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Abstract

Nowadays, multi-core architectures become popular for embedded
systems. As VLSI technology is scaling to deep sub-micron domain,
an envisioned trend is that the architectures of embedded systems are
moving from multiple cores to many cores. Although state-of-art multi-
core and future many-core architectures provide enormous potential,
scaling the number of computing cores does not directly translate into
high performance and power efficiency. To exploit the potential of a
multi(many)-core platform under stringent time-to-market constraints,
software development does not only need to tackle the still-valid classical
requirements, e.g., memory constraints, programming heterogeneity, and
real-time responsiveness, but also face new challenges stemming from
the increasing number of computing cores, for instance, scalability of the
technologies.

In this thesis, we focus on the class of streaming embedded systems
at system level and address three important aspects of the software
construction of multi/many-core embedded systems, i. e. , programming,
performance, and power. To address the programmability ofmulti/many-
core embedded systems, we present a model-of-computation based
programmingmodelwhich supports scalable specifications of a system in
a parametrized manner. In terms of performance estimation, we present
both analytic and simulation-based techniques to tackle the complex
interference and correlations within multi/many-core embedded systems
such that accurate estimation can be conducted. We also investigate
power-efficient design and propose offline and online algorithms for
dynamic power management to reduce the static power consumption
under hard real-time constraints.





Zusammenfassung

Mehrkernprozessoren werden bereits heute für eingebettete Systeme
verwendet. Durch die weitere Miniaturisierung im Submikrometer
Bereich ist zu erwarten, dass zukünftige Architekturen für eingebettete
Systeme auf Vielkernprozessoren anstatt Mehrkernprozessoren
basieren werden. Obwohl Mehrkernprozessoren und zukünftige
Vielkernprozessoren enorme Möglichkeiten bieten, führt die steigende
Anzahl von Rechenkernen nicht direkt zu höherer Rechenleistung
oder Energieeffizienz. Um die Möglichkeiten dieser Architekturen bei
kurzen Produktentwicklungszeiten ausschöpfen zu können, müssen
daher bei der Softwareentwicklung sowohl bereits bekannte als
auch neue Aspekte berücksichtigt werden. Während beispielsweise
Speichereinschränkungen, Heterogenität bei der Programmierung oder
Echtzeitanforderungen weiterhin eine wichtige Rolle spielen, müssen
zusätzlich die Skalierbarkeit bezüglich der Anzahl der Prozessorkerne
oder technologische Einschränkungen bei der Softwareentwicklung
beachtet werden.

In der vorliegenden Dissertation liegt der Schwerpunkt auf einge-
betteten Systemen für Streaming Anwendungen, wobei drei Aspekte
der Softwareentwicklung näher betrachtet werden: Programmierung,
Analyse des Zeitverhaltens und Leistungsaufnahme. Zur Program-
mierung von eingebetteten Systemen mit Mehr-/Vielkernprozessoren
wird ein Programmiermodell vorgestellt, das die skalierbare Spezifika-
tion eines Systems in parametrisierter Form ermöglicht. Zur Analyse
des Zeitverhaltenswerden analytische und simulationsbasierte Verfahren
vorgestellt, welche zur Erzielung genauer Resultate die komplizierten
zeitlichen Interferenzen undKorrelationen inMehr-/Vielkernprozessoren
berücksichtigen. Schliesslich wird der Entwurf von Systemen mit
effizienter Leistungsaufnahme betrachtet, wobei online und offline
Algorithmen vorgestellt werden, um den statischen Leistungsverbrauch
unter harten Echtzeitbedingungen zu reduzieren.
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1
Introduction

Multi-core architectures are widely used for embedded systems nowa-
days. The number of computing cores is keeping on increasing as VLSI
technology is scaling to deep sub-micron domain. An envisioned trend
is that embedded systems are moving frommultiple cores to many cores.
This thesis presents a set of novel techniques for contemporary multi-
core and future many-core embedded system design. In particular, we
focus on solutions for the new challenges imposed by CMOS technology
scaling. Section 1.1 and 1.2 survey the state-of-art platforms and software
tool flows for multi-core embedded systems, respectively. Section 1.3
draws the outline and summarizes the contributions of this thesis.

1.1 Multi-Core Embedded Systems

Modern embedded systems require massive computational power due
to computationally intensive embedded applications, e.g., real-time
speech recognition, video conferencing, software-defined radio, and
cryptography. An embedded system running all these applications
demands a total performance payload of up to 10, 000 SPECInt benchmark
units [ABM+04]. The situation will become even worse since the demand
for computation will further grow. Future embedded applications like
embedded computer vision [KBC09], for instance, require computational
power far beyondwhat can be provided by state-of-art embedded system
architectures [WJM08].

Besides the computational demand, power consumption is another
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first-class design concern for embedded systems. A major category of
embedded systems, for instance, are hand-held mobile devices which
are powered by batteries. The batteries for such devices are limited
in both power and energy output. The amount of energy available
thus severely limits a system’s lifespan. Although research continues
to develop batteries with higher energy-density, the slow growth of the
energy density of batteries lags far behind the tremendous increase of
demands [ITR].

To copewith the ever increasingdemandof computation and stringent
power constraints ofmodern embedded systems,multi-core architectures
become the de facto choice. These are two driving forces to usemulti-core
architectures: On the one hand, CMOS circuits advance to the deep sub-
micro domain, which will aid sustaining Moore’s law in the future – the
number of transistors within a chip doubles every 18 months. A recent
evidence, for instance, is the newly unveiled Intel Single-chip Cloud
Computer (SCC) [SCC] which integrates 1.3 billion transistors within 567
square millimeters manufactured using a 45 nm CMOS High-K metal
gate process. On the other hand, increasing clock frequencies and deeper
pipelines cannot sustain the performance increase under constraints of
power consumption and thermal dissipation, i.e., hitting the power
wall [PH09]. Experience suggests that performance only doubles with
quadrupled complexity of a chip [Bor07].

The main advantage of multi-core architectures is that raw per-
formance increases can be accomplished by increasing the number of
computing cores rather than frequency, which translates into a slower
growth in power consumption. For a given processor architecture in
a given technology, under-clocking with lower supply voltage decreases
power consumptionmuchmore thanperformance. On the other hand, for
the samepower consumption, a dual-core solution clocked at a 20% lower
frequency would bring in theory 73% more performance than a single
core [CCBB09]. Therefore, multi-core architectures embody a good trade-
off between technology scaling and strict power budget requirements.
Consequently, ITRS predicts that by the end of the decade consumer
portable Systems-on-Chip (SoC) will contain more than 1, 400 cores, as
depicted in Fig. 1. Multi-core embedded systems are inevitably evolving
to many-core embedded systems. In the rest of this section, we survey
a few prominent cutting-edge multi-core embedded system platforms,
some of which actually have many cores.

Multi-core architectures have a longer history in embedded systems
than in desktop commercial products because embedded systems hit
the power wall earlier [WJM08]. One of the first commercial multi-core
platforms, the Lucent Daytona [AAB+00], for instance, wasmanufactured
a decade ago. Tab. 1 lists six state-of-art multi/many-core platforms
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Fig. 1: ITRS 2007 [ITR] for SOC consumer portable design complexity trends.

from different vendors, the applications of which range from high-
end embedded systems to portable mobile devices. The IBM Cell
Broadband Engine [GHF+06], delivered at the end of 2006, implements a
heterogeneous architecturewith eight specializeddataprocessing engines
(SPU) forVLIWcomputing and aPowerPC engine (PPE) for coordination.
The first major commercial application of the IBM Cell is in Sony’s
PlayStation 3 game console. The newly announced Intel SCC [SCC] is an
experimental chipwhichwill bedelivered in 2010 for academic researches.
It integrates 48 identical IA-32 cores equipped with dynamic voltage
and frequency scaling, attaining power consumptions from 125 down
to 25watts. Almost the same time, TILERA claimed the world’s first 100-
core general-processing cores, namely TILE-Gx100 [TIL]. It pulls 55watts
at peak performance at a clock frequency of 1.5GHz. This category of
platforms is suitable for high-end embedded systems.

The last three rows of Tab. 1 depict another category of platforms
which are suitable for mobile embedded systems. The PC205 [pic] of
picoChip integrates 248 identical VLIW DSP cores running at 160MHz
to attain low power consumption. In contrast, the TI OMAP 4440 [TI-]
is designed in a fully heterogeneous manner, being comprised of a dual-
core ARM Cortex-A9, a programmable IVA 3 hardware accelerator, an
image signal processor (ISP), and an SCX540 GPU. With these highly
specialized cores, the OMAP 4440 can run at 1GHz while its power
consumption remains at only onewatt. The ATMEL ShapOtto [HPB+]
makes a compromise between homogeneity and heterogeneity. A tile-
based architecture is chosen where each tile identically consists of an
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vendor
number

ISA
max. max.

of cores power frequency

IBM CELL 9 PPE,SPU 100W 3.2GHz
Intel SCC 48 IA-32 125W 3GHz
TILERA TILE-Gx100 100 RISC-based 55W 1.5GHz
picoChip PC205 249 ARM,DSP 3W 160MHz
TI OMAP 4440 5 ARM, DSP, GPU 1W 1GHz
ATMEL ShapOtto 16 ARM,DSP ≤4W 250MHz

Tab. 1: State-of-art multi/many-core platforms.

ARM core, a VLIW DSP, and a network processor. Each tile requires a
dynamic power which ranges between 360 and 460 miliwatts, while the
static (leakage) consumption ranges between 8 and 23 miliwatts. The
current fabrication intends to integrate eight tiles while the technology
can be scaled beyond.

There are more commercial multi/many-core platforms available in
the market. For extensive surveys, we refer to [BDM09, KAG+09].

1.2 System Software Design

Although state-of-art multi-core and future many-core architectures
provide enormous potential, scaling the number of computing cores
does not directly translate into high performance and power efficiency.
To exploit the potential of a multi(many)-core platform under stringent
time-to-market constraints, software development plays an essential role.
Software development does not only need to tackle the still-valid classical
requirements, e.g., memory constraints, programming heterogeneity, and
real-time responsiveness, but also new challenges stemming from the
increasing number of computing cores. We identify a few new challenges
as follows:

• Due to the increased number of programmable cores, exploiting the
massive parallelism offered by the abundant computing resources
becomes challenging. On the one hand, it is difficult to expose
and abstract the available parallelism of a multi-core platform
to application programmers due to the intrinsic heterogeneous
architecture of the platform. On the other hand, modern embedded
applications are far more complex than their single-threaded
ancestors. The reference implementation for the H.264 codec, for
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instance, consists of over 120, 000 lines of C code. Parallelizing it is
a tedious and error-prone process. The questions are:

How to efficiently program an multi/many-core platform with respect to
both performance and time-to-market? Can such a programming model
scale to future many-core platforms?

• The increased number of computing cores would lead to average-
case performance gains, whereas the worst-case performance
might decrease because of complex interactions within a system.
Furthermore, even the average case is difficult to measure because
of the intrinsic heterogeneity of modern multi-core platforms. The
traditional cycle/instruction-accurate simulation techniques are far
too slow. The question here is:

How to estimate the performance of large multi/many-core embedded
systems with reasonable time and accuracy?

• The tremendous amount of integrated transistors within a chip
incurs a new power-efficiency problem, i.e., static power consump-
tion caused by leakage current. The leakage current originates in
the dramatic increase in both sub-threshold current and gate-oxide
leakage current, which is projected to account for as much as 50
percent of the total power dissipation for high-end processors in 90-
nm technology [ABM+04]. The ITRS expects the static powerwill be
much greater than its predictions due to variability and temperature
effects [ITR]. The question hereby is:

How to effectively reduce the static power under real-time constraints?

This thesis aims to give partial answers to these new challenges
imposed by the steadily increasing number of programming cores of
modern multi-core and future many-core embedded systems. Before
presenting our contributions, we review the state-of-art related work
in the literature. Due to the vast amount of related work, only
a representative subset is discussed with an emphasis on multi-core
embedded systems. For extensive surveys, we refer to [MJU+09,
HHBT09a, wPOH09, KB09].

To the first category belong compiler-based approaches where a
conventional sequential language like C is used as an initial specification
for applications and the compiler automatically extracts parallelism from
the sequential representation. Example frameworks are MAPS [CCS+08],
Compaan [SZT+04], and CriticalBlue multi-core Cascade [Cri]. This
approach is appreciated by application programmers because the com-
plicated parallelism extraction is transparent and does not impose any
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burden on the programmers. Automated parallelization, however, is
challenging and effective parallelism extraction is rather cumbersome
without domain-specific knowledge. Therefore, compiler-based ap-
proaches are normally limited to applications with evident data-parallel
regions or with relatively static behavior.

To ease the job of compilers, one widely adopted approach is to use an
explicit application programming interface (API) during the application
development. Using APIs, application programmers can make use of
their domain-specific knowledge, e.g., identifying the parallel regions,
and give hints to the compiler for better parallelization. Well-known
APIs are OpenMP [Ope] for shared-memory architectures, MPI [MPI] for
distributed-memory architectures, and TTL [vdWdKH+04] for high-level
abstraction. Industrial chip vendors adopt this approach widely within
their software development kits. CUDA [BFH+04, ati] from NVIDIA and
Brook+ [CUD] from AMD ATI are parallel programming solutions for
GPUs, which provide specific APIs to manipulate the GPU memory and
to express single-instruction multiple-data (SIMD) data parallelism. The
API-based approach allows better low-level control of the parallelism
by the programmer and, therefore, promises better performance if the
APIs are properly used. The major drawback of compiler/API-based
approaches is that an application can be written in an arbitrary form,
consequently complicating quantitative analysis.

Model-driven development is recently advocated as a viable alterna-
tive. By restricting an application to a certain model of computation,
quantitative analysis with respect to e.g. schedulability tests and
worst-case behavior can be tackled in a reasonable manner. A well-
known model-of-computation is the Kahn process network [Kah74]
where an application is composed of autonomous processes which
communicate asynchronously via point-to-point FIFO channels. Design
flows based on Kpn are e.g. Koski [KKO+06], DOL [TBHH07],
SESAME/DAEDALUS [PEP06, NSD08]. Another widely used model-
of-computation is the synchronous data flow (SDF) [LM87] which is a
restricted version of Kpn. The SDF model enables static scheduling
analysis at compile time, which provides guarantees on, for instance,
finite size of communication buffers and deadlock-free execution. Tool
flows adopting the SDF are, for instance, SHIM [ET06], PEACE [HKL+07],
and StreamIt [TKA02]. There are other frameworks supporting multiple
models-of-computation simultaneously. For instance, Ptolemy [pto]
supports heterogeneous modeling and Metropolis [BWH+03] defines a
meta-model that can be refined into a specific model-of-computation. To
compare different models-of-computation, E. Lee and A. S. Vincentelli
present a framework [LSV98]. An overview of applying models-of-
computation in system design is presented in [ELLSV97].
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Although a vast amount of research effort has been devoted into this
field, the aforementioned challenges are not completely solved. The
developed techniques are not well suited for futuremany-core embedded
systems, which motivates our work. In this thesis, we try to tackle
these challenges for both contemporary multi-core and future many-core
embedded systems, in particular for a specific application domain.

1.3 Thesis Outline and Contributions

A well-known methodology to guide embedded system design is the
orthogonalization of concerns [KNRSV00] which proposes to separate a
design process into independent but less complex parts. A corresponding
flow to design an embedded system is depicted in the shadowed part of
Fig. 2, now commonly referred to as the Y-chart paradigm [KDVvdW97].
One key idea underlying this paradigm is to explicitly separate applica-
tion and architecture specifications and to use a mapping step to specify
how the application is spatially (binding) and temporally (scheduling)
executed on the architecture. During the design process of an embedded
system, the application, architecture, and mapping are iteratively refined
according to evaluation results at different design stages.

application
specification

architecture
specification

mapping

system
evaluation

evaluation
results

programming model
(chapter 2)

synthesis

performance / power
(chapter 3) (chapter 4)

DSE

Fig. 2: Y-chart paradigm revisited.

Revisiting the Y-chart paradigm, the software design for a given
embedded platform can be embodied by a few concrete procedures,
depicted in the bold text of Fig. 2. First, a programming model is
needed as an interface for designers to define a system, i.e., specifying
the application, architecture, and mapping. The programming model
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defineswhichmodel-of-computation to use and the programming syntax
of the specifications. Second, to evaluate a candidate design, metrics and
the corresponding evaluation model need to be defined. To analytically
evaluate the performance of a system, for instance, a formal performance
model for the system is needed. In addition, the programming model
and the evaluation model are normally defined at different levels of
abstraction. An automated synthesis is preferable to refine a system
from one level of abstraction to the next in a correct manner in terms of
functional and possibly non-functional properties. Last but not least, a
design space exploration (DSE) procedure is also desirable in order to
find the optimal design in a systematic and automated manner.

None of the procedures in the Y-chart paradigm is trivial. In this
thesis, we target the domain of streaming applications and provide a
set of novel techniques for the software construction for contemporary
multi-core and future many-core embedded systems, trying to tackle the
aforementioned design challenges. We demonstrate on the one hand how
the aforementioned challenges can be tackled in a systematic manner, on
the other hand the proposed solutions can be smoothly unified in a same
software framework for the assessment of system-level design decisions.
Specifically, we focus on the programming model (chapter 2) and two
different metrics, i.e., performance (chapter 3) and energy (chapter 4), as
depicted in Fig. 2. For automated software synthesis and design space
exploration, we refer to [HKH+09, Hai10] and [Gri04, Kü06], respectively.
The major contributions of the thesis are summarized as follows:

Chapter 2: Programming Model

In Chapter 2, we present a programming model based on Kpn. Our
programmingmodel separates the application, architecture, andmapping
specifications of a system. For application modeling, the Kpn model-of-
computation is strictly adhered. To avoid the costly communication and
synchronization overheads incurred by large scale process networks, the
FIFO syntax of a Kpn is extended by a so-called windowed FIFO. We also
develop a distributed functional simulation as a proof-of-concept runtime
environment for our programmingmodel. The detailed contributions are
listed in the following:

• Following the orthogonalization-of-concerns methodology, we con-
struct the syntax of our programming model. We define XML
schemata for the system specifications, i.e., the structure of the
application, the abstract architecture, and the mapping. To assist
the design of large systems, a so-called iterator is developed by
which a system can be arbitrarily scaled in a parametrized manner.
We also define a set of C/C++ coding rules for the specification of
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the functionality of individual processes in an application process
network, To reduce theworkloads of application programmers, Our
coding rules enable the reuse of a same piece of source code for a
set of iterated processes.

• We propose a syntactical extension for the FIFO communication of
Kpn, namely windowed-FIFO. We prove the syntactic coherency of
a windowed-FIFO process network to a standard Kpn. To validate
this concept, we develop a hardware implementation as well as the
application software interface based on Xilinx FPGAs.

• To show the effectiveness of our programmingmodel, we develop a
SystemC-based functional simulation as a runtime environment.
To parallelize SystemC execution, we develop a library which
enables a concurrent execution of multiple SystemC kernels. Using
this library, a functional simulation of an application can execute
on an arbitrary number of Linux hosts connected via TCP/IP.
Furthermore, the source code for the runtime environment can
be automatically generated from system specifications using our
programming model.

Chapter 3: Performance Estimation

InChapter 3, we consider the performancemetric in theY-chart paradigm.
We investigate two techniques, i.e., an analytic method and a simulation-
based approach, for worst and average case performance evaluation of
an sysetm at system level. For the formal method, we apply real-time
calculus [TCN00, CKT03] and develop new techniques for the analysis
for data stream correlations, which is typical for Kpn applications. For the
simulation-based approach, we develop a trace-based framework which
serves as a non-functional back-end of our programming model. The
proposed framework can estimate the performance of large streaming
multi/many-core systems within a reasonable time span with high
accuracy. Specifically, the detailed contributions are listed below:

• We investigate correlations of data streams within a fork-join
scenario in a Kpn network and present a method to analyze such
correlations based on different types of delays, e.g., splitting delay
at the fork process and blocking delay at the join process. We show
the applicability of the presented methods by analyzing a concrete
multimedia application.

• We propose a trace-based framework to simulate timing behavior
of multi/many-core embedded systems specified in aforementioned
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programming model. By abstracting an application as coarse-
grain traces, our framework can effectively and efficiently simulate
complex systems, while considering different aspects pertaining to
resource sharing, memory allocations, and multi-hop communica-
tions. Wevalidate our framework bymapping anMPEG-2decoding
algorithm onto the ATMEL Diopsis-940 platform [Pao06]. We also
demonstrate the scalability of our approach by simulating a scaled
version of the MPEG-2 algorithm on 16-core platform.

Chapter 4: Power Management

Chapter 4 explores system-level dynamic power management to reduce
static power consumption under real-time constraints. TheKpnmodeling
of an application enables such an exploration at the same system level as to
the performance metric. For simplicity, we consider a dual-core scenario,
i.e., a processing core for data stream processing and a control core for
coordination, for instance, to schedule the processing core. We propose
both online and offline algorithms. To guarantee real-time requirements,
We apply real-time calculus to predict future event arrivals and Real-
Time Interface theory [TWS06] for the schedulability analysis. Based
on the adopted worst-case interval-based abstraction, our algorithms
cannot only tackle arbitrary event arrivals (even with burstiness) but
also guarantee hard real-time constraints with respect to both timing and
backlog constraints. The contributions of this chapter are as follows:

• We formulate the problem of finding a periodic powermanagement
scheme tominimize the average standby power consumption under
hard real-time constraints. We provide optimal and approximated
offline solutions for this problem. The light run-time overhead of
the periodic power management scheme is particularly suitable for
embedded systems with very limited power budgets.

• Alternatively, we propose online algorithms to reduce standby
power consumption. Our online algorithms adaptively predict the
nextmode-switchmoment by considering both historical and future
event arrivals, and procrastinate the buffered and future events as
late as possible.

• To handle multiple event streams with different characteristics,
we develop solutions for two preemptive scheduling policies, i.e.,
earliest-deadline-first and fixed priority, for resource sharing. With
respect to system backlog organization, two different scenarios, i.e.,
distributed and global backlog, are considered.



2
Programming Model

The multi-core architectures of modern embedded platforms are highly
concurrent and software-programmable. To exploit the available concur-
rency and programmability, a multi-core platform has to be abstracted at
a level where application programmers can efficiently develop software
without digging deep into intricate hardware details. A programming
model is such an abstract representation. It defines an interface by which
application programmers specify an application and describe how the
application runs on top of a platform. Reviewing Fig. 2, a programming
model is the starting point of the software development of an embedded
system. Besides the specification of a system, a programming model also
affects other procedures of the software construction, for instance, theway
how system performance is evaluated and how design space exploration
is conducted.

The highly concurrent and software-programmable nature of multi-
core platforms does not directly translate into high performance and
power efficiency of a system. On the one hand, due to the heterogeneous
architecture of multi-core platforms, it is difficult to expose and abstract
the availableparallelism in amulti-coreplatform in auniformand scalable
manner. On the other hand, an application needs to be parallelized
into coarse-grained concurrent tasks to make use of the computing cores.
However, modern embedded applications are far more complex than
their single-threaded ancestors. The reference implementation for the
H.264 video codec, for instance, consists of over 120, 000 lines of C code.
Parallelizing an applicationwith such a complexity is a tedious and error-
prone process. Furthermore, the performance gains obtained through
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this coarse-grained parallelization could be overshadowed by the cost
of communication and synchronization overhead among the partitioned
concurrent tasks. This effect will be accentuated as more computational
cores are integrated and finer-granularity tasks are partitioned.

The questions to answer are: How can a multi-core platform be
efficiently programmed with respect to both performance and time-to-
market? Can such a programming model scale to future many-core
platforms?

2.1 Overview

In this chapter, we present a model-of-computation based programming
model, targeting stream-oriented multi/many-core embedded systems.
Our programming model separates the application and architecture of
a system. The application here refers to the function of the system,
i.e., what the system is supposed to do. The architecture, in contrast,
defines hardware resources, i.e., how the systemconducts the function. To
model an application, we adopt the Kahn process network (Kpn) [Kah74]
model of computation. To model an architecture, we define a non-
functional abstraction. This non-functional abstraction describes only
which hardware components the platform consists and how these
hardware components are interconnected. We also define a mapping to
describe how an application runs on an architecture. For specifying the
application, architecture, and mapping descriptions, we design a hybrid
programming syntax, i.e., C/C++/XML. To avoid the costly communication
and synchronization overheads incurred by large scale process networks,
we propose a variation of the FIFO syntax of Kpn, namely windowed
FIFO. We also develop a distributed functional simulation as a proof-of-
concept runtime environment for our programming model.

(Windowed-FIFO) KPN

C/C++/XML

parallel systemC
functional simulation

model of
computation

programming
syntax

runtime
environment

programming
model

Fig. 3: An overview of this chapter.

Fig. 3 depicts an overview of this chapter. Following the
orthogonalization-of-concerns methodology, we construct the syntax
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of our programming model. We define XML schemata for system
specifications, i.e., the structure of the application process network, the
abstract architecture, and the mapping. To assist the design of large
systems, a so-called iterator is developed by which a system can be
arbitrarily scaled in a parametrized manner. We also define a set of
C/C++ coding rules for the specification of the functionality of individual
processes in an application process network. To reduce the workload of
application programmers, our coding rules enable the reuse of the same
piece of source code for a set of iterated processes. We propose a syntactic
variation for the FIFO communication of Kpn, namely windowed-FIFO.
We prove the syntactic coherency of a windowed-FIFO process network
to a standard Kpn. To validate this concept, we also develop a hardware
IP based on Xilinx FPGAs.

To functionally verify an application specified in our programming
model, we develop a SystemC-based functional simulation, which serves
as a prototype runtime environment. To efficiently execute a functional
simulation, we parallelize SystemC execution by developing a library
which enables the concurrent execution of multiple SystemC kernels.
Using this library, a functional simulation of an application can be
executed on an arbitrary number of Linux hosts connected via TCP/IP.
Furthermore, the source code for the runtime environment can be
automatically generated in a correct-by-constructionmanner from system
specifications using our programming model.

The rest of the chapter is organized as follows: After a literature
review in Section 2.2, we introduce the Kahn process network model-
of-computation in Section 2.3. Section 2.4 describes the syntax of
our programming model and Section 2.5 presents the windowed-FIFO
communication. Section 2.6 presents a functional simulation using
distributed SystemC simulation. Finally, Section 2.7 summarizes this
chapter.

2.2 Related Work

In the literature, a variety of different tool-flows has been developed to
program multi-core embedded systems. One category are the classical
compiler-based approaches, e.g., MAPS [CCS+08], Compaan [SZT+04],
CriticalBlue Cascade [Cri], CUDA [BFH+04, ati], and Brook+ [CUD].
For compiler-based approaches, a conventional sequential language, for
instance, C, C++, or Matlab, is used as the initial application specification
from which the compiler automatically extracts parallelism. To ease the
job of compilers, explicit application programming interfaces (API), for
instance, MPI [MPI], OpenMP [Ope], and TTL [vdWdKH+04], are often
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used to identifyparallel regions of an applicationwith thedomain-specific
knowledge of programmers. The major problem of compiler-based
approaches is that the level of abstraction of the underlying hardware
exposed to application programmers is often too low, thereby lacking
a uniform and scalable manner to specify concurrency of computation
and communication of an application. The consequence is that system-
level verification and software synthesis of a target system are often
difficult. As a viable alternative, amodel-of-computation-based approach
is advocated. By restricting an application to a certain model-of-
computation, the semantics of computation and concurrency can be
mathematically defined. As a result, quantitative analysis pertaining
to, for instance, schedulability tests and worst-case behavior, can be
tackled in a reasonable manner. Furthermore, software synthesis can be
applied, i.e., automatically generating implementations whose behavior
is consistent with the abstract model behavior. Therefore, we focus on
model-of-computation-based approaches in this chapter, in particular
based on the class of process network model-of-computation.

Among other models-of-computation, the Kahn process network
(Kpn) [Kah74] and its ramifications are widely used because of
their simple communication and synchronization mechanisms
as well as coarse-grain parallelism. Besides the programming
model presented in this chapter, many other tool-flows, for
instance, Ptolemy [pto], Metropolis [BWH+03], Koski [KKO+06],
and Artemis/SESAME/DAEDALUS [PEP06, NSD08], adopt process
network. The most well-known sub-class of Kpn is Synchronous Data
Flow (SDF) [LM87, LP95] that enables static analysis of the specified
application during compile time. Tool-flows based on SDF are, for
instance, SHIM [ET06], PEACE [HKL+07], and StreamIt [TKA02].
Furthermore, Ptolemy [pto] supports heterogeneous modeling and
Metropolis [BWH+03] defines a meta-model that can be refined into a
specific model-of-computation. In our programming model, we adopt
Kpn for application modeling. We only define the semantics of the
communication as point-to-point first-in first-out (FIFO) channels, and
leave the implementation open for later refinements in the mapping
stage. Therefore, specialized process networks semantics such as SDF
can be obtained by imposing additional restrictions or semantics onto
the process network.

An model-of-computation defines the semantics of a programing
model. A corresponding syntaxneeds to bedefined for the specification of
a system. In Metropolis, a Java-like meta-model language is developed.
In StreamIt and SHIM, custom C-like languages are exploited. Koski
employs UML as its application programming interface. We argue that
designing a new language is not the best option, since most of the legacy
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code for embedded systems are written in C/C++. To reuse legacy code as
much as possible, we define a hybrid approach, which decouples the
behavior of the processes from the structure of the process network.
Specifically, we propose an Xml Schema to specify the structure of the
process network and C/C++ coding rules for the functionality of individual
processes. This decoupling enables a separation of coarse-grain and
fine-grain potential parallelism. To exploit coarse-grain parallelism,
for instance, at process level, system-level optimization techniques
can be performed. To exploit fine-grain parallelism, for instance, at
instruction-level, mature compiler techniques can be applied. Similar
hybrid approaches can be found in Artemis YML [PHL+01] and Ptolemy
MoML [LN00]. To assist the specifications of repetitive patterns for
large systems, we propose a so-called iterator by which a system can be
arbitrarily scaled in a parametrized manner. In the literature, only YML
[PHL+01] reports a built-in scripting support but with less functionality.

The adopted Kpn model-of-computation for application modeling
enables the functional verification of an application before the imple-
mentation of a complete system. Therefore, we develop a functional
simulation based on SystemC [Soc05, sys]. To efficiently simulate the
functionality of a specified application, we develop a new technique to
parallelize a SystemC simulation, enabling a geographically distributed
SystemC simulation. There is related work in the literature focusing
on distributing SystemC simulations. Approaches presented in [FFS01,
MDC+05, Tra04] target geographically distributed IPCore verification.
However, these approaches do not consider efficiency of the simulation.
A synchronous data flow (SDF) extension of the simulation kernel is
present in [PS05], where efficiency is gained by the concurrency of the SDF
model. In [CCZ06], a functional parallel kernel has been developed by
running multiple copies of the SystemC scheduler. The major drawback
of the two last approaches is the modification of the SystemC kernel,
which is not desired for generality and portability reasons. The work
in [CCZ06], for instance, cannot support all SystemC features. A
concurrency re-assignment technique is presented in [SSG02], acting
as a compiler front-end of a SystemC model of a system. However,
this proposed re-assignment transformation might lead to semantic un-
equivalence between the transformed model and the original one. Our
work decouples the parallelization from the SystemC kernel, imposing
no prerequisite to the execution semantics of the SystemC kernel.
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2.3 Kahn Process Network

The goal of our programming model is to assist the software design of
multi/many-core embedded systems, specifically, mapping a streaming
application onto an multi/many-core platform. In this context, sequential
languages such as C/C++ and Matlab, are not effective, because they
lack the semantic constructs of specifying concurrency. As a viable
alternative, formal-model based design, which is often referred as model
of computation, is promoted. A model-of-computation mathematically
defines the semantics of computation and of concurrency. The rigid
definition of model semantics enables system-level verification and
software synthesis of a target system. Therefore, our programmingmodel
adopts model-of-computation-based design.

To model streaming applications, we adopt Kahn process network
(Kpn) [Kah74] model-of-computation. A Kpn application consists of
a network of concurrent processes that connect exclusively by point-to-
point first-in first-out (FIFO) channels. Each process is autonomous and
executes a sequential program. A FIFO is defined to have unlimited size.
Writing to a FIFO is non-blocking and reading is blocking, i.e., a read
operation will block the execution of a process if there is no data available
in the FIFO buffer. Based on the preceding definitions, the execution of a
process can be abstracted by three constituents:

• Read: a communication primitive for fetching data from a FIFO via
an input port.

• Write: a communication primitive for sending data to a FIFO via an
output port.

• Compute: a computation constituent, i.e., a segment of code between
two communication primitives.

A Kpn consisting of three processes is shown in Fig. 4. Process P1

generates data and sends the generated data to process P2 via FIFO C1.
Process P2 reads data from C1, conducts further manipulation, and sends
data to process P3 via FIFO C2. Process P3 is the sink of the network and
it consumes data from C2.

The Kpn model-of-computation provides a rich set of properties
which nicely fit the basic requirements for the design of multi/many-
core embedded systems. First of all, a Kpn allows explicitly specifying
concurrency of an application, i.e., a network of autonomous processes.
The explicit specification of concurrency allows application programmers
to parallelize an application using their domain knowledge. We argue
that domain knowledge is indispensable for an effective parallelization
because of the high complexity of modern embedded applications.
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P1 P2 P3

C1 C2

P1.compute( );

C1.write( );

C1.read( );

P2.compute( );

C2.write( );

C2.read( );

P3.compute( );

Fig. 4: An abstract view of a process network consisting of three processes.

Second, a Kpn separates the communication and computation of an
application, as the example in Fig. 4 shown. The separation of com-
munication and computation allows to separately design communication
and computation of a system. At an early design stage, for instance,
application programmers can focus on the design of computation, while
reserving the communication at system level for later refinements. One
important property of Kpn is that a Kpn network is determinate, i.e.,
the functional behavior is independent from the timing of processes
in the network. The determinism of Kpn decouples the function of an
application from the underlying architecture of a system, i.e., decoupling
what a system does and how it does. This property enables separate
refinements of application, architecture, and mapping during the design
cycle. We will show in the rest of this thesis how we make use of
these properties to assist software design of multi/many-core embedded
systems.

2.4 Syntax of Programming Model

The Kpn model-of-computation defines the semantics of our program-
ming model. This section presents the corresponding syntax for the
specification of a multi/many-core embedded system.

2.4.1 Basic Principles

A programming syntax provides a structural description of the various
expressions that make up legal code in the programming model. To
assist the design of a system, we have identified the following syntactic
requirements.

• Separation of concerns: A key concept of the design of multi/many-
core embedded systems is the separation of concerns, i.e., separating
the application function and the underlying architecture, and
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separating the computation and communication of the application.
A programming syntax should provide means to establish these
separations.

• System-level abstraction: Due to the high complexity of modern
multi/many-core embedded systems, describing a system at system-
level is an advisable starting point. A system-level abstraction
allows verification of a system at an early design stage to detect bad
design decisions as soon as possible. This early decision making
is crucial because of the huge design space of modern embedded
systems.

• Reuse of legacy code: In modern embedded system design, C/C++
are still the dominant development languages to specify embedded
applications. Whenever a new programming model is designed,
the huge amount of legacy code should be considered. Completely
re-writing an application using a new language is time-consuming
and error-prone. One would expect to reuse as much legacy code as
possible to reduce the development risk as well as time-to-market.

• Scalability: Future many-core embedded systems exhibit repetitive
structures for both hardware architectures and applications, for
instance, processor arrays and fast Fourier transform, respectively.
Sizes and configurations of repetitive components vary for different
designs. Therefore, scaling and reconfiguration of repetitive
components need to be supported in a systematic way. In addition,
the granularity of concurrency for an application should also be
reconfigurable in order to explore the design space of a system and
to find the optimal candidate design.

In the rest of this section, we present the syntax of our programming
model. We separate the specifications of the application, architecture,
and mapping of a system. We adopt C/C++/XML as the programming
languages and define grammar rules for the system specifications. In
addition, applications written according to this syntax are amenable for
automated refinement with respect to the hardware and the operating
system.

2.4.2 Application Specification

We present the syntax for the application specification in this section.
The explicit differentiation between computation and communication of
Kpn enables the separation between the functionality and structure of an
application. We use an Xml Schema [MLMK05] to define the syntax for
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the representation of the structure of the application, i.e., the topology
of the process network. For the functionality of individual processes,
we define specific C/C++ coding rules. Using an Xml Schema for the
structure of application allows us, on the one hand, to verify the structure
of the process network prior to the final implementation and, on the other
hand, to serve as an interface for other components in a software design
toolchain, for instance, a graphical editor.

2.4.2.1 Process Network Specification

Instead of the verbose Xml definition, we present the equivalent
Backus–Naur Form (Bnf) [Bac77]. Fig. 5 depicts the Bnf description
of the syntax for our application specification. The basic elements are
process and sw_channel, which are used to define processes and FIFOs.
Both processes and sw_channels have ports, i.e., inport and outport. The
connection element defines a connection between a process port and a
sw_channel port. Each process is associated with a C/C++ source file that
contains the functionality of this process. The complete Xml Schema is
contained in the free available toolchain [dol].

processnetwork ::= <process>+ <sw_channel >+ <connection >+

<variable >∗ <function >∗ <configuration >∗

<iterator >∗

configuration ::= <name> <value>
connection ::= <name> <append>∗ <name> <name>
process ::= <name> <append>∗ <source> (<iterator > <inport>+)∗

(<iterator > <outport>+)∗ <configuration >∗

sw_channel ::= <name> <append>∗ <size> <inport> <outport>
<configuration >∗

iterator ::= <name> <variable > <function >
| <name> <variable > <function > (<iterator >+

| <process>+ | <sw_channel >+ | <connection >+)

inport ::= <append>∗ <name>
outport ::= <append>∗ <name>
append ::= <function > | <variable >
source ::= <name>
variable ::= <name> <value>
function ::= <name> s t r ing
size ::= dig i t
value ::= dig i t
name ::= s t r ing

Fig. 5: Application Xml Schema expressed in Bnf form. Items repeating 0 ormore times

are suffixed with an asterisk; Items repeating 1 or more times are followed by a

’+’; Where items need to be grouped they are enclosed in simple parentheses.

In order to specify repetitive patterns, we design a so-called iterator
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<variable value="100" name="N"/>

<process name="P1">

<port type="output" name="10"/>

<source type="c" location="P1.c"/>

</process>

<sw_channel type="fifo" size="10" name="C1">

<iterator name="pipeline" variable="i" range="N">

<process name="P2">

<append function="i"/>

<port type="input" name="1"/>

<port type="output" name="2"/>

<source type="c" location="P2.c"/>

</process>

<sw_channel type="fifo" size="10" name="C2">

<append function="i"/>

<port type="input" name="0"/>

<port type="output" name="1"/>

</sw_channel>

</iterator>

<process name="P3">

<port type="input" name="100"/>

<source type="c" location="P3.c"/>

</process>

...

Fig. 6: Excerpt of the Xml specification for the example process network in Fig. 4, where

P2 is scaled to 100 processes. The connection elements which connect processes

and FIFOs are ignored for brevity.

element. An iterator together with an append, a variable, and a function
element defines a scalable structure, where append defines which element
inside the structure to iterate, variable defines the range of the iteration,
and function defines how to compute the index for an iterated element. By
using the iterator element, complex repetitive patterns can be specified
and reconfigured in a simple way. With nested iterators, for instance,
multi-dimensional structures can be constructed. Another usage for
iterators is to scale the parallelism of an application. As shown in the
case study in Section 2.4.5, iterators are used to define the number of
concurrent sub-streams that a video stream is split into.

An iterated version of the process network in Fig. 4 is given as an
example. The major part of the Xml specification is depicted in Fig. 6.
Process P2 and FIFO C2 are defined within the pipeline iterator with a
range of N = 100, resulting in a pipelined network with 102 stages.
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2.4.2.2 Process Specification

A C/C++ source file for each process defines a main entry of the
functionality of this process. To facilitate automated software syntheses,
we enforce a set of coding rules. Fig. 7 describes the definition of a
process, which consists of a structure to store its local state, two function
pointers, and a placeholder pointer. The functionality of a process is
defined by an init and a fire procedure. The init procedure is
called only once for initialization. Afterwards, the fire procedure is
called repeatedly. During the execution, there might be information
shared between sequences of fire procedures. This information is stored
in the LocalState structure. Within the init and fire procedures,
dedicated READ and WRITE communication primitives are used. To
terminate a process, the DETACH primitive is used. By means of this
design, the code for the init and fire procedures can be used in different
runtime environments whereas the primitives WRITE, READ, and DETACH
are instantiated differently according to a chosen runtime environment.

The void pointer WPTR is a place-holder for platform-dependent code
of a final system. For example, it can be a pointer referring to the memory
address of an instance of an iterated process.

1 // Process.h: definition of a process

2 typedef struct _local_states *LocalState; // local information

3 typedef void (*ProcessInit)(struct _process*);

4 typedef int (*ProcessFire)(struct _process*);

5 typedef void *WPTR; // place holder

6

7 typedef struct _process {

8 LocalState local;

9 ProcessInit init;

10 ProcessFire fire;

11 WPTR wptr;

12 } Process;

13 ...

Fig. 7: The definition of a process in the source code.

Fig. 8 depicts the source code of the P2 process in Fig. 6 as an example.
Lines 1–8 define the local state of this process and the input/output ports
corresponding to the Xml definition. Lines 13–31 define the functionality
of P2, i.e., it forwards a float from its input FIFO to its output FIFO for
each fire. The execution ends after a certain amount of floats have
been transmitted. Lines 33–41 present a sample main function where an
instance of P2 is instantiated.

In this manner, each process encapsulates its own state and operates
independently from other processes in the system. Communications
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1 // P2.h: header file

typedef struct _local_states {

3 int index;

int len;

5 } P2_State;

7 #define PORT_IN 1

#define PORT_OUT 2

9

// P2.c: C file

11 void P2_INIT(Process *p) {

p->local->index = 0;

13 p->local->len = LENGTH;

}

15

int P2_FIRE(Process *p) {

17 float i;

if (p->local->index < p->local->len) {

19 READ((void*)PORT_IN, &i, sizeof(float), p);

WRITE((void*)PORT_OUT , &i, sizeof(float), p);

21 p->local->index++;

}

23 if (p->local->index >= p->local->len) {

DETACH(p);

25 return -1;

}

27 return 0;

}

29

// main.c: sample main function

31 int main() {

...

33 Process p2; P2_State p2_state;

p2.local = p2_state;

35 p2.init = p2_INIT;

p2.fire = p2_FIRE;

37 ...

}

Fig. 8: Source code for P2 in Fig 6.

are made explicit by FIFOs. This allows for a modular, and platform-
independent application specification. Furthermore, all iterated pro-
cesses from the same iterator structure reuse the same piece of source
code for their functionality.
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2.4.3 Architecture Specification

We also use Xml Schema to define the syntax for the architecture
specification of our programming model. We model the architecture
of a multi/many-core platform at system-level, and thus define only
the organization of the hardware in a platform, i.e., computing cores,
memories, communication media, and how these hardware blocks are
interconnected. We argue that a system-level specification at this
abstraction level is sufficient for automated software synthesis as well
as system-level design space exploration.

architecture ::= <processor >+ <hw_channel >+ <path>∗ <memory>∗

<variable >∗ <function >∗ <configuration >∗

<iterator >∗

configuration ::= <name> <value>
processor ::= <name> <append>∗ <configuration >∗

hw_channel ::= <name> <append>∗ <type> <configuration >∗

path ::= <processor_name > <memory_name >∗

<hw_channel_name >+ <processor_name >

iterator ::= <name> <variable > <function >
| <name> <variable > <function > (<iterator >+

| <processor >+ | <hw_channel >+ | <path>+ | <memory>+)∗

append ::= <function >
variable ::= <name> <value>
function ::= <name> s t r ing
type ::= dig i t
name ::= s t r ing
processor_name ::= s t r ing
hw_channel_name ::= s t r ing

Fig. 9: Architecture Xml schema expressed in Bnf form.

The Bnf grammar equivalent to the architecture Xml Schema is
depicted in Fig. 9. A processor element defines a computing core.
Properties of the computing core, for instance, type (RISC, DSP,Hardware
IP) and frequency, can be associated by the configuration element. Element
memory defines a memory subsystem of a platform. Element hw_channel
defines the used communication medium, such as buses or a network-
on-chip. We use the element path to define how different hardware blocks
interact. A path defines a route between two computing cores. By the
definition of paths, we can provide a basis for communication refinement
in the later on synthesis phase. To specify repetitive architectures,
we apply the iterator element described in the previous section. With
the iterator element, processor arrays, for instance, with a 3-D torus
architecture, can be easily specified by three nested iterators.
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2.4.4 Mapping Specification

In principle, the mapping defines how a process network is executed
on an architecture. The mapping can be classified into two parts: the
spatial domain that is referred to as binding and the temporal domain
that is referred to as scheduling. In our programming model, the binding
defines amappingofprocesses toprocessors andFIFOs to communication
paths. The scheduling defines the time-sharing policy on each shared
resource and the according parameters, for instance, the cycle length
and slot lengths for a time-division multiple access scheme, priorities of
processes for a fixed priority scheme, and ordering of processes for a static
scheduling scheme.

Again, an Xml Schema is used to define the syntax for the mapping
specification. The Bnf description of the Xml Schema is presented in
Fig. 10. Besides the possibility to specify iterated mappings that are
compliant to the application and architecture specifications, additional
parameters, such as parameters for device drivers, can be specified by the
configuration element.

mapping ::= <binding>+ <schedule >+ <variable >∗

<function >∗ <configuration >∗ <iterator >∗

iterator ::= <name> <variable > <function >
| <name> <variable > <function > (<iterator >+

| <binding>+ | <schedule >+)∗

binding ::= <name> <append>∗ ((<processor_name > <process_name >)
| (<hw_channel_name > <sw_channel_name >))

schedule ::= <name> [<append>+] <type>
type ::= <fifo> | <fp> | <tdma>
fp ::= <processor_name > (<process_name > <priority >)+

fifo ::= <processor_name > <process_name >+

tdma ::= <processor_name > <cycle_length >
(<process_name > <slot_length >)+

append ::= <function >
variable ::= <name> dig i t
function ::= <name> s t r ing
configuration ::= <name> <value>
processor_name ::= s t r ing process_name ::= s t r ing
sw_channel_name ::= s t r ing hw_channel_name ::= s t r ing
cycle_length ::= dig i t slot_length ::= dig i t

Fig. 10: Mapping Xml schema in Bnf form.

Themapping serves as an interface between components of a software
toolchain, for instance, a design-space-exploration component generates
a candidatemapping specification that is used as an input for the software
synthesizer.
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2.4.5 Experimental Results

To test our programming model, we parallelize a non-trivial real-life
application, namely a sequentialMPEG-2 decoder implementation [mpe],
using the proposed programming syntax. We consider both function
and data parallelism. To achieve functional parallelism, we construct
three major functional components: a) process dispatch_macroblock
for group variable length decoding (VLD), inverse scan (IS) and
inverse quantization (IQ), b) process collect_macroblock for motion
compensation (MC), and c) process transform_block for inverse discrete
cosine transform (IDCT). These operations can be performed in a
pipelined fashion on a stream of (macro) blocks, as shown by the dotted
arrows in Fig. 11(a).

To achieve data parallelism, we construct three levels of data
parallelism, i.e., at group of pictures (GOPS) level, macroblock level, and
block level. We use processes dispatch_gops, dispatch_macroblock,

dispatch
gops

dispatch

macroblock

dispatch

block
transform
block

collect
block

collect
macroblock

collect
gops

VLD IS IQ IDCT MC
(a) pipelined version

(b) flattened version for 4 and 2 sub-streams of macroblocks and blocks, respectively

Fig. 11: A scalable MPEG-2 decoder.
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and dispatch_block to split a stream of GOPS, macroblocks, and blocks
into multiple independent sub-streams, respectively. Correspondingly,
processes collect_block, collect_macroblock, and collect_gops are
used to collect the decoded data and reassemble them into streams in the
correct order. The data parallelism is indicated by the solid arrows in
Fig. 11(a).

To reconfigure the granularity of each level of data parallelism, the
iterator introduced in Section 2.4.2.1 is used. Fig. 12 shows a portion of
the Xml specification of the MPEG-2 process network, where variables
N1, N2, and N3 are used to specify the numbers of sub-streams for GOPS,
macroblocks, and block, respectively.

Fig. 11 shows a graphical view of the process network of the
MPEG-2 decoder. Fig. 11(a) depicts a pipelined version where the data
parallelism is not exploited. Fig. 11(b) depicts a versionwhere the process
dispatch_macroblock dispatches macroblocks to four parallel branches

<!-- N1 is the number of gops processed in parallel -->

<variable name="N1" value="1"/>

<!-- N2 is the number of macroblocks processed in parallel -->

<variable name="N2" value="4"/>

<!-- N3 is the number of blocks processed in parallel -->

<variable name="N3" value="2"/>

<!-- instantiate processes -->

<process name="dispatch_gops">

<iterator variable="i" range="N1">

<port type="output" name="out">

<append function="i"/>

</port>

</iterator>

<source type="c" location="dispatch_gops.c"/>

</process>

...

<iterator variable="i" range="N1">

<iterator variable="j" range="N2">

<process name="dispatch_blocks">

<append function="i"/>

<append function="j"/>

<iterator variable="k" range="N3">

<port type="output" name="out">

<append function="k"/>

</port>

...

Fig. 12: Excerpt of the process network Xml for the MPEG-2 decoder.
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and each branch will again be dispatched by dispatch_block to two sub-
branches transform_block, resulting in a network of 20 processes. Note
that the source code of these two versions is identical. The only difference
is the values of variables N1, N2, and N3 in the Xml specification.

We also report the code size in terms of lines-of-code. The reference
sequential implementation [mpe] contains 5727 lines of C code. The
parallel version using our programming model contains 4004 lines of
C code and 319 lines of Xml code. The difference can be explained by
the fact that the reference code is a full-fledged compilable source code
for IA-32 architecture whereas our version only contains the platform-
independent portion of the decoder.

From this experiment, we conclude that our programming model is
practicable. In the next two sections, we will discuss the efficiency of our
programming model in terms of syntactic variation of the Kpn model-of-
computation as well as runtime environments.

2.5 Windowed-FIFO Communication

The Kpn model-of-computation provides a set of useful properties for
designing multi/many-core embedded systems. Partly, these properties
are based on the FIFO communication. The rigorous FIFO commu-
nication, however, has limitations in terms of programmability and
efficiency. In this section, we present a syntactic variation for the FIFO
communication of Kpn to increase the efficiency and programmability of
FIFO communication.

2.5.1 Motivation

Although the Kpn model-of-computation offers a simple interface for
programming, it also has limitations that make the implementation
of streaming applications difficult or inefficient. Furthermore, the
communication overhead might overshadow the performance gained
by the coarse-grain parallelism. A few syntactic limitations that are of
interest are addressed in the following:

• Reordering: A Kpn FIFO behaves in a strict first-in first-out manner,
which does not allow reading data in an order other than the one in
which the data have been written.

• Non-destructive read: A Kpn FIFO does not allow reading the same
data itemmore than once. After a data item is read, it will be deleted
from the FIFO memory.
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• Skipping: It is not possible to remove adata item fromaFIFOwithout
a read operation. Even if the FIFO contains unwanted data, all
these unwanted data have to be read out before subsequent data
can be accessed. An example for a skipping scenario is described in
Section 2.5.5.2.

Ex. 1: A simple producer-consumer example is shown in Fig. 13, where the producer
generates a two-dimensional array in column order and the consumer reads the
array in row order. Furthermore, the second row of the generated array will
be accessed twice. The access order of the two-dimensional array is depicted
in Fig. 14. Because a FIFO is one-dimensional, the two-dimensional array
needs to be linearized into one dimension if FIFO communication is used. The
corresponding FIFO access order is presented in Fig. 15. As shown in Fig. 15,
the consumer cannot use a FIFO, because it does not support random access.

Furthermore, from the implementation perspective, sending data across a
FIFO requires two memory-copy operations, i.e., the producer copies data from
its local memory to the FIFO memory and the consumer copies data from the
FIFOmemory to its local memory. These memory-copy operations might hamper
the performance.

// producer

for (i=0; i<2; i++) {

for (j=0; j<3; j++) {

A[i][j]=nextValue();

}

}

...

(a) Producer.

// consumer

for (j=0; j<2; j++) {

process(A[0][j]);

process(A[1][j]);

process(A[0][j+1]);

process(A[1][j+1]);

}

(b) Consumer.

Fig. 13: Source code for a simple producer-consumer example.

i
j

0 1

0

1

2

(a) Producer.

i
j

0 1

0

1

2

(b) First iteration of the
consumer.

i
j

0 1

0

1

2

(c) Second iteration of the
consumer.

Fig. 14: Access order of the array for the producer-consumer example in Fig. 13.
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(i, j)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(a) Producer.

(i, j)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(b) First iteration of the
consumer.

(i, j)

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(c) Second iteration of the
consumer.

Fig. 15: Access order of the linearized array for the simple producer-consumer example

in Fig. 13.

To tackle the aforementioned limitations, we introduce a variation
of FIFO communication, referred to as windowed FIFO (Wfifo) com-
munication. Wfifo communication tackles in a particular way the
limitations mentioned above, allowing non-destructive read, reordering,
and skipping of data within a window of parameterizable length in the
FIFO memory.

2.5.2 Semantics and Syntax

AWfifo originates from a normal FIFO but offers more functionality and
flexibility. Unlike a normal FIFO, a Wfifo supports out-of-order accesses
within a continuous segment located at the head and tail of a normal
FIFO. These two segments are called windows, which leads to the name
windowed FIFO. The semantics of aWfifo can be summarized as follows:

• AWfifo has two access ports, i.e., a read and awrite port, to support
read and write operations, respectively.

• An acquire operation is mandatory before data transmissions. An
acquire-write operation can acquire a window not larger than the
available free space in the FIFO. An acquire-read operation can
acquire a window not larger than the fill level of the FIFO.

• An acquire-write operation will block the calling process if the
space in the Wfifo memory is smaller than the acquired window.
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Similarly, an acquire-read operation will block the calling process if
the number of available data is smaller than the acquired window.

• Random accesses are allowed within an acquired window.

• A release operation is mandatory to release an acquired window.
A release-write operation will mark the data within the window
available for reading whereas a release-read operation will discard
the window from the FIFO.

A coarse-grained diagram of a Wfifo is depicted in Fig. 16. The gray
boxes located at both ends of the FIFO can be considered as random-
access memories that host the windows. At each end, a logic controls
the access of the random-access memory. For instance, when the logic of
the write port receives an acquire-write instruction, it allocates a piece of
random-access memory that has a continuous address space and a size
as required. Subsequent write instructions are directed to this memory
at a position indicated by a given offset. When a release instruction is
received, writing is disabled and the data in the random-access memory
will be appended to the FIFO without changing their order.

logic logicP1 P2

write
process

read
process

Wfifo

FIFO
memory

Fig. 16: A coarse-grained diagram of the Wfifo.

Based on the preceding definitions, we define the corresponding
syntax. Because writing to and reading from a Wfifo are independent
and symmetric, we only report the syntax for writing. Fig. 17 depicts a
finite-state machine for the write port. The finite-state machine consists
of two states, i.e., idle and writable. The initial state is idle. An acquire-
write operation enables a state transition from idle to writable. When
the write port is in state writable, write operations are allowed. By a
release-write operation, the state of the write port is changed back to idle.

The corresponding API is defined as follows:

• WFIFO_ACQUIRE_WRITE(port, size)

The acquire-write instruction allocates a window of size size at the
write port of a Wfifo. The port points to the address of the Wfifo to
which a process intends to write data. If the size of the free space in
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idle writable

acquire-write

release-write

write

Fig. 17: The finite-state machine for the write port of a Wfifo.

theWfifo is smaller than size, then this instruction blocks the calling
process until enough memory is available.

• WFIFO_WRITE(port, offset, data)

The write instruction writes the data to the write window at the
position indicated by the offset. This instruction can be repeated an
unlimited number of times. It is possible to write the same offset
position more than once. In the case of multiple writing to a same
offset address, the new value will overwrite the old one. If an offset
position is never written, its value is undefined.

• WFIFO_RELEASE_WRITE(port)

The release instruction terminates the writing phase and appends
the content of the window to an internal FIFO, from which it can
later be read. After releasing, no further writing to the window is
possible. Before more data can be written to the Wfifo, a new write
window must be acquired.

The finite-state machine and API for the read port are analogous to
the write port. They contain acquire-read, read, and release-read operations.
An acquire-read operation succeeds if there are enough data in a Wfifo
memory for the acquired read window. After successful acquisition, data
can be read from thewindow. The release instruction deletes the acquired
window from the Wfifo.

2.5.3 Properties

A process network using Wfifo communication has properties similar
to a Kpn. In particular, we will show that a Wfifo process network is
determinate, i.e., the functional behavior is independent on the timing of
the processes in the process network.

Lem. 1: A Wfifo process network can be simulated by a process network with both
blocking-read and blocking-write semantics.

Proof. The fundamental difference between a Wfifo process network
and a process network with blocking semantics is the replacement of
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FIFO communication with Wfifo. It must be shown that the windowed
semantics can be implemented using a FIFO with blocking semantics.
Given the property that the read and write windows do not overlap each
other, the segment between the read and write windows is strictly first-
come first-out, i.e., equivalent to a FIFO. The window mechanism can
be transformed into a software implementation within the connected
processes. For writing a Wfifo, when an acquire-write operation is
invoked, a segment in the local memory with a size as the size of the
acquiredwindow is allocated. Subsequentwrite operations are redirected
to this segment until a release-write operation is received. The release-
write operation will move the data within this segment to the FIFO
memory. Reading a Wfifo is similar. When an acquire-read operation
is invoked, a segment in the local memory with a size as the size of
the acquired window is allocated and data in the acquired window are
moved from the FIFO memory to this segment. All subsequent read
operations are redirected to this segment, i.e. reading from this piece of
local memory. This segment will be freed upon a release-read operation.
Under this transformation, a Wfifo process network can be simulated by
a process network with blocking-read and blocking-write semantics.

�

Lem. 2: A process network with blocking-write (and blocking-read) semantics can be
simulated by a KPN.

Lem. 2 is a known result [GB03]. Nevertheless, we show in the
following an intuitive description for how to simulate a process network
with blocking semantics using a Kpn. A blocking-write semantics of a
FIFO implies a bounded FIFO, i.e., with a finite size. A bounded FIFO,
say Fi, with a size s in a process network can be replaced by a pair of
unbounded FIFOswith size s, where one (forward) has the same direction
as Fi and the other (backward) has the opposite direction. If Fi initially
does not contain any data, i.e., an empty state, the backward FIFO is set
to contain s dummy data tokens. In the source code of the calling process,
a write operation to Fi is transformed into two operations: first read a
dummy token from the backward FIFO, and then write the actual data to
the forward FIFO. Similarly, a read operation of Fi is transformed into two
operations as well: first write a dummy token to the backward FIFO, and
then read the actual data from the forward FIFO. This backward-pressure
mechanism guarantees that there are never more than s data tokens in the
forward FIFO, which is tantamount to a bounded FIFOwith size s. Under
this transformation, a bounded FIFO can be implemented with a pair of
unbounded FIFOs with non-blocking write and blocking-read semantics.
Therefore, the lemma holds.
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Thm. 1: A Wfifo process network is determinate, i.e., the functional behavior is
independent on the timing of the processes in the network.

Proof. Combining Lemma 1 and Lemma 2, aWfifo process network and
a KPN are simulation equivalent [LGS+95]. Therefore a Wfifo process
network preserves properties of Kpn.

�

2.5.4 Implementation Issues

This section discusses implementation issues of aWfifo. If two processes
in a process network that communicate usingWfifo are located in a same
computing core, a Wfifo can be implemented in software, for instance,
using a ringbuffer. A reference implementation canbe found in [HSH+09].
For processes located in different computing cores, it is also possible to
use the Wfifo concept. We implement a hardware prototype based on
FPGA, using the Xilinx Embedded Development Kit (EDK) [EDK].

Fig. 18 gives an abstract viewof the architecture of theWfifo IP.Weuse
the Intellectual Property Interface (IPIF) in the Xilinx EDK as the interface
of theWfifo IP, such that theWfifo IP can be connected to different types
of buses, for instance, the high-speed Processor Local Bus (PLB) and the
On-Chip Peripheral Bus (OPB) that are available in the EDK. The Wfifo
memory is implemented with a dual-port BlockRAM (BRAM) that is an
on-chip parameterizable memory module available on all newer Xilinx
FPGAs. The access of the BRAM is controlled by the finite state machines
explained in the previous section.

wfifo_logic

BRAM

Dual Port

IPIFIPIF

wfifo_logic

OPB/PLBOPB/PLB State Machine

Fig. 18: An abstract view of the Wfifo IP architecture.

Using the built-in synthesis tool of EDK, the size of the Wfifo IP in
terms of slices – the basic logic unit of Xilinx FPGA – is 754 slices. We
consider our Wfifo IP to be practically useful as modern Xilinx FPGAs
contain hundreds of thousands of slices. Write and read operations
take 5 and 6 clock cycles respectively. The Wfifo IP can be clocked
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at frequencies up to 173.6MHz, which is the maximum frequency for
the IPIF component. For a detailed hardware description and timing
diagrams, the reader is referred to [Grü06].

2.5.5 Empirical Case Studies

In this section, we present proof-of-concept case studies to demonstrate
the practicality of our Wfifo.

2.5.5.1 Reordering and Multiple Read

Recalling the example shown in Fig. 13, there is no unique solution for
programming the producer or consumer when using a normal FIFO.
Because the order in which the producer generates the array is different
from the one in which the consumer read it, either the producer or the
consumer has to linearize the access order of the array. Furthermore,
because some entries of the array will be accessed twice, either the
producer has to send these data again or the consumer has to store these
data somewhere in its local memory for the second access. All these
solutions are a bit ad-hoc from the programmers point of view.

// producer

for (i=0; i<2; i++) {

for (j=0; j<3; j++) {

A[i][j]=nextValue();

}

}

// consumer

for (j=0; j<2; j++) {

process(A[0][j]);

process(A[1][j]);

process(A[0][j+1]);

process(A[1][j+1]);

}

...

(a) Sequential code in Fig. 13.

#define wf 0x1 //address of wfifo

// producer process

WFIFO_ACQUIRE_WRITE(wf,6);

for (i=0; i<2; i++) {

for (j=0; j<3; j++) {

WFIFO_WRITE(wf,3i+j,nextValue());

}

}

WFIFO_RELEASE_WRITE(wf);

// consumer process

WFIFO_ACQUIRE_READ(wf,6);

for (i=0; i<2; i++) {

for (j=0; j<2; j++) {

for (k=0; k<2; k++) {

WFIFO_READ(wf,i+j+3k,tmp);

process(tmp);

}

}

}

WFIFO_RELEASE_READ(wf);

(b) Process network using Wfifo.

Fig. 19: Source code for the sequential version and process network for the producer-

consumer example in Fig. 13.
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Using a Wfifo, the solution shown in Fig. 19(b) becomes straight-
forward. The consumer first acquires a read window from the Wfifo,
and then he can randomly read the array no matter in which order the
producer generated the array data. Meanwhile, as the read is non-
destructive, the consumer can read eight times within the acquired
window from the Wfifo although the producer only writes six times.
In addition, the storage of the array shifts from the local memory of
the process to the WFIFO, which reduces the memory footprint of the
consumer as a side effect.

2.5.5.2 Skipping

A possible application for the skipping function is in the domain of
parallel image and video compression [Jai81], where a sequence of
image/video frames is divided into multiple slides or macroblocks which
are compressed concurrently. In such a scenario, it is typically not known
a priori which portions of a frame are redundant. For this type of data
exchange, the Wfifo concept can be applied. Instead of a full-fledged
image-compression algorithm, we present a less complex application
that has similar requirements, namely a parallel version of the game of
life [GH99].

Aworld for a game consists of a two-dimensional array of cells that are
either dead or alive. The stats of cells may change every cycle. The state
of a cell in the next cycle depends on its current state and on the states of
its eight immediate neighbors. The rules to compute the next state of a
cell are: an alive cell with fewer than two alive neighbors dies; an alive
cell with more than three alive neighbors dies; a dead cell with exactly
three alive neighbors becomes alive; otherwise, the state of a cell remains
unchanged.

The game of life can be parallelized using a process network. Aworld,
for instance, can be split into horizontal slides and the states of cells in
each slide are computed by a separate process. If each process runs on
a separate computing core, computing the next states is fully concurrent.
Fig. 20 shows an example where a 28 × 14 world is split into two 28 × 7
slides. These two slides are processed by two separate processes, namely
process X and Y, resulting in a process network with two processes.

For cells at the boundaries of a slide, determining their next states,
in principle, requires knowledge of the states of cells located at the
neighboring slide. As shown in Fig. 20, any cell in the two gray rows
has three neighbors located the other slide. However, there are cases
where a decision can be made with only local knowledge. Fig. 21 shows
three such cases where the cell states from neighboring slide are not
(completely) required. The key message here is that only the process that
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boundary

slide A
(process X)

slide B
(process Y)

Fig. 20: A 28 × 14 world of a game.

computes the states of its local cells knows whether it requires the states
of cells from the neighboring slide. The other process cannot know this a
priori and has to send states of all cells along the boundary.

We again consider the example in Fig. 20. Process X has to send the
states of cells at its gray row to process Y so that process Y can compute
the state of cells in its gray row, and vice versa for Y. In the case of
FIFO communication, even if some states are redundant, process Y has
to remove these state data from the FIFO memory by read operations in
order to access subsequent data. With Wfifo, only sending is mandatory
and reading is more flexible. After acquiring a read window, a process is
free to decide which state to read or to ignore.

1 1 0

1 1 1

— — —

1 1 0

1 0 1

— — —

0 0 0

0 0 0

— — 0

Fig. 21: Three situations where the next state of the cell indicated in gray is known

without reading the states of cells beyond the boundary.

We implement this two-process network to simulate the 28× 14 world
in Fig. 20. At every game cycle, each process reads the states of cells in the
gray row located in the other process in order to compute the next states
of its local cells. We compare two cases, i.e., using FIFO and Wfifo for
communication. For the case of FIFO, a process has to read 28 states data
from the FIFO connected to the other process at each game cycle. When
using Wfifo, on the contrary, only those states that are actually needed
are read from the Wfifo memory. We run the game for 100 cycles and
record the ratio of the communication reduction, i. e. , the ratio of the total
number of states skipped by using Wfifo to the total number of states
has been read by using FIFO in these 100 game cycles. The initial state
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of being alive for a cell is randomly generated with a given probability,
denoted as δ.
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Fig. 22: Transit reduction of state data for different initial live-probability of cells.

Weconduct experiments for different δ. For each δ, we report themean
value of the reduction ratios from 100 different runs. The experimental
results are shown in Fig. 22. As shown in the figure, the improvement is
significant. In general, we reduce 22 – 65% state data transmission. The
Wfifo mechanism conducts better for cases of large and small δ, where
dead cells dominate the world in the long run. We expect applications
from the domain of image/video compression can benefit more from
the Wfifo concept, because data items for these applications are at
block/macroblock/frame levels, where the skipping function can reduce
a larger amount of data transmissions and I/O operations.

2.6 Parallel SystemC Functional Simulation

Modern embedded applications are far more complex than their single-
threaded ancestors. The reference implementation for the H.264 codec,
for instance, consists of over 120, 000 lines of C code. It is preferable
to verify the functionality of such complex applications before the final
system is implemented.

This section presents a functional simulator, which is used to
functionally verify an application specified in our programming model.
Such a functional verification is possible because of the determinism
of adopted Kpn model in our programming model. Besides verifying
the functionality of a specified application, our functional simulator
is also used to obtain architecture-independent information about an
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application, for instance, to extract traces for the trace-based analysis
that will be presented in the next chapter.

We develop our functional simulator based on SystemC [Soc05, sys],
which is a C++ library to model and simulate hardware and software
systems on different levels of abstraction. The SystemC library provides
a discrete-event simulation kernel, which enables a fast simulation of a
process network. To further accelerate the simulation speed, we propose
a new technique to parallelize a SystemC simulation. Our parallelization
enables that an arbitrary number of programming cores can concurrently
share the simulation workload via socket interface.

2.6.1 Simulation Framework Overview

The idea of our parallel SystemC (PSC) simulation is to simultaneously
execute a set of SystemC kernels, each of which simulates portions of an
application. We denote a stand-alone SystemC kernel as a simulator. The
goal thereby is to execute a set of simulators on a single host withmultiple
cores or on a network of computers.

Let us revisit the Kpn model used in our programming model. Each
process in the process network is autonomous and the execution of
processes does not require a global synchronization. In principle, a
process can execute until one of its read operations blocks on an empty
input FIFO (or blocks on a full output FIFO in the case that the size of
a FIFO is finite). The autonomy of Kpn processes enables concurrent
execution of the SystemC functional simulation of a Kpn application by
executing a set of independent simulators, each of which simulates the
functional behavior of a group of Kpn processes.

We use the Y-chart paradigm for the parallelization. Fig. 23 depicts
the framework. We define two layers of mappings. Layer 1 defines how
many simulators are used and how to distribute application processes to
these simulators. Layer 2 defines how many simulation hosts are used
and how to distribute simulators to simulation hosts.

To coordinate the execution of different simulators, we develop a C++
library, which takes charge of the communication and synchronization
among simulators. We also develop a software synthesizer to automate
the generation of a parallel SystemC simulation. The software synthesizer
generates the C++ source code of simulators from the specifications of a
simulation, i.e., application process network, architecture (host name),
and mapping specifications. A script file is also generated to assist the
compilation of the source code to ELF binaries and distribution of the
compiled binaries to specified simulation hosts.

Bymeans of the aforementioned two-layermapping approach and the
iterator technique presented in Section 2.4.2.1, a functional simulation of
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Fig. 23: Overview of the generation of a simulation.

an application can be concurrently executed on an arbitrary number of
simulation hosts. Although the speedup of the simulation depends on
different factors, e. g. , the amount of inter-simulator communication and
granularity of the parallelism, our approach provides a convenient way
to obtain an efficient mapping of the simulation workload, i. e. , adjusting
the granularity of the parallelism by changing the number of processes
mapped onto a simulator and the number of simulators onto a simulator
host.

2.6.2 SystemC Introduction

SystemC is a C++ based library to model and simulate hardware and
software systems on different levels of abstraction. Themain components
formodeling a system in SystemCareprocesses (sc_thread) and channels
(sc_channel). Processes describe functionality and channels transmit
communication data between processes. Processes send data to channel
via ports (sc_port). Communication data transmitted by channels are
called events. An event can be, for instance, change of a value of a signal
channel.

SystemC provides an event-driven kernel to simulate a system, i.e.,
processes are executed in response to the occurrence of events. Fig. 24
depicts the flowchart of the SystemC kernel. A key feature of the SystemC
simulationkernel is the support of the concept of a delta cycle, like inVHDL
and inVerilog. Adelta cycle consists of an evaluationphase andanupdate
phase. The evaluation phase includes checking for runnable processes,
executing runnable processes, and processing immediate notifications of
an event. Processing an immediate notification will mark all processes
that are sensitive to this event runnablewithin the same evaluation phase.
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Fig. 24: The flowchart of the SystemC simulation kernel, corresponding to the

sc_start() procedure in the source code. The gray boxes constitute the

evaluation phase.

The update phase starts when there is no runnable process in the
evaluation phase. The update phase will process update requests, which
generate delta notifications. All processes which are sensitive to delta
notifications are marked runnable and the simulation can enter the
evaluation phase again. To this end, the simulation is said to advance
by one delta cycle.

Simulation time does not change within a delta cycle. The simulation
kernel only considers timed notifications when there is no runnable
process within a delta cycle. In this case, the simulation time is advanced
to the time of the earliest timed event and all processes sensitive to
timed events at the current simulation time are made runnable and the
evaluation phase is entered again. If no pending timed events exist, the
simulation terminates.

Three possible ways to execute the SystemC simulation kernel are
listed as follows: sc_start:

• sc_start() – Runs the simulation until no more event exists, as
previously described.

• sc_start(timeval) – Run the simulation for timeval interval. The
simulation pauses when the simulated time advances to timeval
and processes sensitive to timed events at this time are made
runnable.
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• sc_start(SC_ZERO_TIME) – Runs the simulation for one delta cycle
only. Processes sensitive to delta events of the next delta cycle are
made runnable.

The OSCI SystemC is designed as a single-thread user-level applica-
tion. Therefore, even if a simulation host has multiple cores, only a single
one can be used.

2.6.3 Stand-alone SystemC Functional Simulation

Implementing a functional simulation using stand-alone SystemC (SSC)
kernel is straightforward. Recalling the definition of Kpn, the concept
of process, port, and FIFO naturally matches the basic components of
SystemC. Therefore, we use sc_thread, sc_port, and sc_channel to
model Kpn processes, ports, and FIFOs. Fig. 25 shows an example
SystemCmodel of the process network with the three processes depicted
in Fig. 4. A wrapper for each process is designed to implement the
functionality of this process by means of a sc_thread. In this manner, the
source code of each process remains unmodified.

Round Robin scheduler

sc_thread

fire( )

sc_thread

fire( )

sc_thread

fire( )

sc_channel sc_channel

sc_port sc_port sc_port sc_port

Fig. 25: Software architecture of the stand-alone SystemC simulator.

The execution order of concurrent SystemC threads is not defined by
the SystemC standard. Therefore, a round-robin policy is designed to
schedule the execution of Kpn processes.

2.6.4 Parallel SystemC Simulation

How to parallelize a SystemC simulation is open issue. There is no
definition in the IEEE SystemC standard [Soc05]. TheOSCI SystemC [sys]
simulation kernel is designed for single user-level thread simulation and
can use only one computing core even if a simulation host contains
multiple cores. Different approaches [SSG02, PS05, CCZ06] have been
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proposed to parallelize a SystemC simulation. These approaches,
however, require changes to the simulation kernel, which may lead to
semantic differences to the standard SystemC.

In order to preserve the semantics of standard SystemC, we simulate
an application by simultaneously executing a set of SystemC kernels,
each of which simulates portions of the functionality of an application.
To coordinate the communication and computation among simulators,
we design a delta-cycle based simulation, where communication and
synchronization take place between two delta cycles of the simulation.
In this manner, we can keep the SystemC kernel intact while achieving
parallelism. The flowchart of our approach is depicted in Fig. 26.
The SystemC kernel runs the simulation for a delta cycle by calling
sc_start(SC_ZERO_TIME) repeatedly. After each delta cycle, the sim-
ulation is temporarily paused and communication and synchronization
to other simulators take place. Aswe consider only functional simulation,
synchronization refers to stopping the whole simulation. In the rest of
this section, we elaborate on the communication and synchronization
mechanisms.

start

a delta cycle, i.e.,
sc_start(SC_ZERO_TIME)

inter-simulator communication
of KPN processes

synchronization

terminate

end

yes

no

Fig. 26: The flowchart of our delta-cycle wise simulation.

2.6.4.1 Communication

To decouple the inter-simulator communication from the SystemC
simulation kernel, we define a remote channel. A remote channel is an
interface for a process to communicate to a process located in another
simulator. To send out data, a remote output channel is defined. Similarly,
remote input channels are defined for receiving data. A Kpn FIFO that
connects two processes located in two different simulators corresponds
to a remote input/output channel pair. A channel manager is used for the
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actual data transfer between remote channels.
Fig. 27 depicts our mechanism for communication. For a process

whichneeds to senddata toprocesses located in another simulator, remote
output channels are instantiated. Similarly, remote input channels are
instantiated for receiving data. Consider the remote output channel as
an example. Within a delta cycle, processes write data to remote input
channels. After the delta cycle finishes, the channel manager checks
whether there are data available and performs the actual data transfer.
For each transferred data, an immediate notification will be generated
to wake up a suspended process which is waiting on a full FIFO. These
suspended processeswill bemade runnable and executed during the next
delta cycle. The channel manager will repeat this procedure until remote
channels have nothing to send anymore.

A remote input channel behaves similarly. It receives data from the
channel management. Once the channel manager receives a data item
from the socket interface, it generates an immediate notification, denoted
as remote notification. A remote notification will resume the execution of a
suspended process at the next delta cycle.

network
socket

interface
socket

interface

remote
output

channel

remote
input

channel

process process

Linux host 1 Linux host 2

SystemC

kernel
channel
manager

channel
manager

SystemC

kernel

Fig. 27: The graphical view of our communication mechanism.

Our implementation of the remote channel is based on the simple_fifo
of the OSCI library. The buffer is implemented as a ring buffer. A process
writes byte-wise data to the ring buffer. If the buffer is full, the processwill
be suspended on the write operation. After each delta cycle the channel
manager checks whether there are data in the ring buffer. If there are, the
channel manager will instantiate an actual data transmission and move
these data to the ring-buffer of a remote input channel. We use TCP sockets
to transmit data between the two remote channel buffers, although other
communication protocols could be used.

2.6.4.2 Synchronization

The synchronization is used to determine when the functional simulation
completes. In the IEEE Standard [Soc05], the SystemC kernel ends
a simulation when there is no pending notification. Terminating a
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simulation under this condition, however, is not correct for distributed
simulation, because notifications issued by a remote simulator cannot
reach the local simulator immediately due to network delay. It might
happen that a simulator has finished processing all pending notifications
while remote notifications are still on their way. Basically, a simulator
by itself cannot know when it should terminate in the case of distributed
simulation.

To solve this problem, we design a master-client approach with a
deferred termination mechanism. Each simulator is a client that has four
states, i.e., active, standby, idle, and exit. Initially, a client is set to
active. A client remains in active state as long as there are pending
notifications, otherwise it changes to standby. Once a client changes to
standby, it sets up a timeout. If this timeout expires, the client changes to
idle and informs themaster about its state transition. A client resumes to
active from standby/idlewhen it receives a remote notification. It will
immediately informs this state transition to the master. The client changes
from idle to exit only when it receives a termination acknowledgment
from the master. The state transition system of a client is summarized in
Fig. 28.

active

exit idle standby

no pending
process

remote
notificaton

time outterm. ack

remote
notificaton

local
notificaton

Fig. 28: The state transition diagram of a client.

The master is used to decide the termination of a simulation. It keeps
a copy of the states of all clients. Only when the local copies of states for
all clients are idle, the master will send a termination acknowledgment
to all clients to notify them about the termination of the simulation.

This approach effectively prevents abnormal termination of the
functional simulation if the timeout is larger than the worst-case latency
of a remote notification, i.e., the time for the channel manager to transmit
a data item from a remote output channel to a remote input channel. In
our experiment, we empirically set the timeout to 20ms.
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2.6.5 Experimental Results

This section analyzes the performance of our method (denoted as PSC)
by applying it to distribute the functional simulation of anMPEG-2 video
decoder [Int]. The MPEG-2 video decoder application is specified as a
process network with 20 parallel processes, as depicted in Fig. 11(b) in
Section 2.4.5. It decodes 15 s of a compressed video sequence, with a
resolution of 704 × 576 pixels and a frame rate of 25 fps.

The simulation hosts have identical configurations: each machine has
twoAMDOpteron 2218 dual core processors running at 2.6GHz, i.e. four
cores in total. The operating system is Debian Linux with kernel version
2.6.23. The simulation hosts are connected by Gigabit Ethernet where
round trip time measured with ping was below 0.1ms.

We measure two time criteria: a) simulation time (Sim.), correspond-
ing to the wall-clock time from the start of the simulation until its
completion, and b) accumulated computing time (Comp.), indicating how
much accumulated computation workload the application has actually
used, i. e. , it reflects the simulation time if only a single computing core
would be available. All time values are rounded to seconds.

Experimental Results

Tab. 2 shows the results of six different cases, using different libraries and
a different number of simulation hosts (#Hosts) and simulators per host
(#Sims).

Case Simulation #Hosts #Sims Sim. Comp.

1 Pthread 1 1 31min 46 s 80min 47 s
2 SSC 1 1 12min 13 s 12min 13 s
3 PSC 1 1 12min 14 s 12min 14 s
4 PSC 1 4 5min 21 s 12min 34 s
5 PSC 4 1 5min 23 s 12min 42 s
6 PSC 5 4 2min 41 s 13min 24 s

Tab. 2: Runtimes of the MPEG-2 example.

Case 1 shows the performance of a POSIX Threads (Pthreads)
implementation,where eachprocess is implemented as aPOSIX thread. A
Pthreads implementation, in principle, can make use of all available CPU
cores simultaneously. The experiment results depicted in Tab. 2 show
that the Pthreads simulation is, however, the slowest one. Although
the Pthreads implementation can make use of all available computing
core to share the simulation workload – the simulation time is about
3 times smaller than the computation time in Case 1, the simulation
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time is still rather slow due to the massive system calls which incur
huge context-switch overhead. In contrast to Pthreads, the stand-alone
SystemC (SSC) simulation is much faster because of the low switching
and synchronization overheads for user-level threads. A negative
consequence is that the stand-alone SystemC simulation can only use one
core— Case 2 has equal simulation and computation time. In Case 3, we
show the overhead of the delta-cycle approach by using one simulator. As
the result shows, the overhead of the delta-cycle execution is considerably
small, i.e. 100ms.

To demonstrate the speedup of the new method, the application is
mapped onto four simulators, as depicted in Fig. 11(b). In Case 4, all
four simulators run on the same simulation host, using all four CPU
cores, whereas in Case 5, the same four simulators run on different
simulation hosts, requiring communication through the network. In both
cases, speedup by a factor of more than two is achieved. Compared
to Case 3, the slight increase in computation time is due to additional
communication and synchronization cycles. The overhead is only 2% of
the overall computation time, which is remarkable since about 3GB of
data is transferred during the simulation. Note that the simulation time
is not reduced by a factor of four, although four times more resources
are used. The reason is that the computation workload is not equally
distributed to the four simulators. As shown in Tab. 3, sim4 dominates
the simulation, while the others use only about half of the time. A better
distribution of the computation workload would further improve the
performance of the simulation.

Simulator Comp. Usage

sim1 2min 58 s 55%
sim2 2min 09 s 40%
sim3 2min 09 s 40%
sim4 5min 17 s 99%

Tab. 3: Computation time of the single simulators in case 4.

The maximum speedup of 4.5 is achieved in Case 6, where the 20
simulators, one for each process, are distributed among five simulation
hosts. In this case, each simulator owns its CPU core. As expected,
the speedup is not linear to the hardware resources used. For further
speedup, one needs to change the granularity of the process network of
the application.
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2.7 Summary

In this chapter, we present a programmingmodel, suitable for developing
streaming multi/many-core embedded systems. Our programming
model follows the Y-chart paradigm, separating the concerns of appli-
cation and architecture and of computation and communication. For
application modeling, we adopt the Kahn process network model of
computation. For specifying the application, architecture, mapping
descriptions, we design a hybrid programming syntax, i.e., C/C++/XML.
To assist the design of future many-core embedded systems, an iterator
technique is developed by which a specified system can be arbitrarily
scaled in a parametrizedmanner. To avoid the costly communication and
synchronization overhead incurred by large scale process networks, we
propose a variation of the FIFO syntax of Kpn, namely windowed FIFO.
We also develop a distributed functional simulation as a proof-of-concept
runtime environment for our programmingmodel. The results presented
in this chapter lead to the free available embedded system software design
toolchain in [dol].

Our programming model specifies an embedded system at system
level, allowing a generic and versatile representation of a system. The
application specified in our programming model can be synthesized to
different multi/many-core platforms. Platforms currently supported are
IBMCell BroadbandEngine [HSH+09] (YellowDogLinux [yel] andGCC),
ATMEL Shapeotto [HPB+] (DNA operating system [GP09] and C99), and
MPARM [HHBT09b] (RTEMS real-time operating system [RTE] and C++).

Finally, our programming model offers more than programmability
and scalability. In the next chapter, we present two performance
estimation techniques. Both of these techniques can be coupled to our
programming model and provide quantitative verifications for systems
specified in our programing model.
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3
Performance Evaluation

Performance is a prime metric in embedded system design as embedded
systems are often subject to tight timing constraints such as throughput,
latency, and response time. Analyzing timing behavior and reliably
predicting performance characteristics are essential to verify system
properties and support important design decisions. Modern multi-core
and future many-core (often heterogeneous) architectures of embedded
systems are, however, characterized by a large design space as there
is a large degree of freedom in the allocation of concurrent hardware
components, the partitioning of parallel application tasks and their
binding to hardware components, and the choice of appropriate resource
allocation schemes. Because of the overall system complexity, inspecting
the exact timing behavior of every design candidate of such an embedded
system is computationally prohibitive. Therefore, fast evaluation
methods in an early design stage are crucial for the exploration of the
large design space.

Simulation-based methods for performance estimation are widely
used in industry. There are commercial tools such as Cadence Virtual
Component Co-design (VCC) [VCC] and CoWare Virtual Platform Ana-
lyzer (VPA) [CoW], which support cycle/instruction-accurate simulation
of complete HW/SW systems. Besides commercial tool suites, there
also exist open-source simulation frameworks that can be applied to
performance estimation, for instance, SystemC [sys]. Themain advantage
of simulation-based approaches is their large and customizable modeling
scope, which allows themodeling of systems at various abstraction levels.
Simulation-based techniques, however, often suffer from long runtimes
and high setup effort for each new architecture and mapping (process
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allocation and scheduling discipline). Furthermore, worst-case bounds
on system properties like throughput and end-to-end delay cannot be
obtained, in general, because of the exhaustive corner-case coverage
cannot be guaranteed in simulation.

Formal analytic methods such as symbolic timing analysis for
systems (SymTA/S) [RE02], holistic analysis in the modeling and analysis
for systems (MAST) [PEP+04], and modular performance analysis
(MPA) [TCN00, CKT03, WT06c], are viable alternatives, which provide
exhaustive corner-case coverage and have a low setup effort. Therefore,
to determine guaranteed performance limits, analytic methods are
preferable. The major disadvantage of analytic methods is that they
typically lack of effective ways to model complex interactions and state-
dependent behavior, resulting in pessimistic bounds for certain scenarios.

The increasing number of integrated cores for future embedded
systems accentuates the deficiencies of both simulation-based and
analytic approaches. In the case of simulations, the computing demand
is super-linear to the number of cores to be simulated. In the case
of analytic methods, more cores involved result in more complex
interactions and correlations, which exceed themodeling scope of current
analytic methods. The question hereby is how to accurately estimate
the performance for large-scale many-core embedded systems within a
reasonable time frame.

3.1 Overview

In this chapter, we investigate both analytic and simulation-based
techniques for the performance estimation ofmulti/many-core embedded
systems. In particular, we target streaming embedded systems that
exhibit complex interferences and correlations between data streams,
computation, and communication. We present techniques to tackle the
complex interference and correlations within these systems such that
accurate performance estimation can be conducted.

To analytically estimate the performance of a multi/many-core em-
bedded system, we employ the modular performance analysis (MPA)
framework [TCN00, CKT03, WT06c] that is based on real-time calculus
(RTC). In Rtc-mpa, a system is decomposed into a network of abstract
computation and communication components and is analyzed by the
flow of event streams through this network of abstract components.
The decompositional approach for performance analysis in Rtc-mpa,
nevertheless, incurs an information loss among components. A typical
example is that the timing correlations between event streams cannot
be effectively modeled, which leads to pessimistic analysis results. To
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tackle this problem, we present an extension to Rtc-mpa which models
correlations between event streams originated from the same source. We
show the applicability of ourmethods by analyzing a real-life multimedia
application, namely an M-JPEG encoder. Although this method is
implemented within the Rtc-mpa framework, the idea behind it can be
applied to other modular analysis frameworks, such as SymTA/S, as well.

In comparison to analytic methods, simulation-based techniques can
naturally model this kind of correlations, because the exact timing
information of each sub-stream is preserved during the simulation.
Therefore, we also investigate simulation-based techniques. The focus
of our work here is to find a good trade-off between simulation speed
and accuracy. On the one hand, the technique should provide accurate
estimation close to classical cycle/instruction-accurate simulations. On
the other hand, the runtime of this technique should be acceptable
for modern multi-core systems and scale to future many-core systems.
We propose a trace-based simulation framework at system level. By
abstracting the functionality of an application into coarse-grain traces
and simulating these abstract traces, our framework can evaluate
complex multi/many-core embedded systems in a reasonable time,
while considering different scheduling policies, memory allocations, and
hierarchical communication schemes. We investigate the effectiveness
of our approach by mapping an MPEG-2 decoding algorithm onto the
ATMEL Diopsis-940 platform [Pao06]. We demonstrate the scalability of
our approach bymapping a scaled version of theMPEG-2 algorithm onto
a system with up to 16 cores.

3.2 Modular Performance Analysis

The modular performance analysis (MPA) [TCN00, CKT03, WT06c]
framework that is based on real-time calculus (RTC) has been developed
to model and analyze the performance of distributed real-time multime-
dia and digital signal processing systems. In the Rtc-mpa framework,
a system is decomposed into a network of abstract computation and
communication components. Specifically, the performance model of
a system is composed of single abstract components that model (a)
resources such as buses and processors, (b) event streams that trigger
resource components, and (c) resource sharing methods. The approach
uses real-time calculus which itself is based on network calculus [LT01].
In particular, arrival curves α(∆), service curves β(∆) and workload
curves γ(∆) [MKT04] model certain timing properties of event streams,
the capability of architecture elements, and the execution requirement
of event streams, respectively, as shown in Fig. 29. A more detailed
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Fig. 29: Elements of Rtc-mpa.

description of these elements is given in the following sections.

One drawback of using Rtc-mpa for performance analysis is that the
decomposition, nevertheless, leads to information loss. Considering a
split-join scenario that is typical for streaming applications, an input
stream is split into several sub-streams that will join again after being
processed separately. Obviously, the sub-streams are often highly
correlated. Due to the decomposition in Rtc-mpa, these correlations
cannot be effectively modeled. The phase information between the sub-
streams with respect to the original input stream, for instance, is lost
during the analysis. In this work, we are interested in the correlations
in such a split-join scenario. We investigate techniques to model the
correlations between streams that originate from the same input stream
such that accurate performance analysis in terms of processing delays
and buffer space usage can be conducted.

3.2.1 Related Work

Although simulation-based methods are the most commonly used
techniques for performance evaluation of embedded systems, formal
analytic methods are required, for instance, to determine guaranteed
performance limits and provide corner-case coverage These methods
provide hard bounds that are needed to verify embedded systems
with respect to hard real-time requirements. In addition, performance
estimation using analyticmethods requires lower setup effort and smaller
computational demand,which is suitable for fast design space exploration
at early design stages.

Several models and methods for analytic performance analysis
of embedded systems have been developed. Holistic scheduling,
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for instance, extends well-known classical scheduling techniques to
distributed systems [PGH98, TC94], combining the analysis of processor
and bus scheduling. The modeling and analysis suite for real-time
applications (MAST) [GHGGPGDM01] integrates a set of such holistic
analysis techniques. A more general approach to extend the concepts
of classical scheduling theory to distributed systems is presented in the
symbolic timing analysis of systems (SymTA/S) framework [RE02]. In
contrast to holistic approaches, this method applies existing analysis
techniques in amodularmannerwhere single components of adistributed
system are analyzed with classical algorithms, and the local results are
propagated through the system by appropriate interfaces relying on a
limited set of event stream models. The modular performance analysis
(MPA) framework [TCN00, CKT03, WT06c], which extends the basic
concepts of network calculus, presents a different analytic and modular
approach for performance analysis that does not rely on the classical
scheduling theory. It analyzes the flow of event streams through a
network of computation and communication resources.

Thedisadvantage of analyticmethods is that they are typically not able
to model complex interactions and state-dependent behavior, resulting in
pessimistic bounds for certain scenarios.

To achieve a shorter runtime in comparison to simulation-based
methods and tighter performance bounds in comparison to analytic
methods, hybrid methods that combine simulation and analysis have
been proposed. In [LRD01], a trace-based simulation method was
proposed, and in [KPBT06] a method is proposed to combine a SystemC-
based cycle-accurate simulation [LAB+04] with an analytic technique
[TCN00]. Although these hybrid methodologies can help to shorten the
runtime of simulations, the problem of insufficient corner-case coverage
is still present. Recently, a compositional and hybrid approach has been
presented in [LPT09], which couples Rtc-mpa and state-based models in
the form of timed automata [AFM+02]. By defining a pattern to convert
an abstract stream model, i. e. , periodic with jitter or time-interval based
models used in real-time calculus, to a network of co-operating timed-
automata and vice versa, the proposed method enables a holistic analysis
of a system composed of both MPA models and timed-automata.

In this section, we focus only on an analytic method, targeting the
correlation between event streams. There are several approaches [JRE04,
WT05] available to model event patterns and correlations within single
event streams. In these approaches, models are developed to tackle
correlations between different event types and workloads. None of these
existing analytic approaches is able to model correlations between event
streams, however. We present a method that can be used to analyze the
correlation between different streams within a split-join scenario. By the
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time this method has been developed, it was the first approach to tackle
this problem. Recently, work along this direction has also been presented
in [SE09, PRT+10].

3.2.2 Introduction to Rtc-mpa

This section presents the basic components of the Rtc-mpa framework,
i.e., the event stream model, the service model, and the workload model.
We also sketch how to use these components to analyze a system.

3.2.2.1 Event StreamModel

Event streams in a system can be described using a cumulative function
R(s, t), defined as the number of events seen in the time interval [s, t).
While any R always describes one concrete trace, a 2-tuple α(∆) =
[αu(∆), αl(∆)] of upper and lower arrival curves [Cru91a] provides an
abstract event stream model that characterizes a whole class of (non-
deterministic) event streams. αu(∆) and αl(∆) provide an upper and a
lower bound on the number of events seen on the event stream in any
time interval of length ∆:

αl(t − s) ≤ R(s, t) ≤ αu(t − s) ∀s < t (3.1)

with αl(∆) = αu(∆) = 0 for ∆ ≤ 0. Arrival curves substantially generalize
traditional event models such as sporadic, periodic, periodic with jitter,
or any other arrival pattern with non-deterministic timing behavior.
Therefore, they are suited to represent complex characteristics of event
streams in complex multi-core embedded systems. Examples of different
arrival curves are depicted in Fig. 30.
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Fig. 30: Examples for arrival curves for: (a) periodic events with period p, (b) events with

minimal inter-arrival distance p andmaximal inter-arrival distance p′ = 1.5p, and
(c) events with period p and minimal inter-arrival distance d = 0.4p.

3.2.2.2 Resource Model

In a similar way, the capability of a computation or communication
resource can be described by a cumulative function C(s, t), defined as
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the number of available resources, e. g. , processor or bus cycles, in the
time interval [s, t). To provide an abstract resource model for a whole set
of possible resource behavior, we define a 2-tuple β(∆) = [βu(∆), βl(∆)] of
upper and lower service curves:

βl(t − s) ≤ C(s, t) ≤ βu(t − s) ∀s < t (3.2)

with βl(∆) = βu(∆) = 0 for ∆ ≤ 0. Again, service curves substantially
generalize classical resource models such as the bounded delay or the
periodic resource model [SL04]. An example of the service curves for a
communication resource is shown in the following.

Ex. 2: Consider a bus with bandwidth B that implements the time division multiple
access (TDMA) protocol. The length of individual TDMA slots is denoted by
si and the TDMA cycle length is denoted by c̄ with c̄ ≤

∑

si. Then, the service
curves representing a slot are given as:

βli(∆) = B ·min
{

⌈∆/c̄⌉ · si, ∆ − ⌊∆/c̄⌋ · (c̄ − si)
}

(3.3)

βui (∆) = B ·max
{

⌊∆/c̄⌋ · si, ∆ − ⌈∆/c̄⌉ · (c̄ − si)
}

(3.4)

3.2.2.3 Workload Model

In the context of Rtc-mpa, the arrival curve is event-based whereas the
service curve is resource-based. To relate arrival and service curves,
workload curves are used [MKT04]. The workload that an event stream
imposes on a resource can be described by a cumulative function
W(s, t) defined as the number of clock cycles required to process event
s (included) to event t (excluded) – here we suppose that events are
successively numbered – on a computation or communication resource.
We define a 2-tuple γ(∆) = [γu(∆), γl(∆)] of upper and lower workload
curves:

γl(t − s) ≤W(s, t) ≤ γu(t − s) ∀s < t s, t ∈N0 (3.5)

Using the workload curve and its pseudo-inverse

(γu)−1(w) = sup
{

e : γu(e) ≤ w
}

(3.6)

(γl)−1(w) = inf
{

e : γl(e) ≥ w
}

(3.7)

arrival and service curves can be transformed from event-based to
resource-based quantities and vice versa as follows:

ᾱl(∆) = γl
(

αl(∆)
)

β̄l(∆) = (γu)−1
(

βl(∆)
)

(3.8)

ᾱu(∆) = γu
(

αu(∆)
)

β̄u(∆) = (γl)−1
(

βu(∆)
)

(3.9)
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In the simplest case, the workload of an event stream is characterized
by its worst-case and best-case execution time measured in clock cycles
and the workload curves would simply be:

γl (e) = BCET · e [cycles] (γl)−1 (x) = ⌈x/BCET⌉ [events] (3.10)

γu (e) =WCET · e [cycles] (γu)−1 (x) = ⌊x/WCET⌋ [events] (3.11)

3.2.2.4 Greedy Processing Component

The basic component of an Rtc-mpa analysismodel is the so-called greedy
processing component (GPC). The semantics of a GPC can be described
as follows: An incoming event stream, represented as a set of upper and
lower arrival curves, flows into a FIFO buffer in front of the GPC. The
events trigger the execution of the corresponding process while being
restricted by the availability of resources that is represented as a set
of upper and lower service curves. The outgoing event stream and
remaining resource capacity can again be represented as a set of upper
and lower curves. As has been shown in [CKT03], the output arrival
curves α′ can be determined as follows:

α′l(∆) = min
{

inf
0≤µ≤∆

{

sup
λ>0

{αl(µ + λ) − β̄u(λ)} + β̄l(∆ − µ)
}

, β̄l(∆)
}

(3.12)

α′u(∆) = min
{

sup
λ>0

{

inf
0≤µ<λ+∆

{αu(µ) + β̄u(λ + ∆ − µ)} − β̄l(λ)
}

, β̄u(∆)
}

(3.13)

An upper bound of the maximum delay dmax experienced by an event
and themaximal length bmax of the FIFO buffer of a GPC can be computed
by the following relations, see also [LT01]:

dmax = sup
λ≥0

{

inf{τ ≥ 0 : αu(λ) ≤ β̄l(λ + τ)}
}

(3.14)

bmax = sup
λ≥0

{αu(λ) − β̄l(λ)} (3.15)

3.2.2.5 System Analysis

With the aforementioned abstractions, a basic Rtc-mpa model of a
system can be constructed for performance analysis: Event streams are
modeled by arrival curves, computation and communication resources
by service curves, event processing in the system by GPCs, and the
flow of event streams by interconnecting the GPCs. To complete the
analysis model, the GPCs need to be connected by service curves based
on the used resource sharing policies. Resource sharing policies currently
supported by Rtc-mpa include preemptive and non-preemptive fixed
priority scheduling (FP) [WTVL06, HT07], rate monotonic scheduling
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(RM) [WTVL06], time division multiple access (TDMA) [WT06b], earliest
deadline first (EDF) [WT06a], and first-come first-serve (FCFS) [PRT+10].
Fig. 31 illustrates structures of the performance analysis model for three
scheduling policies, which are relevant to this thesis.

GPC

GPC

β

β′

β′′

α1 α′
1

α2 α′2

(a) FP.

GPC

GPC

β

β′

α1 α′
1

α2 α′2

GPC

(b) EDF.

GPC
α1 α′

1

βslot1

β′
slot1

GPCα2
α′2

βslot2

β′′
slot2

(c) TDMA.

Fig. 31: Modeling of three different scheduling policies in Rtc-mpa. From left to right:

preemptive fixed priority (FP), earliest deadline first (EDF), and time division

multiple access (TDMA) policies.

By correctly interconnecting all service curves, the analysis model of
a system can be obtained. A concrete example is depicted in Fig. 37
of Section 3.2.4. Based on the local analysis of single components, global
systemproperties, such as end-to-enddelays, buffer requirements, system
throughput, and others, can be computed.

Tool support for Rtc-mpa is available as a Matlab toolbox that
implements the basic operations of real-time calculus [WT06c]. Based
on these operations, the Matlab toolbox provides methods for curve
generation, analysis for the scheduling policies mentioned above, and
plotting arrival and service curves.

3.2.3 Analysis of Correlated Streams

The basic principle of Rtc-mpa is to decompose a system into a network
of abstract computation and communication components introduced
above and analyze it by considering the flow of event streams through
this network of abstract components. This decomposition incurs an
information loss among components, leading to pessimistic analysis
results for certain scenarios.

A typical example is the timing correlations between different event
streams that originate from the same source. Consider a split-join scenario
which is common in streaming applications: An input event stream
is distributed to several sub-streams at a so-called split process and
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later on sub-streams are merged again at a so-called join process, as
shown in Fig. 32. Obviously, these sub-streams are highly correlated,
for instance, the phases with respect to the original stream. Due to the
compositional approach of Rtc-mpa, the correlations between different
sub-streams cannot be effectively modeled.

α1(∆)

αM(∆)

α′
1
(∆)

α′M(∆)

α(∆) α′(∆)

d1 = (dmin
1
, dmax

1
)

dM = (dmin
M , d

max
M )

split join. . .

Fig. 32: Rtc-mpamodel representing the split-join scenario.

In order to conduct accurate performance analysis, we study stream
correlations and develop methods to capture the corresponding effects in
theperformance analysis. Inparticular,we investigate streamcorrelations
within a split-join scenario, as pictorially shown in Fig. 32. An input
event stream α is split at a split process into M sub-streams, M ≥ 2.
Each sub-stream experiences a delay di (in case of not a constant delay,
bounded by dmin

i
and dmax

i
) before it is merged at the join process with

other sub-streams to form the output stream α′. Specifically, we study
two different semantics of the join process, namely OR-semantics and
ORDER-semantics.

3.2.3.1 Join Process with OR-Semantics

A join process with OR-semantics takes any event appearing on any
of its input buffers and processes them in a first-come first-serve order.
Without restricting the generality of our approach, we suppose that the
join process in Fig. 32 just transfers input events to its output in zero
time, i.e., without any resource usage. If there is additional processing
necessary, this can easily be modeled by an additional process whose
single input is connected to the output of the join process. At first, we
define the split-join delay for a sub-stream αi.

Def. 1: (Split-Join Delay) A split-join delay di of αi is the time distance between the
time when an event appears at the output of the split process and the time when
it reaches the input buffer of the join process and is available to be processed.
In case of a non-constant delay, di is modeled with an upper and a lower bound,
denoted as dmin

i
and dmax

i
.
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One can, for instance, apply (3.14) to obtain upper bounds on this
delay. For more complex operation chains between the split and join
processes, the usual Rtc-mpa analysis can be used to determine dmin

i
and

dmax
i

.
Current analysis methods cannot take into account the correlation

between streams αi, i = 1, ..., M. After being split up from α, they are
considered as independent entities. As will be seen in the next example,
this leads to a reduced accuracy of the performance analysis, i.e., delays
and buffer sizes are considerably overestimated.

Ex. 3: Consider a simple split-join scenario in Fig. 32 with only two sub-streams, i.e.,
M = 2. A simple TDMA scheme alternatively serves the two output streams
with a fixed window size of 10ms. Consider a simple periodic input stream with
two events perms. The corresponding arrival curveα and the two output streams
α1 and α2 are shown in Fig. 33(a). The two streams are processed separately
and have delays d1 and d2, respectively. Even in the most simple case where
d1 = d2 = 0, the derived output curve α′ = α1 + α2 is overly pessimistic in
comparison to the correct result α′ = α. The shadowed part in Fig. 33(b) shows
the loss caused by previous methods where all subsequent subsystems assume
that there are up to 40 events within a time interval of 10ms instead of just 20.
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Fig. 33: Arrival curves for the split-join scenario in Ex. 3.

The reason for the loss in accuracy is that the information about timing
correlations is lost during the analysis. The following theorem states a
method, which takes into account time correlations between different
sub-streams within the split-join scenario.

Thm. 2: Assume an event stream that is constrained by arrival curve α = [αu, αl] is
split into M ≥ 2 sub-streams that will be combined in a join process with
OR-semantics. The split-join delay of each sub-stream is bounded by a tuple



60 Chapter 3. Performance Evaluation

di = [dmin
i
, dmax

i
], ∀i ∈M. Then the output of the join process is an event stream

that can be bounded by the arrival curves

α′u(∆) =min
{ M∑

i=1

αui (∆ + dmax
i − dmin

i ), αu(∆ + dmax − dmin)
}

(3.16)

α′l(∆) =max
{ M∑

i=1

αli(∆ + dmin
i − dmax

i ), αl(∆ + dmin − dmax)
}

(3.17)

where

dmax = max
i∈M
{dmax

i }

dmin = min
i∈M
{dmin

i }

Proof. We present the proof for the upper arrival curve α′u as follows.
The lower curve can be derived similarly.

We first consider a case with two sub-streams, i.e., M = 2. For any
interval ∆ of α′u starting at time t∆ with a length of l∆, events of α1 that
will arrive during that interval ∆ at the join process need to be within
the interval ∆1 starting at time t∆ − dmax

1
with a length of l∆ + dmax

1
− dmin

1
.

Similarly, the interval ∆2 for α2 that contributes events to ∆ starts from
time t∆ − d

max
2 with a length l∆ + d

max
2 − dmin

2 . A graphical view of these two
cases is shown in Fig. 34. Combining these two cases, an upper bound of
α′u can be computed as:

α′u(∆) = αu1(∆1) + α
u
2(∆2)

= αu1(∆ + dmax
1 − dmin

1 ) + αu2(∆ + dmax
2 − dmin

2 ) (3.18)

This bound is, however, not always tight, as shown in Ex. 3. Ifwe consider
the original phase information of these two sub-streams, we can compute
another valid bound. We consider three different cases for the relative
position of ∆1 and ∆2 with respect to the original stream:

• ∆1 and ∆2 are disjoint.

When ∆1 and ∆2 are disjoint, there are two possible cases: ∆1 is
closer to ∆, i. e. , dmax

1
+ l∆ ≤ dmin

2 or the other way round, i. e. ,
dmax
1
+ l∆ > dmin

2 . The first case is pictorially shown in Fig. 34(a). We
can compute α′u as follows:

◮ dmax
1
+ l∆ ≤ dmin

2

α′u(∆) = αu(∆ + dmax
2 − dmin

1 ) − αl(dmin
2 − ∆ − dmax

1 )

≤ αu(∆ + dmax
2 − dmin

1 ) (3.19)
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◮ dmax
1
+ l∆ > dmin

2

α′u(∆) = αu(∆ + dmax
1 − dmin

2 ) − αl(dmin
1 − ∆ − dmax

2 )

≤ αu(∆ + dmax
1 − dmin

2 ) (3.20)

• ∆1 and ∆2 intersect.

When ∆1 and ∆2 intersect, there are again two cases: ∆1 is closer
to ∆, i. e. , dmin

1
< dmin

2 < dmax
1
+ l∆ or the other way round, i. e. ,

dmin
2 < dmin

1
< dmax

2 + l∆. Fig. 34(b) again shows the first case in which
∆1 is closer to ∆. We compute α′u as follows:

◮ dmin
1
< dmin

2 < dmax
1
+ l∆

α′u(∆) = αu(∆ + dmax
2 − dmin

1 ) (3.21)

◮ dmin
2 < dmin

1
< dmax

2 + l∆

α′u(∆) = αu(∆ + dmax
1 − dmin

2 ) (3.22)

• One of ∆1 and ∆2 completely overlaps the other.

For the case of a complete overlap, we again have two cases: ∆1

overlaps ∆2, i. e. , dmin
2 ≤ dmin

1
and dmax

2 ≥ dmax
1

or the other way
round, i. e. , dmin

1
≤ dmin

2 and dmax
1
≥ dmax

2 . Fig. 34(c) shows the first
case in which ∆1 overlaps ∆2. We derive α′u as follows:

◮ dmin
2 ≤ dmin

1
and dmax

2 ≥ dmax
1

α′u(∆) = αu(∆ + dmax
2 − dmin

2 ) (3.23)

◮ dmin
1
≤ dmin

2 and dmax
1
≥ dmax

2

α′u(∆) = αu(∆ + dmax
1 − dmin

1 ) (3.24)

Combining (3.19)–(3.24), we have

α′u(∆) = αu(∆ + dmax − dmin) (3.25)

where dmax = max{dmax
1
, dmax

2 } and dmin = min{dmin
1
, dmin

2 }. The computed α′u

from (3.25) is also a valid upper bound for α′u. With (3.18) and (3.25), we
have

α′u(∆) = min
{ 2∑

i=1

αui (∆ + dmax
i − dmin

i ), αu(∆ + dmax − dmin)
}

(3.26)

Therefore, the theorem holds for M = 2.
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Fig. 34: Illustration for the proof of Theorem 2 in the case ofM = 2.

For cases M > 2, the proof is similar to M = 2. For each ∆ of α′u, we
can always compute ∆i for αi, i ∈ M. Moreover, based on enumerations
similar to (3.19)–(3.24), the computed∆+dmax−dmin defines another upper
bound for the interval inwhich events from the original streamwill arrive
within ∆ of α′u. Therefore, the theorem holds.

�

3.2.3.2 Join Process with ORDER-Semantics

In OR-semantics, the join process greedily takes events from any of its
inputs whenever events are available. Thus, the order of events with
respect to the one in the original stream α is not guaranteed. Preserving
the order of events in α′ with respect to α is, however, necessary for
certain cases of streaming applications, e. g. , video codec applications.
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Considering the parallel M-JPEG decoder in [HSH+09], for instance,
an encoded M-JPEG video is dispatched frame-by-frame to different
hardware components for decompression and the decoded frames are
collected to form a video stream. In this case, preserving the frame order
is mandatory in order not to scramble the resulted video.

To preserve the original order, we investigate anORDER-semantics for
the joinprocess. Again, we assume that the split and joinprocesses are
infinitely fast. The split-join delay di for a given sub-stream αi, however,
needs more considerations. We construct di as follows.

Def. 2: (Processing Delay) Processing delays pdmax
i

and pdmin
i

for events in an event
stream αi define the maximal and minimal time by which an event of αi transfers
from the output of the split process to an input buffer of the join process.

pdmax
i

and pdmin
i

can be considered as the maximal and minimal
accumulated processing time between the split and join processes. In
the case of OR-semantics for the join process, they are equal to the split-
join delays dmax

i
and dmin

i
. Again, one can apply (3.14) to obtain upper

bounds on this delay. For more complex operation chains between the
split and join processes, the usual Rtc-mpa analysis can be used to
determine lower and upper bounds on the processing delays.

Def. 3: (Split interval) Split intervals sdmax
i, j and sdmin

i, j of sub-stream αi are defined as

the maximal and minimal relative time differences between an event in αi and
the closest recent one in sub-stream α j.

t
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Fig. 35: Illustration of the split interval.

An example illustrating the split intervals is shown in Fig. 35.
Obviously, these intervals depend on the distribution policy of the split
process. Let us consider a periodic event stream with period p and a
split process with a TDMA policy that alternatively distribute events to
sub-streams in the order 1, 2, ...M, 1, 2 ..., for instance. The split intervals
then are:
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sdmax
ij = sdmin

ij = (i − j)modM · p (3.27)

With the processing delays and split intervals, we can compute the
split-join delays for sub-stream αi. Intuitively, an event in sub-stream αi
that can be processed by the join process must fulfill two conditions:
a) it reaches the input buffer of the join process, and b) all previous
events with respect to the original order in the input stream α have been
processed. Therefore, the maximal and minimal split-join delays are
computed as:

dmax
i = max

j∈M∧ j,i

{

pdmax
i , pd

max
j − sdmin

ij

}

(3.28)

dmin
i = max

j∈M∧ j,i

{

pdmin
i , pd

min
j − sdmax

ij

}

(3.29)

These values can now be used in (3.16) and (3.17) in order to determine
α′(∆). An example for (3.28) is illustrated in Ex. 4.

Ex. 4: Again, consider the scenario in Ex. 3. The input event stream α is split into two
sub-streams, namely α1 and α2. The event e1, j of α is dispatched to sub-stream α1
at time t2 and its maximal processing delay is pdmax

1
. The closest previous event

that has been put to α2, namely e2, i, has the maximum processing delay pdmax
2 . It

will reach the join process at time t4. Then e1, j has to wait in the input buffer of
the join process for at most t4 − t3 time units, before it can be processed by the
join process.

t

t
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α2
e2, i

t1 t4

e1, j

t2 t3

sdmin
2 1

pdmax
2

pdmax
1

Fig. 36: Illustration of the maximum split-join delay.

Similarly, the maximal waiting time for any event of sub-stream αi at
the join process can be computed as:

bdmax
i = max

j∈M∧ j,i
{0, pdmax

j − pdmin
i − sdmin

ij } (3.30)
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3.2.4 Experimental Results

In this section, we apply ourmethod to analyze a concrete system, namely
a modified M-JPEG encoder [Ste04] and demonstrate the effectiveness of
proposed methods.

3.2.4.1 Experimental Setup

Like traditional M-JPEG encoders, the modified M-JPEG encoder com-
presses a sequence of frames by applying JPEG [PM93] compression to
each frame. Because of the inherent parallelism in the JPEG algorithm,
a frame can be split into macroblocks that can be compressed in parallel
by concurrent hardware resources. The process network of the M-JPEG
encoder is shown in the circular nodes in Fig. 37(a). Process VI splits an
input image stream intomacroblocks, scansmacroblocks row by row, and
then dispatches macroblocks to four different sub-streams. In two of the
four sub-streams, processes DQV perform discrete cosine transform (DCT),
quantization(QT), and variable length encoding (VLE). In the other two
sub-streams, the DCT, QT, and VLE operations are decoupled into two
processes, namely processes DCT and QV. The four sub-streams aremerged
in the process VO to form an encoded stream.

We map this process network on a 4-core platform, as graphically
shown in Fig. 37(a). The VI process and two identical DQV processes
execute on individual programmable cores, namely cpu3, cpu1, and cpu2,
respectively. The two DCT processes use dedicated hardware IP-Cores.
The two QV and VO processes run on a programmable core cpu4 with a
fixed-priority scheduling. The specifications of the involved hardware
resources are listed in Tab. 4. The IP-Core conducts a hardware DCT
with a constant delay for the processing of each macroblock. The TDMA
bus has 8 slots with a slot length of 2048 cycles. One input frame contains
128 macroblocks, and one macroblock consists of 8 × 16 pixels (256 32-bit
words).

Hardware
Frequency Throughput

other features
[MHz] [bytes/cycle]

TDMA bus 100 4 8 slots, 2048 cycles each
IPCore 100 4 94-stages pipeline
cpu 100 N/A N/A

Tab. 4: Hardware specification of the architecture.

We apply two different splitting policies to the VI process, namely
modulo and block distributions. In the case of modulo distribution,
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Fig. 37: M-JPEG encoder.
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Fig. 38: Macroblock distribution policies for the VI process, where a dotted rectangle

represents a macroblock.

macroblocks are dispatched alternately to the four sub-streams, as shown
in Fig. 38(a). We can compute the split intervals using (3.27) withM = 4.

In the case of the block distribution, each frame in the frame stream
is split into Mb × Mb grids and macroblocks in grid < ki, li > will be
dispatched to sub-stream αi. Since the process VI scans macroblocks
always row by row, how to compute split intervals is not obvious. For a
frame stream with period p and N1 ×N2 macroblocks per frame, the split
intervals for the grid < ki li > to the grid < k j l j > can be computed as:

sdmax
ij =





(N1

Mb
· ((li − l j) mod Mb)

)

· p ki = k j

(

(li − l j)
N1

Mb
+ (ki − k j)

N1 ·N2

Mb

)

· p ki > k j

+∞ ki < k j

(3.31)

sdmin
ij =





(

1 +
N1

Mb
· ((li − l j) mod Mb − 1)

)

· p ki = k j

(

1 + (Mb + li − l j − 1)
N1

Mb
+ (ki − k j − 1)

N1 ·N2

Mb

)

· p ki > k j

+∞ ki < k j

(3.32)

Intuitively, when ki = k j, i. e. , grids < ki, li > and < k j, l j > are at the same
horizontal row, the maximal split interval sdmax

ij
is the horizontal distance

between the two right-most macroblocks of < k j, l j > and < ki, li > in a

frame, i. e. , the number of grids between α j and αi, computed as N1

Mb
(li− l j).

Correspondingly, theminimal split interval sdmin
ij

is the horizontal distance

between the last macroblock of grid < k j, l j > and the first macroblock of

< ki, li > located in a frame, i.e, 1 + N1

Mb
(li − l j − 1). When ki > k j, we again
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count the distance between the last macroblock of the grid < k j, l j > and
the last/first macroblocks of the grid < ki, li > for the maximal/minimal
split intervals, respectively. In this case, the rows of grids between li and l j
needs to be counted aswell. Therefore, for themaximal andminimal split

intervals, there are (ki−k j)
N1·N2

Mb
and (ki−k j−1)

N1·N2

Mb
moremacroblocks need

to be considered than the case of ki = k j, respectively. When ki < k j, we
assume positive infinity, because ki < k j represents the interval between
two frames. An illustrated example for a 2× 2-grid distribution is shown
in Fig. 38(b).

In our experiment, an image frame contains 16×8 (N1 = 16 andN2 = 8)
macroblocks and we set Mb = 2. With this information, we construct the
Rtc-mpa model for the M-JPEG encoder. The analytic model is shown in
Fig. 37(b). As shown in the figure, a GPC component is created for each
process in the process network. TheseGPCs are interconnectedwith eight
GPCs modeling the communication over the TDMA bus. In addition, a
split and a join component is added to model the correlations. For
the split component, we consider the two aforementioned distribution
policies. For the join component, we consider three scenarios, i.e., no
correlation, OR-semantics, andORDER-semantics. The results are shown
in the subsequent figures.

3.2.4.2 Results

In the first experiment, we consider a case where the split component
uses modulo distribution policy, the join component uses OR-semantics,
and the input frame rate is set to 6 frames/s. We compare the output arrival
curves of the join component for cases with and without consideration
of correlations. The resulting arrival curves are shown in Fig. 39. As
shown in the figure, we obtain tighter bounds (solid lines) for both upper
and lower arrival curves when we consider the correlations between sub-
streams. Themaximal inter-arrival time between twomacroblocks in α′ is
also depicted in Fig. 39. Themaximal inter-arrival timewhen considering
correlations, i.e., 3.46msec is a factor of 2 smaller than the inter-arrival
time when ignoring correlations, i.e., 7.63msec.

In the second experiment, we again use modulo distribution for the
split component and compare results for OR-Semantics and ORDER-
Semantics for the join component. We increase the input frame rate to
9.6 frames/s in order to increase the computation requirements, especially
for cpu3. The overloaded cpu3will cause a longer processing delay for the
QV processes on cpu3 than in the case of 6 frames/s. This longer processing
delay incurs a longer waiting time for some macroblocks before they can
be processed by the VO process. The resulting output arrival curves are
shown in Fig. 40. The figure shows that the maximal inter-arrival for
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Fig. 39: The output arrival curves of the join process for the case of modulo distribution

for the split process andOR-semantics and no correlations for the join process.

the output arrival curves corresponding to the OR-semantics (solid lines)
do not change compared to the curves in Fig. 39. The reason is that
the blocking effect is not considered for the OR-semantics and the join
component will take any availablemacroblocks at any of its input buffers.
In this case, the results derived from the OR-semantics are obviously
too optimistic. On the other hand, a join component with the ORDER-
semantics takes into account theblocking effect andderives correct results,
i.e., a largermaximal inter-arrival time for outputmacroblocks in this case.

In the third experiment, we fix the join component to ORDER-
semantics and compare the output arrival curves with block and modulo
distributions for the split component. Again, we set the input frame
rate to 6 frames/s. The output arrival curves are shown in Fig. 41. The
figure shows that a block distribution policy of the split component
results in an output stream that has large bursts and a large maximal
inter-arrival time. This is because the block distribution on the one hand
creates bursts for each sub-stream, i.e., eight macroblocks at once for
each sub-stream. On the other hand, block distribution enlarges the split
interval between sub-streams. The results shown in Fig. 40 confirm that
our method correctly captures this behavior.
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3.3 Trace-Based Simulation

To model and analyze the complex interference and correlations between
data streams, simulation-based approaches can be used as well. Because
the exact timing information of each sub-stream is preserved during the
simulation, the interference and correlations can be captured more natu-
rally. Although simulation-based techniques cannot provide guaranteed
bounds on system properties, they can be used to estimate average-case
performance and to inspect properties at lower abstraction levels that
analytic methods cannot capture. Therefore, we exploit simulation-based
techniques in this section.

When using simulation-based techniques to estimate a multi/many-
core embedded system, a major problem is the low simulation speed.
Because the computing demand, in general, is super-linear to the number
of cores to be simulated, inspecting the system performance at a too
detailed level (at cycle-accurate level, for instance) is computational
prohibitive. This problem is accentuated especially at early design stages
where a large number of design alternatives need to be inspected.

The focus of our work here is to find a good trade-off between
simulation speed and accuracy. On the one hand, the technique
should provide accurate estimation results comparable to classical
cycle/instruction-accurate simulations by considering important aspects
like resource sharing and memory allocation schemes. On the other
hand, the runtime of this technique should be acceptable for modern
multi-core embedded system and scale for future many-core embedded
systems. For these purposes, we propose a trace-based simulation
framework at system level. By abstracting the behavior of an application
as coarse-grain execution traces and simulating these abstract traces,
our framework can evaluate large and complex embedded systems in
a reasonable time frame. We investigate the effectiveness of our approach
bymapping anMPEG-2decoding algorithmonto theATMELDiopsis-940
platform [Pao06]. We demonstrate the scalability of our approach
by mapping a scaled version of the MPEG-2 algorithm onto a scaled
Diopsis-940 platform with up to 16 cores.

3.3.1 Related Work

Traditionally, simulation-based techniques are widely used for perfor-
mance estimation of embedded systems. Examples are [VCC, CoW]
at register-transfer level and [BZCJ02, MPND02] at system level. A
drawback of these approaches is that the application of a target system
has to be executed for each run of the simulation to obtain correct timing
information. As the embedded applications become ever complex and
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computationally demanding, these types of simulations turn out to be
too slow, especially at early design stages where a large number of
design alternatives need to be inspected. Furthermore, the computing
demand of these techniques in general is super-linear to the number of
cores to be simulated. Therefore, these techniques are mainly suitable for
performance evaluation at later design stages.

Estimating system performance based on application traces is a
common practice mainly for evaluating memory and cache subsystems,
e. g. [GHV99, FSSZ01]. The idea of abstracting the functionality of an
application as execution traces is also used to speedup the simulation
of a complete embedded system. An early report on using application
traces for system-level performance estimation is presented in [LRD01],
which focuses on exploring on-chip communication architectureswithout
considering the modeling of applications and different resource sharing
schemes.

A system-level trace-based simulation is used in the Sesame frame-
work [PEP06] for theperformance estimationofheterogeneous embedded
systems, where a trace transformation technique is introduced to
refine abstract communication trace events according to the underlying
architecture. This approach targets communication refinements of mixed
accesses of local and shared memories via a shared bus. The approach
is, however, limited to the integer-controlled dataflow model [Buc94].
A more recent work proposed by Wild et al. [WHO06] uses traces to
simulate network processor architectures that consist of computation and
memory modules communicating via a shared on-chip bus. A common
drawback of both approaches is that the modeling scope is limited to
architectures with a single shared bus. As communication schemes in
modern embedded systems become more complex, modeling complex
data transmission over hierarchical buses, for instance, becomes more
important. New techniques are needed to cover communications via
hierarchical buses.

A common limitation of the aforementioned frameworks [LRD01,
PEP06, WHO06] is that none of them considers preemption, which is
commonly used in modern embedded systems. Recently, a technique
to support preemptive scheduling is proposed in the MESH trace-based
framework [JP08]. It includes in its customized thread-based simulation
kernel a speculative schedule. To correct themisspeculations triggered by
preemptions, a rollbackmechanism is used. Thedrawback of this rollback
approach is that for the case of frequent preemptions, the simulation
performance significantly drops. In addition, the MESH framework uses
two models, i. e. , constant penalty value and exponential function to tune
the accuracy of the modeling for communication. We argue that none of
the two cases properly reflects the actual behavior of communication in
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complex embedded systems, because the throughput of a communication
resource is not always a simple function of the bandwidth of this resource,
as shown in [RGB+08]. Compared to MESH, we use SystemC. By using
the discrete-event simulation kernel in SystemC, our framework can
precisely handle preemption without any speculation. Furthermore,
we model communication resources at the same abstraction level as
computation resources. This modeling allows us to inspect the effect
of different communication arbitration schemes, resulting in accurate
estimation results.

Moreover, in comparison to the related work mentioned above, the
simulator in our framework is composed in a modular way, which offers
high flexibility in terms of modeling scope and scalability in terms of the
size of a target system. Coupled with the programming model presented
in the previous chapter, our framework can model and simulate large-
scale multi/many-core embedded systems.

3.3.2 Modeling

Our simulation framework serves as a performance estimation back-
end of the programming model introduced in the previous chapter.
Therefore, we separate the modeling of the application and architecture
of an embedded system. This section introduces the application and
architecture models.

3.3.2.1 Modeling of Streaming Applications

Tomodel an application, we use the Kahn process network (Kpn) [Kah74]
model of computation, as briefly introduced in Section 2.3. Using Kpn
to model applications is the basis of our simulation framework. On the
one hand, the separation of computation and communication of a Kpn
application allows to group consecutive computation and communication
into coarse-grain traces, as shown inEx. 5. On theother hand, theproperty
of being determinate of Kpn, i.e., the functional behavior is independent
from the timing of processes in the network, allows to reuse the same set
of application traces to explore different architecture configurations and
mappings.

A set of application traces can be represented as an acyclic graph
G = (V,E,E′), where vertices in V represent computation and communi-
cation events and edges represent the functional dependencies of the trace
events. A communication event corresponds to a read or a write operation
of a FIFO in the source code. A computation event groups all consecutively
executed instructions between two contiguous communication events
within a process. We also define a source and a sink vertex for each
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process to represent the starting and ending events for the traces of this
process. An edge in set E connects two consecutive events of a process,
the direction of which specifies the functional order of these two events.
An edge in set E′ connects inter-process communication events, i.e., a
write/read pair, corresponding to a data transmission via a Kpn FIFO.
A graphical view of a set of application traces is shown in the following
example.

Ex. 5: A process network consisting of three processes and the coarse-grained source
code of the processes are depicted in Fig. 42. The first iteration of the recurring
pattern of the traces is shown in Fig. 43. A horizontal row in Fig. 43 represents
a set of trace events for a process. The edges that connect two rows specify data
dependencies between write/read pairs.

P1 P2 P3

C1

C2

C3

C4

P1.fire( ) {

P1_1.comp( );

C1.write( );

P1_2.comp( );

C2.read( );

}

P2.fire( ) {

C1.read( );

P2_1.comp( );

C3.write( );

C4.read( );

P2_2.comp( );

C2.write( );

}

p3.fire( ) {

P3_1.comp( );

C3.read( );

P3_2.comp( );

C4.write( );

}

Fig. 42: A process network with three processes and the coarse-grained source code of

processes.

In a set of application traces, the functionality of an application is
abstracted as high-level trace events, whereas data dependencies between
processes are captured as the ordering information between trace events.
The trace sequence for a single process is totally ordered, i. e. , the
chronological order of trace events is fixed. The edges in E′ impose a
partial order on the trace events between different processes. The resulting
acyclic partially ordered graph is fixed for a given input of the application
and independent of any target architecture or mapping. This property
allows to reuse the same partially ordered trace graph within the loop of
a design space exploration for inspecting differentmappings anddifferent
architecture configurations.

To enable timing simulation, a computation event of a process is
annotated with the runtime information of the corresponding code
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P1_1.comp C1.write P1_2.comp C2.read

C1.read P2_1.comp C3.write C4.read P2_2.comp C2.write

P3_1.comp C3.read P3_2.comp C4.write

Fig. 43: First iteration of the recurring pattern of the execution traces for the process

network in Fig. 42. Shadowed and black rectangles denote sources and sinks,

respectively.

segment for each processor to which the process can be mapped. We will
explain how to extract timing information of trace events in the follow-up
sections. A communication event is annotated with the amount of data
transmitted from/to a FIFO. Note that a communication event will be
refined to a set of new communication events during the simulation. We
define a basic unit by which a communication resource transmits data.
During the simulation, a communication event will be split up into n new
communication events, where n is the quotient between the amount of
data in the original communication event and the basic unit.

3.3.2.2 Architecture modeling

One of our primary goals is to estimate the performance of embedded
systems with multiple/many cores. In order to do so, we do not
differentiate computation and communication resources in ourmodeling.
We define virtual machines for timed processing of trace events and
virtual paths for the routing of communicated data. Based on this
scheme, an architecture for a target system can be easily composed. By
simply varying the interconnects as well as scheduling policies of virtual
machines, different design alternatives can be quickly inspected, at an
abstract level.

Virtual Machine

A virtual machine (VM) is defined as an autonomous unit, simulating
the timing behavior of a computation and communication resource. We
model a VM as a 2-tuple V = (S,C), where S represents a scheduler
and C is the capability, e.g. bus bandwidth or core frequency. The
scheduler S manages the mutual exclusive processing of multiple input
event queues and C decides how time advances. For a computation
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VM (e.g. computing cores), there are two types of input event queues,
namely process event queues and communication event queues. Each
process event queue represents an application process that is mapped
onto this VM. A communication event queue corresponds to a connection
to a connected communication resource. A computation VM consumes
trace events (both computation and communication) from its input event
queues according to its scheduling policy and dispatches communication
events to connected communication VMs. For a communication VM
(e.g. bus and NoC), each input event queue represents a connection to a
connected VM. A communication VM consumes communication events
according to its arbitration policy and forwards them to the input queues
of connected VMs.

A shared memory, for instance, can be modeled as a VM. The
corresponding S is defined as a first-come first-serve policy and C =
min{Bbus, Bmem} is the minimum between the bandwidths of the memory
and the connected bus. In the case of Bbus < Bmem, the throughput of the
shared memory is limited by the bus, otherwise, by the bandwidth of the
shared memory.

Fig. 44 shows the model of a two-tile architecture of our experimental
platform in Section 3.3.4.2. The platform contains two ATMEL Diopsis
tiles connected via a NoC. The local memory of a computing core is not
explicitly modeled, whereas the shared memory is explicitly modeled
as a VM. Each core has a variable number of queues defined by the
processes mapped onto it. Each bus has four different event queues, two
for the computing cores within the same tile, one for the on-tile shared
memory, and one for the NoC. The shared memory has only one queue,
as it can only be accessed via the shared bus. The NoC has two queues,
corresponding to the two connected buses. As shown in Fig. 44, the
architecture of a system can be easily constructed by just coupling VMs
through event queues. By exchanging the scheduler, different scheduling
or arbitration policies can be modeled.

Virtual Path

Modern embedded systems normally consist of multiple communication
resources and application data may need to be transmitted through mul-
tiple communication resources before they reach their final destination.
As an example, if processes P1 and P2 in Fig. 42 are mapped to processing
cores ARM1 and ARM2 in Fig. 44, respectively, a data token transmitted on
the channel C1 will need to traverse BUS1, NoC, and BUS2.

To capture data transmission through multiple communication re-
sources, we define virtual paths (VP). A VP defines a possible route for
a Kpn FIFO and consists of the names of the two computation VMs
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Fig. 44: The abstract model of a two-tile architecture, where the communication event

queues for the computation VMs are ignored due to the space limit of figure.

that execute the producer and consumer of the FIFO, the names of the
communication VMs that are used, and the name of the memory where
the FIFO buffer is located. A format specification is shown in Fig. 9 in
Section 2.4.3.

During the simulation, when a VM consumes a communication event,
it will forward this communication event to the input queue of the next
VM according to the VP onto which the FIFO is mapped. The fill level
of the FIFO will be increased only after a communication event reaches
the memory where the FIFO buffer is located. Similarly, the fill level of
the FIFO will be decreased when the communication event is consumed
by the last computation VM in the virtual path. In this manner, we can
model and simulate complex communication.

3.3.3 Simulation Framework

The main inputs of our simulation framework are the application, archi-
tecture, andmappingXml specifications specifiedusing theprogramming
model introduced in the previous chapter. An overview of the simulation
framework is shown in Fig. 45. The application Xml specifies the
application process network. The architecture Xml specifies the VMs
and VPs of an target platform. The mapping Xml provides information
for the binding of processes to VMs, FIFOs to VPs, and resource sharing
schemes for VMs. In the case that a process is mapped onto a VM, all
traces of this process are associated to this VM. In the case that a FIFO
is mapped onto a VP, all communication trace events using the FIFO are
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simulation
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Fig. 45: An overview of the trace-based simulation framework.

associated to this VP.

We use a functional and an instruction-accurate simulation to generate
application traces and timing information of the traces, respectively.
Both the functional simulation and instruction-accurate simulation are
executed only once. Afterwards, the trace-based simulation can run
independently. We use SystemC to implement our simulation engine.
The outputs of the trace-based framework are the timed traces of
the application by which performance statistics such as utilization of
hardware resources and FIFO buffer usage can be derived. We can also
visualize timed traces as standard value change dump (VCD)waveforms.

3.3.3.1 Trace Generation

We use the SystemC-based functional simulation presented in Section 2.6
to generate the untimed traces of an application. The reason of using
a functional simulation is two-fold. On the one hand, because a Kpn
application is determinate, the application traces for a given input are
independent from the timing behavior of the processes. On the other
hand, it is technically easier to extract the execution traces from functional
simulation compared to low-level simulation or emulation.

To extract traces from a functional simulation, the key is to identify
the start and the end of each trace event. According to the trace model in
Section 3.3.2.1 and the programming syntax in Section 2.4.2.2, the starting
point of a trace event can be: a) the first instruction of an init and a
fire procedure, or b) the last instruction of a READ and WRITE primitive.
Correspondingly, the ending point of a trace event can be: a) the last
instruction of an init and a fire procedure, or b) the first instruction
of a READ, WRITE, and DETACH primitive. Therefore, we instrument the
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source code of the functional simulation to store the line numbers for all
starting and ending points of trace events. Specifically, we use the GCC
__LINE__ macro to obtain the line number of the start and end of trace
events during the execution of the functional simulation.

3.3.3.2 Trace Calibration

The calibration of application traces, i. e. , determining the resource
requirement of trace events, is more involved. A usual approach is to
use cycle/instruction-accurate simulation and instrument the application
source code to store the time spent from the start to the end of each trace
event. One problem of using code instrumentation is that the simulator
needs to execute the instrumented code. The instrumented code will
distort the calibration and generate inaccurate timing information, which
is undesirable especially for the timing analysis of real-time systems.

To tackle this problem,wedevelop a non-intrusive approach, avoiding
any code instrumentation. The basic idea is to pause the simulation at the
start and end of a trace event, record the simulated clock value, and then
resume the simulation. In this manner, precise timing information can be
obtained.

specifications: application/architecture/mapping

software synthesis

address extraction executable binary

Tcl control script

VPA simulation

timed execution trace

timed trace postprocess

Fig. 46: An overview of the non-intrusive approach for trace calibration on the VPA.

Our approach is developed on top of the CoWare Virtual Platform
Analyzer (VPA) [CoW], which is a tool to build instruction-accurate
simulators. An overview of our approach is shown in Fig. 46. We use the
software synthesis flow developed in [HPB+] to generate the executable
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binary for a given application. This executable binary can be executed
on either a simulator built by the VPA or the target hardware platform.
We then analyze the generated executable binary and extract the memory
addresses of the start and end of trace events. Based on the extracted
addresses, a Tcl script is used to setup a breakpoint for each memory
address, associate a callback function for each breakpoint at the beginning
of the simulation, and control the execution of the simulation. During
the simulation, the Tcl script pauses the simulation at each breakpoint,
records the current simulation time, execute the callback function, and
then resumes the simulation. With the recorded simulation time for each
breakpoint, the actual time spent on each trace event is computed.

To extract thememoryaddresses of the start andendof trace events,we
scan the disassembly of the executable binary with the function symbols
of the start and end of trace events, i. e. , the first or last instructions of
the init and fire procedures, as well as primitives READ, WRITE, and
DETACH. A snapshot of the extraction results is depicted in Fig. 47. The
core information is specified at the beginning, i.e., line 1, which includes
the core name, core index, exiting function symbol, number of processes
on the core, and file name of the core image. Lines 2-5 specify a set of
aforementioned breakpoints, where entries are core index, function name,
entry address, and leaving address. Note that the ATMEL Diopsis-940
platform supports interrupts. Therefore, we also track context switches,
i.e., the procedure scheduler_switch in Fig. 47.

1 /HARDWARE/ ST_0_0_0 /ARM, 0 ,DETACH, 1 , r e su l t / t i l e _ 0 / arm /APP. x
2 BreakpointRange=0 , funcA_FIRE , 0 x20207dd4 , 0 x20207eb0
3 BreakpointRange=0 ,READ, 0 x20207aac , 0 x20207b18
4 BreakpointRange=0 , scheduler_switch , 0 x202042bc , 0 x202042fc
5 BreakpointRange=0 ,DETACH,0 x20207814 , 0 x2020782c

Fig. 47: A snapshot of the extracted breakpoints for the VPA.

The control flow of the Tcl script is depicted in Fig. 48. This script
controls the execution of a VPA simulation. When a simulation starts, the
script first setups the aforementioned breakpoints and the corresponding
callback functions. During the simulation, when a breakpoint is hit, the
simulation is paused and the corresponding callback function is invoked
to record the current simulation time. After executing the callback
function, the script will also check the ending condition of the simulation,
i. e. , whether the DETACHprimitive of eachprocess has been executed. If all
DETACH primitives have been executed, i.e, the corresponding breakpoints
have been hit, the script terminates the simulation. Otherwise, the script
resumes the simulation.

In this manner, the performance extraction is controlled by the Tcl
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hit a
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pause simulation

execute callback function

all cores
finished

end
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no

yes

no

yes

Fig. 48: The control flow of the Tcl script.

scriptwithout anyuser interaction. Since there is no code instrumentation
in the application source code, the calibration results are accurate.

3.3.3.3 Simulation Kernel

As previously shown in Section 2.6, SystemC is a C++ based library to
model and simulate hardware and software systems on different levels
of abstraction. It provides a highly efficient discrete event simulation
kernel, which is suitable for our trace simulation. Therefore, we use
SystemC [Soc05, sys] to implement our trace-based simulation.

An abstract view of our trace-based simulation kernel is depicted in
Fig. 49. Basically, we use an sc_thread to implement a hardware resource
(i. e. , a VM) or a process in the application process network. For event
queues of a VM, we use sc_channel . To conduct a simulation, we use
immediate notifications of an sc_event (Section 2.6.2) to notify ready trace
events and the sc_wait routine to advance the simulation time. We say
a trace event is ready only when all its predecessors have been processed.
When a trace event is ready, the process to which this trace event belongs
will notifies the VM to which this process is mapped, by sending an
immediate notification via an sc_channel . A VM will process ready
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sc_channel

sc_port sc_port sc_port sc_port

sc_port sc_port

sc_thread
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VM

sc_thread
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Fig. 49: An abstract view of the simulation kernel which contains a process, a

computation virtual machine, and a communication virtual machine.

trace events and advance the simulation time using the sc_wait routine
according to a specified scheduling policy.

The function of a VM is the heart of our simulation. Initially, a VM is
idle waiting on empty event queues. If there arrive ready trace events,
it will pick out and process one trace event according to its scheduling
police. We will elaborate how to choose and process a trace event in the
following paragraphs. For a computation event, the VM will mark it as
processed after the time required for this event has been advanced. For a
communication event, the VM will also forward it to the next connected
VM according to the VP of this event.

In addition, a VM is also used to model the filled states of FIFOs.
In principle, when a VM processes a communication trace event, it will
increase the fill level of the FIFO to which this communication trace event
belongs if it finds out (from the VP of this trace event) that the buffer of
this FIFO is mapped onto it memory. Similarly, if a VM finds out that it is
the last one in the VP, it will decrease the fill level of the FIFO by the size
of this communication trace event.

To demonstrate how we tackle time-triggered and event-triggered
scheduling, we present two representative policies, i. e. , time division
multiple access (TDMA) and preemptive fixed priority (FP) policies.
Other policies, like first-come first-serve, static scheduling, and round
robin, can be constructed in a similar way.

The pseudo code for the TDMA policy is depicted in Algorithm 1.
Basically, each process mapped to a VM is assigned a time slot. All
assigned time slots compose a TDMA cycle. In every cycle, a VM checks
every time slot (line 1) and informs the SystemC kernel the end of a time
slot even if there is no ready trace event for this slot (line 2). Routine
sc_waitwill return after the simulated time advances ti time unit from
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the current simulated time. After time for a time slot is advanced, ready
trace events that belong to this time slot are processed (line 3). If a trace
event cannot finish at currently slot, the unprocessed part of it will have
to wait for its slot in the next cycle, see line 5-6.

Algorithm 1 TDMA scheduling of a virtual machineV

1: for each slot i do
2: sc_wait(ti) ⊲ ti is length of slot i
3: while ∃ ei, j ∈ slot i∨ ti > 0 do ⊲ There is a ready event ei, j for slot i
4: if tei, j > ti then ⊲ Required time longer than the length of slot i
5: tei, j ← tei, j − ti
6: ti ← 0
7: else
8: ti ← ti − tei, j
9: j + + ⊲ ei, j is processed. Can continue to the next ready

event
10: end if
11: end while
12: end for

The pseudo code for the FP scheduling is depicted in Algorithm 2. It
works differently in comparison to the TDMA scheduling. Only when
there is a ready trace event, the scheduler will inform the SystemC
kernel how much time it needs in order to process this trace event,
as shown in line 3. Besides the timeout tei, j , the routine sc_waitwill
register an sc_event that serves as an interrupt event. If a trace event of a
higher priority process comes before the timeout tei, j , the interrupt event
IRQ_event will be activated and routine sc_waitwill return with the
actual advanced time, as shown in line 5–7. The scheduler will continue
with the new highest priority trace event.

Algorithm 2 FP scheduling of a virtual machineV

1: while ∃ ei, j do ⊲ Get the highest ready event from all queues
2: told ← sc_simulation_time( )
3: sc_wait(tei, j , IRQ_event) ⊲ Interrupt event IRQ_event
4: tnew ← sc_simulation_time( )
5: if tnew − told < tei, j then ⊲ The actual advanced time
6: tei, j ← tei, j − (tnew − told)
7: end if
8: end while
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3.3.4 Experimental Results

To demonstrate the capabilities of the proposed approach, we map a
parallelMPEG-2 video decoder presented in Section 2.4.5 onto anATMEL
Diopsis platform and compare performance results of our trace-based
simulation to an instruction-accurate simulation implemented using the
CoWare Virtual PlatformAnalyzer (VPA) [CoW]. BothVPA and the trace-
based simulation execute on a 2GHz AMDAthlon 2800+ Linuxmachine.

3.3.4.1 Experimental Setup

The VPA simulator consists of a heterogeneous ATMEL Diopsis 940
tile [Pao06], as graphically shown in Fig. 50. This tile is composed of
a shared memory, a VLIW DSP core, and an ARM9 core, working at a
clock frequency of 100MHz. Both cores as well as the shared memory
connect through an in-tile bus that provides a maximum throughput of
400MByte/s. The simulated MPEG-2 clip has a frame-rate of 25 fps, a bit-
rate of 8Mbps, and a resolution of 704 × 576 pixels. For our experiments,
we use a video clip with a duration of 15 seconds.
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Fig. 50: Block diagram of the experimental architecture.

Wemeasure twodifferent timing criteria: a) simulation runtime (Sim.),
corresponding to the wall-clock time from the start of the simulation until
its completion, and b) estimated execution time (Est.), which indicates
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how long the decoder needs to finish the decoding of the 15 second video.
All time values are rounded to seconds.

3.3.4.2 Experimental Results

For the first experiment, we map a pipelined version of MPEG-2 decoder
(shown in Fig. 11(a) in Section 2.4.5) onto a single Diopsis 940 tile. We
investigate three different mappings. Mapping 1 uses only the ARM core
of a tile, i.e., all processes are mapped onto an ARM core and all FIFO
buffers are located in the local memory of the ARM core. Mapping 2
uses the same process mapping as in Mapping 1whereas FIFO buffers are
mapped to the shared memory. Mapping 3 maps the most computation
intensive process, i.e., transform_block, onto the DSP core and the
buffers for those FIFOs connecting to transform_block are set to the
shared memory.

Case
Est. time (hh:mm:ss) Sim. time (hh:mm:ss)
TSim VPA Error TSim VPA Speedup

1 1:36:51 1:38:26 -3% 0:03:28 30:34:00 611
2 1:54:13 1:52:20 +2% 0:03:30 31:30:00 630
3 0:17:17 0:16:46 +3% 0:03:30 74:19:00 1466

Tab. 5: Estimated execution time and simulation time for the considered mappings,

when decoding a 15 s MPEG-2 video.

The experimental results are presented in Tab. 5. From the table, we
can find out that our trace-based simulation obtains a high accuracy for
all three mappings. The error rate in comparison to the VPA instruction-
accurate simulation iswithin 3%. Thedeviation ismainly due to the cache
effect in the platform, which is currently not modeled in our trace-based
simulation. In terms of simulation speed, our trace-based simulation is
considerably faster than the VPA simulation. We obtain two and three
orders of magnitude speedup for the single core and dual cores cases,
respectively. The reason is that our simulation does not execute the
application, which is computationally expensive. In addition, a hardware
resource in our model, i.e., a virtual machine, works only as a trace
event dispatcher and does not simulate instruction-level behavior, which
further reduces the simulation runtime.

In the second experiment, we simulate Mapping 1with different sizes
of the FIFOs in the process network. The simulation results are shown in
Tab. 6. From the table, we can find out that the error rate is again about
3%. Note that the Est. time for MPEG-2 decode increases as the size of
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the FIFO buffers decreases. The reason is that with a smaller FIFO size,
more context switches are triggered.

Est. runtime (hh:mm:ss)

Chan. size 600 bytes 1Kbyes 8Kbyes 16Kbyes

VPA 1:56:38 1:44:25 1:38:52 1:38:26
TSim 1:53:03 1:45:35 1:37:24 1:36:51
Error -3% +1% -2% -2%

Tab. 6: Estimated execution time for different buffer sizes of FIFOs in Mapping 1.

The third feature that we investigate is the capability of modeling
event/time-triggered scheduling policies. Since our VPA implementation
currently supports only first-come first-serve scheduling, we show the
waveforms of the trace-based simulation. We reuse the settings of case 3
and replace the scheduling of the ARM core with FP and TDMA policies.
The corresponding results are shown in Fig. 51. As shown in Fig. 51(a),
the lower priority task dispatch_gops has been preempted by higher
priority tasks collect_block and dispatch_block, respectively. In the
TDMA case, each time slot is 3µs and the cycle length is 18µs, which is
directly reflected in the waveform in Fig. 51(b).

���������฀NS ���������฀NS ���������฀NS4IME
DISPATCH?GOPS

DISPATCH?BLOCKS

COLLECT?BLOCKS

(a) FP policy.

��������฀NS ����������฀NS ����������฀NS4IME
DISPATCH?MB
COLLECT?MB

DISPATCH?GOPS

(b) TDMA policy.

Fig. 51: Trace-based simulation waveforms with FP and TDMA scheduling policies.

We demonstrate the scalability of our approach in the last experiment.
We use a scaled version of the MPEG-2 encoder process network,
where the process dispatch_gop will dispatch groups of pictures to four
parallel sub-streams and each sub-stream will again dispatch data to two
concurrent transform_block processes, resulting in a process network
with totally 26 processes. To scale the experimental platform, we connect
multiple ATMEL Diopsis 940 tiles with a network-on-chip which has a
maximum throughput of 400MByte/s. We simulate different mappings
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with up to eight tiles. The simulation time is shown in Tab. 7. The
simulation time of our simulations increases only by 18%, even when
eight times more hardware resources are simulated. The reason for the
increment of the simulation time is that with more tiles added, more
communication trace events need to be transmitted through multiple
communication media. These multi-hop communication trace events
consume additional simulation time.

Tiles
Simulation time

(hh:mm:ss)

1 0:05:08
2 0:05:29
4 0:05:43
8 0:06:04

Tab. 7: Simulation time for 1, 2, 4, 8 tiles.

3.4 Summary

In this chapter, we investigate techniques to estimate the timing behavior
of streaming embedded systems. We describe two different methods, i.e.,
a formal analytic method and a simulation-based technique.

For the analytic approach,we inspect timing correlations betweendata
streams and present a newmethod to analyze correlated data streams that
originate from the same source. By means of the proposed method, we
can obtain considerably tighter performance bounds than those using
previous methods. We show the applicability of the presented method
by analyzing a concrete multimedia application. Although this method
is implemented within the Rtc-mpa framework, the idea behind can also
be applied to other modular analysis frameworks, such as SymTA/S.

For the simulation-based approach, we propose a trace-based frame-
work, which can simulate the timing behavior of complex multi/many-
core embedded systems. By abstracting application functionality
into coarse-grained traces and simulating a system at system level,
our simulation is orders of magnitude faster than instruction-accurate
simulations. On the other hand, by capturing essential system properties,
e. g. scheduling andbuffer location, togetherwith the intrinsic characteris-
tics of streaming system, e. g. stable pipelined stage and small cache effect,
we obtain high accuracy compared to instruction-accurate simulations.

Another advantage of our techniques is that both the analytic method
and the trace-based simulation can serve as a non-functional back-end for



88 Chapter 3. Performance Evaluation

the programmingmodel defined in the previous chapter. Both techniques
can thereby be embedded into an automated design space exploration to
assist the software design of embedded systems.

In the next chapter, we will inspect another design metric, i.e., the
power metric. In particular, we investigate system-level power-efficient
design under certain performance constraints.



4
Power Management

Power dissipation has been an important design issue in a wide range of
computer systems in the past decades. Power management with energy
efficiency considerations is helpful for server systems to reduce power
bills. Efficient power management is even more crucial for embedded
systems. A major category of embedded systems, for instance, are
hand-held mobile devices that are powered by batteries. The batteries
for such devices are limited in both power and energy output. The
amount of energy available thus severely limits a system’s lifespan.
Although research continues to develop batteries with higher energy-
density, the slow growth of the energy density of batteries lags far behind
the tremendous increase of demands [ITR]. Because of these facts, power
consumption becomes one of the first-class design concerns for modern
computer systems, in particular for multi-core and future many-core
embedded systems.

Two major sources of power consumption of a CMOS circuit are
dynamic power consumption due to transistor switching activities
and static power consumption due to leakage current [JPG04]. For
micrometer-scale semiconductor technology, dynamic power dominates
the power consumption of a processor. However, as modern VLSI
technology is scaling down to the deep sub-micron domain, chips
consume significantly more static power. The leakage current that
originates from the dramatic increase in both sub-threshold current
and gate-oxide leakage current is projected to account for as much as
50% of the total power dissipation for high-end processors in 90nm
technologies [ABM+04]. The International Technology Road-map for
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Semiconductors (ITRS) expects that the percentage of static power of
the total power dissipation in the future will be much greater due to
variability and temperature effects [ITR].

On the other hand, the increasing number of integrated cores of an
embedded platform provides opportunities to efficiently harness the
static power consumption, e.g., switching those idle cores to a sleep
mode to reduce leakage current. An interesting research question is
how to schedule the mode switches of those idle cores under real-time
requirements.

4.1 Overview

In the previous chapter, we investigated the performance metric of
multi/many-core embedded systems and presented techniques for
system-level performance estimation. This chapter studies another
metric, i. e. , power metric. We focus on streaming embedded systems
at system level and study efficient power management under certain
performance constraints. Specifically, we make use of the worst-case
analysis method, i.e., real-time calculus and explore how to apply
dynamic power management to reduce static power consumption while
satisfying real-time constraints.

For simplicity, we consider a dual-core scenario, i.e., a processing
core for data stream processing and a control core for coordination, e.g.,
scheduling. The processing core has three power modes, i.e., active,
standby, and sleep modes, with different power consumptions. The
control core decides when to change the power modes of the processing
core. Intuitively, the processing core can be switched off to sleep mode
to reduce the power consumption when it becomes idle and switched
to active mode again upon the arrival of an event. These switching
operations, however, need more careful consideration. On the one hand,
the sleep period of the processing core after switching-off should be long
enough to recuperate mode-switch overheads. On the other hand, when
to activate the processing core is even more involved due to the possible
burstiness of future event arrivals. For every switching-on operation,
sufficient time has to be reserved to serve the possible burstiness of future
events in order to prevent deadline violation of events or overflow of
system backlog.

To resolve these concerns, we propose both online and offline
algorithms that are applicable particularly for embedded systems.
We apply real-time calculus to predict future event arrival and real-
time interface theory [TWS06] for schedulability analysis, trying to
procrastinate the buffered and future events as late as possible. Our offline
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algorithms compute optimal and approximate schemes for periodic
power management. Alternatively, our online algorithms adaptively
predict the next mode-switch moment by considering both past and
future event arrivals. Based on the adopted worst-case interval-based
abstraction, our algorithms can not only tackle arbitrary event arrivals,
e.g., with burstiness, but also guarantee hard real-time constraints with
respect to both timing and backlog constraints. To handle multiple event
streams, we propose solutions for two preemptive scheduling policies,
i.e., earliest-deadline-first and fixed priority. Although our algorithms are
developed for a dual-core scenario, the principle behind can be applied to
multi/many-core platforms, in particular the class of platforms using tile-
based architectures, e. g. , Intel SCC [SCC] and ATMEL ShapOtto [HPB+].

The rest of this chapter is organized as follows: The next section
reviews the related work in the literature. Section 4.3 provides system
models. Section 4.4 presents a set of new routines which will be
used throughout this chapter. Section 4.5 presents our proposed online
algorithms for one event stream, while Section 4.6 copes with multiple
event streams. The offline periodic power management approach is
presented in Section 4.7. Simulations results are presented within each
section and Section 4.8 summarizes the chapter.

4.2 Related Work

Power estimation techniques are important for energy-efficient em-
bedded system designs. To estimate the power consumption of a
microprocessor at abstract level, analytic methods [BFSS00, MPS98]
based on statistical or information-theoretic techniques and simulation-
based approaches [BTM00, YVKI00] based on instruction set simulators
(ISSs) are widely used. To leverage the trade-off between accuracy and
estimation speed, trace-based power simulation [vSP10] is also proposed
to evaluate the power consumption of a system.

To analyze power-aware real-time behavior of an embedded system,
event-stream based models are commonly adopted. Baptiste [Bap06]
proposes an algorithm based on dynamic programming to control when
to turn on/off a device for aperiodic real-time events with the same
execution time. For multiple low-power modes, Augustine et al. [AIS04]
determine the mode that a processor should enter for aperiodic real-time
events and propose a competitive algorithm for online use. Swaminathan
et al. [SC05] explore dynamic power management and develop offline
algorithms to find the exact starting time of real-time events and to
compute an approximation in polynomial time. To aggregate the idle time
for energy reduction, Shrivastava et al. [SEDN05] propose a framework



92 Chapter 4. Power Management

for code transformations. By considering platforms with both DPM and
dynamic voltage scaling (DVS), Chen and Kuo [CK07] propose to execute
tasks at a certain speed and to control the procrastination of real-time
events. By turning the device to the sleep mode, the execution of the
procrastinated real-time events is aggregated in a busy interval to reduce
energy consumption. Heo [HHLA07] et al. explore how to integrate
different power management policies in a server farm. Alternatively,
Devadas and Aydin [DA08, DA10] consider the interplay between DVS
andDPMona systemwith aDVS-capable processor andmultiple devices.
Basedon the concept of forbidden regions, the authorspropose algorithms
to determine the optimal processor speed as well as transition decisions
of device states to minimize overall system energy for periodic real-time
tasks.

Most of the above approaches require either precise information of
event arrivals, such as periodic real-time events [CK07], or aperiodic real-
time events with known arrival time [Bap06, AIS04, ISG03]. We argue
that the abstraction is, however, too coarse. In practice, the precise timing
information of event arrivals might not be known in advance since the
arrival time depends on many factors. When the precise timing of event
arrivals is unknown, to our best knowledge, the only known approaches
are to apply the online algorithms proposed by Irani et al. [ISG03] and
Augustine et al. [AIS04] to control when to turn on the device. However,
since the online algorithms in [AIS04, ISG03] greedily stay in the sleep
mode as long as possible without referring to incoming events in the near
future, the resulting schedule might make an event miss its deadline.
Such algorithms are not applicable for hard real-time systems.

Tomodel irregular arrival patterns of event streams, real-time calculus,
based on Network Calculus [Cru91b], was proposed by Thiele et al.
[TCN00, WTVL06] to characterize events with arrival curves. The arrival
curve of an event stream describes the upper and lower bounds of the
number of events arriving at the system for a specified interval. Therefore,
schedulability analysis can be done based on the arrival curves of event
streams. In [MCT05], Maxiaguine et al. apply real-time calculus within
the DVS context and compute a safe frequency at periodical intervals
with predefined length to prevent buffer overflow of a system. Chen
et al. [CST09] explore the schedulability for on-line DVS scheduling
algorithms when the event arrivals are constrained by a given upper
arrival curve. In contrast to these closely related approaches, we focus
on dynamic power management. We propose offline algorithms to find
periodic time-driven patterns to turn on/off devices for energy savings
without sacrificing timing guarantees. The small run-time overhead of
the periodic schemes is very suitable for embedded systems that only
have limited computational power. We also propose online algorithms
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where the on/off decisions are dynamic and adaptively vary according
to the actual arrivals of events. Furthermore, we provide solutions
on multiple event-stream scenarios where event streams with different
characteristics can be tackled with both earliest-deadline-first and fixed-
priority scheduling policies.

4.3 System Model and Problem Definition

This section presents in detail the system model as well as the problem
definition.

4.3.1 System Model

We consider a dual-core system with a processing core and a control
core. The processing core is responsible for event processing. The
control core conducts three tasks: a) handling event arrivals, e.g., storing
unprocessed events into system backlog, b) controlling the power mode
of the processing core to serve arrived events, e.g., turning on and off
the processing core, and c) dispatching events in system backlog to the
processing core with a certain scheduling policy. An abstract view of
this model is shown in Fig. 52. Parameters S, α, and D in Fig. 52 will be
introduced later. Note that the model we consider here is only a principle
model, i. e. , an abstraction to simplify the analysis.
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α1, D1

α2, D2

αN, DN

. . . scheduler
(EDF/FP)

control core

Sleep
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Active

processing core

Fig. 52: The system model of the studied problem.

The processing core has three power modes, namely active, standby,
and sleep. The power consumption in sleep mode is Pσ. To serve
an event, the processing core must be in active mode with power
consumption Pa, where Pa > Pσ. When there are no events to serve,
the processing core can enter sleep mode. However, switching from
sleep mode to active mode and back takes time, denoted by tsw, on
and tsw, sleep, and incurs an energy overhead, denoted by Esw, on and
Esw, sleep, respectively. To prevent the processing core from frequent mode
switches, the processing core can also stay in standby mode. The power
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consumption Ps in standby mode lies, by definition, between Pa and Pσ,
i.e., Pa ≥ Ps > Pσ. Like in [ZC05, YCHK07], it is assumed that switching
between standbymode and activemodehas negligible overhead. Fig. 53
illustrates the state chart for the power model of the processing core.
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Fig. 53: The state transition diagram of the processing core, where the tuple on each edge

is the timing and energy overheads.

We abstract a data stream in a KPN as an event stream. Therefore,
different event streams serve as inputs of the system. We denote S as a
stream set containing N event streams with different characteristics. To
buffer incoming events of the streams in S, the control core maintains
a backlog. Buffering more events than the size of the backlog incurs a
backlog overflow and causes a system failure. We discuss two types of
backlogmanagement, i.e., global backlogwhere all event streams inS share
a common backlog and individual backlogwhere each event stream has its
own backlog. The size of the backlog in either case is assumed to be given.
How to decide a proper size of the system backlog is a different research
problem and is not in the scope of this chapter.

4.3.2 Worst-Case Interval-Based Streaming Model

To model irregular arrival of events, we adopt the arrival curves ᾱ(∆) =
[ᾱu(∆), ᾱl(∆)] from real-time calculus, in which ᾱu

i
(∆) and ᾱl

i
(∆) are the

upper and lower bounds on the number of events for a stream Si in any
time interval of length ∆. For instance, for an event stream with period
p, jitter j, and minimal inter arrival distance d, the upper arrival curve is

ᾱu(∆) = min{
⌈
∆+ j

p

⌉

,
⌈
∆
d

⌉

}. The concept of arrival curves unifies many other

timingmodels of event streams. Analogous to arrival curves that provide
an abstract event stream model, a tuple β(∆) = [βu(∆), βl(∆)] defines an
abstract resource model which provides upper and lower bounds on the
available service in any time interval ∆. For further details about ᾱ and
β, we referred to Section 3.2.2.
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Note that an arrival curve ᾱi(∆) specifies the number of events of
stream Si whereas a service curve β(∆) specifies the available amount of
services in terms of time for an interval of length ∆. Therefore, ᾱi(∆) has
to be transformed to αi(∆) to indicate the amount of computation time
required for the arrived events in intervals. Suppose that the execution
time of any event in stream Si is wi. Then the transformation can be done
by αu

i
= wi · ᾱui , α

l
i
= wi · ᾱli and back by ᾱu

i
= ⌈αu/wi⌉, ᾱli = ⌊α

l/wi⌋. For
variable workloads in an event stream, our algorithms can be revised
slightly by adopting the variable workload model in Section 3.2.2.3.
Moreover, the response time of an event in event stream Si must not
exceed its specified relative deadline Di, where the response time of an
event is its finishing time minus the arrival time of the event. On the
arrival of an event of stream Si at time t, the absolute deadline is t +Di.

4.3.3 Problem Definition

We explore how to effectively minimize the power consumption to serve
a stream set S by dynamic power management (DPM). Intuitively, static
power can be reduced by a) turning the device to sleepmodewhen there
is no event to process, and b) staying at sleepmode as long as possible by
postponing the processing of arrived events. However, switching from/to
sleepmode incurs both a timing and an energy overhead. Tomodel these
overheads, we define a break-even time.

Def. 4: (Break Even Time) Suppose that a) switching the processing core to sleep
mode takes tsw, sleep time and switching back to active/standby mode takes
tsw, on time, b) the corresponding energy consumption for the switching activities
are Esw, sleep and Esw, on, and c) Ps and Pσ are the power consumption in the
standby and sleepmodes, respectively. The break-even time TBET is defined as:

TBET
def

= max
{

tsw, on + tsw, sleep,
Esw, on + Esw, sleep

Ps − Pσ

}

(4.1)

Consider the case that the processing core is switched to sleepmode.
If the interval that the processing core can stay in sleep mode is shorter
than TBET, the mode-switch overhead is larger than the energy saving. In
this case, amode switch does not pay off. On the other hand, retaining the
processing core in sleepmode might incur backlog overflow or deadline
misses for (burst) event arrivals in the near future. The question is what
is a proper moment to conduct a mode switch of the processing core.

We use the following notation: A schedule decides when to perform
a mode-switch of the processing core. A schedule is feasible if it is always
possible to meet the timing and backlog constraints of the system. An
algorithm is feasible if it always generates feasible scheduling decisions.
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Therefore, the problem studied in this chapter is to determine a feasible
schedule a) when to turn the processing core to sleepmode to reduce the static
power, and b) when to turn the processing core from sleep mode to active
mode to serve events.

4.4 Real-Time Calculus Routines

To compute a feasible schedule for the processing core, real-time
calculus and real-time interface are applied. Within this context, the
processing core is said to provide a guaranteed output service βG(∆).
Correspondingly, a stream Si requests service demand βA(∆). To obtain a
feasible schedule of theprocessing core that serves streamSi, the condition

βG(∆) ≥ βA(∆), ∀∆ ≥ 0 (4.2)

has to be fulfilled. In this section, we present how to construct proper
service guarantees and demands such that (4.2) leads to a feasible
schedule.

4.4.1 Bounded Delay

Suppose that a service curve β(∆) can be constructed as a bounded delay
function.

Def. 5: (Bounded Delay Service Curve) A bounded delay service curve is defined as
follows:

bdf (∆, τ)
def
= max

{

0, (∆ − τ)
}

, ∀∆ ≥ 0, τ ≥ 0 (4.3)

where τ denote the sleep interval.

We say that a sleep interval is the accumulated time for which the
processing core retains in sleep mode. In the case that the processing
core provides full service, i. e. , τ = 0, the processing core never switches
to sleepmode.

Def. 6: (Longest Feasible Sleep Interval) The longest feasible sleep interval τ∗ with
respect to a given service demand βA(∆) is thereby defined as:

τ∗ = max
{

τ : bdf (∆, τ) ≥ βA(∆), ∀∆ ≥ 0
}

(4.4)

Def. 7: (DeadlineServiceDemand)Suppose events in event streamSi are constrained
by a given relative deadline Di. To satisfy the required relative deadline Di, the
minimal service demand β♭ of stream Si is

β♭(∆)
def
= αui (∆ −Di) (4.5)
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Def. 8: (Backlog-size Service Demand) Suppose a system has a backlog of size Qi

to buffer unprocessed events for stream Si. To prevent overflow of the system
backlog, the minimal service demand β† of stream Si is

β†(∆)
def
= αui (∆) − wi ·Qi (4.6)

Combining both deadline and backlog service demands, the longest
feasible sleep interval τ∗ in (4.4) can be refined as

τ∗ = max
{

τ : bdf (∆, τ) ≥ max{β♭(∆), β†(∆)}
}

(4.7)

Fig. 54 illustrates Def. 5–8 for the case of a single event-stream. Based
on these definitions, we state the following lemma.
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Fig. 54: An example for the bounded delay function for event stream S1 with upper

arrival curve αu
1
(∆).

Lem. 3: Assume a τ∗ computed from (4.7) that is larger than TBET. At any time instant t
when the processing core is active and there are no events to process, it is feasible
to switch the processing core to sleep mode for [t, t + τ∗) interval without
violating the deadline and backlog-size requirements of any event in stream Si, if
the processing core provides full service from time t + τ∗.

Proof. We prove the lemma as follows: The service demand β♭ in
(4.5) is constructed by horizontally right-shifting αu

i
by distanceDi, which

represents the tightest bound that guarantees the deadline constraint.
Similarly, the service demand β† in (4.6) is obtained by vertically shifting
αu
i
down by (wi · Qi) distance, being the tightest bound that prevents

backlog overflow. Therefore, max{β♭, β†} is an upper bound on the service
demand that guarantees deadline and backlog-size constraints. On the
other hand, if one considers time t as the starting point, the service that
starts from t + τ∗ can be seen as a special case of bdf (∆, τ∗), i. e. , all
accumulated time of bdf (∆, τ∗) in sleepmode is at the beginning interval
[t, t + τ∗). According to Def. 5, we have that bdf (∆, τ∗) is a lower bound
for this special case. Because of (4.7), we know that bdf (∆, τ∗) bounds the
service demand, i. e. , max{β♭, β†}. Consequently, the service provided by
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this special case can satisfy the service demand. In addition, the sleep
interval is longer than the mode-switch overhead, i. e. , τ∗ > TBET, which
guarantees that the processing core can provide service no later than t+τ∗.
Therefore, the lemma holds.

�

4.4.2 Future Prediction with Historical Information

For a given event stream Si, the corresponding upper arrival curve αu
i
can

be used to predict the upper bound on future event arrivals from any time
instant t, i. e. , [t, +∞). Because this bound is the worst-case bound for all
possible arrival patterns of Si, it may be too pessimistic for certain cases.
For example, if a burst of events has been recently observed, events will
only sparsely arrive in the near future. To obtain a tighter bound during
the runtime, we keep track of event arrivals in the past as a history.

Def. 9: (History Curve) Suppose t is the current time and Ri(t) is the accumulated
number of events of stream Si in interval [0, t). The length of the history window
that can be maintained is ∆h, i.e., historical information for only ∆h time units
is recorded. At time t, a history curve for stream Si is defined as

Hi(∆, t)
def
=





Ri(t) − Ri(t − ∆), if ∆ ≤ ∆h,

Ri(t) − Ri(t − ∆
h), otherwise

(4.8)

The maximal number of event arrivals in the time interval [t, t + ∆),
denoted as ᾱu

i
(∆, t), is constrained by

ᾱui (∆, t) = inf
λ≥0

{

ᾱui (∆ + λ) −Hi(λ, t)
}

(4.9)

and the corresponding computation-based arrival curve, denoted as
α u

i
(∆, t), isαu

i
(∆, t) = wi·ᾱui (∆, t). Agraphical example of abovedefinitions

are shown below:

Ex. 6: Assume an event stream where events come with a period 1ms with a possible
burst of two events. We keep track of the historical arrivals for at most 2ms.
At time instant t, we know that in the past events e1, e2, and e3 arrived at time
t − 2.5, t − 1.5, and t, respectively, as depicted in Fig. 55. The history curve
based on (4.8) is shown in the dotted line. Because of e3, we know that at most
one more event will come in the future interval (t, t + 1), for instance. Based
on this historical information, we obtain the history-aware arrival curve ᾱ(∆, t)
depicted in the straight in Fig. 55.
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t
time

e3e2e1

∆h

0 1 2 3

ᾱu(∆)

ᾱu(∆, t)
Hi(∆, t′)

Fig. 55: An example for a history curve and the corresponding history-aware arrival

curve for a given time instant.

4.4.3 Backlogged Demand

The deadline service demand in Def. 7 is defined for the case of no
backlogged events. In the case that there are events in the system backlog
waiting to beprocessed, the servicedemand from these backlogged events
need to be considered as well. Note that although the absolute deadlines
for these backlogged events remain the same, the relative deadlines of
these backlogged events however have changed. For example, suppose
that an event with deadline D arrived in the past at time ta, the relative
deadline with respect to a time instant tc is D − tc + ta. Based on this
observation, we define backlog demand.

Def. 10: (Backlogged Demand) Suppose that the set of unprocessed events of an event
stream Si at time t is Ei(t). Events in Ei(t) are indexed as ei, 1, ei, 2, . . . , ei, |Ei(t)|

according to their arrived time, i. e. , ei, 1 is the earliest arrived event. A backlog
demand curve for Si at time t is defined as:

Bi(∆, t)
def
= wi ·

|Ei(t)|∑

j=1

f (∆ + t) (4.10)

where

f (∆ + t) =





1 if ∆ + t ≥ Di, j

0 otherwise

and Di, j is the absolute deadline of event ei, j.

An example of above definition is illustrated in Fig. 56 where there are
four unprocessed events in the system backlog at time t. As shown in the
figure, we can precisely define the service demand of backlogged events
by using (4.10).
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Bi(∆, t)

t
time

ei, 1 ei, 1ei, 2 ei, 2ei, 3 ei, 3ei, 4 ei, 4

Fig. 56: An illustrated example for formula (4.10).

4.5 Online DPM for Single Stream

For online dynamic power management schemes, in general, the control
core has to decide when to turn the processing core to active mode to
serve events from sleepmode, andwhen to turn it back to sleepmode to
reduce static power. Therefore, we have to deal with deactivation decisions
and activation decisions to switch safely and effectively. An overview of
our approach is illustrated in Fig. 57.

. sleep activation/
decision

active/
standby

deactivation/
decision

t⊥ yes t⊤

yes

nono

Fig. 57: The control flow of our approach.

For deactivation decisions, when the processing core is in active
mode and there is no event in the backlog, we have to decide whether the
processing core has to change to sleepmode instantly or it should remain
active/idle 1 for a while to serve the next incoming event. For brevity, for
the rest of this chapter, time instants for deactivationdecisions aredenoted
by t⊤.

After the processing core is switched to sleep mode, it has to be
switched to active mode again for event processing. The activation
decision is evaluated at the time instant upon the arrival of an event or
expiration of the sleep interval that the control core previously set. The
control core has to decide whether the processing core has to change
to active mode instantly to serve events, or it should remain in sleep
mode for a while to aggregate more events and prevent unnecessary

1We assume that the processing core will conduct automated mode-switch in the
following two cases: a) switch to standby mode when it is in active mode and there
are no events to be processed, and b) switch to activemode when it is in standby and
there are events to be processed.
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mode switches. For brevity, for the rest of this chapter, time instants for
activation decisions are denoted by t⊥.

In this section, we present our online algorithms that are applied to the
control core and minimize static power consumption of the processing
core. The assumption of our approach is that the timing and backlog
constraints of system can always be guaranteed if the processing core
provides full service all the time, i.e., the processing core never turns to
sleep mode. For simplicity, we first consider only the case of a single
event stream S1. We present how to deal with the deactivation decision
and then propose two methods for activation decision. The solutions for
multiple event streams are presented in the subsequent two sections.

4.5.1 Deactivation Algorithm

The History-Aware Deactivation (HAD) algorithm analyzes whether the
processing core should be turned to sleep mode from active mode.
The principle is to switch the processing core only when energy savings
are possible. One obvious fact is that as long as there are events in the
system backlog, the processing core can be kept busy in active mode
until all backlogged events are processed. In this case, no static power
is wasted and any mode-switch will introduce an additional time and
energy overhead. In order to reduce the mode-switch overhead, the
deactivation decision therebymakes sense only when the processing core
is in active or standby mode while there is no new arrival of events as
well as no event in system backlog. Suppose that t⊤ is such a time instant.

Turning the processing core instantly at time t⊤ to sleep mode,
however, does still not always help. The reason is that we pay a time and
energy overhead for each mode switch. In the case that there are events
arriving in the very near future, the processing core has to be switched to
activemode again to process these events. If the energy savings obtained
from a short sleep interval cannot outweigh the switching overhead, this
mode switch only introduces additional energy consumption. Therefore,
the idea is firstly to compute the maximal possible sleep interval τ∗

and check whether this τ∗ is sufficient to cover the break-even time.
Specifically, we calculate the arrival curve ᾱu

1
(∆, t⊤) at time t⊤ by (4.9)

and refine the service demands in (4.5) and (4.6) as

β♭(∆) = αu1(∆ −D1, t
⊤) (4.11)

β†(∆) = αu1(∆, t
⊤) −Q1 · w1 (4.12)

By applying (4.11) and (4.12) to (4.7), the maximal sleep interval τ∗ is
computed. If τ∗ is larger than TBET, the processing core is switched to
sleep mode at time t⊤. Otherwise, the processing core is retained in
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active/standby mode. The pseudo code of the algorithm is shown in
Algorithm 3.

Algorithm 3 HAD deactivation

procedure at time instant t⊤:
1: compute τ∗ of (4.7) by β♭ and β† in (4.11) and (4.12);
2: if τ∗ > TBET then
3: deactivate the processing core;
4: end if

The algorithm leads to the following theorem:

Thm. 3: Algorithm HAD guarantees a feasible scheduling upon a deactivation decision
at any time t⊤ for a single event-stream system if the processing core provides
full service starting from time t⊤ + τ∗, where τ∗ is computed from line 1 of the
algorithm.

Proof. We prove this theorem by contradiction. At any time instant t⊤

at which Algorithm HAD decides to deactivate the processing core, the
latest activation time to prevent constraint violations is t⊤ + τ∗. Suppose
at a later time instant t⊤ +λ, the deadline of an event which comes within
the interval [t⊤, t⊤+λ) is missed. We denote the number of events arrived
within this interval as u. Because of the deadline missing, the service
demand u ·w1 in this interval is larger than our constructed service supply
bdf (λ, τ∗) which actually bounds the service demand of the maximum
number of events that can arrive, i.e., w1 · ᾱu1(λ, t

⊤). The inequality
u > ᾱu

1
(λ, t⊤) contradicts the definition in (4.9), however. Therefore, the

theorem holds.

�

4.5.2 Activation Algorithms

Once the processing core is in sleep mode, the control core needs to
switch it back to active mode at a later moment for event processing.
How to decide the actual switch moment needs more consideration. On
the one hand, it is preferable to aggregate as many events as possible
for each switch operation to not only reduce the standby period but also
minimize the number of switch operations. On the other hand, the real-
time constraints of the aggregated and future events need to be respected.
In addition, a polling mechanism is not desirable which will overload the
control core. In this section, we present two algorithms, namely worst-
case-greedy (WCG) algorithmand event-driven-greedy (EDG) algorithm,
for activation scheduling decisions. The differences between these two
algorithms are:
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• AlgorithmWCG is time-triggered. It conservatively assumesworst-
case event arrivals and predicts the earliest switching moment. If
the worst case does not occur when the predicted moment comes, a
new prediction is conducted and the switch decision is deferred to
a later moment.

• Unlike WCG, Algorithm EDG works in an event-triggered manner.
It optimistically assumes the lowest number of event arrivals and
predicts the latest time for mode switches. Upon the new arrival of
an event before the predicted time, the decision is reevaluated and
shifted to an earlier moment if necessary.

Therefore, the time instant t⊥ for the activation decisions can be
evaluated at either event arrivals or the predicted activation time. We
refer to these two cases by event arrival and wake-up alarm arrival, at time
instant t⊥e and t⊥w, respectively.

4.5.2.1 Worst-Case-Greedy (WCG) Activation

Algorithm WCG works in a time-triggered manner. It reacts to each
wake-up alarm and performs two tasks: a) check whether the processing
core has to be switched to active mode for the current alarm, b) if not,
determine the moment of the next wake-up alarm. In the case that a
worst-case burst happens, the previous prediction is correct and themode
switch has to be carried out at the current wake-up alarm. If the number
of arrived events is smaller than the worst case, switching the processing
core to active at the current time t⊥w will result in servicemore than actual
needs. The processing core can stay in sleepmode for a longer period.

An illustrated example is shown in Fig. 58. Suppose after the
processing core is in sleep model, an event, denoted as e1, 1, arrives at
time t⊥w1

. We assume the worst case burst, i. e. two events (dashed arrows
in the figure), takes place immediately after time t⊥w1

. To guarantee the
deadlines of e1, 1 and the potential burst, the processing core has to be
switched to active mode at time t⊥w2

= t⊥w1
+ τ∗

1
, as shown in Fig. 58(a).

When t⊥w2
comes, the assumed burst does not happen, i. e. , no events

arrive between time interval [t⊥w1
, t⊥w2

), as shown in Fig. 58(b). We then
assume the burst will take place at time t⊥w2

, and themode-switch decision
is postponed to t⊥w3

= t⊥w2
+ τ∗2. Again, if no events comes between time

interval [t⊥w2
, t⊥w3

), we can postpone the decision to t⊥w3
+ τ∗3, as depicted in

Fig. 58(c).
To evaluate the activation decision and predict a new wake-up alarm,

we again apply the bounded-delay function (4.7) to find the next sleep
interval. To obtain tight results, the deadline and backlog service demand
in (4.5) and (4.6) can be refined. At the current wake-up alarm time t⊥w, the
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turn off

D1

e1, 1

t⊥w1 turn on

τ∗
1

(a) First prediction

turn off

e1, 1

t⊥w2
t⊥w1 turn on

τ∗2

(b) Second prediction

turn off

e1, 1

t⊥w3
t⊥w1

t⊥w2

τ∗3

turn onturn on

(c) Third prediction

Fig. 58: An illustrated example for the Algorithm WCG, where turn off represents

switching the processing core from active/standby mode to sleep mode and

turn on represents switching back to activemode from sleepmode.

deadline service demand β♭ includes the events that are already stored
in the system backlog, i.e., B1(∆, t⊥w) defined in (4.10), together with the
history-refined worst-case event arrival αu

1
(∆ − D1, t⊥w). Similarly, the

current size of the available backlog is the original size minus the number
of backlogged events, i.e., |E(t⊥w)| defined in Section 4.4.3. The deadline
service demand β♭ and the backlog-size service demand β† are refined as

β♭(∆) = αu1(∆ −D1, t
⊥
w) + w1 · B1(∆, t

⊥
w) (4.13)

β†(∆) = αu1(∆, t
⊥
w) −
(

Q1 − |E(t
⊥
w)|
)

· w1 (4.14)

Using (4.13) and (4.14), the next sleep interval τ∗ is computed. If τ∗ > 0,
the next wake-up alarm time is set to t⊥w + τ

∗. Otherwise, the processing
core is switched to activemode. The pseudo code of AlgorithmWCG is
listed in Algorithm 4.

The constructed β♭ in (4.13) bounds the future arrival demands from
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Algorithm 4WCG activation

procedure event arrival at time t⊥e :
1: do nothing;

procedure wake-up alarm arrival at time t⊥w:
1: compute τ∗ of (4.7) with β♭ and β† by (4.13) and (4.14);
2: if τ∗ > 0 then
3: new wake-up alarm at time t⊥w ← t⊥w + τ

∗;
4: else
5: switch processing core to activemode;
6: end if

t⊥w on and β† in (4.14) guarantees the system backlog from overflowing,
leading to following theorem:

Thm. 4: AlgorithmWCG guarantees a feasible scheduling upon an activation decision at
any wake-up alarm time t⊥w for single event-stream system, if the processing core
provides full service from time t⊥w on.

We omit the proof due to the similarity to Theorem 1. Algorithm
WCG is effective in the sense that it greedily extends the sleep period as
long as a scheduling decision is feasible. It is also efficient when actual
event arrivals are close to the worst case, where the reevaluation of the
wake-up alarm time does not take place often. Furthermore, the number
of reevaluation is bounded by αu

1
(D1 − w1).

The last question is when to set the first wake-up alarm. There are two
possibilities: a) at the time of the first arrived event after the processing
core is deactivated, and b) at the deactivation time instant t⊤ + τ∗ (τ∗

is computed by (4.11), (4.12), and (4.7) in the HAD algorithm). Both
approaches will result in feasible schedule. For consistency, we adopt the
second approach and thus AlgorithmWCG is purely time-driven.

4.5.2.2 Event-Driven-Greedy (EDG) Activation

In contrast to Algorithm WCG that predicts the earliest wake-up alarm
time t⊥w, Algorithm EDG predicts the latest one. It computes the latest
moment by assuming the lowest number of event arrivals in the near
future. Unlike Algorithm WCG where the evaluation of the activation
decisions takes place upon each wake-up alarm arrives, the decision here
is refined upon event arrivals.

At time t⊥e1, i at which an event e1, i arrives, it is not obvious when the
corresponding latest wake-up alarm t⊥w will be. One intuitive guess is
t⊥e1, i +D1 − w1. This time instant is however too optimistic except for the
first event e1, 1 after the processing core has been deactivated. Our EDG
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algorithm works in the following manner. For the first arrived event e1, 1,
the wake-up alarm is set to t⊥e1, 1 + D1 − w1. For any subsequent event
e1, i, the wake-up alarm time is set to the minimum of the previous t⊥w
and t⊥w − (w1 − (t⊥e1, i − t⊥e1, i−1)). An illustrated example for this approach is
shown in Fig. 59, where the predictions for the first three arrived events
are shown in Fig. 59(a)–Fig. 59(c). This new t⊥w is still not always a feasible
activation time instant. If τ∗ computed from this time instant is not larger
than 0, the activation is set to an earlier time, i.e., the earliest activation
time as if the worst-case event arrival happens at t⊥e1, 1 .

turn off

e1, 1

t⊥e1, 1 turn on

D1 w1

(a) First prediction

turn off

e1, 2

t⊥e1, 2 turn ont
⊥
w

w1 − (t⊥e1, 2 − t⊥e1, 1 )

(b) Second prediction

turn off

e1, 3

t⊥e1, 3 t⊥wturn on

w1 − (t⊥e1, 3 − t⊥e1, 2 )

(c) Third prediction

Fig. 59: An illustrated example for the Algorithm EDG, where turn off represents

switching the processing core from active/standby mode to sleep mode and

turn on represents switching back to activemode from sleepmode.

For an event e1, i arrived at time t⊥e1, i , the service demand for the newly
computedwake-up alarm time t⊥w includes a) thepossible burst from t⊥w on,
which is bounded by ᾱu

1
(∆, t⊥w), b) the backlog until t

⊥
w, and c) the estimated

least event arrival between [t⊥e1, i , t
⊥
w), constrained by ᾱl

1
(∆). To compute

a precise ᾱu
1
(∆, t⊥w), we first revise the historical information H1(∆, t⊥w) by

advancing the time from t⊥e1, i to t⊥w to include those events that definitely
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have to come between [t⊥e1,i , t
⊥
w). We denote such a trace as H′(∆, t⊥w):

H′1(∆, t
⊥
w) =





ᾱl
1
(ǫ) − ᾱl

1
(ǫ − ∆), if∆ < ǫ,

H1(∆, t⊥e1,i) + ᾱ
l
1
(ǫ), if ǫ < ∆ < ∆h − ǫ,

H1(∆
h − ǫ, t⊥e1,i) + ᾱ

l
1
(ǫ), otherwise,

(4.15)

where ǫ = t⊥w − t⊥e1, i for brevity and ∆h is length of the history window.
The curve H′

1
can be considered as the concatenation of the historical

information H1 until t⊥e1, i and the time inversion of ᾱl
1
in the interval

[0, ǫ). The worst-case arrival curve after time t⊥w with the new historical
information H′

1
is

ᾱu1(∆, t
⊥
w) = inf

λ≥0

{

ᾱu1(∆ + λ) −H′1(λ, t
⊥
w)
}

(4.16)

and αu
1
(∆, t⊥w) = w1 · ᾱu1(∆, t

⊥
w).

The corresponding backlog demand curve that expresses the esti-
mated lowest number of arrival events within the interval [t⊥e1,i , t

⊥
w) is

B′1(∆, t
⊥
w)

def
= w1 ·

|E1(t)|+ᾱl1(ǫ)∑

j=1

f (∆ + t⊥w) (4.17)

where

f (∆ + t⊥w) =





1 if ∆ + t⊥w ≥ D1, j

0 otherwise

and D1, j is the absolute deadline of event e1, j and ǫ = t⊥w − t⊥e1, i .

With the refined historical information and backlog demand, the two
service demands β♭ and β† are refined as:

β♭(∆) = αu1(∆ −D1, t
⊥
w) + w1 · B

′
1(∆, t

⊥
w) (4.18)

β†(∆) = αu1(∆, t
⊥
w) −
(

Q − |E(t⊥)| − ᾱl1(ǫ)
)

· w1 (4.19)

By applying (4.18) and (4.19), the sleep interval τ∗ in (4.7) is computed
for event e1, i. If τ∗ > 0, the wake-up alarm is valid. Otherwise, the
new wake-up alarm is set to an earlier moment. The pseudo code of the
algorithm is depicted in Algorithm 5.

Thm. 5: Algorithm EDG guarantees a feasible scheduling upon an activation decision at
any wake-up alarm time t⊥w for single event-stream system, if the processing core
provides full service starting from time t⊥w.
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Algorithm 5 EDG activation

procedure event arrival at time t⊥e1, i :
1: if t⊥e1, i − t⊥e1, i−1 < w1 then
2: t⊥w ← t⊥w − (w1 − (t⊥e1, i − t⊥e1, i−1))
3: end if
4: calculate τ∗ at time t⊥w by (4.15–4.19);
5: if τ∗ ≤ 0 then
6: t⊥w ← t⊥e1, 1 + τ

⊥, where τ⊥ computed from (4.5) – (4.7)
7: end if

procedure wake-up alarm arrival at time t⊥w:
1: activate the processing core;

Proof. We differentiate between two mode switch decisions: when the
condition in line 5 is fulfilled and when this is not the case. When the
condition is not fulfilled, the feasibility of the decision is guaranteed by
(4.15)–(4.19) where the actually arrived events before time instant t⊥w and
the potential burst afterwards are both considered in each evaluation. In
the case that the condition in line 5 is fulfilled, we need to prove that
the arrival time t⊥e1, i of event e1, i is always earlier than t⊥e1, 1 + τ

⊥. For time
instant t⊥e1, 1 at which e1, 1 arrives, the maximum number of events that
can be stored in the system backlog is min{Q1, ᾱu1(τ

⊥) − 1}, denoted as u.
Based on the construction in line 1, τ∗ ≤ 0 is only fulfilled if the number
of arrived events reaches this maximum. According to the subadditivity
of an upper arrival curve and the linearity of the bounded delay service
curve, the time interval to generate u events is bounded by τ⊥, i.e., the
inequality (ᾱu)−1(τ⊥) > u always holds2. Therefore, t⊥e1, 1+τ

⊥ > t⊥e1, i . Because
t⊥e1, 1 + τ

⊥ assumes that the worst-case event arrivals happen at the time
instant of the arrival of the first event after the processing core is switched
to sleep mode, switching the processing core to active mode at this
time always results in a feasible scheduling decision. As the scheduling
decisions are feasible for both cases, the theorem holds.

�

According to Thm. 5, Algorithm EDG results in a feasible schedule.
The algorithm is efficient as well. It is designed for scenarios where
events come sparsely and the worst case seldom occurs. In such
scenarios, the pessimistic decision, i.e., the condition in line 5 is fulfilled,
takes place seldom. In addition, the theoretical upper bound of the
number on reevaluations is min{Q1, ᾱu1(τ

⊥)}. In practice, the number of
reevaluations is approximately equal to the number of actually arrived

2Symbol (ᾱu)−1 represents the inverse function of ᾱu.
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events. Furthermore, τ⊥ can be computed offline as it is a constant given
the specification of a stream. Note that it is possible to refine t⊥w when
τ∗ ≤ 0 is fulfilled, instead of pessimistically setting the prediction back to
t⊥e1,1 + τ

⊥. However, such a refinement demands more computation.

4.5.3 Experimental Results

This section provides simulation results for the proposed online dynamic
powermanagement schemes. The simulator is implemented inMATLAB
by applying MPA and RTS tools from [WT06c].

4.5.3.1 Experimental Setup

We take the event streams studied in [HSC+09, HE05] for our case studies.
The specifications of these streams are shown in Tab. 8. The parameters
period, jitter, and delay are used for generating arrival curves defined
in Section 4.3.2 and wcet represents the worst-case execution time of an
event. The relative deadline Di of a stream Si is defined as the product
of its period and a deadline factor, denoted by χ. In our simulations, we
consider the processing core as a peripheral device. We adopt the power
profiles for four different devices in [CG06], shown in Tab. 9.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

period (msec) 198 102 283 354 239 194 148 114 313 119
jitter (msec) 387 70 269 387 222 260 91 13 302 187
delay (msec) 48 45 58 17 65 32 78 - 86 89
wcet (msec) 12 7 7 11 8 5 13 14 5 6

Tab. 8: Event stream setting according to [HSC+09, HE05].

Device Name Pa (W) Ps (W) Pσ (W) tsw (S) Esw (mJ)

Realtek Ethernet 0.19 0.125 0.085 0.01 0.8
Maxstream 0.75 0.1 0.05 0.04 7.6

IBM Microdrive 1.3 0.5 0.1 0.012 9.6
SST Flash 0.125 0.05 0.001 0.001 0.098

Tab. 9: Power profiles for devices according to [CG06].

We simulate different event streams. To compare the impact of
different algorithms, we simulate traces with a 10 sec time span. The
traces are generated by the RTS tools [WT06c] and conform to the arrival
curve specifications. The length of the history window∆h is five times the



110 Chapter 4. Power Management

period of an event stream. We evaluate two DPM schemes, i.e., switching
to sleep with the HAD algorithm and switching back with the WCG or
EDG algorithm, denoted as WCG-HAD and EDG-HAD. To show the
effects of our schemes, we report the average idle power that is computed
as the total idle energy consumption divided by the time span of the
simulation. The average idle power is formally defined as follows:

Def. 11: (Average Idle Power Consumption) Suppose that: Esw, on and Esw, slepp are
the energy overheads for the switches to active and sleep modes, respectively;
Con and Csleep are the total numbers of switches to active and sleep modes,
respectively; Ton, sum the sum of all the time intervals in which the device stays in
active/standby modes; and Pσ is the power consumption in standby mode.
The average idle power consumption is defined as:

Esw, on · Con + Esw, sleep · Csleep + Ton, sum · Pσ

total_time_span
(4.20)

For comparison, two other power management schemes described
in 4.7 are measured as well, i.e., a periodic scheme (OPT) and a
naive event-driven scheme (ED). The OPT scheme is a periodic power
management (PPM) scheme which controls the processing core with a
fixed on-off period. The lengths of the on and off periods are optimally
computed with respect to the average idle power by an offline algorithm
presented in the upcoming Section 4.7. The ED scheme turns on the
processing core whenever an event arrives and turns off when the
processing core becomes idle. Note that OPT does not consider the size
of the system backlog. For a fair comparison, we smooth out the effect
of a small backlog-size by setting the backlog size to a relatively large
number, i.e., 60 events for this experiment.

4.5.3.2 Results

First, we show the effectiveness of the proposed WCG-HAD and EDG-
HAD schemes comparing to the OPT and ED schemes. Fig. 60 shows
the normalized values of average idle power with respect to OPT for the
streams in Tab. 8 individually processed on the four devices in Tab. 9. As
depicted in the figure, both schemes proposed in this section outperform
the pure event-driven scheme as well as the OPT periodic scheme for all
cases. On average, 25% of the average idle power with respect to OPT is
saved for the deadline factor χ = 1.6.

In general, a small wcet/period ratio results in higher idle power
savings, as the cases for event streams S3, S4, S5, and S9. Counter-
examples are event streams S2, S7, and S8. Event stream S8 has the
largest wcet/period ratio, conducting the worst idle power savings for
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Fig. 60: Idle power consumption for single stream cases individually running on four

different processing cores with deadline factor χ = 1.6. The values are

normalized to the OPT periodic scheme, that is, power consumption for the

OPT periodic scheme is 1 in all cases.
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all four devices. In addition, a smaller delay/period ratio also results
in higher idle power savings, as the cases for event streams S1 and S6.
Another observation is that the overhead caused by the break-even time
does not really affect the optimization of the average idle power. As
shown in Fig. 60, the normalized values for a given stream do not change
significantly for different processing cores, although the break-even time
is considerably different for the four processing cores, e.g., 18.2ms for the
SST Flash and 152ms for the Maxstream.
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Fig. 61: Average idle power consumption of different deadline settings on Realtek

Ethernet.

We also outline how the average idle power changes when the relative
deadline of a stream varies. Fig. 61 compares the four schemes when
varying thedeadline factorχ for streamsS8 andS4. As shown in thefigure,
our online schemes again outperform the other two. Another observation
is that OPT can achieve good results only when the relative deadline is
large. For the cases of small relative deadlines, it can be worse than
ED. Our online schemes, on the contrary, can smoothly handle different
deadlines. The reason is that our online schemes consider the actual
arrivals of event, resulting in a more precise analysis of the scheduling
decision. Note that ideally our two online schemes, i.e., WCG-HAD and
EDG-HAD, should produce identical results, because theWCG and EDG
algorithms should theoretically converge to the same actual mode-switch
decision, given the same trace. The slight deviations depicted in these
two figures are due to the pessimistic activation decision in line 6 of
Algorithm EDG. This deviation is expected to become larger in case of
multiple streams.
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4.6 Online DPM for Multiple Streams

When tacklingmultiple event streams, an essential problem is to compute
the total service demand for a stream set S. The total service demand for
S does not only depend on the service demand of individual streams
but also the scheduling policy and the system backlog organization. The
scheduling in this section refers to a resource contention scheme, i. e. ,
which backlogged event is chosen to be processed in the case that events
of different streams are available in the system backlog at the same time.
In this section, we consider two preemptive scheduling policies, i. e. ,
earliest-deadline-first (EDF) and fixed-priority (FP). With respect to the
backlog organization, two different schemes are investigated, referred to
as individual and global backlog. In the case of individual backlog, each
event stream Si owns its private backlog with sizeQi. In the case of global
backlog, all event streams in S share the same system backlog.

In this section, we present solutions for computing the total service
of S by applying real-time interface theory. Again, the basic assumption
of our solutions is that the deadline and backlog requirements for all
event streams can be guaranteed if the processing core always provides
full service, i.e., the processing core never turns to sleepmode. Without
loss of generality, we consider a stream setSwithN event streams, where
N ≥ 2. Wepresent solutions forAlgorithmEDG. Solutions forAlgorithms
HAD and WCG are similar to Algorithm EDG and can be easily adapted
in the same manner. Note that the refinements of the history curve and
backlog demand in (4.15) and (4.17) can be applied to every individual
stream, denoted as H′

i
and B′

i
for brevity, respectively.

4.6.1 FP Scheduling with Individual Backlog

Unlike a system with a single event stream where the bounded delay is
applied directly to the computed service demand of an event stream, we
compute first the individual service demand of every stream, denoted as
βA
i
, then derive the total service demand of the set S, denoted as βA

total
.

With the computed βA
total

, the bounded delay is applied to calculate the
feasible sleep interval τ∗.

Without loss of generality, the event streams S1,S2, . . . ,SN in S are
ordered according to their priorities, where the priority of stream Si is
higher than that of Sk when i < k. The processing of event streams in
a FP scheduling policy domain can thereby be modeled as a chain of
processing components ordered according to their priorities whereby a
low priority stream can only make use of the resource left from the high
priority streams. To compute the servicedemandof ahighpriority stream,
a backward approach is applied by considering the service demand from
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the low priority streams, as shown in Fig. 62.

SN
. . . S2 S1 βA

total

αN α2 α1

βAN βA3 βA2 βA
1

Fig. 62: The computation of the total service demand βA
total

for the FP scheduling with

distributed backlog.

For the activation scheduling decision of the arrival of an event e1, i, we
first compute the service demand βAN of stream SN at time t⊥w. We use the
same approach presented in Section 4.5.2.2. To to compute βAN, formulas
(4.15)–(4.19) are refined as follows:

βAN(∆, t
⊥
w) = max

{

β♭N(∆, t
⊥
w), β

†
N(∆, t

⊥
w)
}

,where (4.21)

β♭N(∆, t
⊥
w) = α

u
N(∆ −DN, t

⊥
w) + wN · B

′
N(∆, t

⊥
w) (4.22)

β†N(∆, t
⊥
w) = α

u
N(∆, t

⊥
w) −
(

QN − |EN(t
⊥
w)| − ᾱ

l
N(t
⊥
w − t⊥e1, i)

)

· wN (4.23)

αuN(∆, t
⊥
w) = wN ·

(

inf
λ≥0

{

ᾱuN(∆ + λ) −HN(λ, t
⊥
w)
})

(4.24)

To derive βA
1
, we have to compute the service bounds βA

N−1
, βAN−2, . . . , β

A
2 ,

sequentially. Suppose that βA
k
has been derived, the resource constraint

is that the remaining service curve β♯
k−1

after serving Sk−1 should be

guaranteed to be no less than βA
k
, i.e.,

β♯
k−1

(∆) ≥ inf
{

β : βAk (∆, t
⊥
w) = sup

0≤λ≤∆

{β(λ) − αuk−1(λ, t
⊥
w)}
}

(4.25)

By inverting (4.25), i. e. , deriving the minimum β in (4.25), we have:

β♯
k−1

(∆) = βAk (∆ − λ) + α
u
k−1(∆ − λ, t

⊥
w) (4.26)

where λ = sup
{

τ : βAk (∆ − τ, t
⊥
w) = β

A
k (∆, t

⊥
w)
}

To guarantee the timing constraint of event stream Sk−1, we also know
that βA

k−1
must be no less than its own demand, i. e. , its deadline service

demand β♭
k−1

and backlog-size service demand β†
k−1

. The β♭
k−1

, β†
k−1

, and
αu
k−1

(∆, t⊥w) can computed in a similarway as (4.15)–(4.19) in Section 4.5.2.2.
Therefore, we have:

βAk−1(∆) = max
{

β♯
k−1

(∆), β♭k−1(∆, t
⊥
w), β

†
k−1(∆, t

⊥
w)
}

(4.27)
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where

β♭k−1(∆, t
⊥
w) = α

u
k−1(∆ −Dk−1, t

⊥
w) + wk−1 · B

′
k−1(∆, t

⊥
w) (4.28)

β†k−1(∆, t
⊥
w) = α

u
k−1(∆, t

⊥
w) −
(

Qk−1 − |Ek−1(t
⊥
w)| − ᾱ

l
k−1(t

⊥
w − t⊥e1, i)

)

· wk−1 (4.29)

αuk−1(∆, t
⊥
w) = wk−1 ·

(

inf
λ≥0

{

ᾱuk−1(∆ + λ) −Hk−1(λ, t
⊥
w)
})

(4.30)

By applying (4.27) for k = N − 1,N − 2, . . . , 1, the service demand βA
1
of

stream S1 is derived.

Based on this approach, the computed service demand for the highest
priority stream S1 can also be seen as the total service demand βA

total
for

streamsetSunder FP scheduling. Therefore, the timing aswell as backlog
constraints for all streams in S can be guaranteed by a sleep interval τ∗

such that bdf (∆, τ∗) bounds βA
1
:

τ∗ = max
{

τ : bdf (∆, τ) ≥ βA1 (∆), ∀∆ ≥ 0
}

(4.31)

4.6.2 EDF Scheduling with Individual Backlog

Again, we present the revision of the EDG algorithm as an example. For
EDF scheduling, the total service demand βA

total
for all N streams can be

bounded by the sum of their service demands like in FP scheduling. The
βA
total

computed in this manner, however, is not sufficient to guarantee
the backlog constraint of any stream in S. When an event of a stream
S j happens to have the latest relative deadline, events in any stream of
S \ {S j} will be assigned a higher priority. S j might suffer from backlog
overflow in this case.

S j S \ {S j} βA
total

α j
∑

i, j αi

βA
j

βA
j, total

Fig. 63: The computationof the total servicedemand forEDF schedulingwithdistributed

backlog.

To compute a correct service demand that satisfies the backlog
constraint of stream S j, S j is considered as the stream with the lowest
priority. Therefore, a backward approach similar to the previous section
is applied, as shown in Fig. 63. Instead of tracing back stepwise, the
service demand needed for high-priority streams is the sum of all streams
from S \ {S j}.

The service β♯
j
to guarantee the timing constraint of the lowest priority
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stream S j should be more than the demand βA
j
of S j, i.e.,

β♯
j
(∆) ≥ inf

{

β : βAj (∆, t
⊥
w) = sup

0≤λ≤∆

{β(λ) −
N∑

i, j

αui (λ, t
⊥
w)}
}

(4.32)

By inverting (4.32), we can derive β♯
j
(∆) as:

β♯
j
(∆) = βAj (∆ − λ, t

⊥
w) +

N∑

i, j

αui (∆ − λ, t
⊥
w) (4.33)

where λ = sup
{

τ : βA
j
(∆ − τ, t⊥w) = β

A
j
(∆, t⊥w)

}

, and

βAj (∆, t
⊥
w) = max

{

β♭j(∆, t
⊥
w), β

†
j (∆, t

⊥
w), β

♯
j
(∆)
}

(4.34)

where β♭
j
and β†

j
are from (4.28) and (4.29). To guarantee the timing

constraint of all higher-priority streams, we also know that βA
j,total

must be

no less than the demand of S \ {S j} as well. Therefore, we know that at
time t⊥w,

βAj,total(∆) = max
{

β♯
j
(∆),

N∑

i, j

β♭i (∆, t
⊥
w)
}

(4.35)

Applying (4.35) to each steam inS, the service demand for each steam
is computed. Because each stream could be the one with the lowest
priority in the worst case, only the maximum of them can be seen as
the total service demand for stream set S. Therefore, a feasible sleep
interval τ∗ that guarantees both deadline and backlog-size constraints can
be computed from the bounded delay function that bounds themaximum
of individual streams:

τ∗ = max
{

τ : bdf (∆, τ) ≥ max
i∈N
{βAi,total(∆)}, ∀∆ ≥ 0

}

(4.36)

4.6.3 EDF Scheduling with Global Backlog

The approach to get the total service demand of S for global backlog
is different from the approach for individual backlog. Without loss of
generality, we assume that a backlog with size Q is shared by all event
streams in S.

For the HAD algorithm, because there is no backlog for each
evaluation, the relative deadline for each event ei, j in every stream Si



4.6. Online DPM for Multiple Streams 117

remains Di. Therefore, the service demand to guarantee the deadline
requirements of all streams is

β♭(∆) =
N∑

i=1

αui (∆ −Di, t
⊤) (4.37)

In the case of (4.13) of the WCG algorithm, the backlogs of different
streams need to be considered. We apply the backlog demands for all
streams:

β♭(∆) =
N∑

i=1

(

αi(∆ −Di, t
⊥) + wi · Bi(∆, t

⊥)
)

(4.38)

The same applies to (4.18) of the EDG algorithm at time t⊥w.

Now we consider the backlog-size constraint. Besides the sum of all
arrival curves, the constraint in (4.12) additionally needs to account for
events with the longest execution time, i.e., maxi∈N{wi}. Therefore, it is
revised as

β†(∆) =
N∑

i=1

αui (∆) −Q ·max
i∈N
{wi} (4.39)

The backlog constraint in (4.14) is more complex, because the backlog
is not empty and contains events from different streams. The remaining
capacity of the backlog is

max
i∈N
{wi} ·Q −

|E(t⊥)|∑

j=1

N∑

i=1

xi, j · wi (4.40)

where xi, j = 1, ∀ j for Stream Si, otherwise 0. Therefore, it is revised as

β†(∆) =
N∑

i=1

αui (∆, t
⊥) −
(

max
i∈N
{wi} ·Q −

|E(t⊥)|∑

j=1

N∑

i=1

xi, j · wi

)

(4.41)

The last revision is (4.19) of the EDG algorithm, where the estimated
future events of all streams need to be counted. Therefore it is revised as

β†(∆) =
N∑

i=1

αui (∆, t
⊥
w) −
(

max
i∈N
{wi} ·Q −

|E(t⊥w)|∑

j=1

N∑

i=1

xi, j · wi −

N∑

i=1

αli(ǫ)
)

(4.42)
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4.6.4 Experimental Results

We present results for multiple event streams in this section. We report
results only for random subsets of the stream set in Section 4.5.3.1. S(3, 4),
for instance, represents a case considering only the streams S3 and S4. For
FP scheduling policy of a multiple-stream set, the stream index defines
the priority of a stream. Considering again the stream set S(3, 4), for
instance, S3 has a higher priority than S4. Note that the history window
∆h is set to five times of the longest period in a stream set.

Fig. 64 depicts simulation results for stream set S(6, 9, 10) running on
Realtek Ethernet with individual and global backlog allocation schemes,
respectively. Note that the smallest backlog sizes of Fig. 64(c) and 64(d)
are set to three events, because the stream set used in this experiment
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Fig. 64: Average idle power consumption with respect to different deadline and backlog

settings on Realtek Ethernet for the stream set S(6, 9, 10) under individual and
global backlog allocations.
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contains exactly three event streams. A backlog size less than three will
result in no sleep interval for any relative deadline setting.

The results from Fig. 64 demonstrate the effectiveness of our solutions
for multiple event streams. These results confirm the following
statements: a) When the relative deadline and backlog size are small,
the average idle power is large, where the chances to turn off the
processing core are small. b) Increasing the relative deadline or backlog
size individually helps reducing the idle power to only a certain degree.
At a certainpoint, onlymarginal improvements canbeachievedby further
increasing the relative deadline or backlog size. c) Increasing both relative
deadline and backlog size can effectively reduce the idle power, where
more arrived events can be procrastinated and accumulated for each
activation of the processing core.

Another observation is that EDG ismore sensitive thanWCG on small
backlog sizes for both global and individual backlog organization. As
Figures 64(b) and 64(d) shown, when the backlog sizes increase from
1 to 2 and from 3 to 4 for individual and global backlog organization,
respectively, the idle power drops significantly. The reason is the
pessimistic activation decision in line 6 of Algorithm EDG.

We also demonstrate the computational efficiency of our schemes.
Fig. 65 shows the numbers of activations of our algorithms over the
10 sec time span and Fig. 66 depicts the worst, best, and average case
computational time for an activation.

From Fig. 65, one can conclude that given a single stream set the
number of activations for AlgorithmEDGdoes notmuch vary depending
on the relative deadline, which can be expected due to the principle
of the algorithm. The fluctuations are caused by event arrivals when
the processing core is in active mode. Such events do not activate the
algorithm. The second observation is that the number of activations for
EDG depends on the number of streams running on the processing core
while the number of activations for WCG quickly converges even when
a stream set contains 3 times more event streams. The reason is that the
activations of WCG are determined by the predicted turn-on moments
that depend on the backlog size and relative deadline. When the backlog
size and relative deadline are large enough, the number of activations is
one, no matter how many streams are added to the system.

From the above facts, one might conclude that WCG is better. EDG is,
however, meaningful in the case when event arrivals are sparse. In such
cases, the number of activations of EDGwill be less than that ofWCG. The
results shown in the figure are caused by the dense-event traces generated
by the RTS tools.

Fig. 66presents theworst, best, andaverage case computational timeof
an activation of the proposed algorithmswith respect to different deadline
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Fig. 65: Numbers of activations of different deadline settings for the stream sets S(3, 4),
S(3–6), and S(1, 3–6, 9) running on Realtek Ethernet under individual backlog

organization with backlog size of 10 events for each event stream.
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Fig. 66: Worst, best, and average case computation time of an activation of the proposed

algorithms with respect to different deadline factors for three 4-stream sets S(1–

4), S(3–6), and S(2, 4, 6, 8) individually running on Realtek Ethernet.

factors for stream sets S(1–4), S(3–6), and S(2, 4, 6, 8) individually
running on Realtek Ethernet. Results for FP scheduling coupled with
individual backlog scheme and EDF scheduling coupled with global
backlog organization are shown in Fig. 66(a) and Fig. 66(b), respectively.
We do not report the results for EDF scheduling with individual backlog
organization due to the similarity to the FP case.

From the figure, we can conclude that our algorithms are efficient. The
worst, best, and average case computation expenses of each activation are
within the range of milliseconds and are acceptable for the stream set in
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Tab. 8. Specifically, the time to evaluate a decision is almost constant
even with large relative deadlines. In general, EDG is more expensive
than WCG and HAD, which can be expected from the definition in
Section 4.5. The last observation is that the computation time is not
negligible. There are also means to tackle this problem, for instance,
setting these computation overheads as a safe margin for the computed
sleep period or making the activation itself the highest priority event
stream of the system.

4.7 Offline Periodic DPM

Distinct from the online adaptive algorithms in the previous sections, we
propose offline algorithms to derive optimal and approximated schemes
for periodic dynamic power management (PPM) in this section. Unlike
the online algorithms for which the activation/deactivation scheduling
decisions heavily depend on the complexity of the arrival curves, the
offline approaches off-load computation overhead to design time. The
light run-time overhead of the periodic power management schemes is
particularly suitable for embedded systems that only have limited power
on computation. By simply using a hardware timer, an offline computed
periodic power management scheme can be applied to the processing
core. The control core is not necessary for the PPM in this section.

4.7.1 System Model and Problem Definition

Anabstractmodel of ourperiodic powermanagement (PPM) is illustrated
in Fig. 67, inwhich powermanagement schemes are derived by analyzing
the arrival curves of event streamsS statically. Specifically, we first decide
a period T = Ton + To f f , then switch the system to active/standbymode
for Ton time units, followed by To f f time units in sleepmode.

Based on model in Fig. 67, the energy consumption for a time interval
L, where L ≫ T and L

T
is an integer, consists of mode-switch overheads,

the energy in standby and sleep modes, and the energy for processing
arrived events. Supposing that γi(L) is the number of events of event
stream Si served in interval L and all the served events finish in time
interval L, the energy consumption E(L, Ton, To f f ) can be computed as
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Fig. 67: The abstract model of the periodic power management problem.

follows:

E(L, Ton, To f f ) =
L

Ton + To f f
(Esw, on + Esw, sleep)

+
L · Ton

Ton + To f f
Ps +

L · To f f

Ton + To f f
Pσ

+
∑

Si∈S

wi · γi(L) · (Pa − Ps)

=
L · Esw

Ton + To f f
+
L · Ton · (Ps − Pσ)

Ton + To f f

+ L · Pσ +
∑

Si∈S

wi · γi(L) · (Pa − Ps)

(4.43)

where Esw is Esw, on + Esw, sleep for brevity.
Based on (4.43), we define average idle power consumption.

Def. 12: (PPM Average Idle Power Consumption) Given a sufficiently large L, the
average idle power consumption is computed as:

P(Ton, To f f )
def
=

L·Esw

Ton+To f f
+

L·Ton·(Ps−Pσ)

Ton+To f f

L

=
Esw + Ton · (Ps − Pσ)

Ton + To f f

(4.44)

According to (4.43), L · Pσ +
∑

Si∈S
wi · γi(L)(Pa − Ps) is a constant for a

given L. Therefore, for an L that is sufficiently large, without changing the
schedulingpolicy, theminimization of energy consumptionE(L, Ton, To f f )
of a PPM scheme requires to find Ton and To f f so that the average idle
power consumption P(Ton, To f f ) is minimized. We now define the PPM
problem studied in this section as follows:
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Given a set of event streams S under real-time requirements, the objective
of the studied problem is to find a periodic powermanagement characterized
by Ton and To f f that minimizes the average idle power consumption
P(Ton, To f f ), in which the response time of any event of event stream
Si in S must be no more than Di.

4.7.2 Motivational Example

Consider a system processing a single stream S1. The goal of our
algorithms is to find a pair (Ton,To f f ) ∈ R

+×R+ so that on the one hand the
average idle power consumption of the processing core is minimized, on
the other hand the constructed βG based on (Ton,To f f ) bounds the service
demand of the event stream S1, i.e., βG ≥ βA = αu1(∆ − D1). Note that for
a given Ton and To f f pair, the guaranteed service of the processing core is
given by:

βG(∆) = max
(⌊ ∆

Ton + To f f

⌋

· Ton, ∆ −
⌈ ∆

Ton + To f f

⌉

· To f f

)

(4.45)

By the service guarantee curve βG in (4.45), the service demand curve
of S1, i.e., βA = αu1(∆ − D1), and the schedulability definition in (4.2), the
minimal Ton to fulfill the schedulability requirement in terms of a given
To f f can be defined as:

Tmin
on = min

{

Ton : β
G(∆) ≥ βA(∆), ∀∆ ≥ 0

}

. (4.46)

To our best knowledge, there is no explicit form to compute Tmin
on .

Furthermore, due to the complex shape of the arrival curves, exhaustively
testing (4.2) is the only way to determine the minimal average idle power
from all possible Ton. Fig. 68 presents an example for illustrating the
irregular pattern of the average idle power consumption by solving (4.46).

As a result, exhaustively checking all possible (Ton, To f f ) pairs is the
onlyway to find the exactminimumof the average idle powerP(Ton, To f f ).
To reduce computational overhead, we propose a method to find an
approximation with smaller complexity.

4.7.3 Bounded Delay Approximation

Again, we first consider a single event stream. The solution for multiple
event streams is presented later on.

Reviewing the average idle power consumption in Def. 12, there are
two cases for P(Ton,To f f ): a) If Esw

Ps−Pδ
≥ To f f , we know that P(Ton,To f f )

is minimized when Ton is set to +∞. b) If Esw

Ps−Pδ
< To f f , the minimal

Ton under the service constraint βG(∆) minimizes the average idle power
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Fig. 68: The relation of the minimal average idle power consumption and To f f for an

IMB Microdrive processing stream S1, see Tab. 8 and 9 in Section 4.5.3.1.

consumptionP(Ton,To f f ). In this sense, Esw

Ps−Pδ
, can be seen as the break-even

time of the system.
Our proposed approaches are based on a) finding the minimal Ton by

which the constructed βG bounds a given βA, provided that To f f is given,
and b) the exploration of the best To f f . One could also derive solutions in
another direction by searching the best To f f for a specified Ton along with
the exploration on Ton, but the procedure would be more complicated.

4.7.3.1 Feasible Region of To f f

Before presenting how to find the optimal To f f , we will first discuss the
feasible region of To f f . Intuitively, if To f f is smaller than the break-even

time, i.e., Esw

Ps−Pδ
, turning the processing core to sleep mode consumes

more energy than keeping it in active/standby mode. In this case, a
mode-switch does not pay off. Therefore, for searching the optimal To f f ,

the region
[

0, Esw

Ps−Pδ

]

can be safely discarded. Moreover, as To f f must also
satisfy the timing overheads for mode switches, we also know that To f f

must be no less than tsw, where tsw = tsw,sleep + tsw,on.
There is also an upper bound for To f f . On the one hand, To f f should

be smaller than D1 − c1. Otherwise, no event can be finished before its
deadline. On the other hand, as the processing core provides no service
when it is off, a maximum service βG⊤(∆) = max{0, ∆ − To f f } is imposed.
According to (4.2), we know that predicate

βG⊤(∆) = max{0, ∆ − To f f } ≥ β
A
1 (∆) = α1(∆ −D1) (4.47)

must hold in order to satisfy the timing constraint. By inverting (4.47),
we can compute the maximum To f f as

Tmax
o f f = max

{

To f f : β
G
⊤(∆) ≥ β

A
1 (∆), ∀∆ ≥ 0

}

. (4.48)
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In summary, to find an optimal PPM, the feasible region of To f f ∈

[Tl
o f f
, Tr

o f f
] can be bounded as follows:

Tl
o f f = max

{

tsw,
Esw

PS − Pδ

}

(4.49)

Tr
o f f = min

{

D1 − c1, T
max
o f f

}

(4.50)

4.7.3.2 Approximation Construction

Instead of calculating the exact Tmin
on , we propose an alternative approach,

namely a bounded-delay approximation, to find an approximated
minimum, denoted as T̃on. The basic idea of this approach is to compute
a minimal bounded-delay service curve bywhich the minimal Ton is derived.

Def. 13: (Bounded Delay Service Curve) A bounded-delay service curve
bdf(∆, ρ,To f f ), defined by the slope ρ and the bounded-delay To f f for
interval length ∆, is

bdf (∆, ρ,To f f )
def
= max{0, ρ · (∆ − To f f )} (4.51)

This definition is a generalized case of Def. 5 where the slope ρ is
always 1. For a given bounded-delay functionwith slope ρ and bounded-
delay To f f , we can construct an approximated Ton by

T̃on =
ρ · To f f

1 − ρ
(4.52)

so that the resulting service curve βG (constructed by 4.45) built from this
(T̃on, To f f ) pair is no less than the minimal bdf(∆, ρ,To f f ) for any ∆ ≥ 0.
Fig. 69 illustrates an example for deriving T̃on. Using the aforementioned
definitions, the following lemma can be stated:

Lem. 4: For specified To f f > 0 and 0 < ρ ≤ 1:
(1) If bdf(∆, ρ,To f f ) ≥ αu1(∆−D1), then, bdf(∆, ρ′, To f f ) ≥ αu1(∆−D1) for any
ρ′ > ρ.
(2) If bdf(∆, ρ, To f f ) < αu1(∆ − D1), then, bdf(∆, ρ′, To f f ) < αu1(∆ − D1) for
any ρ′ < ρ.

Proof. Given a To f f , bdf(∆, ρ,To f f ) can be seen as a straight line in the
Cartesian coordinate system, starting from point (To f f , 0) with slope ρ
to +∞. Moreover, αu

1
is sub-additive, according to the definition of an

arrival curve. The lemma holds because of the monotonicity of both the
bounded delay curve and arrival curves. Furthermore, the monotonicity
also guarantees the existence and uniqueness of a tangent point of these
two curves.
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upper arrival curve αu
1
(∆) is presented for simplicity.

�

By (4.52) and Lemma 4, finding the minimal ρ, i.e., ρmin,To f f
, under the

constraint of a service demand βA, is equivalent to the derivation of the
minimal T̃on in the bounded-delay approximation, where

ρmin,To f f
= inf

{

ρ : bdf(∆, ρ,To f f ) ≥ α
u
1(∆ −D1),∀∆ ≥ 0

}

.

Now we can formally define T̃on as follows.

Def. 14: The minimal Ton obtained from the bounded-delay approximation is a function
of To f f :

T̃on =
To f f · ρmin,To f f

1 − ρmin,To f f

def

= f (To f f ) (4.53)

Based on Lemma 4, we can simply apply a binary search of ρ in the
range of [0, 1] to compute ρmin,To f f

. Suppose that there are n possible
values of ρ, the complexity of deriving ρmin,To f f

is O(log n). Therefore, the

complexity to compute T̃on for a given To f f is O(logn) as well, instead
of O(n) in (4.46). This construction is practically useful as well, because
verifying whether βG(∆) ≥ βA(∆) for all ∆ ≥ 0 requires complex numerical
computationwhich is time-consuming. Moreover, the derived T̃on has the
nice property of being strictly increasing, which will be used to further
reduce the time complexity for deriving the optimal PPM.

Lem. 5: Given βA, the function f (To f f ) defined in (4.53) is strictly increasing and
To f f

f (To f f )
>

(1+ǫ)To f f

f ((1+ǫ)To f f )
for any ǫ > 0.

Proof. From the definition it follows that ρmin,To f f
< ρmin, (1+ǫ)To f f

, and,
thereby, f (To f f ) < f ((1+ ǫ)To f f ) that proves the property when f is strictly
monotonically increasing. Because ρmin,To f f

< ρmin, (1+ǫ)To f f
, we can derive

1

1+
To f f
f (To f f )

< 1

1+
(1+ǫ)To f f
f ((1+ǫ)To f f )

, then,
To f f

f (To f f )
>

(1+ǫ)To f f

f ((1+ǫ)To f f )
.
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�

Based on the monotonicity of f (To f f ), we claim that the objective
function P(Ton, To f f ) obtained from the application of bounded-delay
approximated T̃on defined in Def. 14 is convex.

Thm. 6: Using the bounded-delay algorithm approach to compute T̃on = f (To f f ) as
depicted in (4.53), P(T̃on, To f f ) = P( f (To f f ),To f f ) is a convex function.

Proof. The objective function P(T̃on, To f f ) can be split into two parts:
Esw

Ton+To f f
and (Ps+Pδ) ·

Ton

Ton+To f f
. For the first part Esw

Ton+To f f
=

Esw

f (To f f )+To f f
, f (To f f )+

To f f is strictly increasing according to Lemma 5. Therefore Esw

Ton+To f f
is a

monotonically decreasing convex function. For the second part (Ps +

Pδ) ·
Ton

Ton+To f f
=

Ps+Pδ

1+
To f f
f (To f f )

, according to Lemma 5, we know that 1

1+
To f f
f (To f f )

is

monotonically increasing and is a convex function as well. As a linear
combination of convex functions is also a convex function, the original
function P(T̃on, To f f ) is a convex function of To f f .

�

Thm. 6 allows to efficiently compute the optimal PPM, rather than
exhaustively searching for every possible To f f . The complexity, for
instance, is reduced to O(log n · logm) by applying a bisection search to
the feasible region of To f f . The pseudo code of the algorithm is described
in the Algorithm 6.

4.7.3.3 Optimal PPM

For comparison, we also present a brute-force algorithm, denoted as OPT,
to find the minimal average idle power consumption P(Ton, To f f ), by
exhaustively searching all possible (Ton, To f f ) pairs. The pseudo code
of OPT is depicted in Algorithm 7.

Due to the irregular shape of P(Ton, To f f ) as previously shown in
Fig. 68, OPT is the only way to find the exact optimum for our PPM
problem. Suppose that there are m possible To f f within the region
[Tl

o f f
, Tr

o f f
], the complexity of OPT is thereby O(n ·m).

4.7.3.4 Multiple Streams Extension

When tacklingmultiple event streams, an essential problem is to compute
the total service demand for a stream set S. The total service demand for
S does not only depend on the service demand of individual streams
but also the scheduling policy of the processing core. For fixed priority
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Algorithm 6 BDA

Input: α1, D1, T
l
o f f

, Tr
o f f

, ǫ
Output: T′on, T

′
o f f

1: if Tr
o f f
− Tl

o f f
< ǫ then

2: if P
(

Tl
o f f
, f (Tl

o f f
)
)

< P
(

Tr
o f f
, f (Tr

o f f
)
)

then

3: return {T′on ← f (Tl
o f f

); T′
o f f
← Tl

o f f
}

4: else
5: return {T′on ← f (Tr

o f f
); T′

o f f
← Tr

o f f
}

6: end if
7: end if
8: ρl ← P′(Tl

o f f
, f (Tl

o f f
)) ⊲ P′ is the derivative of Pwith respective to To f f

9: ρm ← P′
(Tl

o f f
+Tr

o f f

2
, f (

Tl
o f f
+Tr

o f f

2
)
)

10: if ρl · ρm > 0 then
11: Tl

o f f
← Tm

o f f

12: else
13: Tr

o f f
← Tm

o f f

14: end if
15: recursively call BDA with the new Tl

o f f
and Tr

o f f

Algorithm 7 OPT

Input: α1, D1, T
l
o f f

, Tr
o f f

, Pmin = ∞, ǫ
Output: T′on, T

′
o f f

1: for To f f = Tl
o f f

to Tr
o f f

step ǫ do

2: exhaustively find Tmin
on by testing (4.46)

3: if P(Tmin
on , To f f ) < Pmin then

4: T′on ← Tmin
on ; T′

o f f
← To f f

5: Pmin ← P(Tmin
on , To f f )

6: end if
7: end for

scheduling, we use the same approach as in Section 4.6.1 to compute the
service demand of the event streamwith the highest priority as the service
demand for the stream set. For EDF scheduling, the total service bound is
simply

∑

Si∈S
αu
i
(∆ −Di), as we do not consider system backlog. For first-

comefirst-serve (FCFS) scheduling, the service bound is
∑

Si∈S
αu
i
(∆−Dmin),

where Dmin is the minimal relative deadline of all event streams in S.
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4.7.4 Experimental Results

This section provides simulation results for the PPM schemes derived
from the proposed BDA algorithm. All results are obtained from a
simulation host with an Intel 1.7GHz processor and 1 GB RAM.

Weuse the same streamset anddevices asdescribed inTab. 8 andTab. 9
in Section 4.5.3.1. As all PPM schemes derived from both OPT and BDA
have the same energy consumption for event processing, we compare the
average idle power defined in (4.44). We also report the computation time
required to derive PPM schemes for both BDA and OPT.

First, we show the quality of theBDAapproximation, i. e. the deviation
of a BDA solution to the optimal solution. Fig. 70 shows the normalized
average idle power of the PPM schemes derived by BDA with respect
to those by OPT. We compare cases for a single event stream as well
as for multiple event streams on four devices and different scheduling
policies. As shown in the two figures, the PPM scheme derived by BDA
reasonably approximates the optimal scheme obtained from OPT with
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Fig. 70: Normalized average idle power of PPM schemes derived by BDA with respect

to OPT with χ = 2.
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respect to different subsets of the stream set, devices, and scheduling
policies. In general, BDA derives better schemes for multiple stream
scenarios than for single stream scenarios. The reason is that with more
streams involved, the computed service demand curve regresses to amore
linear form, resulting in a closer match of the bounded delay function.
Consequently, the PPM scheme derived from the bounded delay function
better approximates the optimum.

We also investigate how the average idle power changes as the relative
deadlines of event streams vary. As our PPM schemes are time-driven,
we use an event-driven (ED) scheme as a reference, where the device
is turned to sleep mode when there is no event to be processed, and
is awaken for event processing whenever an event arrives. Fig. 71(a)
and Fig. 71(b) depict results for single and multiple stream scenarios,
respectively. As shown in these figures, BDA effectively approximates
the optimum. We also observe that the average idle power decreases as
the relative deadline increases for both single and multiple stream cases.
The reason is that for longer relative deadlines, more arrived events can be
accumulated for each activation of the device. Another observation is that
ED is effective for the single stream scenarios and short relative deadlines.
As more streams are involved and the relative deadline increases, the
PPM schemes derived from BDA outperform the ED scheme due to the
reduction of mode-switches.
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Fig. 71: Average idle power of S8 and a 10-stream set scenarios for the IBM Microdrive.

Second, we demonstrate the efficiency for deriving a minimal PPM
scheme for BDA and OPT by reporting the computation time. Fig. 72(a)
depicts the computation time for different stream combinations for a
deadline factorχ = 2, showing that BDA is about twoorders ofmagnitude
faster than OPT. Fig. 72(b) shows the relation of computation time and
the deadline factor for the 10-stream scenario. As the figure shows, the
computation time for OPT increases as the relative deadline increases,
whereas the time remains in the same order of magnitude for BDA. Note
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Fig. 72: Computation time of different scenarios for IBM Microdrive, where ǫ in OPT is

set to 0.5.

that OPT can bemuch slower for a smaller granularity of ǫ in Algorithm 7.
We can conclude that BDA is efficient.

4.8 Summary

This chapter explores system-level dynamic power management to
reduce the static power consumption for hard real-time embedded
systems. Considering both timing and backlog constraints, both offline
and online algorithms are proposed that are applicable for embedded
systems. Our offline algorithms optimally and approximately compute
periodic power management schemes. Our online algorithms adaptively
control the power mode of a system based on the actual arrival of
events, tackling multiple event streams with irregular event arrival
patterns under both earliest deadline first and fixed priority preemptive
scheduling. Extensive simulation results demonstrate the effectiveness of
our approaches.

Although we use a dual-core scenario to explain our algorithms, the
approach itself canbe applied to embedded systemswithmore computing
cores. Considering the popular state-of-art tile-based platforms, for
instance, ATMEL ShapOtto [HPB+] and Intel SCC [SCC] where each
tile consists of two computational cores, our algorithms can be directly
applied on every tile of the platforms. By the intrinsic compositionality
of RTC, correlations between different tiles can be tackled by deriving
output arrival curves of an event stream from each tile.

One might notice that the computing costs of our approach are not
negligible, especially for Algorithm EDG. These computation expenses
are caused by the expensive numerical (de)convolution for curve
operations, for instance, for the derivation of history-aware arrival
curves. To tackle this problem, fast mechanisms that are used in [LPT09],
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for instance, can be exploited to replace the expensive numerical
computation.



5
Conclusions

5.1 Main Results

The aim of this thesis is to address new challenges stemming from future
many-core technologies for real-time embedded system. We categorize
the challenges into a few major topics and provide corresponding
solutions. The main contributions are summarized in the following:

• We present a programming model, which is suitable for streaming
embedded systems. We adopt the Kahn process network for
application modeling and design a hybrid programming syntax for
the specification of a target system. To assist the design ofmany-core
embedded systems, an iterator technique is developed by which a
specified system can be arbitrarily scaled in a parametrizedmanner.
To avoid the costly communication and synchronization overhead
incurred by large scale process networks, we propose a variation of
the FIFO syntax ofKahnprocess network. Wealsodevelop aparallel
functional simulation as a proof-of-concept runtime environment
for this programming model. The presented results lead to the free
available software design toolchain in [dol].

• We investigate both analytic and simulation-based techniques for
the performance evaluation of multi/many-core embedded systems
at system level. For the analytic approach, we investigate modular
performance analysis basedon real-time calculus. We inspect timing
correlations between data streams and present new methods to
analyze correlated data streams that originate from a same source.
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For simulation-basedmethod, we develop a trace-based framework
which can estimate the performance of large-scale embedded
systems with reasonable time as well as high accuracy. Both the
analytic method and the trace-based simulation can be served as
a non-functional back-end for the aforementioned programming
model. They can be embedded into an automated design space
exploration to assist the software design of embedded systems.

• we also investigate system-level power-efficient design in particular
under performance constraints. We propose offline and online
algorithms fordynamicpowermanagement, targeting the reduction
of static power consumption under hard real-time constraints. Our
offline algorithms compute periodic power management scheme
which switches the powermode of a systemby afixedperiodduring
the execution of the system. Alternatively, our online algorithms
adaptively control the powermode of a systemduring the execution
of the system. We also develop methods to tackle multiple event
streams under both preemptive earliest-deadline-first and fixed-
priority scheduling policies.

5.2 Future Perspectives

The contributions presented in this thesis provide partial solutions for a
few topics for future many-core real-time embedded systems. Revisiting
Fig. 2 in Section 1.3, more things deserve further investigation in order to
complete the software design cycle. A few important future perspectives
are listed in the following:

• Themodernmulti-core and futuremany-core (often heterogeneous)
architecture of embedded systems is characterized by a large design
space as there is a large degree of freedom in the partitioning of
parallel application tasks, the allocation of concurrent hardware
components, their binding to application processes, and the choice
of appropriate resource allocation schemes. Because of the
overall system complexity, inspecting all design alternatives of
such a system, even analytically, is computationally prohibitive.
Therefore, design space exploration techniques are critical to
support important design decisions. The key for an efficient design
space exploration is efficient search methods. An efficient search
method requires not only fast convergence to the optimum but also
fair distribution of the search results in the case of multi-objective
optimization. To tackle this problem, evolutionary algorithmwould
be a viable candidate as a starting point.
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• The model-based design methodology opens a gap between the
system-level specifications and the actual implementation of a sys-
tem, sometimes referred to as the implementation gap [HHBT09a].
Bringing this gap is challenging because on the one hand the
semantics of a model-of-computation has to be correctly preserved
on the other hand desired performance of the complete HW/SW
system has to be achieved. In the case of performance analysis at
system level, this gap is also valid between the system specification
and the formal model of a system. Because the complexity of
modern embedded systems increases, manually deriving the formal
model of a system becomes error-prone. Therefore, an automated
synthesis is desirable to close the gap.

• The energy issue is always valid. In this thesis, we consider only dy-
namic power management to reduce the static power consumption
of a system. One interesting topic would be to combine dynamic
power management and dynamic voltage/frequency scaling to
reduce both dynamic and static power consumption.

• Last but not least, an important topic is the thermal issue. As
more computing cores are integrated into a single chip, the power
density of a chip is rapidly increased. The high temperature and
heat generated by the high power density affect vital aspects of the
multi/many-core embedded system pertaining to timing, reliability,
fault-tolerance, and packaging and cooling costs. Therefore,
thermal-aware design becomes crucial. A starting point at this
direction could be to apply the techniques in Chapter 4 to consider
thermal issue.
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