: Detection of erroneous measurements. Trying to intersect (dotted
lines) the four signal ranges [c(t0)] to [c(t3)] leads to several empty intervals (i.e.,
no intersection) in (a) resulting in the conflict graph in (b).

predicted bounds defined by the phenomenon and sensor models. Empty
intervals are caused by sensor readings that do not comply with the given
models. This can be due to several factors:

• Systematic or transient sensor errors.

• Inaccurate phenomenon or sensor models. Furthermore, the
defined bounds are satisfied with a certain high probability and,
hence, also the measurements are invalid within this probability.

• Poor calibration of the sensor measurements.

Assume that an empty interval is received when calculating the
intersection between [c(t j)] and [c(ti)]. Without additional information,
we do not know whether the erroneous measurement is m̂(t j) or m̂(ti).
Hence, we assume that only a small portion of the measurements are
flawed. Therefore, we build a conflict graph G = (V,E) where two
measurements are added to the set of vertices V with an edge in E if
the intersection of their signal ranges results in an empty interval. We
compute the maximum independent set I of G and, due to our assumption,
presume that set I contains the valid measurements.3 The erroneous
measurements [c(t j)] ∈ V \ I are marked as invalid and are not considered
in future iterations.

Example. We show in Figure 4.4 an illustrative example with four sensor
readings. The measurements are indicated with their signal ranges. We
assume a linear phenomenon function fω as depicted with dotted lines.
On line 25 of the algorithm, we will receive empty intervals because signal
range [c(t1)] neither has an intersection with [c(t0)] nor with [c(t3)], e.g.,

3Finding a maximum independent set is NP-hard. We use Greedy, which achieves an
approximation ratio of (∆ + 2)/3, where ∆ is the maximum degree of G [HR97].
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[c(t0)] ∧ ([c(t1)] + Ω1,0) results in an empty interval. Hence, the algorithm
builds a conflict graph, as shown in Figure 4.4(b). Measurements [c(t0)]
and [c(t3)] build the maximum independent set, therefore measurement
[c(t1)] is marked as invalid.

4.3.3 Convergence
In the following, we show that the algorithm proposed is able to compute
for every sensor reading a fixed and bounded sensor accuracy [δ(t j)] ∈ D.
Similarly, the same can be shown for all signal ranges [c(t j)] ∈ C.

Theorem 2 (Convergence of the sensor accuracy). Let S and R be two non-
empty sets as given as input in Alg. 1. For every sensor accuracy [δ(t j)] ∈ D the

sequence of sensor accuracy lengths {[δ(t j)]
(n)
} converges to infn {[δ(t j)]

(n)
}.

Proof. The sequence {[δ(t j)]
(n)
} is monotonically decreasing, i.e., for all

indices n is [δ(t j)]
(n)
≥ [δ(t j)]

(n+1)
, since the only operation on [δ(t j)] is the

intersection with another sensor accuracy [δ(ti)] ∈ D. For the intersection
of any given intervals [a], [b], and [c], such that [c] = [a] ∧ [b], the following
holds: [c] ≤ [a] and [c] ≤ [b].

Next, we show that sequence {[δ(t j)]
(n)
} is lower and upper bounded by

0 ≤ {[δ(t j)]
(n)
} ≤ [ar] + [Γi, j] with r(ti) ∈ R. (4.13)

The lower bound 0 is given by the minimum possible size of an
interval. The upper bound is narrowed by the (time-wise) closest
reference measurement r(ti) that belongs to a reference pair in R. The
initially unbounded interval [δ(t j)](0) is bounded after the |i− j|th iteration
to [δ(t j)](|i− j|) = r(ti) + [ar] + [Γi, j] where [Γi, j] represents the maximum
possible sensor drift between times t j and ti.

After the Monotone Convergence Theorem, a monotonically decreasing

and bounded sequence {[δ(t j)]
(n)
} always converges to infn {[δ(t j)]

(n)
} [Fit06].

�

4.4 Case Study
We present a case study to show the applicability of our signal range
algorithm. For this we feed the algorithm with static and mobile
temperature and ozone measurements from our installations described
in Chapter 2. Temperature is an easily measurable signal whereas the
sensing of the ozone concentration is more complex. The gas sensor used
is cross-sensitive to other gases in the atmosphere and its sensor readings
vary with changing environmental conditions (e.g., temperature).
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(b) Ozone variation.

Figure 4.5: Phenomenon gradient. Maximum phenomenon change for time
intervals between 30 min and 3 h based on historical high-quality data.

4.4.1 Model Instantiations
We introduce specific instances for the generic models presented in
Section 4.2, which are used for the evaluation of our measurements.

Phenomenon model. We introduce the variables ωt and ωs to model
the maximum feasible phenomenon change from time ti ∈ T and location
li ∈ L to any other time t j ∈ T and location l j ∈ L. In our data sets, the time
intervals between subsequent measurements are in the order of minutes.
The evaluation of historical high-quality data of the last 18 months shows,
that for short time intervals |ti − t j|, there is a close to linear dependence
between the maximum phenomenon change and the time difference |ti−t j|,
as depicted for temperature and ozone in Figure 4.5 [Nat14b]. Further,
we assume that the maximum phenomenon change over a given distance
is also linearly dependent on the location offset |li − l j|:

fω(|ti − t j|, |li − l j|) = |ti − t j| · ωt + |li − l j| · ωs. (4.14)

An example of such a function fω is depicted in Figure 4.2 for a static
location. Such linear functions overestimate the maximum possible
phenomenon change, especially for large time and location differences, as
shown in Figure 4.5. A more precise phenomenon model would further
improve the accuracy of the computed signal ranges.

Sensor model. Low-cost sensors are subject to drift over time, which
affects their measurement accuracy. We introduce γt to model the
maximum sensor drift between two measurement times. The maximum
accumulated sensor drift from time ti to t j is linearly bounded by:

fγ(|ti − t j|) = |ti − t j| · γt. (4.15)

Our signal range algorithm is independent of the phenomenon and
sensor models. For the evaluation we use the simple models presented
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Figure 4.6: Offset adjustment. The reference measurements r(ti) and r(tl)
linearly adjust the offset of all intermediate sensor readings m̂(·) resulting in
offset adjusted sensor readings m̃(·).

above. However, also arbitrary complex models, such as [SW02], can be
used to lower the interval bounds of [Ωi, j] and [Γi, j], and hence, get tighter
signal ranges without any changes to the algorithm described in Alg. 1.

Offset adjustment. The proposed signal range algorithm is independent
of a specific sensor calibration approach. We increase the accuracy of the
derived signal ranges by using the available reference pairs (r(ti), m̂(ti))
to adjust the offset of the calibrated measurements. We denote the
adjusted measurements with m̃(ti). We use the reference measurements
to adjust the offset of the sensor readings, as illustrated in Figure 4.6.
We consider two consecutive measurement pairs at times ti and tl,
and set the calibrated sensor readings equal to the reference signals,
i.e., m̃(ti) = r(ti) and m̃(tl) = r(tl). The offset adjustment of sensor reading
m̂(t j), where ti < t j < tl, is influenced by the immediate preceding and
succeeding reference measurements r(ti) and r(tl). The exact factor is
linearly dependent on the absolute time differences |t j − ti| and |t j − tl|:

m̃(t j) = m̂(t j) +
|t j − ti|

|tl − ti|
·

(
r(tl) − m̂(tl)

)
+

|t j − tl|

|tl − ti|
·

(
r(ti) − m̂(ti)

)
, ∀ti < t j < tl (4.16)

For example, if measurement m̂(t j) is performed exactly between ti and
tl, then both reference measurements r(ti) and r(tl) have 50 % influence on
the offset adjustment of measurement m̃(t j).

4.5 Evaluation
First, we show the feasibility of the proposed signal range algorithm
under a controlled static setting. We thoroughly analyze the accuracy of
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the computed signal ranges and the ability to detect sensor failures. Then,
we use the found parameter settings to calculate the signal ranges in a
mobile monitoring scenario.

Performance metrics. We evaluate the performance of our algorithm by
looking at two opposing metrics: (i) the average signal range size and
(ii) the ratio of invalid measurements. Assume set M contains all valid
signal ranges and set N all invalid ones. We define the average signal
range size as

1
|M|

∑
∀[c(t j)]∈M

[c(t j)]. (4.17)

The average signal range size is highly dependent on the model
parameters ωt, ωs, γt, and en. Setting these parameters tight results in
smaller signal ranges. However, this also potentially results in a larger
number of invalid sensor readings that do not comply with the given
models. We define the ratio of invalid measurements as

|N|
|M| + |N|

. (4.18)

Guidance on parameter setting. The proper setting of the model
parameters is crucial to derive exact accuracy bounds and accurately
detect outliers. The sensor drift over time γt and the expected noise in
the sensor readings en are usually specified in the data sheets of sensors,
e.g., [Sen14]. If available, comparative measurements against a higher
quality sensor can be used to verify and refine the given specifications.
Public historical high-quality data (e.g., from a national air pollution
monitoring network [Nat14b]) can be used to compute the parameters
ωt and ωs that describe the maximum feasible phenomenon change over
a given temporal and spatial distance. In the following, we show how
the parameter settings of the sensor and phenomenon models impact the
performance of the introduced signal range algorithm. Additionally, we
present for each data set detailed results for one specific parametrization,
based on sensor characteristics given in the data sheets and phenomenon
variations found in historical high-quality data.

4.5.1 Static Setting

Measurement setup. We use measurements from our static sensor
testbed introduced in Chapter 2. We assume that the fixed station has
near perfect sensors, i.e., [ar] = [0, 0]. It measures the temperature and
ozone concentrations once per minute and persistently stores 10-minute
averages. We use one measurement per hour as input for the signal range
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Figure 4.7: Temperature. Average signal range sizes (a) and ratios of invalid
measurements (b) for different model settings.

algorithm and the remaining five measurements per hour to evaluate the
accuracy of the calculated signal ranges. Our sensor node also monitors
the ambient temperature and ozone concentration once per minute. We
analyze data collected over a period of 1.5 years comprising 1.5 million
sensor readings to reveal seasonal characteristics of the deployed sensors.
The detailed results are based on a one-month extract thereof.

Our evaluation metrics depend on the given model parameter settings.
We evaluate both metrics with various parameterizations. We analyze
different phenomenon models by varying ωt, the maximum feasible
phenomenon change over time. Parameter ωs has no influence since
we are performing measurements at a static location. For the sensor
model we vary the maximum sensor drift γt. We fix the sensor noise to
en = 1.5 ◦C [Sen14] and en = 6 ppb for the models of the temperature and
ozone sensors, respectively.4

Evaluation: Temperature measurements. We illustrate in Figure 4.7 the
average sizes of the signal ranges and the ratios of invalid measurements
for ωt and γt between 1 ◦C/h and 10 ◦C/h. Figure 4.7(a) demonstrates
that the average signal range sizes distinctly decrease for small parameter
values. However, these tight parameter settings are payed by an increased
number of invalid sensor readings that do not confirm the strict model
settings, as shown in Figure 4.7(b). For relaxed model parameters,
the average signal range sizes are larger but the percentage of invalid
sensor readings drop towards zero. In the following, we show detailed
results for one specific parameter setting. We fix the sensor drift to
γt = 0.04 ◦C/yr as specified in the sensor’s data sheet [Sen14] and the

4The data sheet of the ozone sensor suggest that en = 20 ppb [SGX14], however our
evaluations show that the noise is around ±6 ppb.



4.5. Evaluation 83

5 10 15 20

10

20

30

40

50

Sensor drift [ppb/h]

P
h
e
n
o
m

e
n
o
n
 c

h
a
n
g
e
 [
p
p
b
/h

]

 

 

5

10

15

(a) Signal range sizes [ppb].

0 10 20

10

20

30

40

50

Sensor drift [ppb/h]

P
h
e
n
o
m

e
n
o
n
 c

h
a
n
g
e
 [
p
p
b
/h

]

 

 

0

5

10

15

20

(b) Invalid measurements [%].

Figure 4.8: Ozone. Average signal range sizes (a) and ratios of invalid
measurements (b) for different model settings.
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Figure 4.9: Static setting. Signal ranges of temperature and ozone measurements
over a period of three days. Invalid sensor readings are marked with a square.
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Figure 4.10: Signal range accuracy. The signal ranges of temperature and ozone
measurements are accurate, as they closely surround the reference measurements
from a static high-quality station.

maximum temperature variation toωt = 10 ◦C/h as observed on historical
high-quality data (see Figure 4.5(a)). Figure 4.9(a) shows the calculated
signal ranges for an excerpt of three days. We get a signal range size of
2.4 ± 0.9 ◦C and 0.2 % of the sensor readings are invalid.

Evaluation: Ozone measurements. We perform the same evaluation on
the ozone data set. We depict in Figure 4.8 the average signal range sizes
and the ratios of invalid measurements for different parameter settings of
ωt and γt. The ratios of invalid measurements are slightly higher than for
the temperature measurements. This is not surprising as sensing ozone is
more complex and error-prone (e.g., the sensor is sensitive to other gases
in the atmosphere).

We set the sensor drift to γt = 1 ppb/day5 and the maximum
phenomenon variation over time to ωt = 40 ppb/h, as observed on
historical high-quality data (see Figure 4.5(b)). We receive with this
setting an average signal range size of 9.5 ± 3.7 ppb and 0.3 % of invalid

5Based on the observed resistance decrease of tin dioxide sensors in [HZG11].
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Figure 4.11: Sensor failure detection. The artificially added noise during 7–
14 May significantly increases the number of invalid measurements.

measurements, as illustrated in Figure 4.9(b). We see that clear outliers
are correctly marked as invalid, e.g., midday on the 25th of April.

Accuracy. We use all available reference measurements (10-minute
averages) to evaluate the accuracy of the calculated signal ranges over
the course of one month. Figure 4.10 depicts a half-day excerpt of this
data. We clearly see that the signal ranges closely surround the reference
measurements. For temperature, 96 % (4542 out of 4739) of the reference
measurements are inside the signal ranges. For ozone measurements,
92 % (4238 out of 4608) are inside the computed signal ranges. The
percentage is slightly lower as the ozone phenomenon is more complex
and hence, our basic models less accurate. However, values outside the
signal range miss the bounds only by a short distance, that is on average
0.7 ◦C for temperature and 3.7 ppb for ozone (e.g., the measurement
shortly before 10PM in Figure 4.10(b)).

Detecting sensor failures. We demonstrate on partially synthetic data
that our method is able to accurately detect and filter out erroneous
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Figure 4.12: Reference data. Relative average signal range sizes and relative
number of invalid measurements depending on the number of available
reference measurements. Baseline is one reference measurement every 60 min.

measurements and in this way support the detection of sensor failures.
We add an offset, which is uniformly distributed inU(−20, 20) ppb, to all
ozone measurements dating from the 7th to the 14th of May. Our method
correctly detects the sensor readings that do not comply with the models
and marks them invalid, as shown in Figure 4.11(a). Figure 4.11(b) depicts
the accumulated number of invalid measurements over time. The steep
slope between 7th and 14th of May clearly indicates the period of time
with erroneous sensor readings and, hence, can be used as indicator for
defective sensors.

Influence of reference measurements. In the following, we analyze
the influence of the number of available reference measurements on
the computed signal ranges. Figure 4.12 shows the relative average
signal range sizes and number of invalid measurements for reference
measurement periods between 10 minutes and 2.5 hours. We take as
baseline the setting used until know, that is, one reference measurement
per hour. More reference measurements allow to calculate more
accurate signal ranges, as shown in Figure 4.12(a). The influence on
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Figure 4.13: Long-term characteristic. The temperature sensor does not show
any dependency on seasonal weather conditions while the ozone sensor delivers
a higher number of invalid sensor readings in the warm seasons from March to
September with higher exposure levels.

the ozone signal ranges is higher than on those of temperature due
to the considerably higher drift of the ozone sensor. More reference
measurements also help to find up to two times more erroneous sensor
readings, as depicted in Figure 4.12(b). The phenomenon model helps to
find outliers while due to the reference measurements we are able to also
detect many systematic errors (e.g., wrong offset).

Long-term sensor characteristic. We end our analysis by looking at the
long-term characteristic of the temperature and ozone sensors. To this
end, we evaluate for a period of 1.5 years (from July 2011 to December
2012) for each week the ratio of invalid temperature and ozone sensor
readings, as depicted in Figure 4.13(a). The reliability of the temperate
sensor does not show any dependency on seasonal weather conditions.
In turn, the ozone sensor is more sensitive to environmental changes. It
delivers distinctly higher numbers of erroneous measurements during
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the warm seasons from March to September. This is probably due to the
higher ozone levels in summer. The average signal range sizes of the
temperature and ozone sensor readings do not reveal any dependency, as
shown in Figure 4.13(b).

4.5.2 Mobile Setting

Setup. We analyze measurements from our mobile air pollution
monitoring network introduced in Chapter 2. We evaluate four weeks of
measurements from five sensor nodes collected in May and June 2012. We
use the same parameter settings as in the static analysis and additionally
set the phenomenon gradient over space ωs to 1 ◦C/km and 9 ppb/km
for temperature and ozone, respectively. Both settings are based on the
evaluation of historical data from two static high-quality stations located
within 5 km from each other. From time to time the mobile vehicles
pass by these two reference stations. We use their measurements as
input for the signal range algorithm. We create a reference pair each
time the sensor node is in the vicinity of one of the reference stations.
The temporal and spatial vicinity requirements heavily depend on the
measured phenomenon. The spatial dispersion of temperature and ozone
in a street canyon is in general constant and the monitored phenomena
are slowly changing over time (in the order of minutes) [VFPGF03].
Hence, we expect that sensor reading and reference measurement can be
considered to be exposed to similar concentrations if their measurement
time and location do not differ more than 10 min and 400 m.

Evaluation. We illustrate the evaluated signal ranges for temperature
and ozone measurements in Figure 4.14. The average signal range sizes
are with 2.7±0.9 ◦C for temperature and 10.1±4.2 ppb for ozone, only
slightly higher than in the static scenario. In both data sets, 0.3 % of the
measurements do not comply with the given models.

Accuracy. We perform a 10-fold cross-validation test to evaluate the
accuracy of the computed signal ranges. We randomly remove 10 %
of the reference measurements and use them to verify the accuracy of
the calculated signal ranges. We repeat this procedure ten times. For
temperature, on average 94 % of the reference measurements are inside
the computed signal ranges. For ozone, on average 84 % of the reference
measurements are inside the evaluated ranges. Both percentages are
lower than in the static deployment. Possible sources for the lower
precision are the sensor response times, which have a much higher
influence in the mobile setting, and the vicinity requirements, which may
be too wide for certain time periods, leading to inaccurate reference pairs.
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(b) Ozone signal ranges.

Figure 4.14: Mobile setting. Signal ranges of mobile temperature and ozone
measurements of one mobile sensor node over a period of three days.

However, the signal bounds are again missed only by a short distance,
that is, on average 0.8 ◦C for temperature and 5.2 ppb for ozone.

4.6 Related Work

Nowadays, wireless sensor networks are used in a wide range of applica-
tion domains [KWL+11, CMP+09, CCD+11, LLL+09, CLBR10]. There has
been much research to increase the quality of unstable low-cost sensor
readings by employing intelligent calibration algorithms, such as the in-
place sensor calibration algorithm from Bychkovskiy et al. [BMEP03] and
collaborative sensor calibration from Xiang et al. [XBP+12]. However,
to the best of our knowledge, we are the first to evaluate the exact
quality of individual noisy sensor readings. We propose a method to
compute the quality of individual measurement, which can be used
for example to evaluate the goodness of a calibration scheme. Cheng
and Prabhakar [CP03] and Reznik and Kreinovich [RK04] propose
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probabilistic methods to automatically detect sensor readings that reveal
uncertainties above a given threshold and improve data accuracy and
reliability. We combine phenomenon and sensor models with knowledge
on the monitored signal to calculate signal bounds. Also Elnahrawy and
Nath [EN03a] combine the noise characteristic of the sensor and prior
knowledge of true sensor readings to compute probabilistic confidence
bounds. However, they do not incorporate sensor drifts, which can have
a significant impact when using low-cost gas sensors.

There is a vast body of literature on outlier detection techniques in
general [HA04] and for wireless sensor networks in particular [ZMH10].
Most of the proposed outlier detection algorithms can efficiently handle
transient sensor errors, caused by faulty sensor readings that appear
abnormal [SGG10]. Different techniques exist to find transient errors, such
as done by Elnahrawy and Nath [EN03b] by learning spatio-temporal
data correlations, Sheng et al. [SLMJ07] by using histogram-based data
abstractions, and Mukhopadhyay et al. [MSPD09] by predicting the next
sensor reading based on past measurements. Our approach differs from
previous work in the way that we are also able to detect systematic sensor
errors (i.e., faulty calibration) using the available reference measurements.

4.7 Conclusions

Knowing the accuracy of collected measurements is of great use for many
wireless sensor network applications, where due to limited resources
(e.g., energy and bandwidth) low-cost sensors are used that deliver noisy
sensor readings and suffer from sensor drift over time. In this chapter, we
propose a method to calculate safe accuracy bounds for individual sensor
readings. Further, we automatically detect and filter out systematic and
transient sensor errors. Our approach is model-driven as it is supported
by models that describe the phenomenon of interest and the sensor
characteristic in order to compute accuracy bounds with the help of at least
one high-quality reference measurement. The models are independent
of the signal range algorithm and can be simple or elaborate, as desired.
Moreover, the proposed method does not incur any additional overhead
on the sensor nodes.

Our evaluation of static and mobile temperature and ozone measure-
ments demonstrates the applicability of our method. The comparison
with high-quality reference measurements reveals the good precision of
the computed signal ranges. Up to 96 % of the temperature and up to
92 % of the ozone reference measurements are inside the evaluated signal
ranges. Further, we revealed how the amount of available reference data
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influences the size of the signal ranges and the detection of erroneous
sensor readings. By analyzing 1.5 years of temperature and ozone
measurements from our sensor testbed we showed that the ozone sensor’s
reliability depends on seasonal changes of environmental conditions.
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5
Developing Fine-Grained

Air Pollution Maps

Up-to-date information on urban air pollution is of great importance, e.g.,
for environmental protection agencies to assess air quality and provide
advice to the general public in a timely manner. In this chapter, we
focus on the processing of our ultrafine particle (UFP) measurements
as they represent a very interesting data set (however, the methods
described are applicable to all pollution data sets collected with our
deployments). UFPs are widely spread in urban environments and may
have a severe impact on human health. The lack of knowledge about
the spatio-temporal distribution of UFPs hampers profound evaluation
of these effects. We analyze one of the largest spatially resolved UFP data
set publicly available today containing over 50 million measurements.
We collected the measurements throughout more than two years using
our streetcar deployment. Based on these data, we develop land-use
regression models to create pollution maps with a high spatial resolution.
We compare the accuracy of the derived models across various time scales
and observe a rapid drop in accuracy for maps with sub-weekly temporal
resolution. To address this problem, we propose a novel modeling
approach that incorporates past measurements annotated with metadata
into the modeling process. In this way, we achieve a 26 % reduction in
the root-mean-square error—a standard metric to evaluate the accuracy
of air quality models—of pollution maps with semi-daily temporal
resolution. We believe that our findings can help epidemiologists to
better understand the adverse health effects related to air pollutants and
serve as a stepping stone towards detailed real-time pollution assessment.
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5.1 Introduction

Most countries have mass emission limits for particulate matter PM10

and PM2.5 (i.e., particles with a diameter of less than 10 μm and 2.5 μm,
respectively), but have no restrictions on ultrafine particles (UFPs). UFPs
are particles with a diameter of less than 100 nm. In ambient air,
UFPs are mainly man-made as byproducts of specific high temperature
processes, such as combustion reactions in car engines. The adverse
health effects of UFPs are most probably underestimated when they are
traditionally monitored by mass as part of PM10 and PM2.5 [PTT+01]. This
is because UFPs make a dominant contribution to the total number of
urban particle concentrations, but their contribution to the total particle
mass is small [HY00]. Therefore, UFPs were not considered particularly
hazardous in the past. There are strong indications, however, that adverse
health effects are more related to particle number concentration rather
than to particle mass [PTT+01]. To better understand the adverse health
effects of UFPs, it is essential to have spatially resolved UFP concentration
measurements at hand [HBK+09].

Nowadays, air pollution is monitored by networks of static
measurement stations operated by official authorities. These stations
are highly reliable and able to accurately measure a wide range of
air pollutants. However, their high acquisition and maintenance costs
severely limit the number of installations. As a result, very little is known
about the spatial distribution of air pollutants in urban environments
and there is a lack of accurate intraurban air pollution maps. However,
for air pollutants with high spatial variability, such as UFPs, the public
availability of reliable pollution maps is essential. They raise the citizens’
awareness about air pollution, empower environmental scientists to craft
and evaluate new policies, and enable in combination with other spatial
data sets new kind of applications (see Chapter 6).

Contributions and road-map. To tackle the challenges above, we use
measurements from our mobile streetcar monitoring network described
in Chapter 2. Node mobility trades off temporal resolution against spatial
resolution, enabling a high spatial resolution across large areas without
the need for a huge number of fixed sensors. However, due to the reduced
temporal resolution of any covered location, it is a formidable challenge to
derive pollution maps with a high temporal resolution at daily or hourly
time scales. In this chapter, we demonstrate that a mobile measurement
system can effectively be used to derive accurate pollution maps with a
high spatial and temporal resolution.

Our mobile measurement system consists of ten sensor nodes
installed on top of streetcars of the public transport company in Zurich,
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Figure 5.1: Novel ultrafine particle concentration maps for Zurich (Switzerland).
The particle concentrations are higher during the week (Monday–Saturday) than
on weekends (Sunday) due to higher traffic volumes.

Switzerland. The sensor nodes are equipped with a novel measurement
device (MiniDiSCs [FHSB11]) to monitor UFP concentrations. Through-
out more than two years, we collected over 50 million UFP measurements.
Based on these data, we develop land-use regression (LUR) models to
produce accurate pollution maps with high spatio-temporal resolution,
such as those depicted in Figure 5.1, where we can clearly spot that,
on average, air pollution is higher during the week (Monday–Saturday)
than on weekends (Sunday). LUR models use a set of explanatory
variables (land-use and traffic data) to model pollution concentrations
at locations not covered by the mobile sensor nodes. In a first step,
we evaluate the dependencies between the explanatory variables and
the measurements. Then, we exploit these relationships to predict the
pollution levels for all locations without measurements but with available
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land-use and traffic information. Using this method and our mobile
measurement system, we derive accurate and fine-grained pollution
maps, which are valuable to environmental scientists, epidemiologists,
and the general public. We will use the developed pollution maps in
Chapter 6 to analyze how much urban dwellers from Zurich (Switzerland)
can reduce their exposure to UFPs by not taking the shortest path between
origin and destination but a healthier and slightly longer alternative route.

In summary, this chapter makes the following contributions:

• We introduce in Section 5.2 the large set of UFP measurements
collected with our mobile measurement system deployed on top
of streetcars in the city of Zurich (Switzerland). From April 2012 to
April 2014, we collected more than 50 million UFP measurements.

• Assessing the quality of the measurements is difficult due to very
sparse ground truth data. We post-process the measurements
(calibration and filtering) and propose in Section 5.3 a three-fold
validation approach to evaluate the quality of the processed data.
Our analysis indicates a high data quality.

• We use the validated measurements in Section 5.4 to derive LUR
models for UFP pollution maps with a high spatial resolution of
100 m× 100 m. In Section 5.5 we apply standard metrics to analyze
the quality of the models from yearly up to semi-daily temporal
resolutions. We find a good quality of pollution maps with yearly
to weekly time scales, while models with sub-weekly temporal
resolutions perform less well.

• To tackle this problem, we propose in Section 5.6 a novel modeling
approach that incorporates past measurements (annotated with
metadata, such as environmental and meteorological conditions)
into the modeling process. In this way, we increase the quality of
pollution maps with a high temporal resolution. For example, we
decrease the root-mean-square error—a standard metric to evaluate
the accuracy of air quality models—of semi-daily pollution maps
by 26 %.

Using our measurement system and modeling approach, we create UFP
pollution maps with an accuracy that is comparable to state-of-the-
art air pollution maps, while achieving unprecedented spatio-temporal
resolution [HBdH+08]. We survey related work in Section 5.7, and
conclude in Section 5.8.
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5.2 Spatially Highly Resolved Ultrafine
Particle (UFP) Measurements

We analyze a large set of ultrafine particle (UFP) measurements collected
with our mobile sensor nodes installed on top of public transport
vehicles in Zurich, Switzerland (see description in Section 2.3.1). The
sensor nodes deployed are equipped with Miniature Diffusion Size
Classifiers (MiniDiSCs) [FHSB11] (see Figure 2.4(a)), a novel tool for
UFP monitoring. Traditionally, airborne particles are monitored by mass,
hence UFPs, which appear in high numbers but have low mass, are not
well represented, despite their specific adverse health effects [PTT+01].
Whereas the MiniDiSC, a compact hand-held device (4 x 9 x 18 cm), is
able to monitor particle number concentrations. It can detect concentrations
between 103–106 particles/cm3, so it embraces the average daily range in
urban environments of 104–105 particles/cm3 [ZHKS02, RDSF+14].

The functional principle of the MiniDiSC is based on unipolar charging
of aerosol particles, followed by detection in two electrometer stages.
In short, the particles are first charged in a standard positive unipolar
diffusion charger, which imparts an average charge on the particles that
is approximately proportional to the particle diameter. The charged
particles then flow through a diffusion stage and generate a current,
which is dependent on the average particle size and is used to calculate
the number of particles per cm3.

5.2.1 Data Set

We deployed the first five sensor nodes with integrated MiniDiSCs in
April and May 2012 and additional five devices in January 2013. The
MiniDiSCs sample UFP every 50 ms. The measurements are aggregated
to one sample per 5 s, to reduce the amount of transmitted data. Each
sensor node transmits around 10,000 measurements per day to the back-
end infrastructure, as depicted in Figure 5.2(a) (raw data). In total, we
collected over 50 million aggregated measurements over a time period
of two years, as shown in Figure 5.2(b). Further, we depict in Figure 5.2
the six main service phases since the start of the deployment: (1) Initial
installation of the first five sensor nodes, (2) cleaning of the MiniDiSCs on
top of the streetcars (no deinstallation required) to increase data quality,
(3) deinstallation of the MiniDiSCs for cleaning and re-calibration, and
installation of five additional devices, (4) deinstallation of all devices for
cleaning and recalibration, (5) cleaning of the MiniDiSCs on top of the
streetcars, and (6) sensor upgrade with new carbon monoxide (CO) and
nitrogen dioxide (NO2) sensors.



98 Chapter 5. Developing Fine-Grained Air Pollution Maps

Apr '12 Jul '12 Oct '12 Jan '13 Apr '13 Jul '13 Oct '13 Jan '14 Apr '14

M
e

a
s
u

re
m

e
n

ts
 p

e
r 

d
a

y

×105

0

0.5

1

1.5

2

2.5

(1) (2) (3) (4) (5) (6)

Raw data Filtered data

(a) Number of measurements per day across all installed devices.

Apr '12 Jul '12 Oct '12 Jan '13 Apr '13 Jul '13 Oct '13 Jan '14 Apr '14

A
c
c
u
m

u
la

te
d
 n

u
m

b
e
r

o
f 
m

e
a
s
u
re

m
e
n
ts

×107

0

1

2

3

4

5

6

7

(1) (2) (3) (4) (5) (6)

Raw data Filtered data

(b) Accumulated number of measurements across all installed devices.

Figure 5.2: Number of UFP measurements per day and accumulated number of
measurements over the course of two years with six service phases (1)–(6).

5.2.2 Offset Calibration and Filtering of the Data

We ensure a high data quality by calibrating and filtering the timestamped
and geo-tagged measurements. For one minute in every hour the devices
go into a self-calibration phase to measure their null-offsets, which we
use offline to adjust the offset of all measured particle concentrations.
Then, we use a two-stage filtering process to remove faulty and unreliable
measurements. Note that periodic calibration, as described in Chapter 3,
is not required for the UFP measurement device (and would also not
be possible as the single fixed station monitoring UFPs in Zurich is not
located close enough to the streetcar tracks, see Figure 5.3).

First, a GPS-based filter eliminates measurements with horizontal
dilution of precision (HDOP) values above 3. The HDOP value specifies
the GPS location’s precision based on the geometric positioning of the GPS
satellites [Lan99]. Values below 3 denote a good to excellent positioning
within a few meters. We consider only these measurements, which make
up more than 99 % of all measurements.
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Figure 5.3: Ten mobile sensor nodes deployed on top of public transport vehicles
achieve a good coverage of the city of Zurich (Switzerland). The dots denote
locations with at least 50 measurements over the course of two years.

The second filter examines the internal status variables of the
MiniDiSCs, which are transmitted to the back-end server in addition
to the particle concentration numbers. These variables allow to draw
conclusions about the proper functioning of the devices. We discard
measurements if a status variable indicates a malfunction, such as a
too low air flow. Additionally, the MiniDiSCs need a warm-up phase;
therefore, all measurements within one hour after start-up are discarded
(the nodes are continuously powered 20 h per day on average, as depicted
in Figure 2.9). The two-stage filtering process invalidates 36 % of the
measurements (mainly the second filter), as shown in Figure 5.2. The
filtering steps are crucial to achieve high data quality, as we will detail in
the next section.

5.2.3 Spatial coverage

A good spatial coverage of the measurements is essential to precisely
assess the UFP distribution in urban environments. The spatial coverage
of the filtered UFP measurements is shown in Figure 5.3. The dots denote
locations (100 m× 100 m) with at least 50 measurements over the course
of two years. The ten mobile sensor nodes achieve a good coverage, in
particular compared to the single governmental station monitoring UFPs
in Zurich, denoted with a triangle in Figure 5.3. Our measurements cover
a large set of diverse location characteristics. For example, the data set
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includes measurement locations at terrain elevations from 400–610 m and
at diverse traffic densities ranging from vehicle-free zones to areas with
over 90,000 vehicles per day.

5.3 Data Validation
Good data quality is a must for the development of reliable pollution
maps. Evaluating the quality of measurements spread over a large urban
area is a challenging task, especially if no (or only sparse) ground truth
is available. The MiniDiSC has been thoroughly tested in laboratory
environment and in the field [FHSB11]. However, despite these tests
it is unclear whether the harsh deployment setting on top of streetcars
has an impact on the quality of the measurements. Among others, the
devices have to endure mobility, constant vibrations, high temperature
and humidity variations, and long, unattended operating times.

Thus, we propose a three-fold validation approach to assess the quality
of our measurements. We (i) analyze the statistical distribution of the
monitored particle concentrations, (ii) evaluate the baseline signal of each
device, and (iii) compare our measurements to data from two high-quality
stations collected during the same time period but at different locations
in Switzerland.

5.3.1 Statistical Distribution
The statistical distribution of data from many different scientific
disciplines, including the concentration of ambient air pollutants, closely
follows a log-normal distribution, i.e., the logarithm of the measurements
is normally distributed [LSA01]. Previous work indicates that also
UFPs are approximately log-normally distributed [MHCH12]. Here, we
confirm that UFPs are log-normally distributed in urban environments.
We show in Figure 5.4 the distribution of the raw and processed (i.e.,
applied calibration and filtering) data and the log-normal distributions
with means and standard deviations of the raw and processed data,
respectively. Raw data are not log-normally distributed, as apparent from
Figure 5.4(a). However, as we show in Figure 5.4(b), the distribution of
the processed data nicely fits the log-normal distribution Log-N(µ, σ2)
with µ = 9.34 and σ2 = 0.50.

5.3.2 Baseline Signal
We examine the correct offset of the MiniDiSCs, by looking at their
baseline signals, i.e., low-pass filtered measurements. We expect a similar
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Figure 5.4: The log-normal distribution (black) with mean and standard
deviation of the UFP data (gray). After calibration and filtering (processed data),
the log-normal distribution accurately fits the distribution of the measurements.

baseline signal across all devices, because all devices take measurements
in the same region (streetcars are not bounded to specific lines). We
compute the baseline signal of each device by using a low-pass filter. We
take for every 90 min time interval, the average time for a streetcar to
cross the city twice, the 20th percentile of the measured concentrations.
Our analysis confirms that during the two years analyzed the baseline
signals are similar across all ten devices.

5.3.3 Comparison to High-Quality Data Sets
We compare our data set to UFP concentrations measured by fixed stations
of the Swiss National Air Pollution Monitoring Network (NABEL).
Five out of the 16 NABEL stations are equipped with accurate UFP
counters (condensation particle counters, CPCs). The stations are located
in urban, suburban, and rural environments. For the comparison, we
choose data from the stations with urban heavy traffic (Bern–Bollwerk)
and suburban (Basel–Binningen) backgrounds, as these locations best
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Figure 5.5: Daily average UFP concentration measured by the mobile sensor
nodes in Zurich corresponds well to measurements of two fixed NABEL stations
at urban (Pearson r = 0.49) and suburban (r = 0.55) locations.

reflect the topographical extremes of our measurement region in Zurich.
We compare the daily measured average particle concentrations from

all mobile sensor nodes to daily averages measured by the two fixed
stations. Thereof we depict in Figure 5.5 a segment of four months.
It shows that the three data sets have a similar trend, further reflected
by the good Pearson correlations of r = 0.49 and r = 0.55 between our
processed data and the urban and suburban located stations, respectively.
The two NABEL data sets have a slightly lower correlation of r = 0.46.
Furthermore, as we would expect, the daily average UFP concentration in
Zurich ranges between the daily averages measured at the urban location
with heavy traffic and at the suburban location.

The above results, namely the correct statistical distribution, the
matching of all devices’ baseline signals, and the good correlation and
expected range of our data in comparison with the NABEL measurements,
indicate a good quality of the processed data. In the following, we use this
data set to derive land-use regression models for accurate high-resolution
pollution maps.

5.4 Developing Land-Use Regression Models
to Create High-Resolution Pollution Maps

Land-use regression (LUR) models are widely used to assess spatial
variation of air pollutants, typically at an intraurban scale [JAK+04,
HBdH+08, RDSF+14, ZGT+14]. LUR models use land-use and traffic



5.4. Developing Land-Use Regression Models to CreateHigh-Resolution Pollution Maps 103

characteristics (explanatory variables) to predict pollution levels for
locations not covered by measurement devices. The general concept is
based on two steps:

1. At all measurement locations the dependencies between explana-
tory variables (e.g., population density, traffic volume, and terrain
elevation) and monitored pollution levels are evaluated using linear
regression.

2. The relationships found between concentrations monitored and the
explanatory variables are used to predict concentration levels at
locations without measurements but with available land-use data.

There are different approaches to construct LUR models. We use
Generalized Additive Models (GAMs) [HT90], because they support
non-linear relationships between monitored concentration levels and
explanatory variables. Furthermore, GAMs have been used recently
to analyze and model the spatio-temporal variability of particulate
matter [BHK+11, LPK09].

5.4.1 Generalized Additive Models
We divide our data into different time periods and build for each
time period a separate model. This yields 989 models with yearly,
seasonal, monthly, biweekly, weekly, daily, and semi-daily (midnight–
noon and noon–midnight) temporal resolutions. For all models we use the
following relationship between pollution concentration and explanatory
variables:

ln(cnum) = a + s1(A1) + s2(A2) + · · · + sn(An) + ε, (5.1)

where cnum denotes the UFP concentration, a the intercept, s1(A1) . . . sn(An)
the smooth functions s1 . . . sn with explanatory variables A1 . . .An, and
ε the error term. The non-parametric functions s1 . . . sn are smooth
regression splines. Through empirical evaluations we found that splines
with an upper limit of three on the degrees of freedom and the logarithmic
link function, ln(cnum) in (5.1), yields the best model residuals, which are
the differences between measured and predicted values.

5.4.2 Selecting Explanatory Variables
We examine a set of 12 explanatory variables (listed in Table 5.1), which
are typically used to derive LUR models [HBdH+08]. Data to calculate
population and industry densities, building heights, heating type, and
elevation, slope, and aspect of the terrain are from the Swiss Federal
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Variable [unit] Variable [unit]

Population [inhabitants/ha] Industry [industry buildings/ha]
Building height [floor levels/ha] Heating [oil and gas heatings/ha]
Terrain elevation [average m/ha] Road type [busiest road type/ha]?

Distance to next road [m] Distance to next large road [m]†

Terrain slope [average degree/ha] Terrain aspect [average degree/ha]
Traffic volume [vehicles per day/ha] Distance to next traffic signal [m]

?Five road types: residential, tertiary, secondary, primary, and freeway.
†Road types classified as large: secondary, primary, and freeway.

Table 5.1: These 12 explanatory variables are examined to build the air quality
models for UFP pollution maps.

Statistical Office. Road types and distances to next road and traffic
signal are extracted from OpenStreetMap data. Average daily traffic
volumes are obtained from the Department of Waste, Water, Energy,
and Air of the Canton Zurich. Some of the data sets are based on
measurements from 2007–2010. We assume that these explanatory
variables did not change considerably compared to 2012–2014, which
is the monitored and modeled time period. Most explanatory variables
have a 100 m x 100 m (1 ha) resolution, which we use for all explanatory
variables, as indicated in Table 5.1. This automatically sets the spatial
resolution of the generated pollution maps.

It is crucial to examine the correlation between each pair of explanatory
variables. Removing variables that have high correlation with each other
helps to better distinguish individual contributions of different variables
to the modeled particle concentration and prevents redundancy in the
model [JCCE09]. We do not use population density and number of gas and
oil heating households as both have a strong linear relationship with each
other and with the number of floor levels (R2 is larger than 0.6 [BHK+11]).
Using the distance to the next traffic signal did not improve any of the
tested models, and is, therefore, also removed from the modeling process.

The terms on the right side in (5.1) have a multiplicative relationship
with the particle concentration cnum, i.e., cnum = ea

· es1(A1)
· es2(A2)

· · · . Thus,
we can specify the influence of each explanatory variable An as a
multiplicative influence factor esn(An). Figure 5.6 depicts typical influence
factors observed in our models. Building height and daily traffic volume
have an amplifying while terrain elevation has a reducing impact on the
particle concentration. The rugs on the x-axis show that a reduced number
of measurements is available at the extremes resulting in decreased
confidence bands for these regions.
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Figure 5.6: Typical influence factors. Building height and traffic volume have a
positive while terrain elevation has a negative impact on UFP concentrations.

5.4.3 UFP Data Aggregation

According to the resolution of the explanatory variables, the measured
UFP concentrations of two years (April 2012 to March 2014) are projected
on a grid with 13,200 cells, each of size 100 m× 100 m, covering the
complete region of interest depicted in Figure 5.3. The subset of the
data used depends on the desired temporal resolution of the model, i.e.,
for daily maps we consider measurements from a single day while for
seasonal maps those from the entire season. For each grid cell i, we fetch
the ni measurements located in the cell to calculate the mean pollution
concentration cm

i . The applied GPS filter ensures that the localization is
precise enough to correctly assign the measurements to their cells with
high probability.

The measurements are (unevenly) distributed among 300–1300 differ-
ent cells, depending on the analyzed temporal subset and spatial coverage
of the data. For example, every black dot in Figure 5.3 denotes a cell with
at least 50 measurements when projecting the full two-year data set onto
the grid. As model input we use the 200 cells with the highest number of
measurements, which are mainly cells containing a streetcar stop. This
ensures that the calculated means cm

i are reliable and provides a good
trade-off between spatial input distribution and model performance, as
we will show in Section 5.5. Introducing prior weights on the cells (e.g.,
using number of measurements per cell) does not improve the models.
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Figure 5.7: Seasonal UFP pollution maps with a spatial resolution of
100 m× 100 m for Zurich (Switzerland), based on data collected by mobile sensor
nodes throughout a year. Frequent high-inversion fog in winter and fall lead to
higher particle concentrations than in spring and summer.

5.4.4 Model Output: High-Resolution Pollution Maps

We use the method described above to develop models for pollution
maps with different temporal resolutions. For instance, the output of
the models with seasonal resolution (winter, spring, summer, and fall)
is shown in Figure 5.7. In general, terrain elevation, building heights,
and traffic density have the highest influence on the predicted pollution
levels. Further, we see that the pollution levels are higher in winter
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and fall than in spring and summer. This is due to frequent high-
inversion fog (fog above the surface, which does not completely dissipate)
in Zurich from October to March preventing the pollutants to be lifted
from the surface and therewith increasing pollution concentration near
the ground [Fed09]. The topographical structure around Zurich makes
the city prone to inversion fog as it is closely surrounded by hills in the
north-east and south-west.

5.5 Revealing the Temporal Resolution Limit
This section evaluates the performance of the 989 generated air quality
models with yearly to semi-daily temporal resolutions based on our
measurements on top of streetcars from April 2012 to March 2013
(including eight weeks of maintenance work without measurements).
These are 1 yearly, 4 seasonal, 11 monthly, 23 biweekly, 44 weekly,
309 daily, and 597 semi-daily models.1 Our evaluation reveals the
following findings:

• Models for pollution maps with yearly to weekly time scales have
an accuracy that is comparable to recently published state-of-the-art
air quality models.

• Pollution maps with daily and semi-daily temporal resolutions are
less accurate due to the reduced number of measurements available
to derive the models.

5.5.1 Metrics and Evaluation Methodology
We use three standard metrics to evaluate our models [CH04].
Factor of 2 measure (FAC2): Quantitatively analyzes scatter plots (predicted
concentrations plotted against measured concentrations) by evaluating
the fraction of data points that lie inside the factor two area, i.e., fraction
of data that satisfy

0.5 ≤
cp

i

cm
i

≤ 2.0, (5.2)

where cp
i is the model predicted and cm

i is the average measured
concentration of grid cell i. This measure is based on the assumption
that an accurate model for pollution maps should have a relative scatter
less than a factor of two [CH04].

1For some days we do not have two semi-daily models because the nodes were only
in operation for part of the day.
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Root-mean-square error (RMSE): Quantifies the difference between the
predicted and measured particle concentrations:

RMSE =
( 1
N
·

N∑
i=1

(cp
i − cm

i )2)0.5
, (5.3)

where N denotes the number of cells used in the evaluation.
Adjusted coefficient of determination (R2): Indicates from 0 to 1 how well the
predictions fit the measurements (R2 = 1 denotes a perfect fit). R2 reflects
the linear relationship between predicted and measured values, hence, it
is insensitive to additive and multiplicative errors. For example, absolute
differences between predicted and measured values do not influence the
R2 value.

For all evaluations we perform a 10-fold cross-validation. That is, we
randomly remove 10 % of the measurements and create (calibrate) the
model using the remaining 90 % of the data. We use the predictions at the
locations of the removed 10 % to evaluate the metrics above. We repeat
this procedure 40 times to have a good coverage of the complete data set.

5.5.2 Model Performance
We first ensure that the models have no systematic bias and then use the
metrics above to evaluate their accuracy.

Trustworthy models should not have any systematic bias in their
predictions. In general, the predictions did not show any bias. We show
this exemplary in Figure 5.8 on scatter plots of seasonal pollution maps
(see Figure 5.7). The dashed lines denote the factor of two area, i.e., slopes
of 0.5 and 2, and the optimal 1-to-1 relation, i.e., slope of 1. The linear
regression lines (solid) are very close to the 1-to-1 lines for all depicted
seasons, indicating the absence of systematic errors.

Figure 5.9 shows the three metrics as box plots for all analyzed
temporal time scales. The central mark of each box plot denotes the
median, edges show the 25th and 75th percentiles, whiskers cover the
most extreme data points without outliers, and the crosses depict the
outliers. Models with yearly to weekly temporal resolutions have very
high FAC2s, while daily and semi-daily predictions have a considerable
number of models with lower FAC2 values, i.e., many predictions are
more than a factor of two off. The RMSEs grow with increasing temporal
resolution. Yearly to weekly pollution maps have low RMSEs, which are
in range of recently published air quality models [HBdH+08]. Models
with higher temporal resolutions, such as daily and semi-daily pollution
maps, have on average 38 % higher RMSEs.

The average R2 of yearly to monthly maps is 0.38, and slightly
decreases for shorter time scales. Recently published air quality models
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Figure 5.8: Scatter plots. Model predicted versus measured UFP
concentrations (particles/cm3) for seasonal pollution maps. The dashed lines
depict the factor of two area (slopes of 0.5 and 2) and the 1-to-1 relation (slope
of 1). All linear regression lines (solid) are very close to the 1-to-1 lines.

for particulate matter have R2 values in 0.17–0.82 [HBdH+08, ZGT+14].
Most of these models are based on installations that are just in place for
a short time (i.e., days or weeks) with measurement devices employed
at a carefully selected set of around 40 locations, on average. In our
deployment we have a large number of measurement locations, but
(perhaps counterintuitively) with many locations it is more difficult to
get predictions with high R2 values [SBA+08, BRA+12]. We found that a
restriction to 200 grid cells leads to a good trade-off among the considered
metrics, as exemplified in Figure 5.10 for yearly pollution maps. Models
created with a small number of grid cells have good R2s but their validity
at locations not covered by the input cells is limited, which results in
poor FAC2 and RMSE values. Models developed with many grid cells
(> 300) have poor R2s and RMSEs. Among others, this is because the
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Figure 5.9: Models with yearly to weekly temporal resolutions have a good
quality with high FAC2 values, low RMSEs, and acceptable R2 coefficients.
Models with higher temporal resolutions perform less well.
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Figure 5.10: Yearly pollution maps modeled with 20–1200 grid cells. The models
achieve a good performance trade-off with 200 cells (dashed line).

number of cells with unreliable average cell concentrations increases as
the calculated means are more and more based on a limited number
of measurements (remember that the cells are favored according to the
number of measurements per cell).

5.5.3 Challenges in Developing Pollution Maps with
High Temporal Resolution

We observe on all performance metrics examined that for higher temporal
resolutions it is more difficult to derive accurate pollution maps. The
main problem is the reduced number of measurements available to
calculate the mean particle concentration per cell, leading to the following
complications:

• The calculated mean of a grid cell is less reliable as it is based on a
smaller number of measurements.

• Erroneous and inaccurate measurements (e.g., due to outliers,
sensor noise, and outdated calibration) have a higher impact on
the mean value of a cell.

To quantitatively support our claims, we examine the relative standard
error (RSE) of each cell, which is a good indicator of the reliability of a
cell’s mean:

RSEi =
σm

i
√

ni · cm
i

· 100, (5.4)

where σm
i is the standard deviation of the ni measurements of cell i.

Figure 5.11(a) illustrates how the average RSE declines with increasing
number of measurements per cell. Models derived from cells with small
RSEs have lower RMSEs, as shown in Figure 5.11(b). The RSE increase
from 4 % to 8 % results in a 60 % rise of the models’ RMSEs. Note that we
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Figure 5.11: With increased number of measurements the relative standard
error (RSE) of the cells’ mean decreases. Models based on cells with small RSEs
have low RMSEs.

verified that using the median instead of the mean of a cell does not yield
improved model performance.

In the following, we propose a new modeling approach to increase the
number of measurements per cell and, therewith, improve the accuracy
of models with high temporal resolution.

5.6 Increasing the Temporal Resolution Limit
We propose a novel modeling approach, which is able to make use
of past pollution measurements to increase the accuracy of highly
temporally resolved pollution maps. For that, we introduce a
history database containing our measurements from the last 12 months
annotated with metadata describing the environmental conditions at
time of measurement. We exploit that concentrations of air pollutants
show a high correlation with various environmental conditions (e.g.,
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Figure 5.12: Additional data (β) from a database with historical measurements
is used to enhance the original data set (α) to derive pollution maps with
high temporal resolutions. The data selector ensures that only historical
measurements are used, which were measured under similar environmental
conditions as the average condition of the modeled time period.

temperature) and the current weekday [LPK09, CLCH+11, ZLH13]. The
data selector depicted in Figure 5.12, selects from the history database
those measurements that were performed on the same weekday and
under similar environmental conditions as the average condition of
the modeled time period. These historical measurements (β) are used
together with measurements from the modeled time period (α) to calculate
temporally resolved pollution maps, as shown in Figure 5.12. The
enriched data set is used to calculate accurate pollution maps for short
time scales. For example, assume we want to create a pollution map for
a sunny but windy Saturday. We enrich the original measurements (α)
from that Saturday with historical measurements (β) gathered on a past
sunny, windy Saturday and use both data sets to calculate an accurate
pollution map.

In the following, we show the feasibility of this novel approach on the
case study of semi-daily pollution maps, where the standard model did
not deliver a satisfactory accuracy.

5.6.1 Data Annotation

We feed the history database with 15 million UFP measurements from a
complete year (April 2012 to March 2013). We annotate the measurements
with the environmental conditions measured in the city center during
this time period by a high-quality governmental station (the triangle
in Figure 5.3 denotes the location of the station). The station provides
30 min averages of a diverse set of environmental variables, namely
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Figure 5.13: Average semi-daily concentrations based on the history database
closely matches ground truth data measured on these days (Pearson r = 0.74).

humidity, atmospheric pressure, radiation, precipitation, temperature,
wind direction, wind speed, and nitrogen oxide (NOx) concentration.

5.6.2 Data Selector and Quality of Selected Data

The data selector, depicted in Figure 5.12, fetches based on the average
environmental condition of the modeled half-day those measurements
from the history database, which are most likely to be similar to the
real measurements from that half-day. To find the best data selector,
we evaluate all possible combinations of environmental variables. We
introduce a deviation parameter, which controls how closely the metadata
of the fetched measurements has to match the given conditions. For
example, allowing 20 % deviation and a temperature of 15 ◦C, the data
selector returns all data measured at 15 ◦C ± 20 %, whereas 100 % refers
to the maximum range in the database.

We evaluate the best data selector by comparing for a complete year
the average semi-daily UFP concentration supplied by the two input data
sets (β) and (α) depicted in Figure 5.12. We observe that the fetched
data from the history database (β) are closest to the actual measured
concentrations (α) if the selection is based on the following three criteria:
temperature, wind direction, and NOx concentration with an allowed
deviation of 10 %. The two data sets have a high Pearson correlation
of 0.74 and a low average absolute difference of 2,500 particles/cm3, as
shown on a three-month extract in Figure 5.13. In this way, we attain on
average a 14x increase in data volume from 19,000 (α) to 260,000 (α ∪ β)
measurements per half-day.
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Figure 5.14: The novel method with a history database helps to increase the
quality of semi-daily pollution maps. On average, the RMSE is 26 % lower using
the novel model compared to the standard model.

5.6.3 Increased Quality of Semi-Daily Pollution Maps

The extended number of measurements helps to derive pollution maps
with a higher accuracy. We compare our modeling approach with the
standard approach using the three performance metrics. Figure 5.14
shows that using our novel modeling approach increases FAC2s by 2 %,
R2s by 6 %, and decreases RMSEs by 26 %, on average. The semi-daily
pollution maps created with the new models achieve a similar accuracy
as the weekly pollution maps created with the standard models.

This new modeling approach advances the generation of accurate
pollution maps with high temporal resolutions and simultaneously
enables the forecasting of pollution maps for specific environmental
conditions, e.g., by using weather forecast data to create pollution maps
for the next hours or days.
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5.7 Related Work
Monitoring airborne pollutants with mobile, low-cost sensors has gained
much attention in recent years. Low-cost gas sensors are often embedded
in custom-built, personal sensor nodes that are part of participatory
sensing networks [HBPW08, CKCH09, DAK+09, CLL+14]. Participants
can directly monitor the exposure level at locations where they spent
their time [ZLW+14]. However, reaching the critical mass of users to
get a coherent picture of the exposure situation in the area of interest
is a formidable challenge and may require hundreds to thousands of
contributors. Our approach uses a small number of non-personal sensor
nodes deployed on top of public transport vehicles to automatically obtain
a constant coverage in the area of interest, as described in Chapter 2.

There are different kinds of models that can be developed to predict
intraurban pollution concentrations, such as proximity-based assessment,
statistical interpolation, LUR, line dispersion models, and novel machine
learning and data mining techniques [JAK+04, ZLH13, ZLW+14]. In
this work, we develop LUR models since they have, compared to other
models, a relatively low computational overhead, which is beneficial
when deriving many hundreds of models. Above all, in the past, LUR
models were applied to predict the concentration of a wide range of air
pollutants [HBdH+08]. Most of these models are based on data from
static monitoring stations installed at a small set of hand-picked locations
(typically around 40) for some days or couple of weeks [HBdH+08].
In contrast, our mobile sensor nodes cover a much larger number of
locations, i.e., every day around 300 grid cells of size 100 m x 100 m.
Therewith, we develop maps with a high spatio-temporal resolution.

A number of studies address the challenge of developing models with
high temporal resolutions. Liu et al. [LPK09] derive daily PM2.5 maps
with a spatial resolution of 4 km by using satellite data in combination
with meteorological features. Su et al. [SBA+08] extend their NO2 and
NO models with hourly meteorological conditions, such as wind speed
and wind direction, to create pollution maps with an hourly resolution.
However, it remains unclear how much the meteorological data helps
to improve their models. Furthermore, the performance of the hourly
resolved pollution maps was not evaluated.

Clifford et al. [CLCH+11] and Mølgaard et al. [MHCH12] develop
UFP models with high temporal resolutions by using not only traffic and
land-use characteristics data but also meteorological variables as model
covariates. Both works solely model temporal variability as their data
originates from a single static station.

Many of the above works use meteorological data to enhance their
models, i.e., [LPK09, SBA+08, CLCH+11, MHCH12]. However, their
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methods of integrating meteorological data into the modeling process
only work if the (i) specific meteorological conditions are known at each
measurement location and (ii) meteorological conditions are significantly
different among locations for a given instant in time. Most often, both
conditions do not apply for spatially resolved intraurban data sets.

5.8 Conclusions
Today, little is known about the spatial distribution of air pollutants in
urban environments. We address this problem by using one of the largest
spatially resolved ultrafine particle data set available today collected
with our mobile air pollution monitoring network. We develop land-use
regression models to create pollution maps with a high spatial resolution
and study their temporal resolution limit. We reveal that the accuracy
of pollution maps with sub-weekly temporal resolution suffers from
the limited number of measurements available to model the pollution
concentrations. We tackle this problem by proposing a novel modeling
approach, which is able to make use of past measurements to increase the
available data volume. Therewith, we develop accurate ultrafine particle
pollution maps with a high spatio-temporal resolution. These maps
are valuable to the general public as well as to environmental scientists
and epidemiologists to shed more light on the adverse health effects of
ultrafine particles. We believe that our findings promote the accurate,
detailed, and timely assessment of air quality in urban environments.

In Chapter 6, we use the derived high-resolution pollution maps to
enable a novel route planner application, which helps urban dwellers to
assess and reduce their exposure to ultrafine particles.
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6
The Health-Optimal Route Planner

High-resolution pollution maps enable a wide range of new application
scenarios, which are not feasible with pollution maps available today. We
end the thesis by demonstrating an interesting use case. We combine the
pollution maps computed in Chapter 5 with the street network of the
city of Zurich to analyze by how much urban dweller can reduce their
exposure to air pollution by not taking the shortest path between origin
and destination but a healthier and slightly longer alternative route. We
introduce a new weight function to assess the exposure on each street
segment and evaluate the benefits of the healthier path on 5000 randomly
generated source-destination pairs. Finally, we efficiently implement the
algorithm in an easy to use smartphone application to help city residents
to understand and reduce their exposure to air pollutants.

6.1 Introduction
Many companies offer route planning services (e.g., GoogleMaps [Goo14],
MapQuest [Map14], and TomTom [Tom14]), which evaluate the best
route between origin and destination based on different criteria, such
as distance, journey time, and least total fuel consumption, for various
transportation modes. However, the general public, especially pedestrian
and cyclist commuters, are increasingly concerned about the adverse
health effects of urban air pollution and, hence, wish to minimize their
exposure to airborne pollutants [DHBNH10, CLL+14]. Up to today, the
lack of spatial resolved pollution data hinders route planners to provide
such air pollution related services.
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Map of Zurich (OpenStreetMap)

Type of road network
(e.g., pedestrian, cyclist)

Road network
graph builder

Road network graph

Fine-grained
pollution map

Figure 6.1: The road network builder uses OpenStreetMap data to create
different types of road network graphs, where nodes represent street crossroads
and dead-end streets and edges connect two consecutive nodes.

We use the generated high-resolution air quality models from
Chapter 5 to derive in Section 6.2 a novel cost function for all street
segments of Zurich’s road network. The cost function expresses the
expected exposure to UFPs when traversing the respective street segment.
We implement this new cost function in a pathfinding algorithm,
described in Section 6.3, to compute health-optimal routes and compare
them in Section 6.4 to the traditionally used shortest path routes.
Therewith, we analyze the potential of reducing the number of inhaled
particles while roaming the city. Finally, we implement in Section 6.5 the
health-optimal route planner as iPhone app, which is efficiently running
on even the oldest smartphone models supported. We survey related
work in Section 6.6, and conclude in Section 6.7.

6.2 Road Network Graph
We use data from OpenStreetMap to construct a graph of Zurich’s road
network.1 We export the area of Zurich in the OSM XML file format and
process the data with our road network graph builder to create a graph
of Zurich’s road network, as depicted in Figure 6.1. Depending on which
type of road network is requested (e.g., for pedestrians, cyclists, or car
drivers), a different graph is generated.

We represent the road network by an undirected graph
G = (V,E,Wd,Wp) comprising a set V of vertices (nodes), a set E of
edges each connecting a pair of nodes, and two sets of edge weights Wd

and Wp. Each node vi ∈ V represents a crossroad or a dead-end street of

1http://www.openstreetmap.org

http://www.openstreetmap.org
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Figure 6.2: Road segment e1 connecting the two nodes v1 and v2 penetrates three
100 m x 100m grid cells with a corresponding pollution exposure of c1, c2, and c3.

the road network. There is an edge e j ∈ E between two nodes of V if the
nodes are directly connected by a road segment (i.e., without a crossroad
in between). Each edge is associated with two weights. Weight wd, j ∈Wd

denotes the length of the road segment between the pair of nodes
connected by edge e j. Weight wp, j ∈ Wp denotes the expected pollution
exposure on the road segment represented by edge e j. We assume that
the travel time between two nodes of an edge e j ∈ E is proportional to the
distance wd, j. The number of particles a human inhales is proportional to
the time of exposure [KHB+03]. Hence, we multiply the modeled particle
concentration along edge e j with the length of the corresponding road
segment:

wp, j =

n∑
k=1

d j,k · ck, (6.1)

where n is the number of 100 m x 100 m grid cells the edge penetrates, d j,k is
the length of edge e j penetrating grid cell k, and ck is the modeled pollution
concentration in grid cell k. Note that the sum of the n subsegments is
equal to the total length of the road segment, i.e., wd, j =

∑n
k=1 d j,k.

We illustrate the above weight functions on a simple example depicted
in Figure 6.2. The two crossroads v1 and v2 are connected by road
segment e1, which cuts through three grid cells with modeled pollution
concentrations c1, c2, and c3. We calculate the weights wd,1 and wp,1 as:

wd,1 = d1,1 + d1,2 + d1,3, (6.2)
wp,1 = d1,1 · c1 + d1,2 · c2 + d1,3 · c3. (6.3)
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1 km

Source and destination nodes
Shortest path
Visited edges
Unvisited edges

Figure 6.3: The A* pathfinding algorithm makes use of a heuristic estimation
of the cost involved to reach the destination node, enabling a goal-directed
exploration of the road network graph.

6.3 Finding the Least-Cost Path

We use all road segments available (including those only accessible by
pedestrians) to create graph G representing the road network of Zurich
consisting of |V| = 27, 000 nodes (i.e., crossroads and dead-end streets)
and |E| = 74, 000 edges. We implement the widely used A* pathfinding
algorithm [HNR68] to find the least-cost path between two nodes of the
road network with respect to the two weight metrics introduced. A*
requires for every node vi ∈ V a heuristic estimate h(vi) of the cost involved
to reach from node vi the destination node. A* only guaranties optimality
of the computed path, if an admissible heuristic is used, i.e., if the heuristic
never overestimates the cost of reaching the destination node. To ensure
optimality, we use line-of-sight distance as heuristic when computing
the shortest path. To compute the health-optimal path (with respect to
UFP exposure), we use the product of line-of-sight distance and minimal
pollution concentration within the modeled area. With the help of these
admissible heuristics, A* is able to perform a goal-directed exploration
and quickly find the least-cost path, as illustrated in Figure 6.3 for the
shortest path between a pair of source-destination nodes.
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1 km

 Shortest path
 Health-optimal path

(a) Albisrieden to Wollishofen.

1 km

 Shortest path
 Health-optimal path

(b) Wiedikon to Witikon.

1 km

 Shortest path
 Health-optimal path

(c) Hönggerberg to ETH Zentrum.

Figure 6.4: Three exemplary source-destination pairs within the city of Zurich,
Switzerland. In (a) the shortest and health-optimal routes are completely
different while they partly overlap in (b) and (c).

6.4 Comparing Shortest Paths to
Health-Optimal Paths

In the following, we study how much urban dwellers can reduce their
pollution exposure by not taking the shortest but the health-optimal path
between two arbitrary locations in the city. We randomly pick from the
road network graph 1000 source-destination pairs. We require a minimum
straight-line distance of 5 km between source and destination nodes to
prevent very short paths where with high probability the shortest and
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health-optimal paths are identical. For these 1000 source-destination pairs
we compute for both introduced edge weights the least-cost paths using
the A* pathfinding algorithm. Then, we compare the length and the
pollution exposure of the two routes. To evaluate the pollution exposure,
we use the seasonal UFP model depicted in Figure 5.7(d), which is based
on our pollution measurements from October to December 2012.

We find that taking the health-optimal path instead of the shortest
path yields an exposure reduction of 7.1 % (6.8 · 106 particles/cm3

·m) on
average. This comes at a price of longer travel distances, the length of
the health-optimal path is 6.4 % (548 m) longer on average. However, the
difference between the shortest and health-optimal paths largely depend
on the given source and destination nodes, as illustrated in Figure 6.4. The
computed routes are completely different in Figure 6.4(a), partly overlap
in Figure 6.4(b), and are almost identical in Figure 6.4(c). The additional
distance (and hence exposure time) incurred by not following the shortest
path only pays off if significantly less polluted road segments are available
nearby. We can clearly observe this in the depicted health-optimal paths
in Figure 6.4, which if possible pass through or are close to public green
spaces characterizing areas with low pollution concentrations.

The achievable reduction also highly depends on the specific
distribution of the air pollutants. We reuse the 1000 source-destination
pairs from above to compare the shortest paths with the health-optimal
paths for all four seasonal air quality models depicted in Figure 5.7. We
find that during the fall months the reduction in pollution exposure is
more significant than during the winter months, as depicted on the CDF
plots in Figure 6.5. This is because during the fall months the pollution
concentration along major roads is considerably higher than on smaller
streets close by, as observable in Figure 5.7(d). In contrast, during winter
months this pollution gradient is smaller.

6.5 Smartphone Application
We implement the application in iOS for iPhones and iPads, as depicted
in Figure 6.6, and make it available for free on the App Store as
hRouting–The Health-Optimal Route Planner.2 On the start screen, depicted
in Figure 6.6(a), the user can enter its choice of origin and destination. The
addresses are automatically autocompleted and it is checked whether
they reside in the region supported (wider area of Zurich). Upon
pressing "Compute route", the application computes in parallel (all recent

2hRouting–The Health-Optimal Route Planner: https://itunes.apple.com/us/
app/hrouting-health-optimal-route/id931299863

https://itunes.apple.com/us/app/hrouting-health-optimal-route/id931299863
https://itunes.apple.com/us/app/hrouting-health-optimal-route/id931299863
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(a) Reduction in pollution exposure.
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(b) Increase in route length.

Figure 6.5: The health-optimal paths minimize the expected exposure to UFPs
while being only slightly longer than the shortest paths. The differences between
the health-optimal and shortest paths are most significant in the fall months.

iPhones have a dual-core processor) the shortest (red) and the health-
optimal (green) routes and displays them on top of Google Maps, as
shown in Figure 6.6(b). Clicking the info button in the top right corner
displays additional information about the shortest and health-optimal
routes and their differences in length and air pollution exposure, as
illustrated in Figure 6.6(c). The History lists routes computed in the
past, the Settings tab displays user preferences, and the About tab offers
background and contact information (see Figures 6.6(d)–(f)).

To be accepted by the users, it is essential that the smartphone
application is reactive. Long computation times must be avoided as
much as possible. Therefore, it is important to efficiently implement
the least-cost pathfinding algorithm. We achieve this by using simple C
data structures (mainly integer arrays and priority queues) and primitive
C data types instead of the more sophisticated, but higher overhead
inducing, object-oriented data structures of Objective-C. We time the
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(a) Address input. (b) Computed routes. (c) Route comparison.

(d) History. (e) Settings. (f) About.

Figure 6.6: The iPhone and iPad application computes for given origin and
destination addresses the shortest (red) and health-optimal (green) routes.
The routes are displayed on top of Google Maps and the user gets detailed
information about the length and pollution exposure differences.



6.6. Related Work 127

Path distance [km]
510150

C
om

pu
ta

tio
n 

tim
e 

[m
s]

0

50

100

150

200

250

300 iPhone 4 (release date: June 2010)
iPhone 4s (release date: October 2011)
iPhone 5 (release date: September 2012)
iPad mini 2 (release date: November 2013)

Figure 6.7: Least-cost path computation times for 5000 source-destination pairs
on an iPhone 4 and iPhone 4s (both on average 80 ms), iPhone 5 (on average
28 ms), and iPad mini 2 (on average 14 ms).

execution times for 5000 random source-destination pairs. We minimize
the interference of other applications and the operating system by
ensuring that no other application is running and by putting the phone in
airplane mode (suspends all signal transmitting functions of the device).
We achieve to compute a route within 28 ms on an iPhone 5 (release date
September 2012) on average, as depicted in Figure 6.7. The older iPhone 4
and 4s (release date June 2010 and October 2011) have considerably
longer computation times with 80 ms on average, while the newer tablet
iPad mini 2 (release date November 2013) is very fast with an average
computation time of 14 ms. This shows that even the oldest iPhone
generation supported by our application is able to compute the majority
of routes in the benchmark set in less than 150 ms.

6.6 Related Work
High-resolution pollution maps enable a wide range of novel applications.
Cheng et al. [CLL+14] propose two web and six smartphone applications,
including a service to get the pollution exposure at the user’s current
location and a virtual AirPet, which lives in the user’s phone and grows
up healthy and happy if fed at locations with good air and unhealthy and
sad otherwise.

Several recent studies have analyzed how the choice of route impacts
exposure to air pollutants. Hertel et al. [HHK+08] analyze the commute
of 50 persons and find that a careful route selection can significantly
reduce the air pollution exposure. Due to the lack of spatially resolved
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air pollution data, diurnal traffic is used as a proxy for air pollution
exposure. Sharker et al. [SK14] use data from sparsely distributed
static measurement stations to estimate the pollution level of each street
segment of the analyzed road network. The weight of a street segment is
calculated as product of the estimated pollution level and expected travel
time through the street segment. Cheng et al. [CLL+14] propose a web-
based application to compute paths, which minimizes the exposure to
PM2.5. The authors collect data with ten fixed and two mobile air quality
monitoring devices for two months in an 4 km x 4 km area and use an
interference model based on Gaussian process regression to compute an
exposure heat map. Finally, Allemann et al. [AR13] outline the health-
atlas platform, a route planing service that plans to incorporate different
modes of transportation, personal mobility restrictions, and air pollution
measurements (governmental and crowd-sourced). This should facilitate
the system to suggest its users low exposure routes between origin and
destination.

6.7 Conclusions
High-resolution maps enable a wealth of new application opportunities.
We use the ultrafine particle maps created with the measurements from
our mobile air pollution monitoring network to build the iOS application
hRouting–The Health-Optimal Route Planner. Users can enter origin and
destination addresses and let the application compute and display the
shortest and a slightly longer but healthier alternative route. We analyze
on a random set of source-destination pairs by how much urban dwellers
can reduce their exposure to air pollutants. We find that the air pollution
exposure can be reduced by up to 60 %. On average the exposure is 7 %
lower if not the shortest but the health-optimal route is taken, which is on
average 6 % longer than the shortest route.
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Conclusions and Outlook

This chapter summarized the contributions of this thesis and outlines
possible future research directions.

7.1 Contributions
Air pollution has become the world’s single biggest environmental health
risk. Atmospheric pollutants considerably affect human health; they are
responsible for a variety of respiratory and cardiovascular illnesses and
are known to cause cancer. Additionally, air pollution is responsible for
environmental problems, such as eutrophication of ecosystems.

Nowadays, air pollution is monitored with a small number of highly
accurate but fixed measurement stations. As a result, very little is known
about the spatial distribution of air pollutants. However, the availability
of reliable intraurban pollution maps is essential. They raise the citizens’
awareness for air pollution, empower environmental scientists to craft
and evaluate new policies, and help epidemiologists to better understand
the adverse health effects of air pollution.

In this thesis, we tackle this challenge and derive accurate intraurban
pollution maps with an unprecedented spatio-temporal resolution. The
basis forms our air pollution monitoring network consisting of mobile,
low-cost sensor nodes. We introduce algorithms, which use knowledge
gathered at meeting points between sensors (mobile and static), to
increase measurement quality of the deployed sensors, which have due
to size and cost constraints a limited stability, sensitivity, and precision.
We use the processed measurements to derive pollution maps with a high
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spatio-temporal resolution. These maps are useful to get insights about
the spatial distribution of air pollutants opening up a wealth of new
application scenarios. We believe that our findings serve as a stepping
stone towards detailed real-time pollution assessment.

The main contributions of this thesis are:

• Mobile air pollution monitoring network (Chapter 2)

Based on existing hardware and software infrastructures, we
build a mobile air pollution monitoring network using low-cost
sensors enabling us to monitor various airborne pollutants and
environmental parameters with a high spatial resolution. The sensor
nodes are installed on top of ten streetcars of the public transport
network. To the best of our knowledge, over the past three years
these sensor nodes collected the largest spatially resolved urban air
quality data set available today.

• Multi-hop calibration of mobile sensor networks (Chapter 3)

Many low-cost sensors need periodic re-calibrations to deliver
measurements with a good data quality during the whole system
lifetime. We are the first to study multi-hop calibration (with respect
to a reference signal) in detail. We introduce a multi-hop calibration
algorithm using geometric mean regression, which highly reduces
error propagation in the network. Our algorithm is especially
valuable when calibrating large networks of heterogeneous sensors.

• Data quality assessment of low-cost sensor readings (Chapter 4)

Low-cost sensors often have a reduced measurement accuracy and
reliability. We introduce a model-driven approach to provide
reliable accuracy bounds for individual noisy sensor readings.
Further, we detect measurement outliers and sensor failures.
We achieve this by integrating generic models to describe the
phenomenon of interest and the sensor characteristic.

• Intraurban pollution maps and its applicability (Chapters 5 and 6)

We use the measurements collected by our air quality monitoring
network to derive intraurban pollution maps. We increase the
quality of high-resolution pollution maps by using a new modeling
approach, which incorporates past measurements annotated with
metadata, such as environmental conditions, into the modeling
process. In this way, we derive accurate pollution maps with a
high spatial and temporal resolution. These maps facilitate new
applications, e.g., a novel health-conscious route planning service.
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7.2 Possible Future Directions
The work presented in this thesis represents an important step towards
reliable high-resolution assessment of urban air pollutants. Nevertheless,
there exists potential for further improvements and extensions. The
following list details possible directions for future research:

• Automatic sensor failure detection

Sensor failure detection is crucial, especially in a multi-hop
calibration scenario, where wrong sensor readings can jeopardize
the calibration of many other sensors in the network. This is
particularly a problem, if the faulty sensor is close to the root of the
network, i.e., close to the reference sensor initiating the calibration
process. We are able to detect some erroneous measurements with
the proposed correlation threshold, which ignores meeting points
between sensors if the correlation of their measurements is below a
given threshold. A promising idea for faulty sensor detection would
be to look at the overall calibration quality of the sensor network
depending on the subset of sensors calibrated. If a faulty sensor is
removed from the network, the calibration quality of the remaining
sensors should increase. In contrast, if a correct sensor is removed
then the calibration quality of the network should decrease, as, in
general, fewer meeting points between sensors result in a poorer
calibration of the sensors.

• Calibration of static sensor networks

The calibration algorithm proposed in this thesis exploits meeting
points between mobile and static sensors to enhance the calibration
of low-cost sensors. Within a given time slot, only those sensors
are calibrated, which are part of the rendezvous graph, i.e., sensors,
which were in the spatial and temporal vicinity of other static or
mobile sensors in the given time slot. Hence, our method can not
be used to calibrate static sensor networks, e.g., the community-led
Air Quality Egg sensing network.1 Therefore, a very interesting and
valuable extension would be to enable the calibration of static sensor
networks. One possibility is to identify points in time where sensors
are exposed to similar conditions despite being at different locations,
e.g., during the night the concentration of many pollutants drops
towards zero. Such kind of opportunities could be used to also
calibrate sensors, which are never in the vicinity of other sensors.

1http://airqualityegg.com

http://airqualityegg.com
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• On-the-fly sensor calibration

In this thesis, we use a slotted approach to calibrate sensors in
the network. It would be interesting to calibrate sensors on-the-
fly enabling the gathering of accurate measurements in real-time.
However, on-the-fly calibration introduces additional challenges.
For example, when two sensors meet a metric is needed to decide
which sensor is more accurately calibrated and, hence, can serve as
calibration parent for the other sensor. How to define such a metric
is a challenging open question.

• Fine-grained pollution maps and its application areas

There are different kind of modeling approaches, which can be
used to predict intraurban pollution concentrations, e.g., statistical
interpolation, land-use regression, and line dispersion models. In
this thesis, we apply land-use regression models, which are widely
used to assess the spatial variability of air pollutants. However, it
would be interesting to use our unique data set to compare different
modeling approaches to analyze their pros and cons in modeling
the distribution of air pollutants in urban areas.

High-resolution pollution maps enable in combination with
other spatial data sets (e.g., population density, health-insurance
premiums, and real estate prices) many new interesting possibilities,
which are to be explored.

• Participatory sensing: trust, privacy, and energy efficiency

The methods proposed in this thesis for calibration, assessment
of data quality, and air quality modeling are all well suited to be
used on large data sets gathered by participatory sensing networks.
However, incorporating participatory sensed data poses additional
challenges for the introduced algorithms, not covered in this thesis:

– Trust
A mechanism is needed to decide whether the sensor readings
of a user are trustworthy. If the sensor readings are deemed
as wrong, we need a mechanism to classify the cause to react
accordingly. For example, users delivering intentionally wrong
measurements should be banned, measurements performed
under improper circumstances (e.g., while device is in the
pocket) should be ignored, and users gathering data with
erroneous or uncalibrated sensors should be informed such
that they can take counteractions. Distinguishing these
different scenarios is a challenging task.
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– Privacy
In general, users need to share location information. However,
often the absolute measurement location is not required and
location obfuscation mechanism could be used to retain user
privacy. For example, land-use regression models do not need
the coordinates of the measurement location but only require
the land-use and traffic characteristic of the respective location.

– Energy-efficiency
In many participatory sensing scenarios energy-efficiency is
key. The measurement device should automatically decide,
based for example on the device’s energy state and calibration
and air quality model requirements, when it is best to perform
measurements, e.g., locations already covered by other users
are less interesting than locations not visited by anybody.
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A
Monitoring Radio-Frequency

Electromagnetic Fields

Radio-frequency electromagnetic fields are emitted by many applications,
such as radio broadcasting and mobile communication. A part of the
general public is increasingly concerned about the long-term effects of
electromagnetic radiation on the human health. However, the accurate
exposure assessment in people’s everyday life remains a formidable
challenge. State-of-the-art personal exposure meters are expensive
and tedious to use. Epidemiological large-scale studies are rare and
governmental compliance measurements can only cover a small number
of locations of high interest (e.g., schools and hospitals).

In this appendix, we demonstrate that accurate, spatially resolved
electromagnetic field measurements are feasible with commodity sensor
nodes of our streetcar deployment introduced in Chapter 2. We collect
over 4 million radio-frequency electromagnetic field measurements and
use them, by applying the methods described in Chapter 5, to develop
the first GMS exposure map of Zurich with a spatial resolution of 100 m.
Further, we compare the found exposure levels to measurements from
different urban cities across Europe.

A.1 Introduction
Wireless communication based on radio-frequency electromagnetic
fields (RF-EMFs) is omnipresent in our everyday lives. Besides the well-
established radio and television broadcastings, there is a massive increase
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of new devices using wireless technologies such as cell phones, cordless
telephones, WiFi capable computers, and short-range communication
technologies. With the advent of these relatively new technologies during
the last decade, part of the general public raised concerns about the long-
term effects of RF-EMFs on human health, e.g., [ETB+10].

In general, the measured strengths of RF-EMFs in urban environments
are considerably below the exposure limits that are known to be
hazardous [ABB+98]. However, many effects of RF-EMF radiation
on the human body are not well understood because there is a lack
of long-term and large-scale epidemiological studies quantifying these
effects [FMBF+12].

A broad field of medical studies examine the influence of RF-
EMF radiation on the human health. Examples of such investigations
are evaluations on the influence of RF-EMFs on early childhood
cancer [ETB+10] and brain tumor [KTK+09]. Many of these studies have
in common that they rely on weak proxies (e.g., distance to closest cell
tower [ETB+10]). However, the relation between exposure level and
distance to the source is complex, especially in urban areas.

Exposure meters developed for personal measurements are used in
medical studies [FMB+10] and for governmental supervision [Off14] to
measure the strengths of RF-EMFs. The handling of these exposure
meters, such as the EME Spy 120 (Satimo) [EME14] and ESM-140
(Maschek) [Mas14], is an elaborate and time-consuming task. As a result,
nowadays periodic measurements are only available from specific spots
of high interest, e.g., schools, playgrounds, and hospitals. For example,
in the city of Zurich seven spots were observed by the government from
2009 to 2012 with on average two measurement campaigns per spot, each
lasting for 30 min [Off14].

Contributions and road-map. Many of today’s gadgets are equipped
with a wide range of different wireless technologies, e.g., WiFi, FM radio
broadcasting, and Bluetooth. Instead of just using the wireless modules
of these devices for communication, we propose to use them for RF-EMF
exposure monitoring on the supported frequency bands. Therewith, it
is not possible to monitor as many frequency bands as with traditional
exposure meters. However, the frequency bands that can be covered
with commodity hardware, such as GSM and UMTS (downlink), WiFi,
and FM, are the most interesting ones as they are large contributors to the
total field strength exposure in urban areas [FMN+09]. Furthermore, these
measurements are valuable because they reveal the background exposure
levels, which are omnipresent and can not be influenced by personal
behavior (such as less frequent phone usage). So far no simple proxies
exist to precisely model these background exposure levels [BFT+10].
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(a) GSM 1800 MHz. (b) WiFi 2.4 GHz.

Figure A.1: Electromagnetic exposure levels in the city center of
Zurich (Switzerland) from GSM and WiFi frequency bands. High (black),
medium (gray), and low (light gray) exposure levels are distinguished.

We present the design, implementation, and evaluation of our mobile
measurement system, which facilitates long-term, fine-grained, and fully
automatic RF-EMF monitoring. We use our mobile streetcar sensor
network introduced in Chapter 2 to collect RF-EMF measurements
throughout the city of Zurich, as depicted in Figure A.1. The main
contributions of this appendix are:

• We demonstrate that accurate RF-EMF exposure measurements are
feasible with commodity sensor nodes. Our measurement accuracy
is similar to state-of-the-art exposure meters widely used in medical
studies and to control the adherence to exposure limits.

• We present first insights from our monitoring campaign. For
instance, we reveal a 9-fold exposure increase over the past four
years on the 2.4 GHz WiFi band at urban outdoor locations and
develop the first high-resolution GSM exposure map of Zurich.

We provide in Section A.2 a brief introduction to electromagnetic fields
and describe our system design in Section A.3. In Section A.4 we show the
accuracy of our measurements by comparing them with reference data
from a state-of-the-art personal exposure meter and present first results
from our streetcar deployment in Section A.5. We survey related work in
Section A.6, and conclude in Section A.7.
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Figure A.2: Electromagnetic spectrum from 1 Hz to 1 PHz with corresponding
applications radiating specific frequency bands.

A.2 Background
Any alternating electric current generates an electric and a magnetic field.
If these fields are not shielded, they are radiated in form of electromagnetic
waves. Depending on the type of application, this radiation is an
undesired side effect (e.g., in power transmission, microwave ovens) or
it is directly related to the specific purpose of the application (e.g., in
wireless communication).

A.2.1 Electromagnetic Radiation
Electromagnetic waves are distinguished by their frequencies, i.e.,
number of oscillations per second. RF-EMFs are in the range from
3 kHz to 300 GHz, which are the frequencies the general public is most
concerned about [VMZ+09]. The range is divided into low-frequency and
high-frequency radiation fields.

Low-frequency fields. The range from 0 kHz to around 30 kHz contains
low-frequency fields. The major sources emitting these fields are
railway lines transmitting power at 16.7 Hz, the power transmission grid
operating at 50 Hz, and electrical household appliances.

High-frequency fields. The frequencies from 30 kHz to 1 PHz count
as high-frequency radiation. Most of the wireless communication and
broadcasting takes place in the lower range up to several hundred GHz.
The greater part of traditional radio and television broadcasting is in the
band from 30 MHz to 300 MHz. These broadcast signals are generally
emitted by large high-power antennas from elevated positions, generally
on top of mountains with no surrounding population. The bulk of modern
communication takes place in the band between 300 MHz and 6 GHz.
This includes all mobile cellular system protocols like GSM, UMTS, and
LTE, cordless phone technologies like DECT, as well as the heavily used
2.4 GHz band for WiFi and Bluetooth.
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A.3 Electric Field Monitoring
In the following, we first describe the hardware and software require-
ments for commodity devices to be usable for sensing RF-EMFs. Then,
we give an overview of our specific system implementation using the
sensor nodes of our streetcar deployment.

A.3.1 Hardware and Software Support
A wide range of electric devices emit electromagnetic radiation. Many
of these devices could be used to measure electromagnetic fields. In the
following, we describe the hardware and software requirements to make
these measurements feasible.

Hardware. Devices that use electromagnetic waves to receive and send
data over the wireless medium, and therefore have one or multiple built-in
antennas, could potentially be used to measure field strengths. Examples
of such devices are widely spread in today’s world with a huge amount
of technical gadgets using wireless communication, such as computers,
mobile phones, tablets, radios, wireless access points, and sensor boards.
Typically, standard built-in antennas only support communication on
specific frequency bands, and hence, also constrain RF-EMF monitoring
to these bands.

Software. On the software side, it is required to have access to low-
level radio information in order to read out the received signal strengths.
Open-source operating systems usually provide access to this kind of
information, e.g., on Linux, Android, and Arduino platforms. On closed
and proprietary operating systems, such as Windows and iOS, we rely
on existing APIs. For example, accessing the received signal strength is
officially banned on Apple mobile devices starting from iOS 4.0.

A.3.2 System Design
We show with our system the feasibility of measuring RF-EMF exposure
with commodity hardware. We extend the software on our air
quality sensor nodes to measure, besides common air pollutants, the
electromagnetic field strengths on different frequency bands.

GSM monitoring. We use the GSM modem on the sensor node to measure
signal strengths emitted by GSM base stations. The GSM modem usually
receives signals from several base stations in its vicinity. To ensure
optimal connectivity, it tries to connect to the station with the highest
signal strength, which becomes the serving cell. The seven strongest
neighboring stations are kept in a list, and when necessary the connection
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is handed over to one of these stations. For each base station in the list the
modem provides information on the location area code (LAC), the unique
cell ID (CID), received signal strength in dBm (RSSI), and the absolute
frequency channel number (ARFCN). Requesting this information over
the serial interface does not influence the data connection (i.e., ongoing
data transfer is not interrupted). Hence, our application does not
influence the viability of concurrent applications. The communication
speed of the modem bounds the minimum measurement interval to 5 s.

WiFi monitoring. Each sensor node has an integrated MikroTik RB433 for
fast and flexible data communication over WiFi for debugging and during
maintenance phases. The MikroTik has built-in support to perform
spectral scans fully covering the 2.4 GHz (2,182 MHz–2,549 MHz) and
5 GHz (4,790 MHz–6,085 MHz) frequency bands. The scans are intended
to check the spectrum for interference from other applications to select the
best channel for optimized WiFi performance when configured as access
point. We use the spectral scans to monitor the exposure levels on the two
WiFi bands, which are emitted by WiFi capable devices as well as non-
WiFi devices emitting on the monitored frequency bands, e.g., microwave
ovens, Bluetooth, and ZigBee devices.

Limitations. Sensor mobility trades off temporal coverage for an
increased spatial coverage. The nodes’ mobility facilitates to obtain a high
spatial measurement resolution and to increase the covered area without
the need of hundreds or thousands of sensor nodes. But, compared
to static nodes the temporal resolution of individual locations is lower.
However, observations of the spatial variation of RF-EMFs are more
valuable than examinations of short-term temporal changes.

Additionally, with our sensor nodes we are not able to cover all
frequency bands, which are normally sampled by personal exposure
meters. However, we cover GSM and WiFi frequency bands, which are
extensively used for mobile communication and are large contributors to
the total field strength exposure in urban environments [FMN+09].

A.4 Calibration and Validation

The raw signal strength measurements from commodity hardware require
calibration. This is due to unknown antenna characteristics (e.g., gain)
and system losses. Moreover, it is also unclear where in the receiver
amplifier chain the power measurements are made.
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A.4.1 General Approach
We read out the modems’ power measurements PdBm in dBm and convert
the readings to Watt:

PW = 10
PdBm

10 · 0.001. (A.1)

The electric field strength E has a square root dependency on the received
power PW.1 We use the method of least squares to choose the calibration
parameters c1 and c2 for every frequency band such that the sum of
squared differences between the square root of the received powers

√
PW

and the reference measurements E are minimized. Our experiments show
that a linear calibration curve nicely fits the raw data to the reference
measurements:

E = c1 + c2 ·
√

PW, (A.2)

We perform the reference measurements with the personal exposure
meter EME Spy 120 [EME14]. This exposure meter model is used in
many medical [FMB+10] and exposure assessment studies [FMN+09,
JFR+10], as well as by governmental institutions for compliance
measurements [Off14]. Hence, the device is well suited for the calibration
and validation of our sensor nodes.

The EME Spy 120 is able to monitor the field strength E (V/m) on
12 predefined frequency bands from FM radio (88 MHz) to WiFi (2.4 GHz)
and has a lower detection limit of 0.05 V/m. Besides WiFi on 5 GHz, all
other bands monitored by our sensor nodes are covered. We use the
minimum measurement interval of 5 s and average the measurements to
conform with the intervals of the sensor node.

A.4.2 Calibration and Validation
For the calibration procedure we simultaneously collect measurements
from the EME Spy 120 and one of our sensor nodes. The two devices are
placed side by side. The sensor node performs one GSM and one WiFi scan
every 30 s. In order to have a variety of field strengths for calibration, we
move the devices from less exposed regions (e.g., surrounded by concrete
walls) to more exposed areas (e.g., close to a transmitting access point)
over a time period of 35 min to 70 min. The calibrated measurements
nicely fit the reference measurements on all three calibrated frequency
bands, as depicted in Figure A.3.

We validate the calibration by evaluating the average absolute error
between the reference measurements and the calibrated sensor readings
for the different monitored frequency bands, as summarized in Table A.1.

1For GSM, we sum up the received powers from the serving base station and from
all base stations in the neighbor list to get the total received power.
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(a) GSM 900 (downlink).
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(b) GSM 1800 (downlink).
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(c) WiFi 2.4 GHz.

Figure A.3: Calibrated measurements from the sensor node nicely fit the refer-
ence measurements from the personal exposure meter EME Spy 120 (reference).

Frequency band
Calibration error Measurement range

Pearson correlation
[V/m] [V/m]

GSM 900 0.05 0–0.7 0.90
GSM 1800 0.02 0–0.4 0.93
WiFi 2.4 GHz 0.14 0–2.1 0.67

Table A.1: The calibration errors amount to only a few percent compared to the
measurement ranges. There is a strong correlation between the measurements.

The average errors of the sensor node are 0.05 V/m and 0.02 V/m on the
900 MHz and 1800 MHz GSM bands, respectively. The latter is even below
the detection limit of the reference device at 0.05 V/m. On the 2.4 GHz
WiFi band we receive a slightly higher average error of 0.14 V/m. We
compare the average measurement errors to the observed measurement
range on the respective frequency bands, in order to get an impression
of the calibration accuracy. The average measurement errors amount
to only a few percent when compared to these measurement ranges,
and are very low when compared to the precautionary exposure limits
of 4–6 V/m [Off14]. Furthermore, all calibrated measurements show
a strong correlation (Pearson r≥ 0.6) when compared to the reference
measurements, as detailed in Table A.1.
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City, Country (Period of measurement)
GSM WiFi
[V/m] [V/m]

Basel, Switzerland (2007–2008) [FMN+09] 0.17 0.03
Ghent and Brussels, Belgium (2007–2008) [JVV+08] 0.35 0.0
Ljubljana, Slovenia (2008) [VTG09] 0.22 0.02
Utrecht, Netherland (2008) [BPK+08] 0.36 0.0
Zurich, Switzerland (2012–2013) 0.24 0.22

Table A.2: Mean field strengths on the GSM (downlink) and 2.4 GHz WiFi bands
in Zurich and five other European cities.

A.5 Measurement Campaign

We extended the software running on five sensor nodes to measure RF-
EMFs emitted by GSM and WiFi communication. The nodes monitor the
GSM signal strength every 15 s and transmit the data to the GSN back-end
server as soon as a data connection is available. The cell towers in Zurich
are run by three mobile network providers, namely Swisscom, Orange,
and Sunrise. We alternate monitoring between these three operators every
10 min. We perform a spectral scan of the 2.4 GHz WiFi band every 30 s
for a duration of 5 s.

A.5.1 Preliminary Findings
We collected with the streetcar deployment over the course of 4 months
more than 4 million individual field strength measurements distributed
over an urban area of 100 km2. This is by far more than what governmental
control units are able to perform manually, i.e., in total 14 measurement
events at seven sensitive locations in Zurich in the period 2009–2012. In
the following, we present preliminary findings based on our data set.

Transferability of calibration parameters. We use the same calibration
parameters for all five identically constructed sensor nodes. We assess
the transferability of the calibration parameters by comparing the sensor
nodes’ measurements whenever they are in each other’s spatial vicinity.
The average measurement deviation among the sensor nodes is small:
0.03 V/m on both GSM bands and 0.08 V/m on the 2.4 GHz WiFi band.
Hence, we conclude that sensor nodes of identical construction can use the
same calibration parameters without inducing a noticeable measurement
inaccuracy.

International comparison. We compare the collected field strength data
set from Zurich to measurements performed by others with traditional
instruments in different urban cities across Europe [JFR+10], namely
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Figure A.4: Base station positions and modeled GSM exposure map of
Zurich (Switzerland) with a spatial resolution of 100 m.

Basel (Switzerland), Ghent and Brussels (Belgium), Ljubljana (Slovenia),
and Utrecht (Netherlands), as detailed in Table A.2. The field strength
exposure on the GSM (downlink) bands in Zurich are similar to those of
other cities in Europe. On the 2.4 GHz WiFi band we observe 9x higher
exposure levels than what is reported from other cities. We conjecture that
this is due to the rise of private and public WiFi access points over the
last years. Besides our campaign, all summarized exposure assessments
were carried out more than five years ago in 2007 and 2008.

A.5.2 Developing an Exposure Map
We use our spatially resolved measurements to derive high-resolution
exposure maps, which can be used by the public and in epidemiological
studies to assess the exposure levels at a high spatial scale. For this
we apply land-use regression modeling based on General Additive
Models (GAMs) [HT90], as described in Section 5.4.

We demonstrate the process by using the GSM data set to create a map
of the GSM downlink signal strengths. To get a map with 100 m resolution,
we first project all measurements on a grid with 100 m x 100 m cells. We
develop a GAM model to calculate for each cell with measurements
the dependency on the explanatory variables, which are: (i) number
of base stations per cell with low, medium, and high transmission
powers (classified by the governmental approval authority), (ii) distances
to the next cell with a low, medium, and high transmission base station,
(iii) topography of the region (i.e., elevation, slope, and aspect), (iv) total
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Figure A.5: Increasing building heights and distance to GSM base stations result
in a decreased field strength exposure.

number of floor levels per cell, and (v) building density.
Figure A.4(a) depicts the GSM base station positions in the

measurement region. The modeled field strengths emitted by GSM base
stations are illustrated in Figure A.4(b). The modeled field strengths
are mainly driven by the building height and the distance to the closest
base station, as depicted in Figure A.5. As expected, both explanatory
variables show a negative correlation with the measured field strength
(see decreasing influence factor). We assess the model accuracy by looking
at the root-mean-square error, which quantifies the differences between
the modeled and measured field strengths, and the adjusted coefficient
of determination (R2), which indicates from 0 to 1 how well the modeled
field strengths fit the measurements (R2 = 1 denotes a perfect fit). The
model has a good accuracy with a root-mean-square error of 0.12 V/m and
a R2 of 0.37. This is low but in the range of recent air quality land-use
regression models having R2 values between 0.17 and 0.9 [HBdH+08].

A.6 Related Work

Measurement devices. Traditionally, RF-EMFs are either monitored
with personal exposure meters [Mas14, EME14] or professional spectrum
analyzers [Nar14], as depicted in Figure A.6. Personal exposure
meters monitor signal strengths on a set of predefined frequency bands.
Professional spectrum analyzers, such as the SRM-3006 (Narda), are able
to measure RF-EMF exposure on the whole spectrum. Both device types
are expensive (e.g., the ESM-140 is around 4,000 USD), bulky, and tedious
to use. The mobile sensor nodes achieve city-wide coverage with high
spatial resolution inducing low expenditure of human labor.
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(a) Personal devices: ESM-140 (top)
and EME Spy 120 (bottom).

(b) Professional device:
SRM-3006 Narda.

Figure A.6: State-of-the-art RF-EMF exposure meters for personal (a) and
professional (b) use.

Ioriatti et al. [IMV+09] and Viani et al. [VDO+11] present specific
designed sensor nodes to monitor electromagnetic radiation on frequency
bands from 85 MHz to 2 GHz. The detection threshold is at 0.5 V/m
(compared to 0.05 V/m of our reference device), which is considerably
above the mean signal strengths measured in Zurich and various
European cities (see Table A.2).

Rayanchu et al. [RPB11] propose Airshark, a system that uses
commodity WiFi cards to detect and classify the prevalence of non-
WiFi RF devices. The spectral scans of the sensor nodes also capture
the signal strengths emitted by non-WiFi devices operating in the WiFi
frequency range. The Airshark approach could be used to apportion the
total measured field strength to the different non-WiFi emitters.

Several Android applications exist that monitor signal strengths
emitted by cellular base stations and WiFi access points, such as
OpenSignal, G-MoN, and RF Signal Tracker. All these applications
simply log the received signal strength in dBm. However, we require the
exposure levels in V/m to compare the measurements to precautionary
exposure limits and to data collected with traditional instruments.
Additionally, the accuracy of these measurements is unknown.

Models. Many medical studies avail exposure models to assess radiation
levels [FMBF+12]. Simple proxies, such as distance to closest cell
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tower [ETB+10] or high-voltage power line [DVKS05], are inaccurate
in urban environments with differing propagation conditions. More
complex propagation models depend on a rich set of input data, such
as antenna downtilt angles and detailed geometric building models, but
can compute exposure maps with up to 5 m resolution [BFT+10]. We strike
a balance between model complexity and spatial resolution by developing
a land-use regression model to build a field strength exposure map with
a spatial resolution of 100 m.

Localization and coverage maps. Signal strengths measurements are
widely used for various localization techniques, e.g., [YWL12, CLLP12,
ZZL+12, XFM+13]. For example, Yang et al. [YWL12] collect WiFi,
and Chen et al. [CLLP12] WiFi and FM signal strengths for accurate
indoor localization. Zhou et al. [ZZL+12] combine GSM signal strengths
from several cell towers for an indoor/outdoor detection service. All
these techniques rely on the relative difference between measured
signal strengths as location indicator. In turn, for meaningful RF-EMF
exposure monitoring we depend on accurate absolute measurements.
Cellular coverage maps, e.g., from the OpenSignal project, solely provide
information on the signal quality (weak to strong) but not on the absolute
measured values.2

A.7 Conclusions
Radio-frequency electromagnetic fields are omnipresent in everyday life
emitted by many modern applications, such as radio broadcasting and
wireless communication. Up to date, electromagnetic fields are monitored
with bulky and expensive devices, which have various drawbacks
limiting their applicability in large-scale and long-term studies. In this
appendix, we show that accurate electromagnetic field monitoring is
feasible with commodity hardware. Our measurement campaign in
Zurich, Switzerland, shows that radiation emitted by cellular base stations
is at par with exposure levels measured in other European cities 4 to 5
years ago. However, on the 2.4 GHz WiFi band we reveal a 9-fold exposure
increase over the same time period. Further, we use the collected data to
develop a high-resolution GSM exposure map.

2http://www.opensignal.com

http://www.opensignal.com
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