
Leveraging Synchronous Transmissions
for the Design of Real-time Wireless
Cyber-Physical Systems

Romain Jacob

sleep timek k+1

N1

N1 NBN2

N2
NB

Diss. ETH No. 26572

Diss. ETH No. 26572

Leveraging Synchronous Transmissions
for the Design of Real-time Wireless

Cyber-Physical Systems

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by
Romain Jacob

born on 03.12.1990
citizen of France

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Thiemo Voigt, co-examiner
Prof. Dr. Martina Maggio, co-examiner

2020

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 181

Romain Jacob

Leveraging Synchronous Transmissions
for the Design of Real-time Wireless

Cyber-Physical Systems

A dissertation submitted to ETH Zurich
for the degree of Doctor of Sciences

DISS. ETH NO. 26572

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Thiemo Voigt, co-examiner
Prof. Dr. Martina Maggio, co-examiner

Examination date: December 17, 2019

À mes parents, qui m’ont permi de devenir ce que je suis aujourd’hui.
À ma femme, qui m’aide à devenir meilleur chaque jour.

Abstract

Cyber-Physical Systems (CPS) refer to systems where some intelligence is
embedded into devices that interact with their environment; that is, collecting
information from the physical space, processing that information, and taking
actions that affect the environment. Automatically turning the heating on
when room temperature gets cold is one of the simplest example of CPS.
Things get more complex when applications are distributed between low-power
devices that should operate autonomously for multiple years. Then, performing
reliable and energy efficient wireless communication becomes paramount.
Moreover, applications often specify deadlines; that is, maximal tolerable delays
between the execution of distributed tasks. Systems that guarantee to meet
such deadlines are called real-time systems. Wireless CPS capable of providing
real-time guarantees while using low-power communication technology are
desirable but they are particularly challenging to design. In the past few years, a
technique known as synchronous transmissions (ST) has been shown to enable
reliable and energy efficient communication in low-power multi-hop networks.
In a nutshell, ST consists in letting multiple devices transmit a packet during the
same time interval; communication is likely to be successful if the transmissions
are well synchronized, hence the name of synchronous transmissions. ST can
be leveraged to realize any multi-hop broadcast – a one-to-all communication –
in a given time; a very interesting property for designing real-time systems.

While the potential of ST is recognized by the low-power wireless academic
community, this technique has not yet been leveraged for the design of CPS.
We identify at least three issues that limit the adoption of ST in this domain:
(i) ST is difficult to use due to stringent time synchronization requirements:
in the order of µs. There is a lack of tools to facilitate the implementation
of ST by CPS engineers, which are often not wireless communication experts.
(ii) There are only few examples showcasing the use of ST for CPS applications
and academic works based on ST tend to focus on communication rather
than applications. Convincing proof-of-concept CPS applications are missing.
(iii) The inherent variability of the wireless environment makes performance
evaluation challenging. The lack of an agreed-upon methodology hinders
experiment reproduciblility and limits the confidence in the performance claims.

Consequently, we developed support tools and methods to facilitate the
evaluation of wireless protocols and the implementation of CPS based on ST.
Furthermore, we leveraged ST to design two CPS solutions targeting different
classes of real-time applications. This dissertation presents these contributions.

ii Abstract

n In Chapter 2, we propose to design and analyze performance evaluation
experiments for networking protocols using a concrete, rational, and statistically
sound methodology. We implement this methodology in a framework called
TriScale which allows to make performance claims with quantifiable levels
of confidence. Furthermore, we leverage the TriScale framework to propose
the first formalized definition of reproducibility for networking experiments.
n Chapter 3 presents Baloo, a flexible design framework for network stacks
based on ST. Users implement their protocol through the programming
interface offered by Baloo while the framework handles the complex low-
level operations; e.g., meeting the time synchronization requirements of ST.
We show that Baloo is flexible enough to implement a wide variety of commu-
nication protocols while introducing only limited memory and energy overhead.
n Finally, we design and implement two wireless CPS based on ST:

– the Distributed Real-time Protocol (DRP) uses contracts to maximize the
flexibility of execution between distributed tasks (Chapter 4);

– Time-Triggered Wireless (TTW) statically co-schedules all task executions
and packet transfers to minimize end-to-end latency (Chapter 5).

We demonstrate that real-time guarantees can be provided in a reliable and
energy efficient manner. Furthermore, TTW supports update rates of tens of
ms, which is sufficient to perform distributed closed-loop control of inverted
pendulums – a fundamental benchmark for control and robotic applications.

With this dissertation, we showcase that ST is suitable to meet the requirements
of real-time wireless CPS. Furthermore, we facilitate the implementation of
such systems with Baloo, a design framework that makes ST accessible to
the non-expert. Finally, TriScale provides an important building block to
confidently evaluate the performance of networking protocols – an essential
building block of wireless CPS. Building on TriScale, it would be useful to define
benchmark problems representative of different classes of applications to serve
as baseline for the evaluation of future wireless CPS solutions. Ultimately, we
must transition from proof-of-concepts to real-world wireless CPS applications;
this would be further facilitated by porting Baloo to newer and more
powerful platforms, thereby pushing the limits of achievable performance levels.

Résumé

Les systèmes cyber-physiques (CPS, de l’anglais Cyber-Physical Systems)
sont des systèmes où des éléments informatiques interagissent avec leur
environnement : ils collectent certaines informations sur leur environnement,
traitent ces informations et agissent en conséquence, ce qui modifie l’état de
l’environnement. Monter automatiquement le chauffage lorsque la température
baisse est l’un des exemples les plus simples de CPS. La situation devient
plus complexe lorsque les applications sont distribuées entre des systèmes
embarqués à faible consommation d’énergie, qui sont supposés fonctionner de
façon autonome durant plusieurs années. Une communication sans-fil fiable et
à basse consommation devient alors essentielle. De plus, des délais maximum
sur l’exécution de différentes opérations sont souvent imposés. Un système
capable de garantir ces délais est appelé un système temps-réel. Des CPS sans-fil
capablent de fournir des garanties temps-réel tout en utilisant des technologies
de communication à basse consommation sont souhaitables mais difficiles à
concevoir. Ces dernières années, une technique appelée transmission synchrone
(ST, de l’anglais synchronous transmissions) a été utilisée pour communiquer
de façon fiable et à basse consommation dans les réseaux multi-sauts.
En un mot, le principe de la ST est d’autoriser différents appareils à transmettre
un paquet durant le même intervalle de temps ; la communication a de bonnes
chances de réussir si les transmissions sont suffisamment bien synchronisées.
La ST peut être utilisée pour réaliser en un temps donné n’importe quel
broadcast multi-saut, c.-à-d. une communication depuis un appareil à tous les
autres ; une propriété très intéressante pour concevoir un système temps-réel.

Bien que le potentiel de la ST soit reconnu par la communauté académique
réseaux, cette technique a été pour l’instant peu utilisée pour la conception de
CPS. Au moins trois problèmes limitent l’adoption de la ST dans ce domaine.
(i) La ST est difficile à utiliser à cause des exigences strictes de synchronisation,
de l’ordre de la µs. Il manque des outils facilitant l’usage de la ST par
des ingénieurs CPS, qui souvent ne sont pas des experts en communication.
(i) Il y a peu d’exemples illustrant l’utilisation de la ST pour des applications
CPS; les travaux académiques sur la ST sont souvent plus focalisés sur les
aspects communication que application. Il manque de preuves de concept
convaincantes démontrant l’intérêt de la ST pour des applications CPS.
(i) La variabilité inhérente de l’environnement sans-fil rend difficile l’évaluation
des performances. L’absence d’une méthode établie menace la reproductibilité
des expériences et limite la confiance dans les performances annoncées.

iv Résumé

Ainsi, nous avons développé des outils et méthodes pour faciliter l’évaluation
de protocoles sans-fil et l’implémentation de CPS utilisant la ST. De plus,
nous avons tiré parti de la ST pour concevoir deux CPS visant différentes
classes d’applications temps-réel. Cette dissertation présente ces contributions.

n Dans le chapitre 2, nous proposons de concevoir et d’analyser les
expériences d’évaluation de performance pour les protocoles réseaux en utilisant
une méthodologie concrète, rationnelle et statistiquement robuste. Nous
implémentons cette méthodologie dans un framework appelé TriScale, qui
permet d’obtenir des performances avec un niveau de confiance quantifiable. De
plus, nous tirons parti de TriScale pour proposer la première définition formelle
de reproductibilité appliquée aux expériences pour les protocoles réseaux.
n Le chapitre 3 présente Baloo, un framework pour la conception de protocoles
réseaux basés sur la ST. L’utilisateur implémente son protocole via l’interface
fournie par Baloo, qui prend en charge la gestion des opérations complexes telles
que garantir la synchronisation nécessaire pour la ST. Nous montrons que Baloo
est suffisamment flexible pour implémenter un large panel de protocoles pour
un coût minime en termes d’utilisation mémoire et de consommation d’énergie.
n Enfin, nous concevons et implémentons deux CPS sans-fil utilisant la ST:

– le Distributed Real-time Protocol (DRP) utilise le concept de contrat pour
maximiser la flexibilité entre les tâches à exécuter (Chapitre 4) ;

– Time-Triggered Wireless (TTW) planifie statiquement tous les échanges
de paquets et les exécutions de tâches de façon à minimiser la latence de
bout en bout entre les tâches (Chapitre 5).

Nous démontrons que des garanties temps-réel peuvent être fournies de façon
fiable et efficace en énergie. De plus, TTW supporte des latences de l’ordre de
dizaines de ms, ce qui est suffisant pour contrôler en boucle fermée des pendules
inversés ; une référence pour les applications de contrôle et de robotique.

Dans cette dissertation, nous montrons que la ST permet de satisfaire les
exigences des CPS sans-fil temps-réel. De plus, nous facilitons l’implémentation
de tels systèmes avec Baloo, un framework qui rend la ST accessible pour le non-
expert. Enfin, TriScale est un élément important pour améliorer la confiance
dans les performances des protocoles réseaux. À partir de TriScale, il serait utile
de définir, pour différentes classes d’applications, des problèmes de références
pour l’évaluation de futurs CPS. In fine, il est nécessaire d’évoluer depuis les
preuves de concept vers des applications de CPS sans-fil dans le monde réel.
Cela serait facilité par le portage de Baloo sur des systèmes embarqués plus
récents et plus puissants, ce qui améliorerait les performances atteignables.

Acknowledgments

First and foremost, I want to thank Prof. Thiele for giving me the opportunity
to work on my doctoral dissertation under his supervision: thank you for giving
me a chance even though I came from a different field and background, I hope
you do not regret it. I sincerely appreciated your dedication to good work, your
availability, and our many heated discussions. I am glad I could sometimes
convince you while we initially disagreed! Not often, but sometimes :-)

Next, I want to thank Thiemo and Martina for serving in my examination
committee, having reviewed my dissertation, and the interesting discussions we
had before and after. I am glad (and proud) that researchers whom I respect
both the work and the personality recommended my dissertation for graduation.

Other these four years, I have been lucky enough to collaborate with many
people from various groups and institutions: Licong, Carlo, Markus, Fabian,
Dominic, Sebastian, Ramona, Usman, Laurent; thank you all very much for your
support. In particular, I want to thank Reto: your expertise as engineer and
embedded system programmer has been invaluable for my work; you played a big
role in enabling me to turn theory into practice, to implement and run my ideas.
This was a lot of fun for me, I hope my endless questions were not too annoying
for you :-) Another set of great collaborators were the master students I had the
pleasure to supervise: Jonas, Fabian, Alex, Andreas, Antonios, Jonathan, Jan,
Anna, and Raphael. You all did terrific work! I hope you enjoyed your projects,
our discussions, and the presentation rehearsal sessions as much as I did.

Of course, my deepest gratitude goes to Marco: you offered countless hours
of your time to our projects, discussions, and late-night paper writing sessions.
You have been a great mentor and collaborator; I really learned tons from you.
I hope life will let us find ways to keep working together; it was just so great!

vi Acknowledgments

On a more personal level, I would like to thank the whole TEC group for the
fruitful time (and the not-so-fruitful-yet-funny-time) we spent together: Tonio,
Reto, Jan, Georgia, Pengcheng, Roman, Felix, Andres, Balz, Olga, Rehan,
Zimu, Philipp, Lukas, Stefan, Roman, Xiaoxi, Yun, Zhongnan, Naomi, and
Andreas. Naturally, the amazing TEC staff also plays a big role in making TEC
a nice place to work at; many thanks to Rike, Susann, and of course Beat.
A special thanks to Matthias: you were always up for a debate on science,
openness, politics, education, arts, and more; it was really nice to have someone
I could share my fantasies with – let’s call that meaningful procrastination.

Naturally, a doctorate also demands support outside of the workplace. In this
regard, my parents and family have always been amazing, physically far, but
close to the heart. Many thanks also to my friends from the ASVZ Running
and the Akademisher Alpine Clüb Zürich, who pushed me to discover and enjoy
the wonders of outdoor activities in the Swiss Alps; I fear I am now addicted.

And of course, last but certainly not least, my infinite gratitude to my wife:
your love and smile are indispensable to my life; you balance me out, share my
joys, and help me becoming a better me. And you bake, so really, I am fulfilled.

Table of Contents

Abstract i

Résumé iii

Acknowledgments v

1 Introduction 1

2 TriScale: Supporting Reproducibility in Networking 15

3 Synchronous Transmissions Made Easy with Baloo 47

4 DRP – Distributed Real-time Protocol 73

5 TTW – Time-Triggered Wireless 111

6 Conclusions and Outlook 155

Bibliography 159

Icons Credits 175

Ch
ap

te
r 1

In
tro

du
ct

io
n1

Introduction

Cyber-Physical Systems (CPS) are understood as systems where “physical and
software components are deeply intertwined, each operating on different spatial
and temporal scales, exhibiting multiple and distinct behavioral modalities, and
interacting with each other in a myriad of ways that change with context” [139].
The domains of application of CPS are very diverse: e.g., robotics, dis-
tributed monitoring, process control, power-grid management [171, 114, 149].

It is important to realize that the design of CPS encompasses three main
aspects, mapping to as many research fields, with their own purpose and goals:
The embedded hardware design aims to extend the amount of computational
resources available (e.g., processing power, memory, sensors and actuators)
while limiting the cost, form factor, and energy consumption of a device.
The communication, either wired or wireless, aims to transmit messages
between distributed devices efficiently; that is, quickly and using little energy.
Finally, the distributed system design realizes the implementation of the CPS
functions, such as e.g., remote monitoring and control of distributed processes.

The goal of the overall design is to reliably provide the specified CPS functions.
Achieving this goal relies on hardware and communication; however reaching
“perfect” communication, such as 100% packet reception rate, is not a goal
in itself; it is merely a mean to an end. What truly matters is to fulfill
the system functionality. Typically, CPS design aims to provide end-to-end
performance guarantees, such as meeting hard deadlines between the execution
of distributed tasks; for example, between the start of a sensing task to the end
of the corresponding actuation tasks – Figure 1.1. Meeting such deadlines is
called providing real-time guarantees.

The potential benefits of wireless communication for CPS applications are
well-known and include e.g., simpler deployment and maintenance, cheaper
operational costs, lighter weight [120]. Furthermore, wireless is the only

2 Chapter 1. Introduction

End-to-end performance guarantees

ActuatorSensor

Controller

Figure 1.1 The primer objective of CPS design is to provide end-to-end performance
guarantees for distributed applications. In this dissertation, we consider synchronous
transmissions, a recent development in low-power wireless communication, and
attempt to leverage the technique to provide real-time guarantees in wireless CPS.

viable option in application domains including highly mobile nodes, such as
an automated warehouse with transport robots [85] or teams of drones [133].
However, CPS applications have challenging performance requirements [18],
which are hard to fulfill with a wireless design.

1.1 Requirements of Wireless CPS

CPS applications are subject to different types of requirements, such as
the specified end-to-end latency, bandwidth, or number of devices; the
precise performance level for these requirements depends on the application
context. Generally, CPS requirements belong to one of the following classes:

Reliability A large ratio of messages are successfully transmitted wirelessly.
Adaptability The system adapts to runtime changes in resource demands.
Mobility The system supports mobile devices.
Timeliness Applications meet their deadlines, which are often specified end-

to-end. Depending on the class of systems, deadlines can be
either soft or hard [45].

Efficiency The system supports short end-to-end latency, scales in terms of
system size, and optimizes its energy and bandwidth utilization.

These requirements are mutually conflicting. For example, reducing the energy
consumption is typically achieved by keeping the radio turned off whenever
possible. However, this directly conflicts with Adaptability, as the system cannot

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.2. Traditional Wireless Networking 3

adapt reliably without exchanging some extra messages. In general, there is a
price to pay in terms of Efficiency for meeting any of the other requirements.
Hence, designing CPS consists in exploring the design space for relevant trade-
offs; that is, the design optimizes the overall system Efficiency while meeting
other application requirements.

1.2 Traditional Wireless Networking

Low-power wireless communication is a mature field of research, heavily studied
for more than two decades. A large part of the research focused on wireless
sensor networks, where low power consumption is a key requirement to enable
long-term operation of the deployed networks, with specifications up to multiple
years of operation on small batteries. Many successful applications and
deployments include monitoring of soils [81], permafrost [194], buildings [49],
or wildlife [46, 206].

In these scenarios, the distributed application often remains simple (e.g., collect
sensor readings). The main challenge is to reliably aggregate or disseminate
messages across a multi-hop network. Single-hop communication refers to
the case where a source node is in communication range from its destination.
This is a rather simple case, but the deployed networks often span large areas
whereas low-power radios can typically communicate in the range of tens of
meters. Thus, multi-hop communication is required, whereby a source node
must rely on other nodes in the network to forward its messages, hop after
hop, until the destination is reached. This is the same principle as in the
children’s game known as Chinese whispers [198]; if you ever played, you know
that the original message hardly ever reaches the end of the chain successfully.

Multi-hop communication is a collaborative task for which the nodes must be
coordinated. Indeed, if a node transmits a message while another wireless
communication is ongoing, the transmissions will interfere and they may both
fail. Furthermore, the radio frequency bands used for wireless communication
cannot be isolated. Other networks are potentially exchanging messages on the
same frequencies, which generates external interference and triggers packet
losses. As a result, traditional multi-hop communication requires complex
mechanisms for coordinating the nodes, scheduling the different transmissions
to forward all messages throughout the network, and retransmitting messages
that have been lost (e.g., due to external interference). The complexity is
further increased in mobile scenarios, where the set of neighboring nodes (which
may relay a node’s messages) changes frequently. The traditional wireless
networking approach performs multi-hop communication by carefully planning
a sequence of unicasts (i.e., one-hop transmissions), usually performed along
one or a few of the shortest paths possible between a message source and
its destination [192, 104, 134]. Intuitively, this is efficient because only the

4 Chapter 1. Introduction

necessary nodes are involved in relaying a message.

In practice however, multi-hop wireless network are sensitive to topology
changes, external interference, and traffic congestion. These limit the reliability
of communication, which has been a major obstacle to the utilization of wireless
technology in CPS: for a long time, it has been considered impossible to provide
the required level of reliability using wireless [170]. Synchronous transmissions
have fundamentally changed that.

1.3 Synchronous Transmissions

Synchronous transmissions (ST), also referred to as concurrent transmissions,
is a technique consisting in letting multiple nodes transmit a message at the
“same time” (hence the name of synchronous transmissions). A destination
node can successfully receive (one of these) synchronous transmissions thanks
to two effects taking place at the physical layer: constructive interference and
the capture effect [202, 69]. In a nutshell, ST is likely to be successful if the
incoming messages arrive at the receiving node’s antenna within a small time
offset (in the range of a few symbol periods – a few tens of µs – depending
on the physical layer and the effect considered). ST has been shown to work
both analytically [199], empirically [74], and on different physical layers, such
as IEEE 802.15.4[203], Bluetooth [21], and LoRa [195].

The use of ST in low-power communication, pioneered by Glossy [74] in 2011,
has triggered a paradigm shift in the low-power wireless community: ST can
be leveraged to implement efficient broadcast in a multi-hop network using
network-wide flooding (Figure 1.2). The flooding procedure implemented by
Glossy is illustrated in Figure 1.3. A first node initiates the flooding process.
The 1-hop neighbors of the initiator receive the message and synchronously
broadcast this same message in the next time step, which is then received by
the initiator’s 2-hop neighbors with high probability, thanks to ST. The process
repeats following the same logic: a node that receives a packet broadcasts it
again in the next time slot. Each node in the network transmits each packet
up to N times, after which the flood terminates. It has been shown in a
wide range of scenario that, with N = 3, Glossy achieves a reliability above
99.99% [74]; that is, 99.9% of the floods are successfully received by nodes
in the network. With N = 5, the average reliability reaches 99,999% [74].
Glossy achieves such high reliability by leveraging spatio-temporal redundancy.
Packets are transmitted along all possible paths; in other words, they are
implicitly routed everywhere, and therefore avoid interference sources localized
in space. In addition, having each node transmitting N times creates temporal
redundancy, thereby avoiding interference sources localized in time. Moreover,
the predictability of the operation timing in ST-based flooding can be leveraged
to perform distributed time synchronization. Glossy demonstrated that sub-µs

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.3. Synchronous Transmissions 5

A

B

Node A initiates the flood.

A

B

The 1-hop neighbors of A
synchronously repeat.

A

B
Node B receives the message.

Figure 1.2 Flooding process for a message sent from node A to node B

Tx Tx

Tx Tx

Tx Tx

Tx Tx

Rx

RxRx

RxRx

RxRx
time

1-hop receivers

Initiator

2-hop receivers

3-hop receivers

𝑇𝑓𝑙𝑜𝑜𝑑

𝑇ℎ𝑜𝑝

Figure 1.3 Glossy operation in a 3-hop network with 2 transmissions per node (N)

synchronization accuracy can be achieved in a multi-hop network composed
of tens to hundreds of nodes [74]. Since Glossy, other flooding strategies
have been proposed [115, 26, 121], but the overall principle remains the same.

The key benefit of ST is that, thanks to the provided multi-hop broadcast
primitive, the overall communication design can be dramatically simplified.
Essentially, one can abstract the underlying multi-hop topology as a virtual
single-hop network, which can scheduled like a shared bus: any node can send
a message to any other node(s) in the network in bounded time. The only
requirement is that no other node is using the “bus” at the same time. This
design, first proposed with the Low-power Wireless Bus protocol [72], has been
adapted into many different flavors (e.g., [96, 20, 156, 26]) with always a similar
concept (Figure 1.4): communication is organized in rounds, between which
nodes keep their radio turned off to save energy. Each round is composed of time
slots, which are assigned to certain nodes for communication. In each of these
slots, nodes execute a flooding primitive (e.g., Glossy) thereby preforming a
one-to-all communication. Consequently, the complexity of performing reliable
multi-hop communication (described in Section 1.2) is significantly relaxed.
Thanks to ST, multi-hop communication is reduced to the scheduling of a
single shared resource, a well-understood and relatively easy problem [45].

A priori, flooding seems to be a wasteful approach: every message sent by

6 Chapter 1. Introduction

sleep timekRounds k+1

Slots

Glossy
floods

N1

N1 NBN2

N2
NB

Figure 1.4 Thanks to synchronous-transmissions based flooding, a multi-hop
network can be abstracted and scheduled like a shared bus. Communication is
organized in rounds, composed of time slots; in each time slot, a node initiates
a flood which allows to send a message to any other node(s) in bounded time.
This mimics the operation of classical field bus, but with a wireless design.

any node will be received and forwarded by every other node in the network.
However, the simplicity and reliability of the approach actually pays off.
(i) Since the flooding logic is simple, it requires little communication overhead
for the coordination of the network; nodes mostly send application data.
(ii) The spatio-temporal redundancy embedded in the flooding process makes
it very reliable; once a flood is completed, there is hardly ever a need to further
retransmit a message in a subsequent flood. (iii) Finally, since multiple nodes
can transmit simultaneously, the flooding process completes quickly; very close
to the theoretically optimal speed [74].

Thus, with flooding approaches based on ST, the energy cost of sending
one byte of data is relatively high (since this byte will be retransmitted by
all the nodes), but the overall cost for communication remains relatively
small, thanks to the limited protocol overhead and the absence of need
for further retransmissions. The energy efficiency and reliability of ST-
based flooding has been demonstrated in many research contributions (e.g.,
[74, 112, 90]) and showcased in the EWSN Dependability Competitions [161],
where all wining solutions in the past four years (2016 to 2019) were based on
ST [68, 168, 115, 70, 121].

The downside of ST is that it is difficult to use in more complex system
designs, such as those envisioned for wireless CPS [18]. The difficulty
stems from the tight timing requirements for successful ST: to be received
reliably, transmissions must be initiated by the different nodes within few µs.
Practically, this implies that the runtime execution of a node is governed by
the communication protocol, which makes the implementation of advanced
distributed tasks complex and error prone. As a consequence, ST has
thus far been mainly used for academic endeavors and mostly in wireless
sensor network scenarios where the application tasks are typically simple and

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.4. The Dual-Processor Platform 7

non-critical. Collecting a new sensor reading is a task that can usually
tolerate being delayed by a few milliseconds while communication is ongoing.
This is generally not acceptable for wireless CPS.

1.4 The Dual-Processor Platform

In CPS, each device must perform application and communication tasks in
order to fulfill the overall system functions; this poses the challenge of
interference between tasks which contend for processor execution time. This
interference problem can be mitigated by a new breed of embedded platforms
featuring multiple processing cores, such as the NXP LPC541XX [141] or
the VF3xxR [142]. On the one hand, this helps because applications and
communication tasks can be processed in parallel, but on the other hand, it
creates contention for the access to the resources shared between the cores.
Efficient scheduling of multi-core platforms is a complex problem and a research
field of its own.

Instead of resolving contention by scheduling, another approach proposed in the
literature attempts to prevent interference by design. This principle, soberly
called the Dual-Processor Platform (DPP – [35]), consists in linking two
processors with a processor interconnect called Bolt (Figure 1.5). Bolt [175]
provides predictable asynchronous message passing between two arbitrary
processors while decoupling these processors with respect to time, power, and
clock domains. The lower part of Figure 1.5 shows a conceptual view of the
DPP, including two message queues with first-in-first-out (FIFO) semantics,
one for each direction, which are the only communication channels between the
interconnected processors. The guiding principle of Bolt design is to limit the
interference between the interconnected processors as much as possible, then
to provide formally verified bounds on the unavoidable interference remaining.
Concretely, this means that the Bolt API functions, used by the processors to
exchange messages, have hard latency bounds. The upper part of Figure 1.5
shows an early prototype of a DPP. Section 1.B illustrates other DPP designs,
integrating the concept into smaller form factors and using different processors
and targeting different application scenarios.

The DPP concept provides a predictable architecture for wireless CPS nodes.
By entirely dedicating one processor to the application tasks and another one
to wireless communication, we can decouple the timing of communication from
the timing of the applications, and therefore facilitate the integration of ST in
a CPS design. Furthermore, this helps optimizing performance: each processor
can be customized for the specific operations it has to perform. The division
of labor fosters specialization, thereby reducing the overall energy consumption
and execution time; i.e., maximizing Efficiency.

8 Chapter 1. Introduction

BOLT
API

BOLT
API

Receive Buffer

flush
read

write

Communication
Processor (CP)

Receive Buffer

flush
read

write

Application
Processor (AP)

Figure 1.5 Top: Example of a custom-built heterogeneous DPP. Bolt (in the
middle) interconnects a powerful application processor (TI MSP432 [182]) on the
left with a state-of-the-art communication processor (TI CC430 [181]) on the right.
Bottom: Conceptual view of the Bolt processor interconnect. Using the Bolt’s API
functions (write, read, and flush), the processors dedicated to application (AP)
and communication (CP) can asynchronously exchange messages with predictable
latency, while otherwise executing independently from one another.

1.5 Performance Evaluation in Networking

Over the past decade, low-power wireless communication has made significant
progress, which are not limited to ST. The overall level of performance has
increased, and it is now common to see reports of packet reception rates above
99% [74, 64, 65, 96].

The more extreme the performance level, the more critical it becomes to
confidently assess the performance. Higher levels of confidence become
necessary to argue about the differences in protocol design and quantify their
performance trade-offs. Obviously, this is import for science as it allow to
compare competing approaches. But it is also important for industry: these
new and promising technologies will never be adopted unless we can back
our performance claims confidently. In other words, others must be able to
reproduce our experiments.

In the context of wireless networking, reproducible performance evaluation is
made particularly challenging by the inherent variability of the experimental

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.5. Performance Evaluation in Networking 9

conditions: the uncontrollable dynamics of real-world networks [128, 44] and
the unsteady performance of hardware and software components [125, 37] can
cause a large variability in the experimental conditions, which makes it hard to
quantitatively compare different solutions [28].

This reproducibility challenge (sometimes even referred to a “crisis”[30]) touches
all scientific fields, and recently received significant attention in computer
science [52, 157, 29]. Yet, how to practically design and execute performance
evaluation experiments for wireless protocols remains a largely open question
which is being debated by the community [38]. The lack of a standard for
evaluating performance prevents a clear comparison of the different approaches,
and therefore hinders the adoption of the technology.

If everyone claims to be the best, it is difficult to trust anyone.

10 Chapter 1. Introduction

1.6 Thesis Outline and Contributions

In this dissertation, we attempt to leverage recent advances in the domain
of low-power wireless communication, in particular synchronous transmissions,
in order to design wireless CPS providing end-to-end real-time guarantees.
Figure 1.6 provides an overview of the contributions of the dissertation, which
are summarized below.

n We work towards more rigorous and reproducible experimental networking
research. For the first time, we go beyond simple guidelines and propose a
concrete methodology for designing networking experiments and analyzing their
data. We leverage this methodology to propose the first formalized definition of
reproducibility for networking experiments. We implemented our methodology
in a framework called TriScale, a first-of-its-kind tool that assists researchers by
streamlining the design process and automating the data analysis (Chapter 2).
n We propose and implement Baloo, a design framework for network stacks
based on synchronous transmissions (ST). Baloo significantly lowers the entry
barrier for harnessing the efficiency, reliability and mobility support of ST: users
implement their protocol through a simple yet flexible API while Baloo handles
all the complex low-level operations based on the users’ inputs (Chapter 3).
n We demonstrate for the first time that end-to-end real-time guarantees
can be obtained in wireless CPS by leveraging the efficiency and reliability
of synchronous transmissions. We propose and implement wireless real-time
protocols for two different design objectives.

– The Distributed Real-time Protocol (DRP) uses contracts to maximize
the flexibility of execution between application tasks (Chapter 4).

– Time-Triggered Wireless (TTW) statically co-schedules all task executions
and message transfers to minimize end-to-end latency (Chapter 5).

Baloo
Chapter 3

TriScale
Chapter 2

TTW
Chapter 5

DRP
Chapter 4

Low-Power Wireless
Networking

Networking
in General

Tools and
Methods

Real-time
System Designs

Figure 1.6 Overview of the chapters and contributions of this dissertation.

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.A. “Reproducible” Dissertation 11

1.A “Reproducible” Dissertation

As discussed above, one of the contribution of this dissertation attempts to
foster reproducible experimental practices in networking research (Chapter 2).
In line with this idea, we take a step forward in that direction and attempt to
make this entire dissertation “reproducible”.

n Each chapter includes an “Artifacts and Links” appendix. As the name
suggests, the reader will find there various links to supplementary materials
related to the corresponding chapter.
n In particular, whenever possible, we make publicly available all the data
presented in this dissertation, in both raw and processed form. We often provide
links to digital notebooks, which allow data visualization in a web browser
without requiring any file download.
n All the plots in this dissertation are “clickable”; that is, the plots are
hyperlinks pointing to dynamic visualizations which let the reader explore
the data (e.g., zooming-in and -out in the plot, toggle visibility of individual
traces, etc.). If you are reading a printed version of this document, you can
find the corresponding link addresses in the “Artifacts and Links” appendices.
n The source files of this dissertation (this document) are themselves publicly
available. TEX source files and figures are published on GitHub under the
Creative Commons CC-BY-4.0 license.
n The doctoral examination talk is also publicly available
B Presentation osf.io/rgkdx/
r Video youtu.be/m_jfX4SiHlw

https://creativecommons.org/licenses/by/4.0/
https://osf.io/rgkdx/
https://youtu.be/m_jfX4SiHlw

12 Chapter 1. Introduction

1.B Dual-Processor Platforms

This appendix illustrates various DPP designs developed by the Computer
Engineering Group at ETH Zurich. These research prototypes implement the
DPP concepts described in Section 1.4, using different processors and targeting
different application scenarios. Some of these designs are used in the real-world
data collection deployments reported e.g., in [194, 129].

Figure 1.7 Integrated design of the same DPP as in Figure 1.5, featuring a
TI MSP432 [182] as application processor (right) and a TI CC430 SoC [181] as
communication processor (left). Bolt sits in the middle, implemented on a TI
MSP430 core featuring 64k FRAM [183].

Figure 1.8 Redesign of the DPP concept into two separated boards, called the
DPP2 [35]. The lower board (black), called “application development board” hosts
the application processor (in this case, a TI MSP432 [182]) as well as all the I/O,
power management, debugging, and other support functions. The upper board (blue)
is called the “communication board” and hosts the communication processor (in this
case, a TI CC430 SoC [181]) and the Bolt interconnect. This platform has been
used for a prototype wireless CPS presented in [124, 123] and discussed further in
Chapter 5.

Ch
ap

te
r 1

In
tro

du
ct

io
n

1.B. Dual-Processor Platforms 13

Figure 1.9 A different DPP2 “communication board” featuring a STM32L4 ARM
core and Semtech latest generation long-range low-power LoRa transceiver with up
to +22 dB m transmit power at 868 MHz (Semtech SX1262) [164].

Figure 1.10 Battery-powered geophone sensor node based on the DPP2 design.
The lower “application development board” includes a geophone sensor, an analog
low-power threshold-based wake-up circuit, and an ARM-Cortex M4 [22] as
application processor. On top sits the same “communication board” as in Figure 1.8.
This design is currently deployed on the Hörnligrat of the Matterhorn [129].

14 Chapter 1. Introduction

Ch
ap

te
r 2

Tr
iS

ca
le

2
TriScale: A Framework Supporting

Reproducible Networking Experiments

The design of a system is not truly completed until the system’s performance
has been evaluated. This evaluation must be performed in a way that can be
reproduced by others to build confidence in the performance claims. In this
dissertation, we study the design of wireless CPS and we therefore are directly
concerned by the challenge of performing reproducible performance evaluation
of networking protocols. Thus, in this chapter, we tackle the challenge of
reproducibility in experimental networking research in general, beyond the sole
context of low-power wireless networking (the main focus of this dissertation).

Achieving reproducibility in networking experiments requires a concrete
methodology, which is currently missing. The design and data analysis of
experiments raise questions such as: How many runs to perform? How
to account for the variability of networking experiments? Despite the best
intentions, researchers often answer these questions differently, which impairs
the reproducibility of the entire evaluation. Moreover, it is currently unclear how
to formalize reproducibility, let alone assess whether performance evaluation
results are “reproducible” or not.

Claim. We contribute to make experimental networking research more rigorous
and more reproducible. For the first time, we go beyond simple guidelines
and propose a concrete methodology for designing networking experiments
and analyzing their data. We leverage this methodology to propose the first
formalized definition of reproducibility for networking experiments. Finally, we
implement our methodology in a framework called TriScale, a first-of-its-kind
tool that assists researchers by streamlining the design process and automating
the data analysis.

16 Chapter 2. TriScale: Supporting Reproducibility in Networking

Baloo
Chapter 3

TriScale
Chapter 2

TTW
Chapter 5

DRP
Chapter 4

Low-Power Wireless
Networking

Networking
in General

Tools and
Methods

Real-time
System Designs

Figure 2.1 This chapter presents TriScale, a framework supporting reproducible
evaluations in networking research in general, beyond the sole context of low-power
wireless.

The material from this chapter builds upon the work from Antonios Koskinas [109]. It
relates to the following publications.

Towards a Methodology for Experimental Evaluation in Low-Power Wireless Networking
Romain Jacob, Carlo Alberto Boano, Usman Raza, Marco Zimmerling, Lothar Thiele
CPS-IoTBench 2019. Montréal, Canada (April 2019)

TriScale: A Framework Supporting Reproducible Performance Evaluations in Networking
Romain Jacob, Marco Zimmerling, Carlo Alberto Boano,
Laurent Vanbever, Lothar Thiele
Under submission. (2020)

2.1 Problem Setting

The ability of reproducing experimental results is broadly considered a
prerequisite for establishing a scientific claim. In networking research,
reproducibility1 is a well-known issue due to the inherent variability of the
experimental conditions. On the one hand, the uncontrollable dynamics of real-
world networks [128, 44] and the unsteady performance of hardware and software
components [125, 37] can cause a large variability in the experimental condi-
tions, which makes it hard to quantitatively compare different solutions [28].
On the other hand, differences in the methodology used to design the
experiment, analyze the data, and reason about the results impair the ability to
reproduce and critically assess the validity of claims made by other scientists.

1 A variety of terminologies is used to define the different aspects of reproducible
research [147, 32]. In this dissertation, we refer to reproducibility as the ability of different
scientists to follow the steps described in published work using the same tools and obtain the
same results within the margins of experimental error. This corresponds to ACM’s definition
of replicability [15].

Ch
ap

te
r 2

Tr
iS

ca
le

2.1. Problem Setting 17

Without reproducibility, any performance comparison is debatable, at best.

Key Research Questions

Question 1 Can we improve the reproducibility of performance claims
of networking experiments?

Question 2 Can we compare protocol performance in a statistically
sound manner? In particular, how can we account for the inherent
variability of the experimental conditions?

The problem. The community has relentlessly developed testbeds [140] and
data collection frameworks [200] to minimize the variability in experimental con-
ditions. In comparison, only a few works targeted the design of a methodology
for networking evaluations [110]. In this regard, the literature is limited to best
practices and generic guidelines [29, 157, 130].

Experimental networking research suffers from the lack of a systematic
methodology specifying (i) how to concretely design an experiment, and (ii) how
to analyze and report its results. Scientists are left with many open questions
before carrying out an experiment (e.g., How many runs? How long should they
be? When should they run?) and after the data has been collected (e.g., How
to analyze and summarize the data in a concise yet accurate way?).

These open questions lead scientists to design similar experiments in different
ways, which hinders comparability even when using the same tools [38].
Furthermore, the lack of a common methodology for data analysis hampers
the ability to recreate results even when all raw data are available (as
known as computational reproducibility [117]), a standard we argue that any
scientific contribution should meet. Finally, it is unclear how to concretely
define reproducibility and assess whether a networking experiment is indeed
“reproducible”. When reproducibility is considered a prerequisite to any scientific
claim, this question cannot be left unanswered.

The challenge. We identify a set of requirements that an experimental
methodology should meet in order to address this reproducibility problem.

Generality The methodology is applicable to a wide range of metrics, evaluation
scenarios (both emulated and real-world settings), as well as network types
(both wired and wireless).

Conciseness The methodology describes the experiment design and data
analysis in a concise yet unambiguous way. This enables computational
reproducibility while minimizing the use of highly-treasured space in
research papers.

Robustness The methodology accounts for the intrinsic variability of networking

18 Chapter 2. TriScale: Supporting Reproducibility in Networking

experiments. The uncertainty is quantified and the analysis does not
presume the nature of the raw data distribution (e.g., no assumption of
normality). The uncertainty quantifies the variation in performance that
we expect to observe shall the experiments be repeated; in other words,
the statistics used are not only descriptive but also predictive.

Rationality The methodology rationalizes the experiment design and helps
answering questions such as: How many runs? How long should they
be? When should they run? This allows to minimize the number of
experiments while collecting enough data to meet the desired level of
confidence.

Our solution. This chapter presents TriScale, a framework that meets all
the above requirements for supporting researchers in the design and analysis of
networking experiments. We make the following contributions:

n We propose a methodology for designing networking experiments and
analyze their data. This methodology is grounded on non-parametric
statistics (Section 2.3), which provides performance reports that are both robust
and clear. Our methodology rationalizes the experimental design process and
quantifies the reproducibility of an experiment.
n We implement this methodology in TriScale, a framework that assists its user
in designing experiments and automating data analysis (Section 2.4).
n As a case study, we use TriScale to compare congestion-control schemes using
the Pantheon data collection framework [200] and show how TriScale improves
on the legibility and confidence in the results (Section 2.5). Additional examples
using low-power wireless protocols running on the FlockLab testbed [116]
illustrate the generality of the framework. Finally, we showcase the scalability
of TriScale: the data analysis completes within seconds for millions of data
points (Section 2.6).
n Finally, we make TriScale openly available (Section 2.A) for the networking
community to use, extend, and build upon.

TriScale does not “solve” the entire reproducibility problem; in particular, it
does not handle the data collection (see discussion in Section 2.7). TriScale
does however fill a critical gap towards reproducible networking evaluations by
providing a consistent methodology for the design of networking experiments
and the analysis of their data.

2.2 Overview of TriScale

This section provides a high-level description of TriScale. First, we illustrate
how TriScale clarifies the interpretation of the results of networking experiments

Chapter 2
TriScale

2.2.
O
verview

ofTriScale
19

FillP

FillP-Sheep

Copa
Indigo

TCP Cubic
PCC-VivaceTCP Vegas

TCP BBR

PCC-Allegro

PCC-Expr

TaoVA-100x

100 80 60 40
80

90

100

110

120

95th percentile one-way delay [ms]

Better

Average throughout [Mbit/s]

(a) Data analysis and visualization reproduced from [200]. The dots
represent the mean performance of the runs; the ellipses represent the (1−σ)
variation across runs.

TCP BBR

TCP Cubic
FillP

FillP-Sheep

Indigo
PCC-Expr

TaoVA-100x

TCP Vegas

PCC-Vivace

100 80 60 40
80

90

100

110

120

95th percentile one-way delay [ms]

Better

Average throughout [Mbit/s]

(b) Data analysis and visualization produced by TriScale. The dots represent
the KPIs of each scheme. Shaded areas represent dominance regions:
scheme A performs better than scheme B if the KPI of B lies in the
dominance region of A.

Figure 2.2 The same data may be analyzed in different ways. Figure 2.2b illustrates the output of a data analysis performed by TriScale.
Compared with Figure 2.2a, the interpretation of the results is more intuitive: The performance of each scheme is reduced to a single point
(TriScale’s KPIs), which makes the comparison between the schemes unambiguous. TriScale’s KPIs are not arbitrary: they are robust statistics
estimating, with a given confidence level, the expected performance if the experiment was repeated (see Section 2.4.2). As such, the KPIs
inherently account for the variability in the results. Experiment settings: 1 flow, 10 runs, 30 s runtime, emulated network (sample data from the
congestion-control case study Section 2.5).

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-1a
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-1b

20 Chapter 2. TriScale: Supporting Reproducibility in Networking

with a concrete example (Section 2.2.1), then we present the core principles of
TriScale and introduce the structure of the framework (Section 2.2.2).

2.2.1 Shortcomings in the Data Analysis

Let us assume you are a networking researcher discovering the field of
congestion control and trying to understand the strengths and weaknesses of
the state-of-the-art. Luckily, the community has developed useful tools such
as Pantheon [200], a data collection framework that facilitates comparisons
between different schemes.

You are especially interested in comparing the average throughput and one-
way delay of long-running full-throttle flows, i.e., stable flows whose only
throttling/limiting factor is the congestion control. You start with one flow
and evaluate performance using the MahiMahi [138] emulator (integrated in
Pantheon), following the same settings as in the original paper [200], i.e., 10 runs
of 30 seconds each. You collect data for the 17 schemes available at the time
of your experiment.

Pantheon focuses on collecting data, not on their interpretation. Yet, the
interpretation is not trivial. Consider for example the data shown in Figure 2.2a
(reproduced from [200]). Multiple questions arise:

n Can the schemes be compared? It appears that Vegas performs better than
e.g., TaoVA-100x. However, the ellipses capture the variability of results across
multiple runs: more precisely, they represent the (1− σ) variation across runs.
What can you then conclude about the actual performance of these schemes?
Can you conclude anything when ellipses are overlapping? For example, can
you say that Vegas performs better than PCC-Expr?
n What is the confidence in the comparison? Intuitively, the results of e.g.,
PCC-Allegro, which has a large variability, are “less trustworthy” than e.g.,
FillP-Sheep, for which you cannot even see the ellipse on the graph. But can
you quantify the confidence in the result?
n Is a runtime of 30 seconds (the default setting) really long enough to capture
the long-running performance of the various schemes?

These questions relate to the Robustness and Rationality requirements
mentioned in Section 2.1. The data analysis shown in Figure 2.2a leaves these
questions unanswered. Worse, the analysis may suggest wrong interpretations:
the ellipses are a two-dimensional representation of the standard deviation across
the runs, which suggests that one expects about 68% of the data points to fall
in that region. However, this is correct only if the underlying distribution is
normal, which is hardly ever true (Section 2.3).

Let us now compare the same raw data, but analyzed using TriScale
(Figure 2.2b). The points in the plot represent TriScale’s Key Performance

Ch
ap

te
r 2

Tr
iS

ca
le

2.2. Overview of TriScale 21

Indicators (KPIs). A KPI is defined as the estimate of a given percentile of
one performance metric distribution. For example: with 10 runs, we collect
10 samples of the performance metric “average throughput”. Based on these
10 samples, we can estimate some properties of the underlying distribution
of “average throughput” (i.e., the unknown distribution one would obtain with
infinitely many samples). TriScale’s KPIs estimate percentiles of that underlying
distribution with a certain confidence. In Figure 2.2b, the “average throughput”
KPI is defined as the estimate of the 25th percentile with a 75% confidence
level; in other words, the KPI has a 75% probability to correctly estimate the
25th percentile of the distribution (more details in Section 2.4.2).

Since KPIs are individual points, they unambiguously compare different
schemes. TriScale shows, for example, that Vegas is not generally better
than TaoVA-100x : each performs better in either delay or throughput
(Figure 2.2b). Furthermore, PCC-Expr performs strictly better than Vegas,
whereas Figure 2.2a suggests the opposite. The KPIs in Figure 2.2b can be
interpreted as follows: with a 75% probability, 75% of the runs will yield a
performance at least as good as the KPI value (i.e., higher throughput and
lower delay).

Observe that Copa and PCC-Allegro are no longer present in Figure 2.2b.
Indeed, TriScale first verifies whether the schemes have “converged”; that
is, it checks whether the performance metrics have reached stable values
(Section 2.4.5). These two schemes eventually converge, but it often takes
more than 30 seconds. In Figure 2.2b, the KPIs are representative of the “long-
running” performance (i.e., the performance expected if the scheme would run
“forever”) with a 95% probability.

Conclusion. Tools like Pantheon [200] support data collection, but leave to the
researcher to design the experiments and analyze the data, leading to ambiguous
interpretations and non-reproducible results. TriScale aims to fill this gap.

2.2.2 Methodological Core Principles

We now introduce how TriScale supports the design and analysis of networking
experiments. The structure and inputs/outputs of the TriScale framework are
illustrated in Figure 2.3.

Experiment design. TriScale achieves Rationality (Section 2.1) by formalizing
the evaluation definition and by streamlining the design of experiments. The
design phase starts with the definition of the evaluation objectives: for
each performance dimension, the user defines the metric, the convergence
requirements, a KPI, and a variability score. From these inputs, TriScale returns
the minimal number of runs (#runs) and series (#series) necessary to compute
the chosen KPIs and variability scores; that is, how many runs to perform. Using

22
Chapter2.

TriScale:Supporting
Reproducibility

in
Networking

metric { name : Delay
measure : mean }

conv. { expected : True
measure : mean }

KPI {percentile : 25th perc.
confidence : 75% }

score {percentile : 75th perc.
confidence : 75% }

SequelSeriesRun

Data collection

metric {name : Throughput
measure : median }

conv. {expected : True
confidence : 95%
tolerance : 5% }

KPI {percentile : 25th perc.
confidence : 75% }

var. {percentile : 75th perc.
score confidence : 75% }

Evaluation objectives

KPI [111.8, 112.5,
111.9.45, 110.6,
111.0]

var. score 1.89 Mbit/s

Performance report
(simplified)

§4.1 runtime : 30s
has_converged : True

#runs : 5
span : anytime

#series : 3

Design report
(simplified)

§4.2 §4.3

Is runtime
long enough?

‘has_converged’

How many runs? ‘#runs’

When to run? ‘span’

Compute
metrics

Compute
KPIs

Compute
variability score

Analysis

Design

(simplified)

How many series?
‘#series’

Throughput

Delay

Figure 2.3 Overview of TriScale. TriScale is a framework supporting the design and data analysis of networking experiments. TriScale assists
the user in the design phase with a systematic methodology to answer important experiment design questions such as “How many runs?” and
“How long should the runs be?”. After the data has been collected, TriScale supports the user by automating the data analysis. The framework
implements robust statistics that handle the intrinsic variability of experimental networking data and return expressive performance reports as
well as a variability score.

Ch
ap

te
r 2

Tr
iS

ca
le

2.3. Backgrounds on Statistics 23

the data from a few test runs, TriScale can assess whether the length of a run
(the runtime) is suitable; i.e., how long a run should be. Finally, TriScale uses
network profiling information to avoid time-dependent bias in the experiments;
i.e., it tells when the experiment should be carried out (the span).

In the congestion-control example presented previously, the evaluation objectives
are the following. The metrics’ measures for throughput and delay are the
median and 95th percentile, respectively. The KPIs are chosen as the 25th and
75th percentiles with 75% confidence, for which TriScale returns a minimum of
5 runs. Convergence is expected and initial tests reveal that PCC-Allegro and
Copa almost never converge within 30 s (see Section 2.5). As experiments are
carried out in emulation, there is no time dependency and therefore it does not
matter when the experiment is performed (i.e., span: anytime).

Data analysis. TriScale achieves Robustness (Section 2.1) by applying
carefully-chosen statistical methods, verifying that their hypotheses hold for
the collected data, and automating the computations. In particular, once the
experiment has been designed and the data collected, the raw data is passed to
TriScale for analysis. The analysis is divided into three timescales: runs, series,
and sequels (hence the name of TriScale):
A run is one execution of the evaluation scenario (e.g., a 30 s execution of
one congestion-control scheme). The raw data from one run are analyzed to
compute the performance metrics defined in the evaluation objectives. This
timescale leads to one number per run and per metric (Section 2.4.1).
A series is a set of runs performed closely in time (e.g., in the same day).
Multiple runs allow to account for the inherent variability in the experiments.
This timescale leads to one number per series and per metric, i.e., TriScale’s
KPIs (Section 2.4.2).
A sequel is a repetition of a series, performed at a later point in time (e.g.,
a week, a month, or a year later). TriScale uses sequels (i.e., a set of series)
to compute a variability score which captures the long-term variability of the
KPIs. This timescale leads to one number per metric (Section 2.4.3).

In the previous example, TriScale returns a pair of KPIs per scheme, which allow
to unambiguous compare the different schemes with a quantified confidence (in
this case, 75% – see Figure 2.2b).

2.3 Backgrounds on Statistics

This section briefly discusses some background on statistics which is relevant
to performance evaluation.

Descriptive and predictive statistics. A statistic is a number computed
from a data set using a mathematical formula. A statistic can always be

24 Chapter 2. TriScale: Supporting Reproducibility in Networking

calculated and provides a factual description of the underlying data. This is
referred to as a descriptive statistic. However, certain statistics have also some
inference power; that is, based on the collected data, one may infer the shape
of the underlying data distribution, which is unknown. These are referred to as
predictive statistics.

Predictions are always uncertain and often rely on certain hypotheses. If
the hypotheses hold for the collected data, then the statistic estimates some
property of the underlying distribution (e.g., mean, median, etc.) with a
quantifiable level of confidence. One can then predict the expected values
of data samples that have not been collected. One common hypothesis for
predictive statistics is that the collected data is independent and identically
distributed (i.i.d.); informally, this means that the underlying distribution of the
data does not change and that successive data samples are not correlated. It
is also common to presume the nature of the data distribution (e.g., a normal
or a Poisson distribution), which allows to make “better” predictions with less
data. It is paramount to keep in mind the hypotheses underlying a statistical
prediction.

Example 2.1. One can compute the mean µ and standard deviation σ of a
data sample. If the underlying data distribution is normal (the hypothesis),
then we can infer that about 68% of all data points (the distribution) will be
contained in µ ± σ. However, if the distribution is not normal, µ and σ
are only descriptive statistics; i.e., they do not predict anything about the
underlying data distribution.

Statistical methods. Many common statistical methods assume Gaussian
distributions (i.e., normally distributed data). However, literature reports that
experimental data is rarely normal [125, 159] and hence recommends using
non-parametric statistics; i.e., statistics that do not make any assumption on
the nature of probability distributions. Furthermore, it is important to consider
robust statistics, i.e., statistics that are not overly skewed by outliers (common
in networking data). There are two main classes of statistical approaches:
hypothesis testing and estimation. Hypothesis testing consists in formulating a
so-called null hypothesis, that the test aims to reject. Based on the collected
data, one computes the probability, called the p-value, that the null hypothesis
is correct. If the p-value is sufficiently low, the null hypothesis is rejected
and considered proven incorrect. Estimation consists in computing confidence
intervals (CIs) for a given parameter (e.g., the median of a distribution). A CI
is always associated a confidence level (e.g., a 95% CI) which is the probability
that the interval includes the true value of the parameter. For example, [a, b] is
a 95% CI for the median if the true median value is between a and b with 95%
probability (or better).

CIs are more legible than p-values: “CIs provide a mechanism for making
statistical inferences that give information in units with practical meaning” [58].

Ch
ap

te
r 2

Tr
iS

ca
le

2.4. Designing TriScale 25

Furthermore, the level of confidence of an estimation only depends on the
sample size. In other words, estimations can be used to guide the experimental
design. By setting the desired level of confidence, one defines the (minimal)
number of samples required. This is a key property that TriScale leverages.

Reproducibility is a predictive statistic. Informally, reproducibility is the
principle that the “same experiment” leads to the “same results”. Thus,
assessing reproducibility entails predicting that future data (i.e., the results
of a newly-performed experiment) will be the same as the known data (i.e.,
the results of previously conducted experiments): this is a prediction. Thus,
assessing reproducibility requires making certain hypotheses on the data. It is
hence crucial to (i) choose statistics with hypotheses compatible with actual
networking data, and to (ii) verify that the hypotheses do hold for the data that
one collects. To this end, TriScale makes use of non-parametric statistics and
verifies that their hypotheses hold for the collected samples.

2.4 Designing TriScale

In this section, we first describe the data analysis performed by TriScale and
how the analysis procedure is linked to the design of experiments (Section 2.4.1
to Section 2.4.3). We then illustrate how the formalism introduced by TriScale
allows to unambiguously describe an entire performance evaluation with only
a handful of parameters (Section 2.4.4). Thereafter, we detail the robust and
non-parametric statistical methods used by TriScale (Section 2.4.5), and discuss
how the framework assists a user in deciding the required time span for a series
of runs (Section 2.4.6). We finally show how TriScale helps assessing the
reproducibility of experiments by computing a variability score (Section 2.4.7).

2.4.1 Runs and Metrics

Metrics in TriScale evaluate a performance dimension across a run, for example,
the mean throughput achieved by a congestion-control scheme over 30 s runtime
of a full-throttle flow. Computing a metric takes the following inputs.

Inputs. n The metric measure; e.g., mean, maximum, etc.
n The convergence requirements

{ expected : true/false,
confidence : C (default: 95%),
tolerance : t (default: 5%) }

n The raw data of the run.

In general, any measure can be used. The current implementation (Section 2.6)
supports the arithmetic mean, the minimum, the maximum, and any percentile.

26 Chapter 2. TriScale: Supporting Reproducibility in Networking

10 20 30

50

60

70

80

Data
Metric
CI (Slope)
Slope
Tolerance

Time [s]

One-way delay [ms]

(a) Raw data (one-way delay) and metric data (95th percentile).

70 71 72
95th percentile of one-way delay [ms]

KPI: 72.38 ms

(b) Runs’ metric data and corresponding
KPI value.

72.5 73 73.5
One-way delay KPIs [ms]

Var. Score: 1.66 ms

(c) Series’ KPI data and corresponding
variability score.

Figure 2.4 Example plots produced by TriScale during the data analysis.
Figure 2.4a: computation of the metric (95th percentile on one-way delay) with
convergence test (confidence 95%, tolerance 1%). Figure 2.4b: computation of
the KPI (75th percentile with 75% confidence). Figure 2.4c: computation of the
variability score (25-75th percentiles with 75% confidence). Sample data from the
case study (Section 2.5) for the FillP congestion-control scheme.

Procedure. If the run is expected to converge, TriScale starts by performing
a convergence test, whose purpose is to assess whether the metric has reached
a stable value by the end of the run (and hence if it is a good estimate of
the long-running performance). To test this, TriScale computes metric values
over a sliding window of the raw data points. For each window, whose size
is fixed to half of the data points, one metric value is computed, starting
with the first half of the data. The window repeatedly slides by 100th of the
number of samples until all data points are used, leading to a set of 100 metric
values.TriScale performs its convergence test (detailed in Section 2.4.5) on the
metric values. This procedure tests the convergence of the metric (not the raw
data) and damps the impact of transient behavior on the convergence test. If
the test is passed, TriScale returns the median of metric values as run metric.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-3a
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-3b
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-3c

Ch
ap

te
r 2

Tr
iS

ca
le

2.4. Designing TriScale 27

If convergence is not expected, TriScale simply computes the run metric over
the whole raw data.

Remark 1. If there are less than 100 raw data points, TriScale reduces the
number of windows to the number of data points. TriScale (arbitrarily) sets a
minimum of 20 data points for a convergence test.

Outputs. n The result of the convergence test (if performed),
n The metric value for the run,
n Textual logs; plot of the input data and metric (Figure 2.4a).

Link to the experiment design. The computation of TriScale metrics is
linked to the definition of the runtime; i.e., how long a run should be. If
the evaluation scenario is terminating (e.g., transmit 1MB through a link),
the runtime must be long enough to complete the task. If the evaluation is
“long-running” (e.g., one-way delay in a full-throttle flow), the runtime must
be long enough for the metric (the one-way delay) to converge (convergence
test details in Section 2.4.5). TriScale can analyze preliminary experiments to
estimate the required runtime: by performing increasing long runs and test for
convergence (illustrated in Section 2.5).

2.4.2 Series and KPIs

TriScale’s key performance indicators (KPIs) evaluate performance dimensions
across a series of runs. Performing multiple runs allows to mitigate the inherent
variability of the experimental conditions. KPIs capture this variability by
estimating percentiles of the (unknown) metric distributions. Concretely, a
TriScale KPI is a one-sided CI of one percentile; e.g., a lower-bound for the
75th percentile of the delay metric estimated with a 75% confidence level.
Computing a KPI takes the following inputs.

Inputs. n The KPI definition
{ percentile : p

confidence : C }
n The metric data (computed from a series of runs).

Procedure. To compute the KPI (i.e., to compute a CI for a given percentile),
TriScale uses the Thompson’s method (Section 2.4.5), which requires the
input data to be i.i.d.. Thus, TriScale starts by performing an independence
test (Section 2.4.5) on the metric data before computing the KPI.

28 Chapter 2. TriScale: Supporting Reproducibility in Networking

Outputs. n The result of the independence test,
n The KPI value for the series of runs,
n Textual logs; plot of the metric data and corresponding KPI
(Figure 2.4b).

Link to the experiment design. The computation of TriScale KPIs is linked
to the definition of the number of runs in a series (#runs) and the series time
span (span). The minimal number of runs in a series directly follows from the
definition of the KPI; i.e., the percentile to estimate p and the desired confidence
level C. The series time span refers to the time interval used for scheduling the
runs in a series (i.e., when to run the experiment). This is important because
networks often feature time-dependent conditions; for example, there may be
systematically more cross-traffic during daytime than nighttime. Failing to
account for such dependencies may bias the results and yield wrong conclusions.
TriScale helps the experimenter handling this problem with a dedicated analysis
module called “network profiling” (described in Section 2.4.6).

2.4.3 Sequels and Variability Score

Sequels are repetitions of series of runs. TriScale’s variability score evaluates
the variations of KPI values across sequels, which enable to detect long-term
variations of KPIs and ultimately quantify the reproducibility of an experiment.

Concretely, a variability score is a two-sided CI, i.e., a symmetric pair of
percentiles. For example, a 75% confidence interval is defined by the 25-75th
percentiles of the delay KPIs from all sequels. Again, we attach a confidence
value to the confidence interval, or equivalently, to the percentiles.

Inputs. n The variability score definition
{ percentile : p (or 1-p)

confidence : C }
n The KPI values of each sequel.

Procedure. The procedure is the same as for the KPI: The Thompson’s method
requires the input data to be i.i.d. (Section 2.4.5), thus TriScale performs an
independence test on the KPI data before computing the variability score.

Outputs. n The result of the independence test,
n The variability score value for the entire sequels,
n Textual logs; plot of the KPI data and corresponding
variability score (Figure 2.4c).

Link to the experiment design. The computation of the variability score is
linked to the definition of the number of series (#series). The minimal number

Ch
ap

te
r 2

Tr
iS

ca
le

2.4. Designing TriScale 29

of series directly follows from the definition of the variability score; i.e., the
percentile to estimate p and the desired confidence level C.

2.4.4 Formalism Brings Conciseness

TriScale formalizes the definition of the evaluation objectives. For each
performance dimension, the experimenter defines a metric and convergence
requirements (Section 2.4.1), a KPI (Section 2.4.2), and a variability
score (Section 2.4.3). TriScale links these objectives with the experiment design,
resulting in four additional parameters: the number of runs per series (#runs),
the number of series (#series), the length of a run (runtime), and the time
span of a series (span).

Thanks to this formalism, TriScale meets the Conciseness requirement:
Altogether, these 12 parameters are sufficient to formally describe the entire
performance evaluation such that it can (eventually) be reproduced. In
particular, since the data analysis in TriScale is automated and deterministic,
documenting these parameters guarantees computational reproducibility (the
ability to recreate the results when all raw data are available [117]).

Table 2.1 shows a few examples of concrete parameter settings for typical
networking evaluation objectives. For example, evaluating the latency of a
real-time protocol requires high confidence levels for extreme percentiles. This
very quickly increases the number of runs that one must perform:
n at least 90 runs for estimating the 95th percentile with 99% confidence;
n at least 299 runs for estimating the 99th percentile with 95% confidence.
This illustrates that it is “easier” to increase the confidence level of an estimate
than to estimate a more extreme percentile with the same confidence level.
Note that both #runs and #series are only derived based on the definition of
the KPI and variability score; these parameters are not influenced by the runtime
or the time span of an experiment.

The second use case in Table 2.1 (bottom rows) illustrates two different
perspectives on “averages”, using delay as an example:
n If the metric is the median and the KPI the 90th percentile, one can conclude
that 90% of the runs have a median delay equal or better than the KPI value.
n If the metric is the 90th percentile and the KPI the median, one can conclude
that, in half of the runs, the 90th percentile of the delay in the run is equal or
better than the KPI.
Both are “averages” but with different meanings and different requirements in
terms of number of runs.

30
Chapter2.

TriScale:Supporting
Reproducibility

in
Networking

Table 2.1 Exemplary evaluation parameters of typical networking use cases. ∗TriScale returns the minimal number of runs (#runs) and series
(#series) based on the definition of KPI and variability score, respectively.

Evaluation Objectives Experiment Design
Use case Metric Convergence KPI Var. Score

Measure Exp. Conf. Tol. Perc. Conf. Perc. Conf. #runs∗ #series∗ runtime span

Depend on
networks and
protocols

Latency of 95 95% median 75% 59 3
real-time max True 95% 1% 95 99% 75 75% 90 5
protocol 99 95% median 90% 299 5

Average median False – – 90 95% median 90% 29 5
delay 90th perc. median 95% median 90% 5 5

Ch
ap

te
r 2

Tr
iS

ca
le

2.4. Designing TriScale 31

2.4.5 Statistics in TriScale

TriScale uses carefully chosen statistical methods. As discussed in Section 2.3,
networking performance evaluations should focus on statistics that are both
robust (i.e., that can tolerate outliers) and non-parametric (i.e., that do not
make any assumption on the nature of the data distribution). This section
describes the three statistical methods used in TriScale. We first present the
convergence test used in the computation of metrics (Section 2.4.1); This test
is based on the Theil-Sen linear regression [184, 165]. We then introduce the
computation of confidence intervals using Thompson’s method [186], which
requires the data to be i.i.d.. Thus, to verify this assumption, TriScale integrates
an independence test that we present last.

Convergence test. When an evaluation aims to estimate the “long-running”
performance (i.e., the expected performance if the run would run “forever”),
one must verify whether the runs are long enough to produce reliable estimates.

To verify this, TriScale implements a convergence test based on the Theil-Sen
linear regression [184, 165]. This approach computes the slope of the regression
line as the median of all slopes between paired values. A C% confidence interval
(CI) for the slope is defined as the interval containing the middle C% of slopes
between single pairs. TriScale convergence test is passed if the C% CI for the
regression is included in the tolerance value (± t%). To test the convergence
of a run, TriScale uses the confidence C and tolerance t parameters specified
in the evaluation objectives (Section 2.2); otherwise defaults to 95% and 5%.

Such a test is sensitive to the scale of the input data. To remove this
dependency, TriScale first maps the data to [−1, 1] using a linear transformation
then performs the convergence test on the scaled data. Hence, the convergence
test becomes dimensionless and the same tolerance value can be used for
different evaluations without introducing bias. An example of the Theil-Sen
slope (brown, solid), its CI (light orange, solid), and tolerance (black, dotted)
is shown in Figure 2.4a.

Confidence intervals. TriScale defines KPIs and variability scores based on
CIs for distribution percentiles, which can be computed using a robust and non-
parametric approach based on Thompson’s method [186], later shown to be
valid for any independent samples of a continuous distribution [59].

Let us denote by Pp, the p-th percentile of a distribution and P(X) the
probability of an event X. By definition, every data sample x is smaller than
Pp with probability p (and larger with probability 1 − p). For a sorted list of
i.i.d. samples xi (where i = 1..N), the probability that Pp lies between two
consecutive samples follows the binomial distribution [186]:

P(xk ≤ Pp ≤ xk+1) =
(
N

k

)
pk(1− p)N−k, k = 0..N (2.1)

32 Chapter 2. TriScale: Supporting Reproducibility in Networking

where we assume x0 → −∞ and xN+1 → +∞. From this result, it follows
that the probability of Pp to be larger than any sample xm (where 1 ≤ m < N)
can be computed as:

P(xm ≤ Pp) = P(xN−m+1 ≥ P1−p)

= 1−
m−1∑
k=0

(
N

k

)
pk(1− p)N−k (2.2)

Equation (2.2) provides the upper- and lower-bound required for computing of
CIs. Further, one can derive the minimum number of samples N needed to
compute a CI for any percentile p with any confidence level C [159]:

Equation (2.2) ⇒ N ≥ log(1− C)
log(1− p) (2.3)

which defines the minimum number of runs and series required based on the
definitions of the KPIs and the variability scores. If the probability distribution
is discrete, Equation (2.2) becomes an inequality (P(xm ≤ Pp) ≥ . . .) that
provides a safe (i.e., conservative) estimate of which sample xm is the bound
of the CI of interest [59].

This approach provides robust estimates for distribution percentiles and does
not make any assumption on the nature of the underlying distribution. It does,
however, require that the data samples are i.i.d.. TriScale checks whether this
hypothesis holds using an independence test, described below.

Independence test. Estimating the percentile of a distribution requires often
(if not always) that the samples are i.i.d. (Section 2.3); this is also the case
for Thompson’s method [186]. TriScale implements an empirical independence
test to verify whether the i.i.d. assumption holds.
Remark 2. Generally, independence results from the experiment design. For
networking experiments, however, it is generally not possible to guarantee
independence, e.g., the experimental conditions cannot be fully controlled and
may be correlated. In such cases, it is common to empirically check whether
the data are correlated. If the effective dependence between data samples is
sufficiently low, it is considered safe to treat the samples as i.i.d..

This independence test is applied to the metric data (resp. KPI data) before
the computation of a KPI (resp. a variability score). This poses the particular
challenge that the number of data samples may be very small (e.g., 3 or 5 KPI
values). TriScale’s independence test must therefore not be too strict.

The test is divided in two steps. First, TriScale tests whether the data appear
weakly stationary (i.e., no trend and constant autocorrelation structure [43]).
TriScale verifies this empirically using its convergence test with a confidence
of 50% and tolerance of 10%; these “loose” parameters are used to
compensate for (very) small sample sizes. Second, TriScale computes the

Ch
ap

te
r 2

Tr
iS

ca
le

2.4. Designing TriScale 33

0 100 200

0

0.5

1

95% CI on i.i.d. test
Sample Autocor. Coefficients

Lag

Figure 2.5 Autocorrelation plot for the wireless link quality on FlockLab, based on
the raw data collected by the testbed maintainers [100] (data from August 2019).
The dataset contains one test every two hours. The first peak at lag 12 (i.e., 24h)
reveals the daily seasonal component. The data also show another at lag 84; which
corresponds to one week. Indeed, there is less interference in the weekends than on
weekdays: this creates a weekly seasonal component.

sample autocorrelation coefficients, denoted by ρ̂k, which measure the linear
dependency between values of a weakly stationary data series. A series of size
N is i.i.d. with 95% probability if |ρ̂k| ≤ 1.95/

√
N for k ≥ 1 [43].

What if the tests fail? The experimenter is responsible for designing the
evaluation in such a way that the collected data will (likely) pass the tests.
TriScale facilitates this by guiding the choice of runtime to pass the convergence
test and informing about any network time dependencies (Section 2.4.6) to pass
the independence test. Yet, the data may still be correlated or unstable, leading
to failing tests (see examples in Section 2.5). Even in such cases, the data
still contain useful information. TriScale metrics, KPIs, or variability scores can
be computed, however since the corresponding hypotheses do not hold, the
statistics are only descriptive (Section 2.3); they do not predict the expected
performance, and in particular they cannot (and should not be used to) assess
the reproducibility of the experiment.

2.4.6 Network Profiling

TriScale assists the user in deciding on the time span for a series of runs, i.e.,
when should the run be performed in a series. This is important to avoid biasing
the evaluation results with time dependencies in the experimental conditions.
Indeed, it is common for real-world networks to exhibit periodic patterns. For
example, there may be a lot more cross-traffic (i.e., interference) at specific

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-4

34 Chapter 2. TriScale: Supporting Reproducibility in Networking

times. In the statistics literature, these patterns are called seasonal components.
Neglecting these may result in biased experiments leading to wrong conclusions,
as illustrated in the case study below.

Case study: low-power wireless. We run a simple evaluation of Glossy [74],
a low-power wireless protocol based on synchronous transmissions (Section 1.3).
Glossy includes as parameter the number of retransmissions of a packet, called
N . We investigate the impact of two values of N on the reliability of Glossy,
measured as the packet reception ratio (PRR). We define our KPI as the median
with 95% confidence level. Refer to Section 2.A for the complete case study.

We collect data using the FlockLab testbed [116]. This testbed is located
in an office building, where we expect more interference during daytime than
nighttime. Thus, we schedule a series of 24 runs randomly within one day.
n N = 1 leads to a PRR of 88%,
n N = 2 leads to a PRR of 84%.
In other words, it appears that doing two retransmissions (instead of one)
reduces reliability.

The experiment leads to this (incorrect) conclusion because we have neglected
a second seasonal component of the FlockLab testbed: there is a weekly time
dependence, revealed by Figure 2.5. To account for this dependency, one must
schedule runs with a span of at least one week. When comparing again the
performance of Glossy but with tests spanning over a week
n N = 1 leads to a PRR of 80%,
n N = 2 leads to a PRR of 88%,
which better matches our knowledge about the performance of Glossy.

Conclusion. This simple example illustrates that using a high confidence
level is not enough to avoid drawing wrong conclusions due to the variability
in the experimental conditions. On a real network, short-term variations are
unpredictable and (often) unavoidable. This is why it is important to perform
multiple runs in a series: it increases the chances to do the experiment in the
whole range of favorable to unfavorable conditions.

However, we illustrated that systematic patterns are also present. In other
words, there are times where there is consistently more or less interference.
Knowing about these dependencies is important to ensure fairness in the
comparison between protocols, and enable reproducibility of the evaluations.
The series span must be long enough such that it does not matter when the
series actually starts (e.g., a weekend or a weekday)

TriScale integrates a network profiling function that analyzes link quality data
(e.g., available at [100]) and searches for seasonal components in the link
quality data. This helps the experimenter detecting (sometimes unexpected)
time dependencies, thus choosing a suitable time span for series of runs.

Ch
ap

te
r 2

Tr
iS

ca
le

2.5. TriScale in Action 35

2.4.7 Assessing Reproducibility

Reproducibility refers to the ability of obtaining “the same” results when
performing “the same” experiment. In statistics, such property can be
investigated using equivalence testing [111], which checks whether the values of
some parameter of interest (e.g., the median) obtained for different samples are
sufficiently close to be considered “the same”. Unfortunately, there is no general
way to define “sufficiently close”; one must define in advance a threshold for
the equivalence test based on expertise. Then, how to assess reproducibility
of networking experiments? How to design a “reproducibility test” that fairly
adapts to different networking contexts and different metrics? After some failed
attempts, we conclude that defining a generic threshold for equivalence testing
in networking might not be possible. But it may not be necessary.

We argue that the most important is to confidently estimate the variability of the
results, which TriScale computes with its variability score (Section 2.4.3). This
score quantifies reproducibility : the larger the score, the less reproducible the
results are. Shall a binary cut between “reproducible” and “not reproducible”
be desired, a threshold can be set based on the variability score; e.g., “Results
are said reproducible when the variability score is less than 20Mbit/s.”. Such a
threshold can only be context-specific; thus, deciding on threshold values relates
more to benchmarking and therefore goes beyond the scope of TriScale (see
discussion in Section 2.7).

2.5 TriScale in Action

This section continues the case study introduced in Section 2.2.1. We compare
the performance of 17 congestion-control schemes using Pantheon [200].
We evaluate the throughput and one-way delay of long-running full-throttle
flows, i.e., stable flows whose only throttling/limiting factor is the congestion
control. For a fair comparison between the schemes, we use the MahiMahi
emulator [138] (integrated in Pantheon). We focus on a single flow scenario
and use the calibrated path from AWS California to Mexico.2 The complete
case study is available as complementary materials (Section 2.A); we present
here only a fraction of it and focus on showcasing how TriScale avoids certain
shortcomings in the experiment design and analysis. Finally, we illustrate how
to quantify performance variability: a prerequisite for assessing reproducibility
(Section 2.4.7).

Convergence time. The first step in the design of an evaluation is to decide
how long the runs should be. Since all schemes are different, it is hard to know
a priori the minimum runtime for which the various schemes actually converge.

2pantheon.stanford.edu/result/6539/

https://pantheon.stanford.edu/result/6539/

36 Chapter 2. TriScale: Supporting Reproducibility in Networking

4 6 8 10 12 14
0

10

20
Data
Metric
CI (Slope)
Slope
Tolerance

Time [s]

Average Throughput [Mbit/s]

(a) 10 s runtime

5 10 15 20 25 30 35
0

20

40

60

80

Time [s]

Average Throughput [Mbit/s]

(b) 30 s runtime

0 10 20 30 40 50 60
0

50

100

Time [s]

Average Throughput [Mbit/s]

(c) 60 s runtime

Figure 2.6 Egress throughput of LEDBAT in MahiMahi, calibrated to the real
path from AWS California to Mexico [200]. A runtime of 30 s is clearly not sufficient
for LEDBAT’s throughput to converge (Figure 2.6b). The scheme does converge
eventually (Figure 2.6c), but even with 60 s runtime, TriScale’s convergence test
fails: the impact of the start-up phase is too important. Two possible solutions are
to (i) increase the runtime or (ii) prune the start-up time from the raw data.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-4
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-4
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-4

Ch
ap

te
r 2

Tr
iS

ca
le

2.5. TriScale in Action 37

−0.5

0

0.5

1
95% CI on i.i.d. test
Sample Autocor. Coefficients

0 2 4 6 8 10

−0.5

0

0.5

1

Lag

Figure 2.7 Autocorrelation coefficients for two exemplary series of WebRTC. The
upper series passes the autocorrelation test, whereas the lower series does not: this
is an artifact induced by the small number of samples (here: 10 samples).
We test runtimes from 10 to 60 s and check whether the 17 congestion-control
schemes pass TriScale’s convergence test (Section 2.4.5). With a runtime of
30 s, only twelve schemes often pass the test; others (Verus, PCC-Allegro, Copa,
and QUIC Cubic) converge in less than half the runs. Furthermore, LEDBAT
never pass the test, even with a runtime of 60 s. The reason for this is shown
in Figure 2.6: the inner working of the protocol causes the throughput to
ramp-up in the first 38 s of runtime and then converge to about 92Mbit/s. If
one uses 30 s runtime without checking for convergence, the computed average
throughput is about 40Mbit/s, which is a wrong estimation of LEDBAT “long-
running” throughput. By performing the convergence test, TriScale hints the
experimenter about the need to either increase the runtime, or prune the start-
up time in the raw data.

Independence tests. The computation of TriScale’s KPIs and variability
scores requires the samples to be i.i.d. (Section 2.4.5). However, the
number of runs and series performed in an evaluation tends to be small
(as experiments are both time- and resource-consuming), which limits the
significance of the independence test. Figure 2.7 illustrates this problem: it
shows the autocorrelation plot for two series for WebRTC. The autocorrelation
coefficients must be in the shaded gray area for the test to pass. In this case,
the upper series passes the test, whereas the lower one does not. However,
there is no clear difference in the correlation structure of the two series: the
lower series does not seem significantly more correlated than the upper one. All
other series of WebRTC pass the independence test, which hints that the failed
series is merely an artifact induced by the small number of runs in the series
(in this example, 10 runs per series). In such cases, it is important that the

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-5
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-5

38 Chapter 2. TriScale: Supporting Reproducibility in Networking

experimenter critically assesses TriScale’s results and increase (when necessary)
the number of runs or series to improve the significance of results – or overrule
the test (discussion in Section 2.7).

Evaluation in emulation. Using the MahiMahi emulator for the evaluation
is expected to be the most favorable setting to test the reproducibility of the
congestion-control schemes, since it allows to recreate the exact same test
conditions and therefore improves the comparability between the runs. This
however has an unexpected side-effect: while they appear to have a very stable
behavior, TCP BBR and TCP Cubic would always fail the independence test.
Actually, these two schemes are designed to use all the available bandwidth
and, since MahiMahi artificially sets the latter to a fixed value, the two schemes
always reach the exact same throughput. This leads to the exact same metric
values; in other words, the throughput is perfectly correlated across runs.
Naturally, this is an artifact of the experiment: the independence test will always
fail if all data samples have the same value.

TriScale computes the KPIs and variability scores even if the independence test
fails. The experimenter is responsible to judge whether there is indeed true
correlation in the data, or if one can overrule the test result and proceed with
the analysis. In the example of TCP BBR and TCP Cubic, one can proceed.

KPIs. We illustrated in Section 2.2.1 how TriScale’s KPIs allow to
unambiguously compare the performance of different schemes. Figure 2.2b
shows the KPI for the average throughput (resp. one-way delay), defined as
the estimate of the 25th (resp. 75th) percentile with a 75% confidence level for
10 runs with 30 s runtime. We use 30 s to compare with the Pantheon results
shown in Figure 2.2a). However, five schemes fail to converge sufficiently often
and thus do not appear in Figure 2.2b.

Variability scores. Although TriScale’s KPIs unambiguously compare the
performance of diverse schemes, they only consider one series of runs, which
does not indicate how reproducible the results actually are. TriScale investigates
reproducibility using sequels and quantifies the expected variability in the KPI
values with a variability score (Section 2.4.3). In this case study, we define
the variability score as the difference between the 75th and 25th percentiles,
estimated with 75% confidence. We compute the variability scores for our two
performance dimensions (average throughput and one-way delay – Figure 2.8).
The scores can be interpreted as follows: with 75% probability, the variability
scores (orange bars) give the magnitude of variation expected (for infinitely
many series) in the middle 50% of KPI values. Hence the variability score
quantifies reproducibility: the larger the score, the less reproducible the results.

Remark 3. TriScale’s variability scores are absolute values with units (e.g., in
Mbit/s). Arguably, it may be useful to use relative scores (in percentages) to
compare the scores of different protocols.

Ch
ap

te
r 2

Tr
iS

ca
le

2.5. TriScale in Action 39

0.00 0.00 0.00 0.09 0.12 0.39
1.12

1.89

3.05 3.30 3.67

5.66

TCP BBR

TCP Cubic

SCReAM
WebRTC

Sprout
PCC-Vivace

FillP-Sheep

FillP Indigo
TaoVA-100x

PCC-Expr

TCP Vegas

0

2

4

6

0.05 0.08 0.08 0.11 0.13 0.23
0.60 0.84 1.05

1.67
2.19

3.48

WebRTC
Sprout

TaoVA-100x

Indigo
PCC-Vivace

TCP Cubic

PCC-Expr

SCReAM
FillP-Sheep

FillP TCP BBR

TCP Vegas

0

1

2

3

4

[M
Bi

t/
s

]
[m

s
]

Throughput

One-way delay

Figure 2.8 Variability scores computed by TriScale for the performance dimensions
throughput and delay. In this example, the variability scores are computed as
the 25th to 75th percentile interval estimated with 75% confidence. From the
variability scores, the user gets a quantification, with a 75% probability, of the range
of variation in the KPI values for 50% of the series. The variability scores hence
quantify reproducibility: the larger the scores, the less reproducible the results are.

Conclusion. This case study only considers emulation and one emulated path.
As such, it does not aim to fully evaluate the performance of the different
congestion-control schemes. Rather, it illustrates how TriScale may be used for
an actual performance evaluation and the importance of carefully choosing the
parameters of an experiment; such as the runtime (Figure 2.6). We highlight
two important takeaways:

n It is important to critically consider TriScale’s results: the tests are
intentionally conservatives to limit the risk of false positives (e.g., not detecting
correlation in the data),

n It is useful to collect more samples than strictly necessary: it improves the
significance of the tests and therefore limits the risk of false negatives.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb#Figure-6

40 Chapter 2. TriScale: Supporting Reproducibility in Networking

2.6 Implementation and Scalability of TriScale

2.6.1 Python Package

We implement TriScale in Python (≈1000 lines of code) and make it open
source (Section 2.A). TriScale’s API contains one function for each timescale
of the data analysis; i.e., the computation of metrics, KPIs, and variability
scores. Docstrings contain detailed information about the functions usage.
Our implementation relies on standard scientific packages such as NumPy [5],
Pandas [8], SciPy [9]. As the use of non-parametric statistics is not (yet)
widespread, we had to implement some of the statistics used by TriScale (in
particular the computation of CI using Thompson’s method). We hope to see
these functions integrated in a future release of SciPy.

It is important to produce useful visualizations to support the experimenter.
Thus, we paid a particular attention to the plotting functions in TriScale.
TriScale uses Plotly [7] to create interactive plots: one can zoom in and out
in the plots, toggle the visibility of individual traces, read data point values
on hover, etc. All the plots in this chapter are produced using TriScale and
are “clickable”: figures are hyperlinks leading to dynamic versions of the plots.

2.6.2 Scalability of TriScale Data Analysis

We evaluate the scalability of TriScale with respect to computation time; i.e.,
how does the data analysis time scales with increasing input sizes. We only
consider the time required for performing computations; other outputs such
as logs and plots (e.g., Figure 2.4a) are excluded. The complete scalability
evaluation (including data, plots, and discussions) is available as complementary
materials (Section 2.A). Generally, the computation time for the data analysis
in TriScale scales linearly with the input size (Table 2.2): it is fast (less than
1 s for one million data points on a commodity laptop) and overall negligible
compared to the data collection time.

2.7 Discussion, Limitations, and Future Work

Data collection. TriScale is not responsible for the execution of networking
experiments, i.e., it does not perform the data collection (Section 2.2).
Frameworks specialized in data collection, such as Pantheon [200], already
exist and TriScale can be integrated into these frameworks to create a fully-
automated experimentation chain. Other examples include low-power wireless
testbeds [161, 160, 116] and networking facilities [31, 63, 140], which could be
combined with TriScale to build full-fledged benchmarking infrastructures [38].

Ch
ap

te
r 2

Tr
iS

ca
le

2.7. Discussion, Limitations, and Future Work 41

Table 2.2 Scalability evaluation. TriScale data analysis is fast and scales well
with increasing input sizes. The most time-consuming element is the convergence
test (Section 2.4.5) which is performed before the computation of metrics. Still, it
generally takes less than one second for inputs (i.e., the number of raw measurements
in a run) of up to one million data points.

Computation of Input size Execution time (approx.)
1000 20ms

Metrics 10’000 50ms
1’000’000 1 s

KPIs & 100 10ms
Variability scores 1000 100ms

Human-in-the-loop. TriScale automates the data analysis and implements
tests that verify whether the required hypotheses hold. However, these tests
are not perfect: the confidence will never be 100%. Moreover, the significance of
such tests is always low when the sample sizes are small; e.g., the independence
test may flag correlated data when “correlation” is only an unlucky random
variation (Figure 2.7). TriScale raises flags to avoid missing clear issues (e.g.,
LEDBAT convergence time – Figure 2.6), but the experimenter must always
critically assess TriScale results and potentially overrule them; e.g., neglecting
the correlation of perfect throughput for TCP BBR and TCP Cubic.

Ranking solutions. TriScale compares performance, but it does not rank. The
results of a networking evaluation are always relative to a specific network and
evaluation scenario. It is not trivial to generalize and claim that a solution A
is better than a solution B. This problem relates to benchmarking and multi-
objective optimization, which goes beyond the scope of TriScale.

Community guidelines. TriScale formalizes evaluation objectives (Sec-
tion 2.4.4), but it does not dictate which parameters to use. Similarly, TriScale
quantifies the variability of an experiment (Section 2.4.3), but it does not
conclude whether the experiment is reproducible (Section 2.4.7). TriScale
provides a framework to describe evaluations and analyze the data in a consistent
and statistically sound manner. It is now up to the networking communities to
set their own standards, parameters to use, and acceptable requirements; similar
to what is already done in other disciplines [79]).

42 Chapter 2. TriScale: Supporting Reproducibility in Networking

2.8 Related Work

The reproducibility of experiments and comparability of results are cornerstones
of the scientific method. In recent years, several studies have highlighted
the inability of scientists from various disciplines to reproduce their own
experimental results [30, 146], often due to sloppy research protocols and faulty
statistical analysis [39, 37, 159]. This problem has also been recognized within
computer science [52, 188], where experiments are seldom reproducible and
artifacts rarely shared.

Promoting reproducibility. To address this “reproducibility crisis” [30],
several efforts aiming to incentivize a rigorous experimentation have gained
momentum in computer science, including e.g., ACM’s badging system
for publications [15]. Especially in the networking community – challenged by
the need to carry out experiments on dynamic and uncontrollable conditions [44,
128] – several workshops [28, 82, 41], surveys [77], guidelines [29, 157,
110, 130], as well as teaching activities [201] have raised awareness on
the reproducibility problem and promoted better experimentation practices.
This large body of work mostly offers qualitative statements on how an
experiment should be performed and documented. Such qualitative statements
emphasize for example the need to carefully choose when and how often to
sample data [29], or suggest which methodology to adopt during performance
evaluations [110]. However, there is no guarantee that following these
recommendations leads to reproducible results, nor is there a concrete way
to assess whether an experiment can be considered reproducible.

None of the existing works provide scientists with quantitative answers about
how to concretely perform an experiment, e.g., how many runs should be
completed and how long should they be. TriScale fills this gap by providing
quantitative answers to these questions with an experimental methodology
grounded on robust non-parametric statistics. TriScale also allows to assess and
compare the reproducibility of experimental results by computing unambiguous
performance indicators and variability scores.

Supporting reproducibility. A large number of experimental facilities and
tools have been developed in recent years to aid scientists and practitioners
in carrying out reproducible networking studies [140]. Testbeds such as
EmuLab [196] and FlexLab [151], as well as emulation tools such as MiniNet [87]
and MahiMahi [138], enable the creation of artificial network conditions using
a given specification or passively-observed traffic. Emulated conditions offer
a more controlled environment than experiments faced with real-world traffic
(e.g., by transmitting data over the Internet [51, 34], cloud [63, 40], or
wireless interfaces [16, 80, 126]). Still, they suffer from performance variability
caused by the underlying hardware and software components, which hampers
reproducibility [125]. To overcome these problems, several solutions have
been proposed [66]: e.g., revisiting operating system libraries [178], using

Ch
ap

te
r 2

Tr
iS

ca
le

2.9. Summary 43

virtualization [87, 103, 108], adaptable profiles [152], and fault patterns [1].
Other tools have been developed to support mobility experiments [50, 31],
maximize the repeatability of interference generation [162], and enable
researchers to consistently evaluate congestion control schemes or transport
protocols [200]. Other works model the execution of experiments, and
uses such models to quantify the similarity between different runs [166, 75].

While all aforementioned tools aim to improve reproducibility during the
experiments, TriScale assists researchers before and after their execution. It
does so by informing about the number and length of runs necessary to obtain
a sufficient statistical significance, as well as by computing a score quantifying
the variability of the results. Hence, TriScale complements the existing body
of literature promoting and enhancing reproducibility in networking research.

2.9 Summary

Establishing a consistent methodology for the design of networking experiments
and the analysis of their data is a crucial step towards a more rigorous and
reproducible scientific activity. This chapter presented TriScale, the first
concrete proposal in that direction.

TriScale implements a methodology grounded on non-parametric statistics into
a framework that assists scientists in designing experiments and automating
the data analysis. TriScale ultimately improves the legibility of results and
helps quantifying the reproducibility of experiments, as highlighted in the
case studies presented throughout the chapter. We expect TriScale’s open
availability to actively encourage its use by the networking community and
promote better experimentation practices in the short term. The quest towards
highly-reproducible networking experiments remains open, but we believe that
TriScale represents an important stepping stone towards an accepted standard
for experimental evaluations in networking.

44 Chapter 2. TriScale: Supporting Reproducibility in Networking

2.A Appendix – Artifacts and Links

2.A.1 Related Publications

Towards a Methodology for Experimental Evaluation
in Low-Power Wireless Networking
Romain Jacob, Carlo Alberto Boano, Usman Raza,
Marco Zimmerling, Lothar Thiele
CPS-IoTBench 2019. Montréal, Canada (April 2019)

q Paper 10.3929/ethz-b-000325096
B Presentation 10.3929/ethz-b-000349885
r Video youtu.be/XEwCqmU9Zzo

TriScale: A Framework Supporting Reproducible
Performance Evaluations in Networking
Romain Jacob, Marco Zimmerling, Carlo Alberto Boano,
Laurent Vanbever, Lothar Thiele
Under submission. (2020)

q Paper 10.5281/zenodo.3464273

Is low-power wireless networking a reproducible science?
Antonios Koskinas
Semester Thesis. ETH Zurich (January 2019)

� Thesis 10.3929/ethz-b-000324251

2.A.2 Complementary Materials

Complementary materials for this chapters are available on GitHub, together
with the dissertation source files. For all links below, replace <root> by
“github.com/romain-jacob/doctoral-thesis/blob/master”

< TEX sources <root>/20_TriScale/
^ Figures

— Static <root>/20_TriScale/Figures/
— Dynamic <root>/notebooks/triscale_plots.ipynb

! Case studies
— Congestion control <root>/notebooks/triscale_pantheon.ipynb
— Low-power Wireless <root>/notebooks/triscale_flocklab.ipynb
— Scalability <root>/notebooks/triscale_scalability.ipynb

https://doi.org/10.3929/ethz-b-000325096
https://doi.org/10.3929/ethz-b-000349885
https://youtu.be/XEwCqmU9Zzo
https://doi.org/10.5281/zenodo.3464273
https://doi.org/10.3929/ethz-b-000324251
https://github.com/romain-jacob/doctoral-thesis/blob/master/20_TriScale/
https://github.com/romain-jacob/doctoral-thesis/blob/master/20_TriScale/Figures/
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_plots.ipynb
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_pantheon.ipynb
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_flocklab.ipynb
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/triscale_scalability.ipynb

Ch
ap

te
r 2

Tr
iS

ca
le

2.A. Appendix – Artifacts and Links 45

/ TriScale source code
— Latest release 10.5281/zenodo.3451417
— “This-version” release 10.5281/zenodo.3458116

® Experiment data 10.5281/zenodo.3451417

https://doi.org/10.5281/zenodo.3451417
https://doi.org/10.5281/zenodo.3458116
https://doi.org/10.5281/zenodo.3451417

46 Chapter 2. TriScale: Supporting Reproducibility in Networking

Ch
ap

te
r 3

Ba
lo

o

3
Synchronous Transmissions Made Easy:
Design Your Network Stack with Baloo

In the previous chapter, we discussed how to design and analyze networking
experiments in general (Chapter 2). In the rest of this dissertation, we will
focus on low-power wireless networking, and more specifically on a technique
called synchronous transmissions.

Synchronous transmissions (ST) refers to a wireless approach for broadcasting
messages in a multi-hop network using flooding. This is made efficient by letting
multiple transmitters send the same packet at the same time; hence the name
of synchronous transmissions.1 ST has been proven highly reliable and energy
efficient for low-power wireless networks. Furthermore, ST supports mobility by
design thanks to the stateless logic of flooding-based communication.

Unfortunately, it is difficult to guarantee that multiple nodes actually send at the
“same time”. The required precision on synchronization depends, e.g., on the
physical layer speed, the radio modulation speed or the encoding scheme. For
typical low-power wireless motes available today, the synchronization must be
in the order of µs for ST to work reliably. Achieving such time synchronization
requires to precisely control the timing of radio operations, which involves
careful timer settings and interrupt handling. The integration of such “low-
level software” within a entire network stack is challenging. Consequently, the
adoption and development of ST-based network stacks has been hindered by
the lack of usable and flexible design tools.

Thus, in this chapter, we study the feasibility of a design tool that would
facilitate the development of network stacks based on ST (Figure 3.1); typically,
such a tool would be useful for implementing our real-time protocol stacks (see
Chapter 4 and Chapter 5).

1The name concurrent transmissions is also found in the literature.

48 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Baloo
Chapter 3

TriScale
Chapter 2

TTW
Chapter 5

DRP
Chapter 4

Low-Power Wireless
Networking

Networking
in General

Tools and
Methods

Real-time
System Designs

Figure 3.1 Positioning of this chapter in the dissertation. This chapter presents
Baloo, a design framework facilitating the implementation of low-power wireless
networking protocols based on synchronous transmissions.

Claim. We propose and implement Baloo, a design framework for network
stacks based on synchronous transmissions. Baloo significantly lowers the
entry barrier for harnessing the efficiency, reliability and mobility support of
synchronous transmissions: users implement their protocol through a simple
yet flexible API while Baloo handles all the complex low-level operations based
on the users’ inputs.

Baloo is flexible enough to implement a wide variety of network layer protocols,
with only limited memory and energy overhead.

The material from this chapter builds upon the work from Jonas Bächli [25]. It relates
to the following publication.

Synchronous Transmissions Made Easy: Design Your Network Stack with Baloo
Romain Jacob, Jonas Bächli, Reto Da Forno, Lothar Thiele
EWSN 2019. Beijung, China (February 2019)

3.1 Prolem Setting

Synchronous Transmissions (ST) is an increasingly used wireless communication
technology for low-power multi-hop networks. Popularized by Glossy [74] in
2011, it has been proven to be highly reliable and energy efficient, as illustrated
by the EWSN Dependability Competition [161], where all wining solutions
were based on ST [68, 168, 115, 70, 121] in the past four years (2016 to 2019).

A ST primitive refers to a protocol that efficiently realizes broadcast (i.e., any-
to-all communication) in bounded time, usually relying on flooding. Flooding
is a communication strategy that realizes broadcast by having all receivers of a
packet retransmit this same packet to all their neighbours; the packet is thus

Ch
ap

te
r 3

Ba
lo

o

3.1. Prolem Setting 49

“flooded” through the whole network. ST makes flooding energy and time
efficient by letting multiple wireless nodes transmit the packet synchronously,
hence the name of Synchronous Transmissions. The successful reception of
the packet can be achieved if the transmitters are tightly synchronized, thanks
to constructive interference and the capture effect [202]. The synchronization
requirements vary from sub-µs to tens of µs, depending on the platform and
modulation scheme [202]. Such a broadcast primitive simplifies the design of
network layer protocols: The underlying multi-hop network can be abstracted
as a virtual single-hop network and thus be scheduled like a shared bus [72].
One may refer to Chapter 1 for more details on ST.

Since Glossy [74], many flavours of ST primitives have been proposed to improve
performance in terms of reliability, latency, and energy consumption. To be
more resilient to strong interference, Robust Flooding [115] is a primitive that
modifies the RX-TX sequence from the original Glossy, whereas RedFixHop [67]
uses hardware acknowledgements to minimize the number of retransmissions
required. Instead, some primitives aim to minimize latency for specific traffic
patterns. For example, Chaos [112] lets all nodes modify the packet being
flooded to quickly aggregate information (e.g., the max value of all sensor
readings) or efficiently perform all-to-all data sharing to achieve distributed
consensus [20]. Codecast [131] also targets many-to-many exchange for a larger
amount of data. Pando [60] is another primitive focused on high throughput,
which uses fountain code and packet pipelining for efficient data dissemination.
Syncast [132] aims to reduce the radio on time required to save energy, while
Less is More (LiM) [207] is a primitive that reduces energy consumption using
learning to avoid unnecessary retransmissions during flooding.

All these primitives share the same drawback: Successful ST requires low-level
control of timers and radio events in order to meet ST tight synchronization
requirements (the order of µs). This degree of accuracy is difficult to achieve
as it requires a detailed knowledge of the underlying hardware, low-level control
of the radio operations, and a very careful management of software delays.

As a result, designing a network stack based on ST is a complex and time
consuming task, for which only few solutions have been proposed. One of the
first was the Low-power Wireless Bus (LWB) [72], which tries to flexibly support
all kinds of traffic patterns in a balanced trade-off between latency and energy
consumption. The same group designed eLWB [174], a variation of LWB tailored
to event-based data collection. Sleeping Beauty [156] was later proposed to
minimize energy consumption for data collection scenarios with many redundant
sensor nodes. Time-Triggered-Wireless (TTW – Chapter 5) [101] was designed
to minimize the end-to-end latency between communicating application tasks.
Finally, Crystal [96] has been proposed as a network stack specialized for
sporadic data collection. All these network stacks solely rely on Glossy as
ST primitive. In principle however, the same protocol logic could benefit
from multiple primitives. For example, an LWB network could use Robust

50 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Flooding [115] in case of high interference, then revert to Glossy [74] for better
time synchronization. If nodes need reprogramming, the software update can
be quickly disseminated using Pando [60]. Designing a modular network stack
supporting multiple ST primitives adds a new level of complexity.

Key Research Questions

Question 1 Can we facilitate the design of wireless network stacks
based on Synchronous Transmission?

Question 2 Can we implement flexible and adaptive protocols, poten-
tially leveraging multiple ST primitives, while guaranteeing that the
timing requirements of ST are met?

The problem. To facilitate the network stack design (Question 1), a natural
idea is to separate the concern of the timely execution of the primitives from
the implementation of the protocol logic. One way to achieve such separation
of concerns is to use a middleware as part of the network stack.

The idea of a middleware for Wireless Sensor Networks (WSN) is not new,
and the main challenge in such an endeavour is well-known. As phrased by
Mottola and Picco [135], “striking a balance between flexibility and complexity
in providing access to low-level features is probably one of the toughest, yet
most important, problems in WSN middleware”.

The design of a middleware for ST is particularly challenging. Indeed, meeting
the tight timing requirements for ST is directly conflicting with the concept of
abstraction of a middleware: How to guarantee that the network layer does not
hinder the timing accuracy for ST if it is itself unaware of the execution of the
primitives? That is Question 2.

The challenge. A middleware for ST should meet the following requirements.

Usability The middleware must realize a well-defined interface enabling runtime
control from the network layer (which implements the protocol logic) over
the execution of the underlying ST primitives.

Generality The middleware must enable the implementation of a large variety
of network layer protocols.

Versatility The middleware must enable one network layer protocol to use
multiple ST primitives and switch between them at runtime.

Synchronicity The middleware must guarantee to respect the time synchroniza-
tion requirements for ST (from sub-µs to tens of µs [202]).

Ch
ap

te
r 3

Ba
lo

o

3.2. Overview of Baloo 51

Our solution. To address these challenges, we have designed Baloo, a flexible
design framework for low-power network stacks based on ST.2 Baloo provides
a large set of features enabling performant protocol designs, while abstracting
away low-level hardware management such as interrupt handling and radio core
control. In summary:

n We propose Baloo, a flexible design framework for low-power wireless network
stacks based on ST, illustrated in Figure 3.2.
n We present the design of a middleware layer that meets all our requirements.
This middleware forms the core component of Baloo.
n We showcase the usability of Baloo by re-implementing three well-known
network stacks using ST: the Low-power Wireless Bus (LWB) [72], Sleeping
Beauty [156], and Crystal [96].
n We illustrate the portability of Baloo by providing implementations for two
platforms – the CC430 SoC [181] and the old but still heavily used TelosB
mote [17].
n We demonstrate that Baloo induces only limited performance overhead
(memory usage, radio duty cycle) compared to the original implementations.

This chapter is not meant to cover all details and inner mechanisms of Baloo,
but mainly presents the core concepts of the framework. Baloo is open source
and the complete technical documentation is available online (Section 3.A).

3.2 Overview of Baloo

This section presents an overview of the concepts of Baloo. The implementation
of these concepts using a middleware will be described in the next section
(Section 3.3).

Baloo is a flexible framework designed to harness the potential of the
Synchronous Transmissions (ST) technology and make it more accessible. Baloo
uses Time Division Multiple Access (TDMA) rounds made of communication
slots. A ST primitive is executed in each slot. All necessarily control information
is sent by a central node in the first slot of each round. The core of Baloo is
made of a middleware layer (see Figure 3.2) which isolates the network layer
from the lower layers. Concretely, this separates the management of the radio
and timer settings from the implementation of the protocol logic.

Why Synchronous Transmissions? As discussed in Section 3.1, ST is
a wireless communication technique known to be reliable, fast, and energy
efficient. ST primitives communicate using so-called floods, which realize an

2The framework provides the “bare necessities” for the design and implementation of
ST-based network stacks; so we called it Baloo.

52 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Baloo

HW1 HW2 HW3

Protocol A Logic only

Middleware Interface to the
radio and HW

Crystal
Network

layer
protocol

HWDrivers

GlossyST primitive ST1 ST3ST2 ST4 Communication
Primitives

NetworkData LinkPhysical

Protocol B

(a) The implementation of the net-
work layer protocol (Crystal) couples
the interface to the underlying ST
primitive (Glossy) and the protocol
logic, i.e., how long are the commu-
nication rounds, which radio channel
is used, etc.

(b) Thanks to its additional middle-
ware layer, Baloo flexibly supports
multiple ST primitives and signifi-
cantly reduces the efforts required
to implement network layer protocols
compared to traditional stacks, like
LWB [72] or Crystal [96].

Figure 3.2 Crystal [96] is a typical example of network stack based on ST
(Figure 3.2a). Conversely, Baloo is a flexible design framework. It is based on a
middleware layer that separates the concern of timely execution of ST primitives
from the implementation of the protocol logic (Figure 3.2b).

any-to-all communication. Thus, ST seamlessly supports multiple types of
transmission patterns (i.e., unicast, multicast, broadcast). As a result, ST
enables to abstract away the complexity of a multi-hop mesh into a virtual
single-hop network. Furthermore, some ST primitives (e.g., Glossy [74] or
Robust Flooding [115]) provide tight bounds on the completion time of a flood,
given the payload size and network diameter.

This makes ST particularly suited for a time-triggered communication scheme.
Within one bounded time slot, one can schedule a communication from one to
any (set of) node(s) in the network, which greatly simplifies the design of a
network layer protocol.

Baloo uses Glossy [74] as default ST primitive, but it also supports other
primitives, e.g., Chaos [112]. In principle, Baloo is compatible with arbitrarily
many other primitives (see Section 3.3.5), thus addressing Versatility.

Round-based Design. To maximize the benefits of ST, Baloo organizes
communication in TDMA rounds, with dedicated time slots assigned to specific
nodes which are then allowed to initiate a transmission in this slot. The first

Ch
ap

te
r 3

Ba
lo

o

3.2. Overview of Baloo 53

slot in each round is assigned to a central node, called the host, to send some
control information (see below). This control slot is then followed by arbitrarily
many data slots. Nodes turn their radio off between rounds to save energy.

While this framework may look restrictive and hinder Generality, such round-
based design is in fact very generic, and compatible with many (if not all)
ST-based network stacks proposed so far in the literature. The flexibility and
limitations of Baloo will be discussed in the evaluation (Sections 3.5 and 3.6).

Control Information. In Baloo, the control packet, sent at the beginning of
each round, plays a key role. It is constructed such that if a node receives a
control packet from the host, this nodes knows exactly
n how to execute the current communication round, and
n when to wake up for the next round.
Thus, the control packet contains both schedule information (e.g., the slot
assignment for the round or the time interval before the next round) and
configuration parameters, like the length of the slots or the number of
retransmissions. The control packet is broadcast using Glossy [74], which is
also used to synchronize the whole network.

Baloo is very flexible (Usability, Generality); both schedule and configuration
can be updated at anytime by the host and the whole network adapts to follow
the instructions. This poses the problem of a node not correctly decoding a
control packet, thus having possibly outdated control information.

Consequently, Baloo adopts the following fail-safe mechanism: a node does not
participates in a communication round unless it correctly decodes the control
packet. This guarantees that, even in case of packet losses, a node will never
disturb the execution of the rest of the network.

A Middleware to Provide the Right Level of Abstraction. The main
challenge in the design of Baloo is the definition of an interface that isolates the
management of the radio (i.e., running the ST communication primitives) from
the implementation of the protocol logic at the network layer. Baloo realizes
this interface using a middleware layer that is responsible for the following tasks:
n The middleware organizes the timers and controls the radio operations (i.e.,
it executes the ST primitives).
n The middleware manages the communication round operations according to
the control information received from the host.
n The middleware executes callback functions, which are used to interact with
the application running above the network layer (i.e., passing packet payload
and implementing the protocol logic).
The middleware is a fixed piece of software which can be configured but
neither accessed nor modified by the network layer. The protocol logic (payload
management, state keeping, etc.) is implemented entirely within the callback
functions (Section 3.3.3).The middleware interface is illustrated in Figure 3.4.

54 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Control
received

Suspended

Control
received Control

missed
Control
missed

Bootstrapping Running

Control
received

Control
missed

Figure 3.3 The middleware in Baloo implements a minimal state machine, sufficient
to capture the desired behaviour of a node at physical layer. A node either
executes normally (Running), stays synchronized but does not participate to the
communication rounds (Suspended), or continuously listens for an incoming control
packet (Bootstrapping).

With this approach, all low-level programming complexities are managed by the
middleware and let the network designer focus on the main task: design the
protocol logic of the network layer.

These concepts form the core of Baloo and address the Usability, Generality,
and Versatility requirements of a flexible network stack design. Additional
concepts are required to ensure that the timing requirements of ST are met
(Synchronicity): this is the focus of the next section.

3.3 Implementing the Concepts

The previous section described the general concepts of Baloo. In this section,
we present how we implemented these concepts to meet the Synchronicity
requirement and complete the design of Baloo.

3.3.1 Contiki as Operating System

Baloo relies on the availability of ST primitives (e.g., Glossy [74], Chaos [112],
etc.). Most openly available primitives use Contiki [61] as the underlying
operating system, which made Contiki an obvious choice to implement Baloo.
We have ported these primitives to the new version of the OS: Contiki-NG [11].3

Contiki is a cooperative multi-threaded OS, tailored for resource-constrained
devices in the Internet of Things. The middleware layer is implemented
as the “master” protothread [62], where most of the program is executed.
The middleware implements the communication rounds, controls the radio
operations, and executes the callback functions in which the network protocol
logic is implemented (see Section 3.3.3).

3v4.2, released in November 2018

Ch
ap

te
r 3

Ba
lo

o

3.3. Implementing the Concepts 55

3.3.2 Minimal State Machine

For generality and simplicity, the middleware implements only a minimal state
machine. A node is either in Bootstrapping, Suspended, or Running state.
State transitions result from (un)successful receptions of control packets (see
Figure 3.3). When bootstrapping, a node continuously listens for a control
packet. In the Suspended state, a node does not participate in the round and
will sleep until the next round.

As described in Section 3.2, a node may participate in a round (i.e., be in
the Running state) if and only if it correctly receives the control packet at the
beginning of the round. The default behaviour of Baloo is that a node suspends
itself if it misses a control packet, and goes back to Bootstrapping if it misses
two in a row. A node exits the Bootstrapping state whenever it receives a
control packet containing both scheduling and configuration information, i.e.,
when a node knows with certainty how it is expected to operate. If necessary,
the network layer protocol can extend this minimal state machine using one of
the callback functions (see Section 3.4.1).

3.3.3 Middleware Callback Functions

Baloo uses callback functions to implement the network layer protocol logic.
This is how the network layer interacts with the middleware at runtime
(Usability). There are five different callbacks, each having a specific purpose
and executed by the middleware at precise points in time (Figure 3.4).

on_control_slot_post()
is executed at the end of the control slot. It is used to process the received
control information and prepare for the round.

on_slot_pre()
is executed before each data slot. It is used to pass the payload to send
to the middleware, if any.

on_slot_post()
is executed at the end of each data slot. It is used to process the received
payload, if any.

on_round_finished()
is executed at the end of the round. It is used to do more time consuming
state management or data processing.

on_bootstrap_timeout()
is executed when a node fails to bootstrap (i.e., it has listened for some
time without receiving any control packet). This callback allows nodes to
go to sleep and retry bootstrapping later, in order to save energy.

56 Chapter 3. Synchronous Transmissions Made Easy with Baloo

These callback functions are also used to implement more advanced features
of Baloo (e.g., skipping a slot), which are briefly presented in Section 3.4.

3.3.4 Achieving Timeliness of Execution

The callback functions enable flexible interactions between the network layer
and the middleware. While this is key to address Usability and Generality,
it also inherently couples the two software components, thus challenging
the timely execution of the middleware and compromising Synchronicity.

Indeed, the callbacks execute between communication slots or between rounds
(see Figure 3.4), which must start synchronously on all nodes to permit
successful ST. The middleware could interrupt an overrunning callback to
ensure synchronicity, but that is not desirable. In general, an interrupted
callback would have to be considered as a failure by the network layer; then
successful ST at the lower layer would not really matter anyway.

To mitigate this problem, the middleware monitors the execution time of the
callbacks. If a callback overruns and the middleware cannot guarantee the
timely execution of the next slot, this slot is skipped (i.e., the node does not
participate in this slot) and a notification event is sent to the network layer.

With this approach, Baloo can guarantee to respect the timing requirement
for ST under the condition that the callbacks have enough time to complete
their execution.4 To satisfy this condition, the available time between slots
for the execution of the callbacks is controlled by a dedicated configuration
parameter: the gap time. Since callbacks implement the network layer protocol
logic, it can only be the responsibility of the network designer to set suitable gap
times such that the Synchronicity requirement is met. Guidelines for setting
such parameters (and in general: how-to use Baloo) are part of the online
documentation (Section 3.A).

3.3.5 Supporting Multiple ST Primitives

Compared to previously proposed low-power network stacks, one key difference
of Baloo is that it flexibly supports multiple ST primitives (Versatility). This
is difficult given the nature of ST, which requires tight timing of radio events
(from sub-µs to tens of µs depending on the primitive [202]).

In practice, achieving such synchronization requires a direct monitoring of
hardware timers and a custom implementation of the associated Interrupt
Service Routines (ISR) for each ST primitive executed by the middleware in

4This default strategy may lead to a starvation problem if a callback “never” returns,
e.g., if it relies on another software sitting at higher layers. One advanced feature lets the
middleware interrupt overrunning callbacks (see Section 3.4.1).

Chapter 3
Baloo

3.3.
Im

plem
enting

the
Concepts

57

Schedule wake-up
for the next slot

Send/Receive
data packet

Schedule wake-up
for the next round

Send/Receive
data packet

Send/Receive
data packet

Control
slot

Data
slot 1

Data
slot 2

Data
slot n

Round
n+1Round n

Middleware

Store control
information for the

current round

Process
received
payload

Prepare
payload

Prepare control
information for
the next round

Longer
processing

All

Host
 Prepare

payload

on
_r

ou
nd

_fi
ni

sh
ed

()

on
_c

on
tro

l_
slo

t_
po

st
()

on
_s

lo
t_

po
st

()

on
_s

lo
t_

pr
e(

)

on
_s

lo
t_

po
st

()

on
_s

lo
t_

pr
e(

)

Network Layer Protocol

t

Process
received
payload

Schedule wake-up
for the first slot

Round
n-1

Figure 3.4 The protocol logic, i.e., the handling of application payloads and the definition of the desired control parameters, is implemented
in callback functions. These callbacks are triggered by the middleware before and after each slot and at the end of a round. The middleware
schedules the wake-up of the radio core and executes the ST primitives.

58 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Baloo. However, there cannot be multiple implementation of the same ISR.
Thus, supporting multiple ST primitives in the same stack requires to extract
the interrupt management from the ST code, which becomes a shared software
component between different primitives.

Technically, we implemented this using a renaming trick. Indeed, each ST
primitive has its own ISR implementation for the radio timer, but Baloo never
uses more than one ST primitive at the same time (i.e., one per data slot). The
middleware must only execute the instructions of the ISR from the currently
running primitive. Thus, we can encapsulate the ISR of each primitive into
a dedicated (i.e., unique) function and implement the radio timer ISR as a
simple “switch” function. A global variable keeps track of the currently running
primitive; whenever the radio timer fires, the corresponding primitive “ISR
function” is executed.

The only difference with the original primitives’ implementation is an additional
software delay between the radio interrupt and the execution of the ISR’s
instructions (the few ticks of delay to execute the switch). This adds a negligible
synchronization error due to differences in clock speed across different nodes.5

Using this approach, Baloo currently supports two ST primitives, Glossy [74]
and Chaos [112], as well as a classical strobing communication primitive: one
node transmits its packet, multiple times, while all other nodes only listen.
Practically, there is no limitation on the number of primitives that Baloo can
support, apart from the available memory.

3.4 Advanced Functionalities

In Section 3.2 and 3.3 we presented the general concepts of Baloo and how
we implemented them to meet the requirements presented in Section 3.1. To
further extend the variety of network layer protocols that can be implemented
using Baloo, we have enriched the framework with various features, most of
which have been used in previous protocols and proved themselves useful. We
briefly present these features in this section.

3.4.1 High-level Functions

Detection of interference Low-power wireless networks often suffer from
interference. Multiple strategies have been proposed to escape and/or
mitigate its effects.
Baloo allows to monitor the power level on the channel being used during

5Assuming an absolute clock drift of 100 ppm between two nodes (which is pessimistic),
the error introduced is ∼ 0.24 picosecond per tick of delay.

Ch
ap

te
r 3

Ba
lo

o

3.4. Advanced Functionalities 59

a slot. This information can be used to detect potential interference and
react accordingly.
This feature is used e.g., in Crystal [96].

Advanced state machine The middleware in Baloo implements a minimal
but sufficient state machine composed of three states (Running,
Suspended, Bootstrapping ; see Section 3.3.2 and Figure 3.3).
Baloo lets the network layer protocol implement a more advanced state
machine. The return value of the on_control_slot_post() callback is
used to inform the middleware of the desired behaviour for the node, i.e.,
whether it should be in the Running, Suspended, or Bootstrapping state
for the coming round.
This feature is used e.g., in LWB [72].

Starvation protection Skipping slots due to overrunning callbacks may lead
to starvation problems. The middleware behaviour can be modified to
interrupt these overruns. If and when this occurs, the interrupted node
will suspend its operation for the coming slot (or the complete round, in
case the on_control_slot_post() over-runs).
At the time of writing, this feature is not included in the publicly available
implementation of Baloo.

3.4.2 Scheduling Features

Contention slots In a contention slot, all nodes are allowed to transmit their
own packet; they “contend” for access to the wireless medium. The
successful reception of one of the packets remains possible due to the
capture effect [202].
Contention slots are used in many protocols, including LWB [72] and
Crystal [96].

Per-slot configuration By default, the same configuration parameters are
used for all slots in the same round. Baloo lets the network layer specify
some configuration on a per-slot basis. These optional parameters are
sent by the host as part of the control packet.
Crystal [96] for example uses different number of retransmissions for data
and acknowledgement packets (the latter are retransmitted more often).

Static schedule and configuration In many network layer protocols, the
scheduling policy is static: either the control information remains the
same or it changes according to some offline algorithm.
In such cases, Baloo can spare the overhead of sending redundant
information in the control packet, thus saving time and energy. All nodes
are then responsible to locally update their control information.

60 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Static schedules are used e.g., in TTW [101] or Crystal [96].

Skipping slots and rounds It is sometimes useful that some nodes do not
participate in certain slots, or even skip complete rounds, e.g., to save
energy, or to improve performance in very dense networks.
Baloo lets the network layer trigger slot skipping using the return
value of the on_slot_pre() callback. To skip an entire round, one
can return Suspended in the on_control_slot_post() callback (see
Section 3.4.1).
This feature is used e.g., in Sleeping Beauty [156].

Repeating slots or rounds On the contrary, it may be useful to repeat the
execution of specific slots, or even entire communication rounds (e.g.,
when the number of slots required in a round is dynamic) or to retransmit
lost packets.
Baloo lets the network layer trigger slot and round repeat using the return
value of the on_slot_post() callback.
n If the slot repeat flag is received, the same slot is re-executed.
n If the round repeat flag is received, the middleware immediately restarts
executing from the first slot of the round.
This feature is used e.g., in Crystal [96].

3.4.3 Radio Settings

Radio channel setting Baloo lets the network designer select the radio
frequency channel for each slot. This can be useful to proactively or
reactively hop between channels in case of interference.
This feature is used e.g., in Crystal [96].

Transmit power setting Baloo lets the network designer set the desired
transmit power, possibly changing between each communication slot.

3.5 Performance Evaluation

This section presents an evaluation of Baloo. We look first into qualitative
aspects. We argue that Baloo is indeed usable and validate the premise that
it makes it easy to design a network stack based on ST. We then discuss
quantitative aspects by looking at the performance overhead of using Baloo
compared to original implementations.

Ch
ap

te
r 3

Ba
lo

o

3.5. Performance Evaluation 61

3.5.1 Qualitative Evaluation

The evaluation of software usability is a challenging task that suffers from almost
unavoidable bias. To support our claim that Baloo is indeed easy to use, we used
it ourselves to perform one of the most time consuming task in experimental
research: the re-implementation of someone else’s protocol. We re-implemented
the protocol logic of three network stacks: Crystal [96], Sleeping Beauty [156],
and LWB [72]. We chose these protocols because:

n These well-known solutions from the literature consider different scenarios.
n Together, they use most of the features offered by Baloo.
n The authors’ source code is publicly available.

It is fair to say that the fact that we can use our own software brings only
little evidence of the usability of Baloo. Indeed, its usability will be ultimately
demonstrated if and when other people start using it to implement their own
protocols. To facilitate this, the code of Baloo is openly available, including
demo applications, and is accompanied by a detailed documentation of its
features and how to use them. Naturally, our re-implementations of Crystal,
Sleeping Beauty, and LWB are also available (Section 3.A).

In addition, we used the 2019 EWSN Dependability Competition [12] as a case
study. In this competition, networking solutions must perform well across a wide
range of input parameters (e.g., data rates or payload sizes), which demands the
network stack to be adaptive. This is a perfect application for Baloo: by design,
the middleware takes care of adjusting the timing of operations (i.e., when the
ST primitives should be executed) based on the application parameters (e.g.,
the payload size). Furthermore, one can leverage the availability of different
primitives. For example, after a data packet has been sent using Glossy [74], one
can efficiently collect acknowledgements from all destinations using Chaos [112].

We tested the Usability of Baloo by having master students (who did not have
any prior knowledge of Baloo, nor ST) competing using the framework [137].
Naturally, they did not beat teams of experienced researchers, but they did
perform well. As they put it themselves in their report:

“We had not much prior experience in WSN protocol design. While
the result is not perfect, we managed implement our protocol within
8 weeks of part-time work. We would not have been able to do that
without Baloo.” [158, 136]

Finally, another important qualitative aspect of Baloo is its portability. The
underlying middleware has been designed to minimize the software parts that
are platform-dependent, and those have been isolated as much as possible.
Essentially, the platform-dependent part is limited to the hardware timer
interface and the radio drivers (further discussed in Section 3.6). Baloo is
readily available on two platforms, the CC430 SoC [181] and the TelosB

62 Chapter 3. Synchronous Transmissions Made Easy with Baloo

mote [17]. Thanks to the abstraction provided by the middleware, the network
layer protocol implementations using Baloo are platform agnostic. In other
words, the same network layer implementation can be used to compile binaries
for any platform supported by Baloo. We argue that these elements, altogether,
show the usability of Baloo.

3.5.2 Quantitative Evaluation

Abstraction and flexibility usually impact quantitative performance metrics. In
this section, we evaluate the performance overhead of Baloo along four metrics:
the packet reception rate (PRR), the radio duty cycle (DC), the binary size, and
the number of lines of code.

We performed this evaluation using our three re-implementations of Crystal [96],
Sleeping Beauty [156], and LWB [72]. It is important to clarify the objective of
the experiments we conducted: the goal is to evaluate the performance overhead
of using Baloo compared to native implementations; not to evaluate the actual
protocol performances.

Experimental Setup. All our experiments were conducted on Flocklab [116]
as it is the only public testbed featuring both CC430 SoC [181] and TelosB
motes [17], the two platforms for which Baloo is available. All tests ran for one
hour on 26 nodes, leading to tens of thousand data packets exchanged for each
protocol. As much as possible, we designed the experiments to match those
from the original protocol papers [96, 156, 72].

Crystal We ran tests varying the number of source nodes U that have a
packet to transmit in each round. We used U = {0, 1, 20}. All other
parameters were set according to the author’s paper (first row of Table 2
in [96]).

Sleeping Beauty We ran tests varying the percentage of nodes that that
have a packet to transmit in each round. We used 12.5%, 25%, and 50%
of the available nodes. All other parameters were set according to the
author’s paper [156].

LWB We ran tests varying the inter-packet interval IPI of the data stream
registered by each node in the network. We used IPI = {4 s, 30 s} and
the dynamic scheduler aiming to minimize energy consumption.

In each case, we compared: (i) the results reported in the original papers, (ii)
the results we obtained by running the publicly available code, and (iii) our
re-implementations using Baloo on both the TelosB motes and (iv) the CC430
SoC. All results are summarized in Tables 3.1 to 3.4. Before discussing each
metrics in details, some comments are useful.

n Although the original code of Sleeping Beauty is openly available [10], we

Ch
ap

te
r 3

Ba
lo

o

3.5. Performance Evaluation 63

failed to run the protocol successfully. More precisely, the observed behaviour
was quite different from the paper description and led to inexplicably poor
results. It did not seem fair to present these as a truthful measure of the
protocol performance. Thus, we do not report any results for the native code
for Sleeping Beauty.
n The original Sleeping Beauty paper does not report exact values for PRR and
duty cycle. The values from Table 3.1 and 3.2 were read from Fig. 9 in [156].
n The original LWB paper presents results from an implementation on TelosB,
but the available code from the authors is for the CC430 SoC [71]. Thus, we
compare our re-implementations with the native code, but not with the original
paper results.

Packet Reception Rate (PRR). We consider the end-to-end PRR: the
percentage of the packets generated by the application at the source nodes
that have reached their intended destination. We count a packet as lost only
if none of its transmissions has been successfully received at the destination.
In Crystal [96] for example, data packets may be lost and successfully received
later; that does not impact the PRR.

We do not expect any overhead in term of reliability from using Baloo, as
this metric essentially depends on the underlying ST primitive and the network
layer protocol logic; two elements not modified by the framework. This metric
mostly verifies that our re-implementations “work”. The results in Table 3.1
indeed show similiar PRR for all implementations, with one notable exception.

Baloo on CC430 for Crystal with U = 20 performs poorly. After closer
investigation, it appears that the success rate of the capture effect on the
CC430 SoC is much lower than on the TelosB (presumably due to the different
modulation schemes used by the radio: 2-FSK and O-QPSK respectively).
When U = 20, it is highly probable that all the one-hop neighbours of the
sink are selected source nodes that generate a packet in a round (20 out of 25
nodes available on Flocklab). As Crystal transmits all its data packets using
contention slots,6 the sink only rarely receives packets in these rounds, thus
resulting in poor PRR.

Radio Duty Cycle (DC). The radio duty cycle (DC) results are expected to
reveal more of the actual overhead induced by Baloo (Table 3.2).

The LWB experiment perfectly matches our expectations: the DC are
comparable, with a slight increase for Baloo (5 to 15% more compared to
the native code), which is due to the cost of sending more information in the
control packet.

In the original Baloo paper [97], we reported surprising results regarding Crystal:
Our results on the same platform (TelosB) showed significantly higher DC both

6Successful contention slots rely on capture effect, see Section 3.4

64
Chapter3.

SynchronousTransm
issionsM

ade
Easy

with
Baloo

Table 3.1 End-to-end packet reception rate (PRR), expressed in percentage (%)

Crystal Sleeping Beauty LWB
U = 0 U = 1 U = 20 12.5% 25% 50% IPI = 30s IPI = 4s

Original paper na 100 100 ≈ 99 ≈ 99 ≈ 99 na na
Native code na 100 99.91 x x x 99.79 99.56
Baloo on TelosB na 100 100 99.43 99.75 99.04 100 99.92
Baloo on CC430 na 100 81.36 99.48 97.39 98.72 99.81 99.85

Table 3.2 Average radio duty cycle (DC) across all nodes but the data sink, expressed in percentages (%)
For Sleeping Beauty, the reported values exclude the bootstrapping phase.

Crystal Sleeping Beauty LWB
U = 0 U = 1 U = 20 12.5% 25% 50% IPI = 30s IPI = 4s

Original paper 0.367 0.487 2.890 ≈ 0.2 ≈ 0.3 ≈ 0.7 na na
Native code 0.321 0.440 2.115 x x x 0.79 5.715
Baloo on TelosB 0.362 0.493 2.703 0.082 0.115 0.283 0.976 6.646
Baloo on CC430 0.355 0.494 2.640 0.070 0.106 0.270 0.914 6.007

Table 3.3 Estimate of the binary size of the network layer
protocol code (in kB)

Crystal Sleeping Beauty LWB
Native code 16.87 17.47 19.11
Baloo on TelosB 16.36 20.71 19.7
Baloo on CC430 16.38 19.3 19.18

Table 3.4 Estimate of the number of lines of code in the
implementation of the network layer protocol

Crystal Sleeping Beauty LWB
Native code 931 751 1881
Baloo 539 797 1029
ratio 0.58 1.06 0.55

Ch
ap

te
r 3

Ba
lo

o

3.5. Performance Evaluation 65

for the native code and our re-implementation (from 50% to 100% increase)
whereas on the CC430 SoC, results are more comparable. This was due to a
misconfiguration of the clear channel assessment (CCA) threshold value: there
is an offset of approximately 45dB between the value set in the register and
the actual sensitivity of the CCA pin.7 Consequently, when setting −60 dBm
(the value suggested by the Crystal authors [96]), we actually obtained a
CCA sensitivity of about −105 dBm, which is lower than the noise floor.
Hence, Crystal consistently detected possible interference and (often needlessly)
prolonged the communication rounds, thus artificially increasing the DC. We
have re-run these experiments with the correct CCA setting (i.e., −60 dBm) and
validate that, as expected, the DC is slightly increased by Baloo (Table 3.2).

The results for Sleeping Beauty are more surprising. In spite of the overhead
induced by Baloo, our re-implementation achieves about 2.5x reduction in DC.
It is unclear what can be the source of such difference. As we based our
re-implementation only on the original paper description [156], one possible
explanation is that we might lack some of the original protocol features, that
would induce more radio on time. However, the good results we obtain
with our re-implementation would question the usefulness of such features.

Binary size. The binary file size is another metric where we expect Baloo to
induce some overhead, as the middleware introduces additional files, types and
features that are not always necessary for all protocols.

Since the protocol implementations we looked at are based on different versions
of the Contiki OS, we tried to evaluate the actual size of the network layer
protocol only by deducing the memory required for the OS. The OS memory
requirements were obtained by looking at the size of a minimal “hello-world”
application. Table 3.3 reports the difference between the total and “hello-
world” binary sizes, a rough estimate of the memory required by the network
layer protocol implementation.8

Actually, the memory size of our re-implementations is comparable to that of the
native codes. Likely, t his is due to the configurable nature of the framework.
Many features are available, but the protocol designer flexibly selects which
are required, thus limiting the size of the compiled code. Furthermore, the
structure imposed by the framework may lead to a more concise implementation,
as discussed next.

Lines of Code. The last metric we considered is the number of lines
of code that is part of the network layer protocol (i.e., for the Baloo re-
implementations, only the callbacks and custom functions; not the middleware
code). This is arguably a rough metric, for at least two reasons: (i) none

7[180]: RSSI / Energy Detection, page 48
8More advanced metrics could be used, e.g., summing the size of relevant functions in

the object file. We chose to used a very simple approach because our goal is only to give an
estimate of the impact of Baloo on the memory requirements.

66 Chapter 3. Synchronous Transmissions Made Easy with Baloo

of the implementations aimed to minimise its code size; (ii) in the original
implementations, it is not easy to isolate the code implementing the protocol
logic from the interface with the lower layers (precisely, this is one of the
differences with Baloo). Still, the number of lines of code provides some insights
on the potential benefits of Baloo in terms of usability.

The results in Table 3.4 show that using Baloo can significantly reduce the
amount of code required to implement some network layer protocol logic (up
to 45% reduction for LWB). More importantly, the protocol implementations in
Baloo do not contain any timer setting or register accesses, as these are handled
directly by the middleware.

Summary. Ultimately, our quantitative evaluation shows through a few
examples that implementations using Baloo perform well and that the
framework induces only limited (if any) overhead in terms of radio duty cycle
and binary size.

3.6 Discussion and Limitations

We argued that Baloo is a usable, flexible, and performant design framework
(Section 3.5). To complete the description, we now detail hardware and software
requirements and discuss the portability and limitations of the framework.

3.6.1 Requirements

Hardware requirements. The only strict hardware requirement of Baloo is
one dedicated Capture Compare Register (as required by any time-triggered
protocol). The actual timer frequency is not important; a standard 32 kHz
clock is already fast enough. This timer is used to schedule the communication
slots, wake-up times, and callback executions.

Both supported platforms feature an MSP430 CPU, but this is not a constraint.
An ARM core like the ones embedded on the nRF52840 [163] or the
OpenMoteB [6] platforms would work as well. It would eventually be even
more flexible given the support for interrupt priorities.

Software requirements. Baloo requires a software-extended timer implemen-
tation to enable the scheduling of firing epochs further than one roll-over of the
timer. This is (surprisingly) not part of Contiki by default, but it is a rather
minor extension. Some features of Baloo rely on radio functions (e.g., the
noise detection); these features are obviously platform-dependent. The rest of
the platform-dependent software in Baloo is a mapping between ST primitive
functions and generic macros used by the middleware.

Ch
ap

te
r 3

Ba
lo

o

3.6. Discussion and Limitations 67

3.6.2 Portability

Baloo itself has limited hardware and software requirements (Section 3.6.1).
The main constraint comes from the availability of ST primitives, which are
notoriously difficult to implement; but this is independent of the framework.
Assuming ST primitives are available, the requirements and efforts to port Baloo
to a new platform are limited.

We implemented Baloo using Contiki (see Section 3.3), which turned out having
pros and cons. On the one hand, it facilitates the port of Baloo to other
platforms that already run Contiki. On the other hands, it makes Baloo harder
to port to other platforms, as it requires to port the Contiki OS first. It has
been a limitation in some later projects (see Section 3.7).

Furthermore, Baloo does not require much of the complex machinery of a full-
fledge operating system. Thus, a bare-metal implementation of Baloo could
bring multiple benefits: increased reliability (as there is no interference from
the OS), lighter weight, and simpler to port on any platform (as there is no
need to port an entire OS first).

At the time of writing, the only known publicly available implementation of
Baloo uses Contiki. Ongoing development efforts are discussed in Section 3.7.

3.6.3 Limitations

Baloo is a framework that facilitates the design of ST-based network stacks
by providing some level of abstraction. We showed in Section 3.5 that this
abstraction has only a moderate impact on performance. However, abstraction
also limits the design freedom, and this also applies to Baloo. We honestly tried
to think of sensible design concepts that are incompatible with the framework,
while they would be technically possible to implement:

n Baloo does not support multiple hosts (e.g., for redundancy purposes).

n Baloo cannot start primitives at different times on different nodes (e.g., to
save energy).

n Baloo cannot execute different ST primitives on different nodes during the
same data slots.

Section 3.4 presented a set of features offered by the Baloo framework. The
feature set may not be complete, but (i) it already offers a lot of options,
and (ii) it can be extended in the future, if necessary. To the best of our
knowledge, to date, there is no ST-based network layer protocol in the literature
that is incompatible with Baloo. Likely, this is because what Baloo cannot do
is either hard to do in general (e.g., supporting redundant hosts) or are complex
optimizations with uncertain benefits (e.g., starting primitives with time offsets).

68 Chapter 3. Synchronous Transmissions Made Easy with Baloo

3.6.4 Lessons Learned

During this work, we have learned a few lessons that might be worth sharing.

Re-implementing protocols. Re-implementing a complete protocol (solely)
based on the description from a research paper is very difficult, if not
impossible. Many implementation details and design choices are omitted,
for good reasons: research papers rather focus on novel concepts and
ideas. Without a detailed technical documentation, a large part of the
engineering is lost, and it becomes very hard to fairly compare two
implementations of the same protocol.

Running protocols. Publishing code does not mean it is (re)usable. Our
experience with Sleeping Beauty has been a perfect example of that:
even with the code freely available and quite some experience with testbed
experiments, we were not able to successfully run the protocol on Flocklab.
More generally usefulness of publishing code is greatly reduced (if not
voided) without proper instructions and documentation.

The point here is not to say that every research work must openly release
code together with an extensive documentation. However, if one claims his or
her research is providing practical solutions to concrete problems, then these
solutions must be made available. When such a solution is a piece of software
(e.g., a network stack for low-power wireless), the (re)usability of the software is
at least as important as the research paper presenting the underlying concepts.

3.7 Leveraging Baloo

One important motivation for working on Baloo was to leverage the tool for
our other research projects, and Baloo has proved itself useful indeed. Within
the time-frame of this thesis:

n Master students used Baloo to participate in the 2019 EWSN Dependability
Competition (Section 3.5.1).
n We used Baloo to implement and test the Time-Triggered Wireless
protocol (Chapter 5).
n We used Baloo to implement a generic firmware for collecting link quality data
in wireless networks. We run this firmware on the FlockLab testbed multiple
times per day and publish the newly collected data every month [98].

Contrarily to our original plans [97], we decided not to pursue the integration of
Baloo within Contiki-NG. The main reason is that Baloo barely uses any feature
from the OS itself, which is more focused on offering standardized protocol
implementations for the IPv6 stack. Ultimately, this hinders the portability of
Baloo, as one needs to port the Contiki OS first.

Ch
ap

te
r 3

Ba
lo

o

3.8. Related Work 69

The development of the Baloo framework continues. In middle-term, we
plan a new release of the framework (including improved features related to
Chaos [112]), a port to the SX1262 platform [164] using FreeRTOS [4], and a
bare-metal port to the nRF52840 platform [163].

3.8 Related Work

As mentioned in the introduction, the idea of middleware for Wireless Sensor
Networks (WSN) has been around for more than a decade [153, 47, 191, 135].
These papers generally agree on the needs and challenges for WSN middlewares.
Yet, there have been relatively few proposals to address these challenges. Recent
surveys [150, 144] provide an overview of the middleware literature in the wider
context of the Internet of Things, which covers all layers from local devices to
cloud services. [135] reviewed the literature focusing more on WSN: proposals
include for example Impala [118] which explicitly address the problem of fault
tolerance in mobile networks. Programming abstractions like TinyDB [122],
RUNES [53], or TinyLIME [54] have also been proposed. However, in these
works, the level of abstraction is either higher or lower than the network layer.

In the past two decades, countless wireless MAC protocols have been proposed
(see e.g., [179, 33] for recent surveys). [95] surveyed and classified Wireless
MAC protocols according to their programmability scope (what elements of
the MAC layer are programmable) and level (the granularity at which the
protocol logic can be programmed). The authors classify protocols as either
monolithic, parametric or modular. In the context of IEEE 802.15.4 networks,
modular protocols include e.g., the MAC Layer Architecture (MLA) [105] and
λ-MAC [145]. In contrast, Baloo would be classified as parametric, as it allows
“parameter tuning through interfaces”. Using Synchronous Transmissions (ST)
interestingly changes the way network stacks can or should be designed. So
far, only few network stacks using ST have been proposed [72, 96, 156, 174,
101, 176], and almost no research has been conducted to propose a flexible
design framework (e.g., comparable to MLA [105]) but tailored to ST. Two
noteworthy exceptions are A2 [20] and Atomic-SDN [26].

A2 aims to facilitate the design of ST-based communication using a middleware
component, called Synchrotron. However, A2 is not a network stack, it is a
generic ST primitive. Baloo and A2 actually complement each other perfectly:
Baloo facilitates the design of network layer protocols, but it requires to have
ST primitives (e.g., Glossy [74] or Chaos [112]) available, which are typically
hard to implement. In turn, A2 facilitates the design of such ST primitives. The
support of A2 within Baloo would be a natural next step towards a fully flexible
and configurable network stack based on ST.

Atomic-SDN [26] is another work sharing this idea of a fully configurable network

70 Chapter 3. Synchronous Transmissions Made Easy with Baloo

stack. Baloo and Atomic-SDN are very similar pieces of software, which have
been developed in parallel. Compared to Baloo, Atomic-SDN is slightly more
specialized: it pre-defines top-level functions (collection, configuration, reaction,
and association) with a given implementation, which the user can schedule on-
demand. By contrast, Baloo leaves the user access the various ST primitives
and compose them freely to implement the desired protocol logic. Another
key difference is precisely that Baloo lets the user pick-choose-and-combine the
primitives to use, whereas Atomic-SDN is restricted to only one primitive (in
the current implementation). Atomic-SDN uses a back-to-back transmissions
schemes ([27, 115]) instead of traditional Glossy floods [74].

3.9 Summary

This chapter presented Baloo, a flexible design framework for low-power wireless
network stacks based on ST. We illustrated its Usability and Generality by re-
implementing three well-known network stacks: the Low-power Wireless Bus
(LWB) [72], Sleeping Beauty [156], and Crystal [96], and we showed that
using Baloo induces only limited performance overhead in terms of radio duty
cycle and memory usage. Baloo supports the use of multiple ST primitives
within the same network stack (Versatility) while guaranteeing that the timing
requirements for ST are met (Synchronicity).

The key concept of Baloo is its clean API, based on callback functions, which
let the users focus on implementing the protocol logic without worrying about
low-level radio control (interrupt handling, timer settings, etc.). The API is
generic and supports the different communication primitives. Through this
API, multiple primitives can be used within the same network stack without
additional complexity for the users.

The code of Baloo is openly available and is accompanied by a detailed
documentation of its features and how to use them (Section 3.A). Our re-
implementations of Crystal, Sleeping Beauty, and LWB are also available. We
believe Baloo will be an important enabler for the development of future real-
world applications leveraging state-of-the-art ST technology.

Ch
ap

te
r 3

Ba
lo

o

3.A. Appendix – Artifacts and Links 71

3.A Appendix – Artifacts and Links

3.A.1 Related Publications

Synchronous Transmissions Made Easy: Design Your Network Stack with Baloo
Romain Jacob, Jonas Bächli, Reto Da Forno, Lothar Thiele
EWSN 2019. Beijung, China (February 2019)

q Paper 10.3929/ethz-b-000324254
B Presentation 10.3929/ethz-b-000328814

Creating a Flexible Middleware for Low-Power Flooding Protocols
Jonas Bächli
Master Thesis. ETH Zurich (June 2018)

� Thesis 10.3929/ethz-b-000270388

3.A.2 Complementary Materials

Complementary materials for this chapters are available on GitHub, together
with the dissertation source files. For all links below, replace
<root> by “github.com/romain-jacob/doctoral-thesis/blob/master”

< TEX sources <root>/30_Baloo/
2 Figures <root>/30_Baloo/Figures/
� Webpage romainjacob.net/baloo
/ Baloo source code

— Documentation GitHub Wiki
— Latest release 10.5281/zenodo.3510171
— “This-version” release 10.5281/zenodo.3530632

® Experiment data
— Latest release 10.5281/zenodo.3510198
— “This-version” release 10.5281/zenodo.3510214

https://doi.org/10.3929/ethz-b-000324254
https://doi.org/10.3929/ethz-b-000328814
https://doi.org/10.3929/ethz-b-000270388
https://github.com/romain-jacob/doctoral-thesis/blob/master/30_Baloo/
https://github.com/romain-jacob/doctoral-thesis/blob/master/30_Baloo/Figures/
http://www.romainjacob.net/research/projects/baloo/
https://github.com/ETHZ-TEC/Baloo/wiki
https://doi.org/10.5281/zenodo.3510171
https://doi.org/10.5281/zenodo.3530632
https://doi.org/10.5281/zenodo.3510198
https://doi.org/10.5281/zenodo.3510214

72 Chapter 3. Synchronous Transmissions Made Easy with Baloo

Ch
ap

te
r 4

DR
P

4
DRP: End-to-end Real-time Guarantees

in Wireless Cyber-Physical Systems

In the previous chapter, we presented Baloo, a design framework for network
stacks based on synchronous transmissions (ST). The next two chapters of
this dissertation focus on leveraging ST for real-time applications. In particular,
we investigate the feasibility of providing end-to-end real-time guarantees in
wireless cyber-physical systems (CPS).

In CPS, the communication among the sensing, actuating, and computing
elements is often subject to hard real-time constraints. In the embedded
domain, real-time scheduling of dynamic applications has been extensively
studied; real-time communication between wireless network interfaces is well
studied as well. Yet, the design of an entire system providing end-to-end real-
time guarantees between distributed applications connected through a multi-hop
wireless network remains an unsolved problem.

Indeed, providing end-to-end guarantees requires to jointly consider the
scheduling of distributed applications and the wireless communication protocol;
whereas these are typically designed independently from each other, by people
with different expertise. Instead, we argue for a global design considering
the complete message transmission chain: peripheral buses, memory accesses,
networking interfaces, and the wireless communication protocol.

In this chapter, we propose to leverage the unique properties of ST for designing
reliable and efficient real-time wireless CPS. ST abstracts the complexity of a
multi-hop wireless network into a virtual “wireless bus” (Chapter 1) which can
then be scheduled similarly as a regular field bus. Hence, traditional scheduling
techniques can be applied to both the wireless network and the distributed
applications, which facilitates designs of global real-time systems.

74 Chapter 4. DRP – Distributed Real-time Protocol

Baloo
Chapter 3

TriScale
Chapter 2

TTW
Chapter 5

DRP
Chapter 4

Low-Power Wireless
Networking

Networking
in General

Tools and
Methods

Real-time
System Designs

Figure 4.1 This chapter presents the Distributed Real-time Protocol (DRP). DRP
provides end-to-end real-time guarantees using runtime contracts, aiming to maximize
the flexibility of execution between distributed tasks.

Claim. We demonstrate for the first time that end-to-end real-time guarantees
can be obtained in low-power wireless networks by leveraging the efficiency
and reliability of synchronous transmissions (ST). In particular, this chapter
presents the Distributed Real-time Protocol (DRP), a design using contracts to
maximize the flexibility of execution between distributed tasks.

The material from this chapter builds upon the work from Fabian Walter [189] and
Andreas Biri [36]. It relates to the following publication.

End-to-End Real-Time Guarantees in Wireless Cyber-Physical Systems
Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel, Lothar Thiele
RTSS 2016. Porto, Portugal (December 2016)

4.1 Problem Setting

Cyber-physical systems (CPS) tightly integrate components for sensing,
actuating, and computing into distributed feedback loops to directly control
physical processes [149]. The successful deployment of CPS technology is widely
recognized as a grand challenge to solving a number of societal problems in
domains ranging from healthcare to industrial automation. To reach into new
areas and realize systems with unprecedented capabilities, there is a trend toward
increasingly smaller and autonomously powered CPS devices that exchange
data through a low-power wireless communication substrate. As many CPS
applications are mission-critical and physical processes evolve as a function
of time, the communication among the sensing, actuating, and computing
elements is often subject to real-time requirements, for example, to guarantee
stability of the feedback loops [170].

Ch
ap

te
r 4

DR
P

4.1. Problem Setting 75

These real-time requirements are often specified from an end-to-end application
perspective. For example, a control engineer may require that sensor readings
taken at time t are available for computing the control law at t + D, where
the relative deadline D is derived from the application requirements; e.g., the
maximum tolerable delay between a sensing and a control task, where these
tasks are typically executed on physically distributed devices.

Meeting end-to-end deadlines is non-trivial because data transfers between
application tasks involves multiple other tasks (e.g., operating system,
networking protocols) and shared resources (e.g., memories, system buses,
wireless medium). The entire transmission chain of the data throughout the
system must be taken into account to enable end-to-end real-time guarantees.

Key Research Questions

Question 1 Can we provide end-to-end real-time guarantees between
distributed applications in a wireless CPS?

Question 2 Can we do so while preserving runtime adaptability and
flexibility in the timing of task executions?

The problem. Enabling real-time communication between network interfaces
of sources and destinations in a low-power wireless network has been studied for
more than a decade [119, 172, 88]. Today, standards such as WirelessHART [92]
and ISA100.11a [94] for control applications in the process industries already
exist [193], and considerable progress in real-time transmission scheduling and
end-to-end delay analysis for WirelessHART networks has been made [154, 155].

Unfortunately, wireless real-time protocols such as WirelessHART [92] or
Blink [209] only provide guarantees for message transmissions between network
interfaces. These protocols do not handle the application schedules; at the
source, the message release is typically assumed periodic; at the destination,
nothing guarantees that the application will process the message in time.

Providing end-to-end guarantees between distributed application (Question 1)
demands to combine a wireless real-time protocol with the rest of the system;
i.e., consider application schedules and handle interference on shared resources.

The challenge. To support a broad spectrum of CPS applications, a solution
to this problem should fulfill the following requirements.

Timeliness All messages received by the destination application meet their end-
to-end deadlines.

Reliability All messages received at the wireless network interface are success-
fully delivered to their destination application (i.e., no buffer overflows).

76 Chapter 4. DRP – Distributed Real-time Protocol

Adaptability The system adapts to dynamic changes in traffic requirements at
runtime.

Composability Existing hardware and software components can be freely
composed to satisfy specific application’s needs, without altering the
properties of the integrated parts.

Efficiency The solution scales to large system sizes and operates efficiently with
regard to limited resources such as energy, wireless bandwidth, computing
capacity, and memory.

A major challenge in meeting these requirements is to funnel messages in
real-time through tasks that run concurrently and access shared resources.
Interference on such resources can delay tasks and communication arbitrarily,
therefore hampering Timeliness, Reliability, and Composability.

Our solution. In this chapter, we present a real-time wireless CPS that
tackles interference on shared resources by defining (minimal) constraints on
the application schedules. This is achieved by combining a predictable device
architecture with a real-time scheduler for the entire system.

Predictable device architecture We use the Dual-Processor Platform
(DPP) concept, presented in Introduction (Chapter 1). The DPP
dedicates a communication processor (CP) exclusively to the real-time
network protocol and executes all other tasks on an application processor
(AP). The DPP is based on the Bolt interconnect [175], which
decouples two processors in the time, power, and clock domains, while
allowing them to asynchronously exchange messages within predictable
time bounds.1

Thus, on each device, we decouple the communication and application
tasks, which can be independently invoked in an event- or time-triggered
fashion. The DPP concept guarantees the faithfulness of the network
interface (Reliability), supports Composability, and leverages the recent
trend toward ultra low-power multi-processor architectures, which can
be chosen individually to match the needs of the application and the
networking protocol respectively (Efficiency).

Real-time scheduler We design the Distributed Real-time Protocol (DRP),
a scheduler that provably guarantees that all messages received at the
application interfaces meet their end-to-end deadlines (Timeliness) and
that message buffers along the data transfers do not overflow (Reliability).
To accomplish this while being adaptive to unpredictable changes (Adapt-
ability), DRP dynamically establishes at runtime a set of contracts based
on the current traffic demands in the system. A contract determines
the mutual obligations in terms of (i) minimum service provided, and
(ii) maximum demand generated between the networking protocol and an

1Refer to the Introduction (Section 1.4) for more details.

Ch
ap

te
r 4

DR
P

4.2. System Model 77

application. DRP contracts define time bounds that can be analyzed to
ensure that end-to-end deadlines are met, while preserving flexibility in
the timing of distributed task executions (Question 2).

The contributions of this chapter are summarized below.

n We design DRP, a wireless CPS system that provably provides end-to-
end real-time guarantees between distributed applications. DRP does so by
harnessing the benefits of synchronous transmissions (Section 1.3) and building
upon the Blink real-time scheduler [209] and the Dual-Processor Platform
architecture (Section 1.4).
n We simulate DRP execution to demonstrate that the provided bounds are
both safe and tight.
n We implement DRP on embedded hardware and showcase that the protocol
works as expected.
n We make our implementation of DRP publicly available, which includes the
Blink scheduler for LWB [72].

4.2 System Model

Let F be the set of real-time message flows in the system. The message release
of each flow is sporadic with jitter ; i.e., each flow Fi = (ns

i , nd
i , Ti , Ji,Di)

is defined by a source application running on source node ns
i that releases

messages with a minimum message interval Ti and jitter Ji (Ji < Ti), such
that the time span of n successive messages is never smaller than (n−1)×Ti−Ji
for any n. Every message released at nsi should be delivered to the application
running on destination node nd

i within the same relative end-to-end deadline Di .

The system model is illustrated in Figure 4.2: a set of nodes N exchange
messages over a wireless multi-hop network; messages sent from a source node
to a destination node are possibly relayed by multiple other nodes. A logically
global network manager, called the host, arbitrates access to the network.
Physically, the host may be one of the nodes. The source and destination
applications of a flow Fi run on physically distributed nodes ns

i and nd
i . Nodes

can send to and receive messages from all other nodes in the system.

Problem statement. The problem is to design a wireless CPS that fulfills all
the requirements presented in Section 4.1 such that, for every message of every
flow Fi ∈ F released at the source node ns

i , if it is successfully transmitted by
the wireless network, then it is delivered to the destination application running
on node nd

i within the flow end-to-end deadline Di .

Application use case. Consider an acoustic wireless sensor network, such as
those used to monitor permafrost in high alpine regions [194, 129]. Rock cracks

78 Chapter 4. DRP – Distributed Real-time Protocol

DRP

Blink

AP

CP

AP

CP

AP

CP

Multi-hop
Wireless Network

Host

Figure 4.2 System model of the Distributed Real-time Protocol (DRP). A set N
of DPP nodes are forming a wireless CPS. The communication processors (CPs)
run the Blink real-time protocol [209] to exchange messages across a multi-hop
wireless network. The CPs forward and receive messages from their application
processors (APs) through Bolt [175]. DRP is a global scheduler that arbitrates end-
to-end communications between the APs. On each AP, the application tasks can
be scheduled freely (e.g., using a polling server, rate monotonic, etc.) as long as the
resulting schedule satisfies the DRP contracts (Section 4.4). The host is a (logically)
global network manager which arbitrates the access to the shared wireless medium;
i.e., it runs the Blink and DRP schedulers. Physically, one of the nodes plays the role
of the host.

are unpredictable events; however when one such event does happen, data must
be collected and forwarded rapidly to a sink node for processing. For an early-
warning system, it is crucial that this happens in real-time. Such an application
perfectly matches our system model and motivates our problem statement.

4.3 Overview of DRP

This chapter presents the Distributed Real-time Protocol (DRP), a solution
to provide end-to-end real-time guarantees between distributed applications.
Before delving into details, this section provides an overview of DRP’s principles.

The system model of DRP divides the end-to-end communication between local
and wireless parts (Figure 4.2):

Ch
ap

te
r 4

DR
P

4.3. Overview of DRP 79

BOLT
API

BOLT
API

Receive Buffer

flush
read

write

Communication
Processor (CP)

Receive Buffer

flush
read

write

Application
Processor (AP)

Figure 4.3 Conceptual view of the DPP, based one the Bolt processor interconnect.
Using functions write, read, and flush, the application (AP) and communication
(CP) processors can asynchronously exchange messages with predictable latency.
The AP executes application tasks (e.g., sensing, actuation, control, etc.) while the
CP is dedicated to radio communication.

AP ↔ CP Applications run on dedicated application processors (APs)
which are isolated from the rest of the network by their attached
communication processor (CP). Local communication between APs
and CPs takes place over the Bolt interconnect [175], which provides
asynchronous message passing with bounded delays. This device
architecture, called the Dual-Processor Platform (DPP), is illustrated in
Figure 4.3 (more details in Chapter 1).

CP ↔ CP The CPs exchange messages over a multi-hop wireless network
using the Blink real-time protocol [209]. Blink is adaptive to dynamic
changes in traffic demands, energy efficient, and delivers messages in
real-time.

The DPP and Blink are key building blocks to fulfill the Reliability, Adaptability,
Composability, and Efficiency requirements. However, two major issues remain
in order to achieve Timeliness.

First, the communication between APs and CPs cannot be completely
asynchronous: to guarantee end-to-end deadlines, both processors must look
for incoming messages with some minimal rate. Second, Blink assumes a
periodic release of messages at the network interfaces (i.e., the CPs); since
our flow model is not periodic but sporadic with jitter (Section 4.2), messages
may be delayed in CPs buffer until they can be transmitted over the network.

DRP strikes a balance between Composability and Efficiency ; that is, between
n decoupling the execution of APs, CPs, and Blink,
n supporting short the end-to-end deadlines between the APs.
The idea behind DRP is to split the responsibility of meeting end-to-end
deadlines between (i) the source node nsi and Blink, and (ii) the destination
node ndi ; If the source does not write too many messages, Blink guarantees
every message will meet a given network deadline D, in turns, the destination
commits to read its Bolt queue sufficiently often to meet the flow’s end-to-end
deadlines D.

80 Chapter 4. DRP – Distributed Real-time Protocol

DRP formalizes these “commitments” into contracts between the different
entities. The challenge is to define, given the current network state and an end-
to-end deadline D to satisfy, what must be (i) the network deadlineD requested
to Blink and (ii) the minimal reading rate at the destination node. The goal is to
make these contracts minimally restrictive, such that APs, CPs, and Blink can
operate as much as possible independently from each other (Composability).

4.4 Designing DRP

We now detail the three building blocks of our solution: We first describe how
APs and CPs exchange messages through Bolt (Section 4.4.1), then we outline
the operation of the Blink wireless real-time protocol (Section 4.4.2), and finally
we present the detailed design of DRP (Section 4.4.3).

4.4.1 Bolt Processor Interconnect

Bolt [175] provides predictable asynchronous message passing between two
arbitrary processors, and hence decouples the processors with respect to time,
power, and clock domains. Concrete realizations of Dual-Processor Platforms
(DPP) based on Bolt are depicted in Section 1.B.

Figure 4.3 shows a conceptual view of the DPP: two message queues with first-
in-first-out (FIFO) semantics, one per direction, form the core of Bolt, which
allows concurrent read and write operations by AP and CP on both queues.

Bolt API includes three functions (Table 4.1). The write function appends a
message to the end of the outgoing queue, whereas read reads and removes
the first message from the incoming queue. Calling flush results in a
sequence of read operations until the incoming message queue is empty. The
implementation of flush is peculiar. As Bolt allows for concurrent read and
write operations, in theory, a flush may result in an infinite sequence of read
operations. To prevent this, the number of read during a flush is upper-
bounded by fmax. fmax is set to the number of messages that fit into one Bolt
queue, denoted by SBolt,

fmax = SBolt (4.1)

Thus, a flush terminates when the incoming queue is found empty or when
fmax messages have been read out.

By design, Bolt API features predictable execution times, independently of the
interconnected processors [175]. We denote by Cw, Cr, and Cf the worst-case
execution times (WCETs) of write, read, and flush.

Ch
ap

te
r 4

DR
P

4.4. Designing DRP 81

Table 4.1 Bolt application programming interface (API)

Function Description WCET

write Append a message to outgoing queue Cw

read Read and remove the first message from incoming queue Cr

flush Perform up to fmax read operations, or until incoming
queue is empty

Cf = fmax ∗ Cr

𝑇𝑛𝑒𝑡

𝐶𝑛𝑒𝑡

time

CP of node 1

CP of node 2

CP of node 𝒩

…

…

𝐵 slots

Figure 4.4 Operations in Blink are globally time-triggered. Communication occurs
in rounds of equal duration Cnet . Each round consists of a sequence of up to Bmax
exclusive time slots, each of which serves to send one message using Glossy floods [74].
The time interval between two consecutive rounds (Tnet) may vary. During a round,
the CP of all nodes in the system participate in the flood.

4.4.2 Blink Wireless Real-time Protocol

In Blink [209], wireless multi-hop communication is globally time-triggered and
occurs in rounds of equal duration Cnet (Figure 4.4). Each round serves to send
up to Bmax messages within exclusive time slots. In each time slot a message
is sent from a given CP to all other CPs using Glossy floods, which deliver
packets with a probability above 99.9% [74].2 The interval between the start
of consecutive rounds, denoted by Tnet , is determined by the host at runtime
based on current real-time traffic demands. T min

net and T max
net are implementation-

specific bounds on Tnet . Blink defines Tnet and assigns messages to rounds such
that the number of rounds is minimized and all messages meet the network
deadline Di between network interfaces (i.e., the CPs).

Blink communication rounds are atomic: during a round, all CPs are busy
executing Blink; other tasks (e.g., exchanging messages through Bolt) can only
be executed between rounds. Furthermore, Blink assumes constrained deadlines
(Di ≤ Ti). Thus, the network deadline D must be larger than the minimal
round interval and smaller than the flow period T

T min
net ≤ Tnet ≤ D ≤ T (4.2)

2The principle of round-based communication using Glossy floods was introduced in the
Low-power Wireless Bus (LWB) [72]. The concept was later adapted in many different
flavors (see the introduction of Chapter 3). Blink is a real-time scheduler for LWB.

82 Chapter 4. DRP – Distributed Real-time Protocol

Blink expects periodic message arrivals with a known initial phase for the first
packet. We refer to this as the expected arrival pattern. For any message
matching the expected arrival pattern, Blink guarantees that, if the message
is successfully received at the destination CP, the message meets its relative
network deadline D.

However, we must consider the complete system: (i) the message release
from the APs is sporadic with jitter, and (ii) APs and CPs operate
independently (Composability). Thus, there is a mismatch between the periodic
arrival pattern assumed by Blink and the actual message arrival at the CPs.

4.4.3 DRP: Distributed Real-time Protocol

Blink provides real-time guarantees between the network interfaces (i.e., the
CPs) assuming periodic message release. DRP handles the mismatch between
the Blink assumptions and the actual message arrival at the CPs by (i) letting
the host assume that messages are indeed released periodically at the CPs.
Blink’s communication schedule is computed based on the expected arrival
pattern and using an arbitrary initial phase for the flows. (ii) analyzing
the maximal mismatch between the actual and expected arrival patterns.

This upper-bound represents the maximum extra-delay that a message can suffer
before it is scheduled for communication by Blink. Then, the delay bounds for
communication over Bolt and over the wireless network can be combined into
a worst-case latency analysis which connects the system parameters (such as
the network deadlines and flushing rate of Bolt) with the expected message
latency. DRP reverts these relations to define values for the system parameters
that guarantee to meet the specified end-to-end deadlines. DRP enforces such
parameter values using contracts, which are agreed upon at runtime every time
a new message flow is registered.

Contracts. DRP contracts are key to fulfill the Timeliness and Reliability
requirements. Concretely, these contracts

n avoid overflows of message buffers (e.g., the Bolt queues) at the source and
destination nodes, thus preventing message losses;
n ensure that messages are handled “fast enough” between the network (i.e.,
CPs) and the application (i.e., APs) interfaces by the source and destination
nodes, such that all messages meet their end-to-end deadlines.

To avoid overflows, DRP defines maximum time intervals between two flush
operations of Bolt by the CPs and APs, denoted by T sf and T df respectively. T sf
is statically set for all CPs in order not to constrain the achievable end-to-end
deadline. Conversely, T df is adjusted dynamically by the destination nodes upon
registration of a new flow.

Providing end-to-end guarantees entails that DRP decides on the distribution

Ch
ap

te
r 4

DR
P

4.4. Designing DRP 83

of responsibilities among the source node, Blink, and the destination node of
a flow Fi with regard to meeting the end-to-end deadline Di . To this end,
DRP uses the deadline ratio r ∈ (0, 1), a global parameter chosen at design
time. The joint responsibility of the source and Blink is a function of the source
flushing interval T sf and the flow’s network deadline Di (computed by DRP).
They are responsible for meeting a fraction r of the end-to-end deadline

f(T sf , Di) ≤ r ∗Di (4.3)

The remaining part of the end-to-end deadline defines the responsibility of the
destination, which is a function of its flushing interval T df

g(T df) ≤ (1− r) ∗Di (4.4)

In Section 4.5, we derive concrete expressions for the functions f and g, and
we specify how DRP computes Di and T df . In Section 4.7 we illustrate how the
choice of the deadline ratio r influences the achievable bandwidth and end-to-
end guarantees of our wireless CPs system.

For each newly admitted flow Fi = (ns
i , nd

i , Ti , Ji,Di) ∈ F , DRP dynamically
establishes two contracts.

n Source ↔ Blink Fi’s source application, which runs on APs at node
ns

i , agrees to write no more messages than specified by the minimum message
interval Ti and the jitter Ji. The attached CPs prevents overflows of Bolt and
its local message buffer. In turn, Blink agrees to serve flow Fi such that any
message matching the expected arrival of Fi meets its network deadline Di .
n Blink ↔ Destination Blink agrees to deliver no more messages than
specified by Ti . In turn, CPd and APd agree to read out all delivered messages
such that overflows of Bolt and CPd ’s local buffer are prevented and all
messages meet Fi’s end-to-end deadline Di .

For any flow, if both contracts are fulfilled, all messages that are successfully
delivered by Blink will meet their end-to-end deadline. In practice, the contracts
fulfillment is guaranteed by a set of admission tests, which are performed in
sequence upon registration of a new flow, as described next.

Flow registration. Figure 4.5 shows the full procedure for registering a new
flow Fi = (ns

i , nd
i , Ti , Ji,Di) in DRP. The flow’s source application running

on APs first computes the network deadline Di (Section 4.5) before it writes
the request to the attached CPs through Bolt. CPs uses its admission test
to check whether it could still prevent overflows of Bolt and its local memory
if Fi were present. If so, CPs forwards the request to the host, which checks
the schedulability using Blink’s admission test [209]. If Blink admits the flow,
the destination node’s CPd and APd check whether they can prevent overflows
of CPd ’s local memory and Bolt, respectively. Moreover, APd re-computes
its required flushing interval T df and checks using mainstream schedulability

84
Chapter4.

D
RP

–
Distributed

Real-tim
e
Protocol

request
𝑇𝑖 , 𝐽𝑖𝐷𝑖, 𝐃i YES

Packet flow

YES

update

𝑇𝑓
𝑑

YES

nack

ack

end-to-end latency ≤ 𝐃i

YES

REGISTRATION SCHEME

𝑓(𝑇𝑓
𝑠, 𝐷𝑖) 𝑔(𝑇𝑓

𝑑)

Abort

Register
flow

NO

Bolt buffer and
local memory OK?

Abort

Register flow and
update schedule

𝑇𝑖 , 𝐽𝑖𝐃i

Compute 𝐷𝑖

Abort

Register flow and
update schedule

NO

Network
schedule OK?

Abort

Register
flow

NO

Local
memory OK?

Abort

Register flow and
update schedule

NO

Bolt buffer

and 𝑇𝑓
𝑑 OK?

AP CP CP APBlink

nack

ack

nack

ack

nack

ack

ADMISSION TESTS

Figure 4.5 Steps and components involved when registering a new flow in DRP. Given a request for a new flow Fi = (ns
i ,nd

i , Ti , Ji,Di), the
source application running on APs at node ns

i computes the flow’s network deadline Di . Then, all components check one after the other using
specific admission tests whether they can admit the new flow. DRP registers a new flow only if all admission tests succeed, which eventually
triggers changes in the runtime operation (the schedule) of Blink as well as of the source and destination application processors APs and APd .

Ch
ap

te
r 4

DR
P

4.5. Concrete Realization of DRP 85

analysis [45] whether it can support this new load (in addition to the load
incurred by other tasks running on APd). DRP registers a flow only if all
admission tests succeed, which then triggers changes in the runtime operation
of APs, Blink, and APd .

Flow requests and acknowledgments are sent via dedicated control flows, which
are registered by default at bootstrapping for each node in the network.

DRP procedure. Figure 4.6 summarizes all the inputs and outputs of DRP.
Hardware parameters (related to Bolt) and design parameters (i.e., the length of
a communication round Cnet , the deadline ratio r, and the number of slots per
round Bmax) are constants known at compile time. The application’s real-time
communication requirements may change at runtime as new flows are requested
and existing flows are removed. DRP determines T sf statically, while all other
outputs are dynamically computed whenever the set of flows changes, according
to the procedure illustrated in Figure 4.5.

4.5 Concrete Realization of DRP

This section discusses how to concretely implement DRP’s concepts. In
particular, one needs to define (i) the fixed flushing interval T sf of the
CPs (Section 4.5.1), and (ii) how to dynamically compute the network deadline
Di of a flow Fi and the flushing interval T df of each AP (Section 4.5.2).

Then, a worst-case buffer analysis (Section 4.5.3) will allow to formulate
admission tests (Section 4.5.4), one for APs and one for CPs. The success
of all admission tests guarantees that both contracts Source ↔ Blink and
Blink ↔ Destination can be satisfied by DRP.

4.5.1 Setting CPs’ Flushing Interval

To guarantee that all CPs fulfill their share of the contracts (i.e., prevent
buffer overflows), we conceive a time-triggered approach to schedule all tasks
of CPs. It consists of (i) setting the flushing interval T sf of all CPs to the same
constant value, and (ii) letting the round interval Tnet be a multiple of T sf . As
discussed in Section 4.4, T sf should not to constrain the achievable deadline:
thus, we aim to set it as short as possible. CPs have three tasks to perform

n flushing Bolt before each communication round,
n participating in the communication during the rounds,
n writing all received messages into Bolt after the rounds.

Performing those tasks altogether takes CCP + Cnet time units, where CCP =
Cf + Bmax ∗ Cw, and Bmax denotes the number of time slots in one round.

86 Chapter 4. DRP – Distributed Real-time Protocol

Computes
system’s

parameters

and

Answer new
flow requests

Length of a round

Deadline ratio WCETs of Bolt API functions

𝐶𝑤 𝐶𝑟𝐶𝑛𝑒𝑡

Design
parameters

Hardware
parameters

𝑟

Current flow set ℱ

New flow request

𝐹𝑖 = 𝑛𝑖
𝑠, 𝑛𝑖

𝑑 , 𝑇𝑖 , 𝐽𝑖, 𝐃𝑖

Application
requirements

Flushing interval 𝑇𝑓
𝑠 of 𝐶𝑃s

Static output

Flow request answer (𝐘𝐄𝐒/𝐍𝐎)

Network deadline 𝐷𝑖 of flow 𝐹𝑖

Max. flushing interval 𝑇𝑓
𝑑 of 𝐴𝑃s

Dynamic outputs

Number of slots per round

𝐵 𝐶𝑓

DRP

Figure 4.6 Inputs and outputs of DRP. Hardware and design parameters are fixed
at design time, while the application requirements may change at runtime. DRP
statically computes the flushing interval of CPs; all other outputs are dynamically
computed whenever the flow set F changes.

Hence, CCP + Cnet is the smallest admissible round interval (otherwise CPs’
task set is not schedulable). Thus we set for all CPs in the system,

T sf = CCP + Cnet (4.5)

and we let the round interval be a multiple of T sf . That is, for k ∈ N, k > 0,

Tnet = k ∗ T sf (4.6)

For a given Cnet, a larger k entails less available bandwidth but also lower energy
consumption. Blink is designed to dynamically adjust k to match the bandwidth
requirements and save energy [209].

4.5.2 Computing Network Deadlines & APs’ Flushing Interval

Having fixed CPs’ flushing interval, we now turn to the problem of dynamically
computing the network deadline Di of flow Fi and the flushing interval T df of
Fi’s destination APd , such that the end-to-end deadline Di is met. To this
end, we need to define expressions for the functions f and g (introduced in
Section 4.4), and derive values for Di and T df such that equations (4.3) and
(4.4) are satisfied.

Theorem 4.1. For any flow Fi = (ns
i ,nd

i ,Ti ,Ji,Di), and given the duration of
communication rounds Cnet, functions f and g are upper-bounded as follows

f(T sf , Di) ≤ Ti +Di + Ji + δconstf (4.7)

Ch
ap

te
r 4

DR
P

4.5. Concrete Realization of DRP 87

g(T df) ≤ T df (nd
i) + δconstg (4.8)

where δconstf and δconstf are constant delays that depend on the WCETs of the
Bolt API functions, on the maximum number of messages Bmax that can be
served by Blink in one round, and on the fixed flushing interval T sf of CPs,

δconstf = Cw + Cf + T sf (4.9)
δconstg = Bmax ∗ Cw − (Bmax − 1) ∗ Cr + Cf (4.10)

Ji =
⌊
(Ji + Cf − Cr)/T sf

⌋
· T sf (4.11)

Proof. Function f is the time between when a message is written into Bolt by
the source APs and when the communication round in which the message is
sent by Blink ends (i.e., when the message is available at the destination CPd).
This is the sum of two delays: δsource, the time until the message is available
for communication at the source CPs; and δnetwork, the time until the message
is shipped over the network to CPd .

Similarly, function g is the time between when a packet is available at the
destination CPd and the end of the flush operation that reads the message
out of Bolt at the destination APd (i.e., when the message can be processed
by the destination application). We refer to this delay as δdest.

Hence, the expressions for functions f and g in (4.7) and (4.8) directly follow
from the delays expression derived in Lemmas 4.4, 4.5, and 4.6 (Section 4.B).

We use Theorem 4.1 to express conditions on Di and T df such that (4.3)
and (4.4) are satisfied. In particular, it is sufficient that for any flow Fi =
(ns

i , nd
i , Ti , Ji,Di) ∈ F

Ti +Di + Ji ≤ r ∗Di − δconstf

⇒ Ti ≤ r ∗Di − δconstf −Di − Ji (4.12)

and

T df (nd
i) ≤ (1− r) ∗Di − δconstg (4.13)

As low-power wireless networks typically feature limited bandwidth,3 it makes
sense to choose the network deadline Di as large as possible in order to
increase the schedulability of flows in the network. However, Blink only supports
constrained deadlines (D ≤ T) and deadlines must be multiples of the round
length (D = 0 mod Tnet). Furthermore, a network deadline cannot be smaller
than T min

net (see Section 4.4.2). Hence, for any flow Fi, it must hold that

T min
net ≤ Di ≤ Ti (4.14)

3Low-power radio bit rates are often limited to 256 kbps; the latest version of Bluetooth
(Bluetooth 5) supports up to 2 Mbit/s.

88 Chapter 4. DRP – Distributed Real-time Protocol

Di = 0 mod Tnet (4.15)

Finally, to satisfy all contracts in the system, (4.12), (4.13) and (4.14) must hold
for all flows Fi ∈ F . Hence, the values for Di and T df computed dynamically at
runtime must satisfy for any flow Fi = (ns

i , nd
i , Ti , Ji,Di) ∈ F and any n ∈ N

Di = min
(
Ti , r ∗Di − δconstf − Ti − Ji

)
− (Di mod Tnet) (4.16)

T df (n) ≤ min
Fj∈F ,n=nd

j

(
(1− r) ∗Dj − δconstg

)
(4.17)

If using (4.16) leads to a violation of the constraint in (4.14) or if T df results in
a load that AP at node n cannot handle, DRP rejects the flow since the two
contracts cannot be guaranteed.

4.5.3 Worst-case Buffer Analysis

Satisfying all contracts entails preventing overflows of message buffers in the
system. Specifically, as shown in Figure 4.5,

n APs are responsible for ensuring that the incoming Bolt queues do not
overflow, and
n CPs are responsible for ensuring that their local message buffers and the
outgoing Bolt queues do not overflow.

To formulate the admission tests for APs and CPs, we first need the worst-
case buffer sizes (i.e., maximum number of messages in a buffer) induced by
a given flow set F . For ease of exposition, we make the following hypothesis.

Hypothesis 1. For a given flow set F , an AP (resp. CP) never writes more
messages into Bolt than can be flushed by CP (resp. AP) in one flush
operation in the time span between two flush.

This hypothesis implies that the Bolt queues are always empty at the end of a
flush operation. We prove at the end of this section that our admission tests
effectively guarantee that Hypothesis 1 is always verified.

Lemma 4.1. Given a flow set F , the buffer size of the outgoing Bolt queue of
node n ∈ N , BBolt,out(n), is upper-bounded,

BBolt,out(n) ≤
∑

Fi∈F , n=ns
i

⌈
T sf + Cw + Cr + Ji

Ti

⌉
(4.18)

Proof. According to the Source ↔ Blink contract, APs at node n does not
write more than one message every Ti with jitter Ji into the outgoing Bolt
queue. Based on Hypothesis 1, the buffer size is bounded by the number of

Ch
ap

te
r 4

DR
P

4.5. Concrete Realization of DRP 89

messages that can be written by APs during the maximum time a message can
stay inside the queue, which is ∆ = T sf + Cw + Cr (see Figure 4.13). The
maximum number of messages that can be written by APs within any time
interval ∆ is d(∆ + Ji)/Tie for each flow Fi sourced by n.

The worst-case buffer size of a CP depends on (i) the maximum time a message
can stay in CP’s local memory awaiting to be served by Blink, and (ii) the
number of messages that can be sent within one round to a node.
Lemma 4.2. Given a flow set F , the buffer size of CP’s internal memory of
node n ∈ N , BCP (n), is upper-bounded,

BCP (n) ≤
∑
Fi∈F ,
n=ns

i

1 +
⌈
Di + Ji + Cf

Ti

⌉
+

∑
Fi∈F ,
n=nd

i

1 (4.19)

Proof. On the source side, we make the conservative assumption that all
messages read out during a flush occupy memory in CPs from the beginning
of the flush. Hence, the maximum waiting time in CPs for a message until it is
served by Blink is δnetwork +Cf (see Lemma 4.5 – Section 4.B). The number of
messages in CPs due to the source is upper-bounded by the maximum number of
messages APs can write during this time interval, given by dδnetwork + Cf)/Tie.
Using Lemma 4.5, this is at most 1 +

⌈
(Di + Ji + Cf)/Ti

⌉
per outgoing flow.

One the destination side, during a round, CPd may receive several messages,
which it immediately writes into Bolt after the round. However, Blink expects
one packet every Ti from each flow, which it serves within Di . As Di ≤ Ti ,
Blink never schedules more than one packet per round for each flow. Thus, the
maximum number of messages in CPd due to the destination is 1 packet per
incoming flow.
Lemma 4.3. Given a flow set F , the buffer size of the incoming Bolt queue of
node n ∈ N , BBolt,in(n), is upper-bounded,

BBolt,in(n) ≤
∑
Fi∈F ,
n=nd

i

⌈
T df (n) + Cw + Cr +Di

Ti

⌉
(4.20)

Proof. As specified in the Source ↔ Blink contract, Blink delivers packets
from any flow Fi before the network deadline Di (Section 4.4). Therefore,
Blink delivers at most one packet every Ti time units, with a jitter equal to Di ,
which are written into Bolt immediately after the round.

Based on Hypothesis 1, the buffer constraint of the incoming Bolt queue is
bounded by the number of packets that can be written by CPd during the
maximum elapsed time before a packet is read out by APd . As in the proof
of Lemma 4.1, there are at most

⌈
(T df (n) + Cw + Cr +Di)/Ti

⌉
such messages

from each flow Fi that has node n as destination.

90 Chapter 4. DRP – Distributed Real-time Protocol

4.5.4 Admission Tests

We now combine the above results and formulate the admission tests for
CPs and APs, which form the cornerstone of DRP’s registration mechanism
described in Section 4.4. We further show that the computation complexity
of the admission tests is not only small but constant, and hence supports the
requirements of Adaptability and Efficiency.

Let Fj be the flow for which a request has been issued, and Fnew = F ∪
{Fj}. The CP of node n is responsible for preventing overflows of its local
memory (of size SCP) and of the outgoing Bolt queue of node n (of size SBolt).

Theorem 4.2 (Admission Test of CP). If

SBolt ≥
∑

Fi∈Fnew,
n=ns

i

⌈
T sf + Cw + Cr + Ji

Ti

⌉

and SCP ≥
∑

Fi∈Fnew,
n=ns

i

1 +
⌈
Di + Ji + Cf

Ti

⌉
+

∑
Fi∈Fnew,
n=nd

i

1

then the requested flow Fj can be safely admitted by CP.

Proof. Immediate from Lemmas 4.1 and 4.2.

The AP of node n is responsible for preventing overflows of the incoming Bolt
queue (of size SBolt) and for guaranteeing its share of the end-to-end deadline.

Theorem 4.3 (Admission Test of AP). If there exists T df (n) such that

T df (n) ≤ min
Fi∈Fnew,
n=nd

i

(
(1− r) ∗Di − δconstg

)

and SBolt ≥
∑

Fi∈Fnew,
n=nd

i

⌈
T df (n) + Cw + Cr +Di

Ti

⌉

then the requested flow Fj can be safely admitted by AP.

Proof. Immediate from Lemma 4.3 and equation (4.17).

Finally, we verify that Hypothesis 1 holds, showing the validity of our buffer
analysis. From (4.1) we have fmax = SBolt. Thus, by performing the admission
tests at runtime, it follows from Theorems 4.2 and 4.3 and Lemmas 4.1 and
4.3 that fmax is always bigger than the filling level of any Bolt queue, which
entails Hypothesis 1 is true.

Ch
ap

te
r 4

DR
P

4.6. Implementating DRP 91

LWB

LWB*

time
cont.schedi schedi+1compute sched.slot1 slotB

…

time
schedi schedi+1fetchslot1 slotB

…

Figure 4.7 The original LWB (Top) and the modified round used in DRP (Bottom).
DRP removes the contention slots, made redundant by the presence of dedicated
control flows. Furthermore, the time span before sending the next round’s schedule
can be significantly reduced: indeed in DRP, the host CP can quickly fetch the
schedule from the AP, which has done the computation in parallel.

4.6 Implementating DRP

This dissertation aims to provide concrete solutions for wireless CPS, not only
theoretical concepts. It is therefore important to implement the concepts and
evaluate their performance when running on real hardware. This section presents
some important design choices we made for our implementation of DRP. The
performance evaluation is presented in Section 4.7.

DRP extends Blink [209], which is a real-time scheduler for LWB [72]. Thus, we
start our implementation of DRP from an existing implementation of LWB [71].
There are two main functionality to implement for running DRP

n compute Blink schedules, and
n perform DRP admission tests.

DRP leverages the DPP design by having all the computations performed by
the AP while the CP only runs LWB. From an implementation stand-point, the
challenge is that the AP does computations but the CP needs the results (e.g.,
the LWB schedules); the communication over Bolt between AP and CP must
happen in a way that does not interrupt or delay LWB operations. Moreover, the
memory and computational requirements of the protocol must be compatible
with the (typically limited) capacity of embedded hardware.

Task distribution. On all nodes, the computations related to DRP admission
tests are performed by the AP, including CP’s buffer checks (Theorem 4.2).
These tests only require minimal state keeping, which can be easily delegated
to the AP. This has two benefits: (i) it limits the modification to the CP
firmware (i.e., LWB) and (ii) it improves performance (the admission test is
more efficiently computed by the AP than by the CP).

Round structure. Our implementation maintains the original LWB round
structure, only removing the contention slot (Figure 4.7). This slot becomes
redundant in DRP since each node bootstraps with registered control flows,
which are used for further DRP requests and flow registrations (Section 4.4).

Schedule fetch. The host CP fetches the schedule for the LWB round i + 1

92 Chapter 4. DRP – Distributed Real-time Protocol

at the end of round i (Figure 4.7). CP requests the schedule to AP, which
maintains the schedule ready and writes it to Bolt whenever the request comes.

Communication model. The communication between AP and CP over
Bolt can be based on polling or interrupts. When using polling, processors
asynchronously check the status of their incoming Bolt queue to check whether
a message is present. Conversely, an interrupt can be generated at the receiving
processor whenever a Bolt write operation is completed.

AP to CP When AP writes to Bolt, we trigger an interrupt on the CP
and read out the message immediately. Since DRP flow model is
sporadic and new packets are expected infrequently (Section 4.2), using
interrupt is fast, energy efficient, and avoids building up the Bolt queue.
However, during LWB rounds, it is paramount that CP operations are
not delayed or disturbed. Thus, during the rounds, interrupts are disabled
and (potential) new messages written by AP are read out after the round.

CP to AP We assume that the AP on the host node is dedicated to its role
of host (i.e., there are no other application tasks running of that AP).
Thus, we use interrupts, which allows for fast reaction times from AP
to CP’s requests (e.g., when fetching the next round’s schedule). When
CP receives a DRP request, the AP immediately reads out the request,
stores it in a request queue (Figure 4.9), then processes incoming requests
whenever possible (Figure 4.8)
For the other nodes, the decision of using polling- or interrupt-based
communication depends on the timing requirements of the application.
Our implementation supports both modes. For simplicity, we use
interrupts in our evaluation (Section 4.7).

Host AP state-machine. The host AP is responsible to compute the Blink
schedules and to perform the admission tests for incoming DRP requests. As
processing DRP requests takes a variable (and possibly long) time, priority is
given to the schedule computation: as soon as the schedule for the round i
has been fetched by the CP, AP computes the schedule of round (i + 1).

Once the schedule is ready, AP continues with the processing of DRP requests.
After each processed request, if the flow is admitted, AP recomputes a schedule
for round i+ 1 taking the new flow into account. The procedure repeats until
the schedule is fetched by CP or when all requests have been processed. The
host AP state-machine is illustrated in Figure 4.8.

Alternating buffers. The host CP fetches the next round schedule from its
AP, which sends a valid schedule immediately. However, this conflicts with
the admission of new flow requests: the AP may be processing a request
(including the computation of a new schedule) when CP requests the schedule.

Ch
ap

te
r 4

DR
P

4.7. Performance Evaluation 93

Compute next round schedule

Next round schedule ready

Done
Processing

request

No request left
Requests
left

Request
processed

Computing
schedule

Waiting

Ready

Schedule fetched

Figure 4.8 State-machine of the host AP. AP first computes a valid schedule
for the next round. Then, the AP processes queued DRP requests, one at a time,
and recomputes a (new) schedule accounting for the newly admitted flow.

We handle this situation using an alternating buffer for the next round
schedule (Figure 4.9). One buffer is used to store a valid schedule for the next
round, which the AP computes first. After each DRP request is processed, the
newly computed schedule is written into the other buffer. The process repeats
until all requests are processed. Hence, even if CP fetches while AP is writing
a schedule in one buffer, the other buffer still contains a valid schedule, which
can be immediately sent to CP over Bolt. This guarantees a fast transmission
of the schedule from AP to CP while avoiding memory corruption on the AP.

Remark 4. Alternative design choices and their respective benefits are further
discussed in Andreas Biri’s Master Thesis [36].

4.7 Performance Evaluation

After detailing the design (Section 4.4) and implementation (Section 4.6) of
DRP, we now evaluate the performance of the system. We consider three
different performance aspects.

n First, we derive the theoretical optimal performances achievable by DRP,
based on the system model (Section 4.7.1).

n Then, we first use simulation to demonstrate the tightness of the worst-case
analysis underlying DRP’s design: we show that end-to-end message latency
reaches up to 97% of the analytic bounds (Section 4.7.2).

94 Chapter 4. DRP – Distributed Real-time Protocol

CP

AP IRQ
Handler

Request queue

schedule

schedule?
request

Alternating buffer

Ready buffer Working buffer

Figure 4.9 Request queue and alternating buffer on the host AP. Incoming
messages from CP trigger an interrupt and are handled immediately. DRP requests
are put in a dedicated queue for later processing (Figure 4.8). When CP writes a
schedule request, the interrupt handler fetches the most recent schedule from the
“Ready buffer” and write it to Bolt.

n Finally, we showcase that our DRP implementation performs as expected:
all messages successfully transmitted through the wireless network do meet
their end-to-end deadline. Furthermore, we illustrate that on a “real” network,
messages typically experience latency much shorter than their end-to-end
deadline (Section 4.7.3).

Remark 5. The TriScale framework, introduced in Chapter 2, would be
beneficial for the design and analysis of DRP’s performance evaluation.
However, the evaluation described below is anterior to the work we have done
on TriScale, and thus does not use the framework.

4.7.1 Performance Model

The admission tests for AP and CP (which ensure that all contracts are satisfied
after the admission of a new flow) critically depend on global parameters: the
duration of a round Cnet and the deadline ratio r.

In this section, we analyze the influence of these parameters on the achievable
performance of DRP in terms of responsiveness (i.e., the minimal admissible
end-to-end deadline) and bandwidth.

Responsiveness: Minimal Admissible End-to-end Deadline. Let us
assume that the duration of communication rounds Cnet is given. DRP handles
messages between application interfaces (i.e., the APs) and constrains the
destination APd to flush Bolt (at least) every T df . Naturally, there exists
a lower bound on the admissible T df ; let us refer to this bound as T df,min.
Given these parameters, we are interested in the minimal admissible end-to-end
deadline Dmin, or in other words, the maximal responsiveness of the protocol.

Ch
ap

te
r 4

DR
P

4.7. Performance Evaluation 95

0.2 0.4 0.6 0.8
0

10

20

30
Admissible region

(4.22) : Source constraint

(4.21) : Dest. constraint

Deadline ratio [.]

Smallest admissible
end-to-end deadline

with r = 0.95

3.43 s

End-to-end deadline [s]

Figure 4.10 The smallest admissible end-to-end deadline for Cnet = 1 s and
T df,min = 0.1 s is Dmin = 3.43 s. Equations (4.21) and (4.22) each define a feasible
region for (r,D) tuples. The intersection defines the admissible region.

From the previous remark on T df and eq. (4.17) it follows

T df,min ≤ T df ≤
(
(1− r) ∗D − δconstg

)
⇒ D ≥

T df,min + δconstg

(1− r) (4.21)

From (4.12) we also have

T +D + J ≤ r ∗D − δconstf

⇒ D ≥
T +D + J + δconstf

r

We look for the minimal expression of the right-hand side term. (4.14) : Tminnet ≤
Di ≤ Ti yields Tmin = Dmin = Tminnet . Moreover, combining (4.5) and (4.6)
entails Tminnet = T sf = Cnet + CCP . Hence Tmin is fixed given Cnet. Finally, in
the best case, there is no (or small) jitter (i.e., J = 0), and we obtain

⇒ D ≥
2Tmin + δconstf

r
(4.22)

(4.21) and (4.22) define two lower bounds on the minimal admissible end-to-end
deadline Dmin induced by the contracts. Combining them, it follows that

Dmin = min
r

(
T df,min + δconstg

(1− r) ,
2Tmin + δconstf

r

)

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb#Figure-10

96 Chapter 4. DRP – Distributed Real-time Protocol

Table 4.2 Simulation parameters. The Bolt API execution times are formally
proven bounds for the given hardware [175]. The number of slots per round Bmax is
defined as the number of slots that “fit” into a round of length Cnet given the packet
size.

Parameter Symbol Value

WCET of write Cw 116µs
Bolt WCET of read Cr 112µs

WCET of flush Cf 684ms
Round length Cnet 1 s

Blink Packet size L 32 bytes
Max number of slots in one round Bmax 46

Number of nodes . 20
DRP Deadline ratio r 0.5

Flushing interval of CP T s
f 1.074 s

The minimal value Dmin is reached for
ropt = (2Tmin + δconstf)/(T df,min + δconstg + 2Tmin + δconstf) (4.23)

and it yields
Dmin = T df,min + 2Tmin + δconstf + δconstg (4.24)

Using the parameters in Table 4.2 from real-world prototypes, if Cnet = 1 s
and T df,min = 0.1 s, the minimal end-to-end deadline that can be supported
is Dmin = 3.43 s, with r = ropt = 0.95, and the minimum message interval
T = Tmin = 1.074 s. This case is illustrated in Figure 4.10.

Bandwidth: Maximal Duration of Communication Rounds. Con-
versely, let us now assume that the minimal end-to-end deadline to be
supported is given by D, and consider the same assumption on T df . The
maximal bandwidth achievable by Blink is Bmax/T

min
net pkt/s/ s. The

round length Cnet is a linear function of the number of packets per
round Bmax (i.e., a constant time per packet plus some overhead), and
(4.6) : Tminnet = Cnet + CCP . Hence, the maximal bandwidth grows with
Cnet. Thus, we now investigate the maximal admissible duration of commu-
nication rounds Cnet that yields the maximum available network bandwidth.

From (4.12) we have T + D + J ≤ r ∗ D − δconstf , and,
as previously, Tminnet = Cnet + CCP ≤ D ≤ T . We get

Cnet ≤
1
2(r ∗D − δconstf)− CCP (4.25)

From (4.21), given D and T df,min, the maximal admissible value for r is rmax =
1− (T df,min + δconstg)/D , and finally

Cnet ≤
1
2
(
D − δconstf − δconstg − T df,min

)
− CCP (4.26)

Ch
ap

te
r 4

DR
P

4.7. Performance Evaluation 97

Using the parameters from Table 4.2, if we need to satisfy end-to-end deadlines
of D = 10 s and T df,min = 3 s, the maximal round length that can be supported
is Cnet = 2.82 s, with r = rmax = 0.69, and the minimum message interval
T = Cnet+CCP = 2.89 s. That upper-bound also yields the maximal achievable
network bandwidth.

Effect of Deadline Ratio on System Performance.

We presented earlier that given Cnet and T df,min, there is an optimal value for r
that minimizes the admissible end-to-end deadline D. If one tolerates “larger”
deadlines, r can be increased to allow for a bigger round length Cnet (see (4.25)),
which increases the maximal network bandwidth.

However, (4.17) yields T df ≤ (1 − r) ∗ D − δconstg . Hence, the bigger r is
the smaller T df must be, which may results in more flows rejected by the
destination application. On the contrary, if r is set to its minimal value
rmin = (2 ∗ Tmin + δconstg) /D (obtained from eq. (4.22)), it
yields T = D = Tmin = 1.074 s and J = 0 s. In other
words, the maximal admissible jitter (obtained from (4.11)) is
J < T sf + Cr − Cf ≈ 0.390 s.

How to set the parameters for DRP depends on the application. For instance, if
one consider an acoustic sensing scenario, responsiveness is usually quite critical,
and the sensors (i.e., the APs) should spend most of their time on sensing, not
being busy with flushing Bolt. Thus, we want to support a rather small Dmin

while having a strong constraint on T df,min. This will come at the cost of a
"small" network bandwidth.

4.7.2 Simulated Worst-Case Performance

In Section 4.7.1, we derived the optimal performance achievable according to
our DRP’s model. However, this model is based on a worst-case analysis of
message latency throughout the system. Because such an analysis is inherently
pessimistic, it is important to estimate how pessimist the analysis is. In other
words, how tight are the latency bounds given by the model? In this section,
we investigate this question using a discrete event simulation.

Procedure. We simulate the run-time behavior of DRP using the values and
parameters from our implementations (Table 4.2). The simulation framework
tracks the latency of each individual message through the entire system, i.e.,
all APs, CPs, Bolt and the wireless communication network. Concretely, the
simulation is implemented using Matlab scripts (openly available – Section 4.A).

Blink computes the round schedules assuming that the first message of each
flow is available for communication at t = 0 s. The actual epoch at which the
APs write the first packet of each flow is randomized between 0 s and the flow’s

98 Chapter 4. DRP – Distributed Real-time Protocol

minimal message interval T ; subsequent packets are sent with period T . The
random seed is fixed for reproduciblility.

Scenario. Node 1 acts as the sink and communicates with all other nodes
in the network. As described in Section 4.4, DRP is initialized with a set of
control flows Fcontrol, which is necessary in order to register subsequent flows

Fcontrol =
{
(1 , n , T = 10 s , J = 0 s , D = 30 s)
(n , 1 , T = 10 s , J = 0 s , D = 30 s)

}
for n ∈ (2..20). In practice, such flows can also be used to send low-priority
data (e.g., status data) regularly to the sink.

An event from the environment (e.g., a rock crack [129]) is co-detected by
nodes 2 to 5, which consequently emit a request for a new flow to the sink
node. In order to transfer the event data as fast as possible, the message
interval is chosen as small as possible (i.e., equal to T sf , the flushing interval of
CP – Refer to (4.5), (4.6) and (4.14)),

Fnew =
{
(n , 1 , T = 1.074 s , J = 0 s , D = 10 s)

}
for n ∈ (2..5). We record the end-to-end latency of all packets during two
minutes, during which about 900 messages are transmitted through the system.

Results. Figure 4.11 shows the distribution of end-to-end latency of
messages, shown as percentage of the analytical worst-case latency (given
by Theorem 4.1). We see that a few messages indeed experience a latency
up to 97% of the analytic worst-case bound. The simulation also indicates
that, in many cases, the worst-case buffer sizes of CP and Bolt are reached.
Overall, these results support our analysis of DRP. They show that our worst-
case bounds are tight; therefore, we can conclude that the performance derived
using DRP’s model (Section 4.7.1) is representative of the performance that
can be truly guaranteed by the system.

4.7.3 Real-World Performance

We now consider the performance of our implementation of DRP on embedded
hardware: We use the first-generation DPP, which features a TI MSP432P401R
as AP and a TI CC430F5147 as CP (Section 1.B). The software is based on
the publicly available implementation of LWB [71]; it is written in C and uses
Contiki 2.7 [2] as operating system. The implementation of Blink on the AP
is built upon [14]. We discuss our implementation performance in terms of
memory usage, computation workload, and message latency.

Memory usage. DRP requires both AP and CP to store some state
information related to the currently running flows, as well message queues
and buffers. The available RAM on both processors is shown in Table 4.4.

Ch
ap

te
r 4

DR
P

4.7. Performance Evaluation 99

0 20 40 60 80 100
0

5

10

End-to-end latency of messages [% of analytic bound]

Analytical bound

89%

Percentage of messages [%]

Figure 4.11 Distribution of end-to-end latency of messages, shown as percentage
of the analytical worst-case latency. Some messages experience a latency very close
to their worst-case bound (97%), which demonstrates the tightness of the analysis.

Table 4.3 Flow sets used in the end-to-end latency evaluation of DRP. The Blink
utilization is computed assuming a strictly periodic release of messages.

Flow Blink Flow set
label utilization (period, deadline)

Control flows na 20 × (15, 60)
Low 41% Control flows; (10, 58); (10, 58); (11, 59); (14, 52);

(15, 53); (16, 54); (16, 54); (19, 57)
Medium 60% Control flows; (5, 53); (5, 54); (6, 54); (7, 50); (7, 55);

(8, 56); (9, 57); (9, 58)
High 92% Control flows; (3, 55); (3, 56); (3, 56); (3, 56); (3, 59);

(3, 59); (4, 51); (4, 53); (4, 55); (4, 57)

The 64 kB of the AP are largely sufficient; it would supports hundreds of flows.
The CP is more limited: With a payload size of 32 bytes, CP is capped to
a maximum for 40 flows (Table 4.4). For a regular node, this will likely be
sufficient for most applications; however, on the host node, this seriously limits
the scalability of the system.

One possible solution is to use the embedded external memory (128 kB); this
would solve the memory limitation issue, but it may also introduce additional
delays, which are currently not accounted for. Or we could use another processor
as CP with more than 4 kB of RAM.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb#Figure-11

100 Chapter 4. DRP – Distributed Real-time Protocol

Table 4.4 Memory available and required for our implementation of DRP. The
difference between “total” and “available” memory corresponds to the memory taken
by the firmware only. L is the message payload.

MSP432P401R CC430F5147
Memory [bytes] AP CP

Total RAM 64k 4k
Available RAM 45k 2.4k
Memory required (per flow) 45 23+L

Table 4.5 Experienced latency of messages, expressed as percentage of the flow’s
end-to-end deadline. The tightness correspond to the ratio of the experienced latency
with the analytical upper-bound given by Theorem 4.1.

Low Median High

Median latency [%] 14 % 7 % 4 %
Maximum latency [%] 58 % 68 % 41 %
Tightness [%] 60 % 89 % 70 %

Computation. The most extensive computations in DRP are the com-
putations of the Blink schedules and admission tests. The evaluation of
these computations on embedded hardware is discussed in depth in [209].

In addition to Blink computations, the APs must perform DRP admission tests.
These are simple operations (Theorem 4.2 and 4.3) which can be implemented
efficiently. In our experiments, an admission test takes typically around 30ms
to complete (maximum observed execution time: 130ms).

DRP admission tests are performed only once per flow (when a new flow is
requested). Thus, we can conclude that the computational workload induced
by DRP (in addition to Blink) is negligible.

End-to-end latency. We investigate the experienced end-to-end latency of
messages. We use a network of 10 source nodes and one host, and run
experiments on the FlockLab testbed [116]. In addition to the control flows,
each source node request a data flow toward the host with a pseudo-random
period and end-to-end deadline. Once the flow is admitted, the source APs
release new packets periodically. The different flow sets used are listed in
Table 4.3. DRP is configured with a deadline ratio r = 0.5, a round length
Cnet = 1 s, and a maximum of Bmax = 5 slots per round.

The results are summarized in Table 4.5 and Figure 4.12, reporting data from
one run for each flow set. The first observation is that all messages that are
successfully transmitted over the wireless network do meet their end-to-end
deadline. However, compared to the simulation experiment (Section 4.7.2), we
do not encounter so much analytical corner cases: the observed latency is often

Ch
ap

te
r 4

DR
P

4.7. Performance Evaluation 101

much smaller than the analytical upper-bound (Figure 4.12). On the other
hand, this means that the actual runtime performance is better that what is
guaranteed: even with large end-to-end deadlines (around 60 s), the experience
message latency is most of the time between 5 s to 15 s.

Such “short” average latency can be explained by the nature of the flow
set. The network deadline, enforced by Blink, must be smaller than the flow
period Section 4.4. Since the period are small compared to the end-to-end
deadlines, these end-to-end deadlines do not constraint the DRP contracts: the
experience latency correlates with the flow period.

It is interesting to observe that the average end-to-end latency is smaller for the
high utilization flow set than for the low and middle ones. Again, this is due to
the flow set. To meet the network deadline, Blink schedule at least one round
per period. Thus, a flow set with shorter period results in more frequent rounds.
Once a round is scheduled, it is filled with any message ready for transmission.
Thus, flows are opportunistically served earlier than necessary to meet their
end-to-end deadline. Conclusion: having a flow with a small period reduces the
average latency experienced by all flows in the system. This is an interesting
(and unforeseen) consequence of DRP mechanism.

Conclusions. The performance evaluation presented in this section validates
the design of DRP and our implementation: we showcased that we can
run a wireless CPS that meet end-to-end deadlines between distributed
applications (Section 4.7.2 and 4.7.3). In addition, we derived the theoretical
optimal performance achievable based on DRP’s model (Section 4.7.1).

A more thorough investigation of the actual system performance across different
scenarios and environments remains to be performed. For such a performance
evaluation, using TriScale (Chapter 2) would be natural. Chronologically,
TriScale is the last piece of work of this dissertation. In hindsight, our evaluation
of DRP appears a bit naive and simple. Still, we argue that it successfully
demonstrates the soundness of DRP’s design.

102 Chapter 4. DRP – Distributed Real-time Protocol

0 20 40 60 80 100
0

2

4

6

8

End-to-end latency of messages [% of analytic bound]

Analytical bound

60%

Percentage of messages [%]

0 20 40 60 80 100
0

5

10

End-to-end latency of messages [% of analytic bound]

Analytical bound

89%

Percentage of messages [%]

0 20 40 60 80 100
0

5

10

15

20

End-to-end latency of messages [% of analytic bound]

Analytical bound

70%

Percentage of messages [%]

Figure 4.12 Distribution of end-to-end latency of messages, shown as percentage of
the analytical worst-case latency for a DRP run using different flow sets (Table 4.3).
Top – Low utilization. Middle – Medium utilization. Bottom – High utilization.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb#Figure-12
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb#Figure-12
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb#Figure-12

Ch
ap

te
r 4

DR
P

4.8. Related Work 103

4.8 Related Work

Providing end-to-end guarantees in distributed networked systems has a
long history in the context of the Internet. Notable developments are the
resource reservation protocol (RSVP) that combines flow specification, resource
reservation, admission control, and packet scheduling to achieve end-to-end
quality of service (QoS) [205]. Network calculus [57] provides some of the
necessary theoretical concepts to determine bounds on buffer sizes and delay
in communication networks. Extension toward hard real-time computing and
communication systems is known as real-time calculus [185]. The analysis of
distributed hard real-time systems also has a long history [187], and so do
compositional analysis frameworks (MAST [83], SymTA/S [89] and MPA [190]).

Early works on real-time communication in sensor networks consider classical
non-deterministic routing protocols [119, 172, 88], thus providing only soft
guarantees. Stankovic et al. [172] even argue that specific message
delivery orderings, such as those useful to apply established dependability
techniques [73], are impossible to guarantee in a multi-hop low-power wireless
network. More recently, standards like WirelessHART [92] have been analyzed
to provide communication guarantees [155, 154]. But [154] is based on NP-hard
multiprocessor scheduling and requires a global network view, which limits its
adaptability to dynamic changes in the system [19]. It is however possible to
integrate the wireless protocol with the rest of the system to avoid interference
by jointly schedule transmissions in the network and all other tasks in the system,
as we demonstrate in Chapter 5. Other wireless real-time protocols have been
described recently [143, 193]. However, the integration of these protocols into
a methodology to provide end-to-end real-time guarantees between application
interfaces is unsolved.

Recently, a game-changing approach to wireless multi-hop communication using
synchronous transmissions has been described [74, 72, 208]. It avoids the
computation of multi-hop routing paths and per-node communication schedules
based on, for example, neighbor lists and link qualities, because the protocol
logic is independent of such volatile network state. Experiments on several
large-scale testbeds show that the approach is highly adaptive and achieves an
end-to-end packet reliability higher than 99.9% [74, 72]. Furthermore, the few
packet losses can be considered statistically independent [208], which eases the
design of CPS controllers that can deal with intermittent observations [167].

104 Chapter 4. DRP – Distributed Real-time Protocol

4.9 Summary

In this chapter, we presented the Distributed Real-time Protocol (DRP), a global
system design that provides end-to-end real-time guarantees between interfaces
of distributed applications in wireless CPS. DRP meets the requirements of
Timeliness, Reliability, Adaptability, and Composability. However, since DRP
guarantees relies on worst-case analysis, the system’s Efficiency is inherently
limited; still, we demonstrated that our analysis is tight (Section 4.7) which
shows that DRP is not overly pessimistic.

The key concept of DRP is to (i) physically decouple the communication
protocol from the application tasks (each running on dedicated communication
and application processors), and (ii) guarantee the timeliness of message
transmissions throughout the system using minimally restrictive contracts
between the different entities.

We implemented and ran a proof-of-concept implementation of DRP on
embedded hardware. The firmware source code as well as our DRP simulation
framework are openly available (Section 4.A). DRP appears to be a promising
solution for low-rate applications, such as smart homes, where coexists multiple
context-specific “applications” (e.g., fridge, air-conditioning, lightning) which
would particularly benefit from being scheduled independently from each other
while being able to communicate in real-time.

Ch
ap

te
r 4

DR
P

4.A. Appendix – Artifacts and Links 105

4.A Appendix – Artifacts and Links

4.A.1 Related Publications

End-to-End Real-Time Guarantees in Wireless Cyber-Physical Systems
Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel, Lothar Thiele
RTSS 2016. Porto, Portugal (December 2016)

q Paper 10.3929/ethz-a-010881673

Real-time network functions for the Internet of Things
Fabian Walter
Semester Thesis. ETH Zurich (June 2017)

� Thesis 10.3929/ethz-b-000234920

Unleashing the potential of Real-time Internet of Things
Andreas Biri
Semester Thesis. ETH Zurich (December 2017)

� Thesis 10.3929/ethz-b-000234913

4.A.2 Complementary Materials

Complementary materials for this chapters are available on GitHub, together
with the dissertation source files. For all links below, replace <root> by
“github.com/romain-jacob/doctoral-thesis/blob/master”

< TEX sources <root>/40_DRP/

^ Figures
— Static <root>/40_DRP/Figures/
— Dynamic <root>/notebooks/drp_plots.ipynb

® Experiment data
— Latest release 10.5281/zenodo.3530757
— “This-version” release 10.5281/zenodo.3530758

https://doi.org/10.3929/ethz-a-010881673
https://doi.org/10.3929/ethz-b-000234920
https://doi.org/10.3929/ethz-b-000234913
https://github.com/romain-jacob/doctoral-thesis/blob/master/40_DRP/
https://github.com/romain-jacob/doctoral-thesis/blob/master/40_DRP/Figures/
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/drp_plots.ipynb
https://doi.org/10.5281/zenodo.3530757
https://doi.org/10.5281/zenodo.3530758

106 Chapter 4. DRP – Distributed Real-time Protocol

4.B Appendix – Worst-case Latency Analysis

Worst-case analysis of the source delay.

Definition 4.1 (Source delay – δsource). The source delay is the elapsed time
from a packet being written in Bolt by the source APs until the end of the
flush operation where it is read out of Bolt by the source CPs. For a flow Fi,
it is denoted by δsource, i.

Lemma 4.4. For any flow Fi, the source delay is upper-bounded by

δsource, i ≤ Cw + T sf + Cf (4.27)

Proof. Let us recall that a flush is a sequence of read operations. When
the Bolt queue is found empty, the flush is terminated and no other read is
performed until the next flush (refer to 4.4.1 for details). Therefore, if the
Bolt queue is empty and a write operation terminates just after a flush is
triggered, that flush immediately terminates and the packet is delayed until to
the end of the next flush. Possible jitter on the write operation pattern does
not have any influence on the worst-case for δsource, i. This worst-case scenario
for the source delay is illustrated on Fig. 4.13.

write operation read operation

APs

𝑇𝑓
𝑠 𝐶𝑓

𝐶𝑓 = 𝑓𝑚𝑎𝑥 ⋅ 𝐶𝑟

𝐶𝑤

𝛿𝑠𝑜𝑢𝑟𝑐𝑒, 𝑖 ≤ 𝐶𝑤 + 𝑇𝑓
𝑠 + 𝐶𝑓

𝐶𝑟
CPs time

……

Figure 4.13 Worst-case analysis of the source delay. A packet is written as early
as possible such that it misses a flush and must wait until the next one.

Worst-case analysis of the network delay.

Definition 4.2 (Network delay – δnetwork). The network delay is the elapsed
time from a packet being available for communication at the source CPs until
the end of the communication round where it is served by the wireless protocol
(i.e., when it is available at the destination CPd). For a flow Fi, it is denoted
by δnetwork, i.

Ch
ap

te
r 4

DR
P

4.B. Appendix – Worst-case Latency Analysis 107

Lemma 4.5. For any flow Fi, the network delay is upper-bounded by

δnetwork, i ≤ Ti +Di +
⌊
Ji + Cf − Cr

T sf

⌋
· T sf (4.28)

Proof. As presented in Section 4.4.2, Blink guarantees that every packet
matching the expected arrival is served in a round that terminates before the
network deadline Di; i.e., the delay of an expected packet is no more than Di.

However, the actual arrival of packets at the source CPs does not match the
expected arrival in general, but results from flush operations, which occur every
T sf time unit. Hence, a packet may arrive earlier than the next expected packet.
That mismatch between the two arrival times (actual and expected) adds up
with the delay of the expected packet (i.e., Di).

Let us consider first that the flow Fi has no jitter (i.e., Ji = 0) and let m be
the mismatch between actual and expected arrival time at CPs. m cannot be
larger than the flow’s minimum message interval Ti

m ≤ Ti

The intuition is given with Figure 4.14. See the caption for details.

Now, if flow Fi has also jitter Ji, this may entail a bigger mismatch. Actual
"arrival" of packets (i.e., the epoch when a packet is available for communication
at the source CPs, according to the definition of the network delay) can occur
only every T sf (i.e., at the end of one flush operation). Therefore, one can
see that jitter may induce an extra delay, or mismatch, of roughly

⌊
Ji/T

s
f

⌋
·T sf .

A more precise analysis of the flushing dynamics (see Figure 4.15 for details)
entails that, overall, the worst-case mismatch m is bounded by

m ≤ Ti +
⌊
Ji + Cf − Cr

T sf

⌋
· T sf (4.29)

and finally,
δnetwork, i ≤ Di +m

δnetwork, i ≤ Ti +Di +
⌊
Ji + Cf − Cr

T sf

⌋
· T sf

Worst-case analysis of the destination delay.
Definition 4.3 (Destination delay – δdest). The destination delay is the elapsed
time from a packet being available at the destination CPd until the end of the
flush operation where it is read out of Bolt by the destination APd (i.e., when
it is available for the application). For a flow Fi, it is denoted by δdest, i.

108 Chapter 4. DRP – Distributed Real-time Protocol

CPs

Network

APs

1 2 3 4 5 6

A B

𝑚 = 𝑇𝑖 𝐷𝑖

time

Δ ≥ 𝑇𝑖

𝐹𝑖’s packets deadline

Other packets in Bolt queue

Expected arrival of 𝐹𝑖’s packets

𝐹𝑖’s packets in Bolt queue flush operation

with

without

a slot allocated to 𝐹𝑖

k

k

Communication rounds

and

Figure 4.14 Worst-case analysis of the network delay without jitter. Because of
the Bolt queue being empty, packet A misses the first flush operation (similarly
as in Figure 4.13), hence the slot allocated to Fi in round 1 is wasted. Due to
packets released from other flows in the meantime, packet B is flushed directly in the
operation preceding round 3, in which flow Fi is allocated a new slot. However, as
packet A is still in queue, packet B is not served right away but is delayed until the
next allocated slot (i.e., in round 6). This creates a mismatch of Ti for packet B.
Furthermore, the mismatch cannot get bigger; assume B were to be available at CPs
earlier (i.e., one flush operation before, at least), because the time interval between
A and B must be at least Ti , A would arrive earlier as well. Hence, A would not
miss the slot in round 1, B would be served in round 3, and thus it would yield a
smaller mismatch for packet B.

Lemma 4.6. For any flow Fi, the destination delay is upper-bounded by

δdest, i ≤ Bmax ∗ Cw − (Bmax − 1) ∗ Cr + T df + Cf (4.30)

Proof. The situation is similar as for the source delay, except that CPd writes
every Tnet time unit (i.e., after each round) all the packets it received during
the last round, which can be as many as Bmax packets. The maximal delay for
a packet occurs when it is written too late to be read out during an ongoing
flush and must wait for the next one.

A careful analysis of the Bolt dynamics shows that the read operation is slightly
shorter than write [175] (i.e., Cr < Cw, see Table 4.2). Hence, the more
packets are written at once by CPd , the later a flush can start and still miss
the last written packet. The worst-case is illustrated on Fig. 4.16.

Ch
ap

te
r 4

DR
P

4.B. Appendix – Worst-case Latency Analysis 109

…

CPs

APs

time

𝑇𝑓
𝑠

𝐶𝑟

𝑗
(𝑓𝑚𝑎𝑥 − 1)

……

“arrival” epoch
without jitter

𝐶𝑓𝐶𝑓 = 𝑓𝑚𝑎𝑥 ⋅ 𝐶𝑟

B’ B

write and read operation

packet B - Without jitterpacket B’ - With jitter

Figure 4.15 Influence of jitter on the network delay. Let us have a closer look at
packet B from the previous figure, positioned as early as possible (i.e., if it were
earlier, so would be A, which would then not miss its slot in round 1). Due to jitter,
B is released earlier, say by a amount j. This can yield packet B’ (B with jitter) to
be read out in a previous flush operation. In the worst-case, packet B’ is read out
one operation earlier as soon as j is bigger than T sf − Cf + Cr, which increases the
mismatch m by T sf . Similarly, m increases by k ·T sf when j reached k ·T sf −Cf +Cr,

which yields k =
⌊
j+Cf−Cr

T s
f

⌋
and concludes to equation (4.29).

write operation read operation

CPs

APs

time

𝑇𝑓
𝑑

……

𝐶𝑓

(𝐵 − 1) ⋅ 𝐶𝑟

…

…

𝐵 ⋅ 𝐶𝑤

𝛿𝑑𝑒𝑠𝑡, 𝑖 ≤ 𝐵. 𝐶𝑤 − 𝐵 − 1 . 𝐶𝑟 + 𝑇𝑓
𝑑 + 𝐶𝑓

Figure 4.16 Worst-case analysis of the destination delay. A packet is written as
early as possible such that it misses a flush and must wait until the next one.

110 Chapter 4. DRP – Distributed Real-time Protocol

Ch
ap

te
r 5

TT
W

5
TTW : A Time-Triggered Design for

Wireless Cyber-Physical Systems

We revisit the challenge addressed in the previous chapter: Providing end-
to-end real-time guarantees in wireless cyber-physical systems (CPS). With
the design of DRP (Chapter 4), we demonstrated that, by leveraging
synchronous transmissions (ST), it is possible to meet end-to-end deadlines
between distributed tasks communicating through a multi-hop wireless network.
The principle of DRP is to keep the tasks as independent as possible;
i.e., constraining their schedule as little as necessary to provide end-to-end
guarantees. Because of that maximal-flexibility principle, the guarantees that
can be provided by DRP are rather “slow”: the minimal end-to-end deadline
supported by the protocol is more than two times as large as a communication
round (Section 4.7). Furthermore, there is large jitter between successive task
executions and message transmissions. This does not comply well with the
requirements of industrial CPS applications, which often require short delays
(the order of ms) and benefit from negligible jitter.

Thus, in this chapter we change the design objective: Instead of focusing on
flexibility, we aim for minimizing latency and jitter in the system execution.

Claim. We demonstrate for that end-to-end real-time guarantees can be
obtained in low-power wireless networks by leveraging the efficiency and
reliability of synchronous transmissions. In particular, this chapter presents
Time-Triggered Wireless (TTW), a design that statically co-schedules all task
executions and message transfers to minimize end-to-end latency and jitter.

112 Chapter 5. TTW – Time-Triggered Wireless

Baloo
Chapter 3

TriScale
Chapter 2

TTW
Chapter 5

DRP
Chapter 4

Low-Power Wireless
Networking

Networking
in General

Tools and
Methods

Real-time
System Designs

Figure 5.1 This chapter presents the Time-Triggered Wireless (TTW), a wireless
CPS design that statically co-schedules all task executions and message transfers to
minimize end-to-end latency and jitter.

The material from this chapter relates to the following publications.

TTW: A Time-Triggered Wireless design for CPS
Romain Jacob, Licong Zhang, Marco Zimmerling,
Jan Beutel, Samarjit Chakraborty, Lothar Thiele
DATE 2018. Dresden, Germany (March 2018)

The Time-Triggered Wireless Architecture
Romain Jacob, Licong Zhang, Marco Zimmerling,
Samarjit Chakraborty, Lothar Thiele
arXiv. (February 2020)

5.1 Problem Setting

CPS are understood as systems where “physical and software components are
deeply intertwined, each operating on different spatial and temporal scales,
exhibiting multiple and distinct behavioral modalities, and interacting with each
other in a myriad of ways that change with context” [139]. Application domains
include, e.g., robotics, distributed monitoring, process control, power-grid
management. CPS combine physical processes, sensing, online computation,
communication, and actuation in a single distributed control system.

To support CPS, industry has been widely relying on wired field buses such as
CAN, FlexRay, ARINC 429, AFDX, with good reasons. They combine functional
and non-functional predictability with appropriate bandwidth, message delay,
and fault-tolerance. Yet, several of the above application domains would benefit
from wireless communication for its ease of installation, logical and spatial
reconfigurability, and flexibility; in other domains, such as mobile scenarios,

Ch
ap

te
r 5

TT
W

5.1. Problem Setting 113

wireless is simply the only viable option.

One major obstacle in using wireless communication for CPS has been the
reliability of packet transmission. However, in the last decade, several low-
power protocols featuring very low packet loss rate have been proposed and
standardized (e.g., TSCH [193]). Another technique, called synchronous
transmissions (ST– Section 1.3), has been proven to be highly reliable and
energy efficient. The most striking evidence of ST benefits has been the EWSN
Dependability Competition [161], where wireless protocols are tested in high-
interference environments: all wining solutions in the last four years (2016 to
2019) were based on ST [68, 168, 115, 70, 121].

Despite these achievements, wireless CPS solutions capable of providing end-
to-end guarantees for distributed applications are still missing. It is challenging
to concurrently meet all the requirements of typical industrial applications [18]:
reliability, timing predictability, low end-to-end latency at the application level,1
energy efficiency, and quick runtime adaptability to different modes of operation.

Key Research Questions

Question 1 Can we provide end-to-end real-time guarantees between
distributed applications in wireless CPS?

Question 2 How can we minimize latency and jitter in the application
execution while retaining some level of runtime adaptability?

The problem. To understand the challenges of wireless CPS, it is helpful to
highlight the fundamental difference between a field bus and a wireless network.
In a field bus, whenever a node is not transmitting, it can idly listen for incoming
messages. Upon request from a central host, each node can wake-up and
react quickly. For a low-power wireless node, the major part of the energy is
consumed by its radio. Therefore, energy efficiency requires to turn the radio off
whenever possible to support long autonomous operation without an external
power source. Since nodes are unreachable until they wake up, they require
overlapping wake-up time intervals to communicate.

This observation often results in wireless system designs that minimize energy
consumption by using communication rounds, i.e., time intervals where all
nodes wake-up, exchange messages, then turn off their radio [92, 193, 72, 97].
Scheduling policies define when the rounds take place (i.e., when to wake up)
and which nodes are allowed to send messages during the round. Moreover,
CPS do not only exchange messages, they also execute tasks (e.g., sensing
or actuation). Typically, the system requirements are specified end-to-end,
i.e., between distributed tasks exchanging messages. One option to meet

1Range of 10-500 ms delay for a distributed closed-loop control system [18].

114 Chapter 5. TTW – Time-Triggered Wireless

such end-to-end requirements (Question 1) is to co-schedule the execution
of tasks and the transmission of messages, as proposed in the literature for
wired architectures [13, 56, 23]. However, these schedules result from complex
optimization problems which are difficult to solve online, even more so in a low-
power setting. Thus, schedules are often pre-computed offline, which restricts
the runtime adaptability of the resulting system (Question 2).

The challenge. To support wireless CPS applications in an industrial context,
a solution to this problem should fulfill the following requirements.

Timeliness All distributed applications meet their end-to-end deadlines.

Reliability A large ratio of messages are successfully transmitted over
wireless and conflict-free communication is guaranteed between
the system’s nodes.

Adaptability The system adapts to dynamic changes at runtime.

Mobility The system supports mobile devices.

Efficiency The system supports short end-to-end latency (in the ms range),
scales to medium-to-large system sizes, and optimizes its energy
consumption and bandwidth utilization.

Our solution. In this chapter, we propose a solution to the industrial wireless
CPS problem that fulfill these requirements. We do so by combining co-
scheduling techniques, inspired from the wired literature, with a ST-based
wireless system design using communication rounds.

ST provides highly reliable wireless communication (Reliability) and inherent
support for Mobility. A round-based design allows to minimize the energy
consumed for communication, which is a large part of the total energy budget
of a low-power system (Efficiency). The co-scheduling approach results in
highly optimized schedules (Efficiency) which guarantee to meet the application
deadlines (Timeliness). Our system provides some runtime Adaptability by
switching between multiple pre-computed operation modes, a well-known
concept in the wired literature [78].

The main challenge in realizing such a system is to integrate the allocation
of messages to communication rounds (which is similar to a bin-packing
problem [197]) with a co-scheduling approach (which typically solves a
MILP [24] or a SMT [173, 55, 91] formulation).

The contributions of this chapter are summarized below.

n We present Time-Triggered Wireless (TTW), a low-power wireless CPS that
meets the common requirements of industrial applications.
n We formulate a joint optimization problem for co-scheduling distributed tasks,
messages, and communication rounds that guarantees to meet application

Ch
ap

te
r 5

TT
W

5.2. Overview of TTW 115

Time-Triggered Wireless (TTW)

TTnet

Glossy

Multi-hop
Wireless Network

Node

Host
Node

Node

Figure 5.2 Overview of TTW . Nodes execute distributed CPS applications.
They communicate over a multi-hop wireless network using Glossy floods [74].
Communication is organized in TTnet rounds (Figure 5.3) which are controlled by
a central host (running on one of the nodes). TTW is a global scheduler for the
entire system: it co-schedules the execution time of all tasks and messages in order
to reduce the end-to-end latency of applications and meet short deadlines.

deadlines, minimize the energy consumed for wireless communication, and
ensures safety in terms of conflict-free communication, even under packet loss.
n We provide a methodology that efficiently solves this optimization problem,
known to be NP-hard [102].
n Using time and energy models, we quantify the benefits of rounds to minimize
energy, and we derive the minimum end-to-end latency achievable.
n We implement TTW on embedded hardware and demonstrate that the
system is suited for fast feedback control applications.

5.2 Overview of TTW

We first present TTnet, a network stack based on synchronous transmissions
(ST), which serves as communication backbone for our solution (Section 5.2.1).
We then introduce the concepts of TTW (Section 5.2.2), a system-wide
scheduler built atop TTnet to realize a wireless CPS solution meeting the
requirements described above.

5.2.1 The TTnet Communication Backbone

We consider a set of nodes connected by a wireless multi-hop network (Fig-
ure 5.2). Each node is a low-power embedded device, typically battery-powered,
with limited computational resources such as memory or processing power.
These devices collectively implement distributed applications (e.g., closed-loop
control). These applications are composed of multiple tasks and messages; the

116 Chapter 5. TTW – Time-Triggered Wireless

sleep time
kRounds k+1

Slots

Glossy
floods

…

Host

Beacon NBN2

N2
NB

Figure 5.3 The TTnet network stack. TTnet organizes communication in time-
triggered rounds, between which nodes turn their radio off to save energy. The
rounds are composed of (up to) B communication slots preceded by a beacon, sent
by the host to distribute runtime control information. In each slot, an one-to-all
communication is realized using Glossy [74].

tasks are executed locally by the nodes; the messages are exchanged over the
multi-hop wireless network. In low-power wireless CPS, a significant part of the
energy is consumed by wireless communication. Thus, to minimize the energy
consumption, we group messages into communication rounds, i.e., time intervals
where all nodes turn their radio on and communicate. Each round is composed
of dedicated time slots where nodes communicates using Glossy, a flooding
protocol which delivers packets with a probability above 99.9% [74]. The system
is controlled centrally by a node called the host, which sends commands at the
beginning of each round in a special slot called beacon. Physically, one of the
nodes plays the role of the host. We call this network stack TTnet (Figure 5.3).

TTnet concept of round-based communication using Glossy floods is inspired
by the Low-power Wireless Bus (LWB) [72]; this design has several benefits:

n It is based on Glossy, which has been proven to be highly reliable and energy
efficient ([161, 115, 69]).
n Glossy provides sub-microsecond time synchronization across the net-
work [74], which is instrumental to achieve Timeliness and Reliability.
n The flooding process in Glossy is independent of the network state; thus it
creates a virtual single-hop network where each node can communicate with
every other node in bounded time. As a result, network stacks like LWB or
TTnet can be scheduled like a shared bus.
n As messages are flooded in the entire network, unicast multicast and
broadcast are equivalent: for a given payload, the transmission time only
depends on the network diameter (the maximal hop distance between nodes).
n Thanks to its stateless flooding logic, Glossy inherently supports Mobility.

Ch
ap

te
r 5

TT
W

5.2. Overview of TTW 117

Despite these benefits, LWB or TTnet alone cannot meet all the requirements
of wireless CPS. In particular, one must account for the scheduling of
distributed tasks in order to provide end-to-end timing guarantees (Timeliness).
This motivates the design of TTW , a real-time scheduler for the TTnet stack.

5.2.2 Building-up TTW

The TTnet is the communication backbone of TTW . Building on that
structure, we design TTW , a real-time scheduler for the entire wireless CPS.
TTW is based on four key concepts.

Global co-scheduling In order to minimize the achievable end-to-end la-
tency, TTW co-schedules the task executions and message transmissions,
similarly to the state-of-the-art for wired protocols (e.g., [56, 204]).
Moreover, the round-based design of TTnet demands to integrates the
communication rounds to the schedules. The allocation of messages
to communication rounds is similar to a bin-packing problem [197].
Combining pin-packing with traditional task-and-message co-scheduling
approaches is non trivial (Section 5.4).
The resulting problem is a complex optimization that cannot be solved
online, even less in a low-power setting. Therefore, TTW statically
synthesizes the schedule of all tasks, messages, and rounds to meet real-
time constraints, minimize end-to-end latency, and minimize the energy
consumed for communication. The schedule is synthesized by solving an
MILP (mixed integer linear programming) formulation.

Static schedules Since TTW relies on static scheduling, we distribute the
schedules at deployment time to limit the communication overhead at
runtime, thus optimizing energy efficiency. Each node stores its own
schedule information, thereby trading-off memory utilization with energy
consumption; this significantly improves the Efficiency of the system.

Multiple operation modes The obvious drawback of using static schedules
is that the system always execute the same schedule, compromising
Adaptability. TTW mitigates this problem by using the traditional
concept of operation modes [78]: Multiple schedules are computed offline
and stored in the nodes’ memory. The system can switch at runtime
between different modes, thereby recovering some degree of Adaptability.

Runtime control At the beginning of each round, the host sends a beacon,
which is used to control the system execution at runtime. A beacon
contains the current round id, the mode id, and a trigger bit used in the
mode change procedure (Section 5.6).
Thanks to the distributed schedule information, it is sufficient for any node
to receive a single beacon to retrieve the system state (i.e., the phase of

118 Chapter 5. TTW – Time-Triggered Wireless

the schedule given by the round id) and therefore know (i) which message
to send in which slot, and (ii) when to wake up for the next communication
round. If a node does not receive the beacon, it does not participate in
the round. Hence, even if nodes miss some control information, they do
not initiate a communication in a slot allocated to another node, thus
guaranteeing conflict-free communication (Reliability).

By globally optimizing the entire system schedule, TTW can meet tight
end-to-end deadlines (tens of ms) while minimizing the energy spent
for wireless communication, thus addressing the Timeliness and Efficiency
requirements. The runtime control based on beacons provides Reliability, while
switching between multiple operation modes at runtime offers some degree of
Adaptability. Finally, Mobility is supported by design thanks to the stateless
logic of Glossy [74], the underlying communication primitive used by TTW .
Remark 6. TTW combines offline scheduling and online decisions whereas
DRP (Chapter 4), by contrast, does everything online. Hence, TTW trades
the flexibility of execution of the distributed application tasks for short latency
and fast mode changes.

5.3 System Model and Scheduling Problem

Nodes. We denote by N the set of nodes in the system. Nodes implement
distributed applications, composed of multiple tasks to execute and messages to
exchange. A node is considered capable of performing one task execution and
one message transmission simultaneously; this is supported by state-of-the-art
wireless CPS platforms featuring two cores, such as the NXP LPC541XX [141],
VF3xxR [142], or more generally any platform following the Dual-Processor
Platform concept (Section 1.4).

Applications. We denote by A the set of applications in the system.
Each distributed application is composed of tasks and messages connected
by precedence constraints described by a directed acyclic graph, where vertices
and edges represent tasks and messages, respectively. We denote by a.P the
precedence graph of application a (Figure 5.4). Each application executes at a
periodic interval a.p, called the period. An application execution is completed
when all tasks in P have been executed. All tasks and messages in a.P share
the same period, a.p. Applications are subject to real-time constraints: The
application relative deadline, denoted by a.d represents the maximum tolerable
end-to-end delay to complete the execution. The deadline is arbitrary (i.e., it
has no relation with the period a.p). Certain critical applications may require
to keep the same schedule (e.g., same task offsets) when switching between
operation modes. We call these persistent applications and denote their set by
AP ; AP ⊂ A. In summary, an application a is characterized by

Ch
ap

te
r 5

TT
W

5.3. System Model and Scheduling Problem 119

a = { a.p – period
a.d – end-to-end deadline
a.P – precedence graph }

Tasks. We denote by T the set of tasks. A node executes at most one task
at any point in time and we consider non-preemptive task scheduling. Each
task τ is mapped to a given node τ.map, on which it executes within a WCET
(worst-case execution time) τ.e. The task offset τ.o represents the start of
the task execution, relative to the beginning of the application execution. A
task can have an arbitrary number of preceding messages, i.e., messages that
must be received before the task can start. τ.prec denotes the set of preceding
message ids. Within one application, each task is unique; however, the same
task may belong to multiple applications (e.g., the same sensing task may source
different feedback loops). If so, we consider that these applications have the
same period. In summary, a task τ is characterized by

τ = { τ.o – offset
τ.map – mapping

τ.e – WCET
τ.prec – preceding message set
τ.p – period (equal to a.p) }

Messages. We denote byM the set of messages. Every messagem has at least
one preceding task, i.e., a task that needs to finish before the message can be
transmitted. The set of preceding task ids is denoted by m.prec. The message
offset m.o, relative to the beginning of the application execution, represents the
earliest time the message m can be allocated to a round for transmission, i.e.,
after all preceding tasks are completed. The message deadline m.d, relative to
the message offset, represents the latest time when the message transmission
must be completed, i.e., the earliest offset of successor tasks. All messages
share the same maximal payload Lmax . Messages are not necessarily unique,
i.e., multiple edges of a.P can be labeled with the same message m, which
captures the case of multicast or broadcast (Figure 5.4). If the same message
belongs to multiple applications, we consider that these applications have the
same period. In summary, a message m is characterized by

m = { m.o – offset
m.d – deadline

m.prec – preceding task set
m.p – period (equal to a.p) }

120 Chapter 5. TTW – Time-Triggered Wireless

Pressure
reading

Temperature
reading

Control computation

Data storage

Pump
actuation

Valve
actuation

𝑚2

𝑚2

𝑚1

𝑚3

𝑚3

𝜏4

𝜏1

𝜏2 𝜏6

𝜏5𝜏3

Figure 5.4 An example application and its precedence graph P. The execution
starts with sensor readings – either τ1 or τ2. After both have been received by the
controller, actuation values are computed (τ3), multicast to the actuators (m3), and
applied (τ5 and τ6).

Operation modes. We denote by O the set of operation modes (also simply
called “modes”). These modes represent mutually exclusive phases of the
system, e.g., boostrapping, normal, and emergency modes; each having its
own schedule. Each mode has a unique priority M.prio, used for scheduling
purposes (Section 5.5). A mode M is characterized by

M = { ai , aj , . . . – applications to execute
M.prio – priority }

We write a ∈ M to denote that a is executing in mode M. When unambiguous,
we use M to denote the set of applications executing in mode M. The mode
hyperperiod LCM is the least common multiple of the mode’s applications.
Possible transitions between modes at runtime are described with the mode
graph M (Figure 5.7). The mode graph is undirected; a transition from
Mi to Mj implies that it is possible to transition from Mj to Mi as well.

Rounds. The schedule of a mode M contains RM communication rounds r.
Rounds are atomic ; that is, they cannot be interrupted. Therefore, the ordering
of messages within one round does not matter.2 Each round r is composed of
Br slots (with a maximum of Bmax), each allocated to a unique message m.
This results in a round length Tr = To + Br ∗ Tslot , where Tslot is the length
of one communication slot, and To is the constant time overhead per round.
The round starting time r.t is the start of the round relative to the beginning
of the mode hyperperiod. The allocation vector r.[Br] is a vector of size Br

containing the ids of the messages allocated to the slots. r.Bs denotes the
allocation of the s-th slot. In summary, a round r is characterized by

r = { r.t – starting time
r.[B] – allocation vector }

2TTW could be extended to account for the relative ordering of messages in a round. In
theory, this would allow to further reduce the achievable latency of applications at the cost
of a more complex synthesis problem to solve.

Ch
ap

te
r 5

TT
W

5.3. System Model and Scheduling Problem 121

Table 5.1 Inputs and outputs of the scheduling problem solved by TTW

Inputs

N Set of nodes in the system
A, AP

Set of applications and persistent applications
(including periods, deadlines, and precedence graphs)

O Set of operation modes (including mode priorities)
M Mode graph
τ.p, m.p Task and message periods, inherited from the application
τ.map Mappings of tasks to nodes
τ.e Task worst-case execution time (WCET) given τ.map
Bmax Maximum number of slots per round
Lmax Maximum message payload size
H Network diameter (in number of hops)
N Number of transmissions in a Glossy flood [74]

Outputs
τ.o Task offsets
m.o, m.d Message offsets and deadlines
r.t, r.[Bmax] Round starting times and allocation vectors

Scheduling problem. We consider that all modes, applications, task mappings
and WCETs are given. For a given mode M, the remaining variables define the
mode schedule, denoted by Sched(M):

Sched(M) =
{

τ.o, m.o, m.d ∀ a ∈ M, (τ,m) ∈ a.P
rk.t, rk.[Bmax] ∀ k ∈ [1, RM]

}

A schedule for mode M is said to be valid if all applications executing in M
meet their end-to-end deadlines. The scheduling problem to solve consists in
deriving valid schedules for all operation modes in O such that

(O1) The number of communication rounds is minimized, thereby minimizing
the energy consumed for wireless communication.

(O2) All persistent applications AP ⊂ A seamlessly switch between modes;
i.e., their schedule remains the same over a mode change.

All inputs and output of the problem are summarized in Table 5.1.

Application use case. Consider the control of physical systems demanding
update rates in the order of tens of ms, which are common in an
industrial context [18]. The classical proof-of-concept application is the
closed-loop control of an inverted pendulum [42]. With TTW , one
can use low-power wireless technology to remotely control multiple such
pendulums, as demonstrated in [124]. Different TTW operation modes may
correspond to different control tasks: e.g., solely stabilizing the pendulums or
synchronizing their positions [123]. Furthermore, thanks to the stateless logic
of TTnet (inherited from Glossy [74]), TTW inherently supports Mobility.3

3Mobility experiment (1min): youtu.be/19xPHjnobkY

https://youtu.be/19xPHjnobkY

122 Chapter 5. TTW – Time-Triggered Wireless

Roadmap. The rest of this chapter presents how TTW solves the scheduling
problem described above. In Section 5.4, we present how to synthesize a valid
schedule for a single mode such that the number of communication round
used is minimized (O1). Then, in Section 5.5, we address the extension to
the multi-mode case, and in particular how to allow applications to keep the
same schedules in different modes (O2). The subsequent sections discuss our
implementation of TTW and its performance evaluation.

5.4 Single Mode Schedule Synthesis

TTW statically synthesizes the schedule of all tasks, messages, and communi-
cation rounds to meet real-time constraints by solving a MILP formulation.
This section presents how to solve it efficiently and ensure that the
resulting schedule minimizes the number of communication rounds (O1).

The schedule of a mode M is computed for one hyperperiod, after which
it repeats itself. To minimize the number of rounds used while handling
computational complexity, we solve the problem sequentially, as described
in Algorithm 1. Each formulation considers a fixed number of rounds RM to
be scheduled, starting with RM = 0. The number of rounds is incremented
until a feasible solution is found, or until the maximum number of rounds
Rmax (the number of rounds that can “fit” into one hyperperiod) is reached.
Thus, Algorithm 1 guarantees by construction that if the problem is feasible,
the synthesized schedule is optimal in terms of number of rounds used.

Algorithm 1 Pseudo-code of the single-mode schedule synthesis
Input: mode M, a ∈ M, τ.map, τ.e, Bmax , To

Output: Sched(M)
LCM ← hyperperiod(M)
Rmax ← floor(LCM/To)
RM ← 0
while RM ≤ Rmax do

formulate the MILP for mode M using RM rounds
[Sched(M), feasible] = solve(MILP)
if feasible then return Sched(M)
end if
RM ← RM + 1

end while
return ’Problem infeasible’

The MILP formulation contains a set of classical scheduling constraints:
The precedence constraints between tasks and messages must be respected;
Applications end-to-end deadlines must be satisfied; Nodes process at most one
task simultaneously; Communication rounds must not overlap; Rounds must
not be allocated more then Bmax messages. These constraints can be easily

Ch
ap

te
r 5

TT
W

5.4. Single Mode Schedule Synthesis 123

formulated using our system model (full formulation in Section 5.A). However,
one must also guarantee that the allocation of messages to rounds is valid, i.e.,

(C1) Messages must be served in rounds that start after their release time.

(C2) Messages must be served in rounds that finish before their deadline.

In other word, we must integrate the bin-packing problem of messages to rounds
within the MILP formulation. This is non-trivial and a major difference with
the existing approaches for wired architectures (e.g., [56]).

To address this challenge, we first formulate the constraints (C1) and (C2)
using arrival, demand, and service functions, af df and sf , using network
calculus [113]. Those functions count the number of message instances released,
with passed deadlines, and served since the beginning of the hyperperiod,
respectively. These functions are illustrated in Figure 5.5. It must hold that

∀mi ∈M, ∀ t, df i(t) ≤ sf i(t) ≤ af i(t) (5.1)

with, af i : t 7−→
⌊
t−mi.o

mi.p

⌋
+ 1 (5.2)

and, df i : t 7−→
⌈
t−mi.o−mi.d

mi.p

⌉
(5.3)

However, as the service function stays constant between the rounds, we can
formulate (C1) and (C2) as follows
∀mi ∈M, ∀ j ∈ [1..RM],

(C1) : sf i(rj.t+ Tr) ≤ af i(rj.t) (5.4)
(C2) : sf i(rj.t) ≥ df i(rj.t+ Tr) (5.5)

The arrival and demand functions are step functions. They cannot be used
directly in an MILP formulation, however

∀ k ∈ N, af i(t) = k ⇔ 0 ≤ t−mi.o− (k − 1)mi.p < mi.p (5.6)
and df i(t) = k ⇔ 0 < t−mi.o−mi.d− (k − 1)mi.p ≤ mi.p

(5.7)

For each message mi ∈ M and each round rj, j ∈ [1..RM], we introduce two
integer variables kaij and kdij that we constraint to take the values of af and df
at the time points of interest (respectively rj.t and rj.t+ Trj

). That is,

0 ≤ rj.t−mi.o− (kaij − 1)mi.p < mi.p (5.8)
0 < rj.t+ Trj

−mi.o−mi.d− (kdij − 1)mi.p ≤ mi.p (5.9)
Thus, (5.8) ⇔ af i(rj.t) = kaij

(5.9) ⇔ df i(rj.t+ Trj
) = kdij

124 Chapter 5. TTW – Time-Triggered Wireless

𝑎𝑓𝑖
𝑠𝑓𝑖
𝑑𝑓𝑖

Number of messages served Next
hyperperiod

𝑚𝑖 . 𝑝 𝑚𝑖 . 𝑑𝑚𝑖 . 𝑜

𝑟1 𝑟2 𝑟4 𝑟1𝑟3 𝑟5

𝑡 = 0 𝑡 = 0

0
1
2
3

-1

time

Figure 5.5 Representation of arrival, demand, and service functions of message mi.
The lower part shows the five round, r1 to r5, scheduled for the hyperperiod. mi is
allocated a slot in the colored rounds, i.e., r1, r2, and r4. The allocation of mi to r3
instead of r2 would be invalid, as r3 does not finish before the message deadline, i.e.,
it violates (C2). However, the allocation of mi to r5 instead of r1 would be valid
and result in r0.Bi = 0.

Finally, we must express the service function sf , which counts the number
of message instances served at the end of each round. Remember that rk.Bs

denotes the allocation of the s-th slot of rk (i.e., the id of the message allocated
to the slot). For any time t ∈ [rj.t+Trj

; rj+1.t+Trj
[, the number of instances

of message mi served is

j∑
k=1

B∑
s=1

rk.Bs s.t. Bs = i

It may be that m.o+m.d > m.p, resulting in df (0) = −1 (Equation (5.3)), like
it is the case in Figure 5.5. This “means” that a message released at the each
of one hyperperiod will have its deadline in the next hyperperiod. To account
for this situation, we introduce, for each message mi, a variable r0.Bi set to
the number of such “leftover” message instances at t = 0. Finally, for each
message mi ∈M, and t ∈ [rj.t+ Trj

; rj+1.t+ Trj
[,

sf i : t 7−→
j∑

k=1
s.t. rk.t+Trk

<t

B∑
s=1

s.t. Bs=i

rk.Bs − r0.Bi (5.10)

Ultimately, (C1) and (C2) can be formulated as MILP constraints using
Equations (5.8) and (5.9), and the following two equations:

(5.4) ⇔
j∑

k=1

B∑
s=1

s.t. Bs=i

rk.Bs − r0.Bi ≤ kaij (5.11)

Ch
ap

te
r 5

TT
W

5.5. Synthesis of Compatible Multi-Mode Schedules 125

𝜏2𝑚𝜏1

𝑚. 𝑜 𝑚. 𝑑

(a) Example schedule without deadline
maximization.

𝜏2𝑚𝜏1

𝑚. 𝑜 𝑚. 𝑑

(b) Example schedule with deadline maxi-
mization

Figure 5.6 Illustration of the impact of the message deadlines maximization.
If Figure 5.6a is a valid schedule, then Figure 5.6b is also valid, but it relaxes the
constraints on other modes which also contain message m. Maximizing the message
deadlines improves the schedulability of the multi-mode problem (Section 5.5).

(5.5) ⇔
j−1∑
k=1

B∑
s=1

s.t. Bs=i

rk.Bs − r0.Bi ≥ kdij (5.12)

Objective function. Within our scheduling framework, the MILP does not
need to optimize any objective function. Indeed, we mainly want to minimize of
the number of rounds R used in the schedule, which is achieved by incrementally
increasing the number of rounds until a valid schedule is found (Algorithm 1).

However, when considering the multi-mode case (Section 5.5), it is beneficial
to maximize the message deadlines, as illustrated in Figure 5.6. In a nutshell, it
relaxes the constraints that are inherited between different modes, and therefore
improve the schedulability of the whole problem. Concretely, the deadline
maximization is achieved by setting the following objective to the MILP solver

obj =
∑

mi∈M
mi.d (5.13)

5.5 Synthesis of Compatible Multi-Mode Schedules

TTW statically co-schedules all tasks and messages in order to satisfy tight
deadline constraints (Section 5.4). To preserve a certain degree of adaptability
at runtime, we support multiple operation modes. Doing so requires to ensure
predictable mode switches; that is, applications always meet their end-to-end
deadlines (O1) and the persistent applications have compatible schedules in
different modes (O2).

The multi-mode case is essentially a multi-objective problem. One could decide
to minimize the overall number of rounds used (i.e., the sum of rounds in
all the modes); however, it might also be interesting to optimize the “most
common mode”; this is, the mode in which the system operates most of the
time. Ultimately, one must weight the different modes to define a globally
optimal solution.

126 Chapter 5. TTW – Time-Triggered Wireless

𝑀4𝑀3𝑀1 𝑀2 𝑀5

1
2

2
3 4 5 6 51 45

6

Figure 5.7 The mode graph M discussed in Examples 5.1 and 5.2. Five modes are
represented by circles, the possible transitions between modes as arcs. Six applications
a1 to a6 are specified. The specification is shown with the numbers in the circles;
e.g., S1 = {a1 , a2}. Mode Mi has priority i.

Instead of solving the entire multi-mode problem at once, which would have
scalability issues, we solve the problem sequentially: one mode at a time,
in order of increasing priority. However, ensuring schedule compatibility
between the different modes (O2) creates dependencies, as illustrated below.

Example 5.1. Let us consider the mode graph in Figure 5.7 and assume that
all applications are persistent. The modes are scheduled sequentially, starting
with the highest-priority mode M1 , which is freely scheduled. When mode M2 is
scheduled, the schedule for application a2 is inherited from mode M1 (O2) and
the schedules for applications a3 and a4 are synthesized without constraints.
In M3 , the specified applications, a5 and a6 , are new and can be scheduled
without constraints. Then, in mode M4 , the specified applications, a1 and a5 ,
have both been previously scheduled and thus must be inherited (O2). However,
as mode M3 has been scheduled without constraint, the schedule synthesized
for a5 may be non-compatible with that of a1 from mode M1 . This leads to
a conflict in M4 and thus renders the sequential synthesis of the multi-mode
problem unfeasible (illustrated in Figure 5.8).

As illustrated in Example 5.1, it may be necessary to “reserve the space” of
previously scheduled applications (i.e., in previous modes) in order to avoid
schedule conflicts. The simplest approach is to reserve the space of all previous
scheduled applications. This is definitely safe but often pessimistic, as there
may not be risk of conflicts for certain applications.

In this section, we derive the set of schedule reservations that is necessary and
sufficient to prevent inheritance conflicts. We first formalize the continuity
constraints that we want to satisfy (O2) (Section 5.5.1). Then, we
characterize conflicting modes and formalize how continuity constraints may
lead to conflicts (Section 5.5.2). Finally, we derive the minimally restrictive
reservations that are necessary and sufficient to prevent conflicts while satisfying
(O2) (Section 5.5.3).

5.5.1 Continuity Constraints

The schedule synthesis returns the application schedules, i.e., the task and
message offsets and the message deadlines; and the round schedules, i.e., the

Ch
ap

te
r 5

TT
W

5.5. Synthesis of Compatible Multi-Mode Schedules 127

𝜏1
2

𝑚1
𝜏1
1

𝜏5
2

𝑚5
𝜏5
1

Rounds

𝑎1

𝑎5

𝑚1

𝑚5

Conflict in mode 𝑀4

(a) a5 is scheduled in mode M3 without con-
sidering the previously computed schedule of
a1 , which leads to a conflict in mode M4 .

Reservation of the schedule of 𝐴1
when scheduling 𝐴5 in mode 𝑀3

𝑚5

𝜏1
2

𝑚1
𝜏1
1

𝜏5
2𝜏5

1

Rounds

𝑎1

𝑎5

𝑚1

𝑚5

(b) a5 is scheduled in mode M3 considering
the schedule of a1 as reserved. Thus, a
compatible schedule for a5 is computed,
which prevents conflicts due to schedule
inheritance in mode M4 .

Figure 5.8 Representations of the schedule of applications a1 and a5
from Example 5.1. For the sake of illustration, we consider that all tasks are mapped
to the same node. a1 and a5 are scheduled respectively in mode M1 and M3 , and
must both be inherited in mode M4 . In Figure 5.8a, overlapping task schedules result
in a conflict, while in Figure 5.8b, it was prevented by reserving a1 ’s schedule. The
situation is different for the messages: overlapping message schedules is no issue, it
simply represents a time interval where both messages can be served during the same
round, as shown in this example.

round starting times and the allocation vector. We abstract an application
schedule with a scheduling function s as follows.

Definition 5.1 (Scheduling function). The scheduling function s is defined
over the set of applications A and returns, for a given application a, all the
parameters characterizing the schedule of application a. The schedule of an
application a is denoted by s(a). The scheduling function is extended to sets
of applications as follows.

∀S ⊂ A , s(S) =
⋃

a∈S
s(a)

sM(a) denotes the schedule of application a in mode M.

All persistent applications a ∈ AP are subject to continuity constraints,
formalized as follows.

Definition 5.2 (Continuity constraint).

∀ a ∈ AP , ∀ (Mi ,Mj) ∈ O2,

a ∈ Mi ∧ a ∈ Mj ∧ M(Mi ,Mj) = 1 ⇒ sMi (a) = sMj (a) (5.14)

In other words, an executing application must keep the same schedule, regardless
of mode changes.

128 Chapter 5. TTW – Time-Triggered Wireless

Definition 5.3 (Schedule domains). The schedule domains of an application
are the (possibly multiple) subsets of modes in which the application schedule
must remain the same.

Corollary 1. Two modes Mi and Mj belong to the same schedule domain of
an application a ∈ AP if and only if

n a is scheduled in both modes, i.e., a ∈ Mi ∧ a ∈ Mj , and
n There is a possible transition between the two modes, i.e., M(Mi ,Mj) = 1.

Proof. Multiple modes belong to the same schedule domain because of a
continuity constraint. The formalization of the schedule domains directly follows
from Definition 5.2

The mode graph can be analyzed to extract the schedule domains of any
application. A simple approach entails considering the sub-graph GA from M,
i.e., where one keeps only the modes in which application a is specified. Every
connected component of GA is a schedule domain of a.
Hypothesis 2. We consider in the rest of this chapter that (i) all applications
are persistent, and (ii) applications have a single scheduling domain.

Hypothesis 2 induces no loss of generality. Indeed, non-persistent applications
present in multiple modes can be replaced by distinct applications, with the
same parameters, executing in one mode each. Similarly, persistent applications
different scheduling domains can be replicated into different applications having
one domain each. This is illustrated in the following example.
Example 5.2. Consider again the mode graph in Figure 5.7. Application a6
has two distinct application domains, {M3} and {M5}, which can be modeled
as two distinct applications a6 .3 and a6 .6 executing in M3 and M6 respectively.

On the contrary, a1 has only one schedule domain, {M1 ,M4}. If a1 is not
persistent, the continuity constraint does not apply (Definition 5.2). Thus, a1
can be equivalently modeled as two distinct applications a1 .1 and a1 .4 executing
in M1 and M4 respectively.

5.5.2 Characterization of Conflicts

As illustrated in Example 5.1, the continuity constraint may lead to conflicts,
leading to the failure of the multi-mode schedule synthesis problem, while a
solution could exist. In particular, if a given mode M belongs to the schedule
domains of two different applications which have been independently scheduled
in higher priority modes, there is a risk of conflict, i.e., the two inherited
schedules may be non-compatible. This section formalizes the notions of
(virtual) legacies and conflicting modes. X denotes the complement of X;
i.e., X = A \ X. For each mode Mi , we define four sets of applications.

Ch
ap

te
r 5

TT
W

5.5. Synthesis of Compatible Multi-Mode Schedules 129

Known applications are the applications previously scheduled in higher priority
modes. The set of known applications of mode Mi is denoted Ki :

Ki = ∪i−1
j=1 Mj (5.15)

Free applications are the newly scheduled applications in mode Mi , i.e., no
higher priority mode belongs to the schedule domain of these applications. The
set of free applications of mode Mi is denoted Fi :

Fi = Mi ∩ (A \Ki) = Mi ∩ Ki (5.16)

Legacy applications are the applications previously scheduled in higher priority
modes which must be scheduled in mode Mi . Since we assume a single
scheduling domain (Hypothesis 2), Mi necessarily belongs to the same schedule
domain as these higher priority modes and the legacy application schedules must
be inherited. The set of legacy applications of mode Mi is denoted Li :

Li = Mi ∩ Ki (5.17)

Finally, virtual legacy applications are the applications previously scheduled
in higher priority modes which are not scheduled in mode Mi . The set of virtual
legacy applications of mode Mi is denoted VLi :

VLi = (A \Mi) ∩ Ki = Mi ∩ Ki (5.18)

The virtual legacy applications of Mi are not executed in Mi ; they simply have
been scheduled in higher-priority modes. As illustrated in Example 5.1, it may
be necessary to “reserve the space” of some of these virtual legacy applications
in order to avoid future inheritance conflicts.

The schedule of two applications A and B are said in conflict when two tasks
from A and B respectively are mapped to the same node and are scheduled
during overlapping time intervals. We denote by s(A)∩ s(B) 6= ∅ the property
that “A and B are in conflict”.
Definition 5.4 (Conflict-free). A set of applications S is said to be conflict-free
when there is no conflict between the schedules of the applications in S. We
denote by CF(S) the property that S is conflict-free, and CF(S) denotes that
the set S is in conflict. Formally,

CF(S) ⇔
⋂
A∈S

s(A) = ∅

A mode is said to be conflict-free if its legacy applications are conflict-free. In
other words, ∀Mi ∈ O,

CF(Mi) ⇔ CF(Li)

The schedule Sched(Mi) of mode Mi is valid only if CF(Mi).

130 Chapter 5. TTW – Time-Triggered Wireless

Corollary 2. A valid schedule for a mode Mi ∈ O can only exist if the virtual
legacy applications of Mi are conflict-free; that is,

CF(Li) ⇐ “Sched(Mi) is feasible”

Proof. Using Example 5.1 as a counter-example, CF(L4) makes it impossible
to derive a valid schedule for M4 .

5.5.3 Minimal Inheritance Constraints

The single-mode schedule synthesis algorithm (Algorithm 1) is complete: if the
problem is feasible, a valid schedule is found. In particular, the scheduled mode
is conflict-free; i.e., CF(Mi). Certain applications are subject to continuity
constraints (Section 5.5.1), which are satisfied by fixing the schedules of legacy
applications Li in the MILP formulation for Mi . However, this can lead to a
feasible schedule only if CF(Li) (Corollary 2).

Example 5.1 illustrated that inheriting legacy applications is not sufficient
to prevent conflicts. Thus, we now derive the subset of the virtual legacy
applications VLi of a Mi that is necessary and sufficient to reserve in order to
guarantee the absence of conflict due to continuity constraints. In other words,
the objective is that for any mode Mi ,

∀ k ∈ [1..i− 1], “Sched(Mk) is feasible” ⇒ CF(Li) (5.19)

First, we formalize the constraints on the Sched() function such that continuity
constraints are enforced and conflicts are prevented.

Sched : O 7−→ Sched(M) (5.20)
s.t. CF(Mi)

∀ a ∈ Li ∩Mj , j < i, sMi (a) = sMj (a)

∀ a ∈ Fi , s(a) ∩ s(ṼLi
a) = ∅

In Equation (5.20), the first constraint CF(Mi) is necessary for the schedule to
be valid. The second enforces the continuity constraints of applications. Finally
the third constraint aims to enforce Equation (5.19). The idea is that the newly
scheduled application in mode Mi , i.e., a ∈ Fi , should be compatible with
the schedules of some virtual legacies. The objective is to derive the minimal
sets ṼLi

a for any a ∈ Fi such that condition Equation (5.19) is satisfied.
Theorem 5.1 (Minimal virtual legacy sets). For any mode Mi and any
application a in Fi , the minimal set of virtual legacy applications ṼLi

a necessary
and sufficient to satisfy (5.19) is given by

ṼLi
a = {X ∈ VLi | ∃ j > i, a ∈ Lj ∧ X ∈ Lj} (5.21)

Ch
ap

te
r 5

TT
W

5.5. Synthesis of Compatible Multi-Mode Schedules 131

Proof. We first prove that virtual legacy sets as defined in (5.21) are sufficient
to satisfy (5.19). This is done by recurrence.

For the highest priority mode M1 , by definition, L1 = ∅, thus CF(L1). Let us
assume that for any k ∈ [1..i], Sched(Mk) is feasible in the sense of (5.20).
This induces that CF(Sk), hence CF(Lk) for any k ∈ [1..i]. Let us finally
assume that Li+1 is not conflict-free; that is,

CF(Li+1) ⇔
⋂

A∈Li+1

s(A) 6= ∅ (5.22)

Therefore,

(5.22) ⇒ ∃ (A,B) ∈ Li+1
2, s(A) ∩ s(B) 6= ∅ (5.23)

⇒
{
∃! Ma, A ∈ Fa ∧ a < i+ 1
∃! Mb, B ∈ Fb ∧ b < i+ 1 (5.24)

where ∃! means “there exists a unique”. Without loss of generality, we consider
a ≤ b. If a = b, then Sa = Sb and CF(Sa) ≡ CF(Sb). Therefore,⋂

A∈Sa=Sb

s(A) = ∅ in particular (5.25)

⇒ s(A) ∩ s(B) = ∅ which contradicts (5.23) (5.26)
⇒ a < b (5.27)

In other words, mode Ma has higher priority than mode Mb. Therefore, a
belongs either to Lb or VLb by definition of those sets. By hypothesis, CF(Sb)
and (5.24) : B ∈ Fb, thus

A ∈ Lb ⇒ s(A) ∩ s(B) = ∅

which contradicts (5.23). Hence necessarily, A ∈ VLb. Furthermore,

(5.24) : i+ 1 > b
(5.23) : A ∈ Li+1
(5.23) : B ∈ Li+1

 Taking b = i and j = i+ 1, (5.21) : A ∈ ṼLb
B

(5.28)

By hypothesis, Sched(Mb) is feasible, thus s(B) ∩ s(ṼLb
B) = ∅, which

yields s(B)∩ s(A) = ∅ and contradicts (5.23) again. Therefore, the recurrence
hypothesis is necessarily false. Hence, if for any k ∈ [1..i], Sched(Mk) is
feasible in the sense of (5.20), then CF(Li+1). By recurrence, we can conclude
that the virtual legacy sets as defined by (5.21) are sufficient to satisfy (5.19).

We now prove they are also necessary. Let us consider smaller virtual legacy
sets than defined by (5.21), i.e., ∃ i ∈ [1..M], a ∈ Fi , V̂Li

A * ṼLi
A. Let us

further assume that Sched() is redefined to replace ṼL by V̂L . By hypothesis,

∃ X ∈ A, X ∈ ṼLi
A ∧ X /∈ V̂Li

A (5.29)

132 Chapter 5. TTW – Time-Triggered Wireless

Furthermore,

X ∈ ṼLi
A ⇒ X ∈ VLi ⇒ X /∈ Si (5.30)

X ∈ ṼLi
A ⇒ ∃ j > i, a ∈ Lj ∧ X ∈ Lj (5.31)

Assuming that Sched(Mi) is feasible, the resulting schedule guarantees that

CF(Mi)

and ∀ a ∈ Fi , s(a) ∩ s(V̂Li
A) = ∅

(5.32)

However, (5.29) : X /∈ V̂Li
A and (5.30) : X /∈ Si. Hence the schedule

s(a) may be synthesized such that s(A) ∩ s(X) 6= ∅. According to (5.31) :
(A,X) ∈ Lj

2, thus this induces a conflict in mode Mj . Hence, we can conclude
that no sets V̂L smaller that ṼL are sufficient to satisfy (5.19).

Therefore, one concludes that the virtual legacy sets ṼL as defined in (5.21)
are both necessary and sufficient for the schedule synthesis method to satisfy
(5.19), i.e., to guarantee that legacy applications schedule inheritance does not
lead to conflicts in lower-priority modes. In other words, ṼL from (5.21) define
the minimally restrictive constraints sets such that Sched() as defined in (5.20)
satisfies (5.19).

5.6 Changing Mode at Runtime

TTW ’s Adaptability relies on switching between different operation modes
at runtime. The multi-mode schedule synthesis procedure described in the
previous section guarantees that the computed schedules are compatible; that is,
persistent applications have the same schedule in different modes (Section 5.5).
In this section, we describe the procedure implemented in TTW to perform the
mode changes at runtime.

TTW controls mode changes using the beacons, sent by the host at the
beginning of each round. A beacon contains three elements: the current round
id, a mode id, and a trigger bit TB. Modes and rounds have unique ids with
a known mapping of the rounds to the modes. By default, a beacon includes
the current mode id and the trigger bit is 0. A mode change happens in two
phases: First, the change is announced by a beacon including the new mode
id (instead of the current one). In a later round, the TB is set to 1, which
triggers the mode change; the new mode starts at the end of the round where
the TB is set. This two step procedure (illustrated in Figure 5.9) lets the nodes
prepare for an upcoming mode change.4 Let us denote a beacon by b and

4E.g., stopping the execution of applications that will be discontinued in the new mode.

Ch
ap

te
r 5

TT
W

5.6. Changing Mode at Runtime 133

6

𝑡 = 0 𝑡 = 0

𝑡 = 0
Mode 𝑀𝑘

𝑡 = 0

{1, 𝑖, 0} {3, 𝑘, 0} {2, 𝑘, 1}

{6, 𝑘, 0}

21 3 4 5

7

1 2

1st signal 2nd signal

Mode𝑀𝑖
3 4 5 1

Figure 5.9 Example of mode change from mode Mi to Mk . The dashed lines show
the start of the mode hyperperiods. Each numbered box represents a communication
round with its id. The content of some of the host beacons is shown next to the
corresponding rounds. In r3, the host sends the first signal to change to mode Mk .
During this transition phase, the rounds are lightly colored. In the dark colored round,
the host sets TB = 1. This is the second signal – directly after this round, mode Mk
starts executing. Dashed rounds are not executed.

assume b = {j, i, 0}. If round rj (the round with id = j) is mapped to mode
Mi , no mode change is announced: the next round is round rj+1 (in the cyclic
sequence of rounds associated to mode Mi). When b = {j, k, 0} is sent, the
mode change from mode Mi to Mk is announced, but the next round remains
based on mode Mi schedule. Finally, b = {j, k, 1} is sent, which triggers the
mode change: the next round is the first round of mode Mk .

Many mode change protocols have been proposed in the literature (see [48] for
an overview). These protocols define the expected behavior of applications
in the old and new modes; for example, they specify whether the running
applications should be left enough time to complete, or be interrupted by the
mode change. TTW does not define a specific mode change protocol. Instead,
it provides a general strategy to execute mode changes and lets the user define
the desired mode change protocol and implement it at the application level.

Example 5.3. Let us consider again the feedback control application
from [123]. In this system, we implement a simple mode change protocol: all
applications keep running until they are interrupted by a mode change. When
a mode change is announced, a counter (initialized to 10) is appended to the
beacon, and decremented with every round. The mode change is triggered (i.e.,
TB is set to 1) when the countdown reaches zero. With this approach, it is
sufficient for any node to receive only one out of ten beacons to change mode
at the correct time. Since the probability of reception of a packet is expected to
be above 99% [74], receiving at least one out of ten beacons will happen with
very high probability . Thus, this mode change protocol guarantees with very
high probability that all the nodes in the system are always executing in the
same mode, even in the occurrence of sporadic packet losses; this guarantees
conflict-free communication across mode changes.

134 Chapter 5. TTW – Time-Triggered Wireless

Table 5.2 Worst-case execution time of Bolt read and write functions

Payload [bytes] read [µs] write [µs]
L 102+2×L 108+2×L
8 118 124
16 134 140
64 230 236

5.7 Implementing TTW

TTW is a wireless CPS design composed of two main building block:
(i) the system’s communication backbone, which we call TTnet (Section 5.2),
and (ii) the TTW scheduler, which synthesizes the timing of execution of all
tasks, messages, and communication rounds (Sections 5.4 and 5.5). In this
section, we describe how we implement TTnet and the TTW scheduler to
obtain a fully functional TTW system. The performance of the implementation
is discussed in Sections 5.8 and 5.9.

5.7.1 Implementation of TTnet

We implement TTnet on embedded platforms built using the Dual-Processor
Platform (DPP) concept. The DPP links two arbitrary processors with a
processor interconnect called Bolt [175], which provides predictable asyn-
chronous message passing between the two processors using message queues
with first-in-first-out (FIFO) semantics, one for each direction.5 The DPP
architecture is compatible with TTW ’s system model, which assumes that a
node is capable of performing one task execution and one message transmission
simultaneously (Section 5.3): We dedicate one processor (a TI MSP432 [182])
to the execution of tasks and another one (a TI CC430 SoC [181]) to wireless
communication. The DPP platform we used is illustrated in Figure 1.8.

To implement the TTnet network stack, we leverage the Baloo design
framework (introduced in Chapter 3). In particular, we use the “static
configuration” mode of Baloo (Section 3.4): TTW produces scheduling tables
offline, which can be loaded in the nodes’ memory to limit the runtime
communication overhead (Efficiency). The TTnet beacons (Section 5.2) are
sent as Baloo control packets, using the customizable “user-bytes” field.6

To synthesize the schedules, one must know how long a communication round
lasts. For this purpose, the predictability of the Baloo framework is very
beneficial: based on the implementation parameters, one can derive a precise

5Refer to the Introduction chapter for more details about the DPP concept.
6github.com/ETHZ-TEC/Baloo/wiki/Baloo-control-packet

https://github.com/ETHZ-TEC/Baloo/wiki/Baloo-control-packet

Ch
ap

te
r 5

TT
W

5.7. Implementing TTW 135

estimate of the maximum possible length of a round.7 This model must
account for the time to read and write messages over Bolt, the DPP processor
interconnect. The Bolt API functions have formally verified semantics and
bounded execution times [175]. In our implementation, the two processors read
and write over Bolt using the maximally supported SPI frequency of 4MHz,
leading to the worst-case execution times shown in Table 5.2. On the application
side, we include the time to read and write messages within the WCET of
tasks; in other words, we consider that a task “starts” when the processor
initiates the Bolt read function, and terminates once the Bolt write function
is completed.8 On the communication side, incoming messages are read from
Bolt before the rounds. This is performed during the so-called “pre-process”,
which is scheduled before each Baloo round.9 The messages received from the
wireless network are written over Bolt directly after the communication slot, in
Baloo’s on_slot_post() callback function (Section 3.3). Our implementation
of TTnet is available in the Baloo repository [99].

5.7.2 Implementation of the TTW Scheduler

We implement the TTW scheduler using Matlab [127] and we use the Gurobi
solver [84] for synthesizing the schedules. All scripts are publicly available,10

together with details of the MILP formulation (Section 5.A). In this section, we
describe how to run the TTW scheduler.

There are four high-level communication parameters that the user must specify
in the multimode_main.m file:

n L The message payload size (in bytes)
n Bmax The maximal number of slots per round
n N The number of message transmissions in a Glossy flood [74]
n H The estimated network diameter (in number of hops)

The loadRoundModel.m file contains the parameters of the TTnet implemen-
tation (Section 5.7.1). Combined with the high-level parameters described
above, this allows the scheduler to compute the length of communication
rounds.7 Finally, the user must specify the system’s operation modes,
applications, tasks, and messages, which is done by filling cell arrays in the
system_configuration.m and mode_configuration.m files.

7The TTnet model and its evaluation are presented in Section 5.9.
8Assuming that the task has some input and output messages.
9github.com/ETHZ-TEC/Baloo/wiki/Baloo-pre-post-processes

10Although Matlab and Gurobi are commercial software, free academic and/or student
licenses are currently available from the software vendors.

https://github.com/ETHZ-TEC/Baloo/wiki/Baloo-pre-post-processes

136 Chapter 5. TTW – Time-Triggered Wireless

1 CustomConstaints = { ...
2 { {{'T_loc_stab1', 1},{'T_loc_stab2', −1}}, '=', 0}, ...
3 { {{'T_loc_stab1', 1},{'T_loc_stab3', −1}}, '=', 0}, ...
4 { {{'T_loc_stab1', 1},{'T_loc_stab4', −1}}, '=', 0}, ...
5 { {{'T_loc_stab1', 1},{'T_loc_stab5', −1}}, '=', 0}, ...
6 };

Figure 5.10 Example of specification of user-defined constraints. The generic
formulation let the user define any linear constraint between the offsets of tasks and
messages in the system. In this example, the constraints force all tasks T_loc_stabX
to have the same offset; in other words, these tasks will execute simultaneously.

The scheduler supports user-defined constraints on the task and message offsets.
These constraints must have the following form∑

k

αk ∗ idk.o ‘sign′ β (5.33)

where id is the unique identifier of a task or a message, α is a constant
multiplier, sign can be specified as ‘=’ or ‘<’, and β is the right-hand side
term of the constraint. The constraint may contain an arbitrary number of
left-hand terms, denoted here by k. These constraints are specified as tuples
of the form { {idk, αk}k , sign , β }, as shown in Figure 5.10; in that example,
the user-defined constraints force some tasks to have the same offset; in other
words, these tasks will execute simultaneously. The user-defined constraints are
automatically added to the MILP formulation; if the problem is feasible, the
schedule is guaranteed to satisfy them. Once all inputs have been specified, the
schedules for all operation modes are synthesized and displayed by running the
multimode_main.m script.

5.8 Performance of the TTW Scheduler

The following two sections present the performance evaluation of our TTW
implementation, presented in Section 5.7. We first evaluate the performance of
the scheduler. In particular, we illustrate the benefits of the minimal inheritance
strategy presented in Section 5.5 and we show that the complexity of the
schedule synthesis is tractable.

5.8.1 Benefits of Minimal Inheritance

Every round introduces some overhead (mainly from sending the beacon), which
consumes energy. To reduce the energy consumption, TTW aims to minimize
the number of rounds (O1). The schedule synthesis for a single mode is optimal

Ch
ap

te
r 5

TT
W

5.8. Performance of the TTW Scheduler 137

8

16 16 16

88

16 16 16

88

20 20
24

26

1 2 3 4 5
0

10

20

30
No inheritance Minimal inheritance Full inheritance

Operation modes

Number of rounds scheduled

Figure 5.11 Number of rounds in the different modes’ schedule, depending on the
inheritance approach considered. We consider the number of rounds scheduled over
80 s, which is the least common multiple of the modes’ hyperperiod.

𝑀4𝑀3𝑀1 𝑀2 𝑀5

Figure 5.12 The mode graph M’ used in the inheritance evaluation scenario. Mode
Mi has priority i. The applications executing in each mode are listed in Section 5.B.

in this respect; that is, the procedure guarantees that the schedule minimizes
the number of communication rounds (Section 5.4).

The second objective of the scheduler is to allow persistent applications to keep
the same schedule in different operation modes (O2). This creates additional
constraints that break the optimality guarantee: in other words, the schedule
of mode Mj , when constrained to be compatible with mode Mi , may contain
more rounds than required to schedule the mode Mj alone. A naive solution
to meet (O2) is to completely “reserve the space” of previously scheduled
modes. This is equivalent to consider that all applications executing in mode
Mi are also executing in Mj , even if it is not actually the case. We call this
the full inheritance approach. This approach does guarantee compatibility but
it is very pessimistic: it leads to an excessive increase of the number of rounds
and find problems to be non-schedulable when they may in fact be feasible.

In Section 5.5, we derived the minimal set of constraints that are necessary
to guarantee the compatibility between modes (O2), which we refer to as
minimal inheritance. We now illustrate with a simple example that the minimal
inheritance does not overly increase the number of communication round
required and performs much better than the full inheritance. We consider

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-11

138 Chapter 5. TTW – Time-Triggered Wireless

the following configuration (fully detailed in Section 5.B): The system is
composed of 13 nodes, running 15 different applications including 45 tasks
and 30 messages. The periods and deadlines vary between 10 and 80 s. The
applications are executing in 5 different modes connected by the mode graph
shown in Figure 5.12. Finally, all applications are considered persistent. We
synthesize the schedule for the 5 modes while considering (i) no inheritance,11

(ii) our minimal inheritance approach, and (iii) the naive full inheritance
approach. The results are shown in Figure 5.11.

One important observation is that the number of rounds steadily increases
with the full inheritance approach, which is expected: the full inheritance
assumes that all previously scheduled applications are still executing. Thus,
the number of applications to schedule only increases, and so does the number
of round required. Ultimately, this not only wastes energy, it also limits
scalability with the number of operation modes. In comparison, our minimal
inheritance approach performs much better: Since only the required constraints
are included, the minimal inheritance does not suffer from the scalability issue
mentioned above. In this example, the minimal inheritance performs optimally
(i.e., it does not schedule more rounds that the minimum, captured by the “no
inheritance” case); but note that this is not true in general, it simply happens
to be the case in this example.

Conclusion. The minimal inheritance approach derived in Section 5.5 efficiently
addresses the challenge of synthesizing compatible schedules (O2) while
minimizing the energy impact in terms of number of rounds scheduled (O1).
This approach does increase the complexity of the synthesis formulation;
however, it is implemented in our TTW scheduler, it induces no overhead for
the user, and it does not affect the synthesis solving time, as discussed below.

5.8.2 Offline Solving Time

We computational complexity of the schedule synthesis is made tractable
by TTW ’s sequential approach: modes are scheduled individually, in order
of priority (Section 5.5) and for each mode, the number of rounds to
schedule is kept fixed then incremented until a solution is found (Section 5.4).

For the evaluation scenario described above, the solving time for one mode
grows up to ten minutes (Table 5.3) and is generally correlated with the
complexity of the mode to schedule: mode M3 and M4 contains the most
applications (Section 5.B), leading to more constraints in the formulation.
Furthermore, we note that the minimal inheritance strategy does not increase
the overall solving time compared to “no inheritance”. The intuition is that, by

11Considering no inheritance is equivalent to set all applications as non-persistent. In
other words, there are no constraints between the different modes and the individual mode
schedules are guaranteed to be optimal in terms of number of rounds (Section 5.4).

Ch
ap

te
r 5

TT
W

5.9. Performance of TTnet 139

Table 5.3 Approximate solving time for the different modes of the inheritance
evaluation (Section 5.8). Time expressed in seconds; all computation performed on
a commodity laptop.

M1 M2 M3 M4 M5

No inheritance 7 ≈ 0 184 536 ≈ 0
Minimal inheritance 6 ≈ 0 114 438 ≈ 0
Full inheritance 3 79 65 231 578

reserving some applications’ schedule, we fix the value of some of the problem
variables, thereby reducing the complexity of the problem. However, as shown
by the full inheritance approach, if too many variables are fixed, the resulting
problem might become harder to solve: more communication rounds become
required, which increases the number of variables and thus the complexity.

Conclusion. The evaluation scenario is simple but representative of a middle-
sized CPS. Our evaluation shows that the computational complexity may grow
to the scale of minutes for challenging modes, which remains perfectly tractable
for a task that needs to be performed only once and before deployment.

5.9 Performance of TTnet

After the evaluation of the TTW scheduler (Section 5.8), we now consider the
performance of our TTnet implementation, described in Section 5.7.1.

5.9.1 Memory Utilization

First, we consider the memory utilization induced by storing the scheduling
tables in the nodes’ memory. For a given operation mode, the entire schedule
contains the task offsets, the message offsets and deadlines, the round starting
times, and the allocations of messages to rounds (Table 5.1). In addition, nodes
must know the task periods and the mode hyperperiod to compute the absolute
start time of the tasks and rounds.

Since we dedicate the execution of tasks and the wireless communication to
different processors (Section 5.7), the memory cost for storing the schedule can
be splitted. On the application side, we must store the task offsets and periods,
which are required to know when to execute the tasks; i.e., 2 variables per
task. On the communication side, we must store the mode hyperperiod and the
rounds information, i.e., the offset and allocation of the rounds scheduled within
the mode’s hyperperiod; i.e., (Bmax + 1) variables per round. The message
deadlines are not required at runtime and do not need being stored. As a
result, we can generally estimate that the scheduling tables represent tens to
hundreds of variables per mode for each processor.

140 Chapter 5. TTW – Time-Triggered Wireless

Conclusion. Our application and communication processors feature
64 kB [182] and 4 kB [181] of RAM, respectively. Thus, considering an
average size of two bytes per variable, storing the scheduling tables represent
a significant overhead and limits the scalability of the system, in particular
on the communication processor. This limitation would be significantly
relaxed with newer platforms, which commonly feature 256 kB of RAM [163].

5.9.2 TTnet Model

As discussed in Section 5.7, we implement TTnet using Baloo, which allows to
derive a precise model of (i) the execution time of a communication round and
(ii) the time spent with the radio turned on, which correlates with the energy
consumed for communication. Estimating the communication time is necessary
to synthesize the schedules since the scheduler must know how long the rounds
last. This model should be as tight as possible not to “waste” time and thus
minimize the end-to-end deadlines schedulable by TTW , but it must be a safe
upper-bound in order to prevent deadline misses. This section presents our
TTnet model and derives the theoretically achievable performance in terms of
minimal message latency and the energy savings expected from using rounds.

Let a.δ denote the latency of an application a. This latency represents the
delay for a complete execution of a; that is, the completion of all tasks in a.P.
Let a.c be a chain in a.P. A chain is defined as a path of a.P starting with
a task without predecessor and ending with a task without successor.12 The
minimum achievable latency for a single message in TTW is the length of a
round composed of only one slot, denoted Tr(L, 1) where L is the payload size.
Thus a.δ is lower-bounded by

a.δ ≥ max
a.c∈ a.P

(∑
τ ∈ a.c

τ.e +
∑

m∈ a.c
Tr(L, 1)

)
(5.34)

Remark 7. By comparison, the best possible guarantee for the latency of a
single message provided by DRP (Chapter 4) is of the order of 2 ∗Tr(L,Bmax).
Since Tr(L,Bmax) ≈ Bmax ∗ Tr(L, 1), TTW reduces the minimal guarantee
on message latency by a factor of approximately 2 ∗ Bmax . For a relatively
small number of slots per round, such as Bmax = 5, this represents an order of
magnitude improvement. This difference stems from the loose coupling between
the task and message schedules in DRP, whereas TTW statically schedules all
tasks and messages.

A round Tr is composed of up to (Bmax + 1) slots in which Glossy floods [74]
are executed. An entire slot completes in time Tslot , decomposed into

Tslot = Twake−up + Tstart + Tflood + Tgap (5.35)
12For example, (τ2,m2, τ4) is a chain of P in Figure 5.4.

Ch
ap

te
r 5

TT
W

5.9. Performance of TTnet 141

proc.wake-up R T R T

𝑇𝑔𝑎𝑝𝑇𝑠𝑡𝑎𝑟𝑡

listen

𝑇𝑓𝑙𝑜𝑜𝑑

start idle

𝑇𝑤𝑎𝑘𝑒−𝑢𝑝

payload

𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑇𝑐𝑎𝑙

header

𝑇ℎ𝑒𝑎𝑑𝑒𝑟

cal.delay

𝑇𝑑

Slot

Flooding step

𝑇𝑠𝑙𝑜𝑡

𝑇ℎ𝑜𝑝

Figure 5.13 Break-down of a communication round. At the slot level, the colored
boxes identify phases where the radio is on. In the “idle” phase, the radio is turned
off in practice, but this idle time depends on each node’s distance to the initiator. To
estimate the energy saving of rounds (Figure 5.15), we assume that the radio stays
on for the whole time of Tflood , as specified in Equation (5.40).

The composition of a slot in our implementation is detailed in Figure 5.13.
First, all nodes wake up (Twake−up) and switch on their radio (Tstart). Then the
message flood starts. We denote by Thop the time required for one protocol
step, i.e., a one-hop transmission. The total length of the flood is

Tflood = (H + 2N − 1) ∗ Thop (5.36)

with H the network diameter and N the number of times each node transmits
each packet.13 Thop is itself divided into

Thop = Td + Tcal + Theader + Tpayload (5.37)

where Td is a radio delay, and Tcal , Theader and Tpayload are the transmission
times of the clock calibration message, the Glossy header and the message
payload, respectively. With a bit rate of Rbit , the transmission of L bytes takes

T (L) = 8L/Rbit (5.38)

Once the flood is completed, some gap time Tgap is necessary to process the
received packet. This time is used (among other things) to execute Baloo’s
on_slot_post() callback, where the received messages are written into Bolt.
We divide Tslot into T on and T off , which denote the time spent with radio on
and off, respectively.

T off = Twake−up + Tgap (5.39)
T on(L) = Tstart+

(H + 2N − 1) ∗ (Td + 8(Lcal + Lheader + L)/Rbit) (5.40)
Tslot(L) = T off + T on(L) (5.41)
Tr(L) = Tslot(Lbeacon) +B ∗ Tslot(L) + Tpreprocess (5.42)

Sending beacons is necessary to let the nodes know about the current state of
the system; i.e., which mode is executing and “how far” is the system in the

13Glossy achieves more than 99.9% packet reception rate using N = 2 [74].

142 Chapter 5. TTW – Time-Triggered Wireless

Table 5.4 TriScale parameters for the experimental validation of TTnet’s model

Evaluation Objectives
Performance dimension Metric Convergence KPI Var.Score
Round length – Tr max False 95th 95% median 75%
Energy savings – E median False 5th 95% median 75%

scheduling table. Without that information, it is impossible for a failing node to
recover and resume its normal operation. Moreover, beacons prevent message
collisions by guaranteeing that the nodes always know the system’s state when
a round starts. In a design without round, each message transmission should
be preceded by its own beacon to provide the same guarantees. Thus, the
transmission time for B messages of size L, denoted Two/r(L), would take

Two/r(L) = B ∗ (Tslot(Lbeacon) + Tslot(L)) (5.43)
We can then derive the relative energy savings E granted by using a round-based
design, which we compute as E = (T on

wo/r − T on
r)/T on

wo/r .

The complete TTnet model is available in Appendix (Section 5.A). We
use this model to compute the round length Tr and the energy sav-
ings E for different values of number of slots per rounds (B), message
payload size (L), network diameter H, and number of transmissions in
Glossy floods (N). Selected results are shown in Figures 5.14 and 5.15.
For example, with N set to 2, it takes less than 100ms to complete a 10-
slot round sending 16-bytes messages over a 4-hop network (Figure 5.14, top).

5.9.3 Model Validation

We now evaluate the runtime execution of our implementation and aim to
validate our TTnet model. In particular, it is important that the round length
model gives safe upper-bounds since the TTW scheduler relies on the model
to schedule messages and tasks: if a round overruns, this may delay the
execution of subsequent tasks and cause deadline misses. We test our TTnet
implementation for different number of slots per round B and payload size L,
we measure the round length and radio-on time experienced by the different
nodes in the network, and we compare the results with the TTnet model.

Evaluation scenario. We program the network to execute, one round with B
slots, followed by B rounds with one slot. For each of these rounds, we collect
the round length and the radio-on time. Both values are measured in software
(i.e., the measurement is implemented in the firmware) and use a 32 kHz timer,
leading to a measurement accuracy of about 30µs.

Experiment design. We design the evaluation using the TriScale framework
(introduced in Chapter 2). The evaluation parameters are listed in Table 5.4.

Ch
ap

te
r 5

TT
W

5.9. Performance of TTnet 143

12 13 16 2218 20 25 3436 41
52

7266
76

97

134

H = 1 H = 2 H = 4 H = 8
0

50

100

150
B = 1 B = 2 B = 5 B = 10

Network diameter H [hops]

Round length Tr [ms]

20 21 24
27

13 14 15 17

6 7 7 8
3 3 4 4

H = 1 H = 2 H = 4 H = 8
0

10

20

30

40
B = 1 B = 2 B = 5 B = 10

Network diameter H [hops]

Protocol overhead [%]

Figure 5.14 Example values of round length (top) and protocol overhead (bottom)
computed using the TTnet model (Section 5.9.2). The protocol overhead is
computed as the percentage of time spent to send the beacons relative to the overall
communication time for a round containing B slots. Payload is set to 16 bytes and
we use N =2 transmissions in the Glossy floods [74].

Our evaluation scenario is terminating (there is a finite task to accomplish);
thus there is no need to test for convergence. The round length evaluation
aims to validate that the TTnet model is a safe upper-bound; thus, we use
the maximum measured round length across all nodes as metric for a run.
For the same reason, we choose a large KPI (95th percentile) and a high
confidence level (95%), which leads to a minimal number of 59 runs per series.
To investigate the reproducibility of the results, we choose the median and a
75% level of confidence for the variability scores, leading to a minimal number
or 3 series. To evaluate the average savings provided by using communication
rounds, we use the median values across nodes as metric. We perform the
evaluation on FlockLab [3], an indoor testbed located in an office building. It
has been shown that the experimental conditions on FlockLab exhibits weekly
seasonal components (Section 2.4.6); therefore, to avoid biasing our evaluation,
we perform our series of runs using a span of one week, during which we schedule
randomly 60 runs per set of parameters. We test our TTnet implementation

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-14
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-14

144 Chapter 5. TTW – Time-Triggered Wireless

10 20 30
0

20

40

L = 8B L = 16B L = 64B KPIs

Number of slots per round B [.]

Energy savings E [%]

Figure 5.15 Relative radio-on time savings by using rounds compared to single
messages. The energy savings induced by a round-based design grow with the
number of number of slots per round (X-axis). Conversely, these savings become
less significant as the payload size increases (lighter colors). The diamonds show our
evaluation KPIs and thus estimate, with a probability of 95%, the average energy
savings expected in 95% of the test runs. H = 4, N = 2.

using 5, 10, and 30 slots per round, and payloads of 8, 16, and 64 bytes. The
three series of tests were performed between May and October 2019. The KPI
values from our evaluation are listed in Table 5.5.
Remark 8. Observe that certain values in Table 5.5 are reported with a ∗ or †
symbol. The ∗ marks series where TriScale independence test fails; this indicates
that the metric data do not appear to be i.i.d. and therefore the KPI value
loose its predictive power (i.e., it does not allow to infer what is the expected
performance). However, in our evaluation, the autocorrelation plots show no
significant differences between the series that passes the test and those that do
not (data available in Section 5.A). Moreover, the round length KPI values are
almost the same in all series. Together, these two facts increase our confidence
in the results and suggests that the reported KPIs are robust estimates of the
expected performance.
The † marks series where we could not collect enough data in order to compute
the KPIs. This appended in Series 3 due to construction work taking place
in the FlockLab building, where many test runs were lost due to sporadic
power outages. In both cases, the table shows the maximum round length or
minimum energy savings metric values obtained across all the runs in the series.

Results – Round length. The results for the round length are extremely
stables (Table 5.5): the differences of KPI values between series are at most
one time tick (≈ 30µs), which is our measurement accuracy. Concretely, this
means that, in all series, the largest round length measured by any node is
essentially the same.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-15

Ch
ap

te
r 5

TT
W

5.9. Performance of TTnet 145

Furthermore, the KPI values are (i) very close to and (ii) consistently lower than
the model. By definitions of the KPI, we can estimate with 95% probability
that (at least) 95% of runs will yield a maximal round length smaller than the
KPI value, and thus smaller than the model value. Figure 5.16 (top) shows
the distribution of the round length measurements from all the nodes collected
during one series of 60 runs. We observe that the distribution is narrow (less
than 300µs of spread), which is expected. Indeed, the TTnet rounds are fully
time-triggered; thus, the measurement differences between nodes mainly come
from the difference in execution time of Baloo’s end-of-round operations, which
is expected to be small.

In our entire evaluation, there was one case where a node reported a value
(77.85ms) larger than the model (77.52ms). This concerned only one node:
in this run14 the second highest value reported (77.12ms) was smaller than
the model value. It is hard to know a posteriori what may have cause
this. However, we argue that this one overshoot is more likely imputable
to some sporadic hardware delay than due to a miscalibration of the model.

Results – Energy savings. The energy savings results show more fluctuations
than the round length, which is not surprising: (i) the energy model is less precise
and (ii) the dynamic interference conditions affect the radio-on time, as nodes
may need to keep their radio on for a longer share of Tflood . Figure 5.15 shows
the model and our energy savings KPIs together. Figure 5.16 (bottom) shows
the distribution of radio-on time measurements from all the nodes, collected in
one series of 60 runs: nodes experience significant differences in radio-on time
during a round. This is expected since nodes terminate a flood as soon as they
have transmitter a packet N times, which happens earlier for nodes that are
closer to the initiator,

Overall, the energy savings come from the “distribution” of the overhead from
sending beacons between the slots. Thus, the more slots (increasing B) and
the smaller the slots (decreasing L), the more radio-on time is spared by using
rounds. For a payload of 16 bytes, we obtain an average energy savings of
about 30% with only 10 slots per round.

Conclusion. We validated the tightness and safeness of TTnet round length
model, which was found to be an upper-bound of the effective round length for
all but one in about 14k measurements collected. Furthermore, we showcased
that, even with small beacons (2 bytes in our implementation), a round-
based design yields significant reduction of radio-on time, and therefore helps
minimizing the overall energy consumption (Efficiency).

14FlockLab test number 66992; data available in Section 5.A.

146 Chapter 5. TTW – Time-Triggered Wireless

52 52.2 52.4 52.6
0

20

40

Round length Tr [ms]

Model

52.22 ms

Number of samples [%]

25 30 35 40
0

2

4

6

Radio-on time in a round [ms]

Model

40.37 ms

Number of samples [%]

Figure 5.16 Distributions of round length (top) and radio-on time (bottom)
measurements from all the nodes, collected in one series of 60 runs (Serie 2, L = 16,
B = 5). While the distribution of round length is very narrow, the radio-on time
exhibits a much larger spread. We can see that the TTnet model provides a generally
overestimate the radio-on time, which is expected since it assumes that nodes keep
their radio on for the entirety of Tflood (Equation (5.40)), which is not the case in
practice: nodes turn the radio off when they have transmitted a packet N times.

https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-16
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb#Figure-16

Chapter 5
TTW

5.10.
Discussion,Lim

itations,and
Future

W
ork

147

Table 5.5 KPIs from the performance evaluation described in Section 5.9 and corresponding model values for the TTnet round length Tr and
energy savings E; other settings: H = 4 and N = 2. The value marked in bold corresponds to the one case where the round length KPI is
larger than the model value. ∗ marks series where TriScale independence test failed. † marks series without enough samples for computing the
KPIs. In these two cases, reported values are the maximum round length or minimum energy savings metric values for all the runs in the series.

Round length Energy savings
Payload Slots per round Tr [ms] E [%]
L [bytes] B [.] Series 1 Series 2 Series 3 Model Series 1 Series 2 Series 3 Model

5 42.3∗ 42.3 42.3† 42.52 25 30 29† 34
8 10 77.85 77.24 77.24† 77.52 34 36 36† 38

30 217.01∗ 217.01 217.01∗ 217.52 37 40∗ 39∗ 41
5 55.22 52.22 52.22† 52.52 25∗ 24 22† 28

16 10 97.05∗ 97.08∗ 97.08† 97.52 28 29∗ 30† 32
30 276.52∗ 276.52∗ 276.49† 277.52 31 32∗ 32† 34
5 104.77 104.74 104.74† 105.02 8∗ 8∗ 9† 14

64 10 202.09∗ 202.12 202.09 202.52 8 12 12 16
30 591.49 591.52 591.49† 592.52 13∗ 13∗ 14† 17

148 Chapter 5. TTW – Time-Triggered Wireless

5.10 Discussion, Limitations, and Future Work

Debugging the scheduler is hard. When a system configuration is found
unfeasible by the TTW scheduler, it is not easy to identify which of the
constraints are responsible. Our scheduler implementation would benefit from
better built-in support to turn the IIS (irreducible constraint set, returned by
the Gurobi solver) into a legible output for the user.

The multi-mode scheduling strategy is not complete. Even with our
minimal inheritance approach (Section 5.5), the TTW scheduler may find a
problem unfeasible even though a solution exists. This is due to the sequential
synthesis of schedules, which is a generally under-defined problem: the choices
made when synthesizing a mode’s schedule may make lower-priority modes
unfeasible. Completeness (the guarantee to find a solution if one exists) can
be obtained by synthesizing all schedules within a single MILP formulation;
however, the complexity scales exponentially with the number of variables [102],
which limits the practicality of this “one-shot” approach. Another alternative
would be to leverage the IIS information to iterate on previously scheduled
modes. This is not trivial and, in particular, the scheduler must be careful
not to search forever shall the system configuration would be truly unfeasible.

In practice though, the lack of completeness is not a critical problem. If one
mode M is found unfeasible, a practical work-around is to add the conflicting
applications (derived from the IIS) to the specification of M. This triggers the
minimal inheritance mechanism and prevents conflicts in mode M, at a cost of
an increase in utilization.

Integration of TTnet with the TTW scheduler. We presented in
Section 5.7 our implementation of TTnet and the offline TTW scheduler. To
obtain a full-fledged TTW implementation, one needs to integrate these two
pieces. Concretely, that means designing a pipeline that turns the outputs of
the TTW scheduler into individual nodes’ scheduling tables, which can be then
patched in the TTnet firmware. There is no technical limitation in realizing
this; it could not be done in time before the completion of this dissertation, but
we intend to make this happen in the near future.

Showcasing the full feature set of TTW . A running implementation
of the TTW concept, including switching between operation modes, has
been presented in the 2019 IPSN Demo Session [123]. This demo ran a
more static and rigid software than the implementation presented in this
chapter. Furthermore, all applications were considered non persistent; in other
words, applications were re-starting from scratch with every mode change.
A demonstration of the full feature set of TTW remains to be done.

Porting to other platforms. Our implementation of TTnet currently supports
the TI CC430 SoC [181], which is not a commonly used platform and features

Ch
ap

te
r 5

TT
W

5.11. Related Work 149

only little memory. Porting TTnet to newer platforms would be beneficial,
and this is made simple by the use of the Baloo framework: whenever Baloo
becomes available for a new platform, so does TTnet. In particular, a port
to the nRF52840 Dongle [163] is envisioned, which would provide a physical
layer (up to) 8x faster (and therefore, support for shorter end-to-end deadlines)
and larger memory, which would facilitate the storing of scheduling tables.

Adaptability by reprogramming. The main limitation of TTW is that
the schedules are static: the system executes pre-computed scheduling tables
stored in the nodes’ memory, with runtime adaptability limited to switching
between different operating modes. However in principle, Adaptability could
be improved by specifying a “reprogramming” mode in which new scheduling
tables could be disseminated to the network to perform some sort of over-the-
air reprogramming [86]. Doing this reliably is challenging and would be an
interesting extension of this work.

5.11 Related Work

Various high reliability protocols have been proposed for low-power multi-hop
wireless network, like TSCH [193], WirelessHART [92] or LWB [72]. Blink [209]
was proposed as a real-time scheduling extension for protocols based on
synchronous transmissions. Despite their respective benefits, all these protocols
consider only network resources. They do not take into account the scheduling
of distributed tasks on the computation resources, and therefore they hardly
support end-to-end deadlines as commonly required for CPS applications [18].
In Chapter 4, we proposed DRP a protocol that provides such end-to-end
guarantees, but couples tasks and messages as loosely as possible, aiming for
efficient support of sporadic or event-triggered applications. This results in high
worst-case latency and is thus not suitable for demanding CPS applications [18].
This observation points toward a fully time-triggered system where tasks and
messages are co-scheduled.

In the wired domain, much work has been done on time-triggered architecture,
like TTP [107], the static-segment of FlexRay [76], or TTEthernet [106].
Many recent works use SMT- of MILP-based methods to synthesize and/or
analyze static (co-)schedules for those architectures [173, 56, 23, 177, 204].
However, these approaches assume that a message can be scheduled at any
time. While being a perfectly valid hypothesis for a wired system, this
assumption is not compatible with the use of communication rounds in a
wireless setting. As shown in Section 5.9, using rounds significantly reduces
the energy consumed for communication, but it makes the schedule synthesis
more complex (Section 5.4).

150 Chapter 5. TTW – Time-Triggered Wireless

5.12 Summary

In this chapter, we presented Time-Triggered Wireless (TTW), a time-triggered
design for wireless CPS. TTW provides end-to-end real-time guarantees by
statically co-scheduling all tasks and messages in the system, which is performed
offline by resolving a MILP formulation. This approach is inspired by similar
work in the wired domain, in particular the real-time scheduling of FlexRay
buses. Compared to DRP (Chapter 4), TTW ’s static schedules allow to meet
shorter end-to-end deadlines Efficiency at the cost of a lesser (Adaptability);
indeed, TTW ’s runtime adaptability is limited to switching between pre-defined
operation modes.

The main challenge in the TTW design is that, with wireless communication,
it is highly beneficial in terms of energy to send messages in rounds. Thus,
the assignment of messages to round (similar to a bin-packing problem) must
be combined to the traditional co-scheduling approaches, which is non-trivial.

We solved this problem and implemented a multi-mode scheduler that allows
critical applications to seamlessly switch between modes while minimizing the
energy consumption spent for wireless communication. We further implemented
a predictable network stack, called TTnet. Together, these two pieces
from TTW , a publicly available (Section 5.A) real-time wireless CPS design.

Ch
ap

te
r 5

TT
W

5.A. Appendix – Artifacts and Links 151

5.A Appendix – Artifacts and Links

5.A.1 Related Publications

TTW: A Time-Triggered Wireless design for CPS
Romain Jacob, Licong Zhang, Marco Zimmerling, Jan Beutel, Samarjit
Chakraborty, Lothar Thiele
DATE 2018. Dresden, Germany (March 2018)

q Paper 10.23919/DATE.2018.8342127
q Extended paper arxiv.org/abs/1711.05581v2
6 Poster 10.3929/ethz-b-000375611

5.A.2 Complementary Materials

Complementary materials for this chapters are available on GitHub, together
with the dissertation source files. For all links below, replace <root> by
“github.com/romain-jacob/doctoral-thesis/blob/master”

< TEX sources <root>/50_TTW/

^ Figures
— Static <root>/50_TTW/Figures/
— Dynamic <root>/notebooks/ttw_plots.ipynb

/ TTnet source code (examples/baloo-ttnet)
— Latest release 10.5281/zenodo.3510171
— “This-version” release 10.5281/zenodo.3530632

/ TTW Scheduler (sources and documentation)
— Latest release 10.5281/zenodo.3530665
— “This-version” release 10.5281/zenodo.3530666

® Experiment data
— Repository 10.5281/zenodo.3530721
— Notebook (online visualization)

https://doi.org/10.23919/DATE.2018.8342127
https://arxiv.org/abs/1711.05581v2
https://doi.org/10.3929/ethz-b-000375611
https://github.com/romain-jacob/doctoral-thesis/blob/master/50_TTW/
https://github.com/romain-jacob/doctoral-thesis/blob/master/50_TTW/Figures/
https://nbviewer.jupyter.org/github/romain-jacob/doctoral-thesis/blob/master/notebooks/ttw_plots.ipynb
https://doi.org/10.5281/zenodo.3510171
https://doi.org/10.5281/zenodo.3530632
https://doi.org/10.5281/zenodo.3530665
https://doi.org/10.5281/zenodo.3530666
https://doi.org/10.5281/zenodo.3530721
https://nbviewer.jupyter.org/urls/zenodo.org/record/3530722/files/ttw_ttnet-model.ipynb

152 Chapter 5. TTW – Time-Triggered Wireless

5.B System Configuration – Scheduler Evaluation

This appendix details the system configuration used for the performance
evaluation of TTW ’s scheduler (Section 5.8). The configuration consists of
15 different applications involving 45 tasks and 30 messages, executing in 5
different modes (Table 5.7). All applications are considered persistent, and the
precedence graphs always contain a single chain. The tasks are mapped to 13
different nodes (Table 5.6), with a WCET set to 1ms. The mode graph is
shown in Figure 5.12.

Ch
ap

te
r 5

TT
W

5.B. System Configuration – Scheduler Evaluation 153

Table 5.6 Task mapping for TTW ’s scheduler evaluation (Section 5.8).

Node Mapped tasks

Node 1 T1 T3 T4 T6 T25 T27
Node 2 T7 T9 T10 T12
Node 3 T13 T15 T16 T18
Node 4 T22 T24
Node 5 T28 T30
Node 6 T2 T8 T14
Node 7 T5 T11 T17 T23 T26 T29
Node 8 T31 T33 T34 T36
Node 9 T37 T39 T40 T42
Node 10 T52 T54
Node 11 T55 T57
Node 12 T32 T38 T56
Node 13 T35 T41 T53

Table 5.7 System configuration for TTW ’s scheduler evaluation (Section 5.8).

Mode Application Period (s) Deadline (s) Chain

M1

A1 20 20 T1 M1 T2 M2 T3
A3 20 10 T7 M5 T8 M6 T9
A4 20 20 T10 M7 T11 M8 T12
A8 40 40 T22 M15 T23 M16 T24
A10 80 80 T28 M19 T29 M20 T30

M2

A1 20 20 T1 M1 T2 M2 T3
A3 10 20 T7 M5 T8 M6 T9
A4 20 20 T10 M7 T11 M8 T12
A6 10 10 T16 M11 T17 M12 T18

M3

A3 20 10 T7 M5 T8 M6 T9
A9 80 80 T25 M17 T26 M18 T27
A10 80 80 T28 M19 T29 M20 T30
A11 20 20 T31 M21 T32 M22 T33
A14 10 10 T40 M27 T41 M28 T42
A18 40 40 T52 M35 T53 M36 T54

M4

A2 20 20 T4 M3 T5 M4 T6
A3 20 10 T7 M5 T8 M6 T9
A5 20 10 T13 M9 T14 M10 T15
A6 10 10 T16 M11 T17 M12 T18
A9 80 80 T25 M17 T26 M18 T27
A12 20 20 T34 M23 T35 M24 T36
A19 80 40 T55 M37 T56 M38 T57

M5

A2 20 20 T4 M3 T5 M4 T6
A4 20 20 T10 M7 T11 M8 T12
A12 20 20 T34 M23 T35 M24 T36
A13 20 20 T37 M25 T38 M26 T39

154 Chapter 5. TTW – Time-Triggered Wireless

Ch
ap

te
r 6

Co
nc

lu
sio

ns

6
Conclusions and Outlook

Cyber-Physical Systems (CPS) are believed to be the vector of the next
computing revolution [149]. In recent years, the buzz words have changed: it is
now all about the “Internet of Things” or “Industry 4.0” – different names,
same concept. We are envisioning a world where devices with computing
and wireless communication capabilities are deeply embedded into our lives,
in our environments, and even within ourselves. However, the current state
of technology is not quite yet able to realize these grand visions. In this
dissertation, we considered certain challenges related to communication in ad-
hoc networks; or as we say today: “on the edge”. One important challenge
is to support energy efficient and reliable communication within a network of
mobile nodes, such as teams of robots or drones. It was recently shown that the
technique referred to as synchronous transmissions (ST) has a lot of potential
to tackle this challenge. Indeed, ST can be leveraged to perform network-wide
flooding in a stateless fashion; that is, packets are sent to all nodes in the
network, in a way that does not depend on the current topology. And since
the topology does not matter, supporting mobility comes essentially for free.

Despite being a potential enabler for a whole new class of mobile CPS
applications, ST has not yet been used much outside academia. We identify at
least three reasons for that:

n ST requires a very precise control of the hardware; in particular, the timing of
radio operations is critical (Section 1.3). This makes ST complex to integrate
into larger systems. As there is a lack of tools and methods to facilitate this
integration, using ST requires an expert knowledge that the typical system
designer does not have.
n It is easier to believe what we can see, and the efficiency and reliability of
ST often come across as too-good-to-be-true. While the academic community
is now generally convinced, industry demands some proof-of-concepts showing
that ST does fulfill its promises, when put to the test.

156 Chapter 6. Conclusions and Outlook

n Finally, it is paramount to confidently evaluate and estimate expected
performance. The challenge of reproduciblility in networking experiments is
often debated, and there seems to be a general lack of trust in the results
presented in academic papers. It is not saying that researchers lie about their
experiment results, but would the system perform as well in another scenario?
Or in another network? Or with other parameters? The inability of answering
these questions is problematic.

6.1 Contributions

This dissertation makes three main contributions to foster the adoption of ST.

Baloo We designed Baloo, a framework facilitating the implementation of
network stacks based on ST. It is meant as a tool for system designers to
test and experiment with ST without having to be versed into the details
of radio management: users implement their protocol through a simple
yet flexible API while Baloo handles all the complex low-level operations
based on the users’ inputs.

DRP and TTW We proposed two different system designs – the Dis-
tributed Real-time Protocol (DRP) and Time-Triggered Wireless (TTW)
– which demonstrate for the first time that end-to-end real-time
guarantees can be obtained in CPS using low-power wireless technology
by leveraging ST. Our systems explore different parts of the design space:
DRP uses contracts to maximize the flexibility of execution between
distributed tasks, whereas TTW statically co-schedules all task executions
and message transfers to minimize end-to-end latency. In particular,
together with project partners, we used the TTW design to implement the
first demonstrator of feedback-control of fast physical systems (multiple
inverted pendulums) across a multi-hop network using low-power wireless
technology [123].

TriScale With the design of TriScale, we worked towards more rigorous and
reproducible experimental networking research. For the first time, we
went beyond simple guidelines and proposed a concrete methodology
for designing networking experiments and analyzing their data, which
allowed us to propose the first formalized definition of reproducibility in
the context of networking experiments. The driving principle of TriScale
is to rationalize the evaluation process: i.e., justify what is required to do
and what data to collect in order to support one’s performance claims.

Ch
ap

te
r 6

Co
nc

lu
sio

ns

6.2. Future Developments 157

6.2 Future Developments

Benchmarking Wireless Protocols. Our work on TriScale stemmed from
discussions in the low-power wireless community regarding the need for a
benchmark to compare networking protocols [38]. As we were reflecting on
how to design such a benchmark, the need for a more rigorous experimental
methodology became obvious; a need that TriScale tries to fill. We can now
return to our initial objectives and attempt to realize the vision of IoTBench: a
benchmark to thoroughly and confidently compare the performance of wireless
networking protocols [93].

Going further with ST. With the design of Baloo, we attempted to make
ST more accessible; an attempt that appears to be successful. Less than a
year after the initial paper, the first independent studies using Baloo have been
published [169]. There are many opportunities for future developments of the
framework; the most natural being the port of Baloo to other platforms. It
has been shown that the principle of ST also work on other physical layers
that IEEE802.15.4 (e.g., Bluetooth [21] and LoRa [195]). To investigate this
further, a port to the LoRa-compatible SemTech SX1262 chip [164] is currently
under development. Another port to the Bluetooth-compatible nRF52840
Dongle [163] is planned in a near future. These would allow to experiment with
ST-based networking on different physical layers and, by leveraging (hopefully
upcoming) wireless protocol benchmarks, we would be able to objectively
compare the performance trade-offs of these different technologies in a wide
range of scenarios and applications.

Dependable networking. One important limitation of the system designs
presented in this dissertation is the reliance on a central authority, which we
call host, in order to coordinate communication within the network. This
creates a single point of failure: if the host should fail (or be jammed), the
entire network would stop its operation. For any safety-critical applications,
this is not acceptable. It is therefore important to work on system designs that
would “distribute the responsibility” of the host. Recent contributions provide
consensus primitives in low-power networks [169, 21, 148], an important piece
for fault-tolerance in distributed systems. However these works still rely on a
central authority for elementary network functions, such as time synchronization.
More efforts are required to designed truly dependable wireless networks.

158 Chapter 6. Conclusions and Outlook

6.3 Affirming Oneself as a Researcher

Pursuing a doctorate degree is not only about writing a dissertation: it is a
fundamental training step towards affirming oneself as a researcher. The shaping
of my own researcher identify has been strongly influenced by this statement1

“If I am going to "make it" in science, it has to be on terms I can live with.”

I cannot agree more and this idea now impacts many aspects of my work.
For me, this translates into trying to follow the principles generally referred to
as “Open Science”. I hope this can be perceived in this dissertation. In practice,
this implies for example favoring open and free software over commercial tools;
this is why the earlier works from the dissertation used Matlab, while the later
ones are based on Python. Moreover, I try to systematically release data and
code with all publications, aiming to make any plot and experiment reproducible
by others, which I believe should be a standard in science.

I recently wrote down my own objectives and expectations regarding the way I
intend to do research; this has materialized into a “Pledge to Open Science”
which is publicly available on my personal webpage.2 I will do my best to
live and work by this principles, because I believe this is the right thing to do.
We shall see if that will be good enough to “make it”.

1Erin McKiernan. 10.6084/m9.figshare.954994
2www.romainjacob.net/pledge-to-open-science

http://dx.doi.org/10.6084/m9.figshare.954994
http://www.romainjacob.net/pledge-to-open-science/

Bibliography

[1] –. Angainor – Reproducible Evaluation and Fault Injection of Large-Scale Distributed
Systems. http://angainor.science/. [Online] - Last access: 2019-9-19.

[2] –. Contiki: The Open Source Operating System for the Internet of Things. http:
//contiki-os.org/.

[3] –. FlockLab. http://flocklab.ethz.ch/. [Online] - Last accessed: 2019-10-11.
[4] –. FreeRTOS - Market leading RTOS for embedded systems with Internet of Things

extensions. https://www.freertos.org/.
[5] –. NumPy: The Fundamental Package for Scientific Computing with Python. https:

//numpy.org/. [Online] - Last access: 2019-9-19.
[6] –. OpenMote B. http://www.openmote.com/product/openmote-b-single/.
[7] –. Plotly: Modern Analytic Apps for the Enterprise. https://plot.ly. [Online] -

Last access: 2019-9-19.
[8] –. Python Data Analysis Library. https://pandas.pydata.org/. [Online] - Last

access: 2019-9-19.
[9] –. SciPy: Open source scientific tools for Python. https://scipy.org/. [Online] -

Last access: 2019-9-19.
[10] –. Sleeping Beauty. https://github.com/csarkar/sleeping-beauty, 2016.
[11] –. Contiki-NG. http://contiki-ng.org/, 2018.
[12] –. EWSN 2019 Dependability Competition. http://ewsn2019.thss.tsinghua.

edu.cn/competition-scenario.html, 2019.
[13] Tarek Abdelzaher and Kang Shin. Combined task and message scheduling in distributed

real-time systems. IEEE Transactions on Parallel and Distributed Systems, 1999. doi:
10.1109/71.809575.

[14] Javier Acevedo. Real-Time Scheduling on Resource-Constrained Embedded Systems.
Master Thesis, TU Dresden, 2016.

[15] ACM. Artifact Review and Badging. https://www.acm.org/publications/
policies/artifact-review-badging, 2018.

[16] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. FIT IoT-LAB: A large scale open experimental
IoT testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015.
doi:10.1109/WF-IoT.2015.7389098.

[17] Advanticsys. MTM-CM5000-MSP 802.15.4 TelosB mote Module. https://www.
advanticsys.com/shop/mtmcm5000msp-p-14.html. [Online] - Last accessed:
2019-10-11.

http://angainor.science/
http://contiki-os.org/
http://contiki-os.org/
http://flocklab.ethz.ch/
https://www.freertos.org/
https://numpy.org/
https://numpy.org/
http://www.openmote.com/product/openmote-b-single/
https://plot.ly
https://pandas.pydata.org/
https://scipy.org/
https://github.com/csarkar/sleeping-beauty
http://contiki-ng.org/
http://ewsn2019.thss.tsinghua.edu.cn/competition-scenario.html
http://ewsn2019.thss.tsinghua.edu.cn/competition-scenario.html
https://doi.org/10.1109/71.809575
https://doi.org/10.1109/71.809575
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1109/WF-IoT.2015.7389098
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

160 Bibliography

[18] Johan Åkerberg, Mikael Gidlund, and Mats Björkman. Future research challenges in
wireless sensor and actuator networks targeting industrial automation. In 2011 9th
IEEE International Conference on Industrial Informatics, 2011. doi:10.1109/INDIN.
2011.6034912.

[19] Johan Åkerberg, Mikael Gidlund, Frank Reichenbach, and Mats Björkman.
Measurements on an industrial wireless HART network supporting PROFIsafe: A case
study. In ETFA2011, 2011. doi:10.1109/ETFA.2011.6059011.

[20] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. Network-wide Consensus
Utilizing the Capture Effect in Low-power Wireless Networks. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems, SenSys ’17, New York,
NY, USA, 2017. ACM. doi:10.1145/3131672.3131685.

[21] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. Concurrent Transmissions
for Multi-Hop Bluetooth 5. In Proceedings of the 2019 International Conference on
Embedded Wireless Systems and Networks, EWSN ’19, Beijing, China, 2019. Junction
Publishing. http://dl.acm.org/citation.cfm?id=3324320.3324336.

[22] ARM. Cortex-M4. https://developer.arm.com/ip-products/processors/
cortex-m/cortex-m4.

[23] Mohammad Ashjaei, Nima Khalilzad, Saad Mubeen, Moris Behnam, Ingo Sander, Luis
Almeida, and Thomas Nolte. Designing end-to-end resource reservations in predictable
distributed embedded systems. Real-Time Systems, 2017. doi:10.1007/s11241-
017-9283-6.

[24] Akramul Azim. Scheduling of Overload-Tolerant Computation and Multi-Mode
Communication in Real-Time Systems. Doctoral Thesis, University of Waterloo, 2014.
https://uwspace.uwaterloo.ca/handle/10012/8973. URL: https://uwspace.
uwaterloo.ca/handle/10012/8973.

[25] Jonas Bächli. Creating a Flexible Middleware for Low-Power Flooding Protocols.
Master Thesis, ETH Zurich, 2018. doi:10.3929/ethz-b-000270388.

[26] Michael Baddeley, Usman Raza, Aleksandar Stanoev, George Oikonomou, Reza
Nejabati, Mahesh Sooriyabandara, and Dimitra Simeonidou. Atomic-SDN: Is
Synchronous Flooding the Solution to Software-Defined Networking in IoT? IEEE
Access, 2019. doi:10.1109/ACCESS.2019.2920100.

[27] Michael Baddeley, Aleksandar Stanoev, Usman Raza, Yichao Jin, and Mahesh
Sooriyabandara. Competition: Adaptive Software Defined Scheduling of Low Power
Wireless Networks. In 16th International Conference on Embedded Wireless Systems
and Networks (EWSN 2019), EWSN ’19, Beijing, China, 2019. Junction Publishing.
http://dl.acm.org/citation.cfm?id=3324320.3324389.

[28] Vaibhav Bajpai, Olivier Bonaventure, Kimberly Claffy, and Daniel Karrenberg.
Encouraging Reproducibility in Scientific Research of the Internet (Dagstuhl Seminar
18412). Dagstuhl Reports, 2019. doi:10.4230/DagRep.8.10.41.

[29] Vaibhav Bajpai, Anna Brunstrom, Anja Feldmann, Wolfgang Kellerer, Aiko Pras,
Henning Schulzrinne, Georgios Smaragdakis, Matthias Wählisch, and Klaus Wehrle.
The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking
Research. SIGCOMM Comput. Commun. Rev., 2019. https://dl.acm.org/
citation.cfm?id=3314217.

[30] Monya Baker. Is There a Reproducibility Crisis? Nature News,
2016. https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/
topColumns/topLeftColumn/pdf/533452a.pdf.

https://doi.org/10.1109/INDIN.2011.6034912
https://doi.org/10.1109/INDIN.2011.6034912
https://doi.org/10.1109/ETFA.2011.6059011
https://doi.org/10.1145/3131672.3131685
http://dl.acm.org/citation.cfm?id=3324320.3324336
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://doi.org/10.1007/s11241-017-9283-6
https://doi.org/10.1007/s11241-017-9283-6
https://uwspace.uwaterloo.ca/handle/10012/8973
https://uwspace.uwaterloo.ca/handle/10012/8973
https://uwspace.uwaterloo.ca/handle/10012/8973
https://doi.org/10.3929/ethz-b-000270388
https://doi.org/10.1109/ACCESS.2019.2920100
http://dl.acm.org/citation.cfm?id=3324320.3324389
https://doi.org/10.4230/DagRep.8.10.41
https://dl.acm.org/citation.cfm?id=3314217
https://dl.acm.org/citation.cfm?id=3314217
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf

Bibliography 161

[31] Arijit Banerjee, Junguk Cho, Eric Eide, Jonathon Duerig, Binh Nguyen, Robert
Ricci, Jacobus Van der Merwe, Kirk Webb, and Gary Wong. PhantomNet:
Research Infrastructure for Mobile Networking, Cloud Computing and Software-Defined
Networking. GetMobile: Mobile Comp. and Comm., 2015. doi:10.1145/2817761.
2817772.

[32] Lorena A. Barba. Terminologies for Reproducible Research. arXiv:1802.03311 [cs],
2018. http://arxiv.org/abs/1802.03311. arXiv:1802.03311.

[33] Paulo Bartolomeu, Muhammad Alam, Joaquim Ferreira, and José Fonseca. Survey
on low power real-time wireless MAC protocols. Journal of Network and Computer
Applications, 2016. doi:10.1016/j.jnca.2016.09.004.

[34] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. GENI: A federated testbed
for innovative network experiments. Computer Networks, 2014. doi:10.1016/j.
bjp.2013.12.037.

[35] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell, Romain
Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. The Dual Processor Platform
Architecture: Demo Abstract. In Proceedings of the 18th International Conference
on Information Processing in Sensor Networks, IPSN ’19, Montreal, Quebec, Canada,
2019. ACM. doi:10.1145/3302506.3312481.

[36] Andreas Biri. Unleashing the Potential of Real-Time Internet of Things. Semester
Thesis, ETH Zurich, 2017. doi:10.3929/ethz-b-000234913.

[37] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney,
José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout,
Sebastian Fischmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L.
Hosking, Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and
Andreas Zeller. The Truth, The Whole Truth, and Nothing But the Truth: A Pragmatic
Guide to Assessing Empirical Evaluations. ACM Trans. Program. Lang. Syst., 2016.
doi:10.1145/2983574.

[38] Carlo A. Boano, Simon Duquennoy, Anna Förster, Omprakash Gnawali, Romain Jacob,
Hyung-Sin Kim, Olaf Landsiedel, Ramona Marfievici, Luca Mottola, Gian Pietro Picco,
Xavier Vilajosana, Thomas Watteyne, and Marco Zimmerling. IoTBench: Towards a
Benchmark for Low-power Wireless Networking. In 1st Workshop on Benchmarking
Cyber-Physical Networks and Systems (CPSBench 2018), 2018. doi:10.3929/ethz-
b-000256517.

[39] Ronald F. Boisvert. Incentivizing Reproducibility. Commun. ACM, 2016. doi:10.
1145/2994031.

[40] Raphaël Bolze et al. Grid’5000: A Large Scale And Highly Reconfigurable Experimental
Grid Testbed. International Journal of High Performance Computing Applications,
2006. https://hal.inria.fr/hal-00684943.

[41] Olivier Bonaventure, Luigi Iannone, and Damien Saucez, editors. Proceedings of the
International ACM SIGCOMM Reproducibility Workshop (Reproducibility’17). ACM,
Los Angeles, CA, USA, 2017. https://dl.acm.org/citation.cfm?id=3097766.

[42] Olfa Boubaker. The inverted pendulum: A fundamental benchmark in control theory
and robotics. In International Conference on Education and E-Learning Innovations,
2012. doi:10.1109/ICEELI.2012.6360606.

[43] Peter J. Brockwell, Richard A. Davis, and Stephen E. Fienberg. Time Series: Theory
and Methods: Theory and Methods. Springer Science & Business Media, 1991. doi:
10.1007/978-1-4419-0320-4.

https://doi.org/10.1145/2817761.2817772
https://doi.org/10.1145/2817761.2817772
http://arxiv.org/abs/1802.03311
http://arxiv.org/abs/1802.03311
https://doi.org/10.1016/j.jnca.2016.09.004
https://doi.org/10.1016/j.bjp.2013.12.037
https://doi.org/10.1016/j.bjp.2013.12.037
https://doi.org/10.1145/3302506.3312481
https://doi.org/10.3929/ethz-b-000234913
https://doi.org/10.1145/2983574
https://doi.org/10.3929/ethz-b-000256517
https://doi.org/10.3929/ethz-b-000256517
https://doi.org/10.1145/2994031
https://doi.org/10.1145/2994031
https://hal.inria.fr/hal-00684943
https://dl.acm.org/citation.cfm?id=3097766
https://doi.org/10.1109/ICEELI.2012.6360606
https://doi.org/10.1007/978-1-4419-0320-4
https://doi.org/10.1007/978-1-4419-0320-4

162 Bibliography

[44] Ryan Burchfield, Ehsan Nourbakhsh, Jeff Dix, Kunal Sahu, S. Venkatesan, and Ravi
Prakash. RF in the Jungle: Effect of Environment Assumptions on Wireless Experiment
Repeatability. In Proceedings of the International Conference on Communications
(ICC). IEEE, 2009. https://ehsaan.net/wp-content/uploads/publications/
rfij.pdf.

[45] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Springer Science & Business Media, 2011.

[46] Björn Cassens, Markus Hartmann, Thorstan Nowak, Niklas Duda, Jörn Thielecke,
Alexander Kölpin, and Rüdiger Kapitza. Bursting: Increasing Energy Efficiency of
Erasure-Coded Data in Animal-Borne Sensor Networks. In Proceedings of the 2019
International Conference on Embedded Wireless Systems and Networks, EWSN ’19,
Beijing, China, 2019. Junction Publishing. http://dl.acm.org/citation.cfm?id=
3324320.3324328.

[47] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas. 50 ways to build your application:
A survey of middleware and systems for Wireless Sensor Networks. In 2007 IEEE
Conference on Emerging Technologies and Factory Automation (EFTA 2007), 2007.
doi:10.1109/EFTA.2007.4416805.

[48] Tianyang Chen and Linh T. X. Phan. SafeMC: A System for the Design and Evaluation
of Mode-Change Protocols. In 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2018. doi:10.1109/RTAS.2018.00021.

[49] Krishna Chintalapudi, Tat Fu, Jeongyeup Paek, Nupur Kothari, S. Rangwala, John
Caffrey, Ramesh Govindan, Erik Johnson, and Sami Masri. Monitoring civil structures
with a wireless sensor network. IEEE Internet Computing, 2006. doi:10.1109/MIC.
2006.38.

[50] Junguk Cho, Jonathan Duerig, Eric Eide, Binh Nguyen, Robert Ricci, Aisha Syed,
Jacobus Van der Merwe, Kirk Webb, and Gary Wong. Repeatable mobile networking
research with phantomNet: Demo. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking - MobiCom ’16, New York City, New
York, 2016. ACM Press. doi:10.1145/2973750.2985616.

[51] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for Broad-coverage
Services. SIGCOMM Comput. Commun. Rev., 2003. doi:10.1145/956993.956995.

[52] Christian Collberg, Todd Proebsting, and Alex M. Warren. Repeatability and
Benefaction in Computer Systems Research. Technical report, University of Arizona,
2015. http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf.

[53] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietro Picco, and Stefanos
Zachariadis. The RUNES middleware: A reconfigurable component-based approach
to networked embedded systems. In 2005 IEEE 16th International Symposium on
Personal, Indoor and Mobile Radio Communications, 2005. doi:10.1109/PIMRC.
2005.1651554.

[54] Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian Pietro Picco. Programming
Wireless Sensor Networks with the TeenyLime Middleware. In Renato Cerqueira
and Roy H. Campbell, editors, Middleware 2007, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007. http://dl.acm.org/citation.cfm?id=
1785080.1785109.

[55] Silviu S. Craciunas and Ramon Serna Oliver. SMT-based Task- and Network-level
Static Schedule Generation for Time-Triggered Networked Systems. In Proceedings of
the 22Nd International Conference on Real-Time Networks and Systems, RTNS ’14,
Versaille, France, 2014. ACM. doi:10.1145/2659787.2659812.

https://ehsaan.net/wp-content/uploads/publications/rfij.pdf
https://ehsaan.net/wp-content/uploads/publications/rfij.pdf
http://dl.acm.org/citation.cfm?id=3324320.3324328
http://dl.acm.org/citation.cfm?id=3324320.3324328
https://doi.org/10.1109/EFTA.2007.4416805
https://doi.org/10.1109/RTAS.2018.00021
https://doi.org/10.1109/MIC.2006.38
https://doi.org/10.1109/MIC.2006.38
https://doi.org/10.1145/2973750.2985616
https://doi.org/10.1145/956993.956995
http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
https://doi.org/10.1109/PIMRC.2005.1651554
https://doi.org/10.1109/PIMRC.2005.1651554
http://dl.acm.org/citation.cfm?id=1785080.1785109
http://dl.acm.org/citation.cfm?id=1785080.1785109
https://doi.org/10.1145/2659787.2659812

Bibliography 163

[56] Silviu S. Craciunas and Ramon Serna Oliver. Combined Task- and Network-level
Scheduling for Distributed Time-triggered Systems. Real-Time Systems, 2016. doi:
10.1007/s11241-015-9244-x.

[57] Rene L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE
Transactions on Information Theory, 1991. doi:10.1109/18.61109.

[58] Geoff Cumming and Sue Finch. A Primer on the Understanding, Use, and Calculation
of Confidence Intervals that are Based on Central and Noncentral Distributions.
Educational and Psychological Measurement, 2001. https://doi.org/10.1177/
0013164401614002.

[59] Herbert A. David and Haikady N. Nagaraja. Order Statistics in Nonparametric
Inference. In Order Statistics. John Wiley & Sons, Ltd, 2005. doi:10.1002/
0471722162.ch7.

[60] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. When Pipelines Meet
Fountain: Fast Data Dissemination in Wireless Sensor Networks. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, New
York, NY, USA, 2015. ACM. doi:10.1145/2809695.2809721.

[61] Adam Dunkels, Björn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In 29th Annual IEEE International
Conference on Local Computer Networks, 2004. doi:10.1109/LCN.2004.38.

[62] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads:
Simplifying Event-driven Programming of Memory-constrained Embedded Systems.
In Proceedings of the 4th International Conference on Embedded Networked Sensor
Systems, SenSys ’06, New York, NY, USA, 2006. ACM. doi:10.1145/1182807.
1182811.

[63] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric
Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching
Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of CloudLab. In
2019 {USENIX} Annual Technical Conference ({USENIX} {ATC} 19), 2019. https:
//www.usenix.org/conference/atc19/presentation/duplyakin.

[64] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne. Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, Seoul,
South Korea, 2015. ACM. doi:10.1145/2809695.2809714.

[65] Simon Duquennoy, Joakim Eriksson, and Thiemo Voigt. Five-Nines Reliable Downward
Routing in RPL. arXiv:1710.02324 [cs], 2017. http://arxiv.org/abs/1710.02324.
arXiv:1710.02324.

[66] Sarah Edwards, Xuan Liu, and Niky Riga. Creating Repeatable Computer Science and
Networking Experiments on Shared, Public Testbeds. SIGOPS Oper. Syst. Rev., 2015.
http://doi.acm.org/10.1145/2723872.2723884.

[67] Antonio Escobar, Francisco J. Cruz, Javier Garcia-Jimenez, Jirka Klaue, and Angel
Corona. RedFixHop with channel hopping: Reliable ultra-low-latency network flooding.
In 2016 Conference on Design of Circuits and Integrated Systems (DCIS), 2016. doi:
10.1109/DCIS.2016.7845367.

[68] Antonio Escobar, Fernando Moreno, Antonio J. Cabrera, Javier Garcia-Jimenez,
Francisco J. Cruz, Unami Ruiz, Jirka Klaue, Angel Corona, Divya Tati, and Thomas
Meyerhoff. Competition: BigBangBus. In Proceedings of the 2018 International
Conference on Embedded Wireless Systems and Networks, EWSN ’18, USA, 2018.
Junction Publishing. http://dl.acm.org/citation.cfm?id=3234847.3234894.

https://doi.org/10.1007/s11241-015-9244-x
https://doi.org/10.1007/s11241-015-9244-x
https://doi.org/10.1109/18.61109
https://doi.org/10.1177/0013164401614002
https://doi.org/10.1177/0013164401614002
https://doi.org/10.1002/0471722162.ch7
https://doi.org/10.1002/0471722162.ch7
https://doi.org/10.1145/2809695.2809721
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/1182807.1182811
https://doi.org/10.1145/1182807.1182811
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1145/2809695.2809714
http://arxiv.org/abs/1710.02324
http://arxiv.org/abs/1710.02324
http://doi.acm.org/10.1145/2723872.2723884
https://doi.org/10.1109/DCIS.2016.7845367
https://doi.org/10.1109/DCIS.2016.7845367
http://dl.acm.org/citation.cfm?id=3234847.3234894

164 Bibliography

[69] Antonio Escobar-Molero. Improving reliability and latency of Wireless Sensor Networks
using Concurrent Transmissions. at - Automatisierungstechnik, 2019. doi:10.1515/
auto-2018-0064.

[70] Antonio Escobar-Molero, Javier Garcia-Jimenez, Jirka Klaue, Fernando Moreno-
Cruz, Borja Saez, Francisco J. Cruz, Unai Ruiz, and Angel Corona. Competition:
RedNodeBus, Stretching out the Preamble. In Proceedings of the 2019 International
Conference on Embedded Wireless Systems and Networks, EWSN ’19, Beijing, China,
2019. Junction Publishing. http://dl.acm.org/citation.cfm?id=3324320.
3324391.

[71] Federico Ferrari, Marco Zimmerling, and Reto Da Forno. Low-Power Wireless Bus
(LWB). https://github.com/ETHZ-TEC/LWB, 2017.

[72] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Low-power
Wireless Bus. In Proceedings of the 10th ACM Conference on Embedded Network
Sensor Systems, SenSys ’12, New York, NY, USA, 2012. ACM. doi:10.1145/
2426656.2426658.

[73] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Virtual
Synchrony Guarantees for Cyber-physical Systems. In 2013 IEEE 32nd International
Symposium on Reliable Distributed Systems, 2013. doi:10.1109/SRDS.2013.11.

[74] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Efficient network
flooding and time synchronization with Glossy. In Proceedings of the 10th ACM/IEEE
International Conference on Information Processing in Sensor Networks, 2011. https:
//ieeexplore.ieee.org/document/5779066.

[75] Daniel C. Ferreira, Félix Iglesias Vázquez, Gernot Vormayr, Maximilian Bachl, and
Tanja Zseby. A Meta-Analysis Approach for Feature Selection in Network Traffic
Research. In Proceedings of the International ACM SIGCOMM Reproducibility
Workshop (Reproducibility’17), Los Angeles, CA, USA, 2017. ACM. http://doi.
acm.org/10.1145/3097766.3097771.

[76] FlexRay. ISO 17458-1:2013–Road vehicles–FlexRay communications system–Part 1:
General information and use case definition. Standard, International Organization
for Standardization (ISO), Geneva, Switzerland, 2013. https://www.iso.org/
standard/59804.html.

[77] Matthias Flittner, Mohamed Naoufal Mahfoudi, Damien Saucez, Matthias Wählisch,
Luigi Iannone, Vaibhav Bajpai, and Alex Afanasyev. A Survey on Artifacts from
CoNEXT, ICN, IMC, and SIGCOMM Conferences in 2017. SIGCOMM Comput.
Commun. Rev., 2018. doi:10.1145/3211852.3211864.

[78] Gerhard Fohler. Changing operational modes in the context of pre run-time
scheduling. IEICE transactions on information and systems, 1993. https://pdfs.
semanticscholar.org/272b/615266e763369e903dcb0b966e22077f127c.pdf.

[79] C. Galán, Matt Smith, M. Thibaudon, G. Frenguelli, J. Oteros, R. Gehrig, U. Berger,
B. Clot, R. Brandao, and EAS QC Working Group. Pollen monitoring: Minimum
requirements and reproducibility of analysis. Aerobiologia, 2014. doi:10.1007/
s10453-014-9335-5.

[80] Sachin Ganu, Haris Kremo, Richard Howard, and Ivan Seskar. Addressing Repeatability
in Wireless Experiments Using ORBIT Testbed. In Proceedings of the 1st International
Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities (TRIDENTCOM), Trento, Italy, 2005. IEEE Computer Society.
https://ieeexplore.ieee.org/document/1386191.

https://doi.org/10.1515/auto-2018-0064
https://doi.org/10.1515/auto-2018-0064
http://dl.acm.org/citation.cfm?id=3324320.3324391
http://dl.acm.org/citation.cfm?id=3324320.3324391
https://github.com/ETHZ-TEC/LWB
https://doi.org/10.1145/2426656.2426658
https://doi.org/10.1145/2426656.2426658
https://doi.org/10.1109/SRDS.2013.11
https://ieeexplore.ieee.org/document/5779066
https://ieeexplore.ieee.org/document/5779066
http://doi.acm.org/10.1145/3097766.3097771
http://doi.acm.org/10.1145/3097766.3097771
https://www.iso.org/standard/59804.html
https://www.iso.org/standard/59804.html
https://doi.org/10.1145/3211852.3211864
https://pdfs.semanticscholar.org/272b/615266e763369e903dcb0b966e22077f127c.pdf
https://pdfs.semanticscholar.org/272b/615266e763369e903dcb0b966e22077f127c.pdf
https://doi.org/10.1007/s10453-014-9335-5
https://doi.org/10.1007/s10453-014-9335-5
https://ieeexplore.ieee.org/document/1386191

Bibliography 165

[81] Kai Geissdoerfer, Brano Kusy, Raja Jurdak, and Marco Zimmerling. Getting More Out
of Energy-harvesting Systems: Energy Management under Time-varying Utility with
PREAcT. In 2019 18th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), 2019. doi:10.1145/3302506.3310393.

[82] Omprakash Gnawali, Marco Zimmerling, and Sebastian Trimpe, editors. Proceedings
of the 1st International Workshop on Benchmarking Cyber-Physical Networks and
Systems (CPSBench). IEEE, Porto, Portugal, 2018. https://doi.org/10.1109/
CPSBench.2018.00004.

[83] M. Gonzalez Harbour, J.J. Gutierrez Garcia, J.C. Palencia Gutierrez, and J.M.
Drake Moyano. MAST: Modeling and analysis suite for real time applications. In
Proceedings 13th Euromicro Conference on Real-Time Systems, 2001. doi:10.1109/
EMRTS.2001.934015.

[84] Gurobi Optimization. Gurobi - The fastest solver. https://www.gurobi.com/.
[85] Martin Haegele. Logistics drives 39% increase in professional service

robot sales. https://ifr.org/post/logistics-drives-39-increase-in-
professional-service-robot-sales, 2018.

[86] Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. Rateless Deluge: Over-
the-Air Programming of Wireless Sensor Networks Using Random Linear Codes. In
2008 International Conference on Information Processing in Sensor Networks (Ipsn
2008), 2008. doi:10.1109/IPSN.2008.9.

[87] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. Reproducible Network Experiments Using Container-Based Emulation. In
Proceedings of the 8th International Conference on Emerging Networking Experiments
and Technologies (CoNEXT), Nice, France, 2012. ACM. http://tiny-tera.
stanford.edu/~nickm/papers/p253.pdf.

[88] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. SPEED: A
stateless protocol for real-time communication in sensor networks. In 23rd International
Conference on Distributed Computing Systems, 2003. Proceedings., 2003. doi:
10.1109/ICDCS.2003.1203451.

[89] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level
performance analysis - the SymTA/S approach. IEE Proceedings - Computers and
Digital Techniques, 2005. doi:10.1049/ip-cdt:20045088.

[90] Carsten Herrmann, Fabian Mager, and Marco Zimmerling. Mixer: Efficient Many-to-
All Broadcast in Dynamic Wireless Mesh Networks. In Proceedings of the 16th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’18, Shenzhen, China,
2018. ACM. doi:10.1145/3274783.3274849.

[91] Jia Huang, Jan Olaf Blech, Andreas Raabe, Christian Buckl, and Alois Knoll. Static
scheduling of a Time-Triggered Network-on-Chip based on SMT solving. In 2012
Design, Automation Test in Europe Conference Exhibition (DATE), 2012. doi:10.
1109/DATE.2012.6176522.

[92] International Electrotechnical Commission (IEC). Industrial networks - Wireless
communication network and communication profiles - WirelessHART. https://
webstore.iec.ch/publication/24433.

[93] IoT Benchmarks Initiative. IoTBench. https://www.iotbench.ethz.ch/.
[94] ISA100. Wireless Compliance Institute. http://www.isa100wci.org/, 2009.
[95] Pedro H. Isolani, Maxim Claeys, Carlos Donato, Lisandro Z. Granville, and Steven

Latré. A Survey on the Programmability of Wireless MAC Protocols. IEEE
Communications Surveys Tutorials, 2018. doi:10.1109/COMST.2018.2881761.

https://doi.org/10.1145/3302506.3310393
https://doi.org/10.1109/CPSBench.2018.00004
https://doi.org/10.1109/CPSBench.2018.00004
https://doi.org/10.1109/EMRTS.2001.934015
https://doi.org/10.1109/EMRTS.2001.934015
https://www.gurobi.com/
https://ifr.org/post/logistics-drives-39-increase-in-professional-service-robot-sales
https://ifr.org/post/logistics-drives-39-increase-in-professional-service-robot-sales
https://doi.org/10.1109/IPSN.2008.9
http://tiny-tera.stanford.edu/~nickm/papers/p253.pdf
http://tiny-tera.stanford.edu/~nickm/papers/p253.pdf
https://doi.org/10.1109/ICDCS.2003.1203451
https://doi.org/10.1109/ICDCS.2003.1203451
https://doi.org/10.1049/ip-cdt:20045088
https://doi.org/10.1145/3274783.3274849
https://doi.org/10.1109/DATE.2012.6176522
https://doi.org/10.1109/DATE.2012.6176522
https://webstore.iec.ch/publication/24433
https://webstore.iec.ch/publication/24433
https://www.iotbench.ethz.ch/
http://www.isa100wci.org/
https://doi.org/10.1109/COMST.2018.2881761

166 Bibliography

[96] Timofei Istomin, Matteo Trobinger, Amy L. Murphy, and Gian Pietro Picco.
Interference-resilient Ultra-low Power Aperiodic Data Collection. In Proceedings of
the 17th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN ’18, Piscataway, NJ, USA, 2018. IEEE Press. doi:10.1109/IPSN.
2018.00015.

[97] Romain Jacob, Jonas Bächli, Reto Da Forno, and Lothar Thiele. Synchronous
Transmissions Made Easy: Design Your Network Stack with Baloo. In Proceedings
of the 2019 International Conference on Embedded Wireless Systems and Networks,
2019. doi:10.3929/ethz-b-000324254.

[98] Romain Jacob, Reto Da Forno, Roman Trüb, Andreas Biri, and Lothar Thiele. Wireless
Link Quality Estimation on FlockLab - and Beyond, 2019. doi:10.5281/zenodo.
3354717.

[99] Romain Jacob, Reto Da Forno, and Jonas Bächli. Baloo: Latest release. Zenodo,
2019. doi:10.5281/zenodo.3510171.

[100] Romain Jacob, Reto Da Forno, Roman Trüb, Andreas Biri, and Lothar Thiele. Dataset:
Wireless Link Quality Estimation on FlockLab – and Beyond. In Proceedings of the
2nd International Workshop on Data Acquisition to Analysis (DATA), New York, NY,
USA, 2019. ACM. doi:10.3929/ethz-b-000355846.

[101] Romain Jacob, Licong Zhang, Marco Zimmerling, Jan Beutel, Samarjit Chakraborty,
and Lothar Thiele. TTW: A Time-Triggered-Wireless Design for CPS [Extended
version]. arXiv:1711.05581 [cs], 2017. http://arxiv.org/abs/1711.05581.
arXiv:1711.05581.

[102] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-preemptive scheduling
of period and sporadic tasks. In Proceedings Twelfth Real-Time Systems Symposium,
1991. doi:10.1109/REAL.1991.160366.

[103] Pravein Govindan Kannan, Ahmad Soltani, Mun Choon Chan, and Ee-Chien
Chang. BNV: Enabling Scalable Network Experimentation throughBare-metal Network
Virtualization. In Proceedings of the 11th USENIX Conference on Cyber Security
Experimentation and Test (CSET). USENIX Association, 2018. http://dl.acm.
org/citation.cfm?id=3307412.3307418.

[104] Hyung-Sin Kim, Jeonggil Ko, David E. Culler, and Jeongyeup Paek. Challenging the
IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL): A Survey. IEEE
Communications Surveys Tutorials, Fourthquarter 2017. doi:10.1109/COMST.2017.
2751617.

[105] Kevin Klues, Gregory Hackmann, Octav Chipara, and Chenyang Lu. A Component-
based Architecture for Power-efficient Media Access Control in Wireless Sensor
Networks. In Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems, SenSys ’07, New York, NY, USA, 2007. ACM. doi:10.1145/
1322263.1322270.

[106] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer. The time-
triggered Ethernet (TTE) design. In Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’05), 2005. doi:10.1109/ISORC.
2005.56.

[107] Hermann Kopetz and G. Grunsteidl. TTP - A time-triggered protocol for fault-tolerant
real-time systems. In FTCS-23 The Twenty-Third International Symposium on Fault-
Tolerant Computing, 1993. doi:10.1109/FTCS.1993.627355.

[108] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,
Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew

https://doi.org/10.1109/IPSN.2018.00015
https://doi.org/10.1109/IPSN.2018.00015
https://doi.org/10.3929/ethz-b-000324254
https://doi.org/10.5281/zenodo.3354717
https://doi.org/10.5281/zenodo.3354717
https://doi.org/10.5281/zenodo.3510171
https://doi.org/10.3929/ethz-b-000355846
http://arxiv.org/abs/1711.05581
http://arxiv.org/abs/1711.05581
https://doi.org/10.1109/REAL.1991.160366
http://dl.acm.org/citation.cfm?id=3307412.3307418
http://dl.acm.org/citation.cfm?id=3307412.3307418
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1145/1322263.1322270
https://doi.org/10.1145/1322263.1322270
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/FTCS.1993.627355

Bibliography 167

Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,
Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan
Wendlandt, Alexander Yip, and Ronghua Zhang. Network Virtualization in Multi-
tenant Datacenters. In 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), 2014. https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/koponen.

[109] Antonios Koskinas. Is Low-Power Wireless Networking a Reproducible Science?
Semester Thesis, ETH Zurich, 2019. doi:10.3929/ethz-b-000324251.

[110] K. Kritsis, G. Z. Papadopoulos, A. Gallais, P. Chatzimisios, and F. Théoleyre. A Tutorial
on Performance Evaluation and Validation Methodology for Low-Power and Lossy
Networks. IEEE Communications Surveys Tutorials, 2018. doi:10.1109/COMST.
2018.2820810.

[111] Daniël Lakens. Equivalence Tests: A Practical Primer for t Tests, Correlations, and
Meta-Analyses. Social Psychological and Personality Science, 2017. doi:10.1177/
1948550617697177.

[112] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile and Efficient
All-to-all Data Sharing and In-network Processing at Scale. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems, SenSys ’13, New York,
NY, USA, 2013. ACM. doi:10.1145/2517351.2517358.

[113] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet. Lecture Notes in Computer Science, Lect.Notes
Computer. Tutorial. Springer-Verlag, Berlin Heidelberg, 2001. doi:10.1007/3-540-
45318-0.

[114] Edward A. Lee. Cyber Physical Systems: Design Challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), 2008. doi:10.1109/ISORC.2008.25.

[115] Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele. Competition: Robust
Flooding Using Back-to-Back Synchronous Transmissions with Channel-Hopping. In
Proceedings of the 2017 International Conference on Embedded Wireless Systems
and Networks, EWSN ’17, USA, 2017. Junction Publishing. http://dl.acm.org/
citation.cfm?id=3108009.3108076.

[116] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp Sommer,
and Jan Beutel. FlockLab: A Testbed for Distributed, Synchronized Tracing and
Profiling of Wireless Embedded Systems. In Proceedings of the 12th International
Conference on Information Processing in Sensor Networks, IPSN ’13, New York, NY,
USA, 2013. ACM. doi:10.1145/2461381.2461402.

[117] David M. Liu and Matthew J. Salganik. Successes and Struggles with Computational
Reproducibility: Lessons from the Fragile Families Challenge. Technical report, OSF.io,
2019. https://osf.io/preprints/socarxiv/g3pdb/.

[118] Ting Liu and Margaret Martonosi. Impala: A Middleware System for Managing
Autonomic, Parallel Sensor Systems. In Proceedings of the Ninth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’03, New
York, NY, USA, 2003. ACM. doi:10.1145/781498.781516.

[119] Chenyang Lu, B.M. Blum, T.F. Abdelzaher, J.A. Stankovic, and Tian He. RAP:
A real-time communication architecture for large-scale wireless sensor networks. In
Proceedings. Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002. doi:10.1109/RTTAS.2002.1137381.

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://doi.org/10.3929/ethz-b-000324251
https://doi.org/10.1109/COMST.2018.2820810
https://doi.org/10.1109/COMST.2018.2820810
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/ISORC.2008.25
http://dl.acm.org/citation.cfm?id=3108009.3108076
http://dl.acm.org/citation.cfm?id=3108009.3108076
https://doi.org/10.1145/2461381.2461402
https://osf.io/preprints/socarxiv/g3pdb/
https://doi.org/10.1145/781498.781516
https://doi.org/10.1109/RTTAS.2002.1137381

168 Bibliography

[120] Michele Luvisotto, Zhibo Pang, and Dacfey Dzung. Ultra High Performance Wireless
Control for Critical Applications: Challenges and Directions. IEEE Transactions on
Industrial Informatics, 2017. doi:10.1109/TII.2016.2617459.

[121] Xiaoyuan Ma, Peilin Zhang, Ye Liu, Xin Li, Weisheng Tang, Pei Tian, Jianming Wei,
Lei Shu, and Oliver Theel. Competition: Using DeCoT+ to Collect Data under
Interference. In Proceedings of the 2019 International Conference on Embedded
Wireless Systems and Networks, 2019. http://dl.acm.org/citation.cfm?id=
3324320.3324385.

[122] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM Trans.
Database Syst., 2005. doi:10.1145/1061318.1061322.

[123] Fabian Mager, Dominik Baumann, Romain Jacob, Lothar Thiele, Sebastian Trimpe,
and Marco Zimmerling. Demo Abstract: Fast Feedback Control and Coordination
with Mode Changes for Wireless Cyber-Physical Systems. Proceedings of the 18th
International Conference on Information Processing in Sensor Networks - IPSN ’19,
2019. arXiv:1906.05554, doi:10.1145/3302506.3312483.

[124] Fabian Mager, Dominik Baumann, Romain Jacob, Lothar Thiele, Sebastian Trimpe,
and Marco Zimmerling. Feedback Control Goes Wireless: Guaranteed Stability over
Low-power Multi-hop Networks. In Proceedings of the 10th ACM/IEEE International
Conference on Cyber-Physical Systems, ICCPS ’19, Montreal, Quebec, Canada, 2019.
ACM. doi:10.1145/3302509.3311046.

[125] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan Stutsman,
and Robert Ricci. Taming Performance Variability. In Proceedings of the 13th
International USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Carlsbad, CA, USA, 2018. USENIX Association. https://www.usenix.org/
system/files/osdi18-maricq.pdf.

[126] Abdelbassat Massouri, Leonardo Cardoso, Benjamin Guillon, Florin Hutu, Guillaume
Villemaud, Tanguy Risset, and Jean-Marie Gorce. CorteXlab: An open FPGA-
based Facility for Testing SDR and Cognitive Radio Networks in a Reproducible
Environment. In Proceedings of the International Conference on Computer
Communications (INFOCOM) Workshops, San Francisco, CA, USA, 2014. IEEE.
https://ieeexplore.ieee.org/document/6849176.

[127] MathWorks. MATLAB - MathWorks. https://www.mathworks.com/products/
matlab.html.

[128] Miguel Matos. Towards Reproducible Evaluation of Large-Scale Distributed Systems.
In Proceedings of the International Workshop on Advanced Tools, Programming
Languages, and Platforms for Implementing and Evaluating Algorithms for Distributed
Systems (ApPLIED), Egham, United Kingdom, 2018. ACM. doi:10.1145/3231104.
3231113.

[129] Matthias Meyer, Timo Farei-Campagna, Akos Pasztor, Reto Da Forno, Tonio Gsell,
Jérome Faillettaz, Andreas Vieli, Samuel Weber, Jan Beutel, and Lothar Thiele. Event-
triggered Natural Hazard Monitoring with Convolutional Neural Networks on the Edge.
In 2019 18th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), 2019. doi:10.1145/3302506.3310390.

[130] Micro Focus. Seven Ways to Fail. Technical report, –, 2018. https://www.
microfocus.com/media/brochure/seven_ways_to_fail_brochure.pdf.

[131] Mobashir Mohammad and Mun Choon Chan. Codecast: Supporting Data Driven
In-network Processing for Low-power Wireless Sensor Networks. In Proceedings of
the 17th ACM/IEEE International Conference on Information Processing in Sensor

https://doi.org/10.1109/TII.2016.2617459
http://dl.acm.org/citation.cfm?id=3324320.3324385
http://dl.acm.org/citation.cfm?id=3324320.3324385
https://doi.org/10.1145/1061318.1061322
http://arxiv.org/abs/1906.05554
https://doi.org/10.1145/3302506.3312483
https://doi.org/10.1145/3302509.3311046
https://www.usenix.org/system/files/osdi18-maricq.pdf
https://www.usenix.org/system/files/osdi18-maricq.pdf
https://ieeexplore.ieee.org/document/6849176
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1145/3231104.3231113
https://doi.org/10.1145/3231104.3231113
https://doi.org/10.1145/3302506.3310390
https://www.microfocus.com/media/brochure/seven_ways_to_fail_brochure.pdf
https://www.microfocus.com/media/brochure/seven_ways_to_fail_brochure.pdf

Bibliography 169

Networks, IPSN ’18, Piscataway, NJ, USA, 2018. IEEE Press. doi:10.1109/IPSN.
2018.00014.

[132] Mobashir Mohammad, Manjunath Doddavenkatappa, and Mun Choon Chan.
Improving Performance of Synchronous Transmission-Based Protocols Using Capture
Effect over Multichannels. ACM Trans. Sen. Netw., 2017. doi:10.1145/3043790.

[133] Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi. Team-level
Programming of Drone Sensor Networks. In Proceedings of the 12th ACM Conference
on Embedded Network Sensor Systems, SenSys ’14, Memphis, Tennessee, 2014. ACM.
doi:10.1145/2668332.2668353.

[134] Luca Mottola and Gian Pietro Picco. MUSTER: Adaptive Energy-Aware Multisink
Routing in Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 2011.
doi:10.1109/TMC.2010.250.

[135] Luca Mottola and Gian Pietro Picco. Middleware for wireless sensor networks: An
outlook. Journal of Internet Services and Applications, 2012. doi:10.1007/s13174-
011-0046-7.

[136] Jan Mueller. Low-Power Network Design: Work Hard, Play Hard. Semester Thesis,
ETH Zurich, 2019. doi:10.3929/ethz-b-000324247.

[137] Jan Mueller, Anna-Brit Schaper, Romain Jacob, and Reto Da Forno. Competition:
Keep it Simple, Let Flooding Shine. In 16th International Conference on Embedded
Wireless Systems and Networks (EWSN 2019), 2019. doi:10.3929/ethz-b-
000325870.

[138] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James
Mickens, and Hari Balakrishnan. Mahimahi: Accurate Record-and-Replay for HTTP. In
Proceedings of the International USENIX Annual Technical Conference (ATC), Santa
Clara, CA, USA, 2015. USENIX Association. https://www.usenix.org/system/
files/conference/atc15/atc15-paper-netravali.pdf.

[139] NSF. Cyber Physical Systems – Nsf10515. NSF, 2010. https://www.nsf.gov/pubs/
2010/nsf10515/nsf10515.htm.

[140] Lucas Nussbaum. Testbeds Support for Reproducible Research. In Proceedings
of the International ACM SIGCOMM Reproducibility Workshop (Reproducibility’17),
Reproducibility ’17, Los Angeles, CA, USA, 2017. ACM. doi:10.1145/3097766.
3097773.

[141] NXP. LPC541XX. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general-purpose-mcus/
lpc54000-cortex-m4-/low-power-microcontrollers-mcus-based-on-arm-
cortex-m4-cores-with-optional-cortex-m0-plus-co-processor:LPC541XX.

[142] NXP. VF3xxR. https://www.nxp.com/products/processors-and-
microcontrollers/legacy-mcu-mpus/vfxxx-controller/r-series/32-bit-
devices-for-advanced-connected-radio-entry-level-infotainment-and-
digital-instrument-cluster-applications.:VF3xxR.

[143] Tony O’donovan, James Brown, Felix Büsching, Alberto Cardoso, José Cecílio, Jose Do
Ó, Pedro Furtado, Paulo Gil, Anja Jugel, Wolf-Bastian Pöttner, Utz Roedig, Jorge Sá
Silva, Ricardo Silva, Cormac J. Sreenan, Vasos Vassiliou, Thiemo Voigt, Lars Wolf, and
Zinon Zinonos. The GINSENG System for Wireless Monitoring and Control: Design
and Deployment Experiences. ACM Trans. Sen. Netw., 2013. doi:10.1145/2529975.

[144] Martijn Onderwater. An overview of centralised middleware components for sensor
networks. International Journal of Ad Hoc and Ubiquitous Computing, 2016. doi:
10.1504/IJAHUC.2016.075378.

https://doi.org/10.1109/IPSN.2018.00014
https://doi.org/10.1109/IPSN.2018.00014
https://doi.org/10.1145/3043790
https://doi.org/10.1145/2668332.2668353
https://doi.org/10.1109/TMC.2010.250
https://doi.org/10.1007/s13174-011-0046-7
https://doi.org/10.1007/s13174-011-0046-7
https://doi.org/10.3929/ethz-b-000324247
https://doi.org/10.3929/ethz-b-000325870
https://doi.org/10.3929/ethz-b-000325870
https://www.usenix.org/system/files/conference/atc15/atc15-paper-netravali.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-netravali.pdf
https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
https://doi.org/10.1145/3097766.3097773
https://doi.org/10.1145/3097766.3097773
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/low-power-microcontrollers-mcus-based-on-arm-cortex-m4-cores-with-optional-cortex-m0-plus-co-processor:LPC541XX
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/low-power-microcontrollers-mcus-based-on-arm-cortex-m4-cores-with-optional-cortex-m0-plus-co-processor:LPC541XX
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/low-power-microcontrollers-mcus-based-on-arm-cortex-m4-cores-with-optional-cortex-m0-plus-co-processor:LPC541XX
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/low-power-microcontrollers-mcus-based-on-arm-cortex-m4-cores-with-optional-cortex-m0-plus-co-processor:LPC541XX
https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/vfxxx-controller/r-series/32-bit-devices-for-advanced-connected-radio-entry-level-infotainment-and-digital-instrument-cluster-applications.:VF3xxR
https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/vfxxx-controller/r-series/32-bit-devices-for-advanced-connected-radio-entry-level-infotainment-and-digital-instrument-cluster-applications.:VF3xxR
https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/vfxxx-controller/r-series/32-bit-devices-for-advanced-connected-radio-entry-level-infotainment-and-digital-instrument-cluster-applications.:VF3xxR
https://www.nxp.com/products/processors-and-microcontrollers/legacy-mcu-mpus/vfxxx-controller/r-series/32-bit-devices-for-advanced-connected-radio-entry-level-infotainment-and-digital-instrument-cluster-applications.:VF3xxR
https://doi.org/10.1145/2529975
https://doi.org/10.1504/IJAHUC.2016.075378
https://doi.org/10.1504/IJAHUC.2016.075378

170 Bibliography

[145] Tom Parker, Gertjan Halkes, Maarten Bezemer, and Koen Langendoen. The
λMAC Framework: Redefining MAC Protocols for Wireless Sensor Networks.
Wirel. Netw., 2010. doi:10.1007/s11276-010-0241-7.

[146] Roger Peng. The Reproducibility Crisis in Science: A Statistical Counterattack.
Significance, 2015. https://doi.org/10.1111/j.1740-9713.2015.00827.x.

[147] Hans E. Plesser. Reproducibility vs. Replicability: A Brief History of a Confused
Terminology. Frontiers in Neuroinformatics, 2018. https://doi.org/10.1177/
1948550617697177.

[148] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel. Paxos Made Wireless: Consensus
in the Air. In Proceedings of the 2019 International Conference on Embedded Wireless
Systems and Networks, EWSN ’19, Beijing, China, 2019. Junction Publishing. http:
//dl.acm.org/citation.cfm?id=3324320.3324322.

[149] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical
systems: The next computing revolution. In Design Automation Conference, 2010.
doi:10.1145/1837274.1837461.

[150] Mohammad A. Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhán Clarke.
Middleware for Internet of Things: A Survey. IEEE Internet of Things Journal, 2016.
doi:10.1109/JIOT.2015.2498900.

[151] Robert Ricci, Jonathon Duerig, Pramod Sanaga, Daniel Gebhardt, Mike Hibler, Kevin
Atkinson, Junxing Zhang, Sneha Kasera, and Jay Lepreau. The Flexlab Approach
to Realistic Evaluation of Networked Systems. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI’07, Cambridge,
MA, USA, 2007. USENIX Association. https://www.cs.utah.edu/flux/papers/
flexlab-nsdi07.pdf.

[152] Robert Ricci, Gary Wong, Leigh Stoller, Kirk Webb, Jonathon Duerig, Keith Downie,
and Mike Hibler. Apt: A Platform for Repeatable Research in Computer Science.
SIGOPS Oper. Syst. Rev., 2015. doi:10.1145/2723872.2723885.

[153] Kay Römer. Programming paradigms and middleware for sensor networks. GI/ITG
Workshop on Sensor Networks, 2004. http://vs.inf.ethz.ch/publ/papers/
middleware-kuvs.pdf.

[154] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-Time Scheduling for
WirelessHART Networks. In 2010 31st IEEE Real-Time Systems Symposium, 2010.
doi:10.1109/RTSS.2010.41.

[155] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-End
Communication Delay Analysis in Industrial Wireless Networks. IEEE Transactions
on Computers, 2015. doi:10.1109/TC.2014.2322609.

[156] C. Sarkar, R. V. Prasad, R. T. Rajan, and K. Langendoen. Sleeping Beauty: Efficient
Communication for Node Scheduling. In 2016 IEEE 13th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS), 2016. doi:10.1109/MASS.2016.018.

[157] Damien Saucez and Luigi Iannone. Thoughts and Recommendations from the ACM
SIGCOMM 2017 Reproducibility Workshop. SIGCOMM Comput. Commun. Rev., 2018.
doi:10.1145/3211852.3211863.

[158] Anna-Brit Schaper. Low-Power Network Design: Work Hard, Play Hard: Data
Collection. Semester Thesis, ETH Zurich, 2019. doi:10.3929/ethz-b-000324250.

[159] Hanspeter Schmid and Alex Huber. Measuring a Small Number of Samples, and the 3σ
Fallacy: Shedding Light on Confidence and Error Intervals. IEEE Solid-State Circuits
Magazine, 2014. doi:10.1109/MSSC.2014.2313714.

https://doi.org/10.1007/s11276-010-0241-7
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1177/1948550617697177
https://doi.org/10.1177/1948550617697177
http://dl.acm.org/citation.cfm?id=3324320.3324322
http://dl.acm.org/citation.cfm?id=3324320.3324322
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/JIOT.2015.2498900
https://www.cs.utah.edu/flux/papers/flexlab-nsdi07.pdf
https://www.cs.utah.edu/flux/papers/flexlab-nsdi07.pdf
https://doi.org/10.1145/2723872.2723885
http://vs.inf.ethz.ch/publ/papers/middleware-kuvs.pdf
http://vs.inf.ethz.ch/publ/papers/middleware-kuvs.pdf
https://doi.org/10.1109/RTSS.2010.41
https://doi.org/10.1109/TC.2014.2322609
https://doi.org/10.1109/MASS.2016.018
https://doi.org/10.1145/3211852.3211863
https://doi.org/10.3929/ethz-b-000324250
https://doi.org/10.1109/MSSC.2014.2313714

Bibliography 171

[160] Markus Schuß, Carlo Alberto Boano, and Kay Römer. Moving Beyond Competitions:
Extending D-Cube to Seamlessly Benchmark Low-Power Wireless Systems. In
Proceedings of the 1st International Workshop on Benchmarking Cyber-Physical
Networks and Systems (CPSBench). IEEE, 2018. doi:10.1109/CPSBench.2018.
00012.

[161] Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Römer. A Competition to
Push the Dependability of Low-Power Wireless Protocols to the Edge. In Proceedings
of the 2017 International Conference on Embedded Wireless Systems and Networks,
EWSN ’17, USA, 2017. Junction Publishing. http://dl.acm.org/citation.cfm?
id=3108009.3108018.

[162] Markus Schuß, Carlo Alberto Boano, Manuel Weber, Matthias Schulz, Matthias
Hollick, and Kay Römer. JamLab-NG: Benchmarking Low-Power Wireless Protocols
under Controllable and Repeatable Wi-Fi Interference. In Proceedings of the 16th
International Conference on Embedded Wireless Systems and Networks (EWSN),
Beijing, China, 2019. Junction Publishing. http://www.carloalbertoboano.com/
documents/schuss19jamlab-ng.pdf.

[163] Nordic Semiconductors. nRF52840. https://www.nordicsemi.com/Products/
Low-power-short-range-wireless/nRF52840. [Online] Last accessed 2019-10-11.

[164] Semtech. SX1262. Long Range Low Power LoRa. https://www.semtech.com/
products/wireless-rf/lora-transceivers/sx1262.

[165] Pranab Kumar Sen. Estimates of the Regression Coefficient Based on Kendall’s Tau.
Journal of the American Statistical Association, 1968. doi:10.1080/01621459.
1968.10480934.

[166] Swati Sharma, Alefiya Hussain, and Huzur Saran. Towards Repeatability and
Verifiability in Networking Experiments: A Stochastic Framework. Journal of Network
and Computer Applications, 2017. https://doi.org/10.1016/j.jnca.2016.07.
001.

[167] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla, Michael I.
Jordan, and Shankar S. Sastry. Kalman filtering with intermittent observations. IEEE
Transactions on Automatic Control, 2004. doi:10.1109/TAC.2004.834121.

[168] Philipp Sommer and Yvonne-Anne Pignolet. Competition: Dependable Network
Flooding Using Glossy with Channel-Hopping. In Proceedings of the 2016 International
Conference on Embedded Wireless Systems and Networks, 2016. http://dl.acm.
org/citation.cfm?id=2893711.2893785.

[169] Alberto Spina, Michael Breza, Naranker Dulay, and Julie McCann. XPC: Fast
and Reliable Synchronous Transmission Protocols for 2-Phase Commit and 3-Phase
Commit. arXiv:1910.09941 [cs], 2019. http://arxiv.org/abs/1910.09941. arXiv:
1910.09941.

[170] John Stankovic, Insup Lee, Aloysius Mok, and Raj Rajkumar. Opportunities and
obligations for physical computing systems. Departmental Papers (CIS), 2005. https:
//repository.upenn.edu/cis_papers/222.

[171] John A. Stankovic. When Sensor and Actuator Networks Cover the World. ETRI
Journal, 2008. doi:10.4218/etrij.08.1308.0099.

[172] John A. Stankovic, Tarek F. Abdelzaher, Lu Chenyang, Sha Lui, and Jennifer C. Hou.
Real-time communication and coordination in embedded sensor networks. Proceedings
of the IEEE, 2003. doi:10.1109/JPROC.2003.814620.

[173] Wilfried Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered
Multi-hop Networks. In 2010 31st IEEE Real-Time Systems Symposium, 2010. doi:
10.1109/RTSS.2010.25.

https://doi.org/10.1109/CPSBench.2018.00012
https://doi.org/10.1109/CPSBench.2018.00012
http://dl.acm.org/citation.cfm?id=3108009.3108018
http://dl.acm.org/citation.cfm?id=3108009.3108018
http://www.carloalbertoboano.com/documents/schuss19jamlab-ng.pdf
http://www.carloalbertoboano.com/documents/schuss19jamlab-ng.pdf
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1262
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1016/j.jnca.2016.07.001
https://doi.org/10.1016/j.jnca.2016.07.001
https://doi.org/10.1109/TAC.2004.834121
http://dl.acm.org/citation.cfm?id=2893711.2893785
http://dl.acm.org/citation.cfm?id=2893711.2893785
http://arxiv.org/abs/1910.09941
http://arxiv.org/abs/1910.09941
http://arxiv.org/abs/1910.09941
https://repository.upenn.edu/cis_papers/222
https://repository.upenn.edu/cis_papers/222
https://doi.org/10.4218/etrij.08.1308.0099
https://doi.org/10.1109/JPROC.2003.814620
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/RTSS.2010.25

172 Bibliography

[174] Felix Sutton, Reto Da Forno, David Gschwend, Tonio Gsell, Roman Lim, Jan Beutel,
and Lothar Thiele. The Design of a Responsive and Energy-efficient Event-triggered
Wireless Sensing System. In Proceedings of the 2017 International Conference
on Embedded Wireless Systems and Networks, EWSN ’17, USA, 2017. Junction
Publishing. http://dl.acm.org/citation.cfm?id=3108009.3108028.

[175] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell, Georgia
Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele. Bolt: A Stateful
Processor Interconnect. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’15, New York, NY, USA, 2015. ACM. doi:
10.1145/2809695.2809706.

[176] Makoto Suzuki, Yasuta Yamashita, and Hiroyuki Morikawa. Low-Power, End-to-End
Reliable Collection Using Glossy for Wireless Sensor Networks. In 2013 IEEE 77th
Vehicular Technology Conference (VTC Spring), 2013. doi:10.1109/VTCSpring.
2013.6692624.

[177] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of Communication
Schedules for TTEthernet-based Mixed-criticality Systems. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, CODES+ISSS ’12, Tampere, Finland, 2012. ACM. doi:
10.1145/2380445.2380518.

[178] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu Lacage, Daniel Camara,
Thierry Turletti, and Walid Dabbous. Direct Code Execution: Revisiting Library
OS Architecture for Reproducible Network Experiments. In Proceedings of the
9th International Conference on Emerging Networking Experiments and Technologies
(CoNEXT), CoNEXT ’13, New York, NY, USA, 2013. ACM. doi:10.1145/2535372.
2535374.

[179] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice Theoleyre. Scheduling for
IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless
networks: A survey. Computer Communications, 2017. doi:10.1016/j.comcom.
2017.10.004.

[180] Texas Instruments. CC2420 Datasheet. https://www.advanticsys.com/shop/
documents/1320249962_ChipCon_CC2420.pdf.

[181] Texas Instruments. CC430F6137 16-Bit Ultra-Low-Power MCU. http://www.ti.
com/product/CC430F6137. [Online] - Last accessed: 2019-10-11.

[182] Texas Instruments. MSP-EXP432P401R SimpleLink™. http://www.ti.com/tool/
MSP-EXP432P401R.

[183] Texas Instruments. MSP430FR5969. http://www.ti.com/product/MSP430FR5969.

[184] Henri Theil. A Rank-Invariant Method of Linear and Polynomial Regression Analysis.
In Baldev Raj and Johan Koerts, editors, Henri Theil’s Contributions to Economics and
Econometrics: Econometric Theory and Methodology, Advanced Studies in Theoretical
and Applied Econometrics. Springer Netherlands, Dordrecht, 1992. doi:10.1007/
978-94-011-2546-8_20.

[185] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for
scheduling hard real-time systems. In 2000 IEEE International Symposium on Circuits
and Systems (ISCAS), 2000. doi:10.1109/ISCAS.2000.858698.

[186] William R. Thompson. On Confidence Ranges for the Median and Other Expectation
Distributions for Populations of Unknown Distribution Form. The Annals of
Mathematical Statistics, 1936. https://www.jstor.org/stable/2957563.

http://dl.acm.org/citation.cfm?id=3108009.3108028
https://doi.org/10.1145/2809695.2809706
https://doi.org/10.1145/2809695.2809706
https://doi.org/10.1109/VTCSpring.2013.6692624
https://doi.org/10.1109/VTCSpring.2013.6692624
https://doi.org/10.1145/2380445.2380518
https://doi.org/10.1145/2380445.2380518
https://doi.org/10.1145/2535372.2535374
https://doi.org/10.1145/2535372.2535374
https://doi.org/10.1016/j.comcom.2017.10.004
https://doi.org/10.1016/j.comcom.2017.10.004
https://www.advanticsys.com/shop/documents/1320249962_ChipCon_CC2420.pdf
https://www.advanticsys.com/shop/documents/1320249962_ChipCon_CC2420.pdf
http://www.ti.com/product/CC430F6137
http://www.ti.com/product/CC430F6137
http://www.ti.com/tool/MSP-EXP432P401R
http://www.ti.com/tool/MSP-EXP432P401R
http://www.ti.com/product/MSP430FR5969
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.1109/ISCAS.2000.858698
https://www.jstor.org/stable/2957563

Bibliography 173

[187] Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming, 1994. doi:10.1016/0165-
6074(94)90080-9.

[188] Jan Vitek and Tomas Kalibera. Repeatability, Reproducibility and Rigor in Systems
Research. In Proceedings of the 9th International Conference on Embedded
Software (EMSOFT). ACM, 2011. https://www.cs.kent.ac.uk/pubs/2011/
3174/content.pdf.

[189] Fabian Walter. Real-Time Network Functions for the Internet of Things. Semester
Thesis, ETH Zurich, 2017. doi:10.3929/ethz-b-000234920.

[190] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. System
architecture evaluation using modular performance analysis: A case study. International
Journal on Software Tools for Technology Transfer, 2004. doi:10.1007/s10009-006-
0019-5.

[191] Miao-Miao Wang, Jian-Nong Cao, Jing Li, and Sajal K. Dasi. Middleware for Wireless
Sensor Networks: A Survey. Journal of Computer Science and Technology, 2008.
doi:10.1007/s11390-008-9135-x.

[192] Thomas Watteyne, Vlado Handziski, Xavier Vilajosana, Simon Duquennoy, Oliver
Hahm, Emmanuel Baccelli, and Adam Wolisz. Industrial Wireless IP-Based Cyber-
Physical Systems. Proceedings of the IEEE, 2016. doi:10.1109/JPROC.2015.
2509186.

[193] Watteyne Watteyne, Thomas, Pere Tuset-Peiro, Xavier Vilajosana, Sofie Pollin, and
Bhaskar Krishnamachari. Teaching Communication Technologies and Standards for
the Industrial IoT? Use 6TiSCH! IEEE Communications Magazine, 2017. doi:10.
1109/MCOM.2017.1700013.

[194] Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell,
Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer,
Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll,
and Mustafa Yücel. A decade of detailed observations (2008–2018) in steep bedrock
permafrost at the Matterhorn Hörnligrat (Zermatt, CH). Earth System Science Data,
2019. doi:https://doi.org/10.5194/essd-11-1203-2019.

[195] Markus Wegmann. Reliable 3rd Generation Data Collection. Master Thesis, ETH
Zurich, 2018. https://pub.tik.ee.ethz.ch/students/2018-FS/MA-2018-08.
pdf.

[196] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. SIGOPS Oper. Syst. Rev., 2002.
http://doi.acm.org/10.1145/844128.844152.

[197] Wikipedia. Bin packing problem. Wikipedia, 2019. https://en.wikipedia.org/w/
index.php?title=Bin_packing_problem&oldid=921684516.

[198] Wikipedia. Chinese whispers. Wikipedia, 2019. https://en.wikipedia.org/w/
index.php?title=Chinese_whispers&oldid=920368233.

[199] Matthias Wilhelm, Vincent Lenders, and Jens B. Schmitt. On the Reception of
Concurrent Transmissions in Wireless Sensor Networks. IEEE Transactions on Wireless
Communications, 2014. doi:10.1109/TWC.2014.2349896.

[200] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. Pantheon: The Training Ground for Internet Congestion-control
Research. In Proceedings of the International USENIX Annual Technical Conference
(ATC), Boston, MA, USA, 2018. USENIX Association. https://www.usenix.org/
conference/atc18/presentation/yan-francis.

https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://www.cs.kent.ac.uk/pubs/2011/3174/content.pdf
https://www.cs.kent.ac.uk/pubs/2011/3174/content.pdf
https://doi.org/10.3929/ethz-b-000234920
https://doi.org/10.1007/s10009-006-0019-5
https://doi.org/10.1007/s10009-006-0019-5
https://doi.org/10.1007/s11390-008-9135-x
https://doi.org/10.1109/JPROC.2015.2509186
https://doi.org/10.1109/JPROC.2015.2509186
https://doi.org/10.1109/MCOM.2017.1700013
https://doi.org/10.1109/MCOM.2017.1700013
https://doi.org/https://doi.org/10.5194/essd-11-1203-2019
https://pub.tik.ee.ethz.ch/students/2018-FS/MA-2018-08.pdf
https://pub.tik.ee.ethz.ch/students/2018-FS/MA-2018-08.pdf
http://doi.acm.org/10.1145/844128.844152
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=921684516
https://en.wikipedia.org/w/index.php?title=Bin_packing_problem&oldid=921684516
https://en.wikipedia.org/w/index.php?title=Chinese_whispers&oldid=920368233
https://en.wikipedia.org/w/index.php?title=Chinese_whispers&oldid=920368233
https://doi.org/10.1109/TWC.2014.2349896
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis

174 Bibliography

[201] Lisa Yan and Nick McKeown. Learning Networking by Reproducing Research Results.
SIGCOMM Comput. Commun. Rev., 2017. doi:10.1145/3089262.3089266.

[202] Dingwen Yuan and Matthias Hollick. Let’s talk together: Understanding concurrent
transmission in wireless sensor networks. In 38th Annual IEEE Conference on Local
Computer Networks, 2013. doi:10.1109/LCN.2013.6761237.

[203] Dingwen Yuan, Michael Riecker, and Matthias Hollick. Making ’Glossy’ Networks
Sparkle: Exploiting Concurrent Transmissions for Energy Efficient, Reliable, Ultra-
Low Latency Communication in Wireless Control Networks. In Proceedings of the
11th European Conference on Wireless Sensor Networks - Volume 8354, EWSN 2014,
Oxford, UK, 2014. Springer-Verlag New York, Inc. doi:10.1007/978-3-319-04651-
8_9.

[204] Licong Zhang, Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. Task-
and network-level schedule co-synthesis of Ethernet-based time-triggered systems. In
2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014.
doi:10.1109/ASPDAC.2014.6742876.

[205] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP: A new resource ReSerVation Protocol. IEEE Network, 1993. doi:10.1109/
65.238150.

[206] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Margaret Martonosi.
Hardware Design Experiences in ZebraNet. In Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, SenSys ’04, New York, NY, USA,
2004. ACM. doi:10.1145/1031495.1031522.

[207] Peilin Zhang, Alex Yuan Gao, and Oliver Theel. Less is More: Learning More with
Concurrent Transmissions for Energy-Efficient Flooding. In Proceedings of the 14th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, MobiQuitous 2017, Melbourne, VIC, Australia, 2017. ACM. doi:10.
1145/3144457.3144482.

[208] Marco Zimmerling, Federico Ferrari, Luca Mottola, and Lothar Thiele. On Modeling
Low-Power Wireless Protocols Based on Synchronous Packet Transmissions. In
2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation
of Computer and Telecommunication Systems(MASCOTS), 2013. doi:10.1109/
MASCOTS.2013.76.

[209] Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar
Thiele. Adaptive Real-Time Communication for Wireless Cyber-Physical Systems. ACM
Transactions on Cyber-Physical Systems, 2017. doi:10.1145/3012005.

https://doi.org/10.1145/3089262.3089266
https://doi.org/10.1109/LCN.2013.6761237
https://doi.org/10.1007/978-3-319-04651-8_9
https://doi.org/10.1007/978-3-319-04651-8_9
https://doi.org/10.1109/ASPDAC.2014.6742876
https://doi.org/10.1109/65.238150
https://doi.org/10.1109/65.238150
https://doi.org/10.1145/1031495.1031522
https://doi.org/10.1145/3144457.3144482
https://doi.org/10.1145/3144457.3144482
https://doi.org/10.1109/MASCOTS.2013.76
https://doi.org/10.1109/MASCOTS.2013.76
https://doi.org/10.1145/3012005

Credits

Thermometer by UNICORN from the Noun Project
used in Figures 1.1, 1.5, 4.2, 4.3 and 5.2

finger touch by Adrien Coquet from the Noun Project
used in Figures 1.1, 1.5, 4.2, 4.3 and 5.2

process by un·delivered from the Noun Project
used in Figures 1.1, 1.5, 4.2, 4.3 and 5.2

Wireless by Arthur Shlain from the Noun Project
used in Figures 1.5 and 4.3

calendar by Gregor Cresnar from the Noun Project
used in Figures 1.5 and 4.3

	Abstract
	Résumé
	Acknowledgments
	Table of Contents
	Introduction
	TriScale: Supporting Reproducibility in Networking
	Synchronous Transmissions Made Easy with Baloo
	DRP – Distributed Real-time Protocol
	TTW – Time-Triggered Wireless
	Conclusions and Outlook
	Bibliography
	Icons Credits

