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Abstract

Enabled by artificial neural networks, deep learning has become the state-of-
the-art machine learning method for artificial intelligence. In recent years,
we have witnessed successful applications of deep learning systems in natural
language processing, audio processing and visual data processing. These modern
deep learning systems are fuelled by a large amount of data, often collected
by mobile and embedded edge devices existing in our everyday life. In the
past, such edge devices used to upload the collected data to the cloud, where
deep learning systems were deployed for data processing. Due to the onboard
resource constraints, it was considered infeasible or impractical to deploy deep
learning models directly on edge devices. However, recent developments in
hardware technologies have made edge devices increasingly powerful and opened
up the chance for deploying deep learning systems on-device. We are at the
beginning of a new era: On-Device Intelligence, as data are collected, processed
and inferred locally on-device. Mobile and embedded edge devices, such as
smartphones, wearables and automobiles, can be made more intelligent with
the help of deep learning systems and enhance all aspects of our lives.
However, deploying a modern deep learning system on edge devices is still
challenging, even with the increasingly powerful hardware. Many state-of-the-
art deep learning models are too compute- and memory-intensive to execute
on resource-constrained edge devices, even only for inference. To this end,
many techniques have been developed to compress and optimise deep learning
models, reducing the memory and computation requirements while preserving
their inference accuracy. However, existing model compression and optimisation
techniques do not cover multi-model deep learning systems, in which multiple
deep neural networks for correlated tasks are performed continuously and
concurrently. This can be seen in many artificial intelligence application
scenarios. Hence we introduced the concept of multi-model compression, which
aims at compressing and optimising such multi-model deep learning system for
on-device deployment. We distinguish between three types of multi-model deep
learning systems, which are covered by two multi-model compression methods:
weight sharing and neuron merging.
Besides inference, it is often desired to train deep learning models on-device.
However, modern deep learning models are even more compute- and memory-
intensive during training. Moreover, the limited available data collected by a
single edge device makes the training even harder. Existing techniques like meta-
learning provide deep learning systems with the ability to train effectively with
a limited amount of data. Yet, the trained models are often over-parameterised
and have high memory and computation requirements. To this end, we provide



viii Abstract

a solution to reduce the memory and computation cost of meta-learned deep
models in this dissertation.
The main contributions of this dissertation are as follows.
■ Multi-Task Zipping (MTZ), a weight sharing based network merging
framework designed to automatically merge correlated, pre-trained deep neural
networks. Central in MTZ is a layer-wise neuron sharing and incoming weight
updating scheme that induces a minimal change in the error function. MTZ
inherits information from each model and demands light retraining to re-boost
the accuracy of individual tasks. MTZ supports typical network layers (fully-
connected, convolutional and residual) and applies to inference tasks with
different input domains.
■ Multi-Task Stitching (MTS), a novel graph rewriter for efficient multitask
inference with weight-shared deep neural networks, such as those merged via
our MTZ. MTS adopts a model stitching algorithm which outputs a single
computational graph for weight-shared DNNs without duplicating any shared
weight. MTS also utilises a model grouping strategy to avoid overwhelming the
GPU when co-running tens of DNNs.
■ Pruning-Aware Merging (PAM), a neuron merging based network merging
scheme to construct multitask networks that can be effectively pruned via
existing pruning schemes, and the computation of all task combinations can
be minimised, which is often demanded by modern mobile applications.
■ Adaptation-aware Network Pruning (ANP), a novel network pruning scheme
that works with existing meta-learning methods for compact networks capable
of learning with limited data. ANP uses a weight importance metric based on
the sensitivity of the meta-objective rather than the conventional loss function
and adopts approximation of derivatives and layer-wise pruning techniques to
reduce the overhead of computing the new importance metric.



Zusammenfassung

Dank künstlicher neuronaler Netze hat sich Deep Learning zur modernsten
maschinellen Lernmethode für künstliche Intelligenz entwickelt. In den letzten
Jahren haben wir erfolgreiche Anwendungen von Deep-Learning-Systemen in der
Verarbeitung natürlicher Sprache, der Audioverarbeitung und der Verarbeitung
visueller Daten gesehen. Diese modernen Deep-Learning-Systeme werden durch
eine große Menge an Daten gespeist, die häufig von mobilen und eingebetteten
Endgeräten in unserem Alltag gesammelt werden. In der Vergangenheit
haben diese Geräte die gesammelten Daten in die Cloud hochgeladen, wo
Deep-Learning-Systeme zur Datenverarbeitung eingesetzt wurden. Aufgrund
der eingeschränkten Ressourcen auf dem Gerät wurde es als undurchführbar
oder unpraktisch erachtet, Deep-Learning-Modelle direkt auf Edge-Geräten
einzusetzen. Die jüngsten Entwicklungen bei den Hardwaretechnologien haben
jedoch dazu geführt, dass Edge-Geräte immer leistungsfähiger werden und
die Möglichkeit bieten, Deep-Learning-Systeme auf dem Gerät einzusetzen.
Wir stehen am Anfang einer neuen Ära: On-Device Intelligence. Die Daten
werden lokal auf dem Gerät gesammelt, verarbeitet und abgeleitet. Mobile
und eingebettete Endgeräte wie Smartphones, Wearables und Autos können
mit Hilfe von Deep-Learning-Systemen intelligenter gemacht werden und alle
Aspekte unseres Lebens verbessern.
Die Implementierung eines modernen Deep-Learning-Systems auf Edge-Geräten
ist jedoch trotz der leistungsfähigeren Hardware immer noch eine Heraus-
forderung. Viele hochmoderne Deep-Learning-Modelle sind zu rechen- und
speicherintensiv, um auf ressourcenbeschränkten Edge-Geräten ausgeführt zu
werden, und sei es nur für Inferenzen. Aus diesem Grund wurden viele Techniken
entwickelt, um Deep-Learning-Modelle zu komprimieren und zu optimieren und
so die Speicher- und Rechenanforderungen zu reduzieren, ohne die Genauigkeit
der Schlussfolgerungen zu beeinträchtigen. Die bestehenden Verfahren zur
Komprimierung und Optimierung von Modellen decken jedoch keine Deep-
Learning-Systeme mit mehreren Modellen ab, bei denen mehrere tiefe neuronale
Netze für korrelierende Aufgaben kontinuierlich und gleichzeitig ausgeführt
werden. Dies ist in vielen Anwendungsszenarien der künstlichen Intelligenz zu
beobachten. Daher haben wir das Konzept der Multi-Model-Komprimierung
eingeführt, das darauf abzielt, solche Multi-Model-Deep-Learning-Systeme für
den Einsatz auf Geräten zu komprimieren und zu optimieren. Wir unterscheiden
zwischen drei Arten von Multi-Modell-Deep-Learning-Systemen, die durch zwei
Multi-Modell-Kompressionsmethoden abgedeckt werden: Gewichtsteilung und
Neuronenfusion.
Neben der Inferenz ist es oft erwünscht, Deep-Learning-Modelle auf dem Gerät
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zu trainieren. Allerdings sind moderne Deep-Learning-Modelle beim Training
noch rechen- und speicherintensiver. Darüber hinaus erschweren die begrenzten
Daten, die von einem einzelnen Edge-Gerät gesammelt werden, das Training
zusätzlich. Bestehende Techniken wie das Meta-Lernen bieten Deep-Learning-
Systemen die Möglichkeit, mit einer begrenzten Menge an Daten effektiv zu
trainieren. Allerdings sind die trainierten Modelle oft überparametrisiert und
haben einen hohen Speicher- und Rechenbedarf. Aus diesem Grund bieten wir in
dieser Dissertation eine Lösung zur Reduzierung der Speicher- und Rechenkosten
von meta-gelernten tiefen Modellen.
Die Hauptbeiträge dieser Dissertation sind wie folgt.
■ Multi-Task Zipping (MTZ), ein auf Gewichtsteilung basierendes Framework
zur automatischen Zusammenführung korrelierter, vortrainierter neuronaler
Netze. Im Mittelpunkt von MTZ steht ein schichtweises Neuronen-Sharing
und ein Aktualisierungsschema für eingehende Gewichte, das eine minimale Än-
derung der Fehlerfunktion bewirkt. MTZ erbt Informationen von jedem Modell
und erfordert ein leichtes Umlernen, um die Genauigkeit einzelner Aufgaben zu
verbessern. MTZ unterstützt typische Netzschichten (vollverknüpfte Schichten,
Faltungsschichten und Residualschichten) und ist für Inferenzaufgaben mit
unterschiedlichen Eingangsdomänen geeignet.
■ Multi-Task Stitching (MTS), ein neuartiger Graph-Rewriter für effiziente
Multitask-Inferenz mit gewichtsgeteilten neuronalen Netzen, wie sie durch un-
sere MTZ zusammengeführt werden. MTS verwendet einen Modell-Stitching-
Algorithmus, der einen einzigen Berechnungsgraphen für gewichtsgeteilte DNNs
ausgibt, ohne dass ein gemeinsames Gewicht dupliziert wird. MTS verwendet
auch eine Modellgruppierungsstrategie, um die GPU nicht zu überlasten, wenn
Dutzende von DNNs gemeinsam ausgeführt werden.
■ Pruning-Aware Merging (PAM), ein auf Neuronenfusion basierendes Net-
zwerkfusionsschema zum Aufbau von Multitasking-Netzwerken, die mit Hilfe
bestehender Pruning-Schemata effektiv beschnitten werden können, wobei die
Berechnung aller Aufgabenkombinationen minimiert werden kann, was von
modernen mobilen Anwendungen häufig gefordert wird.
■ Adaptation-aware Network Pruning (ANP), ein neuartiges Netzwerkbeschnei-
dungsschema, das mit bestehenden Meta-Lernmethoden für kompakte Net-
zwerke arbeitet, die mit begrenzten Daten lernen können. ANP verwendet
eine Gewichtungsmetrik, die auf der Sensitivität des Meta-Ziels anstelle der
konventionellen Verlustfunktion basiert, und verwendet eine Annäherung der
Ableitungen und schichtweise Pruning-Techniken, um den Aufwand für die
Berechnung der neuen Wichtigkeitsmetrik zu reduzieren.



1
Introduction

Artificial neural network enabled deep learning (DL) has become one of the
most potent data inference tools, if not the most, in the last decade. It has
been successfully applied in many areas, including natural language processing,
audio processing and visual data processing [1]. DL systems are fuelled
by the large amount of data collected on mobile and embedded devices,
which used to be highly resource-constraint in computing power, memory and
energy. For example, a Cortex™-M4 system-on-chip (SoC), often found in
microcontrollers, runs at 64 MHz with 256KB SRAM and consumes less than
0.1 watts. On the other hand, the DL systems powering these applications
mentioned above are often compute- and memory-intensive. For example,
VGG-16 models [2], widely used in visual data processing, contain over 130M
parameters and easily consume gigabytes of run-time memory during training
and inference. Therefore, executing DL models on mobile and embedded devices
were considered infeasible or impractical: either a well-trained model is too
large, such that it is impossible to be deployed on-device, or the largest model
supported by the device does not have enough capacity, such that it yields
unsatisfying inference accuracy.
However, recent developments in hardware technologies have made mobile
and embedded devices increasingly powerful and efficient. As an example,
smartphones and smartwatches now come with gigabytes of volatile memory
and multi-core processors capable of hundreds of GFLOPS and still consume
only a few watts [3]. On the other hand, new advances in DL techniques reduce
DL model size and computation to a magnitude of ten or more. Therefore, it
seems feasible and practical now to run DL models on-device.
We are at the beginning of a new era: on-device intelligence, as data are
collected, processed and inferred locally on-device. Mobile and embedded
devices, such as smartphones, wearables and automobiles, can be made more
intelligent with the help of DL systems and enhance all aspects of our lives.
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Figure 1.1 The computational graph of a neural network with one hidden layer,
also known as a multilayer perceptron

1.1 Key Terminologies

As there are many keywords related to the subject of this dissertation, and the
associated concepts are sometimes vague or confusing, we start this chapter
with a few clarifications and definitions of important terminologies.
Artificial Intelligence (AI). In this dissertation, artificial intelligence refers to
the intelligence shown by machines like computer systems instead of animals
like humans. This is demonstrated by the capability to solve cognitive tasks
associated with the “human mind”, such as understanding speech and text,
recognising objects and contexts from visual information, and playing strategic
games. In this dissertation, AI is also referred to as machine intelligence.
Artificial Intelligence Tasks. In this dissertation, an AI task (henceforth
task, with “artificial intelligence” implied) referred to a formulated problem
to be solved by machines, thus demonstrating machine intelligence. A task
consists of inputs and ground truths. A machine “performs/solves the task” by
processing the inputs and giving outputs, which are supposed to be equal to or
close to the ground truths. A formal definition of a task is given in Sec. 4.3.1.
Machine Learning (ML). Machine learning refers to one type of method
developed for solving tasks and thus achieving AI. As opposed to knowledge-
based approaches like the expert system, an ML method takes more of a data-
driven approach and builds models based on sample data of a task. These
models are then used to perform the task.
Training. Training refers to the process of building models in ML. As ML
models are built on data, the training process requires sampled data of a task,
known as training data. Training data consist of input data and labels sampled
from the task’s inputs and ground truths.
Inference. Inference refers to the process of using an ML model to solve a
task. After the training process, the trained ML model is fixed and ready to
take inputs and compute outputs for the task.
Deep Learning (DL). Deep learning is a branch of machine learning methods
which uses artificial neural networks as its underlying model to solve tasks.
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Artificial Neural Network (NN). Artificial Neural Networks (henceforth
NNs, with “artificial” implied) are computational models initially inspired by
biological neural networks inside animal brains. An NN can be described using
a computational graph as illustrated in Fig. 1.1. The vertices are called neurons,
which are connected by weighted edges. A neuron is a computing unit that takes
the signal from its incoming edges, processes the signals based on the weights
and pre-defined activation functions, and then passes the output to the next
neuron. During the training process, the connection weights and graph topology
are sometimes adjusted. Note that neural networks with more than one hidden
layer are often referred to as deep neural networks (DNNs). The mathematical
formulation of the computational graph is further discussed in Sec. 4.3.1.

1.2 Edge vs. Cloud Intelligence

As discussed at the beginning of this chapter, running DL models on mobile
and embedded devices was considered infeasible or impractical due to the high
demand for DL models and the resource constraints on-device. For example, a
VGG-16 model [2] requires around 1 GB of run-time memory during inference
and about 14 GB during training. Back in 2007, the first generation of the
iPhone had only 128 MB of eDARM. An immediate and viable solution to
this problem is moving the intensive part of the computation to a centralised
location, where resource constraints are lifted and computation is done rapidly.
Cloud computing, an advanced form of the centralised computing paradigm, has
been widely used for AI applications. In an edge-cloud paradigm, edge refers
to the devices located where data are generated and collected, which are often
mobile and embedded devices with limited resources. The cloud refers to the
centralised computing infrastructure where computing power can be considered
unlimited compared to edge devices.
In this dissertation, cloud intelligence refers to the computing paradigm which
requires uploading all collected data from the edge to the cloud, and data
processing, including both training and inference, are conducted mainly on the
cloud. If needed, for example, during inference, the model outputs are sent
back to the edge after the computation is done.
However, edge devices that became increasingly powerful and efficient, along
with DL models that are more compact and efficient, opened up the opportunity
to move part of, or even the whole data processing, to the edge. For example,
the 13th generation of the iPhone debuted in 2021 had 4 to 6 GB RAM, which
indicates that the deployment of even an uncompressed VGG-16 for inference,
which requires about 1 GB of run-time memory, would be possible.
In this dissertation, edge/on-device intelligence refers to the computing
paradigm in which at least the inference is made completely on the edge
devices. Edge intelligence is desired for many reasons, including low latency,
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high availability and strict privacy:
Latency. Deep learning models are widely used in cyber-physical systems at
the stage where inputs, such as visual or audio data, are processed. There
are often other modules like control units relying on the outputs of the deep
models [4]–[6]. Therefore, the latency of the deep models during inference
must be low and stable. Edge intelligence eliminates the need to transmit data
to the cloud and results back to the edge during inference, thus removing all
delays caused by the communication. Of course, the computing power of edge
devices is no comparison to the cloud, and the computation latency is therefore
much lower on the cloud. Moreover, advances in communication technologies
such as the 5G/6G networks and the wide availability of various WLAN and
Bluetooth protocols can reduce the transmission latency. However, as of now,
the end-to-end latency of edge intelligence is still often lower than that of cloud
intelligence [7].
Availability. Cloud intelligence conducts inference on the cloud and thus
requires the communication to be always available when performing tasks.
However, machine intelligence is often required when communication is unstable
or even unavailable. For example, autonomous vehicles adopt AI techniques
to process information and make decisions. They are desired to be operable
outside cities, where mobile networks are less established than in urban areas,
or even in uncharted areas such as Mars, where transmitting data for real-
time inference is currently infeasible. Other AI systems, such as those used in
medical or military facilities, are desired to be robust and still operable when
communication is unavailable in particular situations. Again, the advances in
communication technologies may provide more reliable channels and more area
coverage in the future, but the current best solution for the aforementioned
application scenarios is still the edge intelligence [7]
Privacy. In many edge-cloud systems, edge devices are owned and operated by
individual customers, whereas the cloud is owned and operated by organisations
like companies or governments. This has brought up privacy-related concerns in
the last few years. During inference, edge intelligence requires uploading neither
the user data nor the inference results. Thus, user information is kept away from
the cloud, and privacy is preserved. While many techniques and methods, such
as secure multi-party computation, have been developed to maintain privacy
in the cloud intelligence paradigm, keeping the entire inference process on the
device is still a simple and currently the more viable solution.

1.3 On-Device Deployment of Deep Learning Models

Edge intelligence is not enabled solely by more powerful edge devices. Although
devices like smartphones are now so powerful that it is even possible to directly
execute some modern DL models, some other edge devices are still not capable
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of executing them. For instance, VGG-16 models [2] are also adequate for tasks
like audio data processing, which is a crucial requirement for many wearable
devices like smartwatches. However, a typical smartwatch like an apple watch
has less than 1 GB RAM, and this prohibits it from executing a VGG-16 model [2]
which requires more than 1 GB run-time memory. To this end, many techniques
have been developed to compress and optimise NNs, reducing the memory and
computation requirements while preserving their inference accuracy. Existing
model compression and optimisation methods are summarised into four steps:
Model Compression. The first step is model compression, the process of
simplifying and optimising the topology and parameters of NNs [8]. Modern
NNs are known to be over-parameterised, which is a necessity for proper
training [9]. However, this also means that a well-trained NN can be
compressed by removing redundant parameters without sacrificing inference
accuracy. Popular techniques include neural network pruning [10]–[13] and
knowledge distillation [14]. Network pruning methods remove redundant
connections between neurons and thus reduce the number of weights. These
methods usually rely on mathematical methods to assess the importance of
each weight, such as Hessian-based [11], [12] or mutual-information based
metrics [10], and consequently remove the unimportant ones. Knowledge
distillation methods [14] use a master-student paradigm to train a compact
model on the training data with the help of a large but well-trained model. As
the intermediate results of the master model are used for the training of the
student model, the training of the student model is much more efficient than
the initial training of the master model. Therefore less over-parameterisation is
needed for the student model to be well-trained. Both pruning and knowledge
distillation are designed to optimise and compress the DL model.
Quantisation. After model compression, the memory footprint and computa-
tion of the neural network can be further reduced by reducing the number of
bits for each weight parameter, i.e., quantisation [15], [16]. Most DL models
are mathematical computation models with real number parameters, yet they
are deployed on digital computers, which brings up the problem of numerical
representation [17]. The number of bits for storing the model parameters can be
reduced via quantisation without incurring a significant computation accuracy
that affects the model’s inference accuracy. Quantisation is therefore used to
optimise and compress the numerical representation of the DL model.
Computational Graph Optimisation. After quantisation, high-level graph
rewriting schemes, which take full advantage of high- and operator-level
optimisations, can be used to optimise the computational graph for the
hardware [18]. A computational graph of a DL model can be transformed
into functionally equivalent graphs for optimisations, including operator fusion
(fusing multiple small operations), constant-folding (pre-computing static
graph parts), static memory planning pass (pre-allocating memory for each
intermediate tensor), and data layout transformations (transforming internal
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data layouts into back-end-friendly forms) [18]. In general, these methods can
be understood as an optimisation of the scheduling of the DL model.
Operator-Level Optimisation and Code Generation. In the last step,
further optimisations are done on the translator, compiler and assembler level
in order to generate the most efficient executable for deployment [18]. This
includes techniques like tensor expression formulations for automatic code
generation, a schedule primitive for optimal parallelism on modern GPUs, and
explicit memory latency hiding [18]. These techniques are used to optimise and
accelerate the low-level execution of the DL model on concrete hardware.
The aforementioned existing techniques cover different system levels, but they
are all designed with a single NN in mind, especially the model compression
methods. On the other hand, modern AI applications often require the
concurrent performance of multiple tasks, which consequently requires the
execution of multiple DL models simultaneously. Deploying multiple DL models
on-device is challenging and requires optimisations specific for such a situation,
which will be discussed in this dissertation in detail.

1.4 Multi-Model Compression

AI-powered mobile applications increasingly demand multiple deep neural
networks for correlated tasks to be performed continuously and concurrently
on resource-constrained mobile devices such as wearables, smartphones, and
drones [5], [6], [19]–[23]. Examples include wearable cameras that recognise
objects and identify people for the visually impaired and drones that detect
vehicles and identify road signs for traffic surveillance. While many pre-trained
models for different inference tasks are available [2], [24], [25], it is often
infeasible to deploy them directly on mobile devices due to their large memory
footprints. Again we take the VGG-16 model [2], [26] as an example: each
VGG-16 model requires more than 1GB of run-time memory during inference,
packing 4 of such models easily strains mobile storage and memory on even the
latest high-end smartphones, such as the iPhone 13 which has only 4GB RAM.
And the aforementioned applications [5], [23] often require five to ten tasks
at the same time, which can be effectively solved via VGG-16 models, but is
infeasible for many mobile and embedded devices due to memory limitations.
Model compression and quantisation techniques discussed in Sec. 1.3 are
effective approaches to radically reduce the size of a deep neural network without
sacrificing its accuracy. However, all these existing proposals focus on single-
model compression. Consequently, they generate sub-optimally compressed
neural networks for multiple correlated inference tasks because there can still
be notable redundancy across models due to task relatedness. For example,
deep neural networks trained for different visual tasks tend to learn similar low-
level features that resemble either Gabor filters or colour blobs [27]. Sharing
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Figure 1.2 Left: an MMDL system with two independent models for two tasks;
Right: after weight sharing, neurons coloured in green share the same incoming
weights across the two NNs.

information among tasks holds the potential to further reduce the sizes of
multiple correlated models without incurring a drop in task inference accuracy.
To this end, we introduced the concept of multi-model compression, which
seeks effective and efficient information sharing mechanisms among pre-trained
models for multiple tasks to reduce the size of the combined model without
accuracy loss in each task. In the following part of this section, we are going
to introduce three types of multi-model deep learning (MMDL) systems, and
explain how multi-model compression is conducted on each of them.

1.4.1 MMDL: Independent Tasks

The first type of MMDL system consists of multiple independent NNs. An
example is illustrated on the left of Fig. 1.2. This type of MMDL system is
used for solving multiple independent yet correlated tasks. Each NN solves one
single task and the output depends solely on the input of the same task. In
other words, no two or more outputs have a dependency on the same input,
and no single output has a dependency on more than one input. Hence the
tasks are independent. However, the independent tasks can still be correlated,
if they require similar operations during the processing of the task inputs. For
instance, in a modern automobile, cameras are widely used to collect information
for different tasks. A front camera facing the road may be used for object
detection [2], while a cockpit camera facing the driver may be used for emotion
recognition [28]. Here we have two independent tasks, but their inputs are both
visual data and hence similar processing on the inputs, such as the computation
of low-level features that resemble either Gabor filters or colour blobs, can be
found in the NNs [27]. In this case, an MMDL system with two independent
NNs can be deployed on the onboard processing unit for solving these two tasks.
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As mentioned in Sec. 1.1, the computation of a nNN is largely characterised
by its weights. For correlated tasks, as similar operations and computations are
adopted, it has been shown that there are also numerical similarities between the
weights of different tasks [23], [27]. Therefore, a viable solution to reduce the
overall memory consumption for storing the weights is to share weights across
models [29]. This procedure is referred to as weight sharing, which is illustrated
in Fig. 1.2. The neurons coloured in green have the shared incoming weights
across both models. Such weight sharing is normally done in two steps [29]:
the first step is to identify groups of weights with similar functionality, which
hold therefore the potential to be shared across models. The second step is to
calculate the shared weights, which may not be identical to the original weights
from any of the models, and then reconstruct the weight matrices for storing the
weights. In this dissertation, an efficient and effective weight sharing method
will be introduced in Chapter 2. The effect of sharing weights across multiple
models is quite significant, especially when many models are required on the
same device at the same time. For instance, it will be shown that on an MMDL
system with 9 NNs trained for different visual tasks, the total number of weights
can be compressed by 5× with almost no loss in their inference accuracy, saving
a significant amount of memory usage.
Weight sharing across models is extremely challenging, as NNs are notorious
for their lack of explainability, which means that it is very hard to determine
the functionality of individuals or groups of weights. One of the biggest
challenges is that the weight matrices, which are used to store the computational
graphs of NNs, can be very different even for isomorphic computational
graphs. Isomorphic computational graphs have exactly the same functionality,
hence finding groups of weights to be shared could be as hard as solving
the subgraph isomorphism problem, if not harder because of the randomness
during training. And the subgraph isomorphism problem is known to be NP-
complete. Moreover, as discussed in Sec. 1.3, over-parameterisation is necessary
for effectively training an NN [9], but over-parameterisation also increases the
potential number of isomorphic subgraphs and make the problem even harder
(in fact, some hypothesis even suggest that this is one of the reasons for over-
parameterisation being a necessity for effective training). For example, if we
train two individual NNs on the same task but with different initialisation of
the weights, we could very possibly end up with two NNs that have completely
different weight matrices. An effective weight sharing method should be able to
fully share all weights across these two NNs because they have in effect the same
functionality, which is solving the same task. It will be shown also in Chapter
2 that our weight sharing method passes this test, showing its effectiveness in
finding similar functionality of the weights across models.
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Figure 1.3 Left: a DL model designed for a task with two inputs from different
domains. The part marked with a grey square with dotted lines is in effect the
same MMDL system introduced in Sec. 1.4.1; Right: after weight sharing, neurons
coloured in green share the same incoming weights across the two NNs.

1.4.2 MMDL: Task with Multiple Inputs

In some AI applications, tasks have inputs from multiple domains. For instance,
[30] illustrated a task requiring emotion recognition based on both audio and
visual data. As human beings, machines have shown the ability to combine
information from both audio and visual domains for better recognition of human
emotions. The recognition accuracy with data from both domains was higher
than that from solely either audio or visual domain. This kind of task with
inputs from different domains is also known as multimodal learning [28] and
multi-view learning [31].
An example of a popular NN architecture designed for this kind of task is
illustrated on the left of Fig. 1.3. In the first few layers, which are marked by a
grey square with dotted lines, both inputs are processed independently of each
other. At the later stage of the NN, the intermediate results are merged for
the final output. The marked part of the NN can in effect be seen as the same
MMDL system with independent models introduced in Sec. 1.4.1. Therefore,
in this dissertation, this kind of DL model is also considered a type of MMDL
model. Interestingly, as will be shown in Chapter 2, some of the weights in
these separated layers, which process inputs from totally different domains, still
possess similar functionality, and can be shared across the models with our
weight sharing method.
One important difference between this type of MMDL against the one discussed
in Sec. 1.4.1 is that the final output of the model has a dependency on both
inputs, whereas in an MMDL system for independent tasks, every output
depends only on one single input. This brings up a scheduling problem, as
the end-to-end latency is affected by how quickly those separated layers are all
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Figure 1.4 Left: an MMDL system with two tasks sharing the same input; Right:
after neuron merging, neurons coloured in green are share between the two tasks.

executed. As mentioned before, the marked part in Fig. 1.3 can be seen as
multiple independent models, with no cross-dependency between the layers for
different inputs, hence they can be executed in parallel. But parallel execution of
multiple NNs is not easy. The first problem is that, as will be shown in Chapter
3, most DNN graph rewriters (part of the computational graph optimisation
discussed in Sec. 1.3) do not support the execution of MMDL models. Moreover,
GPU vendors also provide inefficient APIs for parallel execution of multiple NNs
at runtime. Only a few pilot works suggested graph rewriters [32] with cross-
model graph fusion for parallel NN execution, but they do not support NNs with
shared weights. Sharing weights across multiple models is crucial for saving
memory usage and hence holds the potential of enabling many complicated AI
applications, yet the efficient parallel execution of multiple NNs with shared
weights is also desired for applications requiring low latency. To this end, in
Chapter 3, we will discuss a novel graph rewriter for efficient parallel execution
of NNs with shared weights in MMDL systems.

1.4.3 MMDL: Tasks Sharing the Same Input

The third type of MMDL system consists of multiple NNs sharing the same
input. An example is illustrated on the left of Fig. 1.4 As opposed to the first
type of MMDL discussed in Sec. 1.4.1, the tasks here share the same input
and therefore the outputs of all the models depend on this input. A good
example of this type of MMDL system can be found in [5]. Here the authors
provided a wearable camera system designed for life-logging, on which five tasks
are performed together on the visual data, including object detection, scene
recognition, face detection, saliency computation and memorability inference.
Similar to what we discussed in Sec. 1.4.1, the tasks in this scenario are
also correlated and weights in different models can be found to have similar
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functionality and are hence shareable. However, we can do even more than
weight sharing. As the models process the same input, not only the operations
are shareable, but also the intermediate results. The sharing of the intermediate
results is achieved by neuron sharing, as illustrated in Fig. 1.4. By sharing
neurons across models, not only the number of weights is reduced, but also
the number of arithmetic operations conducted during the execution of the DL
models. Therefore, multi-model compression on an MMDL system with tasks
sharing the same input reduces both memory usage and computation cost.
However, different to the scenario in Sec. 1.4.1, there is one more challenge for
the third type of MMDL system: the asynchronous execution of the models.
Take again the example from [5], in which the camera feeds the system with
pictures at constant rates. But the results for each task may not be required
at the same frequency. For example, object detection may be required every
3 frames, but scene detection may only be performed every 10 frames, as
the scenes change slower than objects. Other tasks like face detection and
memorability inference may even be performed on-demand. This brings a new
challenge for a neuron shared MMDL system: part of the system should be able
to shut down in order to save computation and energy. This requires network
typologies like the one shown on the right of Fig. 1.4. When, for example, task
A is not required when task B is performed, the neurons coloured in blue can
be deactivated. Since there is no path from any of the blue neurons to the
output of task B, the output of task B is completely independent of those blue
neurons, and therefore the deactivation has no impact on the computation for
task B. To this end, in Chapter 4, we will discuss a neuron merging framework
satisfying the aforementioned requirements.

1.5 Efficient On-Device Adaptation

In Sec. 1.2, we define on-device intelligence as the computing paradigm
in which at least the inference is done on the edge devices. This raises
naturally the question: what about the training? In this dissertation, we
will investigate a practical application scenario, where DL models are pre-
trained before deployment, but require further training on-device. This setup is
often referred to as on-device adaptation, which is to learn previously unseen
tasks by updating a pre-trained initial model. This is desired in many on-
device intelligence applications including personal drones, home robots and self-
driving vehicles, since uploading newly collected data for model updating can
be infeasible due to unstable wireless connections, limited bandwidth or privacy
concerns, as discussed in Sec. 1.2.
The training of DL models is highly demanding in two perspectives:
computation and data. Current DL models are mostly trained with gradient-
based methods using backpropagation, which requires much more memory and
computation compared to inference. Take VGG-16 [2] as an example again: the
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training of a VGG-16 model can take up to 14 GB of runtime memory, while the
inference tasks only about 1 GB. On the other hand, the amount of data that
can be collected on individual edge devices is very limited. The DL models are
often required to learn unseen tasks with even less than 5 samples, known as
few-shot learning [33], [34]. Therefore, in order to enable on-device adaptation,
the memory consumption during training needs to be reduced and the training
needs to be effective with very limited data.
For reducing the memory usage, the existing method introduced in Sec. 1.3
may actually be helpful. In this dissertation, we focus on the pruning methods,
which hold the potential to drastically reduce the number of parameters, and
consequently the memory usage during training. For instance, [11] showed that
pruning on a VGG-16 model can reduce its size to only 7.5% without hurting the
inference ability, thus enabling the training computation for many edge devices.
For effective learning with a limited amount of data, one of the existing
solutions is meta-learning, where the initial model for deployment is meta-
trained on many different tasks, such that meta-knowledge is learned and the
model is pre-prepared for fast adaptation with a limited amount of data [33],
[34]. Of particular interest is Model-Agnostic Meta-Learning (MAML), a
general gradient-based algorithm that meta-learns the weights of a given initial
architecture, such that the meta-trained model excels at adaptation with only
a few data [33].
However, existing pruning methods do not work in synergy with meta-learning
methods like the MAML. As mentioned in Sec. 1.3, network pruning methods
remove redundant connections between neurons and thus reduce the number
of weights. These methods usually rely on mathematical methods to assess
the importance of each weight and consequently remove the unimportant ones.
The importance of the weights is assessed w.r.t. a known, single task, instead
of some unseen tasks as in the meta-training procedure. Therefore, the network
topology after pruning is not meta-learned, which means the topology is not
prepared for training on limited data for an unseen task. To this end, in Chapter
5, we will disucss a novel pruning scheme that works with existing meta-learning
methods, such that a compact DL model can be constructed for efficient on-
device adaptation.

1.6 Outline and Contributions

In this dissertation, we will discuss some recent advances in improving the
performance of and providing new possibilities for on-device intelligence. We
will see novel weight sharing and neuron merging methods used for multi-model
compression, which enables the deployment of MMDL systems on edge devices.
We will also discuss a novel pruning method designed for on-device adaptation.
Chapter 2. In this chapter, a novel weight sharing method is introduced,
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which is applied to the first and second types of MMDL system, discussed in
Sec. 1.4.1 and Sec. 1.4.2. We propose Multi-Task Zipping (MTZ), a framework
to automatically merge correlated, pre-trained deep neural networks via weight
sharing. Central in MTZ is a layer-wise weight sharing and incoming weight
updating scheme that induces a minimal change in the error function. MTZ
inherits information from each model and demands light retraining to re-boost
the accuracy of individual tasks. MTZ supports typical network layers (fully-
connected, convolutional and residual) and applies to inference tasks with
different input domains. Evaluations show that MTZ is able to drastically
reduce the total number of parameters in targeted MMDL systems, hence saving
memory usage and enabling the deployment on resource-constraint edge devices.
Chapter 3. As discussed in Sec. 1.4.2, it is a non-trivial problem to efficiently
execute weight-shared neural networks, such as the networks merged by MTZ,
on GPU enabled mobile and embedded edge devices. Following Chapter 2, we
design Multi-Task Stitching (MTS), a novel graph rewriter for efficient multitask
inference with weight-shared DNNs. MTS adopts a model stitching algorithm
which outputs a single computational graph for weight-shared DNNs without
duplicating any shared weight. MTS also utilises a model grouping strategy
to avoid overwhelming the GPU when co-running tens of DNNs. Extensive
experiments show that MTS is able to effectively exploit the parallel computing
ability of modern GPUs and accelerates multitask inference by up to 6.0×.
Chapter 4. In this chapter, a novel neuron merging method is introduced,
designed for the third type of MMDL system, discussed in Sec. 1.4.3. With
the help of information theory, we will analyse the redundancy inside the third
type of MMDL model and identify the optimal topology for merging. We
also theoretically identify the conditions such that the merged network can
be effectively pruned via existing pruning schemes and the computation of
all task combinations can be minimised, which is often demanded by modern
mobile applications. On this basis, we propose Pruning-Aware Merging (PAM),
a heuristic network merging scheme to construct a multitask network that
approximates these conditions. The merged network is then ready to be
further pruned via existing network pruning methods. Evaluations with different
pruning schemes, datasets, and network architectures show that PAM is able to
effectively reduce both computation and memory costs.
Chapter 5. In this chapter, we investigate the on-device adaptation problem
discussed in Sec. 1.5. We propose Adaptation-aware Network Pruning (ANP),
a novel pruning scheme that works with existing meta-learning methods for a
compact network capable of fast adaptation. ANP uses a weight importance
metric that is based on the sensitivity of the meta-objective rather than
the conventional loss function and adopts approximation of derivatives and
layer-wise pruning techniques to reduce the overhead of computing the new
importance metric. Evaluations show that ANP can work with meta-learning
methods and provide up to 85% reduction in memory consumption.
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2
Multi-Task Zipping: Multi-Model
Compression via Weight Sharing

AI-powered mobile applications increasingly demand multiple deep neural
networks for correlated tasks to be performed continuously and concurrently
on resource-constrained mobile devices. This kind of deep learning system
with multiple neural networks is referred to as multi-model deep learning
(MMDL) system. As we discussed in Sec. 1.3, existing model compression
and optimisation methods do not cover this MMDL scenario. To this end,
we introduce multi-model compression, a series of methods designed for the
compression, optimisation, and efficient execution of MMDL systems.
We have discussed in Sec. 1.4 three types of MMDL systems, which require
two different multi-model compression methods: weight sharing and neuron
merging. In this chapter, we first introduce a novel weight sharing method,
which is applied to the first and second type of MMDL system, discussed in
Sec. 1.4.1 and Sec. 1.4.2, respectively. We propose Multi-Task Zipping (MTZ),
a framework to automatically merge correlated, pre-trained deep neural networks
for cross-model compression. Central in MTZ is a layer-wise neuron sharing and
incoming weight updating scheme that induces a minimal change in the error
function. With this, MTZ is able to tackle the challenge of identifying similar
functionalities among weights discussed in Sec. 1.4.1.
MTZ supports typical network layers (fully-connected, convolutional and
residual) and applies to inference tasks with different input domains. Evaluations
show that MTZ can fully merge the hidden layers of two VGG-16 networks
with a 3.18% increase in the test error averaged on ImageNet for object
classification and CelebA for facial attribute classification, or share 39.61%
parameters between the two networks with < 0.5% increase in the test errors.
The number of iterations to retrain the combined network is at least 17.8×
lower than that of training a single VGG-16 network. Moreover, MTZ can
effectively merge nine residual networks for diverse inference tasks and models
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for different input domains. And with the model merged by MTZ, the latency
to switch between these tasks on memory-constrained devices is reduced by
8.71×.

2.1 Introduction

AI-powered mobile applications increasingly demand multiple deep neural
networks for correlated tasks to be performed continuously and concurrently
on resource-constrained mobile devices such as wearables, smartphones, and
drones [5], [6], [19]–[22]. Examples include wearable cameras that recognise
objects and identify people for the visually impaired and drones that detect
vehicles and identify road signs for traffic surveillance. While many pre-
trained models for different inference tasks are available [2], [24], [25], it is
often infeasible to deploy them directly on mobile devices due to their large
memory footprints. For instance, VGG-16 models for object classification [2] and
facial attribute classification [26] both contain over 130M parameters. Packing
multiple such models easily strains mobile storage and memory at inference
time.
Model compression [8] is an effective approach to radically reduce the size of a
deep neural network without sacrificing its accuracy by pruning unimportant
operations (pruning) [10]–[12], [35] or reducing the precision of operations
(quantization) [15]. However, all these proposals focus on single-model
compression. Consequently, they generate sub-optimally compressed neural
networks for multiple correlated inference tasks because there can still be notable
redundancy across models due to task relatedness. For example, deep neural
networks trained for different visual tasks tend to learn similar low-level features
that resemble either Gabor filters or colour blobs [27]. Sharing information
among tasks holds potential to further reduce the sizes of multiple correlated
models without incurring drop in individual task inference accuracy.
We study information sharing in the context of cross-model compression,
which seeks effective and efficient information sharing mechanisms among pre-
trained models for multiple tasks to reduce the size of the combined model
without accuracy loss in each task (see Fig. 2.1). A solution to cross-model
compression is multi-task learning (MTL), a paradigm that jointly learns multiple
tasks to improve the robustness and generalisation of tasks. However, most
MTL studies use heuristically configured shared structures, which may lead to
dramatic accuracy loss due to improper sharing of knowledge [36], [37]. Some
recent proposals [38], [39] automatically decide “what to share” in deep neural
networks. Yet deep MTL usually involves enormous training overhead [36].
Hence it is inefficient to ignore the already trained parameters in each model
and apply MTL for cross-model compression.
In this chapter, we propose Multi-Task Zipping (MTZ), a framework which
automatically and adaptively merges correlated and well-trained deep neural
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Figure 2.1 Differences between multi-task learning (MTL) and our multi-task
zipping (MTZ) as solutions to cross-model compression (illustrated with two tasks).
Given two pre-trained models, MTL manually decides the shared structures, and then
retrain the multi-task model from scratch i.e., the original weights of the individual
models are discarded. In contrast, our MTZ automatically determines what to share,
and only a lightweight finetuning is necessary to re-boost the accuracy on each task
because the original weights of the individual models are either kept (for non-shared
neurons) or analytically calculated (for shared neurons).

networks for cross-model compression, with the help of neuron sharing. It
decides the optimal shareable pairs of neurons on a layer basis and adjusts their
incoming weights such that minimal errors are introduced in each task. Unlike
MTL, MTZ inherits the parameters of each model and optimises the information
to be shared among models such that only light retraining is necessary to
resume the accuracy of individual tasks. In effect, it squeezes the inter-network
redundancy from multiple already trained deep neural networks. MTZ may be
further integrated with existing proposals for single-model compression, which
reduce the intra-network redundancy via network pruning [10]–[12], [35] or
network quantization [15].
The contributions and results of this chapter are as follows.
■ We propose MTZ, a framework that automatically merges multiple corre-
lated, pre-trained deep neural networks. It squeezes the task relatedness across
models via layer-wise neuron sharing, while requiring light retraining to re-
boost the accuracy of the combined model. We also extend MTZ to support
different layer types and tasks with different input domains. To the best of our
knowledge, this is one of the first studies on cross-model compression for deep
neural networks.
■ MTZ managed to share 39.61% parameters between the two VGG-16
networks pre-trained for object classification (on ImageNet [40]) and facial
attribute classification (on CelebA [41]), while incurring less than 0.5% increase
in test errors. Even when all the hidden layers are fully merged, there is a
moderate (averaged 3.18%) increase in test errors for both tasks. MTZ achieves



18 Chapter 2. Multi-Task Zipping: Multi-Model Compression via Weight Sharing

the above performance with at least 17.9× fewer iterations than training a single
VGG-16 network from scratch [2].
■ MTZ can merge models of different input domains (e.g., audio- and video-
based models), and is able to share 90% of the parameters among nine ResNets
on nine different visual recognition tasks while inducing negligible loss on
accuracy. Furthermore, with the joint model merged by MTZ, the latency
to switch between these inference tasks on memory-constrained devices can be
reduced by 8.71×.
This chapter has made the following additional contributions:
■ We enhance the theoretical analysis of MTZ by showing that the accumulated
error at the output layer in our layer-wise neuron sharing is bounded (Sec. 2.3.5).
■ We propose an optimised network zipping scheme for ResNets (Sec. 2.4.2.2 to
support batch normalisation layers and Sec. 2.4.2.3 to support residual blocks).
■ We empirically show that MTZ can support different input domains e.g.,
audio- and image-based models (Sec. 2.5.3) and is scalable in merging more
than two networks (Sec. 2.5.4). Experimental results show that MTZ can
merge 9 ResNets pre-trained for diverse visual inference tasks, which reduce
the model storage from 9× to only 1.8× of a single ResNet, with marginal
loss in all the 9 inference tasks. In addition, MTZ can reduce the latency by
8.71× when switching between the 9 inference tasks on memory-constrained
embedded platforms.
In the rest of this chapter, we first review related work in Sec. 2.2, and then
introduce our MTZ framework in Sec. 2.3 and its extensions in Sec. 2.4. We
present the evaluations of MTZ in Sec. 2.5 and finally conclude in Sec. 2.6.

2.2 Related Work

MTZ compresses multiple well-trained deep neural networks of correlated
inference tasks. It is relevant to research on multi-task learning and single-
model compression. Our work belongs to the emerging field of cross-model
compression and is complementary to resource scheduling of deep neural
networks and edge-assisted inference.

2.2.1 Multi-Task Learning

Multi-task learning (MTL) jointly trains multiple correlated tasks to achieve
higher accuracy than training each task individually. Determining “what to
share” among tasks is a central issue in MTL, where can take place at different
levels [36]. For MTL with neural networks, common techniques include hard
or soft parameter sharing of the hidden layers [37]. Hard parameter sharing
enforces sharing most or all of the parameters among all tasks while keeping
a few task-specific output layers [42]. It causes notable accuracy drop when
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many tasks are trained jointly [43]. In soft parameter sharing, individual tasks
are connected via information sharing [44]. The two sharing schemes can also
be combined for more flexible parameter sharing i.e., adaptively sharing a subset
of parameters in the hidden layers [39].
The shared topology in most MTL studies is heuristically configured, which
may lead to improper knowledge transfer [27]. Only a few schemes [38],
[39] optimise what to share among tasks, especially for deep neural networks.
Our MTZ resembles these automatic shared structure optimisation studies for
MTL in effect, but differs in objectives. MTL jointly trains multiple tasks to
improve their generalisation and accuracy, while MTZ aims to compress multiple
already trained tasks with mild training overhead. Specifically, MTZ inherits the
parameters directly from each pre-trained network when optimising the neurons
shared among tasks in each layer and demands light retraining.

2.2.2 Single-Model Compression

There have been various model compression proposals to reduce the size of
a single neural network without incurring loss in accuracy [8]. Pruning-based
methods compress a deep neural network by eliminating unimportant operations
such as weights [11], [12] or neurons [10], [45]. Neuron-level pruning is more
desirable since it leads to regular sparsity in the pruned networks, and thus
avoids the need for customised hardware [8]. The memory footprint of a neural
network can be further reduced by lowering the precision of parameters (network
quantization) [15].
Unlike previous research that deals with the intra-redundancy of a single
network, our work reduces the inter-redundancy among multiple networks. In
principle, our method is a neuron-level cross-model pruning scheme. Our work
may be integrated with single-model compression to further reduce the size of
the combined neural network.

2.2.3 Cross-Model Compression

Cross-model compression aims to construct an accurate and compact multi-
task neural network for efficient inference on resource-constrained platforms.
Georgiev et al. [19] are the first to explore cross-model compression. They
directly apply MTL techniques by heuristically configuring the shared structure
and training the multi-task network from scratch. Our preliminary version [29]
and NeuralMerger [20] are among the earliest studies to merge well-trained
neural networks without training from scratch. NeuralMerger [20] utilises a
joint encoding scheme for weight sharing, which can be understood as a cross-
network quantization. Our technique is orthogonal to [20] since we focus on
network merging. Neural weight virtualisation (NWV) [6] and ZipperNet [22]
are two latest studies that explore merging for cross-model compression. NWV
[6] shares all parameters among tasks and retrains to recover the accuracy i.e.,
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hard parameter sharing. ZipperNet [22] relaxes the constraint by a layer-wise
merging strategy, i.e., all the parameters are shared till a given layer. In contract,
MTZ allows partial merging in each hidden layer. In addition, ZipperNet [22]
adopts a heuristic neuron similarity metric and only applies to convolutional
layers. In contrast, our MTZ shares neurons and updates weights via sensitivity
analysis, and our method supports not only convolutional layers, but also fully
connected layers, batch normalisation layers and residual blocks. We compare
the performance with NWV [6] and ZipperNet [22] in Sec. 2.5.

2.2.4 Resource Scheduling for Deep Neural Networks

Orthogonal to reducing the complexity of deep neural networks themselves,
resource scheduling algorithms enables efficient on-device execution of deep
neural networks. DeepX [46] is a software accelerator that splits deep neural
networks into blocks to be executed across multiple co-processors. DeepEye [5]
proposes to interleave the execution of convolutional layers and fully-connected
layers from multiple deep neural networks to improve the runtime efficiency of
multi-model execution. NestDNN [21] designs a dynamic model pruning and
recovery scheme and a resource-aware runtime scheduler to adaptively select the
best models and allocate them to the available resources to maximise the overall
inference accuracy and minimise the overall latency of concurrently running deep
neural networks. As with [5], [21], our work also focuses on optimising multiple
deep neural networks. However, our approach is complementary, which aims
to reduce the memory footprint of multiple models by enforcing neuron sharing
rather than scheduling their executions.

2.2.5 Edge-Assisted Deep Inference

In addition to on-device execution, offloading is also a popular strategy to run
deep neural networks in the era of edge computing [47]. Particularly, the
memory- or computation-intensive portion of a deep model can be offloaded
to the edge to meet the resource constraints on end devices. For example,
DeepDecision [48] dynamically decides whether to execute the model on-
edge or on-device according to the available resources. Neurosurgeon [49]
explores the optimal layer to partition a deep neural network for collaborative
execution between the edge and the device that minimises latency and energy
consumption. EdgeDuet [50] runs a full model on-edge and a compressed
version on-device and only uploads image tiles to the full model when necessary.
EalgeEye [51] partitions the multiple-model pipeline for face identification both
spatially and temporally and runs the partitions in parallel on both the edge and
the device. Magnum [52] adopts a lightweight blockchain-based framework to
enable transfer learning in industrial IoT applications.
Our work is complementary to model partition. On the one hand, cross-model
compression can be combined with model partition schemes for higher efficiency
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when running multiple tasks in edge-device collaborative inference. For instance,
AMVP [53] proposes an adaptive scheduler that integrates single- and cross-
model compression with model partition for multi-task video processing at the
edge. On the other hand, model compression is preferable over model partition
to applications where communication with the edge is prohibited due to data
privacy or unreliable network connections [47], [54]–[56].

2.3 Layer-wise Network Zipping

This section explains the principles and details of our network zipping method
with two feed-forward networks of dense fully connected (FC) layers. We discuss
the extensions to other layers and settings in Sec. 2.4.

2.3.1 Problem Statement

Consider two inference tasks A and B with the corresponding well-trained
deep neural networks MA and MB, i.e., trained to a local minimum in error.
We assume the same input domain and the same number of layers in MA

and MB. Performing multiple correlated inference tasks on the same input
domain is common in mobile applications (e.g., face recognition, age and gender
identification from a wearable camera [5], [6]; or speaker identification and
ambient scene analysis from a smartphone microphone [19]). Note that our
method also works for different input domains (see Sec. 2.5.3). The assumption
on the same number of layers follows the practice in multi-task learning for ease
of joint training [36]. Note that the models for different tasks can vary in
the widths in their layers. Our goal is to construct a combined model MC by
sharing as many neurons between layers in MA and MB as possible such that
(i) MC has minimal loss in inference accuracy for the two tasks and (ii) the
construction of MC involves minimal retraining. As with other studies on cross-
model compression [6], [19], [20], [22], the process to construct the combined
model, i.e., model merging and retraining, takes place offline on the cloud or
the edge before model deployment. The combined model is then deployed
to resource-constrained devices for accurate multi-task inference. Although
extensive model training is affordable on the cloud/edge, it is still desirable to
minimise the retraining overhead to allow fast model deployment and to serve
more model merging requests at the same time.

2.3.2 Layer Zipping via Neuron Sharing

We take a layer-wise approach to the neuron sharing problem described in
Sec. 2.3.1. This subsection presents the procedure of zipping the l-th layers
(1 ≤ l ≤ L − 1) in models MA and MB given the previous (l − 1) layers of the
two models have been merged (see Fig. 2.2).



22 Chapter 2. Multi-Task Zipping: Multi-Model Compression via Weight Sharing

 1lN 

 lN

 lW
 A

lW  B
lW


1

A
lN 


1

B
lN 

 A
lN  B

lN

 B
lW A

lW

 1lN 


1
A
lN 


1

B
lN 

A
lN

B
lN

B
lW

A
lW

i j

Before Zipping

After Zipping

( 1) :l 

:l

( 1) :l 

( 1) :l 

:l

( 1) :l 

Figure 2.2 An illustration of neurons and the corresponding weight matrices before
and after zipping the l-th layers of MA and MB.

Denote the input layers as the 0-th layers. The L-th layers are the output layers
of MA and MB. Denote the weight matrices of the l-th layers in MA and MB as
WA

l ∈ RNA
l−1×NA

l and WB
l ∈ RNB

l−1×NB
l , where NA

l and NB
l are the numbers of

neurons in the l-th layers in MA and MB. Assume Ñl−1 ∈ [0, min{NA
l−1, NB

l−1}]
neurons are shared between the (l − 1)-th layers in MA and MB. Hence there
are N̂A

l−1 = NA
l−1 − Ñl−1 and N̂B

l−1 = NB
l−1 − Ñl−1 task-specific neurons left in

the (l − 1)-th layers in MA and MB. Zipping the l-th layers in in MA and MB

consists of two steps: neuron sharing and weight matrices updating.

2.3.2.1 Neuron Sharing

To enforce neuron sharing between the l-th layers in MA and MB, we calculate
the functional difference (details in Sec. 2.3.3) between the i-th neuron in layer l
in MA, and the j-th neuron in the same layer in MB. The functional difference
is measured by a metric d[w̃A

l,i, w̃B
l,j], where w̃A

l,i, w̃B
l,j ∈ RÑl−1 are the incoming

weights of the two neurons from the shared neurons in the (l − 1)-th layer. We
do not alter incoming weights from the non-shared neurons in the (l − 1)-th
layer because they are likely to contain task-specific information only.
To zip the l-th layers in MA and MB, we first calculate the functional difference
for each pair of neurons (i, j) in layer l and select Ñl ∈ [0, min{NA

l , NB
l }]

pairs with the smallest functional difference. These pairs of neurons form a set
{(ik, jk)}, where k = 0, · · · , Ñl and each pair is merged into one neuron. Thus
the neurons in the l-th layers in MA and MB fall into three groups: Ñl shared,
N̂A

l = NA
l − Ñl specific for A and N̂B

l = NB
l − Ñl specific for B.
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2.3.2.2 Weight Matrices Updating

After neuron sharing, the weight matrices WA
l and WB

l are re-organised
as follows. The weights vectors w̃A

l,ik
and w̃B

l,jk
, where k = 0, · · · , Ñl,

are merged and replaced by a matrix W̃l ∈ RÑl−1×Ñl , whose columns are
w̃l,k = f(w̃A

l,ik
, w̃B

l,jk
), where f(·) is an incoming weight update function. W̃l

represents the task-relatedness between A and B from layer (l − 1) to layer l.
The incoming weights from the N̂A

l−1 neurons in layer (l−1) to the N̂A
l neurons

in layer l in MA form a matrix ŴA
l ∈ RNA

l−1×N̂A
l . The remaining columns in

WA
l are packed as W̃A

l ∈ RN̂A
l−1×Ñl . Matrices ŴA

l and W̃A
l contain the task-

specific information for A between layer (l − 1) and layer l. For task B, we
organise matrices ŴB

l ∈ RNB
l−1×N̂B

l and W̃B
l ∈ RN̂B

l−1×Ñl in a similar manner.
We also adjust the order of rows in the weight matrices in the (l + 1)-th layers,
WA

l+1 and WB
l+1, to maintain the correct connections among neurons.

The above layer zipping process can reduce Ñl−1 × Ñl weights from WA
l and

WB
l . Essential in MTZ are the neuron functional difference metric d[·] and the

incoming weight update function f(·). They are designed to demand only light
retraining to recover the original accuracy.

2.3.3 Deriving Neuron Functional Difference Metric d[·] and Incoming
Weight Update Function f(·)

This subsection introduces our neuron functional difference metric d[·] and
weight update function f(·) leveraging previous research on parameter sensitivity
analysis [11], [12].

2.3.3.1 Preliminaries

A naive approach to accessing the impact of a change in some parameter vector
θ on the objective function (training error) E is to apply the parameter change
and re-evaluate the error on the entire training data. An alternative is to exploit
second order derivatives [11], [12]. Specifically, the Taylor series of the change
δE in training error due to certain parameter vector change δθ is [12]:

δE =
(

∂E

∂θ

)⊤
· δθ + 1

2δθ⊤ · H · δθ + O(∥δθ∥3) (2.1)

where H = ∂2E/∂θ2 is the Hessian matrix containing all the second order
derivatives. For a network trained to a local minimum in E, the first term
vanishes. The third and higher order terms can also be ignored [12]. Hence:

δE = 1
2δθ⊤ · H · δθ (2.2)

Eq.(2.2) approximates the deviation in error due to parameter changes.
However, it is still a bottleneck to compute and store the Hessian matrix H of a
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modern deep neural network. For instance, applying the weight pruning scheme
proposed in [12] on a VGG-16 model [2] trained on the ImageNet ILSVRC-2012
dataset [40] requires the calculation of a Hessian matrix with approximately
(138 × 106)2 = 1.9044 × 1016 elements.
As next, we harness the trick in [11] to break the calculations of Hessian matrices
into layer-wise, and propose a Hessian-based neuron difference metric as well
as the corresponding weight update function for neuron sharing.

2.3.3.2 Our Method

Inspired by [11] we define the error functions of MA and MB in layer l as

EA
l = 1

nA

∑
∥ỹA

l − yA
l ∥2 (2.3)

EB
l = 1

nB

∑
∥ỹB

l − yB
l ∥2 (2.4)

where yA
l and ỹA

l are the pre-activation outputs of the l-th layers in MA before
and after layer zipping, evaluated on one instance from the training set of A; yB

l

and ỹB
l are defined in a similar way; ∥ · ∥ is l2-norm; nA and nB are the number

of training samples for MA and MB, respectively; Σ is the summation over all
training instances. Since MA and MB are trained to a local minimum in training
error, EA

l and EB
l will have the same minimum points as the corresponding

training errors.
We further define an error function of the combined network in layer l as

El = αEA
l + (1 − α)EB

l (2.5)

where α ∈ (0, 1) is used to balance the errors of MA and MB. The change in
El with respect to neuron sharing in the l-th layer can be expressed in a similar
form as Eq.(2.2):

δEl = 1
2(δw̃A

l,i)⊤ · H̃A
l,i · δw̃A

l,i + 1
2(δw̃B

l,j)⊤ · H̃B
l,j · δw̃B

l,j (2.6)

where δw̃A
l,i and δw̃B

l,j are the adjustments in the weights of i and j to merge
the two neurons; H̃A

l,i = ∂2El/(∂w̃A
l,i)2 and H̃B

l,j = ∂2El/(∂w̃B
l,j)2 denote the

layer-wise Hessian matrices. Similarly to [11], the layer-wise Hessian matrices
can be calculated as

H̃A
l,i = α

nA

∑
xA

i−1 · (xA
i−1)⊤ (2.7)

H̃B
l,j = 1 − α

nB

∑
xB

j−1 · (xB
j−1)⊤ (2.8)

where xA
i−1 and xB

j−1 are the outputs of layer (l−1) in MA and MB, respectively.
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When sharing the i-th and j-th neurons in the l-th layers of MA and MB, our
aim is to minimize δEl, which can be formulated as the optimization problem
below:

min
(i,j)

{ min
(δw̃A

l,i
,δw̃B

l,j
)
δEl} s.t. w̃A

l,i + δw̃A
l,i = w̃B

l,j + δw̃B
l,j (2.9)

For the inner minimization problem:
min

(δw̃A
l,i

,δw̃B
l,j

)
δEl s.t. w̃A

l,i + δw̃A
l,i = w̃B

l,j + δw̃B
l,j (2.10)

we form Lagrange multipliers with the second order approximation in (2.2):

L =1
2(δw̃A

l,i)⊤ · H̃A
l,i · δw̃A

l,i + 1
2(δw̃B

l,j)⊤ · H̃B
l,j · δw̃B

l,j

+ λ⊤ · (w̃A
l,i + δw̃A

l,i − w̃B
l,j − δw̃B

l,j) (2.11)
where λ is the vector of Lagrange undetermined multipliers. By taking
functional derivatives and employing the constraints of Eq.(2.9), we have closed-
form solutions:

δw̃A,opt
l,i =(H̃A

l,i)−1 ·
(
(H̃A

l,i)−1 + (H̃B
l,j)−1

)−1

· (w̃B
l,j − w̃A

l,i) (2.12)

δw̃B,opt
l,j =(H̃B

l,j)−1 ·
(
(H̃A

l,i)−1 + (H̃B
l,j)−1

)−1

· (w̃A
l,i − w̃B

l,j) (2.13)

δEopt
l =1

2(w̃A
l,i − w̃B

l,j)⊤ ·
(
(H̃A

l,i)−1 + (H̃B
l,j)−1

)−1

· (w̃A
l,i − w̃B

l,j) (2.14)

We define the neuron functional difference metric as:
d[w̃A

l,i, w̃B
l,j] = δEopt

l (2.15)
and the weight update function as:

f(w̃A
l,i, w̃B

l,j) = w̃A
l,i + δw̃A,opt

l,i = w̃B
l,j + δw̃B,opt

l,j . (2.16)

2.3.4 MTZ Framework

Algorithm 1 outlines the process of MTZ on two tasks of the same input
domain, e.g., images. We first construct a joint input layer. In case the input
layer dimensions are not equal in both tasks, the dimension of the joint input
layer equals the larger dimension of the two original input layers, and fictive
connections (i.e., weight 0) are added to the model whose original input layers
are smaller. Afterwards we begin layer-wise neuron sharing and weight matrix
updating from the first hidden layer. The two networks are “zipped” layer by
layer till the last hidden layer and we obtain a combined network. After merging
each layer, the networks are retrained to re-boost the accuracy.
Practical Issues. We make the following notes on the practicability of MTZ.
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Algorithm 1: Multi-task Zipping via Layer-wise Neuron Sharing
input : {WA

l }, {W
B
l }: weight matrices of MA, MB ; XA, XB : training datum of task A and B

(including labels); α: coefficient to balance MA and MB ; {Ñl}: number of neurons to
be shared in layer l

1 for l = 1, . . . , L− 1 do
2 Calculate inputs for the current layer xA

l−1 and xB
l−1 using training data from XA and XB

and forward propagation
3 H̃A

l,i ←
α

nA

∑
xA

i−1 · (x
A
i−1)⊤

4 H̃B
l,j ←

1−α
nB

∑
xB

j−1 · (x
B
j−1)⊤

5 Select Ñl pairs of neurons {(ik, jk)} with the smallest d[w̃A
l,i, w̃B

l,j ]
6 for k ← 1, . . . , Ñl do
7 w̃l,k ← f(w̃A

l,ik
, w̃B

l,jk
)

8 Re-organize WA
l and WB

l into W̃l, ŴA
l , W̃A

l , ŴB
l and W̃B

l

9 Permute the order of rows in WA
l+1 and WB

l+1 to maintain correct connections
10 Conduct a light retraining on task A and B to re-boost accuracy of the joint model

output: {ŴA
l }, {W̃

A
l }, {W̃l}, {W̃B

l }, {Ŵ
B
l }: weights of the zipped multi-task model MC

■ How to set the number of neurons to be shared? One can directly set
Ñl neurons to be shared for the l-th layers, or set a layer-wise threshold
εl instead. Given a threshold εl, MTZ shares pairs of neurons where
{(ik, jk)|d[w̃A

l,ik
, w̃B

l,jk
] < εl}. In this case Ñl = |{(ik, jk)}|. One can set

{Ñl} if there is a hard constraint on storage or memory. Otherwise {εl} can
be set if accuracy is of higher priority. Note that {εl} controls the layer-wise
error δEl, which correlates to the accumulated errors of the outputs in layer L
ε̃A = 1√

nA

∑ ∥x̃A
L − xA

L∥ and ε̃B = 1√
nB

∑ ∥x̃B
L − xB

L ∥ [11].
■ How to execute the combined model for each task? During inference, only
task-related connections in the combined model are enabled. For instance, when
performing inference on task A, we only activate {ŴA

l }, {W̃A
l } and {W̃l},

while {W̃B
l } and {ŴB

l } are disabled (e.g., by setting them to zero).
■ How to zip more than two neural networks? MTZ is able to zip more than
two models by sequentially adding each network into the joint network, and the
calculated Hessian matrices of the already zipped joint network can be reused.
Therefore, MTZ is scalable in regards to both the depth of each network and
the number of tasks to be zipped. Also note that since calculating the Hessian
matrix of one layer requires only its layer input, only one forward pass in total
from each model is needed for the merging process (excluding retraining).
Complexity Analysis. We only analyse the complexity of the main merging
process (Line 3 to 9) and ignore the complexity of the forward and backward
propagation of neural networks (Line 2 and 10). For simplicity, we consider
fully merging two layers from two networks, which both have n neurons in
every hidden layer. Line 3 and 4 take O(n2) time and O(n2) memory. Line
5 takes O(n5) time and O(n2) memory (using in-place matrix inversion) to
calculate all the paring distances, and then O(n4) to sort them. This is the
most time consuming step, as the calculation of the merging criterion (2.15)
involves inversion of the Hessian matrices. There are O(n) iterations in Line
6 and 7, and line 7 takes O(n3) time and O(n2) memory. Line 8 and 9 take
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O(n2) time and O(n2) memory. Therefore, the total time cost is O(n5) and
memory cost is O(n2).

2.3.5 Propagation of Layer-wise Error

Note that we define layer-wise error function Eq.(2.5) to avoid calculating the
entire Hessian matrix. In this subsection, we demonstrate the effectiveness
of such a layer-wise formulation by proving that the accumulated error at the
output layer is bounded.
To analyse the accumulated error at the output layer, we investigate how the
error Eq.(2.5) propagates from layer l to the final output layer. Note that the
error function in layer l consists of two parts, EA

l and EB
l , as defined in Eq.(2.3)

and Eq.(2.4), which are defined with pre-activation outputs yA
l and ỹA

l . In order
to understand the propagation of errors, however, we need to take activation
function into consideration. We define:

EA
l = 1

nA

∑
∥z̃A

l − zA
l ∥2 (2.17)

EB
l = 1

nB

∑
∥z̃B

l − zB
l ∥2 (2.18)

El = α · EA
l + (1 − α) · EB

l (2.19)

where zA
l = σ(yA

l ), z̃A
l = σ(ỹA

l ), zB
l = σ(yB

l ) and z̃B
l = σ(ỹB

l ) are post-
activation layer outputs with activation function σ(·). In this chapter, we
consider the widely adopted activation function: rectified linear unit (ReLU).
After merging the l-th layer, there are three groups of neurons: N̂A

l task-A-
specific neurons, N̂B

l task-B-specific neurons, and Ñl shared neurons. When
task A is performed, only task-A-specific and shared neurons are activated. The
connections between the task-A-specific and shared neurons in the l − 1-th and
l-th layer have weights W′A

l :

W′A
l =

[
ŴA

l

W̃A
l

W̃l

]
(2.20)

Similarly, we can define W′B
l . Furthermore, we denote the vectorisation of the

weight matrices W′A
l and W′B

l as VA
l and VB

l , respectively.
Adapting the conclusions in [11] to multiple neural networks, the propagation
of the layer-wise error in MTZ can be described by the following theorem:
Theorem 2.1. For a multi-task network merged via Algorithm 1 with L layers,
the accumulated error of the last layer output is upper-bounded by:

EL ≤
L−1∑
i=1

(
α·

L−1∏
j=i+1

∥VA
j ∥
√

δEA
i

+(1 − α)·
L−1∏

j=i+1
∥VB

j ∥
√

δEB
i

) (2.21)
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Proof. From similar derivation as in [11], we have:

EA
L ≤

L−1∑
i=1

(
L∏

j=i+1
∥VA

j ∥
√

δEA
i

)
+
√

δEA
L (2.22)

and the same holds if we switch A with B. However, as the last layer, i.e., the
output layer is untouched, we have

√
δEA

L =
√

δEB
L = 0. Therefore:

EA
L ≤

L−1∑
i=1

(
L−1∏

j=i+1
∥VA

j ∥
√

δEA
i

)
(2.23)

which also holds if we swap A and B. Finally, since El = α · EA
l + (1 − α) · EB

l ,
Eq.(2.21) holds.

2.4 MTZ Extensions

In this section, we explain how to extend MTZ to support sparse models
(Sec. 2.4.1), other commonly used layers in computer vision e.g., convolutional
(CONV) layers, batch normalisation (BN) layers and residual blocks (Sec. 2.4.2).

2.4.1 Support for Sparse Models

Since the pre-trained neural networks may have already been sparsified via
weight pruning, we also extend MTZ to support sparse models. Specifically,
we use sparse matrices, where zeros indicate no connections, to represent such
sparse models. Then the incoming weights from the previous shared neurons
w̃A

l,i, w̃B
l,j still have the same dimension. Therefore d[w̃A

l,i, w̃B
l,j], f(w̃A

l,i, w̃B
l,j) can

be calculated as before. However, we also calculate two mask vectors m̃A
l,i and

m̃B
l,j, whose elements are 0 when the corresponding elements in w̃A

l,i and w̃B
l,j

are 0, and 1 otherwise. We pick the mask vector with more 1′s and apply it
to w̃l. This way the combined model always have a smaller number of weights
than the sum of the original two models.

2.4.2 Extension to Other Layers

This subsection introduces how to extend MTZ from FC layers to CONV layers,
BN layers and residual blocks.

2.4.2.1 Extensions to Convolutional Layers

The layer zipping procedure of two convolutional layers are similar to that of
two fully connected layers. The only difference is that sharing is performed
on kernels rather than neurons. Take the i-th kernel of size kl × kl in layer l
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of MA as an example. Its incoming weights from the previous shared kernels
are W̃A,in

l,i ∈ Rkl×kl×Ñl−1 . The weights are then flatten into a vector w̃A
l,i

to calculate functional differences. As with in Sec. 2.3.2, after layer zipping
in the l-th layers, the weight matrices in the (l + 1)-th layers need careful
permutations regarding the flattening ordering to maintain correct connections
among neurons, especially when the next layers are fully connected layers.

2.4.2.2 Extensions to Batch Normalisation Layers

BN layers are typically applied on the pre-activation outputs of CONV layers.
After training, the output of the BN layer applied on the i-th channel of layer
l is:

BN(yl,i) = γl,i · yl,i − µl,i√
σ2

l,i + ϵ
+ βl,i (2.24)

where yl,i is the pre-activation output of the CONV layer, γl,i and βl,i are the
two learnable parameters (scaling and shifting) for the BN layer, µl,i and σl,i

are the pre-calculated mean and standard deviation.
Since all the parameters are fixed after training, the effect of the BN layer can
be replaced by multiplying the incoming weight wl,i by a scalar γl,i

σl,i
and adding

βl,i − γl,i·µl,i

σl,i
to the bias bl,i. The calculation of the Hessian matrices (2.7) and

(2.8) remains the same, and in the closed-form solutions Eq.(2.12), Eq.(2.13)
and Eq.(2.14) the new weights and bias should be used. Later in the retraining
phase, newly initialised BN layers need to be applied.

2.4.2.3 Extensions to Residual Blocks

At the end of each residual block, the output vector of the last CONV layer is
added with the identity shortcut vector. This addition can be considered as a
layer of neurons (channels) with binary weights (1 or 0) fully connected to the
last convolutional layer and the last shortcut addition layer (or in the case of
the first residual block, it connect to the pre-convolutional layer). However, in
order to continue the chain of MTZ, the neurons at this addition layer should
be marked as shared/unshared. Since the neuron sharing situation of the last
CONV layer in the current residual block can be different from of the addition
layer of the last residual block, there might be conflicts. We propose an exact
and an approximate method to combine residual blocks.
Exact Method. We illustrate the exact method via an example residual block
with output dimension of three. In the last CONV layer of the current block,
the first neuron in model A is shared with the second neuron in model B, and
the third neuron in model A is shared with the third neuron in model B. In
the addition layer of the last block, the second neuron in model A is shared
with the second neuron in model B. Fig. 2.3 illustrates the weight matrices of
the current addition layers of model A and B, where the red column indicates
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Figure 2.3 An example of the weight matrices when merging residual blocks with
output dimension of three.

the weights from merged neurons, and the weight matrices from the merged
neurons.
As shown in this example, we mark the neurons in the addition layer as
shared/unshared as follows:
■ If a neuron in the addition layer is not connecting (i.e., having non-zero
weights) to any shared convolutional neuron or shared shortcut neuron, e.g.,
the first row in the matrices on the right of Fig. 2.3, this neuron is marked as
unshared.
■ In other cases, these addition neurons are merged by analysing their incoming
weights from merged neurons, e.g., the matrices on the right of Fig. 2.3.
Approximate Method. The exact method above requires an additional layer
to be processed by MTZ, and actually adds more weights to the model. To
avoid this problem, we propose an approximate method to merge residual blocks.
The idea is to use the neuron sharing scheme of the last CONV layer in the
current residual block as the reference. In other words, in the last CONV layer
in current residual block, if the i-th neuron in model A is merged with j-th
neuron in model B, then their corresponding neurons in the addition layer are
also marked as merged.

2.5 Evaluations

We first evaluate the performance of MTZ on zipping two networks pre-trained
for the same task (Sec. 2.5.1) and different tasks (Sec. 2.5.2). We mainly assess
the test errors of each task after network zipping and the retraining overhead
involved. We then show that MTZ can merge models for different input domains
(Sec. 2.5.3). Finally we show that MTZ is scalable and reduces the execution
time of neural networks on resource-constrained mobile devices (Sec. 2.5.4).
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MTZ is implemented with TensorFlow. All experiments are conducted on a
workstation equipped with Nvidia Titan X Maxwell GPU. The execution time
of neural networks is measured on the Jetson Nano embedded platform [57]
equipped with a 128-core Maxwell GPU, a Quad-core ARM A57 (1.43GHz)
CPU, and 4GB 64-bit LPDDR4 (25.6GB/s).

2.5.1 Zipping Two Networks for the Same Task

This experiment validates the effectiveness of MTZ by merging two differently
trained models for the same task. Ideally, two models trained to different local
optimums should function the same on the test data. Therefore their hidden
layers can be fully merged without incurring any accuracy loss. This experiment
aims to show that, by finding the correct pairs of neurons which shares the same
functionality, MTZ can achieve the theoretical limit of compression ratio i.e.,
100%, even without any retraining involved.
Dataset and Settings. We test on MNIST dataset with the LeNet-300-100
and LeNet-5 networks [24] to recognise handwritten digits from 0 to 9. LeNet-
300-100 is a fully connected network with two hidden layers (300 and 100
neurons each), reporting an error from 1.6% to 1.76% on MNIST [11], [24].
LeNet-5 is a convolutional network with two convolutional layers and two fully
connected layers, which achieves an error from 0.8% to 1.27% on MNIST [11],
[24].
We train two LeNet-300-100 networks of our own with errors of 1.57% and
1.60%; and two LeNet-5 networks with errors of 0.89% and 0.95%. All the
networks are initialised randomly with different seeds, and the training data
are also shuffled before every training epoch. After training, the ordering of
neurons/kernels in all hidden layers is once more randomly permuted. Therefore
the models have completely different parameters (weights). The training of
LeNet-300-100 and LeNet-5 networks requires 1.05×104 and 1.1×104 iterations
in average, respectively.
For sparse networks, we apply one iteration of L-OBS [11] to prune the weights
of the four LeNet networks. We then enforce all neurons to be shared in each
hidden layer of the two dense LeNet-300-100 networks, sparse LeNet-300-100
networks, dense LeNet-5 networks, and sparse LeNet-5 networks, using MTZ.
Results. Fig. 2.4a plots the average error after sharing different amounts of
neurons in the first layers of two dense LeNet-300-100 networks. Fig. 2.4b
shows the error by further merging the second layers. We compare MTZ with a
random sharing scheme, which shares neurons by first picking (ik, jk) at random,
and then choosing randomly between w̃A

l,ik
and w̃B

l,jk
as the shared weights w̃lk .

When all the 300 neurons in the first hidden layers are shared, there is an
increase of 0.95% in test error (averaged over the two models) even without
retraining, while random sharing induces an error of 33.47%. We also use MTZ
to fully merge the hidden layers in the two LeNet-300-100 networks without any
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Figure 2.4 Test error on MNIST by continually sharing neurons in (a) the first and
(b) the second fully connected layers of two dense LeNet-300-100 networks till the
merged layers are fully shared.

Table 2.1 Test errors on MNIST by sharing all neurons in two LeNet networks.

Model errA errB re-errC # re-iter

LeNet-300-100-Dense 1.57% 1.60% 1.64% 550
LeNet-300-100-Sparse 1.80% 1.81% 1.83% 800
LeNet-5-Dense 0.89% 0.95% 0.93% 600
LeNet-5-Sparse 1.27% 1.28% 1.29% 1200

retraining i.e., without line 10 in Algorithm 1. The averaged test error increases
by only 1.50%.
Table 2.1 summarises the errors of each LeNet pair before zipping (errA and
errB), after fully merged with retraining (re-errC) and the number of retraining
iterations involved (# re-iter). MTZ consistently achieves lossless network
zipping on FC and CONV networks, either they are dense or sparse, with
100% parameters of hidden layers shared. Meanwhile, the number of retraining
iterations is approximately 19.0× and 18.7× fewer than that of training a dense
LeNet-300-100 network and a dense LeNet-5 network, respectively.

2.5.2 Zipping Two Networks for Different Tasks

This experiment evaluates the performance of MTZ to automatically share
information among two neural networks for different tasks. We investigate:
(i) what the accuracy loss is when all hidden layers of two models for different
tasks are fully shared (in purpose of maximal size reduction); (ii) how much
neurons and parameters can be shared between the two models by MTZ with
at most 0.5% increase in test errors allowed (in purpose of minimal accuracy
loss); (iii) how MTZ performs compared with the state-of-the-art cross-model
compression schemes [6], [22].
Dataset and Settings. We first test the performance of MTZ for either
maximal size reduction or minimal accuracy loss. We merge two VGG-
16 networks trained on the ImageNet ILSVRC-2012 dataset [40] for object
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Table 2.2 Test errors and retraining iterations of sharing all neurons (output layer
fc8 excluded) in two VGG-16 networks for ImageNet and CelebA.

Layer NA
l

ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-errC re-errC w/o-re-errC re-errC

conv1_1 64 10.59% 10.61% 8.45% 8.43% 50
conv1_2 64 11.19% 10.78% 8.82% 8.77% 100
conv2_1 128 10.99% 10.68% 8.91% 8.82% 100
conv2_2 128 11.31% 11.03% 9.23% 9.07% 100
conv3_1 256 11.65% 11.46% 9.16% 9.04% 100
conv3_2 256 11.92% 11.83% 9.17% 9.05% 100
conv3_3 256 12.54% 12.41% 9.46% 9.34% 100
conv4_1 512 13.40% 12.28% 10.18% 9.69% 400
conv4_2 512 13.02% 12.62% 10.65% 10.25% 400
conv4_3 512 13.11% 12.97% 12.03% 10.92% 400
conv5_1 512 13.46% 13.09% 12.62% 11.68% 400
conv5_2 512 13.77% 13.20% 12.61% 11.64% 400
conv5_3 512 36.07% 13.35% 13.10% 12.01% 1× 103

fc6 4096 15.08% 15.17% 12.31% 11.71% 2× 103

fc7 4096 15.73% 14.07% 11.98% 11.09% 1× 104

classification and the CelabA dataset [41] for facial attribute classification. The
ImageNet dataset contains images of 1, 000 object categories. The CelebA
dataset consists of 200 thousand celebrity face images labelled with 40 attribute
classes. VGG-16 has 13 convolutional layers and 3 fully connected layers. We
adopt the pre-trained weights from the original VGG-16 model [2] for the
object classification task, which has a 10.31% error. For the facial attribute
classification task, we train a second VGG-16 model following a similar process
as in [26]. We initialise the convolutional layers of a VGG-16 model using the
pre-trained parameters from imdb-wiki [25], and train the remaining 3 fully
connected layers till the model yields an error of 8.50%, which matches the
accuracy of the VGG-16 model in [26] on CelebA.
We conduct two experiments with the two VGG-16 models. (i) All hidden layers
in the two models are 100% merged using MTZ. (ii) Each pair of layers in the
two models are adaptively merged using MTZ allowing an increase (< 0.5%) in
test errors on the two datasets.
Results. Table 2.2 summarises the performance when each pair of hidden
layers are 100% merged. The test errors of both tasks gradually increase during
the zipping procedure from layer conv1_1 to conv5_2 and then the error on
ImageNet surges when conv5_3 are 100% shared. After 1, 000 iterations of
retraining, the accuracies of both tasks are resumed. When 100% parameters
of all hidden layers are shared between the two models, the joint model yields
test errors of 14.07% on ImageNet and 11.09% on CelebA, i.e., increases of
3.76% and 2.59% in the original test errors.
Table 2.3 shows the performance when each pair of hidden layers are adaptively
merged. MTZ achieves an increase in test errors of 0.44% on ImageNet
and 0.45% on CelebA. Approximately 39.61% of the parameters in the two
models are shared (56.94% in the 13 CONV layers and 38.17% in the 2 FC
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Table 2.3 Test errors, number of shared neurons, and retraining iterations of
adaptively zipping two VGG-16 networks for ImageNet and CelebA.

Layer NA
l Ñl

ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-errC re-errC w/o-re-errC re-errC

conv1_1 64 64 10.28% 10.37% 8.39% 8.33% 50
conv1_2 64 64 10.93% 10.50% 8.77% 8.54% 100
conv2_1 128 96 10.74% 10.57% 8.62% 8.46% 100
conv2_2 128 96 10.87% 10.79% 8.56% 8.47% 100
conv3_1 256 192 10.83% 10.76% 8.62% 8.48% 100
conv3_2 256 192 10.92% 10.71% 8.52% 8.44% 100
conv3_3 256 192 10.86% 10.71% 8.83% 8.63% 100
conv4_1 512 384 10.69% 10.51% 9.39% 8.71% 400
conv4_2 512 320 10.43% 10.46% 9.06% 8.80% 400
conv4_3 512 320 10.56% 10.36% 9.36% 8.93% 400
conv5_1 512 436 10.42% 10.51% 9.54% 9.15% 400
conv5_2 512 436 10.47% 10.49% 9.43% 9.16% 400
conv5_3 512 436 10.49% 10.24% 9.61% 9.07% 1× 103

fc6 4096 1792 11.46% 11.33% 9.37% 9.18% 2× 103

fc7 4096 4096 11.45% 10.75% 9.15% 8.95% 1.5× 104

layers). The zipping procedure involves 20, 650 iterations of retraining. For
comparison, at least 3.7 × 105 iterations are needed to train a VGG-16 network
from scratch [2]. That is, MTZ is able to inherit information from the pre-
trained models and construct a combined model with an increase in test errors
of less than 0.5%. And the process requires at least 17.9× fewer (re)training
iterations than training a joint network from scratch.
For comparison, we also trained a fully shared multi-task VGG-16 with two
split classification layers jointly on both tasks. The test errors are 14.88% on
ImageNet and 13.29% on CelebA. This model has exactly the same topology
and amount of parameters as our model constructed by MTZ, but performs
slightly worse on both tasks.
Comparison with State-of-the-Arts. We compare our MTZ against two
recent cross-model compression schemes, Neural Weight Virtualisation [6]
(NWV for short) and ZipperNet [22] in the fully shared setting, i.e., in purpose
of maximal size reduction. We choose the fully shared setting because NWV
adopts hard parameter sharing, i.e., parameters are shared across all tasks.
ZipperNet allows partial parameter sharing but all the weights within a layer are
fully shared.
To compare with ZipperNet [22], we apply it to merge two VGG-16 networks
pre-trained on ImageNet and CelabA as above. Specifically, we perform filter
alignment by Hungarian algorithm for each CONV layer and then retrain the
merged network as [22]. The merging process starts with the first CONV layer
and continues until all CONV layers are merged. Since ZipperNet does not
apply to FC layers, we leave the two FC layers in the VGG-16 separate. For
fair comparison, the number of retraining iterations for each CONV layer is set
to the same as our MTZ (detailed numbers see Table 2.2). Fig. 2.5 plots the
test errors after fully merging each CONV layer in the two VGG-16 networks.
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Figure 2.5 Test errors after merging each CONV layer in two VGG-16 networks for
ImageNet and CelebA using ZipperNet [22].

Table 2.4 Test errors of the joint network merged by NWV [6] and MTZ. The joint
model is fully shared except the last classification layer.

GTSRB SVHN Average

NWV 7.04% 7.65% 7.35%
MTZ 1.05% 6.86% 3.96%

In general, ZipperNet performs worse than MTZ in terms of accuracy after
merging. The difference gets increasingly evident after merging the conv4_2
layer. In the end, ZipperNet only achieves a test errors of 15.43% on ImageNet
and 12.74% on CelebA, 2.08% and 0.73% worse than MTZ.
For comparison with NWV [6], we merge two ResNet-28 networks [58] to
cover diverse model architectures. The two ResNet-28 networks are pre-
trained on German Traffic Sign Recognition Benchmark (GTSRB) [59] and
Street View House Numbers (SVHN) [60]. Table 2.7 provides a summary
of the datasets. When merging the two ResNet-28 networks with NWV, the
weights are organised into 5, 822 weight-pages with a page size of 1, 000. Then
the weight-pages are retrained as in NWV to recover the inference accuracy.
Table 2.4 lists the test errors of the fully shared ResNet-28 model merged by
NWV and MTZ. MTZ achieves better accuracy than NMV on both tasks after
merging. Compared with NWV, MTZ yields 5.99% lower error on GTSRB and
0.79% on SVHN.
To demonstrate the feasibility of MTZ on merging models of similar
architectures yet different depth, we further merge a ResNet-28 network and a
ResNet-34 network, which are pretrained respectively on GTSRB and SVHN.
The two networks are merged layer-by-layer from the first layers and the extra
layers in the ResNet-34 are left independent. Table 2.5 shows the test errors of
the merged model. We can see that the merged model performs well on both
tasks, showing the effectiveness of MTZ merging networks with different depth.
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Table 2.5 Test errors of the joint network by merging ResNet-28 (pretrained on
GTSRB) and ResNet-34 (pretrained on SVHN) using MTZ. The joint model is merged
layer-by-layer from the first layers.

GTSRB SVHN Average

MTZ 1.14% 6.80% 3.97%

Table 2.6 Test errors of audio emotion classification network, visual emotion
classification network and the joint network merged by MTZ. 1× is the number
of parameters of one single ResNet excluding the last classification layer.

Model ResNet-28-Audio ResNet-28-Video ResNet-28-Fusion MTZ

#par. 1.0× 1.0 × 2.0 × 1.1 ×
Test Error 43.02% 39.65% 24.74% 28.42%

2.5.3 Zipping Two Networks for Different Input Domains

This experiment evaluates the performance of MTZ to merge two models for
different input domains. The aim is to show the potential memory saving to
share information among different models, even if they are designed for different
input domains, e.g., one for audio and the other for visual input. This is common
in mobile and ubiquitous computing with multiple sensing modalities.
Dataset and Settings. We experiment with an audio-visual emotion
classification task, where we perform emotion recognition from speech and
facial expression [28]. We use the same models as [28], where one ResNet-
28 network is used to extract audio representations and the other ResNet-28
network is used to extract facial features from video frames. The audio and
video features are concatenated and fed to full connected layers for emotion
recognition. The performance of emotion recognition is assessed on the RML
audio-visual dataset [30]. The RML database contains 720 utterances from 8
participants with 6 emotions: anger, disgust, fear, joy, sadness, and surprise.
We first train the two ResNet-28 networks for audio emotion classification
(ResNet-28-Audio) and video emotion classification (ResNet-28-Video) respec-
tively. The two models are then merged via full connected layers and fine-tuned
for audio-emotion classification (ResNet-28-Fusion). Finally we enforce sharing
90% of the neurons in the two networks (the last classification layer excluded)
via MTZ, which leads to a joint model of 1.1× the size of a single ResNet-28
network.
Results. Table 2.6 shows the accuracy of different models on emotion
classification. Comparing ResNet-28-Fusion with ResNet-28-Audio and ResNet-
28-Video, the emotion recognition error drops significantly from around 40% to
about 25%. However, this accuracy gain is at the cost of double the size of
the model, i.e., having twice the number of parameters of a single ResNet-28
network. Our MTZ method is able to enforce information sharing between
ResNet-28-Audio and ResNet-28-Video. Specifically, compared with ResNet-
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Table 2.7 A brief description of the datasets that each ResNet-28 network is trained
on.

Dataset Brief Description

CIFAR100 [61] 60, 000 colour images of 100 different object categories
GTSRB [59] 50, 000+ images for 43 traffic sign classes in different resolutions
Omniglot [62] 1, 623 different handwritten characters from 50 different alphabets
SVHN [60] 70, 000 images of digits cropped from street views
UCF101 [63] 13, 320 videos clips collected from YouTube for 101 action categories
Flowers102 [64] 8, 189 images of 102 categories of flowers
DPed [65] 50, 000 grey-scale images of pedestrians and non-pedestrians
DTD [66] 5, 640 texture images of 47 terms (categories) e.g., bubbly
FGVC-Aircraft [67] 10, 000 images of 100 different aircraft models e.g., Airbus A310

28-Fusion, our joint model only has 1.1 times the number of the parameters (in
contrast to 2 times), with only a 3.68% drop in emotion recognition accuracy.
The results indicate that inter-redundancy is not limited to models with the
same input domain and MTZ is able to suppress inter-redundancy among models
for different input domains.

2.5.4 Zipping More Than Two Networks

This experiment evaluates the scalability of MTZ and the benefit of cross-
model compression for running multiple models on embedded platforms. We
investigate: (i) what the accuracy loss is if more than two models are merged;
and (ii) what is the reduction in the model-switching time on resource-limited
devices if multiple models are merged.
Dataset and Settings. We adopt the models and datasets in [23], a
recent work on multi-task learning with ResNets. Specifically, nine ResNet-
28 networks [58] are trained for diverse image recognition tasks, including
CIFAR100 [61], German Traffic Sign Recognition Benchmark (GTSRB) [59],
Omniglot [62], Street View House Numbers (SVHN) [60], UCF101 [63], Flow-
ers102 [64], Daimler Mono Pedestrian Classification Benchmark (DPed) [65],
Describable Texture Dataset (DTD) [66] and FGVC-Aircraft [67]. Table 2.7
provides a brief summary of the datasets.
To test the scalability of MTZ, we enforce sharing 90% of the neurons in a single
ResNet-28 network with the other eight models, and evaluate the accuracy of
the joint model on each of the nine task.
To show the benefit of executing a compact joint model, we measure the delay
when switching between the nine inference tasks on the Jetson Nano embedded
platform [57]. A 32GB Sandisk microSD is connected to the platform to storage
the neural networks. To perform inference tasks on-device, the corresponding
model should be loaded from the microSD to the memory. When a new task is
performed, the parameters of the new model are loaded and the old parameters
in the memory are overwritten, as the memory resource is limited. Fig. 2.6
illustrates the setup to measure the execution time of the visual inference tasks
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Figure 2.6 Hardware setup to measure the execution time of the nine inference
tasks (the photo was for the traffic sign recognition task, i.e., the GTSRB dataset [59])
on the Jetson Nano embedded platform.

Table 2.8 Test errors of pre-trained single ResNets and the joint network merged
by MTZ. The joint model is compressed to 1.8× of a single model. 1× is the number
of parameters of a single ResNet-28 excluding the last classification layer. Without
MTZ the joint model would have a size of 9×.

CIFAR100 GTSRB Omniglot SVHN UCF101 Flowers102 DPed DTD FGVC Average

Single 28.97% 0.56% 14.97% 6.04% 36.68% 37.45% 0.56% 67.61% 58.75% 27.96%
Joint 31.88% 0.51% 16.94% 6.70% 36.22% 37.35% 0.51% 67.71% 58.30% 28.42%

on the embedded platform. To measure the model-switching time, tasks are
performed in a random sequence but each one from the 9 tasks is performed
10 times.
Results. Table 2.8 shows the accuracy of each individual pre-trained model
and the joint model on the nine tasks. Compared with each individual model,
the accuracy of the joint model only drops by 0.46% (averaged across the nine
tasks). However, the total storage for the nine models decreases from 9× to
only 1.8× of a single ResNet-28 network. The results show that MTZ is able to
enforce neuron sharing among dozens of models for diverse tasks while retaining
the inference accuracy on each task.
Fig. 2.7 shows the averaged time needed to update the parameters in the
memory for new tasks. As 90% of the parameters are shared, only 10% of
the parameters in the memory are needed to be updated when we use the
joint model. Hence the model-switching time when using the joint model is
significantly lower than that when using individual models. In general, the joint
model is able to achieve 8.71× lower model-switching time.
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Figure 2.7 Averaged model-switching time between the nine tasks.

2.6 Conclusion

We propose MTZ, a framework to automatically merge multiple correlated, well-
trained deep neural networks for cross-model compression via neuron sharing.
It selectively shares neurons and optimally updates their incoming weights on
a layer basis to minimise the errors induced to each individual task. Only light
retraining is necessary to resume the accuracy of the joint model on each task.
Evaluations show that MTZ can fully merge two VGG-16 networks with an error
increase of 3.76% and 2.59% on ImageNet for object classification and CelebA
for facial attribute classification, or share 39.61% parameters between the two
models with < 0.5% error increase. The number of iterations to retrain the
combined model is 17.9× lower than that of training a single VGG-16 network.
Meanwhile, MTZ can share 90% of the parameters among nine ResNets on
nine different visual recognition tasks while inducing negligible loss in accuracy.
The joint model also reduces the model-switching time between these inference
tasks on memory-constrained devices by 8.71×. Experiments show that MTZ
also applies to sparse networks and models for different input domains.
MTS is an effective weight sharing method for the first and second type of
MMDL system, discussed in Sec. 1.4.1 and Sec. 1.4.2, respectively. And
weight sharing is effective in reducing the number of parameters. However,
as those models merged via MTZ must be concurrently executed on-device,
the parallel execution of multiple models is necessary for optimal latency and
energy consumption. As we will see in the next chapter, weight sharing among
models creates challenges for such parallel execution. Existing parallel execution
schemes do not fully support weight-shared models, and the resulted memory
usage and latency are therefore suboptimal due to the forced duplication of
shared weights. In Chapter 3, we will investigate this problem in detail and
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provide a novel solution for the efficient execution of MTZ-merged models.



3
Multi-Task Stitching: Efficient On-Device

Execution of Weight-Shared Models

With the help of our Multi-Task Zipping framework introduced in Chapter 2, we
can construct weight-shared neural networks for multiple different yet correlated
tasks for edge devices. Naturally, the next step is to try deploying these models
on-device. However, as discussed in Sec. 1.4.2, it is a non-trivial problem to
efficiently execute weight-shared neural networks, such as the networks merged
by MTZ, on GPU enabled mobile and embedded edge devices. Most deep
neural network (DNN) graph rewriters are blind for multi-DNN compression,
while GPU vendors provide inefficient APIs for parallel multi-DNN execution
at runtime. A few prior graph rewriters suggest cross-model graph fusion for
low-latency multi-DNN execution. Yet they request duplication of the shared
weights, erasing the memory saving of weight-shared DNNs.
In this chapter, We design Multi-Task Stitching (MTS), a novel graph rewriter
for efficient multitask inference with weight-shared DNNs. MTS adopts a model
stitching algorithm which outputs a single computational graph for weight-
shared DNNs without duplicating any shared weight. MTS also utilises a model
grouping strategy to avoid overwhelming the GPU when co-running tens of
DNNs. Extensive experiments show that MTS accelerates multitask inference
by up to 6.0× compared to sequentially executing multiple weight-shared DNNs.
MTS also yields up to 2.5× lower latency and 3.7× less memory usage than
NETFUSE, a state-of-the-art multi-DNN graph rewriter.

3.1 Introduction

Deep learning empowered ubiquitous applications increasingly demand the
co-execution of multiple deep neural networks (DNNs), known as multitask
inference, for complex cognitive analysis [5], [6], [21], [68], [69]. In multitask
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inference, multiple DNNs, each pre-trained for a single inference task, run
concurrently on resource-constrained platforms ranging from edge servers [69],
[70] to embedded devices [5], [6], [21], [29] for correlated inference tasks. Such
multitask inference is critical for future applications such as smart glasses that
identify user attributes e.g., age, gender, face, and recognise objects [5], [22],
[29], [69], [71], personal robots that classify places and sounds [6], autonomous
vehicles that perceive the surroundings with front, side, rear camera views [68],
home hubs that recognise emotions from speech and facial expression [28], [72]
etc.
For efficient execution on low-resource platforms, DNNs often undergo multiple
levels of optimisations. At the model level, over-parameterised DNNs can be
compressed without loss in inference accuracy [8], [73]. The compressed DNNs,
typically represented as computational directed acyclic graphs (DAGs), are then
optimised at the graph level via sub-graph fusion and substitution to generate
functionally equivalent yet faster DAGs for the target hardware platform [18],
[74]. The DAGs can be further optimised at the runtime level for better
resource utilisation via hardware-aware scheduling [75], [76]. Mainstream deep
learning development frameworks such as TensorFlow [77] and PyTorch [78]
support automatic and customised model- or graph-level optimisations whereas
hardware vendors like NVIDIA also provide APIs for user-specified runtime-
level accelerations. Despite extensive research on efficient DNN execution [13],
[46], [73], [79]–[81], most efforts focus on accelerations within a single model,
overlooking the potential gains from cross-model optimisation.
An emerging technique for efficient multitask inference is cross-model weight
sharing [6], [20], [22], [29], [72], [82]. Sharing weights across DNNs pre-trained
for correlated inference tasks reduces the memory footprint to deploy them on
low-memory devices. Task correlation is pervasive since multiple DNNs may
take the same input to generate different labels, or augment complimentary
inputs to jointly output a single label. For example, DNNs that identify user
age and faces from the same input image may extract similar low-level features,
while DNNs for video- and audio-based emotion recognition may share similar
high-level features. As illustrated in Fig. 3.1(b), cross-model weight-sharing
methods automatically identify correlated weights (coloured in green) among
weight matrices pre-trained for different tasks (see Fig. 3.1(a)). Such weight-
shared DNNs significantly save the storage for multitask inference.
However, the memory saving of weight-shared DNNs fails to translate into
efficient execution with existing graph- and runtime-level optimisations. On the
one hand, popular graph rewriters such as TVM [18] and NVIDIA TensorRT
[74] optimise each DAG in isolation (see Fig. 3.1(c)). Such graph rewriting
duplicates the shared weights to create independent DAGs for each task. On
the other hand, native runtime APIs such as CUDA Stream [83] and NVIDIA
MPS [84] offer limited multi-DNN parallelism support. Executing individual
DAGs as multiple streams leads to not only high memory cost, but also latency
almost as large as executing these DAGs sequentially (see Fig. 3.1(f)-(g)). In
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Figure 3.1 Executing weight-shared neural networks on a GPU. (a) Input and pre-
trained single-task models for two correlated tasks 1 and 2. (b) Cross-model weight-
sharing for storage saving of models. The green portion represents the shared weights
uncovered by techniques such as [6], [22], [29]. Multitask inference on weight-shared
networks can be compiled as (c) two separate computational graphs; (d) a single
computational graph by duplicating shared weights; or (e) a single computational
graph without duplicating shared weights. At runtime, (f) sequential execution of
two graphs incurs long latency; (g) parallel execution of two graphs leads to both
high memory footprint and long latency due to inefficient GPU runtime support; (h)
the state-of-the-art executes a combined graph with a single stream, but duplicates
the shared weights. (i) Our objective is to achieve both low memory and low latency.

fact, the state-of-the-art multi-DNN graph rewriters [32], [85] suggest cross-
model fusion into a single DAG (see Fig. 3.1(d)) to comply with the default
one-DNN-per-stream execution logic in most deep learning frameworks [68].
Yet these multi-DNN graph rewriters duplicate the shared weights, thus erasing
the memory saving of weight-shared DNNs (see Fig. 3.1(h)).
In this chapter, we explore graph rewriting strategies dedicated to weight-shared
DNNs for efficient multitask inference. Specifically, we aim to generate a
single DAG for weight-shared DNNs without duplicating the shared weights
(see Fig. 3.1(e)) to achieve both low latency and memory at runtime when
executed on GPU (see Fig. 3.1(i)). We focus on graph-level optimisation to
induce minimal changes and dependency to the runtime. Advanced multi-DNN
runtime optimisations [70], [71], [86] are often complex to implement and rely
on hardware-specific APIs such as CUDA Stream [83], which are inaccessible
on platforms like mobile GPUs [87].
We design Mulit-Task Stitching (MTS), a novel cross-model graph rewriting
framework for efficient multitask inference with weight-shared DNNs. The
core of MTS is a model stitching algorithm which outputs a single DAG for
multiple DNNs without duplicating their shared weights, which minimises the
runtime memory. MTS also incorporates a model grouping strategy to organise
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multiple models in groups to saturate, yet not overwhelm the GPU. Our main
contributions and results are as follows.
■ We are the first to address the problem of runtime memory saving for cross-
model weight sharing.
■ We propose MTS, which preserves the benefits of cross-model weight sharing
to minimise runtime memory usage, and achieves pseudo-parallelism for low
latency.
■ Experiments are conducted on different hardware platforms, numbers of
tasks, network architectures, pruning ratios, sharing ratios, batch sizes and
heterogeneity. Results show that MTS is able to accelerate up to 6.0× compare
to sequentially executing multiple weight-shared DNNs. MTS also yields up to
2.5× lower latency and 3.7× less memory usage compared with state-of-the-art
multi-DNN graph rewriter [32].
In the rest of this chapter, we state our problem in Sec. 3.2, introduce the MTS
overview in Sec. 3.3, and elaborate on its model stitching and grouping schemes
in Sec. 3.4 and Sec. 3.5, respectively. We present the evaluations in Sec. 3.6,
review related work in Sec. 3.7, and finally conclude in Sec. 3.8.

3.2 Problem Statement

We focus on graph rewriting of weight-shared DNNs for efficient multitask
inference on single-GPU platforms. We justify our objectives and scope in
details below.
Objectives. We use runtime memory and overall latency to assess the
efficiency of multitask inference. Specifically, we would like to preserve the
memory saving of cross-model weight sharing i.e., the benefits of weight-
shared DNNs [6], [20], [22], [29], [72], [82], while achieving low latency when
performing multiple inference tasks.
Scope. We target at efficient multitask inference on devices equipped with
a single GPU (either desktop- or mobile-grade) by implementing pseudo-
parallelism at the graph-level optimisation of DNNs.
■ We focus on GPUs because they are common hardware accelerators widely
deployed to even low-resource devices. However, inference with mult[88] or
heterogeneous resources [5], [68] is out of our scope.
■ We aim at high parallelism to execute multiple DNNs for low overall latency.
Improving parallelism is a tangible strategy because DNN inference often under-
utilises the GPUs due to low computation density of operations and too few
inputs for batching [70], [85], [87], [89]. Such under-utilisation exists in both
desktop-[70] and mobile-grade [87], [90] GPUs. As an example, the NVIDIA
GEFORCE RTX 2080 Ti GPU suffers from severe resource under-utilisation
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Figure 3.2 Opportunities and challenges of parallel DNN execution. (a) GPU
utilisation with ResNet50. (b) Inference latency of a single fully connected layer
using parallelism support available on commodity GPU runtime.

when executing ResNet50, a representative convolutional neural network (see
Fig. 3.2a).
■ We resort to implement pseudo-parallelism at the graph level rather than
the runtime level due to the limited parallelism API support provided by GPU
vendors. Parallelism APIs for desktop GPUs such as CUDA Stream [83] and
NVIDIA MPS [84] allow parallel execution of multiple inference tasks, with each
model running in a different stream. Nevertheless, such runtime-level parallelism
incurs non-trivial contentions [70], scheduling overhead [86], and kernel launch
overhead [32], which dominate the overall latency of multitask inference. Even
worse, such parallelism APIs are unavailable in mobile GPUs [87]. As a toy
example, we measure the latency of executing a single fully connected layer for
multiple times. As shown in Fig. 3.2b, parallel execution with multiple CUDA
streams fails to deliver the expected acceleration over sequential execution.

3.3 MTS Overview

This section presents the overview of Multi-Task Stitching (MTS), a graph
rewriting scheme for low latency, low runtime memory multitask inference on
GPU-enabled devices. We illustrate our solution with MTZ [29], [72], a recent
method to generate weight-shared DNNs. Our solution also applies to other
cross-model weight-sharing schemes [6], [22], [82].

3.3.1 Notations

For ease of presentation, we explain our methods with fully-connected (FC)
layers and extend to other layers in Sec. 3.4.2.
Consider T models {Mt} where 1 ≤ t ≤ T . Each model is a well-trained DNN
for an inference task t. Let Fl

t and Al
t be the feature map (weight matrix for
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Figure 3.3 Notations for two tasks 1 and 2. (a) Layer (l−1) and l without weight-
sharing as well as (b) the corresponding dimensions of the activations at layer (l − 1)
and the weights at layer l. (c) Layer (l − 1) and l with weight-sharing as well as (d)
the corresponding dimensions of the activations at layer (l − 1) and the weights at
layer l.

FC layers) and the output activation in layer l (0 ≤ l ≤ L) of model Mt. Then
the input activation of layer l is Al−1

t , i.e., the output activation of layer (l−1).
Accordingly, A0

t represents the input of Mt. Further assume for Mt, the input
batch size is Bt and the number of neurons in layer l is C l

t. Then in layer l, the
input activation Al−1

t ∈ RBt×Cl−1
t , and the weight matrix Fl

t ∈ RCl−1
t ×Cl

t .
Without cross-model weight-sharing, the weight matrices {Fl

t} of multiple
models {Mt} are stored separately (see Fig. 3.3a for layer l of two models).
The corresponding computations are also performed as separate computational
graphs, i.e., Al−1

t × Fl
t at layer l for each Mt, where × is matrix multiplication,

as shown in Fig. 3.3b.
With cross-model weight-sharing like [29], [72], each model shares certain
amount of neurons on a layer basis while keeping other neurons exclusive.
Concretely, the weight matrix Fl

t at layer l of model Mt is split into four portions:
Ul ∈ RC̃l−1×C̃l , Xl

t ∈ RC̃l−1×Ĉl
t , Yl

t ∈ RĈl−1
t ×C̃l , and Zl

t ∈ RĈl−1
t ×Ĉl

t , where
C̃ l and Ĉ l

t are the number of shared and task-t-exclusive neurons at layer l,
which are automatically determined by cross-model weight-sharing algorithms.
Matrix Ul is shared among models and thus only one copy is stored, as shown
in Fig. 3.3c. During computation, the input activation Al−1

t is split into two
portions: Pl−1

t ∈ RBt×C̃l−1 and Ql−1
t ∈ RBt×Ĉl−1

t . The Pl−1
t contains all

shared neurons of activation Al−1, while Ql−1
t contains the remaining exclusive

neurons. Fig. 3.3d illustrates the dimensions of each matrix. Specifically,
Ul transfers input activation’s shared neurons to output activation’s shared
neurons. Similarly, Xl

t transfers shared neurons to exclusive ones, Yl
t transfers

exclusive neurons to shared ones, and Zl
t transfers exclusive neurons to exclusive

ones. Table 3.1 summarises the major notations.



3.4. Model Stitching 47

Table 3.1 Summary of major notations.

Notation Explanation

t, Mt, Bt task t, its model Mt with input batch size Bt

Fl
t, Al

t kernels/weights, output activations of layer l of Mt

Cl
t, Hl

t, W l
t # neurons/channels, height, width for Al

t
Kl

t kernel size for Fl
t

C̃l, Ĉl
t # shared, exclusive neurons of layer l of Mt

Takeaways. As shown in Fig. 3.3c, cross-model weight-sharing saves storage
of weight matrices, i.e., Ul. However, such storage saving does not readily
translate into runtime GPU memory saving, due to the lack of a cross-model
computational graph rewriter. Naive execution of weight-shared DNNs as
Fig. 3.3d duplicates the shared matrix Ul, and regards weight-shared DNNs
as multiple separate computational graphs. Such execution may incur high
runtime memory footprint and long latency. Our solution is to stitch both the
activations and weight matrices of multiple models as a single computational
graph without duplicating the shared matrix Ul for efficient execution on GPU,
as explained in detail next.

3.3.2 Functional Modules

MTS aims at pseudo-parallelism of weight-shared DNNs at the graph level. This
is realised by stitching the activations and weight matrices of multiple tasks into
a single stream to better utilise the GPU. The core design of MTS consists of
two complementary schemes (see Fig. 3.4).
■ A model stitching scheme (Sec. 3.4) that reconstructs multiple computa-
tional graphs into a single one without duplicating shared weights, for spatial
multiplexing of the GPU among multiple models in parallel.
■ A model grouping scheme (Sec. 3.5) that determines which models to
be grouped for stitching without overwhelming the available resources, where
groups of models are sequentially executed with high utilisation, i.e., temporal
multiplexing the GPU among model groups.

3.4 Model Stitching

The model stitching scheme combines the separate computational graphs into
a single one without duplicating the shared weights. It demands cross-model
stitching of both the input/output activations and the weight matrices. We
present the stitching methods for two FC layers (Sec. 3.4.1), other common
layer types (Sec. 3.4.2), and finally discuss the scalability to stitch more than
two models (Sec. 3.4.3).
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Figure 3.5 Illustrations of model stitching for (a) special case 1; (b) special case
2; and (c) the general case.

3.4.1 Stitching Two Fully Connected Layers

Consider the two fully connected (FC) layers in Fig. 3.3d. Our objective is to
reconstruct the input activations Al−1

1 and Al−1
2 as Al−1

Stitch, and the weight
matrices Fl

1 and Fl
2 as Fl

Stitch, which still results in valid matrix multiplication
Al−1

Stitch × Fl
Stitch, without duplicating the shared weights Ul.

We start with the two special cases which inspire our stitching method for the
general case.

3.4.1.1 Special Case 1

Layers l of the two models share all input neurons, i.e., Ĉ l−1
1 = Ĉ l−1

2 = 0. This
is the case when the last layer is fully merged. Accordingly, the total number
of input neurons is C l−1

1 = C l−1
2 = C̃ l−1. The input activations Al−1

1 = Pl−1
1

and Al−1
2 = Pl−1

2 . The weight matrices are simplified as Fl
1 =

[
Ul Xl

1

]
and

Fl
2 =

[
Ul Xl

2

]
(Fig. 3.5a top).

We can concatenate input activation along the batch-size dimension (Fig. 3.5a
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bottom).

Al−1
Stitch =

[
Pl−1

1
Pl−1

2

]
(3.1)

For valid matrix multiplication, we can concatenate the weight matrices as
(Fig. 3.5a bottom):

Fl
Stitch =

[
Ul Xl

1 Xl
2

]
(3.2)

Multiplying the two stitched matrices, we have

Al
Stitch = Al−1

Stitch × Fl
Stitch =

[
Pl−1

1 Ul Pl−1
1 Xl

1 Pl−1
1 Xl

2
Pl−1

2 Ul Pl−1
2 Xl

1 Pl−1
2 Xl

2

]

Comparing the original calculations without stitching:

Al
1 = Al−1

1 × Fl
1 =

[
Pl−1

1 Ul Pl−1
1 Xl

1

]
Al

2 = Al−1
2 × Fl

2 =
[
Pl−1

2 Ul Pl−1
2 Xl

2

]
From special case 1, we make the following observations.
■ We can obtain the output activations of the two models from Al

Stitch with
simple matrix rearrangements.
■ The stitching strategy introduces certain redundant calculations, i.e., Pl−1

1 Xl
2

and Pl−1
2 Xl

1.

3.4.1.2 Special Case 2

Layers l of the two models share all output neurons, i.e., Ĉ l
1 = Ĉ l

2 = 0. This may
take place when the next layer is fully merged. In this case, we cannot simplify
the input activations. However, since the weight matrices can be represented
by Fl

1 =
[
UlT Yl

1
T
]T

, Fl
2 =

[
UlT Yl

2
T
]T

(Fig. 3.5b top). Naturally, we
may concatenate the weight matrices along the the output-neuron dimension
(Fig. 3.5b bottom) since we have C l

1 = C l
2 = C̃ l.

Fl
Stitch =

Ul

Yl
1

Yl
2

 (3.3)

Stitching of the input activations, however, is slightly more difficult due to the
unequal numbers of input neurons. An intuitive solution is to expand Al−1

1 and
Al−1

2 with additional zeros. Thus, the stitched input activation is (Fig. 3.5b
bottom).

Al−1
Stitch =

[
Pl−1

1 Ql−1
1 0

Pl−1
2 0 Ql−1

2

]
(3.4)

The stitched output activation is calculated as

Al
Stitch = Al−1

Stitch × Fl
Stitch =

[
Pl−1

1 Ul + Ql−1
1 Yl

1
Pl−1

2 Ul + Ql−1
2 Yl

2

]
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Note that the top half of Al
stitch is exactly the layer l output activation of M1,

i.e., Al−1
1 × Fl

1, while the bottom half is exactly the layer l output activation
of M2, i.e., Al−1

2 × Fl
2.

From special case 2, we make the following observations.
■ We can obtain the output activations of the two models from Al

Stitch without
redundant calculations.
■ Stitching introduces extra zeros in the input activations.

3.4.1.3 General Case

Now we consider the general case to stitch two FC layers. The input activations
and the weight matrices are as follows (Fig. 3.5c top):

Al−1
1 =

[
Pl−1

1 Ql−1
1

]
, Al−1

2 =
[
Pl−1

2 Ql−1
2

]
,

Fl
1 =

[
Ul Xl

1
Yl

1 Zl
1

]
, Fl

2 =
[
Ul Xl

2
Yl

2 Zl
2

]
The input activations are in the same form as special case 2, and we can stitch
inputs following Eq.(3.4). It is less obvious how to stitch the weight matrices.
We can deduce from the two special cases that the stitched weight matrix
Fl

Stitch should follow the structure below.

Fl
Stitch =

Ul Xl
1 Xl

2
Yl

1 ? ?
Yl

2 ? ?


Taking the matrix size and the output values into account, we stitch Zl

1 and
Zl

2 into Fl
Stitch into the bottom-right as follows (Fig. 3.5c bottom).

Fl
Stitch =

Ul Xl
1 Xl

2
Yl

1 Zl
1 0

Yl
2 0 Zl

2

 (3.5)

Accordingly, the stitched output activation is calculated as
Al

Stitch = Al−1
Stitch × Fl

Stitch = (3.6)[
Pl−1

1 Ul + Ql−1
1 Yl

1 Pl−1
1 Xl

1 + Ql−1
1 Zl

1 Pl−1
1 Xl

2
Pl−1

2 Ul + Ql−1
2 Yl

2 Pl−1
2 Xl

1 Pl−1
2 Xl

2 + Ql−1
2 Zl

2

]

Discussions. We make the following notes on our scheme to stitch two FC
layers, i.e., Eq.(3.4) and Eq.(3.5).
■ The stitched output activation involves redundant calculations, i.e., Pl−1

1 Xl
2

and Pl−1
2 Xl

1 in Eq.(3.6). We quantify the impact of these redundant
calculations in Sec. 3.4.3.
■ If we set the redundant elements in Al

Stitch, i.e., Pl−1
1 Xl

2 and Pl−1
2 Xl

1, to
zeros, it just becomes the stitched input activation of the layer l + 1. That is,
we do not need to split and restitch the activations between layers.
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3.4.2 Stitching More Than FC Layers

Now we extend our stitching strategy to layer types in representative
convolutional neural networks (CNNs).

3.4.2.1 Stitching Convolutional Layers

Convolutional (CONV) layers are the primary building blocks for convolutional
neural networks. Matrix multiplication can be considered as a special
convolution with input feature map size and kernel size of (1, 1). Therefore,
neurons in a FC layer correspond to channels in a CONV layer. In a CONV
layer, the input Al−1

i ∈ RBt×Cl−1
t ×Hl

t×W l
t and weight Fl

t ∈ RCl
t×Cl−1

t ×Kl
t×Kl

t are
non-degenerate 4D tensors. Therefore, we can stitch CONV layers in the same
way as FC layers. The only changes is to replace all 2D matrices with 4D
tensors. This ensures the flexibility and efficiency of MTS.
Note that algorithms like im2col can convert convolution into matrix
multiplication. Hence another solutions is to stitch the FC layers transformed
from CONV layers. However, im2col is only efficient when the kernel size is
small and it may notably increase the memory footprint [91].As a result, we do
not use this solution in the final implementation.

3.4.2.2 Stitching Residual Blocks

Residual blocks are the main components of residual networks. Different from
FC Layers and CONV Layers, the residual block is a mixture of multiple layers.
It primarily consists of several convolution operators and one addition operator.
The major difference is that the residual block is a two-branch network instead of
a series of base layers strung sequentially. Existing cross-model weight-sharing
methods [72] merge residual blocks by sharing the same input/output neurons
across these two branches. Therefore, we can stitch CONV layers along each
branch independently and exploit the stitched addition operator (more details
in the Sec. 3.4.2.3) to combine two branch outputs.

3.4.2.3 Stitching Other Layers/Operators

There are a few other common layers or operators in mainstream DNNs. We
briefly discuss their stitching below.
■ Element-wise Binary Operators. Element-wise binary operators are common
in DNN models, e.g., the residual block uses an addition operator to merge
two branches. Note that we only stitch tensors/matrices over the neurons
dimension. Therefore, our stitching scheme does not affect element-wise
operators. We can directly apply these element-wise operators over stitched
inputs.
■ Batch Normalisation (BN) Layers. The BN layer is applied to the outputs



52 Chapter 3. Multi-Task Stitching: Efficient On-Device Execution of Weight-Shared Models

to keep their mean close to 0 and standard deviation close to 1. Assume the
output of the previous CONV layer is x. The output of the BN layer can be
written as

BN(x) = x − µ√
σ2 + ϵ

· γ + β

where µ, σ are the pre-calculated mean and standard deviation. γ, β are two
learnable parameters. Since the parameters in the BN layer vary across models,
it is impossible to stitch these BN layers into one. However, since the parameters
are fixed after training, we can fuse BN layers into their respective previous
CONV layer by modifying the weights and bias of this CONV layer. Thus
stitching BN layers is transformed into stitching CONV layers, which has been
solved in Sec. 3.4.2.1.
■ Activation/Pooling Layers. Activation layers are applied for better fitting
non-linear functions, while pooling layers are used to decrease data dimensions.
Since the activation function and pooling function take a single element or a
cluster of elements as input, our stitching algorithm does not interfere with
these layers. The only trifle is that we add additional zeros in inputs and
outputs, while activation functions like Sigmoid(·) map zeros to 0.5′s. These
zeros need to be preserved for correct feed-forward computation.

3.4.3 Stitching Multiple Layers

So far we have shown how to stitch layers of two models. We now use the FC
layers to illustrate how T > 2 models are stitched. We can extend Eq.(3.4) to
stitch input activations and Eq.(3.5) to stitch weight matrices as:

Al−1
Stitch =


Pl−1

1 Ql−1
1 0 . . . 0

Pl−1
2 0 Ql−1

2 . . . 0
... ... ... . . . ...

Pl−1
T 0 0 . . . Ql−1

N

 (3.7)

Fl
Stitch =



Ul Xl
1 Xl

2 . . . Xl
T

Yl
1 Zl

1 0 . . . 0
Yl

2 0 Zl
2 . . . 0

... ... ... . . . ...
Yl

T 0 0 . . . Zl
T

 (3.8)

Hence Al
Stitch, the result of Al−1

Stitch × Fl
Stitch, has a similar structure to Al−1

Stitch,
from which we can obtain Al

t.
Analysis of Stitched Model. As mentioned in Sec. 3.4.1, the stitching scheme
introduces redundant computation. We now estimate the overall computation
of a stitched model.
Assume Al

Stitch and Fl
Stitch have dimensions of BS × C l−1

S and C l−1
S × C l

S.
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Then BS, C l−1
S , and C l

S are computed as:

BS =
T∑

t=1
Bt C l−1

S = C̃ l−1 +
T∑

t=1
Ĉ l−1

t C l
S = C̃ l +

T∑
t=1

Ĉ l
t

The floating point operations (FLOPs) of the stitched model is then estimated
as

Gl
S = BS × C l−1

S × C l
S

For simplicity, assume

B1 = B1 = · · · = BT = B

Ĉ l−1
1 = Ĉ l−1

2 = · · · = Ĉ l−1
T = (1 − αl−1) · C l−1

t = (1 − αl−1) · C l−1

Ĉ l
1 = Ĉ l

2 = · · · = Ĉ l
T = (1 − αl) · C l

t = (1 − αl) · C l

(3.9)

where αl−1, αl ∈ [0, 1] are the sharing ratios in cross-model weight-sharing [29],
[72]. Substituting with Eq.(3.6), the stitched weight/model size and the total
FLOPs can be estimated as

Model-Size = C l−1
S × C l

S

=
(
αl−1 + T · (1 − αl−1)

) (
αl + T · (1 − αl)

)
·C l−1C l

FLOPs = BS × C l−1
S × C l

S

= T
(
αl−1 + T · (1 − αl−1)

) (
αl + T · (1 − αl)

)
·C l−1C lB

Hence the stitched model size is O(T 2) with O(T 3) FLOPs.
Discussions. We make the following notes.
■ Since the GPU is under-utilised [70], [87], [90] for inference, the redundant
computation improves the throughput and reduces the overall latency of
multitask inference compared with executing without stitching, as empirically
validated in Sec. 3.6 (MTS against Sequential).
■ The redundant computation does impair the scalability to more e.g., tens
of tasks, which motivates the model grouping design in Sec. 3.5 for temporal
multiplexing the GPU without overwhelming. Experimental results show that
with model grouping, our method achieves comparable latency with NETFUSE
[32], the state-of-the-art multi-DNN graph rewriter, with notably lower runtime
GPU memory usage.
■ Note that the model size and FLOPs decrease with the sharing ratios αl−1

and αl. It indicates that when the sharing ratios comes to 1, i.e., all neurons
shared, all the T models are exactly the same and MTS simply batches inputs.
Therefore, MTS can be considered as a novel extension of input batching.
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Algorithm 2: Model Grouping Algorithm
input : weight-shared models Mt(1 ≤ t ≤ T ), corresponding inputs A0

t
output: model grouping scheme G, s.t. ∀Mt ∈ {Mt | 1 ≤ t ≤ T}, ∃!Gi ∈ G, Mt ∈ Gi

1 if models have the same structure and input batch size then
2 F0 ← 0;
3 foreach n ∈ [2, T ] do
4 Ln ← latency to assign n models in one group;
5 Fn ← min

1≤j≤n
{Ln, Fn−i + Li} ;

6 extract G from the derivation of FT ;

7 else if T is small then
8 H∅ ← 0;
9 foreach S ⊆ {Mt | 1 ≤ t ≤ T} do

10 LS ← latency to assign all models in S in one group;
11 HS ← min

S′⊂S
{LS , HS′ +HS\S′};

12 extract G from the derivation of H{Mt|1≤t≤T };

13 else
14 foreach G ∈ [1, T ] do
15 construct empty groups Ĝ ← {G1,G2, · · · ,GG};
16 set group-queue [G1, · · · ,GG−1,GG,GG,GG−1, · · · ,G1,G1,G2, · · · ];
17 sort models in descending order of latency;
18 group models in the order of group-queue;
19 get Ĝ’s latency, update G if Ĝ has shorter latency;

20 return G

3.5 Model Grouping

In this section, we present the model grouping scheme of MTS. It facilitates
efficient multitask inference with even tens of models. Specifically, the T models
are organised into a groups G = {Gi | 1 ≤ i ≤ G}. The groups are executed
sequentially, whereas models within a group are stitched and executed in parallel.
For efficient grouping, we propose a greedy-based grouping scheme as illustrated
in Algorithm 2. Its details are explained below.
Same Model Structure and Batch Size (Line 1-6). In this case, each model
can be considered as the same inference task. Thus the latency of a group is
only dependent on the number of tasks grouped. In line 2-6, we use dynamic
programming to get the optimal grouping. Specifically, let Fn as the minimum
latency of the first n models. The recursive definition of Fn in line 5 chooses
the optimal scheme by assigning j tasks to one group, and the remaining n − j
tasks to other groups. Finally, we construct an optimal group scheme according
to the computing progress of FT (line 6).
Small Number of Tasks T (Line 7-12). In this case, we use state
compression dynamic programming to get the optimal grouping scheme. Let HS
be the minimum latency of all models in set S. The recursive definition in line 11
explains how to find the optimal inference: either assign all models and execute
in one time, or pick some (S ′ ⊂ S) models to execute first. The optimal group
scheme can be constructed by the computing progress of H{Mt|1≤t≤T} (line 12).
General Case (Line 14-19). In the most general case, we group the models
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greedily. Specifically, we enumerate the total number of groups from 1 to T , and
put all models into groups in a balanced way (Line 15-18). The best grouping
scheme is chosen. The criterion is to balance the latency among groups.
Discussions. We make two notes on the model grouping.
■ Despite the greedy grouping, it finds the optimal solution if the model size
and batch sizes are the same, or with a small number of tasks (empirically set
as 15).
■ The algorithm requires inference latency estimates (Line 4, 10, 17). The
latency can be estimated offline by direct measurements, or more efficiently, by
exploiting latency estimators such as nn-Meter [92]. In our implementation, we
measure the latency directly.

3.6 Evaluation

3.6.1 Evaluation Setup

Platforms and Implementation. We conduct experiments on two platforms:
Jetson Tx2 and an edge server. Jetson Tx2 is a mobile computing platform
equipped with a Quad-Core ARM Cortex-A57 MPCore (NVIDIA Denver 2
CPU was disabled during experiments) and 8GB RAM, as well as a 256-core
Pascal-based GPU. The edge server is equipped with an 32-core Intel Xeon
E5-2620@2.10GHz processor and 256GB RAM, as well as a NVIDIA GEFORCE
RTX 2080 Ti. All the algorithms are implemented with PyTorch in Python.
Inference Workload. We experiment with three representative CNNs:
ResNet18, ResNet50 and VGG16. Due to the limited resources on mobile and
edge devices, we also considered pruned versions of these models. Note that
cross-model weight-sharing schemes [29], [72] can also merge pruned models.
To generate multitask inference workload, we merge a given number of the three
CNN types, either pruned or unpruned, by MTZ [29]. We test different model
number, pruning ratios, and sharing ratios. We consider a batch size of 1 since
most inference tasks demand real-time processing. The detailed configurations
are deferred to each experiment.
Baselines. We compare MTS with the following baselines.
■ Sequential: It selects one model from all in a round-robin fashion and
performs the inference one by one.
■ NETFUSE [32]: It is the state-of-the-art multi-DNN graph rewriter. It
leverages operations like group convolution, batch matrix multiplication and
group normalisation for cross-model fusion.
■ NETFUSE-no-Concurrency: It is the original NETFUSE with multi-stream
execution disabled. It is to simulate the mobile GPU runtime because multi-
stream execution is not supported by most mobile GPUs [87].
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Figure 3.6 Performance comparisons on mobile platforms (Jetson Tx2).

■ MTS-no-Grouping: It is MTS without the grouping.
Metrics. We use overall inference latency and peak memory footprint to assess
the performance of each algorithm. The memory footprint of NETFUSE-no-
Concurrency is omitted because it has the same result as NETFUSE. We
measure the inference latency on GPU by calculating the average of 500
inference latency after 2 warmups, and we capture the peak memory footprint
during execution with NVIDIA Nsight Systems[93]. Since the reconstruction of
weights induces extra delay in inference, the models in Sequential, NETFUSE,
and NETFUSE-no-Concurrency are not merged by cross-model weight-sharing
schemes for fair comparison.

3.6.2 Evaluation Results

We now present our evaluation results with various platforms and workload
settings.

3.6.2.1 Performance on Mobile Devices

In this experiment, we compare different algorithms on mobile devices using
Jetson Tx2 as the evaluation platform.
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Settings. We choose pruned ResNet18 and VGG16 as the model types. Each
model has 90% neurons pruned (pruning ratio = 0.9) and all of them share
90% of the remaining neurons with each other (sharing ratio = 0.9). In this
experiment, we set the input batch size of all models to 1, i.e., each model
receives exactly one image at a time. We vary the number of weight-shared
models from 4 to 32.
Results. Fig. 3.6 shows the inference latency and peak memory footprint of
ResNet18 and VGG16 on Jetson Tx2.
For ResNet18 (see Fig. 3.6a and Fig. 3.6b), MTS yields about 2.5×, 4.8×,
5.8×, 6.0× speedup against Sequential, when executing 4, 8, 16 or 32
models, respectively. MTS consumes however more memory than Sequential
when there are 4, 8 and 16 models. This is caused by the the temporary
runtime memory dominating in total memory usage. When the number of
tasks becomes larger than 32, MTS’s memory footprint is reduced significantly
and surpasses Sequential (1.4× memory saving), benefiting from the grouping
scheme. Compared to NETFUSE, MTS is 1.2×, 1.3×, 1.3× and 1.5× faster.
The latency is realtive close, but NETFUSE consumes much more memory:
1.8×, 1.9×, 1.6×, and 3.7×, respectively. As for MTS-no-Grouping, when
there are 4, 8 or 16 tasks in total, it has the same performance as MTS because
there is no grouping activated. When there are 32 tasks, the grouping scheme is
activated and the tasks are grouped into three. Thus MTS saves 1.84× latency
and 3.18× memory usage. At last, the latency of NETFUSE-no-Concurrency is
almost the same as Sequential (2.1×, 3.7×, 4.7× and 5.1× slower than MTS,
respectively), indicating that NETFUSE is unfit for mobile platforms without
multi-stream APIs.
For VGG16 (see Fig. 3.6c and Fig. 3.6d), MTS achieves 1.5× speedup and 1.3×
memory saving than Sequential. Compared with the speedup for ResNet18, the
lower speedup is due to VGG16 being more computational intensive. For the
same reason, the latency of MTS-no-Grouping even exceeds that of Sequential.
The memory footprint of MTS-no-Grouping is also drastically larger than that of
NETFUSE since the all-in-one stitched VGG16 model consumes large amounts
of runtime memory.
In a word, MTS achieves the best latency-memory balance than the baselines.
For comparison, MTS accelerates up to 6.0× and saving 1.4× memory
compared to Sequential. As for NETFUSE, MTS is 1.5× faster and 3.7×
memory saving. Furthermore, the results of MTS-no-Grouping demonstrate
the necessity of model grouping.

3.6.2.2 Performance on Edge Servers

In this experiment, we test the algorithms on a desktop-grade GPU for edge
servers.
Settings. We use a server equipped with an RTX 2080 Ti GPU as the platform,
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Figure 3.7 Performance comparisons on edge servers.
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Figure 3.8 Impact of sharing ratios using ResNet18 models on Jetson Tx2.

and ResNet50 as the model type. Due to the adequate resource on the desktop-
grade GPU, we directly adopt the unpruned ResNet50 as the model for inference
tasks. The sharing ratio remains 0.9 and the input batch size is also set to 1 as
in Sec. 3.6.2.1.
Results. Fig. 3.7 plots the inference latency and peak memory footprint of each
algorithm when executing 4 to 32 weight-shared ResNet50 models on the edge
server platform. As with the results on Jetson TX2, MTS is 5.3× faster than
Sequential. However, MTS is slightly slower than NETFUSE. This may stem
from the larger bandwidth and more CUDA cores, allowing faster execution of
group convolution and batch matrix multiplication used by NETFUSE. In terms
of memory usage, MTS still notably outperforms NETFUSE, consuming only
37% of memory NETFUSE does. Sequential’s peak memory footprint grows
drastically because the pruning ratio is 1 and it is the models’ parameters rather
than temporary runtime memory that dominates in the total memory footprint.
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Figure 3.9 Performance with different pruning ratios.

3.6.2.3 Impact of Pruning Ratios

In this experiment, we assess the impact of pruning ratios on different
algorithms. This is because DNNs tend to be compressed before deployment
to mobile devices [8]. We use pruning ratios to simulate the inference workload
of diverse pruned DNNs. Note that the pruning ratio is a configurable
hyperparameter in many network pruning methods [8], [73].
Settings. We choose ResNet18 on Jetson Tx2 for this experiment. We set
the pruning ratios for ResNet18 as 0.9, 0.75, 0.5 and 0.25. After pruning, the
ResNet18 models are merged by MTZ [29] with a sharing ratio of 0.9 and the
input batch size is 1, as in Sec. 3.6.2.1. We test the inference latency to execute
12 and 16 models. As our aim is to prove MTS is applicable across different
pruning ratios, we only select the state-of-the-art algorithm NETFUSE as the
baseline.
Results. Fig. 3.9 shows the performance of MTS and NETFUSE. The two
methods have similar overall inference latency (see Fig. 3.9a and Fig. 3.9c), but
MTS greatly outperforms NETFUSE in terms of memory usage (see Fig. 3.9b
and Fig. 3.9d), similar to the results in Sec. 3.6.2.1. The results suggest that
MTS can hold its efficient feed-forward and low memory footprint across DNNs
with different widths.
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Figure 3.10 Impact of model heterogeneity. (a) and (b): latency of VGG16’s with
mixed pruning ratios; (c) latency of ResNet18’s with mixed batch sizes.

3.6.2.4 Impact of Sharing Ratios

Another hyperparameter of the inference workload is the sharing ratio among
tasks. A large sharing ratio is set in case of high task relatedness or limited
resources [29].
Settings. We use Jetson Tx2 as the platform, the pruned ResNet18 with a
pruning ratio of 0.9 as the model type and set the input batch size to 1. We
experiment with four sharing ratios: 0.9, 0.8, 0.7 and 0.6 and vary the number
of tasks from 4, 8, 16 to 32.
Results. Fig. 3.8 shows the inference latency and peak memory footprint of
ResNet18 with different sharing ratios on Jetson Tx2. When operating the same
grouping scheme (number of tasks is 4, 8, or 32), the inference latency and the
memory footprint of MTS decrease with the increase of sharing ratio, which
is consistent with our analysis in Sec. 3.4.3. MTS achieves the lowest latency
and memory cost with all sharing ratios. The gain is more notable with more
models e.g., 32. This is because the model grouping scheme is activated due
to an excessively high computing need with large amounts of models. Then
both the inference latency and runtime peak memory will be greatly reduced by
model grouping of MTS.

3.6.2.5 Impact of Heterogeneity in Inference Workload

In this experiment, we test the impact of heterogeneity in inference workload
on the performance of MTS. We consider two types of heterogeneity: mixed
layer widths and input batch sizes.
Settings. We conduct two experiments on Jetson Tx 2.
■ In the first experiment, we force MTS and NETFUSE to combine multiple
VGG16’s compressed with different pruning ratios. We experiment with two
sets of pruning ratios: 0.9/0.88, and 0.9/0.85. MTS naturally functions with
unequal layer widths. For NETFUSE to work with unequal layer widths, it
should extend the narrower layers with redundant neurons. The sharing ratio is
0.9 and the input batch size is 1.
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■ In the second experiment, we vary the batch size from 1 to 3 and use
ResNet18 as the model type. The stitching strategy of MTS is designed to
handle different batch sizes. Nevertheless, NETFUSE needs to group these
models according to the batch size and execute them one by one. We set the
pruning ratio of the ResNet18 models to 0.9 and the sharing ratio to 0.9.
Results. Fig. 3.10a and Fig. 3.10b show that the inference latency of VGG16s
with mixed pruning ratios. Comparing Fig. 3.10a,b with Fig. 3.6c, where a
fixed pruning ratio of 0.9 is adopted for all VGG16 models, the gain in latency
of MTS over NETFUSE becomes more notable. This advantage in latency gets
clearer if the difference in pruning ratios is larger i.e., by comparing Fig. 3.10a
and Fig. 3.10b. The increased gain is because NETFUSE has to pad redundant
neurons for combining models of different layer widths, whereas MTS incurs no
extra overhead. Fig. 3.10c shows that the inference latency of ResNet18s with
mixed input batch sizes. Compared with Fig. 3.6a, MTS is much more efficient
than NETFUSE, especially when number of tasks is relatively small, e.g., 4, 8.
The forcing sequential execution of NETFUSE leads to severe resource under-
utilisation.

3.6.2.6 Summary of Experimental Results

We summarise our main experimental findings as follows.
■ MTS can accelerate Sequential up to 6.0 times.
■ With the model grouping scheme, MTS’s latency is improved by 3.2 times
and the memory footprint is saved by 4.5 times than MTS-no-Grouping.
■ Overall, MTS outperforms NETFUSE [32], the state-of-the-art multi-DNN
graph rewriter in both inference latency (up to 1.5×) and runtime memory
(over 3.7 times of saving). MTS advantages over NETFUSE is more notable
with heterogeneity in inference workload e.g., mixed model widths and input
batch sizes, achieving up to 2.5× speedup while retaining the same memory
saving.

3.7 Related Work

Our work is related to the following categories of research.

3.7.1 Weight-Shared DNNs

Cross-model weight sharing facilitates DNN deployment to low-memory devices.
It applies to DNNs for either a single task or multiple tasks. In single-
task weight-shared DNNs, each DNN is often a model variant for the same
inference task, yet of a different complexity-accuracy trade-off. Examples
include early-exits [94], slimmable networks [95], nested architectures [21], etc.
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In multitask weight-shared DNNs, each DNN is trained for a different inference
task. Multitask weight sharing is feasible for correlated tasks. Given multiple
DNNs well-trained for correlated tasks, weight sharing can be achieved by cross-
model quantisation [20] or fine-tuning [6], [22], [29], [72]. We apply MTZ [29]
to generate weight-shared DNNs, for it allows adaptive weight sharing and
supports diverse layer types. Other studies either enforce full weight sharing [6]
or support convolutional layers only [22].
Although weight-shared DNNs save storage, their execution may not speed up
for multitask inference. Naive execution of such networks results in multiple data
flows [96]. This leads to the same delay as running unshared DNNs sequentially,
and erases the memory saving of weight sharing. MTS is the first attempt at
efficient weight-shared DNN execution for multitask inference while retaining
the memory saving.

3.7.2 Multi-DNN Graph Rewriting

Deep learning frameworks such as TensorFlow [77] and PyTorch [78] represent
DNNs as computational directed acyclic graphs (DAGs). Graph rewriters such
as TVM [18] and NVDIA TensorRT [74] apply automatically or manually
configured graph substitution rules to output mathematically equivalent DAGs
that run faster on the given hardware platform. Yet these rewriters optimise
each DAG in isolation and are ineffective for multi-DNN graph rewriting [32],
[85].
HiveMind [85] and NETFUSE [32] are two state-of-the-art multi-DNN graph
rewriters. The idea is to perform cross-model layer fusion to increase
the computational intensity of operations, and thus the GPU utilisation
[85]. HiveMind [85] assumes the same input for the weight-shared DNNs.
NETFUSE [32] eliminates such restrictions and support cross-model layer fusion
of DNNs with different inputs and outputs. However, neither HiveMind [85] nor
NETFUSE [32] retains the memory saving of weight sharing during layer fusion,
and they pose constraints such as the same channel or input sizes on the DNNs.
These drawbacks motivates the model stitching strategy in our MTS.

3.7.3 Multi-DNN Runtime Scheduling

Given DAGs as input, a multi-DNN runtime schedules the DAG operations
to maximise the pipelined or parallel execution on the targeting platform.
Despite multi-tenancy APIs such as CUDA stream [83] and NVIDIA MPS [84],
multi-DNN runtime scheduling is still challenging because most deep learning
frameworks adopts one-DNN-per-process execution model by default [68].
DeepEye [5] interleaves the executions of convolutional and fully-connected
layers of multiple DNNs for latency hiding. DART [32] is a pipelined multi-
DNN scheduling framework under real-time constraints. MASA [71] is the
latest memory-aware multi-DNN runtime scheduler. For multi-DNN runtime
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scheduling on mobile GPU, ParallelFusion [87] extends kernel fusion to multi-
DNN scenarios to maximum the utilisation of mobile GPU. Yu et al. [70] propose
an automated, fine-grained concurrency control and scheduling framework for
multiple DNNs.
Our MTS is complementary. We use a single CUDA stream [83] as the runtime
for weight-shared DNNs to avoid the API’s inefficient multi-DNN parallelism
support [70], [85], [86] and because current mobile GPUs only allows a single
stream [87].

3.8 Conclusion

This chapter introduced MTS, a graph rewriting framework for efficient
multitask inference with weight-shared DNNs. MTS uses a model stitching
scheme to output a single DAG for multiple DNNs with shared weights. The
runtime memory usage is minimised by avoiding the duplication of shared
weights. With the help of a dedicated model grouping strategy, it also achieves a
near-optimal runtime latency. We conducted extensive experiments on different
hardware platforms, numbers of tasks, network architectures, pruning ratios,
sharing ratios, batch sizes and model heterogeneity. Results show that MTS
accelerates up to 6.0× compared to sequentially executing multiple weight-
shared DNNs. MTS also yields up to 2.5× lower latency and 3.7× less memory
usage compared with NETFUSE, a state-of-the-art multi-DNN graph rewriter.
We envision our work as a critical step towards full-stack optimisation for
efficient multi-DNN execution.
Now combining the MTZ introduced in Chapter 2 and MTS introduced in this
chapter, we have a complete solution for the multi-model compression of the
first and second types of MMDL system, discussed in Sec. 1.4.1 and Sec. 1.4.2,
respectively. In the next chapter, we will investigate the third and also the last
type of MMDL system, discussed in Sec. 1.4.3.
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4
Pruning-Aware Merging: Multi-Model

Compression via Neuron Merging

With the MTZ introduced in Chapter 2 and the MTS introduced in Chapter
3, we have covered the multi-model compression of the first and second type
of MMDL system, discussed in Sec. 1.4.1 and Sec. 1.4.2, respectively. Now
we investigate the third and also the last type of MMDL system, discussed
in Sec. 1.4.3. This type of MMDL system requires a different multi-model
compression technique: neuron merging, which should be able to reduce both
the number of parameters and the total computation cost. Moreover, there
is also the asynchronous execution challenge discussed in Sec. 1.4.3, which
requires that the MMDL can be partially deactivated in case some of the tasks
are temporarily not required.
This chapter designs a novel neuron merging method for the third type
of MMDL system. Many mobile applications demand selective execution
of multiple correlated deep learning inference tasks on resource-constrained
platforms. Given a set of deep neural networks, each pre-trained for a
single task, it is desired that executing arbitrary combinations of tasks yields
minimal computation cost. Pruning each network separately yields suboptimal
computation costs due to task relatedness. A promising remedy is to merge
the networks into a multitask network to eliminate redundancy across tasks
before network pruning. However, pruning a multitask network combined with
existing network merging schemes cannot minimise the computation cost of
every task combination because they do not consider such a future pruning. To
this end, we theoretically identify the conditions such that pruning a multitask
network minimises the computation of all task combinations. On this basis, we
propose Pruning-Aware Merging (PAM), a heuristic network merging scheme to
construct a multitask network that approximates these conditions. The merged
network is then ready to be further pruned by existing network pruning methods.
Evaluations with different pruning schemes, datasets, and network architectures
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Figure 4.1 Efficient multitask inference by “merge & prune”. Three networks pre-
trained for tasks A, B and C are first merged into a multitask network and then
pruned.

show that PAM achieves up to 4.87× less computation against the baseline
without network merging and up to 2.01× less computation against the baseline
with a state-of-the-art network merging scheme.

4.1 Introduction

Deep neural networks that can run locally on resource-constrained devices hold
potential for various emerging applications such as autonomous drones and
social robots [6], [21]. These applications often simultaneously perform a set
of correlated inference tasks based on the current context to deliver accurate
and adaptive services. Although deep neural networks pre-trained for individual
tasks are readily available [2], [24], deploying multiple such networks easily
overwhelms the resource budget.
To support these applications on low-resource platforms, we investigate efficient
multitask inference. Given a set of correlated inference tasks and deep neural
networks (each network pre-trained for an individual task), we aim to minimise
the computation cost when any subset of tasks is performed at inference time.
One naive solution to efficient multitask inference is to prune each network
for individual tasks separately. A deep neural network is typically over-
parameterised [97]. Network pruning [8], [10], [45], [98], [99] can radically
reduce the number of operations within a network without accuracy loss in
the inference task. This solution, however, is only optimal if a single task is
executed at a time. When multiple correlated tasks are running concurrently,
this solution is unable to save computation cost by exploiting tasks relatedness
and sharing intermediate results among networks.
A more promising solution framework is “merge & prune”, which merges
multiple networks into a multitask network, before pruning it (Fig. 4.1). A
few pioneer studies [20], [29] have explored network merging schemes to
eliminate the redundancy among multiple networks pre-trained for correlated
tasks. However, pruning a multitask network merged via these schemes can
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only minimise computation cost when all tasks are executed at the same time.
In this chapter, we propose Pruning-Aware Merging (PAM), a new network
merging scheme for efficient multitask inference. By applying existing network
pruning methods on the multitask network merged by PAM, the computation
cost when performing any subset of tasks can be reduced. Extensive
experiments show that “PAM & Prune” consistently achieves solid advantages
over the state-of-the-art network merging scheme across tasks, datasets,
network architectures and pruning methods.
Our main contributions and results are as follows:
■ We theoretically show that pruning a multitask network may not simultane-
ously minimise the computation cost of all task combinations in the network.
We then identify conditions such that minimising the computation of all task
combinations via network pruning becomes feasible. To the best of our
knowledge, this is the first explicit analysis on the applicability of network
pruning in multitask networks.
■ We propose Pruning-Aware Merging (PAM), a heuristic network merging
scheme to construct a multitask network that approximately meets the
conditions in our analysis and enables “merge & prune” for efficient multitask
inference.
■ We evaluate PAM with various pruning schemes, datasets and architectures.
PAM achieves up to 4.87× less computation cost against the baseline without
network merging, and up to 2.01× less computation cost against the baseline
with the state-of-the-art network merging scheme [29].
In the rest of this chapter, we review related work in Sec. 4.2, introduce our
problem statement in Sec. 4.3, theoretical analysis in Sec. 4.4 and our solution
in Sec. 4.5. We present the evaluations of our methods in Sec. 4.6 and finally
conclude in Sec. 4.7.

4.2 Related Work

Our work is related to the following categories of research.
Network Pruning. Network pruning reduces the number of operations in
a deep neural network without loss in accuracy [8], [99]. Unstructured
pruning removes unimportant weights [11], [98], [100]. However, customised
hardware [101] is compulsory to exploit such irregular sparse connections
for acceleration. Structured pruning enforces sparsity at the granularity of
channels/filters/neurons [10], [45], [102], [103]. The resulting sparsity is fit for
acceleration on general-purpose processors. Prior pruning proposals implicitly
assume a single task in the given network. We identify the challenges to prune a
multitask network and propose a network merging scheme such that pruning the
merged multitask network minimises computation cost of all task combinations
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Figure 4.2 Important notations: (a) graph representation GA,B of a multitask
network for tasks A and B, with NA = 2 hidden layers for task A and NB = 3
hidden layers for task B; (b) layer outputs for the i-th layer; (c) subgraph G̃A for
task A.

in the network.
Multitask Networks. A multitask network can be either constructed from
scratch via Multi-Task Learning (MTL) or merged from multiple networks
pre-trained for individual tasks. MTL joint trains multiple tasks for better
generalisation [36], while we focus on the computation cost of running multiple
tasks at inference time. Network merging schemes [20], [29] aim to construct
a compact multitask network from networks pre-trained for individual tasks.
Both MTZ [29] and NeuralMerger [20] enforce weight sharing among networks
to reduce their overall storage. In contrast, we account for the computation cost
of a multitask network. Although constructing a multitask network using these
schemes [20], [29] and pruning it via existing pruning methods can reduce the
computation when all tasks are concurrently executed, they cannot minimise
the computation cost for every combination of tasks.

4.3 Problem Statement

We define and analyse our problem based on the graph representation of neural
networks. The graph representation reflects the computation cost of neural
networks (see below) and facilitates an information theoretical understanding
on network pruning (see Sec. 4.4). Fig. 4.2 shows important notations used
throughout this chapter. For ease of illustration, we explain our analysis using
two tasks. Extensions to more than two tasks are in Sec. 4.5.4.

4.3.1 Graph Representation of Neural Networks

Task. Consider three sets of random variable X ∈ X , YA ∈ YA, and YB ∈
YB. Task A outputs ŶA, a prediction of YA, by learning the conditional
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Algorithm 3: Organise vertices in the graph representation of a neural
network into layers.

Input: A neural network graph GA

Output: N + 1 layers vA
i with i = 1, · · · , N + 1.

1 vA
0 ← vA

X ;
2 i← 0;
3 while N+(vA

i ) ̸= vA
Y do

4 vA
i+1 ← ∅;

5 for each node vA
i,j ∈ vA

i do
6 if N+(vA

i,j) ∩ vA
Y ̸= ∅ then

7 vA
i+1 ← vA

i+1 ∪ {v
A
i,j};

8 end
9 end

10 vA
i+1 ← vA

i+1 ∪
(

N+(vA
i ) \ vA

i

)
;

11 i← i + 1;
12 end
13 N ← i;
14 vA

N+1 ← vA
Y ;

distribution Pr{YA = y|X = x}. Task B outputs ŶB, a prediction of YB, by
learning Pr{YB = y|X = x}.
Single-Task Network. For task A, a neural network without feedback loops
can be represented by an acyclic directed graph GA = {V A, EA}. Each vertex
represents a neuron. There is an edge between two vertices if two neurons are
connected. The vertex set VA can be categorised into three types of nodes:
source, internal and sink node. deg−(v)/deg+(v) is the indegree/outdegree of
a vertex v.
■ Source node set vA

X = {v|v ∈ V A ∧ deg−(v) = 0} represents the input layer.
Each source node represents an input neuron and outputs a random variable
Xi ∈ X. The output of the input layer is the input random variable set X.
■ Internal nodes vi ∈ {v|v ∈ V ∧ deg−(v) ̸= 0 ∧ deg+(v) ̸= 0} represents the
hidden neurons. The output of each hidden neuron is generated by calculating
the weighted sum of its inputs and then applying an activation function.
■ Sink node set vA

Y = {v|v ∈ V ∧ deg+(v) = 0} represents the output layer.
Each sink node represents an output neuron and the output is calculated in
the same way as the hidden neurons. The output of the output layer is the
prediction ŶA of ground-truth labels YA.
We organise the hidden neurons vi of GA into layers vA

i by Algorithm 3. N+(v)
represents the out-coming neighbours of the vertex set v. Algorithm 3 can
organise any acyclic single-task network into layers and the layer outputs satisfy
the Markov property.
Multitask Network. For task A and B, a multitask network without feedback
loops can be represented by an acyclic directed graph GA,B. All paths from
the input neurons to the output neurons for task A form a subgraph G̃A (see
Fig. 4.2(c)), which is in effect the same as a single-task network. When only
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task A is performed, only G̃A is activated. Subgraph G̃B is defined similarly.
We also organise vertices of G̃A and G̃B into layers with Algorithm 3. Layer
outputs of G̃A and G̃B are denoted as L̃A

i and L̃B
i . Suppose G̃A and G̃B have

respectively NA and NB hidden layers. We assume NA ≤ NB w.l.o.g.. Then
the i-th layer output of GA,B is defined as LA,B

i = L̃A
i ∪L̃B

i with i = 0, · · · , NA.
As shown in Fig. 4.2(b), LA,B

i consists of three sets of neurons: L′Ai , L′Bi and
L′A,B

i .
Remarks. The above definitions have two benefits. (i) The computation cost
of a neural network is an increasing function of the size of the graph, i.e., the
number of edges plus vertices. Reducing the computation cost of the network
is transformed into removing edges or vertices in the graph. (ii) For a single-
task network with NA hidden layers, its layer outputs form a Markov chain:
YA → LA

0 → · · · → LA
NA+1. All layer outputs LA,B

i in a multitask network also
form a Markov chain. The Markov property allows an information theoretical
analysis on neural networks [104], [105].

4.3.2 Problem Definition

Given two single-task networks GA and GB pre-trained for task A and B, we aim
to construct a multitask network GA,B such that pruning on GA,B can minimise
the number of vertices and edges in GA,B, G̃A and G̃B while preserving inference
accuracy on A and B. To ensure minimal computation of any subset of tasks,
we need to minimise the number of vertices and edges in any subgraph. For
two tasks, GA,B corresponds to running task A and B concurrently; G̃A (G̃B)
corresponds to running task A (B) only. Next, we show the difficulty to optimise
all subgraphs simultaneously.

4.4 Theoretical Understanding

This section presents a theoretical understanding on the challenges to prune
a multitask network and identifies conditions such that minimising the
computation cost of all task combinations via pruning becomes feasible
(Theorem 4.1).

4.4.1 Why Pruning a Single-task Network Work

Pruning a single-task network reduces the computation cost of a neural
network while retaining task inference accuracy by suppressing redundancy
in the network [8], [99]. From the information theoretical perspective [104],
[105], since the layer outputs form a Markov chain, the inference accuracy
for a given task A is positively correlated to the task related information
transmitted through the network at each layer, measured by I(LA

i ; YA). All
other information is irrelevant for the task. Hence the redundancy within a
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single-task network can be defined as below.

Definition 4.1. For the i-th layer in the single-task neural network GA, the
redundancy of the layer is defined as RA(LA

i ) = ∑
LA

i,j∈LA
i

H(LA
i,j)−I(LA

i ; YA).

∑
LA

i,j∈LA
i

H(LA
i,j) measures the maximal amount of information the layer can

express. I(LA
i ; YA) measures the amount of task A related information in the

layer output. By definition, RA(LA
i ) ≥ 0.

Remarks. ∑LA
i,j∈LA

i
H(LA

i,j) is positively correlated to the number of vertices
and incoming edges of the i-th layer. Therefore, in a well trained network where
I(LA

i ; YA) can no longer increase, the computation cost can be minimised by
reducing RA(LA

i ).
Accordingly, pruning a single-task network can be formalised as an optimisation
problem

minimise
NA+1∑

i=1

(
RA(LA

i ) − ξi · I(LA
i ; YA)

)
(4.1)

where ξi > 0 controls the trade-off between inference accuracy and computation
cost.
Remarks. Existing pruning methods implicitly assume a single-task network.
That is, they are all designed to solve optimisation problem (4.1), even though
the concrete strategies vary. We now show the problems that occur when these
pruning methods are applied to a multitask network.

4.4.2 Why Pruning a Multitask Network Fail

As mentioned in Sec. 4.3.2, we aim to minimise the computation cost of any
subset of tasks, which is a multi-objective optimisation problem. As we will show
below, existing network pruning methods are unable to handle these objectives
simultaneously.
We first define redundancy when performing two tasks at the same time,
similarly as in Definition 4.1.

Definition 4.2. For a multitask network GA,B, the redundancy of its i-th layer
is RA,B(LA,B

i ) = ∑
LA,B

i,j ∈LA,B
i

H(LA,B
i,j ) − I(LA,B

i ; YA, YB).

Following the above definitions of redundancy, our objective in Sec. 4.3.2 is
equivalent to minimising the redundancy in GA,B as well as in its two subgraphs
G̃A and G̃B, which leads to the following three-objective optimisation (still, we
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assume NA ≤ NB w.l.o.g.):
minimise
NA+1∑

i=1

(
RA(L̃A

i ) − ξ̃A
i · I(L̃A

i ; YA)
)

,

NB+1∑
i=1

(
RB(L̃B

i ) − ξ̃B
i · I(L̃B

i ; YB)
)

,

NA∑
i=1

(
RA,B(LA,B

i ) − ξA
i · I(L̃A

i ; YA) − ξB
i · I(L̃B

i ; YB)
)

(4.2)

Reducing RA(L̃A
i ), RB(L̃B

i ) and RA,B(LA,B
i ) decreases the number of vertices

and edges in G̃A, G̃B and GA,B, respectively. ξA
i , ξB

i , ξ̃A
i , ξ̃B

i > 0 are parameters
to control the trade-off between computation cost and inference accuracy, as
well as to balance task A and B.
To solve optimisation problem (4.2) with prior network pruning methods, we
observe two problems.
Problem 1: The first two objectives in (4.2) may conflict. This is because
reducing RB(L̃B

i ) may decrease I(L̃A
i ; YA) (see Lemma 4.1 below). In other

words, when pruning subgraph G̃B, it is possible that some information related
to task A is removed from the shared vertices between G̃A and G̃B. Hence
I(L̃A

i ; YA) decreases and the inference accuracy of task A deteriorates.
Problem 2: It is unclear how to minimise the third objective in (4.2). As
mentioned in Sec. 4.4.1, most pruning methods are designed with a single-task
network in mind. It is unknown how to apply them to a multitask network GA,B

with architecture in Fig. 4.2 (a).
Here we prove the cause for Problem 1:
Lemma 4.1. Reducing RB(L̃B

i ) may decrease I(L̃A
i ; YA).

Proof. We decompose I(L̃A
i ; YA):

I(L̃A
i ; YA) = I(L′Ai ; YA)+

I(L′A,B
i ; YA|L′Ai , YB) + I(L′A,B

i ; YA; YB|L′Ai )
(4.3)

where I(A; B; C) = I(A; B) − I(A; B|C) is the co-information [106]. From
Definition 4.1, we have:

RB(L̃B
i ) =

∑
L̃B

i,j∈L̃B
i

H(L̃B
i,j) − I(L̃B

i ; YB)

=
∑

L̃B
i,j∈L̃B

i

H(L̃B
i,j) − H(L̃B

i ) + H(L̃B
i |YB) (4.4)

For the last term, we have:

H(L̃B
i |YB)
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=H(L′Bi , L′A,B
i |YB) (4.5)

=H(L′A,B
i |YB) + H(L′Bi |L′A,B

i , YB) (4.6)
=I(L′A,B

i ; YA|YB) + H(L′A,B
i |YA, YB) + H(L′Bi |L′A,B

i , YB) (4.7)
=I(L′A,B

i ; YA|L′Ai , YB) + I(L′A,B
i ; YA; L′Ai |YB)+

H(L′A,B
i |YA, YB) + H(L′Bi |L′A,B

i , YB) (4.8)

Hence, H(L̃B
i |YB) includes I(L′A,B

i ; YA|L′Ai , YB). Reducing RB(L̃B
i ) may

decrease I(L̃A
i ; YA).

4.4.3 When Pruning a Multitask Network Work

The two problems in Sec. 4.4.2 show that not all multitask networks can be
pruned for efficient multitask inference. However, a multitask network can be
effectively pruned if it meets the conditions stated by the following theorem.

Theorem 4.1. If ∀ 1 ≤ i ≤ NA, the conditions below are satisfied:

I(L′Ai ; L′Bi ; YA; YB) = 0
I(L′A,B

i ; YA|L′Ai , YB) = 0
I(L′A,B

i ; YB|L′Bi , YA) = 0
(4.9)

where I(L′Ai ; L′Bi ; YA; YB) is the co-information [106], then the three-objective
optimisation problem (4.2) can be reduced to two non-conflicting optimisation
problems that can be solved independently:

minimise
NA+1∑

i=1
RA(L̃A

i ) − ξ̃A
i · I(L̃A

i ; YA),

minimise
NB+1∑

i=1
RB(L̃B

i ) − ξ̃B
i · I(L̃B

i ; YB)
(4.10)

Proof. Here we shows that the conditions in Theorem 4.1 solve Problem 1 and
Problem 2 in Sec. 4.4.2.
Solving Problem 1 in Sec. 4.4.2.
From (4.3) we have the following if I(L′A,B

i ; YA|L′Ai , YB) = 0:

I(L̃A
i ; YA) = I(L′Ai ; YA) + I(L′A,B

i ; YA; YB|L′Ai ) (4.11)

L′Ai is not in L̃B
i . Hence I(L′Ai ; YA) is unaffected when RB(L̃B

i ) is reduced.
I(L′A,B

i ; YA; YB|L′Ai ) is included in I(L̃B
i ; YB). Thus minimising RB(L̃B

i ) −
ξ̃B

i · I(L̃B
i ; YB) will not reduce I(L′A,B

i ; YA; YB|L′Ai ) with a proper ξ̃B
i . All

still hold if we swap A and B in the above equations. Consequently, if
I(L′A,B

i ; YA|L′Ai , YB) = I(L′A,B
i ; YB|L′Bi , YA) = 0, the first two objectives

in optimisation problem (4.2) become non-conflicting.
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Solving Problem 2 in Sec. 4.4.2.
We first decompose RA,B(LA,B

i ):

RA,B(LA,B
i )

=
∑

LA,B
i,j ∈LA,B

i

H(LA,B
i,j ) − H(L̃A

i , L̃B
i ) + H(L̃A

i , L̃B
i |YA, YB) (4.12)

=
∑

LA
i,j∈L̃A

i

H(LA
i,j) − I(L̃A

i ; YA, YB) +
∑

LB
i,j∈L̃B

i

H(LB
i,j) − I(L̃B

i ; YA, YB)

+I(L̃A
i ; L̃B

i ; YA, YB) −
∑

Li,j∈L′
iA,B

H(Li,j) (4.13)

=
∑

LA
i,j∈L̃A

i

H(LA
i,j) − I(L̃A

i ; YA) − I(L̃A
i ; YB|YA) +

∑
LB

i,j∈L̃B
i

H(LB
i,j) − I(L̃B

i ; YB)

−I(L̃B
i ; YA|YB) + I(L̃A

i ; L̃B
i ; YA, YB) −

∑
Li,j∈L′

iA,B

H(Li,j) (4.14)

=RA(L̃A
i ) + RB(L̃B

i ) − I(L̃A
i ; YB|YA)

−I(L̃B
i ; YA|YB) + I(L̃A

i ; L̃B
i ; {YA, YB}) −

∑
Li,j∈L′

iA,B

H(Li,j) (4.15)

Then from (4.15), we have:

RA,B(LA,B) −
(
RA(L̃A

i ) + RB(L̃B
i )
)

≤I(L̃A
i ; L̃B

i ; {YA, YB}) −
∑

Li,j∈L′A,B
i

H(Li,j) (4.16)

≤I(L̃A
i ; L̃B

i ) −
∑

Li,j∈L′A,B
i

H(Li,j) (4.17)

=I(L′Ai , L′A,B
i ; L′Bi , L′A,B

i ) −
∑

Li,j∈L′A,B
i

H(Li,j) (4.18)

≤I(L′Ai ; L′Bi ) + H(L′A,B
i ) −

∑
Li,j∈L′A,B

i

H(Li,j) (4.19)

≤I(L′Ai ; L′Bi ) (4.20)

Further,

I(L′Ai ; L′Bi )
=I(L′Ai ; L′Bi ; YA; YB) + I(L′Ai ; L′Bi ; YA|YB) + I(L′Ai ; L′Bi |YA) (4.21)
≤I(L′Ai ; L′Bi ; YA; YB) + H(L′Ai |YA) + H(L′Bi |YB) (4.22)
≤I(L′Ai ; L′Bi ; YA; YB) + RA(L̃A

i ) + RB(L̃B
i ) (4.23)

This is a loose upper bound. However, since RA,B(LA,B), RA(L̃A
i ) and RB(L̃B

i )
are lower bounded by 0, it suffices to show that when I(L′Ai ; L′Bi ; YA; YB) = 0,
minimising RA(L̃A

i ) and RB(L̃B
i ) will minimise RA,B(LA,B).
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Figure 4.3 PAM workflow to construct a multitask network (GA,B) from two single-
task networks (GA and GB).

In summary, when
I(L′Ai ; L′Bi ; YA; YB) = 0

I(L′A,B
i ; YA|L′Ai , YB) = 0

I(L′A,B
i ; YB|L′Bi , YA) = 0

(4.24)

the optimisation problem (4.2) is reduced to two non-conflicting optimisation
problems (4.10).

Remarks. Each of the two optimisation problems (4.10) are in effect
optimisation problem similar to single-task pruning problem (4.1), which can be
effectively solved by prior pruning proposals. Theorem 4.1 provides important
guidelines to design the network merging scheme for our problem in Sec. 4.3.2.
Specifically, if GA and GB can be merged into a a multitask network GA,B

such that conditions (4.9) are satisfied, we can simply apply existing network
pruning on the two subgraphs G̃A and G̃B to minimise the computation cost
when performing any subset of tasks.

4.5 Pruning-Aware Merging

Based on the above analysis, we propose Pruning-Aware Merging (PAM), a
novel network merging scheme that constructs a multitask network from pre-
trained single task networks. PAM approximately meets the conditions in
Theorem 4.1 such that the merged multitask network can be effectively pruned
for efficient multitask inference.

4.5.1 PAM Workflow

Given two single-task networks GA and GB pre-trained for task A and B (NA ≤
NB), PAM constructs a multitask network GA,B with the steps below (see
Fig. 4.3).

1. Assign LA,B
0 = X, as GA,B, GA and GB use the same inputs.
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2. For i = 1, · · · , NA, regroup the neurons from LA
i and LB

i into L′Ai , L′Bi
and L′A,B

i by the regrouping algorithm in Sec. 4.5.2.

3. Take over the output layer for task A: L̃A
NA+1 = LA

NA+1. For i = NA +
1, · · · , NB + 1, take over the remaining layers from GB: L̃B

i = LB
i .

4. Reconnect the neurons as in Fig. 4.3. If a connection exist before merging,
it preserves its original weight. Otherwise it is initialised with a zero.

5. Finetune GA,B on A and B to learn the newly added connections. For
the shared connections, L′A,B

i−1 → L′A,B
i . The gradients are first calculated

separately on A and B, and then averaged before weight updating.

Now the multitask network GA,B is ready to be pruned. From Theorem 4.1,
we can apply network pruning on the two subgraphs G̃A and G̃B independently
and achieve a minimal computation cost for all combinations of tasks. However,
since we only approximate the conditions in (4.9), pruning G̃A and G̃B is not
perfectly independent in practice. Hence we prune G̃A and G̃B in an alternating
manner to balance between task A and B.

4.5.2 Regrouping Algorithm

The core of PAM is the regrouping algorithm in the second step in Sec. 4.5.1.
It regroups the neurons from LA

i and LB
i into three sets: L′Ai , L′Bi and L′A,B

i ,
such that the conditions (4.9) in Theorem 4.1 are satisfied. However, it is
computation-intensive to estimate the co-information and conditional mutual
information in (4.9) precisely. We rely on the following theorem to approximate
the conditions.

Theorem 4.2. The conditions in (4.9) can be achieved by minimising
I(L′Ai ; YB), I(L′Bi ; YA), and maximising I(L′Ai ; YA), I(L′Bi ; YB).

Proof. For co-information between four random variables, we have from [106]:

0 ≤ I(L′Ai ; L′Bi ; YA; YB) ≤ min{I(L′Ai ; YB), I(L′Bi ; YA)} (4.25)

Therefore, the first condition in Theorem 4.1, i.e., I(L′Ai ; L′Bi ; YA; YB) = 0, is
achieved by minimising I(L′Ai ; YB) and I(L′Bi ; YA) to 0.
Then for the second condition in Theorem 4.1, i.e., I(L′A,B

i ; YA|L′Ai , YB) = 0:

I(L′A,B
i ; YA|L′Ai , YB)

≤H(YA|L′Ai , YB) (4.26)
=H(YA|YB) − I(YA; L′Ai ) + I(YA; L′Ai ; YB) (4.27)
≤H(YA|YB) − I(YA; L′Ai ) + I(L′Ai ; YB) (4.28)
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Algorithm 4: Regroup algorithm.
Input: LA

i , LB
i , X, YA, YB , α

Output: L′A
i , L′B

i , L′A,B
i

1 N = min{NA, NB};
2 for i← 1 to N do
3 FA ← FB ← LA

i ∪ LB
i ;

4 L′A
i ← ∅;

5 while I(L′A
i ; YB) ≤ α do

6 Li,· ← arg minLi,j ∈FA
i

I({Li,j} ∪ L′A
i ; YB);

7 move the neuron Li,· from FA to L′A
i

8 end
9 L′B

i ← ∅ ;
10 while I(L′B

i ; YA) ≤ α do
11 Li,· ← arg minLi,j ∈FB

i
I({Li,j} ∪ L′B

i ; YA);
12 move the neuron Li,· from FB to L′B

i

13 end

14 The remaining neurons join L′A,B
i : L′A,B

i ← LA
i ∪ LB

i \
(

L′A
i ∪ L′B

i

)
;

15 If a neuron exists in both L′A
i and L′B

i , remove the neuron from them both.
16 end

Given A and B, H(YA|YB) is constant. The second condition in Theorem 4.1
is achieved by minimising I(L′Ai ; YB) to 0 and maximising I(YA; L′Ai ) to
H(YA|YB).
The same holds if we swap A and B. The third condition in Theorem 4.1,
i.e., I(L′A,B

i ; YB|L′Bi , YA) = 0, is achieved by minimising I(L′Bi ; YA) and
maximising I(YB; L′Bi ).

Remarks. I(L′Ai ; YB) and I(L′Bi ; YA) describe the “misplaced” information,
i.e., the information that is useful for one task, but contained in neurons that
are not connected to the outputs of this task. Therefore such information is
redundant and needs to be minimised. I(L′Ai ; YA) and I(L′Bi ; YB) measure the
“relevant” information, i.e., the information useful for one task and contained in
neurons connected to this task. Note that this information may not be simply
maximised, because it includes the information that is useful for both tasks. It
requires simultaneously minimising the “misplaced” information and maximising
the “correct” information to achieve the conditions in (4.9).
Based on Theorem 4.2, we propose an algorithm to regroup the neurons such
that conditions (4.9) are approximately met. It constructs the largest possible
set L′Ai and L′Bi from all the neurons in LA

i and LB
i while I(L′Ai ; YB) and

I(L′Bi ; YA) remain close to zero, such that I(L′Ai ; YA) and I(L′Bi ; YB) are
approximately maximised. To estimate I(L′Ai ; YB) and I(L′Bi ; YA), we use a
Kullback-Leibler-based mutual information upper bound estimator from [107].
Algorithm 4 illustrates the pseudocode to regroup the neurons such that the
conditions in Theorem 4.1 are approximated met. Central in Algorithm 4
is a greedy search in Lines 5-8 and 10-13. In Lines 5-8, we search for the
largest possible set of neuron L′Ai while I(L′Ai ; YB) remains approximately zero
(smaller than a pre-defined threshold α), such that I(L′Ai ; YA) is approximately
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maximised. Similarly, in Lines 10-13, we approximately maximise I(L′Bi ; YB)
while keeping I(L′Bi ; YA) close to zero. According to Theorem 4.2, the
conditions in Theorem 4.1 are approximately met.
Practical Issue: How to Estimate Mutual Information. We use a
Kullback-Leibler-based mutual information upper bound estimator from [107]
to estimate the upper bounds of I(L′Ai ; YB) and I(L′Bi ; YA). Since the upper
bounds are approximate, it is impossible to request them to be exactly zero.
Hence, we use a threshold parameter α to keep I(L′Ai ; YB) and I(L′Bi ; YA)
close to zero.
Practical Issue: How to Tune Threshold α. The parameter α affects the
performance of “PAM & prune”. A larger α results in more neurons in L′Ai and
L′Bi and fewer shared neurons in L′A,B

i . In this case, the multitask network
after “PAM & prune” performs worse in terms of efficiency when both tasks
are executed concurrently, but better when only one task is executed (similar to
“baseline 1 & prune”). Conversely, a smaller α results in more shared neurons.
In this case, the multitask network after “PAM & prune” performs worse when
only one task is executed, but better when both tasks are executed concurrently,
(similar to “baseline 2 & prune”).
The parameter α can be empirically tuned as follows:

1. Execute Algorithm 4 with a small α.

2. Increase the value of α slightly and rerun Algorithm 4. Since Lines 5-8
and 10-13 are greedy search, the results for the smaller α in Step 1 (i.e.,
the already constructed neuron sets L′Ai and L′Bi ) can be reused, instead
of starting with empty sets as in Line 4 and 9.

3. Iterate Step 2 till a satisfying balance among task combinations. In each
iteration of Step 2, we can reuse the neuron sets L′Ai and L′Bi from the
last iteration.

The impact of α is shown in Sec. 4.6.3.1.

4.5.3 Extensions to ResNets

In order to support merging Residual Networks [108], PAM needs to be slightly
modified. As illustrated in Fig. 4.4, the regrouping of the last layer in each
residual block happens not directly after the weighted summation, but after the
superposition with the shortcut connection and just before the vector is passed
as inputs to the first layer in the next block. This input vector of the first
layer in each block is also regrouped using Algorithm 4 and then pruned at a
later stage. This special treatment for the last layer in each residual block is
consistent with ResNet compatible pruning methods such as [45], which can
also prune the block outputs just before it is fed into the first layer in the next
block.
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Figure 4.4 Applying PAM on residual blocks. Vectors are denoted as (X, · · · , X).
Dotted lines are identical connections, and firm lines represent weighted connections
for neurons.

4.5.4 Extension to Three or More Tasks

When there are K ≥ 3 tasks, we define the set of all the task as υ =
{t1, · · · , tK}. The merged multitask network can be divided into subgraphs
G̃τ , where τ ⊆ υ and τ ̸= ∅ is a nonempty subset of tasks. Each vertex in
G̃τ has paths to all the outputs Ŷt with t ∈ τ . When a task combination
(i.e., a subset of tasks) τ is executed, only subgraph G̃τ is activated. Layers in
G̃τ is denoted as L̃τ

i . The output layer for task combination τ is denoted as
Ŷτ = ⋃

t∈τ Ŷt, which is the prediction of ground-truth labels Yτ = ⋃
t∈τ Yt.

Extension of Theorem 4.1. For any pair of non-overlapped nonempty subsets
of task τA and τB (τA ∩ τB = ∅), define:

Ai = L̃τA
i \ L̃τB

i (4.29)
Bi = L̃τB

i \ L̃τA
i (4.30)

Mi = L̃τA
i ∩ L̃τB

i (4.31)

Then Theorem 4.1 is extended into:

Theorem 4.3. If for all i = 1, · · · , N with N = mint∈υ Nt, and for any pair of
non-overlapped nonempty subsets of task τA and τB, the following conditions
are satisfied:

I(Ai; Bi; YτA ; YτB ) = 0
I(Mi; YτA|Ai, YτB ) = 0
I(Mi; YτB |Bi, YτA) = 0

(4.32)

then the computation cost of executing all task combinations can be minimised
by the following K non-conflicting optimisation problems that can be solved
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Algorithm 5: Extending Algorithm 4 to over two tasks
Input: X, α, Lt

i, and Yt for all t ∈ υ
Output: L′τ

i for all τ ⊆ υ and τ ̸= ∅
1 N ← mint∈υ Nt;
2 K ← |υ|;
3 for i← 1 to N do
4 S←

⋃
t∈υ

Lt
i;

5 for n← 1 to K − 1 do
6 for any τ with |τ | = n do
7 F← S;
8 L′τ

i ← ∅;
9 Y/∈τ ←

⋃
t/∈τ

Yt

10 while I(L′τ
i ; Y/∈τ ) ≤ α do

11 Li,· ← arg minLi,j ∈F I({Li,j} ∪ L′τ
i ; Y/∈τ )

12 move the neuron Li,· from F to L′τ
i

13 end
14 end
15 Remove all selected neurons from S: S← S \

⋃
|τ |=n

L′τ
i

16 Among all L′τ
i , if a neuron exists in more than one set, remove the neuron from them all

17 end
18 L′υ

i ← S
19 end

independently:

For every t ∈ υ: minimise
N+1∑
i=1

Rt(L̃t
i) − ξ̃t

i · I(L̃t
i; Yt) (4.33)

Theorem 4.3 can be proven by recursively applying Theorem 4.1.
Extension of PAM. The neuron sets L′Ai , L′Bi and L′A,B

i are extended to:

L′τi =
⋂
t∈τ

L̃t
i \

⋃
t/∈τ

L̃t
i (4.34)

Note that neurons in L′τi are activated iff any task t ∈ τ is executed. Now
Algorithm 4 is extended to Algorithm 5. And at step 5 of the PAM workflow in
Sec. 4.5.1, we connect L′τ1

i−1 → L′τ2
i iff τ2 ⊆ τ1.

It is worth mentioning that when tasks are highly related, the numbers of
neurons in Lτ

i with 1 < |τ | < K can be extremely small (as in our experiment
on the LFW dataset in Sec. 4.6.1). Therefore we can simplify Algorithm 5 by
fixing n = 1 and skip the remaining loops. Every layer in the multitask network
merged by the simplified PAM contains only neuron sets Lt

i with t ∈ υ and
one shared neuron set Lυ

i . Shared neurons in Lυ
i are always activated, while

non-shared neurons in Lt
i are activated iff task t is executed.

4.6 Experiments

We compare different network merging schemes on whether lower computation
is achieved when performing any subset of tasks.
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4.6.1 Experiment Settings

Baselines for Network Merging. We compare PAM with two merging
schemes.
■ Baseline 1. It simply skips network merging in the “merge & prune”
framework. Therefore, no multitask network is constructed. As mentioned
in Sec. 4.1, this scheme optimises the pruning of single-task networks.
■ Baseline 2. Pre-trained single-task networks are merged as a multitask
network by MTZ [29], a state-of-the-art network merging scheme. Applying
MTZ in “merge & prune” can minimise the computation cost of a multitask
network when all tasks are executed.
Methods for Network Pruning. Since we aim to compare different network
merging schemes in the “merge & prune” framework, we apply the same
network pruning method on the neural network(s) constructed by different
merging schemes. To show that PAM works with different pruning methods,
we choose two state-of-the-art structured network pruning methods: one [10]
uses information theory based metrics (denoted as P1), and the other [45] uses
sensitivity based metrics (denoted as P2).
The pruning methods are applied to the neural network(s) constructed by
different merging schemes as follows. For Baseline 1, each single-task network
is pruned independently. For the multitask network constructed with Baseline
2 and PAM, we prune every subgraph for each individual task in an alternating
manner (e.g., task A → B → C → A → B → · · · ) in order to balance between
tasks. However, only P2 is originally designed to prune a ResNet. Hence we
only experiment ResNets with P2.
Datasets and Single-Task Networks. We define tasks from three datasets:
Fashion-MNIST [109], CelebA [41], and LFW [110]. Fashion-MNIST and
CelebA each contains two tasks. LFW contains five tasks. We use LeNet-5 [24]
as pre-trained single-task networks for tasks derived from Fashion-MNIST, and
VGG-16 [2] for tasks from CelebA and LFW. We also use ResNet-18 and ResNet-
34 [108] as pre-trained single-task networks for CelebA. Table 4.1 summarises
the inference accuracy and FLOPs of the pre-trained single-task networks.
The Fashion-MNIST dataset1 contains 8000 training images and 2000 test
images with a resolution of 496 × 124. Each image has four fashion product
images randomly selected from Fashion-MNIST [109]. The 10 categories of
fashion products is considered as 10 binary classification problem, and we divide
them into two groups (5/5) to form task A and B. On each task we train a
LeNet-5, a commonly used architecture for Fashion-MNIST.
The CelebA dataset2 contains over 200 thousand celebrity face images labelled
with 40 attributes. The 40 attributes is divided into two groups (20/20) to form

1https://github.com/f-rumblefish/Multi-Label-Fashion-MNIST
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 4.1 Test accuracy and computation cost of pre-trained single-task networks.

Model/Dataset Task Accuracy FLOPs (×106)

LeNet-5/Fashion-MNIST A 96.05% 106.42

B 96.37% 106.42

VGG-16/CelebA A 90.28% 3112.20

B 89.03% 3112.20

VGG-16/LFW

A 90.23% 3110.12

B 84.15% 3110.12

C 85.03% 3110.12

D 86.62% 3110.12

E 87.44% 3110.12

ResNet-18/CelebA A 90.56% 994.00

B 88.91% 994.00

ResNet-34/CelebA A 90.42% 1115.06

B 88.70% 1115.06

task A and B. The dataset is divided into training and test sets containing 80%
and 20% of the samples. The input picture resolution is resized to 72 × 72. On
each task we train slightly modified VGG-16 models, a commonly used single-
task network architecture on CelebA. The width of the fully connected layers in
VGG-16 is changed to 512. The convolutional layers are initialised with weights
pre-trained for imdb-wiki [25], and use the same pre-processing steps.
The Labelled Faces in the Wild (LFW) dataset3 contains over 13,000 face
photographs collected from the web. Each face photo is associated with 73
attributes [111]. We randomly split the 73 labels in the LFW dataset into four
groups with 15 labels each and one group with 13 labels. Each group of labels
forms a single task. The dataset is divided into training and test sets containing
80% and 20% of the samples. Same as in CelebA, the input picture resolution
is resized to 72 × 72. On each task we train slightly modified VGG-16 models,
a commonly used single-task network architecture on LFW. The width of the
fully connected layers in VGG-16 is changed to 128. The convolutional layers
are initialised with weights pre-trained for imdb-wiki [25], and use the same
pre-processing steps.
Evaluation Metrics. For a given set of tasks, we aim to minimise the
computation cost of all task combinations. To assess computation cost
independent of hardware, we use the number of floating point operations
(FLOP) as the metric. For fair comparison, the network(s) constructed by
different merging schemes are pruned while preserving almost the same inference
accuracy. To quantify the performance advantage of PAM over baselines over
all task combinations, we adopt the following two single-valued criteria:

3http://vis-www.cs.umass.edu/lfw/
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Figure 4.5 Average and peak gain of PAM over baselines in different combinations
of models, datasets, and pruning methods. The upper row (a)-(d) shows the gain of
PAM over baseline 1. The lower row (e)-(h) shows the gain of PAM over baseline 2.
Note that the average and peak gain of each baseline is 1 by definition.

■ Average Gain. This metric measures the averaged computation cost
reduction of “PAM & prune” over “baseline & prune” across all task
combinations. For example, given two tasks A and B, there are three task
combinations: A, B and A&B. When executing these task combinations, the
FLOPs of the network after “PAM & prune” are cP

A, cP
B and cP

A,B, respectively.
After “baseline 1 & prune”, the FLOPs are cB1

A , cB1
B and cB1

A,B, respectively. The
average gain over baseline 1 is calculated as 1

3(cB1
A /cP

A + cB1
B /cP

B + cB1
A,B/cP

A,B).
■ Peak Gain. This metric measures the maximal computation cost reduction
across all task combinations. Using the same example and notations as above,
the peak gain over baseline 1 is calculated as max{cB1

A /cP
A, cB1

B /cP
B, cB1

A,B/cP
A,B}.

All experiments are implemented with TensorFlow and conducted on a
workstation with Nvidia RTX 2080 Ti GPU.

4.6.2 Main Experiment Results

Overall Performance Gain. Fig. 4.5 shows the average and peak gains
of PAM over the two baselines tested with different models (LeNet-5, VGG-
16, ResNet-18, RestNet-34), datasets (Fashion-MNIST, CelebA, LFW), and
pruning methods (P1, P2). The detailed FLOPs and inference accuracy on
task merging (Fashion-MNIST and CelebA) are listed in Table 4.2, Table 4.3,
Table 4.4 and Table 4.5.
Compared with baseline 1, PAM achieves 1.07× to 1.64× average gain and
1.16× to 4.87× peak gain. Compared with baseline 2, PAM achieves 1.51×
to 1.69× average gain and 1.56× to 2.01× peak gain. In general, PAM
has significant performance advantage over both baselines across datasets and
network architectures.
Effectiveness of PAM. From Fig. 4.5, the performance gain of PAM varies
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Table 4.2 Test accuracy and computation cost of all tasks combinations with
LeNet-5 on Fashion-MNIST pruned by P1/P2.

Pruning Tasks Accuracy FLOPs (×106)

B1 B2 PAM B1 B2 PAM

P1
A 95.42% 95.30% 94.67% 28.34 52.58 28.49
B 96.30% 96.40% 95.70% 28.34 52.58 26.16
A&B 95.86% 95.85% 95.19% 56.69 52.58 48.68

P2
A 95.82% 95.73% 95.70% 18.64 31.19 18.65
B 96.46% 96.72% 96.38% 18.64 31.19 18.65
A&B 96.14% 96.22% 96.04% 37.27 31.19 26.48

Table 4.3 Test accuracy and computation cost of all tasks combinations with VGG-
16 on CelebA pruned by P1/P2.

Pruning Tasks Accuracy FLOPs (×106)

B1 B2 PAM B1 B2 PAM

P1
A 89.45% 89.09% 89.60% 4.52 7.3 4.48
B 87.81% 87.69% 88.00% 4.32 7.3 4.49
A&B 88.63% 88.39% 88.80% 8.85 7.3 4.70

P2
A 90.34% 90.27% 90.36% 153.13 243.20 155.82
B 88.84% 88.74% 88.76% 152.65 243.20 155.84
A&B 89.59% 89.51% 89.56% 305.78 243.20 156.74

across baselines and datasets. Such variations in average and peak gains are
influenced by how many neurons are shared and how many networks are merged.
Fig. 4.6 shows how many neurons (kernels) are shared after “PAM & prune” on
LeNet-5 and VGG-16.
■ The more neurons shared, the higher gain PAM has over baseline
1. “Baseline 1 & prune” can effectively reduce the computation cost when
only one task is performed. However, when many neurons can be shared (see
Fig. 4.6(b), (c), (e), and (f)), baseline 1 is sub-optimal when multiple tasks
are executed simultaneously, as it is unable to reduce computation by sharing
neurons. This is why PAM outperforms baseline 1 more on CelebA and LFW.
■ The fewer neurons shared, the higher gain PAM has over baseline 2.
“Baseline 2 & prune” can effectively reduce the computation cost via neuron
sharing when all tasks are performed simultaneously. However, when only few
neurons can be shared (see Fig. 4.6(a) and (d)), the multitask network merged
by baseline 2 cannot shut down the unnecessary neurons when not all tasks are
executed, and hence yields sub-optimal computation cost. This is why PAM
outperforms baseline 2 more on Fashion-MNIST.
■ The more networks merged, the higher gain PAM has over both
baselines. As the number of single-task networks (tasks) increases, “PAM
& prune” can either share more neurons and yield lower computation than
“baseline 1 & prune”, or shut down more unnecessary neurons and yield lower
computation than “baseline 2 & prune”. Therefore the performance gain of
PAM over baseline 1 on LFW is such significantly higher than on CelebA. This
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Table 4.4 Test accuracy and computation cost of all tasks combinations with VGG-
16 on LFW pruned by P1/P2.

Pruning Tasks Accuracy FLOPs (×106)

B1 B2 PAM B1 B2 PAM

P1

A 89.77% 89.49% 89.87% 7.96 12.66 7.94
B 82.81% 82.82% 82.14% 7.91 12.66 7.95
C 83.20% 82.68% 83.30% 7.94 12.66 7.94
D 85.74% 86.45% 86.03% 7.58 12.66 7.93
E 87.10% 86.52% 86.90% 7.87 12.66 7.93

A&B 86.29% 86.16% 86.00% 15.87 12.66 7.98
A&C 86.48% 86.09% 86.59% 15.90 12.66 7.97
A&D 87.75% 87.97% 87.95% 15.54 12.66 7.97
A&E 88.44% 88.01% 88.39% 15.84 12.66 7.96
B&C 83.00% 82.75% 82.72% 15.85 12.66 7.98
B&D 84.28% 84.64% 84.09% 15.49 12.66 7.97
B&E 84.95% 84.67% 84.52% 15.79 12.66 7.97
C&D 84.47% 84.57% 84.66% 15.52 12.66 7.96
C&E 85.15% 84.60% 85.10% 15.81 12.66 7.96
D&E 86.42% 86.49% 86.47% 15.45 12.66 7.96

A&B&C 85.26% 85.00% 85.10% 23.81 12.66 8.01
A&B&D 86.11% 86.25% 86.01% 23.45 12.66 8.01
A&B&E 86.56% 86.28% 86.30% 23.75 12.66 8.00
A&C&D 86.24% 86.21% 86.40% 23.48 12.66 8.00
A&C&E 86.69% 86.23% 86.69% 23.78 12.66 7.99
A&D&E 87.54% 87.49% 87.60% 23.42 12.66 7.99
B&C&D 83.92% 83.98% 83.82% 23.43 12.66 8.01
B&C&E 84.37% 84.01% 84.11% 23.73 12.66 8.00
B&D&E 85.22% 85.26% 85.02% 23.37 12.66 8.00
C&D&E 85.35% 85.22% 85.41% 23.39 12.66 7.99

A&B&C&D 85.38% 85.36% 85.34% 31.39 12.66 8.04
A&B&C&E 85.72% 85.38% 85.55% 31.69 12.66 8.03
A&B&D&E 86.35% 86.32% 86.23% 31.33 12.66 8.03
A&C&D&E 86.45% 86.29% 86.53% 31.36 12.66 8.02
B&C&D&E 84.71% 84.62% 84.59% 31.31 12.66 8.03

A&B&C&D&E 85.72% 85.59% 85.65% 39.27 12.66 8.06

P2

A 89.57% 89.38% 89.24% 22.91 36.33 23.28
B 81.96% 83.15% 83.39% 23.16 36.33 23.29
C 82.96% 81.61% 82.10% 22.93 36.33 23.28
D 85.04% 85.12% 85.29% 21.16 36.33 23.27
E 86.43% 85.81% 85.57% 21.29 36.33 23.27

A&B 85.76% 86.27% 86.31% 46.07 36.33 23.32
A&C 86.26% 85.50% 85.67% 45.84 36.33 23.31
A&D 87.31% 87.25% 87.27% 44.07 36.33 23.30
A&E 88.00% 87.60% 87.41% 44.20 36.33 23.30
B&C 82.46% 82.38% 82.75% 46.08 36.33 23.31
B&D 83.50% 84.14% 84.34% 44.31 36.33 23.31
B&E 84.19% 84.48% 84.48% 44.45 36.33 23.31
C&D 84.00% 83.37% 83.69% 44.09 36.33 23.30
C&E 84.69% 83.71% 83.83% 44.22 36.33 23.30
D&E 85.74% 84.47% 85.43% 42.45 36.33 23.29

A&B&C 84.83% 84.71% 84.91% 68.99 36.33 23.34
A&B&D 85.52% 85.88% 85.97% 67.22 36.33 23.34
A&B&E 85.99% 86.11% 86.07% 67.36 36.33 23.34
A&C&D 85.86% 85.37% 85.54% 67.00 36.33 23.33
A&C&E 86.32% 85.60% 85.64% 67.13 36.33 23.32
A&D&E 87.01% 86.77% 86.70% 65.36 36.33 23.32
B&C&D 83.32% 83.29% 83.59% 67.24 36.33 23.34
B&C&E 83.78% 83.52% 83.69% 67.37 36.33 23.33
B&D&E 84.48% 84.69% 84.75% 65.60 36.33 23.33
C&D&E 84.81% 84.18% 84.32% 65.38 36.33 23.32

A&B&C&D 84.88% 84.82% 85.00% 90.15 36.33 23.37
A&B&C&E 85.23% 84.99% 85.07% 90.28 36.33 23.36
A&B&D&E 85.75% 85.87% 85.87% 88.51 36.33 23.36
A&C&D&E 86.00% 85.48% 85.55% 88.29 36.33 23.35
B&C&D&E 84.10% 83.92% 84.09% 88.53 36.33 23.36

A&B&C&D&E 85.19% 85.01% 85.12% 111.44 36.33 23.39

is also the reason why the performance gain of PAM over baseline 2 on LFW is
not much lower than on CelebA, although on LFW we have the highest degree
of sharing.
Takeaways. Although the performance of PAM varies across tasks, it achieves
consistently solid advantages over both baselines. We may conclude that it
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Table 4.5 Test accuracy and computation cost with ResNet-18/ResNet-34 on
CelebA pruned by P1.

Model Tasks Accuracy FLOPs (×106)

B1 B2 PAM B1 B2 PAM

ResNet-18
A 89.83% 89.30% 89.93% 5.72 8.84 4.78
B 88.25% 88.20% 88.36% 5.72 8.84 4.83
A&B 89.04% 88.75% 89.15% 11.44 8.84 6.40

ResNet-34
A 89.99% 89.70% 90.05% 8.43 12.11 6.94
B 88.44% 88.98% 88.42% 8.43 12.11 6.94
A&B 89.22% 89.34% 89.24% 16.86 12.11 10.29
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Figure 4.6 Sharing ratio of each layer after “PAM & prune (P1 or P2)” on (a)
LeNet/Fashion-MNIST with P1, (b) VGG/CelebA with P1, (c) VGG/LFW with P1,
(d) LeNet/Fashion-MNIST with P2, (e) VGG/CelebA with P2, and (f) VGG/LFW
with P2. In each layer, the sharing ratio is calculated as the number of shared neurons
in L′A,B

i , divided by all neurons in LA,B
i . It ranges from 0% to 100%.

is always preferable to use PAM for efficient multitask inference, regardless of
the amount of shareable neurons, of the probability of executing each task
combination, of the network architecture, or of the pruning method used after
merging.

4.6.3 Ablation Study

Here we present experiments to further understand the effectiveness of PAM.

4.6.3.1 Visualisation of Algorithm 4

Fig. 4.7 illustrates two iterations of Line 19-22 and 24-27 in Algorithm 4 by
showing I(L′Ai ; YB) and I(L′Bi ; YA) against the number of iterations. Here
we use the f7 layer of VGG-16 trained and merged for CelebA dataset as an
example. The tuning parameter α is set to infinitely large in order to show all
the possible cases of the iterations. From Fig. 4.7, we can observe three phases:

1. In the first phase, I(L′Ai ; YB) and I(L′Bi ; YA) remains small, indicating
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Figure 4.7 Iterations of Line 19-22 and 24-27 in Algorithm 4. The shown example
is on the f7 layer of the VGG-16 networks trained and merged on CelebA.

that the selected L′Ai and L′Bi provides little information about the other
task.

2. In the second phase, I(L′Ai ; YB) and I(L′Bi ; YA) start to increase as it is
impossible to add more neurons to L′Ai and L′Bi while keeping I(L′Ai ; YB)
and I(L′Bi ; YA) close to zero.

3. In the third phase, I(L′Ai ; YB) and I(L′Bi ; YA) start to saturate as
the newly joined neurons contain mostly information already included in
existing L′Ai and L′Bi .

In practice, the parameter α tuned as remains small, and the iterations in
Algorithm 4 as well as Algorithm 5 usually stop at the end of the first phase or
the beginning of the second phase.

4.6.3.2 Impact of Task Relatedness

This study aims to show the impact of task relatedness on the performance
gain PAM can achieve. The number of neurons that can be shared among
pre-trained networks is related to the relatedness among tasks. An effective
network merging scheme should enforce increasing numbers of shared neurons
between tasks with the increase of task relatedness.
Settings. We consider the 73 labels in LFW as 73 binary classification tasks,
and measure the relatedness between each task pair by I(YA; YB). We then
pick four pairs of tasks with I(YA; YB) ≈ 0, 0.1, 0.2 and 0.5 bits, train four
pairs of single-task VGG-16’s on them, and construct four multitask networks
using PAM.
Results. Fig. 4.8a plots the number of shared neurons in layer f7 of these four
multitask networks with different tuning threshold α. The multitask networks
for tasks pairs with higher correlation always share neurons. Hence, PAM can
share an increasing number of neurons between tasks with the increase of task
relatedness.
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Figure 4.8 Ablation studies: (a) Number of shared neurons in layer f7 of the four
multitask networks constructed with PAM for different task pairs on LFW dataset,
with different tuning parameter α. (b) The number of non-shared neurons in L′Ai
and L′Bi in the last eight layers when task B is a sub-task of task A. The networks
are trained and merged on LFW.

4.6.3.3 Case Study: Task Inclusion

This study aims to validate the effectiveness of PAM in an extreme yet common
case of task relatedness where task B is a sub-task of task A. Ideally, when the
mutual information is precisely estimated and true largest sets of task-exclusive
neurons are selected, PAM should effectively pick out only task-A-exclusive
neurons.
Settings. We pick 30 labels in LFW as task A and 15 of them as task B.
Hence task A includes task B. We train two single-task VGG-16’s on these two
tasks separately and then merge them by PAM.
Results. Fig. 4.8b shows the number of non-shared neurons in L′Ai and L′Bi in
the last eight layers of the merged network (the previous layers have exclusively
shared neurons). Almost no neurons are selected for L′Bi by Algorithm 4,
validating its effectiveness.

4.7 Conclusion

In this chapter, we investigate network merging schemes for efficient multitask
inference. Given a set of single-task networks pre-trained for individual tasks,
we aim to construct a multitask network such that applying existing network
pruning methods on it can minimise the computation cost when performing
any subset of tasks. We theoretically identify the conditions on the multitask
network, and design Pruning-Aware Merging (PAM), a heuristic network
merging scheme to construct such a multitask network. The merged multitask
network can then be effectively pruned by existing network pruning methods.
Extensive evaluations show that pruning a multitask network constructed by
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PAM achieves low computation costs when performing any subset of tasks in
the network.
So far, with the MTZ introduced in Chapter 2, the MTS introduced in Chapter
3, and the PAM introduced in this chapter, we have covered all three types
of MMDL systems discussed in Sec. 1.4 and provided comprehensive solutions
to the multi-model compression problem. In the next chapter, we move on to
investigate another perspective of on-device intelligence: the efficient on-device
adaptation discussed in Sec. 1.5.



90 Chapter 4. Pruning-Aware Merging: Multi-Model Compression via Neuron Merging



5
Pruning Meta-Trained Networks for

On-Device Adaptation

In previous chapters, with the MTZ introduced in Chapter 2, the MTS
introduced in Chapter 3, and the PAM introduced in Chapter 4, we have
provided comprehensive solutions to the multi-model compression problem
introduced in Sec. 1.4. Now we move on to investigate another perspective of
on-device intelligence: the efficient on-device adaptation discussed in Sec. 1.5.
Adapting neural networks to unseen tasks with few training samples on resource-
constrained devices benefits various Internet-of-Things applications. Such
neural networks should learn the new tasks with limited data and be compact.
Meta-learning enables such learning with limited data, yet the meta-trained
networks can be over-parameterised. This means that deploying such models
on resource-constrained edge devices can be problematic. As introduced in
Sec. 1.3, compression techniques like network pruning hold the potential to
reduce the number of parameters in over-parameterised models drastically.
However, the naive combination of standard compression techniques like
network pruning with meta-learning jeopardises the ability to learn with limited
data. This chapter proposes adaptation-aware network pruning (ANP), a novel
pruning scheme that works with existing meta-learning methods for a compact
network capable of learning with limited data. ANP uses a weight importance
metric based on the meta-objective’s sensitivity rather than the conventional
loss function and adopts approximation of derivatives and layer-wise pruning
techniques to reduce the overhead of computing the new importance metric.
Evaluations on few-shot classification benchmarks show that ANP can prune
meta-trained convolutional and residual networks by 85% without affecting their
ability to learn with limited data.
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Figure 5.1 Comparison between pruning a vanilla-trained model and a meta-trained
model. Existing pruning methods are designed for vanilla-trained networks, where the
task is the same before and after pruning. For example, the vanilla-trained model f1
is pruned into a compact model g1 to deploy on low-resource platforms, where both
f1 and g1 are optimised for Task 1. Our focus is to prune a meta-trained network,
where the model is optimised on batches of tasks. The pruned meta-trained model
should fast adapt to new tasks after deployment. For example, the weights for the
initial architecture is meta-trained to f , which is a good initialisation for Task 1, 2,
and 3. Then f is pruned into a compact model g, where g is expected to adapt into
g4 after few-shot learning (FSL) and yield high inference accuracy on Task 4.

5.1 Introduction

On-device adaptation refers to learning previously unseen tasks by updating an
initial model on-board. This is desired in internet of things (IoT) applications
including personal drones, home robots and self-driving vehicles, since uploading
newly collected data for model updating can be infeasible due to unstable
wireless connections, limited bandwidth or privacy concerns. An initial model
for on-device adaptation should allow fast adaptation and should be compact
in size due to the following reasons: (i) Only a limited amount of training
data is available locally, which requires the model to adapt to new tasks with
few samples. This requirement is reasonable because users are often asked to
provide supervision with a few private data samples so that the general initial
model can be rapidly customized, personalized, or calibrated to new tasks, users
or environments without affecting user experiences. (ii) IoT applications often
run on resource-constrained devices, where a large model easily overwhelms the
computation and memory resources. In contrast to the cloud, IoT platforms
powered by systems on chips (SoCs) or micro-controllers are particularly limited
by the small memory system (KB to MB) to store model parameters [112].
An effective solution to enable fast adaptation is meta-learning, where the
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initial model for deployment is meta-trained, and adaptation is implemented and
assessed by few-shot learning [33], [34]. Of particular interest is Model-Agnostic
Meta-Learning (MAML), a general gradient-based algorithm that learns the
weights of an given initial architecture, such that the meta-trained model excels
at few-shot learning [33]. Gradient-based algorithms [33], [113], [114] are
suited for on-device adaptation since recent research due to the feasibility of
gradient-based training on low-resource devices [115], [116]. Despite allowing
fast adaptation, MAML fails to generate a compact model as it only optimised
the network parameters, but does not alter the initial architecture [117]. The
initial architecture, however, has to be over-parameterised for effective meta-
training [118]. Consequently, the meta-trained model is also over-parameterised.
An intuitive remedy for compact models is network pruning, which has the
potential to radically remove unimportant parameters in a neural network
without deterioration in inference accuracy [8]. However, existing pruning
methods [11], [12], [29], [73], [119], [120] are incompatible with meta-learning
and may jeopardise the ability of fast adaptation, as they are designed to retain
the inference accuracy on a known single task. In contrast, the goal of meta-
learning (in the following called meta-objective) is to optimise the ability to
adapt to new tasks following certain distribution, which differs from the objective
of single task pruning. Therefore, to construct a compact network capable
of fast adaptation, a new network pruning scheme , which can optimise the
topology in accordance with the meta-objective, is required, as illustrated in
Fig. 5.1.
In this chapter, we propose Adaptation-aware Network Pruning (ANP), a novel
network pruning scheme that works in synergy with meta-learning. While meta-
learning optimises the weights, ANP compresses and optimises the topology.
Together we are able to construct compact neural networks capable of fast
adaptation.
At a high level, ANP extends the analysis of second order derivatives for pruning
vanilla-trained networks [12], [121] to meta-learning scenario. That is, ANP
calculates weight importance values from the training data for tasks sampled
from a certain distribution and removes those weights that induces minimal
changes on the meta-objective. However, pruning based on such second order
derivatives of the meta-objective is computation-intensive, as it requires the
global third order derivatives and generalised inverses of Hessian matrices. ANP
avoids calculations of third order derivatives via a novel approximation approach.
It further reduces the computation overhead by layer-wise pruning such that the
generalised inverse Hessian matrices are obtained efficiently and stably.
Evaluations on Mini-ImageNet [34] and Caltech-UCSD Birds-200-2011 (CUB)
[122] show that ANP can prune common used initial architectures by 85% with
less than 1% accuracy loss in few-shot classification and it works with different
gradient-based meta-learning methods (e.g., MAML [33], [113], [114]). In
contrast, pruning the initial architecture to the same ratio with existing methods
[11], [73] will lead to a loss of 7.01% to 26.70% in few-shot classification
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accuracy.
Our main contributions and results are as follows.
■ To the best of our knowledge, this is the first investigation of pruning meta-
trained neural networks for model compression. Due to the inconsistency
between the meta-objective and the weight importance metrics in network
pruning, naive combination of pruning and meta-learning deteriorates the model
adaptability in few-shot learning.
■ We design ANP, a novel meta-learning-compatible network pruning scheme.
ANP can prune over-parameterized meta-trained networks without sacrificing
their ability for fast adaptation. It applies approximation of derivatives and
layer-wise pruning to reduce the computation overhead in pruning meta-trained
deep models.
■ Evaluations on few-shot classification benchmarks show that ANP can prune
the initial architectures for meta-learning by 85% while retaining the few-shot
classification accuracy.
In the rest of this chapter, we review related work in Sec. 5.2, introduce our
ANP method in Sec. 4.5, present its evaluations in Sec. 5.4 and conclude in
Sec. 5.5.

5.2 Related Work

Our work is relevant to the following threads of research.
Meta-Learning for Few-Shot Learning. Training a deep neural network
upon limited samples i.e., in few-shots, tends to overfit [123]. Meta-learning
has been a successful solution to few-shot learning [124], [125], where the meta-
trained model is able to learn a new task from a few training samples. In this
chapter, we focus on gradient-based meta-learning methods [33], [113], [114]
for their applicability in various learning tasks and the potential to enable on-
device adaptation. Specifically, we aim to generate an initial model that can
fast adapt to new tasks and is compact in size.
MAML-like algorithms [33], [113], [114] only adapt weights of the initial
architecture without alerting its topology. A few studies [117], [126] propose
to integrate MAML with neural architecture search to optimise the initial
architecture. Since their primary goal is higher few-shot inference accuracy, the
resulting model can even have more parameters than the initial architecture
in MAML [117]. Our work also adapts the initial architecture, yet with a
complementary objective. Particularly, we sparsify it without sacrificing its
ability of fast adaptation, which results in a much smaller model.
Network Pruning. Given an over-parameterised network well-trained for a
given task, network pruning eliminates unimportant parameters without major
accuracy loss on the inference task [8]. Fine-grained pruning (e.g., weights)
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[11], [73] results in a higher compression rate whereas coarse-grained pruning
(e.g., filters) [10], [127] is a better fit for acceleration on commodity hardware.
Various importance criteria have been proposed, such as magnitude [73], second
order derivatives [11], [12], [29], and information bottleneck [10]. However, all
existing parameter importance metrics are derived for vanilla-trained networks,
i.e., the pruned network targets at the same task as before pruning. In contrast,
we propose a new weight importance metric for meta-trained networks, where
the pruned network should fast adapt to new tasks unseen before pruning.
A very recent study [128] explored improving the meta-training procedure via
pruning. Specifically, in [128], pruning is applied as a model capacity constraint
to avoid meta-overfitting, where the pruned parameters are re-activated during
the retraining phase. Its final output is still a large dense network which is
unfit for deployment on resource-constrained devices. As will be shown in
our evaluations (see Sec. 5.4.2), directly combining iterative hard thresholding
(equivalent to the “Magnitude” baseline in our work) and meta-learning method
like Reptile [113] as in [128] leads to significant drop in few-shot classification
accuracy at high pruning ratios.

5.3 Method

In this section, we first provides a primer on meta learning (Sec. 5.3.1) and
then explain our ANP in detail. Specifically, we introduce our new weight
importance metric for pruning meta-trained networks (Sec. 5.3.2), followed by
derivative approximations (Sec. 5.3.3) and layer-wise pruning (Sec. 5.3.4) for
efficient calculating of the weight importance metric, and finally present the
complete algorithm (Sec. 5.3.5).

5.3.1 Primer on MAML

Model-Agnostic Meta-Learning (MAML) [33] learns an initial model f such
that given a new task, f can learn it with a few training samples. MAML
is a two-tier gradient decent based optimisation process. In each iteration
of the optimisation, M tasks with corresponding training datasets {Di}, i ∈
{1, · · · , M} are sampled from a certain distribution. We use θ to represent the
current parameters of f . In each iteration, θ is updated to θ′′ as follows.

θ′i = θ − α · ∇θL (θ, Di) (5.1)
θ′′ = θ − β · ∇θLm (5.2)

where
Lm = 1

M

M∑
i=1

L
(
θ′i, Di

)
(5.3)

is called the meta-objective, L(·, ·) is a loss function, and α and β are learning
rates. The inner-loop gradient decent (5.1) updates parameters {θ′i} for task-
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specific objectives. Note that θ′i is the vector for parameters trained on task
i. The outer-loop gradient descent (5.2) then updates the parameters for the
meta-objective. Since the meta-objective Lm contains first derivatives of θ in
(5.1), the gradient in (5.2) is in effect a second derivative of θ.

5.3.2 Weight Importance in Meta-Training

Pruning eliminates unimportant weights in the network, where the weight
importance is assessed by the impact of its removal on the inference accuracy.
A classic and effective approach to quantify weight importance is an analysis
based on second order derivatives, which measures the change in the objective
caused by a weight change [11], [12], [29], [121]. Weight importance of vanilla-
trained neural networks is defined using the traditional loss functions as the
objective. We now define weight importance for meta-trained neural networks
via an analysis based on the second order derivatives of the meta-objective as
(5.3).
Defining Weight Importance. To quantify the weight importance of meta-
trained networks, the conventional loss function is replaced by the meta-
objective. Specifically, the Taylor series of the change in the meta-objective
due to a parameter change is

δLm =
(

∂Lm

∂θ

)⊤
δθ + 1

2δθ⊤Hδθ + O(||δθ||3) (5.4)

where H = ∂2Lm

∂θ2 is the Hessian matrix of the meta-objective with respect to θ.
Similar to the analysis of second derivatives for vanilla-trained networks [12],
[121], the first term vanishes for a well meta-trained network, and the higher
order derivatives can be ignored. Therefore,

δLm ≈ 1
2δθ⊤Hδθ (5.5)

Then, identifying the q-th weight in parameter θ that minimizes the impact on
the meta-objective can be formulated as the following optimisation problem:

min
q

1
2δθ⊤Hδθ s.t. e⊤q δθ + θq = 0 (5.6)

where eq is the unit vector whose q-th element is 1 and otherwise 0, and θq is
the same as θ except that the q-th element is set to 0. Forming a Lagrange
from (5.6) as in [12], we find a closed-form solution for δθ

δθ = − θq

[H−1]qq

H−1eq (5.7)

and the corresponding minimal change in the meta-objective

∆Lm = 1
2

θ2
q

[H−1]qq

(5.8)
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This term is also considered as the importance of the q-th element (weight) in
the parameter vector θ.
Challenges to Compute Hessian. From (5.8), it seems that the weight
importance metric for pruning vanilla-trained and meta-trained networks share
the same form, except that the Hessian matrix is defined on the meta-objective
rather than the traditional loss function. We show that naively calculating the
Hessian involves third order derivatives with respect to θ, which is computation-
intensive for deep neural networks.
Assume θ ∈ Rd. Then H ∈ Rd×d and each element Hm,n in H is computed as

Hm,n = ∂Lm

∂θm, θn

(5.9)

= 1
M

M∑
i=1

∂L(θ′i, Di)
∂θm, θn

(5.10)

= 1
M

M∑
i=1

∂L (θ − α · ∇θL (θ, Di), Di)
∂θm, θn

(5.11)

where (5.10) and (5.11) simply substitute Lm and θ′i with (5.2) and (5.1).
From (5.11), each element in H requires computing third order derivatives with
respect to θ.

5.3.3 Approximation of Derivatives

We avoid computing the third order derivatives in (5.11) by approximating them
as follows.
Since θ′i is a function of θm and θn, we apply the Faà di Bruno’s formula [129]
to (5.10):

Hm,n = 1
M

M∑
i=1

∂L(θ′i, Di)
∂θm, θn

= 1
M

M∑
i=1

∑
k

∂L(θ′i, Di)
∂θ′ik

∂θ′ik
∂θm, θn

+
∑
k,l

∂L(θ′i, Di)
∂θ′ik , θ′il

∂θ′ik
∂θm

∂θ′il
∂θn

 (5.12)

From (5.1), we know

∂θ′ik
∂θm

=


1 − α

∂L(θ, Di)
∂θk, θm

, if k = m,

−α
∂L(θ, Di)
∂θk, θm

, if k ̸= m

(5.13)

Omitting the second derivative ∂
∂L(θ,Di)/θk, θm, we obtain the first order

approximation for ∂
∂θ′i

k
/θm

∂θ′ik
∂θm

≈
{

1, if k = m,

0, if k ̸= m
(5.14)
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Figure 5.2 Derivative approximation in (5.17). A small change ∆θ in θ induces
approximately the same change ∆θ′i as in θ′i. It especially well for a well-meta-
trained network, as ∇θLm is small while ∇θL (θ, Di) remains large.

And therefore,
∂θ′im

∂θm, θn

= 0 (5.15)

The first term in (5.12) is therefore vanished, and according to (5.14), we can
also simplify the second term with

∑
k,l

∂L(θ′i, Di)
∂θ′ik , θ′il

∂θ′ik
∂θm

∂θ′il
∂θn

= ∂L(θ′i, Di)
∂θ′im, θ′in

∂θ′im
∂θm

∂θ′in
∂θn

= ∂L(θ′i, Di)
∂θ′im, θ′in

. (5.16)

which finally leads to

Hm,n ≈ 1
M

M∑
i=1

∂L(θ′iDi)
∂θ′im, θ′in

. (5.17)

In summary, (5.17) approximates the computation of the third order derivatives
w.r.t. θ by calculating the second derivatives w.r.t. θ′i.
Understanding the Derivatives Approximation. The approximation used
for reducing the computation of third derivatives to second derivatives relies on
(5.14), which suggests that a small change in the pre-adaptation parameters θ
leads to approximately the same small change in the post-adaptation parameters
θ′i (see Fig. 5.2). Such an approximation is reasonable because for a well-meta-
trained network, ∇θLm is small as the network nearly converged. Meanwhile,
∇θL (θ, Di) is large, as the tasks can substantially differ from each other. In
essence, (5.14) performs a first order approximation by omitting ∂

∂L(θ,Di)/θk, θm.
Such an approach is supported by observations in other studies that the second
derivatives are usually close to nought [130]. Prior studies [33], [113] have
also shown that first order approximations can be as effective as full second
derivatives in meta-learning.

5.3.4 Layer-Wise Pruning

To further reduce the computation, we adapt the layer-wise approach for pruning
vanilla-trained networks [11] and expand it to the pruning of meta-trained
networks.
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Layer-Wise Meta-Objective. The pre-activation output vector of the l-th
layer is denoted as yl, and the post-activation output vector is denoted as
zl = σ(yl), where σ· is the activation function. We use a layer-wise loss
function

Ll (θ, Di) = 1
K

K∑
||ŷl − yl||2 (5.18)

where ŷl is the pre-activation output after the pruning, K is the number of
training samples, and || · || is the l2-norm. Note that the summation is over all
training samples from the same task. The layer-wise meta-objective is then

Ll
m = 1

M

M∑
i=1

Ll
(
θ′i, Di

)
(5.19)

Layer-Wise Hessian. As the network is pruned layer by layer, we need only
the Hessian of Ll

m w.r.t. θl, which is the equivalent of θ for the l-th layer.
From (5.17), we find

Hl ≈ ∂2Ll
m

∂(θ′il )2 = 1
M

M∑
i=1

∂2Ll(θ′i, Di)
∂(θ′il )2 . (5.20)

where θ′il is the equivalent of θ′i (see (5.1)) for the l-th layer.
Similar to [11], Hl is a block diagonal square matrix with each diagonal blocks
being Hlkk

= ∂2Ll
m

∂(θ′i
lk

)2 , where θ′ilk are the vectorised incoming weights of the k-th
neuron in the l-th layer. All blocks Hlkk

are identical and can be calculated as

Hlkk
= 1

M

1
K

M∑
i=1

K∑
zl−1 · (zl−1)⊤ (5.21)

Efficient Computing of Inverse of the Hessian. As shown in (5.7) and
(5.8), we need the inverse of the Hessian H−1

l , a block diagonal square matrix
with its diagonal blocks being H−1

lkk
. In ANP, we calculate H−1

l recursively over
the training samples of all M tasks using the Sherman-Morrison-Woodbury
formula [131]

H−1
lkk,j =H−1

lkk,j−1 −
H−1

lkk,j−1 · zl−1,j · z⊤l−1,j · H−1
lkk,j−1

M · K + z⊤l−1,j · H−1
lkk,j−1 · zl−1,j

with H−1
lkk,0 = α−1I and H−1

lkk,M ·K = H−1
lkk

(5.22)

where α ∈ [10−8, 10−4] is a small constant to make H−1
lkk,0 meaningful and to

which the method is insensitive [12]. Note that the two summations in (5.21)
are integrated in (5.22), as the iteration goes through all M · K samples.
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Algorithm 6: Adaptation-aware Network Pruning
Input: p(T ): distribution over tasks
α: a small constant (10−8 ≤ α ≤ 10−4)
βl: pruning step size hyper-parameter (0 < βl < 1)
γpr: pruning ratio (0 < γpr < 1)
Output: Sparse network

1 randomly initialise weights θ
2 meta-train the network until the meta-objective converges
3 while required γpr not achieved do
4 sample a batch of M tasks Ti ∼ p(L)
5 for each task Ti do
6 sample K data-points from Ti and form datasets Di

7 compute post-adaptation parameters θ′i with Eq.(5.1)
8 end
9 for all layers do

10 calculate H−1
lkk

recursively using Eq.(5.22)
11 calculate δθ and ∆Lm for each weight using Eq.(5.7) and Eq.(5.8), respectively
12 prune βl of the weights with the least ∆Lm, and update the rest with δθ

13 end
14 meta-train the network again until the meta-objective converges, such that the performance

is re-boosted
15 end
16 return the sparse network

5.3.5 Putting It Together

Algorithm 6 outlines the process of ANP for K-shot learning. The pruning first
begins after the network is well-meta-trained (Line 2). As in MAML, a batch of
M tasks are sampled from a given distribution p(T ) (Line 4), and K data-points
are sampled from each task (Line 6). Then the post-adaptation θ′i is calculated
with gradient descent (5.1) for each task. As the training samples and post-
adaptation weights are ready, the inverse Hessian can be recursively calculated
with (5.22) (Line 9). The pruning is done iteratively (Line 3). We use a tuning
parameter βl to control the proportion of weights to be pruned in each iteration.
The importance ∆Lm of each weight is assessed with (5.8) (Line 10), and βl

of the least important weights in each layer are removed, while the remaining
weights are updated using those δθ calculated with (5.7). Combining derivatives
approximation (Sec. 5.3.3) and layer-wise pruning approach (Sec. 5.3.4), ANP
is able to prune meta-trained neural network effectively.
Extensions beyond MAML. It is worth mentioning that ANP is not restricted
to MAML. Here we briefly explain how to extend Algorithm 6 to two popular
variants of MAML: CAVIA [114], an improvement of MAML with context
parameters, and Reptile [113], the first order simplification of MAML. On
CAVIA, as the number of the context parameters is limited, we can apply
Algorithm 6 only to the weights i.e., non-context parameters in the initial
architecture. On Reptile, the meta-objective (5.3) is already omitted. We
compute an averaged importance of weights in the inner loop, then prune the
least important weights as in Algorithm 6.
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5.4 Evaluation

This section presents the evaluations of our method.

5.4.1 Experimental Settings

Metrics. Since we aim at pruning meta-trained networks without sacrificing
their ability of fast adaptation, we compare different methods with the following
metrics:
■ Pruning Ratio (PR): the ratio of pruned parameters to the original parameters
of the initial architecture.
■ Few-Shot Accuracy : the few-shot classification accuracy.
In experiments where many testing tasks are available, we conduct multi-run
testing by repeatedly selecting 5 random tasks for the few-shot learning test.
In Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6, we use error bars to represent the
standard deviation over multiple runs.
Datasets. We use two standard few-shot classification benchmarks.
■ Mini-ImageNet [34]: it is a dataset for image classification, which contains
60, 000 colour images with 100 classes, each having 600 images of size 84×84.
The dataset is split into 64 training classes, 12 validation classes, and 24 test
classes as [33], [114]. We use 5-way 1-shot and 5-way 5-shot settings.
■ Caltech-UCSD Birds-200-2011 (CUB) [122]: it is a dataset for fine-grained
classification, which contains 11, 788 images of 200 bird species, each having
about 60 images. The dataset is split into 100 training classes, 50 validation
classes, and 50 test classes and the images are resized to 84 × 84 as [132]. We
use the 5-way 1-shot setting.
Initial Architectures. We use two common initial architectures from gradient-
based meta-learning literature [33], [113], [114], [133].
■ ConvNet-4: it consists of 4 layers with 3 × 3 convolutions followed by batch
normalisation, ReLU, and 2 × 2 max-pooling. We use 32-filter convolutions for
evaluations as in [33], [114], [132].
■ ResNet-12: it consists of 4 residual blocks, each containing three 3 × 3
convolutional layers [132], [133]. In each residual block, the first two
convolution layers are followed by batch normalisation and ReLu, and the last
convolution layer is followed by batch normalisation and a skip connection. A
2 × 2 max-pooling is used after each residual block. The number of filters in
each residual block is 64, 128, 256, and 512.
Methods for Meta-Training. By default, the weights is meta-trained by
MAML [33]. We also compare ANP with baselines using the more advanced
CAVIA method [114] and the popular first-order method Reptile [113]. The
context parameters in CAVIA follow the default settings, which is a 100



102 Chapter 5. Pruning Meta-Trained Networks for On-Device Adaptation

dimensional vector initialized as 0 before each adaptation step and update during
the inner training loops. For Reptile, we follow the hyper-parameter settings
in [113]. Table 5.1 summarises the hyperparameters to meta-train the initial
architecture via MAML, CAVIA and Reptile.
All the experiments use Adam optimizer for meta training and SGD optimizer
for inner training loops with default hyperparameters. When optimizing the
initial architectures, the pruned weights are set as zero and their gradients are
masked by point-wise production with a zero-one matrix.
Baselines. Since ANP is a pruning scheme for meta-trained networks, we
compare it with two existing pruning methods.
■ Magnitude [73]: a classic pruning method that removes network weights
based on their magnitude.
■ L-OBS [11]: a representative Hessian-based pruning strategy that removes
weights by a layer-wise Hessian-based metric.
In contrast to ANP, Magnitude and L-OBS are originally designed for single-
task pruning. Therefore, one pruning target task has to be given for pruning,
then the algorithms assess and prune the weights based on their importance
to this pruning target task. In our experiments, we randomly select a pruning
target tasks. During each pruning iteration, about 10% weights in each layer
are pruned, and the pruned model is retrained for 40 epochs. We repeat this
step-wise pruning iteration until a desired pruning ratio is reached.
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Table 5.1 Hyperparameter setup for meta-training.

Method Backbone Dataset Setup Inner/Outer LR Meta Epoch LR Decay Meta Batch Size # Update Step

MAML [33]
ConvNet-4

Mini-ImageNet 5-way, 1-shot 1.0× 10−2/1.0× 10−3 80, 000 - 4 5

5-way, 5-shot 1.0× 10−2/1.0× 10−3 80, 000 - 4 5

CUB 5-way, 1-shot 1.0× 10−2/1.0× 10−3 80, 000 - 4 5

5-way, 5-shot 1.0× 10−2/1.0× 10−3 80, 000 - 4 5

ResNet-12 Mini-ImageNet 5-way, 1-shot 1.0× 10−2/1.0× 10−3 100, 000 - 4 5

CUB 5-way, 1-shot 1.0× 10−2/1.0× 10−3 100, 000 - 4 5

CAVIA [114] ConvNet-4 Mini-ImageNet 5-way, 1-shot 1.0× 10−2/1.0 200, 000 0.9 16 2

CUB 5-way, 1-shot 1.0× 10−3/1.0 200, 000 0.9 16 2

Reptile [113] ConvNet-4 Mini-ImageNet 5-way, 1-shot 1.0× 10−2/1.0 100, 000 1.0× 10−5 5 50

CUB 5-way, 1-shot 1.0× 10−2/1.0 100, 000 1.0× 10−5 5 50
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5.4.2 Main Experimental Results

Results Organisation. We have conducted extensive experiments and
compared the performance of ANP with the two baselines on varieties of initial
architectures (ConvNet-4 and ResNet-12) , meta-training methods (MAML,
CAVIA and Reptile), datasets (Mini-ImageNet and CUB) and FSL setups (5-
way 1-shot and 5-way 5-shot). In general, we conducted five experiments and
their results are organised as follows:
■ Exp.1: We first use ConvNet-4 as initial architecture, MAML as meta-
training methods, and 5-way 1-shot as the FSL setup. The comparison of
ANP with the baselines is shown in Fig. 5.3, and the detailed results are listed
in Table 5.2 & Table 5.3.
■ Exp.2: On the basis of Exp.1, we change the few-shot learning setup to 5-
way 5-shot. Results are shown in Fig. 5.4 and details in Table 5.4 & Table 5.5.
■ Exp.3: On the basis of Exp.1, we change the initial architecture to the more
complicated ResNet-12. Results are shown in Fig. 5.5 and details in Table 5.6
& Table 5.7.
■ Exp.4: On the basis of Exp.1, we change the meta-training method to the
more advanced CAVIA. Results are shown in Fig. 5.6 and details in Table 5.8
& Table 5.9.
■ Exp.5: Finally, similar to Exp.4, we change the meta-training method to the
popular first-order method Reptile. All other settings are the same as Exp.1.
Results are shown in Fig. 5.7 and details in Table 5.10 & Table 5.11.
All the aforementioned experiments are conducted on both the Mini-ImageNet
and CUB dataset. The error bars in the figures represent the standard error
over different tasks chosen for few-shot learning.
Overall Performance. Inducing a decrease in few-shot accuracy no more than
1%, our ANP achieves a pruning ratio of at least 85% across all the initial
architectures, datasets and meta-training methods. In comparison, given a
pruning ratio of 85%, Magnitude induces a drop of 7.01% to 19.80% in few-
shot accuracy, and L-OBS introduces a drop of 10.05% to 26.70% in few-shot
accuracy. In fact, the baselines already induce over 5.16% loss in few-shot
accuracy at a pruning ratio of 30% even in the best case (5-way 1-shot on
CUB, ResNet-12 as initial architecture, pruned by Magnitude and meta-trained
by MAML).
Takeaways. ANP significantly and consistently outperforms both baselines
across different scenarios (1-shot or 5-shot), regardless of initial architectures
(ConvNet-4 or ResNet-12) , meta-training methods (MAML, CAVIA or Reptile)
and datasets (Mini-ImageNet or CUB). It turns out that ANP can find a
topology that is meta-optimised for potential new tasks and, combined with
existing meta-learning methods which find the meta-optimised weights, provides
in the end a compact network for fast adaptation.
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Figure 5.3 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-trained by MAML
and pruned by Magnitude, L-OBS, or ANP on (a) Mini-ImageNet and (b) CUB.

Table 5.2 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by MAML
and pruned on Mini-ImageNet.

PR (%) Mini-ImageNet Accuracy (%)

Magnitude L-OBS ANP

0 48.05± 0.0053

30 41.16 6.89↓± 0.0081 39.52 8.53↓± 0.0063 47.34 0.71↓± 0.0136

50 40.55 7.50↓± 0.0088 35.72 12.33↓± 0.0027 47.29 0.76↓± 0.0111

80 36.46 11.59↓± 0.0189 33.77 14.28↓± 0.0057 47.06 0.99↓± 0.0165

85 33.40 14.65↓± 0.0036 30.22 17.83↓± 0.0034 47.09 0.96↓± 0.0106

Table 5.3 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by MAML
and pruned on CUB.

PR (%) CUB Accuracy (%)

Magnitude L-OBS ANP

0 45.54± 0.0120

30 40.02 5.52↓± 0.0098 38.67 6.87↓± 0.0241 44.82 0.72↓± 0.0060

50 39.56 5.98↓± 0.0175 36.96 8.58↓± 0.0131 44.57 0.97↓± 0.0128

80 40.29 5.26↓± 0.0171 34.50 11.04↓± 0.0145 44.69 0.85↓± 0.0105

85 38.53 7.01↓± 0.0070 32.19 13.35↓± 0.0268 44.59 0.95↓± 0.0093

Observations and Comments. From the aforementioned experiment results,
we made the following observations. (i) L-OBS generally performs worse on
meta-learning than Magnitude. The reason may be that L-OBS is able to find
a topology more specialised for the “target task” than Magnitude, which leads
to actually worse FSL performance. This is further discussed in Sec. 5.4.3. (ii)
When used with Reptile, the first-order approximation of ANP is not required.
The significant advantage against the baselines still persists, which is the
consequence of the better optimisation target of ANP: finding the topology
optimised for all potential new tasks instead of the single “target task”. (iii)
In some cases with low pruning ratio (30% to 50%), ANP is even capable of
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Figure 5.4 5-way 5-shot accuracy vs. PR of ConvNet-4 meta-trained by MAML
and pruned by Magnitude, L-OBS, or ANP on (a) Mini-ImageNet and (b) CUB.

Table 5.4 5-way, 5-shot accuracy vs.PR of ConvNet-4 meta-trained by MAML
and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 62.17± 0.0117

30 56.28 5.89↓± 0.0085 54.35 7.82↓± 0.0083 62.28 0.11↑± 0.0037

50 55.05 7.12↓± 0.0207 51.27 10.90↓± 0.0139 61.21 0.96↓± 0.0100

80 50.48 11.69↓± 0.0138 46.45 15.72↓± 0.0143 61.90 0.27↓± 0.0103

85 44.44 17.73↓± 0.0045 40.82 21.35↓± 0.0085 61.19 0.98↓± 0.0020

Table 5.5 5-way, 5-shot accuracy vs.PR of ConvNet-4 meta-trained by MAML
and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 61.04± 0.0268

30 52.21 8.83↓± 0.0208 47.07 13.97↓± 0.0125 60.39 0.65↓± 0.0216

50 51.92 9.12↓± 0.0166 43.64 17.40↓± 0.0157 60.78 0.26↓± 0.0140

80 50.84 10.20↓± 0.0212 43.85 17.19↓± 0.0344 60.15 0.89↓± 0.0155

90 50.24 10.80↓± 0.0073 43.52 17.52↓± 0.0191 60.07 0.97↓± 0.0036

slightly improving the FSL accuracy. This is due to the generalisation effect
known for network pruning.

5.4.3 Ablation Study

Why Baseline Pruning Methods Fail. As mentioned in Sec. 5.4.1, the
baseline methods require one pruning target task during the pruning. Although
the pruned networks are meta-trained and therefore their weights are considered
to be optimised for all the potential new tasks, their topology, constructed via
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Figure 5.5 5-way 1-shot accuracy vs. PR of ResNet-12 meta-trained by MAML
and pruned by Magnitude, L-OBS, or ANP on (a) Mini-ImageNet and (b) CUB.

Table 5.6 5-way, 1-shot accuracy vs. PR of ResNet-12 meta-trained by MAML
and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 50.76± 0.0123

30 43.45 7.31↓± 0.0058 43.77 6.99↓± 0.0117 51.50 0.74↑± 0.0028

50 42.93 7.83↓± 0.0102 43.07 7.69↓± 0.0098 50.87 0.11↑± 0.0077

80 38.63 12.13↓± 0.0138 30.36 20.40↓± 0.0185 50.45 0.31↓± 0.0160

90 36.60 14.16↓± 0.0242 29.89 20.87↓± 0.0156 49.94 0.82↓± 0.0128

Table 5.7 5-way, 1-shot accuracy vs. PR of ResNet-12 meta-trained by MAML
and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 51.59± 0.0151

30 46.43 5.16↓± 0.0134 44.00 7.59↓± 0.0213 51.02 0.57↓± 0.0231

50 40.98 10.61↓± 0.0250 39.04 12.55↓± 0.0115 50.67 0.92↓± 0.0144

80 34.50 17.09↓± 0.0112 33.00 18.59↓± 0.0203 50.61 0.98↓± 0.0070

85 32.00 19.59↓± 0.0351 30.09 21.50↓± 0.0195 50.60 0.99↓± 0.0175

Magnitude or L-OBS, is biased to the pruning target task, which leads to sub-
optimal performance of fast adaptation. To illustrate this bias, we randomly
selected a 5-way “target task” from the Mini-ImageNet dataset, then train &
prune via both baseline methods (Magnitude and L-OBS) ConvNet-4 backbones
up to a compression ratio of 85%. These compressed models are then tested
for few-shot accuracy on not only the aforementioned “target task”, but also
the so-called “other tasks”, which are tasks again randomly selected from the
dataset. Note that none of the “other tasks” has been used during the pruning.
Fig. 5.8 shows the training accuracy curves on the “target task” and “other
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Figure 5.6 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-trained by CAVIA
and pruned by Magnitude, L-OBS, or ANP on (a) Mini-ImageNet and (b) CUB.

Table 5.8 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by CAVIA
and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 47.56± 0.0076

30 38.71 8.85↓± 0.0145 37.86 9.70↓± 0.0148 46.74 0.82↓± 0.0140

50 34.87 12.69↓± 0.0072 34.32 13.24↓± 0.0118 47.71 0.15↑± 0.0169

80 32.14 15.42↓± 0.0060 23.86 23.70↓± 0.0100 46.59 0.97↓± 0.0103

85 27.76 19.80↓± 0.0156 20.86 26.70↓± 0.0099 46.57 0.99↓± 0.0223

Table 5.9 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by CAVIA
and pruned on CUB.

PR (%) CUB Accuracy (%)

Magnitude L-OBS ANP

0 47.32± 0.0235

30 41.77 5.55↓± 0.0176 40.67 6.65↓± 0.0173 47.15 0.17↓± 0.0239

50 41.39 5.93↓± 0.0196 40.24 7.08↓± 0.0211 47.03 0.29↓± 0.0269

80 38.33 8.99↓± 0.0225 37.28 10.04↓± 0.0237 46.73 0.59↓± 0.0163

85 37.91 9.41↓± 0.0183 37.26 10.05↓± 0.0152 46.85 0.47↓± 0.0185

tasks” when performing 5-way, 1-shot learning tests. The few-shot accuracy
results on the multiple “other tasks” are aggregated into one line with error
bars. As we can see, the accuracy on the pruning “target task” is high, but on
“other tasks”, which may notably differ from the “target task”, the accuracy is
low.
Few-Shot Learning: Convergence. Fig. 5.9 plots the few-shot training loss
and few-shot accuracy curves of a meta-trained & pruned initial architecture
to perform few-shot learning on test tasks. ANP provides not only a better
accuracy, but also a faster convergence. This is a crucial benefit for resource-
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Figure 5.7 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-trained by Reptile
and pruned by Magnitude, L-OBS, or ANP on (a) Mini-ImageNet and (b) CUB.

Table 5.10 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by Reptile
and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 48.40± 0.0051

30 41.03 7.37↓± 0.0074 40.89 7.51↓± 0.0213 48.51 0.11↑± 0.0151

50 38.34 10.06↓± 0.0203 35.15 13.25↓± 0.0084 47.98 0.42↓± 0.0130

80 31.55 16.85↓± 0.0134 29.03 19.37↓± 0.0093 47.54 0.86↓± 0.0034

85 29.94 18.46↓± 0.0241 28.34 20.06↓± 0.0124 47.61 0.79↓± 0.0210

Table 5.11 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-trained by Reptile
and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 45.19± 0.0195

30 42.39 2.8↓± 0.0301 40.36 4.83↓± 0.0154 44.92 0.27↓± 0.0102

50 38.94 6.25↓± 0.0013 36.43 8.76↓± 0.0136 45.41 0.22↑± 0.0167

80 33.31 11.88↓± 0.0093 31.48 13.71↓± 0.0103 44.45 0.74↓± 0.0112

85 31.24 13.95↓± 0.0035 29.59 15.60↓± 0.0134 44.30 0.89↓± 0.0244

constrained devices, as with fewer training steps the computation cost and power
consumption can be reduced during adaptation. Moreover, in some experiments
(e.g., the loss curve for Magnitude in Fig. 5.9(a)), the training loss curve of the
baseline methods may even not converge. In contrast, ANP provides consistent
and stable convergence.
Fig. 5.10, Fig. 5.11 and Fig. 5.12 show the loss and accuracy curves of a
meta-trained & pruned ConvNet-4 to perform 5-way, 1-shot learning on Mini-
ImageNet. The initial architecture is compressed to a pruning ratio of 30%,
50%, and 80%, respectively. The accuracy advantage of ANP against baselines
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Figure 5.8 5-way 1-shot training accuracy curves on the task selected for pruning
and other tasks of ConvNet-4 meta-trained by MAML and pruned with (a) Magnitude
and (b) L-OBS on Mini-ImageNet.
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Figure 5.9 5-way 1-shot (a) training loss and (b) testing accuracy curve of
ConvNet-4 meta-trained by MAML and pruned by Magnitude, L-OBS, or ANP on
Mini-ImageNet (PR = 85%).

increases as the PR increases as expected. Furthermore, the faster and more
stable convergence with ANP compared to the baselines, which is observed on
PR = 85%, can also be observed with PR = 30%, 50%, and 80%.
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Figure 5.10 5-way 1-shot (a) training loss and (b) testing accuracy curve of
ConvNet-4 meta-trained by MAML and pruned by Magnitude, L-OBS, or ANP on
Mini-ImageNet (PR = 30%).
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Figure 5.11 5-way 1-shot (a) training loss and (b) testing accuracy curve of
ConvNet-4 meta-trained by MAML and pruned by Magnitude, L-OBS, or ANP on
Mini-ImageNet (PR = 50%).
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Figure 5.12 5-way 1-shot (a) training loss and (b) testing accuracy curve of
ConvNet-4 meta-trained by MAML and pruned by Magnitude, L-OBS, or ANP on
Mini-ImageNet (PR = 80%).
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5.5 Conclusion

In this chapter, we investigated the on-device adaptation problem discussed
in Sec. 1.5. We explored pruning meta-trained deep neural networks for
few-shot learning on resource-constrained platforms. Prior pruning methods
deteriorate the fast adaptability of meta-trained networks due to inconsistent
weight importance metrics with the meta-objective. In response, we propose
ANP, the first meta-training-compatible network pruning scheme. ANP defines
a weight importance metric for the meta-objective to find a topology meta-
optimised for learning new tasks in a few shots. Evaluations on few-shot
classification benchmarks show that ANP can prune MAML-like meta-trained
convolutional and residual backbones by 85% with a minimal drop in few-shot
classification accuracy. We envision our work will offer guidelines to enable fast
model adaptation on low-resource platforms.



6
Conclusions and Outlook

The deployment of artificial neural network enabled deep learning models
on edge devices holds the potential for bringing machine intelligence to our
everyday life. However, modern DL models are often compute-intensive and
have significant memory requirements, thus compression and optimisation of
these DL models are necessary for on-device deployment. In this dissertation,
we have presented advances in this area from two perspectives: the multi-model
compression for efficient inference of MMDL systems, and the efficient on-device
adaptation.
AI-powered mobile applications increasingly demand multiple deep neural
networks for correlated tasks to be performed continuously and concurrently
on resource-constrained devices. In this dissertation, we showed that multi-
modal compression is the key to utilising task relatedness and consequently
compressing the footprint of MMDL systems. We distinguish between three
types of MMDL systems and provide solutions for all of them.
On-device adaptation refers to learning previously unseen tasks by updating
an initial model onboard, which is desired in many on-device intelligence
applications including personal drones, home robots and self-driving vehicles,
as uploading newly collected data for model updating can be infeasible due to
unstable wireless connections, limited bandwidth or privacy concerns. Previous
works provided solutions for adaption with a limited amount of training data,
but the provided DL models are still over-parameterised and compute-intensive.
In this dissertation, we provided a solution that enables the construction of a
compact model capable of fast on-device adaption.
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6.1 Contributions

A weight sharing based network merging framework (Chapter 2). We
proposed Multi-Task Zipping (MTZ), a framework to automatically merge
correlated, pre-trained deep neural networks in the first and second types of
MMDL system, discussed in Sec. 1.4.1 and Sec. 1.4.2. Central in MTZ is a
layer-wise neuron sharing and incoming weight updating scheme that induces a
minimal change in the error function. MTZ inherits information from each
model and demands light retraining to re-boost the accuracy of individual
tasks. MTZ supports typical network layers (fully-connected, convolutional
and residual) and applies to inference tasks with different input domains.
Evaluations show that MTZ can fully merge the hidden layers of two VGG-
16 networks with a 3.18% increase in the test error averaged on ImageNet
for object classification and CelebA for facial attribute classification, or share
39.61% parameters between the two networks with < 0.5% increase in the test
errors. The number of iterations to retrain the combined network is at least
17.8× lower than that of training a single VGG-16 network. Moreover, MTZ can
effectively merge nine residual networks for diverse inference tasks and models
for different input domains. And with the model merged by MTZ, the latency
to switch between these tasks on memory-constrained devices is reduced by
8.71×.
A DNN graph rewriter for efficient execution of networks merged via
our Multi-Task Zipping framework (Chapter 3). We designed Multi-Task
Stitching (MTS), a novel graph rewriter for efficient multitask inference with
weight-shared DNNs, such as those merged via our MTZ. MTS adopts a model
stitching algorithm which outputs a single computational graph for weight-
shared DNNs without duplicating any shared weight. MTS also utilises a model
grouping strategy to avoid overwhelming the GPU when co-running tens of
DNNs. Extensive experiments show that MTS accelerates multitask inference
by up to 6.0× compared to sequentially executing multiple weight-shared DNNs.
MTS also yields up to 2.5× lower latency and 3.7× less memory usage compared
with NETFUSE, a state-of-the-art multi-DNN graph rewriter.
A neuron merging based network merging scheme (Chapter 4). With
the help of information theory, we formally defined the redundancy within the
third type of MMDL system introduced in Sec. 1.4.3 and identify the optimal
topology for merging. We also theoretically identified the conditions such that
the merged network can be effectively pruned via existing pruning schemes and
the computation of all task combinations can be minimised, which is often
demanded by modern mobile applications. On this basis, we proposed Pruning-
Aware Merging (PAM), a heuristic network merging scheme to construct a
multitask network that approximates these conditions. The merged network
is then ready to be further pruned via existing network pruning methods.
Evaluations with different pruning schemes, datasets, and network architectures
show that PAM achieves up to 4.87× less computation against the baseline



6.2. Future Developments 115

without network merging and up to 2.01× less computation against the baseline
with a state-of-the-art network merging scheme.
A novel pruning scheme that works with existing meta-learning
methods for on-device adaptation (Chapter 5). For on-device adaptation,
we proposed Adaptation-aware Network Pruning (ANP), a novel pruning scheme
that works with existing meta-learning methods for a compact network capable
of fast adaptation. ANP uses a weight importance metric that is based on the
sensitivity of the meta-objective rather than the conventional loss function and
adopts approximation of derivatives and layer-wise pruning techniques to reduce
the overhead of computing the new importance metric. Evaluations on few-shot
classification benchmarks show that ANP can prune meta-trained convolutional
and residual networks by 85% without affecting their fast adaptation.

6.2 Future Developments

Towards Artificial General Intelligence. In Sec. 1.4, we introduced three
types of MMDL system. On this basis, we can, in practice, construct another
type of MMDL system by connecting the output of a second type (Sec. 1.4.2) to
the input of a third type (Sec. 1.4.3). Such an MMDL system takes inputs from
different data sources, combines the information, and uses them effectively for
different tasks. Many believe this kind of unified DL system is the key towards
Artificial General Intelligence (AGI), an advance of AI approaching the level of
intelligence shown by humans. Currently, no research work has investigated
such AGI systems’ on-device deployment to the best of our knowledge.
Common toolset for the on-device deployment of DL systems. As far as
we know, most state-of-the-art frameworks for on-device deployment, including
TVM [18] and TensorFlow Lite [77], do not support automatically applying
model-compression techniques like network pruning, let alone our multi-
model compression methods. Therefore, a comprehensive toolset providing
an automatic end-to-end solution for the deployment of DL models would be
interesting for both research and commercial purposes.
More efficient on-device learning. In Chapter 5, we provided a meta-pruning
method for reducing the memory and computation during on-device adaptation.
Besides using model compression techniques like network pruning, there are also
other potential solutions to further improve the efficiency of on-device learning.
On the one hand, the stochastic gradient descent (SGD) method is the primary
cause of the large memory consumption for neural network training. Zero-order
optimisation is a potential alternative to the SGD method for NN training, which
may improve training efficiency under certain circumstances. On the other hand,
distributed learning paradigms like federated learning [134] can mitigate the lack
of data during local training.
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