
Diss. ETH No. 21474

Mastering Imperfect and Partial Information
in Wireless Sensing Systems

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
MATTHIAS KELLER

M.Sc. TUM
born April 22, 1983
citizen of Germany

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Kay Römer, co-examiner

Dr. Jan Beutel, co-examiner

2013

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 139

Matthias Keller

Mastering Imperfect and Partial Information
in Wireless Sensing Systems

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 21474

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Kay Römer, co-examiner
Dr. Jan Beutel, co-examiner

Examination date: September 25, 2013

ISBN 978-3-906031-39-2
DOI 10.3929/ethz-a-009958164

http://dx.doi.org/10.3929/ethz-a-009958164

Abstract
Wireless sensor networks (WSNs) are networks of self-organizing, au-
tonomously operating, resource-constrained computing devices. Typical
designs of such so called mote-class devices integrate a low-power micro-
controller (MCU), a radio chip, external memory and a radio frequency
(RF) front-end on an area of a few square centimeters in size. Multi-year
operation from small batteries is achieved by utilizing energy-saving low-
power states and switching off currently not used components, e.g., the
radio chip, whenever possible.

The most prominent use of such networks are so called sense-and-
send applications. In a sense-and-send application, nodes are regularly
sampling data that is then transmitted to a sink node. To date, the vast
majority of published sensor network deployments employs a multi-hop
routing protocol for communication. Such protocols create and maintain
a dynamic routing tree, packets are forwarded over multiple hops until
they are eventually received by a sink.

Wireless communication is not perfect, but subject to well-known
phenomena such as multi-path propagation, interference, and loss.
Additionally, the resource-scarcity found in systems that are built
from mote-class devices limits the amount of capabilities that can be
added to a system. For example, in contrast to Internet networks,
implementing services such as active network monitoring and network
time synchronization can add a considerable, even harmful overhead to
a low-power wireless system.

Overall, known properties of wireless communication, common
properties of distributed systems, and resource constraints specific to low-
power wireless networks altogether negatively impact the quality of data
obtained from such a system. Similarly, mentioned characteristics also
render debugging low-power wireless networks as a very demanding
task. System state first of all being distributed among the network,
deployed systems also lack the resources needed for making that state
accessible.

In the context of a scientific, multi-year, multi-site permafrost and
rock kinematics monitoring effort, this thesis presents algorithms and
systems for establishing wireless data collection systems as dependable
and precise scientific instruments. Theoretical results obtained are backed
by strong empirical evidence, i.e., evaluated in simulation, in testbed
experiments on real hardware, and on up to 270 million packets that
originate from deployed wireless sensor networks.

ii Abstract

The contributions of this thesis are presented in four interconnected
parts. First, this thesis contributes to the state-of-the-art by presenting
algorithms for the mitigation of data imperfections that are introduced
by phenomena common to wireless multi-hop communication. Second,
this thesis presents a system for visualizing large sensor network data
sets and thus making sensor data more accessible. The third contribution
of this thesis tackles the problem of wireless sensing systems on the one
hand maintaining vast amounts of distributed state while on the other
hand being too resource-scarce for this state being transferred out of the
network. Results of the presented network tomography algorithm are
then used for building a minimally active system for monitoring network
health, the fourth and final contribution of this thesis.

Zusammenfassung
Drahtlose Sensornetzwerke sind Kommunikationssysteme, die aus
sich selbst organisierenden, autonom arbeitenden, an Ressourcen
beschränkten Rechengeräten bestehen. Typische Sensorknoten bestehen
aus einem stromsparenden Mikrokontroller, einem Funkmodul, und
einem Speicherchip. Alle Komponenten sind auf einer Fläche von
wenigen Quadratzentimetern untergebracht. Ein mehrjähriger Betrieb
aus einer einzigen Batterieladung wird durch die Verwendung von
energiesparenden Betriebsmodi und insbesondere durch das dynamische
Ein- und Ausschalten von Teilkomponenten erreicht.

Die am meisten verbreitete Anwendung von drahtlosen Sensor-
netzwerken ist die regelmässige Durchführung von Messungen. Die
Resultate dieser Messungen werden unmittelbar nach der Aufnahme
drahtlos an eine zentrale Senke übertragen. Nahezu alle bekannten
Installationen verwenden dabei ein sogenanntes Multi-Hop Routing
Protokoll. Hierbei organisieren sich alle Sensorknoten selbstständig in
einer Baumstruktur. Pakete von weiter entfernten Sensorknoten werden
über mehrere Stationen weitergeleitet bis sie die Senke erreichen.

Bei drahtloser Kommunikation können allgemein bekannte Effekte
wie Mehrpfadverbreitung, Interferenz und Paketverlust auftreten. Der
Betrieb von funkbetriebenen Sensornetzwerken wird zusätzlich durch
den Mangel an Systemressourcen erschwert. So können zum Beispiel
im Internet weit verbreitete Dienste wie die aktive Überwachung von
Netzwerken als auch Netzwerk-Zeitsynchronisation nicht ohne weiteres
in drahtlosen Funknetzwerken implementiert werden. Der in drahtlosen
Sensornetzwerken im Vergleich zu den verfügbaren Ressourcen sehr
hohe Aufwand für die Implementierung derartiger Dienste kann bis zur
Degradierung des gesamten Systems führen.

Die bekannten Eigenschaften von kabelloser Übertragung, bekannte
Herausforderungen in verteilten Systemen sowie für funkbetriebene
Sensornetzwerke spezifische Ressourcenbeschränkungen können die
Qualität der erhaltenen Sensordaten negativ beeinflussen. Gleichzeitig
erschweren die genannten Charakteristiken die Untersuchung von Sen-
sornetzwerken. Während der Zustand des Gesamtsystems einerseits über
das Netzwerk verteilt ist, so erschwert der Mangel an Systemressourcen
ausserdem die Zusammenführung des verteilten Systemzustandes an
einem zentralen Ort.

Die geleisteten Beiträge der vorliegenden Arbeit haben das Ziel
drahtlose Sensornetzwerke als zuverlässige und präzise Messinstrumente

iv Zusammenfassung

für wissenschaftliche Kampagnen tauglich zu machen. Vorgestellte
Algorithmen werden anhand ausführlicher Analysen von Messdaten,
die aus Simulationen, aus Testläufen auf realer Hardware und von
Produktivsystemen stammen, validiert und bestätigt.

Die Beiträge dieser Dissertation erstrecken sich über vier zusam-
menhängende Teile. Der erste Teil dieser Arbeit präsentiert Algorithmen
für die Entfernung von Datenartefakten, die typisch für drahtlose Multi-
Hop Kommunikation sind. Der zweite Teil befasst sich mit einem System
zur Visualisierung von großen Datenmengen. Ein Algorithmus zur
Durchführung einer Tomographie in einem energiesparenden Sensornet-
zwerk wird im dritten Teil dieser Arbeit präsentiert. Der vorgestellte
Algorithmus verwendet nur bereits vorhandenen Netzwerkverkehr und
belastet das ressourcenarme Sensornetzwerk daher nicht. Ein minimal
aktives System zur Netzwerküberwachung auf Basis der im vorherigen
Kapitel vorgestellten Netzwerktomographie wird im vierten Teil dieser
Arbeit vorgestellt.

This thesis was supported by NCCR-MICS, a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

The work presented is scientifically evaluated by the SNSF, financed by
the Swiss Confederation, and funded by Nano-Tera.ch.

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Wireless Sensor Networks 2
1.2 Challenges in Wireless Data Collection 3
1.3 Exemplary Deployment Project: PermaSense 6
1.4 Thesis Outline and Contributions 8

2 Model-based Data Cleaning and Order Reconstruction 11
2.1 Introduction . 12
2.2 Related Work . 15
2.3 Packet Classification and Order Reconstruction 16
2.4 System Model . 16
2.5 Data Analysis . 21
2.6 Case Study . 29
2.7 Broader Applicability and Limitations 37
2.8 Conclusions . 38

3 Visualization of Large Data Sets in Space and Time with Vizzly 41
3.1 Introduction . 41
3.2 Related Work . 43
3.3 Visualizing Large Sensor Network Data Sets 44
3.4 Vizzly System Design . 46
3.5 Vizzly Implementation . 52
3.6 Two Diverse Use Cases . 54
3.7 Performance Evaluation . 56
3.8 Integrating and Extending Vizzly 58
3.9 Conclusions . 60

4 Multi-Hop Network Tomography 61
4.1 Introduction . 61
4.2 Related Work . 64
4.3 Exploiting Information Implicitly Given 65
4.4 Multi-Hop Network Tomography 65
4.5 System Model . 67
4.6 Safe Information Reconstruction 69

x Contents

4.7 Multi-Protocol Testbed Evaluation 79
4.8 Making Real Network Dynamics Visible 85
4.9 Broader Applicability and Limitations 92
4.10 Conclusions . 93

5 Hybrid Network Health Monitoring 95
5.1 Introduction . 95
5.2 Related Work . 97
5.3 Inferring State From Minimal Information 99
5.4 Hybrid Monitoring . 99
5.5 System Model . 101
5.6 From a Single Bit to a Scalar Value 104
5.7 Multi-Testbed Evaluation . 109
5.8 Broader Applicability and Limitations 115
5.9 Conclusions . 117

6 Conclusions 119

Bibliography 121

Curriculum Vitæ 131

List of Publications 133

1
Introduction

Today’s quality of living in industrialized countries is also the product
of countless, often unnoticed, ubiquitous sensing systems that are
permanently taking observations. For instance, being able to determine
the arrival of a certain weather condition down to the hour would not
be possible without a multitude of sensors on the ground, in the air,
and in space. Natural disasters, e.g., floods and landslides, would result
in a higher number of fatalities if endangered populations could not
be warned prior to an event. Continuous air pollution measurements
protect the inhabitants of high traffic zones, e.g., cause road traffic to be
restricted when certain thresholds are exceeded.

In the context of a scientific, multi-year, multi-site permafrost and
rock kinematics monitoring effort, this thesis presents algorithms and
systems for establishing wireless data collection systems as dependable
and precise scientific instruments. First, this thesis contributes to
the state-of-the-art by presenting algorithms for the mitigation of data
imperfections that are introduced by phenomena common to wireless
multi-hop communication. Second, this thesis presents a system for
visualizing large sensor network data sets and thus making sensor data
more accessible. The third contribution of this thesis tackles the problem
of wireless sensing systems on the one hand maintaining vast amounts
of distributed state while on the other hand being too resource-scarce for
this state being transferred out of the network. Results of this network
tomography algorithm are used for building a minimally active system
for monitoring network health, the fourth and final contribution of this
thesis.

2 Chapter 1. Introduction

1.1 Wireless Sensor Networks
Wireless sensor networks (WSNs) are networks of self-organizing, au-
tonomously operating, resource-constrained computing devices. Typical
designs of such so called mote-class devices integrate a low-power micro-
controller (MCU), a radio chip, external memory and a radio frequency
(RF) front-end on an area of a few square centimeters in size (see
Figure 1.1). Multi-year operation from small batteries is achieved by
utilizing energy-saving low-power states and switching off currently not
used components whenever possible. For example, state-of-the-art low-
power communication protocols [BvRW07, FZMT12] reduce the on-time
of the radio to less than 1% of the time.

(a) Tmote Sky (b) Tinynode 184

Fig. 1.1 Tmote Sky and Tinynode 184 sensor nodes. Both platforms are based on a TI MSP430
micro-controller. The Tmote Sky uses a CC2420 radio at 2.4 GHz, a SX1211 radio that
operates at 868 MHz is used in the Tinynode.

The most prominent use of such networks are so called sense-and-
send applications. In a sense-and-send application, nodes are regularly
sampling data that is then transmitted to a sink node. The number
of sink nodes is significantly smaller than the number of nodes that
perform sensing tasks, in many situations a single sink node is sufficient.
Directly connecting all sensor nodes to a sink node requires no routing
layer, but also limits the network coverage to the maximum allowed
distance between two devices. In contrast, the coverage of a network
w.r.t. energy spent can be extended when a multi-hop routing protocol
[BvRW07, GFJ+09] is used. For the price of a higher system complexity,
this is achieved by packets being wirelessly forwarded over multiple hops
until they are eventually received by a sink node.

Requiring no external wiring for communication and power supply
renders networks of small, battery-powered, wirelessly communicating
devices as viable for many situations in which practical, esthetic,
economical, technical, or regulatory reasons prohibit the installation of
extensive cabling. Exemplary applications of this kind are the installation
of a wireless sensor network within the habitat of a bird [SMP+04], on
a potato field [LBV06], in an high-altitude environment [BGH+09], in an

1.2. Challenges in Wireless Data Collection 3

old heritage building [CMP+09], and in a road tunnel [CCD+11].
Furthermore, interfacing with Internet networks requires only the sink

nodes to be connected to an external network. Thus only the placement of
the sink nodes may be constrained by external factors, e.g., GSM coverage.
The majority of nodes can be placed as required by the application
whilst nevertheless being connected to the Internet. Permanent Internet
connectivity enables quasi real-time access to sensor data, fast access to
system health information, an the ability to remotely control the whole
network.

1.2 Challenges in Wireless Data Collection
Applications envisioned in the area of environmental monitoring
[BBF+11] want to employ wireless sensor networks as new scientific
instruments. Ultimately, the goal is to build highly reliable, highly precise,
wirelessly communicating systems that are suited for early warning
scenarios. Taking responsibility for the inhabitants and infrastructure of
regions that are threatened by natural hazards is particularly demanding
when resource-constrained, low-power wireless systems are considered.
First of all wireless communication itself being subject to a number of
well-known effects, e.g., multi-path propagation, interference and signal
absorption, designing for a multi-year system lifetime limits the amount
of capabilities that can be implemented on a resource-constrained device.

Two important metrics that are significantly influenced by the
resource-scarcity found in low-power wireless sensor networks are the
quality of data received and the observability of system state. In the
following, we will now investigate the influence on each of the two
metrics.

1.2.1 Imperfect Data
The first important metric that is influenced by decisions made to save
resources is the quality of data received. Data received from wireless
sensing systems is not always immediately useable, but may require
post-processing. A prominent example for such post-processing is
the reconstruction of time information [WALJ+06, GMEST09, LDCE09].
Further problems are the reconstruction of the logical packet ordering and
the removal of invalid packets, e.g., packets that carry bogus information
and packet duplicates.

Independent of the condition of a physical sensor, e.g., a temperature
sensor, that is attached to a sensor node, the following properties of
wireless multi-hop networks can negatively influence the quality of data
received:

Imprecise, local clocks. Time is a very important information in wireless

4 Chapter 1. Introduction

sensor networks. First of all needed for knowing when a sensor value
was taken, time is also critical for scheduling joint wake-ups of duty-
cycled sensor nodes. Thus, each sensor node operates a local clock that
is continuously updated. While this requires the corresponding crystal
oscillator to be always on, common node designs employ a low-frequency
crystal for operating the local clock [SDS10]. As any real crystal, the crystal
used for operating the clock is not perfectly stable, but running at varying
frequencies that are slightly higher and lower than the desired speed.
Factors that influence the actual speed of the crystal are the temperature,
the stability of the operating voltage, and the condition of the crystal itself,
among others. The impact of using a real, low-frequency crystal on the
quality of time information obtained is two-fold. First, the resulting drift
of the local clock can result in a constantly increasing deviation between
the actual and the measured time. Second, using a low-frequency crystal
does not only reduce the energy consumption but also the precision of
the local clock.

Volatile, local state. The operation of a sensor node requires certain
state to be stored in the memory of the micro-controller. Examples are
the current local time, the current value of the local packet sequence
counter, information on neighboring nodes, and packets that are currently
waiting for transmission. Independent of the concrete implementation,
i.e., storage in volatile or non-volatile memory, certain events, e.g., a
sudden power loss, can cause parts of this local state being corrupted.
The volatility of local state can cause packets to carry bogus information
or even to be lost.

Lossy wireless channel. Several circumstances, e.g., external interference,
can cause packet transmissions to fail. A common strategy for avoiding
packet loss is to retransmit a packet until its reception was successfully
acknowledged by its immediate receiver. Packet acknowledgements also
being subject to transmission failures, a packet is falsely retransmitted and
thus duplicated if not the initial transmission itself but the transmission
of the acknowledgment failed. If they remain undiscovered, packet
duplications can affect a later data analysis.

Routing dynamics in multi-hop networks. Routing dynamics found in
multi-hop networks can cause packets of the same source to travel along
different paths. As the timing among different paths can vary, a later
generated packet may arrive at the sink node before another packet that
has been generated earlier. While the mere number of different routing
paths generally complicates the tracking of packets inside the network,
the possibility of packets being reordered also increases the amount of
context that is needed for cleaning tasks, e.g., the detection of packet
duplicates.

From an algorithmic perspective, problems mentioned can be alleviated

1.2. Challenges in Wireless Data Collection 5

or even completely excluded by adding corresponding capabilities to the
network. For example, the effects of clock drift can be mitigated by using
an in-band clock synchronization protocol [MKSL04a, LSW09, FZTS11]
or by adding receiver hardware for an external clock source [RGR09,
CWCT11]. A similar example is the removal of packet duplicates inside
the network. It requires only a simple filter that is running on every sensor
node for successfully removing the majority of packet duplications inside
the network [GFJ+09]. The problem of losing state during node resets can
be addressed by letting sensor nodes regularly share their own state with
their neighbors [GMEST09].

However, it becomes also apparent that complexity and resource
consumption increase when more capabilities are added to a system. For
example, in-band clock synchronization requires extra communication
which also translates to more energy. Additionally, adding capabilities
often also narrows the overall flexibility, e.g., satellite-based time
synchronization can only be used in outdoor environments. Lastly, the
effectiveness of an added capability is reduced when its requirements,
e.g., the need for permanent network connectivity in order to achieve its
maximal accuracy, cannot always be satisfied.

In the end, it can only be decided in the context of a concrete sensing
scenario if adding certain capabilities would contribute a benefit that
is worth the effort. The question arises if and how data nevertheless
can be used for demanding tasks despite carrying imperfections that are
common to data that originates from low-power wireless sensing systems.

1.2.2 Only Partially Observable State
The second consequence of the resource-scarcity found in wireless
low-power systems is the vast majority of system state remaining
unobservable from outside the network. Available information is usually
limited to a minimal amount, e.g., battery voltage readings and minimal
topology information. Though many interactions occur inside a network
of autonomously acting sensor nodes until a packet eventually arrives at a
sink, it is very difficult to judge the performance of a system from the little
piece of the overall system state that reaches the surface. Without further
performance data, it often remains unclear if algorithms and parameters
used perform as expected in a concrete setting. Ideally, network operators
would be able to access detailed information on the operational efficiency
such as per-link packet reception rates and the distribution of the packet
forwarding load.

However, the amount of state that can be transmitted over the single
radio resource in deployed networks is limited by energy and reliability
considerations. First of all requiring more energy, additional traffic can
also be harmful to a system, e.g., decrease the performance by increasing
the number of collisions on the wireless channel. In consequence,

6 Chapter 1. Introduction

carefulness often prefers the least amount of information to be actively
transmitted.

In the light of recently proposed passive monitoring systems [LLL10],
the question arises if certain state does not necessarily need to be actively
transmitted, but can also be estimated or recovered from other, minimal,
actively transmitted information.

1.3 Exemplary Deployment Project: PermaSense
The starting point of this thesis is the availability of the first year of data
that has been received from the PermaSense Matterhorn deployment.
Initially deployed in 2008, the purpose of this installation on the
Matterhorn mountain is to collect geophysical measurements for the
investigation of permafrost in the Alps [HTB+08]. Today, the still ongoing
Matterhorn deployment and the subsequently installed deployment on
the Jungfrau mountain are two of the longest lived sensor network
deployments known in the research community.

DEPLOYMENT TIME FRAME #(SENSOR NODES) #(SINKS) MAX. HOPS

Matterhorn 07/2008–today 31 1 3
Jungfraujoch 02/2009–today 29 1 3
Thur 03/2010–05/2012 7 1 1
Dirruhorn 08/2010–today 47 3 5
Aiguille du Midi 07/2012–today 17 1 5

Tab. 1.1 PermaSense deployments in Switzerland and France

A complete deployment inventory is shown in Table 1.1. The
currently instrumented locations are all located in alpine, high-altitude
environments that are subject to extreme seasonal and daily temperature
variations, wind, ice and snow. The technology core of all deployments
are Tinynode 184 nodes that run the Dozer [BvRW07] ultra low-power
data gathering protocol.

The majority of nodes is installed in conjunction with the so-called
Sensor Interface Board [BGH+09], a custom-built extension board that
integrates an analog-to-digital converter, a SD memory card, a battery,
circuitry needed for converting between different serial data interface
standards, a buzzer, and a reed switch for resetting a node from outside
(see Figure 1.2). Other designs integrate Tinynode 184 nodes with a
second computing device to build a base station, to use the sensor node
as a voltage monitor and remote power switch [KYB09, BYL+11], or to
integrate a complex sensing system into a Dozer network [GBG+12].

Dozer is a cross-layer communication stack that integrates a MAC
layer and a multi-hop routing protocol into one holistic piece. An

1.3. Exemplary Deployment Project: PermaSense 7

Fig. 1.2 Tinynode 184 sensor node on top of a second-generation Sensor Interface Board (SIB).
The 1 GB large SD memory card can store approximately 27 million data packets and is
thus well-suited both as a buffer for unsent packets and as a long-term backup medium.

important concept in Dozer is the periodic transmission of beacon
messages. Beacon messages are generated at the sink and repeated by
all currently connected nodes. As such, beacon messages fulfill the
three tasks of announcing the network to yet unconnected nodes, to
provide a facility for sending commands into the network, and to act as a
synchronization primitive between already connected nodes. Concretely,
beacon messages are used to plan the next joint wakeup of a node with
each of its children. Coordinated, precisely scheduled wake-ups for data
transmission are crucial for achieving the very low radio duty cycles as
reported for Dozer [KWL+11].

Temperature-dependent clock variations are locally compensated
based on the actual temperature inside the enclosure. Packet generation
timestamps are obtained using elapsed time on arrival [KDL+06], the sink
is the only component in the network that runs a synchronized clock.

Extreme weather conditions as found in high-altitude environments
can cause sensor nodes to not being able to communicate for several days
or even weeks. Unsent packets are buffered on the SD memory card until
a sensor node is again able to communicate.

1.3.1 Joint Research and Development
Since its initial deployment in 2008, the PermaSense project has grown
both in the quantity and in the types of sensors used. Today’s system
embraces four active deployment sites, the project currently operates
more than 110 low-power sensor nodes that are continuously taking
measurements. Initially limited to rather simple analog and digital
sensors, e.g., temperature and cleft dilatation sensors, low-power sensor
nodes are now also in charge of controlling complex, self-contained
sensing systems, e.g., multi-sensor weather stations, GPS sensors, and
high-resolution imagers.

Growing the system in both the number of devices and in terms of
sensing modalities required all layers of its initial design to be either
significantly improved or even replaced. Prior to the start of the actual

8 Chapter 1. Introduction

research work presented in this thesis, significant efforts have been put
into the ramp-up of the current system generation. The first of these
contributions is the design and implementation of the PermaSense IP
network infrastructure. While the initial prototype used a GSM modem
for all communication between a field site and the university campus, data
is nowadays transmitted over dedicated long-haul Wi-Fi communication
links and VPN (virtual private network) tunnels on top of leased Internet
lines. To date, the PermaSense IP network comprises around 120 hosts,
i.e., networking equipment, sensor network gateways, webcams, and
experimentation hardware [BYL+11]. The latter is a refinement of the
first prototype of MountainView, a high-resolution imager for outdoor
application and the second major contribution to the PermaSense system.
MountainView [KBT09, KYB09] was the first system within PermaSense
in which a powerful embedded PC and a power-hungry sensor were
controlled by a low-power sensor node. While commercial off-the-
shelf (COTS) components used do not offer low-power sleep modes, the
low-power sensor node is in charge of switching off those components
whenever possible. In contrast to the switching of micro-controller
components within milliseconds, COTS components remain in a steady
power state for at least a few minutes and up to several hours. The
concept of duty-cycling power-hungry COTS devices has been transferred
to several other applications, e.g., GPS sensing systems [BYL+11].

The PermaSense system remained a moving target also during the
research that is presented in this thesis. The active usage of available
devices and data sets for research purposes has generally been of great
help for the early detection of problems of all kind. Furthermore, studies
of available data could also deliver valuable input to the design of the
current system. First, an analysis of the end-to-end system performance
identified that the large majority of data losses was caused by the protocol
that has been used for the communication between the field site and
the data backend on campus. As such, those results motivated the
development of the deployment middleware that is currently in use.
Along similar lines, studies had also discovered a severe performance
degradation that affected all deployed wireless sensor nodes [KBM+09].
This discovery then led to the software of all deployed sensor nodes to be
patched.

1.4 Thesis Outline and Contributions
This thesis presents algorithms and systems for the cleaning, validation,
annotation, visualization and augmentation of large sensor network
data sets. Results presented are in particular relevant for wireless data
collection systems.

The organization of this thesis is as follows (see Figure 1.3): Chapter 2

1.4. Thesis Outline and Contributions 9

presents a model-based approach for the cleaning and annotation of
data that originates from wireless sensing systems. The purpose of
this processing step is to remove data consumers from the burden of
individually handling imperfections that have been introduced by the
wireless data collection system itself. Data users can thereby fully focus
on the processing and analysis that is relevant to their respective domain.

Data Cleaning
Chapter 2

Visualization
Chapter 3

Tomography
Chapter 4

Health Monitoring
Chapter 5

Fig. 1.3 Organization of this thesis

Two concrete examples for the further use of cleaned and annotated
data are presented in Chapter 3 and Chapter 4. Chapter 3 presents Vizzly,
a system for the visualization of large sensor network data sets in space
and time. Exemplary use cases of this system are the visual inspection of
data, e.g., manual data verification by a domain expert, and the creation
of system management dashboards. Chapter 4 introduces multi-hop
network tomography, a method for the reconstruction of the packet path,
per-hop ordering and per-hop timing information of individual packets.
As a concrete example for the use of that information, Chapter 5 presents
hybrid monitoring, a minimally active health monitoring system for
wireless sensor networks.

The contributions made by the individual chapters are as follows:

Chapter 2: Data Cleaning and Order Reconstruction
This chapter presents a method for improving data quality by cleaning
packets with bogus information and by giving guarantees on accepted
packets.

• We present a method that filters packets based on their conformance
to a formal model of a data collection system.

• We present a method that reconstructs the proven to be correct order
of generation of packets that conform to our model.

• The method is applied to more than 30 million packets that originate
from a real system.

Chapter 3: Interactive Browsing of Sensor Data in Space and Time
This chapter presents Vizzly, a system for the interactive browsing of large
sensor network data sets in space and time.

10 Chapter 1. Introduction

• We present a complete system consisting of a cache layer and a
front-end application. The proposed system is very flexible and can
be attached to arbitrary data repositories.

• The presented cache layer stores pre-computed aggregates of sensor
values so that data needed for plotting can be efficiently queried
based on a selected time interval and a selected area of interest.

• We evaluate the performance of this system in a production
environment. The input of the analyzed instance consists of more
than four billion data samples that originate from two large-scale
research projects.

Chapter 4: Multi-Hop Network Tomography
This chapter presents a method for uncovering hidden state in wireless
sensor networks.

• We present a novel method for the passive reconstruction of the path,
per-hop timing and per-hop ordering information of individual
packets at runtime.

• The correctness of algorithms presented is formally proven and
evaluated in extensive testbed experiments.

• We apply multi-hop network tomography to more than 270
million packets that originate from three real-world sensor network
deployments.

Chapter 5: Hybrid Monitoring
This chapter presents a system for the estimation of the number of failure
events, e.g., communication failures, that happened inside a wireless low-
power network.

• We present a novel health monitoring system that estimates
the amount and location of failure events that happened inside
a network from the analysis of passively reconstructed packet
timing information. Concretely, per-hop timing information that is
provided by multi-hop network tomography is complemented with
one extra bit of information that is added to every packet inside the
network. Setting and transmitting the so called problem bit is the
only activity that happens inside the network, all other steps are
carried out after packets have been received at the sink.

• The performance of the novel system is evaluated in extensive
testbed experiments. In contrast to the sole analysis of passively
reconstructed per-hop timing information, we find the accuracy of
an exemplary runtime monitoring application to be significantly
improved by the single extra bit that is added to every packet.

2
Model-based Data Cleaning and

Order Reconstruction
More than a decade ago, researchers envisioned that future sensing
systems will consist of massive quantities of cubic-millimeter sized,
ubiquitous, wirelessly communicating sensor nodes [KKP99]. Fidelity
was not expected to be provided by high-precision components, but
by the correlation of many partially redundant, low to medium quality
measurements [ECPS02]. Anticipated networks of “smart dust” did not
yet become a reality, the design of cubic-millimeter sized devices recently
reappeared as an active topic of research [LBL+13].

Though actually existing mote platforms yet miss the anticipated
size and energy consumption of “smart dust” devices by orders of
magnitude, today’s wireless sensor networks have nevertheless proven
its applicability and usefulness in many real-world scenarios. Prominent
examples are the monitoring of an active volcano [WALJ+06], the
monitoring of geophysical processes in the mountains [HTB+08], and
the monitoring of old heritage buildings [CMP+09].

In contrast to the original vision, in many sensor network applications
the data samples of every single sensor and especially their integrity
indeed are of significance. Moreover, data must arrive ordered, sensors
are often calibrated, sensor network deployments and their maintenance
are labor-intensive and expensive.

For being able to further establish wireless sensor networks as a quality
instrument for observation and interaction, we find that the removal
of previously mentioned imperfections is not the duty of the final data
consumer, but needs to be solved before data is passed over to a user.
In this regard, this chapter presents a model-based approach for the
filtering of data that originates from multi-hop wireless sensor networks.
Packets are filtered based on a formal model of a wireless sensing system,

12 Chapter 2. Model-based Data Cleaning and Order Reconstruction

reconstructed sequencing information allows to totally order all packets
that passed the formal conformance test.

2.1 Introduction
Looking at a wireless data collection system, there are two major cases
that lead to degradation in data quality. First, data generated by
sensors and data acquisition equipment may suffer from noise, outliers
and inaccuracy due to effects like faulty calibration, stability of power
supplies, peculiarities of the system design and others [NRC+09]. Second,
artifacts originating from the wireless data transmission system may exist.
For example, when analyzing data from a real system [BGH+09] running
a highly resource-optimized, energy-efficient data collection protocol, we
have observed packet loss, packet duplication, inaccurate timestamps of
data generation and wrong packet ordering. Our observations match with
the reports of other researchers, i.e., Barrenetxea et al. [BISV08, BIS+08]
reported an average of 6.5% packet duplicates and up to 20% of lost
packets in comparable multi-hop scenarios, others report even worse
performance [TPS+05].

While incremental improvements of a system design lead to an
improved performance over time, we argue that offline data cleaning,
reconstruction and validation are overall valuable and even inevitable for
achieving data quality requirements. Firstly, it allows to clean historical
artifacts in data derived from, e.g., an initial, yet imperfect system version
that are not present in data collected using successive versions of a system.
This is very valuable since more sensor data can be utilized despite
early imperfections in the realization of a sensor system. Secondly, it
will always be the case that a number of situations are not anticipated
or accounted for in a system design, leading to sensor data quality
degradation or erroneous behavior in certain corner cases. Thirdly, even
an “optimal” system design may suffer from fundamental limits. For
instance, filtering out all packet duplicates in a streaming network is
not realistic due to extensive memory requirements [GFJ+09]. Likewise,
out of order packet arrivals can always occur in dynamic multi-hop
routing topologies, packet streams must thus be reordered at a higher
layer [SRC84]. Lastly, data integrity validation is a valuable tool even if a
system is designed and operating correctly.

While there has been extensive research for the first type of problems,
i.e., by using statistical methods [EN03], sensor fusion and intense
data analysis of the transmitted packet payloads [TPS+05], a systematic
approach for the second case described is still missing. Experience has
shown that typically users of sensor network data only apply means for
filtering of the transmitted packet payloads (i.e., based on data values)
and typically do not question the correctness of attributes such as packet

2.1. Introduction 13

header information – as we will argue important indicators of data quality.
We propose to use a two-stage process to improve the quality of data

collected in a sensor network. In the first stage, arriving packets are
processed by only using the application headers that have been attached
and accumulated during packet transmission, e.g., various timestamps,
sojourn times throughout the network and various sequence counters.
This stage allows to order measurements in the temporal domain,
relate measurements to a global notion of time, and to identify packet
duplications. In the second stage, data samples are processed using more
traditional methods that are typically established in the corresponding
application domain and act mainly based on the measurement values
themselves, e.g., outlier detection, filtering etc. This chapter covers the
first stage.

Verified
Data

Application
Domain
Filtering

Unfiltered
Data

Model-based
Testing and

Reconstruction

Non-conforming data

Science

{Inserted first stage {Second stage

Fig. 2.1 Two-staged process for improving sensor data quality. Arriving packets are first
processed by only using application headers before filtering based on sensor data values
is applied in the second stage.

In order to provide guarantees on the order of packets received, we
propose a model-based approach:

(a) The non-determinism of the overall transmission system including
data capture, local clock drifts, reboots, transmission errors, and
packet reordering is described in a formal model.

(b) The conformance of packets received with respect to the model is
verified. Non-conforming packets are marked as unreliable and
excluded from further data analysis.

(c) The correct packet sequence is obtained by using assumptions from
our formal model. Conforming packets are annotated with this new
sequencing information.

(d) Additional information on the generation of a packet is added
to conforming packets inferred from information of temporally
adjacent packets.

As an example of this approach, we consider a wireless sensor network
application that periodically samples data at a constant rate. Packets can
be stored in the network for an arbitrary amount of time. Sensor nodes
do not have a global notion of time, local clocks are not synchronized.
Generation times of packets are estimated at the sink by subtracting
the network sojourn time [KDL+06] from the absolute arrival time. The

14 Chapter 2. Model-based Data Cleaning and Order Reconstruction

formal model comprises four scenarios that are common to wireless sensor
networks: clock drift, packet duplicates, node reboots, and packet loss.

Based on this formal model, we propose a packet verification and
processing approach that provides guarantees on the logical ordering
of data. Data that conform to the model are annotated with ordering
information and bounds on the time of generation. Thereby, packet
duplicates as well as packets that do not conform to the formal system
model are marked as such.

The contribution of this chapter can be summarized as follows:

• We introduce an approach for improving data quality by (a)
providing a formal system model, (b) verifying conformance of
packets received to the model, (c) providing the correct packet
sequence, and (d) providing information on the generation of
packets inferred from temporally adjacent packets.

• We apply our method to more than 23 months of data from a real-
world deployment in an hostile environment. During this time, we
collected more than 30 million packets that carry sensor readings
and attached application headers.

• A case study is provided validating the usefulness of the proposed
intermediate packet processing step. In our validation, we find
that our approach successfully reconstructs the correct order of
packet data streams. Only a single violation is found when cross-
validating a sequence of more than 5 million packets with ground
truth from external storage recovered post-deployment. We argue
that the subsequent scientific analysis of the environmental data can
substantially profit. Here, we especially refer to the problem of not
falsely modeling artifacts which have been introduced by the data
collection system while designing and calibrating new models of
currently only partially understood physical processes.

The remainder of this chapter is organized as follows. An overview
of related work is given in Section 2.2. Section 2.3 provides a precise
description of the considered problem. In Section 2.4, we present a
formal model of a data collection application. Methods for analyzing
data originating from systems that conform to this formulated model are
presented in Section 2.5. In particular, we consider duplicate filtering, the
reconstruction of the generation sequence, and the improvement of timing
information of single packets by reasoning with interrelations of multiple
packets. For evaluating their performance and practical usefulness, these
algorithms are applied to a real data set in Section 2.6. An overview of
the broader applicability of our approach is given in Section 2.7.

2.2. Related Work 15

2.2 Related Work
Data quality and yield have been investigated by many researchers in the
community. In particular, literature gives many evidences for approaches
in which sensor readings were considered [SMP+04, TPS+05]. The users
of data typically remove data that exceeds a threshold given by the
sensor specification or identify outliers by applying statistical methods.
Orthogonal to work on data cleaning, several data transmission protocols
have been evaluated on a very detailed level. But, to the best of our
knowledge, this is the first work that approaches data cleaning with a
comprehensive formal model of a data collection system that considers
a whole set of interacting transmission artifacts. Here, data cleaning
is based on application headers gathered during packet generation and
forwarding. Our work does not intend to replace the processing of sensor
readings. Instead, we propose to add the preceding stage of logical and
temporal data filtering before data are finally processed based on the
measured physical values.

The problem of reconstructing the temporal order of events has
been tackled from different perspectives. First, total message ordering
in distributed systems can be achieved using a logical concept of
time [Lam78, Mat89]. However, logical time is not sufficient in WSN
applications that need to relate events in the physical world [ER03].

Time synchronization protocols such as FTSP [MKSL04b] have
been proposed for establishing a global, synchronized time within the
sensor network. Ideally, recorded packet generation times immediately
represent the temporal order of generation. However, Werner-Allen
et al. [WALJ+06] reported problems with FTSP in the field. Besides of
an reported software bug, especially unstable (wireless) network links
caused significant time offsets in the range of hours. More generally,
the necessity of stable network links for synchronization is unfortunate
for applications that must tolerate high delays and long periods of
disconnected operation. For instance, environmental extremes such as
ice and snow can force sensor nodes to remain disconnected for several
weeks or even months [MOH05].

Non-applicability of network time synchronization protocols has been
addressed by the idea of data driven time synchronization. Lukac et al.
[LDCE09] use microseismics to reconstruct time information, Gupchup
et al. [GMEST09] developed a similar approach for reconstructing the
time from sunlight measurements.

Phoenix [GCME+10] is another recent work dealing with offline time
reconstruction. For tackling the problem of sensor nodes losing their local
(clock) state due to frequent reboots, the authors propose to exchange time
information within the sensor network. An offline algorithm is used to
reconstruct global timestamps from this information afterwards.

The work presented in this chapter differs from previous work in
two aspects. First, our explicit reconstruction of the generation sequence

16 Chapter 2. Model-based Data Cleaning and Order Reconstruction

does not solely rely on either temporal or logical order information, but
involves both. This allows us not only to relate events to the physical
world, but also to reconstruct causalities in the presence of possibly
inaccurate time information. Second, the presented approach does not
filter packets based on sensor readings, but on their (non)conformity to a
formal model of a real data collection application. For that purpose, we
integrated several aspects of data transmission into a single model.

2.3 Packet Classification and Order Reconstruction
Two basic questions are being answered: What are models able to cover
the non-deterministic behavior of packet capture and transmission in
highly dynamic sensor networks? What are methods that can be used
to classify packets received according to their conformance to the model
and to reconstruct the correct packet order?

As an example of the overall approach we consider a network of
sensor nodes that periodically generate packets. A received packet can be
described by the tuple {o, s, d, t̃s, tb} consisting of the sender address o, the
packet sequence number s, the payload d, the estimated network sojourn
time t̃s, and the absolute time of arrival at the sink tb. Under a model that
covers clock drift, packet duplicates, node reboots and packet loss, packets
are classified according to their conformance to the system model. Valid
packets are annotated with additional information idN, tl

g and tu
g. Here,

idN represents the temporal order of generation at the source node o := N,
tl

g and tu
g denote upper and lower bounds on the packet generation time.

2.4 System Model
In this section, we introduce a formal model of a sensor network for data
collection. Assumptions made are chosen as realistic as possible, but
must also contain certain abstractions for providing a solid base needed
for deriving correct algorithms in the following Section 2.5. Errors in the
assumptions made will lead to a higher amount of data from the real
system being non-conforming with respect to the formal model. This is
not a particular problem of our model, but a known drawback of modeling
in general.

A sensor network for data collection consists of multiple sensor nodes
and a sink. For modeling purposes, we abstract a sensor node as a device
that offers two services: Packet capturing, i.e., the actual sampling of
sensors, and packet forwarding. Packet forwarding is active on all sensor
nodes, packet capturing is optional.

Table 2.1 provides a summary of the most important variables that
are used in the following. The notation used in this thesis assumes the

2.4. System Model 17

Clock and Sensor Node Model
t Current time on a perfect clock
tr Time on perfect clock at most recent node restart
τ Locally measured, imperfect time since most recent node restart
ρ̂ Worst-case clock drift

treset Minimum interarrival time of warm node restarts
i Internal, unlimited sequence counter

ioffset Offset of internal, unlimited sequence counter
smax Limit of visible packet sequence counter

T Sampling period
Packet Application Headers
o(k) Source node network address
s(k) Packet sequence number
t̃s(k) Estimated packet sojourn time

Hidden Packet Information
tg(k) Packet generation time
ρ(k) Clock drift during the corresponding sampling interval
Nk Packet path of packet k

Added on Arrival at the Sink
tb(k) Arrival time at the sink
t̃g(k) Estimated packet generation time

From Model-based Analysis
tu,l

g (k) Upper and lower bounds on the unknown packet generation time tg(k)
idN(k) Packet generation index reflecting the correct order of generation for packets

originating from node N

Tab. 2.1 Overview of system model variables

existence of an index that allows the unique identification of every packet
that arrived at the sink. One of many practical solutions to achieve this
is to simply number all packets that are included in a data set. Most
importantly, the identifiers k and l of a packet k and a duplicate l of k are
not equal, i.e., l . k.

2.4.1 Packet Capturing Service
A sensor network contains several sensor nodes that run the packet
capturing service. Each instance has the following properties:

• Every node has a source address that is unique in the sensor
network. We will use o(k) for referring to the sensor node whose
capture service generated a packet k.

• A local clock τ := (1+ρ)(t− tr) where ρ denotes the local clock drift, t
denotes the absolute time, and tr denotes the time of the most recent
restart of the node. The clock drift is bounded by ρ ∈ [−ρ̂, ρ̂]. Both t
and tr are measured on a perfect clock, none of both is visible to the

18 Chapter 2. Model-based Data Cleaning and Order Reconstruction

sensor node.
• Unplanned warm restarts occur non-deterministically with a

minimal interarrival time of treset.
• Each instance maintains a sequence counter i. The sequence

counter is an abstract variable that represents the packet generation
sequence. We define the size of i as large enough so that i will never
overflow. The sequence counter is initialized exactly once to i := 0.
After i has been initialized, it supports only reading the current
value of i or to increment the value of i by 1.

• Each instance maintains a sequence counter offset ioffset. This second
abstract variable has the same size as the sequence counter. Once
ioffset has been initialized to ioffset := 0, the value of ioffset can only be
read or set to ioffset := i.

• The sampling period is denoted by T. If τ mod T ≡ 0, a packet k of
the form {o(k), s(k), d(k)} with the source address o(k), a sequence
number s(k), and sensor data d(k) is generated. The sequence
number is set to

s(k) := (i − ioffset) mod smax (2.1)

where smax bounds the transmitted sequence number. The space
for storing and transmitting the sequence number s(k) in a packet is
limited, thus the sequence number over-rolls every smax. After the
generation of the packet, i is incremented by 1, i.e., i := i + 1.

• Due to major faulty behavior, i.e., power failures, cold restarts can
occur. Contents stored in volatile memory, i.e., SRAM, are lost
after a cold restart. Since certain types of non-volatile memory, i.e.,
NOR, are not designed for storing frequently changing data, we
assume sequence information and packet queues being stored in
volatile memory. Thus, a cold restart resets the local clock to τ := 0
and the sequence number of the next packet k to s(k) := 0. Our
model abstracts the reset of the sequence number s(k) by setting the
sequence counter offset ioffset to ioffset := i. The different behaviors of
the model on warm and cold restarts are shown in Table 2.2.

Let us now explain the motivation for the above specification of a
packet capturing service. It should generate a packet every T time units,
but the time interval T is measured on the local clock and therefore subject
to the current clock drift ρ ∈ [−ρ̂, ρ̂]. Using the above model, we can see
that for constant reference time tr and the generation time tg(l) of the
immediate predecessor l the absolute capturing time tg(k) of a packet k is
given as follows:

tg(k) := tg(l) +
T

1 + ρ(k)
(2.2)

Sensor nodes can restart during operation. This can either be planned,
i.e., a reset button push, or unplanned, i.e., the software watchdog

2.4. System Model 19

After packet capture: After warm restart: After cold restart:

i := i + 1 tr := t tr := t
⇒ τ := 0 ioffset := i

⇒ τ := 0

⇒ s(k) := 0

Tab. 2.2 The state of the local clock is lost on restarts. Additionally losing SRAM contents in
case of a cold restart also causes the sequence number of the next packet k to be reset to
s(k) := 0.

resetting the sensor node due to an overrun of the task queue [KBM+09].
At this point in time, the clock state is lost and starts again at τ := 0. In
the case of a restart, sensor nodes immediately continue sampling after
initialization. As a consequence, considering sequence counter value i−1
immediately before, and i just after a restart, the time difference between
the corresponding packets k and l can be much smaller than the sampling
period T. As a restart may occur directly after the generation of a packet,
we find

0 < tg(k) − tg(l) ≤
T

1 + ρ(k)
(2.3)

2.4.2 Forwarding Network
Sensor nodes interact in a forwarding network that transmits packets to a
sink using multi-hop routing. The sink S immediately processes arriving
packets, it is the only component of the sensor network that has a global
notion of time, the clock of the sink is perfect. We model the forwarding
network as follows:

• It immediately reads every packet {o(k), s(k), d(k)} that has been
generated by a sensor node that runs the capturing service.

• A packet k is delivered to the sink S after a sojourn time ts(k).
• The forwarding network can duplicate packets arbitrarily, i.e., it can

generate an arbitrary number of copies from {o(k), s(k), d(k)}. These
packets are forwarded independently from each other.

• It can delete packets arbitrarily, i.e., a packet {o(k), s(k), d(k)} is
removed and not delivered to the sink S.

• The forwarding network augments captured packets with infor-
mation about the transmission. It outputs packets of the form
{o(k), s(k), d(k), t̃s(k), tb(k)} where {o(k), s(k), d(k)} was the captured
packet, t̃s(k) is an estimate of the sojourn time ts(k) and tb(k) is the
absolute time of arrival at S. The estimated sojourn time t̃s(k) satisfies

(1 − ρ̂) · ts(k) − ĥ · t̂u < t̃s(k) ≤ (1 + ρ̂) · ts(k) (2.4)

where ρ̂ is the bound on the local clock drifts. With t̂u as the clock
resolution of the local clock, sensor nodes measure time differences

20 Chapter 2. Model-based Data Cleaning and Order Reconstruction

with an uncertainty in the interval (−t̂u, 0]. This uncertainty is
introduced per hop, the maximum number of hops towards the
sink is denoted by ĥ.

Again, let us now provide the motivation for the above model of
the (packet) forwarding network. The sensor nodes are organized in
a dynamic multi-hop tree topology where packets are transported over
multiple hops until they are finally received by the sink S.

During a one-hop communication, the receiving node sends a receipt
to acknowledge the transmission over one hop. A packet is retransmitted
as long as the acknowledgement of the next hop did not arrive
within an expected time frame. Packet duplicates are generated if an
acknowledgement was not received although the transmission of the
packet itself was successful.

Furthermore, packet loss is also a well-known problem in the context
of real-world applications. For instance, pending packets waiting for
transmission are lost if the contents of the local packet queue of a sensor
node are (fully or partially) lost due to a cold restart. As another example,
packets may also be dropped if the limited local packet queue is full.

Capturing
Service

Forwarding
Service

Sensor Node
S

M

K

L

Nk = {N, M,K, L, S}

N

Fig. 2.2 Travel of a packet k that was generated at sensor node N. The packet is processed by all
sensor nodes in Nk before it is finally received by the sink.

The sojourn time ts(N, k) is the time that packet k spent in the packet
queue of some sensor node N of the forwarding network. We define Nk as
the set of nodes that process a packet k during its travel from its source to
the sink. Figure 2.2 describes the exemplary travel of a packet from node
N to the sink S. The total sojourn time ts(k) of a packet is thus calculated
as

ts(k) :=
∑
N∈Nk

ts(N, k) (2.5)

During packet transmission, the sensor nodes accumulate the sojourn
times between packet reception and transmission. These times are
determined using the local clocks which have a bounded drift. Therefore,
at the sink there is only an estimate t̃s(k) of the sojourn time ts(k) for each
packet available which is

t̃s(k) :=
∑
N∈Nk

t̃s(N, k) (2.6)

2.5. Data Analysis 21

where t̃s(N, k) is the locally determined estimate of the sojourn time of
packet k in node N. Considering uncertainties due to the drift as well as
the resolution of the local clock, we have t̃s(N, k) ∈ ((1− ρ̂) · ts(N, k)− t̂u, (1+

ρ̂) · ts(N, k)]. The resulting interval for t̃s(k) is presented in (2.4).

2.5 Data Analysis
The goal of the analysis is 1) to identify and exclude packet duplicates, 2)
to test the conformance of packets received to the specified system model,
3) to exclude packets that are not conforming, and 4) to annotate the data
set with additional information that provide the correct packet sequence.

The analysis consists of four steps that are explained in more detail in
the following sections. The presented sequence is inferred from the order
in which the data set must either be annotated with extra information or
reduced in its size for fulfilling the assumptions of subsequent steps:

• The time interval in which a packet has been generated is initially
calculated for all packets.

• Packet duplicates are removed from the data set. The goal of
duplicate filtering is to maximize the number of accepted packets
while guaranteeing that all duplicates are removed.

• An epoch assignment algorithm is applied to the filtered data. As-
signing packets to so called “epochs” is a method for reconstructing
the temporal order of packet generation based on application header
information.

• Generation time intervals of ordered and filtered packets are further
improved by forward and backward reasoning.

2.5.1 Packet Generation Time Intervals
The estimated packet generation time t̃g(k) is given by subtracting the
estimated sojourn time of a packet t̃s(k) from the arrival timestamp tb(k).

t̃g(k) := tb(k) − t̃s(k) (2.7)

We have to resort to estimates of the packet generation time
as information to reconstruct the exact generation time is missing.
Concretely, the value of the local clock τ on packet generation and
involved clock drifts ρ(k) while a packet travels through the forwarding
network are not known at the sink. From the perspective of the perfect
clock at the sink, we get the estimation error

tg(k) − t̃g(k) ∈

− t̃s(k) · ρ̂ + ĥ · t̂u

1 − ρ̂
,

t̃s(k) · ρ̂
1 + ρ̂

 (2.8)

22 Chapter 2. Model-based Data Cleaning and Order Reconstruction

This equation firstly addresses the introduced worst-case error of
measuring the packet sojourn time t̃s(k) on local clocks with drift.
Secondly, ĥ · t̂u describes the worst-case error when accumulating time
measurements of at most ĥ sensor nodes with an uncertainty of (−t̂u, 0]
per hop. Based on these bounds, we can determine the valid range of the
packet generation time tg(k)

tg(k) ∈ [tl
g(k), tu

g(k)] (2.9)

where

tu
g(k) := tb(k) −

t̃s(k)
1 + ρ̂

(2.10)

tl
g(k) := tb(k) −

t̃s(k) + ĥ · t̂u

1 − ρ̂
(2.11)

In Section 2.5.4, we will introduce forward and backward reasoning for
improving tu

g(k) and tl
g(k).

2.5.2 Duplicate Filtering
The goal of the duplicate filtering step is to remove all packet duplicates
from a data set. Packet duplicates are packets that are equal with at least
one other packet in terms of the following three properties: 1) Packet
duplicates have the same source address o(. . .), 2) packet duplicates
have the same sequence number s(. . .), and 3) packet duplicates have an
equal payload d(. . .). Since packet duplicates travel through the network
independently, they may have different estimated sojourn times t̃s(. . .),
but they will have overlapping generation time intervals [tl

g(. . .), tu
g(. . .)].

Based on this definition, we now explain our duplicate filtering
mechanism. Here, we consider a subset D of the whole data set that only
includes packets with an equal source address o(. . .), an equal sequence
number s(. . .) and equal payloads d(. . .). It becomes apparent, that any
possible subset with these properties can be handled independently. The
subset is duplicate-free, if all included packets have disjoint generation
time intervals [tl

g(. . .), tu
g(. . .)].

For finding duplicate-free subsets, we consider the problem of finding
the maximum independent set of a graph. We consider a graph G := (V,E)
with the set of vertices V and the set of edges E. In short, the maximum
independent set I of G is the largest subset I ⊆ V that contains only
vertices that are not connected to any other vertex of the subset I. For our
application, each packet being member of D is represented by a vertex
v ∈ V. Two vertices v and w are connected by an edge (v,w) ∈ E, if the
corresponding packets have overlapping generation time intervals:

(v,w) ∈ E⇔ (tu
g(v) ≥ tl

g(w)) ∧ (tu
g(w) ≥ tl

g(v)) (2.12)

In summary, duplicate filtering starts with separating a data set into
subsets of a fixed originator o(. . .), a fixed sequence number s(. . .), and a

2.5. Data Analysis 23

fixed payload d(. . .). All subsets are analyzed independently. Firstly, the
corresponding graph G of the subset is constructed. Then, we employ
a standard algorithm [Lub85] for finding a maximum independent set I.
Packets that correspond to a vertex v ∈ I are kept, packets corresponding
to a vertex v ∈ V \ I are marked as packet duplicates and not considered
in the further analysis.

Without further assumptions on the analyzed data set, it is not possible
to avoid packets falsely being marked as duplicates. Firstly, we do
not state any restrictions on the payload d(. . .). Thus, the payload can
also be constant for an arbitrary number of packets without any packet
duplications being involved. Secondly, a power failure can lead to two
consecutively generated packets k and l having an equal sequence number
s(k) ≡ s(l) ≡ 0. Concerning the trade-off between accepting false positives
and accepting false negatives, our superior goal of ensuring a duplicate-
free data set allows us only to tolerate packets being falsely removed.
From now on, we suppose that the packet streams are free of duplicates.

2.5.3 Epoch Assignment
In this section, we present and proof the core foundations of our proposed
packet sequence reconstruction step. We propose to assign packets
to epochs for reconstructing their temporal order of generation. The
following analysis first supposes that there are no cold restarts which
re-initialize the sequence number with ioffset := i, only warm restarts that
reset the timer of the capturing service are allowed. The effect of cold
restarts will be discussed at the end of the section.

Considering data from a single sensor node, we are now briefly
explaining the concept of separating data into epochs:

• All packets being generated between two consecutive resets of the
sequence number s(k) := (i − ioffset) mod smax belong to the same
epoch. An epoch embraces up to smax sequentially generated
packets, any two packets belonging to the same epoch have
disjoint packet sequence numbers s(k). More precisely, subsequently
generated packets k(0), k(1), k(2), . . . , k(L−1) belong to the same epoch if
s(k(0)) ≡ 0, s(k(j)) ≡ j for all 0 ≤ j < L, and s(k(L)) ≡ 0.

• Epochs are labeled with an incrementing index, i.e., e ∈N, the index
of the corresponding epoch of a packet k is denoted by e(k).

From this definition of an epoch, we can derive the following
statement: The epoch numbers e(k) and e(l) of two packets k and l
satisfy (e(k) < e(l)) ∨ ((e(k) ≡ e(l)) ∧ (s(k) < s(l))) if and only if k was generated
before l, i.e., tg(k) < tg(l).

We will now provide a method to assign packets uniquely to epochs
which leads to a total order according to the previous theorem. The main

24 Chapter 2. Model-based Data Cleaning and Order Reconstruction

concept is based on the notion of the “epoch center” Tc(k) of a packet k
which is computed offline according to

Tc(k) := t̃g(k) − s(k) · T (2.13)

where t̃g(k) := tb(k)− t̃s(k) denotes the estimated generation time of packet
k. In order to explain the concept, let us first suppose that there are no
restarts, no measuring inaccuracies of time differences and no clock drifts.
Then, the estimated generation time of a packet equals the actual one, i.e.,
t̃g(k) ≡ tg(k), and the time difference between subsequent packets is T.
Therefore, Tc(k) ≡ Tc(l) holds for all packets of an epoch e(k) ≡ e(l), i.e.,
all packets of an epoch have the same “epoch center”. Using the above
assumptions, the time difference between subsequent “epoch centers” is
simply smax · T.

Of course, node restarts and clock drifts will change the above scenario
as (a) the virtual “epoch centers” of packets belonging to one epoch are
not equal and (b) the time differences between subsequent epoch centers
are not smax · T anymore.

The concept of the epoch assignment algorithm can be described as
follows: All packets whose “epoch centers” are close enough are assigned to
the same epoch, whereas packets whose “epoch centers” have a large distance
are assigned to different epochs. The following two theorems that allow for
warm restarts formalize the above notions.
Theorem 2.1. All packets k, l that belong to the same epoch, i.e., e(k) ≡ e(l),
satisfy

|Tc(k) − Tc(l)| ≤ ∆Tc (2.14)

where

∆Tc := (smax − 1)(ρ̂T + T − T′) + T′ + 2ρ̂tmax
s (2.15)

where tmax
s is an upper bound on the network sojourn time, i.e., ts(k) ≤ tmax

s and

T′ :=
1(

1 + ρ̂
)
/T + 1/treset

(2.16)

Proof. For two packets of the same epoch, we find

Tc(k) − Tc(l) = t̃g(k) − t̃g(l) − s(k) · T + s(l) · T (2.17)
≤ tb(k) − tb(l) − (1 − ρ̂)ts(k)

+ (1 + ρ̂)ts(l) − s(k) · T + s(l) · T
≤ (tg(k) − s(k) · T) − (tg(l) − s(l) · T) + 2ρ̂tmax

s

Neglecting second order drift influences, we can upper bound the first
term as

tg(k) − s(k) · T = tg(m0) + s(k)
T

1 − ρ̂
− s(k) · T (2.18)

≤ tg(m0) + (smax − 1)ρ̂T

2.5. Data Analysis 25

where m0 denotes the first packet of the epoch. The lower bound on the
second term is obtained by a packet generation that is as fast as possible.
In other words, we first need to determine a lower bound B on time
difference between smax packets. As we know, the minimal interarrival
time of unplanned warm restarts is treset and at each restart, the generation
clock is reset and a packet is generated. As a result, B can be determined
as the smallest value that satisfies

B ≥
(
smax − 1 −

⌈ B
treset

⌉) T
1 + ρ̂

(2.19)

≥

(
smax − 2 −

B
treset

) T
1 + ρ̂

Solving this equation for B and using the abbreviation

T′ :=
1(

1 + ρ̂
)
/T + 1/treset

(2.20)

yields a lower bound

B := (smax − 2)T′ (2.21)

Now we can use this bound in order to determine

tg(l) − s(l) · T ≥ tg(m0) + (smax − 2)T′ − (smax − 1)T (2.22)

As a result, we find now

Tc(k) − Tc(l) ≤ (smax − 1)(ρ̂T + T − T′) + T′ + 2ρ̂tmax
s (2.23)

which finishes the proof.

�

Theorem 2.2. Suppose that the generation period T satisfies

T > 2(1 + ρ̂)
∆Tc

smax
(2.24)

Then all packets k, l that belong to different epochs, e.g., e(k) < e(l), satisfy

Tc(l) − Tc(k) > ∆Tc (2.25)

where ∆Tc is defined in Theorem 2.1.
Proof. The proof uses results from the proof of Theorem 2.1. In particular,
we know that

Tc(k) − Tc(l) ≤ (tg(k) − s(k) · T) − (tg(l) − s(l) · T) + 2ρ̂tmax
s (2.26)

If e(l) ≡ e(k) + 1, then we can not use the same reference time tg(m0) of the
first packet of the common epoch anymore. Instead, the reference points
of packets k and l differ by at least smax · T/(1 + ρ̂). Therefore, we find

Tc(k) − Tc(l) ≤ −smax
T

1 + ρ̂
+ ∆Tc (2.27)

26 Chapter 2. Model-based Data Cleaning and Order Reconstruction

By using Tc(l) − Tc(k) > ∆Tc we finally obtain

smax
T

1 + ρ̂
> 2∆Tc (2.28)

which leads to the condition in the theorem.

�

The condition on the nominal generation period T in Theorem 2.2
involves the maximal sojourn time of packets tmax

s . Therefore, given a
generation period T, the minimal restart time interval treset, the maximal
clock drift ρ̂, and the maximal sequence number smax, one can determine
an upper bound on the sojourn time of packets which would allow for an
epoch assignment based on the above theorems:

tmax
s <

1
2ρ̂

(
smax · T
2(1 + ρ̂)

− (smax − 1)(ρ̂T + T − T′) − T′
)

(2.29)

This bound can be used to mark (or remove) packets that cannot be
assigned to epochs due to their sojourn time.{ �Tc > �Tc

Tc(. . .)

{ {

t

 �Tc

e(. . .) = 1 e(. . .) = 2

x
invalid

Fig. 2.3 Assignment of packets to epochs. Epoch centers Tc(k) and Tc(l) of packets k and l of the
same epoch must lie within ∆Tc, see (2.14). In turn, epoch centers Tc(k) and Tc(l) of two
packets k and l that belong to disjoint epochs must be at least ∆Tc apart from each other,
see (2.25).

The two theorems also allow to classify packets that do not conform
to the system model. In particular, suppose that we look at three packets
k, l, and m where Tc(k) − Tc(l) ≤ ∆Tc and Tc(l) − Tc(m) ≤ ∆Tc. In this case,
k, l, and m need to belong to the same epoch due to Theorem 2.1. But if
Tc(k)−Tc(m) > ∆Tc, then k and m can not belong to the same epoch due to
Theorem 2.2 which is a contradiction. The following Algorithm 2.1 uses
this fact to mark or remove such packets.

The question arises, why packets could violate Theorems 2.1 and 2.2.
As described in the formal model, there may be cold restarts, i.e., a restart
that also causes a reset of the sequence number. In this case, epochs
contain a smaller number of packets, and therefore, may have a smaller
distance in time. Using the proof of Theorem 2.2, we can infer that the
minimal distance between two epochs, i.e., the timing distance of a cold
restart from the beginning of an epoch, needs to be larger than 2 · ∆Tc in
order to guarantee a sufficient separation of epochs.

At first, all packets that do not satisfy the bound on the sojourn time in
(2.29) are removed. The estimated epoch centers Tc(k) are calculated for all
packets. Algorithm 2.1 firstly checks for packets that violate Theorems 2.1

2.5. Data Analysis 27

Algorithm 2.1: Annotation of epoch e(k) and index idN(k) to all packets k. pop()

returns the next packet from the ordered data set, or false if all packets have been

pulled.
input : Packets of a single node N, ordered by increasing Tc(k)
output: Packets with annotated epoch e(k) and index idN(k)

1 begin
2 epoch←− 0 ; l←− pop() ; f ←− l ;
3 while k←− pop() do
4 if Tc(k) − Tc(f) > ∆Tc then
5 if Tc(k) − Tc(l) ≤ ∆Tc then
6 mark packet k as non-conforming ; continue ;
7 else
8 epoch←− epoch + 1 ; f ←− k ;
9 end

10 end
11 e(k)←− epoch ; idN(k)←− epoch · smax + s(k) ; l←− k ;
12 end
13 end

and 2.2. Non-violating packets are then annotated with the index of the
corresponding epoch e(k) and an index idN(k) which reflects the ordering
of packets, i.e., it satisfies idN(k) > idN(l) if tg(k) > tg(l). After executing
Algorithm 2.1, all packets that have the same index idN(. . .) and epoch
e(. . .) also need to be marked as non-conforming.

2.5.4 Forward and Backward Reasoning
In Section 2.5.1, we introduced tu

g(k) and tl
g(k) as upper and lower bounds

of the valid range of the unknown, perfect packet generation time tg(k).
The goal of the presented forward and backward reasoning is to refine
these time intervals by exploiting the sequence information provided by
the index idN(. . .) computed in the previous section. This way, we take
into account sequence and timing information of the whole packet stream.

For the following discussion, we suppose that packets are processed
separately based on their equal origin o(k) := N. The basis for the
algorithm are bounds on the time difference between the generation of
packets k and l with idN(k) < idN(l)

0 < tg(l) − tg(k) ≤ (idN(l) − idN(k))
T

1 − ρ̂
(2.30)

where the lower bound is due to the possibility of node restarts and
the upper bound is due to a slow clock at the sensor node. Now, we
can tighten the upper and lower bounds by applying the above relation
iteratively for all packets.

The tightening algorithm applies (2.30) iteratively starting from the
initial upper and lower bounds, see (2.31)-(2.34). Note that the upper and
lower bounds are treated independently. In addition, we need only one

28 Chapter 2. Model-based Data Cleaning and Order Reconstruction

pass for each iteration. For the lower bounds, the iteration finished if
we execute firstly (2.31) in the order of the increasing packet generation
index idN(. . .) and then (2.33) in the order of the decreasing index
idN(. . .). Likewise, the improved upper bounds are determined after
firstly executing (2.34) in the order of the decreasing packet generation
index idN(. . .) and then (2.32) in the order of the increasing index idN(. . .).

(Forward reasoning)

tl
g(k) := max

(
tl

g(k), tl
g(m)

)
(2.31)

∀l ∈ L : tu
g(k) := min

(
tu

g(k), tu
g(l) + (idN(k) − idN(l))

T
1 − ρ̂

)
(2.32)

with L := {l | idN(l) < idN(k)} and
m := arg max

x
idN(x) ≡ idN(k) − 1

(Backward reasoning)

∀l ∈ L : tl
g(k) := max

(
tl

g(k), tl
g(l) − (idN(l) − idN(k))

T
1 − ρ̂

)
(2.33)

tu
g(k) := min

(
tu

g(k), tu
g(m)

)
(2.34)

with L := {l | idN(l) > idN(k)} and
m := arg max

x
idN(x) ≡ idN(k) + 1

If we use this order of execution, then in (2.31) and (2.34) we only need
to take the nearest neighbor into account. In addition, no fixed point
iteration is necessary. Let us show this for tl

g(. . .) only, as the other case
can be handled similarly.

Obviously, after the forward phase, we have tl
g(k) ≤ tl

g(l) for all l
with idN(l) > idN(k), and after the backward phase, (2.33) holds for all
packets k. Therefore, we only have to show that tl

g(k) ≤ tl
g(l) for all

l : idN(l) > idN(k) still holds after the backward phase. Suppose that
this is not the case, i.e., there exist some k and l with idN(l) ≡ idN(k) + 1
such that tl

g(k) > tl
g(l). Then there must exist a packet m with idN(m) >

idN(k) which increased the bound for k in the backward phase to the
new (larger) value, i.e., tl

g(k) = tl
g(m) − ∆1 for some positive value ∆1.

idN(m) ≡ idN(k) + 1 ≡ idN(l) is not possible as tl
g(l) < tl

g(k) and therefore,
we have idN(m) > idN(l). Therefore, during the backward phase, packet
m also may have changed packet l: tl

g(l) ≥ tl
g(m) − ∆2 for some positive

value ∆2. As idN(m) − idN(k) > idN(m) − idN(l) we have ∆1 > ∆2. Now,
we can write tl

g(k) = tl
g(m) − ∆1 < tl

g(m) − ∆2 ≤ tl
g(l) which contradicts the

assumption.
If after the execution of the algorithm there are packets k with

tu
g(k) < tl

g(k), those packets will be marked as non-conforming and
removed. After that, the tightening algorithm is applied again. This
way, we finally achieve a packet stream that is conforming to the formal
model.

2.6. Case Study 29

2.6 Case Study
The PermaSense project [HTB+08] strives for modeling physical processes
related to high-alpine permafrost that have previously only been partly
understood by the environmental science community. For verifying new
physical models, considerable volumes of highly accurate measurements
collected over a multi-year period are necessary. Observations are
typically taken at remote locations that offer no existing infrastructure.
Furthermore, extremely harsh environmental conditions, especially ice
and snow, allow to visit the field locations only within a certain time
period of the year. Here, the approach is to deploy highly energy-
optimized wireless sensor nodes that are designed for a reliable operation
under these conditions. For highest data quality, a purpose-built
sensor interface board is used to interface expensive high-precision
instruments [BGH+09].

Arrival time at the sink
2009 2010

0

10e6

20e6

30e6

B)A) C)

(a) Total number of packets

Arrival time at the sink
2009 2010

0

4e4

8e4

12e4

B)A) C)

(b) Number of packets per day

Fig. 2.4 Number of packets received at the sink of the multi-hop network. Each packet carries a
number of sensor readings and application headers. The three analyzed phases of the
PermaSense Matterhorn deployment are denoted with A) to C).

For this case study we consider a data set that consists of more than
30 million packets that have been gathered during a 23 month period.
Each packet carries a number of sensor readings and packet header data.
Within the observed time span, the deployment consisted of up to 19
sensor nodes and a single sink. There are five different packet types that
include the same set of application headers, but different types of sensor
readings. The system is designed to generate a packet of each type every
two minutes. These five packets are generated in immediate succession
one after the other, an individual, local timestamp and a unique sequence
number are added to every packet immediately after generation. A multi-
hop data collection protocol [BvRW07] is used to transport the data from
the sensor nodes to the sink where the accumulated sojourn time of each
packet and the absolute reference time of the sink are used to calculate
the generation time of the packet.

The PermaSense deployment used in this case study has been initially
set up in July 2008. The time from July 2008 until May 2010 can be

30 Chapter 2. Model-based Data Cleaning and Order Reconstruction

Unfiltered
Data

Five packet types

Simple
Heuristic

Algorithm 2.2

Sequence Test
Algorithm 2.3

Sequence Test
Algorithm 2.3

of sequence
violations

?= 0

of sequence
violations

Duplicate Filtering

Epoch Assignment

I)
II)

III)

Model-based Approach

Fig. 2.5 Case study validation strategy. We verify and compare the correctness of the packet
sequences resulting from applying the model-based approach and a simple heuristic to
the data set. Packet sequences are validated by a model of the behavior of the node
uptime measurement. This measurement is included in health packets, one out of five
packet types. Algorithm 2.3 returns the number of sequence violations based on this
model, ideally this should always be zero. We validate results on the whole packet stream
with Algorithm 2.3, the results on the deployment phases B) and C) are additionally
cross-validated with ground truth from recovered external storage. Annotations I) to
III) correspond to probes that we add for reference in the remainder of this chapter.

split into three different deployment phases that can be characterized by
different system behaviors. We will exploit this history for evaluating
the performance of our model-based approach in the following three
scenarios: A) Highly non-conforming system behavior, B) sensor nodes
subject to a high frequency of unplanned warm restarts, and C) more
than one third of the collected data experiencing transmission delays of
several hours to days.

In more detail, the first four months of the deployment were mainly
determined by initial tests of new hardware and software. Artifacts
of this non-conforming system behavior during phase A) are shown in
Figure 2.4(b). The number of packets received per day is varying over
time, the total number of packets received during this phase violates
system specifications. Learning from problems caused by outages of the
sink on site and the database server in the backend, the installed sensor
nodes were completely replaced by new sensor nodes with additional
external storage to accommodate sensor data backups in November 2008.
In March 2009, an initial data analysis identified a severe software problem
that caused all sensor nodes to restart up to 40 times per day [KBM+09].
The resulting long-term effect of “dying” sensor nodes is observable in the
drop of the packet reception rate at the end of phase B), see Figure 2.4(b).
This issue was fixed by installing a new sensor node software image in
September 2009. In the following phase C), lack of enough solar power
at the sink node often led to a nightly power cut-off at the sink. Sensor
data packets were buffered in the network for the duration of the power
outage and then flushed in burst mode to the sink upon restoration of
the network topology. The resulting bursty behavior is also observable in
Figure 2.4(b). While certainly an undesired behavior, the unique system

2.6. Case Study 31

design of Dozer [BvRW07] allowed such long-term operation with only
little extra energy cost and no observed data loss.

For clarity and brevity, we limit our case study to the analysis of only
one out of five packet types, namely health packets. Extending our system
model to support five packets being generated in each sampling period
is straightforward. However, limiting this case study to only one single
packet type facilitates a clear understanding of the core features of our
approach.

After giving a short overview of our implementation of the model-
based approach used during this case study, we introduce a simple
heuristic that is used as a reference for evaluating the performance of
our model-based filtering approach. Then, we introduce the number of
sequence violations as metric for quantifying the correctness of a packet
sequence. We then evaluate the performance in terms of accepted packets
and the correctness of the retrieved packet sequence. The entire packet
sequence validation strategy is depicted in Figure 2.5. An evaluation
of the achieved gain by applying forward and backward reasoning
concludes this case study.

2.6.1 Case Study Implementation
The results shown in this case study are based on a MATLAB
implementation of the algorithms presented in Section 2.5. For processing
our data set with the model-based approach, we use the parameter set
which is shown in Table 2.3. The analysis runs on a standard PC system,
data is currently fetched from an external MySQL database server. After
neglecting the time spent for fetching the data from the database server,
the execution time for analyzing the whole data set is less than one hour
on a single processing core.

PARAMETER VALUE

Sampling period T 120 sec
Maximum clock drift ρ̂ ±60 ppm
Clock resolution t̂u 1 sec
Maximum hop distance ĥ 4
Restart interarrival time treset 0.6 hours
Packets per epoch smax 216

Tab. 2.3 PermaSense system parameters

2.6.2 Comparison to a Simple Heuristic
In this case study, we evaluate the performance of our model-based
approach using three metrics: 1) Packet acceptance rate, 2) correctness
of retrieved packet sequence and 3) improvement of generation time

32 Chapter 2. Model-based Data Cleaning and Order Reconstruction

intervals by applying forward and backward reasoning. We evaluate
the first two metrics using a comparison with a simple heuristic for
retrieving an ordered packet sequence. The third metric will be evaluated
standalone.

Algorithm 2.2: Simple heuristic for finding a packet sequence that is ordered by

the packet sequence number. pop() returns the next packet from the input data set,

or false if all packets have been pulled.

input : Packets of a single node, ordered by ascending t̃g

output: Set of packets R, ordered by packet sequence number

1 begin
2 R←− ∅ ; l←− pop() ;
3 while k←− pop() do
4 if s(k) > s(l) or s(l) − s(k) > 0.8 · smax then
5 R←− R ∪ {k} ; l←− k ;
6 end
7 end
8 end

Algorithm 2.2 implements a simple heuristic for retrieving a packet
sequence that is ordered by the packet sequence number. The
algorithm uses a best effort approach to detect overflows of the sequence
number counter, the sequence number is strictly increasing between two
subsequent overflows. A packet sequence number overflow is assumed
if the sequence number of a following packet is smaller than the sequence
number of its predecessor. Setting the threshold for detecting an overflow
to 0.8 · smax allows to detect an overflow in the presence of a considerable
amount of packet loss.

2.6.3 Counting Sequence Violations
We now explain how we evaluate the correctness of a packet sequence.
For that purpose, we introduce the metric of sequence violations which
corresponds to the number of conflicting packets when comparing a
packet sequence under test with a baseline.

For the validation of this case study, we recovered external storage
cards containing duplicate sensor data packets for obtaining the ground
truth of the packet sequence. The data recovered from external storage
spans from November 2008 to May 2010 which allows us to evaluate
two of three deployment phases with this method. We derive from
our system specification that packets are sequentially appended to the
external storage in the correct sequence of packet generation. The number
of sequence violations is the result of comparing a packet sequence under
test with the packet sequence from external storage.

For evaluating the correctness of a packet sequence prior to November
2008, we have to resort to a generated baseline. Here, we evaluate
the correctness of a packet sequence by testing how good an extracted,

2.6. Case Study 33

Algorithm 2.3: Algorithm for counting sequence violations based on a model of

the node uptime measurement. pop() returns the next packet from the ordered

data set, or false if all packets have been pulled.
input : Health packets of a single node, ordered by the sequence under test
output: Number of sequence violations v

1 begin
2 T←− ∅ ; v←− 0 ; l←− pop() ;
3 while k←− pop() do
4 if u(k) > u(l) or (u(k) < u(l) and u(k) < ureset) then T←− T ∪ k;
5 else
6 if |T| < cmin then v←− v + |T|;
7 T←− ∅ ;
8 end
9 l←− k ;

10 end
11 end

measured signal conforms with a model of this measurement. As an
exemplary measurement, we employ the node uptime for testing the
correctness of a packet sequence. The node uptime is a local counter
of a sensor node, its value is included in health packets, one out of five
packet types. Compared to other transmitted measurements that mainly
correspond to observations of complex physical processes, the behavior
of the node uptime can be described by a simple model: After a node
restart, the node uptime is monotonically increasing until again being
reset to zero on the arrival of the next restart.

We define u(k) as the node uptime that has been transmitted within
the payload d(k) of a health packet k. Algorithm 2.3 lists the test used
for counting sequence violations. It is important to notice, that detecting
node restarts is a hard problem in the presence of arbitrary packet loss.
While one would normally detect a node restart when receiving a node
uptime of a defined minimal value, this is not possible if exactly that
packet got lost. It is not possible to safely detect all restarts without
extra information, but we use two mechanisms that make the algorithm
more robust to packet loss. Firstly, we allow a certain number of health
packets that were generated immediately after a node restart to be lost
by introducing the parameter ureset. For instance, ureset := 6 · T allows
approximately the first six health packets after a node restart to be lost.

Secondly, we try to distinguish between wrongly inserted packets and
a discontinuation of the current measurement due to large holes in the
data. We group measurements as long as the signal is monotonically
increasing or explained by a node restart (Algorithm 2.3, line 4). On the
occurrence of a discontinuity, the size of the current set is added to the
number of sequence violations if the size of the set is smaller than cmin

(line 6). Here, we assume that only short packet sequences are wrongly
inserted into the packet stream while long sequences are evidence for
large holes.

34 Chapter 2. Model-based Data Cleaning and Order Reconstruction

2.6.4 Packet Acceptance Rate and Correctness of
Obtained Sequence

The result of filtering the data set with the model-based approach matches
with our expectations: 25.2% of the data from the first deployment phase
of non-conforming system operation are discarded. In contrast, 96.6%
and 99.0% of packets being generated in the last two deployment phases
are accepted. The packet acceptance rates of the model-based approach
and the simple heuristic are comparable, see Table 2.4.

COUNTER A) JUL 08-NOV 08 B) NOV 08-AUG 09 C) SEP 09-MAY 10
II) Model-based Approach

Accepted packets 739,319 (74.8%) 2,245,880 (96.6%) 2,958,139 (99.0%)
Sequence viol. (Alg. 2.3) 1 (0.0%) 12 (0.0%) 0 (0.0%)
Sequence viol. (Ext. storage) n/a 1 (0.0%) 0 (0.0%)

III) Simple Heuristic
Accepted packets 726,297 (73.5%) 2,227,799 (95.8%) 2,958,192 (99.0%)
Sequence viol. (Alg. 2.3) 5,283 (0.7%) 11 (0.0%) 1 (0.0%)
Sequence viol. (Ext. storage) n/a 0 (0.0%) 11 (0.0%)

I) Unfiltered Data Set
Total packets 988,062 (100.0%) 2,325,168 (100.0%) 2,987,901 (100.0%)
Sequence viol. (Alg. 2.3) 131,629 (13.3%) 66,159 (2.8%) 29,133 (1.0%)
Sequence viol. (Ext. storage) n/a 69,025 (3.0%) 91,866 (3.1%)

Tab. 2.4 Both approaches achieve comparable, high packet acceptance rates on good data. Only
the model-based approach is able to deliver correct packet sequences in all three scenarios
of different system behaviors. While both approaches achieve comparable results in the
number of accepted packets, an incorrect packet sequence is retrieved when applying
the simple heuristic to data from the first deployment phase of non-conforming system
operation.

As we can apply this validation method to the whole packet stream,
we firstly start evaluating the correctness of obtained packet sequences
based on Algorithm 2.3 (ureset := 6 · T, cmin := 10). For the unfiltered data
set, the sequence under test is retrieved by ordering all packets by the
ascending estimated packet generation time t̃g(k). The non-conforming
system behavior during the first deployment phase is again confirmed by
13.3% packets being marked as invalid due to a sequence violation. In
opposite, only 2.8% and 1.0% are marked as invalid when analyzing the
last two deployment phases.

We are now comparing the number of sequence violations after
processing the data set. After applying the simple heuristic, the packet
sequence under test is again obtained by sorting accepted packets by the
ascending estimated packet generation time t̃g(k). In opposite, the new
property idN(k) is used to sort the output of the model-based approach.
Both filter algorithms produce equal results when being applied to data
of the last two deployment phases. After neglecting 11 and 12 errors

2.6. Case Study 35

that might be accounted to non-detected node restarts, both algorithms
deliver a correct packet sequence.

The situation is different for data from the first deployment phase:
While 5,283 sequence violations remain after applying the simple
heuristic, only one sequence violation can be found in the result of the
model-based filter. While both algorithms perform well on good data,
only the model-based approach is capable of safely removing erroneous
data.

We can make a stronger argument by also including results from
validating packet sequences against ground truth from recovered external
storage. The observations made from this method generally match with
the results from Algorithm 2.3, and also underline our claim that the
model-based approach outputs a correct packet sequence. Concretely,
comparing the output of the model-based approach with the packet
sequence from external storage results in a single sequence violation out of
more than five million packets. More detailed results on the performance
of the model-based filtering approach are shown in Table 2.5.

COUNTER A) JUL 08-NOV 08 B) NOV 08-AUG 09 C) SEP 09-MAY 10
Accepted packets 739,319 (74.8%) 2,245,880 (96.6%) 2,958,139 (99.0%)

Discarded packets 248,743 (25.2%) 79,288 (3.4%) 29,762 (1.0%)
Packet duplicates 3,373 (0.3%) 69,974 (3.0%) 27,909 (0.9%)
ts(k) > tmax

s 0 (0.0%) 0 (0.0%) 0 (0.0%)
Failed epoch assignment 101,246 (10.2%) 7,988 (0.3%) 1,341 (0.0%)
Invalid interval tu,l

g (k) 144,124 (14.6%) 1,326 (0.1%) 512 (0.0%)

Total packets 988,062 (100.0%) 2,325,168 (100.0%) 2,987,901 (100.0%)

Tab. 2.5 Results of model-based approach. The achieved packet acceptance rates clearly separate
the first deployment phase of non-conforming system operation from the following two
phases of good operation. The distribution of discarded packets to categories is also
different when comparing the results of the second deployment phase with the results
of the third deployment phase. While nodes are resending recovered queue contents
after a restart, the amount of packet duplicates is increasing with the number of node
restarts. The latter is significantly higher in the second deployment phase.

Before evaluating the performance of forward and backward
reasoning in the next section, we can conclude that both the model-
based approach and the simple heuristic deliver very good results when
being applied to data of the last two deployment phases. However,
only the model-based approach is also able to return a correct packet
sequence regarding data from the first deployment phase. Thus, the
model-based approach was successfully applied to all three initially
mentioned scenarios of different system behaviors: A) Highly non-
conforming system behavior, B) sensor nodes subject to a high frequency
of unplanned warm restarts, and C) more than one third of the collected
data experiencing transmission delays of several hours to days.

36 Chapter 2. Model-based Data Cleaning and Order Reconstruction

 0 20 40 60 80 100
 0
 10
 20

 40

 60

 80

100

In
te

rv
a
l

w
id

th
 [

se
co

n
d

s]

Percentiles

Before (mean=9.1 sec) After (mean=5.0 sec)

(a) Generation time interval widths

 0 20 40 60 80 100
0

20

40

60

80

100

R
e
d

u
ct

io
n

 [
se

co
n

d
s]

Percentiles

(b) Absolute improvement

 0 20 40 60 80 100
 0

 20

 40

 60

 80

100

R
ed

u
ct

io
n

 [
p

er
ce

n
t]

Percentiles

(c) Relative improvement

Fig. 2.6 Improvement of generation time interval width tu
g(k)−tl

g(k). The analysis covers 5,204,019
packets of the last two deployment phases. The initial generation time interval width
could be shortened in 91% of the cases. The distributions of generation time interval
widths and achieved improvements by applying forward and backward reasoning are
given in percentiles. For instance, the 70th percentile in Figure 2.6(a) corresponds to 70%
of the packets having an interval width of at most 5 seconds before applying forward
and backward reasoning. The initial interval width was reduced by at least 4 seconds
or 50% of the initial value for 70% of the packets.

2.6.5 Packet Generation Time Intervals
At the beginning of the data analysis, generation time intervals [tl

g(k), tu
g(k)]

were initially set by only including information from each single packet.
In Section 2.5.4, we presented how these initially set intervals can be
improved by also including information of temporally adjacent packets.
This second step can not be applied before the correct packet sequence is
known. Since data from the first deployment phase does not conform to
our formulated model, further processing is only evaluated for packets
of the last two deployment phases B) and C).

Applying forward and backward reasoning leads to tighter generation
time intervals tu

g(k) − tl
g(k) for 91% of the packets. The initial generation

time interval width is at least reduced by half in 70% of all cases. This
corresponds to an absolute reduction of up to 710 seconds. The mean
generation time interval width of all processed packets is significantly
decreased by a factor of almost two from 9.1 seconds to 5.0 seconds.

2.7. Broader Applicability and Limitations 37

Initial and improved generation time interval widths are shown in
Figure 2.6(a). Approximately 70% of all packets have an initial generation
time interval width of five seconds. Concerning communication over up
to four hops with an uncertainty of one second per hop, we must account
four seconds of the initial width to the finite resolution of a sensor node
clock. In opposite, the initial generation time interval width is definitely
dominated by measuring the network sojourn time ts(k) under clock drift
in at least 15% of the cases.

Absolute and relative improvement by applying forward and
backward reasoning are shown in Figure 2.6(b) and Figure 2.6(c),
respectively. The initial generation time interval is reduced by up to
710 seconds on the absolute scale. On the relative scale, up to 99% of the
initial width are subtracted. Large improvements on the absolute scale
can only be achieved for packets having a large initial interval width.
In contrast, large improvements on the relative scale are in the majority
of the cases achieved for packets whose initial generation time interval
width is dominated by the uncertainty caused by a finite clock resolution.
Initial interval widths remain unchanged for 9% of the packets.

Concluding, significant reductions of the initial generation time
intervals could be achieved for a considerable amount of packets.
The last processing step of forward and backward reasoning does not
only compensate introduced worst-case uncertainties, but also leads to
considerable improvements in general.

2.7 Broader Applicability and Limitations
Key assumptions of our formal model are data acquisition at constant rate,
the existence of unique packet source addresses, the existence of packet
sequence numbers, and the existence of provisions for estimating the
generation time of a packet. Hard limits are formally given by Theorems
2.1 and 2.2 which must be satisfied for being able to safely assign packets
to epochs.

There is no strict requirement on the accuracy of generation time
estimates; the required accuracy can only be seen in the context of a
full system model parameter set. While we consider a system design that
also supports disconnected operation over long periods and thus resorts
to a simple packet generation time estimation, the presented data analysis
algorithms for duplicate filtering and epoch assignment are also suited
for taking time information retrieved from other mechanisms, i.e., FTSP
[MKSL04b], as input. The presented work does not compete with work on
clock synchronization, rather, it can be used to enhance data quality also
in systems that already offer precise packet generation time information.

Additionally, we also want to stress that there are no strict
requirements concerning the data collection protocol used. Regarding the

38 Chapter 2. Model-based Data Cleaning and Order Reconstruction

retrieval of packet generation time information as an orthogonal problem
that is addressed by another layer, we can currently see no limitations
when considering the use of other comparable data collection systems.

Sampling data at a constant rate is a valid scenario in the context of
environmental monitoring. Prominent examples are the monitoring of
the microclimate of a coastal redwood tree [TPS+05] or environmental
monitoring under extreme conditions [BIS+08]. Furthermore, glacier
monitoring [MOH05] is an application that does not only sample data at
a constant rate, but also allows sensor nodes to be unable to communicate
for several days or even weeks. In spite of recent advancements in
protocols and platforms, we consider sampling at constant rate as a
valid scenario for many current and future environmental monitoring
applications.

Extending this work to systems that generate multiple packets, both
periodically and sporadically, within a constant sampling period T
requires the availability of an additional sampling round counter that
is transmitted as part of every periodically generated packet. While the
packet sequence number s(k) is equal to such a sampling round counter
in the model presented, the packet sequence number is no longer a valid
proxy for the sampling round when more than one packet is generated
within a sampling period.

2.8 Conclusions
The proposed model-based approach is a viable method for reconstruct-
ing the correct sequence of packet generation and validating data integrity
at the sink. Only a single violation (see Figure 2.7 and Table 2.4) is found
when cross-validating a sequence of more than 5.2 million packets with
ground truth from external storage. Forward and backward reasoning
clearly tightens packet generation time bounds by employing information
of temporally adjacent packets. Overall, we retrieved convincing results
for all three evaluated scenarios of A) highly non-conforming system
behavior, B) sensor nodes subject to a high frequency of unplanned warm
restarts, and C) more than one third of the collected data experiencing
transmission delays of several hours to days. We compared the model-
based approach to a simple heuristic: Only the model-based approach
was able to return correct packet sequences in all three scenarios.

Our approach is not only useful for cleaning historical data. It also
enables to learn about the limits of a system design. First, our formal
model clearly shows the limitations of certain parameter sets. For
instance, it becomes obvious that the length and the management of
the packet sequence number are important parameters for removing
uncertainties when reconstructing the packet sequence. Second, our
new approach for offline data processing also allows to shift complexity

2.8. Conclusions 39

Unfiltered data set Simple filter Model−based approach
10

0

10
1

10
2

10
3

10
4

10
5

10
6

#(
se

q
u

en
ce

 v
io

la
ti

o
n

s)

A) Jul 08−Nov 08 B) Nov 08−Aug 09 C) Sep 09−May 10

Fig. 2.7 While both approaches succeed on data from the last two deployment phases of good
system operation, only the model-based approach can deliver basically no sequence
violations when applied to the first deployment phase of non-conforming system
operation (Algorithm 2.3).

from resource-scarce sensor nodes to powerful computation devices in
the backend. Depending on the deployment scenario, services such as
clock synchronization can be intentionally left out without sacrificing
data quality.

Multi-hop network tomography (Chapter 4) and hybrid monitoring
(Chapter 5) are two exemplary methods that require data to be free of
duplicates as well as the order of packet generation to be known.

40 Chapter 2. Model-based Data Cleaning and Order Reconstruction

3
Visualization of Large Data Sets in

Space and Time with Vizzly
After data has been cleaned from artifacts that have been introduced
by the wireless sensing system (see previous Chapter 2), it is ready for
further use. Even though many applications ask for quantitative analysis
methods, e.g., statistical analysis, the manual inspection of sensor data is
an at least equally important use case. Apart from the creation of all sorts
of system supervision and real-time dashboards, being able to visualize
data is also an important asset during the development and debugging
of data processing algorithms.

With sensing systems reaching maturity and scale, data visualization is
no longer only a problem of representation, but also requires algorithmic
problems to be addressed. First of all data repositories in total now
embracing billions of data points, individual time series are likewise
reaching sizes that can no longer be simply displayed. For instance, a
single temperature sensor that is sampled every two minutes will already
generate one million data points in less than four years. Challenges are
first of all to quickly locate data in such large repositories, and secondly to
aggregate time series on-the-fly so that they can be displayed on arbitrary
devices.

3.1 Introduction
This chapter presents Vizzly, a middleware that enables the interactive
browsing of large sensor network data sets that originate from static
and mobile scenarios. The back-end infrastructure of Vizzly consists of
two main components, namely a cache layer and a web service. The
web service component of Vizzly provides a single point of entry for

42 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

retrieving sensor data that may originate from multiple data repositories.
Based on the received request parameters, Vizzly automatically chooses
the temporal and spatial levels of detail in which data is sent to a user.
The cache layer is significantly reducing data access times. The tasks of
the cache layer are (i) to continuously monitor and read from multiple
repositories of different kind, e.g., SQL databases, feeds, or CSV files, (ii)
to aggregate the received data, and (iii) to store pre-computed results in
data structures that are optimized for time-based access.

The Vizzly front-end library enables the integration of interactive map
and line plot widgets into existing web pages. A user must only specify
the position and size of a new widget, the setup of required displaying
components and visual control elements is automatically handled by
provided library functions. Additionally, the Vizzly client library handles
all client-server communication, e.g., decides when new data must be
dynamically loaded.

The contribution of this chapter is as follows:

• We present Vizzly, a middleware that enables the interactive
browsing of large sensor network data sets. The presented client-
server architecture focuses on the problem of adapting to each user
by automatically choosing the temporal and spatial resolution of
returned data. For example, highly aggregated data is loaded when
a user wants to quickly navigate through multiple years of data. In
contrast, raw data points are shown when the selection is narrowed
down to a particular point in space and time.

• The effectiveness of our approach is evaluated in the context of two
distinct static and mobile sensing scenarios.

• We evaluate the performance of Vizzly based on the instance used in
a production environment. The analyzed instance currently handles
more than four billion data points that originate from 2,900 different
sensing channels.

The structure of this chapter is as follows: Related work and the
positioning of Vizzly are discussed in Section 3.2. Section 3.3 presents the
challenges found in the visualization of large sensor network data sets.
The system design of Vizzly is described in Section 3.4, implementation
details of Vizzly can be found in Section 3.5. Section 3.6 presents two case
studies that prove the applicability of Vizzly and highlight the conceptual
advantages of our approach. The performance of Vizzly is evaluated in
Section 3.7. The broader applicability of Vizzly is discussed in Section 3.8.
Section 3.9 concludes this chapter.

3.2. Related Work 43

3.2 Related Work
A. Sensor Data Visualization

A web interface for displaying sensed data is part of many sensing
projects. For example, GlacsWeb1 [MOH05] and LoCal2 [DHLT+12]
provide an interface for visualizing sensed data on a timeline. Based on
Microsoft SensorMap, the interface of Life Under Your Feet3 [TMEC+10]
also allows to display the locations of static sensors on a 2D map. A
similar solution is provided by Climaps4, a data visualization interface
that is part of the SensorScope [BIS+08] project. PowerTron [KGL10]
has been developed for the visualization of power meter data in the
PowerNet [KHLK09] project. Here, the locations of available power
meters are shown on the floor plans of a building. Pachube/Cosm/Xively
is a very popular online platform for sensor data streaming. An exemplary
project based on Pachube/Cosm/Xively is the Japan Geigermap5. Apart
from displaying the raw measurements from static and mobile sensors,
da sense6 [SBS+11] also includes a heat map representation of noise
pollution measurements. Within a more general scope, Google Fusion
Tables7 is a web service for visualizing data as maps, timelines and charts.

Vizzly is a middleware for visualizing large sensor network data sets
in space and time. Both static and mobile sensing scenarios are supported,
measurements of arbitrary length can be visualized in any temporal and
spatial level of detail. Independent of a particular front-end component
used for eventually displaying loaded data, Vizzly focuses on the problem
of making sensor data dynamically and efficiently loadable when request
parameters change. For example, less aggregated data is automatically
loaded and displayed when the length of the time period of interest is
decreased.

From a survey of existing approaches based on publicly available
information, e.g., manual analysis of the client-server communication of
public data interfaces and consulting of available documentation, we
find that Vizzly distinguishes itself from other solutions by dynamically
loading data of varying detail. While similar techniques can be found
in map visualizations, e.g., in the da sense [SBS+11] project, we could not
find other time series visualizations that would allow to display multi-
year measurements in any temporal level of detail. We find existing
solutions to either limit the presentable time range, or to only offer data
on a fixed, reduced level of detail, i.e., data is only loaded once after the
initial request, but not refined when the user selects a smaller area of

1http://env.ecs.soton.ac.uk/glacsweb/iceland/graph/
2http://new.openbms.org/
3http://dracula.cs.jhu.edu/luyf/en/tools/VZTool/Default.aspx
4http://climaps.com/
5http://japan.failedrobot.com/
6http://www.da-sense.de/
7http://www.google.com/fusiontables

http://env.ecs.soton.ac.uk/glacsweb/iceland/graph/
http://new.openbms.org/
http://dracula.cs.jhu.edu/luyf/en/tools/VZTool/Default.aspx
http://climaps.com/
http://japan.failedrobot.com/
http://www.da-sense.de/
http://www.google.com/fusiontables

44 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

interest.
B. Processing and Storage of Time Series Data

The creation of materialized views [GM95] is a common technique
for continuously pre-computing and storing aggregates in database
systems. Data cubes [GCB+97] allow for the efficient computation of
multi-dimensional aggregates. For example, the Life Under Your Feet
Project uses data cubes for aggregating data over time intervals and other
quantities. RasDaMan [BDF+99] is a database system that is optimized
for the storage of multidimensional raster data.

Network monitoring tools, e.g., Zabbix8 and ntop, often also include
the ability to visualize measured performance data. In this context, tsdb
[DMF12] implements a compressed database for time series. Using a
special storage scheme, massive data volumes can be efficiently handled
and made available to a user, e.g., for plotting. Probably the closest to this
work is the function of the Archiver Daemon (ARD) that is part of sMAP9

[DHJT+10]. The storage layer used by the ARD is highly optimized for
the processing and storage of time series data.

sMAP, tsdb and Vizzly share the design decision of implementing data
processing in an application layer and to use the underlying database
system as a key-value store only. Instead of heavily relying on the
support of certain features, e.g., data cube analysis, flexibility is gained
when basically any database system can be used. While sMAP and tsdb
can potentially also be extended to support this, Vizzly is in particular
designed for data originating from both static and mobile sensors,
i.e., sensor readings that are annotated with both time and location
information.

3.3 Visualizing Large Sensor Network Data Sets
Being able to visually inspect recorded data is advantageous for all
stakeholders of a sensing system, e.g., design engineers, system operators,
scientists, and even the general public. For small data sets that consist
of some hundreds of data points, a simple approach is to just send raw
data points to a client for plotting. However, this approach does not scale
for large multi-year data sets that consist of millions of data points. The
amount of data to be transferred to a user becomes too large, the client
would need to perform extensive computation, e.g., sorting and down-
sampling, for making the data displayable. Instead, data must already be
filtered, sorted and aggregated before it is transferred to a client that only
displays the already prepared data.

Needed processing steps for making raw data displayable can be
very expensive, e.g., involve large database tables to be fully read and

8http://www.zabbix.com/
9http://code.google.com/p/smap-data/

3.3. Visualizing Large Sensor Network Data Sets 45

Various Static and Mobile Sensing Applications

Interactive Browsing of Large Data Sets
• Time series display with pan and zoom
• Integration with Google Maps

Vizzly Back-end Application
• Caching of aggregated data
• Data interface for interactive browsing

Data Streaming Servers and Data Stores
• Input stream processing
• Handling of unaggregated data

Fig. 3.1 Exemplary usage scenario for Vizzly. Without the need of modifying existing
infrastructure (yellow boxes), powerful plotting capabilities are added by Vizzly (red
boxes).

sorted. The response time of such a request can easily reach tens of
seconds if the underlying system has not been specifically optimized.
This is problematic as the adoption and success of a visualization tool are
threatened when interested users perceive that the front-end responds
too slow [BBK00].

In the context of visualizing large sensor network data sets, this work
wants to address the following questions: Which data structures allow
for the efficient retrieval of spatiotemporal, structured data at different
scales? Which system design is suited for as many application scenarios
as possible while also satisfying the needs of all user groups? What can
we learn from standard PC memory architectures when designing a cache
application that can choose to either store pre-aggregated data in different
back-ends, i.e., in memory (RAM) or in a database, or to further aggregate
already pre-aggregated data on-the-fly?

In the following, we present the design and implementation of Vizzly,
a middleware for the interactive browsing of large sensor network data
sets. The applicability of Vizzly is evaluated in the context of two diverse
research projects, the performance of Vizzly is evaluated based on the
traces that originate from a production environment.

46 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

Fig. 3.2 Temperature readings from two sensor nodes. The temporal resolution must be highly
reduced for displaying multiple years in a single view. Less aggregated or even raw
readings are shown when the time period of interest is lessened.

3.4 Vizzly System Design
An exemplary usage scenario for Vizzly is shown in Figure 3.1. Starting
from the bottom, structured data is recorded in various static and
mobile sensing applications. Recorded data is then uploaded to a
streaming server that annotates, e.g., adds meta-information, and stores
the data received. Vizzly continuously monitors and reads from multiple
streaming servers, cached aggregates are immediately updated when new
data arrives. The Vizzly back-end can handle multiple clients in parallel,
requests are either served from pre-computed aggregates, from an on-the-
fly aggregation of already aggregated data, or by forwarding the results
of raw data requests. The latter are always served by the lower layer, i.e.,
the corresponding streaming server. On the client side, the Vizzly front-
end library implements map data and time series displays. Exemplary
screenshots are shown in Figure 3.2 and Figure 3.3, respectively. The time
series display can be used standalone, but is also part of the map data
display. Only measurements taken within the corresponding map area
are shown in a line plot when a user selects a map marker.

Decoupling data visualization from data storage certainly increases
the overall system complexity, e.g., requires data to be synchronized
between multiple systems. However, adding missing functionality to an
existing data store is often risky or even impossible. For instance, adding
visualization capabilities may decrease the performance of another
important use case. Organizational issues, e.g., license restrictions,
may not allow for adding modifications. Vizzly is an optimized and
centralized solution that enables the visualization of sensor data. Vizzly
is not restricted to a certain system, but can potentially be integrated into
many existing platforms (see Sec. 3.8).

Detached from the concrete implementation of Vizzly (see Sec. 3.5),
we will now firstly present the overall system design of Vizzly. The
interfacing between front-end and back-end is described in Section 3.4.1.
Section 3.4.2 presents the mechanism used for automatically determining
the temporal and spatial resolutions in which data is sent to a user. The
strategy used for aggregating spatiotemporal data in space and time is

3.4. Vizzly System Design 47

(a) 9.6 km x 9.6 km (b) 148 m x 148 m

Fig. 3.3 Ozone data shown at two different spatial scales. Both excerpts correspond to the same
measurement period, more detail is shown when the selected map area gets smaller.
A user can change the data source of interest, e.g., select CO measurements instead of
ozone measurements, the time period of interest, and the map area of interest. After
each interaction, missing data is automatically loaded from the Vizzly back-end. Shown
data points are within the accuracy of the GPS receiver used.

presented in Section 3.4.3. Section 3.4.4 presents data structures used
for caching and persisting aggregated data. Vizzly is not automatically
informed of new sensor data, but actively polls known repositories. The
automated updating of cached contents is discussed in Section 3.4.5.

3.4.1 Client-Server Communication
Clients neither store sensor data nor any system state, e.g., a list of
available sensors. Instead, all information is dynamically loaded from
the Vizzly back-end. Apart from necessary standard request parameters,
e.g., the time period of interest, choosing from large collections of sensors
requires a precise but also flexible specification format. While mix-ups
between similarly named sensors in different repositories need to be
avoided, participatory sensing scenarios on the other hand require that
sensor readings can be selected both dependent and independent of the
recording device, e.g., the particular smartphone used.

To address this problem, we introduce the notion of “virtual signals”.
In the context of Vizzly, a virtual signal can be described as a tuple
(N,C,R) that consists of a sensor node N, a sensing channel C, and a data
repository R. Selecting a particular sensor node can be omitted by setting
N to a wildcard value. If the wildcard value is set, data is automatically
combined on the equal sensing channel C and the equal data repository
R10. Exemplary virtual signals are (node 25, temperature, repository 1) and

10Please note that Vizzly expects underlying time series to be normalized with respect
to possibly different sensor types or sensor calibrations used.

48 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

(node ANY, ADC channel 3, repository 2). Exactly one virtual signal must
be specified in a map data request, arbitrary combinations of one or more
virtual signals can be specified in a time series request.

3.4.2 Algorithmic Selection of the Returned Level of Detail
The size of the screen area for displaying map and line plots varies among
different clients. In consequence, the optimal level of temporal and spatial
detail in which data is to be sent to a client also varies. For example, the
doubled number of data points can be displayed when a user views a
map in full-screen mode instead of restricting the map to only one half
of the screen. The lack of dynamically adapted levels of detail would
lead to either unused space on large screens, or to overlapping data
points on small screens. To overcome this, the Vizzly back-end first
automatically decides if unaggregated data can be displayed or, if not,
calculates suitable temporal and spatial target resolutions r̂temp and r̂spat.
Target resolutions r̂temp and r̂spat, respectively, then define the window
length of the aggregation operator used.

For this mechanism to work, clients are requested to specify the
dimensions of the displaying widget used. Data included in the response
of a map data request is always reduced to a dynamically computed r̂spat.
Decided separately for each of multiple included time series, the response
of a time series request can contain both unaggregated data and values that
have been aggregated to a dynamically chosen r̂temp.

Based on a defined size of a grid cell in pixels, determining r̂spat starts
with calculating the number of displayable grid rows and columns. The
geographical dimensions of a quadratic grid cell are then derived from
the map area of interest that is specified in geographic coordinates. The
optimal spatial target resolution r̂spat corresponds to the geographic length
of the edges of a grid cell, e.g., r̂spat := 1 km.

Determining the temporal level of detail starts with calculating the
maximum number of data points per time series that the client can display.
This number is obtained by dividing the reported width of the plotting
canvas by a defined maximum average number of data points per pixel.
With the help of continuously updated estimates of the sampling rate of
each virtual signal (see Sec. 3.4.5), Vizzly first decides for each virtual
signal if the client can be supplied with unaggregated data. To decide
this, the estimated number of unaggregated data points is compared with
the maximum displayable number of data points. If the level of temporal
detail must be reduced, the optimal temporal target resolution r̂temp, e.g.,
r̂temp := 1 hour, is determined by dividing the time period of interest by
the maximum number of data points per time series.

For being able to further aggregate already aggregated data, target
resolutions r̂spat and r̂temp can not be arbitrarily chosen, but need to be
multiples of defined highest spatial and temporal target resolutions.

3.4. Vizzly System Design 49

Intermediate resolution levels r̂spat and r̂temp are “rounded” to the next
available smaller target resolution.

3.4.3 Aggregation of Spatiotemporal Data
The level of spatial and temporal detail may need to be reduced before
data is sent to a client. In this case, the data of higher or equal resolution
is loaded from the cache and, if needed, further aggregated on-the-fly.
While users can choose arbitrary combinations of temporal and spatial
levels of detail, the number of possible combinations is clearly too large
for each combination being stored in a cache.

To address this problem, we propose a location-preserving aggre-
gation scheme: Temporal aggregation is carried out separately for
each location, the results of the location-preserving aggregation are
then cached. While this strategy certainly decreases the efficiency
of data reduction, i.e., leads to a smaller reduction in terms of the
number of returned samples, one stored aggregate per virtual signal is
sufficient for being able to choose any level of detail for any later spatial
data aggregation. Additionally, this approach preserves advantages of
aggregating and organizing data in the temporal domain. Compared
to executing the spatial aggregation step first, this order of aggregating
spatiotemporal data in space and time benefits from the structure of the
data. Preserving temporal locality is much less complex than organizing
data in the two-dimensional spatial domain.

Data series without location information can be described as a set of
tuples (t, v). Each tuple describes a data point that consists of a timestamp
t and a sensor reading v. For aggregating data in the temporal domain,
the first step is to reduce the resolution of the timestamp t to the target
resolution r̂temp, e.g., r̂temp := 10 minutes.

R(t, r̂temp) :=
⌊

t
r̂temp

⌋
· r̂temp (3.1)

Data points are then grouped by their truncated timestamp
t′ := R(t, r̂temp). Data points with an equal truncated timestamp are put
into the same set G, the aggregated sensor value v′ of the new tuple
(t′, v′) is obtained by applying the aggregation function A(G). Exemplary
aggregation functions are the calculation of the mean, the sum, the
number of elements, or the smallest value.

v′ := A(G) for G := {v | R(t, r̂temp) ≡ t′} (3.2)

Already aggregated data, e.g., a set of (t′, v′) tuples, can be further
aggregated, e.g., to obtain (t′′, v′′). Given that data was reduced to a target
resolution r̂temp in the previous step, the new target resolution r̂′temp has to
be a multiple of r̂temp, i.e., r̂′temp := r̂temp · c with c ∈N, c > 0.

50 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

For measurements from location-aware sensors, the extended tuple
(t, v, llat, llng) also includes the geographical latitude llat and longitude llng

of the measurement location.11

To preserve a later aggregation by the location of measurement, loca-
tion information must remain untouched during temporal aggregation.
Data points from location-aware sensors must therefore be grouped
by their truncated timestamp t′ and by their location of measurement
that is specified by llat and llng. Data points with an equal truncated
timestamp and equal location information are put into the same group,
the aggregated sensor value v′ of the new tuple (t′, v′, l̄lat, l̄lng) is similarly
obtained by applying the aggregation function A(G) to the set of data
points G.

v′ := A(G) for G := {v | R(t, r̂temp) ≡ t′∧ (3.3)
llat ≡ l̄lat ∧ llng ≡ l̄lng}

The location of measurement for which v′ is computed is defined by
l̄lat and l̄lng. In practice, l̄lat and l̄lng are automatically set while iterating
over the list of locations.

Aggregating data in the spatial domain starts with reducing the
resolution of the location of measurement. Both llat and llng are reduced
to the same target resolution r̂spat.

R(llat, r̂spat) :=
⌊

llat

r̂spat

⌋
· r̂spat R(llng, r̂spat) :=

⌊
llng

r̂spat

⌋
· r̂spat

Spatiotemporal data that has been recorded within the time period of
interest [ts, te] is grouped by its truncated location information. Based on
the length of the time period of interest, Vizzly automatically chooses the
level of temporal detail that is used as the input for the spatial aggregation
step. Without further specifying the concrete level of detail used, the data
is taken from the set of tuples (t(n), v(n)).

v′ := A(G) for G := {v(n)
| ts ≤ t(n)

≤ te∧ (3.4)
R(llat, r̂spat) ≡ l′lat ∧ R(llng, r̂spat) ≡ l′lng}

3.4.4 Efficient Storage of Pre-Computed Data
When processing a user request, Vizzly first loads all data that lies
within the time period of interest. If location information is relevant,
found records are then filtered to only include data from the requested
map area of interest. To support this, the caching layer of Vizzly must
fulfill the following three requirements. First, data structures used for
storing aggregated data must be optimized for time-based access. Second,

11As the altitude of the location of measurement is not required for 2D map plots, this
information is currently omitted.

3.4. Vizzly System Design 51

although data is aggregated before it gets cached, storing aggregated data
can still require considerable space for large data sets. Third, the operation
of Vizzly requires certain meta-data to be stored, e.g., how often cache
contents were loaded, and when the last update took place.

We propose two diverse back-ends for storing aggregated data, i.e.,
storing aggregated data in memory (RAM) and in a SQL database. While
aggregated data that is stored in memory can be accessed significantly
faster, the SQL database adds cheaper storage capacity and persistence.
Infrequently used data can be offloaded to the slower tier, populating cold
memory from the SQL database is faster than again fetching unaggregated
data from its source. Since only aggregated data is cached in Vizzly, any
time information used in the following description must be seen in the
context of a certain temporal target resolution r̂temp.

The memory back-end uses one-dimensional arrays for storing sensor
readings and location information. Timestamps are not explicitly stored,
but are implicitly given by the index of an array element. The data
structure used for storing time series data without location is depicted in
Figure 3.4(a). Each instance of this data structure can be described by a
tuple

(
(N,C,R), r̂temp,Tstart

)
that specifies the corresponding virtual signal,

the temporal resolution r̂temp of the stored data, and the timestamp Tstart

that corresponds to the first array element.
The index of the first element is always 0, the timestamp of any array

element is obtained by multiplying its index by r̂temp and adding the result
to Tstart, i.e., T := Tstart + i · r̂temp. Not only reducing the amount of stored
data, this linear relationship between array indexes and timestamps
allows to access data very efficiently. Each array element covers a time
period of length r̂temp. Adding new data only requires to either update
the last array element or to append a new element to the end of the array.

An additional lookup table, see Figure 3.4(b), is needed for storing
time series data with location information. As location information
is preserved during temporal data aggregation, there can be multiple
aggregates referring to the same timestamp. The relationship between
array indexes and timestamps is again linear in the lookup table. Each
lookup table record specifies the start and end of contiguous segment in
a second one-dimensional array that stores sensor readings with location
information. Both arrays must be updated when new data is added. The
scope is again limited to replacing at most the last array element or the
last contiguous segment, respectively.

The database back-end organizes aggregated data in several database
tables. The contents of each database table can be described by a reduced
tuple

(
(N,C,R), r̂temp

)
that specifies the source and the temporal resolution

r̂temp of the table contents. Aggregated data without location information
is stored in database tables consisting of two columns, i.e., timestamp
and aggregated sensor value. Four columns are necessary for storing
aggregated data with location. An index on the time column is used for

52 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

i + 1

Tstart + (i + 2) · r̂tempi + 2

i

j

j + 1

j + 2

j + 3

Tstart + (i + 1) · r̂temp

Tstart + i · r̂temp

(a) Time series data without location
 Aggregated sensor value for:

(b) Time series data with location
 Data segment start/end index for:

i + 1

Tstart + (i + 2) · r̂tempi + 2

i

Tstart + (i + 1) · r̂temp

Tstart + i · r̂temp

Tstart + (i + 2) · r̂temp

Tstart + (i + 1) · r̂temp

Tstart + i · r̂temp

Tstart + (i + 1) · r̂temp

Tstart + (i + 1) · r̂temp

j + 4

Aggregated sensor value
and location for:

Fig. 3.4 Data structures used for storing aggregated data in memory. Tstart is the timestamp of
the first array element. Location-preserving temporal aggregation can yield multiple
aggregates for the same time but distinct locations.

faster accessing data based on time information.

3.4.5 Continuous Maintenance of Cached Contents
After Vizzly learned about the existence of a certain virtual signal, e.g.,
from a user requesting certain data, it starts fetching the complete history
of this virtual signal from the respective repository. Received data is then
aggregated, the results of this aggregation step are stored within Vizzly.

Furthermore, unaggregated data is also used for estimating the
sampling rate of sensors used. Vizzly needs this information for deciding
if a user request can be served with unaggregated data, or if the response
would contain too many entries (see Sec. 3.4.2). A simple solution for
estimating the sampling rate is to divide the number of raw samples
by the measurement duration. For achieving more robustness against
configuration changes that might occur over time, we currently use a
window-based approach that maintains monthly sampling rate estimates.

Both aggregated data and sampling rate estimates get outdated when
new data is being added to the source repository. Vizzly continuously
polls respective repositories and, if necessary, updates cached contents.

3.5 Vizzly Implementation
The Vizzly software package consists of a Java web application and
a JavaScript library. After the back-end has been setup once, adding
interactive map and line plots to existing web pages is very easy. Setting

3.5. Vizzly Implementation 53

Data
Reader

Cache
Manager

Temporally
aggregated data

Unaggregated
data

Request
Parser

Spatial
Aggregation

Spatial
Filtering

Signal
Dispatcher

Data
Composition

DBMS/CSV files/
HTTP streams

Memory cache
DBMS cacheSampling rate

lookup table

Request type
Signal selection
Time range
Map area

Map Data
Outputter

Time Series
Outputter

CSV
output

n

m m

n

INPUT
PROCESSING

DATA
RETRIEVAL

OUTPUT
GENERATION

Time series
request

Map data
request

(a) Processing of a data request

Data
Reader

Cache
Manager

Temporal
Aggregation

Sampling
Rate Estim.

Sampling rate
lookup table

Memory cache
DBMS cache

DBMS/CSV files/
HTTP streams

(b) Background operation

Figure 3.5 The returned temporal level of detail
is decided separately for each requested virtual
signal. After all data has been collected and put
together, generating the final response may require
further aggregation or filtering in the spatial domain.
Sampling rate estimations and cached contents used for
generating CSV outputs are continuously updated by a
number of concurrently running background threads.

up a new plot only requires to specify the virtual signals of interest and
an empty placeholder object on the web page itself. Size and position of
the placeholder object can be freely chosen in the HTML markup of the
web page, a fully functional visualization widget is then automatically
created by the Vizzly front-end library. The Vizzly front-end library itself
integrates dygraphs, a line plot library, the Google Maps JavaScript API, and
the jQuery UI user interface library. Event-based communication with
the back-end is established using XMLHttpRequest, loading new data is
triggered by several user interactions, e.g., a change of the time period of
interest. Request details are specified in the JSON format, requested data
is returned in the CSV (comma-separated values) format.

All back-end functionality is provided by a Java web application
that runs within Jetty, a light-weight HTTP server. Unaggregated
data is fetched from several instances of Global Sensor Networks
[AHS06] (GSN). GSN is a middleware for sensor networks that allows
to access its data streams over HTTP. Multiple background threads are
concurrently updating cached contents, aggregated data is stored in
memory (RAM) and in a MySQL database. DBCP is used for pooling
database connections, i.e., subsequent database accesses are accelerated by
connection re-usage. By applying a gzip compression filter before sending
a response to a client, the amount of transferred data is significantly
reduced up to a factor of five and more.

Apart from offering a data access interface, the Vizzly back-end
also provides a web-based management console and a web-based
performance probe. The management console allows to see which
objects are currently stored in the cache, a user can request single cache

54 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

contents to be removed. The web-based performance probe exposes
certain performance indicators, e.g., the current cache size. To support
system supervision, this information is periodically sampled by a network
monitoring system.

Integral components of the Vizzly back-end and their interplay are
shown in Figure 3.5(a) and Figure 3.5(b). The organization of cached
contents is encapsulated by the Cache Manager component that only
exposes an interface for retrieving aggregated sensor data. The Cache
Manager maintains an internal list of known virtual signals, new virtual
signals are learned when a user requests a yet unknown virtual signal.
The list of virtual signals is continuously traversed, the Cache Manager can
decide to update related contents, to remove contents from the cache, or
to move contents between different available cache back-ends.

3.6 Two Diverse Use Cases
The requirements for the design of Vizzly originate from the PermaSense
[HTB+08, BBF+11] and OpenSense [ASC+10] research projects. For being
able to analyze both long-term and short-term dynamics of monitored
processes, the PermaSense project requires data to be visualizable on
arbitrary time scales. Focusing on mobile sensors, e.g., sensing systems
mounted on vehicles, the OpenSense project requires data to also be
visualizable at varying spatial scales. To date, more than 1 billion packets
have been collected in the PermaSense and X-Sense projects. Packets are
carrying multiple sensor values, the number of collected sensor samples
is larger than 15.9 billion. Likewise, more than 259 million packets that
have been collected in the OpenSense project correspond to more than
5.2 billion samples. The growth of the data set used over the past five
years is shown in Figure 3.6. Large amounts of data have been added in
the previous two years with mostly newly deployed GPS sensors and air
quality monitoring devices being responsible for this growth.

3.6.1 PermaSense: Dynamics of Varying Temporal Horizons
The PermaSense project strives for the observation of geophysical
phenomena in high-altitude regions. Since the initial deployment in
2008, we currently operate four long-term sensor network deployments
[KWL+11]. More than 110 deployed low-power sensor nodes fulfill
different monitoring tasks, e.g., the monitoring of ground temperatures
and the monitoring of ice clefts, data is typically sampled every two
minutes. New generation sensing devices also monitor deformation
processes within rock walls, the movement of rock glaciers is monitored
using around 35 online and offline GPS devices [WLB+11].

Apart from scientific data, operating complex, remotely located
systems also requires large amounts of additional system information

3.6. Two Diverse Use Cases 55

#(
se

n
so

r
sa

m
p

le
s)

01/2009 01/2010 01/2011 01/2012 01/2013
0

5e9

10e9

15e9

20e9 Matterhorn (WSN)
Jungfraujoch (WSN)
Thur (WSN)
Dirruhorn (WSN+GPS)
Aiguille du Midi (WSN)
OpenSense (Tram boxes)

Fig. 3.6 Approximate amount of samples that serve as the input for the Vizzly instance at ETH
Zurich. Please notice that a single communication frame, e.g., a TinyOS packet, usually
includes multiple samples. For retrieving a realistic estimation, only the final results of
multi-step data processing chains are counted. Likewise, auxiliary header information
are also not considered as input data for Vizzly. The large growth in the last two years
is due to a large amount of new, high-rate sensors, e.g., GPS and fine particle sensors,
being deployed.

to be recorded. Health data is continuously sampled at all layers of
the system architecture that ranges from low-power sensor nodes up to
powerful back-end servers. Sampling intervals used range from 30 to 120
seconds.

Vizzly has been accepted as an essential tool for system supervision
already within the first weeks of test operation. Being able to visualize
data at arbitrary time scales down to single events allows on the one hand
to assess the current system state, but also to detect long-term trends,
e.g., slowly degrading components. Apart from this specific application,
Vizzly has also proven its usefulness for many other domain experts.
Exemplary applications are the visual inspection of data quality, e.g.,
outliers or data gaps, the visual inspection of signal characteristics, e.g.,
its value range, and the visual selection of data segments that are the most
suited for a particular analysis.

3.6.2 OpenSense: Mobile Sensors of Different Kind
The OpenSense project [ASC+10] investigates the challenge of monitoring
urban air quality using (i) mobile sensing stations installed on top of
public transport vehicles and (ii) personal sensors such as enhanced
smartphones and pocket sensors [DAK+09] in the city of Zurich. The
long-term goal is to raise community interest in air pollution data and to
foster its involvement in monitoring air quality in urban areas.

To this date, ten trams have been equipped with sensing stations
measuring ozone, carbon monoxide (CO) and fine particles (PM). Ozone

56 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

and CO concentrations are measured every minute, the PM sensor
generates one sample every 5 sec. Additionally, the GasMobile system
is being used for measuring ozone concentrations with an Android
smartphone [HSST12].

Over the past 15 months, one sensing station collected around 319
million data samples12. Around 174 million data samples are related to
air quality measurements, remaining 145 million samples are dedicated
to system management. See [LFS+12] for a more detailed description of
the OpenSense data set.

Interactive browsing though time- and location-sensitive historical
data at any desired level of detail is crucial (i) for fine-grained analysis of
raw data by domain experts and (ii) for building various data processing
and data access services on top of raw data. In particular, non-expert users
are often interested in summaries on the development of air quality in a
particular region and whether any limit on the concentration of pollutants
was exceeded.

While the success of community-driven sensing highly depends on
the interest of individual persons and the possibility to make data easy
accessible and understandable for those parties, Vizzly helps OpenSense
to solve challenges that arise with the large volumes of gathered data.

3.7 Performance Evaluation
All data visualizations of the PermaSense and OpenSense projects are
currently handled by a single instance of Vizzly13. Users specify virtual
signals of interest independent of a particular device, those user-specified
templates are then used for automatically generating a virtual signal
for every known device. Resulting 2,900 virtual signals originate from
four data repositories, the total input currently consists of more than
four billion unaggregated data samples. Most data originates from the
PermaSense project and thus does not include location information. More
than 118 million data samples that originate from the OpenSense project
also include location information.

In the current configuration, unaggregated data points are first down-
sampled to the temporal resolution of r̂temp := 4 min. The aggregation
function used is the calculation of the mean value. While the temporal
resolution could also be separately chosen for each virtual signal, this
static setting is currently derived from the two minute sampling period
used in PermaSense. Lower levels of detail are retrieved by further down-
sampling already aggregated data.

Aggregated data with the temporal resolution r̂temp of 4 min is stored

12Note, that the stations are usually turned off over night.
13The public data interfaces of both projects can be accessed at

http://data.permasense.ch and http://data.opensense.ethz.ch

http://data.permasense.ch
http://data.opensense.ethz.ch

3.7. Performance Evaluation 57

0 0.5 1 1.5
 0

0.25

 0.5

0.75

0.93
 1

C
D

F

Request processing time [seconds]

All requests, n=338,271
Requests with 2 signals, n=59,668
Requests with 4 signals, n=21,664
Requests with 22 signals, n=5,817

Fig. 3.7 Analysis of 338,271 requests. The number of virtual signals that is included in a request
ranges from one to 55 virtual signals. Result data is first collected in sequential cache
accesses and then combined to form a single output.

in a MySQL database. The MySQL server occupies 32 GB of disk space for
approximately 595 million aggregated data points currently stored in the
database. Further down-sampled data is additionally stored in memory,
around 217 million aggregated data points with a temporal resolution of
960 sec occupy 2 GB of RAM. The discrepancy between memory usage
and database usage per value is due to indexing information that is
implicitly given when storing data in memory being explicitly stored
in the database. Only two levels of temporal detail are stored, all other
temporal resolutions are computed on-the-fly by down-sampling already
aggregated data. While currently all virtual signals are treated equally,
precious memory will be better utilized when contents are moved based
on some metrics, e.g., the number of requests for a particular virtual signal.

For understanding the performance of the Vizzly back-end, we
are measuring the execution time of each request. Three separate
measurements are made for each of the three phases that are required for
serving a request, see Figure 3.5(a). Serving a single request can require
the data of several virtual signals to be read in multiple cache accesses,
the timing of each data access is measured separately. Apart from
the execution times itself, other interesting metrics, e.g., the number of
returned data points, are also logged. While directly writing performance
data to a database would significantly increase the response time of Vizzly,
a background thread is in charge of asynchronously moving collected
performance data from the memory to a MySQL database.

The following analysis is based on performance data that has been
collected between March 2012 and July 2013. Generating the output
usually takes less than a second. Cache accesses are made sequentially
until all data that is needed for generating the output has been collected.
The total request processing time is therefore larger when the number of
virtual signals that are included in a request increases, see Figure 3.7. In

58 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

Input processing (19.6%)

Data retrieval (70.7%)

Output generation (9.7%)

Fig. 3.8 The request execution time is dominated by the data retrieval phase. From 338,271
measured requests, fulfilling the request without transferring the result to the client
took 0.4 seconds or less in 95% of the cases. More than 97% of the requests could be
fulfilled within at most 1.6 seconds.

addition to the time needed for retrieving needed data from the cache,
compressing the result and eventually sending the result to the client also
takes a few tenth of a second. The distribution of the request execution
time across the three phases needed for processing a request is shown in
Figure 3.8. The request execution time is clearly dominated by the data
retrieval phase. While initially processing the input data is very simple,
generating the output may require the execution of an additional spatial
aggregation or filtering.

Figure 3.9 shows the distribution of data fetch times over all recorded
requests. An analysis that is limited to virtual signals that include both
time and location information is shown in Figure 3.10. Aggregated data
that is stored in memory (RAM) can be loaded very fast, the performance
of loading aggregated data from the MySQL database is also acceptable.
In contrast, loading unaggregated data from a GSN server can take several
tens of seconds. Visible variations show no correlation with the size of the
fetched result, but are caused by variations in the load of the system and
by the changing state of other components, e.g., the state of the database
query cache.

As already aggregated data can be further processed on-the-fly
without a noticeable delay, it is sufficient to cache only one aggregate
of each virtual signal. While the current level of temporal detail can
only be further reduced by down-sampling, the highest temporal level of
detail in which aggregated data should be available must be cached. If
the resulting data is too large for being completely stored in memory, it
is reasonable to only keep frequently requested data in memory and to
load all other data from the less constrained MySQL database.

3.8 Integrating and Extending Vizzly
Vizzly can be used out-of-the-box by deploying the server application
and integrating provided front-end libraries into existing web pages.

However, individual project requirements, e.g., the scheme used for
storing data, might require Vizzly to be extended. For allowing us and
other parties to easily extend Vizzly, the implementation of Vizzly follows
modular design principles.

Regarding the Vizzly server, new data sources and cache back-ends

3.8. Integrating and Extending Vizzly 59

0 5 10 15
0.8

0.85

0.9

0.95

1

Data fetch time [seconds]

C
D

F

Live aggregation, n=1,489,265
Memory, n=1,517,724
MySQL, n=1,021,915
GSN, n=91,220

Fig. 3.9 Analysis of more than 4,120,000 data accesses. Retrieving already aggregated and
indexed data from memory takes less than 4 milliseconds in 99% of all cases. Further
down-sampling data in the temporal domain takes less than 7 milliseconds in 99% of
the cases. The value of 99th percentile for loading already aggregated and indexed data
from the MySQL database is 913 milliseconds. Loading unaggregated data from GSN
takes 7.5 seconds or less in 99% of the cases.

0 5 10 15
0.8

0.85

0.9

0.95

1

Data fetch time [seconds]

C
D

F

Live aggregation, n=24,607
Memory, n=24,604
MySQL, n=29,242
GSN, n=3,092

Fig. 3.10 Analysis of 81,500 accesses to virtual signals that include both time and location
information. This amount corresponds to 2.0% of the total number of accesses being
targeted to virtual signals that also include location information. This number is in
line with 15 out of 2,900 virtual signals, thus 0.5% of the total number of virtual signals,
containing location information. The shown performance of the memory cache is caused
by the routine used for fetching data from the memory cache not fully leveraging the
linear memory organization when data with location information is loaded. Likewise,
the routine for accessing the MySQL database also needs further optimization. As a
result of this analysis, corresponding routines have been improved in the most recent
version of Vizzly.

60 Chapter 3. Visualization of Large Data Sets in Space and Time with Vizzly

can be implemented by either extending already existing components, e.g.,
refining an existing MySQL data source, or by adding new components
that follow defined abstract interfaces. On the front-end side, we
find delivering CSV data as a common denominator that can be used
together with many existing visualization libraries. While any client
implementation must follow the defined request format of Vizzly, there
are no further restrictions concerning platforms or libraries used for
building new clients, e.g., a native smartphone application.

Vizzly is open source software and free to use. The Vizzly project
repository hosted on Google Code at https://code.google.com/p/vizzly
includes all resources needed for installing and extending Vizzly.

3.9 Conclusions
We presented Vizzly, a middleware for the interactive browsing of large
sensor network data sets. Vizzly can be easily integrated into existing
systems, only a web browser is required for accessing map and line plot
widgets. Vizzly has been successfully applied to both mobile and static
sensing scenarios, its ability to handle very large data sets that consist of
hundreds of millions of data points has clearly been proven feasible.

https://code.google.com/p/vizzly

4
Multi-Hop Network Tomography

The previous chapter introduced Vizzly, a system for the visual inspection
of large sensor network data sets. Without doubting the usefulness of this
and similar systems, it becomes also clear that the manual inspection of
data is limited to explicitly stated information such as sensor readings.
Furthermore, visually correlating multiple streams is rather limited to
the detection of long-term trends. Complex interactions that require
considerable amount of history to be known cannot be tracked manually.

This chapter presents multi-hop network tomography, an algorithm
for the reconstruction of the path, the per-hop timing and the per-hop
ordering of individual packets. Achieving this requires information of
all nodes that a packet visited while traveling through a network to
be combined. By making interactions that happen inside a wireless
sensor network visible, multi-hop network tomography addresses the
observability gap that opens up when a network is moved from a
controlled development environment to an uncontrolled deployment
location.

4.1 Introduction
When preparing a sensor network deployment, a considerable research
and development effort is usually spent customizing and optimizing
a WSN implementation for a given application scenario. Different
methods and tools such as abstractions [GLvB+03], simulators [LLWC03],
testbeds [HKWW06] and diagnostics [YSSW07] have been developed for
supporting and facilitating all phases of the life-cycle up to long-term
operation.

However, appropriate tools are largely missing to support detailed
performance analysis of deployed systems. When for example the

62 Chapter 4. Multi-Hop Network Tomography

network size, the sensing modalities or the environment, e.g., due to
the addition of new interferers like 4G/LTE equipment in the vicinity,
are changing over the years of deployment, it is typically very hard
to assess at which point in time the system must undergo minor, e.g.,
new parametrization, or major, e.g., addition or removal of features,
modifications. While commonly available performance metrics, i.e.,
data yield, end-to-end packet delays, radio duty-cycle, and link quality
measurements are well-suited for giving an overview and estimating the
general health of a deployed system, the root causes of an observed drop
in the system performance remain mostly hidden.

Additional information are usually not available due to the costs
and risks attached to their retrieval. For instance, transmitting extra
information to aid such analysis in-band would increase the required
bandwidth and is not always feasible. Furthermore, if a behavior is only
observed after successful deployment, an addition of further data to be
collected and transmitted is only possible with an update of all installed
systems, either using a manual process, or by in-network reprogramming
facilities. The latter of which is often regarded as an extra risk as it can
easily render a system unusable [WALJ+06]. Duplication of a similar
system in a testbed setting and using this “replica” for analysis purposes
in most cases suffers from economic feasibility and an inherent mismatch
between production and test environments.

It is therefore desirable to devise comprehensive analysis capabilities
based solely on the in-band information transmitted through a wireless
sensor network. As a stepping stone for facilitating a passive but accurate
health and performance monitoring of WSNs, this chapter presents multi-
hop network tomography (MNT), a novel, non-intrusive algorithm for
the reconstruction of the travelled path, the per-hop arrival order, and
the per-hop arrival times of individual packets at runtime. Information
is reconstructed outside the network immediately after a packet has been
received at the sink. Concretely, we exploit the fact that packets are
transferred through the network in a first-in first-out (FIFO) fashion.
We find that the order in which packets arrive at the sink allows us
create correspondences between packets that originate from independent
sources but travel along similar paths. The apparent challenge lies
foremost in the dynamics found in wireless multi-hop networks, e.g.,
topology changes, packet reordering, and lost packets.

Specifically, multi-hop network tomography addresses the following
problems: First, transferring path, per-hop arrival order, and per-hop
arrival time information in-band does not scale for large networks as the
amount of information grows linearly with the path length. As a result,
the overall network performance may decrease due to congestion and
higher packet loss rates [SAM03] when sending more and larger packets
further aggravating the capability to understand network behavior in
detail. Second, active methods for extracting desired information would

4.1. Introduction 63

also require to modify the software that is running on the sensor nodes.
Not only introducing the effort of reconfiguring a deployed system,
valuable path, per-hop arrival order and per-hop arrival time information
from historic data would remain unknown. While this work primarily
targets low-power WSNs, the method as such can be applied to any
multi-hop network. It is clear however that the most benefit is achieved
in resource-constrained scenarios commonly found in WSNs.

Apart from the analysis of deployed systems, MNT offers advantages
in potentially any scenario in which no other communication channels,
e.g., serial ports, for extracting performance data are usable. For example,
adding load on the serial interface for outputting additional performance
data is also unfavorable in certain testbed settings, e.g., when the execution
timing must not be changed.

The contribution of this chapter is as follows:

• We present the MNT algorithm for reconstructing the packet
path, the per-hop arrival order, and the per-hop arrival timing of
individual packets.

• Based on a formal model of a real system, we proof the correctness
of results obtained, i.e., that extracted path, order and timing
information match with ground truth.

• We validate the correctness of our implementation in extensive
experiments with two well-known communication protocols, i.e.,
CTP [GFJ+09], and Dozer [BvRW07], on testbeds of up to 90 nodes
size. Here, testbed infrastructure allows us to extract ground
truth without the need for congesting the in-band communication
resource under investigation. We evaluate the performance of
our algorithm in terms of the fraction of packets that can be
reconstructed in various settings. The scalability of the approach
is discussed using simulation.

• The application of the MNT algorithm to more than 270 million
packets from three deployed systems is presented in a case study.

Related work including a discussion of the novelty of this work is
presented in Section 4.2. Section 4.3 motivates the underlying problem
of reconstructing data from partial information, the core principles
used in multi-hop network tomography are presented in Section 4.4.
Assumptions made when designing the MNT algorithm are introduced
in Section 4.5, the full algorithm is presented in Section 4.6. Section 4.7
presents our validation done on real hardware and in simulation, our
case study based on data from real-world deployments is presented
in Section 4.8. The broader applicability and limitations of the MNT
algorithm are discussed in Section 4.9, Section 4.10 concludes this chapter.

64 Chapter 4. Multi-Hop Network Tomography

4.2 Related Work
A. Performance of Wireless Sensor Networks

The performance of wireless sensor networks has been intensively
studied at several layers. For instance, [ZG03] and [SDTL10] study the
link-layer performance in numerous configurations and environments.
Various protocol papers, e.g., CTP [GFJ+09] and the low-power wireless
bus [FZMT12], discuss the performance of the routing layer. The end-
to-end application performance is subject of several deployment reports,
e.g., [LBV06, BISV08, HSL+11]. An extensive cross-layer performance
study is provided by [MPC+10]. Located on the intersection between the
routing and the application layer, the purpose of this work is to passively
reconstruct hidden network performance data.

B. Network Health Monitoring
For dealing with the inherent challenges found in the long-term

operation of WSNs, e.g., hardware failures, several solutions for the
run-time monitoring of deployed systems have been proposed [RCK+05,
LLL10]. While the problem of how to combine measured information for
inferring a root cause is orthogonal to this work, such systems could
potentially benefit from per-packet path and timing information that
is provided by the MNT algorithm. Ideally, we expect reconstructed
per-hop timing information to even facilitate the development of health
monitoring systems that are also able to automatically report small
variations of the system performance before a major incident happened.

C. Wired Network Tomography
Network tomography is an important tool for network monitoring

in wired IP networks. Without the need for cooperation of involved
components, e.g., routers, network structure and link-level performance
characteristics, e.g., delay and packet loss, are measured based on the
travel of actively inserted probes. The problem of network tomography in
wired networks has been well-studied, an extensive overview of available
methods is given in [CHINY02]. In most cases, the studied problem is
either to reconstruct the network structure only, or to determine link-
level performance measurements for an a priori known network topology.
Regarding our goal of reconstructing both the network structure and link-
level characteristics, we found the work of Rabbat et al. [RNC04] as the
possibly earliest work that already covers both dimensions in the wired
scenario.

D. WSN Network Tomography
Network tomography algorithms for wireless sensor networks are

restricted by WSNs supporting much less probing traffic than wired
networks. Nguyen et al. [NT06] propose the application of statistical
methods, i.e., Maximum likelihood and Bayesian approaches, for the
identification of lossy links. While the network topology is assumed to
be known, the method of Nguyen et al. also allows for multiple, dynamic

4.3. Exploiting Information Implicitly Given 65

topologies by splitting a trace into so called “routing time slots” in which
the topology is assumed to be stable. Being interested in learning an
unknown network topology, Liu et al. [LLL10] propose an active marking
scheme for the reconstruction of topology information at the sink. Here,
extracted path information is not guaranteed to be correct.

Without adding extra probing traffic to the network, the MNT
algorithm extracts all information from already existing application
traffic. To the best of our knowledge, this is the first work that aims for
the reconstruction of detailed per-packet information while also giving
guarantees on the correctness of extracted information.

4.3 Exploiting Information Implicitly Given
Measurements taken inside a sensor network provide additional detail for
the understanding of an observed end-to-end system performance. For
example, an observed end-to-end packet delay might have several causes,
e.g., transmission failures, back-pressure, or unfair resource allocation.
However, the amount of information that can be transferred in-band is
limited as additional load potentially threatens the performance of the
system under investigation.

For enabling detailed performance analyses of sensor networks in
spite of resource constraints this work wants to answer the following
questions: Is it sufficient to transmit only partial information in-band
in order to reconstruct missing information outside the network? What
information is commonly transferred and thus already available in sensor
network applications? Which useful information is implicitly given by the
structure and behavior a-priori known from a given WSN application, and
thus does not need to be transmitted over the precious communication
resource? How much information of which detail and accuracy can be
reconstructed outside the sensor network? Are corresponding methods
applicable to a broader set of applications?

As one concrete example, this chapter presents multi-hop network
tomography (MNT) for the reconstruction of the path, the per-hop arrival
order, and the per-hop arrival time of individual packets from partial
information.

4.4 Multi-Hop Network Tomography
In multi-hop data collection applications, sensor nodes have the dual
functionality of (i) generating packets and (ii) forwarding packets of other
nodes that are more distant to the sink. Generated packets typically
include certain application header information, e.g., the source address
and a packet generation timestamp. For reconstructing information at

66 Chapter 4. Multi-Hop Network Tomography

M

FIFO

N

FIFO

K

FIFO

(a) Topology

s t

Arrival time at sink ()

M
N

k

Sink receives
s, then k, then t

Pa
ck

et
 o

ri
gi

n

WE
(b) Selection of anchor packets

Pa
ck

et

Bounds on arrival time at N

s

t
k

Arrival of k at N is bounded by
two known generation times

x

x

(c) Arrival time estimation

Fig. 4.1 Reconstruction of packet path and arrival time bounds of packet k based on information
from packets s and t. Packets s and t were subsequently generated at node N. Packet k
from node M arrived at N after the generation of s, but before the generation of t.

the sink, multi-hop network tomography exploits the fact that state-
of-the-art protocols like CTP maintain a single packet queue to which
both locally generated packets and forwarded packets are added while
traveling through the network. In the common case correspondences
created between forwarded and locally generated packets are still visible
at the sink, i.e., packets arrive at the sink in the same order as they left
a node within the network. The path, the per-hop arrival order and the
per-hop arrival timing of individual packets are reconstructed by a per-
hop correlation of information from both locally generated packets and
forwarded packets.

In the exemplary situation in Figure 4.1, packets s and t were
consecutively generated at a node N. In contrast, packet k was generated
at another node M. Minimal topology information is provided by the
address of the first-hop receiver, e.g., packet k reports node N, packets
s and t report node K, that is transmitted with every packet. Packet k
arrived at N after the generation of s, but before the generation of packet
t. Given that none of the packets was either lost, duplicated or reordered in
this example, the observable order of arrival at the sink, see Figure 4.1(b),
matches with the non-observable order of arrival at the intermediate node
N, see Figure 4.1(c).

Packets s and t are selected as so called “anchor packets” and used
for reconstructing (i) at which time packet k arrived at node N, and (ii)
to which node packet k was forwarded after leaving node N. Concretely,
information is inferred from (i) the known packet generation time of
packets s and t, see Figure 4.1(c), and (ii) the first-hop receiver reported
by packets s and t. For every packet, this procedure is repetitively applied

4.5. System Model 67

until the packet has been traced up to the sink.
Due to phenomena common to WSNs, e.g., packet loss, packet

duplication and packet reordering, observations made at the sink might
not match with the reality. Therefore, the MNT algorithm has to assess
for each packet if information can safely be reconstructed, or if there is
the risk of obtaining incorrect information. Based on the formal model of
a system that is presented in the next Section 4.5, the description of the
full MNT algorithm is situated in Section 4.6.

4.5 System Model
This section summarizes assumptions made and variables used by the
MNT algorithm. Details on the adaptation of this generic model to more
complex systems are presented in Section 4.5.1, i.e., multiple sinks and
systems that include multi-layered storage architectures.

We assume a multi-hop wireless sensor network that consists of a
number of static sensor nodes and a sink. Communication is based
on a tree-based routing protocol. The network operation is subject to
phenomena common to wireless sensor networks, i.e., topology changes,
packet loss, packet duplication and packet reordering. All nodes produce
and relay data in the sense of a data collection application. Nodes do not
have access to global timing information and rely on a local clock.

FIFO send queue. All sensor nodes have the dual functionality of (i)
generating data locally and (ii) forwarding packets received from other
nodes. Sensor nodes maintain a finite FIFO queue for all outgoing packets.
A packet is immediately added to this queue after generation in the
local application or arrival on the radio. If connected, a sensor node
transmits the contents of its send queue to the next hop. If single-hop
communication fails, a sensor node keeps retransmitting the currently
selected packet until this packet was successfully acknowledged by the
parent node, or if the maximum number of transmission attempts is
reached.
Delay-tolerant data generation. Sensor nodes are generating data, i.e.,
recording status information, that is transmitted to the sink. The timing
of data generation is unspecified. Sensor nodes may also generate data
while disconnected from the network. In this case, packets are buffered
on the sensor node until connectivity is reestablished.

We further assume that the information listed in Table 4.1 is known
for each packet k that has been received at the sink.

Timing information. The arrival time at the sink tb(k) is measured on
a perfect clock and known for any packet k. To allow for packet time-
stamping mechanisms with inaccuracies, we assume that only an estimate
t̃g(k) of the packet generation tg(k) is accessible for all packets. The error

68 Chapter 4. Multi-Hop Network Tomography

Packet Application Headers
o(k) Source node network address
t̃g(k) Estimated packet generation time
p(k) Network address of the current parent

Added on Arrival at the Sink
tb(k) Arrival time at the sink

From Analysis, Packet Headers, or Post-Processing
∆u,l(k) Upper and lower bounds on the accuracy of the estimated packet generation

time t̃g(k)
idN(k) Packet index reflecting the correct order of generation for packets originating

from a node N

Tab. 4.1 Overview of system model variables

of this estimate is bounded by t̃g(k) − ∆l(k) ≤ tg(k) ≤ t̃g(k) + ∆u(k). Here,
∆u(k) and ∆l(k) denote the upper and lower bounds on the error of the
time-stamping mechanism used. ∆u(k) and ∆l(k) are not transmitted as
part of a packet k, but assumed to be derived from an analysis, e.g., an
analysis on the accuracy of the clock synchronization scheme used. As
packets are immediately added to the send queue after generation, t̃g(k)
is a valid proxy for the arrival time of a packet k at the send queue of its
source.
Sequencing information. We assume the existence of a unique index
idN(k) that yields the correct order of packet generation for packets
originating from an individual node N: idN(u) > idN(v) iff tg(u) > tg(v).
Packet loss is an artifact that is common to wireless multi-hop networks
and therefore cannot be avoided. We assume that idN(k) also allows us to
detect packet loss: Given a packet v generated at N in direct succession
of a packet u, it must also hold that idN(v) ≡ idN(u) + 1. Practically, idN(k)
can be obtained by submitting idN(k) as part of each packet, or by using
post-processing algorithms that can reconstruct idN(k), e.g., the algorithm
that has been presented in Chapter 2 of this thesis.
Piggy-backed topology information. Each packet k carries a source
address o(k) and a first-hop receiver address p(k). For retrieving up-to-date
information, p(k) is updated immediately before each try of transmitting
the packet to the current parent. While transferring parent information
is a common best practice in many real applications, e.g., for being
able to generate snapshots of the network topology, certain protocols,
e.g., [WTC03], even require this information to be transmitted for their
operation, e.g., for enabling passive neighbor discovery. For applications
that do not yet transfer first-hop receiver information, a single field, we
follow the argumentation of Liu et al. [LLL10] while considering the
introduced traffic overhead to be negligible.

For the MNT algorithm to be able to trace packets based on
the topology information described, we need to add an assumption
concerning the observability of parent changes: For our further

4.6. Safe Information Reconstruction 69

argumentation (see Section 4.6.3.1), it must hold that the parent
of N cannot have changed between the successful transmission of
consecutively, locally generated packets u and v, if we observe p(u) ≡ p(v).
Therefore, we can only allow for up to one parent change between the
successful transmission of locally generated packets u and v. While this
is satisfied in the common case, properly handling the rare situation of
more than one consecutive parent change between the transmission of two
locally generated packets would only ask for a small modification of the
protocol operation, e.g., letting nodes locally count the number of parent
changes since the most recently transmitted topology information and
mark packets that were forwarded after the second, consecutive change.

4.5.1 Modeling More Complex Systems
None or only little extra information is required for adapting our model
to significantly more complex systems:

Multi-layered storage architecture. For supporting high sampling
rates and disconnected operation, recent system designs envision sensor
nodes to be equipped with extra hardware for bulk storage, e.g., FRAM
[CMP+09] or SD memory cards [BGH+09]. Instead of maintaining a single
packet queue only, locally generated packets are firstly added to a second
queue that is situated on the added storage. Extra information is needed
for supporting multi-layered storage architectures, namely the time spent
in other queues before a packet was ultimately added to the send queue.
Multiple sinks. Sensor nodes may concurrently transmit packets to
multiple sinks, e.g., [MP11]. Here, sensor nodes are at the same time
part of multiple concurrent tree topologies. A concrete multi-sink system
conforms to our system model if its operation can be abstracted as the
concurrent operation of multiple single-sink data collection trees that
individually conform to our system model. Data received at each sink is
then analyzed separately.

4.6 Safe Information Reconstruction
The MNT algorithm for reconstructing the travelled path, the per-hop
arrival order, and the per-hop arrival times of individual packets is based
on three core principles: First, path information is reconstructed by a per-
hop correlation of locally generated packets and forwarded packets. Here,
we exploit that locally generated packets include the address of the first-
hop receiver. Second, the per-hop arrival order of both locally generated
packets and forwarded packets is inferred from the observed order of
packet arrival at the sink. Third, packet generation time information of
locally generated packets is used to bound the per-hop arrival time of
forwarded packets that arrived at a respective node immediately before

70 Chapter 4. Multi-Hop Network Tomography

or after packet generation.
The correctness of information inferred is threatened by phenomena

common to WSNs, namely topology changes, packet loss, and packet
reordering. In the context of the MNT algorithm, we need to address
the following two problems: Firstly, observed and real packet paths of
individual packets must match. Therefore, we can only argue about
packets for which we can guarantee that those packets in any case can
only have travelled along exactly one path. Likewise, per-hop order
information inferred from the observed order of arrival at the sink must
also match with the real packet order at packet queues within the network.
Path changes are the single source of packet reordering in multi-hop
networks. Thus, we must ensure that a packet can not have been
reordered due to a path change before we are allowed to reconstruct
information of this packet or to use this packet for reconstructing
information of other packets.

Given a traceP of packets received, the first step of the MNT algorithm
is to determine the setR of so called “reliable” packets. For packets within
this set, we introduce the concept of “anchor packets” for reconstructing
packet path, per-hop order, and per-hop arrival times of individual
packets at the sink: Given a forwarded packet k that was forwarded to a
node N, “anchor packets” s and t correspond to locally generated packets
that were generated at node N immediately before and after the arrival
of k at N. Generation time information and first-hop receiver information
of both s and t are used to firstly bound the time of arrival of k at N, and
secondly to deduce the next hop to which k travelled after N.

In the following, we will first describe the concept of information
reconstruction using “anchor packets” in Section 4.6.1. The correctness of
the results obtained is threatened by artifacts of path changes. After
specifying the concrete impact on our problem in Section 4.6.2, the
following Section 4.6.3 describes the properties of “reliable” packets and
how a set R of “reliable” packets can be determined given a trace of the
received packets. Further extensions for improving extracted information
using forward and backward reasoning are presented in Section 4.6.4.
Reconstructed timing information is often too pessimistic and can be
improved by correlating information of multiple packets.

4.6.1 Packet Correlation Using Anchor Packets
This section formally describes the most integral concept of information
reconstruction using “anchor packets”. For clarity and brevity, the
following description assumes that all involved packets are members of
the corresponding set of “reliable” packets R, and therefore reconstructed
information is correct. The construction of a set of “reliable” packets will
be described afterwards in Section 4.6.3.

Given a packet k, we want to reconstruct the following information:

4.6. Safe Information Reconstruction 71

• Packet path Nk: Starting at the packet source o(k), the ordered set
Nk contains all nodes that packet k visited until arriving at the sink
node S. The order of items in Nk reflects the order of visited nodes.

• Queue index qidN(k): For all nodes N that k visited, i.e., ∀N ∈ Nk, we
want to build a queue index qidN so that qidN reflects the order of
packet arrivals at N: The queue index is larger, i.e., qidN(m) > qidN(n),
iff packet m arrived at N after another packet n, i.e., ta(N,m) > ta(N,n).
In contrast to the already known packet index idN(k), the queue index
qidN(k) provides not only the sequence of locally generated packets,
but also that of forwarded packets.

• Bounds on queue arrival time tu,l
a (N, k): For all nodes N that k

visited, i.e., ∀N ∈ Nk, we want to bound the unknown queue arrival
time ta(N, k) so that tl

a(N, k) ≤ ta(N, k) ≤ tu
a (N, k).

The reconstruction process for any packet k starts at the source node
o(k) where we are immediately able to assign the queue index qido(k)(k), the
arrival time bounds tu

a (o(k), k) and tl
a(o(k), k), and the first two entries of the

packet path Nk. Concretely, the queue index qido(k)(k) is initialized with a
multiple of the known packet index ido(k)(k), i.e., qido(k)(k) := ido(k)(k) · c with
c > 1. By multiplying the packet index idN(k), we give room for adding
forwarded packets that arrived in between locally generated packets.
Therefore, the multiplier c must be larger than the maximum number of
forwarded packets that can arrive in between two consecutively generated
packets.

Next, arrival time bounds are initialized using upper and lower
bounds on the packet generation time:

tl
a(o(k), k) := t̃g(k) − ∆l(k) (4.1)

tu
a (o(k), k) := t̃g(k) + ∆u(k) (4.2)

Likewise, the arrival time tu,l
a (S, k) at the sink corresponds to the known

time of arrival at the sink tb(k): ta(S, k)u,l := tb(k). The packet path Nk is
initialized with Nk := {o(k)}. The next hop corresponds to the known first-
hop receiver p(k), we initialize N∗ := p(k), and start searching for anchor
packets s and t at N∗:

s := arg max
x

tb(x) for all x : o(x) ≡ N∗ ∧ tb(x) < tb(k) (4.3)

t := arg min
x

tb(x) for all x : o(x) ≡ N∗ ∧ tb(x) > tb(k) (4.4)

Regarding all packets that were generated at N∗, s is the packet that
arrived at the sink latest before k. Likewise, packet t arrived at the sink
earliest after k. While we can only observe the order in which s, t and
k arrived at the sink, (4.3) assumes that if tb(s) < tb(k), it also holds that
ta(N, s) < ta(N, k). Likewise, (4.4) assumes that if tb(t) > tb(k), it also holds

72 Chapter 4. Multi-Hop Network Tomography

that ta(N, t) > ta(N, k). We will show in Section 4.6.3 that this assumption
is backed by packets s, k and t being members of the corresponding set R
of “reliable” packets.

The complete packet tracing algorithm is shown in Algorithm 4.1. The
anchor packet selection is situated between lines 5 and 8. Tracing must
firstly stop, if we cannot find anchor packets s and t (line 9), if found
packets s and t were not consecutively generated (line 10), i.e., not all
relevant packets are also part of the set of “reliable” packets, or if we
cannot safely determine the next hop (line 11). The lowest free queue
index qidN∗(k) that is smaller than the queue index qidN∗(t) of the anchor
packet t is determined in line 13.

Algorithm 4.1: Reconstruction of the path, the per-hop arrival order, and per-hop

arrival times of a packet k
input: Packet k with origin o(k), first-hop receiver p(k) and arrival time at the sink

tb(k). k ∈ R

1 begin
2 tl

a(o(k), k)←− t̃g(k) − ∆l(k) ; tu
a (o(k), k)←− t̃g(k) + ∆u(k) ;

3 Nk ←− {o(k)} ; N∗ ←− p(k) ;
4 while N∗ . S do
5 s← arg maxx tb(x)
6 for all x : x ∈ R ∧ o(x) ≡ N∗ ∧ tb(x) < tb(k) ;
7 t← arg minx tb(x)
8 for all x : x ∈ R ∧ o(x) ≡ N∗ ∧ tb(x) > tb(k) ;
9 if s ≡ {} or t ≡ {} then break ;

10 if idN∗ (s) . idN∗ (t) − 1 then break ;
11 if p(s) . p(t) then break ;
12 Nk ←− Nk ∪ {N∗} ;
13 qidN∗ (k)←− 1 + maxqidN∗ qidN∗ < qidN∗ (t) ;
14 tl

a(N∗, k)←− t̃g(s) − ∆l(s) ; tu
a (N∗, k)←− t̃g(t) + ∆u(t) ;

15 N∗ ←− p(s) ;
16 end
17 tl

a(S, k)←− tb(k) ; tu
a (S, k)←− tb(k) ;

18 end

4.6.2 The Problem with Path Changes
Regarding our scheme of inferring information from observations made
at the sink, path changes in the network can introduce two kinds of
difficulties: (i) Observations may yield more than one possible path along
which a packet k may have travelled. In this case, it is not further decidable
which of those multiple paths corresponds to the correct path. (ii) Packets
can get reordered, and thus arrive at the sink in a different order than they
arrived at individual queues within the network. In both cases, inferred
information is no longer guaranteed to be correct.

Let us outline those two problems in the following brief example of a
parent change: In Figure 4.2, we see that the parent of a node N changes
from node K to node L at a time tx. Let us assume that packets nK1, nK2 and

4.6. Safe Information Reconstruction 73

}
FIFO property is not guaranteed

between N and sink

W > W[

W � W[
K

FIFO

L

FIFO

NM

FIFO

sink

FIFO

Q/

Q.�, N, Q.�

FIFO

Fig. 4.2 Possible FIFO violation. In this example, the parent of node N changes from node K to
node L at time tx. Since packets on both paths may experience arbitrary delays, packets
generated just before and after the topology change might not arrive at the sink in the
order of generation anymore. This also affects packets being generated at more distant
nodes, i.e., node M.

nL were generated at node N. Additionally, there is a packet k that was
forwarded from a node M to node N in between the generation of nK1 and
nK2. While packets nK1, k and nK2 were still forwarded to node K, packet
nL was the first packet that went to the new parent L. Although both
paths individually forward packets in the correct order, a larger delay for
packets traveling along the old path can lead to packets arriving out of
order when packets from both paths join at the sink. For example, we now
assume that packet nL arrived at the sink before packets k and nK2, thus out
of order. This can lead to the following two problems: (i) Observations
from the sink no longer suggest that k can only have travelled along its
real path Nk := {M,N,K,S}, but also along the new path over node L.
(ii) Although nK1 and nK2 are the real “anchor packets” of k, the order of
arrival at the sink would suggest to wrongly select nL and nK2.

4.6.3 Finding a Set of Reliable Packets
With the goal of ensuring that packet correlation using anchor packets is
only applied when this procedure is safe, we propose to limit information
reconstruction to a subset of the set P of the received packets, namely to
a set R ⊆ P of “reliable” packets.

A packet k is reliable, i.e., k ∈ R, if it fulfills two properties: From our
observations at the sink, we can guarantee that (i) packet k can only have travelled
along exactly one path Nk, and that (ii) the order relation between packet k and
any other packet m ∈ R is consistent along all packet queues in the network
including the sink.

Regarding the first condition, the underlying problem is that our

74 Chapter 4. Multi-Hop Network Tomography

observations made at the sink can yield multiple, ambiguous paths when
it is not decidable if a packet k left a node N before or after node N
switching to another parent. Needed timing and order information for
deciding this problem are yet unknown. While multiple choices might
lead to selecting another, but the real path, we can only reason about
packets that can only have travelled along exactly one path.

The second condition allows us to reason about the packet arrival
order at packet queues within the network from observations at the sink.
While attached packet sequencing information idN(k) yields the sequence
of packet generation at a node N, the condition for reliable packets is
stronger as it covers both locally generated packets and forwarded packets
at an arbitrary node N. Formally, the second condition asks for the
following: For any packets m,n ∈ R, it holds that ∀N ∈ Nm ∩Nn : ta(N,m) >
ta(N,n) iff tb(m) > tb(n). Here, ta(N,m) and ta(N,n) are the unknown arrival
times of packets m and n at node N. Nm∩Nn denotes the set of nodes that
both m and n visited, and therefore the set of nodes for which an order
relation between packets m and n exists.

We will now present how the MNT algorithm consecutively solves
those two problems. First, we present a worst-case analysis that decides
if a packet can only have travelled along exactly one path, or if there are
ambiguities. Second, we will show in Section 4.6.3.2 how available packet
sequencing information idN(k) of locally generated packets can be used
for solving the second problem. The complete algorithm for finding a set
of “reliable” packets is finally presented in Section 4.6.3.3.

4.6.3.1 Per-Hop Worst-Case Path Analysis
In the following, we will describe how we can test whether a packet k
can only have left a node N to a unique next hop, or whether there are
ambiguities. Starting at the known first-hop receiver p(k), the following
procedure is carried out per-hop until either the sink is reached, or we
must conclude that we cannot decide along which path packet k travelled
along.

Let us assume a packet k that was forwarded to a node N. We now
want to determine whether we can guarantee that k can only have left
node N to exactly one next hop, and if yes, to which next hop. In this two-
part worst-case analysis, we first determine the set W of locally generated
packets in between which k may have arrived at N. Secondly, we analyze
whether all packets in W were forwarded to the same next hop. Here, we
consider both observable parent changes, i.e., packets reporting different
first-hop receivers, and potential, hidden parent changes, i.e., a lost packet.

We start with determining the set W of locally generated packets in
between which k may have arrived at N. As the arrival time of packet k
at node N is yet unknown, we must resort to bounding the arrival ta(N, k)
of packet k at node N by the lower bound on the generation time, i.e.,

4.6. Safe Information Reconstruction 75

t̃g(k)−∆l(k), and the arrival time at the sink tb(k), i.e., tl
g(k) ≤ ta(N, k) ≤ tb(k).

Based on those bounds, we determine packets u and v that were generated
at N immediately before and after the earliest and latest arrival of k at N,
respectively. Based on the packet indexes idN(u) and idN(v), we then
determine the set W of packets in between which k can have arrived at N.
Here, W includes u, v, and all packets received that were generated after
and before u and v at node N, respectively.

u := arg max
x

t̃g(x) + ∆u(x) for all x : o(x) ≡ N (4.5)

∧ t̃g(x) + ∆u(x) < t̃g(k) − ∆l(k)

v := arg min
x

t̃g(x) − ∆l(x) for all x : o(x) ≡ N (4.6)

∧ t̃g(x) − ∆l(x) > tb(k)

W :=
{
w | o(w) ≡ N (4.7)

∧ idN(u) ≤ idN(w) ≤ idN(v)
}

Theorem 4.1. We defined W as the set of all packets generated at a node N in
between which a forwarded packet k must have arrived at N. Given a packet k
that arrived at a node N in between two locally generated packets m,n ∈W, we
can guarantee that k was forwarded to a single possible next hop if (1) all packets
m ∈W were received at the sink, i.e., no packet of W was lost, and (2) all packets
m ∈W carry the same first-hop receiver.
Proof. For the proof, we now go back to our formal model where we
require that the first-hop receiver can not change more than once between
the successful transmission of two consecutively, locally generated
packets. Concretely, for any parent change, there must be at least one
transmitted packet m that carries the new parent as its first-hop receiver
p(m). Based on this assumption, there can be only one possible next hop
if (1) all packets m ∈ W were received, and (2) all packets m,n ∈ W were
forwarded to the same first-hop receiver, i.e., ∀m,n ∈W : p(m) ≡ p(n).

�

Practically, packet loss is detected using the packet index idN: No
packets between u and v were lost, iff the number of elements |W| of the
duplicate-free set W equals the difference of idN(v) and idN(u) plus one,
i.e., |W| ≡ idN(v) − idN(u) + 1. If packet loss is detected, we cannot add
packet k to the set R of reliable packets.

4.6.3.2 Exclusion of Packet Reordering
If a packet k is guaranteed to have travelled along exactly one path, we can
add k to the set R of “reliable” packets, if we can also guarantee that the
order relation between packet k and any other packet m ∈ R is consistent
along all packet queues in the network including the sink.

76 Chapter 4. Multi-Hop Network Tomography

Here, our approach is to solve this problem at its source, namely
parent changes within the network. Concretely, we want to analyze per
hop if packets were reordered due to a parent change at this node. In
the following, we present how this is done using sequencing information
that is provided for locally generated packets.

We define CN as the set of conflict-free packets originating from a node
N. Concretely, it holds that ∀m,n ∈ CN : tb(m) > tb(n) iff idN(m) > idN(n),
which essentially means that all packets that are in CN arrived at the sink
in the same order as they were generated at node N. While the number of
possible subsets CN ⊆ P is arbitrarily large, we propose to maximize the
size of CN by mapping the problem of finding CN to solving the maximum
independent set problem [Lub85]. Therefore, we construct a graph in
which each packet that originates from a node N under investigation is
represented by a vertex. While the maximum independent set problem is
about finding the largest subset of independent elements, we connect two
vertices with an edge, if the requirement tb(m) > tb(n) iff idN(m) > idN(n)
is violated between the corresponding packets m and n.
Theorem 4.2. We defined W as the set of all packets generated at a node N in
between which a packet k must have arrived at N. For any packet k that arrived
at a node N in between two consecutively, locally generated packets m,n ∈ W,
it holds that packet k cannot have been reordered due to a parent change at N,
if (1) k can only have left N to a single possible next hop, and (2) all packets
m that are part of W are also part of the set of conflict-free packets CN, thus
∀m ∈W : m ∈ CN.
Proof. Let us go back to the situation in Figure 4.2 and consider a
node N that generated packets nK1, nK2 and nL. While nK1 and nK2 were
forwarded to a node L, packet nK was forwarded to another parent K.
We further assume that all three packets are in W, i.e., W := {nK1,nK2,nL}.
In the following, we will now discuss three possible cases concerning a
forwarded packet k arriving in between two packets of W.
Case 1: Packet k arrived in between nK2 and nL: As packets nK2 and nL

were forwarded to different next hops and therefore must carry distinct
first-hop receivers, k is already excluded from being a member of the set
R of reliable packets due to ambiguities in the observable path.
Case 2A: Packet k arrived in between nK1 and nK2, all packets nK1, nK2 and
nL arrive at the sink in the same order as they arrived at N: Since all locally
generated packets arrived in order, all three packets n1, nK and nL are part
of the conflict-free set of packets. In fact, packet k has not been reordered
due to a parent change at N. Analyzing packet k continues until the sink
S is reached.
Case 2B: Packet k arrived in between nK1 and nK2, packets arrive at the
sink in the inconsistent order nK1 → nL → k → nK2: Packet k is no longer
arriving at the sink in between its correct “anchor packets” nK1 and nK2,
but in between nL and nK2. It becomes apparent, that nL arriving at the sink
before nK2 is a conflict, which means that at most one of those two packets

4.6. Safe Information Reconstruction 77

can still be in the set of conflict-free packets CN. Therefore, not all packets
that are part of W are now also part of CN anymore. In consequence, k
is no longer guaranteed to not have been reordered, and therefore not
added to the set of “reliable” packets R.

�

4.6.3.3 Algorithm for Finding a Reliable Set
In the following presentation of the complete algorithm for constructing
a set of “reliable” packets R, we will now combine our previous findings.
Here, we construct R by deciding for each packet k ∈ P, if k is also a
member of R. While the corresponding sets of conflict-free packets CN

is not part of Algorithm 4.2, those sets are determined before executing
Algorithm 4.2 by solving the corresponding maximum independent set
problem (see previous Section 4.6.3.2).

Algorithm 4.2: Algorithm for deciding if a packet k ∈ P is also a member of the

set of “reliable” packets R
input: Packet k

1 begin
2 if k < Co(k) then
3 return ;
4 end
5 N∗ ←− p(k) ;
6 while N∗ . S do
7 u← arg maxx t̃g(x) + ∆u(x) for all x : o(x) ≡ N∗

8 ∧ t̃g(x) + ∆u(x) < t̃g(k) − ∆l(k) ;
9 v← arg minx t̃g(x) − ∆l(x) for all x : o(x) ≡ N∗

10 ∧ t̃g(x) − ∆l(x) > tb(k) ;
11 if u ≡ {} or v ≡ {} then break ;
12 W←− {w | o(w) ≡ N∗

13 ∧idN∗ (u) ≤ idN∗ (w) ≤ idN∗ (v)}
14 I←− {idN∗ (w) | w ∈W} ;
15 if |I| . max I −min I + 1 then break ;
16 P←−

{
p(w) | w ∈W

}
;

17 if |P| > 1 then break ;
18 if ∃m ∈W : m < CN∗ then break ;
19 N∗ ←− p(u) ;
20 end
21 if N∗ ≡ S then R←− R ∪ {k} ;
22 end

We start with firstly determining if packet k arrived at the sink out of
order w.r.t. packets originating from the same source (line 2). Then, we
start with our analysis at the first-hop receiver N∗ := p(k). We can safely
assume that k must have arrived at N∗ later than it was generated, but
earlier than it arrived at the sink, i.e., t̃g(k) − ∆l(k) < ta(N∗, k) < tb(k). Thus,
k can have arrived at N∗ in between any of two locally generated packets

78 Chapter 4. Multi-Hop Network Tomography

m,n ∈ W. Here, Equations (4.5) to (4.7) for determining W are reflected
by lines 7 to 13 in Algorithm 4.2.

This analysis is a worst-case analysis, because we must prematurely
stop for safety reasons, if one of the following conditions is met: First, we
must stop, if k might have been forwarded to not only one, but alternative
other nodes. Evidence for this is found if we find evidence for packet loss
in W (lines 14 to 15), as well as when not all packets in W were forwarded
to the same first-hop receiver (lines 16 to 17). Second, we must also stop, if
we find evidence that a packet w ∈W arrived at the sink out of order w.r.t.
another locally generated packet v (line 18). In the good case, we continue
analyzing k in the context of the next hop, i.e., N∗ := p(u) (line 19). Packet
k is added to R, if we can safely trace the packet until the sink is reached
(line 21). At the end of this algorithm, we constructed a set R ⊆ P so that
packet correlation using anchor packets is safe for all packets k ∈ R.

4.6.4 Forward and Backward Reasoning
Initially set bounds on packet arrival times ta(N, k) are often pessimistic.
As a first improvement, a packet can apparently not have arrived earlier
than it was generated:

∀N ∈ Nk : tl
a(N, k) := max

(
t̃g(k) − ∆l(k), tl

a(N, k)
)

(4.8)

Likewise, the arrival time at the sink tb(k) of a packet k marks the
largest upper bound:

∀N ∈ Nk : tu
a (N, k) := min

(
tb(k), tu

a (N, k)
)

(4.9)

4.6.4.1 Forward and Backward Queue Traversal
For achieving further improvements of the arrival time of a packet k
at a node N, the timing information of packet k can be correlated with
information of other packets that also arrived at node N.

Given a packet k that was arriving at the queue of a node N, thus
N ∈ Nk, the following equations state, that the observable order of arrival
at node N must also be reflected by the upper and lower bounds on the
arrival time ta(N, k):

∀u,N ∈ Nu, tb(u) < tb(k) : tl
a(N, k) := max

(
tl
a (N, k) , tl

a (N,u)
)

(4.10)

∀v,N ∈ Nv, tb(v) > tb(k) : tu
a (N, k) := min

(
tu
a (N, k) , tu

a (N, v)
)

(4.11)

As we are restricting us to packets k ∈ R, the order of packet arrivals
at the packet queue of node N matches with the observed order of packet
arrivals at the sink. Similarly, bounds can also be improved by correlating
information from different nodes that a particular packet visited.

4.7. Multi-Protocol Testbed Evaluation 79

4.7 Multi-Protocol Testbed Evaluation
In this section, we validate and evaluate our implementation of the
MNT algorithm based on experiments with two well-known state-of-
the-art communication stacks used for data collection, namely CTP
[GFJ+09] and Dozer [BvRW07]. After describing the experimental setup,
i.e., the protocol selection, the packet time-stamping scheme used, and
the infrastructure used for extracting ground-truth information, results
obtained are validated by comparing them to ground truth. The
performance of the implementation used is evaluated in terms of the
fraction of packets for which information reconstruction succeeded, the
time passed until results are available, and the accuracy of calculated
arrival time bounds.

4.7.1 Experimental Setup
The results presented originate from three test environments: CTP Noe
is executed on top of the standard low-power listening (LPL) MAC that
is provided with version 2.1 of TinyOS. Those tests are carried out on
up to 92 Tmote Sky (TI MSP430, CC2420 radio) nodes that are part of
the TWIST testbed [HKWW06]. Twenty-five Tinynode 184 (TI MSP430,
Semtech SX1211 radio) nodes of the also public FlockLab testbed [LFZ+13]
are used for measurements that involve Dozer. For larger scaling tests on
a 100-hop line topology, we are furthermore running experiments with
an implementation of CTP [CS11] in the Castalia/OMNeT++1 network
simulator.

The purpose of the protocol selection and configuration used is to
cover the following design aspect of routing protocols: While nodes are
configured to turn on their duty-cycled radios every 62 ms and 250 ms,
respectively, when running CTP Noe on top of the standard low-power
listening [PHC04] MAC found in TinyOS 2.1, communication only takes
place every 15 or 30 seconds, respectively, when running Dozer with
a corresponding set of parameters. While the design space for routing
protocols is definitely broader, e.g., includes energy considerations, the
tradeoff between reactivity and latency is of highest relevance in the
context of this work. All protocols have only been modified to transmit
per-packet information assumed by our formal system model. This
requires only changes on the application-level, other layers remain
untouched.

4.7.1.1 Packet Time-stamping
Providing simple integration, we decided to obtain packet generation
timestamps using elapsed time on arrival [KDL+06]. We define ts(k) as
the accumulated sojourn time that a packet k spent within the network.

1http://castalia.npc.nicta.com.au/

http://castalia.npc.nicta.com.au/

80 Chapter 4. Multi-Hop Network Tomography

Radio

Serial port
ADD: tNrRX = 28, from = 5

GET: tNrRX = 28, tNrTX = 71, to = 7

GET: tNrRX = 28, tNrTX = 72, to = 7

✗
tNr = 28 tNr = 71

tNr = 72

ADD: tNrRX = 72,

 from = 6

ID 6 ID 7

Fig. 4.3 Extraction of ground truth. For our validation tests, we instrumented code to make the
travel of individual packets observable. This information is not transferred in-band, but
over the serial port of the sensor node. Sensor nodes firstly generate a log message when
a packet is added to the send queue (ADD), and secondly immediately before a packet
is handed over to the radio for transmission (GET). The value of the local transmission
counter tNr is incremented before any transmission attempt, and logged on both sender
and receiver sides.

Ideally, the packet generation time tg(k) of a packet k is retrieved by
subtracting the packet sojourn time ts(k) from the arrival time of the packet
at the sink, thus tg(k) := tb(k)− ts(k). Here, it is assumed that tb(k) and ts(k)
are measured on perfect clocks.

In the context of real clocks, we cannot measure ts(k), but the estimated
packet sojourn time t̃s(k) that includes artifacts caused by measuring
time on clocks with a low resolution and drift. After being initialized
with t̃s(k) := 0 on packet generation, this additional packet header is
successively updated while a packet travels through the network. The
inaccuracy of the resulting packet generation time estimate t̃g(k) :=
tb(k) − t̃s(k) of a packet k is as follows:

∆u(k) :=
t̃s(k)
1 + ρ̂

, ∆l(k) :=
t̃s(k) + |Nk| · t̂u

1 − ρ̂
(4.12)

Here, we assume a bounded clock drift ρ ∈ [−ρ̂; ρ̂], e.g., ρ̂ := ±60 ppm,
and a clock resolution of t̂u, e.g., t̂u := 1 sec. As an error of [0,+t̂u) can be
introduced by each separate measurement, we must multiply t̂u with the
length |Nk| of the packet path Nk.

4.7.1.2 Extraction of Ground Truth
For the validation of the MNT algorithm, we are interested in the ground
truth w.r.t. the path, the per-hop arrival order, and the per-hop arrival
time of individual packets. Therefore, we instrumented existing protocol
code for outputting this information over the serial port of the sensor
node. An observer device, e.g., a more powerful, networked PC, is
connected to the serial port of any sensor node, the received messages
are logged to a file. Compared to sending ground truth information

4.7. Multi-Protocol Testbed Evaluation 81

in-band over the radio, transmitting ground truth information over the
serial port is very reliable, does not influence the packet stream under
investigation, and also scales well for larger networks. Additionally,
messages can be timestamped using the accurate, synchronized clock
of the observer device. Ground truth is eventually reconstructed by
correlating information from individual logs. For avoiding interference
between serial port communication and radio communication, we took
as much care as possible when integrating our instrumentation code into
the existing software.

In more detail, sensor nodes log the following two events: Firstly, a log
message is generated when a packet is added to the packet queue (ADD).
This can be triggered by the application generating a new message, by
the reception of a forwarded packet, or when a packet is copied from a
secondary node storage, e.g., a SD card. Secondly, a log message is also
generated immediately before every attempt of transmitting a message
over the radio (GET). Therefore, there can be multiple occurrences of
GET events for a single packet. The occurrences of both events are
timestamped on the local node clocks, the time difference between
corresponding ADD and GET events yields the local packet sojourn time
of a packet on a particular node. The sink is simply forwarding any
received packet to the serial port.

Packet duplications can lead to multiple copies of a single packet
being simultaneously traveling through the network. For being able to
distinguish between multiple instances of a single packet, each packet
transmission is made uniquely detectable by adding a transmission
counter. Each sensor node is individually counting its local transmission
attempts, the current counter value is added to each packet just before
the packet is passed over to the radio. Sending the counter value in-band
allows to log the respective value at both sides and finally to match the
traces of the sending and the receiving node. An illustrating example of
this mechanism is shown in Figure 4.3.

4.7.2 Validation and Evaluation Results
Validation and evaluation results from nine different test configurations
are shown in Table 4.2. Results from simulation are in line with results
obtained from experiments on real hardware. Varying test durations and
network sizes are a result of varying availabilities of testbed resources.
Apart from available time slots, tests are also limited to sensor nodes for
which serial logging turned out to be successful in a pre-test.

For evaluating the sensitivity of the MNT algorithm w.r.t. the inter-
packet interval (IPI), tests are repeated using varying packet generation
rates. While using a periodic packet generation scheme allows us to make
the sensitivity w.r.t. the IPI more visible, the MNT algorithm neither
requires packet generation to be periodic, nor asks for all sensor nodes

82 Chapter 4. Multi-Hop Network Tomography

PACKETS
N D IPI H PC DY RECEIVED

CTP Noe/LPL
A) 92 10 hour 15 sec 4 274 99.0% 217,078
B) 85 9 hour 30 sec 3 122 98.3% 88,541
C) 91 9 hour 120 sec 4 416 99.2% 54,143

CTP (Simulation)
D) 100 5 hour 30 sec 100 0 99.9% 60,150
E) 100 20 hour 120 sec 100 0 99.9% 60,112

Dozer
F) 25 12 hour 15 sec 3 548 99.8% 48,321
G) 25 16 hour 30 sec 4 193 99.9% 35,220
H) 25 24 hour 120 sec 4 196 99.9% 18,216
I) 10 60 hour ∗120 sec 3 37 99.5% 84,563

(a) Characterization of test cases A) to I)

PACKETS PROC. DELAY UNCERTAINTY
RELIABLE FULL PATH CORRECT p0.9 p0.98 p0.9 p0.98

CTP Noe/LPL
A) 99.0% 98.9% 100.0% 17 sec 20 sec <1 sec <1 sec
B) 98.9% 98.9% 100.0% 32 sec 40 sec <1 sec 1 sec
C) 98.4% 98.2% 100.0% 62 sec 75 sec 1 sec 1 sec

CTP (Simulation)
D) 96.5% 93.2% 100.0% 30 sec 31 sec <1 sec <1 sec
E) 97.0% 94.3% 100.0% 120 sec 121 sec <1 sec <1 sec

Dozer
F) 91.3% 91.2% 100.0% 537 sec 1,363 sec 15 sec 90 sec
G) 92.4% 92.3% 100.0% 1,024 sec 2,201 sec 30 sec 120 sec
H) 98.5% 98.4% 100.0% 120 sec 180 sec 84 sec 114 sec
I) 97.7% 97.7% 100.0% 122 sec 212 sec 74 sec 118 sec

(b) Results of multi-hop network tomography

Tab. 4.2 Validation and evaluation based on testbed experiments and simulation. Shown are
the number of sensor nodes (N), the duration of the test (D), the inter-packet interval
(IPI), the height of the data collection tree in hops (H), the number of observed parent
changes (PC), and the data yield (DY). The fractions of packets that were part of the
“reliable” set and the fractions of packets that could be fully reconstructed up to the
sink are specified based on the number of packets received. The distribution of the
processing delay is given by the 90th and 98th percentiles. Similar, the per-hop arrival
time bounds uncertainty, i.e., the difference of upper and lower bounds, is also given
using percentiles. (∗) Deployment configuration in which five packets are generated
every 120 sec.

4.7. Multi-Protocol Testbed Evaluation 83

being using the same scheme (see Section 4.5). For being able to evaluate
the performance for both very high and artificially lowered data yields,
nodes are programmed to only generate new packets when there is free
space in the local send queue. While this avoids packets being dropped
due to queue overflows, this can result in the effective IPI being lower
than the configured IPI.

4.7.2.1 Evaluation Methodology
The number of parent changes is computed from collected ground truth
information. The number of missing packets, and thus the data yield,
is calculated from included packet sequencing information idN(k). Here,
a packet is not only missing if it was not received at the sink, but also
when ground truth information is missing. As we generally find serial
port communication very reliable, the amount of packets missing due to
missing ground truth information is not significant.

Reconstructed information of a packet is only counted as correct if all
three reconstructed components, i.e., packet path, per-hop arrival order,
and per-hop arrival times, are correct. The reconstructed path Nk of a
packet k is correct if found nodes including their order matches with
ground truth. The reconstructed path can prematurely end if packet k
could not be fully reconstructed, but cannot contain additional elements
or gaps. Reconstructed arrival order information is correct if the order of
the queue index qidN(k) matches with ground truth for any node N ∈ Nk.
Lastly, extracted arrival time bounds are correct if it holds for all packets
k ∈ R that the real arrival time ta(N, k) is within the reconstructed bounds,
i.e., ∀N ∈ Nk : tl

a(N, k) ≤ ta(N, k) ≤ tu
a (N, k). As both reconstructed bounds

and ground truth are measured on clocks of varying resolution and drift,
this comparison allows for a bounded measurement error.

As presented in Section 4.6, the MNT algorithm also requires
information of packets that arrived at the sink later than a packet k
under investigation. We define the processing delay as the time distance
between the arrival time tb(k) of packet k at the sink and the arrival time
tb(v) of packet v at the sink, i.e., tb(v) − tb(v). Here, v is the latest arriving
packet that is required for the analysis of packet k.

The uncertainty of reconstructed per-hop arrival time bounds is
defined as the difference between upper and lower bounds, i.e., tu

a (N, k) −
tl
a(N, k).

4.7.2.2 Discussion
This section details on how the IPI, the reactivity of the communication
protocol used, the length of the routing paths, the time packets spent in
the network, and the amount of lost packets influence the performance of
the MNT algorithm. After firstly discussing the fraction of reconstructed
packets, we will also detail on the processing delay and the uncertainty

84 Chapter 4. Multi-Hop Network Tomography

 1 0.9 0.8 0.7 0.6 0.5
0

0.5

1

Data yield (artificially lowered)

R
ec

o
n

st
ru

ct
ed

 p
ac

k
et

s

C) CTP H) Dozer F) Dozer E) CTP (line)

Fig. 4.4 Sensitivity of the reconstruction performance to a decreasing data yield. The fraction of
packets received for which information can be safely reconstructed converges towards
the fraction of packets that originate from single-hop neighbors of the sink.

of reconstructed per-hop arrival time bounds.
While the core principle of the MNT algorithm is to reconstruct

information from correspondences created between multiple packets of
different sources, an integral metric for understanding the reconstruction
performance is the number of correspondences that are needed for being
able to safely reconstruct the information of a packet. The number of
packets that need to be considered during a worst-case path analysis (see
Section 4.6.3.1) grows with the length of the routing path and the time
a packet spent in the network. Similarly, the number of packets whose
reconstruction relies on a particular packet also grows for longer routing
paths and larger packet sojourn times. In consequence, the number of
packets whose reconstruction might be affected by a particular parent
change or a lost packet is also increasing.

Recent deployment reports, e.g., [CMP+09, KWL+11], confirm that a
data yield of≥ 99.5% is achievable even in very challenging environments.
A problem within the network must not necessarily be reflected by a large
portion of packets being lost, but can also cause packets arriving at the sink
with a larger delay. For instance, the Dozer implementation used in the
PermaSense project does not deliberately drop packets, but retransmits
each single packet until its reception was eventually acknowledged by
the next hop.

Nevertheless, artificially lowering the data yield down to 50% allows
us to study the fundamental limits of the MNT algorithm. Starting with
the original traces obtained from tests C), E), F) and H), the data yield
is consecutively lowered by randomly removing packets. The resulting
reconstruction performance is shown in Figure 4.4. Here, we see the
fraction of fully reconstructed packets converging towards a stable value
which is the fraction of packets originating from one-hop neighbors of
the sink. For example, only 1% of the packets in test E) originate from
the single one-hop neighbor in the simulated 100-hop line topology. The

4.8. Making Real Network Dynamics Visible 85

decrease is almost linear for cases C) and H), the curves for the tests E) and
F) show a steep decay at the beginning of the curve. Large routing paths
in test E) and large packet sojourn times of up to four hours in test F) result
in large numbers of correspondences needed for deciding if information
can be reconstructed safely. In consequence, already a small number of
lost packets can cause the information needed for the reconstruction of
multiple other packets being lost in those extreme situations.

Regarding the time needed until all related packets also arrived at the
sink, the results of tests A) to E) show a correlation between the processing
delay and the chosen IPI. While almost all packets reached the sink as fast
as possible in those five tests, the results presented for tests F) and G)
include the effects of a fraction of packets staying in the network for
several hours.

The uncertainty of reconstructed per-hop arrival time bounds is upper
bound by the largest IPI used along the routing path. Uncertainties
are significantly reduced when a reactive communication stack, i.e., CTP
Noe/LPL, is used.

Overall, the MNT algorithm has proven to achieve high reconstruction
rates ≥ 91.2% in various configurations based on well-known CTP
and Dozer protocols. During normal operation without congestion,
information can be reconstructed quickly after a packet has been received
at the sink. The uncertainty of reconstructed per-hop arrival time bounds
is not affected by large packet sojourn times. Comparison with ground
truth showed reconstructed information to be correct in all cases.

4.8 Making Real Network Dynamics Visible
This case study presents the application of the MNT algorithm to large
data sets that originate from three real-world production deployments of
the PermaSense project. After the initial deployment of the first system in
2008, the principle operation of the Dozer protocol used and the definition
of packet application headers transmitted have not been modified ever
since. This enables a coherent analysis of the complete data sets using the
MNT algorithm.

Section 4.8.1 presents the reconstruction of information required by
the MNT algorithm. The purpose of this step is to map the output of
the specific system implementation to the inputs of the implementation-
independent, generic system model (see Section 4.5). The accuracy of this
transformation step is evaluated in testbed experiments. Results obtained
from applying the MNT algorithm to the resulting traces are presented
and discussed in Section 4.8.3. A simple usage example of reconstructed
data is given in Section 4.8.4. Section 4.8.5 describes a more complex
use case in which results from the MNT algorithm are used to evaluate
fairness inside the network.

86 Chapter 4. Multi-Hop Network Tomography

Raw
Data

Performance
Analysis

{Implementation-dependent

Multi-Hop
Network

Tomography

Health
Packet

Analysis

Data
Cleaning

First-hop receiver
SD card store time

Packet index Packet path
Per-hop arrival order
Per-hop arrival timing

NNLG1(N) S(N)
TLG1(N)
WX,O
D (1, N)

Fig. 4.5 Implementation-specific data preparation. In order to conform with the inputs required
by multi-hop network tomography, historic data from PermaSense deployments must be
prepared using algorithms that are specific to the PermaSense system implementation.

4.8.1 Data Preparation Methodology
Input data required by the MNT algorithm is not implicitly included in
PermaSense data sets and must therefore be reconstructed from other
information during a multi-stage pre-processing step, see Figure 4.5:

• Packet index idN(k): Sequencing information provided by a
sequence number transmitted that is reset to zero every 20 days
in average must be converted to a monotonically increasing packet
index idN(k). The algorithm used is able to address both intended,
i.e., the maximum counter value is reached, and unintended resets,
e.g., a node failure, of the sequence number.

• SD card store time: Most sensor nodes used in the PermaSense
project are equipped with an SD card that buffers locally generated
packets when the node is disconnected. Independent of the
connection state, all locally generated packets are looped through
this extra queue, see Figure 4.6. Received packet sequencing and
periodically sampled queue size information are used for replaying
queue operations and eventually reconstructing the SD card store
time of individual packets.

• First-hop receiver p(k): Nodes do not transmit the first-hop receiver
of individual packets, but periodically sample the address of the
current parent node. This requires the reconstruction of the time
when a locally generated packet left the send queue, and thus
was successfully transmitted over the radio. The estimation of
this information is also based on known properties of the queue
implementations used.

An heuristic is used for solving the problem of unknown forwarding
traffic: Given that the send queue can only hold up to 20 locally generated
packets, a locally generated packet must have departed latest when
the next 20 locally generated packets have been added to the queue.
For stable links, the first-hop receiver can be reconstructed with a high

4.8. Making Real Network Dynamics Visible 87

N

FIFO

FIFO

Local only

Local & forwardedMCU RAM

SD card

Fig. 4.6 PermaSense sensor node with two packet queues. Locally generated packets are looped
through a second queue that is situated on a SD memory card. The packet generation
time is no longer a valid proxy for the send queue arrival time, the MNT algorithm thus
requires the duration for which a packet was stored on the SD card to be known.

confidence when combining the estimated send queue departure time
with corresponding parent information.

The accuracy of the deployment data preparation test is verified in two
testbed experiments of 110 hours duration in total. Similar to a deployed
setting, these experiments involve six sensor nodes with attached SD
cards, four sensor nodes that can only buffer messages in the RAM, and
one sink node. Sensor nodes generate five packets every 2 minutes.
Queue size counters and parent information are transmitted with every
fifth packet. In contrast to the deployed setting, ground truth SD card
store time and first-hop receiver are also transmitted with every packet.
For forcing sensor nodes to buffer messages, the sink node is switched
off eight times for a duration of 3 hours each. From 157,645 unique
packets received, 99.4% of the packets pass the first stage of assigning a
unique packet index idN(k). SD card store time and first-hop receiver
information are reconstructed for 154,870 packets, remaining packets
cannot be reconstructed due to missing context at the end of the trace.
Reconstructed first-hop receiver information is correct in 99.96% of the
cases. Subject to actually buffered packets only, the absolute mean error
of the estimated SD card store time is 50 sec. This is to be expected
given that queue sizes are only sampled every two minutes. Please notice
that the logical ordering in which packets arrive is unaffected from this
uncertainty, and that this uncertainty is specific to historic data originating
from PermaSense deployments only.

4.8.2 Multi-Year Deployment Data Preparation
Multi-year deployment data originating from different hardware and
software releases is not perfect, e.g., still contains artifacts of problems
that have been fixed over time. Therefore, the analysis of such data
requires highest attention and care. Results of each intermediate step
are separately verified by automated and manual sanity checks. The
results of the implementation-specific data preparation for more than 270
million packets that originate from three sensor network deployments are
shown in Table 4.3. More than 95.4% of the data from Matterhorn and

88 Chapter 4. Multi-Hop Network Tomography

MATTERHORN JUNGFRAUJOCH DIRRUHORN

Deployment Characteristics
First deployment July 2008 February 2009 August 2010
Current network size 31 nodes, 1 sink 29 nodes, 2 sinks 47 nodes, 3 sinks

Packets Received
Years of operation 4.7 4.5 3.0
Unique 124,355,896 88,989,345 60,277,830
Duplicates 1,063,303 1,025,562 404,997

Packets After Data Cleaning
Unique 98.8% 95.0% 96.9%

Packets After Health Packet Analysis
Total unique 98.0% 83.1% 96.4%
Per node, min 94.7% 43.5% 89.8%
Per node, max 99.6% 99.7% 99.2%

Input of Multi-Hop Network Tomography
Total 121,885,862 73,965,545 58,117,639
% of unique packets 96.0% 86.4% 95.4%

Tab. 4.3 Results of PermaSense-specific data preparation. Large portions of the input data have
been reconstructed and are therefore ready for the multi-hop network tomography.
Results of the Jungfraujoch deployment vary due to gaps in the traces used.

Dirruhorn deployments have been reconstructed and are therefore ready
for multi-hop network tomography. The results for the Jungfraujoch
deployment originate from truncated traces that are possibly caused by
unintended manual deletion in the data repository. While the ends of the
three incomplete traces show ca. 100,000 buffered packets each after a long
phase of no connectivity, corresponding health packets for reconstructing
how queues were flushed are missing.

4.8.3 Multi-Deployment Network Tomography
The execution of the MNT algorithm requires the combined processing
of the traces of all sensor nodes. To deal with the amounts of data
found in this case study, data sets are split into week-long slices with
approximately 300,000 packets per slice. Each slice contains packets that
were generated during the corresponding week. Depending on the time
packets spent in the network also packets of following weeks must be
loaded for providing required context to the worst-case path analysis that
is part of the MNT algorithm (see Section 4.6.3.1). For example, up to
10 times more data must be loaded when processing packets that were
buffered in the network for multiple months at the Jungfraujoch site.

Multi-hop network tomography results are presented in Table 4.4 and
Figure 4.7. More than 85.1% of the packets passed to the MNT algorithm

4.8. Making Real Network Dynamics Visible 89

25/08/2009 23/11/2010 21/02/2012 21/05/2013
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
p

ac
k

et
s

Fully reconstructed Stopped due to missing context

(a) Matterhorn

08/07/2009 15/09/2010 23/11/2011 30/01/2013
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
p

ac
k

et
s

(b) Jungfraujoch

12/11/2010 26/08/2011 08/06/2012 22/03/2013
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
p

ac
k

et
s

(c) Dirruhorn

Fig. 4.7 Weekly reconstruction performance when applying multi-hop network tomography to
three deployment data sets. Lower performance is mostly caused by gaps in the data
repository that were unintentionally introduced during the handling of data received.
Additionally, a large number of packets and thus context needed for obtaining more
complete results for the last weeks of the Jungfraujoch deployment are still buffered
inside the network at the time of writing this thesis.

90 Chapter 4. Multi-Hop Network Tomography

MATTERHORN JUNGFRAUJOCH DIRRUHORN
Total Packets

Input 121,885,862 73,965,545 58,117,639

Reliable 97.4% 88.2% 96.0%

Full path 97.2% 85.1% 92.0%

Fully Reconstructed Packets per Week-long Slice

Min 66.1% 27.7% 63.1%

Max 100.0% 100.0% 99.8%

Tab. 4.4 Application of multi-hop network tomography to deployment data. The MNT algorithm
is able to trace both original packets and independently traveling packet duplicates.
Since it is not known at which hop a packet was actually duplicated, all packet instances
are assumed to originate from the source. Duplicates are generally flagged and removed
if this inaccuracy might harm the result of a particular analysis.

were fully reconstructed. Compared to the amount of total packets
received from the network before the data preparation, this accounts
to 95.3%, 70.7%, and 88.7% of packets being fully reconstructed.

Lower results for individual weeks are caused by the MNT algorithm
not being able to reconstruct all packets due to missing context, i.e., human
errors while handling data causing significant amounts of packets to be
missing in the data repository. The number of errors virtually mirrors
the number of packets that could not be reconstructed. Apart from this
problem, the results at the end of Figure 4.7(b) are additionally rather
low because packets and thus context needed for achieving better results
are still buffered inside the network at the time of writing this thesis.
Communication problems at the Jungfraujoch site cause packets to remain
inside the network for weeks or even months [KWL+11]. Other potential
problems, e.g., sporadically lost packets and packet reordering, are only
causing insignificant amounts of packets to be not reconstructable.

4.8.4 A First Glance Into the Network

Results of multi-hop network tomography are immediately usable for
characterizing network operation. For instance, Figure 4.8(a) shows the
distribution of the path length. Using all reconstructed packets of all three
case study deployments as the input, this distribution is simply obtained
by analyzing the per-packet path information that is provided by the MNT
algorithm. Likewise, the traffic distribution as shown in Figure 4.8(b) can
also be obtained from per-packet path information. Here, differences in
the amount of locally generated packets are caused by varying sensor
configurations. The minimal configuration of every node is to report its
system health, e.g., the battery voltage level, every two minutes.

4.8. Making Real Network Dynamics Visible 91

1 2 3 4 5 6 7

0.4

0.6

0.8

1

Hops to sink node

C
D

F

Matterhorn
Jungfraujoch
Dirruhorn

(a) Path length distribution

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 19 20 21 22 23 24 25 26
0

2e5

4e5

6e5

8e5

Node ID

F
o

rw
ar

d
ed

 p
ac

k
et

s

Locally generated packets Packets of other nodes

(b) Per-node traffic of 10 weeks at Matterhorn deployment

Fig. 4.8 Detailed network characterization data can be easily obtained from reconstructed per-
packet path, ordering and timing information.

 0

0.2

0.4

0.6

0.8

 1
F

ai
rn

es
s

In
d

ex

01/11/2011 13/11/2011 26/11/2011 08/12/2011
 0

0.5

 1

1.5

 2

G
o

o
d

p
u

t
[p

ac
k

et
s/

se
c]

Fig. 4.9 Goodput (left-hand side axis) and fairness index (right-hand side axis) at node position
3 of the Dirruhorn deployment. This node is on average two hops away from the sink. It
generates own data and receives packets from seven other nodes during the time period
shown. Different packet sources are shown using distinct colors. The allocation of slots
in the packet queue is no longer fair when the goodput is higher than 0.5 packets per
second.

92 Chapter 4. Multi-Hop Network Tomography

4.8.5 Performance Analysis Inside the Network
Apart from rather simple network characterization tasks, reconstructed
data can also help to answer more complex questions on the performance
of a network. The probably most powerful application of reconstructed
data is to combine reconstructed packet path and per-hop arrival times
for deriving bounds on per-hop packet sojourn times. Per-hop packet
sojourn times are particularly interesting as an increase in the packet delay
serves as an important proxy for detecting problems inside a network, e.g.,
problems with the wireless channel or no free buffer capacity at the next
hop towards the sink. A complete health monitoring system that is based
on reconstructed per-hop packet sojourn times is presented in Chapter 5.

A smaller, yet not less interesting example for performance analysis
inside a network is the evaluation of fairness. As missing fairness leads
to large amounts of packets being delayed by other traffic, fairness
is a valuable indicator for improving the network beyond the scope
of protocol self-recovery mechanisms, e.g., by modifying statically set
protocol parameters.

Following the definition of Jain et al. [JCH84], we calculate the Fairness
Index that is defined as the fraction of users being treated fair. An
allocation is fair, if all users receive a share that is fair in terms of their
own demand and the demand of other users. Results obtained for 20
minutes long slices are shown in Figure 4.9. While the demand is defined
as the number of packets that are currently buffered in both queues of a
sensor node, the allocated share is defined as the number of packets that
a particular child node transmitted during a slice of 20 minutes length.

In our analysis, we find the sink node to always be fair to its children.
This is to be expected as the sink node is not duty-cycled and also does not
suffer from queue size constraints when data is immediately forwarded to
the base station PC. However, fairness is no longer given at intermediate
nodes when the amount of packets received is higher than 0.5 packets per
second over a longer time period. It is to investigate if this behavior needs
to be improved, e.g., by modifying the current queue allocation scheme.

4.9 Broader Applicability and Limitations
With tree-based routing protocols being very popular in real-world
deployments, the MAC-independent MNT algorithm can potentially be
used in many scenarios. Still, the assumption of all nodes generating data
might not fit to some applications. While sensor nodes that only forward
packets could be modified to cooperate, i.e., modify passing first-hop
receiver information to hide themselves, the existence of sole forwarders
will unavoidably introduce inaccuracies. Additionally, the assumption
of routing paths being rather stable might render the MNT algorithm not
applicable for systems in which path changes occur very frequent, e.g.,

4.10. Conclusions 93

because of nodes selecting the next hop in a round-robin fashion.

4.10 Conclusions
This chapter presented multi-hop network tomography (MNT), a novel,
non-intrusive algorithm for the reconstruction of the path, the per-
hop arrival order and the per-hop arrival time of individual packets.
The results of extensive testbed runs of two state-of-the-art data
collection protocols, i.e., CTP and Dozer, verified that information can be
reconstructed with a great confidence. The application in a deployment
context has been proven to be feasible in a case study that involved
more than 270 million packets from three real-world sensor network
deployments.

As one concrete example for further applications of multi-hop network
tomography, the following Chapter 5 presents Hybrid Monitoring, a system
for monitoring network health. Here, information reconstructed and
provided by MNT significantly reduces the amount of extra information
that is needed to fulfill this task.

94 Chapter 4. Multi-Hop Network Tomography

5
Hybrid Network Health Monitoring

Network health monitoring is a fundamental, yet well-studied problem
in wireless sensing systems. Starting with systems that periodically
transmit health information [RCK+05], researchers soon tried to reduce
the amount of additional traffic by applying in-network aggregation
techniques [RB06, LMZL11] or even moving the failure detection process
inside the network [MLML12]. Though even completely passive systems
such as PAD [LLL10] have been proposed, this sole analysis of unmodified
application traffic suffers from a low detection accuracy and limited
coverage. For example, PAD is not able to distinguish if a sensor node is
disconnected and thus not trying to send packets, or actually trying but
not able to get packets successfully transmitted.

Multi-hop network tomography (see previous Chapter 4), itself a
passive method, enables the creation of Hybrid Monitoring, a minimally
active system that is able to deliver detailed insights from inside the
network while at the same time only adding the minimal overhead of a
single extra bit to every packet.

5.1 Introduction
Looking at recent projects, we can currently observe a continuous growth
in network size [MHL+09] and in the usage horizon of WSN deployments.
Furthermore, anticipated future applications of unprecedented societal
and economical interest, e.g., the monitoring of natural hazards,
will require those networks to fulfill highest reliability requirements.
Networks of growing size and importance can no longer be monitored
manually, but require automated systems that ideally warn a network
operator even before a yet undetected, lingering misbehavior [KBM+09]
would eventually result in a fatal incident, e.g., a node completely

96 Chapter 5. Hybrid Network Health Monitoring

stopping its service.
In this chapter, we propose Hybrid Monitoring, a novel WSN

health monitoring system that utilizes passively reconstructed packet
information while only adding minimal extra information required for
mitigating the aforementioned problem to every packet. The design of
this system is based on the observation that a number of failure events, e.g.,
failed packet transmission attempts, a congested channel, or full packet
queues towards the sink, share the common characteristic of affected
packets to wait longer inside the network. Resulting delays range from a
few seconds to several minutes. Initially being interested in inferring
the actual number of failure events occurred solely from passively
reconstructed per-hop timing information (see previous Chapter 4), we
found that accuracy and coverage are significantly improved when asking
for minimal collaboration from inside the network. Concretely, our
measurements prove that adding one bit per packet is sufficient for
resolving the majority of situations in which a completely passive system
would heavily over or underestimate the metric analyzed.

Implementing the semantics of the so called “problem bit” requires
only minimal modifications on the sensor nodes. Hybrid Monitoring
does not inject additional packets into the network, but needs only
one extra bit to be attached to every packet that is generated by the
existing sensor network application. A sensor node sets the problem bit
of a locally generated packet if at least one failure event has occurred
since the generation of the previous packet. Here, a failure event refers
to any behavior that requires a packet transmission to be repeated or
postponed despite of the node being connected to the network. Subject
to further refinement w.r.t. the concrete protocol used, failure events
are unacknowledged packet transmissions, the radio not being ready for
transmission, and the queue at the next hop being full.

Problem bit information from inside the network is then combined
with passively reconstructed path and per-hop timing information after
packets have been received at the sink. Here, the main principle is to
analyze the times that individual packets spent at a node. The resulting
health metric is the actual number of failure events that occurred between
the generation of two subsequent data packets. Exemplary scenarios that
contribute to a rise in this metric are a lossy channel, an unbalanced
routing tree, timing problems on the node, and even hardware issues.
The number of failure events is an early diagnosis metric, i.e., failures can
be detected even before a protocol eventually starts to drop packets.

The contribution of this chapter is as follows:

• We propose Hybrid Monitoring, a novel health monitoring system
that complements a passive health monitoring method, i.e., the
analysis of passively reconstructed timing information, with a
minimally active component. Sensor nodes are only required
to set the problem bit according to very simple semantics.

5.2. Related Work 97

Retrieved information are useful for identifying lossy links and
traffic bottlenecks, and to generally monitor the performance of
a system over time. Our approach minimizes communication and
computation overheads. As it can be completely integrated into
an existing application, Hybrid Monitoring is suited for continuous
operation. If needed, Hybrid Monitoring can also be combined with
heavier debugging components that may be automatically activated
based on the number of detected failure events.

• The algorithmic framework of Hybrid Monitoring is presented based
on a formal model of a data collection application.

• We implemented our system on real nodes on top of the Dozer
[BvRW07] ultra low-power data collection protocol. Extensive
experiments on testbeds of up to 96 nodes in size show that the
number of occurred failure events can be estimated with a high
confidence. More than 90% of the decisions are done correctly
when the number of occurred failure events is used as the input
of a runtime monitoring application that eventually triggers further
action, e.g., notifies a network operator.

The remainder of this chapter is structured as follows: After presenting
related work in Section 5.2, the general problem that this work is trying to
tackle is presented in Section 5.3. Section 5.4 gives a high-level description
of the proposed system. Assumptions made are summarized in a formal
model of a data collection system that is shown in Section 5.5, a detailed
description of algorithms used is presented in Section 5.6. The results
of our evaluation on real hardware are shown in Section 5.7, Section 5.8
discusses the broader applicability and the limitations of the presented
system. Section 5.9 concludes this chapter.

5.2 Related Work
After initial lessons learned [SMP+04, LBV06], a growing tool support
has helped to make WSNs nowadays being ready for long-term missions
at scale. The debugging of a system whose state is distributed over
many devices being a very challenging task, many efforts have especially
focused on this particular problem. As a result, various methods,
e.g., simulation [LLWC03, ODE+06], testbeds [HKWW06, LFZ+13], co-
located sniffing hardware [CPMW08], in-network debugging facilities
[YSSW07, CAS+08], and in-network state loggers [LHZ+06, RM09], are
now available for supporting developers during the whole development
lifecycle of a WSN.

Once a system is ready for production, informed network operation
again requires distributed state to be accessible. While debugging

98 Chapter 5. Hybrid Network Health Monitoring

facilities that were used during the development are often too
heavyweight or even not applicable at the final deployment site,
only the most important runtime information is continuously collected
after deployment. A common design found in many solutions, e.g.,
[ZGE02, RCK+05, RB06, LMZL11, CKL+12], is to collect information
within the network, and to offload the analysis process to the network
sink. Variations include the usage of in-network aggregation techniques,
e.g., [ZGE02, RB06], or to run parts of the analysis already inside the
network [RB06, MLML12]. Actively sending state can be completely
avoided when a higher uncertainty can be tolerated [LLL10].

The system proposed in this work extends multi-hop network
tomography (see previous Chapter 4), a passive method for the
reconstruction of the packet path, the per-hop ordering, and the per-
hop timing information of individual packets, with an as non-intrusive
as possible active component that runs inside the network. Only very
simple semantics need to be implemented on the nodes, only one bit of
extra information is added to every packet.

When comparing this new approach to Sympathy [RCK+05], we
first find a considerable amount of traffic being saved by the passive
reconstruction of path information. While Sympathy is more flexible
when it comes to freely choosing an reporting interval, i.e., health data
is not coupled with application traffic, our approach is automatically
achieving a higher temporal resolution when the application is sending
more data. In contrast, an active scheme such as Sympathy might even
have to reduce its operation in that case.

Still, certain information that is reported by Sympathy, e.g., the
node uptime, is not covered by our approach. While not having this
information certainly leaves more uncertainty in the analysis, there is
also no other choice but active transmission when such information is
required.

Agnostic Diagnosis [LMZL11] is another system that is very similar to
Sympathy with the main difference of making use of so called correlation
graphs instead of utilizing a simple decision tree. While transmitting more
information, i.e., periodically sampled counter values, certainly increases
confidence, our solution is working on a comparable level of detail, i.e.,
not only considering fatal errors, but already inefficient behavior, e.g.,
packet retransmissions.

Having the purpose of efficiently transmitting spatial distributions of
scalar values, e.g., energy levels, eScan [ZGE02] can be considered rather
orthogonal or even complementary to this work. If certain scalar metrics,
e.g., the node uptime, the current battery voltage, and the humidity within
the enclosure, are required, using the presented in-network aggregation
scheme would certainly help to reduce the overhead that is added to the
network.

Probably closest to this work is PAD [LLL10], a passive health

5.3. Inferring State From Minimal Information 99

monitoring approach. Here, the root causes for sensor and node failures
are inferred using a probabilistic approach. While the whole decision
process is based on only sporadically inserted path marks that are then
used to generate decision graphs, the detection performance of this
approach is limited.

Hybrid Monitoring distinguishes itself from PAD and other systems
mentioned by using proven to be correct (see previous Chapter 4) path and
per-hop timing information of individual packets as its input. While the
detection of sensor faults, e.g., [GZH09], is orthogonal to this work, Hybrid
Monitoring is also not focussing on node liveness, but on the detection
of inefficient operation that already degrades system performance and
may also lead to a fatal error if not discovered beforehand. Although
technically being an active system, the overhead of Hybrid Monitoring is
closest to that of passive systems, e.g., PAD [LLL10].

5.3 Inferring State From Minimal Information
The utility of a sensor network application is threatened when
measurement locations are temporarily not served due to node failures.
The timely replacement of a node after the fact can be difficult when long
and expensive travel is needed. Instead, an early diagnosis can reduce
maintenance costs when degraded but not yet failed components can
already be replaced during scheduled maintenance periods.

In this work, we want to explore the minimal amount of transferred
information needed for making informed decisions with confidence. As
the available computational power is an order of magnitude higher as
well as cheaper after packets have been received at the sink, we are
especially interested in solutions that ask for the minimum amount of
communication and computation to take place inside the network. In
this context, we want to find answers to the following questions: How
much state is already known implicitly, e.g., from the timing behavior of
a system? How large is the gain from adding extra in-band information
to an initially passive method?

5.4 Hybrid Monitoring
Various reasons can increase the waiting time of a packet at a node. Radio
and wireless channel need to become available, sending over a lossy
channel can require multiple transmission attempts. Exceptionally long
waiting times can occur when a node is disconnected from the network.
Events mentioned share the characteristic that any of their occurrences
results in an increased end-to-end packet delay. Measuring the end-to-end
delay of every individual packet is a common practice in data collection

100 Chapter 5. Hybrid Network Health Monitoring

0

0
1

0 1

GEN [Problem bit P]Current value

Time

Twait

RX TX FAILTX OKP

Fig. 5.1 Exemplary scenario with several packets being generated, received from other nodes
and eventually being transmitted to a parent. The local variable that corresponds to the
problem bit is set to 1 on the first occurrence of a failure event. It is again cleared after
its current value has been copied into the most recently generated packet.

applications.
Looking at the exemplary situation in Figure 5.1, we can see three

packets that are generated at the node under observation. Two more
packets are received from other nodes. If a transmission failed, the next
transmission is assumed to happen a fixed time Twait later.

While we can see three transmission errors happening between the
generation of the second and the third locally generated packet in
Figure 5.1, the question now is how we can reconstruct the number of
occurred failure events after packets have been received at the sink? The
proposed solution for this problem is depicted in Figure 5.2. Assuming
that we are able to split the measured end-to-end packet delay at the
sink into individual contributions per node, this information can then
be further decomposed and used for inferring the number of occurred
failure events.

Twait Twait

Twait Twait
(2 + 2 � 1) · Twait

Overlap0 0 1
Time

Fig. 5.2 Packet timing on a node under analysis. The additional delays are caused by packet
transmission errors (see Figure 5.1) that force subsequent packets to wait. Given access
to per-hop timing information, we can reconstruct the number of occurred failure events
by decomposing the individual per-hop sojourn times of the involved packets.

In practice, several challenges need to be solved before the number of
failure events can be estimated with confidence. The end-to-end delay
first of all being composed out of the contributions of all nodes along the
packet path, the contribution of each single node can again be split into
disjoint events. Delays caused by a node being disconnected from the
network must be filtered out in order to not be labeled as failure events.
This separation is in particular made difficult by the fact that connected
and disconnected operation can be arbitrarily interleaved.

In order to solve this problem, we propose that sensor nodes have to
set the so called problem bit on the occurrence of a failure event during

5.5. System Model 101

connected operation. As illustrated in Figure 5.1, the current value of the
corresponding variable gets copied and then cleared every time when a
new packet is generated.

Packet
Generation

Multi-Hop
Network

Tomography

Statistical
Analysis

Failure Event
Count

Estimation

Packet path
Per-hop arrival order
Per-hop arrival timing

NN
TLG1(N)
WX,O
D (1, N)

Communication
Stack

Packets
Received

Min. end-to-end delay

SENSOR NODE BACKEND

Problem
Bit

Clear

dmin(Nk)

Set

Problem bit
Failure event
count Pu,l

c (k)

Fig. 5.3 Information from minimal collaboration inside the network is augmented after packets
have been received at the sink.

The overall design of Hybrid Monitoring is shown in Figure 5.3. Each
node maintains a local variable that corresponds to the problem bit. As
long as a node is connected to a parent, the problem bit is set on any
occurrence of a failure event. Every time when a new packet is generated,
the current value of the problem bit variable is written into that packet and
then cleared. Apart from helping to not mistake disconnected operation
for a high number of failure events, the semantics used also support the
later analysis by mitigating the effects of imperfect timing information.

The simple semantics inside the sensor network are complemented by
a set of algorithms that are executed outside the network after packets
have been received at the sink. First, multi-hop network tomography (see
previous Chapter 4) is used for reconstructing the packet path and per-
hop timing information of individual packets. While obtained worst-case
waiting times from this method can be very pessimistic, the final decision
on the number of occurred failure events is made more robust by adding
results from a statistical analysis of packet end-to-end delays as a second
data source. Here, continuously updated estimates of the minimum end-
to-end delay, i.e., the sojourn time of a packet without waiting times due
to disconnects or failure events, of every path are used for estimating the
waiting time of delayed packets.

5.5 System Model
Multi-hop data collection. We assume a data collection application in
which sensor nodes generate data that is then send to a sink. Sensor
nodes and sink maintain a single FIFO queue that is used for both locally

102 Chapter 5. Hybrid Network Health Monitoring

Packet Application Headers
o(k) Source node network address
t̃g(k) Estimated packet generation time
P(k) Problem bit

Added on Arrival at the Sink
tb(k) Arrival time at the sink

From Post-processed Packet Headers
idN(k) Packet generation index reflecting the correct order of generation for

packets originating from a node N
From Multi-Hop Network Tomography

Nk Packet path
qidN(k) Queue index reflecting the order of arrival at the queue of node N
tu,l
a (N, k) Upper and lower bounds on the arrival time of k at node N

tu,l
d (N, k) Upper and lower bounds on the departure time of k from node N

From Analysis
∆u,l(k) Upper and lower bounds on the accuracy of the estimated packet

generation time t̃g(k)
tu,l

g (k) Upper and lower bounds on the unknown packet generation time tg(k)
dmin(Nk) Minimum end-to-end delay of path Nk, partially constant
Implementation-specific Parameters

Twait Waiting time before the next transmission attempt after a failure event

Tab. 5.1 Overview of system model variables

generated packets and forwarded packets. Communication is based on a
tree-based multi-hop routing protocol. The network operation is subject
to phenomena that are common to wireless sensor networks, i.e., packet
loss and packet duplication. The network sink is the only device that has
access to a synchronized clock. Inside the network time is measured on
clocks of limited resolution and with a bounded drift.

System model variables. Table 5.1 gives an overview of the variables
used in this model. Packets are uniquely identified using a numerical
index that reflects the order of arrival at the sink. For every received
packet k, we first of all assume to have access to the source address o(k),
the problem bit P(k), and the packet path Nk. Further information can be
grouped as follows:

• Timing information: We define t̃g(k) as the estimate of the unknown
packet generation time tg(k). The error of this estimate is bounded
by tl

g(k) = t̃g(k) − ∆l(k) ≤ tg(k) ≤ t̃g(k) + ∆u(k) = tu
g(k). Here, ∆l(k)

and ∆u(k) denote the upper and lower bounds on the error of the
time-stamping mechanism used. The arrival time at the sink tb(k) is
assumed to be measured on a perfect clock. For each hop N that the
packet visited, i.e., N ∈ Nk, we define tu

a (N, k) and tl
a(N, k) as the upper

and lower bounds on the unknown arrival time ta(N, k) of packet k
at node N. Likewise, tu

d(N, k) and tl
d(N, k) denote the upper and

5.5. System Model 103

lower bounds on the not accurately known departure time td(N, k)
of packet k at node N. It holds that tl

a(N, k) ≤ ta(N, k) ≤ tu
a (N, k) and

tl
d(N, k) ≤ td(N, k) ≤ tu

d(N, k), respectively.

• Sequencing information: Apart from the index k that is used to
identify packets in this model, we also assume the order of which
packets at a node N were generated to be reflected by the packet
generation index idN(k). The packet generation index of a packet k
is assumed to be by one larger than the packet generation index of
the packet that was generated at the same source o(k) immediately
before k. Similarly, the queue index qidN(k) reflects the order in
which packets arrived at the queue of a node N. A packet k that
arrived at a node N has a higher queue index than any other packet
that arrived at N before k. Please note that the packet generation
index idN(k) not only allows to order packets from the same source
N, but can also be used to detect packet loss. In contrast, the queue
index qidN(k) allows to order packets from any source that visited
node N, but can not be used for detecting missing packets.

Passive reconstruction. Packet path Nk, queue index qidN(k), and per-hop
timing information tu,l

a (N, k) and tu,l
d (N, k) are not implicitly transferred

as part of every packet, but reconstructed using multi-hop network
tomography. For us being able to use this passive reconstruction method,
our system must also fulfill the requirements of multi-hop network
tomography. Most notably, multi-hop network tomography assumes that
all sensor nodes are generating data. Furthermore, it is assumed that the
address of the first receiver of a packet, i.e., the current parent of the source
node at the moment of transmission, is transmitted as part of the packet.
Further assumptions made including case studies in which multi-hop
network tomography is applied to systems running CTP [GFJ+09] and
Dozer [BvRW07] can be found in the previous Chapter 4.

Protocol operation. Lastly, we make the following further assumptions
regarding the protocol operation:

• Sensor nodes are aware of their connectivity state. A sensor
node is in a connected operation state as long as it can regularly
communicate with its designated parent node, e.g., successfully
receive beacons and packet acknowledgements. The transition to a
disconnected state is based on certain rules defined by the protocol,
e.g., the expiration of a timer or an error counter hitting a threshold.
The phase of no communication prior to the disconnect decision still
counts as connected operation.

• Certain errors, e.g., a lost beacon message, a missed packet
acknowledgement, or the radio being in the wrong state, can require
the transmission of a packet to be postponed or repeated. In such

104 Chapter 5. Hybrid Network Health Monitoring

a case, we assume that the next transmission attempt is made after
waiting for a implementation-specific time Twait. Twait can include a
jitter J � Twait.

• The minimum end-to-end delay dmin(Nk) of a path Nk is defined
as the time that a packet needs for traversing Nk in the absence of
both transmission errors and disconnected operation. dmin(Nk) is
assumed to be constant with a bounded deviation smaller than a
defined δ for at least small numbers of subsequent transmissions
along the same path.

5.6 From a Single Bit to a Scalar Value
For every received packet k with a set problem bit, i.e., P(k) ≡ 1, we
want to determine the upper and lower bounds Pu

c (k) and Pl
c(k) on

the unknown number of failure events that occurred at the source of
packet k between the generation of packet k and the generation of the
immediate predecessor of k. In contrast to the introductory example that
was presented in Section 5.4, we cannot access perfect per-hop timing
information in the real case. Instead, our algorithms are required to be
robust to imperfect timing information.

Estimating the unknown number of occurred failure events involves
two main steps. First, we need to determine the set W of all packets that
may have been waiting for transmission at node o(k) within the temporal
scope of P(k) ≡ 1, i.e., before the generation of packet k and after the
generation of the immediate predecessor of k. In other words, the set W
contains all packets whose end-to-end delay may be affected by the failure
events that caused the problem bit P(k) to be set. The number of occurred
failure events is then estimated by analyzing the timing information of
all packets w ∈W.

The analysis of the waiting time of a single packet k at a node
N is presented in Section 5.6.1. An approach that constructs the
number of occurred failure events as the sum of non-overlapping,
individual contributions of multiple packets is then shown in Section 5.6.2.
Section 5.6.3 presents the algorithm that is used for continuously
estimating the current minimum end-to-end delay dmin(Nk) of a path Nk.

For clarity and brevity, it is assumed that packet path and per-hop
timing information of all packets can be reconstructed. In practice,
this information is missing for a small fraction of packets that are not
“reliable” and can thus not be used in a multi-hop network tomography.
In consequence, this small amount of packets can not be used in the
following analysis.

5.6. From a Single Bit to a Scalar Value 105

5.6.1 Packet Waiting Time Analysis
Given a packet k with a problem bit P(k) ≡ 1, the analysis starts with
determining the set W of packets whose timing may be affected by the
failure events that caused the problem bit P(k) to be set. As the temporal
scope of the problem bit is defined as the time period that starts after the
generation of the previous packet and ends before the generation of the
current packet k, we first need to find the predecessor f of packet k. This
packet f has the two properties that it was generated at the same node as
k and that its packet generation index ido(k)(f) must be exactly one lower
than the packet generation index ido(k)(k) of packet k:

f := arg max
x

ido(k)(x) for all x : o(x) ≡ o(k) (5.1)

∧ ido(k)(x) ≡ ido(k)(k) − 1

The temporal scope of the problem bit can now be expressed by the
precise packet generation times of f and k: tp,s(k) = tg(f) < t < tg(k) =

tp,e(k). As precise packet generation times are not known in practice,
we must resort to the usage of upper and lower bounds tu,l

g (f) and tu,l
g (k)

that reflect the uncertainties of the obtained packet generation times. We
define the upper and lower bounds on the beginning and end of the time
interval]tp,s(k), tp,e(k)[for which the problem bit P(k) is valid as follows:

tl
p,s(k) := tl

g(f) tl
p,e(k) := tl

g(k)

tu
p,s(k) := tu

g(f) tu
p,e(k) := tu

g(k)

The set W of all packets that may be affected by the failure events
covered by P(k) is then build by selecting all packets that (i) arrived at
the node N := o(k) before packet k and (ii) may have departed after the
generation of packet f :

W := {w | qidN(w) < qidN(k) ∧ tu
d(N,w) > tl

g(f)} (5.2)

For each packet w ∈ W, we then determine the minimum and
maximum number of Twait long intervals that w can have spent at
node o(k) within]tp,s(k), tp,e(k)[. To achieve that, we first determine the
shortest and longest time interval that packet w can have spent at o(k)
within]tp,s(k), tp,e(k)[. The shortest time interval smin(w) is based on the
assumption that w arrived as late as possible while again leaving as early
as possible:

smin(w) := min
(
tl
d(w), tl

p,e(k)
)
−max

(
tu
a (w), tu

p,s(k)
)

(5.3)

Likewise, the calculation of smax(w) is based on the counter assumption
of arriving as early as possible while leaving as late as possible:

smax(w) := min
(
tu
d(w), tu

p,e(k)
)
−max

(
tl
a(w), tl

p,s(k)
)

(5.4)

106 Chapter 5. Hybrid Network Health Monitoring

As the longest possible time interval smax(w) is often pessimistic,
the final calculation of the number of Twait long intervals also includes
an estimation of the maximum added delay that packet w can have
experienced along the complete path due to failure events. The maximum
added delay due to failure events emax(w) is the difference of the actual
end-to-end delay of packet w and the minimum end-to-end delay dmin(Nw)
along the path Nw that packet w travelled along:

emax(w) := tb(w) − t̃g(w) − dmin(Nw) (5.5)

The calculation of the minimum and maximum number of Twait long
intervals that packet w spent at node o(k) finally also accounts for a jitter
J � Twait:

vmin :=
⌊
smin(w) + J

Twait

⌋
, vmax :=

⌊
min(smax(w) + J, emax(w))

Twait

⌋
(5.6)

5.6.2 Failure Event Count Estimation
In order to estimate the total number of failure events that occurred at
node N := o(k) within the time interval]tp,s(k), tp,e(k)[, we must combine
the waiting times of all packets w ∈ W. Here, the challenge is that the
time intervals in which different packets can have waited at node N may
partially or fully overlap, e.g., when a single failure event causes multiple
packets to wait.

The algorithm used for determining the upper and lower bounds
Pu,l

c (k) on the unknown number of occurred failure events at node N is
presented in Algorithm 5.1. Given a packet k, bounds are immediately set
to zero if the problem bit of k is not set (line 2). Else, the procedure starts
with determining packet f that was generated at node N directly before
packet k (line 3). Next, the set of packets W that might be affected by a
problem at N during the time interval]tp,s(k), tp,e(k)[is determined (line 5).

If the first analyzed packet arrived at N before packet f was generated
and also departed from N after packet k was generated (line 8), the
estimation of the number of occurred failure events is hindered by both
the best-case and the worst-case waiting time being set too pessimistic,
i.e., as the temporal distance of packets f and k. In this case, we set the
number of failure events to at least one and to at most the highest number
of Twait long intervals that fit into the time interval between the generation
of f and k (line 9).

Otherwise, all packets w ∈ W are processed in the order of arrival at
node N (line 13). As packet are assumed to leave a node in the same
order as they arrived, packets that arrived earlier are analyzed before
later arriving and thus also later departing packets.

Newly introduced variables ru and rl have the purpose of avoiding
waiting times to be counted more than once. ru and rl are first
initialized with the packet generation times of packet f (line 11), and then

5.6. From a Single Bit to a Scalar Value 107

Algorithm 5.1: Algorithm for estimating the number of occurred failure events
Input : Packet k
Output: Upper and lower bounds Pu,l

c (k) on the number of failure events at node
N := o(k) between the generation of packet k and its immediate
predecessor f

1 Pu
c (k)← 0; Pl

c(k)← 0; S← {} ;
2 if ¬P(k) then return;
3 f ← arg maxx idN(x) for all x : o(x) ≡ N
4 ∧ idN(x) ≡ idN(k) − 1 ;
5 W← {w | qidN(w) < qidN(k) ∧ tu

d(N,w) > tl
g(f)} ;

6 if W ≡ ∅ then return;
7 w← arg minx qidN(x) for all x : x ∈W ;
8 if tu

a (N,w) < tl
g(f) ∧ tl

d(N,w) > tu
g(k) then

9 Pl
c(k)← 1; Pu

c (k)← b(tu
g(k) − tl

g(f))/Twaitc ;
10 return;
11 rl

← tl
g(f); ru

← tu
g(f) ;

12 while true do
13 w← arg minx qidN(x) for all x : x ∈W \ S ;
14 rl

← max(tl
a(N,w), rl) ;

15 ru
← max(tu

a (N,w), ru) ;
16 vmin(w), vmax(w)← AnalyzePacket(w, rl, ru, k)
17 Pl

c(k)← Pl
c(k) + vmin(w) ;

18 Pu
c (k)← Pu

c (k) + vmax(w) ;
19 rl

← rl + vmin(w) · Twait; ru
← ru + vmax(w) · Twait ;

20 S← S ∪ {w} ;
21 if W \ S ≡ ∅ then break ;
22 end
23 if Pl

c(k) ≡ 0 then Pl
c(k)← 1;

24 if Pu
c (k) ≡ 0 then Pu

c (k)← 1;

continuously incremented when either the arrival of the next analyzed
packet is not overlapping with the waiting times of the previous packet
w (lines 14 and 15), or when at least one new waiting interval of length
Twait was detected (line 19).

The actual estimation of the minimum and maximum waiting time of
the currently analyzed packet w (line 16) is located in Algorithm 5.2. The
beginning of the time interval in which this algorithm looks for waiting
times is defined by ru and rl, the end of the time interval is given by the
generation time of packet k. The upper and lower bounds on the total
number of occurred failure events Pu,l

c (k) are determined by building the
sum of the individual, non-overlapping contributions (lines 17 and 18)

Processing the next packet w continues until all packets w ∈ W have
been analyzed (line 21). Already analyzed packets are members of both
the set W and the newly introduced set of already seen packets S.

If all packets w ∈ W have been processed without any failure event
being found, e.g., because of packets being lost, the problem bit P(k) being
set allows us to infer that there must have been at least one occurrence of
a failure event (lines 23 and 24).

108 Chapter 5. Hybrid Network Health Monitoring

Algorithm 5.2: AnalyzePacket

Input : Analyzed packet w, start of analysis time window ru,l, packet k
Output: Minimum and maximum number vmin(w) and vmax(w) of Twait long time

intervals within ru,l and the generation of packet k

1 begin
2 smin(w)← min(tl

d(N,w), tl
g(k)) − ru ;

3 vmin(w)← b(smin(w) + J)/Twaitc ;
4 smax(w)← min(tu

d(N,w), tu
g(k)) − rl ;

5 emax(w)← tb(w) − t̃g(w) − dmin(Nw) ;
6 vmax(w)← bmin(smax(w) + J, emax(w))/Twaitc ;
7 end

Depending on the concrete communication protocol used,
implementation-specific details can require further refinements of
the procedure that is described in Algorithm 5.1. For example, a sensor
node running Dozer [BvRW07] needs approximately 60 seconds for
negotiating a connection with a new parent node. In consequence,
estimation results are improved when those 60 seconds are excluded
from being accounted as waiting times due to a failure event.

5.6.3 Estimation of Minimal End-to-End Packet Delay
So far, the minimum end-to-end delay dmin(Nk) of the pathNk was assumed
to be known. The algorithm that is used for continuously updating the
estimates of the path-dependent minimum end-to-end delay is shown in
Algorithm 5.3. Here, the main assumption is that the minimum end-to-
end delay equals to the end-to-end delay of a packet that has not been
delayed inside the network due to a failure event or a disconnect. While
that information is not perfectly known, the two requirements are verified
using a worst-case analysis and a heuristic approach.

Algorithm 5.3: UpdatePathDelayEstimate
Input : Newly arrived packet k
Output: Updated estimate of the minimum end-to-end delay dmin(Nk) on path Nk

1 begin
2 foreach N ∈ Nk do
3 P← {x | o(x) ≡ N ∧ tu

g(x) > tl
a(N, k)

4 ∧ tl
g(x) < tu

d(N, k) ∧ P(x) ≡ 1} ;
5 if P . ∅ then break ;
6 end
7 if P ≡ ∅ then
8 if tb(k) − t̃g(k) < dmin(Nk) + δ then
9 dmin(Nk) := tb(k) − t̃g(k) ;

10 end
11 end
12 end

5.7. Multi-Testbed Evaluation 109

Before the first packet of a path Nk has been received, the minimum
end-to-end delay dmin(Nk) of this path is initialized with a protocol-
dependent parameter, e.g., the product of the path length |Nk| and a
defined maximum processing time of a packet Tqueue,max.

Given a newly arrived packet k, the algorithm starts with traversing
all nodes N along the pathNk of packet k (line 2). At each node N, it is then
analyzed if k may have been at node N during a problem. This is done
by first identifying all packets P that were generated at node N during
the maximum time that k can have spent at N, and then determining if
the problem bit of any of those packets was set (line 3). Packet k can only
be used to set a new minimum end-to-end delay dmin(Nk) if all involved
packets had the problem bit not set (line 7).

The exclusion of k being delayed due to a disconnect is based on the
comparison of the end-to-end delay of packet k with the existing value of
dmin(Nk). Packet k is assumed to not have been delayed by a disconnect if
its end-to-end delay is at most by a δ higher than the former value (line 8).

5.7 Multi-Testbed Evaluation
In this section, we present the results of extensive testbed experiments that
we conducted in order to (i) quantify the gain in confidence when nodes
are actively transmitting one extra bit per packet, and (ii) to evaluate the
performance of Hybrid Monitoring when compared to ground truth.

All testbed experiments are based on an implementation of Hybrid
Monitoring on top of the TinyOS implementation of Dozer [BvRW07].
Dozer is a state-of-the-art low-power data collection protocol that is used
in multiple long-term deployments [KWL+11]. Apart from implementing
the semantics of the problem bit and adding instrumentation code for
outputting ground truth information over the serial port of the node,
no further modifications were done to the standard implementation of
Dozer.

Three sets of nodes are used in this evaluation: 96 Tmote Sky
(MSP430+CC2420 radio) nodes of the TWIST [HKWW06] testbed allow us
to study the performance of the Hybrid Monitoring in a large network. Tests
with two kinds of radio hardware are possible on the FlockLab [LFZ+13]
testbed. Here, we are using 30 Tmote Sky nodes and 30 Tinynode 184
(MSP430+SX1211) nodes. Because the 868 MHz radio of the Tinynode 184
is operating on a different band than local Wi-Fi networks, traces obtained
using Tinynode hardware include less failure events due to packet loss.

The integration of Hybrid Monitoring into the Dozer data collection
protocol is described in Section 5.7.1. The four test configurations used
and the characteristics of the data obtained are presented in Section 5.7.2.
In Section 5.7.3, the performance of Hybrid Monitoring is compared with
a completely passive system that does not make use of the problem bit.

110 Chapter 5. Hybrid Network Health Monitoring

Comparisons with ground truth show significant gains in confidence
when the problem bit is used. The performance of Hybrid Monitoring
in the context of an runtime monitoring application that triggers further
action, e.g., notifies a network operator, based on a pre-defined threshold
value is presented in Section 5.7.4.

5.7.1 Integration Into the Dozer Data Collection Protocol
The operation of the Dozer protocol is divided into rounds of a fixed
length Tround, a round can be further divided into a number of slots. The
slot assignment is based on a local schedule that includes communication
with the parent node, communication with child nodes, a phase in which
new child nodes can join, and the execution of local processing tasks. The
local schedule of a node is modified every time when the node switches
to another parent, or when a new child node connected. Additionally, a
sensor node can decide to shift the position of the local processing slots,
e.g., because the old position is likely to interfere with a communication
slot.

Waiting packets are transmitted during the slots that are reserved for
communication with the parent node. If a packet transmission fails, the
next transmission is postponed to the following round. Thus, the waiting
time Twait is Twait := Tround. For the remainder of this evaluation, Tround is
set to 30 seconds with a jitter of ±2 seconds.

The problem bit is set on the occurrence of at least one of the following
failure events that share the common characteristic of postponing the next
packet transmission by Twait := 30 seconds plus jitter:

• Missed beacon: A beacon message from the parent did not arrive
within the expected time. In consequence, Dozer is not trying to
upload packets.

• Missed acknowledgement: A packet acknowledgement from the
parent did not arrive within the expected time. In consequence, the
packet at the head of the queue must be retransmitted.

• Busy radio: The radio was not ready for a packet transmission.
This can happen when the radio is occupied by another task, e.g.,
currently handling a connection request of another node.

• Full parent queue: None or not all locally queued packets could be
transmitted because of a full queue at the parent node.

Apart from setting the problem bit, the listed events also cause a log
entry to be generated. Further log entries are generated on the generation
of a packet, on the arrival of packet from another node, each time when the
node tries to transmit a message to its parent, when the node disconnects
from its parent, and when the node connected to a new parent. Log

5.7. Multi-Testbed Evaluation 111

RECEIVED (GROUND TRUTH)
N D IPI H DY TOTAL P(k) ≡ 1 F. EVENTS

Tmote Sky
A) 96 17 hours 120 sec 5 99.5% 49,305 15,772 23,536
B) 26 14 hours 120 sec 4 99.7% 10,654 3,768 6,823
C) 30 9 hours 60 sec 4 99.8% 14,940 6,750 10,496

Tinynode
D) 30 24 hours 120 sec 5 99.9% 20,613 7,015 11,053

(a) Characterization of the input data

AFTER TOMOGRAPHY WAIT TIME UNCERT. MIN. DELAY ERROR
TOTAL P(k) ≡ 1 p0.9 p0.98 MEAN p0.85 p0.98

Tmote Sky
A) 96.5% 96.6% 98 sec 120 sec 12 sec 27 sec 44 sec
B) 92.8% 93.2% 120 sec 178 sec 11 sec 27 sec 44 sec
C) 89.7% 87.2% 78 sec 118 sec 11 sec 26 sec 45 sec

Tinynode
D) 95.8% 95.8% 111 sec 123 sec 9 sec 25 sec 41 sec

(b) Results of multi-hop network tomography

Tab. 5.2 Characterization of data from testbed experiments A) to D) before and after multi-hop
network tomography.

entries are immediately timestamped using the local node clock and then
put into the memory of the node. The outputting of buffered log entries
over the serial port is done at the next slot that has been assigned for
local processing tasks. Likewise, the generation of new packets is also
executed in such a slot.

5.7.2 Data Preparation Results
The test configurations used and the characteristics of results obtained
are shown in Table 5.2. For each experiment A) to D), Table 5.2 lists the
number of nodes (N), the duration (D) of the test in hours, the inter-
packet interval (IPI) used, the height of the routing tree (H), the achieved
data yield (DY), the total number of received packets, the number of
received packets with a set problem bit, and the number of failure events
that occurred during the experiment. Chosen test durations are mainly
driven by the availability of testbed resources. Periodic packet generation
is no requirement of our method, however, periodic packet generation
allows us to better analyze the statistical properties of the received timing
information.

Furthermore, Table 5.2 also lists the amount of packets for which
information can be reconstructed using multi-hop network tomography.

112 Chapter 5. Hybrid Network Health Monitoring

Numbers obtained are within the results of previous experiments, see
Section 4.7. The reconstruction performance of multi-hop network
tomography is independent of the value of the problem bit P(k). This
is as expected given that problem bit information is not used by the
multi-hop network tomography algorithm. The waiting time uncertainty
is defined as the difference between the maximum (worst-case) and the
minimum (best-case) time that a packet can have spent at a node. Results
are described by the 90th and the 98th percentile. Found uncertainties are
also in line with previous results.

The last three columns of Table 5.2 quantify the results of Algorithm 5.3
that is used for estimating the minimum end-to-end delay of individual
packets paths. Results listed include the mean value, the 85th percentile,
and the 98th percentile. Here, mainly non-determinisms found in the
Dozer protocol operation, e.g., slots for local processing tasks being moved
from the end to the beginning of a round, introduce an estimation error
that is larger than Twait for approximately one fifth of the packets.

5.7.3 Comparison With Completely Passive System
For being able to quantify the gain by adding one bit to every packet, we
created completely passive versions of Algorithm 5.1 and Algorithm 5.3.
The resulting system does not make use of the problem bit. While Hybrid
Monitoring uses the problem bit for deciding if the number of failure
events is definitely zero or at least one (Algorithm 5.1, lines 23 and 24),
the completely passive system lacks of this information. In consequence,
the completely passive system is executing the waiting time analysis
(Algorithm 5.2) for all packets received.

In the following, we compare obtained upper and lower bounds on
the number of failure events Pu,l

c (k) with ground truth. The relationship
between estimated bounds and the actual number of failure events
in experiment A) is shown in Figure 5.4. Shown results have been
aggregated based on information from a connection table that has been
obtained from ground truth. Each entry of this table corresponds to a
connection between a child node and a parent node, each entry of the
connection table is represented by a circle and a cross. Shown values
are calculated by dividing the number of failure events by the number of
packets that were successfully submitted during the corresponding time
interval. Estimated values are plotted over ground truth, ideally all data
points should be located on the diagonal line that represents the identity
function.

First of all, we can see that worst-case and best-case estimations
are separated by the identity function in both figures Figure 5.4(a) and
Figure 5.4(b). However, solutions obtained from the completely passive
system are significantly higher or lower, respectively, than ground truth
in a large number of cases.

5.7. Multi-Testbed Evaluation 113

0 1 2 3
0

1

2

3

Ground truth

E
st

im
at

io
n

Lower bound Upper bound

(a) Completely passive system

0 1 2 3
0

1

2

3

Ground truth

E
st

im
at

io
n

Lower bound Upper bound

(b) Nodes transmit problem bit

Fig. 5.4 Comparison of a completely passive system with Hybrid Monitoring. Results are based
on the traces of testbed experiment A), see Table 5.2. Both plots show the failure event
estimations Pu,l

c (k) that have been obtained by the corresponding system over ground
truth. Each data point corresponds to one connection between a child node and its parent.
As the connection duration varies, shown results have been normalized by dividing the
number of occurred and estimated failure events by the number of total packets that
were transmitted during a connection. Shaded areas in Figure 5.4(b) highlight the gain
in terms of improved estimation results over the completely passive system when Hybrid
Monitoring is used.

This observation can be further quantified using Pearson’s correlation
coefficient. In Figure 5.5, the amount of problem bit information used for
estimating the number of failure events Pu,l

c (k) is alternated between 0%
and 100%. For example, 10% means that the problem bit P(k) of 10% of
the packets is used. In turn, the problem bit P(k) of the remaining packets
is ignored in this configuration. Modified versions of Algorithm 5.1 and
Algorithm 5.3 randomly select the actual packets of which problem bit
information is being used. For each analyzed fraction between 0% and
100%, the estimation of the number of failure events is repeated 30 times
with varying random number generator seeds being used. Estimated
upper and lower bounds are then correlated with ground truth. For every
analyzed fraction of problem bit information used, Figure 5.5 shows the
mean and the total range of the 30 runs that have been conducted for
every fraction. Pearson’s correlation coefficient grows almost linearly
with the fraction of problem bit information used. While we obtain values
ρupper = 0.92 and ρlower = 0.86 when comparing ground truth with results
from the Hybrid Monitoring system, i.e., 100% problem bit information
being used, significantly lower values ρupper = 0.75 and ρlower = 0.56 are
retrieved when correlating ground truth with results from the completely
passive system, i.e., 0% problem bit information being used.

The gain of using the problem bit in Hybrid Monitoring can be further
highlighted when using data from both systems as input for an anticipated
alarming application. Here, we consider a runtime filter that triggers an
action, e.g., informs a network operator, if the number of failure events
that occurred at a node within a moving time window of ∆ length exceeds
a pre-defined threshold value.

114 Chapter 5. Hybrid Network Health Monitoring

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

P
ea

rs
o

n
s

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

Fraction of problem bit information used

Lower bound Upper bound

Fig. 5.5 Correlation between the estimated number of failure events and ground truth. The
fraction of problem bit information used for obtaining failure event count estimations
is alternated between 0% and 100%. For example, a fraction of 10% corresponds to the
problem bit information of 10% of all packets being used. Packets are selected randomly,
the analysis has been carried out 30 times over the complete range. Shown lines denote
the mean value over 30 runs for every fraction, shaded areas denote the range of results
obtained.

To achieve this, the first step is to calculate the occurred and estimated
number of failure events in intervals of ∆ length. Corresponding results
of generating one aggregated value per node every ∆ := 30 min are shown
in Figure 5.6. Results that originate from Hybrid Monitoring are denoted
by the two lines immediately above and below the line that corresponds
to ground truth. The performance of the completely passive system is
denoted by the outer boundaries of the two shaded areas. The shaded
areas itself therefore correspond to the gain of using Hybrid Monitoring
instead of the completely passive system. Here, we can again see results
of the completely passive system being significantly too high or too low,
respectively, in many cases.

In consequence, the performance of the final alarming application is
also significantly lower when compared to the performance of Hybrid
Monitoring. The fraction of correct decisions, i.e., the inferred decision
from estimated values is correct, false positives, i.e., an alarm despite
the correct value being below the set threshold, and false negative, i.e.,
missed alarms, are shown in Figure 5.7. Again, shaded areas denote the
improvement by adding one bit of extra information per packet.

5.7.4 Runtime Monitoring
The already introduced runtime monitoring scenario is now further
evaluated on all four testbed experiments A) to D). Results for two
configurations of a fixed evaluation interval ∆ are shown in Table 5.3(a)
and Table 5.3(b). The threshold value for deciding if an alarm must
be raised is again alternated between 0 and 20 failure events within
∆ = 10 min, and between 0 and 60 failure events within ∆ = 30 min,

5.8. Broader Applicability and Limitations 115

0 10 20 30 40 50 60

0.25

 0.5

0.75

 1

Number of failure events within 30 min

C
D

F

Ground truth Estimation (lower) Estimation (upper)

Fig. 5.6 Sum of occurred and estimated failure events in 30 minute long intervals. Results that
originate from Hybrid Monitoring are denoted by the two lines immediately above and
below the line that corresponds to ground truth. The performance of the completely
passive system is denoted by the outer boundaries of the two shaded areas. The shaded
areas itself therefore represent the gain in estimation accuracy by using Hybrid Monitoring
instead of a completely passive system.

respectively. Decisions are made based on the estimated upper bound
of failure events that occurred within ∆. Values obtained when basing
decisions on estimated lower bounds are comparably well.

Decisions made are correct in ≥ 90.7% of all cases. The quality of
decisions made is the better for the more packets for which multi-hop
network tomography could return results. Ranking testbed experiments
either by the fraction of correct decisions made or the fraction of packets
for which additional information could be reconstructed (see Table 5.2)
yields the exactly same order. This behavior is to be expected given
that only packets that passed multi-hop network tomography are used as
input for estimating the number of failure events that occurred within ∆.

5.8 Broader Applicability and Limitations
The presented approach is based on the assumption that certain events
inside the network contribute a measurable, additional delay to the end-
to-end delay of waiting packets. For example, Dozer [BvRW07] waits
for approximately 30 sec before starting a new transmission attempt. A
measurable penalty is potentially also added by other slotted approaches,
e.g., slotted programming [FW10], that may be set to postpone every
retransmission attempt to the next slot. Here, it is to expect that slot
lengths of a few seconds or even less are sufficient in combination with an
accurate enough time-stamping mechanism. In a broader scope, existing
data collection protocols may only require small modifications in order to
increase the delay penalty that is added after a transmission failure. For
instance, one possibility to adapt CTP [GFJ+09] would be to increase the
firing interval of the retransmission timer.

116 Chapter 5. Hybrid Network Health Monitoring

5 10 15 20 25 30 35 40 45 50 55 60

0.25

 0.5

0.75

 1

Threshold causing an alarm

F
ra

ct
io

n
 o

f
to

ta
l

d
ec

is
io

n
s

Correct False positive False negative

Fig. 5.7 Comparison of runtime monitoring performance. The triggering of an alarm is based
on a pre-defined threshold value that is incremented from zero to up to 60 failure
events within 30 min. For every 30 min long interval and varying thresholds, it is first
evaluated if the number of actually occurred failure events reached the threshold value.
Likewise, it is evaluated if the upper estimation of the number of failure events reached
the threshold value. A decision is correct if both results lead to the same decision, i.e.,
alarm or no alarm. The shaded areas again represent the gain in estimation accuracy by
using Hybrid Monitoring instead of a completely passive system.

DECISIONS
INTERVALS MEAN CORRECT MIN. CORRECT MAX. CORRECT

A) 9,841 93.5% 84.4% 99.7%
B) 2,084 91.6% 80.8% 99.8%
C) 1,485 90.7% 84.0% 99.8%
D) 4,112 92.4% 80.3% 99.8%

(a) Up to 20 failure events within ∆ = 10 min long intervals

DECISIONS
INTERVALS MEAN CORRECT MIN. CORRECT MAX. CORRECT

A) 3,319 94.1% 85.7% 99.9%
B) 697 92.5% 79.9% 100.0%
C) 505 91.0% 82.7% 99.4%
D) 1,393 93.2% 81.7% 99.9%

(b) Up to 60 failure events within ∆ = 30 min long intervals

Tab. 5.3 Runtime monitoring application that raises an alarm if the number of failure events
within ∆ long intervals reached a threshold value. Starting with zero failure events
within ∆, the threshold value is again incremented up to the maximum possible number
of failure events within ∆. A decision is correct if both the real number of failure events
and the estimated number of failure events lead to the same decision, alarm or no alarm.
Results of all threshold configurations are aggregated and presented by their minimum,
mean and maximum values.

5.9. Conclusions 117

Apart from requiring transmission failures to cause a measurable
delay, a system must also conform to the formal model of multi-hop
network tomography (see Section 4.5 of the previous chapter). Exemplary
systems that have been verified to be conforming to this model are CTP
on top of LPL and Dozer. Systems that are not compatible to multi-
hop network tomography are for instance protocols that randomly select
the receiver of every packet. Likewise, multi-hop network tomography
and in consequence the presented approach in this chapter are also not
applicable to systems that use flooding as their communication primitive,
e.g., the low-power wireless bus [FZMT12].

5.9 Conclusions
We presented Hybrid Monitoring, a novel health monitoring system that
complements a passive health monitoring method, i.e., the analysis of
passively reconstructed timing information, with a minimally active
component. Adding one bit of extra information to every packet is already
sufficient for mitigating the uncertainties that have the largest impact on
the accuracy of the passive health monitoring method. As a result, the
number of failure events that occurred between the generation of two
subsequent packets can be estimated with a high confidence. Based on
experiments on testbeds of up to 96 nodes, we find the amount of correct
decisions made by a runtime monitoring application to be significantly
improved when one more bit of information is available to the estimation
process.

118 Chapter 5. Hybrid Network Health Monitoring

6
Conclusions

This thesis presented algorithms and systems that have the goal of
establishing wireless data collection systems as dependable and precise
scientific instruments. Covered aspects of this thesis are (i) the mitigation
of artifacts that have been introduced by the wireless sensing system,
(ii) giving guarantees on the quality of proven to be correct data
samples, (iii) the interactive, visual inspection of very large data sets,
(iv) making usually hidden interactions that occur inside a multi-hop
network observable, and (v) the resource-saving monitoring of wireless
sensing systems at runtime. The performance of presented algorithms
and systems is backed by a strong empirical evidence, i.e., results from
testbed experiments, results from the application to multi-year traces from
several real-world deployments, and results from the long-term operation
in a production environment.

Results obtained are not strictly limited to low-power wireless sensor
networks, but can also be applied to a broader class of multi-hop
communication systems. For instance, packet duplication and packet
loss are common phenomena of wireless communication. Likewise, path
changes are also unavoidable in any system that employs a path-based
routing scheme. While more available resources certainly allow for more
capabilities, e.g., in-network duplicate suppression and end-to-end packet
acknowledgements, to be integrated into a communication protocol, it
remains a case by case decision if the overall scenario, e.g., delay-tolerant
networking [Fal03], renders such efforts as practical.

Apart from solving selected problems in existing systems, models and
algorithms that have been presented in this thesis also yield learnings
for the design of future systems. Here, the vision is to design for data
quality and observability from early on. While information on the further
data processing steps was yet missing when initial systems were built,
knowledge that has now been gained will help to build less complex, yet

120 Chapter 6. Conclusions

better performing systems.
The work presented can be extended in several directions. Concerning

data cleaning, an open question is if and in which situations there is a
relation between data anomalies that are caused by the communication
layer and data anomalies that are caused by the sensing layer. In order
to decide on the validity of sensor data received, solving this question
will require the underlying geophysical phenomena to be modeled. A
potential application of this research could be the detection of partially
faulty, e.g., due to component aging, sensor nodes and sensing equipment.
Looking at multi-hop network tomography, an interesting question is
if machine learning techniques can detect suspicious system behavior,
e.g., certain anomalies, when given the results of multi-hop network
tomography as an input. The potential future of the proposed hybrid
monitoring system is first of all to add the problem bit to deployed
systems, but also to research if further system state can be retrieved in a
similar fashion.

Bibliography
[AHS06] K. Aberer, M. Hauswirth, and A. Salehi. A middleware for

fast and flexible sensor network deployment. In Proc. 32nd
Int’l Conf. Very Large Data Bases (VLDB ’06), pages 1199–1202,
2006.

[ASC+10] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli,
G. Barrenetxea, B. Faltings, and L. Thiele. OpenSense: Open
community driven sensing of environment. In Proc. 1st Int’l
Workshop on GeoStreaming (IWGS ’10), pages 39–42, 2010.

[BBF+11] J. Beutel, B. Buchli, F. Ferrari, M. Keller, L. Thiele, and
M. Zimmerling. X-Sense: Sensing in extreme environments.
In Proc. Conf. on Design, Automation and Test in Europe (DATE
’11), pages 1–6, 2011.

[BBK00] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-
perceived quality into web server design. Computer Networks,
33(1):1–16, 2000.

[BDF+99] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. Spatio-temporal retrieval with RasDaMan.
In Proc. 25th Int’l Conf. on Very Large Data Bases (VLDB ’99),
pages 746–749, 1999.

[BGH+09] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl,
I. Talzi, L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel.
PermaDAQ: A scientific instrument for precision sensing
and data recovery in environmental extremes. In Proc. 7th
Int’l Conf. Information Processing Sensor Networks (IPSN ’09),
pages 265–276, 2009.

[BIS+08] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli,
O. Couach, and M. Parlange. SensorScope: Out-of-the-box
environmental monitoring. In Proc. 7th Int’l Conf. Information
Processing Sensor Networks (IPSN ’08), pages 332–343, 2008.

[BISV08] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli.
The hitchhiker’s guide to successful wireless sensor network
deployments. In Proc. 6th ACM Conf. Embedded Networked
Sensor Systems (SenSys ’08), pages 43–56, 2008.

122 Bibliography

[BvRW07] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer:
Ultra-low power data gathering in sensor networks. In Proc.
6th Int’l Conf. Information Processing Sensor Networks (IPSN
’07), pages 450–459, 2007.

[BYL+11] B. Buchli, M. Yuecel, R. Lim, T. Gsell, and J. Beutel. Feature-
rich experimentation for WSN design space exploration.
In Proc. 10th Int’l Conf. on Information Processing in Sensor
Networks (IPSN ’11), pages 115–116, 2011.

[CAS+08] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and
L. Luo. Declarative tracepoints: A programmable and
application independent debugging system for wireless
sensor networks. In Proc. 6th ACM Conf. Embedded Networked
Sensor Systems (SenSys ’08), pages 85–98, 2008.

[CCD+11] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin,
S. Guna, G. P. Jesi, R. L. Cigno, L. Mottola, A. L. Murphy,
et al. Is there light at the ends of the tunnel? Wireless sensor
networks for adaptive lighting in road tunnels. In Proc. 10th
Int’l Conf. Information Processing Sensor Networks (IPSN ’11),
pages 187–198, 2011.

[CHINY02] A. Coates, A. Hero III, R. Nowak, and B. Yu. Internet
tomography. IEEE Signal Processing Magazine, 19(3):47–65,
2002.

[CKL+12] Y.-H. Chiang, M. Keller, R. Lim, P. Huang, and J. Beutel.
Light-weight network health monitoring. In Proc. 11th Int’l
Conf. Information Processing Sensor Networks (IPSN ’12), pages
109–110, 2012.

[CMP+09] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna,
M. Corra, M. Pozzi, D. Zonta, and P. Zanon. Monitoring
heritage buildings with wireless sensor networks: The Torre
Aquila deployment. In Proc. 8th Int’l Conf. Information
Processing Sensor Networks (IPSN ’09), pages 277–288, 2009.

[CPMW08] B. Chen, G. Peterson, G. Mainland, and M. Welsh. LiveNet:
Using passive monitoring to reconstruct sensor network
dynamics. Distributed Computing in Sensor Systems, 5067:79–
98, 2008.

[CS11] U. Colesanti and S. Santini. The collection tree protocol for
the Castalia wireless sensor networks simulator. Technical
Report 729, Department of Computer Science, ETH Zurich,
2011.

Bibliography 123

[CWCT11] Y. Chen, Q. Wang, M. Chang, and A. Terzis. Ultra-low power
time synchronization using passive radio receivers. In Proc.
10th Int’l Conf. on Information Processing in Sensor Networks
(IPSN ’11), pages 235–245, 2011.

[DAK+09] P. Dutta, P. M. Aoki, N. Kumar, A. Mainwaring, C. Myers,
W. Willett, and A. Woodruff. Common sense: Participatory
urban sensing using a network of handheld air quality
monitors. In Proc. 8th ACM Conf. Embedded Networked Sensor
Systems (SenSys ’10), pages 301–318, 2009.

[DHJT+10] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler.
sMAP: A simple measurement and actuation profile for
physical information. In Proc. 8th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’10), pages 197–210, 2010.

[DHLT+12] S. Dawson-Haggerty, S. Lanzisera, J. Taneja, R. Brown, and
D. Culler. @scale: Insights from a large, long-lived appliance
energy WSN. In Proc. 11th Int’l Conf. Information Processing
Sensor Networks (IPSN ’12), pages 37–47, 2012.

[DMF12] L. Deri, S. Mainardi, and F. Fusco. tsdb: A compressed
database for time series. In Proc. 4th Traffic Monitoring and
Analysis Workshop (TMA ’12), pages 143–156, 2012.

[ECPS02] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting
the physical world with pervasive networks. Pervasive
Computing, 1(1):59–69, 2002.

[EN03] E. Elnahrawy and B. Nath. Cleaning and querying noisy
sensors. In Proc. 2nd ACM Int’l Conf. on Wireless Sensor
Networks and Applications (WSNA 2003), page 87, 2003.

[ER03] J. Elson and K. Römer. Wireless sensor networks: A new
regime for time synchronization. ACM SIGCOMM Comp.
Comm. Rev., 33(1):149–154, 2003.

[Fal03] K. Fall. A delay-tolerant network architecture for challenged
internets. In Proc. Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM ’03), pages 27–34, 2003.

[FW10] R. Flury and R. Wattenhofer. Slotted programming for sensor
networks. In Proc. 9th Int’l Conf. Information Processing Sensor
Networks (IPSN ’10), pages 24–34, 2010.

[FZMT12] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-
power wireless bus. In Proc. 10th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’12), pages 1–14, 2012.

124 Bibliography

[FZTS11] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient
network flooding and time synchronization with Glossy.
In Proc. 10th Int’l Conf. on Information Processing in Sensor
Networks (IPSN ’11), pages 73–84, 2011.

[GBG+12] L. Girard, J. Beutel, S. Gruber, J. Hunziker, R. Lim, and
S. Weber. A custom acoustic emission monitoring system
for harsh environments: Application to freezing-induced
damage in alpine rock-walls. Geoscientific Instrumentation,
Methods and Data Systems, 1(2):155–167, 2012.

[GCB+97] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[GCME+10] J. Gupchup, D. Carlson, R. Musăloiu-E, A. Szalay, and
A. Terzis. Phoenix: An epidemic approach to time
reconstruction. In Proc. 7th European Conf. on Wireless Sensor
Networks (EWSN ’10), pages 17–32, 2010.

[GFJ+09] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In Proc. 7th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’09), pages 1–14, 2009.

[GLvB+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to
networked embedded systems. In Proc. ACM SIGPLAN 2003
Conf. on Programming Language Design and Implementation
(PLDI ’03), pages 1–11, 2003.

[GM95] A. Gupta and I. Mumick. Maintenance of materialized views:
Problems, techniques, and applications. Data Engineering
Bulletin, 18(2):3–18, 1995.

[GMEST09] J. Gupchup, R. Musăloiu-E., A. Szalay, and A. Terzis. Sundial:
Using sunlight to reconstruct global timestamps. In Proc. 6th
European Conf. on Wireless Sensor Networks (EWSN ’09), pages
183–198, 2009.

[GZH09] S. Guo, Z. Zhong, and T. He. FIND: Faulty node detection for
wireless sensor networks. In Proc. 7th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’09), pages 253–266, 2009.

[HKWW06] V. Handziski, A. Köpke, A. Willig, and A. Wolisz. TWIST:
A scalable and reconfigurable testbed for wireless indoor
experiments with sensor networks. In Proc. 2nd Int’l

Bibliography 125

Workshop on Multi-hop Ad Hoc Networks (REALMAN ’06),
pages 63–70, 2006.

[HSL+11] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson,
J. Stankovic, and K. Whitehouse. The hitchhiker’s guide to
successful residential sensing deployments. In Proc. 9th ACM
Conf. Embedded Networked Sensor Systems (SenSys ’11), pages
232–245, 2011.

[HSST12] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele.
Participatory air pollution monitoring using smartphones.
In Proc. 1st Int’l Workshop on Mobile Sensing: From Smartphones
and Wearables to Big Data, 2012.

[HTB+08] A. Hasler, I. Talzi, J. Beutel, C. Tschudin, and S. Gruber.
Wireless sensor networks in permafrost research – Concept,
requirements, implementation and challenges. In Proc. 9th
Int’l Conf. on Permafrost (NICOP ’08), volume 1, pages 669–
674, 2008.

[JCH84] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A
quantitative measure of fairness and discrimination for
resource allocation in shared computer systems. Technical
Report 301, DEC, 1984.

[KBM+09] M. Keller, J. Beutel, A. Meier, R. Lim, and L. Thiele. Learning
from sensor network data. In Proc. 7th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’09), pages 383–384, 2009.

[KBT09] M. Keller, J. Beutel, and L. Thiele. Demo abstract:
MountainView – Precision image sensing on high-alpine
locations. In Adjunct Proc. 6th European Workshop on Sensor
Networks (EWSN ’09), pages 15–16, Cork, Ireland, 2009.

[KDL+06] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and
D. Culler. Elapsed time on arrival: A simple and versatile
primitive for canonical time synchronisation services. Int’l
Journal of Ad Hoc and Ubiquitous Computing, 1(4):239–251,
2006.

[KGL10] M. Kazandjieva, O. Gnawali, and P. Levis. Visualizing sensor
network data with Powertron. In Proc. 8th ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’10), pages 395–
396, 2010.

[KHLK09] M. Kazandjieva, B. Heller, P. Levis, and C. Kozyrakis. Energy
dumpster diving. In Proc. 2nd Workshop on Power Aware
Computing (HotPower’09), pages 1–5, 2009.

126 Bibliography

[KKP99] J. Kahn, R. Katz, and K. Pister. Next century challenges:
Mobile networking for “smart dust”. In Proc. 5th ACM/IEEE
Int’l Conf. on Mobile Computing and Networking (MobiCom ’99),
pages 271–278, 1999.

[KWL+11] M. Keller, M. Woehrle, R. Lim, J. Beutel, and L. Thiele.
Comparative performance analysis of the PermaDozer
protocol in diverse deployments. In Proc. 6th IEEE Int’l
Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp ’11), pages 969–977, 2011.

[KYB09] M. Keller, M. Yuecel, and J. Beutel. High resolution imaging
for environmental monitoring applications. In Proc. Int’l
Snow Science Workshop (ISSW ’09), pages 197–201, 2009.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of the ACM, 21(7):558–565, 1978.

[LBL+13] Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. Ghaed, P. Pannuto,
P. Dutta, D. Sylvester, and D. Blaauw. A modular 1 mm3
die-stacked sensing platform with low power i2c inter-die
communication and multi-modal energy harvesting. IEEE
Solid-State Circuits, 48(1):229–243, 2013.

[LBV06] K. Langendoen, A. Baggio, and O. Visser. Murphy
loves potatoes: Experiences from a pilot sensor network
deployment in precision agriculture. In Proc. 20th Int’l
Parallel and Distributed Processing Symposium (IPDPS ’06),
pages 8–15, 2006.

[LDCE09] M. Lukac, P. Davis, R. Clayton, and D. Estrin. Recovering
temporal integrity with data driven time synchronization.
In Proc. 8th Int’l Conf. Information Processing Sensor Networks
(IPSN ’09), pages 61–72. IEEE Computer Society, 2009.

[LFS+12] J. J. Li, B. Faltings, O. Saukh, D. Hasenfratz, and J. Beutel.
Sensing the air we breathe – the OpenSense Zurich dataset. In
Proc. 26th Int’l Conf. on the Advancement of Artificial Intelligence
(AAAI ’12), pages 323–325, 2012.

[LFZ+13] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. FlockLab: A testbed for distributed, synchronized
tracing and profiling of wireless embedded systems. In Proc.
12th Conf. on Information Processing in Sensor Networks (IPSN
’13), 2013.

[LHZ+06] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A.
Stankovic. Achieving repeatability of asynchronous events
in wireless sensor networks with EnviroLog. In Proc. 25th

Bibliography 127

IEEE Int’l Conf. on Computer Communications (INFOCOM ’06),
pages 1–14, 2006.

[LLL10] Y. Liu, K. Liu, and M. Li. Passive diagnosis for wireless sensor
networks. IEEE/ACM Transactions on Networking, 18(4):1132–
1144, 2010.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and scalable simulation of entire tinyos applications. In Proc.
1st ACM Conf. Embedded Networked Sensor Systems (SenSys
’03), pages 126–137, 2003.

[LMZL11] K. Liu, Q. Ma, X. Zhao, and Y. Liu. Self-diagnosis for large
scale wireless sensor networks. In Proc. 30th IEEE Int’l Conf.
on Computer Communications (INFOCOM ’11), pages 1539 –
1547, 2011.

[LSW09] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal clock
synchronization in networks. In Proc. 7th ACM Conf.
Embedded Networked Sensor Systems (SenSys ’09), pages 225–
238, 2009.

[Lub85] M. Luby. A simple parallel algorithm for the maximal
independent set problem. In Proc. 17th Annual ACM
Symposium on Theory of Computing (STOC ’85), pages 1–10,
1985.

[Mat89] F. Mattern. Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms, 1(23):215–226,
1989.

[MHL+09] L. Mo, Y. He, Y. Liu, J. Zhao, S.-J. Tang, X.-Y. Li, and G. Dai.
Canopy closure estimates with GreenOrbs: Sustainable
sensing in the forest. In Proc. 7th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’09), pages 99–112, 2009.

[MKSL04a] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. The flooding
time synchronization protocol. In Proc. 2nd ACM Conf.
Embedded Networked Sensor Systems (SenSys ’04), pages 39–
49, 2004.

[MKSL04b] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding
time synchronization protocol. In Proc. 2nd ACM Conf.
Embedded Networked Sensor Systems (SenSys ’04), pages 39–
49, 2004.

[MLML12] Q. Ma, K. Liu, X. Miao, and Y. Liu. Sherlock is around:
Detecting network failures with local evidence fusion. In
Proc. 31st IEEE Int’l Conf. on Computer Communications
(INFOCOM ’12), pages 792–800, 2012.

128 Bibliography

[MOH05] K. Martinez, R. Ong, and J. Hart. Glacsweb: A sensor
network for hostile environments. In Proc. 1st IEEE
Communications Society Conf. Sensor, Mesh and Ad Hoc
Communications and Networks (SECON ’04), pages 81–87,
2005.

[MP11] L. Mottola and G. Picco. MUSTER: Adaptive energy-
aware multi-sink routing in wireless sensor networks. IEEE
Transactions on Mobile Computing, 10(12):1694–1709, 2011.

[MPC+10] L. Mottola, G. P. Picco, M. Ceriotti, c. Gunǎ, and A. L.
Murphy. Not all wireless sensor networks are created equal:
A comparative study on tunnels. ACM Trans. Sen. Netw.,
7:15:1–15:33, September 2010.

[NRC+09] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair,
S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava.
Sensor network data fault types. ACM Trans. Sens. Netw.,
5(3):1–29, 2009.

[NT06] H. Nguyen and P. Thiran. Using end-to-end data to infer
lossy links in sensor networks. In Proc. 25th Int’l Conf. on
Computer Communications (INFOCOM ’06), pages 1–12, 2006.

[ODE+06] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt.
Cross-level sensor network simulation with COOJA. In Proc.
31st Conf. Local Computer Networks (LCN ’06), pages 641–648,
2006.

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. 2nd Int’l Conf.
on Embedded Networked Sensor Systems (SenSys ’04), pages
95–107, 2004.

[RB06] S. Rost and H. Balakrishnan. Memento: A health monitoring
system for wireless sensor networks. In 3rd Annual Conf. on
Sensor and Ad Hoc Communications and Networks (SECON ’06),
pages 575–584, 2006.

[RCK+05] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin. Sympathy for the sensor network debugger.
In Proc. 3rd ACM Conf. Embedded Networked Sensor Systems
(SenSys ’05), pages 255–267, 2005.

[RGR09] A. Rowe, V. Gupta, and R. R. Rajkumar. Low-power clock
synchronization using electromagnetic energy radiating
from AC power lines. In Proc. 7th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’09), pages 211–224, 2009.

Bibliography 129

[RM09] K. Römer and J. Ma. PDA: Passive distributed assertions
for sensor networks. In Proc. 10th ACM/IEEE Int’l Conf.
Information Processing in Sensor Networks (IPSN ’09), pages
337–348, 2009.

[RNC04] M. Rabbat, R. Nowak, and M. Coates. Multiple source,
multiple destination network tomography. In Proc. 23th
Int’l Conf. on Computer Communications (INFOCOM ’04),
volume 3, pages 1628–1639, 2004.

[SAM03] Y. Sankarasubramaniam, I. Akyildiz, and S. McLaughlin.
Energy efficiency based packet size optimization in wireless
sensor networks. In Proc. 1st Int’l Workshop on Sensor Network
Protocols and Applications (SNPA ’03), pages 1–8, 2003.

[SBS+11] I. Schweizer, R. Bärtl, A. Schulz, F. Probst, and M. Mühläuser.
NoiseMap – Real-time participatory noise maps. In Proc.
2nd Int’l Workshop on Sensing Applications on Mobile Phones
(PhoneSense ’11), pages 1–5, 2011.

[SDS10] T. Schmid, P. Dutta, and M. B. Srivastava. High-resolution,
low-power time synchronization an oxymoron no more. In
Proc. 9th ACM/IEEE Int’l Conf. Information Processing in Sensor
Networks (IPSN ’10), pages 151–161, 2010.

[SDTL10] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. An
empirical study of low-power wireless. ACM Trans. Sen.
Netw., 6:16:1–16:49, 2010.

[SMP+04] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An analysis of a large scale habitat monitoring
application. In Proc. 2nd ACM Conf. Embedded Networked
Sensor Systems (SenSys ’04), pages 214–226, 2004.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer
Systems, 2:277–288, 1984.

[TMEC+10] A. Terzis, R. Musaloiu-E, J. Cogan, K. Szlavecz, A. Szalay,
J. Gray, S. Ozer, C. Liang, J. Gupchup, and R. Burns. Wireless
sensor networks for soil science. Int’l Journal of Sensor
Networks, 7(1):53–70, 2010.

[TPS+05] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong.
A macroscope in the redwoods. In Proc. 3rd ACM Conf.
Embedded Networked Sensor Systems (SenSys ’05), pages 51–
63, 2005.

130 Bibliography

[WALJ+06] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In Proc. 7th Symp. on Operating Systems Design and
Implementation (OSDI ’06), pages 381–396, 2006.

[WLB+11] V. Wirz, P. Limpach, J. Beutel, B. Buchli, and S. Gruber.
Temporal characteristics of different cryosphere-related
slope movements in high mountains. In Proc. 2nd World
Landslide Forum, 2011.

[WTC03] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks.
In Proc. 1st ACM Conf. Embedded Networked Sensor Systems
(SenSys ’03), pages 14–27, 2003.

[YSSW07] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse.
Clairvoyant: A comprehensive source-level debugger for
wireless sensor networks. In Proc. 5th ACM Conf. Embedded
Networked Sensor Systems (SenSys ’07), pages 189–203, 2007.

[ZG03] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In Proc. 1st
ACM Conf. Embedded Networked Sensor Systems (SenSys ’03),
pages 1–13, 2003.

[ZGE02] Y. Zhao, R. Govindan, and D. Estrin. Residual energy scan for
monitoring sensor networks. In Proc. Int’l Conf. on Wireless
Communications and Networking (WCNC ’02), pages 356–362,
2002.

Curriculum Vitæ

Name Matthias Keller

Date of Birth 22 April 1983

Nationality German

Education:

2008–2013 Computer Engineering and Networks Laboratory, ETH Zurich
PhD thesis under the supervision of Prof. Dr. L. Thiele
Recipient of best paper award at SAMOS 2009 and DCOSS 2013

2006–2008 Fakultät für Informatik, Technische Universität München
M.Sc. in Computer Science (with distinction)
Exchange student at ETH Zurich, ERASMUS programme
Scholarship of Lothar and Sigrid Rohde Foundation

2006–2008 Center for Digital Technology and Management
Honours Degree in Technology Management (with distinction)

2003–2006 Fakultät für Elektrotechnik und Informationstechnik,
Technische Universität München
B.Sc. in Information Technology (with distinction)

1993–2002 Robert-Bosch-Gymnasium Langenau
University-entrance degree (Abitur)

Professional Experience:

2008–2013 Research assistant at ETH Zurich

2007 HW/SW Engineer at MRX Technologies, Perth, Australia

2005–2007 Intern and working student at DaimlerChrysler Research and
Technology, Ulm, Germany

2003–2008 Self-employed software developer and network administrator

2002–2003 Alternative civil service

List of Publications
The following list summarizes the publications that constitute the basis
of this thesis. The corresponding chapters are indicated in parentheses.

M. Keller, L. Thiele, and J. Beutel. Reconstruction of the correct temporal
order of sensor network data. In Proc. 10th Int’l Conf. on Information
Processing in Sensor Networks (IPSN ’11), pages 282–293, Chicago, IL, USA,
2011. (Chapter 2)

M. Keller and J. Beutel. Demo abstract: Efficient data retrieval for
interactive browsing of large sensor network data sets. In Proc. 10th
Int’l Conf. on Information Processing in Sensor Networks (IPSN ’11), pages
139–140, Chicago, IL, USA, 2011. (Chapter 3)

M. Keller, J. Beutel, O. Saukh, and L. Thiele. Visualizing large sensor
network data sets in space and time with Vizzly. In Proc. 7th IEEE
Int’l Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp ’12), pages 963–971, Clearwater, Florida, USA, 2012. (Chapter 3)

M. Keller, J. Beutel, and L. Thiele. Poster abstract: Multi-hop network
tomography: Path reconstruction and per-hop arrival time estimation
from partial information. In Proc. ACM SIGMETRICS/PERFORMANCE
Joint Int’l Conf. on Measurement and Modeling of Computer Systems
(SIGMETRICS ’12), pages 421–422, London, UK, 2012. (Chapter 4)

M. Keller, J. Beutel, and L. Thiele. How was your journey? Uncovering
routing dynamics in deployed sensor networks with multi-hop network
tomography. In Proc. 10th ACM Conf. on Embedded Networked Sensor
Systems (SenSys ’12), pages 15–28, Toronto, ON, Canada, 2012. (Chapter 4)

M. Keller, J. Beutel, and L. Thiele. The Problem Bit. In Proc. 9th IEEE
Int’l Conf. on Distributed Computing in Sensor Systems (DCOSS ’13), pages
105–114, Cambridge, MA, USA, 2013. Best Paper Award. (Chapter 5)

The following list summarizes the publications that were written during
the PhD studies, yet are not part of this thesis.

M. Keller, J. Beutel, and L. Thiele. Demo abstract: MountainView –
Precision image sensing on high-alpine locations. In Adjunct Proc. 6th

134 List of Publications

European Workshop on Sensor Networks (EWSN ’09), pages 15–16, Cork,
Ireland, 2009.

M. Keller, J. Beutel, A. F. Meier, R. Lim, and L. Thiele. Poster abstract:
Learning from sensor network data. In Proc. 7th ACM Conf. on Embedded
Networked Sensor Systems (SenSys ’09), pages 383–384, Berkeley, CA, USA,
2009.

J. Beutel, S. Gruber, S. Gubler, A. Hasler, M. Keller, R. Lim, I. Talzi,
L. Thiele, C. Tschudin, and M. Yuecel. The PermaSense remote
monitoring infrastructure. In International Snow Science Workshop 2009:
Programme and Abstracts, pages 187–191, Davos, Switzerland, 2009.

M. Keller, M. Yuecel, and J. Beutel. High resolution imaging
for environmental monitoring applications. In International Snow
Science Workshop 2009: Programme and Abstracts, pages 197–201, Davos,
Switzerland, 2009.

M. Keller, G. Hungerbuehler, O. Knecht, S. Sheikh, J. Beutel, S. Gubler,
J. Fiddes, and S. Gruber. Demo abstract: iAssist – Rapid deployment
and maintenance of tiny sensing systems. In Proc. 8th ACM Conf. on
Embedded Networked Sensor Systems (SenSys ’10), pages 401–402, Zurich,
Switzerland, 2010.

J. Beutel, B. Buchli, F. Ferrari, M. Keller, L. Thiele, and M. Zimmerling.
X-Sense: Sensing in extreme environments. In Proc. Design, Automation
and Test in Europe (DATE ’11), pages 1–6, Grenoble, France, 2011.

M. Keller and J. Beutel. Demo abstract: Efficient data retrieval for
interactive browsing of large sensor network data sets. In Proc. 10th
Int’l Conf. on Information Processing in Sensor Networks (IPSN ’11), pages
139–140, Chicago, IL, USA, 2011.

S. Gubler, J. Fiddes, M. Keller, and S. Gruber. Scale-dependent
measurement and analysis of ground surface temperature variability
in alpine terrain. The Cryosphere, 5(2):431–443, 2011.

M. Keller, M. Woehrle, R. Lim, J. Beutel, and L. Thiele. Comparative per-
formance analysis of the PermaDozer protocol in diverse deployments.
In Proc. 6th IEEE Int’l Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp ’11), pages 969–977, Bonn, Germany, 2011.

Y.-H. Chiang, M. Keller, R. Lim, P. Huang, and J. Beutel. Poster abstract:
Light-weight network health monitoring. In Proc. 11th Int’l Conf.
on Information Processing in Sensor Networks (IPSN ’12), pages 109–110,
Beijing, China, 2012.

Image Credits
The following figures contain material that is copyrighted and/or has been
contributed by the following individuals and organizations:

Page 45, Figure 3.1: Google (Nexus phone), Monica Tarocco (street car,
http://www.monicatarocco.com/)

Page 47, Figure 3.3: Google, GeoBasis-DE/BKG

http://www.monicatarocco.com/

	Abstract
	Zusammenfassung
	Introduction
	Wireless Sensor Networks
	Challenges in Wireless Data Collection
	Exemplary Deployment Project: PermaSense
	Thesis Outline and Contributions

	Model-based Data Cleaning and Order Reconstruction
	Introduction
	Related Work
	Packet Classification and Order Reconstruction
	System Model
	Data Analysis
	Case Study
	Broader Applicability and Limitations
	Conclusions

	Visualization of Large Data Sets in Space and Time with Vizzly
	Introduction
	Related Work
	Visualizing Large Sensor Network Data Sets
	Vizzly System Design
	Vizzly Implementation
	Two Diverse Use Cases
	Performance Evaluation
	Integrating and Extending Vizzly
	Conclusions

	Multi-Hop Network Tomography
	Introduction
	Related Work
	Exploiting Information Implicitly Given
	Multi-Hop Network Tomography
	System Model
	Safe Information Reconstruction
	Multi-Protocol Testbed Evaluation
	Making Real Network Dynamics Visible
	Broader Applicability and Limitations
	Conclusions

	Hybrid Network Health Monitoring
	Introduction
	Related Work
	Inferring State From Minimal Information
	Hybrid Monitoring
	System Model
	From a Single Bit to a Scalar Value
	Multi-Testbed Evaluation
	Broader Applicability and Limitations
	Conclusions

	Conclusions
	Bibliography
	Curriculum Vitæ
	List of Publications

